
Moti Yung
Jianbiao Zhang
Zhen Yang (Eds.)

 123

LN
CS

 9
56

5

7th International Conference, INTRUST 2015
Beijing, China, December 7–8, 2015
Revised Selected Papers

Trusted Systems



Lecture Notes in Computer Science 9565

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Moti Yung • Jianbiao Zhang
Zhen Yang (Eds.)

Trusted Systems
7th International Conference, INTRUST 2015
Beijing, China, December 7–8, 2015
Revised Selected Papers

123



Editors
Moti Yung
Computer Science
Columbia University
New York, NY
USA

Jianbiao Zhang
Key Laboratory of Trusted Computing
Beijing University of Technology
Beijing
China

Zhen Yang
Key Laboratory of Trusted Computing
Beijing University of Technology
Beijing
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-31549-2 ISBN 978-3-319-31550-8 (eBook)
DOI 10.1007/978-3-319-31550-8

Library of Congress Control Number: 2016934019

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

These proceedings contains the 15 papers presented at the INTRUST 2015 conference,
held in Beijing, China, in December 2015. INTRUST 2015 was the 7th International
Conference on the Theory, Technologies and Applications of Trusted Systems. It was
devoted to all aspects of trusted computing systems, including trusted modules, plat-
forms, networks, services, and applications, from their fundamental features and
functionalities to design principles, architecture, and implementation technologies. The
goal of the conference was to bring academic and industrial researchers, designers, and
implementers together with end-users of trusted systems, in order to foster the
exchange of ideas in this challenging and fruitful area.

INTRUST 2015 built on the six previous successful INTRUST conferences:
INTRUST 2009, INTRUST 2010, and INTRUST 2011 (Beijing, China), INTRUST
2012 (London, UK), INTRUST 2013 (Graz, Austria), and INTRUST 2014 (Beijing,
China). The proceedings of all the previous INTRUST conferences have been pub-
lished in the Lecture Notes in Computer Science series by the Springer.

Apart from the 15 contributed papers, the program of INTRUST 2015 also included
four keynote speeches from Robert Deng (Singapore Management University), Wen-
chang Shi (Renmin University), Rob Spiger (Microsoft), and Claire Vishik (Trusted
Computing Group). Special thanks are due to these keynote speakers.

The contributed papers were selected from 29 submissions from 11 countries. All
submissions were blind-reviewed, i.e., the Program Committee members provided
reviews on anonymous submissions. The refereeing process was rigorous, involving on
average three (and mostly more) independent reports being prepared for each sub-
mission. The individual reviewing phase was followed by profound discussions about
the papers, which contributed greatly to the quality of the final selection. We are very
grateful to our hard-working and distinguished Program Committee for doing such an
excellent job in a timely fashion.

For the proceedings, the papers have been arranged in four main categories, namely,
encryption and signatures, security model, trusted technologies, and software and
system security.

We also want to thank the conference Steering Committee, including Liqun Chen,
Robert Deng, Yongfei Han, Chris Mitchell, and Moti Yung, the conference general
chairs, Liqun Chen and Yongfei Han, the conference organizing chair, Lijuan Duan,
the publicity chairs, Liqun Chen and Li Lin, and the Organizing Committee members,
including Jing Zhan, Yingxu Lai, Zhen Yang, Yihua Zhou, Bei Gong, and Wei Ma, for
their valuable guidance and assistance and for handling the arrangements in Beijing.
Thanks are also due to the developers of EasyChair for providing the submission and
review webserver.

On behalf of the conference organization and participants, we would like to express
our appreciation to Beijing University of Technology and ONETS Wireless and
Internet Security Company for their generous sponsorship of this event.



We would also like to thank all the authors who submitted their papers to the
INTRUST 2015 conference, all external reviewers, and all the attendees of the con-
ference. Authors of accepted papers are thanked again for revising their papers
according to the feedback from the conference participants. The revised versions were
not checked by the Program Committee, and thus authors bear full responsibility for the
content. We thank the staff at Springer for their help with the production of the
proceedings.

January 2016 Moti Yung
Jianbiao Zhang

Zhen Yang
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Privacy-Preserving Anomaly Detection Across
Multi-domain for Software Defined Networks

Huishan Bian1, Liehuang Zhu1, Meng Shen1,2(B), Mingzhong Wang3,
Chang Xu1, and Qiongyu Zhang1

1 Beijing Engineering Research Center of High Volume Language Information
Processing and Cloud Computing Applications, School of Computer Science,

Beijing Institute of Technology, Beijing, People’s Republic of China
{heiseon,liehuangz,shenmeng,xuchang,biterzqy}@bit.edu.cn

2 Ministry of Education, Key Laboratory of Computer Network and Information
Integration (Southeast University), Nanjing, People’s Republic of China

3 Faculty of Arts and Business, University of the Sunshine Coast,
Queensland, Australia
mwang@usc.edu.au

Abstract. Software Defined Network (SDN) separates control plane
from data plane and provides programmability which adds rich func-
tion for anomaly detection. In this case, every organization can manage
their own network and detect anomalous traffic data using SDN archi-
tecture. Moreover, detection of malicious traffic, such as DDoS attack,
would be dealt with much higher accuracy if these organizations shared
their data. Unfortunately, they are unwilling to do so due to privacy
consideration. To address this contradiction, we propose an efficient and
privacy-preserving collaborative anomaly detection scheme. We extend
prior work on SDN-based anomaly detection method to guarantee accu-
racy and privacy at the same time. The implementation of our design
on simulated data shows that it performs well for network-wide anomaly
detection with little overhead.

Keywords: Privacy-preserving ·Multi-domain collaboration · Anomaly
detection · Software defined network

1 Introduction

Software Defined Network (SDN) separates the control plane from the data plane
which provides rich functionality. In SDN environment, network operators can
utilize this characteristic to manage their network domain. There is a logically
centralized controller in every domain which consists of one or more physical
controllers. The logically centralized controller is responsible for dealing with
all intra-domain and inter-domain network events. Another essential function of
controller is that it is responsible for anomaly detection in order to ensure SDN
domain works well.

Several anomaly detection methods have been presented to protect secu-
rity of domain in SDN environment [4,5,18,20], such as entropy based anomaly
detection [4], SOM-based (Self Organizing Maps) [5] anomaly detection, etc.
c© Springer International Publishing Switzerland 2016
M. Yung et al. (Eds.): INTRUST 2015, LNCS 9565, pp. 3–16, 2016.
DOI: 10.1007/978-3-319-31550-8 1



4 H. Bian et al.

However, existing anomaly detection methods are constrained to single
domain. Rather than considering the traffic of each domain independently, ana-
lyzing the traffic on all domains is more efficient because many abnormal behav-
iors impact multiple domains. Consequently, anomaly detection would be much
easier if multiple domains shared their inner information, such as traffic traces,
packets information, etc. This kind of information is vital for executing anom-
aly detection algorithms. It has been shown that if every domain cooperated
with each other, one could detect anomaly that couldn’t be detected by single
domain [7]. Unfortunately, some domains are unwilling to disclose the details of
intra-domains’ information [1,8] since they are extremely confidential and infor-
mation disclosure will cause direct attacks. Therefore, there should be a scheme
that guarantees privacy without much performance sacrifice.

To address this problem, we propose an efficient and privacy-preserving col-
laborative anomaly detection scheme across multiple domains. We focus on the
privacy issue, so we just utilize existing anomaly detection method to detect the
typical attack, such as DDoS attack, in this paper. We adopt an effective anom-
aly detection method, which called SOM-based algorithm [5] to detect anomaly.
On the basis, we perturb private information with random value and eliminate
random value in subsequent computation which can protect privacy without sac-
rificing accuracy. In our scheme, all participants can learn the detection results
without learning others’ private information. We evaluate our design at a sim-
ulated distributed environment and the results show that our scheme performs
well for network-wide anomaly detection.

The main contributions of this paper are as follows:

1. We present a problem of privacy disclosure risk which exists on multiple
domains for SDN environment. To the best of our knowledge, it is the first
attempt to consider privacy on multiple domains for SDN environment.

2. We propose a solution for dealing with the aforementioned problem. In our
work, multiple domains can collaborate to detect network-wide malicious traf-
fic without any leak of private information.

3. We evaluate our design, the results indicate that the design has a good per-
formance for network-wide anomaly detection whether efficiency or accuracy.

The paper is structured as follows: In Sect. 2, we review the previous work and
the main differences with our proposed mechanism, while in Sect. 3 we describe
the system design. Section 4 presents our scheme in detail. Privacy analysis and
performance evaluation are described in Sect. 5.

2 Related Work

Anomaly detection has been studied widely and has received considerable atten-
tion recently. Compared with legacy networks, there are many advantages on
SDN infrastructure. For example, there is no need to deploy extra devices for
anomaly detection on SDN and SDN infrastructure can provide fast mitigation.
Therefore, many researchers study anomaly detection in SDN infrastructure
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to improve its flexibility and efficiency. In literature [5], the author proposed
a lightweight method to extract traffic flow features for DDoS attack detec-
tion. This method was implemented over a NOX-based network and uses SOM
algorithm to detect anomaly. The results indicated that their method was very
effective and had high accuracy. In 2011, Syed Akbar Mehdi et al. [18] pre-
sented anomaly detection on SDN infrastructure. In this paper, many anomaly
detection algorithms were used to validate that these methods were suitable for
Small Office/Home Office (SOHO) environments. But these methods could only
be applied to low network traffic rates. K. Gliotis et al. [4] combined sFlow [2]
and Openflow [3] for anomaly detection. In this paper, authors compared sFlow
method with native Openflow method for data collection. The experiment result
indicated that sFlow was more efficient than native Openflow.

However, all above-mentioned methods only consider single network domain.
While expanding to multi-domain, if multiple domains could cooperate with
each other, the accuracy of anomaly detection would be improved. Soule et al.
[7] showed that more anomalies were detected by analyzing the data of peering
domains together. However, traffic data contains a lot of sensitive value, such
as users’ privacy, data flow information and so on. Hence, some of domains are
unwilling to cooperate with other domains due to privacy disclosure risk.

To guarantee privacy, two major different methods are available which are
cryptography method and geometric transformation method. The cryptography
method has been widely studied in the literature and the most widely used one
is secure multi-party computation. The secure multi-party computation tends to
compute functions over inputs provided by multiple recipients without actually
sharing the inputs with one another. The weakness of this method is its high
execution time even though it guarantees the privacy of confidential data. There
are many solutions with cryptography methods dealing with anomaly detection
in legacy networks [12–14]. These solutions need tens to hundreds of seconds to
detect anomaly which is unacceptable in actual environment.

Geometric transformation method has an extensive usage in statistical dis-
closure control due to its simplicity, efficiency, and ability to preserve statistical
information [9–11]. The general idea is to replace the original data values with
some synthetic ones. There are two methods in common use, data perturbation
and data transformation. Data perturbation method adds some noises to original
data to protect privacy. It is clear that such method reduces the accuracy of data
usage even though preserves the privacy. Data transformation method converts
original data to transformed data by orthogonal transformation or projection
transformation so that the statistical data computed from the transformed data
does not differ significantly from the statistical information computed from the
original data. However, [15] shows that this kind of distance-preserving trans-
formation method will breach privacy. Another drawback of geometric trans-
formation method is that these methods unify the transformation functions or
perturbation value which is infeasible in our scenario. If we could eradicate per-
turbation value in subsequent computation, we can use the data perturbation
method to preserve high efficiency without sacrificing accuracy.
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3 System Design

In SDN environment, network operators manage their domain by themselves
due to the open network programmability of SDN. Every domain is managed by
one or more controllers. There is no doubt that the detection rate will be higher
with a larger traffic data set and more different viewpoints of the network. But
traffic data contains a lot of sensitive value, such as users’ privacy, data flow
information etc.

– Users’ privacy: Traffic data often contains source IP, destination IP, data flow
start time and so on. These data will disclose users’ surfing habits and asso-
ciated users which belong to users’ privacy.

– Data flow information: Traffic data often contains the number of packets per
flow, the number of bytes per flow and so on. Disclosing data flow information
will cause direct business attack.

In our paper, we use the SOM-based anomaly detection method to detect
abnormal traffic. This method often takes as input aforementioned data. If we
just use this method in multi-domain scenario, we should share these traffic
data which will disclose privacy. Hence, most of the domains choose to abstract
their domain as a virtual node, upload these coarse-grained information [1,8]
and are unwilling to reveal the details of the intra information due to privacy
consideration. To address this problem, we design an anomaly detection scheme
which supports privacy protection.

3.1 Adversary Model

In our work, we assume that adversaries are semi-honest (or refer to honest but
curious adversary) and adversaries can be any participants. That is to say, the
participants are curious and attempt to learn from the information received by
them, but do not deviate from the scheme themselves. By assuming a semi-honest
threat model, we do not consider the scenarios where either the service provider
or any of data providers is malicious. Malicious adversaries may do anything to
infer secret information even aborting the scheme at any time. In our case, semi-
honest model may be considered as more realistic adversary model because any
of participants wants to obtain right results. The design of our scheme allows
the collusion between data providers (e.g. controllers) while we do not allow the
collusion between the service providers. The data providers can only collude with
one of the service providers due to preceding constraint.

3.2 Design Goals

Under this adversary model, we define design goals as follows:

Privacy: We define privacy as follows: The participants can’t learn the data
held by other participants. Any other parties also should not be able to obtain
the data of participants when doing some computation.
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Fig. 1. Disturbance Erasion Process

Collaboration Benefits: The accuracy of anomaly detection across multiple
domains should be higher than by single domain.

Efficiency: Our scheme should preserve real-time performance with privacy
consideration.

Scalability: The overhead should not increase too fiercely with varying number
of participant recipients.

Hence, our primary goals are privacy preserving, better accuracy, high effi-
ciency and good scalability.

3.3 System Model

To achieve the goals mentioned above, we design an effective and privacy-
preserving anomaly detection scheme across multi-domain. In this paper, we
focus on privacy protection, so we use the existing SOM-based anomaly detec-
tion method. In order to gain the final model of SOM, we circularly train and
adapt synaptic weights until SOM model has no obvious change. This method
takes as input traffic data which will be protected carefully. We should obtain
final adapted weights without knowing the traffic data. In this paper, we use
the notation W to represent the synaptic weights of neuron vector and use the
notation X to represent the traffic data.

To reduce communication overhead and computation cost, we use centralized
system model in this paper, that is, we bring in a semi-honest third party, called
server, to simplify the computation. The server uses traffic data collected from
every domain to detect anomaly. As we stated above, semi-honest party executes
scheme honestly but is curious about privacy of every domain. Hence, every
domain can’t send plaintext of traffic data to the server.

Every domain adds some random noise to their traffic data before sending
in order to protect these data. As we mentioned above, data perturbation will
cause accuracy sacrifice and every domain should unify noise value which is not
realistic in our scenario. If we could erase noise in subsequent computation, we
can use the data perturbation method to solve our problem without sacrificing
accuracy.
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To achieve this goal, we bring in another semi-honest third party, called assis-
tant, to erase the disturbance. Disturbance erasion process is as shown in Fig. 1.
First of all, the Domain shares the perturbation value Δx with the Server. The
Domain sends X + Δx to the Assistant, then the Assistant initiates the value
W , calculates X + Δx − W and sends the results to the Server. The Server
knows the perturbation value Δx, she can compute X − W accurately without
knowing X and W . Reviewing the whole process, we can find that none of par-
ties learn other parties’ confidential data. However, data can be eavesdropped on
the channel in real networks. The Server can eavesdrop the intermediate result
X + Δx, then she can learn the precise data of the Domain. Hence, each party
should encrypt its data before sending to other party.

To achieve efficiency goal, we utilize Digital Envelope to encrypt confidential
data. Digital Envelope is a mechanism which combine asymmetric encryption
method with symmetric encryption method. A sender uses symmetric secret key
to encrypt sensitive data and then uses asymmetric public key to encrypt sym-
metric secret key. The sender sends encrypted data and encrypted symmetric
key to the receipt. When the receipt receives these information, he uses asym-
metric private key to decrypt the symmetric secret key. Then he uses this secret
key to obtain plaintext. In this paper, we use Digital Envelope to combine RSA
cryptography method and AES method. We can see this mechanism has ideal
performance in the experiment part.

Now we describe the privacy preserving anomaly detection system overview
using aforementioned design. To simplify the description, we assume that every
domain is controlled by one controller in this paper. We consider a “semi-
centralized” architecture which consists of several controllers, C = {Ci | i =
1, 2, . . . , n}, a server S, and an assistant A as can be seen in Fig. 2. Every
controller Ci collects flow statistics, such as packet counts, byte counts and so
on. These controllers transform their sensitive data by adding a random noise,
encrypt this transformed data by using Digital Envelope and contribute the
processed data records to the assistant A which assists the server to erase the
disturbance. Then these controllers share the perturbation value with the server
S. The assistant collects the transformed traffic data from all domains and does
some collaborative computation with the server.

After aforementioned preparation phase, the assistant holds the weights of
neuron vector W while the server holds the difference values between the traffic
data and weights X −W . The server cooperates with the assistant to adapt the
synaptic weights. As we can see from Eq. 1, the server can compute the right
part of Eq. 1.

Wj(t + 1) = Wj(t) + η(t)Θj(t)(X(t) − Wj(t)); (1)

The common parameter η(t) and Θj(t) can also be calculated by the assis-
tant, that is, these two parameters can’t be used to protect the difference value
X −W and traffic data X. To protect these two value, we don’t send the inter-
mediate results to the assistant, but send the final results to the assistant. The
detail of computation process is as follows:
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Fig. 2. System Architecture

1. When t = 1:
The server uses the difference between sample of traffic data and initial weight
X(1) − Wj(0) to compute the difference between sample of traffic data and
adapted weight X(1) − Wj(1) with Eq. 2.

X(1) − Wj(1) = (X(1) − Wj(0)) + η(1)Θj(1)(X(1) − Wj(0)); (2)

The server stores the intermediate results X(1) − Wj(0) and X(1) − Wj(1)
for next training.

2. When other condition:
The assistant can provide the difference value X(t+1)−Wj(0) and the server
uses Eq. 3 to compute X(t + 1) − Wj(t).

X(t+1)−Wj(t) = (X(t+1)−Wj(0))+(X(t)−Wj(t))−(X(t)−Wj(0)); (3)

The server uses Eq. 4 to adapt synaptic weights X(t + 1) − Wj(t + 1).

X(t+1)−Wj(t+1) = (X(t+1)−Wj(t))+η(t)Θj(t)(X(t+1)−Wj(t)); (4)

The server stores the intermediate results X(t + 1) − Wj(0) and X(t + 1) −
Wj(t + 1) for next training.

3. Repeat the aforementioned step until that there is no obvious change in SOM
model.
The server obtains the intermediate results X(T ) − Wj(T ), where T is the
maximum training times. The server adds the relevant perturbation value
and sends to the assistant. Because the assistant knows the transformed traf-
fic data, it can computes the final adapted weights X(T ) − Wj(T ). After
adaption phase, the assistant holds final adaption weights while the server
learns nothing.
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4 Proposed PPAD Scheme

In this section, we will describe the privacy-preserving anomaly detection
(PPAD). First of all, we interpret the notation used below.

S denotes the server and A denotes the assistant. D is the set of traffic data
collected from all participant controllers. Δd is the set of perturbation value
created by controllers. n denotes the number of the participant controllers. X
represents a single sample of the traffic data. l means the number of neurons. c
denotes the number of classes. η(t) is the learning rate which gradually decreases
with time t while Θj(t) is the neighborhood function.

4.1 Scheme Overview

We propose a scheme, named PPAD, which allows multiple domains to detect
anomaly together without privacy disclosure. In our scheme, we use an SOM
algorithm to detect anomaly. SOM is an artificial neural network trained with
features of the traffic flow. It can be used to cluster existing traffic statistics
to several classes which are used to detect new abnormal traffic. This scheme
has two phases which are the training phase and the detection phase. To sim-
plify description, we use typical encryption method instead of Digital Envelope
encryption method in next section. The basic steps of our scheme are as follows:

Training phase:

1. All controllers transform their traffic data to two types and encrypt them
using two secret keys.

2. The controllers send the processed data to the server and the assistant.
3. The server and the assistant cooperate to train the traffic data using SOM

method while protecting domains’ privacy.
4. The server and theassistant cooperate to classify the trafficdata into twoclasses.

Detection phase:

1. All controllers use the same way described above to submit their processed
data to the server and the assistant.

2. The server and the assistant classify the new flows into two classes collabo-
ratively. If the new flow is classified into abnormal class, it is predicated as
anomaly traffic and vice versa.

3. Return the final detection results to all controllers.

4.2 Training Algorithm

In the training phase, the goal is to compute the adapted weights and classes
using existing traffic statistics collected from several controllers. Every controller
holds the traffic data of their own domain. All controllers extract the character-
istics of these data, transform the characteristics information and send them to
the third party. Hence, they will not leak any information to the third party.
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Algorithm 1 presents the privacy-preserving training algorithm. As we can see
from the Algorithm 1, the server and the assistant can compute with plaintext of
the data. To be simple, we call D +Δd as transformed traffic data set while call
Δd as perturbation data set. The assistant A chooses a single sample (i.e. X+Δx)
from transformed traffic data set. Then he computes X(t+1)+Δx(t+1)−W (0)
and sends it to the server (line 10 in Algorithm 1). The server uses existing value
3 to compute X(t+1)−Wj(t) with Eq. 3 (line 12 in Algorithm 1). After finding
winning neuron, the server uses Eq. 4 to compute X(t + 1) − Wj(t + 1) (line
16 in Algorithm 1). Repeat steps mentioned above until no significant change
happens. Finally, the assistant A gets the adjusted weights W (T ) and the server
S learns nothing.

Algorithm 1. Privacy-preserving Training Algorithm
Require:

The traffic data D and the perturbation data Δd;
Ensure:

The adjusted neuron vectors;
1: A initializes Wj ;
2: for each controller Ci, i ∈ [1, n] do
3: Ci → A : Encska(Di + Δdi);
4: Ci → S : Encsks(Δdi);
5: end for

6: A : D + Δd =

n⋃

i=1

Decska(Encska(Di + Δdi));

7: S : Δd =
n⋃

i=1

Decsks(Encsks(Δdi))

8: while t ≤ T and there is significant change in parameters do
9: A chooses a single sample X(t + 1) + Δx(t + 1) from D + Δd;

10: A computes tmp = X(t + 1) + Δx(t + 1) − W (0) and sends it to S;
11: for each j ∈ [1, l] do
12: S computes X(t+1)−Wj(t) = (X(t+1)−Wj(0))+(X(t)−Wj(t))− (X(t)−

Wj(0));
13: end for
14: S computes winning neuron i(x) = arg minj ||X(t + 1) − Wj(t)||;
15: for each j ∈ [1, l] do
16: S computes X(t +1) − Wj(t +1) = (X(t +1) − Wj(t))+ η(t)Θj(t)(X(t +1) −

Wj(t));
17: end for
18: end while
19: for each j ∈ [1, l] do
20: S → A : mid − resj = X(T ) − Wj(T ) + Δx(T );
21: end for
22: A computes final weights of neuron vectors W (T ): W (T ) = mid − resj − (X(T ) +

Δx(T ));
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4.3 Detection Algorithm

In the detection phase, the goal is to decide whether a new traffic set is abnormal
or not. Similarly, every controller extracts the characteristics of their domains
traffic data, transforms the characteristics information and sends them to the
server S and the assistant A. Finally, the server returns the detection results to
all domains. As we can see, the whole process does not leak any information to
the third party.

Algorithm 2 presents the privacy-preserving detection algorithm. Initiation
process is similar with training phase. If the traffic is classified into abnormal
class, it is determined as an attack and vice versa (line 10 to 14 in Algorithm 2).

Algorithm 2. Privacy-preserving Detection Algorithm
Require:

The traffic data Y and the perturbation data Δy;
Normal class and Abnormal class;

Ensure:
The detection result;

1: for each controller Ci, i ∈ [1, n] do
2: Ci → A : Encska(Yi + Δyi);
3: Ci → S : Encsks(Δyi);
4: end for

5: A : Y + Δy =

n⋃

i=1

Decska(Encska(Yi + Δyi));

6: S : Δy =
n⋃

i=1

Decsks(Encsks(Δyi))

7: for each instance Z + Δz in Y + Δy do
8: A computes Z + Δz − W (T ) and sends it to S;
9: S classifies the new traffic

10: if the traffic is classified into normal class then
11: Z is normal traffic.
12: else
13: Z is abnormal traffic.
14: end if
15: end for

5 Performance Evaluation

Seen from the whole training and detection process, all information is encrypted,
so that the privacy of every party is preserved. Hence, we focus on perfor-
mance evaluation in this section. We use SOM-based anomaly detection app-
roach, where we cluster existing traffic statistics and do the training off-line and
detect the real-time traffic online. In this case, we should do as much compu-
tation as possible off-line to improve the efficiency of online. We set neurons as
a 40*40 matrix, initial learning rate as 0.5 and initial neighborhood radius as
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20. We used Gaussian function to compute the neighborhood as done in the lit-
erature [17]. The servers operation was conducted on a 3.00 GHz Intel Pentium
processor with 4GB memory, while the assistants operation was processed on a
2.13 GHz Intel Pentium processor with 3GB memory.

Collaboration Benefits. Soule et al. [7] showed that more anomalies were
detected by analyzing the data of peering domains together. The author pointed
out that anomaly detection performance will be different with diversity thresh-
old and different kinds of traffic matrix. In this part, we will verify that if each
domain could cooperate with each other, whether anomaly detection could be
dealt with much higher accuracy or not in this scenario. We focus on the privacy
issue, so that we just detect the typical attack-DDoS attack in this paper. Cer-
tainly, our scheme can be extended to detect other attack. We use 4-tuples which
are Average of Packets per flow, Average of Bytes per flow, Average of Duration
per flow and Growth of Different Ports respectively, more details can be seen in
literature [5]. We use the Detection Rate (DR) to evaluate the performance of
each scenario. The Detection Rate can be calculated with Eq. 5.

DR =
TP

TP + FN
(5)

where TP (True Positives) mean anomalous traffic detected as attack, and FN
(False Negatives) represent anomalous traffic classified as normal.

We will use six domains to do the validation test. Table 1 shows these different
kinds of flows collected from several domains. For example, in Domain C1, the
controller collected 44,005 flows in total during the training phase, where 8,812
flows are normal and 35,193 flows are abnormal. During the detection phase, the
controller from Domain C1 collected 8,187 normal flows and 25,837 abnormal
flows. The last row denotes the total number of the flows which are collected by
the server. The server S and the assistant A cooperate to classify these data.

Table 2 shows the detection rate of each domain. As seen from table, when
each domain detects anomalous traffic separately, the average of the detection

Table 1. The number of flows collected by each domain

Domain Training phase Detection phase

attack traffic normal traffic attack traffic normal traffic

Domain C1 35193 8812 25837 8187

Domain C2 117643 28986 82563 22922

Domain C3 58546 14757 38528 10317

Domain C4 46953 11695 29368 9337

Domain C5 78423 19347 61640 11139

Domain C6 54700 13680 73800 8793

Server 391458 97277 306844 70695
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Table 2. Detection results

Party Domain C1 Domain C2 Domain C3 Domain C4 Domain C5 Domain C6 Server

DR (%) 86.7 94.33 88.6 92.7 91.11 90.94 98.95

rate is about 91 %. While the server gathers all traffic data to detect anomaly,
the detection rate is about 99 %, which is much higher than detected by each
domain.

Efficiency. Due to the privacy protection goal, our scheme requires extra com-
putation and communication costs. Note that off-line computation and commu-
nication costs are not critical for overall performance. Hence, in this part, we
focus on online performance.

We performed trials to find out how execution time changes with varying
the number of participant domains. We performed experiments with different
number of participant domains. The number of parties’ ranges from 1 to 6. Each
domain collects about 8000 flows and sends them to the third parties. In Fig. 3(a),
we figure out the extra overhead of decryption operation on the server side and
on the assistant side. As seen from Fig. 3(a), our cryptographical method doesn’t
cost much more extra overhead.
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Fig. 3. Performance Evaluation.

Scalability. Fig. 3(b) shows the execution time change with varying number
of participant domains. In this experiment, each domain collects about 8000
flows and sends them to the third parties. Obviously, the overhead will go up
with increasing participant parties because the server and the assistant should
deal with much more data. Our main goal is to guarantee approximate linear
growth. Note that the server and the assistant cooperate to detect the anomaly.
The server should wait until the assistant complete some operation so that the
server has higher execution time as seen from Fig. 3(b). The result shows that
our scheme has tolerable overhead. The execution time of the scheme doesn’t
increase fiercely with increasing number of parties and has approximate linear
growth which proves that our scheme can support scalability well.



Privacy-Preserving Anomaly Detection Across Multi-domain 15

6 Conclusion

In this paper, we first focused on the problem about multi-domain privacy pro-
tection for Software Defined Networks. To address this issue, we presented a
privacy-preserving scheme to detect anomaly based on distributed data among
multiple parties using artificial neural network algorithm. We focus on privacy,
efficiency, accuracy and scalability. Since some of them are conflicting goals, we
find a tradeoff scheme to solve this problem. We presented the design, deploy-
ment and evaluation of a collaborative anomaly detection scheme that is not
only privacy preserving and have good performance. Moreover, experiments with
our scheme implementation shows that our scheme works well with increasing
numbers of parties.

As mentioned above, our scheme allows the collusion between data providers
(e.g. controllers) and collusion between data providers and service providers (e.g.
server or assistant). But we do not allow the collusion between service providers.
As part of future work, we will continue to study and design a new method which
can support collusion between service providers with high efficiency.
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Abstract. In this paper, a construction of distributed multi-user, multi-
key searchable encryptions is proposed and analyzed. Our scheme lever-
ages a combination of the Shamir’s threshold secret key sharing, the
Pohlig-Hellman function and the ElGamal encryption scheme to provide
high reliability with limited storage overhead. It achieves the seman-
tic security in the context of the keyword hiding, the search token hid-
ing and the data hiding under the joint assumptions that the decisional
Diffie-Hellman problem is hard and the pseudo-random number genera-
tor deployed is cryptographically strong.

Keywords: ElGamal encryption scheme · Pohlig-Hellman function ·
Searchable encryptions · Shamir’s threshold secret key sharing

1 Introduction

Often, different users possess data of mutual interest. The most challenging
aspect of the data exchange lies in supporting of the data sharing over the
encrypted database [12,18,28,32]. Searchable encryption is such a cryptographic
primitive allowing for the keyword based content sharing managed and main-
tained by individual users. The state of the art research on searchable encryptions
can be classified as the following two categories:

– Different data items (or documents, we do not distinguish the notion of
data with that of the document throughout the paper as two nations are
interactively used in many references cited here) outsourced are encrypted
by a single key. The private information retrieval line of work [4,8,11,20]
and the oblivious transfer line of work [25] fall in this category. Most of
the research on searchable encryptions focused on the case when data is
encrypted with same key [3,5,7,10,13,15,28,29,32] and more efficient solu-
tions [1,9,19,21,24,26,27,30,31] have been proposed in recent years. The idea
behind these constructions is that − to access a database, individually autho-
rized user is issued a query key by the data owner and only the authorized users
who have valid query keys can generate valid access queries which enable the
database management server to process users’ search queries without learn-
ing the keywords contained in the queries and the contents of the encrypted
records.

c© Springer International Publishing Switzerland 2016
M. Yung et al. (Eds.): INTRUST 2015, LNCS 9565, pp. 17–31, 2016.
DOI: 10.1007/978-3-319-31550-8 2
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– Different data outsourced are encrypted with different keys. This problem was
first studied by López-Alt et al. [17] leveraging the concept of fully homomor-
phic encryption schemes in which anyone can evaluate a function over data
encrypted with different keys. The decryption requires all parties to come
together and to run a multi-party computation protocol so that a client can
retrieve all the keys under which the data was encrypted. As a result, the
users need to do work proportional in the number of keys. Very recently,
Popa and Zeldovich [22,23] proposed alternative design based on the bilinear
map. Roughly speaking, a data owner in their model generates a set of docu-
ments {d1, . . . , dλ} and then an access structure is defined for all users. Each
document dj generated and the corresponding keyword set {w

(1)
j , . . . , w

(ηj)
j }

extracted at session j (sid = j) will be encrypted by a fresh secret key kj . The
encrypted data and keyword set are then outsourced to a database server. A
legitimate user is then given the corresponding encryption key kj via a secure
and authenticated channel established between the participants.

1.1 The Motivation Problem

Note that in the Popa and Zeldovich’s scheme [22,23], user’s primary key is
assigned by the data owner while the corresponding delta keys are computed
from the primary key and the specified encryption keys. The underlying access
graph should be updated whenever a new document is outsourced to the server.
The update procedure could be a difficult task if the frequency of data outsourc-
ing is high since the size of stored delta keys can be proportional to the stored
documents. Furthermore, when the deployed server is unreliable, as the case in
modern data centers, redundancy must be introduced into the system to improve
reliability against server failure (say, a complicated delta key recovery mecha-
nism, or a Hadoop-like delta key duplication mechanism or a MapReduce-like
distributed computing mechanism should be introduced). Since no countermea-
sure dealing with the server failure (or the delta key recovery) is known within
the multi-user, multi-key searchable encryption framework, it is certainly wel-
come if one is able to provide such a counter-measure resilient the server failure.

1.2 This Work

This paper studies multi-user, multi-key searchable encryptions in the data
owner controlled framework, where a data owner generates, manages and main-
tains all generated documents, documents encryption keys and keyword encryp-
tion keys (we distinguish the keys used to encrypt documents and to encrypt
keywords throughout the paper). In our model, a database management sys-
tem (DBMS), a data owner O, a set of users, a token generator (TG), a token
extractor (TE) and a data extractor (DE) are introduced and formalized. All
participants in our model run in the X-as-a-service model, where X = (token
generation, token extraction, data extraction etc.):
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– The DBMS manages and maintains the system level parameters in the bul-
letin board model. The DBMS should be able to add public information to
the bulletin board so that all participants are able to obtain public informa-
tion from the bulletin board. We stress that bulletin boards are used in any
instance where public access to information is desired in the cryptography.

– A data owner O generates his/her data in a session and then extracts a set of
keywords from the generated data accordingly (for example, by means of the
inverted index program). To outsource the data generated at the ith session
(the session id is denoted by sid = i), O first generates a secret document
encryption key ski that will be used to encrypt the document. Then a public
mask key Ki that will be used to mask the document encryption key ski and a
keyword encryption key ki that will be used to encrypt the generated keyword
set are generated by means of a cryptographically secure random number gen-
erator.

Let ti = (t(1)i , t
(2)
i ) be an output of cryptographically strong sustainable

pseudo-random number generator at the ith session (say, the Barak-Halevi’s
(BH) scheme [2], or any other cryptographically strong pseudo-random num-
ber generator). t

(1)
i is used to generate the mask encryption key Ki ← gt

(1)
i

while t
(2)
i is used to generate the keyword encryption key ki =H(t(2)i ), where

< g >= G ⊆ Z∗
p , |G| = 2q, p = 2q + 1 is a large prime number and H:

{0, 1}∗ → G, is a cryptographically strong hash function. The auxiliary mask
encryption string t

(1)
i is shared among a set of nD data extraction processors

where any subset of mD-out-of-the-nD processors can be used to reconstruct
Ki while the auxiliary keyword encryption string t

(2)
i is kept secret by the

data owner. The encrypted data are then outsourced to the DBMS.
– To support the keyword search procedure, the data owner must provide search

structures for users. In many real-life situations, we don’t believe that any given
person can be trusted, yet it is reasonable to assume that the majority of people
are trustworthy. Similarly, in on-line transactions, we may doubt that a given
server can be trusted, but we hope that the majority of servers are working
properly. Based on this assumption, we can create trusted entities, where the
notion of token generators which manage and maintain a set of token genera-
tion processors, the notion of token extractors which manage and maintain a
set of token extractor processors and the notion of data extractors which man-
age and maintain a set of data extraction processors are introduced. All key-
word encryption keys are securely shared among token generation processors
while all auxiliary mask strings are securely shared among the data extraction
processors by means of the Shamir’s secret sharing protocol.

An Overview of Processing. A processing of a keyword search comprises the
following phases: the setup phase (including the data outsourcing); the query
processing phase and the data extraction phase.

– In the setup phase, system parameters are generated for all participants;
The data owner generates document encryption keys, mask keys and key-
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word encryption keys for the initial data set. The auxiliary mask strings and
keyword encryption keys are then securely distributed among a set of data
extraction processors and a set of token generation processors respectively.

– In the query processing phase, a user first selects a keyword w, and then
encrypts it by the ElGamal encryption scheme (u = gr, v = H(w)hr), where
g and H are common system strings and h is generated on-the-fly from an
arbitrary subset of token extraction processors. The encrypted keyword c =
(u, v) is then sent to the DBMS via the token generator server TG. The
DBMS and token extraction processors TEP s work together to extract the
search token, and then retrieve data accordingly from the database server;

– In the data extraction phase, the retrieved ciphertexts such that each of which
contains the specified keyword w are sent back to the user. The user then
invokes mD-out-of-nD data extraction processors to decrypt the ciphertexts.

The Security. Intuitively, we expect the semantic security from multi-key
searchable schemes:

– Keyword hiding: an adversary cannot learn the keyword one searches for;
– Token hiding: an adversary is not be able to distinguish between ciphertexts

of two search tokens;
– Data hiding: if a document encryption key leaks, the contents of the other

documents the user has access should not leak.

We are able to show that if the Diffie-Hellamn problem is hard and the
underlying pseudo-random number generator is cryptographically strong, then
the proposed multi-key searchable encryption is semantically secure.

What’s New? We provide a new construction of multi-user, multi-key search-
able encryptions based on the Pohlig-Hemman function and the ElGamal encryp-
tion scheme and a new method of achieving on-the-fly multi-party computation
using the threshold multi-key encryptions. Our solution is different from the
state-of-the-art solutions [17] leveraging the lattice based encryption scheme
NTRU [14]), where a-priori bounded number of users should be defined since
a decryption depends on the specified bound. Our solution is also different from
the Popa and Zeldovich’s methodology [22,23] which is leveraging the bilinear
map based encryption scheme [6]), where a document encryption key should
be distributed to all valid users. The proposed scheme leverages a combination
of the Shamir’s threshold secret key sharing, the Pohlig-Hellman function and
the ElGamal encryption scheme to provide high reliability with limited stor-
age overhead. It achieves the semantic security (the keyword hiding, the search
token hiding and the data hiding) under the joint assumptions that the deci-
sional Diffie-Hellman problem is hard and the pseudo-random number generator
deployed is cryptographically strong.

The Road Map: The rest of this paper is organized as follows: in Sect. 2, syntax
and security definition of multi-user, multi-key search protocols are presented;
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An efficient construction of searchable encryptions based on the Pohlig-Hellman
functions and the ElGamal encryption scheme is then proposed and analyzed;
We show the proposed scheme is semantically secure in Sect. 3. We conclude this
work in Sect. 4.

2 Syntax and Security Definition

This section consists of the following two parts: syntax and security definitions
of multi-user, multi-key searchable encryptions.

2.1 Syntax of Multi-user, Multi-key Database Search

A multi-user, multi-key database search scheme comprises the following partic-
ipants: a database management system, data owners, users, a token generator,
a token extractor and a data extractor. Our scheme works in the bulletin board
model where a participant can add his/her public information to it so that any
other participant can use the public information available on the bulletin board.
Notice that once the public information is outsourced to the bulletin board it
cannot be deleted or modified by the original public information creator. The
integrate of the outsourced public information is managed and maintained by a
trusted certificate authority.

1. A database management system (DBMS) takes as input the security parame-
ter 1k and outputs system wide parameters params and a pair of public/secret
keys (pkDB , skDB). params is publicly known by all participants.

2. A set of data owners are involved in a searchable encryption scheme. Each
data owner (O) takes as input the system parameters params and outputs a
pair of public and secret keys (pkO, skO);

A procedure for outsourcing the encrypted data will be modelled as a
session. In each session sid = j, O takes params and (pkO, skO) as input and
generates a triple of the document encryption key sk

(O)
j , the mask encryption

key K
(O)
j and the keyword encryption key k

(O)
j ;

3. A token generator TG takes params as input and generates a pair of its own
public and secret keys (pkTG, skTG).

A token generator manages and maintains a group of token generation
processors (TGP s). Each TGP takes params as input and generates a pair of
public and secret keys (pkTGPi

, skTGPi
). To enable the keyword search over

the outsourced encrypted data, O will distribute secret shares of a keyword
encryption key k

(O)
j generated at session j to nG token generation processors

by means of the Shamir’s threshold secret key sharing scheme such that any
subset of mG (out-of-nG) token generation processors can reconstruct the
keyword encryption key k

(O)
j .

4. A token extractor (TE) takes params as input and generates a pair of its own
public and secret keys (pkTE , skTE). TE manages and maintains a group of
token extraction processors (TEP s). Each TEP takes params as input and
generates a pair of public and secret keys (pkTEPi

, skTEPi
) for i = 1, . . . , nE .
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5. A data extractor DE takes params as input to generate a pair of public and
secret keys (pkDE , skDE). DE manages and maintains a group of nD data
extraction processors (DEP1, · · · , DEPnD

). Each data extraction processor
DEP takes params and pkDE as input to generate a pair of public and secret
keys (pkDEPi

, skDEPi
); To enable users to extract the retrieved encrypted

documents, O will distribute shares of the auxiliary mask key string of K
(O)
j

generated at session j to nD data extraction processors by means of the
Shamir’s threshold secret key sharing scheme such that any subset of mD

(out of nD) data extraction processors can reconstruct the mask encryption
key K

(O)
j .

6. A set of users are involved in the searchable encryption. Each user U (or an
querier) takes params as input to generate a pair of public and secret keys
(pkU , skU ). A valid user is allowed to submit a query to the DBMS. On input
a keyword w ∈ W , U encodes w and then sends the resulting codeword c(w)
to TG who generates a valid search token t(w) by means of the multi-party
computations. The resulting search token t(w) is then sent to the DBMS
who collaborates with TE to extract the search token and then sends back
to U all retrieved encrypted data D such that each D ∈ D contains w.

2.2 Security of Multi-key Database Search

We formalize security requirements specified in Sect. 1 with following games: key-
word hiding, token hiding and data hiding that express these goals. One holistic
security definition would be a stronger guarantee, but that greatly complicate
the designs and proofs. Nevertheless, the separate definitions also capture the
desired security goals.

Keyword Hiding Game. The keyword hiding game is between a challenger C
and an adversary A on security parameter 1k and pubic parameter params

– C invokes the DBMS which takes as input 1k to output params and provides
params to A;

– C invokes n token extraction processors each of which takes as input params
to output n pairs of public and secret keys (pkTEPi

, skTEPi
) (i = 1, · · · , n).

C then provides pkTEPi
(i = 1, · · · , n) to A.

– Let Δ be an arbitrary subset of {1, · · · , n} containing m public key indexes.
Let pk

(Δ)
TEP be a public key computed from the selected m public keys.

– Let w0 and w1 be two keywords selected by A. The challenger selects a bit
b ∈R {0, 1} uniformly at random. Let c = E

pk
(Δ)
T EP

(wb) for b ∈R {0, 1}. The
adversary is given (Δ, c) and outputs a guess b′ ∈ {0, 1}.

Definition 1 (Keyword Hiding). We say that the communication between users
and the token extractor (and the token extraction processors) is keyword hiding
if for any polynomial time adversary A that given (Δ, c), where c = E

pk
(Δ)
T EP

(wb)
for b ∈R {0, 1}, outputs a guess b′, the following holds: Pr[b = b′] − 1/2| is at
most a negligible amount:
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Token Hiding Game. The token hiding game is between a challenger C and
an adversary A on security parameter 1k and pubic parameter params

– C invokes the DBMS which takes as input 1k to output params and provides
params to A;

– C invokes the data owner O which takes as input the system parameters params
to output a pair of public and secret keys (pkO, skO). The adversary A is given
pkO; In each session, say session j, O takes params as input and generates a
keyword encryption key kj ;

– The adversary A invokes the database management server which takes as input
params to output (pkDB , skDB). A obtains pkDB;

– C invokes n token generation processors each of which takes as input params
to output n pairs of public and secret keys (pkTGPi

, skTGPi
) (i = 1, · · · , n). C

then provides pkTGPi
(i = 1, · · · , n) to A;

– Let k
(l)
j be a secret share of kj shared by TGPl for j = 1, · · · , κ and l =

1, · · · , n, where κ is the number of kj shared among the token processors so
far. Let w be an input to the token generation processor TGPj . The challenger
then invokes TGPj which takes k

(l)
j as an input and then outputs c

(l)
j . The

resulting ciphertext c
(l)
j is then sent to A who computes the corresponding

coefficient α
(l)
j of the Lagrange Interpolation Formula to output an encryption

TG(kj , w) of the search token.
– The challenger then selects a bit b ∈ {0, 1} uniformly at random and then

given {c
(l)
j }n

l=1 and TG1 = (TG(kj , w)) if b = 1 and {c
(l)
j }n

l=1 and a random
string TG0 ∈ G if b = 0. The adversary outputs a guess b′ ∈ {0, 1}.

Definition 2 (Token Hiding). We say that the communication between users
and the token generator who manages and maintains the token generation proces-
sors is token hiding if for any polynomial time adversary A that given TGb(k, c)
and {c

(l)
j }n

l=1, outputs a guess b′, the following holds: Pr[b = b′]−1/2| is at most
a negligible amount:

Data Hiding Game. The data hiding game is between a challenger C and an
adversary A on security parameter 1k and pubic parameter params

– C invokes the DBMS which takes as input 1k to output params and (pkDB ,
skDB). C provides params and pkDB to A;

– C invokes the data owner O which takes as input the system parameters params
to output a pair of public and secret keys (pkO, skO). The adversary A is given
pkO;

In each session, say session j, O takes params as input and generates a mask
encryption key Kj . The data mj is then encrypted under Kj . The resulting
ciphertext cj is outsourced to the DBMS;

– C invokes n data extraction processors each of which takes as input params
to output n pairs of public and secret keys (pkDEPi

, skDEPi
) (i = 1, · · · , n).

C then provides pkDEPi
(i = 1, · · · , n) to A;
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Let K
(l)
j be the share of auxiliary mask key string of Kj by DEPl for

j = 1, · · · , κ and l = 1, · · · , n, where κ is the number of Kj shared among the
data extraction processors so far.

To decrypt a ciphertext cj , the data extractor first selects an arbitrary
subset of {1, · · · , n} that contains arbitrary m public key indexes of the data
extraction processors. Let Δ be the selected subset. The data extractor then
invokes DEPj ∈ Δ which takes K

(l)
j as an input to output c

(l)
j . The resulting

c
(l)
j is then sent back to DE who computes the corresponding coefficient α

(l)
j

of the Lagrange Interpolation Formula to output the plaintext m.
– Let m be a target document selected by A. For the given m, C selects a random

bit b ∈R {0, 1}. Let cb = EDEP (m) for b ∈R {0, 1} and cb = EDEP (1|m|) (an
encryption of the dummy document). The adversary is given (c0, c1), and
outputs a guess b′ ∈ {0, 1}.

Definition 3 (Data Hiding). We say that the communication between the owner
and the data extractor is data hiding if for any polynomial time adversary A that
given (c0, c1), outputs a guess b′, the following holds: Pr[b = b′]−1/2| is at most
a negligible amount:

Definition 4 (Semantic Security). We say that a multi-user, multi-key search-
able encryption system is semantically secure if it achieves the keyword hiding,
token hiding and data hiding properties.

3 The Construction

We now present a construction of multi-user, multi-key searchable encryptions in
the bulletin board model that realizes the functionalities described in Sect. 3.1.
We analyze its security in Sect. 3.2.

3.1 The Description

Our protocol comprises the following phases: the setup phase, the outsourcing
phase, the processing phase and the extraction phase. The details of each phase
are depicted below

The setup phase

– On input a security parameter parameter 1k, DBMS output system parame-
ters params: a large safe prime number p such that p =2q + 1, p and q are
prime numbers, |p| = k together with a cyclic group G of order q. Let g be a
random generator of G.

DBMS then takes params as input to generate a pair of public and secret
keys (pkDB , skDB), where pkDB =(g, hDB), hDB = gxDB and skDB = xDB.

– A data owner O takes params as input and generates a pair of public and
secret keys (pkO, skO) where pkO = (g, hO), hO = gxO mod p and skO =xO

(in the following discussions, we simply assume that (pkO, skO) is suitable for
both the data encryption and data attestation).
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– A data extractor DE takes params as input to generate a pair of public and
secret keys (pkDE , skDE), where pkDE =(g, hDE), hDE = gxDE and skDE =
xDE .

DE in our model manages and maintains nD data extraction processors
(DEP1, · · · , DEPnD

). Each extraction processor DEPi generates its own
public and secret key pairs pkDEPi

= (g, hDEPi
), hDEPi

= gxDEPi and skDEPi

= xDEPi
independently.

To enable users to obtain the corresponding plaintexts from the retrieved
encrypted data, O delegates her decryption right to data extraction processors
by invoking the Shamir’s (mD, nD)-secret-key sharing algorithm such that any
mD combinations of shares is sufficiently to reconstruct the mask encryption
key by applying the Lagrange Interpolation Formula.

For simplicity, we assume that a secure (private and authenticated) channel
has been established between O and DE and secure channels between DE
and DEPi respectively (such a secure channel assumption can be eliminated
trivially under the standard PKI assumption).

– A token generator TG takes params as input to output a pair of public and
secret keys (pkTG, skTG), where pkTG =(g, hTG), hTG = gxT G and skTG =
xTG.

In our model, TG manages and maintains nG token generation processors
(TGP1, · · · , TGPnG

). Each token generation processor TGPi generates its own
public and secret key pairs pkTGPi

= (g, hTGPi
), hTGPi

=gxT GPi and skTGPi
=

xTGPi
. Again, we assume that a secure channel has been established between

TG and O (TG and TGPi respectively).
– A token extractor TE takes params as input to output a pair of public and

secret keys (pkTE , skTE), where pkTE =(g, hTE), hTE = gxT E and skTE =
xTE .

In our model, TE manages and maintains nE token extraction processors
(TEP1, · · · , TEPnE

). Each token extraction processor TEPi generates its own
public and secret key pairs pkTEPi

= (g, hTEPi
), hTEPi

=gxT EPi and skTEPi

= xTEPi
. We assume that a secure channel has been established between TE

and DBMS (TE and TEPi respectively).
– A user U takes params as input to generate a pair of public and secret keys

(pkU , skU ), where pkU =(g, hU ), hU = gxU and skU = xU .

The outsourcing phase

In the outsourcing phase, the search structure of the outsourced data and
keyword is defined as follows: let BH be the Barak-Helavi’s (or any other cryp-
tographically strong) pseudo-random number generator [2] and H: {0, 1}∗ → G
be a cryptographically strong hash function. We view a data outsourcing activity
as a session in the following depiction.

– At session sid = i, on input di, the data owner O first selects a document
encryption key ski with suitable length (say 128-bit or 256-bit for AES) and
then invokes the BH pseudo-random number generator to output a pair of
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mask key Ki and keyword encryption key ki. The document encryption key
ski is encrypted by the mask encryption key Ki computed on the fly: let si−1

be the previous internal state of the BH pseudo-random number generator at
session sid = i−1. To generate a pair of mask key Ki and keyword encryption
key ki for di, O invokes the BH scheme which takes si−1 as input to output
(si, ti), where si is the internal state at session sid = i and ti is the current
output. O then parses ti to two parts (t(1)i , t

(2)
i ) and then enciphers the first

part t
(1)
i by computing Ki = gt

(1)
i mod p and the second part t

(2)
i by computing

ki= H(t(2)i ), where H is a cryptographically hash function (in essence, we view
H as a random oracle). Ki is called the mask key that will be used to encrypt
the document encryption key ski while ki is called the keyword encryption
key. The first part t

(1)
i is called the auxiliary mask string while the second

part t
(2)
i is called the auxiliary keyword encryption string.

– O extracts the keyword sets Wi = {w
(1)
i , · · · , w

(γi)
i } from di by means of the

inverted index.
To encrypt a keyword w ∈ Wi, O invokes the Pohlig-Hellman function to

compute c(ki, w) ← H(w)ki mod p. c(ki, w) is then outsourced the DBMS.
Let c(ki,Wi) be an encryption of the keyword set Wi under the keyword
encryption key ki at session sid = i.

To enable users to search keywords, the data owner O provides a search
structure by sharing ki among nG token generation processors managed and
maintained by the token generator TG. To distribute secret shares to TGPs,
O invokes the Shamir’s threshold secret key sharing protocol below:
• O randomly selects a polynomial f(x) = f0+f1x+ · · ·+fmG−1x

mG−1 (mod

q), where f0 = ki and k
(l)
i

def
= f(TEPl)) (i = 1, . . . , nG);

• TEPl is given f(TEPl), l = 1, . . . , nG.
– To outsource di, O first invokes a cryptographically strong block cipher say,

Advanced encryption standard AES which takes ski and di as input to gen-
erate the ciphertext c(ski, di).

Let c(Ki, ski)=(gr, ski × Kr
i ) be an encryption of the secret key ski under

the mask encryption key Ki. The corresponding auxiliary mask encryption
string is shared among nD data extraction processors DEP1, . . . , DEPnD

(again O applies the Shamir’s threshold scheme to the auxiliary string t
(1)
i )

such that a combination of mD-out-of-nD shares can be used to reconstruct
the the auxiliary key t

(1)
i such that Ki = gt

(1)
i .

The resulting ciphertext (c(ki,Wi), c(Ki, ski), c(ski, di)) are then sent to
the DBMS.

The query processing phase

In the query processing phase, a computation of individual user is depicted
below

– The input of a user U is a keyword w together with a description of token
extraction processors whose public keys are denoted by (g, hTEP1), · · · , (g,
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hTEPnE
). U then selects mE-out-of-nE token extraction processors uniformly

at random. Let (g, hTEPi1
), · · · , (g, hTEPimE

) be mE selected token extraction
processors. Let Δ = (i1, · · · , imE

) and h = ΠmE
j=1hTEPij

.
To hide the selected keyword w, U selects a string r ∈ Zq uniformly at

random and computes u = gr mod p, v = H(w)hr mod p. Let c = (u, v)
and ˜Δ be an encryption of Δ under the DBMS’ public-key pkDB , i.e., ˜Δ =
EpkDB

(Δ). Let mU =( ˜Δ, c). Let σU (H(mU ) be a signature of mU attested by
the user U . (σU (H(mU )),mU ) is then sent by the user to the token generator.

– Upon receiving (σU (H(mU )),mU ), the token generator TG who manages nG

token generation processors first checks the validity of the received message
(recall that all computations are running in the X-as-a-service model). If the
signature is invalid, then TG rejects the received message; otherwise, TG
selects mG-out-of-the-nG token generation processors uniformly at random
and then forwards c = (u, v) to the selected mG processors {TGPi1 , · · · ,
TGPimG

}. Let k
(l)
j be a secret share of kj by TGPl for j = 1, · · · , κ and

l = 1, · · · , nG, where κ is the number of kj shared so far. For each share k
(l)
j ,

TGPl performs the following computations for each share k
(l)
j :

• u
(l)
j = uk

(l)
j mod p;

• v
(l)
j = vk

(l)
j mod p.

TGPj then sends c
(l)
j back to TG, where c

(l)
j =(u(l)

j , v
(l)
j );

Upon receiving c
(l)
j , TG computes the corresponding coefficient α

(l)
j of the

Lagrange Interpolation Formula and then computes uj =
∏imT

l=i1
(uj

(l))α
(l)
j and

vj =
∏imT

l=i1
(v(l)

j )α
(l)
j . One can verify that uj = ukj = grkj and vj = vkj =

H(w)kj hrkj . Let cj = (uj , vj) and mTG = (σU (H(mU )), ˜Δ, {cj}κ
j=1). TG

then generates a signature σGT on the message mTG (this task is trivial under
the standard PKI assumption) and then sends (mTG, σTG) to the DBMS.

– Upon receiving (mTG, σTG), DBMS checks the validity of the received mes-
sage. If it is invalid, then terminates the protocol; otherwise, it decrypts ˜Δ to
get Δ and broadcasts {uj}κ

j=1 to all token extractors within Δ via a secure
multi-cast channel (such a multi-cast channel can be efficiently implemented
in the context of group communication protocol).

Each token extraction processor TEPl computes ũ
(l)
j = uxl

j and sends

(TEP
(l)
j , ũ

(l)
j ) to TE, where TEP

(l)
j stands for the jth input processed by the

lth token extraction processor. The computing results {TEP
(l)
j , ũ

(l)
j }imE

l=i1
are

then sent back to the DBMS.
– Upon receiving {TEP

(l)
j , ũ

(l)
j }imE

l=i1
from all token extraction processors, the

DBMS computes ûj =
∏mE

l=1 ũj . One can verify that ûj =hrki . As a result,
given ûi and {vj}mE

j=1, DBMS is able to extract the search token H(w)ki . Let
D be a set of encrypted documents so that c(w) ∈ D for each D ∈ D. DBMS
then sends D to the user U ;
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The data extraction phase

– Upon receiving D, the user performs a decryption of message via the Shamir’s
threshold decryption protocol to obtain ski. Once obtains ski, the user U can
decrypt the received ciphertexts.

This ends the description of our protocol.

3.2 The Proof of Security

The correctness of the protocol can be verified step by step and hence omitted.
The rest of this section is to provide a proof of security defined in Sect. 3.

Lemma 1. Let Δ be an arbitrary subset of {TEP1, · · · , TEPm}, suppose at
least one of the selected token extraction processor is honest then the proposed
scheme is keyword hiding assuming that the decisional Diffie-Hellman problem
is hard.

Proof. C invokes n token extraction processors each of which takes as input
params to output n pairs of public and secret keys (pkTEPi

, skTEPi
) (i =

1, · · · , n). C then provides pkTEPi
(i = 1, · · · , n) to A. Let Δ be an arbitrary

subset of {1, · · · , n} containing m public key indexes. Without loss of the gen-
erality, we assume that Δ ={(g, pkTEP1), . . . , (g, pkTEPm

)}, where pkTEPi
=

gxT EPi . The challenger is allowed to corrupt m − 1 token extraction processors
and obtains the corresponding secret keys xTEPi

for i = 1, . . . , m − 1. The chal-
lenger’s target is to break the mth instance of the ElGamal encryption scheme.

Let h (= pk
(Δ)
TEP )= pkTEP1 × · · · × pkTEPm

. Let w0 and w1 be two keywords
output by the adversary which is also known to the challenger. Let c ← (gr,
H(wb)×hr) (generated by the semantic security game of the underlying encryp-
tion scheme (g, pkTEPm

)). The challenger then forwards (w0, w1) and c to the
adversary A. The adversary outputs a guess b′ ∈ {0, 1}. The challenger outputs
what the adversary outputs.

Given c = (gr,H(wb)hr) and xTEPi
for i = 1, . . . , m − 1, the challenger is

able to compute (gr,H(wb)hr
m) where hm = pkTEPm

. Hence if Pr[b = b′] − 1/2|
is a non-negligible then the mth instance of the underlying ElGamal encryption
scheme is not semantically secure which contradicts the decisional Diffie-Hellman
assumption.

Lemma 2. Let Δ = {TGP1, · · · , TGPm} be an arbitrary subset of total token
generation processors. Suppose at least one of the selected token extraction
processor is honest then the proposed scheme is token hiding assuming that
the decisional Diffie-Hellman problem is hard and the underlying BH pseudo-
random number generator is cryptographically strong.

Proof. Let w be a keyword selected by A. Let kj be the key used to generate the
search token at session sid = j. Assuming that up to (m − 1) token generation
processors are corrupted and the adversary obtains the corresponding shares,
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say (k(1)
j , . . . , k

(m−1)
j ). The mth token generation processor remains honest at

the session sid = j. Let k
(l)
j be a secret share of kj by TGPl for l = 1, · · · , nG.

Notice that the only knowledge applied to H(w) is k
(l)
j . For fixed set of shares

(k(1)
j , . . . , k

(m−1)
j ), there is a one to one mapping (the Lagrange interpolation

formula) between k
(l)
j and kj . As a result, H(w)kj is random from the point view

of the adversary if the underlying pseudo-random number generator is secure.
As a result, the only information leaked is the computation of H(w)k

(l)
j . Since

G is a cyclic group, it follows that H(w)= grw for some rw ∈ [0, q − 1]. Thus,

(g,H(w), gk
(l)
j ,H(w)k

(l)
j ) is a Diffie-Hellman quadruple that is indistinguishable

from the random quadruple. As a result, the advantage Pr[b = b′] − 1/2| that
the adversary outputs a correct guess is at most a negligible amount.

Lemma 3. Let Δ = {DEP1, · · · , DEPm} be an arbitrary subset of total data
extraction processors. Suppose at least one of the selected data extraction proces-
sor is honest then the proposed scheme is data hiding assuming that the decisional
Diffie-Hellman problem is hard.

Proof. C invokes the data owner O which takes as input the system parameters
params to output a pair of public and secret keys (pkO, skO). The adversary A
is given pkO; At the session i, O takes params as input and generates a mask
key Ki such that Ki = t

(1)
i , where the auxiliary string t

(1)
i is the first part of the

output ti generated by the BH pseudo-random generator.
C invokes n data extraction processors each of which takes as input params to

output n pairs of public and secret keys (pkDEPi
, skDEPi

) (i = 1, · · · , n). C then
provides pkDEPi

to A. Let K
(l)
i be the share of t

(1)
i via the Lagrange interpolation

formula for l = 1, · · · , n. Let Δ be an arbitrary subset of {DEP1, · · · ,DEPn}
and m0 and m1 be two documents all selected by A. We assume that the adver-
sary can corrupt up to (m−1) data extraction processors and obtains the corre-
sponding secret shares K

(l)
i for l = 1, . . . , m − 1. The data mb is then encrypted

under Ki, i.e., ci = (ui, vi), where ui = gr and vi = mbK
r
i (here for simplic-

ity, we assume that mb is encrypted under Ki directly). The adversary is given
ci. The adversary obtains the (m − 1) secret shares each of which is holden

by the corrupted parties say DEP1, . . . , DEPm−1. Notice that Kr
i = u

K
(1)
i α1

i ×
· · · × u

K
(m−1)
i αm−1

i × u
K

(m)
i αm

i , where αi is the ith coefficient of the Lagrange
Interpolation formula. Thus, mbK

r
i is a random value from the point view of

the adversary. As a result, the advantage Pr[b = b′] − 1/2| that the adversary
outputs a correct guess is at most a negligible amount.

Based on the lemmas above and we claim the following main result

Theorem 1. The proposed multi-key searchable encryption is semantically
secure under the joint assumptions that the decisional Diffie-Hellman problem
is hard in Z∗

p and the underlying pseudo-random number generator deployed is
cryptographically strong.
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4 Conclusion

In this paper, an efficient multi-user, multi-key searchable encryption scheme is
presented and analyzed. Our design is simple, scalable, adaptable and sustain-
able. The processors are distributed to provide high reliability with limited stor-
age, communication and computation overhead by the threshold cryptographic
system.
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Management Beyond the Cloud. Springer, Heidelberg (2014)

13. Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, p. 216 (2003)
14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-

tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

15. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security, pp. 965–976
(2012)



Distributed Multi-user, Multi-key Searchable Encryptions 31

16. Hahn, F., Kerschbaum, F.: Searchable encryption with secure, efficient updates. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer, Communications
Security. ACM, pp. 310–320 (2014)
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Abstract. Aggregate signatures are digital signatures where n signers
sign n individual documents and can aggregate individual signatures
into a single short signature. Although aggregate signatures are expected
to enhance the security of network applications, the capability and the
security of aggregate signatures have not yet been discussed when the
signatures are generated by a group of signers whose relationships are
expressed as network. In this paper, we take into account the fact that
various network applications can be mathematically idealized as network
called network graphs, and discuss the properties of aggregate signatures
on network graphs. We show that it is difficult to apply aggregate sig-
natures to the network graphs. More precisely, we show that sequential
aggregate signatures (Eurocrypt 2004) are incompatible with the network
graphs and also general aggregate signatures (Crypto 2003) are broken
by some generic attack. Additionally, we propose two generic approaches
to overcoming the problems: restricting the number of signers and utiliz-
ing ring homomorphism, and give a security proof of aggregate signatures
in each of these approaches.

Keywords: Aggregate signatures · Sequential aggregate signatures ·
Cryptographic protocols · Provable security · Graph theory

1 Introduction

Motivation. An aggregate signature scheme [7] is a cryptographic primitive
where each signer signs an individual data and these individual signatures can
be aggregated into a single short signature. The primitive has been expected to
provide many applications such as enhancement of security of routing protocols
in networks, e.g., border gateway protocol (BGP) [29]. In particular, some secure
routing protocols need to sign data updated in each device, and the aggregate
signature scheme has been considered as a suitable solution for compressing a
memory storage and a communication overhead.
c© Springer International Publishing Switzerland 2016
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Nevertheless, when aggregate signatures are used in network applications of
a network system, its security has not been evaluated correctly in all cases as
shown in this paper. In general, behavior of cryptographic protocols in applica-
tions should be discussed rigorously for constructing a secure system. Otherwise,
even with the use of provably secure cryptographic protocol, its system may be
broken by manipulating some part of applications in the system. In fact, Sun
et al. [32] showed several attacks against the Tor networks [11] by controlling
BGP. Tor is an anonymity system to protect user identities from both untrusted
destinations and third parties in the Internet and it utilizes SSL/TLS as the
privacy mechanism [32]. Their attacks are launched by operating autonomous
systems (ASes) maliciously and can compromise privacy of users. Although the
security of TLS protocols has been proven in several papers [15,22], the attack
is successfully conducted by manipulating BGP operation.

In the similar vein, discussing behavior of aggregate signatures on networks
is crucial for constructing secure network systems. In our discussion, we adopt
mathematically idealized networks called network graphs, and discuss proper-
ties on the network graphs. Current network applications can be abstracted as
network graphs, and thus we expect that discussing aggregate signatures on
the network graphs are useful for analyzing the capability and the security of
aggregate signatures in the existing network applications.

Our Contribution. We show two negative results for utilizing general aggre-
gate signatures and sequential aggregate signatures on network graphs, and two
potential approaches to overcoming these results.

The first negative result is that a sequential aggregate signature scheme [27] is
unsuitable in network graphs. A sequential aggregate signature scheme is more
efficient than a general aggregate signature scheme [7] since broadcast of sig-
natures is unnecessary for combining them. We identity a case where such a
sequential aggregate signature scheme does not work well. The second negative
result is insecurity of a general aggregate signature scheme [7]. We consider our
attack is crucial for many network environments. In particular, an adversary can
forge signatures on any message by generating some malicious network graph.
This insecurity implies that applications such as aggregated-path authentica-
tion protocol [37] are insecure. Note that the security proof is correct, and our
attack is out of their models. Meanwhile, we consider our attack is sufficiently
executable for many network environments.

We then propose two generic schemes which converts any general aggregate
signature scheme to one overcoming the insecurity problem. In particular, our
approaches are to (1) restrict the number of signers and (2) utilize a ring homo-
morphism. The former approach is to prevent an adversary from generating the
malicious network graph without decreasing the efficiency and is for a relatively
small-scale operation. In a large-scale network, the second approach can be uti-
lized. It allows us to overcome the problem without the restriction in the number
of signers. We also note that the second approach is secure, but constructing an
instantiation of a ring homomorphism is still an open problem.
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Potential Application. A potential application of this work is secure rout-
ing protocols with multi-path setting. In recent routing protocols, several secure
routing protocols [19,21,25] have been proposed, which guarantee the validity
of routing information. Here, the multi-path setting is a network structure con-
taining multiple paths from any source to its destination. The multi-path setting
provides many positive results in routing protocols according to Valere [34].

Related Work. Aggregate signatures are classified into two types, i.e., gen-
eral aggregate signatures [7] and sequential aggregate signatures [27]. General
aggregate signatures need a general aggregation algorithm where anyone can
compress individual signatures, and require each signer to broadcast individ-
ual signatures to its co-signers. General aggregate signatures can be generically
constructed via full domain hash signatures, and there are the BGLS03 scheme
[7] and the BNN07 scheme [3] in the random oracle model. Meanwhile, in the
standard model, there are the AGH10 scheme [1] with stateful setting, and the
RS09 scheme [30] and the HSW13 scheme [17] with stateless setting by multi-
linear maps. As a more recent result, a general aggregate signature scheme in
the standard model can be obtained via any full-domain hash construction and
indistinguishability obfuscations [18]. Moreover, universal signature aggregator
[16] where any signatures can be aggregated has been proposed.

Sequential aggregate signatures utilize an aggregate-signing algorithm where
signature generation is executed with signature aggregation. According to
Lysyanskaya et al. [27], sequential aggregate signatures can be generically con-
structed via trapdoor permutation chains. That is, only signers owning secret
keys can compress signatures. The LMRS04 scheme [27] is the first and generic
scheme in the random oracle model, and then the LOSSW06 scheme [26] with
the Waters hash function [35] has been proposed. Sequential aggregate signa-
tures seem to be excellent with a construction without the random oracles, and
there are the Schröder09 scheme [31] and the LLY13-2 scheme [23] with the CL
signatures [10], and the LLY13-1 scheme [24] with the dual system methodol-
ogy [36]. Meanwhile, constructions with the random oracles are aimed to pro-
vide more serviceable operation. For instance, there are the Neven08 scheme
[28] with message-recovery, the FSL12 scheme [12] with history-freeness, the
BGR12 scheme [8] with lazy verifications, and the BGOY07/10 scheme [5,6]
and the GLOW12 scheme [14] with ID-based setting. The BGOY07 scheme was
broken in [20] and then the security was fixed in the BGOY10 scheme based on
a new interactive assumption. The GLOW12 version is an improved scheme of
the BGOY10 scheme whose security is reduced to a static assumption by the
dual system methodology.

2 Aggregate Signatures

We recall algorithms of aggregate signatures and their security. First, we describe
notations in this paper. We denote by (ski, pki) a pair of a secret key and a public
key of the ith signer. Here, we assume that a single pair of keys is corresponding
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to a single signer and represent the signer as pki for all i. We also denote by M a
message space, by mi ∈ {0, 1}∗ a message to be signed by pki, by σi a signature
generated by pki, and by ⊥ an error.

2.1 General Aggregate Signatures

Syntax. A general aggregate signature scheme is defined as follows:

Setup Given a security parameter 1k, output a public parameter para.
KeyGen Given para, output a secret key ski and a public key pki.
Sign Given para, ski and a message mi ∈ M, generate a signature σi and then

output σi. If any error happens, then output an error ⊥.
Aggregate Given para and i-tuples ({(pkj ,mj , σj)}i

j=1) of public keys, messages
and signatures, output a single short signature σ.

Verify Given (para, {(pkj ,mj)}i
j=1, σ) as input, output � or ⊥.

Definition 1 (Correctness). The correctness of the general aggregate sig-
nature scheme is defined as follows: for all k, all para ← Setup(1k), all
(ski, pki) ← KeyGen(para) and all integer i, the following equation holds if
no ⊥ is returned by Sign(para, skj ,mj) for any j ∈ [1, i]:

� = Verify
(

para, {(pkj ,mj)}i
j=1,

Aggregate
(

para, {(pkj ,mj ,Sign(para, skj ,mj))}i
j=1

)

)

.

If there exists Sign(para, skj ,mj) whose output is ⊥, output of the above equa-
tion is ⊥.

Definition of Security. We recall the security of general aggregate signatures.
In this model, entities are a challenger C and an adversary A with a security
parameter 1k as input. C has a public key list L. Here, we denote by x(h) h-th
query for all x in the following game:

Setup C runs the setup algorithm to obtain para and the key generation algo-
rithm to obtain a pair (sk∗, pk∗) of a challenge key. Then C interacts with A
with (para, pk∗) as follows:

Key Certification Query Given a pair (pk
(h)
i , sk

(h)
i ) by A, C registers pk

(h)
i in

L if they are a valid pair. If not, output an error symbol ⊥.
Signing Query Given a message m(h), C generates a signature σ on m(h) by

the signing algorithm. Then, C returns σ.
Output Given a forgery ({(m∗

j , pk∗
j )}i

j=1, σ
∗) by A, C checks if the following

conditions hold; the Verify(para, {(pk∗
j ,m∗

j )}i
j=1, σ

∗
i ) outputs �; for some

j ∈ [1, i], pkj is exactly corresponding to pk∗; each public key in {pk∗
j }i

j=1

is registered in L except for pk∗; for some i corresponding to pk∗, A did not
query m∗

i to the signing oracle. A wins if all of these conditions hold.

Definition 2. We say that an adversary A breaks a general aggregate signa-
ture scheme with (t, qc, qs, qh, n, ε) if A who does not know sk∗ can win the game
described above with a success probability greater than ε within an execution



36 N. Yanai et al.

time t. Here, A can access to the signing oracle at most qs times, the key certi-
fication oracle at most qc times and random oracles at most qh times, and n is
the number of signers included in the forgery. We say that a general aggregate
signature scheme is (t, qc, qs, qh, n, ε)-secure if there is no adversary who breaks
the scheme with (t, qc, qs, qh, n, ε).

2.2 Sequential Aggregate Signatures

Many parts of a syntax and security of sequential aggregate signatures are the
same as those of general aggregate signatures. Therefore, we describe different
parts from the previous section, and a full syntax and a definition of the security
are omitted due to the space limitation.

Syntax. A sequential aggregate signature scheme consists of four algorithms,
Setup, KeyGen, Aggregate-Sign and Verify. These are exactly the same
as that of general aggregate signatures except for Aggregate-Sign algorithm.
Therefore, we describe only Aggregate-Sign algorithm.

–Aggregate-Sign Given para, ski, a message mi ∈ M, i−1 pairs {(pkj ,mj)}i−1
j=1

of public keys and messages for previous signers, and their signature σi−1,
generate an aggregate signature σi and output σi. If any input is an error,
then output an error symbol ⊥.

Definition 3 (Correctness). The correctness of the sequential aggregate sig-
nature scheme is defined as follows: for all security parameter k, all para ←
Setup(1k), all (ski, pki) ← KeyGen(para) and all integer i, the following equa-
tion holds if verification of a given signature σi−1 is �:

� = Verify
(

para, {(pkj ,mj)}i
j=1,Aggregate-Sign

(

para, ski,mi,

{(pkj ,mj)}i−1
j=1, σi−1

))

.

If verification of a given σi−1 is ⊥, then Aggregate-Sign outputs ⊥.

3 Network Graph

In this section we define network graphs. Network graphs are defined as an
extension of series-parallel graphs [4], and we first recall the definition of series-
parallel graphs [4].

3.1 Series-Parallel Graph

Definition of Series-Parallel Graph. Let G be a set of graphs. A series-
parallel graph is a graph generated by recursively applying either a serial graph
or a parallel graph in an arbitrary order. More specifically, a series-parallel graph
G(I, T ), which starts at the initial vertex I and terminates at the terminal vertex
T , is defined as follows:

G(I, T ) is generated either by the following step 1 or step 2.
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1. With a unique label i in G, Gi(Ii, Ti) is composed of one edge connecting Ii

and Ti. We call such a graph an atomic graph and denote it by φi ∈ G.
2. For the step 2, either the following step (a) or step (b) is executed.

(a) (Parallel Graph) Given n graphs Gi(Ii, Ti) for 1 ≤ i ≤ n, construct
G(I, T ) by setting I = I1 = I2 = · · · = In and T = T1 = T2 = · · · = Tn.

(b) (Serial Graph) Given n graphs Gi(Ii, Ti) for 1 ≤ i ≤ n, construct G(I, T )
by setting I = I1, T1 = I2, · · · , Tn−1 = In and Tn = T .

Intuitively, in the above definitions, constructing G(I, T ) means compositions
of n atomic graphs φi ∈ G for i = [1, n] either as a serial one or a parallel one.

Composition of Graphs. For two graphs φ1, φ2 ∈ G, we define a composition
of parallel graphs as φ1 ∪ φ2 and the composition of serial graphs as φ1 ∩ φ2.
In other words, φ1 ∪ φ2 means to construct G(I, T ) by setting I = I1 = I2 and
T = T1 = I2, and φ1 ∩ φ2 means to construct G(I, T ) by setting I = I1, T1 = I2
and T2 = T . We denote by T (i) a set of graphs connecting to the initial vertex Ii

of ith graph in such a way that T (i) = {x | Ii = Tx∧1 ≤ x < i∧Gx(Ix, Tx) ⊂ ψn},
by I(i) a set of graphs connecting to the terminal vertex Ti of ith graph in such
a way that I(i) = {x | Ti = Ix∧i < x ≤ n ∧Gx(Ix, Tx) ⊂ ψn}, by {aj}j∈T (i), for
all a, all aj for j ∈ T (i). In other words, for all graphs, the composition of a graph

φi and ψj for j ∈ T (i) can be denoted by ψi := φi ∩
(

⋃

j∈T (i) ψj

)

= φi ∩ ψT (i)

where
⋃

x means iterations of the operation ∪ for all x. Similarly,
⋂

x can be
defined as iteration of ∩.

Weight of Graph. We define a weight function ωi(ψn) that represents a weight
of each label i for a graph ψn for all i, n. Intuitively, ωi(ψn) means the number
of paths including an edge with a label i from Ii to Tn for ψn.

3.2 Definition of Network Graph

We define a network graph by extending a series-parallel graph. That is, a net-
work graph inherits all properties of a series-parallel graph. Here, an edge of
a series-parallel graph corresponds to a “network entity” such as an Internet
service provider. For any network graph, each entity has a unique edge with a
unique index representing the position of the entity, i.e., an index i in ψn cor-
responds to the ith entity in the whole network graph for all i, n. Hereafter,
for all i, n, we denote by ψn a network graph consisting of n entities, by T (i)
a set of entities connecting to the initial vertex Ii of the ith entity in such a
way that T (i) = {x|Ii = Tx ∧ 1 ≤ x < i ∧ Gx(Ix, Tx) ⊂ ψn}, by I(i) a set of
entities connecting to the terminal vertex Ti of ith entity in such a way that
I(i) = {x|Ti = Ix ∧ i < x ≤ n ∧ Gx(Ix, Tx) ⊂ ψn}, by {aj}j∈T (i), for all a, all
aj for j ∈ T (i). We also define an operation ⊂̇ where i⊂̇ψn means extractions
of indexes from ψn.



38 N. Yanai et al.

Instantiation of Network Graph. An instantiation of the network graphs
described above is a routing protocol with multi-path setting where each router
owns multiple paths to any destination. We briefly describe their intuitions
below. Firstly, in the routing protocol, each network entity connects with mul-
tiple entities and a network graph has no loop structure in general. These prop-
erties are exactly corresponding to that of the network graph. Moreover, in a
viewpoint of a source to send packets, route information to its destination cor-
responds to a series-parallel graph whose whole terminal edge is the destination.
Namely, we consider many routing protocols with the multi-path setting can be
represented as the network graph.

4 Do Aggregate Signatures Work on Network Graph?

We show negative results in utilizing aggregate signatures on network graphs.
We first describe how to apply aggregate signatures to network graphs, and then
show several theorems with respect to the negative results.

4.1 Application of Aggregate Signatures to Network Graph

Hereinafter, we suppose that a signer for aggregate signatures corresponds to
an edge for network graphs for the sake of convenience. We also suppose that
aggregate signatures are generated along with network graphs: more specifically,
for any whole graph from a source to its destination, signatures are individually
propagated on each path in the graph and are aggregated in any parallel part of
the graph. Based on the definitions in Sect. 3, for any signer i, its co-signers for
aggregating signatures are corresponding to a set T (i) of edges which connect
to its initial vertex Ii. In other words, the ith signer generates a signature after
he/she receives signatures from previous signers belonging to T (i), and then
aggregates these signatures into a single signatures. These are natural operations
along with network applications such as secure routing protocols. For example,
each router in secure routing protocols signs routing information to guarantee
the validity and aggregates the collected signatures in order to save the size of
memory resource.

More specifically, when a signer receives signatures from co-signers along with
T (i), he/she utilizes Sign and Aggregate algorithms in a general aggregate
signature scheme while Aggregate-Sign algorithm in a sequential aggregate
signature scheme, respectively. We also note that, if there are multiple signers at
the end of a graph, an aggregate signature on the whole graph is an aggregation
of a signature for each path. For the sake of convenience, we show the following
figures, Figs. 1 and 2, as examples of the use of aggregate signatures on network
graphs.

4.2 (In)security of General Aggregate Signatures

We describe the first negative result with some scheme. The following scheme is
a generic construction of general aggregate signatures and the existing schemes
are included in the construction.
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Fig. 1. How to use general aggregate signatures on network graph

Fig. 2. How to use sequential aggregate signatures on network graph

Generic Construction. A general aggregate signature scheme is generically
constructed by utilizing a full-domain hash construction with bilinear maps.
Here, the bilinear maps are defined as follows: Let G and GT be groups with the
same prime order p. A bilinear map e : G × G → GT is a map such that the
following conditions hold, where g is a generator of G: (Bilinearity) For all u, v ∈
G and a, b ∈ Z

∗
p, e(ua, vb) = e(u, v)ab; (Non-degeneracy) For any generator

g ∈ G, e(g, g) �= 1GT
, 1GT

is an identity element over GT ; (Computable) There
is an efficient algorithm to compute e(u, v) for any u, v ∈ G. We say that G is
a bilinear group if all these conditions hold, and we assume that the discrete
logarithm problem (DLP) in bilinear groups is hard. We call the parameter
(p,G,GT , e) pairing parameter.

Setup Given a security parameter 1k, generate a generator g ∈ G and choose
a full-domain hash function H : {0, 1}∗ → G. Then, output g and H as a
public parameter para.

KeyGen Given para, generate xi ∈ Z
∗
p as ski and compute yi = gxi as pki.

Output ski and pki.
Sign Given para, ski and a message mi ∈ {0, 1}∗, compute hi = H(mi) and

σi = hxi
i . Then output σi.

Aggregate Given para and i-tuples ({(pkj ,mj , σj}i
j=1) of public keys, messages

and signatures, output a single short signature σ =
∏i

j=1 σj .
Verify Given (para, {pkj ,mj}i

j=1, σ) as input, output � if e(σ, g) =
∏i

j=1 e(hj , yj) where hj = H(mj) for all j. Otherwise, output ⊥.

One might think that the above construction is specific and not generic. We note
that the scheme is almost generic since a full-domain hash signature scheme gives
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rise to aggregate signatures according to Hohenberger et al. [16]. In fact, all of
the existing general aggregate signature schemes [1,13,17,30] are constructed by
replacing a public key and a family of hash functions with their instantiations in
each scheme. Therefore, discussion on the scheme described above can be applied
to the existing schemes in a similar manner.

Negative Result. We pointed out that utilizing general aggregate signatures
on network graphs induces some problem in security. That is, malicious signers
can forge signatures on any message by generating a malicious graph.

Theorem 1. There exists an adversary which breaks the generic construction of
general aggregate signatures on a network graph with non-negligible probability.

Proof. We show some attack as a counterexample against the security. As
described in the previous section, signatures for each signer are sent to all of
the following paths on a network graph. In this case, the signatures are ampli-
fied by their aggregation step on the following paths since a number of signatures
in proportion to the number of paths are sent individually. More specifically, let
a target signature be Alice and her signature be σA. Then, the value of σA

is amplified by a product computation on the aggregation algorithm because
an aggregate signature on each parallel path includes σA. Since the number of
paths from any source to its destination is obtained as the weight of the graph
described in Sect. 3.1, the aggregate signatures are given as σ =

∏i
j=1 σ

ωj(ψi)
j for

all i. Here, for some j, σj is corresponding to σA, and we denote by ωA(ψi) the
weight function of Alice for the sake of convenience. If the weight function ωA(ψi)
of Alice’s signature σA is equal to zero under the modulo p, the value of σ

ωj(ψi)
A is

equal to 1 on any message since p is the order of a group G. That is, an adversary
can forge a signature on any message by outputting 1 via generating a malicious
graph. The success probability of the adversary for generating such a graph is
non-negligible. In order to guarantee the statement, we recall some lemma for
the weight of a series-parallel graph. Since network graphs inherit properties of a
series-parallel graph as described in Sect. 3, the lemma is applicable to network
graphs.

Lemma 1 ([33], Lemma 2.3). For any i, n ∈ Z and any graph ψi ∈ G, it holds
ωi(ψn) ≤ 3#ψn/3.

For the weight of a series-parallel graph, the lemma gives its upper bound with
a fixed number of edges. In particular, the upper bound of the weight function
is 3#ψi/3 where #ψi is the number of edges, i.e., signers, for any graph ψi, and
the attack is successful if 3#ψi/3 = p. For instance, p is 160-bit prime for 80-bit
security and the adversary is always able to execute the attack by colluding with
300 signers. �

We note that security proofs of the existing works are correct even against
our theorem. The attack described above is executable because it is done on
network graphs, and is out of the scope of their works.
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4.3 (Un)availability of Sequential Aggregate Signatures

Generic Construction of Sequential Aggregate Signatures. A sequen-
tial aggregate signature scheme can be generally constructed from any trapdoor
(permutation) chains: more precisely, Aggregate-Signing algorithm takes a
trapdoor as a secret key and a given aggregate signature as input, and out-
puts a new aggregate signature by the trapdoor. Here, we denote by � a group
operation for the permutations:

Setup Given a security parameter 1k, choose a full-domain hash function H :
{0, 1}∗ → D where D is a domain of any permutation. output H as a public
parameter para.

KeyGen Given para, generate a trapdoor permutation πi and its inverse per-
mutation π−1

i . output π−1
i as ski and πi as pki.

Aggregate-Sign Given para, ski, a message mi ∈ {0, 1}∗, i − 1 pairs
{(pkj ,mj)}i−1

j=1 of public keys and messages for previous signers, and their
signature σi−1, compute hi = H(pk1 ‖ · · · ‖ pki,m1 ‖ · · · ‖ mi) and gener-
ate an aggregate signature σi = π−1

i (hi � σi−1) where set σ0 = 1 for i = 1.
Output σi.

Verify Given (para, {pkj ,mj}i
j=1, σi) as input, compute for all j hj = H(pk1 ‖

· · · ‖ pki,m1 ‖ · · · ‖ mi) and then σj−1 = πj(σj) � h−1
j . If σ0 = 1, output �.

Otherwise, output ⊥.

We note that the construction described above is generic in the sense that a
scheme is constructed via any trapdoor chains (πi, π

−1
i ). In other words, we can

take into account only constructing a new variant of (πi, π
−1
i ) in order to propose

a sequential aggregate signature scheme. In a fact, an RSA-based construction
[27] is a simple instantiation and bilinear-based constructions [26,31] can be
found as kinds of the generic construction by replacing πi and hi with bilinear
maps and map-to-point functions. Although our negative result is applicable to
only schemes based on the generic construction, all of the existing constructions
have been on this framework.

Negative Result. When we utilize a sequential aggregate signature scheme on
network graphs, we have the following theorem.

Theorem 2. The correctness of the generic construction of sequential aggregate
signatures does not hold on a network graph with a non-negligible probability
if there exists a parallel path and the size of signatures is fixed with respect to
the number of parallel paths.

Proof. We show some counterexamples against the correctness of the scheme
described above. The intuition of the proof is that the aggregate-signing
algorithm is constructed to combine signatures by a trapdoor, i.e., a secret key,
of a signer and verify the validity by permutations of a public key. That is,
in any parallel graph, while an individual signature is generated for each path,
these signatures cannot be aggregated for a terminal signer of the parallel graph.
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More specifically, we describe the statement with Fig. 2. In that figure, co-signers
of David are Charlie and Edwin and David receives individual signatures from
them. Then, David cannot aggregate their signatures. If David forcibly tries to
generate a new aggregate signature by combining the Charlie’s aggregate signa-
ture σ3 and the Edwin’s aggregate signature σ5, then David’s aggregate signature
σ4 is computed as σ4 = σ3 � σ5 � h4 where h4 is a hashed digest of David. In
this case, a verifier cannot verify the validity of σ4 since he/she cannot compute
inverse permutations of signature chains on the verification algorithm: more
precisely, the verification algorithm requires a verifier to extract σ3 and σ5 from
σ4 via inverse permutations, but the verifier cannot separate σ3 and σ5 from
σ3 � σ5 since he/she does not know σ3 and σ5. The success probability of the
verification in such a situation is obtained as that of a correct separation between
σ3 � σ5, and is depending on size of the range of each permutation πi, i.e., 1

|πi| .
Thus, the verification fails with an overwhelming probability. In order to recover
the incorrectness of the generic construction, σ3 and σ5 are required to be kept
separate. That is, in a whole graph, a large number of signatures in proportion
to the number of parallel paths is necessary. Another counterexample is on the
end of the whole graph in Fig. 2. Since sequential aggregate signatures do not
contain an aggregation algorithm individually, signatures on the end of the graph
cannot be aggregated. Namely, there are multiple signatures in proportion to the
number of parallel paths similarly to the above statement. �

5 Generic Construction on Network Graph

High Level Discussion of the Problem. Sequential aggregate signatures
have no correctness on network graphs and overcoming the problem is difficult.
Meanwhile, general aggregate signatures meets the correctness and hence we dis-
cuss how to fix the insecurity of them hereinafter. An essential problem of the
insecurity is to amplify the value of signatures via network graphs. More specifi-
cally, for any aggregate signature scheme, signatures are written as

∏i
j=1 σ

ωj(ψi)
j .

Whereas the attack depends on a kind of a group homomorphism, a group homo-
morphism is necessary for constructing aggregate signatures in order to combine
individual signatures. In other words, the attack is due to an aggregation based
on the group homomorphism, and is unavoidable as long as the homomorphism
is used.

In order to overcome the problem, we propose two potential approaches, the
weight function in small space and a homomorphism without the weight func-
tion. The former approach is instantiated by restricting the number of signers.
A similar attack for breaking multisignatures has been shown in [33] and the
restriction is their technique to prevent the attack. Since the attack scenario
is to generate a graph whose weight is equal to zero under the modulo p, it
can be avoided by checking values of the weight function. The upper bound of
the weight function is given as 3#ψi/3 as described in the previous section, and
hence signers can resist the attack if the number of signers is less than the value.
The other approach is to utilize a ring homomorphism. The ring homomorphism
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contains an addition and a multiplication, e.g., + and ∗, and each operation
is assigned to either one of a serial graph or a parallel graph. For instance, a
signature equation can be obtained as (σ1 + σ2) ∗ σ3 and it does not contain
the weight function. Therefore, this construction can resist the attack without
restricting the number of signers in comparison with the former approach.

We note that our proposed schemes are generic conversions from aggregate
signatures to secure ones: that is, a scheme to prevent the attack can be proposed
if there exists an aggregate signature scheme with either one of the properties. We
also emphasize that these proposed schemes are different form existing general
aggregate signatures in a strict sense. In particular, verification and aggrega-
tion algorithms of our schemes contain graph structures and hence can include
mechanisms to prevent the attack.

5.1 Construction with Restriction on the Number of Signers

Suppose that there exists an aggregate signature scheme with a group addition +,
and we denote by (Setup, KeyGen, Sign, Aggregate, Verify) its algorithms.
We then obtain the following construction. Here, we denote by (SetupW, Key-
GenW, SignW, AggregateW, VerifyW) its algorithms. We also note that
a message space is extended in the aggregation algorithm and the verification
algorithm of our scheme.

SetupW Given a security parameter 1k, generate a public parameter para with
Setup(1k).

KeyGenW Given para, output a secret key ski and its corresponding public
key pki by KeyGen(para).

SignW Given para, ski and a message mi, generate a signature σi by Sign(para,
ski,mi) and then output σi. If any input is an error, then output an error
symbol ⊥.

AggregateW Given para and i-tuples ({(pkj , (mj , ψj), σ′
j}i

j=1) of public keys,
messages consisting of ones to be signed and its graph and their signatures,
iterate the following steps for j ∈ [1, i]: compose ψT (j) := ∪k∈T (j)ψk; compute
σT (j) =

∑

k∈T (j) σk where set σk = 0 if T (j) for any j is an empty, i.e., j is
equal to one; compose ψj := ψT (j) ∩φj ; compute σj = σ′

j +σT (j). If there are
k signers {pkk}k∈T (i) as the last signers of the whole signing group, then the
whole structure is ψi = ∪k∈T (i)ψk and the whole signature is σ =

∑

k∈T (i) σk.
Output a single short signature σ.

VerifyW Given (para, {pkj , (mj , ψj)}i
j=1, σ) as input, compose a whole graph

ψi and checks if there exists an index j such that ωj(ψi) for all j. If so, output
⊥. Otherwise, run Verify with (para, {ωj(ψi)pkj ,mj}i

j=1, σ). If the output
is �, output �. If not, output ⊥.

Theorem 3. Suppose that a general aggregate signature is (t, qc, qs, qh, n, ε)-
secure. Then, the proposed scheme is (t′, qc, qs, qh, n, ε)-secure, where t′ = t +
O(n) and O is the computational cost for generating a single signature.
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Proof (Sketch). Due to the space limitation, we briefly describe the intuition of
the security proof in this section. An intuition of the proof is that its signature
distribution is almost the same as that of an ordinary aggregate signature scheme
as long as the number of signers is restricted such that it is less than 3#ψi/3. The
goal of the proof is to forge the ordinary scheme via a forgery of the proposed
scheme. In other words, constructing an adversary B against the ordinary scheme
by the adversary A against the proposed scheme is the goal of the proof.

More specifically, B is given a challenge key from a challenger of the ordinary
scheme, send it to A as a challenge key of the proposed scheme. When A gives
a query to B, B forwards the query to the challenger in order to respond to
the query. The key generation algorithms and the signing algorithms are exactly
identical for these games, and thus B can perfectly simulate the key certification
query and the signing query. Likewise, for the random oracle queries, B can
forward queries given from A to the challenger in order to simulate the random
oracles. Since messages to be actually signed are identical to that of the ordinary
scheme, the distribution of the random oracles are exactly identical.

After A outputs a forgery ({((m∗
i , ψ

∗
i ), pk∗

i )}n
i=1, σ

∗), B excludes co-signers’
signatures from the given forgery in order to obtain its target signer’s signature
ωi(ψ∗

n)σ′, where i means the index of the target signer. This exclusion can be
executed since B knows all the co-signers’ secret keys via the key certification
queries. B computes σ′ dividing by ωi(ψ∗

n), and then reconstructs σ∗ by utilizing
the co-signers’ secret keys. Finally, B outputs the reconstructed σ∗ as a forgery.

The number of queries and the success probability of B is exactly the same
as that of A. However, for the given forgery from A, B has to execute the signing
algorithm for (n−1) signers. Thus, B’s execution time t′ is that of A plus to the
execution times on the signing algorithm at (n− 1) times. That is, t′ = t+O(n)
holds where O is the computational cost of the signing algorithm. �

Although we omit instantiations of the scheme described above due to the
page limitation, we can propose instantiations via the BGLS03 scheme [7], the
GR06 scheme [13] or the HSW13 scheme [17].

5.2 Construction with Ring Homomorphism

Suppose that there exists a general aggregate signature scheme with a group
addition + and a group multiplication ∗, and we denote by (Setup, KeyGen,
Sign, Aggregate, Verify) its algorithms. We then obtain the following con-
struction. Here, we denote by (SetupR, KeyGenR, SignR, AggregateR,
VerifyR) its algorithms. We also denote by f(pki, hi) a verification on Verifica-
tion for all pki and all hash digest hi on mi, and note that a message space is
extended in our scheme.

SetupR Given a security parameter 1k, generate a public parameter para with
Setup(1k).

KeyGenR Given para, output a secret key ski and its corresponding public
key pki by KeyGen(para).
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SignR Given para, ski and a message mi, generate a signature σi by Sign(para,
ski,mi) and then output σi. If Sign outputs ⊥, output ⊥.

AggregateR Given para and i-tuples ({(pkj , (mj , ψj), σ′
j}i

j=1) of public keys,
messages consisting of ones to be signed and its graph and their signatures,
iterate the following steps for j ∈ [1, i]: compose ψT (j) := ∪k∈T (j)ψk; compute
σT (j) =

∑

k∈T (j) σk where set σk = 0 if T (j) for any j is an empty, i.e., j is
equal to one; compose ψj := ψT (j) ∩ φj ; compute σj = σ′

j ∗ σT (j). If there are
k signers {pkk}k∈T (i) as the last signers of the whole signing group, then the
whole structure is ψi = ∪k∈T (i)ψk and the whole signature is σ =

∑

k∈T (i) σk.
Output a single short signature σ.

VerifyR Given (para, {pkj , (mj , ψj}i
j=1, σ) as input, extract the verification

function f(pki, hi) from Verify for all j ∈ [1, j]. Then, check if f(σ, para) =
f(pk1, h1)�1 · · ·�i−1f(pki, hi) holds, where �j means ∗ if the relation among
pkj and pkj+1 is a parallel structure, otherwise, ∗. In addition, for the calcula-
tion of the right hand side of the congruence, + operation is searched and any
found ∗ operation is computed at first one by one until all + operations are
computed. Then all ∗ operations are computed one by one from the leftmost
∗ operation until the rightmost one. If the equation does not hold, output ⊥.
Otherwise, output �.

Theorem 4. Suppose that a general aggregate signature is (t, qc, qs, qh, n, ε)-
secure. Then, the proposed scheme is (t′, qc, qs, qh, n, ε)-secure, where t′ = t +
O′(n) and O′ is the costs of the signing algorithm and the inversion in a group
homomorphism.

Proof (Sketch). Due to the page limitation, we give only intuition of the proof.
Similarly to the proof in the previous section, its signature distribution is almost
the same as that of an ordinary aggregate signature scheme. Thus, we can prove
the security in a similar manner to the proof in the previous section. �

Open Problem to Instantiation. We do not have instantiation of the con-
struction described above. However, we consider that the existing homomorphic
signatures such as the ALP13 scheme [2] and transitive signatures such as the
CH12 scheme [9] are expected as instantiations. While these schemes are able
to combine individually generated signatures, their combination algorithms do
not take secret keys as input. It is close to the general aggregation. We leave as
open problems to propose an instantiation of the proposed scheme.

6 Conclusion

Aggregate signatures are digital signatures for multiple signers where each signer
can sign an individual document, and there are two kinds of aggregate signatures,
general aggregate signatures and sequential aggregate signatures. Although one
of key applications of aggregate signatures is routing protocols, we found poten-
tial vulnerabilities of both general aggregate signatures and sequential aggregate
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signatures. More specifically, we showed the unavailability of sequential aggre-
gate signatures and the insecurity of general aggregate signatures on network
graphs, which are mathematically idealized networks. We also proposed two
approaches to overcoming the insecurity of general aggregate signatures. One of
the approaches is to restrict the number of signers. Since an adversary constructs
a malicious network graph in the attack we found, the success probability can be
negligibly small by the restriction in the number of signers. The other approach
is to construct an aggregate signature scheme based on a ring homomorphism. In
such a scheme, an adversary is unable to construct a malicious network required
for the attack. As a future work, we plan to construct an aggregate signature
scheme based on a ring homomorphism. We also plan to implement our schemes.
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Abstract. The core technique for constructing oblivious database is to
get efficient implementations of oblivious transfer. This paper studies
universally composable 1-out-of-n oblivious transfer (OTn

1 ) in the pres-
ence of malicious adversaries under the standard cryptographic assump-
tions. Our oblivious transfer protocol is constructed from the Damg̊ard
and Jurik’s double trapdoor encryption scheme and the Damg̊ard and
Nielsen’s mixed commitment scheme, where the master key of the under-
lying double trapdoor cryptosystem is used to extract implicit input of a
corrupted sender while the corresponding local keys are used to extract
implicit input of a corrupted receiver. We claim that the proposed obliv-
ious transfer framework realizes the universally composable security in
the common reference model under the joint assumptions that the deci-
sional Diffie-Hellman problem and the decisional composite residuosity
problem are hard as well as all knowledge proof protocols applied are
zero-knowledge.

Keywords: Double trapdoor cryptosystem · Mixed commitment
scheme · Oblivious transfer · Universal composability

1 Introduction

Nowadays, user data is becoming a new economic asset that will touch all aspects
of our modern society. User data collected from different resources is stored in
a user-controlled data box which in essence, is a cloud storage associated with a
specified access control strategy. The collected data stored in the personal box
can be sold to a data broker (say, Bob). In return, the user (say, Alice) gets the
repayment from Bob. The broker Bob manages and maintains the collected data
and provides the data-as-a-service leveraging the established database systems
in the client-server model, where the broker Bob serves as a database man-
agement server. One of such services is oblivious information retrieval where
the client should obtain correct answer to the query and nothing else is leaked
while the server should not learn anything besides the type of the query. Com-
monly, a database system supports the oblivious information retrieval procedure
is referred to as an oblivious database [14,20,21].

c© Springer International Publishing Switzerland 2016
M. Yung et al. (Eds.): INTRUST 2015, LNCS 9565, pp. 49–61, 2016.
DOI: 10.1007/978-3-319-31550-8 4
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The core technique for constructing oblivious database is to get efficient
implementations of oblivious transfer (OT) which was first introduced by Rabin
[29], and generalized by Even et al. [16] and Brassard et al. [2]. Typically, an
OT database comprises two parties: a sender (or a server) and a receiver (or a
customer), where a sender has input messages m1, . . . , mn, interactively com-
municating with a receiver with a specified index σ ∈ [1, ..., n] in such a way that
at the end of the protocol execution, the receiver obtains mσ while the sender
learns nothing. OT stands at the center of the fundamental results on secure
two-party and multi-party computation showing that any efficient functionality
can be securely computed [7,19,31]. Due to its general importance, the task of
constructing efficient oblivious transfer protocols has attracted much interest
(see [1,3,9,10,12,20,22–26,32,33] for more details).

1.1 Motivation Problem

At Crypto’08, Peikert et al. [28] proposed a general framework of universally
composable 1-out-of-2 oblivious transfer protocols in the presence of static adver-
saries under the standard cryptographic assumptions. Their protocols are based
on a new notion called dual-mode cryptosystem. Such a system starts with a
setup phase that produces a common reference string, which is made available
to all parties. The cryptosystem is set up in one of two modes: extraction mode
or decryption mode. A crucial property of the dual-mode cryptosystem is that no
adversary can distinguish the common reference string between two modes. To
prove the security against a malicious sender, a simulator must run a trapdoor
extractable algorithm that given a trapdoor t, outputs (pk, sk0, sk1), where pk
is a public encryption key and sk0 and sk1 are corresponding secret keys for
index 0 and 1 respectively. To prove the security against a malicious receiver,
a simulator must run a find-lossy algorithm that given a trapdoor t and pk,
outputs an index corresponding to the message-lossy index of pk.

Recall that an efficient construction of 1-out-of-4 oblivious transfer proto-
cols is a key start-up for secure multi-arty computations in the framework of
Goldreich, Micali and Wigderson. As a result, if Alice is given an efficient
implementation of the 1-out-of-4 OT protocol (e.g., a construction based on
the Peikert, Vaikuntanathan and Waters’ general framework under the standard
cryptographic assumption), then she is able to securely compute any function
f in terms of Boolean circuits [10]. We however, do not know how the Peikert
et al’s general framework for 1-out-of-2 oblivious transfer protocols can be used
to construct 1-out-of-4 (and the general case 1-out-of-n) oblivious transfer pro-
tocols under the standard cryptographic assumptions which leaves the following
interesting research problem:

How to construct universally composable 1-out-of-n oblivious transfer pro-
tocols in the presence of static adversaries under the standard cryptographic
assumptions?
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1.2 This Work

This paper provides a construction of universally composable 1-out-of-n obliv-
ious transfer (OTn

1 ) in the presence of static adversaries under the standard
cryptographic assumptions based on the Damg̊ard and Jurik’s double-trapdoor
encryptions and the Damg̊ard and Nielsen’s mixed commitment schemes. Using
the oblivious transfer extension technique [18], we are able to to establish a large
oblivious database system where millions of oblivious transfers are invoked for
an information retrieval processing by applying the base OTn

1 constructed in this
paper.

Overview of the Implementation. Our construction comprises three phases:
a common reference string generation phase, an initialization phase and an inter-
active communication phase.

– In the common reference string generation phase, two reference strings are
generated: a common reference string generated from the Damg̊ard and Jurik’s
double-trapdoor encryption [15] and a common reference string generated from
the Damg̊ard and Nielsen’s mixed commitment scheme [13]. The common
reference string of the mixed commitment allows a simulator to interpret a
dummy commitment as a commitment of any message. The common reference
string of the double-trapdoor cryptosystem allows the simulator to extract
implicit input of a corrupted sender with the help of the master secret key.
The common reference string also allows the simulator to extract implicit
input of a corrupted receiver with the help of the local secret keys.

– In the initialization phase, the sender will set up a committed database by
means of the mixed commitment scheme. A crucial property of the committed
database is that the committed database is extractable when the sender gets
corrupted and the committed database is equivocable when the receiver gets
corrupted.

– In the interactive communication phase, the receiver retrieves messages in
such a way that at the end of the protocol execution, the receiver obtains a
message mσ while the sender learns nothing.

Overview of the Proof. Let (mpk, pk1, . . . , pkn) be a common reference
derived from the Damg̊ard and Jurik’s double-trapdoor encryption and (msk,
sk1, . . . , skn) be the corresponding secret keys, where (mpk, msk) is a pair
of master public and master secret keys and (pki, ski) is a pair of local keys.
Given (mpk, pk1, . . . , pkn), an ideal-world adversary works as follows: to prove
receiver’s security against a malicious sender, the master secret key msk is used
to extract implicit input of the corrupted sender. Consequently, a simulator
for the corrupted sender is well defined; to prove sender’s security against a
malicious receiver, the local keys sk1, . . . , skn are used to extract implicit input
of the corrupted receiver and then the simulator makes use of the equivocal
keys to interpret a fake commitment to a commitment of any message. Such
an interpretation is necessary when the simulator does not have any knowl-
edge of the honest sender. In our construction, zero-knowledge proof technique
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such as the Cramer-Damg̊ard-Schoenmakers’ OR-protocol [6] for proving the
OR-relationship of Diffie-Hellman quadruples are used. We stress here that we
do NOT apply the rewinding technique for extracting input messages of cor-
rupted parties. The simulator extracts the inputs messages of corrupted parties
by means of the master key of the double trapdoor encryption scheme. This is
our key idea to construct 1-out-of-n composable oblivious transfers.

Main Result. We claim that the proposed oblivious transfer protocol OTn
1 real-

izes the universally composable security in the common reference model under
the joint assumptions that the decisional Diffie-Hellman problem and the deci-
sional composite residuosity problem are hard as well as all knowledge proof
protocols applied in our implementation are zero-knowledge in the presence of
static adversaries.

Road Map. The rest of this paper is organized as follows: The security notion
of 1-out-of-n oblivious transfer protocols in the UC-framework and the building
blocks are presented in Sect. 2. A detailed description of 1-out-of-n oblivious
transfer protocol is presented in Sect. 3 and a proof of its security is presented
in Sect. 4. We conclude this work in Sect. 5.

2 Preliminaries

We assume that the reader is familiar with the standard notion of UC-Security
(we refer to the reader [4] for a detailed description of the executions, and defi-
nitions of IDEALF,S,Z and REALπ,A,Z).

Common Reference String Model. Canetti and Fischlin have shown that OT
cannot be UC-realized without a trusted setup assumption [8]. We thus assume
the existence of an honestly-generated Common Reference String (crs) and work
in the so called FD

crs-hybrid model. The functionality of common reference string
model [5] assumes that all participants have access to a common string that is
drawn from some specified distribution D. The details follow:

Functionality FD
crs

FD
crs proceeds as follows, when parameterized by a distribution D.

When receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n) and
send (sid, crs) to Pi, and send (sid, Pi, Pj , crs) to the adversary, where
sid is a session identity.

Next when receiving (sid, Pi, Pj) from Pj (and only from Pj), send
(sid, crs) to Pj and to the adversary, and halt.

Functionality for 1-out-of-n Oblivious Transfer OTn
1 . The description of

the functionality FOTn
1

[7] follows:
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Functionality FOTn
1

FOTn
1

proceeds as follows, parameterized with κ and n, and running with an
oblivious transfer sender S, a receiver R and an ideal world adversary S.

– Upon receiving a message (sid, sender,m1, . . . , mn) from S, where each mi ∈
{0, 1}κ, an imaginary trusted third party (TTP) stores (m1, . . . , mn);

– Upon receiving a message (sid, receiver, σ) from R, TTP checks if a
(sid, sender, . . . ) message was previously received. If no such message was
received, TTP sends nothing to R. Otherwise, TTP sends (sid, request) to
S and receives the tuple (sid, b ∈ {0, 1}) in response.

– TTP then passes (sid, b) to the adversary, and: if b = 0, TTP sends (sid,⊥)
to R; if b = 1, TTP sends (sid,mσ) to R.

Definition 1. Let F be a functionality for OTn
1 . A protocol π is said to uni-

versally composably realize F if for any adversary A, there exists a simulator S
such that for all environments Z, the ensemble IDEALF,S,Z is computationally
indistinguishable with the ensemble REALπ,A,Z .

Mixed Commitments. A mixed commitment (MC) scheme [13] is a com-
mitment scheme with a global public key gpk which determines the message
space Mc and key space Kc of the commitments. A mixed commitment scheme
has three key generation algorithms (GenMC, EKey, XKey). On input a security
parameter 1k, the global key generation algorithm GenMC outputs a pair of keys
(gpk, spk). On input gpk, the extractable key generation algorithm XKey out-
puts a random extractable key K; on input gpk, the equivocal key generation
algorithm EKey outputs a pair of keys (K, τK). A mixed commitment scheme
has to satisfy the next three properties:

– Key indistinguishability: Random equivocal keys and random extractable keys
are both computationally indistinguishable from random keys (a random key
K is an element chosen uniformly at random from the key space Kc, i.e.,
K ←R Kc) as long as the global secret key gsk is not known;

– Equivocability: Given equivocal key K and corresponding trapdoor τK , one
can generate a fake commitment distributed as real commitments, which can
later be open arbitrarily, i.e., given a message m, one can compute a random-
looking r for which c = ComK(m, r);

– Extraction: Given a commitment c = ComK(m, r), where K is an extractable
key, one can efficiently compute m given gsk, where m is uniquely determined
by the perfect binding.

The indistinguishability of random equivocal keys, random extractable keys and
random keys implies that as long as the global secret key gsk is unknown, then
mixed commitment is computationally hiding for all keys and as long as neither
the global secret key gsk nor the equivocal trapdoor τK is known, the mixed
commitment is computationally binding for all keys.

Damg̊ard-Nielsen Mixed Commitment Scheme [13]. Let Ñ = p̃q̃ be an RSA
modulus. Let gpk = Ñ and gsk = (p̃, q̃). Let s ≥ 0 be some fixed constant.
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The key space is ZÑs+1 , the message space is Z
∗
Ñs , and the randomness space

is Z
∗
Ñ

. Define ψ(m, r) := (1 + Ñ)mrÑs

mod Ns+1. Equivocal keys are ele-
ments of form ψ(0, r) and the trapdoor is r ∈ Z

∗
Ñ

. Extractable keys are of
form ψ(k, rk), where k ∈ ZÑs and rk ∈ Z∗

N . Given a key K ∈ Z
∗
Ns+1 and a

message m ∈ ZÑs , let r be a uniformly random element from Z
∗
Ñ

and commit
as c = ComK(m, r) = KmrNs

mod Ñs+1. The commitment scheme defined by
ComK(m, r) = KmrNs

mod Ñs+1 is a mixed commitment scheme, assuming
that the decisional composite residuosity problem is hard [13].

Damg̊ard-Jurik’s Double-trapdoor Cryptosystem. Damg̊ard and Jurik
[15] presented a length-flexible public-key cryptosystem derived from the Pail-
lier’s encryption. Their cryptosystem is length-flexible in the sense that public-
key can be set up so that messages of arbitrary length can be handled efficiently
with the same fixed keys. The Damg̊ard-Jurik cryptosystem [15] consists of the
following three algorithms.

– Key generation algorithm DTGen = (DTGenmaster, DTGenpartial): On input a
security parameter λ, the master key generation algorithm DTGenmaster out-
puts p, q and N , where N be a product of two large safe primes p and q p
=2p′ + 1 and q =2q′ + 1. Let N ′ = p′q′ and g be a random generator of QRN .
Let h =gx, x ∈R ZN ′ . The master public key mpk is N and the master secret
key msk is (p, q). The local public key pk is (g, h) and the local secret key sk
is x.

– Encryption algorithm DTEnc: Given a message m ∈ Z
+, a sender S chooses an

integer s > 0 such that m ∈ ZNs , and a random r ∈ ZN and computes u =gr

mod n, v = (1 + N)m(hr mod N)Ns

mod Ns+1. Let (u, v) be a ciphertext
of the message m, i.e., c = (u, v) = DTEnc(m, r).

– Decryption algorithm DTDec: Given a ciphertext c=(u, v), DTDec deduces
s from the length of c (or retries s from the attached encryption) and then
decrypts using the following two procedures: (1) the master key decryption
procedure: The decryption algorithm DTDec first computes v2N ′

mod Ns+1

to obtain (1 + N)m2N ′
mod Ns, then extracts the message m ∈ ZN from

(1 + N)m2N ′
mod Ns; and (2) the partial key decryption procedure: The

decryption algorithm DTDec first computes (ux mod N)Ns

mod Ns+1 to
obtain (1 + N)m mod Ns+1 and then extracts the message m ∈ ZNs from
(1 + N)m mod Ns+1.

Under the hardness of the decisional composite residuosity and the decisional
Diffie-Hellman problem in QRN , the Damg̊ard and Jurik double trapdoor cryp-
tosystem is semantically secure [15].

Zero-knowledge Proof Protocols: Throughout the paper, we assume that
the reader is familiar with the Cramer-Damg̊ard-Schoenmakers’ OR-protocol [6]
for proving the equality of a commitment Ci and an encryption Ei (i = 1, . . . , n).
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3 A Construction of UC-secure OTn
1

Our universally composable 1-out-n oblivious transfer protocol π described below
consists of the following three phases (for simplicity, we assume that s = 2 in
the Damg̊ard and Jurik protocol and the Damg̊ard-Nielsen mixed commitment
protocol, one can extend the scheme to the general case where s > 2): a common
reference generation phase, an initialization phase an OT-query phase.

The Common Reference String Generation Algorithm. A common ref-
erence string in our implementation consists of two reference strings: a reference
string crsMC for Damg̊ard-Nielsen’s mixed commitment scheme and a reference
string crsDE for Damg̊ard-Jurik’s Cryptosystem. The common reference string
for the mixed commitment scheme enables a simulator to interpret a dummy
ciphertext generated in the initialization protocol to a message that the cor-
rupted receiver obtains during the course of the OT query protocol. A common
reference string for the double trapdoor cryptosystem enables a simulator to
extract an implicit input of corrupted sender. The details of the common refer-
ence string generation algorithm are depicted below:

– Given a security parameter λ, the common reference string generation algo-
rithm OTcrsGen(1λ) generates composite modulus of the form N = pq that is a
product of two safe primes p and q. OTcrsGen(1λ) outputs a cyclic group QRN

⊆ ZN
∗ of order N ′ and n random generators g1, . . . , gn of QRN . OTcrsGen(1λ)

randomly chooses x1, . . . , xn ∈ ZN ′ and sets hi ← gxi
i mod N (i = 1, . . . , n).

Let mpk = N and pki =(gi, hi). Let crsDE =< mpk, pk1, . . . , pkn >.
– OTcrsGen(1κ) then invokes the key generation algorithms (GenMC, XKey) of

Damg̊ard-Nielsen’s mixed commitment scheme to generate the global public
key Ñ and n Xkeys K1, . . . , Kn ←R Z

∗
˜N2 , where Ñ = p̃q̃, p̃ = 2p̃′ +1, q̃ = 2q̃′ +

1, and p̃, p̃′, q̃ and q̃′ are large prime numbers. Let crsMC = 〈Ñ ,K1, . . . , Kn〉.
– Let crs = (crsDE, crsMC). The common reference string generation algorithm
OTcrsGen(1λ) broadcasts crs to all participants.

Initialization Protocol. The goal of initialization protocol is to construct
a committed database based on the Damg̊ard-Nielsen’s mixed commitment
scheme. On input (m1, . . . , mn) (mi ∈ Mc) and crs = (crsDE, crsMC), the sender
S performs the following computations (1 ≤ i ≤ n):

1. Upon receiving the instruction (sid, sender,m1, . . . , mn), S generates n com-
mitments Cj ← ComKj

(mj , rj), where rj ←R Rc. Let C =(C1, . . . , Cn).
2. S broadcasts C to all participants.

The OTn
1 procedure. The OTn

1 procedure consists of the following steps:

1. Given crsDE = (des(G), (pk1, . . . , pkn),mpk), crsMC = (gpk,K1, . . . , Kn) and
σ ∈ [1, n], the receiver R parses pkσ as (gσ, hσ) and takes pkσ as input to
generate a temporary public-key tpk= (gzσ

σ mod N , hzσ
σ mod N), where

zσ ←R Zβ , len(β) = 2	(λ) and 	(λ) is an upper bound of the bit length of
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group order N ′. The corresponding temporary secret key tsk is zσ. R keeps
tsk secret.
Let (g, h) = (gzσ

σ , hzσ
σ ), and Ui = (gi, hi, g, h). R then sends (sid, tpk, S,R)

to S.
2. On input the common reference string crs and the temporary public-key tpk,

the sender S performs the following computations:
– Parsing tpk as (g, h), S takes OTcrsGen and (g, h) as input and checks the

validity of the temporary public-key. S then checks that (1) g ∈ Z∗
N2 and

h ∈ Z∗
N2 ; (2) g2N 
= 1 and h2N 
= 1. If any of two conditions are violated,

then outputs ⊥; otherwise, S outputs ⊥.
– If all the checks are valid, S takes (pk1, . . . , pkn) and tpk as input and

generates a randomized partial public key rpki for the double trapdoor
encryption algorithm DTEnc. That is, on input (gi, hi) and (g, h), S chooses
si, ti ←R Zβ uniformly at random and outputs the randomized temporary
public key rpki ← (gsi

i hti
i , gsihti), for i = 1, . . . , n.

– Let (ui, vi) =DTEnc(rpki,mi) and Ei =(ui, vi), where ui =gsi
i hti

i mod N
and vi =(gsihti)N (1 + N)m mod N2. S then proves in zero-knowledge the
following statements
(1) Each Ei is a correctly generated ciphertext (i= 1, . . . , n): Let ũi

=uN
i mod N and ṽi =vi mod N . S proves that the exponential com-

ponents (si, ti) of ṽi on the bases (gN mod N , hN mod N) equals
the exponential components (si, ti) of ũi on the bases (gN

i mod N ,
hN

i mod N). Let ZK-PKoE be a zero-knowledge proof of the above
proof.

(2) Ei and Ci hide the same message mi: < ((E1, C1) hiding the same mes-
sage m1) ∨ ((E2, C2) hiding the same message m2) ∨ . . . ∨ ((En, Cn)
hiding the same message mn) >. Let ZK-PKoEQ be a zero-knowledge
proof of the above OR-relationship from the Cramer, Damg̊ard and
Schoenmakers’ protocol [6].

(3) Finally, S sends (E1, . . . , En), together with ZK-PKoE and ZK-PKoEQ
to R.

3. Upon receiving (sid, E1, . . . , En), ZK-PKoOR and ZK-PKoEQ, R checks the
validity of the received PKoEQ. If the proofs ZK-PKoOR and ZK-PKoEQ are
valid, R recovers mσ ← DTDec(tsk,Ei); otherwise, R outputs ⊥.

4 Proof of Security

Theorem 1. The proposed oblivious transfer protocol OTn
1 is universally com-

posable in the FD
crs-hybrid model under the joint assumptions that the decisional

Diffie-Hellman problem and the decisional composite residuosity problem are
hard as well as all knowledge proof protocols applied are zero-knowledge in the
presence of static adversaries.
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Proof. Let π be the described OTn
1 protocol. Let A be a static adversary that

interacts with the parties S and R running the protocol π. We will construct an
ideal world adversary S interacting with the ideal functionality FOT such that
no environment Z can distinguish an interaction with A in the protocol π from
an interaction with the simulator S in the ideal world. The construction of S
depends on which of the two parties gets corrupted, and thus we will separately
handle all different possibilities.

Simulating the case where only the sender S is corrupted. When S is corrupted
and R is honest, the adversary A extracts S’s input from the given commitments
and then forwards the extracted messages to the OTn

1 functionality. The goal of
an simulator S is to generate the remaining messages (namely, messages from
R) so that the entire transcript is indistinguishable from the real interaction
between S and R. The details of S are described below:

1. when the adversary A queries to OTcrsGen(1κ) for a common reference
string crs, the simulator invokes the key generation algorithm DTGen of the
Damg̊ard-Jurik’s double trapdoor encryption scheme to generate composite
modulus of the form N =pq that is a product of two safe primes p and q
(i.e., p = 2p′ + 1, q =2q′ + 1), a cyclic group G ⊆ Z∗

N of order N ′ (N ′ =p′q′),
and n random generators g1, . . . , gn of G and n random elements (h1, . . . , hn)
such that hi = gxi

i mod N , xi ∈U ZN ′ , i = 1, . . . , n. The simulator keeps the
auxiliary strings (p, q) and (x1, . . . , xn) secret. Let crsDE = < des(G), (g1, h1),
. . . , (gn, hn), N >.
OTcrsGen then invokes the key generation algorithms (GenMC, XKey) of
Damg̊ard-Nielsen’s mixed commitment scheme to generate a global pub-
lic key ˜N and n extractable keys K1, . . . , Kn ∈U Z∗

N2 , where ˜N= p̃q̃,
p̃ = 2p̃′ + 1, q̃ =2q̃′ + 1, and p̃, p̃′, q̃ and q̃′ are large prime numbers. Let
Ki =(1 + ˜N)kir

˜N
ki

mod ˜N (i = 1, . . . , n). The simulator keeps (p̃, q̃) and
< (k1, rk1), . . . , (kn, rkn

) > secret. Let crsMC = < ˜N,K1, . . . , Kn >.
Let crs= (crsDE, crsMC). FD

crs returns (sid, crs) to the adversary A;
2. When the simulator S receives (sid, C) from the real world adversary A

who fully controls the corrupted sender S, the simulator S extracts the mes-
sages (m1, . . . , mn) from the given ciphertexts (C1, . . . , Cn) using the trap-
door strings (p̃, q̃) and < (k1, rk1), . . . , (kn, rkn

) > and then forwards the
extracted messages (m1, . . . , mn) to the ideal functionality FOTn

1
. We stress

that the simulator S must send the implicit messages (m1, . . . , mn) to the
functionality FOTn

1
at the initial stage.

3. S randomly selects (g, h) with order N ′ and sets tpk =(g, h). We stress that
the choice of (g, h) is a trivial task since S holds the master key (p, q). The
simulator then sends tpk =(g, h) to the adversary A.

4. Upon receiving (E1, . . . , En), the transcripts ZK-PKoE and ZK-PKoEQ from
the adversary A, S checks the given proofs. If all checks are valid, S decrypts
Eσ to reveal mσ, otherwise, outputs ⊥.
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Let IDEALF,S,Z be the view of ideal world adversary S and REALπ,A,Z be
the view of real world adversary A according to the description of protocol π.
The only difference between REALπ,A,Z and IDEALF,S,Z is the generation of
public key (g, h) in π and the public key (g, h) in the simulation procedure. Since
(gσ, hσ, g, h) is a random quadruple in IDEALF,S,Z while (gσ, hσ, g, h) is a Diffie-
Hellman quadruple in REALπ,A,Z . By the decisional Diffie-Hellman assumption,
we know that REALπ,A,Z ≈ IDEALF,S,Z .

Simulating the case where only the receiver R is corrupted. When R gets cor-
rupted, the adversary generates all the messages from R. The goal of the simu-
lator S, then, is to generate the remaining messages (namely, all messages from
S) so that the entire transcript is indistinguishable from the real interaction
between S and R. The details of an ideal-world adversary S when the receiver
is corrupted follow:

1. when the adversary A queries to OTcrsGen(1κ) for a common reference string
crs, the simulator S invokes the key generation algorithm DTGen of the
Damg̊ard-Jurik’s double trapdoor encryption scheme to generate generate
composite modulus of the form N =pq that is a product of two safe primes
p and q (i.e., p = 2p′ + 1, q =2q′ + 1), a cyclic group G ⊆ Z∗

N of order N ′

(N ′ =p′q′), and n random generators g1, . . . , gn of G and n random elements
(h1, . . . , hn) such that hi = gxi

i mod N2, xi ∈U ZN ′ , i = 1, . . . , n. The sim-
ulator keeps the auxiliary strings (p, q) and (x1, . . . , xn) secret. Let crsDE =
< des(G), (g1, h1), . . . , (gn, hn), N >.
The simulator then invokes the key generation algorithms (GenMC, EKey)
of the Damg̊ard-Nielsen’s mixed commitment scheme to generate a global
public key ˜N and n equivocable keys (K1, . . . , Kn), where Kj =ψ(0, kj) (i.e.,
all Kj are E-keys). Let crsMC = < ˜N,K1, . . . , Kn >, The auxiliary string is
(k1, . . . , kn). The simulator keeps the auxiliary information p̃ and q̃ such that
˜N= p̃q̃, p̃ = 2p̃′ + 1, q̃ =2q̃′ + 1 secret.
Let crs = (crsDE, crsMC). FD

crs returns (sid, crs) to the adversary A;
2. The simulator S invokes the Damg̊ard-Nielsen’s mixed commitment scheme

to generate a dummy database (C1, . . . , Cn) for the retrieved messages.
3. Given crs and tpk, the simulator S checks the following three conditions: (1)

checking g ∈ Z∗
N and h ∈ Z∗

N ; (2) checking g2 mod N 
= 1 and h2 mod N 
= 1.
If any of two conditions is violated, then outputs ⊥; otherwise, S extracts an
index σ by testing the equation h

?= gxσ (i =1, . . . , n). S sends σ to the ideal
functionality FOTn

1
and obtains mσ.

4. S modifies the internal states to generate a transcript that is consistent with
the previously generated ciphertexts (C1, . . . , Cn) according to the following
strategy: given Cσ (the encryption of dummy message with randomness rσ),
the simulator extracts a new randomness r′

σ from the equation Kσ
0rσ

˜N =

Kσ
mσr′

σ

˜N , where Kσ =ψ(0, kσ).
The simulator sends n ciphertexts (E1, . . . , En) together with simulated tran-
scripts of ZK-PKoE and ZK-PKoEQ to the adversary A.
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Let IDEALF,S,Z be the view of ideal world adversary S according to the descrip-
tion of simulation steps described above and REALπ,A,Z be the view of real
world adversary A according to the description of protocol π. The only differ-
ence between REALπ,A,Z and IDEALF,S,Z is the generation of n commitments
(C1, . . . , Cn). By key indistinguishability assumption of the underlying mixed
commitment scheme, we know that REALπ,A,Z ≈ IDEALF,S,Z .

Simulating trivial cases. We now consider the following trivial cases: (1)
both S and R are honest; and (2) both S and R are corrupted.

If both sender and receiver are honest, we define a simulator S below:

1. S internally runs the honest S on input (sid,m0 = 0 ∈ ZN , . . . , mn = 0 ∈
ZN );

2. S internally runs the honest R on input (sid, σ = i), where i ←R [1, n];
3. S activates the protocol as specified when the corresponding dummy party

is activated in the ideal execution, and delivering all messages between its
internal R and S to A.

Let IDEALF,S,Z be the view of ideal world adversary S according to the simula-
tion steps described above and REALπ,A,Z be the view of real world adversary A
according to the description of protocol π. Since the underlying double-trapdoor
cryptosystem is semantically secure assuming that the decisional Diffie-Hellman
problem in G is hard, it follows that REALπ,A,Z ≈ IDEALF,S,Z .

When both S and R are corrupted by the real world adversary A, the simulator
generates what the corrupted parties generated (i.e., both the sender’s messages
and the receiver’s messages which put together, forms the entire transcript).
Thus, the simulator’s task is trivial in this case.

Combining the above statements, we know that the proposed 1-out-of-n obliv-
ious transfer protocol OTn

1 is universally composable in the FD
crs-hybrid model

assuming that the decisional Diffie-Hellman problem over G is hard. �

5 Conclusion

In this paper, a construction of 1-out-of-n oblivious transfer protocol that is
based on the Damgard and Juriks double trapdoor encryption scheme and the
Damgard-Nielsens mixed commitment scheme has been constructed and ana-
lyzed. We have shown that the proposed oblivious transfer protocol realizes the
universally composable security in the common reference model under the joint
assumptions that the decisional Diffie-Hellman problem and the decisional com-
posite residuosity problem are hard as well as all knowledge proof protocols
applied are zero-knowledge in the presence of static adversaries.
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Abstract. In this paper we introduce Threshold Public Key Encryption
with Keyword Search (TPEKS), a variant of PEKS where the search pro-
cedure for encrypted keywords is distributed across multiple servers in a
threshold manner. TPEKS schemes offer stronger privacy protection for
keywords in comparison to traditional PEKS schemes. In particularly,
they prevent keyword guessing attacks by malicious servers. This protec-
tion is not achievable in a single-server PEKS setting.

We show how TPEKS can be built generically from any anony-
mous Identity-Based Threshold Decryption (IBTD), assuming the lat-
ter is indistinguishable, anonymous and robust. In order to instantiate
our TPEKS construction we describe an efficient IBTD variant of the
Boneh-Franklin IBE scheme. We provide an appropriate security model
for such IBTD schemes and give an efficient construction in the random
oracle model.

TPEKS constructions are particularly useful in distributed cloud
storage systems where none of the servers alone is sufficiently trusted
to perform the search procedure and where there is a need to split this
functionality across multiple servers to enhance security and reliability.

1 Introduction

Cloud computing provides convenient, on-demand network access to shared ser-
vices and applications over the Internet. The main advantages of cloud comput-
ing are the virtually unlimited data storage capabilities, universal data access,
and savings on hardware and software expenses. Despite the many technical and
economical advantages, availability and data privacy are amongst those issues
that prevent potential users from trusting the cloud services. The reason of these
concerns is that upon outsourcing their data to the cloud, users lose control over
their data.

While for better availability it is advisable to distribute copies of data across
multiple cloud servers, for data privacy and its protection from unauthorized
access the use of complete encryption prior to outsourcing is indispensable. If
the data is encrypted and the user wishes to access certain files at a later stage,
the cloud needs to perform the search and retrieve the corresponding ciphertexts.
In order to facilitate the search process each outsourced file is typically associated
with a set of keywords. Since adding plaintext keywords [11] to each file prior to
c© Springer International Publishing Switzerland 2016
M. Yung et al. (Eds.): INTRUST 2015, LNCS 9565, pp. 62–83, 2016.
DOI: 10.1007/978-3-319-31550-8 5
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outsourcing would leak information about the file contents to the cloud services,
a better solution is to encrypt the associated keywords and provide cloud services
with the ability to search for encrypted keywords. This permission comes in form
of trapdoors allowing cloud services to test whether an encrypted file contains
keywords for which the trapdoors were derived by the user. Such searchable
encryption techniques are particularly helpful to protect outsourcing of sensitive
files, e.g., those containing medical and health records [6,20,21].

A range of encryption schemes supporting keyword search have been pro-
posed, based on symmetric encryption (e.g., [12,14,16,27]) and public-key
encryption (e.g., [7,9,17,18]) techniques. While some schemes can cope only with
single keywords (e.g., [26,29]), which is too restrictive in practice, more advanced
schemes (e.g., [11,22,25,28]) can process multiple keywords. The majority of
searchable encryption schemes issue trapdoors for keywords and any party in
possession of those trapdoors can perform the search procedure on its own. In
a cloud-based storage setting this imposes a single point of trust with regard
to the search functionality. When it comes to the use of multiple cloud services
for better availability, a distributed search approach would therefore help to
reduce this trust requirement. Encryption schemes supporting distributed key-
word search procedures in a cloud environment exist so far only in the symmetric
setting, namely in [30], those constructions however were not formally modeled
and analyzed.

OurThreshold Public Key EncryptionwithKeyword Search (TPEKS).
We model security and propose first constructions of Threshold Public Key
Encryption with Keyword Search (TPEKS), where the ability to search over
encrypted keywords requires participation of at least t parties, each equipped with
its own trapdoor share. Main benefits of TPEKS over traditional PEKS construc-
tions include the distribution of trust across multiple servers involved in a search
procedure and more importantly stronger privacy protection of keywords against
keyword guessing attacks [10,24], based on which information about keywords can
be revealed from associated trapdoors; notably, all single-server-based PEKS con-
structions are inherently vulnerable to keyword guessing attacks.

Our security model for TPEKS is motivated by the security goals and known
attacks on single-server-based PEKS constructions (e.g. [1,3,4,10,13,19]). The
concept of PEKS was introduced by Boneh et al. [7], along with the formalization
of two security goals: indistinguishability and consistency. While indistinguisha-
bility aims at privacy of encrypted keywords, consistency aims to prevent false
positives, where a PEKS ciphertext created for one keyword can successfully
be tested with a trapdoor produced for another keyword. Initially, PEKS con-
structions were able to search for individual keywords, whereas later schemes
were designed to handle conjunctive queries on encrypted keywords [17,18,23]
and thus process keyword sets within a single search operation. The major-
ity of PEKS schemes offer security against chosen-plaintext attacks [1,7,10,13]
and only few constructions remain secure against chosen-ciphertext attacks, e.g.
[15]. The vulnerability of PEKS constructions, e.g. [7], against (offline) keyword
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guessing attacks was discovered by Byun et al. [10]. In short, a keyword guess-
ing attack can be mounted by creating a PEKS ciphertext for some candidate
keyword and then testing this ciphertext with the given trapdoor. Obviously,
this attack works if keywords have low entropy, which is what typically happens
in practice. As shown by Jeong et al. [19], keyword guessing attacks are inher-
ent to all single-server based PEKS constructions with consistency, a necessary
security property of PEKS. Through secret sharing of the trapdoor information
across multiple servers, TPEKS significantly reduces the risk of keyword guessing
attacks, which are modeled as part of the indistinguishability property.

In the design of our TPEKS construction we extend the ideas underlying
the transformation by Abdalla et al. [1] for building indistinguishable and com-
putationally consistent (single-server) PEKS from anonymous Identity-Based
Encryption (IBE). Although our transformation also treats identities as key-
words, it assumes a different building block, namely anonymous Identity-Based
Threshold Decryption (IBTD), which extends IBE by the distributed decryp-
tion process for which a threshold number t-out-of-n servers contribute with
their own decryption shares. We show that while IBTD anonymity is essen-
tial for the indistinguishability (with resistance to keyword guessing attacks)
of the constructed TPEKS scheme, IBTD indistinguishability informs compu-
tational consistency property of the TPEKS scheme. Aiming to instantiate our
TPEKS construction, we propose an anonymous IBTD scheme, as a modification
of the well-known anonymous IBE scheme by Boneh and Franklin (BF) [8]. This
modification is performed by distributing the decryption process of the original
BF-scheme.

2 Anonymous Identity-Based Threshold Decryption

We start with the definitions of Identity-Based Threshold Decryption (IBTD)
along with its security properties: indistinguishability, anonymity and robust-
ness. Our IBTD model extends the model from [5], where this primitive along
with the indistinguishability property was introduced, by additional anonymity
requirement, which also requires some small modifications to the assumed syntax
of the IBTD decryption process in comparison to [5].

2.1 IBTD Syntax and Security Goals

We formalize the IBTD syntax in Definition 1. In contrast to [5], we treat
the validity checking process for decryption shares implicitly as part of the
decryption algorithm Dec, whereas in [5] this property was outsourced into a
separate verification algorithm, aiming at public verifiability of individual
decryption shares. In our case, where we additionally require the IBTD scheme
to be anonymous such syntax change is necessary, as discussed in Remark 1.

Definition 1 (Identity-Based Threshold Decryption (IBTD)). An IBTD
scheme consists of the following algorithms (Setup, KeyDer, Enc, ShareDec, Dec):
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Setup(n, t, 1k) : On input the number of decryption servers n, a threshold para-
meter t, (1 ≤ t ≤ n) and a security parameter 1k, it outputs a master public key
mpk and a master secret key msk.

KeyDer(mpk,msk, id, t, n) : On input a master public key mpk, master secret key
msk, identity id, and threshold parameters t, n, it computes the secret key skid

for identity id and outputs the private tuple (i, skid,i) for server Si 1 ≤ i ≤ n.

Enc(mpk, id,m) : On input mpk, id,m it outputs a ciphertext C.

ShareDec(mpk, (i, skid,i), C) : On input a master public key mpk, secret shares
(i, skidi

) for servers 1 ≤ i ≤ n and ciphertext C. It outputs decryption shares δi

for 1 ≤ i ≤ n.

Dec(mpk, {δi}i∈Ω , C) : On input a master public key mpk, a set of decryption
shares {δi}i∈Ω, where |Ω| ≥ t and a ciphertext C. It outputs m (which can also
be ⊥ to indicate a failure).

The following Definition 2 formalizes IBTD indistinguishability against
chosen-ciphertext attacks (IBTD-IND-CCA) and bears similarities with the cor-
responding definition for IBE [8]; namely, our experiment takes into account the
threshold nature of the decryption algorithm allowing the adversary to reveal
up to t − 1 secret key shares.

Definition 2 (IBTD Indistinguishability). Let Aind be a PPT adversary
against the IBTD-IND-CCA security of the IBTD scheme, associated with the
following experiment ExpIBTD-IND-CCA−b

Aind
(1λ):

1. (mpk,msk) r← Setup(1λ, t, n)
2. Let List be a list comprising (id, Sid), where Sid := {(1, skid,1), . . . , (n, skid,n)}

and (i, skid,i) are the outputs of KeyDer(mpk,msk, id, t, n) algorithm.
Note: at the beginning of the experiment the list is empty.

3. (id∗,m0,m1, state)
r← A

OKeyDer(·),ODec(·)
ind (find,mpk)

4. if (id∗, Sid∗) /∈ List, run (skid∗ , (1, skid∗,1), . . . , (n, skid∗,n)) r← KeyDer
(mpk,msk, id∗, t, n), set Sid∗ := {(1, skid∗,1), . . . , (n, skid∗,n)}, add (id∗, Sid∗)
to List

5. pick b ∈ {0, 1}, compute C∗ r← Enc(mpk, id∗,mb)
6. b′ r← AOKeyDer(·),ODec(·)

ind (guess, C∗,mpk)

The experiment outputs 1 if all of the following holds:

– b′ = b
– A issued at most t − 1 queries OKeyDer(id∗, i)
– Aind did not query ODec(id∗, C∗)

where the two oracles are defined as follows:

OKeyDer(id, i): On input (id, i) check whether (id, Sid) ∈ List. If so, parse Sid

as {(1, skid,1), . . . , (n, skid,n)} and output (i, skidi
). If (id, Sid) /∈ List run S

r←
KeyDer(mpk,msk, id, t, n). Add (id, Sid) to List, output (i, skid,i).
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ODec(id, C): On input (id, C) check whether (id, Sid) ∈ List. If so, parse Sid as
{(1, skid,1), . . . , (n, skid,n)}, run δi

r← ShareDec(mpk, (i, skid,i), C) for i ∈ [n].
Take at least t-out-of-n decryption shares δi, run Dec({δi}i∈Ω , C), where |Ω| ≥ t

and output m or 0. If (id, Sid) /∈ List, compute Sid
r← KeyDer(mpk,msk, id, t, n)

add (id, Sid) to the List. Compute δi
r← ShareDec(mpk, (i, skid,i), C), where

i ∈ [n]. Take at least t-out-of-n decryption shares δi, run Dec({δi}i∈Ω , C), output
m or 0.

Aind’s success is given as

AdvIBTD-IND-CCA−b
Aind

(1λ) =
∣

∣

∣Pr
[

ExpIBTD-IND-CCA−1
Aind

(1λ) = 1
]

−Pr
[

ExpIBTD-IND-CCA−0
Aind

(1λ) = 1
]∣

∣

∣ .

The scheme is IBTD-IND-CCA secure if AdvIBTD-IND-CCA−b
Aind

is negligible.

In Definition 3 we model anonymity as a new property for IBTD schemes. Our
definition bears some similarity with the anonymity property for IBE schemes
as defined, e.g. in [1], except that we consider chosen-ciphertext attacks through
the inclusion of the decryption oracle and account for the threshold setting by
allowing the anonymity adversary to reveal up to t − 1 secret key shares. This
latter ability is particularly important for achieving protection against keyword
guessing attacks for our transformation from IBTD to TPEKS.

Definition 3 (IBTD Anonymity). Let Aano be a probabilistic polynomial-
time adversary against the IBTD-ANO-CCA security of the IBTD scheme, asso-
ciated with the following experiment ExpIBTD-ANO-CCA−b

Aano
(1λ)

1. (mpk,msk) r← Setup(1λ, t, n)
2. Let List be a list storing (id, Sid), where Sid := {(1, skid,1), . . . , (n, skid,n)}

and (i, skid,i) are the outputs of KeyDer(mpk,msk, id, t, n) algorithm.
Note: at the beginning of the experiment the list is empty.

3. (id0, id1,m∗, state) r← A
OKeyDer(·),ODec(·)
ano (find,mpk)

4. if (id0, Sid0) /∈ List: (skid0 , (1, skid0,1), . . . , (n, skid0,n)) r← KeyDer(mpk,msk,
id0, t, n), set Sid0 := {(1, skid0,1), . . . , (n, skid0,n)}, add (id0, Sid0) to List

5. if (id1, Sid1) /∈ List: (skid1 , (1, skid1,1), . . . , (n, skid1,n)) r← KeyDer(mpk,msk,
id1, t, n), set Sid1 := {(1, skid1,1), . . . , (n, skid1,n)}, add (id1, Sid1) to List

6. b ∈ {0, 1}; C∗ r← Enc(mpk, idb,m
∗)

7. b′ r← AOKeyDer(·),ODec(·)
ano (guess, C∗,mpk).

The experiment outputs 1 if all of the following holds

– b′ = b
– Aano issued at most t − 1 queries OKeyDer(id0, i) and at most t − 1 queries

OKeyDer(id1, i)
– Aano did not query ODec(id0, C∗) or ODec(id1, C∗)

where the two oracles are defined as follows:
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OKeyDer(id, i) : On input (id, i) check whether (id, Sid) ∈ List. If so, parse
Sid as {(1, skid,1), . . . , (n, skid,n)} and output (i, skidi

). If (id, Sid) /∈ List run
Sid

r← KeyDer(mpk,msk, id, t, n). Add (id, Sid) to List, output (i, skid,i).

ODec(id, C): On input (id, C) check whether (id, Sid ∈ List. If so, parse Sid as
{(1, skid,1), . . . , (n, skid,n)}, compute δi

r← ShareDec(mpk, (i, skid,i), C) for i ∈
[n]. Take at least t-out-of-n decryption shares δi, run Dec({δi}i∈Ω , C), where |Ω| ≥
t and output m or 0. If (id, Sid) /∈ List, compute Sid

r← KeyDer(mpk,msk, id, t, n)
add (id, Sid) to the List. Compute δi

r← ShareDec(mpk, (i, skid,i), C), where
i ∈ [n]. Take at least t-out-of-n decryption shares δi, run Dec({δi}i∈Ω , C),
output m or 0.

The advantage of Aano is defined as

AdvIBTD-ANO-CCA−b
Aano

(1λ) =
∣

∣

∣Pr
[

ExpIBTD-ANO-CCA−1
Aano

(1λ) = 1
]

−Pr
[

ExpIBTD-ANO-CCA−0
Aano

(1λ) = 1
]∣

∣

∣ .

The scheme is IBTD-ANO-CCA secure if AdvIBTD-ANO-CCA
Aano

is negligible.

Remark 1. Without the aforementioned change to the IBTD syntax of the
decryption process, in comparison to [5], we would not be able to allow adver-
sarial access to up to t − 1 decryption shares for the challenge ciphertext in the
above anonymity experiment. The ability to publicly verify individual decryp-
tion shares using the challenge ciphertext and a candidate identity (as in [5])
would rule out any meaningful definition of anonymity; in particular, a single
decryption share for the challenge ciphertext would suffice to break its anonymity
property. In fact, it can be easily verified that the IBTD construction in [5] is
not anonymous according to our definition.

Robustness of IBTD. In the following definition we formalize IBTD robust-
ness, meaning that the decryption algorithm will output ⊥ with overwhelming
probability if an IBTD ciphertext computed for some id is decrypted using skid′

for id′ �= id. Our definition of strong robustness extends the one for IBE schemes
in [2] to the threshold decryption setting.

Definition 4 (IBTD-SROB-CCA). Let Arob be a probabilistic polynomial-time
adversary against the IBTD-SROB-CCA security of the IBTD scheme, associ-
ated with the following experiment ExpIBTD-SROB-CCA

Arob
(1λ):

1. (mpk,msk) r← Setup(1λ, t, n), b r← {0, 1}, List := ∅, I = ∅
2. Let List be a list storing (id, Sidb

, Ib), with Sidb
:= {(1, skidb,1), . . . ,

(n, skidb,n)} and b
r← {0, 1}, where (i, skidb,i) ← KeyDer(mpk,msk, idb, t, n)

3. (id∗
0, id

∗
1, C

∗, state) r← A
OKeyDer(·),ODec(·)
rob (find,mpk)

4. (i) If id0 = id1 then return 0.
(ii) If (id0, Sid0 , I0) /∈ List or (id1, Sid1 , I1) /∈ List, return 0.
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(iii) If |I0| ≥ t or |I1| ≥ t, then return 0. Else compute decryption shares
δ0,i

r← ShareDec(mpk, (i, skid0,i), C), m0
r← Dec(mpk, {δ0,i}i∈Ω , C) and

δ1,i
r← ShareDec(mpk, (i, skid1,i), C), m1

r← Dec(mpk, {δ1,i}i∈Ω , C). If m0 �=
⊥ and m1 �= ⊥ return 1.

OKeyDer(id, i): On input (id, i) check whether (id, Sid) /∈ List. If so, compute
S

r← KeyDer(mpk,msk, id, t, n), where Sid := {(1, skid,1), . . . , (n, skid,n)} and
I ⊂ [1, n], add (id, Sid, I) to List. Then add i to I and return (i, skid,i).

ODec(id, C): On input (id, C) check whether (id, Sid) /∈ List. If so, compute
Sid

r← KeyDer(mpk,msk, id, t, n) add (id, Sid, I) to List. Finally compute δi
r←

ShareDec(mpk, (i, skid,i), C), i ∈ [n], m ← Dec(mpk, {δi}i∈Ω , C), where |Ω| ≥ t.
Output m.

We have: AdvIBTD-SROB-CCA
Arob

(1λ) =
∣

∣

∣Pr
[

ExpIBTD-SROB-CCA
Arob

(1λ) = 1
]∣

∣

∣ .

2.2 An Anonymous IBTD Scheme Based on Boneh-Franklin IBE

We propose a concrete IBTD construction, based on Boneh-Franklin IBE [8]
where we apply secret sharing to individual private keys and to the decryp-
tion procedure. In particular, upon receiving at least t decryption shares, the
decryption algorithm outputs either the message m or 0 (to indicate a failure).
In contrast to the so-far only IBTD scheme in [5], which also builds on the
Boneh-Franklin IBE, our construction is anonymous. Abdalla et al. [2] proved
that Boneh-Franklin IBE is robust in the random oracle model.

Definition 5 (Anonymous IBTD Scheme). Setup(n, t, 1k): On input a secu-
rity parameter 1k, it specifies G,GT of order q ≥ 2k, chooses a generator g ∈ G,
specifies a bilinear map e : G × G → GT , random oracles H1,H2,H3,H4 s.t.
H1 : {0, 1}∗ → G; H2 : GT → {0, 1}�; H3 : {0, 1}� × {0, 1}� → Z

∗
q ; H4 :

{0, 1}� → {0, 1}�. The message space is M = {0, 1}�. The ciphertext space is
C = G

∗ × {0, 1}�. It picks x
r← Z

∗
q and computes Y = gx. It returns mpk =

(G,GT , q, g, e,H1,H2,H3,H4, Y ) and msk = x.

KeyDer(mpk,msk, id, t, n): On input an identity id, computes Qid = H1(id) ∈ G
∗

where 1 ≤ t ≤ n < q and using msk = x it computes skid = Qx
id = H1(id)x. It

picks a1, . . . , at−1
r← G, computes a polynomial f(u) = f(0) +

∑t−1
i=1 aiu

i, where
f(u) ∈ Zq(u), u ∈ N∪{0}, s.t. f(0) = x. It outputs n master key shares (i, skid,i),
where skid,i = Q

f(i)
id for i ∈ {1, . . . , n}. To derive the private key let λ1, . . . , λt ∈ Zq

be the Lagrange coefficients, s.t. x =
∑t−1

i=0 λif(i).

Enc(mpk, id,m): On input the public key mpk, a plaintext m ∈ {0, 1}� and an
identity id ∈ {0, 1}∗ computes Qid = H1(id) ∈ G

∗, chooses σ
r← {0, 1}�, sets

r = H3(σ,m). It computes U = gr, V = σ ⊕ H2(κid),W = m ⊕ H4(σ), where
κid = e(Qid, Y )r and returns C = 〈U, V,W 〉.
ShareDec(mpk, (i, skid,i), C): On input a ciphertext C = 〈U, V,W 〉 and a secret
key share (i, skid,i), the algorithm returns δi = e(skid,i, U) = e(Qf(i)

id , U).
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Dec(mpk, {δi}i∈Ω , C): Given a set of decryption shares {δi}i∈Ω, |Ω| ≥ t and a
ciphertext C = 〈U, V,W 〉, it computes Lagrange coefficients λi =

∏t
j∈Ω,j �=i

−j
i−j

and reconstructs κid :=
∏t

i=1 δλi
i . It computes σ = V ⊕ H2(e(κid)), m = W ⊕

H4(σ), and r = H3(σ,m). Then, if U = gr it outputs m; otherwise it outputs 0.
(Note that the equality check U = gr is essential for detecting inconsistent cipher-
texts and by this preventing chosen ciphertext attacks.)

Correctness. The proposed IBTD scheme is correct since κid computed by the
decryption algorithm is the same as was used by the encryption algorithm,
i.e. κid =

∏t
i=1 e(skid,i, U)λi =

∏t
i=1 e(skλi

id,i, g
r) = e

(

∏t
i=1 Q

f(i)λi

id , g
)r

=

e
(

Q
∑t−1

i=0 f(i)λi

id , gr
)

= e(Qx
id, g

r) = e(Qid, Y )r.

2.3 Security Analysis

The overall security of our IBTD scheme relies on the well-known Decisional
Bilinear Diffie-Hellman (DBDH) assumption and the random oracle model.

Definition 6 (DBDH Assumption). The Decisional Bilinear Diffie-
Hellman (DBDH) assumption in the bilinear map setting (q,G,GT , e, g),
where e : G × G → GT and g is the generator of G states that for
any PPT distinguisher A the following advantage is negligible: AdvDBDH

A =
∣

∣Pr
[A(g, ga, gb, gc, e(g, g)abc) = 1

] −Pr
[A(g, ga, gb, gc, e(g, g)z) = 1

]∣

∣, where
the probability is taken over the random choices of a, b, c, z ∈ Zq and the random
bits of A.

Theorem 1 (IBTD-IND-CCA). Our IBTD scheme from Definition 5 is IBTD-
IND-CCA secure under the DBDH assumption in the random oracle model.

Proof. For the proof of this theorem we refer to Appendix A.

Theorem 2 (IBTD-ANO-CCA). Our IBTD scheme from Definition 5 is
IBTD- ANO-CCA secure under the DBDH assumption in the random oracle
model.

Proof. Since the proof of anonymity is similar to the proof of indistinguishability
we only give a sketch. The simulator sets Qidβ

=
(

gb
)νβ , for a random β ∈ {0, 1}

and Y = gc. It responds to the key derivation and decryption queries like in the
indistinguishability proof. Upon finishing phase 1, Aano outputs a message m and
two identities id0, id1 it wants to be challenged on. The challenge ciphertext is
computed as follows. Aano sets Qidβ

= (gb)νβ and Y = gc such that e(Qidβ
, Y ) =

e(gb, gc) and κid = Z, where Z is the value from BDH instance. It chooses s ∈
{0, 1}� uniformly at random. ABDH gives C∗ = (ga, s ⊕ H2(Z),m ⊕ H4(s)), β ∈
{0, 1} to Aano. U is chosen uniformly at random by the encryption algorithm.
V depends on the randomly chosen s ∈ {0, 1}� and H2(Z). Since Z is randomly
chosen, it does not depend on idβ . Also W is independent of idβ and therefore
the ciphertext has the same distribution for both β ∈ {0, 1} and Aano will have
0 advantage to distinguish between id0 and id1.
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Theorem 3 (IBTD-SROB-CCA). Our IBTD scheme from Definition 5 is
unconditionally IBTD-SROB-CCA secure in the random oracle model.

Proof. (Sketch) We show that IBTD-SROB-CCA property holds in the random
oracle model. Assume Arob be a IBTD-SROB-CCA adversary that is given the
master key x. He can receive at most t − 1 secret shares from OKeyDer. We
note, that H1 is a map to G

∗, where all the outputs of this map are elements
of order q. That means that the probability of finding two different identities
id1 �= id2 such that H1(id1) = H1(id2) is negligible. Since Y = gx ∈ G

∗ we
have that κid1 and κid2 are not equal and of order q. Since H3 maps into Z

∗
q ,

then κr
id1

and κr
id2

are different. Assuming H2 as a random oracle, means that
H2(κr

id1
) �= H2(κr

id2
). Decryption under different identities yields therefore two

different values σ1 �= σ2. In order for the ciphertext to be valid for both id’s it
should hold that r = H3(σ1,m1) = H3(σ2,m2), which happens with negligible
probability. It follows that our IBTD scheme is IBTD-SROB-CCA secure.

3 Threshold Public Key Encryption with Keyword
Search

We start by defining the TPEKS syntax and its security goals. Towards the end
of this section we propose a general transformation for building a secure TPEKS
from anonymous and robust IBTD.

3.1 TPEKS Definitions and Security Model

Our model for TPEKS assumes a sender who encrypts keywords and at least t
out of n servers, each equipped with its own trapdoor share, who participate in
the search procedure. The latter represents the main difference to single-server
based PEKS construction. We stress that the parameters t and n need not be
fixed during the setup phase but can be chosen upon the generation of the
trapdoors, which allows for greater flexibility.

Definition 7 (TPEKS). A TPEKS scheme consists of the following five algo-
rithms (Setup, PEKS, Trpd, ShareTrpd, Test):

Setup(1k): On input 1k, it generates a private/public key pair (sk, pk).

PEKS(pk,w): On input pk and a keyword w, it outputs a PEKS ciphertext Φ.

ShareTrpd(pk, sk, w, t, n): On input (pk, sk) and a keyword w, it generates a list
of trapdoor shares Tw := {(1, Tw,1), . . . , (n, Tw,n)}.
ShareTest(pk, (i, Tw,i), Φ): On input pk, a trapdoor share Tw,i, and a PEKS
ciphertext Φ, it outputs a test share τi.

Test(pk, {τi}i∈Ω , Φ): On input pk, a set of test shares {τi}i∈Ω, |Ω| ≥ t and a
PEKS ciphertext Φ(w′), it outputs 1 if Φ encrypts w; otherwise it outputs 0.
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In Definition 8 we define TPEKS indistinguishability against chosen-ciphertext
attacks, denoted by TPEKS-IND-CCA, aiming to protect privacy of the
encrypted keywords in presence of an attacker who may learn up to t−1 trapdoor
shares. Apart from the access to the trapdoor share oracle our scheme allows
the adversary to issue up to t − 1 queries to the test oracle.

Definition 8 (TPEKS Indistinguishability). Let Bind be a PPT adversary
against the TPEKS-IND-CCA security of the TPEKS scheme, associated with
the following experiment ExpTPEKS-IND-CCA−b

Bind
(1λ):

1. (pk, sk) r← Setup(1λ, t, n).
2. Let List be a list storing a keyword w and a set Tw = {(1, Tw,1), . . . ,

(n, Tw,n)}, where (i, Tw,i) are the outputs of ShareTrpd(pk, sk, w, t, n)
algorithm.
At the beginning of the experiment the list is empty.

3. (w0, w1, state)
r← BOShareTrpd(·),OTest(·)

ind (find, pk)
4. If (w0, T0) /∈ List, run T0 := {(1, Tw0,1), . . . , (n, Tw0,n)} r← ShareTrpd

(pk, sk, w0, t, n), add (w0, T0) to List
5. If (w1, T1) /∈ List, run T1 := {(1, Tw1,1), . . . , (n, Tw1,n)} r← ShareTrpd

(pk, sk, w1, t, n), add (w1, T1) to List
6. b

r← {0, 1}; Φ
r← PEKS(pk,wb)

7. b′ r← BOShareTrpd(·),OTest(·)
ind (guess, Φ, state)

The experiment outputs 1 if all of the following holds:
– b′ = b
– Bind asked at most t − 1 queries to OShareTrpd(w0, i) and at most t − 1

queries to OShareTrpd(w1, i)
– Bind didn’t query OTest (w0, Φ) or OTest (w1, Φ)

where the two oracles are defined as follows:

OShareTrpd(w, i): On input (w, i) check whether (w, Tw) ∈ List. If so, parse Tw

as {(1, Tw,1), . . . , (n, Tw,n)} and output (i, Tw,i). If (w, Tw) /∈ List, run Tw
r←

ShareTrpd(pk, sk, w, t, n). Add (w, Tw) to List, output (i, Tw,i).

OTest (w,Φ): On input (w,Φ) check whether (w, Tw) ∈ List. If so, parse Tw

as {(1, Tw,i), . . . , (n, Tw,n)}, compute τi
r← ShareTest(pk, (i, Tw,i), Φ). Take at

least t-out-of-n test shares τi, run Test(pk, {τi}i∈Ω , Φ), where |Ω| ≥ t, output 1
or 0. If (w, Tw) /∈ List, compute Tw

r← ShareTrpd(pk, sk, w, t, n), add (w, T ) to
the List. Compute τi

r← ShareTest(pk, (i, Tw,i), Φ), where i ∈ [n]. Take at least
t-out-of-n test shares τi, run Test (pk, {τi}i∈Ω , Φ), output 1 or 0.

The advantage of Bind is defined as

AdvTPEKS-IND-CCA−b
Bind

(1k) =
∣

∣

∣Pr
[

ExpTPEKS-IND-CCA−1
Bind

(1λ) = 1
]

−Pr
[

ExpTPEKS-IND-CCA−0
Bind

(1λ) = 1
]∣

∣

∣ .

The scheme is TPEKS-IND-CCA secure if AdvTPEKS-IND-CCA
Bind

is negligible.
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In Definition 9 we model computational consistency of TPEKS schemes, by
extending the corresponding property for PEKS schemes from [1, Sect. 3]. Our
definition allows the adversary to test polynomially-many keyword-ciphertext
pairs, thus modeling chosen-ciphertext attacks, and accounts for the threshold
setting by allowing the adversary to learn up to t−1 trapdoor shares for keywords
that will be used to mount a successful attack.

Definition 9 (TPEKS Consistency). Let Bc be a PPT adversary against
the TPEKS-CONS security of the TPEKS scheme, associated with the following
experiment ExpTPEKS-CONS

Bc
(1λ):

1. (pk, sk) r← Setup(1λ, t, n)
Let List be list storing a keyword w and a set Tw = {(1, Tw,1), . . . , (n, Tw,n)},
where (i, Tw,i) are the outputs of ShareTrpd(pk, sk, w, t, n) algorithm.
At the beginning of the experiment the list is empty.

2. (w,w′) r← BOShareTrpd(·),OTest(·)
c (pk)

3. Φ
r← PEKS(pk,w)

4. If (w′, (i, Tw′,i)) /∈ List run Tw′ := {(1, Tw′,1) , . . . , (n, Tw′,n)} r← ShareTrpd
(pk, sk, w′, t, n) and add (w′, T ′) to List
The experiment outputs 1 if all of the following holds:
– w �= w′

– Bc asked at most t − 1 queries to OShareTrpd (w′, i) and at most t − 1
queries to OShareTrpd (w, i).

where the two oracles are defined as follows:

OShareTrpd(w, i): On input (w, i) check whether (w, Tw) ∈ List. If so, parse
T as {(1, Tw,1), . . . , (n, Tw,n)} and output (i, Tw,i). If (w, Tw) /∈ List, run T

r←
ShareTrpd(pk, sk, w, t, n). Add (w, Tw) to List, output (i, Tw,i).

OTest (w,Φ): On input (w,Φ) check whether (w, Tw) ∈ List. If so, parse Tw

as {(1, Tw,i), . . . , (n, Tw,n)}, compute τi
r← ShareTest(pk, (i, Tw,i), Φ). Take at

least t-out-of-n test shares τi, run Test(pk, {τi}i∈Ω , Φ), where |Ω| ≥ t, output 1
or 0. If (w, Tw) /∈ List, compute Tw

r← ShareTrpd(pk, sk, w, t, n), add (w, Tw)
to the List. Compute τi

r← ShareTest(pk, (i, Tw,i), Φ), where i ∈ [n]. Take at
least t-out-of-n test shares τi, run Test (pk, {τi}i∈Ω , Φ), output 1 or 0.

The advantage of Bc is defined as

AdvTPEKS-CONS
Bc

(

1k
)

= Pr
[

ExpTPEKS-CONS
Bc

(

1λ
)

= 1
]

.

The scheme is TPEKS-CONS secure if AdvTPEKS-CONS
Bc

is negligible.

Note: It is obvious that the correctness property of our TPEKS is satisfied.
Correctness ensures that the test algorithm always outputs the correct answer.
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3.2 A General TPEKS Construction from an Anonymous and
Robust IBTD Scheme

The design rationale of our TPEKS construction from IBTD follows the trans-
formation from [1] for single-server PEKS from any anonymous and robust IBE,
where the PEKS private/public key pair (sk, pk) corresponds to the IBE master
private/public key pair (msk,mpk) and a PEKS ciphertext Φ = (C,R) for some
keyword w is computed by encrypting some random message R using keyword
w as an identity. The search procedure for Φ decrypts C using the trapdoor Tw

and compares the decrypted message with R.
Our IBTD-to-TPEKS transformation, detailed in Definition 10, treats

TPEKS keywords as IBTD identities and performs distributed search on TPEKS
ciphertexts using the IBTD threshold decryption procedure. While we describe
only general IBTD-to-TPEKS transform, we remark that a concrete TPEKS
instantiation can be easily obtained using our concrete IBTD construction from
Definition 5.

Definition 10 (IBTD-to-TPEKS Transform).

Setup(1k): On input a security parameter 1k, it runs the parameter generation
algorithm of the IBTD scheme (msk,mpk) r← Setup(n, t, 1k) and outputs sk =
msk and pk = mpk.

PEKS(pk,w): On input a public key pk and a keyword w, it runs the encryption
algorithm of the IBTD scheme C

r← Enc(pk,w,R), where R
r← {0, 1}k is picked

randomly. It returns the TPEKS ciphertext Φ = (C,R).

ShareTrpd(pk, sk, w, t, n): On input (pk, sk, w, t, n), it runs the key derivation
procedure (Tw, {i, Tw,i}) r← KeyDer(pk, sk, w, t, n) of the IBTD scheme where sk
is the master key msk and keyword w is used as id. The trapdoor Tw associated to
w corresponds to skid generated by the IBTD. It outputs {(1, Tw,1), . . . , (n, Twn

)}
which correspond to {(i, skid,i), . . . , (n, skid,n)} of the IBTD scheme.

ShareTest(pk, (i, Tw,i), Φ): On input pk, a trapdoor share (i, Tw,i), and a TPEKS
ciphertext Φ = (C,R), it outputs τi

r← ShareDec(pk, (i, Tw,i), Φ) using the dis-
tributed decryption algorithm of the IBTD scheme.

Test(pk, {τw,i}i∈Ω , (C,R)): On input of at least t test shares {τw,i}i∈Ω, |Ω| ≥ t

and (C,R) is a TPEKS ciphertext, it computes R′ r← Dec(pk, {δi}i∈Ω , C) and
outputs 1 if R′ = R, and 0 otherwise.

3.3 Security Analysis

With regard to security, in Theorem 4, we establish similar implications for
TPEKS indistinguishability as in [1], namely we rely on the anonymity and
robustness of the IBTD scheme. In Theorem 5 we show that for TPEKS con-
sistency the underlying IBTD scheme must not only be indistinguishable but
also robust. This contrasts to [1,2] where IBE robustness was not required for
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PEKS consistency and is mainly due to the fact that our definition of consis-
tency allows adaptive queries to the distributed test procedure, which was not
an issue in [1,2].

Theorem 4 (TPEKS-IND-CCA). If IBTD scheme is IBTD-ANO-CCA secure
then the obtained TPEKS scheme in Definition 10 is TPEKS-IND-CCA secure

Proof. We use a TPEKS-IND-CCA adversary Bind against the TPEKS scheme
to construct a simulator S that breaks the assumed IBTD-ANO-CCA and IBTD-
SROB-CCA properties of the IBTD scheme. That is, S acts as Aano attacking
the IBTD-ANO-CCA security and as Arob against IBTD-SROB-CCA. The sim-
ulation of the view of Bind happens in several games. The initial game is the
Game0 which describes the real attack. First the challenger runs the Setup of
the TPEKS scheme on input a security parameter λ, threshold parameter t and
number of servers n. The challenger gives Bind the public key pk. If Bind submits
a pair of keywords w0, w1, the challenger computes a target ciphertext Φ∗. Bind

issues trapdoor share and test queries on the PEKS ciphertext Φ. The first game
(Game1) differs from the previous one by simulation of trapdoor share queries.
If these shares are involved in computing the PEKS ciphertext, the simulator
modifies the challenge ciphertext. The rest of Game 0 remains unmodified. The
simulation is distributed in two subcases. In Case 1 holds C �= C∗, w∗ �= wb,
which invokes Aano to simulate the queries on identities id �= idb. In Case 2
holds C = C∗, w∗ = wb for b ∈ {0, 1} where Arob is invoked for the simulation
of queries on id∗. In Case 1, Aano aborts the game if Bind issues more than t− 1
queries on w∗ �= wb. In Case 2, where holds C = C∗, Arob aborts the game if
Bind issues more than t−1 queries on w∗ = wb = w1−b. The second game differs
from Game 1 by simulation of test queries. In Case 1, Aano aborts the game if
Bind issues queries on wb. In Case 2, where holds C = C∗, Arob aborts the game
if Bind issues queries on w∗ = wb = w1−b. Each of the simulation steps looks as
follows:

Setup: S is given as input mpk of IBTD. It sets TPEKS public key pk equal to
mpk. We assume that a set of t−1 servers have been corrupted. When Bind issues
trapdoor share and decryption queries on input (w, i) and (w,Φ) respectively,
where w �= wb, and Φ = (C,R), Φ∗ = (C∗, R∗), S distinguishes between two
cases - Case 1: C �= C∗, w �= wb where Aano is invoked and Case 2: C = C∗,
w = wb for b ∈ {0, 1} where Arob is invoked.

Queries to OShareTrpd: Let (w, i) be a trapdoor share query issued by Bind. S
sets w ← id and queries its oracle OKeyDer(w, i). The oracle outputs (i, skw,i),
which S sets equal to (i, Tw,i) and returns it to Bind. In Case 1, the simu-
lator represented by Aano aborts if Bind issued more than t − 1 queries to
OShareTrpd(w0, i) and to OShareTrpd(w1, i). In Case 2, simulator represented
by Arob aborts if w0 = w1 or (w0, T0, I0) /∈ List, or (w1, T1, I1) /∈ List, or
|I0| ≥ t, |I1| ≥ t, where Tb = {(1, Twb,1), . . . , (n, Twb,n)}, Ib ⊂ [1, n], b ∈ {0, 1}.

Queries to OTest: Bind issues test queries on (w,Φ). S sets w ← id, Φ = (C,R)
and queries its oracle ODec(w,C). The oracle outputs m. S sets R ← m and
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returns R to Bind. In Case 1, S aborts simulation if Bind queried OTest(w0, Φ
∗)

or OTest(w1, Φ
∗), where Φ∗ = (C∗, R∗). In Case 2, S aborts if w0 = w1 or

(w0, T0, I0) /∈ List, or (w1, T1, I1) /∈ List, or |I0| ≥ t, |I1| ≥ t, where Tb =
{(1, Twb,1), . . . , (n, Twb,n)} and Ib ⊂ [1, n], for b ∈ {0, 1}.

Challenge: Bind outputs two identities w0, w1 and R∗ r← {0, 1}�. S responds
with IBTD ciphertext Φ∗ = (C∗, R∗), where C∗ ← Enc(pk,wb, R

∗), for b ∈ {0, 1}
and R∗ r← {0, 1}. S returns its ciphertext C∗ ← Enc(mpk,wb, R

∗).

Analysis: In Case 1: Simulator S is represented by Aano. Let qts, qt be the
number of issued trapdoor share queries on different id′s. We assume that Bind

corrupts t − 1-out-of-n servers with index i1, . . . , it−1. The probability that S
corrupts a server j with j ∈ {i1, . . . , it−1} is 1/

(

n
t−1

)

. Let E denote the event
that Bind wins the indistinguishability experiment from Definition 8. Let E1
denote the event that Bind wins Game 1. It holds 1

2AdvTPEKS-IND-CCA
Bind

(1λ) =
Pr[E] − 1/2 ≥ 1/

(

n
t−1

)

1
qts

(Pr[E1] − 1/2). Let E2 denote the event that Bind

wins Game 2, then holds: Pr[E1] − 1/2 ≥ 1
qt

(Pr[E2] − 1/2)

⇔ 1
2AdvTPEKS-IND-CCA

Bind
(1λ) = Pr[E] − 1/2 ≥ 1/

(

n
t−1

)

1
qts

1
qt

(Pr[E2] − 1/2) In
Case 2: Simulator S is represented by Arob. Let q′

ts, q
′
t be the number of issued

trapdoor share queries on different id′s. We assume that Bind corrupts t − 1-
out-of-n servers with index i1, . . . , it−1. The probability that S corrupts a server
j with j ∈ {i1, . . . , it−1} is 1/

(

n
t−1

)

. Let E denote the event that Bind wins

the indistinguishability experiment from Definition 8. Let ˜E1 denote the event
that Bind wins Game 1. It holds 1

2AdvTPEKS-IND-CCA
Bind

(1λ) = Pr[E] − 1/2 ≥
1/

(

n
t−1

)

1
qts

(Pr[˜E1]−1/2). Let ˜E2 denote the event that Bind wins Game 2, then

holds: Pr[E1] − 1/2 ≥ 1
qt

(Pr[˜E2] − 1/2)

⇔ 1
2AdvTPEKS-IND-CCA

Bind
(1λ) = Pr[E] − 1/2 ≥ 1/

(

n
t−1

)

1
qts

1
qt

(Pr[˜E2] − 1/2) The
total advantage of Bind is given by

1
2
AdvTPEKS-IND-CCA

Bind
(1λ) = Pr[E|Case1] + Pr[E|Case2] = 2Pr[E] − 1

≥ 1/

(

n

t − 1

)

1
qts

1
qt

(Pr[E2] − 1/2) + 1/

(

n

t − 1

)

1
qts

1
qt

(Pr[˜E2] − 1/2)

= 1/

(

n

t − 1

)

1
qts

1
qt

(Pr[E2] + Pr[˜E2] − 1)

Theorem 5 (TPEKS Consistency). If IBTD scheme is IBTD-IND-CCA
secure then the obtained TPEKS scheme in Definition 10 is TPEKS-CONS
secure.

Proof. For the proof of this theorem we refer to Appendix B.

3.4 Application to Cloud Setting

In the introduction we mentioned the applicability of TPEKS to distributed
cloud storage, as a solution to mitigate the single point of trust with regard to
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the search procedure and the insecurity of single-server PEKS schemes against
keyword guessing attacks. Together with its properties, TPEKS seems to be par-
ticularly attractive for this application, as detailed in the following two scenarios.

In the first use case we assume an user who wishes to upload his data files on
the cloud servers to have access to these file at a later point in time. Assume an
user who uploads to n cloud servers m encrypted data files with m PEKS cipher-
texts where each of them is encrypted on l different keywords w1, . . . , wl, i.e.
PEKS ciphertext for the j-th file is given by {Φ(pk, j, wi1 , . . . , wid

)}id∈[l],j∈[m].
When the user wants to download files which contain a keyword wi, he com-
putes trapdoor shares for each server on that keyword, i.e. he sends trapdoors
Twi,1, . . . , Twi,n on wi to the n servers, where i ∈ {1, . . . , l} denotes the index one
of the l keywords. Each cloud server computes test shares taking as input the
different PEKS ciphertext for each data file and the trapdoor for the k-th server
τk,j ← ShareTest(Φ(pk, j, wi1 , . . . , wid

), Twi,k), where j denotes the index of
PEKS ciphtertext for file j and i1, . . . , id ∈ [l] is a set of l keywords. Each server
outputs m test shares {τk,j}j∈[m], such that the user obtains in total m×n differ-
ent test shares. For the ease of analysis we observe 2 cloud servers and therefore
2m different test shares. Since the user does not know which test shares belong
to which files, he has to run m2 test algorithms, namely Test(τ1,j , τ2,j′ , pk)
where j, j′ ∈ [m]. This scenario has a total complexity of O(m2). This scenario
guarantees privacy of the user, because the trapdoors do not reveal anything
about the keywords and the servers do not learn anything about the keywords
since they take the ciphertexts keywords and the trapdoors without getting any
information about the content of the inputs.

To reduce the complexity the user could use random indices for each uploaded
PEKS ciphertexts on keywords. That means that he would need to upload
(rχ, {Φ(pk, j, wi1 , . . . , wid

)}id∈[l],j∈[m]) to each server, where rχ denotes a ran-
dom index for the ciphertext Φ(·) on a set of keywords wi1 , . . . , wid

, with
i1, . . . , id ∈ [l]. The user has to remember (rχ, wi1 , . . . , wid

) for later use. Finally
if he wants to download data files with keyword wi, i ∈ [l] he computes n trap-
door shares for all n servers and sends them together with the index rχ to the
server. Each server compares whether the received randomness belongs to one
of the stored PEKS ciphertexts. If so each server computes trapdoor shares
(rχ, τk,j) ← ShareTest((rχ, Φ(pk, j, wi1 , . . . , wid

), Twi,k) and sends them to the
user. Upon receiving the test shares together with the randomness, the user can
recognize which test shares to which file and can be used to run test algorithm.
If the output of the algorithm is 1, the user sends the randomness to one of the
servers to get access for the download of a file. The complexity in this scenario
can be reduced to the linear size O(m). This example still guarantees privacy of
the user because a randomness is prepared for a set of keywords, such that the
files are unlinkable to the keywords.

As a second use case we consider a sender who sends a set of m encrypted
messages with PEKS ciphertexts Φ(pk, j, w1, . . . , wl) on l different keywords to
the n servers, where j ∈ [m], for a recipient who owns the public key pk.
The receipient computes trapdoor shares for each server on a set of required
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keywords and sends them to the servers. Each of the servers computes m differ-
ent test shares and return them to the user. The user needs to find the sets of
the test shares for the same encrypted messages. To do so he needs to try mn

combinations which gives us the complexity of this scenario, O(mn). To reduce
the complexity the user could compute l × n trapdoor shares for the l shares
and send them together with a randomness {rχ}χ∈[l] of each keyword to the
servers. Each of the servers runs m test share algorithms and returns m × l test
shares together with randomness such that the user can combine the test shares
with the corresponding randomness. The complexity of this scenario is reduced
to O(l × m). The privacy of user regarding the keywords remains guaranteed,
because no one can learn the queried keywords.

A Proof of Theorem 1

Proof. Let Aind be an adversary that defeats the IBTD-IND-CCA security
of the IBTD scheme, and ABDH let be an adversary for the BDH prob-
lem. ABDH are given BDH parameters (G,GT , e, q) and a random instance
(g, ga, gb, gc, e(g, g)abc) of the BDH problem for these parameters. That means
g

r← G
∗ and a, b, c

r← Z
∗
q are random. Let Z = e(g, g)z ∈ GT , where Aind’s

aim is to decide whether z = abc, or z is a randomly chosen value from Z
∗
q .

The definition of CCA security allows the adversary to obtain the secret share
associated with any identity idi, where i ∈ [q1, . . . , qm] of her choice and Aind

is challenged on a public key id∗ of her choice. Aind issues queries q1, . . . , qm,
where qi, for i ∈ [m] is one the key derivation or decryption queries. ABDH uses
Aind to find d as follows:
Setup: The simulator ABDH generates IBTD master public key mpk =
(G,GT , q, g, e,H1,H2,H3,H4, Y ) by setting Y = gc and Qid = gb. H1, . . . , H4

are random oracles controlled by ABDH . The queries to the oracles are described
as follows. ABDH gives mpk to Aind. Aind issues qH1 , qks queries on an id to H1

oracle, the key derivation oracle and a query on id∗ to the both oracles in the
challenge stage, respectively.
H1 Oracle Queries: Let H1 List be a list used for storing the results of queries
to the H1 oracle, (id,Qid). Whenever H1 is queried at id ∈ {0, 1}�, ABDH does
the following: If (id,Qid) ∈ H1List, it returns Qid to Aind. For id �= id∗, ABDH

sets Qid = H1(id) =
(

gb
)γ for a random γ

r← Zq, where gb is given from the
BDH instance. If id = id∗, ABDH computes Qid = gγ , where γ

r← Zq, adds it to
the H1List and returns Qid to Aind.
H2 Oracle Queries: Let H2 List be a list consisting of all pairs (κid,H2(κid)).
When Aind queries on input κid = e(Qid, Y )r, ABDH checks whether the queried
value is in the H2List, if so it returns H2(κid). Otherwise it chooses a random
H ′

2 ∈ {0, 1}� and gives H2(κid) = H ′
2 to Aind.

H3 Oracle Queries: Let H3 List consisting of elements (σ,m,H3(σ,m)), where
σ ∈r {0, 1}l. When Aind issues queries on input (σ,m) it invokes ABDH that
checks whether (σ,m) ∈ H3List. If so it returns the corresponding H3(σ,m).
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Otherwise ABDH chooses a random H ′
3 ∈ Z

∗
q and sets H ′

3 = H3(σ,m) that it
gives to Aind

H4 Oracle Queries: Let H4 List consist of all pairs (σ,H4(σ)). When Aind

issues a query on (σ, ·), ABDH checks, whether σ ∈ H4List. If so, it returns the
corresponding H4(σ), otherwise it chooses H ′

4 ∈ {0, 1}� and sets H ′
4 = H4(σ)

and gives H ′
4 to Aind.

Phase 1: Aind issues up to qm queries to the key derivation and decryption
oracles.
Queries to OKeyDer(id, i): For id �= id∗: When A submits a key derivation
query on input (id, i), ABDH checks whether (id, S) ∈ List. If so, ABDH returns
the corresponding secret share skid,i for index i to Aind. If (id, S) /∈ List, ABDH

simulates the key shares as follows: For the t − 1 corrupted servers with indices
i1, . . . , it−1, ABDH chooses t − 1 random values χi, such that Q

f(i)
id = χi. If

id = id∗, ABDH picks a random χi ∈ G and returns it to Aind. If Aind issues
more than t − 1 queries on id∗, ABDH aborts the simulation. If id �= id∗, ABDH

chooses γ
r← Z

∗
q , adds Qid = (gb)γ to the H1List and outputs to Aind

Queries to ODec(id, C): If id = id∗, ABDH aborts the simulaton. For id �= id∗,
Aind issues a decryption query on input (id, C) to its decryption oracle, where
C �= C∗. ABDH simulates the decryption oracle without knowing the decryption
shares. It does the following:

1. ABDH checks whether (id,H1(id)) ∈ H1list. If so, it fixes the corresponding
Qid = H1(id).

2. It computes κid = e(Qid, Y )r, using the fixed Qid from H1List and Y = gc.
3. To determine the corresponding r, the simulator searches the H3List. Choos-

ing each triple (σ,m, r), the simulator compares, whether gr = U , where U
is given from the received ciphertext. After fixing the matching r, ABDH

receives (σ,m).
4. Using the fixed r and σ from the previous step the simulator computes κid =

e(Qid, Y )r and searches the H2List for the corresponding value H2(kid). It
checks, whether V = σ ⊕ H2(κid).

5. Taking σ,m from step 3. the simulator searches H4List for the corresponding
H4(σ) entry. Upon finding the matching value it checks whether W = m ⊕
H4(σ). If one of the computations in the above 5 steps fails, the simulator
aborts the game. Otherwise if all 5 steps finished successful, ABDH returns
m to Aind.

Challenge Ciphertext: At some point Aind outputs two messages m0,m1 and
an identity id on which it wishes to be challenged. ABDH simulates the ciphertext
as follows. He replaces U by ga from its BDH instance. It sets Qid = gb and
Y = gc such that e(Qid, Y ) = e(gb, gc) and κid = Z, where Z is the value
from BDH instance. It chooses s ∈ {0, 1}� uniformly at random. ABDH gives
C∗ = (ga, s ⊕ H2(Z),mβ ⊕ H4(s)), β ∈ {0, 1} as challenge to A.
Phase 2: Aind issues additional queries as in Phase 1, to which ABDH responds
as before
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Guess: Eventually Aind outputs β′ as its guess for β. Algorithm ABDH outputs
β′ as its guess for β

Analysis: Let qH1 , qks, qd be the number of issued H1 oracle queries, key share
queries, decryption queries on an identity id, respectively and Aind issues one
query on challenge id to the three oracles. The probability that ABDH guesses the
correct challenge id is δ1 := 1

qH1+qks+1 . It aborts the simulation with probability
δ if id = id∗, which has already been queried either to H1 oracle or to ODec.
We assume that Aind corrupts t−1-out-of-n servers with index i1, . . . , it−1. The
probability that ABDH matches a server j with j ∈ {i1, . . . , it−1} is δ2 := 1

( n
t−1)

.

If Aind issues more than t − 1 secret share queries on the same identity id,
ABDH aborts the simulation. The simulator aborts the decryption simulation
in the non challenge phase with negligible probability δ3, where δ3 ∈ [0, 1]. The
probability that it does not abort in the first phase is 1−(δ1+δ3). The simulator
aborts in the challenge phase if Aind issues more than t − 1 queries to ODec
and OKeyDer on the challenge identity id∗. It also stops the simulation if Z =
e(g, g)abc, where δ4 is the probability, that the equation holds. The probability
for abortion during the key derivation or decryption queries on id∗ is δ2 + δ2δ3.
The probability that it does not abort in the challenge step is 1−(δ2+δ2δ3+δ4).
Therefore the probability that ABDH does not abort during the simulation is
(1 − (δ1 + δ3)) (1 − (δ2 + δ2δ3 + δ4)) = 1 − δ̃, where δ̃ is negligible. Advantage of
Aind is given by

AdvABDH
≥ AdvIBTD-IND-CCA

Aind
= 1 − δ̃

It follows that AdvABDH
> 1 − δ̃ is non-negligible which is a contradiction to

the assumption. Therefore we follow, that the advantage of Aind is negligible.

B Proof of Theorem 5

Proof. We use a TPEKS-CONS adversary Bc to construct a simulator S that
breaks the IBTD-IND-CCA and IBTD-SROB-CCA properties of IBTD. That is,
S acts as Aind against IBTD-IND-CCA and as Arob against IBTD-SROB-CCA.
The initial game is the Game 0 which describes the real attack. First the chal-
lenger runs the Setup of the TPEKS scheme on input a security parameter λ,
threshold parameter t and number of servers n. The challenger gives Bc the
public key pk. If Bc submits a pair of keywords w,w′, the challenger computes
a target ciphertext Φ∗. Bc issues trapdoor share and test queries on the PEKS
ciphertext Φ. The first game (Game 1) differs from the previous one by simu-
lation of trapdoor share queries. If these shares are involved in computing the
PEKS ciphertext, the simulator modifies the challenge ciphertext. The rest of
Game 0 remains unmodified. The simulation is distributed in two subcases. In
Case 1 holds C �= C∗, w∗ �= w′, which invokes Aind to simulate the queries on
identities id∗ �= id′. In Case 2 holds C = C∗, w∗ = w′, where Arob is invoked
for the simulation of queries on id∗. In Case 1, Aind aborts the game if Bc issues
more than t − 1 queries on w∗ or w∗ = w′. In Case 2, where holds C = C∗, Arob
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aborts the game if Bc issues more than t − 1 queries on w∗ = w′. The second
game differs from Game 1 by simulation of test queries. In Case 1, Aind aborts
the game if Bc issues queries on w∗. In Case 2, where holds C = C∗, Arob aborts
the game if Bc issues queries on w∗ = w′. Each of the simulation steps looks as
follows:
Setup: S is given as input mpk of IBTD. It sets TPEKS public key pk equal to
mpk. We assume that a set of t−1 servers have been corrupted. When Bc issues
trapdoor share and decryption queries on input (w, i) and (w,Φ) respectively,
where w �= w′, and Φ = (C,R), Φ∗ = (C∗, R∗), S distinguishes between two cases
- Case 1: C �= C∗, w �= w′ where Aind is invoked and Case 2: C = C∗, w = w′,
where Arob is invoked.
Queries to OShareTrpd: Let (w, i) be a trapdoor share query issued by Bc. S
sets w ← id and queries its oracle OKeyDer(w, i). The oracle outputs (i, skw,i),
which S sets equal to (i, Tw,i) and returns it to Bc. In Case 1, the simulator repre-
sented by Aind aborts if Bc issued more than t−1 queries to OShareTrpd(w0, i)
and to OShareTrpd(w1, i). In Case 2, simulator represented by Arob aborts if
w = w′ or (w, T, I) /∈ List, or (w′, T ′, I ′) /∈ List, or |I| ≥ t, |I ′| ≥ t, where
T = {(1, Tw′,1), . . . , (n, Tw′,n)}, I, I ′ ⊂ [1, n].
Queries to OTest: Bind issues test queries on (w,Φ). S sets w ← id, Φ = (C,R)
and queries its oracle ODec(w,C). The oracle outputs m. S sets R ← m and
returns R to Bc. In Case 1, S aborts simulation if Bc queried OTest(w,Φ∗)
or OTest(w′, Φ∗), where Φ∗ = (C∗, R∗). In Case 2, S aborts if w = w′ or
(w′, T ′, I ′) /∈ List, or (w, T, I) /∈ List, or |I| ≥ t, |I ′| ≥ t, where T =
{(1, Tw,1), . . . , (n, Tw,n)} and I, I ′ ⊂ [1, n].

Challenge: Bc outputs a challenge identity w∗ and R0, R1
r← {0, 1}�. S responds

with IBTD ciphertext Φ∗ = (C∗, Rb), where C∗ ← Enc(pk,w∗, Rb), for b ∈ {0, 1}
and R∗ r← {0, 1}. S returns its ciphertext C∗ ← Enc(mpk,w∗, Rb).
Analysis: In Case 1: Simulator S is represented by Ainc. Let qts, qt be the
number of issued trapdoor share queries on different id′s. We assume that Bc

corrupts t − 1-out-of-n servers with index i1, . . . , it−1. The probability that S
corrupts a server j with j ∈ {i1, . . . , it−1} is 1/

(

n
t−1

)

. Let E denote the event that
Bc wins the indistinguishability experiment from Definition 8. Let E1 denote the
event that Bc wins Game 1. It holds 1

2AdvTPEKS-CONS
Bc

(1λ) = Pr[E] − 1/2 ≥
1/

(

n
t−1

)

1
qts

(Pr[E1] − 1/2). Let E2 denote the event that Bc wins Game 2, then
holds:

Pr[E1] − 1/2 ≥ 1
qt

(Pr[E2] − 1/2)

⇔ 1
2
AdvTPEKS-CONS

Bc
(1λ) = Pr[E] − 1/2 ≥ 1/

(

n

t − 1

)

1
qts

1
qt

(Pr[E2] − 1/2).

In Case 2: Simulator S is represented by Arob. Let q′
ts, q

′
t be the number of

issued trapdoor share queries on different id′s. We assume that Bc corrupts
t − 1-out-of-n servers with index i1, . . . , it−1. The probability that S corrupts
a server j with j ∈ {i1, . . . , it−1} is 1/

(

n
t−1

)

. Let E denote the event that Bc
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wins the indistinguishability experiment from Definition 8. Let ˜E1 denote the
event that Bc wins Game 1. It holds 1

2AdvTPEKS-CONS
Bc

(1λ) = Pr[E] − 1/2 ≥
1/

(

n
t−1

)

1
qts

(Pr[˜E1] − 1/2). Let ˜E2 denote the event that Bc wins Game 2, then
holds:

Pr[E1] − 1/2 ≥ 1
qt

(Pr[˜E2] − 1/2)

⇔ 1
2
AdvTPEKS-CONS

Bc
(1λ) = Pr[E] − 1/2 ≥ 1/

(

n

t − 1

)

1
qts

1
qt

(Pr[˜E2] − 1/2)

The total advantage of Bc is given by

1
2
AdvTPEKS-CONS

Bc
(1λ) = Pr[E|Case 1] + Pr[E|Case 2] = 2Pr[E] − 1

≥ 1/
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n
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1
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qt

(Pr[E2] + Pr[˜E2] − 1).
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Abstract. To prevent worms from propagating rapidly, it is essential
to generate worm signatures quickly and accurately. However, existing
methods for generating worm signatures either cannot handle noise well
or assume there is only one kind of worm sequence in the suspicious flow
pool. We propose an approach based on seed extending signature genera-
tion (SESG) to generate polymorphic worm signatures from a suspicious
flow pool which includes several kinds of worm and noise sequences. The
proposed SESG algorithm computes the weight of every sequence, the
sequences are queued based on their weight, and then classified. Worm
signatures are then generated from the classified worm sequences. We
compare SESG with other approaches. SESG can classify worm and noise
sequences from a suspicious flow pool, and generate effective worm sig-
natures more easily.

Keywords: Signature generation · Worm detection · Seed-extending
algorithm · Polymorphic worm

1 Introduction

Worms are self-replicating malicious programs and represent a major security
threat for the internet. They can infect and damage a large number of vulner-
able hosts at timescales where human responses are unlikely to be effective [1].
According to an empirical study, a typical zero-day attack may last for 312
days on average [2]. Polymorphic worms allow a worm to change its appearance
with every instance. They have caused great damage to the internet in recent
years. Detecting and defending against polymorphic worm remains largely an
open problem [3–5]. Most recent polymorphic worm detection research concen-
trates on signature-based detection [6–8]. These techniques look for specific byte
sequences (called attack signatures) that are known to appear in the attack traf-
fic. Their efficiency of defending against worms depends on the quality of worm
signatures that can be generated. To detect polymorphic worms efficiently, accu-
rate worm signatures must be first generated.

Existing approaches for automatically generating worm signatures include
systems based on:
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1. Longest common string (LCS). Cai et al. [9] developed the WormShield sys-
tem, Ranjan et al. [10] developed the DoWicher system, and Portokalidis
et al. [11] developed the SweetBait system;

2. Semantics-aware. Yegneswaran et al. [12] proposed an architecture for gener-
ating semantics-aware signatures.

3. Common substrings (tokens). Newsome et al. [13] developed the Polygraph
system which generates conjunction signatures, token-subsequence signatures,
and Bayes signatures based on tokens extracted. Li et al. [14] developed the
Hamsa system, which is an improvement over the Polygraph system in terms
of both speed and attack resilience, but takes the number of substring token
occurrence into consideration as part of the signature. Cavallaro et al. [15]
proposed LISABETH, an improved version of Hamsa, an automated content-
based signature generation system for polymorphic worms that uses invari-
ant bytes analysis of network traffic content. Bayogle et al. [16] proposed
Token-Pair Conjunction and Token-Pair Subsequence signature for detect-
ing polymorphic worm threats. Wang [17] proposed an automated signature
generation approach for polymorphic worms based on color coding.

4. Multi-sequence. Tang et al. [18] used multiple sequence alignment techniques
to generate simplified regular expression (SRE) signatures for polymorphic
worms.

5. Character frequency. Tang et al. [19] proposed an automated approach based
on position-aware distribution signature (PADS) to defend against polymor-
phic worms.

Only Wang [17] and Tang et al. [18] discuss how to address noise in the
process of generating a worm signature, but they both suppose that the suspi-
cious pool only includes a single type of polymorphic worm. Tang et al. proposed
an approach based on normalized cuts to cluster polymorphic worms, then gen-
erated a PADS signature for every cluster worm. However, in presence of noise,
the accuracy of PADS cannot be assured [14]. The approaches discussed above
can generate signatures for worms without noise and with one type of poly-
morphic worm in the suspicious pool, but they have difficulty generating worm
signatures in the presence of noise and/or many type of polymorphic worms in
the suspicious flow pool.

We propose a novel algorithm based seed extending signature generation
(SESG) to generate polymorphic worm signatures from a suspicious flow pool
which includes several types of worm and noise sequences. The SESG algorithm
calculates the weight of every identified sequence, sequences are placed into
a queue based on their weight, and all sequences are classified. Worm signa-
tures are generated from the classified worm sequences. We compare SESG with
other approaches, and show that SESG can classify worm sequences and noise
sequences from suspicious flow pool, with lower false positive and false negative
outcomes than current approaches.

Section 2 introduces a new worm signature, neighborhood-relation signa-
ture, which is used to detect polymorphic worms. Automatic polymorphic worm
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signature generation algorithm is proposed in Sect. 3. Experimental results are
shown and discussed in Sect. 4. In Sect. 5 we present our conclusions.

2 Neighborhood-Relation Signatures

For a sequence S = c1c2 . . . cm, ci+1 is defined as neighbor of ci, and di,i+1 =
|ci+1 − ci| is defined as the byte distance between ci and ci+1.

There is at least a significant region which infects the victim in polymorphic
worms. The neighborhood-relation signatures (NRS) is generated by computing
the byte distance of each position in the significant region, and it has a byte
distance frequency distribution for each position in the signature string.

We first describe the process of computing an NRS from worm samples, then
explain how to match a byte sequence against a signature.

2.1 Concept and Definition

Consider a set of worm sequences, S = {S1, S2, . . . , Sn}, where Si = c1c2 . . . cm.
Suppose the starting positions of the significant region in n sequences are
a1, a2, . . . , an, and the width of a significant region is w.

The count(p, d) is the number of worm sequences in which the neighbor
distance of position, p, in the significant regions is d, where d ∈ [0 . . . 255]. The
neighbor distance distribution is

fp(d) =
count(p, d)

n
, (1)

where
∑

d∈[0...255] fp(d) = 1, and p = 1, 2, . . . , w − 1. fp(d) will be zero if
count(p, d) = 0, which will cause signature generation to be undefined. There-
fore, we set fp(d) = b for this case, where b is a small real number.

The NRS signature of n sequences is defined as (f1, f2, . . . , fw−1), where the
width of the signature is w − 1.

2.2 Matching Between Sequences and NRS Signatures

Assume that Si is a byte sequence and l is the length of Si. d1,2, d2,3, . . . , dl−1,l

denotes the 1-neighbor distances of position 1, 2, . . . , l − 1 in Si respectively. Let
seg(Si, ai) be the substring of Si with starting position ai and width w. The
matching score of seg(Si, ai) is

Score = Πw−1
p=1

fp(dai+p,ai+p+1)
f

,

where f = 1
255 .

There exists a position ai of Si that maximizes Score. The matching score of
sequence Si is defined as

maxScore =
l−w+1
max
ai=1

Πw−1
p=1

fp(dai+p,ai+p+1)
f

.
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For ease of plotting, we use the logarithm of maxScore as the final matching
score of Si with the NRS signature, that is

Θ =
l−w+1
max
ai=1

1
w − 1

w−1
∑

p=1

log
fp(dai+p,ai+p+1)

f
. (2)

The w-byte segment is considered as the significant region if its matching
score is equal to Θ. The significant region is the segment of Si that matches best
with the NRS signature. When Θ > 0, Si is classified as a worm sequence.

2.3 NRS Generation Algorithm

We have shown that the NRS and the significant regions can lead to each other.
We now explain how to generate NRS using Gibbs sampling if we do not know
either the NRS signature or significant regions.

The Gibbs algorithm randomly assigns starting positions a1, a2, . . . , an of the
significant regions for a set S of worm variants, S1, S2, . . . , Sn. If S1 of S is chosen,
then fp(d) as defined in Eq. (1) is calculated based on the significant regions for
the other S−S1 variants, and the NRS is calculated. The new estimated position
for the significant region for S1 is calculated based on the estimated NRS, and
the starting position a1 is modified accordingly. The remaining members S2,
S3, . . . , Sn of S are chosen in turn until the termination condition is satisfied.
After Sn is chosen, if the termination condition is not satisfied, the sampling
algorithm continues to run, choosing S1 again.

The Gibbs sampling algorithm terminates if the average matching score
between the worm variants and the signature is within (1 ± ε) of the aver-
age matching score of the previous t iterations, where ε is a small predefined
percentage. The Gibbs sampling algorithm is illustrated in Fig. 1.

3 SESG Approach for Polymorphic Worms

The suspicious flow pool is represented as an undirected complete graph G(V,E)
with sequences as vertices. We propose an SESG approach for polymorphic
worms. SESG can be divided into four major parts: Weighting Vertex, Selecting
Seed, Extending Cluster, and Generating Signature. The input to the algorithm
is an undirected complete graph.

3.1 Weighting Vertex

An approach based on NRS against polymorphic worms was proposed by Wang
et al. [20]. We apply NRS based on 1-neighbor distances and the Gibbs sam-
pling algorithm. Let Wi be the weight of vertex Si, and Θij the weight of an
edge [Si, Sj ]. The NRS is generated from Si and Sj by applying the Gibbs sam-
pling algorithm. Then the matching score Θ(NRS, Si) between NRS and Si and
the matching score Θ(NRS, Sj) between NRS and Sj are calculated using the
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The Gibbs(S, w) algorithm
Input: n sequences S = S1, S2, . . . , Sn, the width of significant regions w;
Output: NRS;
Width=w;
Randomly assigning the starting positions a1, a2, . . . , an of the significant re-
gions for sequences S1, S2, . . . , Sn;
j=1;
For i = 1 to 5000

{j = (j mod n);
{NRS=SigGen(S − Sj ,a1, a2, . . . , aj−1, aj+1, . . . , an,w);
aj = Updateloc(Sj , NRS);
j + +;
For l = 1 to n

maxScorel ← ComScore(Sl, NRS));
Ascorei = 1

n
n
l=1 maxScorel;

If |Ascorei − 1
t

i−1
l=i−t Ascorel| < ε then break;}

Return NRS;

Fig. 1. The Gibbs sampling algorithm

matching process introduced in Wang et al. [20]. The weight of an edge is then
defined as

Θij = Θ(NRS, Si) + Θ(NRS, Sj) , (3)

where Θii is set to 0. We define the weight of each vertex to be the sum of
the weights of its adjacent edges, Wi =

∑

j Θij . After all vertices are assigned
weights, we sort the vertices in non-increasing order by their weights and store
them in a queue, Q.

3.2 Selecting the Seed Vertex

We pick the first (highest weight) vertex in Q and use it as a seed to grow a new
cluster. Once the cluster is completed, all vertices in the cluster are removed
from Q, and we pick the first remaining vertex in Q as the seed for the next
cluster.

3.3 Extending a Cluster

A cluster, K, is extended by adding vertices recursively from its neighbors
according to their priority. A neighbor is added to the cluster if the weight
of its adjacent edge with the seed is higher than existing members of the cluster.
We calculate the NRS from two vertices of the cluster and calculate the match-
ing scores between NRS and the neighbors. The matching scores are considered
as the priorities of the neighbors. If the highest priority is greater than zero,
the neighbor with the highest priority will be added to the cluster. Once the
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new vertex is added to the cluster, the cluster is updated, i.e., the neighbors of
the new cluster are re-constructed and the priorities of the neighbors of the new
cluster are re-calculated, and the algorithm proceeds recursively with the new
cluster until all the priorities are less than zero.

3.4 Generating the Signature

When Q is empty, all vertices are divided into several clusters. We generate
NRS from every cluster. These NRS are filtered in a normal flow pool includ-
ing m sequences. The matching scores between a NRS and m sequences are
Θ1, Θ2, . . . , Θm. If Θi > 0(1 ≤ i ≤ m), p increments by 1. If p/m < ε, the
NRS is considered to be the signature of a worm sequence, where ε is a small
predefined percentage. Otherwise the NRS will be filtered out.

The SESG process is illustrated in Fig. 2.

The SESG(N, M) algorithm
Input: n sequences N = x1, x2, . . . , xn; m normal sequences M =
M1, M2, . . . , Mm;
Output: y sets of worm sequences S1, S2, . . . , Sy and their NRS;
(**Weighting Vertex**)
NRS ← Gibbs(xi, xj);
Θij = Θ(NRS, Xi) + Θ(NRS, xj);
Constructing Q based on sequence weight W ;
(**Selecting seed**)
While Q is not empty

x ← the first sequence in Q; S = x;
call Extending Cluster(S);
Q ← Q − S;

(**Extending Cluster(S)**)
For i=1 to n

If xi does not belong to any cluster then QS ← Θxxi ;
If Θxv is the largest value in the set QS

Cluster(S) ← v;
NRS ← Gibbs(S);
For i=1 to n

{If sequence xi does not belong to any cluster, then
{Calculate the match score Scorei;
If all match scores are less than 0 then break;
else Cluster(S) ← x;}

(**Generating Signature**)
For each cluster

{NRS ← Gibbs(Cluster);
Filtering NRS in M and getting the last Cluster;

Return (Cluster, NRS);

Fig. 2. The SESG Algorithm
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4 Experiments and Results

We tested the accuracy and effectiveness of the SESG algorithm with and with-
out noise in the environment, and compared with other algorithms. Four kinds
of worms are used in the experiments: MS Blaster, SQL Slammer, Apache-
Knacker, and ATPhttp. We apply polymorphism techniques, including encryp-
tion, garbage-code insertion, instruction rearrangement, and substitution, to
generate polymorphic samples for these worms.

4.1 Experiment 1: Noise and a Single Worm Sequence

The suspicious flow pool includes 50 noise sequences and 50 Blaster worm
sequences. We apply the SESG algorithm and the classification method based
on normalized cuts (NC) [19] to classify sequences of the suspicious pool. The
NC algorithm needs to know the number of classifications prior to running, and
so we first set the number of classifications = 2. Classification results of SESG
are illustrated in Fig. 3, for NC in Fig. 4. In both figures, the x-axis 1–50 are the
Blaster worm and x-axis 51–100 are noise sequences.

Fig. 3. Experiment 1: Classification from
SESG

Fig. 4. Experiment 1: Classification from
NC

The SESG algorithm successfully distinguished worms and noise sequences,
dividing the 100 sequences into 4 groups. The Blaster worms were all allocated
into the third. Different noise sequences have different characteristics, so the
noise sequences were divided into 3 classes. On the other hand, the NC algorithm
allocated the Blaster worms and 8 noise sequences into the first class.

We generated NRS from the classified worm sequences, and used 10000
Blaster worms and 10000 normal flow sequences to test the false negative and
false positive ratio. We applied the Gibbs algorithm [20] (GNRS), Polygraph
[13], and CCSF [17] (CNRS) to generate NRS from the unclassified suspicious
flow pool. Because of the noise sequences in the suspicious flow pool, Polygraph
could not generate worm signatures. The test results are shown in Table 1.
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Table 1. Experiment 1: Blaster worm

GNRS CNRS NC+NRS SESG+NRS

False positive ratio 0.4315 0 0.1017 0

False negative ratio 0 0 0 0

The false positive and false negative ratios of NRS generated by SESG are 0.
SESG successfully distinguishes worms and noise sequences, and NRS is generated
only from Blaster samples. Therefore, the NRS has no false negatives or positives.
However, NC generates NRS from sample sequences including 8 noise sequences.
Hence NRS has false positive 0.1017. GNRS is generated from sample sequences
including 50 noise sequences, so it has higher false positive. The CCSF algorithm
can remove noise, so both the false positive and false negative ratios are 0.

4.2 Experiment 2: Two Worm Sequences

The suspicious flow pool includes 50 SQL Slammer worm sequences and 50
Blaster worm sequences. Classification results from the SESG algorithm are
shown in Fig. 5, and for the NC algorithm in Fig. 6. In both figures x-axis 1–50
are Blaster worms and x-axis 51–100 are SQL Slammer worms.

The SESG algorithm divided the 100 sequences into 2 groups, with Blaster
worms in one class and SQL Slammer worms in the other. The NC algorithm
also divided the 100 sequences into 2 groups. However, while the second class
includes only Blaster worms, the first class includes 50 SQL Slammer worms and
2 Blaster worms.

Fig. 5. Experiment 2: classification from
SESG

Fig. 6. Experiment 2: classification from
NC

Just as Sect. 4.1, we applied different algorithms to generate worm signatures.
Because the suspicious flow pool includes two types of worms, Polygraph and
CCSF cannot generate NRS signatures. Both the false positive and false negative
ratios of the SESG and NC algorithms are 0.
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Fig. 7. Experiment 3: classification from
SESG

Fig. 8. Experiment 3: classification from
NC

4.3 Experiment 3: Noise and Two Types of Worm Sequences

The suspicious flow pool includes 33 noise sequences, 33 SQL Slammer worm
sequences, and 34 Blaster worm sequences. Classification results for the SESG
algorithm are shown in Fig. 7, and for the NC algorithm in Fig. 8. In both figure,
x-axis 1–34 Blaster worms, 35–67 are SQL Slammer worms, and 68–100 are noise
sequences.

The SESG algorithm divided 100 sequences into 5 groups. SQL Slammer
worms were divided into the first class, Blaster worms into the second class, and
the other three classes contain only noise sequences. Whereas the NC algorithm
divides the 100 sequences into 4 groups. Some noise sequences and Blaster worms
are allocated to the first group, some noise sequences and SQL Slammer worms
were allocated to the fourth group. Group 2 and 3 contain only Blaster and
Slammer worms respectively.

As above, we apply different algorithms to generate worm signatures. The
test results are illustrated in Tables 2 and 3. As for Sect. 4.2, Polygraph and
CCSF could not generate NRS signatures. The Gibbs algorithm cannot remove
noise disturbance in the process of generating NRS, and so has higher false
positive ratio when the suspicious flow pool includes noise sequences. The NC
algorithm does not completely distinguish worms and noise sequences, so the
NRS generated by NC has higher positive ratio.

Table 2. Experiment 3: Blaster worm

GNRS NC+NRS NC+NRS SESG+NRS

(the first class) (the third class)

False positive ratio 0 0 0 0

False negative ratio 0.3266 0.4221 0 0
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Table 3. Experiment 3: SQL Slammer worm

GNRS NC+NRS NC+NRS SESG+NRS

(the second class) (the fourth class)

False positive ratio 0 0 0 0

False negative ratio 0.3859 0 0.4349 0

4.4 Experiment 4: Four Worm Sequences

The suspicious flow pool includes four types of worm sequences, 25 of each type.
Classification results from the SESG algorithm are shown in Fig. 9, and from the
NC algorithm in Fig. 10. In both figures x-axis 1–25 are Blaster worms, 25–50 are
SQL Slammer worms, 51–75 are Apache-Knacker worms, and 76–100 ATPhttp
worms.

Fig. 9. Experiment 4: classification from
SESG

Fig. 10. Experiment 4: classification
from NC

The SESG divided the 100 sequences into 4 groups, successfully distinguish-
ing the different worms. The NC algorithm also divided the 100 sequences into 4
groups. However, the groups include several worm types. For example, the first
group includes 2 SQL Slammer worms, 2 Blaster worms and 25 Apache-Knacker
worms.

As above, we apply different algorithms to generate worm signatures. Since
the suspicious flow pool includes four kinds of worms, Polygraph and CCSF
cannot generate NRS signatures. The false positive and false negative ratios of
all the algorithms are 0, since there was no noise included.

4.5 Experiment 5: Noise Sequences and Four Types
of Worm Sequences

The suspicious flow pool includes noise sequences and four types of worm
sequences, 20 of each class. Classification results from the SESG algorithm are
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Fig. 11. Experiment 5: classification
from SESG

Fig. 12. Experiment 5: classification
from NC

Table 4. Experiment 5: Blaster worm

GNRS NC+NRS SESG+NRS

False positive ratio 0 0 0

False negative ratio 0.3146 0 0

Table 5. Experiment 5: SQL Slammer worm

GNRS NC+NRS SESG+NRS

False positive ratio 0 0 0

False negative ratio 0.2763 0.047 0

shown in Fig. 11, and for the NC algorithm in Fig. 12. In both figures, x-axis 1–20
are Blaster worms, 20–40 are SQL Slammer worms, 41–60 are Apache-Knacker
worms, 61–80 are ATPhttp, and 81–100 are noise sequences.

The SESG algorithm divided the 100 sequences into 8 groups. SQL Slammer
worms are allocated to the first class, Blaster worms into the second, ATPhttp
worms the third, and Apache-Knacker worms into the fourth class. The remain-
ing four classes are noise sequences. The NC algorithm divides the 100 sequences
into 5 groups. However, some noise sequences and some worm sequences are allo-
cated into the same group. For example, the second group includes 20 SQL Slam-
mer worms, 1 Apache-Knacker worms, and 2 noise sequences; and the third group
includes 2 noise sequences, 3 ATPhttp worms, and 20 Apache-Knacher worms.
The NC algorithm classifies sequences step by step, and the number of classifica-
tions is set beforehand. The NC algorithm first divides the sequences of the suspi-
cious flow pool into 2 groups, then continues to divide the classified sequences into
2 subclasses, etc. Previous classification results usually influence later classifica-
tions. Therefore, the NC algorithm cannot distinguish worms and noise sequences.

As above, we applied different algorithms to generate worm signatures, and
the test results are shown in Tables 4, 5, 6 and 7 for the four worms Blaster, SQL
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Table 6. Experiment 5: Apache-Knacker worm

GNRS NC+NRS SESG+NRS

False positive ratio 0 0 0

False negative ratio 0.3276 0.076 0

Table 7. Experiment 5: ATPhttp worm

GNRS NC+NRS SESG+NRS

False positive ratio 0 0 0

False negative ratio 0.3257 0 0

Slammer, ATPhttp, and Apache-Knacker, respectively. Since the suspicious flow
pool includes four kinds of worms and noise sequences, polygraph and CCSF
cannot generate NRS signatures. For all worms, NRS generated by the Gibbs
and NC algorithms have high false positive ratios. The false positive and false
negative ratios of the SESG algorithm are both 0.

5 Conclusion

We propose an approach based on SESG to generate accurate polymorphic worm
signatures from a suspicious flow pool that includes several types of worm and
noise sequences. The SESG method consists of four subprograms: Weighting
Vertex, Selecting Seed, Extending Cluster and Generating Signature. We showed
that, compared with other approaches, SESG can accurately classify worm and
noise sequences from a suspicious flow pool where there are multiple signatures
and noise present. Combined with NRS, SESG can act as a single polymorphic
worm signature generation algorithm, and can also be used as a classification
algorithm with significantly better accuracy than current algorithms, such as
CCSF and Polygraph, etc.
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Abstract. We provide a symbolic model for multi-party computation
based on linear secret-sharing scheme, and prove that this model is com-
putationally sound: if there is an attack in the computational world, then
there is an attack in the symbolic (abstract) model. Our original contri-
bution is that we deal with the uniformity properties, which cannot be
described using a single execution trace, while considering an unbounded
number of sessions of the protocols in the presence of active and adaptive
adversaries.

Keywords: Multi-party computation · Uniformity properties · Univer-
sally composable

1 Introduction

1.1 Background and Motivation

Provable security are now widely considered an essential tool for validating the
design of cryptographic schemes. While Dolev-Yao models traditionally com-
prise only non-interactive cryptographic operations, recent cryptographic proto-
cols rely on more sophisticated interactive primitives, with unique features that
go far beyond the traditional goals of cryptography to solely offer secrecy and
authenticity of communication.

Secret-sharing cryptographic operations constitutes arguably one of the most
prominent and most amazing such primitive [1–9]. Traditionally, in an linear
secret-sharing scheme with threshold (t, l), a dealer D and a number of players
P1, P2, ..., Pl wish to securely generate the secret share ss1,ss2, ..., ssl, where
each player Pi holds a private input di. This secret-sharing scheme is consid-
ered sound and complete if any t or more valid secret shares make the secret s
computable, and knowledge of any t − 1 or fewer secret shares leaves the secret
completely undetermined.

Indeed, verifiable secret sharing (VSS) and secure multi-party computation
(MPC) among a set of n players can efficiently be based on any linear secret-
sharing scheme (LSSS) for the players, provided that the access structure of the
c© Springer International Publishing Switzerland 2016
M. Yung et al. (Eds.): INTRUST 2015, LNCS 9565, pp. 99–113, 2016.
DOI: 10.1007/978-3-319-31550-8 7
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LSSS allows MPC or VSS at all [9,18]. Secure multi-party computation (MPC)
can be defined as the problem of n players to compute an agreed function of their
inputs in a secure way, where security means guaranteeing the correctness of the
output as well as the privacy of the players’ inputs, even when some players
cheat. A key tool for secure MPC, interesting in its own right, is verifiable secret
sharing (VSS): a dealer distributes a secret value s among the players, where the
dealer and/or some of the players may be cheating. It is guaranteed that if the
dealer is honest, then the cheaters obtain no information about s, and all honest
players are later able to reconstruct s. Even if the dealer cheats, a unique such
value s will be determined and is reconstructible without the cheaters’ help.

Thus, it is important to develop computationally sound abstraction tech-
niques to reason about LSSS-based MPC (LMPC) and to offer support for the
automated verification of their security.

1.2 Related Works

Starting with the seminal work of Abadi and Rogaway [10–12], a lot of efforts
has been directed to bridging the gap between the formal analysis system and
computational-soundness model. The goal is to obtain the best of both worlds:
simple, automated security proofs that entail strong security guarantees. Research
over the past decade has shown that many of these Dolev-Yao models are com-
putationally sound, i.e., the absence of attacks against the symbolic abstraction
entails the security of suitable cryptographic realizations. Most of these computa-
tional soundness results against active attacks, however, have been specific to the
class of trace properties, which is only sufficient as long as strong notions of pri-
vacy are not considered, e.g., in particular for establishing various authentication
properties [13–18]. Only few computational soundness results are known for the
class of equivalence properties against active attackers, most of these results focus
on abstractions for which it is not clear how to formalize any equivalence property
beyond the non-interactive cryptographic operations [19–22], such as multi-party
computation that rely on more sophisticated interactive primitives [13,18].

1.3 Challenging Issues

Canetti et al. proposed framework of universally composable security [18,21]. In
this framework, security properties is defined by what it means for a protocol
to realize a given ideal functionality, where an ideal functionality is a natural
algorithmic way of capturing the desired functionality of the protocol problem
at hand. A protocol that is secure within the universally composable framework
is called universally composable (UC).

We are facing a situation where computational soundness results, despite
tremendous progress in the last decade, still fall short in comprehensively
addressing the class of equivalence properties and protocols that formal veri-
fication tools are capable to deal with. Moreover, it is still unknown the com-
posability in UC framework can be extended to achieve more comprehensive
computational soundness results for equivalence properties.
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1.4 Our Main Contributions

In this paper, we present an abstraction of LSSS within the pi-calculus. In this
abstraction, linear secret-sharing scheme is defined by equational theory. Further,
abstraction of LMPC is provided as a process that receives the inputs from the
parties involved in the protocol over private channels, create secret shares of the
MPC result, and sends secret shares to the parties again over private channels.
This abstraction can be used to model and reason about larger MPC protocols
that employ LSSS as a building block.

We establish computational soundness results of preservation of uniformity
properties for protocols built upon our abstraction of LMPC. This result is
obtained in essentially two steps: We first establish an ideal functionality for
LMPC in the UC framework. Second, we obtain an secure cryptographic real-
ization of our symbolic abstraction of LMPC. This computational soundness
result holds for LMPC that involve arbitrary arithmetic operations; moreover,
we will show that it is compositional, in the sense that uniformity properties
of bi-processes in pi-calculus implies computational soundness results of preser-
vation of uniformity properties. Such a result allows for soundly modeling and
verifying many applications employing LMPC as a building block.

1.5 Comparison with Existing Works

While computational soundness proofs for Dolev-Yao abstractions of multi-party
computation use standard techniques [13,18,23–25] finding a sound ideal func-
tionality for multi-party computation do not support equivalence properties.
Securely realizable ideal functionalities constitute a useful tool for proving com-
putational soundness for equivalence properties of a Dolev-Yao model. In our
proof, we establish a connection between our symbolic abstraction of LMPC
and such an ideal functionality which supports uniformity properties: for an
expressive class of equivalence properties, the uniformity implies observational
equivalence for bi-processes, which are pairs of processes that differ only in the
messages they operate on but not in their structure. We exploit that this ideal
functionality is securely realizable.

2 The Abstraction of Secret-Sharing in Multi-party
Computation

In this section, we present a symbolic abstraction of LMPC based on Backes’s
abstraction for MPC [13]. Since the overall protocol may involve several secure
LMPC, a session identifier sid is often used to link the private inputs to the
intended session. We then represent SSl,t(m, r) as a function that explicitly
generates the LSSS-based proofs. The resulting abstraction of LMPC is depicted
as the pi-calculus process LMPC as follows.
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Inputi = !(inloopi(z).ini(di, sid′).adv(sid′). if sid = sid′

then lini(di) else inloopi(sync())) | inloopi(sync())

Deliveri = ini(yi, sid).inloopi(sync())

SSCompu(l, t, F )
= lin1(d1).lin2(d2)...linl(dl).vr

let y = SSl,t(F (d1, d2, ..., dl), r) in
let y1 = COEl,t,1(y) in
let y2 = COEl,t,2(y) in
.
.
.
let yl = COEl,t,l(y) in

(Deliver1 | Deliver2 | ... | Deliverl)

LMPC(l, t, F, sidc, adv, ˜in) = sidc(sid).vlin.vinloop.
(Input1 | Input2 | ... | Inputl | SSCompu(l, t, F )

In the abstraction of LMPC above, process LMPC is parametrized by thresh-
old (l, t), l-function F , a session identifier channel sidc, a adversary channel adv,
and l private channels ini for the l players. Private channels ini are authen-
ticated such that only the ith player. The actual generation of secret share
proof is performed in the last subprocess: after the private inputs of the indi-
vidual parties are collected from the internal input channels lini, the function
SSl,t(F (d1, d2, ..., dl), r) is executed. After each computation round, the sub-
processes deliveri send the individual secret-sharing proof COEl,t,i(SSl,t(F (d1,
d2, ..., dl), r)) over the private channels ini to every player i along with the
session identifier sid. In order to trigger the next round, sync() is sent over the
internal loop channels inloopi.

The abstraction allows for a large class of l-function F as described below.

Definition 1 (l-function). We call a term F an l-function if the term contains
neither names nor variables, and if for every αm occurring therein, we have
m ∈ [1, l].

In our abstraction model for LMPC with (l, t) threshold, the values αi in
F constitute placeholders for the private input di. Based on that, Dealer and
players’ ability to produce LMPC proofs is modeled by introducing symbolic
constructor SSl,t(F (˜d), r), called secret share key. Its arguments are a message
F (˜d) and di will serve as substitutes for the variables αi in F . The semantics
of these constructors imply that the secret share proof indeed guarantees that
in the abstract model the soundness and the completeness of the secret-sharing
schemes with threshold (l, t). In the symbolic secret share proof above, d1, d2,
..., dl represent player 1,2,...,l’s respectful private input.
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In the following we define the symbolic model in which the execution of a
symbolic protocol involving secret share proofs takes place.

First, we fix several countably infinite sets. By Nonce we denote the set of
nonces. We use elements from Garbage to represent ill formed messages (cor-
responding to unparseable bitstrings in the computational model). Finally, ele-
ments of Rand denote symbolic randomness used in the construction of secret
share proofs. We assume that Nonce is partitioned into in infinite sets Nonceag

and Nonceadv, representing the nonces of honest agents and the nonces of
the adversary. Similarly, Rand is partitioned into in infinite sets Randag and
Randadv.

We proceed by defining the syntax of messages that can be sent in a protocol
execution. Since such messages can contain secret share proofs, and these are
parametrized over constructors that are to be computed, we first have to define
the syntax of these constructors. Let the message type T be defined by the
following grammar:

T ::= COEl,t(SSl,t(T,N)) | SSl,t(T,N) |
pair(T, T ) | S | N | garbage(N)

S::= empty | string0(S) | string1(S)

The intuitive interpretation of a l-function is that it is a term with free
variables αi. The αi will be substituted with messages.

We define destructors as follows:

D := {Combinl,t/t, fst/1, snd/1, unstring0/1, unstring1/1, equals/2}.

The destructor Combinl,t extracts the secret from a secret share sequence.
The destructors fst and snd are used to destruct pairs, and the destructors
unstring0 and unstring1 allow to parse payload-strings.

We further define the equational rule as follows:

Combinl,t(COEl,t,i1(SSl,t(m, r)), COEl,t,i2(SSl,t(m, r)), ...,
COEl,t,it(SSl,t(m, r)) = m.

Based on the symbolic model above, we then give the definition of symbolic
pi-calculus execution of LMPC.

Definition 2 (Symbolic pi-calculus execution). Let Π be a closed process, and
let Adv be an interactive machine called the attacker. We define the symbolic
pi-execution as an interactive machine SExecΠ that interacts with Adv:

1. Start. Let P = Π, where we rename all bound variables and names (including
nonces and randomness) such that they are pairwise distinct and distinct from
all unbound ones. Let η and μ be a totally undefined partial functions from
variables and names, respectively, to terms. Let a1, a2, ..., an denote the free
names in P0. For each i, pick ri ∈ Noncesag at random. Set μ := μ

⋃

{a1 := r1, a2 = r2, ..., an := rn}. Send (r1, r2, ..., rn) to Adv.
2. Main loop. Send P to the adversary and expect an evaluation context E from

the adversary. Distinguish the following cases:
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(a) P = E[M(x) : P1]: Request two terms c, m from the adversary. If c =
evalη,μ(M), set η := η

⋃ {x := m} and P := E[P1].
(b) P = E[va.P1]: Pick r ∈ Nonceag \ range(μ), set P := E[P1] and

μ := μ(a := r).
(c) P = E[˜M(N).P1][M2(x).P2]: If evalη,μ(M1) = evalη,μ(M2), then set

P := E[P1][P2] and η := η
⋃ {x := evalη,μ(N)}.

(d) P = E[let x = D in P1 else P2]: If m := evalη,μ(D)⊥, set η := η
⋃

{x := m} and P := E[P1]; Otherwise set P := E[P2].
(e) P = E[!P1]: Rename all bound variables of P1 such that they are pairwise

distinct and distinct from all variables and names in P and in the domains
of η and μ, yielding a process ˜P1. Set P := E[˜P1|!P1].

(f) P = E[˜M(N).P1]: Request a term c from the adversary. If c =
evalη,μ(M), set P := E[P1] and send evalη,μ(N) to the adversary.

(g) In all other cases, do nothing.

We are now ready to define what uniformity properties of a bi-protocol in
the applied pi-calculus is.

Definition 3 (Bi-process). A pi-calculus Bi-process Π is defined like a protocol
but uses bi-terms instead of terms. A bi-term is a pair (left, right) of of two
(not necessarily distinct) pi-calculus terms in the protocol definition. In the left
process left(Π) the bi-terms are replaced by their left components; the right
process right(Π) is defined analogously.

Definition 4 (Uniformity properties for bi-process). We say that the bi-process
Π is uniform if for any interactive machine Adv,

SExecleft(Π),Adv ≈ SExecright(Π),Adv.

3 Computational Soundness of Secret-Sharing
in Multi-party Computation

In this section, we present a computational soundness result of preservation
of uniformity properties for our abstraction of LMPC. Our result builds on the
universally composable (UC) framework [18,21], where the security of a protocol
is defined by comparison with an ideal functionality I. The proof proceeds in
three steps, as depicted in the following.

In the first step, we prove that the uniformity properties of an applied pi-
calculus process carries over to the computational setting, where the protocol
is executed by interactive Turing machines operating on bitstrings instead of
symbolic terms and using cryptographic algorithms instead of constructors and
destructors.The first part of the proof entails the computational soundness of a
process executing the abstraction LMPC(l, t, F, sidc, adv, ˜in). A computational
implementation of the protocol, instead, should execute an actual MPC protocol.

In the second step of the proof, we show that for each l-function F , the
computational execution of our abstraction LMPC(l, t, F, sidc, adv, ˜in) is indis-
tinguishable from the execution of a ideal LMPC protocol I that solely comprises
a single incorruptible machine.
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The third step of the proof ensures that for a l-function F there is a protocol
that securely realizes I in the UC framework, which ensures in particular that
the uniformity properties of I carry over to the actual implementation.

These three steps allow us to conclude that for each abstraction
LMPC(l, t, F, sidc, adv, ˜in) there exists an implementation such that the uni-
formity properties of any process P , carry over from the execution that merely
executes a process P and executes LMPC(l, t, F, sidc, adv, ˜in) as a regular sub-
process to the execution that communicates with upon each call of a subprocess
LMPC(l, t, F, sidc, adv, ˜in). By leveraging the composability of the UC frame-
work and the realization result for LMPC in the UC framework, we finally con-
clude that if a protocol based on our LMPC abstraction is robustly safe then
there exists an implementation of that protocol that is computationally safe.

3.1 Computational Execution of a Process

We firstly give computational soundness definition of LSSS. Two properties are
expected from a secret share proof in LSSS: knowledge of any t or more valid
secret shares makes the secret easily computable (completeness), it is computa-
tionally infeasible to produce the secret with knowledge of any t − 1 or fewer
valid secret shares(soundness):

Definition 5 (Computational sound LSSS, ΥLSSS). A symbolically-sound LSSS
is a tuple of polynomial-time algorithms (K, SCon, SCom, S) with the following
properties (all probabilities are taken over the coin tosses of all algorithms and
adversaries):

1. Completeness. Let a nonuniform polynomial-time adversary A be given. Let
(crs, simtd, extd) ← K(1η). Let (l, t, m) ← A(1η, crs). Let (ss1, ss2, ...,
ssl) ← SCon(l, t, m, crs), then with overwhelming probability in η, SCom(l,
t, ssi1 , ssi2 , ..., ssit , crs) = m.

2. Soundness. Let a nonuniform polynomial-time adversary A be given. Consider
the following experiment parameterized by a bit c: Let (crs, simtd, extd) ←
K(1η). Let (l, t, m) ← ASCon(.∗),SCom(.∗)(1η, crs, simtd). Then let (ss1, ss2,
..., ssl) ← SCon(l, t, m, crs) if c=0 and (ss1, ss2, ..., ssl) ← S(l, t, simtd)
if c=1. Let guess = ASCon(.∗),SCom(.∗)(crs, simtd, ssi1 , ssi2 , ..., ssir) with
r < t. Let Pc(η) denote the following probability: Pc(η) := Pr[guess = m],
then |P0(η) − P1(η)| is negligible.

3. Length-regularity. Let polynomial-size circuit sequence ˜C(.∗), and secret share
parameters m1, m2 be given such that |m1| = |m2|. Let (crs, simtd) ← K(1η).
Let (ss1) ← SCon(l, t, m1, crs) and (ss2) ← SCon(l, t, m2, crs). Then |ss1|
= |ss2| holds with probability 1.

Since the applied pi-calculus only has semantics in the symbolic model (with-
out probabilities and without the notion of a computational adversary), we need
to introduce a notion of computational execution for symbolic protocol.

Our computational implementation of a symbolic protocol is a probabilistic
polynomial-time algorithm that expects as input the symbolic protocol Π, a set
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of deterministic polynomial-time algorithms A for the constructors and destruc-
tors in Π, and a security parameter k. This algorithm executes the protocol by
interacting with a computational adversary. In the operational semantics of the
applied calculus, the reduction order is non-deterministic. This non-determinism
is resolved by letting the adversary determine the order of the reduction steps.
The computational execution sends the process to the adversary and expects a
selection for the next reduction step.

Definition 6 (Computational implementation of the symbolic model). We
require that the computational implementation A of the symbolic model M has
the following properties:

1. A is an implementation of M (in particular, all functions Af (f ∈ C
⋃

D)
are polynomial-time computable). For bitstring m, Type(m) denotes the type
of m.

2. There are disjoint and efficiently recognizable sets of bitstrings representing
the types nonces, and payload-strings. The set of all bitstrings of type nonce
we denote Noncesk.(Here and in the following, k denotes the security para-
meter.)

3. The functions ASSl,t
are length-regular. We call an function f length regular

if |mi| = |m′
i| for i = 1, 2, ..., n implies |f(mi)| = |f(m′

i)|. All m ∈ Noncesk

have the same length.
4. AN for N ∈ Nonceag

⋃

Nonceadv returns a uniformly random r ∈ Noncesk.
5. For all m, the image of ASSl,t

(m, r) is the sequence of the type < secret share,
Type(m) >.

6. For all m, the image of ACOEl,t,i
(ASSl,t

(m, r)) is of the type < secret share,
Type(m) >.

7. For all m1, ...,mt ∈ {0, 1}∗, if m1 = ACOEl,t,i1
(ASSl,t

(m, r)), ...,
mt = ACOEl,t,it

( ASSl,t
(m, r)), we have ACombinl,t

(m1, ...,mt) = m. Else,
ACombinl,t

(m1, ...,mt) =⊥.

Definition 7 (Computational pi-calculus execution). Let Π be a closed process,
A be a computational implementation of the symbolic model. Let Adv be an
interactive machine called the adversary. We define the computational pi-calculus
execution as an interactive machine ExecΠ,A(1k) that takes a security parameter
k as argument and interacts with Adv:

1. Start. Let P be obtained from Π by deterministic α-renaming so that all bound
variables and names in P are distinct. Let η and μ be a totally undefined
partial functions from variables and names, respectively, to bitstrings. Let
a1, a2, ..., an denote the free names in P . For each i, pick ri ∈ Noncesk at
random. Set μ := μ

⋃ {a1 := r1, a2 = r2, ..., an := rn}. Send (r1, r2, ..., rn) to
Adv.

2. Main loop. Send P to the adversary and expect an evaluation context E from
the adversary. Distinguish the following cases:
(a) P = E[M(x) : P1]: Request two bitstrings c, m from the adversary. If

c = cevalη,μ(M), set η := η
⋃ {x := m} and P := E[P1].
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(b) P = E[va.P1]: Pick r ∈ Noncesk at random, set P := E[P1] and μ :=
μ(a := r).

(c) P = E[˜M(N).P1][M2(x).P2]: If cevalη,μ(M1) = cevalη,μ(M2), then set
P := E[P1][P2] and η := η

⋃ {x := cevalη,μ(N)}.
(d) P = E[let x = D in P1 else P2]: If m := cevalη,μ(D)⊥, set η := η

⋃

{x := m} and P := E[P1]; Otherwise set P := E[P2].
(e) P = E[!Q]: Let Q′ be obtained from Q by deterministic α-renaming so

that all bound variables and names in Q′ are fresh. Set P := E[Q′|!Q].
P = E[˜M(N).P1]: Request a bitstring c from the adversary. If c =
cevalη,μ(M), set P := E[P1] and send cevalη,μ(N) to the adversary.

(f) In all other cases, do nothing.

For any interactive machine Adv, we define ExecΠ,A,Adv(1k) as the interac-
tion between ExecΠ,A(1k) and Adv; the output of ExecΠ,A,Adv(1k) is the output
of Adv.

In the preceding section, we have described the trace properties and the uni-
formity properties involving LSSS proofs. We firstly formulate our soundness
result for trace properties, Namely, with overwhelming probability, a computa-
tional trace of computational pi-calculus execution is a computational instanti-
ation of some symbolic Dolev-Yao trace.

We construct a interactive machine called simulator, which simulates against
an adversary Adv the execution Exec while actually interacting with SExec.
The definition of such a simulator based on computational implementation A
will be used for the definition for computational soundness for trace properties
in the following.

Definition 8 (Hybrid pi-calculus execution). The simulator SimA based on
computational implementation A is constructed as follows: whenever it gets a
term from the protocol, it constructs a corresponding bitstring and sends it to
the adversary, and when receiving a bitstring from the adversary it parses it and
sends the resulting term to the protocol.

1. Constructing bitstrings is done using a function β, parsing bitstrings to terms
using a function τ . The simulator picks all random values and keys himself:
For each protocol nonce N , he initially picks a bitstring rN . He then trans-
lates, e.g., β(N) := rN and β(SSl,t(M,N)) := ASSl,t

(rM , rN ).
2. Translating back is also natural: Given m̃ = r̃N , we let τ(mi) := COEl,t,i1

( SSl,t(M,N)), and if c is a LMPC result that can be decrypted as m using
ACom(m̃), we set τ(c) := M .

Let Π be a closed process, SimA be a simulator based on computational imple-
mentation of the symbolic model A. Let Adv be an interactive machine called the
adversary, we define the hybrid pi-calculus execution as an interactive machine
ExecΠ,SimA

(1k) that takes a security parameter k as argument and inter-
acts with Adv. We also define ExecΠ,SimA,Adv(1k) as the interaction between
ExecΠ,SimA

(1k) and Adv; the output of ExecΠ,SimA,Adv(1k) is the output of
Adv.
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We stress that the simulator Sim does not have additional capabilities com-
pared to a usual adversary against Exec. We then give the definition of the
computational soundness for trace properties.

Definition 9 (Computational soundness for trace properties). Let A be a com-
putational implementation of the symbolic model and SimA be a simulator. If
for every closed process Π, and polynomial-time interactive machine adv, A has
to satisfy the following two properties:

1. Indistinguishability: ExecΠ,A,adv(1k) ≈ ExecΠ,SimA,adv(1k), which means the
hybrid execution is computationally indistinguishable from the computational
execution with any adversary.

2. Dolev-Yaoness: The simulator SimA never (except for negligible probability)
sends terms t to the protocol with S �→ t where S is the list of terms SimA

received from the protocol so far.

then A is a computationally sound model for trace properties.

Further, we give the definition of the computational soundness for unifor-
mity properties. We rely on the notion of termination-insensitive computational
indistinguishability (tic-indistinguishability) to capture that two protocols are
indistinguishable in the computational world [22].

Definition 10 (Tic-indistinguishability). Given two machines M , M ′ and a
polynomial p, we write Pr[(M | M ′) ⇓p(k) x] for the probability that the inter-
action between M and M ′ terminates within p(k) steps and M ′ outputs x. We
call two machines A and B termination-insensitively computationally indistin-
guishable for a machine Adv (A ≈Adv

tic B) if for for all polynomials p, there is a
negligible function η such that for all z, a, b ∈ [0, 1]∗ with a 	= b,

Pr[(A(k) | Adv(k)) ⇓p(k) a]+ Pr[(B(k) | Adv(k)) ⇓p(k) b] 
 1 + η(k)
Here, z represents an auxiliary string. Additionally, we call A and B

termination-insensitively computationally indistinguishable A ≈tic B if we have
A ≈Adv

tic B for all polynomial-time machines Adv.

Based on tic-indistinguishability, the definition of the computational sound-
ness for uniformity properties is given as follows.

Definition 11 (Computational soundness for uniformity properties). Let A be
a computational implementation of the symbolic model and SimA be a simulator
based on A. If A is a computational soundness model for trace properties, and for
every uniform bi-process Π, Execleft(Π),SimA

(1k) ≈tic Execright(Π),SimA
(1k),

then A is a computational soundness model for uniformity properties.

Lemma 1. Assume that the PROG-KDM secure encryption scheme AE, the
unforgeable signature scheme SIG, and the LSSS proof system ΥLSSS satisfy
the requirements in Definition 4. (AE, SIG, ΥLSSS) is a computationally sound
model for uniformity properties.
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We now proceed to construct a generic ideal functionality Isid,l,t,F that serves
as an abstraction of LMPC. This construction is parametric over the session
identifier sid, and the function F to be computed. The ideal functionality receives
the (secret) input message of party i from port ine

i,sid along with a session
identifier. The input message is stored in the variable xi and the state statei of i
is set to input. Both the session identifier and the length of the received message
are leaked to the adversary on port outai,sid.

Definition 12 (Ideal model for LMPC, ILMPC). We construct an interactive
polynomial-time machine Isid,l,t,F , called the LMPC ideal functionality, which
is parametric over a session identifier sid, LSSS threshold (l, t), and a poly-
time algorithm F . Initially, the variables of Isid,l,t,F are instantiated as follows:
∀i ∈ [1, n] : statei := input, ri := 1. Upon an activation with message m on port
p, Isid,l,t,F , behaves as follows.

1. Upon (ine
i,sid(m, sid′)) If sid = sid′ and statei = input, then set statei :=

compute and xi := m. If statei = input, then send (sid′, |m|) on port ina
i,sid.

2. Upon (ina
i,sid(deliver, sid′)), if ∀j ∈ [1;n] : statej = compute and ri = rj,

then compute (y1, y2, ..., yn) ← SCon(F (x1, x2, ..., xn)) and ∀j ∈ [1, n] :
statej := deliver. If statei = deliver, set ri := ri + 1, statei := input
and send yi on port outei,sid.

For defining uniformity property-based computational soundness for ideal
model Isid,l,t,F , we modify the scheduling simulator Sim and hybrid compu-
tational execution as follow. Simulator SimA,I simulates against an adversary
Adv the execution Exec while interacting with SExec, in which A is a compu-
tational implementation of the symbolic model and I is a family of LMPC ideal
functionalities.

We also construct context, called stateγ . In our abstraction, every party of a
LMPC can be in the following states: init, input, compute, and deliver. In the
state init, the entire session is not initialized yet; in the state input, the party
expects an input; in the state compute, the party is ready to start the main
computation; and, in the state deliver, the party is ready to deliver secret share.
These states are stored in a mapping state (which is maintained by SimA,I) such
that stateγ(i) is the state of party i in the session.

Definition 13 (Hybrid pi-calculus execution with ideal model for LMPC). Let a
mapping stateγ(i) from internal session identifiers and party identifiers to states
given. We assign a process to each state stateγ .

1. Upon receiving the initial process P , Enumerate every occurrence LMPC(l, t,
F, sidc, adv, ˜in) with an internal session identifier γ, and tag this occurrence
LMPC(l, t, F, sidc, adv, ˜in) in P with γ. Let initially delivery(γ, i) := false,
and let stateγ(i) := init for all i ∈ [1, n]. For any γ, let corrupt(γ, i) := true,
if the corresponding ini in LMPC(l, t, F, sidc, adv, ˜in) is free; otherwise let
corrupt(γ, i) := false. In addition store all channel names in the partial
mapping μ.
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2. Main loop: Send P to the adversary Adv. Then, expect an evaluation context
E . We distinguish the following cases for E.
(a) E schedules the initialization and evaluation context is P = E[LMPC(l,

t, F, sidc, adv, ˜in)]: Set stateγ(i) := init for all i ∈ [1, n]. The internal
state of Isessionid(γ),l,t,F is set to input.

(b) E schedules an input to a corrupted party i and evaluation context is
P = E[LMPC(l, t, F, sidc, adv, ˜in)]: Request a bitstring m from the
adversary. Check whether m = (c, s, input,m0), sessionid(γ) := s and
stateγ(i) := input, If the execution accepts the channel name c, we proceed
and check wether μ(ini) is defined and c = μ(ini); if μ(ini) is not defined
set μ(ini) := c. If the check fails, abort the entire simulation. Send (m0, s)
to Isessionid(γ),l,t,F upon port ine

i,s, Set stateγ(i) := compute.
(c) E schedules an input to an honest party i and evaluation context

is P = E[c̃(x, s).Q][LMPC(l, t, F, sidc, adv, ˜in)]: Check whether there
is an i ∈ [1, n] such that μ(c) = μ(ini), stateγ(i) := input, and
sessionid(γ) := μ(s). Send (μ(x), μ(s)) to Isessionid(γ),l,t,F upon port
ine

i,s, Set stateγ(i) := compute.
(d) Start the main computation upon the first delivery command for a party

i and evaluation context: P = E[LMPC(l, t, F, sidc, adv, ˜in)]: Check
whether stateγ(i) := compute for all i ∈ [1, n]. Set stateγ(i) := deliver
for all i ∈ [1, n].

(e) The delivery command for a party i is sent and evaluation context: P =
E[LMPC(l, t, F, sidc, adv, ˜in)]: Request a bitstring m = (c, s, deliver)
from the adversary. Check whether s = sessionid(γ), and stateγ(i) =
deliver and there is an i ∈ [1, n] such that μ(ini) = c. Set delivery(γ, i) :=
true, stateγ(i) = input, receive m′, sid from Isessionid(γ),l,t,F on port
outei,s and forward m′ to adversary.

(f) The output of party i is delivered to an honest party and evalua-
tion context: P = E[c(x).Q][LMPC(l, t, F, sidc, adv, ˜in)]: Check whether
there is an i such that μ(c) = μ(ini), and stateγ(i) = deliver.
Set delivery(γ, i) := true, stateγ(i) = input, receive m′, sid from
Isessionid(γ),l,t,F on port outei,sessionid(γ)

and set μ(x) = m′.

Let Π be a closed process, SimA,I be a simulator based on computational
implementation of the symbolic model A and I be a family of Ideal model for
LMPC. Let Adv be an polynomial-time interactive machine, we define the hybrid
pi-calculus execution as an interactive machine ExecΠ,SimA,I

(1k) that takes
a security parameter k as argument and interacts with Adv. We also define
ExecΠ,SimA,I ,Adv(1k) as the interaction between ExecΠ,SimA,I

(1k) and Adv; the
output of ExecΠ,SimA,I ,Adv(1k) is the output of Adv.

Then we can give the definition of uniformity property-based computational
soundness for LMPC ideal model.

Definition 14 (Uniformity property-based computational soundness for LMPC
ideal model, ILMPC). Let A be computational implementation of the symbolic
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model and I be a family of ideal model for LMPC. If for every closed process
Π, and polynomial-time interactive machine adv, ExecΠ,SimA,ILMPC,adv

(1k) ≈
ExecΠ,SimA,adv(1k), then (A, I) is a computationally sound ideal model for
LMPC.

We can get the computation soundness result for ideal model for LMPC.

Lemma 2. Assume that the PROG-KDM secure encryption scheme AE, the
unforgeable signature scheme SIG, and the LSSS proof system ΥLSSS satisfy the
requirements in Definition 5, the family of ideal model for LMPC ILMPC satisfy
the requirement in Definition 12, (AE, SIG, ΥLSSS, ILMPC) is a computation-
ally soundness ideal model for LMPC.

3.2 Computational Soundness Results

We now state the main computational soundness result of this work: the robust
safety of a process (specifically uniformity properties) using non-interactive prim-
itives and our LMPC abstraction carries over to the computational setting, as
long as the non-interactive primitives are computationally sound. This result
ensures that the verification technique from Sect. 3 provides computational safety
guarantees. We stress that the non-interactive primitives can be used both within
the LMPC abstractions and within the surrounding protocol.

In order to realize the definition of computation soundness for uniformity
properties in UC framework, we firstly give a strong definition for the security
requirement of UC realization.

Definition 15 (Computational soundness of UC realization for LMPC). Let A
be a computational implementation of the symbolic model, and I be an ideal
functionality family, we say that real protocol family ρ securely realizes I if

1. (Computational soundness for trace properties) For any adversary Adv, there
exists an ideal-process adversary S such that for any LMPC Π and environ-
ment Z,
ExecI(Π),S,Z ≈ Execρ(Π),Adv,Z .

2. (Computational soundness for uniformity properties) For any LMPC Π1, Π2

and environment Z, if for any ideal-adversary S such that
ExecI(Π1),S,Z ≈ ExecI(Π2),S,Z ,
then for any adversary Adv,
Execρ(Π1),Adv,Z ≈ Execρ(Π2),Adv,Z

Finally, we can get the computation soundness result for our abstraction for
LMPC.

Theorem 1. Assume that the PROG-KDM secure encryption scheme AE, the
unforgeable signature scheme SIG, and the LSSS proof system LSSS satisfy the
security requirements in Definition 5, also the family of ideal model for LMPC
ILMPC satisfy the requirement in Definition 12, Assume the existence of sub-
exponentially secure one-way functions. Then for all ideal function I ∈ ILMPC,
there exists a non-trivial real LMPC protocol ρ ∈ ρLMPC secure realizes I in the
presence of malicious, static adversaries.
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4 Conclusions

We have presented the first computational soundness theorem for multi-party
computation based on linear secret-sharing scheme (LMPC). This allows to ana-
lyze protocols in a simple symbolic model supporting encryptions, signatures,
and secret-sharing schemes; the computational soundness theorem then guaran-
tees that the uniformity properties shown in the symbolic model carry over to
the computational implementation.
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Abstract. We introduce Attribute-Based Signatures with Controllable
Linkability ABS-CL. In general, Attribute-Based Signatures allow a
signer who possesses enough attributes to satisfy a predicate to sign
a message without revealing either the attributes utilized for signing or
the identity of the signer. These signatures are an alternative to Identity-
Based Signatures for more fine-grained policies or enhanced privacy. On
the other hand, the Controllable Linkability notion introduced by Hwang
et al. [14] allows an entity in possession of the linking key to deter-
mine if two signatures were created by the same signer without breaking
anonymity. This functionality is useful in applications where a lower level
of anonymity to enable linkability is acceptable, such as some cases of
vehicular ad-hoc networks, data mining, and voting schemes. The ABS-
CL scheme we present allows a signer with enough attributes satisfying
a predicate to sign a message, while an entity with the linking key may
test if two such signatures were created by the same signer, all without
revealing the satisfying attributes or the identity of the signer.

Keywords: Anonymity · Privacy · Group signatures · Attribute-Based
Signatures · Linkability · Controllable Linkability

1 Introduction

In traditional digital signature schemes, the recipient of a signature is convinced
that a particular signer associated with some identity has authenticated the
received message. Attribute-Based Signatures (ABS) were first proposed by Maji
et al. [17], in which messages are signed with respect to a signing policy expressed
as a predicate. In an ABS scheme a valid signature can be generated only if the
signer possesses enough attributes to satisfy the predicate, and the signature
does not reveal the identity of the signer nor the attributes she used to create
it [17,18]. Hence, the recipient is instead convinced that some signer possessing
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enough attributes to satisfy the predicate has authenticated the message, as
opposed to a particular identity.

As explained in [2,13], privacy is characterized by the notions of anonymity
and unlinkability. The former refers to the property that given a single signature
the identity of the signer is concealed in the message, while the latter refers to
the property that given two signatures an unauthorized entity cannot determine
if they were created by the same signer.

Consider a situation in which users are permitted to join a multi-party com-
putation if and only if the possess certain attributes. An instance of this could
be a voting scheme where participants satisfy a predicate over their attributes.
Attribute-Based Signatures are a natural candidate to attempt to solve this
problem, but participants could easily abuse the system by double-voting, or by
signing messages on behalf of other users (who might not have enough attributes
to satisfy the predicate themselves). Since there is no relation amongst signa-
tures one cannot prevent or detect the previously mentioned cases. Therefore,
we would like to introduce a notion of linkability to attribute-based signatures.
We want to add such a property while preserving a sense of anonymity, hence
we will be adjusting the security notions corresponding to our functionality.

Intuitively, given two signatures σ1←Sign(m1, SK1) and σ2←Sign(m2, SK2),
onmessagesm1 andm2, andusing signingkeysSK1 andSK2,wewanta functional-
ity Link(σ1, σ2) that outputs 1 if SK1 = SK2, and 0 otherwise, i.e., we want to indi-
cate if the signatures were created by the same signer, while preserving anonymity.

In essence the problem that we want to focus on is that of designing an
ABS scheme with a linkability functionality. However - in contrast with the
functionality considered in [7] - we want linkability to be available only for certain
trusted entities.

1.1 Related Work

There have been several variants of ABS proposed in the literature, includ-
ing schemes supporting different expressiveness for the predicates, such as non-
monotonic [19], monotonic [18], and threshold predicates [5,9,12,22]. The case of
multiple attribute authorities has been considered [7,17,19], where each attribute
authority would be responsible for a subset of the universe of possible attributes.
The multi-authority case first relied on the existence of a central trusted author-
ity, and soon decentralized schemes were proposed [5,8,20].

Various concerns with respect to ABS have been addressed in the literature,
such as revocation [16,23]. The notion of traceability has been covered [8,10],
which adds a mechanism allowing a tracing authority to recover the identity of
the signer if needed. A recent work on linkability of ABS [7] allows the signer
to decide at signing time if her signatures can be linked with respect to a given
recipient, therefore referred to as user-controlled linkability.

Aside from ABS, there are two main cryptographic solutions to preserve
signer privacy in the literature. These are pseudonym systems [21] and group
signatures [6]. The approach of [21] supports some anonymity, but signature
links are publicly verifiable by anyone. Hence, this may be thought of as a public
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linkability functionality. In [6], the capability to link is given only to a trusted
entity, allowing more control over link disclosure. However, involving a single
entity to check links introduces a bottleneck and requires on-line processing.
This may be considered a private linkability functionality.

We will focus on a system where information linking the signatures is not
publicly available. Instead, it is controlled by trapdoors, and the linking func-
tionality may be delegated to reduce the bottleneck effect. We intend to add this
functionality to an ABS scheme.

1.2 Contribution

Our contribution is a formal security model for Attribute-Based Signatures with
Controllable Linkability (ABS-CL), where signatures can be anonymously linked
if in possession of a linking key. This key is managed by a trusted entity called
a linker.

One ABS scheme with a linkability functionality has already been proposed in
the literature [7]. It does not require a linking key. Instead, anyone can determine
if two signatures were created by the same signer with respect to a certain
recipient tag. In that sense, the scheme in [7] is publicly verifiable, and the
linking functionality is comparable to that of Direct Anonymous Attestation
schemes [4]. Our contribution is the first Controllable Linkability scheme in the
ABS setting, where a linking key is needed to determine if two signatures were
created by the same signer. Hence, our scheme is rather privately verifiable, and
the added functionality is comparable to that in [13,14].

Depending on the application environment, the privacy needs of users and
service providers may vary. For example, in ABS [17,18] neither identifying infor-
mation nor linking information is revealed from the signatures, while in [7] no
identifying information is revealed, but there is a user-provider negotiation on
whether there will be no information linking signatures or if linkability may
be checked by anyone. Our scheme resides conceptually in-between these two:
the linking information is revealed not to everyone, but only to those entities
possessing the linking-key.

Thus, our scheme has applications in existing services where ABS could be
used and where linkability is required, such as vehicular ad-hoc networks, and
data mining, to mention some. In these application scenarios, it is unnecessary,
and even undesirable for privacy reasons, that linkability be publicly possible.
Instead, users may authenticate through ABS, hiding their identifiable infor-
mation, but still revealing links between signatures to the appropriate entities
(authorities or data mining service providers) authorized to hold linking keys.

It may also be implemented in new services. One could imagine for example,
as mentioned previously, a voting scheme where voters are required to possess
certain attributes to participate, but where some authorized entities are in charge
of preventing double-voting. This clearly cannot be achieved by ABS alone, since
linking is impossible. Nor is it achievable by [7], since such signatures either reveal
no linking information or reveal it to everyone, including potential coercers.
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Our ABS-CL scheme and security notions are described in the case of multiple
attribute authorities. Finally, we provide a provably secure instantiation of the
scheme, with a single attribute authority. The construction is based on one of
the ABS instantiations in [18], to which we add the linkability functionality with
techniques inspired by [14,15].

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2 we establish some
preliminaries and computational assumptions. In Sect. 3, we define the concept
of Attribute-Based Signatures with Controllable Linkability, together with its
syntax, and security notions. We propose a construction of an ABS-CL scheme
in Sect. 4, followed by details of its correctness and sketches for the security
proofs in Sect. 5. We conclude the paper in Sect. 6.

2 Preliminaries

We introduce briefly the concepts needed for our scheme.

Bilinear Pairings. Groups with Bilinear Pairings.
Let G,H,GT be cyclic multiplicative groups of order p prime. Let g and h

be generators of G and H, respectively.
Then, e : G × H → GT is a bilinear pairing if e(g, h) is a generator of GT ,

and e(gx, hy) = e(g, h)xy, for all x, y.

NIZK Proofs. Non-Interactive Zero-Knowledge Proofs.
A Non-Interactive Zero-Knowledge scheme Π is comprised of the following

main algorithms:
Π .Setup: Outputs a common reference string CRS and extraction key xk.
Π .Prove: On input (CRS,Φ,w), where Φ is a Boolean formula and Φ(w) = 1,

it outputs a proof π.
Π .Verify: On input (CRS,Φ, π), it outputs a Boolean value.
Π .Extract: On input (CRS, xk, π) it outputs a witness w.
Π .SimSet: Outputs a common reference string CRSsim and a trapdoor θ.
Π .SimProve: On input (CRSsim, Φ, θ), for a possibly false statement Φ, it

outputs a simulated proof πsim but without any witness.
In addition, we require completeness, soundness, and zero-knowledge. Com-

pleteness requires that honestly generated proofs be accepted, while soundness
that it is infeasible to produce convincing proofs for false statements, and zero-
knowledge that proofs reveal no information about the witness used.

2.1 Computational Assumptions

For the following definitions, let G,H,GT be cyclic multiplicative groups of order
p prime; let g, and h, be generators of G and H, respectively; and let e : G×H →
GT be a bilinear pairing. Hereby are the assumptions needed for the security of
our proposed protocol.
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Definition 1. DDH. Decisional Diffie-Hellman
Let x and y, be selected randomly from Z

∗
p. The Decisional Diffie-Hellman

(DDH) problem is to decide if z = xy, for a given triplet (gx, gy, gz) ∈ G
3.

We say that the DDH assumption holds in G if any polynomial-time adver-
sary A has a negligible advantage in solving the DDH problem.

Definition 2. q-SDH. q-Strong Diffie-Hellman
Let x be selected randomly from Z

∗
p. The q-Strong Diffie-Hellman (q-

SDH) problem is to compute a pair (g1/(x+y), y), for a given (q+3)-tuple
(g, gx, . . . , gxq

, h, hx).
We say that the q-SDH assumption holds in (G,H) if any polynomial-time

adversary A has a negligible advantage in solving the q-SDH problem.

Definition 3. SXDH. Symmetric eXternal Diffie-Hellman
Let G,H,GT be as described above, we say that the Symmetric eXternal

Diffie-Hellman (SXDH) assumption holds in (G,H) if the Decisional Diffie-
Hellman assumption holds in both groups G and H.

3 ABS with Controlled-Linkability

An Attribute-Based Signature with Controllable Linkability scheme is parame-
trized by a universe of attributes A, and message space M. Users are described by
attributes rather than their identity. The scheme allows a user, whose attributes
satisfy a predicate of his choice, to create a valid signature of a message under
that predicate. Attribute Authorities are required to distribute attribute signing
keys appropriately. The predicate is up to the choice of the signer. The identity
of the signer should remain hidden amongst all those that may possess enough
attributes to satisfy the predicate.

Let A be the universe of possible attributes, and let M be the message space.
An attribute predicate ψ over A is a monotone Boolean function, whose inputs
are attributes over A. We say that an attribute set A ⊂ A satisfies the policy
ψ if ψ(A) = 1. Also, we say that an attribute a ∈ A is needed to satisfy the
predicate ψ if ψ(A\{a}) = 0.

We will associate each user with a tuple (i, τi), containing her index i, and
a unique tag τi. Similarly, we associate each attribute authority with a tuple
(j, APKj , ASKj), containing his index j, public key APKj , and secret key
ASKj . We will use PK to denote the global public key PK = (TPK,

⋃

APKj).
We will often assume the security parameter K to be implicit in the algorithms,
and thus omit it as an argument.

The scheme assumes that there are several authorities with various levels
of trust: An issuer, which sets up the whole system and must be fully trusted;
a linker, given the ability to link signatures; and potentially multiple attribute
authorities, some of which may be corrupted. In our scheme, we focus on the
case of only one attribute authority.
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The scheme consists of the following algorithms:

– TSetup(K). Outputs public parameters TPK, and a master linking key mlk,
which is delegated to the linking authority. This algorithm is run by the issuer,
and serves to set up the whole system.

– AttSet(K). Outputs an attribute authority public key/private key pair
(APK,ASK). This is run by the attribute authority. APK is made public,
and ASK will be used to generate user signing keys from attributes managed
by this authority.

– AttGen(ASK, A, τ). Outputs a user signing key SKA,τ , corresponding to set
A and a string uniquely associated to the user requesting the signing key. This
algorithm is run by the attribute authority to generate attribute-associated
signing keys for users. τ is central to our linking function.

– AttVer(APK,A, τ, SKA,τ ). Outputs a Boolean value. This algorithm is
needed to verify that keys provided by attribute authorities to users are valid
with respect to the attribute authorities’ public keys.

– Sign(PK,ψ,m, SKA,τ ). Where ψ(A) = 1, outputs a signature σ of message
m. This is the signing algorithm itself, run by a user with a signing key that
is adequate relative to the predicate.

– Veri(PK,ψ,m, σ). Outputs a Boolean value. This is just signature verifica-
tion.

– Link(PK, (m1, ψ1, σ1), (m2, ψ2, σ2),mlk). If σ1 and σ2 are valid signatures of
messages m1 and m2 under predicate ψ, it outputs a Boolean value. This is
the linking algorithm. If the signatures are not valid, linking is a moot point.
If they are both valid, this algorithm should indicate whether the same user
created them or not. Note that the linking key mlk is required as input.

The correctness of the ABS-CL scheme and the property of linkability, are
formally defined next.

Definition 4. Correctness (of signing)
Correctness (of signatures) requires that signatures generated by an honest

user should be verified correctly. That is, for all TPK ← TSetup, all public keys
APK ← AttSet, all messages m ∈ M, all policies ψ, all attribute sets A ⊂ A

such that ψ(A) = 1, all signing keys SKA,τ ← AttGen(ASK, A, τ), and all
signatures σ ← Sign(PK,ψ,m, SKA,τ ), we have that Veri(PK,ψ,m, σ) = 1.

Definition 5. Correctness (of linking)
Correctness (of linkability) requires that signatures produced by the same user

should link correctly. That is, for valid signatures σi produced by τi, and σj

produced by τj, where τi = τj, we have that

Link(PK, (mi, ψi, σi), (mj , ψj , σj),mlk) = 1.
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3.1 Unforgeability

Unforgeability refers to the property that a valid signature σ for a message m
under a policy ψ cannot be efficiently created from public data alone. Only users
that possess a signing key SKA,τ for an attribute set A that satisfies ψ(A) = 1
and tag τ should be able to create valid signatures.

We want to prevent users from signing under predicates ψ, which they do
not hold enough attributes to satisfy even in cases of user collusions. These are
called signature forgeries.

In addition, we want to prevent an adversary from producing a valid signature
that was not created using the secret keys from an honest user, but does link to
that honest user. We call this a link forgery.

Definition 6. Unforgeability
An ABS-CL scheme is said to be unforgeable if the advantage of a polynomial-

time adversary A is negligible in the following experiment:
Setup:

The challenger runs (TPK,mlk) ← TSetup(K), and gives (TPK,mlk) to
the adversary.
Capabilities of the Adversary:

1. Can ask for the signing keys of any attribute set under any attribute authority
or user identity of his choice.

2. Can ask for the secret keys of any attribute authority of his choice.
3. Has access to a signing oracle that he may query on behalf of any user, on

messages and predicates of his choice.

Output:
Case “forging signature”: He outputs a signature σ∗ on message m∗ with

respect to predicate ψ∗. With the restrictions that (m∗, ψ∗) was never queried to
the signing oracle, and there is at least one non-corrupted attribute needed to
satisfy ψ∗, i.e., there exists a∗ /∈ CAttr such that ψ∗(A\{a∗}) = 0.

He wins the game if σ∗ is a valid signature.
Case “forging link”: With the same restrictions as the previous game, he

outputs a signature σ∗ on message m∗ with respect to predicate ψ∗, along with
a message m′, a predicate ψ′, and the τ of an honest user.

He wins the game if

Link(PK, (m∗, ψ∗, σ∗), (m′, ψ′, σ′),mlk) = 1,

where σ′ is a valid signature of message m′ w.r.t. ψ′, produced by the user asso-
ciated to τ .

3.2 Anonymity

Anonymity refers to the property that an honest user τ who created a signa-
ture σ, cannot be efficiently identified as the author of the signature. One can
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only infer some information about the identity through the linking functionality,
when one possesses the master linking key mlk and a signature by user τ .

This notion requires that a signature should reveal no information about the
identity of the signer, nor the attributes used to sign. Given a valid signature
σ, generated by one of two honest users chosen by the adversary, it should be a
hard problem to correctly guess the generator of σ.

For clarity we will be splitting this notion into two games, depending on
whether or not the adversary has access to the master linking key. When the
adversary does have mlk, he is given a signature from one of two possible honest
users, and we want to ensure that he is neither able to gain any information
regarding the attributes used, nor is he able to distinguish which of the two
signers created the signature, provided he has not previously obtained signatures
from said signers. When the adversary does not have mlk, we want the same
guarantees, this time regardless of any signatures he may have already observed.

We consider first the case when the adversary does not have access to mlk. If
the adversary were able to gain information on the attributes used in a signature,
then by careful choice of A0 and A1 on the challenge, he would be able to
distinguish between the two signatures and gain some advantage in the game.

Definition 7. Anonymity (without the master linking key)
An ABS-CL scheme is said to be anonymous if the advantage of a polynomial-

time adversary A is negligible in the following experiment:
Setup:

The challenger runs (TPK,mlk) ← TSetup(K), and gives TPK to the
adversary.
Capabilities of the Adversary:

1. The adversary has full control over all attribute authorities, and has access
to their secret keys.

2. Has access to a linking oracle, but may not query it on the issued challenge.

Challenge:
The adversary may use his capabilities, and outputs

(ψ,m, τ0,A0, SKA,τ 0, τ1,A1, SKA,τ 1, APK),

such that AttVer(APK,A, τi, SKA,τ i) = 1, and ψ(Ai) = 1, for i = 0, 1.
The challenger chooses randomly b ← {0, 1}, and the adversary receives a

valid signature σb produced from (Ab, SKAb,τb).
The adversary may then continue using his capabilities.

Output:
Finally, the adversary outputs b∗, and wins the game if b∗ = b.

Now, we cover the security notion that should be achieved when the adversary
possesses the master linking key mlk. This corresponds to the case of an honest-
but-curious linker, where we assume that he is not colluding with any attribute
authority, and we want to achieve that from signatures of non-revealed users the
linker is not able to infer any information on the identity of the signer.
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Definition 8. Anonymity (with the master linking key)
An ABS-CL scheme is said to be anonymous if the advantage of a polynomial-

time adversary A is negligible in the following experiment:
Setup:

The challenger runs (TPK,mlk) ← TSetup(K), and gives (TPK,mlk) to
the adversary.
Capabilities of the Adversary:

1. Has access to a signing oracle that he may query in behalf of any user, on
messages and predicates of his choice.

Challenge:
The adversary may use his capabilities, and outputs (ψ,m, τ0,A0, τ1,A1),

where ψ(Ai) = 1 for i = 0, 1.
The restrictions are that τ0 and τ1 must be honest users, and neither τ0 nor

τ1 were queried to the signing oracle.
The challenger chooses randomly b ← {0, 1}, and the adversary receives a

valid signature σb produced from (τb,Ab).
The adversary may then continue using his capabilities, while respecting the

indicated restrictions.
Output:

The adversary outputs b∗, and wins the game if b∗ = b.

4 Construction of ABS-CL

Intuition. Our construction is basically a modification of the first scheme
from [18], in order to allow it to support the kind of linkability feature we want.
Thus, the intuition behind our scheme is quite similar to theirs. We recap it now,
in the case of a single attribute authority.

We first look at how the knowledge of attributes is conveyed through the
signing process. Letting a be an attribute and τ be the tag associated to a
unique user, an attribute key is a simple digital signature on the message (a, τ)
under the attribute authority’s private key, which is a signing key. This binds the
attribute a to the user via the user-specific tag τ . In order to create a signature
under some predicate ψ, the user basically proves in a witness indistinguishable
way that it knows attribute keys corresponding to a subset of attributes sufficient
to satisfy ψ. In particular, the proof must convince the verifier that the attribute
keys are valid signatures, all binding necessary attributes to the same τ , in order
to prevent collusions of users. Therefore, a signature is basically a NIZK proof.

We now explain how to bind a message m to the proof. This is done by
slightly modifying the predicate ψ to satisfy. Instead of proving that she knows
enough of the necessary signatures on attributes bound to τ in order to satisfy ψ,
the signer proves that she knows either those, or a signature under the trustee’s
signing key on a unique string - referred to in the sequel as a pseudo-attribute -
that encodes the pair (m,ψ). Of course, signatures of the latter form are assumed
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to never be issued by the trustee. Therefore, any verifier is convinced that the
signer indeed possesses an adequate set of attribute keys, satisfying ψ. What
has been gained however, is that the proof will only be valid when verified with
message m, since m is now encoded in the modified predicate.

We now finally give some intuition as to how the linking mechanism works.
The idea is to append to the proof an encryption of a piece of data D(τ) that
uniquely determines τ . The NIZK proof is also modified to show that the signer
created this encryption, and that the τ value involved is the same as that in the
attribute keys. This encryption is instantiated in such a way that anybody in
possession of the linking key can verify whether two ciphertexts contain the same
value of D(τ), without actually obtaining the value itself. However, anybody
not possessing this key still sees nothing. This preserves the anonymity of the
signature fully, when not holding the linking key. Our instantiation accomplishes
this using bilinear maps, using a technique inspired by [14,15]. Essentially, the
value D(τ) will for us simply be Cτ for a group element C.

Of course, as has already been mentioned, we have to accept that some
anonymity is sacrificed to the linking entity. It is inevitable that any form of
linking functionality will do this.

Construction. We denote the universe of attributes with A, and the universe
of pseudo-attributes with A

′. In our construction we assume that A ∪ A
′ ⊂ Z

∗
p

and that A ∩ A
′ = ∅.

We now proceed to explain our instantiation of an ABS-CL scheme. This
construction is for the case of one honest attribute authority.

The signature scheme we use both at the trustee and to run the attribute
key generation is the Boneh-Boyen scheme [3]. It is known to be secure under
the q-SDH assumption in bilinear groups. As for the NIZK, we can use that of
Groth-Sahai [11], which can be instantiated under the SXDH assumption. Using
this instantiation makes sense, as it will be apparent that we need DDH to hold
in the group G in a bilinear system (g, h,G,H,GT , e).

– TSetup(K). Chooses the bilinear map parameters (g, h,G,H,GT , e), com-
putes a common reference string CRS for the Groth-Sahai proof system, and
chooses a random ξ ← Z

∗
p and a random λ ← G

∗. Then, computes Λ := λξ

and the linking key mlk := hξ. Finally, runs the Boneh-Boyen signature key
generation to obtain (TV K, TSK).
Outputs TPK = (g, h,G,H,GT , e, CRS, λ, Λ, TV K), mlk, and TSK. TPK

is public, mlk is to be given to a linking authority, and TSK remains secret.
– AttSet(K). Chooses a random ASK := (b, c, d) ← Z

∗
p
3 and computes

APK := (B,C,D) := (gb, gc, gd) ∈ G
3.

Outputs (APK,ASK). APK is public and ASK is private to the attribute
authority.

– AttGen(ASK, A ⊂ A, τ). Chooses random ra ← Z
∗
p for all a ∈ A, and

outputs

SKA,τ := {(Sa, ra)}a∈A := {(h(1/(b+c·τ ||a+dra), ra)}a∈A ∈ (H × Z
∗
p)

|A|.
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SKA,τ is privately given to the user associated to τ .
– AttVer(APK,A ⊂ A, τ, SKA,τ ). Parses SKA,τ as {(Sa, ra)}a∈A.

Outputs 1 if e(BCτ ||aDra , Sa)=e(g, h) for all a ∈ A, and 0 otherwise. Note
that the algorithm can also be applied with a single attribute/signature pair.

– Sign(PK,ψ,m, SKA,τ ). Assume that ψ(A) = 1.
Parses SKA,τ as {σa := (Sa, ra)}a∈A.
Chooses random γ ← Z

∗
p, and computes E1 := λγ , E2 := CτΛγ .

Define ψ̃(·) = ψ(·) ∨ am,ψ where am,ψ ∈ A
′ is a pseudo-attribute.

Let {a1, . . . , an} denote the attributes that appear in the predicate ψ̃.
For each i let V Ki be APK if ai ∈ A, or TV K otherwise.
For each i let σ̃i be σai

if ai ∈ A, or an arbitrary value otherwise.
Let Φ[V K,m,ψ] denote the Boolean expression:

∃τ, σ1, . . . , σn, γ : ψ̃({ai : AttVer(V Ki, ai, τ, σi) = 1}) = 1 ∧
∧ E2C

−τ = Λγ ∧ E1 = λγ .

Computes the proof

Σ ← Groth.Prove(CRS;Φ[V K,m,ψ]; (τ, {σ̃i}n
i=1, γ), E1, E2).

Outputs σ = (Σ,E1, E2) as the signature.
– Veri(PK,ψ,m, σ). Computes Groth.V eri(CRS;Φ[V K,m,ψ];Σ,E1, E2).

Outputs the result.
– Link(PK, (m′, ψ′, σ′), (m′′, ψ′′, σ′′),mlk). Outputs 1 if e(E′

1,mlk) ·e(E′′
2 , h) =

e(E′′
1 ,mlk) · e(E′

2, h), and 0 otherwise.

This completes the description of our instantiation.

5 Correctness and Security Proofs of the ABS-CL
Construction

Correctness of the signature follows from correctness of the first instantiation
from [18]. We cover the additional details produced by adding the controllable
linkability.

The main challenge in signing is to express the logic of the expression Φ in
the Groth-Sahai system. We let < Z > denote the formal variable corresponding
to a commitment of the element Z in Groth-Sahai. Whether Z is in G or H will
be clear from context.

If we take as a starting point the Groth-Sahai proof for the predicate in [18],
to enhance this scheme with the desired functionality we must prove additionally,
and simultaneously, that

∃γ : (E2C
−τ ) = Λγ ∧ E1 = λγ .

Since we want E1 and E2 to be public, the values h, λ, and Λ are already
public, and we must keep secret γ and Cτ , then it suffices to commit to < hγ >
and < Cτ > and prove in the Groth-Sahai system the following equations:

e(E1, h) = e(λ,< hγ >), and
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e(E2, h) = e(< Cτ >, h) · e(Λ,< hγ >).

These equations prove that E1 and E2 have the correct form: first that within
E2 there is a factor Cτ , where Cτ is that used in the rest of the proof, and
second that the remaining factor of E2 is an exponentiation of Λ to the value
ξ = logλ(E1).

Correctness of the Link algorithm for honestly generated signatures is easily
checked. Given two valid signatures created by users with tags τ ′ and τ ′′, we
have that Link outputs 1 if and only if

e(Cτ ′ · Λγ′
, h)e(λγ′

, hξ)
−1

= e(Cτ ′′ · Λγ′′
, h)e(λγ′′

, hξ)−1,

e(Cτ ′, h)e(λξγ′
, h)e(λ, h)−γ′ξ = e(Cτ ′′, h)e(λξγ′′

, h)e(λ, h)−γ′′ξ,

e(Cτ ′, h) = e(Cτ ′′, h),

which implies that Cτ ′ = Cτ ′′, and hence τ ′ = τ ′′, thus proving the link between
the signatures.

We now show that our ABS-CL construction is secure under the notions of
unforgeability and anonymity we propose. We state all of our security results,
and then provide proof sketches for them. Complete proofs of our theorems will
be available in the full version of the paper.

Theorem 9. Signature-Unforgeable
The proposed ABS-CL scheme is signature-unforgeable if the chosen NIZK

scheme is sound, and the signature scheme used by the attribute authority is
secure.

Proof. Assuming that there is an adversary F that can break the unforgeability
of signatures of the ABS-CL scheme, we will construct an efficient algorithm S
which violates, with comparable advantage, the security of the attribute author-
ity’s signature scheme, namely the Boneh-Boyen signature scheme. Given the
verification key V K for the Boneh-Boyen scheme, the algorithm S runs one of
two possible scenarios:

Scenario 1. Run (CRS, θ) and generate the rest of the parameters honestly.
Give the resulting TPK and mlk to adversary F as the simulated result of
TSetup. When F requests the signing keys of an attribute set, or the secret key
of the attribute authority, compute the answer honestly and reply. If F makes
a (m,ψ) query to the signing oracle, make an oracle query to the Boneh-Boyen
oracle for the pseudo-attribute associated with (m,ψ). Utilize the response to
construct a simulated ABS-CL signature and forward it to F .

When the adversary F outputs (m∗, ψ∗, σ∗), extract a witness using the
trapdoor θ, which succeeds with overwhelming probability. This means that
the extraction has obtained a signature for the pseudo-attribute associated to
(m∗, ψ∗), or enough attributes to satisfy ψ∗. If it contains a signature for the
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pseudo-attribute, then it represents a forgery in the Boneh-Boyen scheme since
S never queried (m∗, ψ∗).

Scenario 2. Use V K as the APK of the attribute authority. Setup CRS and all
of the parameters corresponding to the trustee honestly, and give the resulting
TPK and mlk to the adversary F . When the adversary requests the signing
keys of an attribute set, forward the request to the Boneh-Boyen oracle. If F
makes a (m,ψ) query to the signing oracle, then respond with a signature on
the pseudo-attribute associated with (m,ψ).

When F finally outputs (m∗, ψ∗, σ∗), extract a witness. Similarly as in Sce-
nario 1, it will succeed with overwhelming probability, and it will contain a sig-
nature for the pseudo-attribute associated to (m∗, ψ∗), or enough attributes to
satisfy ψ∗. If it contains enough attributes, then at least one of them represents
a forgery in the Boneh-Boyen scheme, since there is at least one non-corrupted
attribute needed to satisfy the predicate ψ∗.

Observe that the output of F must be a forgery in one of the scenarios, and
that from the view of F both are identical. Hence, if F has a non-negligible
advantage ε in the ABS-CL game, and a ratio r of its successful outputs contain
the pseudo-attribute, then S has an advantage of 1

2rε + 1
2 (1 − r)ε = 1

2ε, which is
non-negligible. �
Theorem 10. Link-Unforgeable

The proposed ABS-CL scheme is link-unforgeable if the chosen NIZK scheme
is sound, and the signature scheme used by the attribute authority is secure.

Proof. We show that given the structure of signatures in our scheme, if an
adversary F can create a signature linking to an honest user, then the out-
put must contain a forgery of a signature of said honest user, which contra-
dicts the previous theorem. Let (m∗, ψ∗, σ∗) be the output of the adversary.
Then σ∗ = (Σ∗, E∗

1 , E∗
2 ) and σ = (Σ,E1, E2), are such that E∗

2 = Cτ∗
λγ∗ξ and

E2 = Cτλγξ, for some values τ, τ∗, where τ is the identifier of an honest user.
Since

Link(PK, (m∗, ψ∗, σ∗), (m,ψ, σ),mlk) = 1,

we have that Veri(ψ∗,m∗, σ∗) = 1, and that Cτ = Cτ∗
, which can only be

possible if τ = τ∗. Hence, σ∗ constitutes a signature forgery of message m∗

under predicate ψ∗ for the honest user with identifier τ . �
We now turn to anonymity, against adversaries with and without the link-

ing key. Note that contrarily to [18] it is not possible for this scheme to have
unconditional anonymity, since some information about the identity is leaked
through the master linking key, which itself may be found with unbounded com-
putational power. Indeed, recall that mlk = hξ, and that h, λ, and Λ = λξ are
public values.
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Theorem 11. Anonymity (without the linking key)
The given construction of an ABS-CL scheme is anonymous against an

adversary without access to the master linking key, if the underlying proof system
is secure, under the DDH assumption.

Proof. We show that if an adversary F wins the anonymity game in the ABS-
CL, then we can construct at least one of the following adversaries: S1 violating
the zero-knowledge property, S2 breaking the witness indistinguishability of the
authority’s signature scheme, and S3 violating the DDH.

We have that real and simulated proofs of statements are indistinguishable.
The adversary S1 would get the CRS and set up the rest of the parameters hon-
estly. The attribute authorities and queries to the linking oracle are answered
honestly, while sign queries may be simulated. When the adversary F outputs the
query to the challenge, which contains two possible sets of parameters for the gen-
eration of the challenge signature, none of which have been queried to the signing
or linking oracles. Then S1 chooses one of the sets and forwards it to the zero
knowledge challenger, receiving back a proof Σ of the statement Φ, from which
S1 completes an ABS-CL signature and forwards it to F . Recall that the proof
Σ may be real or simulated. In the case of a real proof, breaking anonymity can
be reduced to an adversary S2 violating the indistinguishability of the author-
ity’s signature scheme, through a series of games such as in [1]. If the proof is a
simulated one, then we have a signature σ = (Σ,E1, E2), where Σ is a simulated
proof of the statement Φ, and E1, E2 are of the form E1 = λγ and E2 = CτΛζ

for some identifier τ and values γ, ζ ∈ Z
∗
p. If the latter is used to win the indistin-

guishability game then an adversary S3 can be built with an advantage against
the DDH. �
Theorem 12. Anonymity (with the linking key)

The given construction of an ABS-CL scheme is anonymous against an hon-
est but curious linker, with access to the master linking key, but not colluding
with the attributes authorities, under the DDH assumption.

Proof. The challenge query must not contain identifiers queried to the signing
oracle, which prevents the linker from doing a trivial link check on the challenge
signature. Since the identifiers τi must belong to honest users, it means that the
values τi and Cτi are unknown to the linker and thus he cannot use the bilinear
check against e(Cτi , h). It is then straightforward to prove that the security
reduces to that of the DDH. �

6 Conclusion

We have introduced the new feature of Controllable Linkability in the ABS set-
ting, which allows a trusted entity in possession of the master linking key to
determine if a pair of signatures were created by the same signer. We presented
an instantiation of an ABS-CL scheme. Finally, we also prove that the con-
structed scheme achieves anonymity whether in possession or not of the master
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linking key, and unforgeability against signatures and links. It remains to extend
the scheme to the multi-authority setting, which requires adjustments on the
construction, the security notions and proofs.
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Abstract. The ability to describe the trustworthiness of a computing
device is an important part of the process to establish end-to-end trust.
With the understanding that the trustworthiness of a computing device
relies on its capabilities, we report on and contribute a novel causality-
based model. This causality-based model represents information about
the dependencies between trust notions, capabilities, computing mech-
anisms and their configurations. In this work, the concept of causality
within the model is defined first. This involves detailing the semantic
meaning of the terms used in the model. A pictorial representation is then
developed to show the causal dependencies as a graph. This step spec-
ifies the vertices and edges used in the causal graph. To implement the
causality-based model, the causal graph was translated into an eXtensible
Markup Language schema and added to the Metadata Access Point data-
base server of the Trusted Network Connect open architecture. Finally,
the trust assessment of the causal graph is explained.

1 Introduction

Modern computing devices are diverse and interconnected by dynamic and het-
erogeneous networks. In the National Cyber Leap Year Summit, the participating
researchers reported thatend-to-endtrustwill beagamechanging technologywhen
deployed in this type of computing environment [1]. A key component to building
end-to-end trust is theability todescribe the trustworthiness of a computingdevice.
The benefit of this is that any other computing device can select its mode of par-
ticipation in a computer network according to the level of trustworthiness offered
by the corresponding computing device. Similarly, Grawrock et al. explained that
there is a need for computing devices to communicate their trustworthiness so that
the parties involved can understand and manage security risks [2].

There are two facets to this ability. First of all, it is the description of the
capabilities of a computing device that could give rise to its trustworthiness. This
requires marking up this description with metadata in a well understood and
consistent manner. Such annotation will enable the description of the capabilities
to be processed by a computer [14]. The second facet refers to evidence that
conveys assurance in certain capabilities of the computing device. A prevailing
technique is the use of attestation which vouches for the identity and state of
c© Springer International Publishing Switzerland 2016
M. Yung et al. (Eds.): INTRUST 2015, LNCS 9565, pp. 130–149, 2016.
DOI: 10.1007/978-3-319-31550-8 9
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a computing device’s software stack. In this paper, we take the first step towards
describing the capabilities of a computing device.

Our central contribution is a novel causality-based model for describing the
capabilities of a computing device that give rise to its trustworthiness. As far as
we know, this is the first attempt at this challenge. The main advantage of this
approach is that the description captures the causal dependencies between trust
notions, capabilities, mechanisms and configurations, and this information is use-
ful for intelligent processing. Moreover, it uses a graph to describe a computing
device at various levels of abstraction in a way that is easily comprehended. Lastly,
the causal graph can be made machine-readable by translating it into a format that
uses markup language, such as the eXtensible Markup Language (XML).

The rest of this paper is organized as follows. Section 2 of this paper gives
the background to the causality-based approach. Section 3 defines the concept of
causality for this model and make clear the semantics of the terms used. Section 4
defines the graph and illustrates how it is used to show the dependencies between
trust notions, capabilities, computing mechanisms and their configuration. This
is followed by Sect. 5 that describes how the graph can be implemented as a
XML schema and we discuss how this schema was applied to the Metadata
Access Point (MAP) database server of the Trusted Network Connect (TNC)
open architecture. Section 6 explains how we can carry out trust assessment.
Section 7 discusses future work and Sect. 8 reviews related works. This paper
concludes in Sect. 9.

2 A Causality-Based Approach

The design of the model aims to meet the following requirements:

– To describe the capabilities of a computing device that could give rise to its
trustworthiness.

– To define the model in a clear and easy to understand manner.
– To support the digital representation of this model by translating it into a

machine-readable format.

The intention of these requirements are to guide the development of the model
and make sure that it can be implemented in practice. It is not the intention of
this paper to specify how the descriptions are created and updated. We can assume
that such descriptions are created by the designer of the computing device and the
descriptions are updated by agents installed on that computing device.

To describe the capabilities of a computing device that give rise to its trust-
worthiness, we refer to the technical models described in the National Institute
of Standards and Technology (NIST) Special Publication 800-33 [3]. These mod-
els encompass information at several levels. They range from high level security
notions to low level specific technical details. For example, the low level technical
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mechanism of cryptographic key management is described as enabling the capa-
bility of access control enforcement which in turn supports the security notion
of confidentiality. The NIST publication is intended to describe the technical
foundations that underlie security capabilities. Since our intentions are broadly
aligned, we will frame our description of the capabilities of a computing device
on the structure of the technical models described in the NIST publication. The
description will cover the trust notions, capabilities, mechanisms and configura-
tions of a computing device. We also note that if any of the technical foundations
are missing, the resulting high level capability and notion will not exist. This
observation is interpreted as causality.

A general causal model consists of a set of equations of the form

xi = fi(pai , ui), i = 1,...,n,

where pai stands for the set of variables that directly determine the value of
Xi and where Ui represents errors or disturbances due to omitted factors [4].
This functional relationship can be thought of as Laplace’s quasi-deterministic
concept of causality. Bayesian networks are usually used to represent this general
causal model and, for example, Ui can be used to indicate the probability of a
causal dependency when affected by factors such as an attack on the computing
device. However, this approach is sophisticated and at this stage, it is beyond our
design requirements. Hence, we decided to set Ui to zero (i.e. no errors) in our
causality-based model. By setting Ui to zero, the causal model loses the ability
to deal with the probability of a causal dependency. As our primary concern is
to introduce a model to describe the causal dependencies between trust notions,
capabilities, computing mechanisms and their configuration and that this model
has to work in practice, missing the above ability does not affect the description.
Nevertheless, we will discuss more about setting Ui to non-zero in Sect 7.

With this understanding of a causal model, we can say that: A cause is defined
to be an object followed by another, where, if the first object had not been, the second
would never had existed [5]. This concept of causality has important applications
in computer science, such as intelligent planning and processing [6]. Whenever we
seek to explain a set of computations that unfold in a specific scenario, the expla-
nation produced must address the cause and effect of these computations. The
generation of such explanations requires the analysis of the concept of causality
and the development of a data model to characterize the account.

On the other hand, the practical application of causality requires it to trans-
form into a graph that is founded on mathematics and logic [4]. A graph consists
of a set V of vertices and a set E of edges. The vertices in this graph represent
the variables and the edges denote a certain causal relationship holds in pairs of
variables. As a causal explanation describes how a variable is caused by another
variable, this description of dependency path can be written as a triplet (v1, e,
v2) where v1, v2 ∈ V and e ∈ E. In other words, a source variable v1 is related
to destination variable v2 through the causal dependency e. Consequently, this
can also be expressed as a graph where e is an edge from source vertex v1 to
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destination vertex v2. Hence, we can conjecture that a causal graph composes of
multiple triplets and they form a larger graph with numerous vertices that are
connected by edges.

With this background knowledge, we can envisage that this graph will have a
data structure that depicts the causal dependences between the low level technical
mechanisms and high level capabilities and notions. Although it can be argued that
such information can be obtained from various sources, the main advantage of this
model is that the information about technical mechanisms, configuration, capa-
bilities and trust notions are linked together meaningfully by their causal depen-
dencies. As a result, another party can carry out intelligent processing on this
information and decide how it will interact with this computing device.

3 Basic Definitions

In this section, we will define the semantic meaning of the terms used in this
causality-based model. As the causality-based model has to be transformed into
a graph for practical application, the following Definitions 2 to 5 will refer to
the kind of vertices in the graph.

Definition 1 (Causality). We refer to the definition of causality in the pre-
vious section and define causality in this model to be the use of a configured
mechanism, or a set of configured mechanisms, and if one of the configured
mechanism is not used, the capability and the resulting trust notion that arise
out of the use of the configured mechanisms will not exist. For example, the
trust notion of confidentiality relies on the capability of disk encryption which
in turn is derived from the usage of a symmetric cryptographic mechanism.

We then produce the following definitions for the key terms in Definition 1.

Definition 2 (Mechanism). It is a computation process that has at least one
input and at least one output. Although how the computation works is defined
by computer code, the quality of the output can be influenced by the applied
configuration. For example, a symmetric encryption mechanism is configured
to use a symmetric key of certain size, then takes in data and produces the
encrypted form of that data.

Definition 3 (Configuration). A set of parameters that affect the output
of a mechanism. For example, the key size of an AES symmetric encryption
mechanism needs to be specified as different applications require different key
sizes.

Definition 4 (Trust Notion). A notion reflects a specific behavior of a com-
puting system. We understand that there is a large body of research on trust
notions. Thus, to focus our research effort, we scoped this work to the trust notions
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described our previous study [15]. These trust notions are confidentiality, integrity,
identity, authenticity, availability and expected behaviour. These are objective
notions that are related to technical properties of a computing device.

Definition 5 (Capability). A capability can be considered as a high level
description of a mechanism or a set of cooperating mechanisms. It refers to
the ability to perform certain tasks. A capability of one computing system is
the same as another system if this capability is derived from the same set of
mechanisms and configurations.

Various notions of causal dependencies were considered for the causality-
based model. A strong notion of causal dependency would provide a detailed
explanation of how an effect is caused. However, such strong notion of causal
dependency was not practical as one could argue that additional factors may
have influenced the outcome. For example, if the computation has been occurring
on hardware that is operating within its allowed temperature range. Therefore,
we decided that weaker notions which describe only the core meaning of the
causal dependencies would be more suitable. This decision is supported by two
considerations:

– Usability. We expect that the description of the capabilities could be produced
without detailed knowledge of how the mechanisms interact and how the con-
figuration affects the behaviour of the mechanisms. Thus, weaker notions allow
the causality-based model to be used in practice by non experts.

– Composability. We desire that multiple causal graph can be combined to reflect
more complex capabilities. This is true in practical application whereby a com-
plex capability can be composed of various mechanisms spread across diverse
computing systems. Hence, weaker notions allow a more flexible interpreta-
tion of the causal dependencies and avoid complications due to contrasting
explanation used by different computing systems.

Nevertheless, stronger notions of causality for specific applications, can be
developed as subclasses to the dependencies defined in our model. While the
above definitions refer to the kind of vertices in a causal graph, the edges between
the nodes will represent their causal dependencies. On this point, we propose
the following causal dependencies for this model:

Definition 6 (Mechanism CallsOn Mechanism). A mechanism can call on
another mechanism during its computation process. This relation can be one to
one, one to many, many to one or many to many. However, this causal depen-
dency is affected by the configuration of the mechanism. A mechanism with the
same configuration can be called on multiple times by other mechanisms. If this
mechanism has another configuration, then it must be represented again on the
causal graph. A calling mechanism can only complete its computation process
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when the mechanism that it called on has completed its computation process.
For example, a software application calls on a key generator and a symmetric
encryption mechanism when it is performing disk encryption.

Definition 7 (Capability DerivesFrom Mechanism). A capability is
derived from a mechanism or a set of cooperating mechanisms. If a capability is
derived from a set of cooperating mechanisms, all these mechanisms must have
begun and completed their computation processes before the capability can exist.
The same constraint applies to the situation when a capability is derived from one
mechanism. The quality of a capability will be affected if a mechanism or a config-
uration is not from a specified set. For example, the capability of disk encryption
is derived from a software application that encrypts data using symmetric cryp-
tography and manages the key used in the encryption process.

Definition 8 (Trust NotionReliesOn Capability). The existence of a trust
notion relies on a capability or a set of capabilities. The mechanisms that the
capability depends on must have completed their computation process before
the trust notion can exist. A trust notion can rely on more than one capability.
For example, the trust notion of confidentiality relies on the capability of disk
encryption. The same trust notion of confidentiality can also rely on the capa-
bility of network encryption which uses a different set of mechanisms from the
capability of disk encryption.

Definition 9 (Mechanism Uses Configuration). Each mechanism has a
maximum of one configuration for each account of causality. In other words,
it is a one to one relation. If the same mechanism uses more than one configura-
tion, then the mechanism shall be represented again with another configuration.

We have introduced the definition of the terms used in the causality-based
model. However, there may be ambiguity in the definition and hence we introduce
set-theoretic definitions in Fig. 1 to further clarify the causality-based model.

In Fig. 1, lines 1 to 4 define the term mechanism, configuration, trust notion
and capability as sets. These terms correspond to vertices when transformed to
a graph. Line 5 further defines that M is a subset of MECHANISM and element
m only belongs to if and only if m has a property P. P refers to the property
that this set of mechanisms work together to give rise to a capability. Line 6
says that CF is a subset of CONFIGURATION and that element cf belongs to
CF if and only if cf has a property Q. Q refers to the property that this set of
configurations are applicable to a particular set of mechanisms that give rise to
a capability.

Lines 7 and 8 are the interpretation of the definition of causality in this
model. It says that there is a function f such that it maps elements of the
TRUSTNOTION to the set CAPABILITY. Then there is a complex function g
such that g(CAPABILITY) produces a set that contains the mapping of M to
CF. Lines 9 to 12 refer to the edges that link the vertices. CallsOn, ReliesOn
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1. [MECHANISM] the set of all possible mechanisms in computing systems.
2. [CONFIGURATION] the set of all possible configurations in computing systems.
3. [TRUSTNOTION] the set of all possible trust notions enabled by computing sys-

tems.
4. [CAPABILITY] the set of all possible capabilities provided by computing systems.

5. M is a subset of MECHANISM such that the elements of M are mechanisms that
work together to give rise to a capability and trust notion. Therefore,
m ∈ MECHANISM
M = { m | P(m) }

6. CF is a subset of CONFIGURATION and elements of CF are configurations for a
particular set of mechanisms. Therefore,
cf ∈ CONFIGURATION
CF = { cf | Q(cf) }
Following definition 1, we have:

7. f : TRUSTNOTION → CAPABILITY
8. g : CAPABILITY → (M �� CF)

9. CallsOn : MECHANISM → MECHANISM
10. ReliesOn : TRUSTNOTION → CAPABILITY
11. Uses : MECHANISM �� CONFIGURATION
12. DerivesFrom : CAPABILITY → MECHANISM
13. ∀ tn:TRUSTNOTION, m:MECHANISM, cf:CONFIGURATION • tn R+ m = ∅

∧ tn R+ cf = ∅
14. ∀ cp:CAPABILITY, cf:CONFIGURATION • cp R+ cf = ∅

Fig. 1. Definition of causality-based model.

and DerivesFrom refers to a one to one or one to many mapping. For Uses, we
use the symbol for an partial injective function to say that each mechanism has
only one configuration at a time and there may exist a mechanism that does
not need any configuration. These edges shall be directed and the direction is
from the range to the domain of the functions CallsOn, ReliesOn, DerivesFrom
and Uses. The way these edges are directed reflects our requirement to describe
the causal dependencies between trust notions, capabilities, mechanisms and
configurations. This is a mapping from abstract concepts to low level techni-
cal primitives. Meanwhile, the directed edge ReliesOn is the manifestation of
function f in line 7 while the directed edge DerivesFrom is the manifestation of
function g in line 8. Finally, lines 13 and 14 clarify that transitive closure is not
allowed. Particularly, it addresses the constraint that neither trust notion nor
capability can arise only out of configuration. The other reason is that we want
to capture all the causal dependencies.
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4 Graph Definition

This section will define the graph that is required for the practical application
of the causality-based model. We named this as the causal graph. The following
defines this causal graph.

1. Vertices of the causal graph are the elements of MECHANISM, CONFIG-
URATION, CAPABILITY and TRUSTNOTION and they are given unique
identifiers. Two elements from the same set are the same if they have the
same identifiers.

2. Elements of MECHANISM, CONFIGURATION and CAPABILITY can be
tagged to a computing system. This supports composability; i.e. a capability
can be derived from mechanisms held in more than one computing system.
This also supports the situation where multiple capabilities from different
systems give rise to a trust notion.

3. Edges of the causal graph are identified by the vertices they connect. Vertices
are elements of the sets MECHANISM, CONFIGURATION, CAPABILITY
and TRUSTNOTION and they have unique identifiers.

4. A causal graph is a set of vertices and edges as specified in this paper.
5. A proper causal graph contains a ReliesOn and a DerivesFrom edge, In other

words, it explains the existence of a trust notion and capability. This ensures
that a causal graph captures a valid causal dependency between the high
level trust notion or capability and a low level technical mechanism. A proper
causal graph is also acyclic due to the direction of the edges. It is possible
that with additional definition of edges, a causal graph can be made cyclic
but this will not be discussed in this paper.

Figure 2 provides a set-theoretic definition of the causal graph. Lines 1 to
5 declare the sets of identifiers. Lines 6 to 8 says that the vertices Mechanism,
Configuration and Capability have unique identifiers and are associated with
at least one computing system. We do not link Trust Notion to a particular
computing system as it refers to a universal quality. The set for edges CallsOn,
ReliesOn, Uses and DerivesFrom are specified from line 10 to 13. The information
about the vertices and edges will be expressed as a triplet (v1, e, v2) where vertex
v1 is related to vertex v2 through a causal dependency e. Line 14 says that a
causal graph is a set containing the triples that describe the causal dependencies.

Lines 15 to 18 attempt to explain systematically how two graphs can be equal.
Line 15 looks at the most basic causal dependency between a mechanism and
a configuration. It says that their Uses edges are the same if the corresponding
mechanisms and configurations are the same although their systems may not be
the same. We then proceed to line 16 that defines how two CallsOn edges are the
same. It says that the CallsOn edges between 2 separate sets mechanisms are the
same if the elemental mechanisms from each set are the same and they use the
same configurations although their system are not the same. Lines 17 and 18
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1. MechanismId : primitive set
2. ConfigurationId : primitive set
3. TrustNotionId : primitive set
4. CapabilityId : primitive set
5. System : primitive set
6. Mechanism : MechanismId → P(System)
7. Configuration : ConfigurationId → P(System)
8. Capability : CapabilityId → P(System)
9. TrustNotion : TrustNotionId

10. CallsOn = Mechanism × Mechanism
11. ReliesOn = TrustNotion × Capability
12. Uses = Mechanism × Configuration
13. DerivesFrom = Capability × Mechanism
14. CausalGraph = P(CallsOn) × P(ReliesOn) × P(Uses) × P(DerivesFrom)

15. m1,m2 ∈ Mechanism, cf1, cf2 ∈ Configuration, s1, s2 ∈ System.
∃ u1, u2 ∈ Uses | u1 = ((m1,s1),(cf1, s1)), u2 = ((m2, s2), (cf2, s2)) • u1 = u2 ⇔
(m1 = m2) ∧ (cf1 = cf2) ∧ ((s1 = s1) ∨ (s1 �= s2))

16. m1,m2, m3, m4 ∈ Mechanism, u1, u2, u3, u4 ∈ Uses, cf1, cf2, cf3, cf4 ∈ Configu-
ration, s1, s2 ∈ System.
∃ co1,co2 ∈ CallsOn | co1 = ((m1,s1),(m2,s1)), co2 = ((m3,s2), (m4, s2)), u1 =
((m1, s1),(cf1, s1)), u2 = ((m2, s1), (cf2, s1)), u3 = ((m3, s2),(cf3, s2)), u4 = ((m4,
s2), (cf4, s2)) • co1 = co2 ⇔ (m1 = m3) ∧ (m2 = m4) ∧ (cf1 = cf3) ∧ (cf2 = cf4)
∧ ((s1 = s1) ∨ (s1 �= s2))

17. DF1, DF2 ⊆ DerivesFrom, M10, M11, M20, M21 ⊆ Mechanism, CO1, CO2 ⊆
CallsOn, U10, U11, U20, U21 ⊆ Uses, CF10, CF11, CF20, CF21 ⊆ Configuration.
∃ cp1, cp2 ∈ Capability | DF1 = (cp1, M10), DF2 = (cp2, M20), CO1 = (M10,
M11), CO2 = (M20, M21), U10 = (M10, CF10), U20 = (M20, CF20), U11 =
(M11, CF11), U21 = (M21, CF21) • cp1 = cp2 ⇔ (U10 = U20) ∧ (U11 = U21)
∧ (CO1 = CO2)

18. RO1, RO2 ⊆ ReliesOn, CP1, CP2 ⊆ Capability, DF1, DF2 ⊆ DerivesFrom, M10,
M11, M20, M21 ⊆ Mechanism, CO1, CO2 ⊆ CallsOn, U10, U11, U20, U21 ⊆ Uses,
CF10, CF11, CF20, CF21 ⊆ Configuration.
∃ tn1, tn2 ∈ TrustNotion | RO1 = (tn1, CP1), RO2 = (tn2, CP2), DF1 = (CP1,
M10), DF2 = (CP2, M20), CO1 = (M10, M11), CO2 = (M20, M21), U10 = (M10,
CF10), U20 = (M20, CF20), U11 = (M11, CF11), U21 = (M21, CF21) • tn1 =
tn2 ⇔ (DF1 = DF2) ∧ (CO1 = CO2) ∧ (U10 = U20) ∧ (U11 = U21)

Fig. 2. Defining the causal graph.
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Fig. 3. Pictorial representation of the vertices and edges in the causal graph model.

make use of the definitions in lines 15 and 16. They explain how two capabilities
or two trust notions can be the same. Line 17 says that two capabilities can be
the same if they have the same set of Uses and same set of CallsOn. In other
words, two capabilities are the same if they are derived from the same set of
mechanisms and these set of mechanisms have the same set of configurations.
Line 18 says that two trust notions can be the same if they rely on the same
capabilities, and these capabilities are derived from the same mechanisms, and
these mechanisms use the same configurations. Note that the requirement that
the system may or may not be the same is implicit.

At this point, we will introduce the basic pictorial representation of vertices
and directed edges of the causal graph. Mechanisms are represented as rectan-
gles while configurations are trapeziums. Finally, trust notions are circles and
capabilities are hexagons. Figure 3 shows this pictorial representation.

5 Praxis

We implemented the causality-based model to the Metadata Access Point (MAP)
server of the Trusted Network Connect (TNC) open architecture. TNC is specified
by the Trusted Computing Group and it enables the application and enforcement
of security requirements for endpoints connecting to an enterprise network [7]. The
MAP server acts as a database where metadata that describes endpoints is pub-
lished. Security devices can subscribe to the MAP server and read the published
metadata as part of a security process such as access control. Communications
with the MAP server are carried out over the Interface for Metadata Access Point
(IF-MAP) protocol. Standard sets of metadata are defined for use by the MAP
server to determine information about an endpoint such as device status, location
and characteristics. There are currently two standards for metadata; the IF-MAP
Metadata for Network Security [8] and IF-MAP Metadata for Industrial Control
System [9]. The specification of the standards defines the structure and content of
the metadata and includes XML schemas to represent this information. We cre-
ated a new XML schema to represent our causality-based model. This new XML
schema is presented in Fig. 6 of the Appendix. This new XML schema declares the
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4 types of edges as complex elements. Within the complex element, the vertices are
further declared as complex element. Each complex element contains additional
elements such as id and system. On the declaration for the directed edge CallsOn,
we used the term “MainMechanism” to represent the calling mechanism and the
term “SubMechanism” to represent the mechanism that is being called on. This
avoids the confusion caused when the term “Mechanism” is not differentiated.

We also crafted an example causal graph and its corresponding XML for-
mat that is based on our schema. This causal graph is shown as a graph in
Fig. 4 and as in XML format in Fig. 7 of the Appendix. As the causality-based
model is a novel approach, we could not find any documentation that captures
the causal dependencies of trust notions, capabilities, mechanisms and config-
urations. Thus, this example approximates a design of data storage encryption
using the Trusted Platform Module (TPM) version 2.0 [10]. It describes how
the capability of disk encryption is derived from a software application named
“DiskLocker”. This software application is represented as a mechanism and it
calls on various TPM 2.0 subsystems. These TPM 2.0 subsystems are repre-
sented as mechanisms. The “DiskLocker” software and some of the TPM 2.0
subsystem uses configurations. For example, the configuration of “DiskLocker”
state where the symmetric cryptographic key will be stored. In another example,
the random number generator has to be configured with a seed value.

In this example, the “DiskLocker” software uses symmetric cryptography to
encrypt data. The symmetric cryptographic mechanism is provided by the TPM
2.0. Before, the symmetric cryptographic mechanism of TPM 2.0 can be used,
“DiskLocker” obtained a random number from TPM 2.0 random number gener-
ator mechanism. This random number is passed on to TPM 2.0 key generation
mechanism which produces a symmetric cryptographic key. This symmetric cryp-
tographic key is thenusedwith the symmetric cryptographicmechanismto encrypt
data. To protect the symmetric cryptographic key, “DiskLocker” stores it in TPM
2.0 using the TPM 2.0 non-volatile memory mechanism. The quality of the disk
encryption capability is affected if “DiskLocker” uses another random number gen-
erator that isnot trusted.Asaresult, the trustnotionof confidentiality that relieson
the capability of disk encryption will be weaker than the situation where a trusted
random number is used. Although the actual operation of such an implementation
is more complex than that is described here, we decided to show just the necessary
causaldependencies toeasepractical application.Nevertheless, thecausality-based
model can be expanded to include more precise causal dependencies.

On the identity of mechanisms and configurations, a straightforward way to
represent them is to refer to the Common Platform Enumeration (CPE) Refer-
ence [11] and the Common Configuration Enumeration (CCE) Reference [12])
of the National Institute of Standards and Technology. CPE is an organised
naming scheme for computing systems, software, and packages. It is based on
Uniform Resource Identifiers (URI) and contains a formal name format that sup-
port name verification. CCE gives unique identifiers to system configurations to
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Fig. 4. Pictorial representation of a sample causal graph.

support correlation of configuration data. Since the example is an approxima-
tion, we assign dummy identifiers to support the simulation. We note that the
TPM 2.0 is neither listed in CPE nor CCE. Although the TPM is typically
implemented as one device and the mechanisms described in this example are
subsystems of the TPM device. However, the TPM specification allows the exact
implementation to vary. For example, only the SM4 symmetric cryptographic
algorithm is allowed in certain geographical regions. Therefore, we identified the
TPM subsystems as separate mechanisms and consequently they have their own
configurations.

We worked with the Fedora 20 operating system running the Linux kernel ver-
sion 3.19.8. For the MAP server, we reviewed the open source irond version 0.5.6
MAP server developed by the trusted computing research group at the Hochschule
Hannover, University of Applied Sciences and Arts [13]. The latest version that
supported IF-MAP version 2.2 specification was used. It was a java program and
refered to stored XML schemas. We added our schema to that of IF-MAP Meta-
data for Network Security. Then we examined the open source ifmapj version 2.3.0
java library developed by the same team. We ran a MAP client program that made
use of this java library. This MAP client program encapsulates our example XML
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shown in Fig. 7 of the Appendix and publishes it to the irond MAP server through
an internal network. From this simulation, we managed to demonstrate how the
causality-based model can be implemented on the TNC open architecture.

6 Trust Assessment

We developed an assessment rule to determine if a causal graph meets the require-
ment of a trust policy. A trust policy will consist of a set of assessment rules that
lay out what are the identity and type of the vertices and edges required in a causal
graph of a computing device before it can be trusted. We observed that the root
of causal graphs will always be the vertices of Trust Notion. Thus, we can craft
trust policies by starting with trust notions. To support this assessment, we for-
mulated a rule that is based on determining the existence of a particular triplet in
the causal graph. This is the most basic assessment rule and a trust policy will con-
sist of a set of such basic assessment rules. This basic assessment rule is specified
in the Backus Naus Form and it is shown in Fig. 5 below.

The specification begins by explaining the terms used. Line 3 states that the
type of vertex can be either a mechanism, configuration, capability or trust notion.
Line 4 then says that a target vertex is associated to an identity, and a system if
the vertex type is a mechanism or a capability. The type of causal dependency is
declared in line 5. Line 6 says that a triplet is projected as (SourceVertex, Depen-
dencyType, DestinationVertex). Hence, queries will be formulated around the
concept of a triplet. Line 7 states a precise question on the existence of a desti-
nation vertex in a triplet. This question is the foundation of the assessment rule.

To develop a trust policy,wewill have to understandhowamechanism interacts
with another and what capability and trust notion does it enable. The trust policy
will consist of numerous basic assessment rules that transverse through a causal
graph and checking every branch from the root node to the leaf node. Figure 8 of
appendix shows an example of a trust policy for the causal graph in Fig. 4.

1. (*U, RO, CO and DF are the short form for Uses, ReliesOn, CallsOn and Derives-
From)

2. (*ME, CF, TN and CP are the short form for Mechanism, Configuration, Trust-
Notion and Capability*)

3. <VertexType> ::= <ME> | <CF> | <CP> | <TN>
4. <SourceVertex>, <DestinationVertex> ::= <VertexType> <VertexID> |

<VertexType> <id> <system>
5. <DependencyType> ::= <U> | <RO> | <CO> | <DF>
6. <Triplet> ::= ”(”<SourceVertex>”,” <DependencyType>”,”

<DestinationVertex>”)”
7. <BasicAssessmentRule> ::= ”Is” <DestinationVertex> ”∈ of a triplet containing

(”<SourceVertex> ”,” <DependencyType>”)?”

Fig. 5. Specification of the basic assessment rule.
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The most direct way to assess a causal graph for trustworthiness is to process
all the rules with a Boolean AND function. If the causal graph does not satisfy
one rule, then the trust assessment will fail. However, we acknowledge that this
assessment method is not flexible. If the trust assessment is to consider a range of
values, then the rules can be assessed according to a Boolean Decision List [16].
However, we have to be careful with the complexity of the assessment process
although we can induce that the problem space is achievable in polynomial time
if the number of rules is finite.

To implement the basic assessment rule, we investigated the use of the
XQuery language. For example, if the query is “Is SubMechanism id=”cpe:/
a:tpm:subsystem key generation:2.0“system=”PHD MC355 004“∈ of a triplet
containing (MainMechanism id=”cpe:/a:example:disklocker:1.0“system=”
PHD MC355 004“, CO)”, you can issue the XQuery command in Fig. 9 of the
Appendix. The return result will be “yes” in this example.

7 Future Work

Our causality-based model at this stage lays the foundation for two types of
future work. The first type refers to the concept of predictions in causal models.
For example, an evaluator can predict the trustworthiness of a computing device
if it is presented with causal graphs describing the trust notions and capabil-
ities. This type of future work will be a progression from our original intent
of developing the causality-based model for end-to-end trust. The second type
refers to the concept of interventions in causal models. For example, a security
engineer can examine reference causal graphs and adjust either the mechanisms
or configurations of a computing device to make sure that certain trust notions
and capabilities are achieved. These two types of future work will require the
development of algorithms that could understand the semantics of the causal
graph and subsequently carry out intelligent processing.

We mentioned in Sect. 2 that our causality-based model does not have the
ability to deal with the probability of a causal dependency. However, if we expand
this causality-based model to include the probability of a causal dependency,
then we can develop sophisticated models that predict the trustworthiness of a
computing device in an uncertain environment. For example, we can model a
weak causal dependency to reflect an attack and find out how the trust notions
and capabilities are affected. This ability can be used in a cyber test range where
it requires the modelling of computing devices under attack. This future work
will require the use of bayesian networks that use probabilistic and statistical
models.
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8 Related Works

As far as we know, our work on the causality-based model is the first attempt
at describing the capabilities of a computing device. The use of metadata for
description can also be used in security ontologies. Kim et al. presented the Naval
Research Laboratory (NRL) Security Ontology which focuses on the annotation
of security mechanisms, protocols, algorithms, credentials and objectives [14].
The NRL Security Ontology consists of the core class of Security Concept. It
has subclasses of Security Protocol, Security Mechanism and Security Policy.
The Security Concept class is defined to support the Security Objective class.
The other classes of the NRL Security Ontology include Security Algorithms,
Security Assurance, Credentials, Service Security, Agent Security and Informa-
tion Object. The authors explained that the classes of Service Security, Agent
Security and Information Object classes are extensions of the DAML Security
Ontology. On the other hand, the Credentials, Security Algorithm and Secu-
rity Assurance classes provide values for properties defined for concepts in the
Security Concept class. The Information Object class was added to allow for
the annotation of web service inputs and outputs. Although the ontology based
description was suitable for describing the make up of a computering device, the
advantage of a causality based approach over an ontology is that the description
concerns causal relationship and this is more useful for intelligent processing
than the class hierarchy relationship presented by an ontology. In addition, the
causality-based model is more flexible at addressing a wider range of applications
where technical mechanisms could not always be represented in a class structure.

9 Conclusion

We revisit the requirements mentioned in Sect. 2. On the requirement to describe
the capabilities of a computing device that give rise to its trustworthiness, we
have developed a causality-based model that describe the causal dependencies
between trust notions, capabilities, mechanisms and configurations. To make
the model clear and easy to understand, we have given the basic definitions
of the model and used set theory to further clarify the definitions. We then
transformed the causality-based model into a causal graph for the purpose of
data representation. Additional definitions are given for the graph model to show
clearly how it can be used. During implementation, we have gained insights into
how the causality-based model can be extended to the schemas used by the
MAP server of the TNC open architecture and gave an example of a causal
graph and its corresponding XML format. We also explained how to carry out
trust assessment of the XML based causal graph. These practical exercises show
that the requirement to support digital representation of this model is met.



A Causality-Based Model for Describing the Trustworthiness 145

A Appendix

<?xml version=” 1 .0 ”?>
<xsd:schema targetNamespace=” causa l g raph ”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>
<xsd :e l ement name=” causa l g raph data ”>
<xsd:complexType>
<x sd : cho i c e maxOccurs=”unbounded”>
<xsd :e l ement name=” cau sa l g r aph id ” type=” x s d : s t r i n g ”/>

< !−−CallsOn−−>
<xsd :e l ement name=”CallsOn”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=”MainMechanism”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=” id ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”system” type=” x s d : s t r i n g ”/>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>
<xsd :e l ement name=”SubMechanism” maxOccurs=”unbounded”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=” id ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”system” type=” x s d : s t r i n g ”/>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>

< !−−ReliesOn−−>
<xsd :e l ement name=”ReliesOn”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=”TrustNotion”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=” id ” type=” x s d : s t r i n g ”/>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>
<xsd :e l ement name=”Mechanism” minOccurs=”0”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=” id ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”system” type=” x s d : s t r i n g ”/>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>

Fig. 6. XML schema of causal graph data model.
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< !−−Uses−−>
<xsd :e l ement name=”Uses”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=”Mechanism”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=” id ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”system” type=” x s d : s t r i n g ”/>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>
<xsd :e l ement name=”Conf igurat ion ” maxOccurs=”1”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=” id ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”system” type=” x s d : s t r i n g ”/>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>

< !−−DerivesFrom−−>
<xsd :e l ement name=”DerivesFrom”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=”Capab i l i ty ”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=” id ” type=” x s d : s t r i n g ”/>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>
<xsd :e l ement name=”Mechanism” minOccurs=”0”>
<xsd:complexType>
<xsd : s equence>
<xsd :e l ement name=” id ” type=” x s d : s t r i n g ”/>
<xsd :e l ement name=”system” type=” x s d : s t r i n g ”/>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>
</ xsd : s equence>
</xsd:complexType>
</ xsd :e l ement>

</ x sd : cho i c e>
</xsd:complexType>
</ xsd :e l ement>
</xsd:schema>

Fig. 6. (continued)
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<causa l g raph data>

<ReliesOn>
<TrustNotion> <id>c o n f i d e n t i a l i t y</ id> </TrustNotion>
<Mechanism> <id>cpe : / a : e x amp l e : d i s k l o c k e r : 1 . 0</ id>
<system>PHD MC355 004</ system> </Mechanism>
</ReliesOn>

<DerivesFrom>
<Capab i l i ty> <id>d i s k enc ryp t i on</ id> </Capab i l i ty>
<Mechanism> <id>cpe : / a : e x amp l e : d i s k l o c k e r : 1 . 0</ id>
<system>PHD MC355 004</ system> </Mechanism>
</DerivesFrom>

<CallsOn>
<MainMechanism> <id>cpe : / a : e x amp l e : d i s k l o c k e r : 1 . 0</ id>
<system>PHD MC355 004</ system> </MainMechanism>
<SubMechanism> <id>cpe : / a : tpm: subsys t em key gene ra t i on :2 . 0</ id>
<system>PHD MC355 004</ system> </SubMechanism>
<SubMechanism> <id>cpe : / a:tpm:subsystem nv memory:2 . 0</ id>
<system>PHD MC355 004</ system> </SubMechanism>
<SubMechanism> <id>cpe : / a : tpm:subsystem rng :2 . 0</ id>
<system>PHD MC355 004</ system> </SubMechanism>
<SubMechanism> <id>cpe : / a : tpm:subsystem symmetr i c eng ine :2 . 0</ id>
<system>PHD MC355 004</ system> </SubMechanism>
</CallsOn>

<Uses>
<Mechanism> <id>cpe : / a : e x amp l e : d i s k l o c k e r : 1 . 0</ id>
<system>PHD MC355 004</ system> </Mechanism>
<Conf igurat ion> <id>CCE−071015−1</ id>
<system>PHD MC355 004</ system> </Conf igurat ion>
</Uses>
<Uses>
<Mechanism> <id>cpe : / a : tpm: subsys t em key gene ra t i on :2 . 0</ id>
<system>PHD MC355 004</ system> </Mechanism>
<Conf igurat ion> <id>CCE−071015−2</ id>
<system>PHD MC355 004</ system> </Conf igurat ion>
</Uses>
<Uses>
<Mechanism> <id>cpe : / a:tpm:subsystem nv memory:2 . 0</ id>
<system>PHD MC355 004</ system> </Mechanism>
<Conf igurat ion> <id>CCE−071015−3</ id>
<system>PHD MC355 004</ system> </Conf igurat ion>
</Uses>
<Uses>
<Mechanism> <id>cpe : / a : tpm:subsystem rng :2 . 0</ id>
<system>PHD MC355 004</ system> </Mechanism>
<Conf igurat ion> <id>CCE−071015−4</ id>
<system>PHD MC355 004</ system> </Conf igurat ion>
</Uses>
<Uses>
<Mechanism> <id>cpe : / a : tpm:subsystem symmetr i c eng ine :2 . 0</ id>
<system>PHD MC355 004</ system> </Mechanism>
<Conf igurat ion> <id>CCE−071015−5</ id>
<system>PHD MC355 004</ system> </Conf igurat ion>
</Uses>
</ causa l g raph data>

Fig. 7. XML representation of the sample causal graph.
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1. Is Capability id=”Disk Encryption” ∈ of a triplet containing (TrustNo-
tion=”Confidentiality”, RO)

2. Is Mechanism id=”cpe:/a:example:disklocker:1.0” system=”PHD MC355 004” ∈
of a triplet containing (Capability id=”Disk Encryption”, DF)

3. Is Configuration id=”CCE-071015-1” system=”PHD MC355 004” ∈ of
a triplet containing (Mechanism id=”cpe:/a:example:disklocker:1.0” sys-
tem=”PHD MC355 004”,U)

4. Is SubMechanism id=”cpe:/a:tpm:subsystem key generation:2.0” sys-
tem=”PHD MC355 004” ∈ of a triplet containing (MainMechanism
id=”cpe:/a:example:disklocker:1.0” system=”PHD MC355 004”, CO)

5. Is Configuration id=”CCE-071015-2” system=”PHD MC355 004” ∈ of a
triplet containing (Mechanism id=”cpe:/a:tpm:subsystem key generation:2.0”
system=”PHD MC355 004”, U)

6. Is SubMechanism id=”cpe:/a:tpm:subsystem nv memory:2.0” sys-
tem=”PHD MC355 004” ∈ of a triplet containing (MainMechanism
id=”cpe:/a:example:disklocker:1.0” system=”PHD MC355 004”, CO)

7. Is Configuration id=”CCE-071015-3” system=”PHD MC355 004” ∈ of a
triplet containing (Mechanism id=”cpe:/a:tpm:subsystem nv memory:2.0” sys-
tem=”PHD MC355 004”, U)

8. Is SubMechanism id=”cpe:/a:tpm:subsystem rng:2.0” sys-
tem=”PHD MC355 004” ∈ of a triplet containing (MainMechanism
id=”cpe:/a:example:disklocker:1.0” system=”PHD MC355 004”, CO)

9. Is Configuration id=”CCE-071015-4” system=”PHD MC355 004” ∈ of
a triplet containing (Mechanism id=”cpe:/a:tpm:subsystem rng:2.0” sys-
tem=”PHD MC355 004”, U)

10. Is SubMechanism id=”cpe:/a:tpm:subsystem symmetric engine:2.0” sys-
tem=”PHD MC355 004” ∈ of a triplet containing (MainMechanism
id=”cpe:/a:example:disklocker:1.0” system=”PHD MC355 004”, CO)

11. Is Configuration id=”CCE-071015-5” system=”PHD MC355 004” ∈ of a triplet
containing (Mechanism id=”cpe:/a:tpm:subsystem symmetric engine:2.0” sys-
tem=”PHD MC355 004”, U)

Fig. 8. Example of a trust policy.

for $c in

/causal_graph_data

where

$c/CallsOn/MainMechanism/id="cpe:/a:example:disklocker:1.0"

return

if ($c/CallsOn/SubMechanism/id="cpe:/a:tpm:subsystem_key_generation:2.0") then

<result1> yes </result1>

else

<result1> no </result1>

Fig. 9. XQuery command to check for a specific mechanisms that “DiskLocker”
calls on.
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Abstract. Trusted computing provides an efficient and practical way
out for system security problems based on a trusted hardware, namely
the root of trust, e.g., Trusted Platform Module (TPM), Trusted Cryp-
tographic Module (TCM), Trusted Platform Control Module (TPCM),
so on and so forth. However, current applications calling for trusted func-
tions have to use either the user-space trusted interfaces (e.g., Trusted
Software Stack (TSS) API) or to implement customized APIs on top
of the trusted hardware driver; both of them are well known of steep
learning curve, which indicates error prone and low-efficient development
and complex maintenance for the application of trusted software. This
paper presents a new trusted encapsulation architecture and the proof-
of-concept system with the aim to mitigate the gap between the current
obscure trusted APIs and the actual trusted applications for trusted soft-
ware development. Our system can provide high-level and much simpli-
fied trusted transaction interfaces for user applications, which can rapidly
reduce the development and maintenance work for the developers and
users without too much performance costs. We also present a secure
remote login use-case using mainly the binding and unbinding trusted
functions of our trusted encapsulation architecture.

Keywords: Trusted computing · Application-oriented · Trusted
software development

1 Background

Information security is a matter of national security and social stability. How
to keep the information system from malicious attacks becomes an urgent prob-
lem to be solved. Trusted computing presents an on-going developing security
methodology for system security [1–3]. The Trusted Computing Group (TCG)s
Definition of “trust” is that an entity can be trusted if it always behaves in
the expected manner for the intended purpose. In order to determine if a
system is trusted, all of its components should work separately and together
c© Springer International Publishing Switzerland 2016
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as expected. The common way to do this is by adding a trusted subsystem to
the original system to make sure all the system components are not tampered
from the initial clean slate. Normally, the trusted subsystem includes a root of
trust which is a physically planted hardware, and corresponding software calling
for the trusted interfaces of the hardware to extend the root of trust to the whole
system through chain transition by verifying every components integrity when it
launches [4,5] which is pretty simple idea but also a practical one. Furthermore,
software developers can also call for the trusted interfaces of hardware to achieve
application security with more assurance, since (1) the system integrity is pro-
tected and (2) sensitive application operations (e.g., encrypted storage of keys,
decryption of small data) only occur inside the trusted hardware, even system
administrators privilege cant subvert them.

Although trusted computing provides an efficient and practical way out for
system and application security problems, and TCG/other stakeholders provide
specific specifications [5] on how to develop with trusted APIs, trusted appli-
cation is very rare on the market. Thiss mainly because of the complexity of
the trusted software development, which involves different trusted hardware,
e.g., Trusted Platform Module (TPM) [7,9], Trusted Cryptographic Module
(TCM) [10], and Trusted Platform Control Module (TPCM), so on and so forth.
Furthermore, current applications calling for trusted functions have to use either
the user-space trusted interfaces (e.g., TCG Software Stack (TSS) API, TSM
API [10]) or to implement customized APIs on top of the trusted hardware driver,
both of them are well known of steep learning curve, which indicates error prone
and low-efficient development and complex maintenance for the application of
trusted software. Our paper focuses on how to develop the trusted software with
high efficiency using trusted computing features.

Specifically speaking, when applications use a function of trusted computing,
trusted interface calls trusted components to access the trusted root and other
trusted computing resources. Trusted components exist as library functions or
service processes. The typical trusted interface are provided to the upper calls,
such as TCG using the trusted software stack (TSS), and China use the TCM
service module (TSM), is directly facing the internal objects of the trusted root
such as key object, PCR object, policy object and so on. A specific trusted
computing function, usually requires multiple platforms, a variety of the trusted
objects, and follows the specific protocols. It can be completed by some old
trusted messages and external input messages. Therefore, in order to implement
the function of trusted computing with trusted interface based on the standards
like TSS, applications must manage various trusted objects and their associated
relationships, and design some trusted protocols. Therefore, the implementation
process inevitably involves a large number of trusted protocols and the details
of the trusted object. So the realization of the trusted functions is extremely
complex and it leads to the difficulties about development and maintenance of
trusted computing [6].

Contribution. Based on five layers encapsulation architecture, this paper
presents an application-oriented encapsulation system, which can provide very
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simple application-oriented interfaces for the user applications. With this sys-
tem, applications can use trusted computing function expediently without get
to the details of low-level trivial trusted APIs and we hope it can give a boost
to real-world trusted computing application.

Outline. In this paper, Sect. 2 discusses the related research, Sect. 3 analyses the
requirements and design for the encapsulation system, then describes the details
of the five layers encapsulation, Sect. 4 designs a secure remote login usage to
show the process of this encapsulation system, Sect. 5 gives an evaluation for the
workload and performance and Sect. 6 concludes this work with a summary.

2 Related Work

The TPM main Specification 1.2 [5] and the TSS Specification 1.2 [7] introduce
the basic principle of TSS design. In the case of TSPI, TSS service provider
(TSP) provides an interface (TSPI), makes application software can be accessed
to a group TCG functions through the TSP. All TSPI functions with one or
more handle object parameters locate a particular category instance. It can call
a group of sets or obtain attributes methods to access to attributes. The TSPI
defines the following classes: context class, policy class, TPM class, key class,
encrypted data class (sealed or bound data), PCR composite class, NV RAM
class and hash class [7]. Objects which are scheduled by TSPI interface are almost
all entities of the TPM. In the TCG Architecture TPM Library Specification 2.0
[9], TPM 2 has support for additional cryptographic algorithms, enhancements
to the availability of the TPM to applications, enhanced authorization systems,
simplified TPM management and additional capabilities to enhance the security
of platform services. But the new TSS has not published yet, so we could not
do some practical trusted works. With the old TSS, calling process of TPM
2 to finish trusted computing functions is also complex. So in this paper, the
implement is still according to TPM 1.2.

As a matter of fact, most interfaces provide by TSPI and TSM are set for
the internal entity objects of the trusted root. As describes in Sect. 1, it’s very
difficult and complicated to fulfill a single purpose of trusted APIs based job.
In the case of the bind and unbind process with TSS, we assume that there are
two interactive nodes and the two nodes implement the function of bind and
unbind in a distributed system. First of all, the two nodes need to complete the
key exchange, and it relies on the generation of AIK. In the generation process
for AIK, there need to create TSS context, connection and obtain TPM object,
load the root key, set the SRK password and so on. It includes more than 700
lines of code. And this is just the generation process of AIK. These complicated
sets and operations need for manual operation, these complex works brought
difficulties for the development and maintenance of trusted computing in TSPI.

The work of this paper is similar to that of a simplified trusted software
stack names TSS [6]. But TSS simplifies the TSS, this paper present a fully
encapsulation beyond the TSS. Wenchang Shi defines a TSB [8] as the totality
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of trust support systems for system software on a computing platform, but has
not described the trusted application development in depth.

3 Design Philosophy of Trusted Encapsulation System

In this section, we present an application-oriented efficient encapsulation archi-
tecture and system.

3.1 Requirements and Principle

To use the Trusted Computing functions, well describe the requirements and
design principles for serving these requirements. This system requires the
following requirements:

– Compatibility: this system should satisfy the common standards like TSS.
– Usability: this system should easy to understand and use.
– Maintainability: the code of this system should easy to maintain.

In this paper, by providing a simple application-oriented trusted interface,
applications can call trusted functions easily. The trusted interface can calls the
standard trusted root interface like TSS to access the TPM, TCM and other
trusted root through five layers encapsulation. Thats to say, the principle of this
systems design is to provide a simplified application-oriented trusted interface,
and establishes connection between the interfaces and the local objects through
five layers encapsulation to finish trusted computing processes.

In general, a trusted transaction implement through interactive process
between multiple trusted components of different machines. Each trusted compo-
nents manages trusted local objects and execute local trusted process. Meantime,
these objects managed by trusted components are cryptography objects, such as
input and output data object, key object, Hash object, etc. There is a connec-
tion between these objects in the sense of cryptography and they are implements
through data entity objects (including the internal objects of trusted root and
external data objects of the trusted root) associated with trusted root. In order to
implement the interactive process of multi nodes and elements, the local objects
management system and the trusted operation, cryptography objects and oper-
ation, mapping between trusted root entity objects and operation, and other
functions, this system should implement a multi layers encapsulation.

3.2 Architecture

Based on the previous analysis, this paper designs a five layers encapsulation
architecture, as shown in Fig. 1. The five layers are hardware encapsulation,
interface encapsulation, plugin encapsulation, process encapsulation and appli-
cation encapsulation, and it has implement the transparent trusted function
interface in application layer. As shown in Fig. 1, the top layer provides an inter-
face which can be called easily for applications; Under this layer, there includes
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the interactive process between different nodes; Under the interactive process,
we designs a encapsulation for each trusted computing process for the concrete
works in a single node and storage the relationships of different local objects in
a database; In the next layer, we will encapsulate all kinds of work objects to
TESI (Trust Encapsulated Service Interface, namely the encapsulated function
interfaces) library; To the bottom software stack, the most important principle
is to keep the compatibility with existing standards.

Fig. 1. Five-layer trusted computing encapsulation structure.

In this encapsulation system, we define the APIs which designs for TPM
functions like TSS API and TSM API as hardware encapsulation system; inter-
face encapsulation simplify the calling process of the trusted root through the
classification of TSS work objects and encapsulation for the local library func-
tions based on the hardware encapsulation; plugin encapsulation encapsulates
the calling of local trusted computing functions and the management of trusted
data in the manner to plugins; process encapsulation system implements the
interaction between different nodes through trusted protocols by message policy
configuration; application encapsulation associates the trusted requirements of
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applications with trusted computing process. Through the encapsulation system,
trusted computing process can be triggered automatically and transparently.

3.3 The Hardware Encapsulation Layer

Hardware encapsulation realizes an interface which makes trusted roots functions
can be accessed directly by application layer. The design based on compatible
with existing standards, existing trusted interface standards still in use as the
method of the hardware encapsulation. For example, Applies TCM standard to
TCM module, applies TSS standard to TPM module.

But existing hardware interfaces like the interfaces provides by TSM and
TSS, they have some common features, complex, complicate and lack of effec-
tive debug promotions. Different type trusted roots have different interfaces, and
these interfaces are not compatible. These problems cause many difficulties on
development work. This paper presents a reduced method on interface encapsu-
lation layer to resolving the incompatibility problem.

3.4 The Interface Encapsulation Layer

The interface encapsulation presented by this paper provide compatibility for dif-
ferent hardware encapsulation methods like TSS and TSM because of the hard-
ware encapsulation still use existing hardware interfaces. It hides the complex
underlying implementation, and simplifies the calling process of the applications
from upper layer.

In interface encapsulation layer, the local objects are the top priority. We
described the division of objects in Sect. 2, and the division is designed by
TSS. In TSS, local objects are subdivides into authorized and non-authorized
working objects, non-authorized working objects are the PCR composite
objects and hash objects, authorized working objects are the TPM object, key
objects and encrypted data objects. In cryptology, these objects call standard
interfaces through the encapsulation functions, and then reach the entity of
trusted root, TSS use TSPI functions to set the attributes to the objects like
Tspi SetAttribData. In this papers design, the interface encapsulation encap-
sulates these setting methods for the objects, that is, when use an object,
it is not necessary to set complex settings. For example, three TSPI func-
tions, Tspi Context CreateObject, Tspi Data Bind and Tspi GetAttribData are
encapsulate in a TESI function, TESI Local Bind. In a binding process, by the
origin called procedure of TSPI, the three functions used repetitively, and require
13 parameters, 70 source code lines. In this papers design, only require 3 para-
meters, and 70 source code lines compressed into a function.

The encapsulate process is as below:

1. According to application needs, the default binding and one-to-one corre-
spondence parameter objects will encapsulate as internal variables. Then design
the encapsulation function interfaces;
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2. Encapsulate TSS/TSM or other trusted roots trusted software stack inter-
face functions in the interface functions to realizes the interface;

3. To realize the interface function encapsulation library, at first write the
interface functions to head files, then compile the code of interface functions to
static library.

According to interface encapsulation and using the rules above, in the inter-
face encapsulation layer, this system realizes a series of functions to support
trusted functions such as AIKs generation, sign a file, verify a file, binding and
unbinding, TSS/TSM or other trusted roots trusted software stack interface
functions are encapsulate in the function interfaces. The complexity of inter-
faces is rapidly reduced, functions are more directly and clearly, and conceal the
difference from different hardware encapsulations such as TSS and TSM, meet
the design requirement.

As a consequence of the above, in the encapsulation of interface, every inter-
face function encapsulates multiple TSPI functions. The numbers of calls in
calling process are markedly reduced. Meanwhile, the facts mentioned above,
many complex parameters and definitions are hidden, especially TSS exclusive
definitions are not shown in the interface layer, parameters such as hContext
and hsrk are recessively called as default parameters. The frequency of calling is
decreased to 1/6.The result of the test showed that the interface encapsulation
can rapidly reduce the complexity of TSS effectively, and hide the features of
TSS.

3.5 The Plugin Encapsulation Layer

Trusted computing functions need to generate and process multiple local objects
associate with trusted computing functions, such as different key values, PCR
values and encrypted data and decrypted data. In Sect. 3.4, we have described
the subdivision of local objects in TSS. But in our daily development, were only
concerned about how to call the concrete objects like EK, AIK, its not just
one key object. So in this papers design, we separate the key object, and the
relationship is depicted as Fig. 2 shown.

In real applications, we need to call different objects to finish a work. To
call the different objects, we should find the relationships between them. To
implement the finding and management process, we design a database to store
the local objects association. For example, the private and public keys storage
structure is shown in Tables 1 and 2. From Tables 1 and 2, if a plugin need to find
a keys corresponding virtual TPM, it can just querying the storage to find the
virtual TPMs uuid to get the right virtual TPM. If this plugin reads a private
key and want to get the corresponding public key, it can querying the public
keys storage structure to find the public key with the same virtual TPM uuid.

The various local actions in trusted measurement, trusted storage and trusted
report can encapsulate in a plugin, the database is used to store the association
among trusted objects generation and management. This design offers standard
interface functions with the predefined message and data format. As above, com-
plex trusted processes are simplified, now the processes use message to driving
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Fig. 2. Local object relationship.

Table 1. The private keys storage structure.

Data name Type Length Explanation

uuid char * DIGEST SIZE*2 Key identifier

vtpm uuid char * DIGEST SIZE*2 Associated virtual TPM identifier

issrkwrapped bool 4 Is the key encrypted by SRK

key type int 4 Key type, identity key, sign key, binding
key, etc.

key alg int 4 Password type, RSA or SM2

key size int 4 Key size

key binding policy uuid char * DIGEST SIZE*2 Bind policy identifier with key

wrapkey uuid char * DIGEST SIZE*2 Wrapkey identifier

keypass char * Unknown Password

key filename char * Unknown File name of the key file

a series of plugin to work. Meanwhile, developers with different requirements
can customize their own trusted plugin, and cooperate with other developers
plugin to finish a work.

According to the above research frame, This paper designed a plugin encap-
sulation structure as Fig. 3.

As above, to implement the plugin encapsulation, the relationships among
local objects need to store into the local database. The local objects management
and local works processing will be encapsulate in a plugin which have input and
output functions with message, and designed a local database for the plugin,
the database protect its internal data storage by trusted storage technology.
In this design, relationships among different local objects can be finding by
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Table 2. The public keys storage structure.

Data name Type Length Explanation

uuid char * DIGEST SIZE*2 Key identifier

vtpm uuid char * DIGEST SIZE*2 Associated virtual TPM identifier

ispubek bool 4 Is the key public key of EK

key type int 4 Key type, identity key, sign key, binding
key, etc

key alg int 4 Password type, RSA or SM2

key size int 4 Key size

key binding policy uuid char * DIGEST SIZE*2 Bind policy identifier with key

privatekey uuid char * DIGEST SIZE*2 Corresponding private key identifier

keypass char * Unknown Password

key filename char * Unknown File name of the key file

Fig. 3. Plugin encapsulation structure.

querying the flags defined in the data structure of the local objects. The process
of querying the association among local objects from the local database and do
some processing shows the substance of plugin encapsulation. The design of the
database defines the storage structure for these objects.
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3.6 The Process Encapsulation Layer

Plugin package encapsulates all local trusted processes, process encapsulation
complete the interaction and collaboration of these plugins.

Process encapsulation is based on a message bus which has message routing
function, this message bus can confirm the messages destination through the
content, type, and the sender of the message, and it also can realize the mes-
sage routing like challenge - response patterns, and the aspect-oriented message
routing which can intercept the message from the existing message process and
return this message after processing. The message bus can mount many trusted
encapsulated plugins, and connect the plugins through the message routing,
finally implement the trusted collaborative process automatically.

In this process, it is necessary to set policies for the message bus to deliver the
message correctly. Message policies are divided into two patterns, match policy
and route policy.

When the message bus receives a message, the match policy start to work.
It compare the message with the pre-defined format, and classify the messages,
then give the messages to different route policy.

Route policy confirms the messages from the match policy, then send the
messages to the right destination.

The design of process encapsulation is shown in Fig. 4.

Fig. 4. Workflow of process encapsulation.

In this design, the trusted cooperation between different nodes can be encap-
sulated as an individual process through the interaction between different plugins
by route policy defines, to make different plugins to complete a trusted process
synergistically. That does not only simplify the development, but also makes the
trusted encapsulation system runs automatically as software defined.

3.7 The Application Encapsulation Layer

On the basis of the preceding discussion, we can get a complete process of trusted
computing functions. So in the application layer, we need to design an interface
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for applications to call the process conveniently. Application encapsulation is
to translate the trusted requirements of the applications to local plugins that
will implement these requirements and processes between those plugins. First,
we need to implement the corresponding plugins, and mounts the plugins on the
message bus, and then map the application demand to the corresponding process.
In practice, such process was triggered when applications propose their demands
to accomplish trusted requirements. Meantime, environmental factors and other
security mechanism can also trigger other trusted process through application
layer monitor service, thus making the trust functions of the application can
reflect security changes of the environment and the effect of security system
and security events have on it. Finally, based on plugin encapsulation, provide
transparent support of trusted binding functions for applications through an
application library.

4 Secure Remote Login Usage Example

This paper presents a five layers encapsulation system based on Linux environ-
ment and TCG standard, and designs a usage. The usage uses swTPM of IBM
to simulates physical trusted root (TPM), and uses trousers to implement the
TSS trusted software stack as physical layer encapsulation. Take the case of a
process of remote login, the structure of this login system is shown in Fig. 5.
The login node receives login message form user, and send this message to verify
node. Verify node authenticate the user, and sends the result to the login node.
For security reasons, we use bind method of trusted computing to realize the
protection of data. Verify node generates a bind key (a cryptographic key pair,
private key stores in the verify nodes trusted root and public key public), login
node gets the public key of verify nodes bind key, and uses this public key to
encrypts login message, then sends the encrypted message to verify node, ver-
ify node uses private key to decrypt login message. We can make sure that the
login message can be only reads by the verify node because only verify nodes
trusted root has this private key of bind key. For these reason, we can prevent
any information from leaking out.

In the process of bind and unbind, there are 11 TESI functions was called.
These functions are shown in Table 3.

Then we designed 5 plugins to finish the local processes: login plugin, AIK
Client plugin, sign/verify Plugin, binding/unbinding plugin and authentication
plugin. These plugins have deployed on different nodes. Every node has deployed
some message buses. Plugins transport messages by message bus though the
match policy and route policy. The deployment of different nodes is shown in
Table 4.

The analysis of information interaction process between nodes is as follows:

Step 1. The process of negotiation certificate between the login node and
authentication node.

1.1 Binding/unbinding node sends AIK application package containing cer-
tificate information to AIK authentication node;
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Fig. 5. Remote login system structure.

Table 3. TESI functions uses in bind/unbind.

Function name Function

TSS RESULT TESI Local Auth(char * pwdo, char *
pwds)

Connect with trusted root, and get
the permission of trusted root
and storage root

TSS RESULT TESI Local Reload() Connect with trusted
encapsulation library

TSS RESULT
TESI Local CreateBindKey(TSS HKEY *hKey,
TSS HKEY hWrapKey, char * pwdw,Char * pwdk)

Create a bind key

TSS RESULT TESI Local WriteKeyBlob(TSS HKEY
hKey, Char * name)

Write the private key to a file

TSS RESULT TESI Local ReadKeyBlob(TSS HKEY
*hKey, Char * name)

Read the private key from a file

TSS RESULT TESI Local WritePubKey(TSS HKEY
hKey, Char * name)

Write the public key to a file

TSS RESULT TESI Local ReadPubKey(TSS HKEY
*hKey, Char * name)

Read the public key from a file

TSS RESULT TESI Local LoadKey(TSS HKEY
*hKey, TSS HKEY hWrapKey, Char * pwdk)

Use wrap key to unwrap the public
key from a file

TSS RESULT TESI Local Bind(char * plainname,
TSS HKEY *hKey, char * ciphername)

Bind data from a unencrypted file

TSS RESULT TESI Local UnBind(char * plainname,
TSS HKEY *hKey, char * ciphername)

Unbind data from a encrypted file
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Table 4. Plugins on different nodes.

Node name Bus name of the node Function of the bus Plugins of the bus Notes

Login node Login bus Accept login

information and

send to Verify

Node

Login plugin Accept and

generate login

message

Trusted processing bus AIK certificates

request, active,

sign/verify and

binding/unbinding

AIK client plugin

sign/verify plugin

binding/unbinding

plugin

Verify node Verify bus Authentication Authentication plugin Verify login

message and

output the

result as a

verify message

Trusted processing bus AIK certificates

request, active,

sign/verify and

binding/unbinding

AIK client plugin

sign/verify plugin

binding/unbinding

plugin

CA node CA verify bus AIK identify AIK identify plugin

1.2 AIK authentication node provides the AIK activation package containing
the signature certificate to binding/unbinding node;

1.3 Binding/unbinding nodes activates the authentication key and get the
signature certificate.

Step 2. The process of keys exchange between binding node and unbinding
node.

2.1 Unbinding node sends the certificate containing signature public key to
binding node;

2.2 Binding node extracts the signature public key from the certificate after
completes the authentication of certificate message;

2.3 Unbinding node generates a pair of binding key, and then sign and issue
the public key of binding key with signature key, at last sends it to binding node;

2.4 Encryption binding node obtains binding public key and verifies it with
signature.

Step 3. The process of login node send login messages, and verification node
authenticate and return the result.

3.1 The login node obtains user’s login information from external input;
3.2 Login node sends message to binding node;
3.3 Binding node sends the message data to login node after encrypting it;
3.4 Login node sends encrypted message to verification node;
3.5 Verification node sends the encrypted message to unbinding node, and

unbinding node decrypts the message;
3.6 Unbinding node sends the decrypted data to verification node;
3.7 Verification node generates the return message through verifies the login

behaviour according to the message, and sends the message to login node;
3.8 Login node reads the return message and finishes the process of verifying.
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As the process described above, by using an interface from application layer,
an application can just input a user name and a password, then wait for the
reporting of verification.

The two examples below shows how to bind and unbind some data through
this encapsulation system.

Example of a binding data process

try {
cout <<"TESI_bind_binddata" << endl ;
result=TESI_Local_Reload();
}
catch (!TSS_SUCCESS &e ) {
cerr << "Tspi_Key_LoadKey:" << e << endl ;
}
try {
result= TESI_Local_ReadPubKey(&hKey,"bindpubkey");
}
catch (!TSS_SUCCESS &e ) {
cerr << "Tspi_Key_LoadKey:" << e << endl ;
}
try {
cout << "Data before binding" << endl ;
result=TESI_Local_Bind("plain.txt",hKey,"cipher.txt");
}
catch (!TSS_SUCCESS &e ) {
cerr << "TESI_Local_Bind:" << e << endl ;
}

Example of an unbinding data process

try {
cout << "TESI_bind_unbinddata" << endl ;
result= TESI_Local_ReloadWithAuth("a","b");
}
catch (!TSS_SUCCESS &e ) {
cerr << "Tspi_Key_LoadKey:" << e << endl ;
}
try {
result= TESI_Local_ReadKeyBlob(&hKey,"bindkey");
}
catch (!TSS_SUCCESS &e ) {
cerr << "Tspi_Key_LoadKey:" << e << endl ;
}
try {
result= TESI_Local_LoadKey(hKey,NULL,"k");
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}
catch (!TSS_SUCCESS &e ) {
cerr << "Tspi_Key_LoadKey:" << e << endl ;
}
try {
result=TESI_Local_UnBind("cipher.txt",hKey,"plain.txt");
TESI_Local_Fin();
}
catch (!TSS_SUCCESS &e ) {
cerr << "TESI_Local_UnBind:" << e << endl ;
}

5 Evaluation

In this test, through survey of the workload by use TESI library or use TSPI
library directly, we can concluded that use TESI library functions can reduce 2/3
code on average. And in the application layer, by using an application encapsu-
lation interface to finish the same work, we need just a single command. Some
statistical results are shown in Table 5.

Table 5. Workload in different calling method.

No encapsulation Using encapsulation Application call

AIK process 1226 code lines 285 code lines A single command

Binding key generate 202 code lines 60 code lines

Binding/unbinding data 1068 code lines 399 code lines

All these processes runs in the memory, so there are no significant differences
between encapsulation and no encapsulation in performance.

6 Conclusion

This paper design a architecture and implement a proof-of-concept system with
the aim to mitigate the gap between the current obscure trusted APIs and
the actual trusted applications for trusted software development. This system
can provide high-level and much simplified trusted transaction interfaces for
user applications through five layers encapsulation. In the architecture, this sys-
tem imposes four encapsulations: interface encapsulation, plugin encapsulation,
process encapsulation and application encapsulation on the basis of the origi-
nal trusted hardware encapsulation, and provides simplified application-oriented
interfaces, realized a simplified way to call trusted computing functions, solved
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the compatibility problem among different trusted hardware encapsulation inter-
faces, hidden the details of local trusted computing process and keys manage-
ment, implemented the automation of trusted protocol in different nodes and
the translate process from application trusted requirements to trusted comput-
ing functions, finally realized transparent trusted computing support for appli-
cations.

In summary, with this encapsulation system, developers can use trusted com-
puting functions expediently and efficiently. We hope the encapsulation architec-
ture we proposed can give a boost to real-world trusted computing application.
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Abstract. The trusted boot is a hot spot in trusted computing field.
User’s identity authentication and trusted measurement are used to deal
with security threats. But it is difficult to implement the general trusted
boot based on hardware, which can be bypassed easily by software. In
order to solve the above problem, a scheme of trusted boot is presented
based on the universal smart card. It does not change the hardware
and the firmware of the smart card and the terminal device. The core
method combines user’s identity authentication with trusted measure-
ment. It binds user’s identity, smart card and terminal device to ensure
the trusted boot of terminal device. The trusted computing mechanism
can be extended from power on to the application layer. Ultimately,
experiments prove the security of boot and simplification of the imple-
mentation.

Keywords: Trusted computing · Trusted root · Trusted chain · Trusted
measurement · Security bootstrap

1 Introduction

With the development of information technology, information security problems
have become increasingly serious [1,2]. Desktop and laptop computers that are
most commonly used store critical data as the terminal device for users. There-
fore, in order to solve security issues, it must be started from the terminal device.
Due to the security mechanism of hardware structure of the terminal device is
oversimplified and the terminal device lacks design for security [3,4]. The attacker
can boot the terminal device without the permission, to bypass the authentica-
tion mechanism of the operating system, and steal or tamper with the user’s
critical data and damage operating environment in terminal device. In order to
prevent above attacks fundamentally, it must protect the terminal device from
power on to the application [5,6]. Unless protecting the integrity of the entire
boot mechanisms of terminal device, it can protect the security of critical data
effectively [7].
c© Springer International Publishing Switzerland 2016
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In terms of trusted boot, many scholars and institutions at home and abroad
have made a great contribution to the prosperity. Literature [8,9] presented the
cryptographic operation function is introduced to the CPU, in order to make
the CPU have the logical and cryptographic operations functions. However, the
scheme needed to transform the existing hardware architecture of the CPU, and
it did not have the generality. Literature [10,11] needed the help of a trusted
third party, the introduction of a trusted server, and realized a trusted boot
with the terminal via trusted server. However, the program needed trusted third
party authentication, and trusted measurement was achieved for online and com-
plex trusted systems was involved. Trusted Computing Group (TCG) proposed
Trusted Computing Module (TPM) [12]. When the computer was power on, the
core root trusted module (CRTM) measured the BIOS, and when the integrity
of BIOS satisfied, the process passed to the BIOS. Then the BIOS measured
the operating system loader (OS Loader), the OS Loader archived the control
when the integrity of the Boot Loader meet. Ultimately, the system completed
the transfer of trust chain. TCG proposed that the trusted boot mechanism had
three forms on the hardware platform: Firstly, The TPM chip was embedded on
the motherboard [13], and connected to the Southbridge chip via LPC (Low Pin
Count) bus. However, the scheme needed to change the hardware structure and
only to protect the security of the new machine, but was not compatible with
the hardware environment of the old machine; secondly, External PCI card was
connected to the motherboard [14], and it could protect the security of the old
machine. But the scheme was only to protect the security of desktop computers,
laptop computers could not be on an external PCI card, the security of laptop
computers was not ensured; thirdly, the form of USB interface [15] could simul-
taneously protect the security of desktop and laptop computers. But the scheme
needed to modify the BIOS program, and because of the manufacturer of BIOS
were different, the transformation capacity and operability was not strong.

Based on the third scheme, Chinese scholars [16–19] presented a new scheme
which did not change the hardware architecture and BIOS program combined
the BIOS with the USB device together as the trusted root, and then estab-
lished a trusted chain during startup terminal device. But the scheme had the
following shortcomings: Firstly, the dedicated USB device must be customized
and large overhead costs; secondly, there was a security risk in that multiple
terminal devices could be boot by the same USB device; thirdly, if the boot
data of terminal device had been tampered with or destroyed, then no recovery
mechanism was taken into account; and lastly, the USB device was easy to lose
and damage, without taking into account the recovery mode of the USB device
itself.

This paper is based on the plan put forward by Chinese scholars which did
not change the hardware architecture of the smart card. The smart card that
includes CD-ROM file system transforms with storage file to design the trusted
CD boot (TCDB) and the transformation of the partition boot sector (PBR).
Without changing the hardware and firmware architecture of the smart card and
the terminal device, the security objective is implemented. It binds user’s identity
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information to the terminal device and the TCDB. The trusted mechanism could
be extended from the power on of terminal device to the application layer. The
solution is also presented for situations where PBR is tampered with and TCDB
is lost or damaged. The paper describes the transformation scheme for TCDB
logical structure and disk boot program, and then introduces a trusted boot
mechanism of terminal device and the credibility of the mechanism is proved.
Finally through the theoretical analysis and experimental data, the safety and
practicality of the scheme are proved.

2 Logical Structure of TCDB

The traditional smart card with CD-ROM file system includes a storage module
and a COS (Chip Operating System) module. As shown in Fig. 1.

Fig. 1. Traditional smart card hardware logic structure

Without changing the hardware architecture of the smart card, the storage
module includes the boot of the program and data, extends the capabilities of
the smart card, after the transformation of the logical structure as shown in
Fig. 2.

Fig. 2. Traditional smart card hardware logic structure
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The storage module is responsible for taking over the boot process from the
terminal device, verifying user’s identity information and measuring the platform
configuration information. It also provides a function that recovers platform
configuration information. The storage module is logically divided into two parts:
the cipher text storage area and the plain text storage area.

• The cipher text storage area
In order to prevent the attacker copying the critical data including the system

boot MBR and the recovered data, the critical data are stored in the cipher text
storage area.

1. The system boot MBR
The transformation of the MBR in disk is that it removes the instructions

which include judging the device type and loading the PBR, in order to improve
the boot speed. When the execution is completed, the control will jump to the
specified area of memory.

2. The recovered data
If the trusted measurement of the terminal device is not satisfied, the recov-

ered data will repair the critical data in the terminal device.
• The plain text storage area
All of the logic modules such as the communication module, the boot module,

the authentication module, the trusted measurement module and the recovery
module are stored in this area.

1. The communication module
This module calls COS module to complete the data encryption and decryp-

tion operations. Simultaneously, the module is responsible for the communication
between TCDB and the terminal device.

2. The boot module
This module takes over the boot process of the terminal device, and provides

the execution environment for the communications module, the authentication
module and the trusted measurement module. When the execution is completed,
the control will jump to the specified area of the memory.

3. The authentication module
This module is responsible for authenticating user’s identity information.
4. The trusted measurement module
This module is responsible for the measurement of the platform configuration

information of the terminal device.
5. The recovery module
If the terminal device does not satisfy the trusted measurement process, this

module will repair critical data.
The COS module is a system on chip (SOC). This module includes the cryp-

tographic computation engine and the reference library.
• The cryptographic computation engine
The engine is responsible for providing cryptographic operations, and sup-

porting our self-developed domestic cryptographic algorithms.
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• The reference library
The library includes expected values of authentication, trusted measure-

ment and log information of the three parts. It provides the baseline for the
user authentication and platform trusted measurement and it also provides the
trusted proof for the application layer.

3 New Boot Sectors Structure

Typically, boot sectors can be run automatically when the terminal device powers
on. The structure of boot sectors is shown in Fig. 3.

Fig. 3. Boot sectors of disk

When booting, the operating system first executes the MBR program to
find the active partition; then executes PBR in the active partition, locates the
operating system loader sectors group; and finally executes the OS Loader.

In order to prevent the terminal device from starting alone; it must revise
the boot sectors. Revised sectors include MBR, PBR, and the OS Loader sectors
group. After the transformation, the disk structure is shown in Fig. 4.

Fig. 4. Boot sectors after transformation

Both data section and code section of MBR are set to 0, saving the disk par-
tition table (DPT) and the end identifier 0× 55 and 0×AA. When the terminal
device starts alone, the boot process can be prevented.
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If an attacker restores MBR in disk artificially, by encrypting PBR of the
active partition, the boot process cannot continue. As shown in the shaded por-
tion of PBR in Fig. 4. In this way, the security of some metadata such as the file
system identification and the sector number of a cluster of disk can be protected.
In addition, the read logic in the PBR sector is modified, in order to implement
the execution process which can jump to the specified area of the memory.

If the MBR and the PBR of the active partition of disk have been restored
artificially, the OS Loader sectors group will be encrypted to prevent the boot
process from going on. As shown in the shaded portion of OS Loader sectors
group in Fig. 4. OS Loader consists of the executable binary code and multiple
configuration files, so for the attacker to restore the sectors is difficult. In this
way, the terminal device cannot startup alone.

When the terminal device is started, the TCDB gets the booting process and
measures the transformation of MBR, PBR, and the OSLoader sectors group
in order to proof the security. If the result cannot meet the requirements of
credibility, the user can choose whether to recover data in three regions of disk
from the TCDB. In this way, the boot sectors of the terminal device can be
protected.

4 Trusted Boot Mechanism

Binding user’s identity, TCDB and terminal device is to ensure the security of
the terminal device from starting up to and before loading the operating system
kernel. The transferring process of the trusted chain is shown in Fig. 5.

Fig. 5. The transfer process of the trusted chain

Without alteration to the BIOS, the trusted boot are divided into four
stages which includes establishing the trusted root, the trusted measurement,
the trusted recovery and the trusted execution.

1. Establishing the trusted root
When the BIOS load is completed, the binding TCDB gains the control. The

user inputs the authentication information which is verified with the expected
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value stored in the binding TCDB. If the process is satisfied, the BIOS and
TCDB will combine together as the trusted root of the terminal device. Other-
wise, if the TCDB which should bind to the terminal device does not connect
to the terminal device or the user authentication fails, the boot process of the
terminal device will be terminated.

2. The trusted measurement
The TCDB measures the platform environmental information of the termi-

nal device. If the step fails, the control will enter the trusted recovery stage.
Otherwise, it will enter the trusted execution stage.

3. The trusted recovery
This takes into account the abnormal situation that the terminal device con-

nects to the unbinding TCDB in order to enhance the robustness of the system.
The trusted recovery is divided into two parts: the user verification and the
platform recovery.

• The user verification
In order to prevent the TCDB from recovering the boot data in the disk

caused by the user who inserts the unbinding TCDB to the terminal device, the
user must consult with the trusted third party. When the trusted third party
checks on the information whether the user submits correctly, the process of
execution will pass to the platform recovery step.

• The platform recovery
One part of recovering data stored in the cipher text area is decrypted by the

COS module to repair the MBR of the disk. Then the other parts of the recov-
ering data repair the PBR and OS Loader sector group. When the recovery step
is completed, the TCDB will measure the platform environmental information
of the terminal device once again.

4. The trusted execution
The communication module in the TCDB decrypts the MBR stored in the

cipher text area and PBR stored in the active partition of the disk, and then
copies the plain text of them to the specified area of the memory. It also decrypts
the OSLoader sector group and extracts the executable binary data from the
plain text to recombine the OS Loader and copies it to the specified area of the
memory as shown in Fig. 6.

When the boot module finishes, the MBR decrypted in the memory will
execute, followed by PBR, the OS Loader and then load the OS kernel. Even
if power is off in the process of bootstrap, the TCDB and boot sectors of the
disk will still cipher text storage. In this way, the integrity of critical data can
be protected.

After the operating system is booted, the application of user level must prove
that the bootstrap is trusted before operation of the terminal device. This process
includes two parts: the credibility of the measuring log and the TCDB.

• The credibility of the measuring log
In order to ensure the credibility of the bootstrap, the corresponding log

information is stored in memory. Comparing the log in memory with the expected
value in the TCDB can ensure the credibility of the bootstrap.
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Fig. 6. Trusted execution process

• The credibility of the TCDB
Considering the situation that the TCDB is lost or damaged, the TCDB

must be re-created. At present, the new TCDB does not match the terminal
device. After the bootstrap of the operating system completed, the application
layer must re-bind the relationship between user’s identity, TCDB and terminal
device. In this way, the lost or damaged TCDB cannot be reused.

5 Proof of the Credibility

In order to ensure credibility of the scheme, the proof of the credibility of the
bootstrap is needed. Many research institutions have their own definition of
trusted computing. This paper uses definition proposed by Chinese scholars. The
core of building the trusted root is to ensure that the user’s identity information
meet the requirements of TCDB. The core of the trusted measurement is to
ensure the platform configuration information of the terminal device meet TCDB
requirements. Therefore, some basic concepts need to be defined: user’s identity
information and the platform configuration information.

According to the definition of Chinese scholars [20], the definitions of the
trusted boot are the followings:

Definition 1: The trusted boot
If each step of the boot can meet the needs of the expected values, and the system
can prove the result is credible, then the boot process is the trusted boot.

Definition 2: User’s identity information
It is personal information that the user satisfies certain functional requirements,
represented by such as PIN code. The set is constituted by user multiple identities
information represented by R = {r1, r2, · · · , ri, · · · , rn}.

Definition 3: The platform configuration information
Using the quad ci =< si, ei, di, hi > describes the platform configuration infor-
mation of terminal device, si represents the starting number of boot sectors in
disk; and ei represents the end number of boot sectors in disk, and si ≤ei; and di
represents the data of sectors group [si, ei]; and hi represents the hash value of
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di; the set constructed by the platform configuration information of the terminal
device is C = {c1, c2, · · · , ci, · · · , cn}.

In order to ensure the security of user’s identity information and the plat-
form configuration information, the identity authentication expected value and
trusted measurement expected value are stored in the COS module of TCDB.
In order to repair the platform configuration data of the terminal device, the
recover data is stored in the cipher text area of TCDB. In order to verify the
credibility of boot process after the operating system running, the log messages
which generated by the steps of authentication and trusted measurement are
stored in the special area of memory.

• The identity authentication expected value
It is the standard value that judges user’s identity information if or not it

meets the credibility, represented by ui. The set is constructed by the identity
authentication expected value represented by U.

• The trusted measurement expected value
It is the standard value that judges the platform configuration information

of terminal device if or not it meets the credibility, represented by vi. The set is
constructed by the trusted measurement expected value represented by V.

• The recovery data of the platform
Using the recovery data, the TCDB can repair the platform configuration

information if the security has problems, represented by rdi. The set is con-
structed by the recovery data of the platform represented by RD.

• The log message
The execution steps of the authentication and trusted measurement generate

the log messages that are stored in the special area of the memory, represented
by msgi. The set is constructed by the log messages represented by MSG. The
application layer can prove the security of the bootstrap by log messages.

When the terminal device power is on, the TCDB verifies the identity infor-
mation of the user whether it is consistent with the expected value, and then mea-
sures whether the platform configuration information does match the expected
value and then recovers the data where it does not match. All of these steps
generate log messages in order to prove the security of the operating system by
the application layer. According to the Definition 1, the boot process meets the
trusted boot.

Definition 4: The boot process of the terminal device is trusted
If user’s identity and platform configurations do meet the legal credibility of
verification, the boot process is considered at terminal device to be credible.

According to the above definitions we describe the execution processes
of establishing the trusted root, the trusted measurement and the trusted
execution.

1. Establishing the trusted root
During the boot process, the algorithm is executed only once. After users

identity information is checked correctly, the BIOS and TCDB are combined
together as the trusted root (Fig. 7).
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Fig. 7. The algorithm of building trusted root

2. The trusted measurement
The function represents that the recovery data is decrypted by the key. It

should be noted that, during the boot process, the algorithm does not execute
only once. Before entering the trusted execution stage, the platform configuration
information must be restored correctly and measured successfully.

Fig. 8. The algorithm of building trusted root

3. The trusted execution
As shown in Fig. 6, the communication module decrypts the MBR stored in

the TCDB and boot data stored in the disk and move the plain text to the
special area of the memory, and then executes them in turn. Ultimately, the OS
kernel is loaded and the trusted mechanism is extended to the application layer.
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6 Security Analysis and Experiments

6.1 Security Analysis

In security safeguards, TCG regards TPM as a trusted root. At the beginning
the CRTM measures the BIOS integrity, and then finishes booting the operating
system. But it does not authenticate the user, if the computer is stolen by a
malicious person, even if the computer is credible, the data within the machine
will be stolen. The scheme combines the BIOS with the TCDB together as
the trusted root. In the stage of establishing the trusted root, there is need for
”users identity, TCDB and terminal device” certification. In order to ensure that
only the inserting, the binding TCDB and providing the correct users identity
information, the terminal device can be bootstrap. Even if a malicious person
can steal the computer, the data within the machine will not be stolen.

In terms of the integrity being compromised, TCG does not make a specific
explanation, and it will affect the user’s daily operation. The scheme provides
a function that the data of platform can be recovered. In addition, TCDB the
recovery data and the boot data are stored in cipher text, and the content of
them that is stored in different TCDB vary. It can prevent the attacker from
replication.

In the aspect of cryptographic algorithm, TCG releases TPM1.1 and TPM1.2
the use of asymmetric cryptographic algorithm. Even if TPM2.0 specification
supports both the asymmetric cryptographic algorithm and symmetric ciphers
combination, the ownership and the details of technical implementation are not
owned by us. The scheme supports that the cryptographic algorithms in the
smart card presented by Chinese scholars, the copyright and details of technical
implementation are self-developed.

6.2 Experiments

In order to ignore interactive time between the user’s operation and the trusted
third party, experiments use the WinDBG and serial lines to build the envi-
ronment. It can measure the time of the terminal device from powering up to
loading the OS kernel.

Table 1. Experimental stages

Stage Description

First Do not insert the TCDB, and boot the terminal device from the local disk.

Second Insert the TCDB, each part of the disk is good.

Third Insert the TCDB, the MBR is broken.

Forth Insert the TCDB, the MBR and PBR are broken.

Fifth Insert the TCDB, and the MBR, PBR and OS Loader are broken.
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In order to make the results of experiments more accurate, each of the exper-
iments listed in Table 1 are finished ten times respectively in the target terminal
device. The configuration of the target terminal device is Intel i5 processor and
4G of memory. The target operating system is Windows 7 Ultimate, and results
of ten times are shown in Fig. 9.

Fig. 9. The test results of five stages

From the extreme values of the Fig. 9, each curve represents one stage. The
horizontal ordinate indicates the number of experiments, and the vertical ordi-
nate indicates the execution time. In the first stage, the minimum is about 2.14 s
at the sixth time. In the fifth stage, the maximum is about 2.23 s at the ninth
time. The difference between maximum and minimum is about 0.09 s, and the
user is considered unaffected.

In order to illustrate the usefulness of TCDB deeply, Table 2 lists the average
value of each curve in Fig. 8. And by analyzing the specific data, we prove the
TCDB practicality.

Table 2. Execution time of experimental stages

Stage Processing time (ms)

First 2,147

Second 2,184

Third 2,202

Forth 2,214

Fifth 2,219
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From the experimental results, the condition that does not recover data of
disk spends 37 ms more than the normal bootstrap speed. Otherwise, it will
spend 72 ms more than the normal bootstrap speed.

The following conclusions are deduced: in the normal condition that does
not recover data of the disk; the TCDB brings 0.3 % overhead to the system.
In the worst condition that all the platform configuration information should be
recovered, the TCDB brings 0.7 % overhead to the system. Therefore, the TCDB
is high availability.

7 Conclusion

In order to improve the security of the operating system at boot time on the
basis of hardware and firmware architecture of the smart card and the terminal
device, This paper presented a scheme of trusted boot based on the general
smart card. In order to ensure the security of the terminal device, the scheme
is from powering on to loading the operating system kernel, and then extending
the trusted mechanism to the application layer. The scheme has the following
features:

1. Practicability
The transformation which bases on the universal smart card with CD-ROM

file system and the terminal device does not need the additional hardware. Only
some software modules are added.

2. Security
Users identity, TCDB and terminal device are bound together to ensure that

the terminal device cannot be started alone.
3. Robustness
In the cases of the boot data of disk is tampered with and the TCDB is lost

or damaged, we propose two solutions to ensure the accessibility and security.
4. Trustworthiness
The processes of bootstrap generate log messages that are stored in the spe-

cial area of memory. When the operating system is started, the application can
read the log messages to verify the credibility of the bootstrap.

5. Integrity
The TCDB using the CD file system ensures the data stored in the TCDB

cannot be tampered with. And with platform data recovery mechanism, the
TCDB can recover the critical data of terminal device automatically.

The scheme is especially suitable for the scenario in which the user brings
the laptop computer at work. If the laptop computer is lost, attackers and other
users cannot reuse. Ultimately, the scheme improves security. When the user is
working, a variety of software are installed and run. Therefore, further work is
on the basis of TCDB is to design the trustworthiness platform of the terminal
device, and ensures the security of terminal device in running on time.
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Abstract. In the last few years several practitioners have proposed
different strategies for implementing Attribute-based credentials (ABCs)
on smart cards. ABCs allow citizens to prove certain properties about
themselves without necessarily revealing their full identity. The Idemix
ABC is the most versatile ABC system proposed in the literature, sup-
porting peudonyms, equality proofs of representation, verifiable encryp-
tion of attributes and proving properties of attributes via AND, NOT and
OR operators. Recently, Vullers et al. and De La Piedra et al. addressed
the implementation of the selective disclosure operations, pseudonyms
and multi-credential proofs such as equality proofs of representation. In
this manuscript, we present implementation strategies for proving prop-
erties of user attributes via these operators and show how to combine
them via external and internal commitment reordering.

Keywords: Attribute-based credentials · Smart cards

1 Introduction

Our everyday life is full of situations where we must identify ourselves. This
is exemplified where we buy alcohol, cigarettes or other type of adult goods.
In such process, we usually rely on our IDs in order to show that our age is
consistent with the current legislation. However, in most of those operations we
do not need to reveal our full identity. ABCs solve these privacy breaches by
enabling users to reveal or hide the set of attributes that represent their iden-
tity according to the real need of the identification process. In so doing, the
usual identification operation is replaced by an authorization according to the
restricted set of attributes that are asked for. ABCs generally consist of a set of
signed attributes that through certain cryptographic primitives can be used for
authentication while tracing is avoided as well as ensuring that nobody can reuse
the credential attributes or have access to them. Modern anonymous credential
systems such as Idemix [8] and U-Prove [4] rely on blind and randomizable sig-
natures in combination with proofs of knowledge [13]. While some practitioners
have proposed several implementations of ABCs [3,19], the IRMA card1 is the

1 https://www.irmacard.org.
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only open-source and practical implementation of Idemix. In this paper we rely
on the current version of the card.

The main operation of ABCs is the selective disclosure. A user can reveal
a reduced set of her attributes according to a presentation policy sent by a
verifier [6]. However, in certain cases it can be useful to prove relations across
attributes of the same credential. For instance, a restricted service can enforce
an access control based on the ownership of an attribute a OR another one b.
Moreover, it can ask if the cardholder is not owning a special type of attribute
e.g. one that describes that her age is NOT higher than 18. All these operations
are related to the AND, OR and NOT operators introduced by Camenisch et al. in
[7]. In this manuscript, we address their implementation on constrained devices.

In the next section, we describe the work of other practitioners who imple-
mented ABCs on smart cards and relate their performance figures with our work.
In Sect. 3 we describe the main building blocks of ABCs. In Sect. 4, we sketch
out the internals of the IRMA card. In Sects. 5 and 6 we present our strategies
for executing complex proofs based on the AND, OR and NOT operators. We
describe our results for combining them in Sect. 7. Finally, we end in Sect. 8 with
some conclusions.

2 Related Work

Bichsel et al. [3] presented in 2009 the first implementation of Idemix based on
Java Card (7.4 s, 1,280 bit RSA modulus) solely based on the selective disclosure
of one attribute. These results preceded the design of Sterckx et al. [19] (4.2 s,
1,024 bit RSA modulus). Using the MULTOS platform, Vullers et al. presented
an implementation of the issuing and verification operations of Idemix using cre-
dentials of 5 attributes (1–1.5 s, 1,024 bit RSA modulus). De La Piedra et al. [18]
proposed the implementation of larger credentials, pseudonyms (1,486.51 ms)
and multi-credential proofs (2,261.19 ms) on the same platform using a
PRNG and variable reconstruction in RAM relying on the implementation of
Vullers et al [18].

Contribution. In this manuscript, we present strategies for executing OR,
NOT and AND operators over credentials based on prime-encoded attributes as
described by [7]. Relying on the AND operator we found the limit of the amount
of attributes we can issued in the target device2 is 44. We always can perform
this operation using attributes of different lengths in less than 2.7 s whereas
issuing more than 5 attributes using traditional attributes requires more than
3 s [20]. This suggests that issuing prime-encoded attributes can be accompanied
by the computation of pseudonyms. On the other hand, we observed that the

2 Our performance figures have been extracted relying on a MULTOS ML3-R3-80K
smart card using the SCM Microsystems SCL011 reader in a Intel Core i5-3230M
CPU clocked at 2.60 GHz running Debian Linux 3.13.6-1, python 2.7.6, python-
pyscard 1.6.12.1-4 and CHARM 0.43 [2].
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verification of attributes using this operator is only optimal when none of the
attributes are revealed (1.2 s, Sect. 7.1.3). We also present the implementation of
the NOT operator using three approaches for solving the required Diophantine
equation. Using credentials of the same size of the IRMA card we can perform
the NOT operator in 1,974.96 ms with precomputatoin and between 2,016.41
and 2,135.53 ms using the extended Euclidean algorithm. We can perform the
OR operator using the same type of credentials in 1,885.96 ms. Finally, we pro-
pose the internal and external reorganization of commitments for making it
possible the combination of this operators: AND ∧ NOT (2,201.90 ms), AND ∧
OR (1,924.5 ms), NOT ∧ OR (2,122.20 ms) and AND ∧ NOT ∧ OR (2,252.60 ms).
By performing the proposed reorganizations of commitments we obtained reduc-
tions between 170.10 ms and 644.60 ms and between 9 · 74 and 1 · 74 bytes sav-
ings in RAM. Our results suggest that is actually possible to execute complex
proofs of knowledge on embedded devices in reasonable times for on-line set-
tings. Moreover, our performance figures are consistent with the current results
in the literature [18,20].

3 Preliminaries

The IRMA card relies on a subset of the Idemix specification [20]. In this
section, we describe the fundamentals of private ABCs and their main crypto-
graphic blocks: non-interactive commitment schemes, blind signatures and zero-
knowledge proofs. In this respect, we present the Camenisch-Lysyanskaya (CL)
digital signature [10], the Fujisaki-Okamoto commitment scheme [16] and the
Idemix ABC [8].

Non-interactive Commitment Schemes. These constructions are utilized
in Idemix for committing to secret values during the issuing and verification
operations. In so doing, one of the parties proves the knowledge of a committed
value such as an attribute that is not revealed. Typically, a commitment scheme
consists of two stages: commit and reveal i.e. a value x that is received as an
input in the first stage will be revealed during the second one. Idemix relies
on the Fujisaki-Okamoto commitment [16] scheme, which is statistically hiding
and computationally binding when factoring is a hard problem. Given an RSA
special modulo n, h ∈ QRn and g ∈< h >, the commitment function for an
input x, and random value r ∈ Zn is computed as gxhrmodn.

Zero-Knowledge Proofs. In a proof of knowledge, a verifier is convinced that
a witness w satisfies a polynomial time relation R only known by the prover.
If this is performed in a way that the verifier does not learn w, this is called a
zero-knowledge proof of knowledge. Damg̊ard proved that is possible to generate
zero-knowledge protocols via sigma protocols [14]. In Idemix, the typical three
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movement of sigma protocols (commitment, challenge and response3) is trans-
formed into a Non Interactive Proof of Knowledge (NIZK) via the Fiat-Shamir
heuristic [15] in the random oracle model. A variety of zero-knowledge protocols
are utilized in Idemix. For instance, proofs of knowledge of discrete logarithm
representation modulo a composite are used during issuing and verification [16].

The CL Digital Signature Scheme. The CL signature scheme is the main
block of Idemix [10]. It provides multi-show unlinkability via the randomization
of the issued signature. This signature is secure under the Strong RSA assump-
tion. A CL signature is generated (Gen) by a certain issuer according to her public
key (S,Z,R0, R1, ..., R5 ∈ QRn, n) using its secret key (p, q). For instance, a CL
signature over a set of attributes (m0, ...,m5) is computed by selecting A, e and
v s.t. Ae = ZR−m0

0 R−m1
1 R−m2

2 R−m3
3 R−m4

4 R−m5
5 S−v mod n. Then, a third party

can check the validity of the signature by using the issuer’s public key and the
triple (A, e, v) as Z ≡ AeRm0

0 Rm1
1 Rm2

2 Rm3
3 Rm4

4 Rm5
5 Sv mod n (Verify).

Private ABC Systems. In private ABCs systems [12], the users remain anony-
mous and are only known by their pseudonyms. They consist of organizations
that issue and verify credentials so a user can prove its identity to a verifier
while the issuer remains oblivious. In Idemix, this is performed via the multi-
show unlinkability property of the CL digital signature scheme. Avoiding the
transference of credentials between users is enforced using a secret key that is
only known to the user and not by the system (namely, a master secret m0 in
Idemix). In this system, there are two main protocols: issuing (or GrantCred [9])
and verification (or VerifyCred [9]). In the first one, a certain cardholder performs
a protocol for signing a committed value, for instance, a set of attributes that
represent her identity e.g. m0, ...,ml for l attributes. At the end of the proto-
col, she receives a signature σ whereas the signer did not learn anything about
m0, ...,ml. On the other hand, the verification operation serves for proving the
knowledge of a signature over a committed value, for instance a set of attributes
and the master secret m0 of the user for a pair cardholder/verifier. This pro-
tocol enables the possibility of using policies (see for instance [5]), i.e. a list of
attributes or conditions in a certain credential that must be fulfilled during an
authentication operation4.

3 In the first stage, the prover sends to the verifier a commitment message t or t value.
In the second move, the verifier sends to the prover a random challenge message c.
Finally, the last message sent by the prover includes a response value or s value.

4 For instance, an empty proof of possession over a set of attributes (m0, ..., m5) is
represented using the Camenisch-Staedler notation [11] as: NIZK: {(ε′, ν′, α0, ..., α5) :

Z ≡ ±Rα0
0 Rα1

1 Rα2
2 Rα3

3 Rα4
4 Rα5

5 Aε′
Sν′

mod n} being the Greek letters (ε′, ν′) and
(α0, ..., α5) the values of the signature and the set of attributes proved in zero knowl-
edge and not revealed.
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4 The IRMA Card

IRMA supports up to 5 attributes by credential and relies on 1,204 special
RSA modulus for performance reasons5. IRMA is based on the MULTOS card.
Particularly, our target device is the ML3-80K-R1 version. It is based on the SLE
78CX1280P chip by Infineon6. This processor, clocked up to 33 MHz, provides
an instruction set compatible with the Intel 8051 and hardware accelerators for
ECC, RSA, 3DES and AES.

Issuing in IRMA. Issuing in Idemix is related to the generation of a CL blind
signature over the attributes of the cardholder. In so doing, the issuer cannot
extract the master secret m0 of the cardholder and the generated tuple (A, e, v)
remains hidden too. However, in IRMA the cardholder’s attributes are never
revealed to the issuer.

Table 1. Message flow for issuing a CL signature over a set of attributes (I: Issuer,
C: Cardholder)

5 As described in [18], the attributes are represented as lm = 256 bits. The rest of
parameters are set as l′e = 120 (size of the interval where the e values are selected),
lø = 80 (security parameter of the statistical ZKP), lH = 256 (domain of the hash
function in the Fiat-Shamir heuristic), le = 504 (size of e), ln = 1, 024 (size of the
RSA modulus) and lv = 1, 604 bits (size of v).

6 http://www.infineon.com/dgdl/SPO SLE+78CX1280P 2012-07.pdf?
folderId=db3a304325afd6e00126508d47f72f66&fileId=
db3a30433fcce646013fe3d672214ab8 (Accessed 27 February 2015).

http://www.infineon.com/dgdl/SPO_SLE+78CX1280P_2012-07.pdf?folderId=db3a304325afd6e00126508d47f72f66&fileId=db3a30433fcce646013fe3d672214ab8
http://www.infineon.com/dgdl/SPO_SLE+78CX1280P_2012-07.pdf?folderId=db3a304325afd6e00126508d47f72f66&fileId=db3a30433fcce646013fe3d672214ab8
http://www.infineon.com/dgdl/SPO_SLE+78CX1280P_2012-07.pdf?folderId=db3a304325afd6e00126508d47f72f66&fileId=db3a30433fcce646013fe3d672214ab8
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Issuing requires two NIZK (Table 1). In IRMA, the issuing part of
Idemix mimics the Cardholder-Issuer interaction as a set of states:
ISSUE CREDENTIAL, ISSUE PUBLIC KEY, ISSUE ATTRIBUTES, ISSUE COMMITMENT,
ISSUE COMMITMENT PROOF, ISSUE CHALLENGE, ISSUE SIGNATURE and
ISSUE VERIFY. The first, state ISSUE CREDENTIAL, puts the card in issuance
mode, sends the identifier of the credential that will be issued and the context of
the operation. Then, during the ISSUE PUBLIC KEY state, the card accepts the
public key of the issuer: n, S, Z,R0, ..., R5. The attributes to be issued are sent to
the card in the ISSUE ATTRIBUTES state. The rest of the states are related to the
execution of the two NIZK. During ISSUE COMMITMENT the cardholder receives
the nonce n1, it computes U and returns it. Then, in ISSUE COMMITMENT PROOF,
the required values for proving the knowledge of ms in U : c, v̂′, ŝ are generated.
In ISSUE CHALLENGE, it sends n2. During the ISSUE SIGNATURE mode, the issuer
constructs the blinded CL signature and sends to the card the partial signa-
ture (A, e, v′′). Finally, in ISSUE VERIFY the card verifies the signature using the
values sent the verifier (c, Se).

We can model the latency of the issuing process in the IRMA card by rep-
resenting the time required for performing the operation described in Table 1
as Tissuing(n) where n is the number of attributes that will be issued in a cer-
tain credential. This latency would be result of summing up the time required
for getting the public key of the issuer, adding the computation of the involved
proofs and the process of obtaining and verifying the signature:

Tissuing(n) = Tsel cred +
∑

i=n,S,Z,Ri

Tget PK(i) +

n
∑

i=1

Tget attr(i) + Tgen commitment +
∑

i=c,v̂′,ŝ
Tgen proof (i)+

∑

i=A,e,v′′
Tget signature(i) + Tverify(n)

(1)

From this model, we know that there are only two operations that depends on
the number of attributes issued that are part of a certain credential: Tget attr(i)
and Tverify(n). That would mean that in order to optimize the overall latency
of Tissuing(n) there are two strategies: (1) reduce the number of attributes that
are part of the credential (we analyze this aspect in Sect. 5.1) and (2) reduce
then number of operations in the verification part of the proof, which is already
implemented on the IRMA card where the second proof is optionally verified for
reducing the computational complexity of the operation.

Verification in IRMA. When the card receives a verification request, it
changes its initial state to PROVE CREDENTIAL. Then, it acquires a presentation
policy with the description of the attributes that must be revealed. Then, the
card performs the operations depicted in Table 2 (PROVE COMMITMENT). After-
wards, the card changes its working state to PROVE SIGNATURE. In this state, the
verifier can request the randomized tuple (A′, ê, v̂′). Finally, the card switches
to PROVE ATTRIBUTE, where the verifier is allowed to request the set of revealed
and hidden attributes related to the proof. This set of states is mapped to the
three moves described in Table 2.
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Table 2. Message flow for proving the ownership of a CL signature over a set of
attributes (V: Verifier, C: Cardholder)

As described in [18] the latency of the verification operation can be mod-
eled first according to the number of attributes per credential together with the
number of attributes that are revealed (r) or hidden.

Tverify(n, r) = Tsel cred + Tgen commit(n, r)

+
∑

i=A,e,v

Tget sig(i) +
n∑

i=1

Tget attr(i)
(2)

The time the PROVE CREDENTIAL state requires is represented by Tsel cred.
Further, Tgen commit(n, r) represents PROVE COMMITMENT. Finally, Tget sig(i)
is related to the PROVE SIGNATURE state whereas Tget attr(i) represents the
PROVE ATTRIBUTE state.

We rely on the PRNG proposed by De La Piedra et al. in [18] for recomputing
the associated pseudorandomness of the proofs. That approached made it pos-
sible to increase the number of attributes per credential by recomputing the m̃i

values. In so doing, it is possible to generate the associated pseudorandomness
during the generation of the t-values and obtain, on the fly, the same sequence
while generating the s values by resetting the PRNG as described in [18] e.g.
initPRNG() ⇒ m̃i ⇒ resetPRNG() ⇒ m̃i.
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5 Performance Evaluation of AND, OR and NOT
Operators

The main operation of Idemix is the modular exponentiation. This operation
is related to the number of attributes that a certain cardholder hides in an
operation. In [7], Camenisch et al. proposed encoding the user attributes as
prime numbers, reducing the overall number of modular exponentiations to 2.
In so doing, they only utilize a base R1 for encoding all the attributes as product
mt =

∏l
i=1 mi for l attributes. This encoding technique enables the possibility

of performing selective disclosure (namely, using the AND operator), proving the
absence of an attribute in a certain credential (NOT operator) and the possibility
that one or more attributes are presents in mt s.t. Rmt

1 via the OR operator. This
encoding technique is useful where the number of possible values in an attribute
is restricted to only some e.g. masculine or feminine, and each possibility has
associated a prime number.

We rely on the PRNG described in [18] for making it possible the execution
of these proofs. Moreover, we introduce two techniques (internal and external
commitment reorganizations) for reducing the amount of required exponentia-
tions and the RAM required for storing the respective commitment in each step.
External commitment reorganizations make it possible enabling the chaining of
several proofs using the AND, NOT and OR operators in tandem. The internal
reorganization of commitments means reordering the computations of commit-
ments of a certain proof in order to save the computation time and the amount
of utilized RAM.

5.1 The AND Operator

This operator performs the selective disclosure of these attributes by prov-
ing that a certain value mi (which can be one attribute or a product of sev-
eral ones) divides mt. In this respect, proving that a certain attribute m1

belongs to mt is represented in zero knowledge as NIZK: {(ε′, ν′, α0, α1) : Z ≡
±Rα0

0 (Rm1
1 )α1Aε′

Sν′
mod n}. In addition, the commitments C = ZmtSr mod n,

C̃ = (Zm1)m̃hSr mod n and C̃0 = Zm̃tS r̃ mod n must be computed, where
mh = mt/mi and mi consists of the product of attributes that are revealed (in
this case mi = m1).

In this case, the PRNG would compute the following sequence: initPRNG() ⇒
m̃i ⇒ m̃h ⇒ r̃ ⇒ r ⇒ m̃t ⇒ resetPRNG() ⇒ m̃i ⇒ m̃h ⇒ r̃. Otherwise, not
revealing any attribute, that is, only proving the ownership of the signature
would be represented as NIZK: {(ε′, ν′, α0, α1) : Z ≡ ±Rα0

0 Rα1
1 Aε′

Sν′
mod n}.

This requires two exponentiations with independence of the number of attributes
hidden.

We can apply the internal organization of commitments. For instance, in the
computation of the AND proofs we need to commit to the mt value, i.e. the first
attribute of the first base as C = ZmtSr mod n. However, the next commitment
requires the computation of the Sr again as C̃ = (Zm1)m̃h)Sr. In order to avoid
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recomputing Sr, we can proceed by reordering all the computations and reuse
this value from the last commitment. In this case, the order of computations
would be (1) ZmtSr,(2) [Sr](Zm1)m̃h by leaving the result Sr in RAM and
proceeding with the next multiplication. This resulted in an speed up of 78 ms
per operation.

Issuing Prime-Encoded Attributes. Since the number of bases (and modu-
lar exponentiations) is reduced to the number of attributes in the credential to
2, we can compare the performance of the Idemix issuing operation using both
prime-encoded and traditional attributes [20]. In this respect, it is expected
that issuing prime-encoded attributes could reduce the latency associated to
Tissuing(n) as the number of attributes increase (Sect. 4). In the IRMA card,
only 5 attributes w.r.t. the bases R0, ..., R5 are used. On the other hand, we
can store any number of prime-encoded attributes s.t. the only limitation would
be the prime size. Hence, we can compare how the issuing operation in Idemix
scales and observe how many attributes we can issue in the limit case of IRMA
(5 attributes) [20].

We rely on the following methodology. First, we set a limit of 50 attributes
per credential. Then, the only restriction is that |mt| cannot be greater than
the lm = 256 bit limitation according to the Idemix specification. Hence, we
create the following cases: (1) one possibility per attribute: we rely on the first
50 primes, (2) 10 possibilities per attribute: we rely on the first 500 primes,
(3) 100 possibilities per attribute, we rely on the first 5,000 primes, (4) 1,000
possibilities per attribute, we rely on the first 50,000 primes. We select attributes
from the list of the first 50 primes, 500 primes, 5,000 primes, 50,000 primes and
so on in order to construct our credentials w.r.t. the mt exponent for the base
R1 as

∏l
i=0 mi for l = 50 − 1.

What we want to know is for each case, what is the maximum number of
attributes per credential we can store according to lm. Then, we create a list
of primes according to its possibilities in each case when 50, 500, 5,000, 50,000
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primes are involved. We can randomly choose prime numbers from that list and
construct our credentials from 1 to 50 attributes, stopping when |mt| ≥ 256
bits. After repeating this experiment 100 times for each case, we obtained the
approximate maximum number of attributes: 44 attributes (case 1), 25 attributes
(case 2), 18 attributes (case 3) and 14 attributes (case 4).

In relation to Fig. 1 (a), we have used the total number of bits for encoding
the attributes for each case in order to obtain a fair comparison. As depicted, it
is possible to not cross the 3 s margin of issuing traditional attributes and at the
same time issue 44, 22, 18 and 14 attributes of different lengths under the 2.7 s
limit. This could mean that it would be possible to also associated a pseudonym
or several pseudonyms during the issuing of that credential and still maintain
a decent performance in comparison to the utilization of traditional attributes
but issuing from 3 to 8 times more attributes [20].

Verification of Prime-Encoded Attributes. Due to the computation of the
C, C̃o and C̃ commitments together with the two extra response values, revealing
attributes via the AND operator undermines any speed up in comparison to the
issuing operation relying on traditional attributes. We take the limit case of
IRMA (5 attributes) and compare it with verifying and hiding prime encoded
attributes in Fig. 1 (b). Hiding attributes is computationally more expensive
using traditional attributes in comparison to prime-encoded ones whereas hiding
attributes only has a constant performance related to prove the ownership of m0

and mt w.r.t. Rm0
0 Rmt

1 . Hence, only proving the ownership of a CL signature over
a set of attributes without revealing any only requires 1,198.21 ms. In contrast,
revealing all the attributes requires the computation of C, C̃ and C̃0.

Besides, the cost of this operation is related to the computation of the Zmr

exponentiation w.r.t. of mr as the product of the cardholder’s attributes that
are revealed together with the product itself (Tgen commit(n, r)). Therefore, it is
expected that the AND operator increases the computation time as the number
of attributes are revealed at a speed related to the primes utilized (Fig. 1 (b)).
In this respect, an alternative for reducing the latency of Tgen commit(n, r) is to
precompute a restricted set of combinations for revealing attributes Zmr and
store them in ROM so Tgen commit(n, r) is constant w.r.t. C,C0, C̃.

5.2 The NOT Operator

By using prime-encoded attributes it is possible to prove that an mi attribute or
set of attributes do not belong to mt. This is done by showing that the integers
x, y exists w.r.t. the following linear Diophantine equation x · mt + y · mi = 1.

We prove the ownership of a CL signature over m0,mt and the exis-
tence of (x, y) via zero knowledge as NIZK: {(ε′, ν′, α0, α1, χ, υ, ρ, ρ′) : Z ≡
±Rα0

0 Rα1
1 Aε′

Sν′
mod n ∧ C ≡ ±Zα1Sρ mod n ∧ Z ≡ ±Cχ(Zmi)υSρ′} mod n.

The card must compute the commitments C = ZmtSr mod n, C̃ =
C x̃(Zmi)ỹS r̃′

mod n and C̃c = Zm̃tS r̃ mod n where r̃, r̃′, x̃,ỹ are randomizers [7].
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In this case, the critical operation is the computation of the (a, b) pairs and
how this operation scales for large primes. We propose two type of implementa-
tions: (1) precomputing the pairs (x, y) and (2) solving the Diophantine equation
on the card. In the first case, given (x, y) for x · mi + y · mt = 1, mt has always
the same value and there are several combinations for mi. Those possibilities can
be stored in EEPROM if a small number of attributes is utilized. The number
of (x, y) pairs that must be stored is related to the number of attributes per

credential as
l

∑

i=1

ci
n =

l
∑

i=1

(

n

i

)

. Hence, for l = 2 attributes per credential, we

would have to store three (x, y) pairs. In the case of 4 attributes, we store 15
pairs.

The second design is related to the computation of the Extended Euclidean
algorithm on the smart card. We can use the instruction PRIM DIVIDEN from the
MULTOS specification that extracts the Euclidean division of two numbers i.e. q
and r (O(ln3 N)) in order to implement it. Other alternative is to use the binary
GCD or Stein’s algorithm [17]. This algorithm replaces the multiplications and
divisions by bit-wise operations. Finally, the Lehmer’s algorithm relies on the
following idea (O(ln2 N)). When a and b have the same size, the integer part w
of the quotient a/b has one only digit. The goal is to find w while it is small and
continue the involved operations via a matrix. The advantage of this method is
that a large division is only done when needed, if w is greater than a certain
base M .

In order to test the performance of these three algorithms, we have created
four possible cases and have extracted performance figures in our target device.
The attribute mi can vary according to the number of attributes that are proved
that are not in mt. Its length will be greater according to the number of possi-
bilities for each credential. In order to obtain an estimation of the computation
time of each method on the MULTOS card we take 4 cases. If we take the first
10,000 primes, the numbers consist of 2 to 104,729. We can encode these values
using 1 byte to 3 bytes (e.g. 0× 019919 in the case of 104,729). However, mi

and mt can increase according to all the possibilities an attribute can repre-
sent together with the number of involved attributes. We take four cases for an
implementation based on 5 attributes (mt) with different possibilities7. We rely
on credentials of 5 attributes in this case in order to compare the performance
of this operation with the selective disclosure via traditional attributes of the
IRMA card [20].

7 Thus, for one possibility per attribute, we prove the non-existence of one attribute
in mi. In this case, mi = 3 and mt = 5 ·7 ·11 ·13 (case 1). We consider 10 possibilities
per attribute (50 primes). We prove the non-existence of one attribute in mi. For
mi = 3, mt = 179·181·191·193 (case 2). We consider 1,000 possibilities per attribute
(i.e. 5,000 primes) and we prove the non-existence of two attributes in mt for mi =
1, 999 · 2, 161 and mt = 3, 323 · 3, 253 · 2, 897 · 2, 999 (case 3). Finally, we consider
10,000 possibilities per attribute (50,000 primes) and we proof the non-existence
of two primes mi = 91, 387 · 91, 393 in mt = 102, 461 · 102, 481 · 102, 497 · 102, 499
(case 4).
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Table 3. Performance of GCD using the proposed algorithms

Case |mi| (bytes) |mt| (bytes) Euclid (ms) Stein (ms) Lehmer (ms) Extended Euclidean

Algorithm (Euclid, ms)

1 1 2 17.05 70.62 18.43 21.51

2 1 4 17.52 131.78 18.92 21.76

3 3 6 37.49 254.37 38.86 65.64

4 5 9 68.07 289.58 95.61 131.47

The first aspect we notice from Table 3 is that the Stein’s variant obtained
the worst computational figures for the cases proposed despite it is been based on
bit-wise operations, that are suppose to require less time as claimed by Akhavi
et al. [1]. This is, however not true for MULTOS. For the maximum length of case
4 (9 bytes), we have measured the latency of all the operations involved: Euclid-
ean division (11.852 ms), comparison (11.047 ms), Boolean and (10.411 ms), right
shift (10.634 ms), increment (10.354 ms) and subtraction (10.647 ms). These
latencies make this option ill-suited when replacing the Euclidean division by
operations that are suppose to require less cycles. On one hand, the Stein’s
variant requires more control operations and branches and on the other one,
bit-wise operations have a similar latency than the Euclidean division. Due to
the proprietary nature of the SLE 78CX1280P chip we cannot claim that the
Euclidean division is being performed via the hardware accelerator of the target
device. Moreover, since MULTOS is based on MEL byte code that is executed
in a virtual machine, we cannot be sure that code optimizations (written in C)
can result in any speed up. Finally, we are unaware of any side channel analysis
(SCA) countermeasures implemented on the card, but there is a possibility that
the designers wanted to homogenize the latency of a group of simple arithmetic
operations in order to make them indistinguishable.

In the case of the Lehmer’s variant, for single-precision values of 32 bits or
less, we obtain similar results as the Euclidean algorithm. We believe that due to
that when we overcome that value (multi-precision), there are more calls to the
operating system for performing bit-wise operations, multiplications and divi-
sions that increase the latency of the algorithm despite this is not expected,
whereas in the traditional Euclidean algorithm we are only performing one
Euclidean division by step. Moreover, in our target device is not possible to
tune the precision and adjust the assembler code since that is then translated
into byte codes, executed by the virtual machine.

We have depicted in Table 48 the performance figures of the NOT operator
for each case. In the precomputation strategy we only show the first case since
increasing the length of the operand does not alter the result significantly. On
the other hand, the computation of the pairs (x, y) is performed during the

8 We use the following notation in Tables 4, 5 and 6: PRE means precomputation,
EUC 1-3 is related to the cases presented in Table 3, RA means Reveal all the
Attributes with the exception of the master secret and HA to hide every attribute
in the credential.
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Table 4. Performance figures of the NOT operator while precomputing the (x, y) pair
and relying on the Euclidean algorithm (ms)

Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m̂0, m̂t|r̂, r̂′, â, b̂, C) Total

NOT PRE 15.203 1,590.11 48.72 214.80 1,974.96

NOT EUC (1) 15.503 1,587.93 46.81 259.95 2,016.41

NOT EUC (2) 15.514 1,587.92 15.677, 47.10 260.53 2,017.23

NOT EUC (3) 15.510 1,587.93 46.87 306.28 2,063.63

NOT EUC (4) 15.511 1,587.91 46.85 376.28 2,135.35

OR 113.622 1,476.47 46.08 234.53 1,885.96

computation of â, adding its latency to Tget attr(i) (Sect. 2). Thanks to the low
latency operation of the PRIM DIVIDEN primitive we obtained latencies between
2,015.41 and 2,135.35 ms.

5.3 The OR Operator

The utilization of this operator enables the cardholder to prove that an attribute
mi or more attributes encoded as a product can be found in mt s.t. mt =

∏l
i=0

w.r.t. Rmt
1 . In so doing, we rely on the following fact: given an attribute mi ∈ mt,

an integer x exists s.t. x · mi =
∏l

i=1 mi = mt. This is proved in zero knowl-
edge as NIZK: {(ε′, ν′, α0, α1, χ, ρ, ρ′) : Z ≡ ±Rα0

0 Rα1
1 Aε′

Sν′
mod n ∧ C ≡

±Zα1Sρ mod n ∧ C′ ≡ ±CχSρ′} mod n9. The card must compute three com-
mitments C = Zmt · Sr mod n, C̃ = Zm̃t·Sr̃

mod n, T̃ = Cx̃ · Sr̃1 w.r.t x = mt

mi

s.t. Rmt
1 and r1 = −r0 · x where r, r0, r̃, r̃0, r̃1, m̃t, x̃ are randomizers. The first

obstacle for implementing this primitive was to over come the lack of support of
signed arithmetic on the card. This means creating wrappers over the multiplica-
tion and addition operations supporting sign extensions due to the computation
of r1 = r0 · x. Afterwards, the operation is performed in two’s complement.
By using the RAM reductions achieved thanks to the PRNG described in [18]
and executing all the two’s complement operations in RAM, we cold reduce the
computational time of r1 = −ρ0 · χ from 495.530 ms to 90.260 ms.

We have depicted in Table 4 the performance figures of case 1, described in
Sect. 5.1. We can compute this operation withing 1,885.96 ms. Since this oper-
ation scales with mi at the same pace of the AND, OR operators without the
mt product. Since the commitments utilized only involved two multi modular
exponentiations, we can obtain a reduction of 1,974.96 - 1,885.96 (89) ms in
comparison to the NOT operation.

9 In this manuscript we only address the first version of this NIZK described in [7] and
leave the second one beyond the scope of this work due the computation limitations
of our target device.
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Table 5. Estimation of the performance obtained by the combination of operators for
prime-encoded credentials (5 attributes)

Combination Cases Performance (ms) Performance after

optimization (ms)

AND ∧ NOT RA, PRE 2,485.3 2,201.9

AND ∧ NOT RA, EUC1 2,506.9 2,223.4

AND ∧ NOT RA, EUC2 2,507.1 2,223.7

AND ∧ NOT RA, EUC3 2,551.0 2,267.5

AND ∧ NOT RA, EUC4 2,616.8 2,333.4

AND ∧ OR RA, C1 2,247.7 1,924.5

NOT ∧ OR PRE, C1 2,292.3 2,122.2

NOT ∧ OR EUC1, C1 2,397.9 2,227.8

NOT ∧ OR EUC2, C1 2,365.2 2,195.1

NOT ∧ OR EUC3, C1 2,409.1 2,238.9

NOT ∧ OR EUC4, C1 2,474.9 2,304.8

AND ∧ NOT ∧ OR RA, PRE, C1 2,897.1 2,252.6

AND ∧ NOT ∧ OR RA, EUC1, C1 2,918.6 2,274.1

AND ∧ NOT ∧ OR RA, EUC2, C1 2,918.9 2,274.3

AND ∧ NOT ∧ OR RA, EUC3, C1 2,962.8 2,318.2

AND ∧ NOT ∧ OR RA, EUC4, C1 3,028.6 2,384.0

5.4 Combination of Operators for Prime-Encoded Credentials

It can be useful to prove certain properties of a prime-encoded credential by uti-
lizing a group of these operators. For instance, one could prove that an attribute
a is in mt s.t. Rmt

1 , b is NOT AND c OR d could be present. In so doing, it can
be possible to perform some degree of commitment reorganization (i.e. external
reorganization) in order to optimize the computation of the required commit-
ments and response values.

Given the AND, NOT and OR operators, we consider the following combi-
nations in order to obtain the best combination and estimate its performance.
First, we discuss AND ∧ NOT. In the AND proof we always to commit to mt as
C = Zmt · Sr in order to prove that a certain m1 can divide mt afterward and
utilize the m̃t, r̃ randomizers for proving the ownership of mt as C̃0 = Zm̃t · S r̃.
The response values m̂t, r̂ are created. The NOT operator follows a similar app-
roach for proving the ownership of mt in the case of the C and C̃c commitments
(Sect. 5.2). Hence, when proving both presence an absence of attributes one can
avoid computing these two commitments and their response values twice. More-
over, in the case of AND we can apply internal commitment reorganization.
Then, in AND ∧ OR, the OR operator (Sect. 5.3) proves the ownership of mt

as C = ZmtSr and generates C̃ as the AND and NOT operator as well as the
response values for m̂t, r̂. This means that it can be computed only one time



Efficient Implementation of AND, OR and NOT Operators for ABCs 197

Table 6. RAM savings by recomputing the pseudorandomnes in each primitive

when combined and the AND proof can be executed with the optimizations dis-
cussed in Sect. 5. In the case of NOT ∧ OR, both operators compute the C, C̃
commitments and only need to be obtained once. However, none of these oper-
ators enable the possibility of performing internal commitment reorganizations.
Finally, AND ∧ NOT ∧ OR. This is the combination that enable us to perform a
greater number of optimizations, First, C, C̃, m̂t, r̂ do not need to be performed
three times and the AND operator can be executed with internal commitment
reorganization.

By performing external commitment reorganization we can obtain reduc-
tions in performance between 170.10 ms and 644.60 ms (Table 5) as well as in
RAM (Table 6). This is mainly achieved where the three types of operators are
being used and the commitments C, C̃ are reused together with the randomizers
recomputed by the PRNG described in [18]. We rely on 5 attributes and on the
cases created for the NOT operator (Sect. 5.2) together with the option where
AND has the worst performance i.e. revealing all the attributes.

6 Conclusions

In this manuscript we have presented different strategies for implementing the
operators for prime-encoded attributes described in [7]. We showed that when the
number of attributes is large it can be possible to rely on prime-encoded proofs
for improving the issuing process. Moreover, this also applies to the verification
of a considerable amount of attributes. Besides, the selective disclosure operation
can be improved in cases where hiding is needed by relying on prime-encoded
attributes. Moreover, by externally and internally reordering the commitments
involved in chained AND,OR and NOT operators it can be possible to obtain
speed ups of 170.10-644.60 ms. These conclusions can be utilized as guidance in
the creation of presentation policies when utilizing contemporary smart cards,
taking into account that these operations are computational optimal in the target
device in comparison to other implementation options.
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Abstract. Partial decryption enables a ciphertext to be decrypted par-
tially according to provided secret keys. In this paper, we propose a public
key encryption scheme with the functionality of partial decryption. Our
strategy is to use the NTRU cryptosystem. Under a design principle of
the mathematical structure “group ring”, we extend the original NTRU
into group ring NTRU (GR-NTRU). First, we propose a generic frame-
work of our GR-NTRU. Our GR-NTRU allows partial decryption with
a single encryption process using a single public key. Besides, when we
execute partial decryption under a secret key of GR-NTRU, we need no
information to identify each part in a whole ciphertext. Consequently,
management of a public key and a corresponding set of secret keys is
rather easier than the naive method. Next, we propose a concrete instan-
tiation of our generic GR-NTRU. A multivariate polynomial ring NTRU
scheme is obtained by employing a product of different cyclic groups as
the basis of the group ring structure. We will show examples of those new
variants of NTRU schemes with concrete parameter values, and explain
how we can employ them to use the functionality of partial decryption.

Keywords: NTRU · Lattice-based cryptography · Group ring · Partial
decryption

1 Introduction

In a service network where many users participate in, encryption that enable a
ciphertext to be decrypted by designated users are useful. Broadcast encryption
[3,4] and attribute-based encryption [11,14] are well-known ones developed for
the purpose in public-key framework. Partial decryption [2,10] is a notion for the
kind of encryption. It enables a ciphertext to be decrypted partially according
to provided secret keys. That is, when a plaintext is encrypted by a key, a user
can recover only a part of the plaintext by using his secret key, while another
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user can recover another part (or, a whole) of the plaintext by using another
different secret key. A typical use-case of the partial decryption appears in the
service of content delivery network for charged data such as movies and musics.
In the service, partial disclosure attracts users but only users who purchased a
whole-decryption key can enjoy content.

1.1 Previous Work

A naive method to realize partial decryption is to divide a plaintext into parts
that correspond to receivers, and then encrypt each part by using each public
key (in a public-key framework). A variant is that a content holder uses n public
keys to encrypt n patterns of a part of a plaintext independently. Then a user,
by using a subset of corresponding secret keys, decrypts those ciphertexts and
obtains corresponding parts of the plaintext. Hence more (complete set of) secret
keys can provide more parts of the plaintext (a whole of the plaintext, respec-
tively). Bellare et al. [2] succeeded in achieving efficiency in this naive method
by introducing a technique of re-usable randomness.

The naive method can also be applicable to common-key framework. One
of the common-key methods, which is developed by Izu et al. [10], contains a
masking procedure to hide some parts of a plaintext. Another variation is the
hybrid one where a public-key encryption is applied to encrypt each common
key (that is, each session key) for partial decryption.

A method of a different direction to achieve a similar goal is sanitizable
signature [1,7]. In addition to ordinary functionalities of digital signature, it has
a functionality that any part of a signed message can be santized keeping the
validity of the legitimate signature (that is, it is not treated as falsification).
Though it is different from partial decryption, it can be employed for the similar
purpose to decode data partially.

We may imagine similarity and difference between partial decryption and
secret sharing [13]. Santis et al. [12] proposed a scheme to share a function,
which is called function sharing. In the scheme, an intractable function, that is,
a hard-to-evaluate function is divided into shadow functions. Then, a subset of
those shadow functions can collaborate together to effectively compute a value
of the original function at a point only when the size of the subset is equal
to or more than a threshold. Recently, Boyle et al. [6] proposed an extended
notion called function secret sharing. If function sharing (FS) and function secret
sharing (FSS) can be applied to a decryption function, the resulted functionality
is similar to partial decryption, but FS and FSS are different in that where one
cannot get any information when the number of shares is less than the threshold.

The naive method as well as the above related methods (except secret
sharing) basically needs

– independent encryption processes by using independent keys,
– information to identify each part in a whole ciphertext,
– management of those independent keys and identifying information.
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1.2 Our Contribution

In this paper, we propose a public key encryption scheme with the function-
ality of partial decryption, which resolves the three problems. Our strategy is
to use the NTRU cryptosystem [9], an algebraic lattice-based public-key cryp-
tosystem. Under a design principle of the mathematical structure “group ring”,
we extend the original NTRU into group ring NTRU (GR-NTRU) to attain the
functionality of partial decryption. As a first contribution, we propose a generic
framework of our GR-NTRU to resolves the above three problems; actually, our
GR-NTRU allows partial decryption with a single encryption process by using
a single public key. Besides, when we execute partial decryption under a secret
key of GR-NTRU, we need no information to identify each part in a whole
ciphertext. If we use another different secret key, then we can decrypt another
different part. Consequently, management of a public key and a corresponding
set of secret keys is rather easier than the naive method.

As a second contribution, we propose two concrete versions of our generic
GR-NTRU. Basically, the group ring structure allows us to apply finite groups
as a basis of the group ring structure; if we apply a cyclic group, then the
resulted scheme is the original NTRU [9]. If we apply a product of different
cyclic groups, then we obtain a multivariate polynomial ring NTRU scheme. If
we apply the Frobenius group, then we obtain a corresponding Frobenius NTRU
scheme. We will show examples of those new variants of NTRU schemes with
concrete parameter values, and explain how we can employ them to use the
functionality of partial decryption.

This paper focuses on only application of GR-NTRU. Therefore, we do not
discuss the security of GR-NTRU in this paper. Instead, another paper [15]
analyzes the security of GR-NTRU whose authors include two authors of this
paper.

2 NTRU

We review a description of the NTRU cryptosystem, not in the style of the
original one [9], but in the style given in [8]. The NTRU scheme given in [8] has
a more efficient algorithm of decryption than the original scheme.

Let N, p, q be integers satisfying p < q, and R = Z[x]/(xN − 1). Any element
f in R can be expressed uniquely as f =

∑N−1
i=0 aix

i (ai ∈ Z). The subsets
Lf ,Lg,Lr,Lm are defined as follows. First, we define the space of messages,

Lm =
{

f =
∑

aix
i ∈ R

∣

∣

∣

∣

−1
2
(p−1) < ai <

1
2
(p−1), ∀i

}

. (1)

For positive integers d1, d2,

L(d1, d2) =

⎧

⎨

⎩

f =
∑

aix
i ∈ R

∣

∣

∣

∣

∣

∣

f has d1 coefficients equal 1,
f has d2 coefficients equal − 1,
the rest are 0.

⎫

⎬

⎭
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For three integers df , dg, d,

Lf = L(df , df − 1), Lg = L(dg, dg), Lr = L(d, d). (2)

Key Generation

Step 1 Choose f ∈ Lf , g ∈ Lg such that there exists Fq ∈ R satisfying Fq ∗
(1 + pf) = 1 mod q.

Step 2 Let h = pFq ∗ g mod q.
Public Key h, p, q.
Private Key f .

Encryption. To encrypt a message m ∈ Lm, we first choose randomly a r ∈ Lr,
then compute the ciphertext:

c ≡ h ∗ r + m mod q.

Decryption. We compute

a ≡ (1 + pf) ∗ c mod q.

Here, we choose the coefficients of a in the interval from −q/2 to q/2. Then, a
coincides with the message m.

3 A Variant of NTRU Using Group Ring

In this section, we describe a NTRU-based cryptosystem using group ring, as an
extension of NTRU.

3.1 Group Ring

Let G be a finite group.

Definition 1 [5]. Z[G] is defined as the set

Z[G] =

⎧

⎨

⎩

∑

g∈G

ag[g]

∣

∣

∣

∣

∣

∣

ag ∈ Z (∀g ∈ G)

⎫

⎬

⎭

Here, [g] is a formal element associated to g ∈ G, and {[g] | g ∈ G} becomes a
basis of Z[G]. The addition and multiplication in Z[G] are defined as follows:

(1) The addition is defined by component-wise addition.
(2) For any g, h ∈ G, [g] ∗ [h] = [gh]. The multiplication of any two elements in

Z[G] is defined by Z-linear extension of the above formula.
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By these addition and multiplication, Z[G] becomes a ring, which is called the
group ring with respect to G.

Example 1. Let CN = 〈σ〉 be a cyclic group of order N . Then Z[CN ] is isomor-
phic to Z[x]/(xN − 1). In fact, the Z-linear map below is a ring isomorphism.

Z[CN ] ∼−−→ Z[x]/(xN − 1)

∈ ∈

σi 	→ xi.
(3)

3.2 GR-NTRU

In order to apply NTRU-based cryptosystem using group ring to partial decryp-
tion technique widely, we prepare other sets of secret key, message etc. instead
of Lf ,Lg,Lr,Lm in the original NTRU scheme. First, we define a L∞-norm and
L2-norm of f =

∑

g∈G ag[g] ∈ RG by

|f |∞ = maxg∈G{|ag|}, |f |2 =
(

∑

g∈G

|ag|2
)1/2

,

respectively. Similarly as in [9], for any ε > 0, there are γ1, γ2 > 0, depending on
ε and G, such that the probability is greater than 1 − ε that they satisfy

γ1|F |2|G|2 ≤ |F ∗ G|∞ ≤ γ2|F |2|G|2 (F,G ∈ RG).

For a positive number c, we define M(c) ⊂ RG by

M(c) = {f ∈ RG | |f |2 < c}.

Let p, q be integers satisfying p < q, G a finite group, and RG = Z[G]. Let
cf , cg, cr, cm be positive numbers satisfying

pcgcr < q/(4γ2), (1 + pcf )cm < q/(4γ2) (4)

Key Generation

Step 1 Choose f ∈ M(cf , g ∈ Mg such that there exists Fq ∈ RG satisfying
Fq ∗ f = 1 mod q.

Step 2 Let h = Fq ∗ g mod q.
Public Key h, p, q.
Private Key f .

Encryption. To encrypt a message m ∈ M(cm), we first choose a r ∈ M(cr),
then compute the ciphertext:

c ≡ h ∗ r + m mod q.
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Decryption. We compute

a ≡ (1 + pf) ∗ c mod q.

Here, we choose the coefficients of a in the interval from −q/2 to q/2. Then, a
coincides with the message m.

We call this scheme GR-NTRU in this paper. We remark that in the case
of G = CN (cyclic group), the corresponding GR-NTRU is equivalent to the
original NTRU through the isomorphism (3).

3.3 Why Decryption Works

From (4), we have

|pg · r + (1 + pf)m|∞ <
q

2
. (5)

Since

a ≡ pg · r + (1 + pf)m mod q

and all the coefficient of a are chosen in the interval from −q/2 to q/2, a coincides
with pg · r + (1 + pf)m. Therefore, taking a mod p, we can obtain m.

4 Application to Partial-Decryption

Here, we explain how to apply GR-NTRU to partial-decryption method. What
we need are two finite group G,H and a homomorphism between them, κ :
G → H. From κ, we can construct a ring homomorphism between group rings,
κZ : Z[G] → Z[H] as follows

κZ(
∑

g∈G

cg[g]) =
∑

g∈G

cg[κ(g)].

From two groups G,H, two GR-NTRU, NTRUG and NTRUH can be con-
structed. Then, a plaintext mG, ciphertext cG, secret key fG, public key hG of
NTRUG are sent to mH = κZ(mG), cH = κZ(cG), fH = κZ(fG), hH = κZ(hG)
via κZ, respectively. If these satisfies the following conditions, mH , cH , fH and
hH can be regarded as a plaintext, ciphertext, secret key, and public key of
NTRUH .

fH ∈ MH(cfH ), gH = κZ(gG) ∈ MH(cgH ), rH = κZ(rG) ∈ MH(crH ), mH ∈ MH(cmH ).

In what follows, we assume the above conditions, and apply the above homomor-
phism to partial-decryption. First, for a plaintext mG, mH can be regarded as its
partial information. Now, we consider the situation that Alice has an authority
that the whole information mG can be decrypted, and Bob has an authority that
only partial information mH can be decrypted. This situation can be realized as
follows.
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4.1 Key Generation

First, Alice generates a secret key fG ∈ MG(cfG) and gG ∈ MG(cgG
). Next,

Alice compute the corresponding public key hG ∈ RG from fG and gG. hG is
the public key for Alice. The secret key for Bob is fH := φZ(fG).

4.2 Encryption for Whole Plaintext

A plaintext mG is identified with an element MG(cmG
). Here, we assume that

φZ(m) ∈ MH(cmH
) is satisfied. To encrypt m, one chooses randomly rG ∈

MG(crG) such that φZ(rG) ∈ MH(crH ). Next, one computes eG ≡ hG · rG +
m mod q. eG is the corresponding ciphertext.

4.3 Decryption for Alice

To decrypt eG, Alice computes aG ≡ (1 + pfG) · eG mod q. Here, Alice chooses
all the coefficients of aG in the interval from −q/2 to q/2. Then, aG coincides
with the message mG.

4.4 Decryption for Bob

First, Bob computes eH = φZ(eG). Next, Bob computes aH ≡ (1 + pfH) ·
eH mod q. Here, Bob chooses all the coefficients of aH in the interval from −q/2
to q/2. Then, aH coincides with the message mH .

5 Application Using Multivariate NTRU

NTRU employs the group ring associated with the cyclic group CN . If we change
this group to a product of cyclic groups CN1 × · · · × CNl

, then we have the
multivariate NTRU. Let us consider the case that l = 3 and N1, N2, N3 are all
prime. Let p, q be positive integers. Then we have the following ring isomorphism:

R3 =Z[x1, x2, x3]/(xN1
1 − 1, xN2

2 − 1, xN3
3 − 1)

� Z[CN1 × CN2 × CN3 ]

In the case of l = 2, we have three associated rings:

R1
2 = Z[x2, x3]/(xN2

2 − 1, xN3
3 − 1) � Z[CN2 × CN3 ],

R2
2 = Z[x1, x3]/(xN1

1 − 1, xN3
3 − 1) � Z[CN1 × CN3 ],

R3
2 = Z[x1, x2]/(xN1

1 − 1, xN2
2 − 1) � Z[CN1 × CN2 ]

Any element f3 in the ring R3 is expressed uniquely by

f3 =
∑

i1,i2,i3

ai1,i2,i3x
i1
1 xi2

2 xi3
3 (ai1,i2,i3 ∈ Z).
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In the case of two variables, for example, an element f2 in R3
2 is expressed by

the form, f2 =
∑

i1,i2
a′
i1,i2

xi1
1 xi2

2 (a′
i1,i2

∈ Z). Considering the natural group
homomorphism,

φ1 : CN1 × CN2 × CN3 → CN2 × CN3 ,

φ2 : CN1 × CN2 × CN3 → CN1 × CN3 ,

φ3 : CN1 × CN2 × CN3 → CN1 × CN2 ,

the corresponding ring homomorphisms are described as follows:

φ1
1,Z : R3  f(x1, x2, x3) 	→ f(1, x2, x3) ∈ R1

2,

φ1
2,Z : R3  f(x1, x2, x3) 	→ f(x1, 1, x3) ∈ R2

2,

φ1
3,Z : R3  f(x1, x2, x3) 	→ f(x1, x2, 1) ∈ R3

2.

Let a plaintext m ∈ R3 be given by

m =
∑

i1,i2,i3

ai1,i2,i3x
i1
1 xi2

2 xi3
3 (ai1,i2,i3 ∈ Z).

Then the following three partial informations m1 ∈ R1
2,m2 ∈ R2

2,m3 ∈ R3
2 of m

are considered:

m1 = φ1
1,Z(m) =

∑

i2,i3

(
∑

i1

ai1,i2,i3)x
i2
2 xi3

3 ,

m2 = φ1
2,Z(m) =

∑

i1,i2

(
∑

i2

ai1,i2,i3)x
i1
1 xi3

3 ,

m3 = φ1
3,Z(m) =

∑

i1,i2

(
∑

i3

ai1,i2,i3)x
i1
1 xi2

2 .

6 Combination of Several Partial Informations

In this section, we introduce a method to decrypt several partial informations
of different types as an application of several homomorphisms.

6.1 Application 1

Let φ1, φ2 : R3 → R3
2 be defined by

φ1(f(x1, x2, x3)) = f(x1, x2, 1),
φ2(f(x1, x2, x3)) = f(x2, x1, 1).

For a plaintext m ∈ R3, m1 = φ1(m), m2 = φ2(m) are regarded as partial
informations of m. Figure 1 shows that A can decrypt whole information m and
B1, B2 can decrypt partial information m1,m2, respectively. The top node of
this graph has two child nodes. Furthermore, we can consider a graph with a lot
of siblings.
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Fig. 1. Decryption of two different partial informations

6.2 Application 2

Let φ1 : R3 → R3
2, φ3 : R3

2 → R be defined by

φ2(f(x1, x2, x3)) = f(x1, x2, 1),
φ3(f(x1, x2)) = f(x, 1).

For a plaintext m ∈ R3, m2 = φ2(m) is a partial information of m and m3 =
φ3(m2) is a partial information of m2. Figure 2 shows that A can decrypt whole
information m and B2, C1 can decrypt partial information m2,m3, respectively.
The graph expresses that upper node is nearer whole information. If we assume
N1 = N2 = N3 = N , instead of φ3, we can use

φ′
3(f(x1, x2)) = f(x, xi) (i = 1, . . . , N − 1),

therefore, there exist more than N homomorphisms which corresponds to the
same graph as above (Table 1).

Fig. 2. Decryption of two partial information of containment relationship

6.3 Application 3

Combining Application 1 and 2, the following partial decryption scheme can be
realize: Let φ1, φ2 : R3 → R3

2, φ3, φ4 : R3
2 → R be defined by

φ1(f(x1, x2, x3)) = f(x1, x2, 1),
φ2(f(x1, x2, x3)) = f(x2, x1, 1),
φ3(f(x1, x2)) = f(x, 1),
φ4(f(x1, x2)) = f(x, x).
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Table 1. Number of Graph using multivariate NTRU

n � of depth 1 � of depth 2

3 3 3N

4 4 4N2

5 5 5N3

6 6 6N4

7 7 7N5

8 8 8N6

9 9 9N7

10 10 10N8

Then a partial decryption scheme corresponding to the graph of Fig. 3 can be con-
structed. In the case of the multivariate NTRU using 3 variables, there appears
no graph of depth more than 2, but in general, in the case of the multivariate
NTRU using n variables, the graph of depth n − 1 appears.

Fig. 3. Decryption of 4 partial informations

7 Concluding Remark

We propose a method to realize several type of partial decryption using lattice-
based cryptography using group rings. In fact, diversity of several groups
and homomorphisms between them provides several types of partial decryp-
tion schemes. As a non-trivial example, we present an application using the
multivariate NTRU.

Given several finite groups and several homomorphisms between correspond-
ing group rings, we can design a partial decryption system. We will investigate
how many combination of finite groups and homomorphisms can be applied to
partial decryption system as a future work.
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Abstract. With the rapid development of Android-based smart phones
and pads, android applications show explosive growth. Because third-
party application market regulation is lax, many normal applications are
embedded malicious code and then many security issues occur. The exist-
ing antivirus software cannot intercept malicious behaviors from those
repackaged applications in many cases. To solve these problems, we pro-
pose a new method called RbacIP, which integrates RBAC into intercept
and disposal process of malicious android applications. In RbacIP, the
malicious behaviors of applications are monitored by inserting Linux
kernel function call dynamically. Exploiting the Netlike technology, the
information of malicious behaviors are feedback from the kernel layer
to the user layer. On the user layer, depending on the roles assigned,
android applications are authorized to the corresponding permissions.
According to the characteristics of RBAC, it can achieve the mini-
mum authorization for malicious applications. Meanwhile, to balance
the user experience and his privacy protection needs, users are allowed to
make fine-grained decision based on RBAC policy, rather than permit or
prohibit. Finally, we implemented RbacIP in real android platform. Com-
prehensive experiments have been conducted, which demonstrate the
effectiveness of the proposed method by the comparison with tradi-
tional HIPS systems at the malicious programs detection performance
and resource consumption.

Keywords: RBAC · Hook · Dynamic detection · Android-ndk

1 Introduction

The current mainstream malware detection method is divided into static detec-
tion and dynamic monitoring, of which the main ways in the static detection
include: analyzing applications signature information, APK source code reverse
analysis, malicious code library matching. Static detection has higher malicious
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code library dependencies, when there is a new type of malicious program, which
often cannot accurately identify malicious behavior, so the detection rate and
accuracy of malicious programs should be improved. Dynamic monitoring by
actually running the application, which is expected to trigger malicious behav-
ior, to achieve the purpose of detecting malicious programs. The feature of classic
dynamic detection methods is with little dependency for the special code repos-
itory, by capturing the real running of malicious acts to determine whether it
was malicious software. There are the risk of malicious programs bypassing the
system detects.

To solve these problems, this paper proposes RbacIP : a RBAC [7]-based
Method for Intercepting and Processing Malicious Applications in Android Plat-
form. Compared with other research work, this dissertations innovation points
are as follows:

(1) This method proposes RbacIP : a RBAC-based Method for Intercepting and
Processing Malicious Applications in Android Platform, By defining the dif-
ferent roles of least privilege portfolio to achieve the malicious programs
minimum authorized, which could detect and dispose the application steal
user privacy malicious behavior.

(2) Depending on different APP application scenarios, when a malicious access-
ing user privacy data, the method will according the APPs permissions infor-
mation corresponding to the role, deciding whether to allow applications
related operations, giving users more accurate and granular security tips,
while allowing the user to choose by themselves.

(3) The method by modifying the Android Linux kernel to implement malicious
behavior dynamic detection, because the application cannot modify the ker-
nel layer of function calls, thus avoiding the risk of malicious programs to
bypass the traditional HIPS system detects, with greater security.

The rest of the paper is organized as follows: Sect. 2 describes related work;
Sect. 3 describes RbacIP in detail; Sect. 4 is the experimental results and analysis;
and finally we concludes the paper and proposes future research work.

2 Related Work

Android malware detection has been the hot topic in recent years, the current
mainstream malware detection method is divided into two categories: static test
or dynamic test.

Static detections main way is to analyze the permission information of the
application, comparing the signature information of the application, through
reverse engineering to analyze the source of the APK and so on. Stephen et
al. [2] By analyzing Manifest.xml file additional information in addition to the
permissions, they proposed Manilyzer, the system can take advantage of the
wealth of information of the manifest.xml automatically generated feature vec-
tors, while it use modern machine learning algorithm for applications testing
classification. Patrick et al. [3] proposed a feature set that contains the list of
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android malware permissions and collection of API calls, classification across
use the permissions of feature set contained and the characteristic information
of API to achieve the detection of malicious software.

The major way of dynamic detection adapts to dynamically run applications,
by triggering its malicious behavior to achieve the detection of malicious pro-
grams. Commonly used dynamic testing tools include Monkey, MonkeyRunner,
TaintDroid and droidBox and so on. Mingshen et al. [5] designed and imple-
mented a secure, scalable HIPS (Host-based Intrusion Prevention System) plat-
form - “Patronus”. “Patronus” not only provides intrusion prevention while
eliminating the need to modify the Android system, it can also dynamically
detect existing malware based on Android runtime information. Experiments
show, “Patronus” can effectively prevent invasive behavior and accurately detect
malware, with a very low performance overhead and power consumption.

3 Problem Statement

As shown in Fig. 1, when users install applications in Android device, Android
system will list about the application applied for the privileges information and
these rights may result in the risk of information leakage of user privacy, the user
clicks on the consent, then the APP will be installed on the Android device, oth-
erwise APP will not be installed. Android system authority information reaches
as many as 151, when Android applications access user privacy data, they must
have the appropriate permissions information to operate. But most users did not
notice the rights information Android APP applied when installing APP, which
gives an opportunity to be exploited by malicious applications, indirectly pose
a threat to users’ privacy security. This paper is conducted for such the kinds of
scenarios.

Fig. 1. Application scenario
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4 Design of RbacIP

Android system has classic fourtier structure model, from top to bottom in
turn is the Application layer, Application Framework layer, Library layer, and
Linux kernel layer. Any operation of the application all need to call the func-
tion of the Linux kernel. The RbacIP method include four modules, malicious
behavior detection module, communication module, intercepting prompt mod-
ule and RBAC-based intercept module. The malicious behavior detection mod-
ule is deployed to achieve the key functions of the system Hook calls based
on Linux Hook technology. Communication module passes the application mali-
cious behavior found in malicious behavior detection module to intercept prompt
module for further disposal. Based on JNI and android-ndk technology, intercep-
tion prompt module deployed in user layer gives the corresponding prompt to
the user. When an application requests access to the user’s private data, RBAC-
based interceptor module decide whether allow the application related operations
by querying RBAC policy library. The framework of RbacIP is showed in Fig. 2.

Fig. 2. The framework of RbacIP

4.1 Malicious Behavior Detection

Linux kernel layer is divided into kernel mode and user mode, the system call
interface located between the core mode and user mode, it encapsulates underly-
ing operating to provide the interface the functions can be invoked to the upper
layer. Such as user mode program request read operation to kernel mode pro-
gram, after the operating system obtains control returns the results to the user.
Linux systems generally process is unable to read the system kernel, the sys-
tem call is the only entrance into the core mode. Linux kernel using system call
number only represents a system call, when accessing system calls the process
needs query from sys call table (system call table) addressing to achieve. When a
user program execution system call will first execute int 0x80 software interrupt
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instruction, which makes Linux execution transition from user mode to ker-
nel mode, while calling sys call table to call the corresponding system function.
Because Android applications will eventually call the Linux system function, so
we can pass Hook of Linux system function calls, to achieve the purpose of mon-
itoring malicious behavior of the application. Linux Hook is a replacement for
the Linux system calls function, before the application requests a system call,
we will point the corresponding system call table to own definition of the call-
ing function, after the appropriate action and then return to normal the system
call. The method implements monitoring an application malicious acts, includ-
ing reading the user contacts, location information, communications records, text
messages and other private data, while across communication module will trans-
fer malicious acts to intercept prompt module accordingly make interception and
disposal.

4.2 Kernel Message Feedback

We use netlink socket to complete the communication kernel mode and user
mode. Kernel mode applications through function netlink kernel create() to ini-
tialize netlink socket connection. At this time, the user mode program through
function socket() to create a user mode socket, which needs to specify the user
mode socket’s address field, protocol type. And for establishing a communication
connection with kernel mode programs, kernel mode and user mode application
need to use the same protocol type. User mode application by bind() function
to achieve relevance each other between source socket address and open socket
address. Linux transmit messages from user mode to kernel mode, by function
sendmsg(fd, &msg, 0) to achieve it, through the function recvmsg(fd, &msg, 0)
to accept messages from the kernel. User mode program needs to send its own
address, the process id and other fields to kernel mode program, when the kernel
mode program to monitor the application of reading user privacy records and
other acts, which will according to process id and address from the user mode
to send a message to specify the location.When user mode application program
receives the message from the kernel mode, it will give user prompts by the way of
graphical, while according to the user’s selection return the corresponding results
back to the kernel mode program. When the kernel mode application program
receives the message from the user mode, it will invoke hello nl recv msg() to
process the message from user mode, according to the user’s choice to decide
whether to allow the application of related operations.

4.3 Interception Prompt Interface

To provide the user-friendly interface, we use JNI technology to achieve giving
the user fine-grained system prompts in the form of pop-up box. We achieve
JAVA code and C code call each other based Android.mk, C programs and .h
header files. Wherein, Android.mk is similar to the Makefile file in Linux system,
which defines the rules for compiling .C files, only add the file can we through
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“ndk-build” script to compile C programs. Jni file directory .h header are gener-
ated by javah command through .java program corresponding header files, javah
command will generate .java program using native keyword modification method
into methods signatures can be referenced by .C file. Jni directory .C Files is to
be compiled C program, we need to introduce .h header file which was generated
by the command javah, and then implement the relevant functions defined in
function.The method is based .C file to achieve user-level socket initialization
tasks, achieve receiving kernel mode messages and call related JAVA program in
a manner of graphical interface to the user. C program in the internal of JNIENV
* env contains a pointer to the Java VM Dalvik virtual machine object, whenever
a Java thread firstly call C program, Dalvik virtual machine all will produce a
JNIEnv * pointer instances for the Java thread.

4.4 RBAC-Based Interception

The method is for to protect the user’s privacy, which introduce RBAC-based
access control mechanism. In this way it is not the application was installed
then it can access all of the resources within its competence allowed range, when
the application access user privacy data, this method will query the application
belongs roles and rights information corresponding to the role. The system will
query RBAC policy repository, to decide whether to allow the application of the
corresponding request. At the same time, this approach also supports the users
to choose by themselves, in case the user has not selected the system will default
to perform operations according to the query result of the RBAC policy library.
Thus the method meet user needs, while protecting the user’s privacy.

Set R (R1, R2, ..., Rn) represents the definition of the roles, the method
according to the functional requirements of existing daily Android applications,
which defined Android applications defined as six roles, roles are defined as:
R1, R2, R3, R4, R5, R6, which represent: audio-visual, map, communications,
payment type, shopping class and games. The set P (P1, P2, ..., Pn) means that
the definition of privileges, the method summarized likely to leak user privacy 20
right information, whose permissions are defined as follows: P1, P2, P3, ..., P20,
which are ACCESS COARSE LOCATION, ACCESS FINE LOCATION,
WRITE SMS, WRITE OWNER DATA, WRITE CONTACTS, SEND SMS,
RECORD AUDIO, RECEIVE SMS, RECEIVE MMS, READ PHONE SMS,
READ OWNER DATA,READ CONTACTS,PROCESS OUTGOING CALLS,
INTERNET, CHANGE WIFI STATE, CHANGE NETWORK STATE, CALL
PHONE, BROADCAST SMS, ACCESS WIFI STATE, ACCESS NETWORK
STATE.

Function G (R, P) represents the definition of relationship assignment
between roles and permissions, specifying the roles and corresponding rights
information, such as G (Rm, Pn) = 1 indicates role Rm has permissions Pn,
G (Ro, Pw) = 0 indicates Role Ro does not have permission Pw. To protect
users’ privacy and security, this method assigned to the role for the corre-
sponding minimum permissions collection which was required to complete its
task. Such as Communications applications function is to add contacts friends,
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send instant messages, send text messages, etc., completing its tasks permissions
must include SEND SMS, RECEIVE SMS, READ PHONE SMS, READ CON-
TACTS, INTERNET, CALL PHONE six right information, in order to protect
the user’s privacy security, the method assigned communications APP role only
for the minimum permissions to complete the tasks set. When communications
APP requesting user privacy data privilege beyond its minimum permissions set,
the system default reject the application request. Function W (R1, R2) repre-
sent mutually exclusive roles relationship definition, the application cannot be
allocated two mutually exclusive roles, such as W (Rm, Rn) = 1 indicates role
Rm and Rn are not mutually exclusive roles, applications can have the role Rm

and Rn, W (Rs, Rv) = 0 indicates roles Rs and Rv are two mutually exclusive
roles, the application cannot have both roles Rs and Rv. This method in order
to protect user privacy and security, which defined the six roles exclusive rela-
tionship. For example, the role of communication and payment Role belong to
exclusive role, when the application is assigned communication role, which can-
not be allocated to pay class role. Specific roles mutually exclusive relationship
is defined in Table 1.

Table 1. Exclusive role relationship definition table

Video Map Communication Payment Shop Game

Video 1 0 0 0 0 1

Map 0 1 0 0 0 0

Communication 0 0 1 0 0 0

Payment 0 0 0 1 0 0

Shop 0 0 0 0 1 0

Game 1 0 0 0 0 1

Function Ra (P1, P2, ..., Pn) represents the permissions definition set of role
Ra, function Ra+1 (P1, P2, ..., Pn, Pn+1) represents the privileges definition set
of the role Ra+1, Ra+1 represent Ra new privileges Pn+1 for the role, the system
dynamic update RBAC policy library after new added roles information. The
method is to balance the needs of the user, RBAC policy library that supports
dynamic updates. In the initial installation of the application is running, the sys-
tem will assign the appropriate roles according to the application’s functionality,
the role includes the minimum permissions set for the application to complete
its task. When an application requests permission beyond its minimum permis-
sions set, the system will give the user the relevant safety tips. When users agree
to grant the application relative authority, the system will assign a new role to
application according to user selection. The new role contains the permissions
was requested by the application of beyond the minimum permissions set. When
the application requests the permission next time, the system will automatically
allow or deny the application related operations according the previous request
record.
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4.5 Interception and Disposal Algorithm

The interception and disposal algorithm is shown in Table 2.

Table 2. Interception and disposal algorithm in RbacIP

Input: application to be tested
Output: RBAC-based system

Begin:
1. Install android app into android devices
2. Run the app, when the app visit users privace data, query RBAC
strategy database.
3. According apps role and the permission of the role to decide
whether approve apps request.
4. If( the roles permission status == 1){

Pop window to suggest user approve apps request.
If(user click approve){

Feedback to kernel, load app request resource
}

Else{
Feedback to kernel, refuse app request resource

}
}

5. Else{
Pop window to suggest user refuse apps request.

If(user click approve){
Feedback to kernel, load app request resource

}
Else{

Feedback to kernel, refuse app request resource
}

}
End

5 Performance Evaluation

This section tests the effectiveness of RbacIP method in real Android platform,
through comparing with the current prevalent HIPS method.

5.1 Experimental Environment

We have tested resource consumption of the method and interception result to
android system, across inserting the compiled kernel module into the Android
Linux kernel, which realized monitoring application malicious behavior in the
Android Linux kernel layer. When detecting the application reads user privacy
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data, the system will base on the roles of the APP, and the corresponding per-
missions to give users more fine-grained, more accurate tips. The user can across
the system prompts make their own choice, in case the user does not make a
choice, the program will perform system operations, the last kernel layer accord-
ing to the user choice to decide whether to allow or prohibit specific malicious
APP’s operations.

5.2 Interception Result Analysis

We have selected the TOP 100 applications from millet application store as
normal samples, and downloaded some malicious applications from third-party
security testing center, in order to test the method, we have written some appli-
cations for testing, a total of 100 malicious programs Sample. We have tested
the RbacIP method and the traditional HIPS method. When application reading
user privacy, the RbacIP method will prompt the user in the form of bomb box
with malicious behavior. System bombs box example is shown in Fig. 3.

Fig. 3. An example of program sensitive operations intercepted

We have tested programs during they reading the user address book, SMS
record, backstage networking and other acts, whether the system gives the user
about the corresponding prompt according to RBAC policy library. Though test-
ing, the method for sensitive operation of the application, which can give the
appropriate prompt, in case the user does not operate, it will default execute the
corresponding operation according to the system prompts. In particular, when
the application reads user privacy data, and the method have a high detection
rate for these behaviors, specifically shown in Fig. 4, the figure A-G successively
representing access location information, access communication records, read
contacts, read SMS records, send text messages, read e-mail messages, connect
to the network. Meanwhile, as shown in Fig. 5, when the malicious application
access the user’s privacy records, the RbacIP method has higher system inter-
ception rate by comparison with the traditional HIPS.
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Fig. 4. Different malicious behaviors of Android application vs the number of malicious
application detected and intercepted by system under RbacIP

Fig. 5. Different malicious behaviors of Android application vs the number of malicious
application intercepted under RbacIP and traditions HIPS

5.3 Resource Consumption Analysis

The method has been tested by Android system, Android kernel version uses
android 4.4, the screen resolution is 1280*760, Android corresponding API ver-
sion is 19, the memory size is 1G. By inserting Hook kernel modules in the Linux
kernel layer to achieve malicious behavior detection, so the Android device’s
memory consumption is almost zero. At the application layer, by installing APP
to achieve bomb box functionality, through testing the memory of the APP is
less than 1 %. After testing, this method of phone system resource consumption
is low. Specific consumption of system resources shown in Fig. 6.
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Fig. 6. Resource consumption ratio of RbacIP in real Android platform

6 Conclusion and Future Work

When users install Android applications, who often overlooked the APP applied
authority information, which gives an opportunity to be exploited by malicious
applications. Aiming at this situation, we propose RbacIP. When a user inad-
vertently install malicious software, this method can achieve the detection and
interception of malicious application behavior. In order to protect users’ privacy,
assigning the corresponding role with the minimum permissions to complete its
mandate. It will cause some of normal APPs not to access some resources, which
served as malicious theft behavior of user privacy by system mistake. Therefore,
RBAC-based access control policy library should be further improved, using
big data and machine learning methods to adjust RBAC policy database intelli-
gently. In the future, we plan to improve the detection rate of malicious programs
by adjusting the RBAC policy repository dynamically based on machine learning
methods.
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Abstract. Audit logs can be used to detect the intrusion behavior. So it has
become the main target of attack invaders. The existing technologies of logging
protection mainly depend on software and have some inherent defects. The
actual demand from this, presents an audit logging protection mechanism based
on security chip, to provide hardware protection when the log is stored and
accessed. Introduction of the security chip makes the audit log to store and
access are in the trusted environment, to ensure the confidentiality and integrity
of the log.

Keywords: Log security � Security chip � Trust computing

1 Introduction

Audit log has very important role to the safety of the system. It becomes the main target
of attack and a subject to various security threats because it can provide evidence of the
intrusion of the attacker. The attackers can obtain confidential information through the
analysis of logs if the system has been successfully invaded. In order to destroy
intrusion traces, the attackers usually forge, tamper or delete the relevant log items and
other important data files, and even the entire log file.

Many protection techniques of log have been proposed at home and abroad.
Schneier [1] proposed a series of security mechanisms to ensure the security of the log,
the main idea is to transfer the log files in the local system to other trusted system to
achieve the security of the log, and to use authentication, integrity testing ensure the
security of log information transmission. In order to protect the entire log system,
intrusion detection is conducted by setting different access policies in the [2], and only
the authorized user can access the log and ensure the confidentiality of the log records.
At the same time set the log file read and write permissions for access control pro-
tection. Chen Xiaofeng [3] proposed a hardware based log protection method. The
method is based on the NGSCB platform developed by Microsoft, all the encryption
keys are stored in encapsulation, and enhance the security of the key.

Through the analysis of the present research, we can see that there is still a lot of
research on the security of audit log. On the one hand, because almost all audit log
protection mechanism is based on software implementation, in which encryption and
decryption of key is in memory, there exists security risk. On the other hand, because
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of the specific hardware platform is provided by Microsoft, it limits the use of the
promotion. Based on the practical requirements, we propose an audit log protection
mechanism based on security chip.

This paper first proposes a design method for the structure of log files based on the
consideration of confidentiality and integrity. Then the security chip is introduced to
ensure the security of the audit log from two aspects: log storage and log access.
Finally, analysis of the security and performance is carried out.

2 The Audit Log Protection Mechanism Based
on Security Chip

2.1 Objectives of Audit Log Protection

Audit log records the important information of the system running, especially some of
the invasion of the trace, only authorized users can access. At the same time as the audit
log, only to ensure the integrity of the log record, can play the role of intrusion
monitoring.

Considering the above factors, audit log protection mechanism based on security
chip should meet the following design objectives.

(a) Confidentiality protection

The log items should be encrypted and stored in the log file when the log is
generated. While the log file is accessed, only authorized users can decrypt the log
item, to prevent unauthorized users to read audit logs and to master the system’s private
information. Through the key management and authorization mechanism provided by
the security chip TCM, the hardware based log protection is realized.

(b) Integrity protection

The integrity detection mechanism is required to complete the detection of the
integrity of the log when accessing the log, so as to determine whether the contents are
integrity. Only the integrity of the log is not destroyed is credible. The integrity testing
of the log is achieved by using of hash operation module provided by TCM.

2.2 Audit Log Protection Method Based on TCM

To meet the above objectives of the audit log protection mechanism is shown in Fig. 1.
The log protection mainly includes two aspects: the protection of log storage

process and the protection of log access process. The two aspects protection ensures
that the audit log storage, access is credible, and thus ensures the confidentiality and
integrity of the log.
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3 Design of Log Structure

In general, the log file is stored in the form of clear text without integrity detection
mechanism, and can’t be checked if it has been tampered with. An attacker is easy to
get the system’s important information by analyzing the contents of the log file. So if
the log files are be protected, it is difficult to understand the log or to forge log data
even if the attacker gets the log file data. In order to ensure the confidentiality and
integrity of the audit log, the log file structure defined in this paper is shown in Fig. 2.

The log file includes two parts: the encrypted log record and the hash value of log
record. When log record is generated, cipher text and hash value of the log record are
calculated and are recorded in log file.

In log file, each log record corresponds to a unique serial number, called log record
ID, which is generated in a monotonically increasing manner. The log record Id of first
log record is 0, followed by 1, and so on. As a result, the log record ID can be used as a
judgment basis for the forgery or deletion of a log.

Log record is the core of log files. In order to ensure the confidentiality of the log
file, log record should be encrypted with key K. Only audit administrator has the K,
therefore only the administrator can decrypt the log records and get the plaintext log.

The hash value of log record is used to verify integrity of log records. In order to
guarantee the security of audit logs, the Hash algorithm is provided by TCM, and the
hash value is added to the end of the log record.

When the log is read, hash value of each log record is computed and compared with
the previous hash value to verify the integrity of the file is destroyed, and to ensure the
security of the audit log.

TCM

TCM

Fig. 1. Audit log protection mechanism based on TCM
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4 Log Storage

4.1 Protection of Key

How to store log is the key to guarantee the security of the log. Log encryption is the
most effective way to ensure security of log. As a result, the security of the log key
determines the reliability of the whole audit log system.

TCM provides cryptographic algorithms, the key uses hierarchical [4] management.
The parent key of it must specified at the same time the key is generated, and when the
key is stored, read and destroyed, the key must be loaded into the TCM and be
encrypted or decrypted with parent key. At the same time, the full use of key autho-
rization mechanism to effectively ensure the security of key storage and use.

In this system, the log key is stored in a permanent storage area provided by TCM.
And the key will be assigned a unique identifier UUID. Through UUID, users can
easily get the key and perform related operations.

The method of log key security protection is shown in Fig. 3.

4.2 Log Record Encryption

In consideration of the requirements of real-time security log, a fast algorithm of
symmetric encryption is selected when the log is encrypted. The log key uses 128 bit
SMS4 symmetric key. When system initialize, audit administrator creates log key,
whose parent key is the storage main key (SMK), and sets password authorization
using log key.

The process for the encryption of the log records and the calculation of the log hash
value is shown in Fig. 4.

Firstly, the system obtains the TCM’s SMK, and then obtains the key information
according to the log key UUID. Since the log key is encrypted by SMK, it is necessary
to import the log key into TCM and decrypt the log key by SMK. If the SMK
authorization value is correct, TCM uses SMK to decrypt the log key.

Fig. 2. Structure of log file
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Then the log record is encrypted by the log key, and to calculate hash value of log
record using Hash algorithm in TCM.

Finally, the cipher text and hash value of log record are written to the log file.

Plaintext of log
record

Log key

TCM SMK

Cipher text of
log record

Encrypt

Encrypt

Fig. 3. Method of log key protection

TCM layerUser layer

Generate log
record

Import log key
into TCM

Encrypt log record
Cal.hash value

Get log key by
UUID

Write Cipher text
of log and hash in

log file

Obtain TCM s
SMK

Decrypt log key
using SMK

Fig. 4. The process for the encryption and the calculation of the hash value of the log records
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5 Log Record Access

5.1 Log Record Decryption

Since the log record is stored in the form of a cipher text, access log is required to
obtain the log key first, then decrypt it. When the log key is created, the system sets up
authorization data.

The authorization should be verified before using the log key. At the same time log
key is protected by its parent key SMK, it must first import SMK into TCM while
decrypting key log. Since SMK is generated in the TCM initialization, and always
exists in the chip, it is not the key to be migrated. Therefore, the SMK object is
obtained by the authorization of SMK.

When a log key authorized is loaded, the authorization data is imported when the
key is created, in addition to log key information and the parent key information. Only
the imported authorization data is correct, the access to the log key is obtained. After
authentication to SMK and the log key, and obtaining the SMK key, the log the key can
be used.

The process for the decryption and the integrity of the log record is shown in Fig. 5.
The audit administrator obtains the key information according to the log key UUID,

and obtains the cipher text of log key object. Then the cipher text of log key object is
imported into the TCM, and the cipher text of log key is decrypted by the parent key
SMK. Read log file, use log key to decrypt log.

5.2 Log Integrity Detection

Integrity detection can detect whether the log information is tampered with or whether
the items are inserted or deleted.

Through the log key to decrypt the log records, to calculate the hash value of each
log record. To verify the integrity of the log file comparing hash value newly calculated
with hash value storing in log record. If two hash value of record are not equal, the log
record is tampered.

Each log record corresponds to a unique serial number, and the serial number is
recorded in a monotonically increasing manner. If an attacker inserts or deletes a log
record, then the number near the insertion or deletion location in the log file is not a
monotonic increase.

6 Method Analysis

The protection mechanism uses TCM to realize the log protection based on hardware.
The TCM supports the general encryption algorithm, computing power to meet the
needs of the system. At the same time, TCM ensures that the system is safe and trusted,
so as to ensure that the system log is trusted, and the log encryption key is trusted.
TCM uses a hierarchical key to encrypt log record, the log key must be imported into
TCM to encrypt and decrypt, thus ensuring that only the authorized users by TCM can
use the key.
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The TCM chip is applied to the system, and the hardware data encryption is
realized. Increase encryption and decryption speed, greatly saving the computational
expense. The key is also independent of the application program, which can guarantee
the security of the key.

7 Conclusions

In this paper, we propose an audit log protection mechanism based on security
chip. The mechanism can protect the privacy of the log information, and can find the
log records are added or deleted, tampered with. The TCM chip provides log record

TCM layerUser layer

Read cipher text
and hash of log

Verify log

key s authorization

Import log key
into TCM

Decrypt log
record

Cal. Hash value

Verify hash value

Obtain log key

Correct?

Decrypt log file
using SMK

Y

Fig. 5. The process for the decryption and the integrity of the log record
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encryption, decryption and key storage functions. With the help of TCM, ensuring
trusted of log encryption process and the secret key storage, so as to improve the
strength of log system security.
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