
Manuel Serrano
Jurriaan Hage (Eds.)

 123

LN
CS

 9
54

7

16th International Symposium, TFP 2015
Sophia Antipolis, France, June 3–5, 2015
Revised Selected Papers

Trends in
Functional Programming

Lecture Notes in Computer Science 9547

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Manuel Serrano • Jurriaan Hage (Eds.)

Trends in
Functional Programming
16th International Symposium, TFP 2015
Sophia Antipolis, France, June 3–5, 2015
Revised Selected Papers

123

Editors
Manuel Serrano
INRIA Sophia Antipolis
Sophia Antipolis
France

Jurriaan Hage
Department of Information and Computing
Science

Utrecht University
Utrecht
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-39109-0 ISBN 978-3-319-39110-6 (eBook)
DOI 10.1007/978-3-319-39110-6

Library of Congress Control Number: 2016939385

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains a selection of the papers presented at TFP 2015: the Symposium
on Trends in Function Programming 2015, held during June 3–5, 2015, in Sophia
Antipolis, France.

TFP is an international forum for researchers with interests in all aspects of func-
tional programming, taking a broad view of current and future trends in the area. It
aspires to be a lively environment for presenting the latest research results and other
contributions, described in draft papers submitted prior to the symposium. For the
symposium, the Program Committee chair verified that these drafts were within the
scope of TFP. Submissions appearing in the draft proceedings are not considered as
peer-reviewed publications.

The TFP 2015 program consisted of two invited talks, one tutorial, and 26 pre-
sentations. The invited talks were given by Laurence Rideau (Inria, France) on
“Engineering Mathematics: The Odd Order Theorem Proof,” and Florian Loitsch
(Google, Denmark) on “Dart, An Introduction.” The tutorial was given by Florian
Loitsch on “Programming with Dart.” The 26 presentations led to a total of 24 full
papers submitted to the formal post-refereeing process. Each submission was reviewed
by at least three reviewers. The Program Committee selected eight papers, which are
included in these proceedings.

We are grateful to everyone at Inria for their help in preparing and organizing TFP
2015, in particular Agnes Cortell and Nathalie Bellesso. We gratefully acknowledge
the financial support of Inria, which allowed us to maintain low registration costs. We
also gratefully acknowledge the assistance of the TFP 2015 Program Committee and
the TFP Steering Committee for their advice while organizing the symposium.

Februrary 2016 Manuel Serrano
Jurriaan Hage

Organization

Program Committee

Edwin Brady University of St. Andrews, UK
Olaf Chitil University of Kent, UK
Marc Feeley Université de Montréal, Canada
Jean-Christophe Filliâtre Université Paris Sud Orsay, France
Lars-Åke Fredlund Universidad Politécnica de Madrid, Spain
Thomas Gazagnaire University of Cambrige, UK
Andy Gill University of Kansas, USA
Jurriaan Hage Utrecht University, The Netherlands
Daan Leijen Microsoft, USA
Sam Lindley The University of Edinburgh, UK
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Michel Mauny Ensta ParisTech, France
Marco T. Morazan Seton Hall University, USA
Scott Owens University of Kent, UK
Tomas Petricek University of Cambridge, UK
Rinus Plasmeijer University of Nijmegen, The Netherlands
Colin Runciman University of York, UK
Neil Sculthorpe Swansea University, UK
Manuel Serrano (Chair) Inria, France
Janis Voigtländer University of Bonn, Germany

Additional Reviewers

Simon Fowler
Mark Grebe
J. Garrett Morris
Fernando Rubio

Sponsoring Institutions

Inria Méditerranée

Contents

Lightweight Higher-Order Rewriting in Haskell . 1
Emil Axelsson and Andrea Vezzosi

Towards a Theory of Reach . 22
Jonathan Fowler and Graham Huttom

Functional Testing of Java Programs . 40
Clara Benac Earle and Lars-Åke Fredlund

Type Class Instances for Type-Level Lambdas in Haskell 60
Thijs Alkemade and Johan Jeuring

Laminar Data Flow: On the Role of Slicing in Functional Data-Flow
Programming . 85

Baltasar Trancón y Widemann and Markus Lepper

A Shallow Embedded Type Safe Extendable DSL for the Arduino 104
Pieter Koopman and Rinus Plasmeijer

Programmable Signatures . 124
Anders Persson and Emil Axelsson

Termination Proofs for Recursive Functions in FoCaLiZe 136
Catherine Dubois and François Pessaux

Author Index . 157

http://dx.doi.org/10.1007/978-3-319-39110-6_1
http://dx.doi.org/10.1007/978-3-319-39110-6_2
http://dx.doi.org/10.1007/978-3-319-39110-6_3
http://dx.doi.org/10.1007/978-3-319-39110-6_4
http://dx.doi.org/10.1007/978-3-319-39110-6_5
http://dx.doi.org/10.1007/978-3-319-39110-6_5
http://dx.doi.org/10.1007/978-3-319-39110-6_6
http://dx.doi.org/10.1007/978-3-319-39110-6_7
http://dx.doi.org/10.1007/978-3-319-39110-6_8

Lightweight Higher-Order Rewriting in Haskell

Emil Axelsson(B) and Andrea Vezzosi

Chalmers University of Technology, Gothenburg, Sweden
emax@chalmers.se

Abstract. We present a generic Haskell library for expressing rewrite
rules with a safe treatment of variables and binders. Both sides of the
rules are written as typed EDSL expressions, which leads to syntactically
appealing rules and hides the underlying term representation. Matching
is defined as an instance of Miller’s higher-order pattern unification and
has the same complexity as first-order matching. The restrictions of pat-
tern unification are captured in the types of the library, and we show by
example that the library is capable of expressing useful simplifications
that might be used in a compiler.

1 Introduction

Work on embedded domain-specific languages (EDSLs) has taught us many use-
ful techniques for constructing terms: smart constructors for hiding the underlying
representation of expressions, higher-order functions to represent constructs that
introduce local variables, phantom types to give a typed interface to an untyped
representation, etc. Unfortunately, these techniques are only applicable to term
construction, not to pattern matching. Pattern matching is needed to examine
expressions; for example in transformations, interpretation or compilation.

So, although EDSL users have a very nice interface for constructing expres-
sions, EDSL implementors are confined to working with the underlying repre-
sentation. This can lead to several problems:

– Type safety: If the representation is untyped, it is easy to cause type errors
when transforming expressions.

– Verbosity: The representation may be inconvenient to work with, especially if
it is based on generic encodings, such as compositional data types [4].

– Scoping: When transforming expressions with binders, it is easy to cause vari-
ables to escape their scope.

Although solutions or partial solutions exist for all of these problems, we are
not aware of any solution in Haskell that handles all of them at once. This paper
addresses all three problems in a single generic Haskell library for rewrite rules.
Our library is also efficient: the complexity of rule application is determined only
by the size of the rule. However, the library is restricted to plain rewrite rules –
it cannot be used to define arbitrary functions on expressions.

c© Springer International Publishing Switzerland 2016
M. Serrano and J. Hage (Eds.): TFP 2015, LNCS 9547, pp. 1–21, 2016.
DOI: 10.1007/978-3-319-39110-6 1

2 E. Axelsson and A. Vezzosi

1.1 Running Example

As our running example, we will use the for-loop in the Feldspar EDSL [3].
Feldspar is a Haskell EDSL for signal processing and numeric computations. It
supports common functional programming idioms, such as map and fold, and
generates high-performance C code from such programs.

One of the more low-level constructs in Feldspar is forLoop:

forLoop :: Data Int → Data s → (Data Int → Data s → Data s) → Data s

Data is Feldspar’s expression type which is parameterized by the type of the
value the expression computes. The first argument to forLoop is the number of
iterations; the second argument is the initial state; the third argument is the
body which computes the next state given the loop index and the current state;
the result is the final state of the loop.

We are interested in expressing the following simplification rules for forLoop:

– If the number of iterations is 0, the result is the initial state.
– If the body always returns the previous state, the result is the initial state.
– If the body does not refer to the previous state, it is enough to run the last

iteration of the loop.

Furthermore, we would like to express these rules in a way that

– is independent of the representation of Data,
– does not allow accidentally changing the type of the expression,
– does not require looking at concrete variable identifiers,
– does not allow creating an ill-scoped expression.

To illustrate the problem, we try to express the rewrite rules as cases in a
Haskell function. Assuming Data is a simple recursive data type, with constructors
for lambda abstraction, variables, for-loops, etc., we might express the first two
rules as follows:

simplify (ForLoop (Int 0) init _) = init
simplify (ForLoop _ init (Lam i (Lam s (Var s’)))) | s == s’ = init

Even though the definition looks quite readable, it violates most of our require-
ments on rewrite rules: it leaks the representation of Data, does not guarantee
well-typedness, and involves comparing variable names.

The third rule is trickier. We want to rewrite an expression of the form

forLoop len init (λi s → body)

to
cond (len==0) init body’

where body’ is body with len-1 substituted for i and provided that s does not
occur freely in body. The object-level function cond is used to return init when
the length is 0 and otherwise return body’.

Trying to express this rule as a case in simplify reveals an additional problem
of this style of rewriting: it is possible for body to contain free variables. In order

Lightweight Higher-Order Rewriting in Haskell 3

to prevent these variables from escaping their scope, either we need to check for
their absence or we need to substitute for these variables on the right hand side.
In the case of the third for-loop rule, we need to check that s does not occur
freely in body and we need to substitute an expression for i on the right hand
side. Either of these actions is very easy to forget.

As a preview of our solution, here is the third forLoop rule expressed using
our library:

rule_for3 len init body =
forLoop (meta len) (meta init) (λi s → body -$- i)

=⇒
cond (meta len === 0) (meta init) (body -$- (meta len - 1))

Note the use of Haskell’s α-abstraction to give the pattern for the loop body. In
addition to being quite close to the desired syntax, the rule is also guaranteed
to be well-typed and well-scoped.

1.2 Overview of the Paper

Section 2 presents the basics of our rewriting library restricted to first-order
matching. Section 3 revisits the general problem of higher-order matching and
gives a simple algorithm for matching and rewriting based on Miller’s pattern
unification. Section 4 shows how our library can be extended to support higher-
order matching. Section 5 demonstrates the library using a simple version of the
Feldspar EDSL.

The rewriting library is available on Hackage.1 The code makes use of many
Haskell extensions, including TypeFamilies, GADTs, DerivingFunctor, etc. Consult the
GHC documentation2 for more information on these extensions.

2 A Generic Library for Rewrite Rules

In this section we show a first-order version of our library. The higher-order
version in Sect. 4 is mostly an extension of the definitions in this section. Only
the representation of meta-variables needs to be modified.

A rule is a pair of a left hand side (LHS) and a right hand side (RHS):

data Rule lhs rhs where
Rule :: lhs a → rhs a → Rule lhs rhs

The parameters lhs and rhs are representations of the left and right hand sides of
the rule. These representations are parameterized by the type of the correspond-
ing expression, just like Data in Sect. 1.1. The type parameter is existentially
quantified, and the only thing we care about is that lhs and rhs have the same
type parameter.

1 http://hackage.haskell.org/package/ho-rewriting-0.2.
2 https://downloads.haskell.org/∼ghc/latest/docs/html/users guide/ghc-language-fe
atures.html.

http://hackage.haskell.org/package/ho-rewriting-0.2
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghc-language-features.html
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/ghc-language-features.html

4 E. Axelsson and A. Vezzosi

Rather than using fixed types for lhs and rhs, we will express our rules using
type classes. This will allow us to use many of the same functions to express
both sides of a rule, even if the two sides will in the end have slightly different
representations. Using type classes also allows us to extend the rule language
with new constructs simply by adding additional class constraints. Essentially,
we regard lhs and rhs as languages in the final tagless style [6].

The first classes we introduce are for meta-variables and wildcards:
class MetaVar r where

type MetaRep r :: * → *
meta :: MetaRep r a → r a

class WildCard r where
:: r a

The function meta introduces a meta-variable given a representation for it. The
reason for making the MetaRep an associated type is to be able to disallow inspec-
tion of the representation of meta-variables. As long as we keep r abstract,
MetaRep r will also be an abstract type. The method (double underscore) of
the WildCard class constructs a pattern that matches any term. As we will see,
our implementation only allows wildcards on the LHS of a rule.

Next, we introduce a convenient short hand for rules:

(=⇒) :: lhs a → rhs a → Rule lhs rhs
(=⇒) = Rule

infix 1 =⇒
Interestingly, we now have all the machinery we need to start expressing some

rules for numeric operations. Each rule is given as a Haskell definition that takes
the necessary meta-variables as arguments:3

-- 0 + X =⇒ X
rule_add x = 0 + meta x =⇒ meta x

-- X - X =⇒ 0
rule_sub x = meta x - meta x =⇒ 0

-- 0 * _ =⇒ 0
rule_mul = 0 * =⇒ (0 :: _ Int)

How is it that we can already write rules about numeric operations without
even having given a representation for the LHS and RHS of rules? Looking at
the inferred type of rule_add tells us what is going on:

rule_add :: (MetaVar lhs, MetaVar rhs, MetaRep lhs ∼ MetaRep rhs, Num (lhs a))
⇒ MetaRep lhs a → Rule lhs rhs

3 Note the partial type annotation (... :: _ Int) in rule_mul. It is used to constrain
the type parameter of the RHS without saying anything about the representation of
the RHS. Partial type signatures require the recent PartialTypeSignatures extension
to GHC. However, this extension is not strictly needed: an equivalent formulation of
the RHS would be (id :: r Int → r Int) 0.

Lightweight Higher-Order Rewriting in Haskell 5

Since the rules are expressed entirely using type class operations (including
those of the Num class), the type is polymorphic in lhs and rhs. But we see a
number of constraints due to the way the operations are used. The constraints
tell us that both sides have to support meta-variables, and whatever the repre-
sentation of meta-variables is, it must be the same on both sides. Furthermore,
lhs has to have a Num instance. The type parameter a to MetaRep r ensures that
meta-variables are used at the same type if they occur multiple times a rule.

The partial type annotation in rule_mul is used to fix the type of the rule
(i.e. the parameter to lhs and rhs). It is needed because rule_mul does not take
a meta-variable identifier as argument, so the numeric type does not show up in
the type of the rule (except in the context):

rule_mul :: (WildCard lhs, Num (lhs Int), Num (rhs Int)) ⇒ Rule lhs rhs

Of course, much more work is needed before we can actually do something
with the above rules, but the rules themselves will not need any modifications.
They can be used with our library as they stand.

2.1 Representation of Terms and Patterns

We need different restrictions on the different representations in our library:

– Meta-variables are allowed in rules, but not in the terms being rewritten.
– Wildcards are only allowed on the LHS, not on the RHS of rules.

However, all constructs of the object language should be available to use in the
rules.

In order to maintain these restrictions while allowing maximal sharing
between the representations, we make use of Data Types à la Carte [21]. The
basic idea is to use a standard fixed-point data type parameterized by a base
functor:

data Term f = Term { unTerm :: f (Term f) }

Term is a recursive data type where each node is a value of the base functor f.
By using different f types, we can represent terms of different signatures.

Sharing between different representations is achieved by expressing the base
functor as a co-product of smaller functors. Co-products are formed by the :+:

type, which can be seen as a higher-kinded version of the Either type:

data (f :+: g) a = Inl (f a)
| Inr (g a)

infixr :+:

For example, given two functors representing numeric and logic operations

6 E. Axelsson and A. Vezzosi

data NUM a
= Int Int
| Add a a
| Sub a a
| Mul a a

deriving (Functor)

data LOGIC a
= Bool Bool
| Not a
| And a a
| Equal a a
| Cond a a a

deriving (Functor)

we can form expressions of numeric and logic operations by using their co-
product as the base functor of a Term:

type Exp = Term (NUM :+: LOGIC)

The concrete representations for left and right hand sides of rules are defined
as follows:

newtype LHS f a = LHS { unLHS :: Term (WILD :+: META :+: f) }
newtype RHS f a = RHS { unRHS :: Term (META :+: f) }

data WILD a = WildCard deriving Functor
data META a = Meta Name deriving Functor

type Name = Int

Both LHS and RHS are parameterized on a base functor f representing the sig-
nature of the language the rules operate on. LHS extends f with meta-variables
and wildcards while RHS only extends f with meta-variables. Both LHS and RHS

have a phantom type parameter a which denotes the type of the corresponding
term. It is used to ensure that only well-typed left and right hand sides can be
constructed.

We can now make instances of the classes introduced earlier:
instance WildCard (LHS f) where

= LHS $ Term $ Inl WildCard

instance MetaVar (LHS f) where
type MetaRep (LHS f) = META
meta = LHS . Term . Inr . Inl . castMETA

instance MetaVar (RHS f) where
type MetaRep (RHS f) = META
meta = RHS . Term . Inl . castMETA

Note that META is used in two roles here: (1) as the constructor for meta-
variables in LHS and RHS, and (2) as the concrete instance of MetaRep. The function
castMETA is used to convert between these two roles:

castMETA :: META a → META b
castMETA (Meta v) = Meta v

For example, in the instance MetaVar (LHS f), we have meta :: META a → LHS f a

and then castMETA is used at the concrete type

castMETA :: META a → META (Term (WILD :+: (META :+: f)))

Lightweight Higher-Order Rewriting in Haskell 7

Our library makes use of the Compdata package [4] for the implementation
of Term and :+:. Compdata is a Haskell library based on Data Types à la Carte,
and it provides many utilities for working with representations based on Term.

2.2 Matching and Rewriting

We will now give a formal definition of the rewriting algorithm used in our
library. The following grammar defines terms and rules:

Symbols f, g a set of symbols with associated arities
Meta-variables M

Terms t ::= f �t

LHS l ::= f �l | M |
RHS r ::= f �r | M

Rules ρ ::= l =⇒ r

A term t is a tree where each node has a symbol f and zero or more sub-trees.
A left hand side l is a term extended with meta-variables and wildcards, and a
right hand side r is a term that is only extended with meta-variables.

The first-order version of our library is based on standard syntactic rewriting,
as defined in Fig. 1. The matching relation l

?= t � σ defines how matching a
term t against a pattern l results in a list σ of mappings from meta-variables to
sub-terms. Wildcards and meta-variables match any term, with the difference
that matching against a meta-variable results in a mapping in the substitution.
For symbols, matching is done recursively for the children, and the resulting
substitutions are concatenated.

Rewriting is defined as matching a term against the LHS and applying the
corresponding substitution to the RHS. We use �σ�r to denote application of a
substitution σ to r. Since we allow non-linear patterns, where the same meta-
variable occurs more than once, we also have to check that the substitution

Fig. 1. First-order matching and rewriting.

8 E. Axelsson and A. Vezzosi

obtained from matching is consistent; i.e. that each given meta-variable only
maps to equal terms.

The corresponding functions in our library are

type Subst f = [(Name, Term f)] -- Substitution

match :: (Functor f, Foldable f, EqF f)
⇒ LHS f a → Term f → Maybe (Subst f)

substitute :: Traversable f ⇒ Subst f → RHS f a → Maybe (Term f)

The match function succeeds if and only if the LHS matches the term and all occur-
rences of a given meta-variable are matched against equal terms. The substitute

function succeeds if and only if each meta-variable in the RHS has a mapping in
the substitution. The EqF class comes from the Compdata package, and is used
for comparing symbols.

Combining match and substitute gives us the rewrite function:

rewrite :: (Traversable f, EqF f)
⇒ Rule (LHS f) (RHS f) → Term f → Maybe (Term f)

rewrite (Rule lhs rhs) t = do
subst ← match lhs t
substitute subst rhs

When working with lists of rewrite rules, we are often interested in trying
the rules in sequence and picking the first one that applies. That is the purpose
of applyFirst:

applyFirst :: (Traversable f, EqF f)
⇒ [Rule (LHS f) (RHS f)] → Term f → Term f

applyFirst rs t = case [t’ | rule ← rs, Just t’ ← [rewrite rule t]] of
t’:_ → t’
_ → t

If no rule matches, applyFirst returns the original term.
Another strategy is to rewrite each node in a term from bottom to top:

bottomUp :: Functor f ⇒ (Term f → Term f) → Term f → Term f
bottomUp rew = rew . Term . fmap (bottomUp rew) . unTerm

The first argument to bottomUp is the node rewriter. Since each node is a functor
value, we use fmap to recursively transform all children. Then we apply the node
rewriter to the resulting term.

A top-down strategy is defined in a similar way; just apply the rewrite before
the recursive call:

topDown :: Functor f ⇒ (Term f → Term f) → Term f → Term f
topDown rew = Term . fmap (topDown rew) . unTerm . rew

Typically, one is interested in combinations such as bottomUp (applyFirst rs),
which applies the first matching rule in the list rs to each node in a term.

Lightweight Higher-Order Rewriting in Haskell 9

3 Higher-Order Rewriting

The library presented in Sect. 2 works well for first-order rules, such as rule_add

from earlier. But in order to express simplification rules for the for-loop in
Sect. 1.1, we need to extend the library and the rewriting algorithm with support
for higher-order terms and rules.

The matching algorithm from Fig. 1 is purely syntactic. It obeys the following
property, where = is syntactic equality:4

l
?= t � σ ⇒ �σ�l = t

Higher-order matching [11,22], on the other hand, obeys the following seman-
tic property, where t ≡α,β,η u means that t and u reduce to the same term up to
α-renaming:

l
?= t � σ ⇒ �σ�l ≡α,β,η t

Substitution in the higher-order case must be capture-avoiding.
If we extend our rule language to higher-order rules, the third rule of the

for-loop in Sect. 1.1 can be defined as follows:

forLoop len init (λi.λs. body i) =⇒ cond (eq len 0) init (body (sub len 1))

We use the convention to write meta-variables using smallcaps. The symbols
forLoop, cond, eq and sub represent for-loops, conditions, equality and subtrac-
tion, respectively. We also treat numeric literals as predefined symbols.

Using normal syntactic matching semantics, the above rule would only match
a for-loop whose body binds exactly the variables i and s, and where some expres-
sion is immediately applied to i inside the abstraction. However, using higher-
order matching semantics, the pattern λi.λs. body i matches any expression
with two enclosing λ-abstractions and a body that only refers to the first bound
variable.

As an example, we match the term t1 against the pattern l1 defined as follows:

t1 = forLoop 10 0 (λx.λy. sub x 2)
l1 = forLoop len init (λi.λs. body i)

Despite the fact that sub x 2 is not an immediate application to x, the pattern
matches, and results in the substitution

σ1 = [len �→ 10
, init �→ 0
, body �→ λz. sub z 2]

We check the result by applying σ1 to l1 which gives a result equivalent to t1:

�σ1�l1 = forLoop 10 0 (λi.λs. (λz. sub z 2) i) ≡α,β,η t1

4 The property is almost true: it holds if we replace all wildcards in l with unique
meta-variables.

10 E. Axelsson and A. Vezzosi

An alternative to introducing a fresh variable z for body is to reuse the
existing variable name x. That would give the following substitution instead:

σ1 = [. . . , body �→ λx. sub x 2]

This result is just as valid as the previous one, and it has the advantage that
the body sub x 2 does not need to be renamed.

An implicit side condition in higher-order matching is that the resulting
substitution is not allowed to contain free variables that were not free in the
original term. For example, the following term does not match l1:

t2 = forLoop 10 0 (λx.λy. sub x y)

An attempt at a solution might be

σ2 = [. . . , body �→ λx. sub x s]

This solution has s as a free variable. However, �σ2�l1 is not equivalent to t2,
because substitution is defined to be capture-avoiding.

If we want to allow s to occur in the body, we need to declare that by listing
s as one of the arguments to body:

l2 = forLoop len init (λi.λs. body i s)

Matching t2 against this pattern results in the substitution

σ3 = [. . . , body �→ λx.λy. sub x y]

for which it holds that �σ3�l2 is equivalent to t2.

3.1 Tractability

Higher-order matching is an instance of higher-order unification, with the dif-
ference that the latter permits meta-variables on both sides of the ?= relation.
Higher-order unification is undecidable in general [10]. Higher-order matching
is decidable, but its complexity class is at least NP-complete for second-order
problems and upwards [22].

Miller identified a fragment for which unification is efficient, namely when
each meta-variable is applied only to distinct object-language variables [12]. Note
that l1 and l2 from before fall under this category, because body is only applied
to the object-language variables i and s. This restriction of the general problem
is called the pattern fragment. The term “pattern” refers to the list of object-
language variables that a meta-variable is applied to, and should not be confused
with its use in the term “pattern matching”.

Lightweight Higher-Order Rewriting in Haskell 11

Fig. 2. Grammar for higher-order terms and rewrite rules in the pattern fragment.

Fig. 3. Simplified higher-order matching for the pattern fragment.

3.2 Rewriting Based on Pattern Unification

Matching for the pattern fragment can be done as a lightweight extension to the
first-order algorithm presented in Sect. 2.2.

Figure 2 shows the previous grammar extended with object-language vari-
ables and λ-abstraction. We ensure that terms and rules are in β-short normal
form by making use of the so-called spine formulation [7] which disallows appli-
cation of λ-abstractions. We do however allow general applications in the result
after rewriting, which is why the production t �t for terms is put in parentheses.
On the LHS, meta-variables can only be applied to object-language variables,
while this restriction is not needed on the RHS.

A simplified higher-order matching algorithm is defined in Fig. 3. The
sym rule has been replaced with the atom rule, which covers both symbols
and object-language variables. λ-abstractions are matched structurally. Meta-
variables are matched simply by turning the list of arguments into a number of
λ-abstractions, as we did previously in the for-loop example. Like in that exam-
ple, we also reuse the names v1 . . . vn in the lambda abstractions, which avoids
having to rename variables in t.

The given algorithm is a bit simplified for presentation purposes:

– It does not deal with α-renaming.
– It does not allow any free variables in the substitution. As mentioned earlier,

we can allow free variables if they were already free in the original term.

12 E. Axelsson and A. Vezzosi

– It assumes that λ is always matched against λ. For example, the term λv.f v
will not match its η-reduced form f , as it should.

The implementation in our library deals correctly with α-renaming and free
variables. The simplest way to deal with η conversion is to always η-expand sub-
expressions of function type to get terms in η-long normal form. Our matching
algorithm currently does not do this; however, it is possible to define the user
interface in such a way that partially applied atoms do not occur in practice.
We will see how that is done in Sect. 5.

Once higher-order matching has been defined, higher-order rewriting is
defined analogously to the rewrite function in Fig. 1. It should be noted that
when substituting for meta-variables on the RHS, we may create β-redexes for
meta-variables that have arguments. In our implementation, it is possible to
choose whether to reduce those redexes immediately or leave them for later.

Matching according to the rules in Fig. 3 is efficient in the sense that the num-
ber of recursive steps is bounded by the size of the pattern. The only possible
source of inefficiency is the use of freeV ars in the meta rule. Our implemen-
tation avoids traversing the whole term when checking the free variables simply
by caching the set of free variables for each node in a term. The result is that
the complexity of rule application is determined only by the size of the rule –
just like for first-order matching.

3.3 Most General Solutions

There is one aspect of Miller’s pattern restriction that we do not enforce: meta-
variables must only be applied to distinct object-language variables. This restric-
tion is needed to ensure the existence of a most general unifier. The main reason
we do not enforce it is that it is hard to capture this particular restriction in the
types of the library.

For example, when matching λx. sub x 2 against λy. body y y, there are
two possible solutions: body �→ λa.λx. sub x 2 and body �→ λx.λa. sub x 2.
Our implementation will blindly give the result body �→ λx.λx. sub x 2, which
is equivalent to the first solution. There is nothing wrong with either solution;
the only problem is that picking one instead of the other is a bit arbitrary.

To avoid this problem, the library user must make sure to only apply meta-
variables to distinct object-language variables.

4 Extending the Library to Higher-Order Rewriting

We will now show how to extend the first-order library from Sect. 2 to higher-
order rewriting. LHS and RHS in Fig. 2 permit application of meta-variables
to objects of different kinds. LHS only allows application to object-language
variables, while RHS allows application to arbitrary terms. We reconcile these
different requirements using the type MetaExp which represents meta-variables
applied to a number of arguments:

Lightweight Higher-Order Rewriting in Haskell 13

data MetaExp (r :: * → *) a where
MVar :: MetaRep r a → MetaExp r a
MApp :: MetaExp r (a → b) → MetaArg r a → MetaExp r b

type family MetaRep (r :: * → *) :: * → *
type family MetaArg (r :: * → *) :: * → *

The representation of the meta-variable is given by the type family MetaRep

(corresponding to the associated type of the same name in Sect. 2), and the
representation of the arguments is given by MetaArg. By using different MetaArg

representations, we can enforce different requirements for meta-variable applica-
tion in the LHS and RHS.

We introduce yet another type family which gives an abstract representation
of object-language variables:

type family Var (r :: * → *) :: * → *

We can now give the following MetaArg instances for LHS and RHS:

type instance MetaArg (LHS f) = Var (LHS f)
type instance MetaArg (RHS f) = RHS f

The first instance ensures that meta-variables can only be applied to object-
language variables on the LHS, while the second instance permits arbitrary terms
as meta-variable arguments on the RHS.

We redefine the MetaVar class with a single method that constructs an expres-
sion from a MetaExp value:

class MetaVar r where
metaExp :: MetaExp r a → r a

instance MetaVar (LHS f)
-- see library source for details

instance MetaVar (RHS f)
-- see library source for details

Introducing meta-variables using MVar, MApp and metaExp is quite cumbersome,
so we provide a number of helper functions:

meta :: MetaVar r ⇒ MetaRep r a → r a
meta = metaExp . MVar

($$) :: MetaExp r (a → b) → MetaArg r a → MetaExp r b
($-) :: MetaVar r ⇒ MetaExp r (a → b) → MetaArg r a → r b
(-$) :: MetaRep r (a → b) → MetaArg r a → MetaExp r b
(-$-) :: MetaVar r ⇒ MetaRep r (a → b) → MetaArg r a → r b

($$) = MApp
f $- a = metaExp (MApp f a)
f -$ a = MApp (MVar f) a
f -$- a = metaExp (MApp (MVar f) a)

infixl 2 $$, $-, -$, -$-

14 E. Axelsson and A. Vezzosi

The function meta has the same type as in Sect. 2, and it introduces a meta-
variable without any arguments. For meta-variables with arguments, we use the
different application operators:

-$- is used when there is only one argument.
-$ is used for the first argument when there are more than one argument.
$- is used for the last argument when there are more than one argument.
$$ is used for used for any but the first and last arguments.

As an example, assume we have two meta-variables and two object-language
variables of the following types (for some base functor F):

m1 :: MetaRep (LHS F) Int
m2 :: MetaRep (LHS F) (Int → Char → Bool)
v1 :: Var (LHS F) Int
v2 :: Var (LHS F) Char

Then we can use them to form LHS terms like this:
meta m1 :: LHS F Int
m2 -$ v1 $- v2 :: LHS F Bool

4.1 Object-Language Variables and Binders

The following type class is for object-language variables and binders:

class Bind r where
var :: Var r a → r a
lam :: (Var r a → r b) → r (a → b)

The function var constructs a variable, and lam makes a λ-abstraction from a
Haskell function. For example, the term λx. x + 2 is represented as follows:

lam (λx → var x + 2)

Note that the only way to construct a value of the abstract type Var is using
lam. This ensures that Var faithfully represents object-language variables.

The concrete representation of object-language variables uses VAR which is a
typed newtype wrapper around a name:

type instance Var (LHS f) = VAR
type instance Var (RHS f) = VAR

newtype VAR a = Var Name deriving Functor

VAR has the same double role as META in Sect. 2.1: it is both used to identify
object-language variables and as a functor that represents a variable node in a
term.

The above Var instances both have VAR on the right hand side, but in Sect. 5
we will see an instance with a different right hand side.

Lightweight Higher-Order Rewriting in Haskell 15

The library uses a first-order term representation internally, despite the fact
that lam has a higher-order type. This is possible due Axelsson and Claessen’s
technique for generating first-order terms from a higher-order interface [2].

4.2 Rewriting

The functions that perform higher-order rewriting have slightly different types
compared to those from Sect. 2.2. One difference is that the result of rewriting is
a term where each node is annotated with its set of free variables. As discussed
in Sect. 3.2, we need to cache the set of free variables in order to make matching
efficient.

The function applyFirst now has the following type:

applyFirst :: (..., g ∼ (f :&: Set Name))
⇒ (Term g → Term g → Term g)
→ [Rule (LHS f) (RHS f)]
→ Term g → Term g

Term (f :&: Set Name) is a term where each node is annotated with a set of names.
The first argument to applyFirst is an application operator which is used when
replacing applied meta-variables on the RHS of a rule. Taking this operator as
an argument allows the user to choose whether to construct a redex or to reduce
it right away.

In order to shield the user from the free-variable annotations, we provide
the following function that turns a rewriter for annotated terms into one for
non-annotated terms:

rewriteWith :: (..., g ∼ (f :&: Set Name))
⇒ (Term g → Term g) → Term f → Term f

A typical use of this function is

rewriteWith (bottomUp (applyFirst ...)) :: (...) ⇒ Term f → Term f

where f is a functor without annotation.

4.3 Quantifying over Meta-Variables

Functions such as applyFirst take a list of rules as argument. But most rules are
of the form of Haskell functions that take extra arguments corresponding to the
meta-variables used. For example, the type of rule_add from Sect. 2 is

rule_add :: (MetaVar lhs, MetaVar rhs, Num (lhs a)
, MetaRep lhs ∼ MetaRep rhs
)

⇒ MetaRep lhs a → Rule lhs rhs

The Quantifiable type class automates the task of providing fresh meta-
variables to functions like rule_add:

16 E. Axelsson and A. Vezzosi

class Quantifiable rule where
type RuleType rule
quantify’ :: Name → rule → RuleType rule

quantify :: (Quantifiable rule, RuleType rule ∼ Rule lhs rhs)
⇒ rule → Rule lhs rhs

quantify = quantify’ 0

instance Quantifiable (Rule lhs rhs) where
type RuleType (Rule lhs rhs) = Rule lhs rhs
quantify’ _ = id

instance (Quantifiable rule, m ∼ MetaId a) ⇒ Quantifiable (m → rule) where
type RuleType (m → rule) = RuleType rule
quantify’ i rule = quantify’ (i+1) (rule (MetaId i))

The first instance is for rules that do not have any meta-variables to quantify
over. The second instance recursively quantifies one meta-variable at a time.
MetaId is the concrete representation of meta-variables.

Using quantify, we can package our rules in a list of the type expected by
applyFirst:

rules = [quantify (rule_add :: _ Int → _)
, quantify (rule_sub :: _ Int → _)
, quantify rule_mul]

Note the use of a partial type signature to constrain the type of the meta-variable,
which would otherwise be ambiguous.

5 Case Study – Feldspar

The repository contains an example file5 inspired by Feldspar that makes use
of the library. In this section, we will highlight the important parts of that
implementation. The interested reader is encouraged to learn more by looking
at the source code.

Feldspar’s expression type Data is defined as a newtype wrapper around a
Term over the functor Feld:

type Feld = VAR :+: LAM :+: APP :+: NUM :+: LOGIC :+: FORLOOP

newtype Data a = Data { unData :: Term Feld }

Feld is a sum of several smaller functors, where VAR, LAM and APP represent the
constructs of the lambda calculus, NUM and LOGIC represent numeric and logic
operations, and FORLOOP is the Feldspar-specific for-loop.

Object-language variables are represented just as Feldspar expressions, which
avoids the need to use the var function to introduce object-language variables:

type instance Var Data = Data

5 https://github.com/emilaxelsson/ho-rewriting/blob/0.2/examples/Feldspar.hs.

https://github.com/emilaxelsson/ho-rewriting/blob/0.2/examples/Feldspar.hs

Lightweight Higher-Order Rewriting in Haskell 17

Since we want to be able to construct for-loops in rules as well as in ordinary
Feldspar expressions, we overload the for-loop using a type class:

class ForLoop r where
forLoop_ :: r Int → r s → r (Int → s → s) → r s

The third argument to forLoop_ has function type, so it needs to be constructed
by lam. The following higher-order function takes care of wrapping the body in
lam:

forLoop :: (ForLoop r, Bind r)
⇒ r Int → r s → (Var r Int → Var r s → r s) → r s

forLoop len init body = forLoop_ len init (lam $ λi → lam $ λs → body i s)

Exposing functions like forLoop to the user instead of lam and forLoop_ ensures
that λ-abstractions are only used at specific places. This solves the problem of
matching lambdas that was mentioned in Sect. 3.2. Although restricting the use
of lam may not be desired in general, it works well in a language like Feldspar
which is essentially a first-order language with a few predefined higher-order
symbols such as FORLOOP.

Using forLoop, we can now express the three for-loop rules from Sect. 1.1:

rule_for1 init = forLoop 0 (meta init) (λi s →) =⇒ meta init
rule_for2 init = forLoop (meta init) (λi s → var s) =⇒ meta init
rule_for3 len init body =

forLoop (meta len) (meta init) (λi s → body -$- i)
=⇒

cond (meta len === 0) (meta init) (body -$- (meta len - 1))

The === operator is equality in this toy version of Feldspar.
A Feldspar simplifier is obtained by applying the simplification rules bottom-

up as follows:

simplify :: Data a → Data a
simplify = Data . rewriteWith (bottomUp (applyFirst app rulesFeld)) . unData

The application operator app tells applyFirst to keep any redexes created by
rewriting, and rulesFeld is a list of all the rules defined in this paper.

We have used forLoop to define rules, but we can also use it to write Feldspar
expressions. Here is an example containing two for-loops that can be simplified:

forExample :: Data Int → Data Int
forExample a = forLoop a a (λi s → (i-i)+s) + forLoop a a (λi s → i*i+100)

We simplify the expression by running

*Main> unData $ simplify $ lam forExample
(Lam 2 (Add (Var 2) (Cond (Equal (Var 2) (Num 0)) (Var 2) (App (Lam 1 (Add
(Mul (Var 1) (Var 1)) (Num 100))) (Sub (Var 2) (Num 1))))))

We see that the simplifier removes both loops: the first one because it never
changes the state, and the second one because its body does not refer to the
previous state.

18 E. Axelsson and A. Vezzosi

6 Related Work

Function Patterns. One of the problems solved in this paper is being able to
use the same syntax both for pattern matching and construction and to hide
the underlying representation of expressions. A more general solution to this
particular problem is function patterns [1,8,17], which allow ordinary functions
to be used inside patterns. When matching a term t against a function pattern,
say f p, the inverse of f is used to compute a value to match against the argument
p. Here, f can be a smart constructor whose purpose is to hide the representation
of terms, or to give a typed interface using phantom types.

The recent PatternSynonyms extension in GHC allows the declaration of bidi-
rectional patterns that can be used both for matching and construction. These
can be seen as a restricted form of function patterns.

There may seem to be a similarity between function patterns and patterns
with applied meta-variables in our library. In both cases we have patterns involv-
ing applied functions. However, there are important differences: First of all, func-
tion patterns allow ordinary functions inside patterns, while our library is only
concerned with functions in some object language. Moreover, function patterns
only allow using existing functions inside patterns; they cannot be used to syn-
thesize function definitions the way that higher-order matching does.

Mohnen introduced context patterns for Haskell [13]. These are more similar
to higher-order matching in that they allow meta-variables of function type (so
matching can actually synthesize function definitions). However, a main differ-
ence to our work (again) is that context patterns involve actual Haskell functions
rather than object-level functions.
Rewriting Libraries. Yokoyama et al. have made a library based on Template
Haskell for higher-order rewriting of Haskell code [23]. Just like in our library,
they restrict matching in the interest of efficiency. However, their restrictions are
different: for example, meta-variables can be applied to at most one argument,
but this argument can be an arbitrary pattern. It remains to be investigated
whether their restrictions are suitable for the kind of syntactic rewrites that we
are interested in.

There has also been work on generic, first-order rewriting libraries for
Haskell [5,9,15]. In particular, the work of van Noort et al. [15] has similar-
ities to our implementation: it uses an intensional representation of rules as
data, and it generically extends data type representations with a constructor for
meta-variables. The main differences are that their library works for any regular
data type and that it does not support higher-order rewriting. The library by
Felgenhauer, et al. [9] also has an intensional representation of rules, but uses a
simpler term representation: a rose tree extended with meta-variables.

As a concrete example, here is the rule for addition with zero, expressed with
our library and with the library by van Noort et al.:

rule_add x = 0 + meta x =⇒ meta x -- our library
rule_add x = Add (Num 0) x �−→ x -- van Noort’s library

Lightweight Higher-Order Rewriting in Haskell 19

Add and Num are constructors of the regular data type for expressions. It seems
plausible that their library can be combined with smart constructors to get rules
that look more like in our library (with the added benefit of type-safety, etc.). We
see no direct reason why one could not also extend their library to higher-order
rewriting, given a suitable generic representation of variables and binders.

Strategic rewriting libraries such as KURE [19] provide a rich set of strategies
for building complex traversals of data. The main focus in this paper is on rewrite
rules rather than strategies – bottomUp and topDown being the two main strategies
presented. It would be interesting to extend our library with more strategies, or
perhaps even combine it with an existing library for strategic rewriting.
Pattern Unification. Higher-order pattern unification is at the core of sys-
tems that manipulate higher-order data like Twelf [18] and λProlog [14] or type
reconstruction algorithms for dependently typed languages such as Agda [16].
In such cases the unification problems that fall into the pattern fragment are
solved immediately, while the others are suspended in hope that they will become
tractable later when more meta-variables have been solved.

7 Discussion and Future Work

The motivation behind the presented library is for it to be used in the imple-
mentation of Feldspar. However, Feldspar is currently based on a different term
representation. Our future plan is to rewrite Feldspar so that it can use the
rewriting library for optimizations.

A key aspect of the library is the algorithmic efficiency of higher-order rewrit-
ing: the complexity of rule application is bounded only by the size of the rule,
just like for first-order rewriting. However, we have not yet tested how well the
library performs in practice for large problems. This remains as future work.

The presented library makes it possible to express higher-order rewrite rules
in a safe way using clean syntax. However, one disadvantage of the library is that
the error messages can be quite confusing due to the heavy type-level machinery
involved. This is a common problem of embedded DSLs, but it may be solvable
by recent work on type error diagnosis [20].

When writing rules like rule_add below, the intention is that lhs and rhs

should be abstract in order to disallow inspection of the meta-variable argument.

rule_add :: (...) ⇒ MetaRep lhs a → Rule lhs rhs

But rewriting functions such as applyFirst accept rules with the concrete repre-
sentations LHS and RHS. In order to make the library safer, we should require the
arguments to rewriting functions to be polymorphic in their representations. We
have not yet been able to make such a solution work together with quantify and
constraints such as Num (lhs a), but we are hopeful that it can be done.

Acknowledgements. This research was funded by the Swedish Foundation for
Strategic Research (in the RAWFP project). The anonymous referees provided use-
ful input.

20 E. Axelsson and A. Vezzosi

References

1. Antoy, S., Hanus, M.: Declarative programming with function patterns. In: Hill,
P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6–22. Springer, Heidelberg (2006)

2. Axelsson, E., Claessen, K.: Using circular programs for higher-order syntax: func-
tional pearl. In: Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming, pp. 257–262. ACM, New York (2013)

3. Axelsson, E., Claessen, K., Dévai, G., Horváth, Z., Keijzer, K., Lyckeg̊ard, B.,
Persson, A., Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: a domain specific
language for digital signal processing algorithms. In: 8th IEEE/ACM International
Conference on Formal Methods and Models for Codesign, pp. 169–178. IEEE (2010)

4. Bahr, P., Hvitved, T.: Compositional data types. In: Proceedings of the Seventh
ACM SIGPLAN Workshop on Generic Programming, pp. 83–94. ACM, New York
(2011)

5. Brown, N.C., Sampson, A.T.: Matching and modifying with generics. In: Draft
Proceedings of Trends in Functional Programming, pp. 304–318 (2008)

6. Carette, J., Kiselyov, O., Shan, C.C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Programm. 19(5), 509–
543 (2009)

7. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Logic Comput. 13(5), 639–
688 (2003)

8. Dévai, G.: Extended pattern matching for embedded languages. Annales Univ. Sci.
Budapestiensis de Rolando Eötvös Nominatae, Sectio Comutatorica 36, 277–297
(2012)

9. Felgenhauer, B., Avanzini, M., Sternagel, C.: A Haskell library for term rewriting.
CoRR abs/1307.2328 (2013). http://arxiv.org/abs/1307.2328

10. Goldfarb, W.D.: The undecidability of the second-order unification problem. The-
oret. Comput. Sci. 13(2), 225–230 (1981)

11. Huet, G.: Résolution d’équations dans les langages d’ordre 1, 2,.., ω. Ph.D. thesis,
Université Paris VII (1976)

12. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. J. logic Comput. 1(4), 497–536 (1991)

13. Mohnen, M.: Context patterns in Haskell. In: Kluge, W. (ed.) IFL’96. LNCS, vol.
1268, pp. 41–57. Springer, Berlin, Heidelberg (1997)

14. Nadathur, G., Miller, D.: An overview of Lambda-Prolog. Technical report MS-
CIS-88-40, University of Pennsylvania, Department of Computer and Information
Science (1988)

15. van Noort, T., Yakushev, A.R., Holdermans, S., Jeuring, J., Heeren, B., Magalhães,
J.P.: A lightweight approach to datatype-generic rewriting. J. Funct. Programm.
20, 375–413 (2010)

16. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, September 2007

17. Oosterhof, N., Hölzenspies, P., Kuper, J.: Application patterns. In: van Eekelen,
M. (ed.) Trends in Functional Programming, pp. 370–382. Tartu University Press,
Tallinn (2005)

18. Pfenning, F., Schürmann, C.: System description: twelf - a meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol.
1632, pp. 202–206. Springer, Heidelberg (1999)

http://arxiv.org/abs/1307.2328

Lightweight Higher-Order Rewriting in Haskell 21

19. Sculthorpe, N., Frisby, N., Gill, A.: The kansas university rewrite engine. J. Funct.
Programm. 24, 434–473 (2014)

20. Serrano, A., Hage, J.: Feedback upon feedback. Presented at Trends in Functional
Programming (2015). ftp://ftp-sop.inria.fr/indes/TFP15/TFP2015 submission
22.pdf

21. Swierstra, W.: Data types à la carte. J. Funct. Programm. 18, 423–436 (2008)
22. Wierzbicki, T.M.: Complexity of the higher order matching. In: Ganzinger, H. (ed.)

CADE 1999. LNCS (LNAI), vol. 1632, pp. 82–96. Springer, Heidelberg (1999)
23. Yokoyama, T., Hu, Z., Takeichi, M.: Design and implementation of deterministic

higher-order patterns (2005). http://takeichi.ipl-lab.org/yicho/YoHT05.pdf

ftp://ftp-sop.inria.fr/indes/TFP15/TFP2015_submission_22.pdf
ftp://ftp-sop.inria.fr/indes/TFP15/TFP2015_submission_22.pdf
http://takeichi.ipl-lab.org/yicho/YoHT05.pdf

Towards a Theory of Reach

Jonathan Fowler(B) and Graham Huttom

School of Computer Science, University of Nottingham, Nottingham, UK
psxjf@exmail.nottingham.ac.uk

Abstract. When testing a program, there are usually some parts that
are rarely executed and hence more difficult to test. Finding inputs that
guarantee that such parts are executed is an example of a reach problem,
which in general seeks to ensure that targeted parts of a program are
always executed. In previous work, Naylor and Runciman have developed
a reachability solver for Haskell, based on the use of lazy narrowing
from functional logic programming. Their work was focused on practical
issues concerning implementation and performance. In this paper, we lay
the groundwork for an underlying theory of such a system, by formally
establishing the correctness of a simple reach solver.

1 Introduction

A desirable goal of software testing is for every reachable expression within a
program to contribute to at least one test execution of the program. The test-
ing then exhibits program coverage. Random property testing systems such as
Quickcheck [3] often cover most of a program, but particularly hard to reach
expressions may remain untested. The Reach system [12] was developed to
address this problem, by generating inputs that execute a particular target
expression. By using the Haskell Program Coverage (HPC) tool [5] to find expres-
sions which are not tested by Quickcheck, and Reach to generate inputs that
execute these expressions, the goal of program coverage can be achieved.

Work to date on the Reach system by Naylor and Runciman [12,13] has
focused on the implementation and performance of various underlying solvers.
In this paper, we investigate a formal definition for the reach problem, and how
the forward solver defined in their original paper [12] can be shown to be cor-
rect. Having such a theory is important to check the correctness of more complex
solvers, such as backwards solver described in Naylor’s thesis [13]. The act of for-
malisation also opens up new potential avenues for further research into alternate
evaluation strategies, as discussed in Sect. 10.

The forward reach solver developed by Naylor and Runciman uses a lazy
narrowing evaluation strategy adapted from functional logic programming. Lazy
narrowing can be thought of as an extension to the semantics of a non-strict
language to include reduction rules for free variables. The basic idea is that
when the value of a free variable is required for a case analysis to proceed, we
bind the free variable to each possible alternative form that it may have. To
focus on the essence of the problem, we initially consider a minimal language
c© Springer International Publishing Switzerland 2016
M. Serrano and J. Hage (Eds.): TFP 2015, LNCS 9547, pp. 22–39, 2016.
DOI: 10.1007/978-3-319-39110-6 2

Towards a Theory of Reach 23

(Sect. 3) that includes only Peano-encoded natural numbers, a target expression,
and case expressions. Abstracting away from the details of a real language such
as Haskell we keep the presentation neat and concise but still include enough
detail to express and understand the properties of the reach problem and lazy
narrowing. Within the context of this minimal language we:

– Extend the language with free variables, and give a precise definition for the
‘reach problem’ in this setting (Sect. 4);

– Define a lazy narrowing semantics for the extended language and use the
semantics to define a forward reach solver (Sect. 5);

– Show that the lazy narrowing semantics is sound and complete with respect
to the original semantics, and that our reach solver is correct (Sect. 6);

– Provide a mechanical verification of our results in the Agda system, and make
the proof scripts freely available online (Sect. 7);

– Describe how the language can be extended with a number of additional
features, and extend the Agda formalisation accordingly (Sect. 8).

We present proofs for our main results based on a number of lemmas, but for
brevity do not provide proofs for the lemmas and refer the interested reader to
the accompanying Agda code for the details [4]. The intended audience for the
article is functional programmers with a basic knowledge of semantics. No prior
knowledge of Reach is assumed; an introduction is given in Sect. 2.

2 The Reach Problem

Reach [12] is a tool for Haskell that can be used help achieve program coverage.
A reach problem is a Haskell program with a marked target expression and
source function. The goal is to find an input to the source function that entails
evaluation of the target expression. The target is typically placed in a rarely
evaluated expression within the program. The inputs generated from the running
of the Reach solver can then be used as test cases for these expressions.

As an example, consider a simplified version of a balance function from the
standard library Data.Map. The balance function takes a binary tree and redis-
tributes the tree when one sub-tree contains substantially more elements than
the other, in this case four times as many:

balance :: Tree a → Tree a
balance (Leaf a) = Leaf a
balance (Node lt rt)

| size rt � 4 ∗ size lt = balanceToL lt rt
| size lt � 4 ∗ size rt = balanceToR lt rt
| otherwise = Node lt rt

When testing this function randomly, for example using a standard generator
for a Quickcheck property [9], the case when the tree is already balanced accord-
ing to the above definition is tested far more often than the interesting case

24 J. Fowler and G. Huttom

when the tree needs balancing. By replacing the branch of the guard requiring
the tree to be right-heavy with a target expression, indicated by •, we create a
Reach problem which will generate input trees that require balancing.

balance :: Tree a → Tree a
balance (Leaf a) = Leaf a
balance (Node lt rt)

| size rt � 4 ∗ size lt = •
| size lt � 4 ∗ size rt = balanceToR lt rt
| otherwise = Node lt rt

A solution to the Reach problem with balance as the input function is a tree
which satisfies the first guard, such as the following:

Node (Leaf 0) (Node (Node (Leaf 1) (Leaf 2)) (Node (Leaf 5) (Leaf 2)))

This tree can then be used as an input to the original balance function to
ensure that the auxiliary function balanceToL is executed as part of testing. In a
similar manner, we can move the target expression to the second branch of the
guard to find a tree which ensures that balanceToR is executed.

2.1 Forward Reach

In this section we introduce the primary reach solver, Forward Reach, defined
by Naylor and Runciman [12,13]. Forward Reach uses lazy narrowing in order
to generate inputs efficiently. Lazy narrowing is a concept from functional logic
programming [2,7] and can be described as the natural extension of a non-strict
semantics to a language with free variables. Free variables are only bound when
their value is required for evaluation to proceed.

To illustrate, we give an example of a lazy narrowing reach solver in action.
We show the first steps of an analysis of the balance function from the previous
section. Each state during evaluation is given by an expression and a substitution,
a mapping which is an accumulation of the free variable bindings up to the
current point of evaluation. For our example, the initial expression is balance x
and the initial substitution is the trivial mapping x �→ x from x to itself.

1) {x �→ x }
balance x

Starting with the trivial mapping rather than the traditional empty mapping
helps with the formalisation, as discussed further in Sect. 4.1. The first step of
evaluation is to inline the definition for balance x :

2) {x �→ x }
case x of

Leaf a → Leaf a
Node lt rt → ...

Towards a Theory of Reach 25

In order for evaluation to continue the value of the free variable x is now required,
which necessitates a narrowing step. To begin with, the variable is bound to
the leaf constructor for trees by refining the substitution to x �→ Leaf x ′, and
updating the expression being evaluated accordingly.

3) {x �→ Leaf x ′}
case Leaf x ′ of

Leaf a → Leaf a
Node lt rt → ...

Note that the introduction of a new variable x ′ is not strictly necessary above, as
the manner in which substitutions are later formalised ensures that the variables
on the left and right sides of a substitution are independent. Hence, we could
equally well use the substitution x �→ Leaf x above, and indeed this simpler
approach – which avoids the need to generate a fresh variable name – is used in
our subsequent formalisation in Sect. 5. Now that the form of the expression is
known, we can reduce the case expression itself:

4) {x �→ Leaf x ′}
Leaf x ′

Evaluation of this execution path terminates with the value Leaf x ′. In this
case, the target has not been evaluated so the input Leaf x ′ is not a solution to
the reach problem, independent of any value substituted for x′. Evaluation now
backtracks and x is bound to the node constructor for trees. After the narrowing
step and following reduction of the case expression we have:

5) {x �→ Node xl xr}
if size xl � 4 ∗ size xr then • else ...

Analysis will continue with evaluation of the expression size xl � 4 ∗ size xr.
Inputs that evaluate to the target will be collected and evaluation will continue
until a set number of solutions is found or a given termination condition is
reached, e.g. the input has been enumerated to a particular depth.

Lazy narrowing has two key efficiency benefits over the naive approach in
which possible inputs are enumerated and evaluated from the beginning each
time. First of all, and most importantly, it allows for portions of the input
domain to be discarded or accepted if the evaluation concludes while there are
still free variables in the substitution, as the same conclusion can be drawn for
any input formed by replacing these free variables. This can greatly reduce the
search space. For example, above we were able to discard any input of the form
Leaf x ′. Secondly, some evaluation is shared between different inputs if they
have common structure. In particular, their evaluation is shared up to the point
where their differences cause execution to take separate branches.

3 A Minimal Language

In this section we introduce the minimal language that we will use for the rest
of paper. The language is not suitable for actual programming, but does provide

26 J. Fowler and G. Huttom

enough structure to describe the key mechanisms of lazy narrowing. To this end
the language has only one type, Peano natural numbers, which provides the
simplest example type for showing the recursive mechanics of narrowing. The
grammar for expressions of the language is defined as follows:

Exp ::= Zero
| Suc Exp
| •
| case Exp of Exp Alt
| var Var

Alt ::= Suc Var → Exp
Val ::= Zero | Suc Val

That is, an expression is either a natural number, a target expression •, a case
expression, or a variable from some given set Var of names. Case expressions
have the form case e of e0 f , where the first alternative is the Zero branch and
the second alternative is the Suc branch, which can depend on its argument
variable. Expressions are assumed to be closed; variables only appear within the
case expression in which they are bound. The values of the language are simply
the natural numbers. We do not regard the target expression itself as a value,
because our intended interpretation is that the values are ‘normal’ results.

Note that the language does not contain functions or recursion, as these are
not required to study the ‘essence’ of lazy narrowing. We do however provide an
additional Agda formalisation that incorporates these features, as discussed in
Sect. 8. One might also ask why the target expression, which is specific to the
Reach problem, is already included in the above language. The reason is simply
for convenience: if the target expression was excluded we would need to extend
both the syntax and semantics when we later define the Reach problem, whereas
including it here means that we only need to extend the syntax.

The behaviour of expressions is defined as a small-step operational semantics,
→ ⊆ Exp ×Exp , by means of the following inference rules:

case • of e0 f → • target
case Zero of e0 f → e0

case-z

case Suc e of e0 (Suc v → e′) → e′[v := e]
case-suc

e → e′

case e of e0 f → case e′ of e0 f
subj

Using a small-step semantics enforces a clear order of evaluation, and supports
a natural extension to lazy narrowing. If the case subject is a Zero or Suc then
the semantics are standard, where e′[v := e] denotes the substitution of variable
v by the expression e in the expression e′ in a capture avoiding manner. The

Towards a Theory of Reach 27

target expression behaves in the same way as an error value, i.e. it is always
propagates through a case expression to the top level, on the basis that once we
have found a target no further evaluation is required.

When applying the semantics in practice, we often use the reflexive transitive
closure, →∗, which is defined in the normal manner:

e → e′ e′ →∗ e′′

e →∗ e′′ seq
e →∗ e

refl

The semantics can be shown by standard methods to be normalising (always
terminates in a finite number of steps) and deterministic (always produces a sin-
gle possible result). However, neither property is a requirement for the definition
of the Reach problem or the correctness result which follows.

4 Adding Free Variables

To specify the Reach problem we require a notion of free variables. One possi-
bility is to simply allow our expressions to be open, letting the existing variables
be free. Although this is the approach taken in the original Reach work [12,13],
we choose to syntactically separate the free variables as an extension of the lan-
guage. Our reason for making this choice is that free variables are independent
of the normal variables of a language; for example, it is easy to make a similar
extension to a language that does not have any form of variables.

The extended grammar for expressions is defined below, in which each rule is
now parameterised by a set X of free variables, and expressions and values are
extended with free variables of the form fvar X . Note that we do not require
the set of variables for an expression to be minimal, i.e. the set may contain
variables that are not used in the expression.

ExpX ::= Zero
| Suc ExpX

| •
| case ExpX of ExpX AltX
| var Var
| fvar X

AltX ::= Suc Var → ExpX

ValX ::= Zero | Suc ValX | fvar X

We will view values of type ValX as partial values, in the sense that they
may contain undefined components represented by the free variables. We can also
view the original grammars as special cases of the free variable versions in which
the free variable sets are empty, i.e. Exp ≡ Exp∅, Alt ≡ Alt∅ and Val ≡ Val∅.

4.1 Substitutions

An input to an expression is a mapping from its free variables to values. In
order to define this formally, we first make a slight detour to introduce the more

28 J. Fowler and G. Huttom

general notation of a substitution, which will be used later in lazy narrowing.
A substitution of type X → Y is a mapping from the set of free variables X to
partial values that contain free variables from the set Y :

SubX→Y = X → ValY

Defining substitutions in this manner rather than as a partial mapping from an
infinite set of variables results in a simpler formalisation in Agda. In particular,
incorporating the set of variables for the domain and range directly into the type
removes the need to add the variable sets as constraints later on. A second benefit
of this approach is that it yields a monadic interpretation to the composition of
substitutions. Given this representation the traditional empty map becomes the
trivial map in which each variable is mapped to itself.

Using our notion of substitution, an input to an expression can then be
viewed as a special case when the set of free variables in the result is empty:

InpX = SubX→∅

We denote substitutions by σ and inputs by τ . The process of applying a sub-
stitution is defined recursively in the normal way:

[] :: ExpX → SubX→Y → ExpY

Zero [σ] = Zero
Suc e [σ] = Suc (e [σ])
• [σ] = •
case e of e0 (Suc v → e ′) [σ] = case e [σ] of e0 [σ] (Suc v → e ′ [σ])
var v [σ] = var v
fvar x [σ] = σ x

4.2 Reachability

We can now specify the meaning of reachability within our framework. Given an
expression e ∈ ExpX with free variables X , the set of inputs reach(e) ⊆ InpX

that reach the target expression is defined as follows:

τ ∈ reach(e) ⇐⇒ e[τ] →∗ •
That is, an input τ that provides values for the free variables in expression e
satisfies the reachability condition iff the input applied to the expression eval-
uates to the target. This equivalence describes what it means for a given input
to reach the target, but does not describe a specific reach problem. An example
for such problem might be to find a specific input that satisfies reachability, or
to show that none exists. In most languages, but not in our minimal language,
the problem is undecidable and therefore an additional termination criterion is
included, e.g. find a solution up to a given search depth.

A naive approach to implementing a reach solver is to search for a solution
by brute force enumeration and evaluation of all possible inputs. Clearly, how-
ever, this is not very efficient. Instead, Naylor and Runciman [12] implement an
approach based on lazy narrowing which proves far more efficient. This approach
shares evaluation, where possible, across the input domain.

Towards a Theory of Reach 29

5 Lazy Narrowing Semantics

In this section we define a semantics for our minimal language extended with
free variables, based upon the notion of lazy narrowing, a symbolic evaluation
strategy from functional logic programming. As illustrated in Sect. 2, the basic
idea of lazy narrowing is that when evaluation of an expression is suspended
on the value of a free variable, we allow evaluation to proceed by performing
a narrowing step, in which each partial value that the variable could have is
considered in turn. As evaluation proceeds a substitution is gradually built up
which tracks the instantiation of free variables.

5.1 Preliminaries

We begin by defining a number of concepts that are used in our formalisation
of the notion of lazy narrowing, in the form of suspended expressions, minimal
narrowing sets, and the composition of substitutions.

Suspended Expressions. An expression e is suspended on a free variable x ,
denoted by e � x, if the value of the variable is required for evaluation of the
expression to proceed any further. For our language, the relation � ⊆ ExpX ×X
can be defined by the following two inference rules:

fvarx � x
susp

e � x

case e of e0 f � x
subj-susp

That is, free variables are themselves suspended, and a case expression is sus-
pended if its subject expression is suspended. Expressions that are suspended
can make no further transitions in our small-step operational semantics from
Sect. 3. However, the converse is not true. In particular, values and the target
expression cannot make further transitions, but are not suspended.

Minimal Narrowing Set. When an expression is suspended there is a set of
possible narrowing steps that can be performed. However, in order to maximise
laziness, each of the steps that are considered should be minimal, in the sense
that it should only instantiate the free variable just enough to allow evaluation to
continue, and no further. For our language, in which the only values are natural
numbers, this means replacing a free variable x by either Zero or Suc (fvar x),
the two possible forms that a natural number can have.

To formalise this idea, we begin by writing x /a for the one-point substitution
that maps the free variable x ∈ X to the partial value a ∈ ValY and leaves all
other variables in X unchanged, defined as follows:

(/) :: (x ∈ X) → ValY → SubX→X[x/Y]

(x / a) x ′ | x ≡ x ′ = a
| otherwise = fvar x ′

30 J. Fowler and G. Huttom

The return type of the substitution is given by X [x / Y] = (X − {x }) ∪ Y ,
in which the element x ∈ X is replaced by the set Y . Note that the type of (/)
depends on the name of the variable x , i.e. the operator has a dependent type.
Being precise in this manner helps to simplify our Agda formalisation. Using
this operator we can now define the minimal narrowing set NarrX(x) of a free
variable x ∈ X by replacing x by the two possible forms that it may have:

NarrX(x) = {x/ Zero, x/ Suc (fvar x)}

This set has two properties that play an important role in completeness of the
lazy narrowing semantics. Firstly, the minimal narrowing set itself obeys a notion
of completeness, in the sense that for every input that is possible before the
narrowing there exists a substitution in which the input remains possible. And
secondly, each substitution in the minimal narrowing set is advancing, in that it
always instantiates a variable. These properties are formalised in Sect. 6.2.

Composition of Substitutions. As evaluation proceeds under lazy narrowing,
we will construct a substitution in a compositional manner from smaller compo-
nents. In order to define a composition operator for substitutions, we first note
that Val forms a monad under the following definitions:

return :: X → ValX
return = fvar

(>>=) :: ValX → (X → ValY) → ValY
Zero>>=σ = Zero
Suc e >>= σ = Suc (e >>= σ)
fvar x >>= σ = σ x

We note in passing that this is the free monad of the underlying functor for the
natural numbers. Using the >>= operator for this monad it is then straightforward
to define the composition operator for substitutions:

(>=>) :: SubX→Y → SubY→Z → SubX→Z

σ >=>σ′ = λa → σ a >>= σ′

Moreover, expanding out the definition of Sub in the type for the >=> operator
gives (X → Val Y) → (Y → Val Z) → (X → Val Z), which corresponds to the
standard notion of Kleisli composition for the Val monad.

Along with the monad laws we require one more law, relating the composition
of substitutions to the application of a substitution.

Lemma 1. The sequential application of substitutions to an expression is equiv-
alent to the application of the composed substitutions to the expression:

e[σ][σ′] ≡ e[σ >=>σ′]

Towards a Theory of Reach 31

5.2 Semantics

We now have all the ingredients required to define a lazy narrowing semantics
for our minimal language. A step in the new semantics is either:

– a single step in the original semantics; or
– a minimal narrowing step, if the expression is suspended.

To keep track of the substitutions that are applied during narrowing, we write
e � 〈e′, σ〉 to mean that expression e can make the transition to expression e′ in
a single step, where σ is the substitution that has been applied in the case of a
narrowing step. In the case of a step in the original semantics, we simply return
the identity substitution, which is given by the return operator of the Val monad.
More formally, we define a transition relation � ⊆ ExpX × (ExpY ×SubX→Y)
for lazy narrowing by the following two inference rules:

e →X e′

e � 〈e′, return〉 prom
e � x σ ∈ NarrX(x)

e � 〈e[σ], σ〉 narr

The first rule promotes transitions from the original semantics to the new seman-
tics, where →X ⊆ ExpX × ExpX is the trivial lifting of the transition relation
→ ⊆ Exp × Exp to operate on expressions with free variables in the set X,
for which the inference rules remain syntactically the same as previously except
that they now operate on expressions of a more general form. The second rule
applies a minimal narrowing step to a suspended expression.

The definition of how to sequence steps in our extended semantics, which takes
into account the additional presence of substitutions, is given by a relation �+

that is defined by the following two rules:

e � 〈e′, σ〉 e′ �+ 〈e′′, τ〉
e �+ 〈e′′, σ >=>τ〉 seq

e ∈ ExpX τ ∈ InpX

e �+ 〈e[τ], τ〉 fill

The first rule simply composes the substitutions from the two component reduc-
tions. The second rule adds a final narrowing step to the end of a reduction
sequence that instantiates any remaining free variables. The reason for includ-
ing a final narrowing step is that it simplifies both the definition of forward
reachability and its relationship to the original semantics.

5.3 Forward Reachability

Finally, we can now give an alternative characterisation of reachability using
our lazy narrowing semantics. Given an expression e ∈ ExpX , the set of inputs
reachF (e) ∈ InpX that reach the target expression is defined as follows:

τ ∈ reachF (e) ⇐⇒ e �+ 〈•, τ〉
That is, an input τ satisfies the forward reachability condition iff there is a
lazy narrowing reduction sequence that ends with the target and the given

32 J. Fowler and G. Huttom

input. The key difference with our original definition of reachablity in Sect. 4.2
is that our new semantics constructs an input substitution during the reduction
sequence, whereas the original semantics requires that we are given a substitu-
tion so that it can be applied prior to starting the reduction process. In the next
section we show that these two notions of reachability coincide.

6 Correctness of the Narrowing Semantics

To prove that forward reachability is equivalent to the original definition, we first
formalise the relationship between the lazy narrowing semantics and the original
semantics. This relationship is characterised by two properties, soundness and
completeness, which are proved using a number of lemmas. The proofs of the
lemmas themselves are provided in the associated Agda formalisation.

6.1 Soundness

Lemma 2. A transition in the original semantics can be lifted through a sub-
stitution. Given a substitution σ ∈ SubX→Y , we have:

e →X e′ =⇒ e[σ] →Y e′[σ]

Theorem 1 (Soundness). For every reduction sequence in the lazy narrowing
semantics there is a corresponding sequence in the original semantics:

e �+ 〈e′, τ〉 =⇒ e[τ] →∗ e′

Proof. The proof proceeds by rule induction on the definition for the narrowing
relation �+, for which there are three cases to consider.

Case 1. In the base case when the narrowing is a simple application of

e �+ 〈e[τ], τ〉 fill

the goal follows immediately from the reflexivity of →∗:

e[τ] →∗ e[τ]
refl

Case 2. There are two inductive cases to consider, depending on the nature of
the first reduction in a narrowing sequence. We first consider the case when the
reduction is a narrowing step, constructed as follows:

narr
e � x σ ∈ NarrX(x)

e � 〈e[σ], σ〉 e[σ] �+ 〈e′, τ〉
e �+ 〈e′, σ >=>τ〉 seq

We are now free to use the three assumptions e � x, σ ∈ NarrX(x) and e[σ] �+

〈e′, τ〉 in our proof. In this case, we only require the third of these assumptions

Towards a Theory of Reach 33

in order to verify our goal, by first using the induction hypothesis (ih) e[σ] �+

〈e′, τ〉 =⇒ e[σ][τ] →∗ e′, and then applying Lemma1:

e[σ] �+ 〈e′, τ〉
e[σ][τ] →∗ e′ ih

e[σ >=>τ] →∗ e′ lemma 1

Case 3. We now consider the case when the first reduction is a promoted reduc-
tion from the original language, constructed as follows:

prom
e →X e′

e � 〈e′, return〉 e′ �+ 〈e′′, τ〉
e �+ 〈e′′, return >=>τ〉 seq

In this case our goal can then be verified by lifting the reduction from the original
language through the input substitution using Lemma2, sequencing with the
result of applying the induction hypothesis to the remaining reduction sequence,
and finally applying an identity law for Kleisli composition:

lemma 2
e →X e′

e[τ] → e′[τ]
e′ �+ 〈e′′, τ〉
e′[τ] →∗ e′′ ih

e[τ] →∗ e′′ seq

e[return >=>τ] →∗ e′′ id �
Although the above proof was presented specifically for the specific case of lazy
narrowing semantics, it is not dependent on the properties of the narrowing set
or the condition for applying a narrowing step. Therefore the proof is also valid
for any narrowing set and any applicability condition.

6.2 Completeness

Definition 1. We exploit two pre-orderings on substitutions, which respectively
capture the idea of one substitution being a prefix or suffix of another:

σ1 � σ2 ⇐⇒ ∃σ′. σ1 >=>σ′ ≡ σ2

σ1 � σ2 ⇐⇒ ∃σ′. σ′ >=>σ1 ≡ σ2

Lemma 3. If the source expression of a transition in the original semantics
is not suspended then the transition can be ‘unlifted’. Given a substitution σ ∈
SubX→Y and a transition e[σ] →Y e′ for which e �� x, we have:

∃e′
σ. e →X e′

σ ∧ e′
σ[σ] ≡ e′

34 J. Fowler and G. Huttom

Lemma 4. The lazy narrowing set is complete. For every input there is a sub-
stitution in the narrowing set that is a prefix of the input:

∀x ∈ X, τ ∈ InpX . ∃σ ∈ NarrX(x). σ � τ

Lemma 5. The lazy narrowing set is advancing. The identity substitution is a
strict prefix of every substitution in the narrowing set:

∀x ∈ X, σ ∈ NarrX(x). return � σ

Theorem 2 (Completeness). For every reduction sequence in the original
semantics there is a corresponding reduction in the lazy narrowing semantics:

e[τ] →∗ e′ =⇒ e �+ 〈e′, τ〉
Proof. The proof proceeds by rule induction on the definition for the evaluation
relation →∗, for which there are three cases to consider.

Case 1. In the base case when the evaluation is just reflexivity

e[τ] →∗ e[τ]
refl

the goal follows immediately by instantiating free variables:

e �+ 〈e[τ], τ〉 fill

Case 2. There are two inductive cases to consider, depending on whether or not
the expression e is suspended when the sequencing rule is applied:

e[τ] → e′ e′ →∗ e′′

e[τ] →∗ e′′ seq

In the case when e is not suspended our goal can be verified as follows, in which
the two branches of the proof tree exploit the two conclusions from Lemma3:

prom

lemma 3
e → e′

τ

e � 〈e′
τ , return〉

e′ →∗ e′′

e′
τ [τ] →∗ e′′ lemma 3

e′
τ �+ 〈e′′, τ〉 ih

e �+ 〈e′′, return >=>τ〉 seq

e �+ 〈e′′, τ〉 id

Case 3. Finally, when e is suspended on x , because the narrowing set Narr(x)
is complete (Lemma 4) there is a substitution in this set that is a prefix of the
input τ , i.e. a substitution σ ∈ Narr(x) and input τ ′ for which τ ≡ σ >=> τ ′.
Based upon this observation our goal can then be verified as follows:

narr
e � x σ ∈ Narr(x)

e � 〈e[σ], σ〉

e[τ] →∗ e′

e[σ][τ ′] →∗ e′ lemma 1

e[σ] �+ 〈e′, τ ′〉 ih

e �+ 〈e′, σ >=>τ ′〉 seq

e �+ 〈e′, τ〉 lemma 4

Towards a Theory of Reach 35

Well-foundedness. In the third case above, we need to explicitly verify that the
induction is well-founded as the induction hypothesis is not trivially smaller in
this case. Instead, with each iteration the input gets smaller. To formalise this
well-foundedness neatly and generally, we restrict our notion of substitutions
SubX→Y to the case when the free variable sets X and Y are finite, and every
variable in Y appears in the result of the substitution. For our purposes this
leads to no loss of generality and all of our definitions satisfy these restrictions.
With these in place, we then have the following two results, which together with
Lemma 5 ensures that the use of induction in the third case is well-founded.

Lemma 6. The suffix relation < is well-founded. For any substitution τ0, there
only exists finite chains of substitutions τi such that:

τn < ... < τ1 < τ0

Lemma 7. A suffix formed by an advancing prefix is strict.

σ >=>σ1 ≡ σ2 ∧ return � σ =⇒ σ1 < σ2 �
Whereas the soundness proof was independent of the properties of the nar-

rowing set and the condition for its applicability, the completeness proof relies on
the fact that the narrowing set is complete and advancing, and that narrowing
steps can always be applied when an expression is suspended.

6.3 Correctness

Using the soundness and completeness results, it is now straightforward to prove
that our two notions of reachability are equivalent:

Theorem 3 (Correctness). For all expressions e ∈ ExpX :

reachF (e) ≡ reach(e)

Proof.

τ ∈ reachF (e) ⇐⇒ e �+ 〈•, τ〉 (by definition)
⇐⇒ e[τ] →∗ • (Theorems 1 and 2)
⇐⇒ τ ∈ reach(e) (by definition)

7 Agda Formalisation

Our correctness result has also been formalised in the Agda [14]. The Agda
formalisation follows the presentation given in the paper closely: the language
grammar and semantic rules convert directly to inductive datatypes, and rule
induction translates to recursive dependent functions. A proof of the main result
and all associated lemmas is available online from:

http://tinyurl.com/reachtheory

http://tinyurl.com/reachtheory

36 J. Fowler and G. Huttom

Using Agda brings a number of important benefits. First of all, it provides a
guarantee that our results are correct. Secondly, it helped guide the development
of our theory and proofs, resulting in a number of simplifications. For example,
when translating our original formalisation into Agda we found that it contained
a subtle error. The process of correcting the error also pointed towards a neater
theory. In particular, our original lazy narrowing formulation kept the substitu-
tion as an environment, only replacing free variables when they were needed. The
most natural way to fix the error was to apply the substitution to the current
expression immediately, removing the need to keep the substitution as an envi-
ronment. This also removed an unnecessary distinction in the formalisation: in
the original formulation the expression/environment pair 〈e, σ〉 behaved equiva-
lently to the pair 〈e[σ], σ〉, yet the two were distinct. And finally, the use of Agda
had a positive effect on the formulation of the representation of substitutions.
In order to ensure totality in Agda we had to parameterise substitutions with
the set of variables used in their domain and result. Far from being a hindrance,
this led us to the monadic formulation of composition.

8 Extending the Language

In this paper we focused on a minimal language to emphasise the key elements of
the reach problem and a solver based on lazy narrowing semantics. However, our
results also scale up to a more realistic language that includes function applica-
tion, lambda abstraction and fixed points [4]. This section briefly describes the
changes that are required to the Agda formalisation.

First of all, the expression grammar is extended to include the three new
constructors: function application, lambda abstraction and fixed points. To avoid
ill-formed expressions the addition of these language features requires the new
expression grammar to be typed. Therefore a function type is added to the
language, along with the type of natural numbers. The small step semantics is
extended to account for the new language constructs.

Our formalisation of the lazy narrowing semantics for the extended lan-
guage restricts free variables, and by extension narrowing, to natural numbers.
Although this is certainly a limitation, it is standard in the lazy narrowing litera-
ture, where a narrowing theory is generally described for first-order data initially,
and then potentially extended to the higher-order case in subsequent work. With
this restriction, the alteration to the lazy narrowing semantics and correctness
proof is minor. The suspension predicate, e � x, has to be updated as an expres-
sion can now be suspended within a function application or a fixpoint expression.
We defined the lazy narrowing semantics by lifting the original semantics, and
this definition remains unchanged except that we now lift the extended seman-
tics. Finally, the lemmas, particularly the lift and unlift Lemmas (2 and 3),
need updating to account for the additional cases. The proof of soundness and
completeness remain identical under the updated lemmas.

The ease of this extension suggests it may be possible to generalise the theory
by abstracting away from the details of the underlying language and semantics
that is used, which is an interesting topic for further work.

Towards a Theory of Reach 37

9 Related Work

There is a large body of work on the theory of lazy narrowing in functional
logic programming. We introduce and compare two particularly relevant theo-
ries to ours. In their seminal work, Antoy et al. [2] established the soundness
and completeness of the related notion of needed narrowing, and the optimality
of needed narrowing within a restricted domain. However, whereas our formali-
sation is based on extending a small-step semantics, theirs is based on classical
rewrite systems. As a result, our approach is easier to mechanically verify, which
we have done, as the semantics of our language has a direct representation in
proof assistants. In fact, to the best of our knowledge, this is a first time that a
lazy narrowing formalisation has had such a verification.

A formulation of lazy narrowing which is more closely related to ours is given
by Albert et al. [1] in which a “natural” big-step semantics is defined before an
implementation driven small-step semantics is introduced. Both semantics are
call-by-need, implement sharing, and are proved to be equivalent. They go on
to extend the small-step semantics with additional features such as equational
constraints and external functions. There is a difference in motive in comparison
to our work, as they establish lazy narrowing as a programming language feature
whereas we are interested in using lazy narrowing to analyse the operation of a
program. The difference manifests itself in the theories: they relate their small-
step semantics back to their defining big-step semantics, whereas we relate our
lazy narrowing semantics back to the underlying functional semantics.

10 Conclusions and Future Work

In this article we established the correctness of a reach solver for a minimal
language, based upon a soundness and completeness result for a lazy narrowing
semantics. Our final formulation of the semantics is the result of several iterations
and improvements, and captures the main ideas of lazy narrowing in a simple
and concise manner. In particular, the use of an underlying small-step semantics
was instrumental in simplifying the theory. The simplicity along with the use of
precise types enables a direct translation of our result to the Agda system [4].
There are number of interesting directions in which the theory developed in this
article could be extended and improved, which are summarised below.

Other Reach Solvers. The work in this article lays the ground for attempting to
formalise alternative and more general reach solvers, such as the Backward Reach
solver defined in Naylor’s thesis [13]. In addition, tools such as Lindblad’s data
generator [10] and Lazy SmallCheck [16] define logical or operators that evaluate
both argument expressions in parallel, which could significantly improve the
performance of lazy narrowing as expressions of the form e or e′ can be reduced
to true if either argument reduces to true in the current substitution state. We
could easily add such an operator to our language. However, our formulation
suggests a generalisation to this idea, in the form of evaluating branches in
parallel and utilising equational reasoning on case expressions.

38 J. Fowler and G. Huttom

Other Language Features. We used a minimal language for simplicity, but it is
important to consider how our approach generalises to other language features.
For algebraic datatypes, we expect it should be straightforward to extend our
theory using ideas from generic programming as in [8], while first-order functions
could be handled by representing functions using tries as in the improved Lazy
Smallcheck [15]. Another interesting area to explore is dependent type theory.
Lazy narrowing is often used in automated property based testing and depen-
dent type theory seems a natural coupling as it offers an inbuilt language for
specifications. In this area there is also potential for interesting comparison to
related work such as automated proof search [14].

Efficiency. We showed that the lazy narrowing definition of reachability for our
language is correct with respect to the original specification of reachability. How-
ever we have not made any formal argument regarding the efficiency of the lazy
narrowing approach, either against an alternative narrowing semantics or a naive
approach based on brute force search. Such an argument could be made on the
basis of simply counting the number of reduction steps required, or adopt a more
sophisticated approach, for example using the idea of improvement theory [11],
which has recently been used to prove that a general purpose optimisation tech-
nique for lazy languages never makes programs worse [6].

Acknowledgements. We would like to thank members of the FP Lab in Nottingham
and the anonymous referees for useful comments and suggestions regarding this work.

References

1. Albert, E., Hanus, M., Frank, H., Oliver, J., Germán, V.: Operational semantics for
declarative multi-paradigm languages. J. Symbolic Comput. 40(1), 795–829 (2005)

2. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

3. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming (2000)

4. Fowler, J.: Towards a Theory of Reach - Agda Proof (2015). https://github.com/
JonFowler/theoryofreach

5. Gill, A., Runciman, C.: Haskell program coverage. In: Proceedings of the ACM
SIGPLAN Workshop on Haskell (2007)

6. Hackett, J., Hutton, G.: Worker/Wrapper/Makes It/Faster. In: Proceedings of the
19th ACM SIGPLAN International Conference on Functional Programming (2014)

7. Hanus, M.: A unified computation model for functional and logic programming.
In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (1997)

8. Hinze, R.: A new approach to generic functional programming. In: Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (2000)

9. Hughes, J.: QuickCheck: an automatic testing tool for Haskell (QuickCheck man-
ual). http://www.cse.chalmers.se/∼rjmh/QuickCheck/manual.html

https://github.com/JonFowler/theoryofreach
https://github.com/JonFowler/theoryofreach
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html

Towards a Theory of Reach 39

10. Lindblad, F.: Property directed generation of first-order test data. In: Proceedings
of the Eighth Symposium on the Trends in Functional Programming (2007)

11. Moran, A., Sands, D.: Improvement in a lazy context: an operational theory for
call-by-need. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (1999)

12. Naylor, M., Runciman, C.: Finding inputs that reach a target expression. In: Pro-
ceedings of the 7th IEEE International Working Conference on Source Code Analy-
sis and Manipulation (2007)

13. Naylor, M.F.: Hardware-Assisted and Target-Directed Evaluation of Functional
Programs. Ph.D. thesis, University of York (2008)

14. Norell, U.: Towards a Practical Programming Language Based on Dependent Type
Theory. Ph.D. thesis, Goteborg University (2007)

15. Reich, J.S., Naylor, M., Runciman, C.: Advances in lazy SmallCheck. In: Hinze,
R. (ed.) IFL 2012. LNCS, vol. 8241, pp. 53–70. Springer, Heidelberg (2013)

16. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and lazy SmallCheck auto-
matic exhaustive testing for small values. In: Proceedings of the First ACM SIG-
PLAN Symposium on Haskell (2008)

Functional Testing of Java Programs

Clara Benac Earle and Lars-Åke Fredlund(B)

Babel Group, Universidad Politecnica de Madrid, Madrid, Spain
{cbenac,lfredlund}@fi.upm.es

Abstract. This paper describes an approach to testing Java code using
a functional programming language. Models for Java programs are
expressed as Quviq Erlang QuickCheck properties, from which random
tests are generated and executed. To remove the need for writing boiler-
plate code to interface Java and Erlang, a new library, JavaErlang, has
been developed. The library provides a number of interesting features,
e.g., it supports automatic garbage collection of Java objects communi-
cated to Erlang, and permits Java classes to be written entirely in Erlang.
Moreover, as the library is built on top of the Erlang distributed node
concept, the Java program under test runs in isolation from the Erlang
testing code. The chief advantage of this testing approach is that a func-
tional programming language, with expressive data types and side-effect
free libraries, is very suited to formulating models for imperative pro-
grams. The resulting testing methodology has been applied extensively
to evaluate student Java exercises.

Keywords: Software testing · Erlang · Java

1 Introduction

This paper describes a methodology for testing Java code which uses the
property-based random testing tool Quviq Erlang QuickCheck [1], henceforth
abbreviated as QuickCheck. As this version of QuickCheck provides no special
facilities for testing Java code, and there are versions of QuickCheck adapted
for Java (e.g., Java QuickCheck [2], JUnit with QuickCheck parameters [3], and
ScalaCheck [4]), it might seem surprising that we choose to use a QuickCheck
which has Erlang as its basis. The reasons are twofold: the Erlang based version
of QuickCheck is a mature tool, especially compared with Java QuickCheck, and
more importantly, we consider Erlang to be a much better modelling language
than Java or Scala.

To use QuickCheck to check Java code is in practice not very difficult but
rather tedious. The Erlang standard library Jinterface permits communication
between Erlang and Java, but unfortunately a lot of Java boilerplate code has
to be written for each Java program tested. To eliminate this source of testing
inefficiency we designed a new Erlang library JavaErlang [5] on top of Jinterface,
which removes the need to write boilerplate code. Moreover, as the library is built
on top of the Erlang distributed node concept, the Java program under test runs
in isolation from the Erlang testing code.
c© Springer International Publishing Switzerland 2016
M. Serrano and J. Hage (Eds.): TFP 2015, LNCS 9547, pp. 40–59, 2016.
DOI: 10.1007/978-3-319-39110-6 3

Functional Testing of Java Programs 41

The main contributions of this work are the new library JavaErlang, and
a methodology for testing Java programs using QuickCheck. The JavaErlang
library provides a number of interesting and novel features, e.g., it offers an
Erlang programmer a seamless interface to Java code, permitting Java classes
to be written entirely in Erlang, and enables safe automatic garbage collection
of Java objects communicated to Erlang. The testing methodology is based on
modelling the behaviour of Java programs and libraries using QuickCheck state
machines, a natural approach since most of Java code is stateful. The method-
ology has been used extensively to test Java code developed by students at
the Universidad Politecnica de Madrid, and has proven successful. The article
summarises the experiences gained from applying the methodology to the task
of testing a set of implementations of a medium-sized Java library. A num-
ber of interesting bugs were found, leading us to realise that innocent looking
single-threaded Java programs can behave non-deterministically, due to the data
structures used.

In the following a basic knowledge of the Erlang programming language is
assumed. Section 2 summarises related work, and Sect. 3 discusses the new Java
interface library. Section 4 explains the details for how models for Java programs
are developed in Erlang, and the task of testing a larger API for finite state
automata is used to demonstrate that the approach scales. Finally Sect. 5 sum-
marises the results, and outlines issues for further work.

2 Related Work

There are a large amount of libraries and tools available that attempt to ease the
task of interfacing functional programming languages with imperative or object-
oriented programming languages such as e.g. Java. As an example, historically
there have been several Haskell libraries available for interfacing with Java code,
most of them bridging the two languages using the JNI (Java Native Interface)
program framework (a foreign function interface). Examples of libraries using
such an approach include the java-bridge package, GCJNI, and foreign-jni, with
varying levels of maturity. Most of these efforts require the (automatic) genera-
tion of glue code in order to access a particular Java library.

Another approach to interfacing a functional programming language with
Java is represented by Erjang [6], which is an implementation of an Erlang virtual
machine running under Java. Although technically impressive, Erjang does not
yet support full Erlang, and moreover, from the point-of-view of testing Java
software using Erlang, it is not clear that such a close integration of the two
languages is desirable.

A third approach to interfacing a functional programming language with Java
is illustrated by the Erlang Jinterface library provided with Erlang. The library
in essence provides the following functionality: (i) support for implementing a
Java node which can connect with Erlang (distributed) nodes, permitting Erlang
processes to communicate with the Java node, and (ii) a facility for the encoding
of Erlang data terms as Java objects. Since this article is using Jinterface as an
essential building block, it is worthwhile to examine the library in further detail.

42 C.B. Earle and L.-Å. Fredlund

To enable communication between an Erlang process and a Java node the
Erlang process should send a normal Erlang term t, which Jinterface presents
to the Java node as a Java object having the same term structure as the
Erlang term t. That is, Jinterface provides Java classes corresponding to Erlang
atoms (e.g., the Java class OtpErlangAtom), integers, lists, tuples (the class
OtpErlangTuple), etc. A Java node that wishes to send a message to an Erlang
process should encode the message using the above Java classes for Erlang data
types. Thus the Erlang processes communicate using normal Erlang terms, while
the Java node works with Erlang terms encoded as Java objects.

As an example, suppose an Erlang process wants the Java node to invoke
a static method (a method that is not executed in the context of an object,
but in the context of a class) m(10) in a class C we could let Erlang send
a message {‘call C m’, 10}, and have the Java node execute the following
code to interpret and execute the request:

OtpErlangObject msg = msgs.receive();
if (msg instanceof OtpErlangTuple) {

OtpErlangTuple tup = (OtpErlangTuple) msg;
if (tup.arity() == 2) {

OtpErlangObject tag = tup.elementAt(0);
OtpErlangObject arg = tup.elementAt(1);
if (tag instanceof OtpErlangAtom) {

String stag =
((OtpErlangAtom) tag).atomValue();

if (stag.equals("call_C_m")) {
int i = ((OtpErlangInt) arg).intValue();
C.m(i); // Finally call the method

} else ...
} else ...

} else ...
} else ...

Clearly there are a number of disadvantages to this approach. First, there
has to be a prior agreement between Java and Erlang on a shared vocabulary
(typically communicated as tuples as seen in the example above). This normally
forces a Jinterface user to write a lot of boilerplate Java code. Secondly, while
it is clear how to communicate primitive Java values (and arrays) to and from
Erlang, how are Java object references to be communicated? Thirdly, compared
to the earlier JNI based solutions, and Erjang, performance is lacking.

The QuickCheck random testing tool [7] has had a very positive impact on
the use of functional programming for model-based testing. The Haskell based
QuickCheck, and its many derivatives for other functional programming lan-
guages, are nowadays being used to model a large variety of software and hard-
ware systems. As an example of successful cross-language model-based testing,
Quviq is using their Erlang based QuickCheck tool [1] to test automotive soft-
ware written in C [8].

Functional Testing of Java Programs 43

3 The JavaErlang Library

The JavaErlang library1 was born to address a number of limitations of
Jinterface. JavaErlang is build on top of Jinterface, but provides more convenient
mechanisms for enabling Erlang processes to interact with Java. The principal
advantages of JavaErlang are:

– All public Java methods and fields of classes and objects are accessible without
the need to prepare referenced Java classes in any way. A common requirement
in many other language bridging libraries is to e.g. analyse the interfaces to
classes offline, in order to automatically derive code to access class members.

– No Java code has to be written in order to use the library.
– Java object references can be freely communicated to and from Erlang

processes. Moreover, Java objects whose references have been communicated
to Erlang are still subject to safe automatic garbage collection.

As a first example, the following is a simple usage of the library (invoked
from the Erlang shell):

> {ok,NodeId} = java:start_node().
{ok,100}
> I1 = java:new(NodeId,’java.lang.Integer’,[10]).
{object,0,<<>>,0,100}
> I2 = java:new(NodeId,’java.lang.Integer’,[10]).
{object,1,<<>>,0,100}
> java:call(I1,equals,[I2]).
true
> java:call

(I1,equals,
[java:new(NodeId,’java.lang.Integer’,[7])]).

false

In the example we first start a new Java node (i.e., a Java runtime), and let
Erlang connect to that node. Then, two Java Integer objects are created on the
Java node, both initialised to the integer value 10. In Java this corresponds to
calling the Integer(int value) constructor of the Integer class. The first
call to java:new returns a tuple {object,0,<<>>,0,100} corresponding to
the representation in Erlang of a Java object reference. Next, we check using the
Integer class instance method equals that the first integer is equal (according
to the Java equals method) to the second. Finally we create a third integer,
initialised to 7, and check that it is not equal to the first.

Note that the example is entirely self-contained. There is for instance no
need to analyse, or compile, the Java libraries before they become usable from
Erlang. Neither does the example assume that a Java interpreter has already
been started; the Java runtime is started using the call to java:start node().
Third-party libraries are automatically made available too (as long as Erlang is
informed of the location of these libraries).
1 Available at: https://github.com/fredlund/JavaErlang.

https://github.com/fredlund/JavaErlang

44 C.B. Earle and L.-Å. Fredlund

Below we summarise the main functions of the java module API, assuming
that NodeId is a Java node identifier, Class is the Erlang atom corresponding
to a Java class, Method is an Erlang atom naming a method, and Field is an
atom naming a field:

Object is the representation of a Java reference in Erlang, and Val is an
object reference, or an Erlang value that can be interpreted as a Java value (inte-
gers, Booleans, the atom null, . . .). These functions are used to create a new
instance of a class (new), to call an instance method of an object (call), to call
a static (class) method (call static), and functions for accessing and modify-
ing object and class field (attribute): get, set, get static, and set static.
A number of function variants are omitted from the above table, e.g., variants
of the call functions identical to the above ones except that they accept an
additional type argument which permits to elect the exact method invoked2. If
such a type argument is missing, JavaErlang first calculates types for the method
arguments, and uses those inferred types to select the appropriate method.

3.1 Internal Design

Using the Jinterface library, the JavaErlang library provides a Java node which
listens for messages sent from Erlang nodes with information requests regarding
classes (enumerating methods, fields and subclasses), and messages correspond-
ing to requests to execute a method, or access or modify the value of a field.
An Erlang node can connect to multiple Java nodes at the same time. The
basic functionality of the library is to provide a set of mappings which associate
Java object references with their representation as Erlang data values. That is,
whenever a Java object reference should be returned to the Erlang node, it is
mapped to its Erlang representation (a tuple), and vice versa, when the Erlang
node communicates a Java object reference represented as an Erlang value, it is
mapped to a real Java object reference in the Java node. Thus, there are two
tables in the Java node:

toErlang : java.lang .Object �→ erlangRef
fromErlang : erlangRef �→ java.lang .Object

2 Multiple methods can share the same name in Java, but must have differently typed
arguments.

Functional Testing of Java Programs 45

An Erlang node keeps two tables, java classes, a mapping from class names (an
Erlang atom) to a class record with information about publicly accessible class
members (methods, fields, etc.), and java class ids, a mapping from integers to
class records.

The representation in Erlang of a Java object reference is a tuple:

{object,ObjectRefNo,RefCounter ,ClassNo,NodeId}

henceforth referred to as an Erlang object tuple. The field ObjectRefNo is a
unique integer identifying the object, RefCounter is a counter keeping track of
the number of times this object reference has been communicated to the Erlang
side (required for the purpose of garbage collection), ClassNo is an integer that
identifies the Java class to which the object belongs, and NodeId identifies in
which Java node the object resides.

The reflection programming technique [9] (provided in Java by the pack-
age java.lang.reflect) is used extensively in a Java node to obtain Java
objects corresponding to Java classes, methods, etc. Note that these objects rep-
resent the actual classes and methods, rather than just their names. References
to these objects, when converted into Erlang object tuples, can then be com-
municated to, and from, the Erlang node, to inform the Erlang node about the
publicly accessible members of a class. To illustrate the design of the JavaErlang
library, we below sketch the major steps in the implementation of the function
new(NodeId,ClassName,Args):

Class-lookup (Erlang): upon invocation of the new function, the Erlang node
first checks whether the class is already known to the Erlang node by look-
ing it up in the table java classes. If the class is not known, Erlang sends
a message to the Java node identified by NodeId requesting information
regarding the class, i.e., an enumeration of its public constructors, methods
and fields. If the class is known, execution continues with the step “Inferring
a constructor” below.

Class Reflection (Java): upon receiving the request for class information Java
proceeds to enumerate the constructors, etc., using reflection, obtaining Java
object references corresponding to these class members, with associated type
information for method arguments. Next, Java sends a reply to the Erlang
side with the class information where object references are mapped into
Erlang object tuples (using the map toErlang – see example step six below
for a clarification), and with a unique class number (an integer).

Storing the class information (Erlang): the Erlang node packages the class
information into a record, and stores the class information for future use in
the class table java classes using the class name as key, and in the table
java class ids as well, using the class number as key.

Inferring a constructor (Erlang): next, Erlang proceeds to try to find a class
constructor whose type matches the derived type of the actual parameters,
using the information in the class record. As an option, a user can explicitly
specify the desired constructor by supplying an extra parameter to the new
function.

46 C.B. Earle and L.-Å. Fredlund

Sending a “call” message to Java (Erlang): if a constructor is found, Erlang
sends a message to Java node with the object tuple corresponding to the
chosen constructor, the argument list, and the process identifier (pid) of the
calling process, and waits for a reply message. If no constructor was found
an exception is raised.

Executing the constructor (Java): when Java receives the message containing
the call request, it first finds a suitable thread in which to execute the request,
or creates one if needed3. Java proceeds to map the constructor object tuple,
and constructor arguments into Java object references (using the fromErlang
map), and finally executes the constructor (using reflection).

Updating object reference tables (Java): if the invocation of the con-
structor is successful, Java records an association between the new Java
object reference and a fresh Erlang object tuple “{object,ObjectId,0,
ClassId,NodeId}” (an Erlang object tuple) in the fromErlang and
toErlang maps. ObjectId is chosen as a unique integer, and ClassId is a
unique integer representing the object class. If the invocation fails, the Java
side instead associates the resulting exception object with an Erlang object
tuple.

Communicating the result to Erlang (Java): the resulting object tuple (cor-
responding to a normal object reference, or the exception object) is sent back
to the waiting process in the Erlang node using message passing.

Receiving the reply (Erlang): the Erlang processes that called the constructor
receives the reply, and examines the result. If the result is not an exception
object it is simply returned as the result of the call to the new function, or,
if the result was an exception, an exception is raised instead.

Figure 1 shows the flow of information exchanged between an Erlang node and
a Java node when an instance of a class not previously known is created.

Erlang Java
class-info-request(ClassName)

result(constructors,methods,fields)

new(ConstructorObj,Args)

result(NewValue)

Fig. 1. Communications when creating a new Java object

The implementation of the call function, and call static and the func-
tions for accessing and modifying fields are analogous to the implementation of
new, as described above. The call function must be invoked with an object
tuple as the first argument. The Erlang node proceeds by first extracting the

3 The library uses a 1-1 mapping between Erlang processes and Java threads, see
Sect. 3.4.

Functional Testing of Java Programs 47

class identifier from the object tuple, and looks it up in the java class ids table
to obtain the class record. If no such class record exists, the Erlang node must
query the Java node for the class information (in the same manner as is done in
the step “Class-lookup” above). The rest of the implementation of call follows
the pattern of new.

3.2 Boxing and Unboxing

To ease the task of working with Java in Erlang the JavaErlang library dupli-
cates a number of tasks of a Java runtime, e.g., providing boxing and unboxing of
primitive values and objects, providing functions for convenient access and cre-
ation of Java arrays, and also mapping Java primitive values to suitable Erlang
primitive values.

As an example, the Java null value is represented as the Erlang atom
null, and the Java Boolean values true and false are represented as the
corresponding atoms true and false, and integer-like types and floating-
point-like types are represented as normal Erlang integers and floats. When
the heuristic type conversions fail, values can be explicitly type cast using
the notation {Type,Value}. Java arrays can be constructed using the nor-
mal Erlang syntax for lists and strings. As an example, a Java short inte-
ger can be constructed using the syntax {short,5}, a Java character with
{char,$a}, and a one-dimensional Java character array can be constructed
with {{array,char,1},"Hello World"}.

3.3 Automatic Garbage Collection

As both Java and Erlang are languages with automatic garbage collectors, it
is highly desirable that Java objects, whose references are communicated to
Erlang, can still be garbage collected safely and automatically. However, the
implementation of such a feature is not trivial.

As explained above, when a Java object reference is communicated to Erlang,
the library establishes a mapping from the object reference to an Erlang object
tuple, which should be preserved during the lifetime of the object (in two hash
tables). The fact that object references are recorded in such tables, prevents
premature garbage collection of Java objects whose references have been com-
municated to Erlang even if no data structure on the Java side any longer refers
to them. However, to enable automatic garbage collection of objects communi-
cated to Erlang the Erlang node must then be made to inform the Java node
when an object tuple is no longer in use, so that the object reference can be
removed from the tables. Unfortunately, Erlang does not have any language fea-
ture that would permit to implement this directly, e.g., there is no equivalent in
Erlang to the Java finalize call (or Haskell “finalizers”, e.g., as used by weak
pointers). However, we have implemented (in C) such a feature for Erlang using
the so called resource objects in the Erlang erl nif foreign function interface
library.

48 C.B. Earle and L.-Å. Fredlund

As a first step to enable automatic garbage collection, then, the map toErlang
is extended to include the number of times an object reference has been commu-
nicated to Erlang: java.lang .Object �→ erlangRef × nat . The reference counter
is incremented whenever the same object reference is communicated to Erlang.
Moreover, the Erlang object tuple,

{object,ObjectRefNo,RefCounter ,ClassNo,NodeId}

which represents a Java reference, includes a natural number RefCounter which
is incremented for each copy of the reference returned to Erlang. When the
Erlang side receives the object tuple, it substitutes a fresh erl nif resource
object for the reference counter. Code on the Erlang side can now treat the refer-
ence object as a normal data value, and when no reference to the object reference
containing the object resource remains, the erl nif library will automatically
call the “destructor” of the resource object. The destructor consequently sends a
message to an Erlang process in the JavaErlang library which is responsible for
garbage collection of Java objects, which forwards the message to the Java node.
The java node can then decrement the reference counter in the toErlang map.
If the counter becomes zero, the Erlang node no longer possesses any object
tuples that refer to the Java object, and the mapping between object references
and object tuples can then be safely removed from the toErlang and fromErlang
tables, thus potentially permitting the Java object to be garbage collected (if
there are no references to the object on the Java node).

There are a number of situations that require care in the above garbage col-
lection scheme. First, we must ensure that object tuples cannot be garbage
collected during calls from Erlang to Java. Consider for instance a call:
call(Obj1,equals,[Obj2]). If, say, this is the last reference to the object
tuple Obj1 on the Erlang node then the object tuple could potentially be garbage
collected after sending the call message to the Java node. However, the message
regarding the garbage collection of Obj1 could potentially be delivered at the
Java node before the call message is delivered4, thus removing the mapping from
the table fromErlang . When the call message arrives, the object tuple can no
longer be converted into a Java object reference, and the call simply cannot
proceed. To protect against such race situations we keep a copy of all the object
tuples that occur in a message sent from an Erlang node, until the Java node
replies. Second, normal Erlang term equality can no longer be used to compare
object tuples for referential equality, as two object tuples corresponding to the
same Java object reference, but returned from different calls to Java, will not
be syntactically equal. Instead, the function java:eq(Obj1,Obj2) should be
used to compare object tuples for referential equality.

Note that this garbage collection scheme works even when object tuples are
communicated between different Erlang processes, as the underlying erl nif
object resources used in their implementation are safe to communicate between
processes.
4 The message delivery guarantees for Erlang to Java communication are not well-

defined. Moreover it is unwise to rely on such guarantees even in the case of pure
Erlang-to-Erlang communication, see [10,11] for a detailed discussion.

Functional Testing of Java Programs 49

3.4 Java Threads and Timeouts

By default the library maintains a 1-1 mapping between Erlang processes and
Java threads, that is, each Erlang process will be serviced by the same unique
Java thread. As a consequence the whole Java node is not blocked even if a
particular method call is slow to execute. Such a process to thread mapping is
moreover advantageous to interact with various Java libraries such as e.g. Swing
(a GUI library), which require that API calls should always be executed by the
same thread. This simply corresponds to, in our case, being called from the same
Erlang process.

To enable to observe non-terminating Java method calls during testing, the
library provides an optional timeout mechanism. If a timeout is specified, a Java
method call will fail (raising an Erlang exception) if it does not return a result
within the specified time limit.

3.5 Implementing Java Classes Using Erlang

With the capability to generate instances of arbitrary Java classes, and call
arbitrary methods and access fields, clearly a large subset of Java APIs can be
accessed using the library, without writing a single line of Java code. However,
there are a few situations when a Java API requires a user to implement a new
class, e.g., when the class implements a Java interface, and an instance of the
class should be supplied as an argument to a method, or, when a concrete class
must be supplied which extends an abstract Java class. Normal Java proxies
(the java.lang.reflect.Proxy class) permits new classes to be created at
runtime, but unfortunately does not permit to extend abstract classes. Instead,
the JavaErlang library uses the Javassist byte code manipulation library [12] to
permit the creation of new Java classes in Erlang.

The functionality provided by JavaErlang is explained here with a small
example. In the Swing Java GUI, to react to a user pressing e.g. a button in a
form, the programmer should register an object that implements the Action
interface with the button to handle GUI events. This interface is implemented
by e.g. the AbstractAction abstract class, which needs to be extended to be
able to listen to events:

Button = java:new(N,’javax.swing.JButton’,["Hello"]),
java_proxy:class

(N, ’actListen’, ’javax.swing.AbstractAction’,
[{{actionPerformed,[’java.awt.event.ActionEvent’]},

fun actionPerformed/3}]),
Proxy = java_proxy:new(N,’actListen’),
java:call(Button,setAction,[Proxy]),
java:call(Pane,add,[Button]).

In the first line a new Swing button is created, and then a new “proxy”
class actListen is created (i.e., a Java class implemented in Erlang)
that redefines the method actionPerformed (with one argument of type

50 C.B. Earle and L.-Å. Fredlund

’java.awt.event.ActionEvent’) whose implementation is provided by
the Erlang function actionPerformed/3. In the third line and fourth lines
an instance of the “proxy” class is created and passed as an argument to the
method setAction of the button, and in the fifth line the button is added to
a window pane. Finally the function actionPerformed is shown below.

actionPerformed(_, _State, Event) ->
Button = java:call(Event,getSource,[]),
Text = java:call(Button,getText,[]),
String = case java:string_to_list(Text) of

"Hello" -> "World";
_ -> "Hello"

end,
java:call(Button,setText,[String]),
{reply,void}.

The function is called with three arguments, the first context representing the
object and method called, and the second argument corresponds to the state of
the object in which the new actionPerformed resides. Java classes defined
using Erlang will typically be stateful too, and hence the library provides a
state that is remembered between invocation of class methods. The initial state
may be supplied as an argument to java proxy:new. The third, and following
arguments, represent the actual arguments of the called method, in this case the
event that took place. The function above modifies the label of the button (alter-
nating between displaying “Hello” or “World depending on the text displayed
on the button), and finally returns {reply,void} indicating that method does
not return any value. The function java:string to list/1 converts a Java
string to an Erlang list of characters.

The methods of such “Erlang objects” are always executed as if they were
declared “synchronized”, i.e., in mutual exclusion with other methods. Moreover,
as a current limitation of the library, Java methods defined in Erlang cannot be
recursive, i.e., if actionPerformed above were to call itself recursively, the
recursive call would block indefinitely.

Internally the proxy facility is implemented on the Erlang side by having a
dedicated proxy server process, to which the Java node sends a message when
the redefined method of a proxy object is called. The Erlang proxy server keeps
a proxy table which records the state of all proxy objects, i.e., whether an object
is executing, its queue of outstanding calls, and the state of the proxy object. If a
call message is received by proxy server, it looks up the proxy object record, and
if the object is not currently busy, spawns a new Erlang process which executes
the function call, with the current state of the proxy object as a parameter, and
marks the proxy object busy in the proxy table. The proxy server then continues,
possibly servicing calls to other proxy objects. If the object was busy, the call is
added to the proxy object queue. When the spawned Erlang process has finished
the execution of the function call, resulting in a return value and a new proxy
object state, it sends a message to the proxy server. The proxy server eventually

Functional Testing of Java Programs 51

receives this message, and as a consequence, it sends a message to the Java side,
and then updates the state of the proxy object, and marks it as non-busy.

3.6 Limitations

The principal limitation of the library is the performance penalty incurred when
issuing calls of Java methods from Erlang, compared to Java-to-Java calls. The
overhead has multiple sources, e.g., the use of reflection, communication costs
including marshalling of object references, the algorithm for determining which
method instance to invoke, etc. Moreover the library uses additional memory,
keeping two entries per object reference communicated to Erlang in the Java
node, and in the Erlang node allocating one erl nif object resource for every
copy of an object reference communicated to Erlang. As a small benchmark, on
a PC running Ubuntu 13.04 with an Intel(R) i7-2640M cpu at 2.80 GHz, around
3000 calls to Java can be made per second using the current version (1.3) of the
library; several orders of magnitude worse than direct Java-to-Java calls.

A limitation of the library is that it is currently not possible to implement
object locking in Erlang. Object locks implemented in Java (using e.g., the
synchronized keyword) are respected, but there is currently no mechanism
in JavaErlang to specify a custom locking protocol as this would require issu-
ing and executing monitorenter and monitorexit byte code instructions.
There are a number of possible solutions, e.g., to implement in JNI (Java Native
Interface) methods corresponding to these byte code instructions, which would
then be callable from Erlang, or directly manipulate byte codes using Javassist.

4 Testing Java Code Using QuickCheck

The basic functionality of QuickCheck is simple: when supplied with an Erlang
data term that encodes a Boolean property, which may contain universally quanti-
fied variables, QuickCheck generates a random instantiation of the variables, and
checks that the resulting Boolean property is true. This procedure is by default
repeated at most 100 times. If for some instantiation the property returns false, or
a runtime exception occurs, an error has been found and testing terminates.

4.1 QuickCheck State Machines

For checking “stateful” code, QuickCheck provides the eqc statem library.
Here the tested “object” is not a simple Boolean property, but rather a sequence
of function calls each with an associated post condition that determines whether
the execution of a call was successful or not. The library first generates a suitable
test, i.e., a sequence of API calls, and then proceeds to execute the test, checking
for each API call that the result was the expected one given the history of calls.
Thus, the state machine acts as a model for the program under test.

To use the eqc statem library a user has to supply a “callback” module
with a set of functions with predefined names, which are called by QuickCheck
during test generation and test execution.

52 C.B. Earle and L.-Å. Fredlund

initial_state()
command(State)
precondition(State,Call)
next_state(State,Result,Call)
postcondition(State,Call,Result)

A test state is kept both during test generation and test execution. The
state is initialised by the initial state function. API calls are gener-
ated by the function command, which returns symbolic calls of the form
{call,ModuleName,Function,Args}. The next state function is called
both during test generation and test execution to modify the model state; the
Result parameter is a symbolic variable during test generation, whereas it
contains the actual call result during test execution. Hence, a state is typi-
cally symbolic during test generation, and concrete during test execution. The
postcondition function checks that the return value of a call is correct.

4.2 Testing a Large Java Library

In this section we detail the techniques used to verify a larger Java library, and
summarise the lessons learnt.

As an obligatory part of a course on algorithms and data structures, students
at the Universidad Politecnica de Madrid were tasked with implementing a finite
automata library in Java. In total around a 120 students were attending the
course, and each student had to hand in his/her own solution. The requirements
were to implement basic operations for both deterministic and non-deterministic
(with epsilon transitions) automata, e.g., methods for constructing and decom-
posing automata, for computing the next automaton state provided the current
state and a label as arguments, and to check whether a string (a sequence of
labels) is accepted by an automaton. Moreover, students were tasked with imple-
menting the following more complex functionalities: minimising a deterministic
automaton, converting a regular expression into a non-deterministic automaton
(with epsilon transitions), and converting a non-deterministic automaton into a
deterministic one.

To save correction time, clearly a strong motivation for applying (property-
based) testing existed in this case, and so a model for the automata library was
developed using QuickCheck and JavaErlang.

Model. The model developed is a monolithic one, meaning that only a sin-
gle eqc statem state machine is specified, handling in total 20 different API
calls, ranging from basic operations such as adding a transition to a finite state
automaton, to minimising an automaton. To check the correctness of the API
calls, the model must naturally implement the same functionality as the API
(or use libraries to do so); e.g. the QuickCheck model for finite state automata
also contains code for minimising a deterministic automaton. In the following a
number of important facets of the test model are highlighted.

Functional Testing of Java Programs 53

Model State. The state of the model is an Erlang record storing the finite
automata created, the states created (the API permits free states not assigned
to an automaton), and a set of testing options (see the Section Parametricity
below). An automaton is composed of a number of states, a number of transi-
tions, has an initial state, may be deterministic, can be explicit (was constructed
using the low-level API), and may have been minimised. A state can be fresh
(not part of an automaton), and may be accepting.

Parametricity. To be able to focus attention during testing on different parts of
the whole API, the generation of a particular API call is made conditional on
a set of testing parameters, which are initialized at the start of testing. These
parameters are added to the state machine state, and checked when an API
call is generated. As an example, a call to the method addTransition in the
class DFA (a deterministic automaton) is generated by the following clause in
the function command(State):

[{call,?MODULE,addTransition,
[FAId,FAState1,label(),FAState2]} ||

test_dfa(State),
test_basic_constr(State),
FAId <- explicit_dfa_ids(State),
FAState1 <- states_in_fa(State,FAId),
FAState2 <- states_in_fa(State,FAId)]

The clause will generate a list of possible calls to add a transition to an
automaton identified by FAId, from state FAState1, with a randomly gen-
erated label label(), to state FAState2, if the deterministic part of the
API is being tested (test dfa(State)), and if basic API calls are tested
(test basic constr(State)). Moreover, FAId must be an existing deter-
ministic automaton, and FAState1 and FAState2 must be states in that
automaton. For completeness the Erlang functions that actually invokes Java
to create a new transition are shown below:

addTransition(FAId,FAState1,Label,FAState2) ->
java:call

(FAId,addTransition,
[ensure_object
(java:new(node_id(),’automata.Transition’,

[FAState1,create_label(node_id(),Label),
FAState2]))]).

create_label(NodeId,Label) ->
ensure_object(java:new(NodeId,’automata.MyLabel’,

[java:list_to_string(NodeId,Label)])).

ensure_object(Object) ->
case java:is_object_ref(Object) of

54 C.B. Earle and L.-Å. Fredlund

true -> Object;
false -> throw(ensure_object)

end.

The function ensure object verifies that its argument is a valid object refer-
ence, and not the null value, nor an exception. If the argument is not valid an
exception is thrown; otherwise the argument is returned. Although not strictly
needed, the function greatly improves error diagnostic by identifying the exact
point at which e.g. a null pointer was returned when a chain of Java calls are
executed (as is the case for addTransition).

Creating Complex Finite Automata. Normally, finite state automata are con-
structed using the rather cumbersome API available: creating an automaton,
creating states, creating transitions using these states, and finally adding such
transitions to the automaton. The frequency of generating these operations are
controlled by weights in the QuickCheck model. Still, even when weights are
carefully chosen, it is clear that the possibility of generating complex automata
for testing is rather low when using only such “low-level” operations. Thus, as a
configurable alternative, to generate more complex finite automata with a higher
probability, automata can also be generated by first generating a random regular
expression, and then translating the regular expression into a non-deterministic
automaton, which is optionally made deterministic.

Handling Exceptions. Exceptions in the Java code are treated as normal return
values (tagged with the atom java exception). Below a small excerpt is
shown from a function that checks whether the return value of a call matches
the expected return value (called from postcondition):

expect_eq(Value,Result) ->
case {Value,Result} of

{{exception,ClassName}, {java_exception,Obj}} ->
java:instanceof(Obj,ClassName);

_ -> ...
end.

If the call returned an exception, and an exception was expected, the code checks
that the returned exception is a correct exception instance.

Handling Freshness and Absence of Change. When implementing a Java method
compose, in a class SomeClass, of the shape:

public class SomeClass {
public SomeClass compose(SomeClass s) {

// compose this and s somehow,
// return the result as a fresh instance

}
}

Functional Testing of Java Programs 55

which is supposed to return a fresh object, our students commonly make the
mistake of reusing either the object instance itself, or the argument instance,
instead of creating a new object. For such methods the requirement on returning
fresh object instances is captured by including a call to the function is fresh
in the postcondition function:

is_fresh(Object,State) ->
lists:all(fun (KnownObject) ->

not(java:eq(Object,KnownObject))
end,
all_objects(State)).

The function all objects returns a list of all the previously created objects
known to the model, java:eq checks referential equality for Java object refer-
ences sent to Erlang. Moreover, checking that an instance method does not have
any side effects, i.e., that the method does not change the fields in its object or
class, nor any other object or class, is automatic thanks to the manner in which
random testing is implemented by eqc statem. Side effect free methods are
declared not to change the model state simply by including a default clause in
next state:

next_state(State,Var,Call) ->
case Call of

...;
_ -> State %% for methods without side effects

end.

QuickCheck will automatically generate tests that contain calls to such methods,
followed by calls to other methods, and will check the postconditions of these
method calls, thus detecting whether the supposedly side-effect free method was
truly side-effect free.

Bugs Found Using Property-Based Testing. While it is clear that the
majority of bugs found in the automata libraries were related to mistakes in
handling boundary conditions (e.g., failing to correctly handle empty finite
automata, etc.) a number of more interesting bugs were found during testing
with JavaErlang and QuickCheck. We include a small survey of these bugs here,
for a number of different reasons. First, their detection by QuickCheck is a con-
vincing argument of the value of random testing in our opinion – we are not sure
that they would have been detected by a more standard approach of focusing
on boundary condition testing, or using coverage based testing techinques such
as e.g. MC/DC [13]. Moreover, a number of these bugs illustrate nicely the dif-
ficulties of using an imperative language. Another set of bugs illustrate another
type of difficulty, shared between imperative and functional programming lan-
guages: working with complex data structures can lead to program errors that
are difficult to debug. In fact, using such data structures can even transform

56 C.B. Earle and L.-Å. Fredlund

a completely deterministic program into a non-deterministic one, whose behav-
iour depends crucially on the execution environment. Finally, in some cases the
detection of a bug was largely due to luck. Studying the bug provides insights
in how to improve testing in order to make bug detection more probable.

Using “==” instead of “equals”. Many students used the “==” operator, which
checks referential (pointer) equality, even though the objects compared were not
created by them. A correct solution would have been to use the equals method
instead. Using “==” led to failures for instance when comparing transition labels
that were semantically equal but were created at different times.

Using Iterators. Most students used a Java HashSet to store e.g. the states
of an automaton. Unfortunately using this data structure correctly turned out
to be rather difficult. To compute the reachable states of a non-deterministic
automaton typical student code did the following:

HashSet<State> states = ...;
for (State st : states)

states.addAll(epsilonClosure(st));

That is, the code iterated over the states already in the set, and for each state,
added also the states reached by a closure operation. From a functional pro-
gramming point-of-view the code looks pretty clear and correct.

However, nondeterministically, such code failed during testing with an excep-
tion Concurrent-Modification-Exception. This was rather surprising to
the students, as all student programs were single threaded. The Java documen-
tation5 for that exception states that: it is not permissible for one thread to
modify the data structure while another thread is iterating over it. Moreover,
if a single thread modifies a collection directly while it is iterating over it, this
exception may be thrown.

Clearly there was no attempt to access the same collection from different
threads. However, as the second sentence states, this exception can also be raised
by a single thread. In our opinion it is a rather unfortunate state-of-affairs that
Java raises this exception, as it prevents a natural style of programming. Solu-
tions advocated in Java literature range from adding elements to temporary data
structures, or making a copy of the data structure before iterating, to using the
add/remove operations supplied by iterators.

To improve the detection rate for this type of errors each test case was
repeated a number of times using the QuickCheck macro ?ALWAYS(N,Prop),
which is equivalent to the property Prop except that it is tested N times (or until
it fails). This is similar to how concurrent programs are tested under QuickCheck.

Modifying Elements Stored in a Hashtable. It was quite common student practice
to first store a state in a hashtable, and then modify it, and finally do a look-up
in the hashtable using the object. An example error:

5 http://docs.oracle.com/javase/6/docs/api/java/util/ConcurrentModificationExcept
ion.html.

http://docs.oracle.com/javase/6/docs/api/java/util/ConcurrentModificationException.html
http://docs.oracle.com/javase/6/docs/api/java/util/ConcurrentModificationException.html

Functional Testing of Java Programs 57

HashSet<State> states = ...;
State st = new State();
st.accepting = false;
states.add(st);
// ...
st.accepting = true;
// ...
if (states.contains(st)) ... // wrong

This code typically fails to locate the state in the hash table, as its hash code is
computed with the help of the field accepting which was false at the time
of storage, but true when the hash table is searched.

Non-deterministic Data Structures are Difficult. As a surprise, even though the
student solutions were thought to be totally deterministic, and generated test
cases certainly are, running the same test case on the same student solution
sometimes failed, and sometimes succeeded.

The reason turned out to be related to the implementation of the hash table
data structure in Java. An example error:

boolean found = false;
State selected;

for (State st : states)
if (!found && someConditionOnState(st)) {

found = true; selected = st;
}

// selected was used here to compute some result...

It turned out that the state table contained a number of states meeting the con-
dition someConditionOnState, but the condition was not sufficiently strict,
leading to potentially selecting a bad state, which causes a later test failure.

For the hash table data structure the order of elements returned by an iterator
depends on the hash code of an element. In this case the hash code of a state
object was computed using the default method, which uses an integer related to
the location of the object in the heap. As the heap location is not stable from one
machine to another, in practice it turned out that the order in which elements
were returned by the iterator varied from one machine to another.

So, when testing on some machines, an incorrect element was selected first,
leading to a test failure, while on other machines, a correct element was selected
first, leading to test success.

Fixing this type of (testing) problem is nontrivial, as we cannot really
hope to change the organisation of the heap by e.g. repeated testing using the
QuickCheck macro ?ALWAYS(N,Prop). A solution would be to introduce an
operation to randomise the heap before running each test case, and then repeat-
ing each test case a number of times.

58 C.B. Earle and L.-Å. Fredlund

Efforts. In total the automata model comprises around 1300 lines of Erlang
code. While no scientific effort has been made to quantify the time and resources
required to create these models the effort in our opinion has not been excessive.
Creating state machine models is a learned skill, and since Java is a rather
regular language, much model reuse is possible.

5 Conclusions

The main contributions of this work are the new library, JavaErlang, and a
methodology for testing Java programs using Erlang QuickCheck.

The JavaErlang library removes the need to write Java code, and permits to
focus on the task of designing models in Erlang, which in our opinion is a far
superior modelling language compared to Java. Moreover, the library enables safe
inter-language automatic garbage collection as a novel feature. Such a library
can clearly be developed for other combinations of languages too, although to
reduce the amount of programming required an analogue of the Erlang Jinterface
library is needed. Moreover, a reflective capability is helpful.

The testing methodology is based on modelling the behaviour of Java pro-
grams and libraries using QuickCheck state machines, a natural approach since
most of Java code is stateful. The methodology has proven successful, and has
been used extensively to evaluate Java code at the Universidad Politecnica de
Madrid.

We are currently exploring a number of items for future work. First, although
the present work focuses on verification of non-threaded Java code, there are no
intrinsic limits in the methodology that would prevent the testing of multi-
threaded Java programs. In fact, the QuickCheck eqc statem state machine
library already does provide support for verification of atomic APIs, i.e., APIs
whose operations may be interleaved in practise, but the effects of which can be
explained using a serialisation of the operations [14].

A potential problem with using the JavaErlang library for testing concurrent
Java code, is that since calling Java methods from Erlang is rather slow com-
pared to Java-to-Java calls, some race conditions in the Java code may never be
explored during testing with JavaErlang. However, early experiments with using
the library for testing concurrent Java programs show promise [15]. Moreover,
testing with QuickCheck can be combined with support techniques such as e.g.
randomising the Java scheduler [16].

We would also like to explore the use of the JavaErlang library outside the
domain of testing. One particularly interesting possibility would be to use Java
GUI libraries for programming Erlang graphical applications. The benefits of
such an approach compared to using the normal Erlang GUI library, which
interfaces with wxWidgets, is primarily increased reliability (a buggy Erlang
wxWidget GUI application can crash the Erlang node in which it is running),
and having access to a more complete GUI, which would also be easier to main-
tain. The support for wxWidgets in Erlang is currently rather incomplete, and
moreover, preparing a new release of wxWidgets for inclusion in Erlang requires
a substantial effort.

Functional Testing of Java Programs 59

Acknowledgement. Much of the work presented in this article has been realised in
the context of the EU FP7 projects ProTest and Prowess, and we are grateful for many
helpful suggestions received from the participants of these projects. Thanks are also
due to the students at the Facultad de Informatica at the Universidad Politecnica de
Madrid who helped refine the testing methodology by writing programs containing
some truly interesting bugs.

References

1. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with
Quviq QuickCheck. In: Proceedings of the 2006 ACM SIGPLAN Workshop on
Erlang, ERLANG 2006, pp. 2–10. ACM, New York (2006)

2. Jung, T.: Quickcheck for Java (2014). https://bitbucket.org/blob79/quickcheck.
Accessed 30 June 2014

3. Holser, P.: Junit-quickcheck: quickcheck-style parameter suppliers for JUnit theo-
ries (2014). https://github.com/pholser/junit-quickcheck. Accessed 30 June 2014

4. Nilsson, R.: Scalacheck: property-based testing for Scala (2014). http://www.
scalacheck.org/. Accessed 30 June 2015

5. Earle, C.B., Fredlund, L.: JavaErlang (2014). https://github.com/fredlund/
JavaErlang. Accessed 30 June 2014

6. Thorup, K.K.: Erjang (2014). https://github.com/trifork/erjang. Accessed 30 June
2015

7. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. SIGPLAN Not. 35(9), 268–279 (2000)

8. Svenningsson, R., Johansson, R., Arts, T., Norell, U.: Formal methods based accep-
tance testing for autosar exchangeability. SAE Int. J. Passeng. Cars- Electron.
Electr. Syst. 5(1), 209–213 (2012)

9. Smith, B.C.: Reflection and semantics in a procedural language. Ph.D. thesis (1982)
10. Svensson, H., Fredlund, L.: A more accurate semantics for distributed Erlang. In:

Proceedings of the 2007 ACM SIGPLAN Erlang Workshop, October 2007
11. Svensson, H., Fredlund, L.: Programming distributed Erlang applications: pit-

falls and recipes. In: Proceedings of the 2007 ACM SIGPLAN Erlang Workshop,
October 2007

12. Chiba, S., Nishizawa, M.: An easy-to-use toolkit for efficient java bytecode transla-
tors. In: Pfenning, F., Macko, M. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 364–376.
Springer, Heidelberg (2003)

13. Chilenski, J.J., Miller, S.P.: Applicability of modified condition/decision coverage
to software testing. Softw. Eng. J. 9(5), 193 (1994)

14. Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T., Wiger,
U.: Finding race conditions in Erlang with QuickCheck and PULSE. In: Proceeding
of the 14th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2009, Edinburgh, Scotland, UK, pp. 149–160 (2009)

15. Fredlund, L.Å., Herranz, Á., Mariño, J.: A testing-based approach to ensure the
safety of shared resource concurrent systems. In: Canal, C., Idani, A. (eds.) SEFM
2014 Workshops. LNCS, vol. 8938, pp. 116–130. Springer, Heidelberg (2015)

16. Park, C.S., Sen, K.: Randomized active atomicity violation detection in concurrent
programs. In: Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, New York, NY, USA, pp. 135–145 (2008)

https://bitbucket.org/blob79/quickcheck
https://github.com/pholser/junit-quickcheck
http://www.scalacheck.org/
http://www.scalacheck.org/
https://github.com/fredlund/JavaErlang
https://github.com/fredlund/JavaErlang
https://github.com/trifork/erjang

Type Class Instances for Type-Level Lambdas
in Haskell

Thijs Alkemade(B) and Johan Jeuring

Utrecht University, Utrecht, The Netherlands
me@thijsalkema.de, J.T.Jeuring@uu.nl

Abstract. Haskell 2010 lacks flexibility in creating instances of type
classes for type constructors with multiple type arguments. We would
like to make the order of type arguments to a type constructor irrelevant
to how type class instances can be specified. None of the currently avail-
able techniques in Haskell allows to do this in a satisfactory way.

To flexibly create type-class instances we have added the concept of
type-level lambdas as anonymous type synonyms to Haskell. As higher-
order unification of lambda terms in general is undecidable, we take a
conservative approach to equality between type-level lambdas. We pro-
pose a number of small changes to the constraint solver that will allow
type-level lambdas to be used in type class instances. We show that this
satisfies our goal, while having only minor impact on existing Haskell
code.

Keywords: Haskell · Type class · Type-level lambda · Higher-order
unification

1 Introduction

The first version of the unittyped package [1] used a datatype similar to:

data Value v u d = Value v

A Value v u d contains an object of type v and is tagged with phantom types
u and d . The type u represents the physical unit of the value (meters, miles,
seconds, etc.) and d the dimension of that unit (length, time, etc.). Using type
classes, u and d determine what operations may be done on these values, for
example, only allowing addition when the dimension of the values is the same.
After the first release, a feature request asked for a Functor instance for Values.
Functor is a type class given by Fig. 1.

The only possible instance that the datatype would allow would give fmap
the type:

fmap :: (a → b) → Value v u a → Value v u b

c© Springer International Publishing Switzerland 2016
M. Serrano and J. Hage (Eds.): TFP 2015, LNCS 9547, pp. 60–84, 2016.
DOI: 10.1007/978-3-319-39110-6 4

Type Class Instances for Type-Level Lambdas in Haskell 61

class Functor f where
fmap :: (a → b) → f a → f b

Fig. 1. The definition of Functor

This is not a useful instance: it can only change the dimension. Changing
the dimension but keeping the same unit breaks the invariants the library is
supposed to guarantee. The desired fmap instance would replace the v type
argument:

fmap :: (a → b) → Value a u d → Value b u d

However, Haskell doesn’t make it possible to give this instance. Eventually, all
uses of the Value type were rewritten to use the definition:

data Value u d v = Value v

A type class in Haskell is a set of polymorphic functions that can only be used
on types that have instances for that class [5]. This way programmers can use
the same name for similar functions. This allows for more concise notation and
code that uses the type class can be re-used, requiring only new instances to be
written. For example, the Eq class makes it possible to use ≡ for any type that
has an instance for Eq , instead of requiring many different functions for checking
equality.

Type classes can not only be specified for normal types of kind ∗, but also for
types of arrow kinds like ∗ → ∗. Every type class requires its instances to have
a specific kind, determined by how many arguments the type variable receives
in the function signatures of the type class [10]. For example, Eq has a type
variable of kind ∗, as the type variable a in the class head does not receive any
arguments:

class Eq a where
(≡) :: a → a → Bool

The Functor class has a type variable of kind ∗ → ∗, as f is used with one
argument (as a and b are of kind ∗). See Fig. 1.

One example of a type class using a type of kind ∗ → ∗ → ∗ is Category
(Fig. 2).

class Category cat where
id :: cat a a
(◦) :: cat b c → cat a b → cat a c

Fig. 2. The definition of Category

62 T. Alkemade and J. Jeuring

The order of arguments for a function is usually selected based on what is the
most convenient. For example, similar functions can be given similar orderings
of arguments: the functions in Data.Map that receive a single Map argument
receive the map as their last parameter. When a partially applied function is
needed and the missing parameters are not the last arguments, then functions
like flip and λ-abstractions can be used to rearrange the arguments to obtain
any desired ordering of parameters.

Choosing the order of the type arguments of a type constructor may appear to
be similar. The exact order is important when considering which higher-kinded
types can be formed, but an equivalent of flip does not exist. For example, a
type constructor with three arguments allows only three types of higher kinds
to be formed:

Value :: ∗ → ∗ → ∗ → ∗
Value v :: ∗ → ∗ → ∗
Value v u :: ∗ → ∗
Value v u d :: ∗

The higher-kinded type Value · u d , of kind ∗ → ∗, where a type argument is
substituted at the position of the ·, cannot be constructed in this way. This also
means that, if a one class requires them to be in a certain order, but another
class requires a different order, then it is impossible to give both instances at
the same time.

In this paper we show how we can extend Haskell with a restricted form of
type-level lambdas in class instance heads, so that we for example can write the
following:

data Value v u d = Value v
instance Functor (Λv . Value v u d) where

fmap f (Value v) = Value (f v)

*Main> fmap (+1) (Value 42)
Value 43

In other words, the goal of this paper is to make the order of the arguments
of a type constructor flexible. In particular, they should have no effect on how
instances of higher-order classes can be defined. We require our solution to satisfy
the following conditions:

1. The type checker requires no user-added type signatures where they are cur-
rently not required.

2. It should not be required to duplicate functions or type classes or to make
large changes to existing functions or type classes.

Type Class Instances for Type-Level Lambdas in Haskell 63

The rest of this paper is organized as follows: Sect. 2 explains potential solu-
tions to this problem using existing techniques and approaches, and the prob-
lems with these solutions. Section 3 formalizes the notion of type-level lambdas.
Section 4 gives a general background about type checking and constraint solving
in Haskell, and Sect. 5 gives the changes necessary to support type-level lamb-
das in GHC. Section 6 shows what is possible with these changes and Sect. 7 lists
some potential problems with other GHC extensions.

2 Using Existing Concepts

This section discusses how existing concepts in Haskell might be used to solve
the problem described in the previous section. None of our attempts solves the
problem satisfactorily.

Currently, the simplest solution to obtain the correct instances for a type
is to first consider the type classes that a type should have instances for, and
then order the type variables accordingly. If the type variables of existing code
do not match the order required for the desired class instances, they can be
reordered to match by rewriting the type everywhere it is used. For example, if
Value v u d later needs to have Functor instance that works on v , that would
mean replacing every Value v u d with Value u d v . In a large codebase, this
could be a significant amount of work.

2.1 Type Synonym Instances

The GHC extension TypeSynonymInstances [11] may appear to be a good solu-
tion. This extension allows type synonyms in the head of an instance declaration.
Without this extension, only newtypes and datatypes can be used in the class
instance heads.

By creating a type synonym that orders the type variables in the way they
should be used by that class, the desired type for the instance could be specified.
For example, we can create a new type synonym for Value which specifies the
order of the type variables for its Functor instance.

data Value v u d = Value v
type ValueFunctor u d v = Value v u d
instance Functor (ValueFunctor u d) where

fmap :: (a → b) → Value a u d → Value b u d

As nice as this may seem, it will not be accepted by GHC: TypeSynonym-
Instances only allows fully applied type synonyms in the instance head.
A type synonym cannot be partially applied to form a type of kind ∗ → ∗ and
be supplied to Functor . We will look further into this restriction in Sect. 3.1.

The only way a type synonym can be used to represent a type of kind ∗ → ∗
(or higher), is when the rhs of the type synonym already has kind ∗ → ∗:

64 T. Alkemade and J. Jeuring

data Value v u d = Value v
type ValueFunctor y x = Value v y

But this implies we are back at supporting only the limited set of higher-kinded
types given in Sect. 1. This solution does not meet our main goal.

2.2 More Type Classes

Another solution would be to add more type classes. For every ordering of type
variables a programmer might want to use for a class, a new copy of the class
is added. The Bifunctors package [7] uses this approach: it allows types to be
specified as functors on both the last and the second to last variable at the same
time. For example, we can create Functor -like classes using the second and third
variable with:

class Functor2 f where
fmap2 :: (a → b) → f a x → f b x

class Functor3 f where
fmap3 :: (a → b) → f a x y → f b x y

The advantage of this solution is that instances for Functor2 and Functor3 do
not overlap. For every variable of a type constructor it is possible to indicate
whether or not it allows an fmap[n].

There is however a serious disadvantage to this solution: every function with
a Functor constraint needs to be copied for Functor2 , Functor3 , etc. The imple-
mentation will be the same, except for the use of fmap2 , fmap3 , etc. instead of
fmap:

increase :: (Functor f) ⇒ f Int → f Int
increase = fmap (+1)
increase2 :: (Functor2 f) ⇒ f Int x → f Int x
increase2 = fmap2 (+1)
increase3 :: (Functor3 f) ⇒ f Int x y → f Int x y
increase3 = fmap3 (+1)

Where the main goal of type classes is to avoid code duplication, this solution
adds code duplication. Another disadvantage of this solution is that the number
of extra type classes increases fast, especially for even higher- order type classes.
For example, the Category class requires type constructors of kind ∗ → ∗ →
∗ (Fig. 2). Every possible pair would require a separate class, Category 2 3 ,
Category 1 3 , Category 2 1 , etc.

While this solution meets our main goal, it does not satisfy the second condi-
tion: existing functions using type classes cannot be reused for the newly intro-
duced type classes.

Type Class Instances for Type-Level Lambdas in Haskell 65

2.3 Newtype Wrappers

The TypeCompose package [3] contains the newtype definition:

newtype Flip t b a = Flip {unFlip :: t a b}

Flip can be viewed as a type-level variant of flip: the last two type arguments of
the Flip type constructor are the last two type arguments of the wrapped type,
but swapped. This also makes it possible to write instances where the last two
variables are swapped:

data Value u v d = Value v
instance Functor (Flip (Value u) d) where

fmap :: (v → v ′)
→ Flip (Value u) d v
→ Flip (Value u) d v ′

fmap f (Flip {unFlip = Value v })
= Flip {unFlip = Value (f v)}

It is not only possible to flip the last two arguments, but Flip can be generalized
to every reordering of type variables:

newtype Flip2 t c b a = Flip2 {unFlip2 :: t a b c}
newtype Flip3 t d b c a = Flip3 {unFlip3 :: t a b c d }

The difference with TypeSynonymInstances is that Flips are newtypes, not type
synonyms. Therefore the type on the instance head is different. This also implies
that instances for different variants of Flip do not overlap. So here too it is
possible to specify, for every type argument, whether the type has a Functor
over that variable or not.

A disadvantage of this solution is that every value to which we want to apply
a method from the class instance for its type needs to be wrapped with Flip,
and unwrapped with an unFlip call. For example, we could apply a function to
a wrapped type as:

fmap (+1) (Value 42) ⇒ unFlip (fmap (+1) (Flip (Value 42)))

This solution meets our main goal, but the extra boilerplate code necessary to
wrap and unwrap datatypes before and after applying type class methods means
that it does not satisfy the second condition.

2.4 Associated Type Families

The reason why the Functor class needs instances with a variable f ::∗ → ∗ is to
make it possible to construct f a and f b. It is not vital for Functor that f is a

66 T. Alkemade and J. Jeuring

type constructor and a the last argument, the only part that matters is that f a
is a type that contains a somewhere, and f b the same type but with a replaced
by b. However, it is currently only possible to declare a Functor instance using
the type parameter in the last position.

With the TypeFamilies language extension of GHC [2] it is possible to define
type families within type classes. We can use such an associated type family
instead of using f a and f b directly. This way, the type family indicates how
the types are changed within the class functions:

class Functor f where
type FunctorApp f c :: ∗
fmap :: (a → b) → FunctorApp f a

→ FunctorApp f b
instance Functor (Maybe x) where

type FunctorApp (Maybe x) y = Maybe y
fmap :: (a → b) → FunctorApp (Maybe x) a

→ FunctorApp (Maybe x) b
fmap Nothing = Nothing
fmap f (Just x) = Just (f x)

data Value v u d = Value v
instance Functor (Value v u d) where

type FunctorApp (Value v u d) v ′ = Value v ′ u d
fmap :: (a → b) → FunctorApp (Value v u d) a

→ FunctorApp (Value v u d) b
fmap f (Value v) = Value (f x)

Note that Functor no longer receives a type of kind ∗ → ∗ but of kind ∗, because
it doesn’t apply it: it uses the FunctorApp definition for that instead. The type
family would have one argument for the type of the instance and one argument
for every variable the type class uses. The rhs of the type family should be the
first type, with the arguments substituted at the right positions. While this may
seem like a lot of extra code for all instances and classes, it is possible to translate
definitions written with the current syntax to this format automatically. Only
for instances where the extra expressiveness is needed the type families would
need to be added by hand.

This solution has a problem due to the way type families currently work: to
call fmap (+1) on Just 1, the type family equality constraint FunctorApp f a ∼
Maybe Int needs to be solved (a substitution for f needs to be found). However,
type families in GHC are not injective. There could be other types T which
define FunctorApp T v = Maybe x , so the equality constraint cannot be solved.
This makes type families unusable for our goal.

Type Class Instances for Type-Level Lambdas in Haskell 67

2.5 Conclusion

None of the mentioned solutions satisfies the main goal and the conditions in
Sect. 1.

A number of the approaches allow multiple instances per type constructor for
a given type class. For example, some allow defining Functor instances (or a new
instance intended to look like Functor , such as Functor2) for both the last and
the second to last type variable. Although this may be useful, it cannot satisfy
both conditions at the same time: without either type annotations or boilerplate
code, the compiler is unable to determine which instance to use for an fmap call,
for example:

data T x y z = T x y
instance Functor (Λx . T x y z) where

fmap f (T x y) = T (f x) y
instance Functor (Λy . T x y z) where

fmap f (T x y) = T x (f y)

*Main> fmap (+1) (T 2 3)

We shall therefore consider multiple instances for the same type overlapping,
even when they use a different ordering of type variables.

3 Type-Level Lambdas

In the previous sections we have informally used Λ to denote a type-level lambda
function in class instance heads. In this section we will give a precise definition
of a restricted form of type-level lambdas, and we will investigate the issues it
can create with type checking.

3.1 Undecidability

Let us examine more closely why the solution in Sect. 2.1 is rejected by the
compiler. Type synonyms can have zero or more arguments. However, contrary
to type families they cannot do any case distinction on those variables. We can
consider type synonyms polymorphic “functions” on types.

To be able to use a type class function, the compiler needs to be able to
determine for each instance of that class whether the type inferred for the func-
tion can be made equal to the type of the instance, possibly by substituting
some free type variables. If a single instance matches then the class constraint
has been resolved and the correct implementation of the class function can be
looked up.

Determining whether a substitution of free variables exists which makes a
partially applied type synonym equal to a type comes down to determining

68 T. Alkemade and J. Jeuring

whether two lambda expressions are equivalent. This problem is known as unifi-
cation. Specifically, it is higher-order unification: free variables may be replaced
by new lambda abstractions.

Higher-order unification is undecidable in general [6]. Haskell therefore uses
the rule that type synonyms must be fully applied before they may be used as
a type. That is why the example in Sect. 2.1 is rejected: it is using a partially
applied type synonym where a type is expected.

3.2 Adding Type-Level Lambdas

To define an instance of Functor where fmap has type (a → b) → Value a u d →
Value b u d , the instance head would need to have a type τ such that τ a is
equal to Value a u d and τ b is equal to Value b u d . Type synonyms can not
be used in instance heads, but even if they could, it would be more convenient
to have a notation that does not require defining new type synonyms for every
type class and type constructor. Therefore we introduce as new notation the
type-level lambda: Λv . Value v u d . This is a type where v is bound by the
lambda, and u and d are free.

Evaluation is, just like value-level λ-functions, a β-reduction step where the
argument is substituted for a variable:

(Λx . M) y →β M [x := y]

The kind checking rule for type-level lambdas is given by:

Q;Q;Γ, x : κ � T : κ′

Q;Q;Γ � Λx.T : κ → κ′

here Q is a top-level environment and Q is a set of constraints. Γ is a kinding
environment, T is a type and κ and κ′ are kinds.

In dependently typed languages type-level lambdas and value-level lambdas
are the same concept, but also in other, non-dependently typed functional lan-
guages the concept exists, for example in Scala, see Sect. 8.2. Although type-level
lambdas do not exist in Haskell itself, they do occur in Core, the typed internal
representation of GHC.

Note that ∀ u . Value v u d and Λu . Value v u d do not mean the same
thing. ∀ u . Value v u d has the same kind as Value v u d , but Λu . Value v u d
has kind l → k , with u :: l and Value v u d :: k .

3.3 Decidable Unification of Type-Level Lambda Terms

We can view a type-level lambda as an anonymous type synonym, just like a
value-level lambda function is an anonymous function. Unification of type-level
lambdas will therefore be undecidable in general. We can use multiple solutions
for this:

Type Class Instances for Type-Level Lambdas in Haskell 69

1. Use the same restriction as for type synonyms: a type-level lambda needs
to be fully applied before it may be used as a type, with an exception for
instance heads.
A disadvantage of this solution is that for example monad transformers, which
take a type variable with a Monad constraint, cannot be specified for monads
that use type-level lambdas. For example, MaybeT (Λu . Value v u d) a
would be forbidden.

newtype (Monad m) ⇒ MaybeT m a
= MaybeT {runMaybeT :: m (Maybe a)}

2. We can try to restrict the unification problems to a subset that is decidable.
First-order unification (unification where no new λ-abstractions may be intro-
duced) is decidable, but not sufficient for our goal: it would be unable to unify
f a with anything.
Higher-order matching is also decidable. Matching is unification where one of
the two arguments contains no free variables. However, this is also not useful
in Haskell: the type in a type class instances may contain free variables.

3. Use Guided Higher-Order Unification (ΛGHOU) as proposed by [9]. See
Sect. 8.1.

4. The above three solutions are either too restrictive or very complicated.
Instead, we choose to allow unapplied type-level lambda functions. Except
for in instance heads (see Sect. 5.2), type-level lambdas are not unified: they
must be α-equivalent or type checking will fail. This implies that they may
be used in monad transformers, which is impossible in the first option, but
they must be used consistently.

4 Type Checking Haskell

This section briefly describes type checking and constraint solving for Haskell as
used in GHC [12].

Type checking is split into two phases: first types are inferred, for which
constraints are generated, and then these constraints are solved. Solving these
constraints gives a set of substitutions and a (possibly empty) set of unsolved
constraints.

4.1 Example

Consider the following program:

f x = x + 5

The type inferencer starts with giving f a function type, because it takes an
argument. x gets assigned the argument’s type.

70 T. Alkemade and J. Jeuring

f :: α → β
x :: α

By looking up the Num class, the type inferencer determines that (+) ::
(Num a) ⇒ a → a → a and 5 :: (Num b) ⇒ b. By looking at the body of
f and how it uses (+), the type inferencer introduces the constraints α ∼ a,
b ∼ a and β ∼ a. So the type inferencer finishes with the set of constraints
(α ∼ a, b ∼ a, β ∼ a,Num a,Num b).

The constraint solver turns these equality constraints into substitutions, as
they are all simple. The result is the substitution [α 	→ a, β 	→ a, b 	→ a].
Due to the substitution, the constraint Num b has become unnecessary, as it is
equal to Num a, so only one constraint is left, Num a. This constraint is left
over, which means it gets added to f ’s type signature, making the final type
signature (Num a) ⇒ a → a.

4.2 Generating Constraints

The important constraints to consider are:

1. Class constraints: a class followed by zero or more types:

D x

We only look at classes that use exactly one variable, see also Sect. 7.1.
2. Equality constraints: constraints requiring two types to be equal:

a ∼ b

We consider different types of equality constraints:
(a) Impossible: Equality constraints that contain different concrete types

on both sides cannot be solved:

Char ∼ Int

This also includes equality constraints where an applied type is matched
with an non-decomposable type:

f a ∼ Int

(b) Simple: Equality constraints that contain a single type variable on one
side:

a ∼ T

Type Class Instances for Type-Level Lambdas in Haskell 71

(c) Type family: Type families generate equality constraints that might
need to be specified by the programmer manually:

F a ∼ T

(d) Applied: Equality constraints that have an applied type variable on one
side, and a different applied type variable or a concrete type on the other
side:

f a ∼ g b
f a ∼ [Int]

4.3 Solving Constraints

To solve the generated constraints, a number of different solvers are applied one
after another in a loop. If during one iteration of the loop no changes are made to
the set of remaining constraints, the loop terminates and the set of constraints
that are left over is returned. If this set is non-empty, then these are usually
turned into errors.

The different solvers include:

1. Canonicalization: Before constraints are passed to other solvers, they are
canonicalized. This makes the constraints simpler and ensures that constraints
are always following certain rules. For example, it rejects equality constraints
where the same variable occurs on the lhs and the rhs and the lhs and the rhs
are not equal, as these would require an infinite type (the “occurs check”).
If a type family is used within another type family, then these are split into
two separate type family constraints.
We use [W] to denote wanted constraints (generated during type checking)
and [G] to denote given constraints (given by the user by supplying a type
signature). Some examples of the canonicalization step are:

{[W] f a ∼ g b} → {[W] f ∼ g , [W] a ∼ b}
{[W] f a ∼ [Int]} → {[W] f ∼ [], [W] a ∼ Int }

This is allowed because f and g have to be (partially applied) type construc-
tors, not type synonyms or type families. As described in Sect. 1, every type
constructor has at most one partially applied type for a given kind so it can
be unambiguously resolved.

2. Binary interaction: Another solver looks at two canonical constraints
together. For example, a simple equality constraint and another constraint
will apply the equality constraint as a substitution to the other constraint.

72 T. Alkemade and J. Jeuring

Having two identical constraints implies one of them can be deleted. Type
family constraints with identical lhs, but different rhs generate an equality
constraint between the rhs and allow one of the two type family constraints
to be deleted. The binary interaction rules only look at two constraints that
are either both given, or both wanted.
Here are some examples of the binary interaction step:

{[W] Num a, [W] Num a } → {[W] Num a }
{[W] a ∼ T , [W] Num a }

→ {[W] a ∼ T , [W] Num T }
{[W] F Int ∼ [a], [W] F Int ∼ [Int]}

→ {[W] [a] ∼ [Int], [W] F Int ∼ [Int]}

3. Simplification: The simplifier also looks at two canonical constraints, but
specifically pairs of constraints where one of them is given and the other is
wanted.
Obviously, a given constraint and a wanted constraint that are identical
implies that the wanted constraint can be deleted. Given simple equality
constraints are be used as substitutions on wanted constraints.
Here are some examples:

{[W] Functor f , [G] Functor f } → {[G] Functor f }
{[W] Functor f , [G] f ∼ g }

→ {[W] Functor g , [G] f ∼ g }

4. Top-level interaction: The top-level interaction stage is the stage where
the class instances, type family instances and equality constraints given in
the code are used to solve wanted constraints. During top-level interaction,
the instances of type classes and type families are used to solve wanted type
class and type family constraints, respectively. This may introduce new con-
straints, for example for superclasses of instances.
For example, if the usual Functor [] instance is in scope, then we may elimi-
nate all Functor [] constraint:

{[W] Functor []} → {}

Suppose we have a type family:

type family F x :: ∗
type instance F Int = [Int]

Then the top-level interaction step produces the following constraint:

{[W] a ∼ F Int } → {[W] a ∼ [Int]}

Type Class Instances for Type-Level Lambdas in Haskell 73

5 Adding Type-Level Lambdas to GHC

We have started to include our proposed changes in GHC. Our development
started off with the 7.7 version of GHC, which is the development branch that
was later released as GHC 7.8.

The changes to GHC 7.7 consist of three parts: the parser is modified to allow
the notation /\ for type-level lambdas, the internal representation of types is
modified to support Λ and the constraint solving is adapted to take the possibility
of type-level lambdas in class instance heads into account.

/\ is currently valid syntax for a term-level operator. Because our extension
is type-level syntax this does not cause problems. With the GHC extension
TypeOperators [11], /\ can be used as a valid type operator. We assume that
because using it requires a relatively uncommon extension, there will not be
many problems with existing code already using this syntax.

5.1 Parser

The changes to the parser are simple: /\ follows the same rules as forall:
/\ must be followed by one or more types, which can optionally have a kind
signature when the KindSignatures extension [11] is enabled. For example:

/\ a . [a]
/\ x . ()
/\ (f :: * -> *) . f Int

5.2 Evaluation of Type-Level Lambdas

We evaluate type-level lambdas greedily during type checking: when a type-
level lambda is encountered that is applied to an argument, the substitution is
carried out immediately. We show that this cannot introduce non-termination
in the type checker.

The type-level language of Haskell can be considered a “typed” lambda calcu-
lus, where Haskell’s kinds form the types. The kinds form a simply-typed lambda
calculus, thus the types are strongly normalizing. This implies that we cannot write
non-terminating combinators from the untyped lambda calculus, such as Ω:

ω = (λx.x x)
Ω = ω ω

A value-level ω combinator cannot be type checked as its type fails the occurs
check: suppose ω :: τ → σ, then σ = τ τ , which implies τ = τ → σ. This equation
cannot hold for types. Thus Ω also fails to type check. In GHC, trying to define
ω would cause a “occurs check” error. At the type-level, defining ω (by either a
type-level lambda or a type synonym) is also rejected, as the occurs check for
its kind would fail.

74 T. Alkemade and J. Jeuring

Another way we can achieve non-termination is through recursion. Haskell
let-bindings can refer to themselves, which can lead to infinite recursion. It is
impossible to create a recursive definition from lambda functions alone: they
are anonymous, so cannot refer to themselves. It would be possible if the Y
combinator were available, but a type-level Y combinator is impossible for the
same reason as Ω: it fails the kind occurs check, in the same way that the Y
combinator, without using newtypes, fails the type occurs check in Haskell.

But, just like how let-bindings in Haskell allow terms to be named, we can
give names to type-level lambdas by defining a type-level function. Haskell cur-
rently supports two different forms of type-level functions:

– Type synonyms
– Type families

Type synonyms are not allowed to be recursive: trying to create a (mutual)
recursive type synonym will give an error “Cycle in type synonym declarations”.

Type families can be (mutually) recursive, but only when the Undecidable-
Instances [11] extension is enabled. When this extension is not enabled, recur-
sion is forbidden because it will imply that an equation has a rhs that does
not follow the rules which require the rhs to be “smaller” than the type family
arguments.

Turning on UndecidableInstances causes GHC to lift many of its restric-
tions that guarantee termination. With this flag on, it is already possible to
create infinite loops in the type checker, using only type families. Adding type-
level lambdas does not cause code that was previously terminating to be come
non-terminating.

Type-Level Lambdas in Instances. The main goal of our work is to allow
type-level lambdas in the heads of type class instance declarations. To avoid
problems with undecidability here, we will only allow well-formed type-level
lambdas as instance heads.

Definition 1. A well-formed type-level lambda function is an expression that
can be constructed using the following grammar:

T (type constructor)
a (type variable)

as := a1, . . . , an (1 or more)
ts := t0, . . . , tm (0 or more)
t := a | T ts (monotype)
L :=Λas.T t s (type lambda)

under the extra condition that every variable that is bound by a /\ must occur
exactly once as an argument to the inner type constructor. In other words, a type-
level lambda is well-formed if every lambda bound type variable is used exactly
once, and the body of the lambda is either again a type-level lambda, or starts
with a type constructor.

Type Class Instances for Type-Level Lambdas in Haskell 75

Some examples of well-formed types:

Λx . Value v u d
Λx . [x]
Λx .Λy .Λz . Value z x y

and some not well-formed types:

Λx . Value [x] y z
Λx . Value v x z
Λx . [Int]

The advantage of only allowing well-formed type-level lambdas is that their
unification is simple, which avoids the undecidability involved with higher-order
unification.

For most instances given by programmers the well-formedness restriction
should not cause problems: it allows reordering of type variables (which is what
we want to do), but no more complicated type-level functions. In this sense
reordered instances are just as powerful as instances which can be written with-
out this extension.

We give some examples of instances that cannot be written because they use
non well-formed type-level lambdas.

– Definition 1 states that the body of a type-level lambda starts with either
another type-level lambda, or a type constructor. In particular, it does not
start with a type variable, including the lambda-bound type variables. This
implies for example that an instance for Λx . x Int cannot be specified. How-
ever, this type would have kind (∗ → ∗) → ∗ (which is not the same as
∗ → ∗ → ∗). Classes using type variables of this kind, or even higher kinds,
are quite rare, at least for now.

– A type-level lambda bound type variable occurs as a direct argument to the
inner type constructor. It may not be inside another type constructor in the
argument. This implies that, for example, Λx . Maybe [x] is not well-formed.
We believe this will not be a problem for Haskell programmers, as type class
arguments are currently always interpreted to refer to one of the direct argu-
ments of a type constructor.

– A type-level lambda bound type variable occurs exactly once as an argument
to the inner type constructor. For example, Functor (Λx . (x , x)) is not well-
formed. Just like the previous case, we believe this will not be a problem for
Haskell programmers, as type class arguments are currently always interpreted
to refer to exactly one of the direct arguments of a type constructor, never
multiple at the same time.

76 T. Alkemade and J. Jeuring

– From a category theoretic point of view it might be interesting to define the
identity functor and functor composition. We can express these with type-level
lambdas as:

instance Functor (Λx . x) where
fmap f x = f x

instance (Functor f ,Functor g)
⇒ Functor (Λx . f (g x)) where
fmap f x = fmap (fmap f) x

However, this does not work, as both instances’ heads are not well-formed.
Although these instances are interesting, they are not very useful in Haskell.
First of all, with the way instances are resolved in Haskell the identity functor
would overlap with every other possible Functor instance. When the user
would call fmap f with the intention to use the identity functor (i.e., on a
type with no other functor instance), f x can do the same. Secondly, when
using fmap on composed functors, GHC cannot resolve whether the call to
fmap f is meant to apply on the first functor alone, or on the composition.
fmap (fmap f) can be used instead to apply to the composition.
Alternatively, it is possible to use the wrappers Identity and Compose from the
transformers package [4] to obtain identity functors and functor composition.

5.3 Constraint Solving

We can now express type class instances with type-level lambda instances, but
to use them the constraint solver needs to find and use those instances. This does
not, however, require many changes to the class constraint solver. The changes
are mostly in the solving of equality constraints, specifically applied equality
constraints.

Firstly, the splitting of applied equality constraints as happens during canon-
icalization (Sect. 4.3) is no longer allowed. Suppose we have the following
datatype, and in the code fmap is applied to it:

data T x y z = T x y z
foo = ...fmap g (T 1 () ’a’) ...

During type inference, the constraint f a ∼ T Int () Char will be created.
However, we do not yet know which Functor instance for T exists. The possible
decompositions are therefore:

– f ∼ Λb . T b y z and a ∼ Int
– f ∼ Λb . Value v b z and a ∼ ()
– f ∼ Λb . Value v y b and a ∼ Char

The constraint cannot be split, but it has to be solved as a whole. First, we give
the requirements for how these constraints can be split (an applied type variable

Type Class Instances for Type-Level Lambdas in Haskell 77

on one side, a concrete type on the other) and second we explain how to deal
with the case where both sides consist of an applied type variable.

Applied-Concrete. Suppose a constraint f a ∼ Value v u d is encountered:
an applied type variable on one side, with a concrete type on the other side.

As mentioned in Sect. 2.5, satisfying all the conditions from Sect. 1 at once
can only be done when every type allows only one instance per type class. We
shall therefore keep this restriction and use it to solve these constraints. When
an applied equality constraint is encountered with a concrete type on the rhs,
and a type class is known that applies to that concrete type, then we use the
type-level lambda used in the class instance to pick the correct decomposition
of the equality constraint.

For example, suppose the following constraints are given:

– The wanted equality constraint: f a ∼ Value v u d ,
– for a certain class C , the class constraint C f is given or wanted,
– and exactly one instance of C for one of the types Λq . Value q y z ,

Λq . Value v q z or Λq . Value v y q

then we may conclude that f ∼ Λ ? . Value v u d and thus a ∼ ? (where ? is
determined by the alternative chosen in the third condition). This may sound
restrictive, but in many cases all three will be true. If the first two conditions
hold, but the third does not, constraint solving fails due to a missing instance
of C for T anyway.

A situation where the first condition holds, but no C exists for the second
and the third conditions should be rare, however, not impossible. When f a is
given in a type signature this almost certainly means there is also a constraint
on f : without a constraint, it is impossible to obtain a value of type a or f b
from a value of type f a, so the function can only produce values of type f a.
This implies the function has a more general type: by replacing f a by a new
type variable. For example, it is possible to write:

const :: f a → b → f a
const x = x

This function can only be applied to datatypes with at least one argument, but
it does not use that information. It could be replaced by:

const :: c → b → c
const x = x

We do not expect this restriction to have impact on existing Haskell code.

Applied-Applied. For an equality constraint of the following form:

f a ∼ g b

78 T. Alkemade and J. Jeuring

we use a similar rule as in Sect. 5.3: if we have a class constraint that applies to
both f and g , then we may split the constraint into f ∼ g and a ∼ b.

When we cannot find any constraint on both f and g , then the constraint
stays unsolved. Maybe a different equality constraint can find a substitution for
f or g and the constraint will be solved later. If that does not happen, then this
constraint is reported to the user as an error. There is one exception to this rule:

f a ∼ f b

is decomposed automatically, resulting only in a ∼ b.

Type Rules. We express the typing rules from the previous two sections for-
mally in Fig. 3. Using the notation from In [12], ↪→ is a typing judgment with
an input tuple 〈ᾱ, ϕ,Qg, Qw〉 and an output tuple 〈ᾱ′, ϕ′, Q′

g, Q
′
w〉. Here, Q is

the top-level environment (containing, for example, all defined class instances),
Qw are the wanted constraints and Qg are the given constraints. ᾱ is a set of
touchable variables (the variables which may be substituted) and ϕ is a set of
substitutions. The ↪→ judgment is applied until a fixed-point is found. In [12] a
number of cases for ↪→ are described, Fig. 3 adds a new case to deal with type-
level lambdas in instances. We have removed a case that is not explicitly given
in [12], namely the rule that automatically decomposes f a ∼ g b into f ∼ g
and a ∼ b.

The first part of the decompose function in Fig. 3 checks the top-level environ-
ment for an instance of the class C for the type f , then for an applied-concrete
equality constraint and a constraint C f , which may have come from either
the given or wanted constraints. The equality constraint is then decomposed
according to the type-level lambda used by the instance. The second part of the
decompose function checks for an applied-applied equality constraint and a type
class that applies to both. Then the equality constraint is split. Here C f and
C g may also come from both the wanted and the given constraints.

decompose(Q ∧ C (Λyi.T y), f a ∼ Tx, C f)

= (f ∼ Λxi.Tx) ∧ (a ∼ xi)

decompose(Q, f a ∼ g b, C f ∧ C g)

= (f ∼ g) ∧ (a ∼ b)

decompose(Q, Q1, Q2 ∧ Q3) = Q4

Q � 〈ᾱ, ϕ, Qg ∧ Q3, Qw ∧ Q1 ∧ Q2〉 ↪→
〈ᾱ, ϕ, Qg ∧ Q3, Qw ∧ Q2 ∧ Q4〉

Fig. 3. The applied-concrete and applied-applied type checking rules

Type Class Instances for Type-Level Lambdas in Haskell 79

5.4 Termination

The goal of the type checker in Haskell is to judge whether programs are well-
behaved within a finite number of steps. It is not a problem if programs are
rejected when they cannot be determined to be well-behaved, but the type
checker should not accept a not well-behaved program. In particular, this implies
that it is important that the constraint solver terminates. To any type, we can
assign a depth as follows:

– The depth of a single type variable or a nullary type constructor is 0.
– The depth of an applied type t a b c... is:

1 + max(depth(t),depth(a),depth(b),depth(c), . . .)

When an applied equality constraint is solved according to one of the two
rules we introduced, the result is a number of new equality constraints. These
can again be applied equality constraints. For example:

[[a]] ∼ f (g x)
[a] ∼ g x , [] ∼ f
a ∼ x , [] ∼ g , [] ∼ f

However, the newly introduced equality constraints always have a strictly lower
depth than the equality constraint that is solved, because solving a constraint
cannot introduce a deeper or equally deep nesting level. This implies that infinite
loops in equality constraints are impossible: an equality constraint can only
introduce a finite number of equality constraints of lower depth.

5.5 Implementation

The described changes were implemented as a patch for GHC. The patch works
with the development version 7.7 and can be found on https://github.com/
xnyhps/ghc/tree/TypeLambdaClasses.

6 Results

The code shown in Sect. 1 now works: fmap changes the values of the first type
argument of the datatype. This example shows that no extra type annotations
are necessary, and the Functor class used is unchanged. This implies that the
solution satisfies the two conditions from Sect. 1.

Here is an example of a Monad instance, again defined on the first type
argument of a datatype with three arguments. Additionally a MaybeT monad
transformer is used where the same type-level lambda is used. The returned
result shows that the correct instance is found.

import Control .Monad .Trans.Class
import Control .Monad .Trans.Maybe

https://github.com/xnyhps/ghc/tree/TypeLambdaClasses
https://github.com/xnyhps/ghc/tree/TypeLambdaClasses

80 T. Alkemade and J. Jeuring

data Value v u d = Value v
instance Monad (Λv . Value v u d) where

return v = Value v
(>>=) (Value v) g = g v

bar :: Value String Char Int
bar = return "bar"

foo :: MaybeT (Λv . Value v Char Int) String
foo = lift bar

*Main> runMaybeT foo
Value (Just "bar")

7 Compatibility with Other GHC Features

To become part of GHC, our changes should not only be consistent with the
Haskell 2010 specification [8], but we should also make sure they work correctly
with other GHC extensions, or, if that is impossible, document why combining
those extensions leads to problems and add warnings to the compiler when users
try to use them at the same time.

7.1 MultiParamTypeClasses

The MultiParamTypeClasses GHC extension [11] allows type classes to be spec-
ified with multiple type parameters. Combining multiple type parameters with
type-level lambda instances can create new ambiguities:

class C f a b where
func :: f a b

instance C (Λx y . (x , y)) Int Char where
func = (1, ’a’)

instance C (Λx y . (y , x)) Char Int where
func = (2, ’b’)

Without β-evaluating the instance’s type-level lambdas, it is not clear that these
instances overlap. However, func in both instances has the type (Int ,Char).

Ambiguity is not necessarily a problem: GHC does not prohibit two instances
to exist that can be ambiguous for some type, only when a class is resolved and
multiple instances match an error is raised. However, ambiguity complicates
the solver’s strategy. The solver currently looks for instances for every possible
lambda with the required number of arguments for a single type. When using
multiparameter type classes, it needs to look for every possible lambda abstrac-
tion for each of them. This means that increasing the number of parameters

Type Class Instances for Type-Level Lambdas in Haskell 81

can lead to an exponential increase in the number of instances that need to be
considered.

Instead of failing on ambiguity only when it occurs, another option is to
apply the following restriction to multiparameter type-level lambda instances:
different instances with the same type constructor on the lambdas body must
use the same type-level lambda. This forbids the given example, because while
both use the type constructor (,), the order in which they take their arguments
is flipped. The advantage of this restriction is that the type-level lambda for
every parameter can be found independently, avoiding the exponential increase
in cases.

7.2 PolyKinds

Combining the PolyKinds extension [11] with type-level lambda instances cur-
rently has some implementation problems. However, we expect that with some
more work it is possible to eliminate those problems.

When PolyKinds is enabled, type constructors take implicit kind arguments
for all type variables which do not have a fixed kind. For example, the construc-
tor Value of the datatype:

data Value v u d = Value v

does no longer have type Value :: ∀ u d . v → Value v u d , but instead:

Value :: ∀ (k :: �)
(l :: �)
(v :: ∗)
(u :: k)
(d :: l) .

v → Value k l v u d

In practice the user does not see these kinds, so when decomposing an applied
equality constraint involving Value, these extra kind arguments should not be
considered when selecting the type-level lambda to use. However, they currently
are, causing unsolved constraints in certain situations.

8 Related Work

8.1 Guided Higher-Order Unification

As already mentioned in Sects. 3.3 and 5.2, [9] introduce a similar approach
to type-level lambdas in instance declarations. They introduce a more involved
unification strategy known as Guided Higher-Order Unification (ΛGHOU). This
strategy also keeps unification decidable, but in a less restrictive way than our
approach. To maintain decidability, ΛGHOU applies the restrictions to solving
type-level Λ constraints:

82 T. Alkemade and J. Jeuring

– Identity type-level functions are not allowed.
Λx . x is forbidden.

– Constant type-level functions are not allowed.
This forbids, for example Λx . Int .

– Type-level projection functions are not allowed.
This forbids functions like Λx y . x .

Additionally, given an instance:

instance C (Λx1 . . . xn .T t1 . . . tm) where

they apply the following restrictions:

– Each variable that is free in Λx1 . . . xn .T t1 . . . tn occurs once.
– Each xi occurs free in T t1 . . . tn .
– Each ti is either one of the xj , or equal to g y1 yl, where g �∈ {xi} and

{yj} ⊆ {xi}.

The well-formedness restriction we introduce is more strict. We discuss the
differences. Firstly, ΛGHOU allows lambda-abstracted variables to occur multiple
times in the lambda’s body. Our well-formedness restriction forbids this and only
allows those variables to occur exactly once. So these are valid ΛGHOU types,
but not well-formed:

Λx . Value x x y
Λx . (x , x)

Secondly, ΛGHOU allows lambda-abstracted variables to occur arbitrarily
“deep” within the lambda’s body, in other words, nested in (an) extra type
constructor(s). Thus, these are also valid ΛGHOU, but not well-formed:

Λx . Value [x] y z
Λx . [(x , Int)]

ΛGHOU applies the same restriction on overlapping instances as our approach:
instances using different Λ-abstractions, but the same class and type, overlap. This
implies that an instance for [(x , Int)] will still overlap all other instances using [a].

As we argued in Sect. 5.2, we believe the extra limitations we impose on
type-level lambdas in type classes will not be a problem for many programmers,
as allowing these would create instances that are very different from how type
classes are currently used. Programmers can create instances where the order of
type variables doesn’t matter, which was our initial goal.

8.2 Scala

Scala allows type-level lambdas using the following syntax:

Type Class Instances for Type-Level Lambdas in Haskell 83

({type ?[a] = Either[A, a]})#?

Here, {type ?[a] = ... } introduces a new type alias named ? with a single
argument a. It is defined to be equal to Either[A, a]. Finally, #? projects the
? type from the type alias.

This allows class instances to be defined as in Fig. 4.
Scala also allows multiple, different instances for the same type. As mentioned

in Sect. 2.5, this requires a trade-off: in Scala this is done by giving instances
names and passing these instances to the function with a class constraint. This
is more manual work for the programmer, but it implies that the implementation
of the type checker can be much simpler than the approach described here: the
type checker always knows which instance to use before type checking starts; it
does not need to find the instance based on the types in the constraints.

trait Monad[M[_]] {

def point[A](a: A): M[A]

def bind[A, B](m: M[A])(f: A => M[B]): M[B]

}

class EitherMonad[A]

extends Monad[({type ?[a] = Either[A, a]})#?] {

def point[B](b: B): Either[A, B]

def bind[B, C] (m: Either[A, B])

(f: B => Either[A, C]): Either[A, C]

}

Fig. 4. The Monad trait (the Scala equivalent of a type class) in Scala, with an instance
for Either using a type-level lambda, where the second type variable is used by the
Monad

9 Conclusion

We have described a problem caused by the inflexibility of the combination of
type classes and type constructors with multiple arguments. We have presented
a number of potential solutions to this problem that are currently supported by
GHC and explained how none of them satisfies a number of desired properties.

We introduce a restricted form of type-level lambdas in Haskell, which we
have added to a development version of GHC. The restrictions are necessary to
avoid undecidability in the type checker. Our solution is simpler than previous
attempts, the main task is to adapt the constraint-solver to deal with our form
of type-level lambdas. Despite its simplicity, our approach is powerful enough
to solve the inflexible type class instances problem in a way that satisfies the
desired properties. The solution has virtually no impact on existing Haskell code.

Acknowledgments. We would like to thank the anonymous reviewers for their exten-
sive comments.

84 T. Alkemade and J. Jeuring

References

1. Alkemade, T.P.: UnitTyped (2012). https://hackage.haskell.org/package/
unittyped. Accessed 9 Apr 2014

2. Chakravarty, M.M.T., Keller, G., Jones, S.P., Marlow, S.: Associated types with
class. In: Proceedings of POPL 2005: The 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 1–13. ACM (2005)

3. Elliott, C.: TypeCompose (2007–2013). https://hackage.haskell.org/package/
TypeCompose. Accessed 10 Dec 2013

4. Gill, A., Paterson, R.: Transformers (2009–2012). Accessed 10 Dec 2013
5. Hall, C., Hammond, K., Jones, S.P., Wadler, P.: Type classes in haskell. ACM

Trans. Program. Lang. Syst. 18, 241–256 (1996)
6. Huet, G.P.: The undecidability of unification in third order logic. Inf. Control

22(3), 257–267 (1973)
7. Kmett, E.A.: Bifunctors (2011–2013). https://hackage.haskell.org/package/

bifunctors. Accessed 10 Dec 2013
8. Marlow, S.: Haskell 2010 language report (2010). https://www.haskell.org/

onlinereport/haskell2010/
9. Neubauer, M., Thiemann, P.: Type classes with more higher-order polymorphism.

In: Proceedings of the Seventh ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2002, pp. 179–190. ACM, New York (2002)

10. Peterson, J., Jones, M.: Implementing type classes. In: Proceedings of the ACM
SIGPLAN 1993 Conference on Programming Language Design and Implementa-
tion, PLDI 1993, pp. 227–236. ACM, New York (1993)

11. The GHC Team: The Glorious Glasgow Haskell Compilation System User’s Guide.
http://www.haskell.org/ghc/docs/7.6.3/html/users guide/index.html

12. Vytiniotis, D., Jones, S.P., Schrijvers, T., Sulzmann, M.: OutsideIn(X) Modular
type inference with local assumptions. J. Funct. Program. 21(4–5), 333–412 (2011)

https://hackage.haskell.org/package/unittyped
https://hackage.haskell.org/package/unittyped
https://hackage.haskell.org/package/TypeCompose
https://hackage.haskell.org/package/TypeCompose
https://hackage.haskell.org/package/bifunctors
https://hackage.haskell.org/package/bifunctors
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/ghc/docs/7.6.3/html/users_guide/index.html

Laminar Data Flow: On the Role of Slicing
in Functional Data-Flow Programming

Research Paper

Baltasar Trancón y Widemann1,2(B) and Markus Lepper2

1 Technische Universität Ilmenau, Ilmenau, Germany
baltasar.trancon@tu-ilmenau.de

2 Semantics GmbH, Berlin, Germany

Abstract. We use the concept of laminar flow, as opposed to turbu-
lent flow, as a metaphor for the decomposition of well-behaved purely
functional data-flow programs into largely independent parts, necessi-
tated by aspects with different execution constraints. In the context of
the total functional data-flow language Sig, we identify three distinct
but methodologically related implementation challenges, namely multi-
rate scheduling, declarative initialization, and conditional execution, and
demonstrate how they can be solved orthogonally, by decomposition
using the standard program transformation technique, slicing.

1 Introduction

In fluid dynamics, laminar flow is an ideal transport process where a fluid flows
in essentially parallel layers (lamina) at different speeds, without turbulent inter-
ference. We borrow the term as a useful metaphor for the benevolent properties
of purely functional data-flow programs, in particular their decomposeability.
Form this perspective, we investigate the various uses of decomposing a data-
flow network into lamina, in the context of an effective language implementation.
All our uses are concerned with lamina delimited by a functional aspect, that
is, a data-flow closure of variables of interest. As such, they are instances of the
well-known program transformation technique slicing [17].

This semiformal presentation retains a high level of abstraction from technical
details throughout, in order to make the conceptual uniformity and naturality
of the approach stand out, and the overarching story concise and readable. The
issues of formally precise definition, soundness, completeness and complexity of
methods are out of scope here, to be discussed in technical companion papers.

The structure of this paper and its novel contributions are organized as fol-
lows: Sect. 2 introduces the basic semantic design of the Sig language, as defined
in previous technical papers [14]. Section 3 specifies the treatment of multi-rate
systems in Sig, so far characterized largely by example [16]. Section 3.1 gives a
novel local scheduling algorithm for Sig multi-rate systems. Section 4 summarizes
the Sig approach to delayed computations from [14], and then gives a semifor-
mal but complete specification of the novel extension to non-literal initial value
c© Springer International Publishing Switzerland 2016
M. Serrano and J. Hage (Eds.): TFP 2015, LNCS 9547, pp. 85–103, 2016.
DOI: 10.1007/978-3-319-39110-6 5

86 B. Trancón y Widemann and M. Lepper

expressions. Section 5 motivates and discusses a transformation to conditionally
executed code, so far published only in German as a Master’s Thesis [9].

2 The Sig Language

The Sig language is a novel, total, purely functional data-flow programming lan-
guage [13,14]. Its aim is to allow the expression of synchronous data stream
processing algorithms in an elegant declarative style, with semantics clean and
simple enough for domain experts without professional computer science back-
ground to experience programming as an orderly mathematical activity rather
than an exercise in some ‘black art’ of tinkering and hacking.

Central to the semantics of Sig is a compositional view on synchronous data-
flow computations, no matter whether primitive operations, subclauses, or com-
plex networks, as clocked Mealy machines with private state. In [14] we have
specified the formal semantics framework and a stack of program transforma-
tions that normalize higher-level functional programs into machines, compare
also [8]. State spaces are inferred from the use of quasi-functional delay opera-
tors; the programmer never manipulates state variables directly.

Data flow is synchronous in a strict sense: all values are communicated as
if by shared memory, where many readers and a single writer are arbitrated by
an external clock. Race conditions, messages, events and other observable side
effects are forbidden by the semantics. The following additional features of Sig
semantics are of particular interest for the present paper, as they each give rise
to a different application of program slicing:

1. The writer and reader of a variable are implicitly synchronized, that is, oper-
ating at the same rate; the writer always before the reader for a given clock
tick. The exceptions are up- and downsampling connectors which transmit
data between subnetworks operating at distinct, interleaved clock rates.

2. A delay operator applied to a data stream prepends one (or more) values to
the stream. These initial values may be defined by complex expressions, with
the possibility to share work between the initialization and running phase of a
network, and the obligation to check for causality violations by initial values
depending on-line input.

3. Sig expressions are totally functional, that is, they produce no side effects dur-
ing their evaluation (pure), and they may neither diverge nor abort nor block
(total). Thus control flow can be implemented transparently, either as condi-
tional evaluation of alternative subexpressions, or as ‘posthumous’ selection
of alternative subresults, whichever is more convenient. The transformation
of functional front-end programs into the machine representation naturally
yields the latter, but many sequential execution platforms favor the former.

The following sections explore these applications in turn, in the same order as
they occur in the Sig compiler pipeline.

Since the actual front-end notation of Sig is irrelevant for the present discus-
sion, we present example programs in pseudocode.

Laminar Data Flow: On the Role of Slicing 87

Fig. 1. Simple Sig component definitions

Components are the first-class citizens of the language. They can be thought
of as stream-processing functions, but in contrast to lambda expressions, inputs
and outputs are notated symmetrically; both are named and can occur in any
multiplicity. We enclose component definitions in brackets, enumerate inputs
and outputs without giving their types, separated by a line from a block of
assignments that constitutes the component body, and use mathematical oper-
ators and constants with their obvious semiformal meaning. For instance, the
example components depicted in Fig. 1 each have a single input x and output s,
respectively, and operate on some unspecified numerical data type.

We write i ;s for the initialized single-step delay operator with initial element
i prepended to delayed stream s (sometimes written fby or � in other data-
flow languages). That is, if the expression s attains the stream of values sn for
n = 0, 1, . . . , then t = i ; s attains values tn where t0 = i and tn+1 = sn. For
instance, the two examples in Fig. 1 each define a component that outputs a
cumulative sum s of its input stream x.

In the left component, the sum is initially zero, and each input element
is added by the next clock tick. Hence this version has a latency of one tick,
whereas the right component is latency-free; each input element contributes to
the sum immediately. That is, sn =

∑
k<n xk, or sn =

∑
k≤n xk, respectively.

Note the pattern of delayed feedback that is ubiquitous in synchronous data-flow
algorithms; other forms of recursion are forbidden in Sig. Component bodies are
understood as systems of equations; evaluation order is implicitly constrained
by data-flow dependencies only.

3 Slicing for Multi-Rate Data Flow

Algorithms implemented in Sig are on-line side-effect-free computations on data
streams. Streams are accessed in a very disciplined way: there is no random
access, only the element associated with the current clock tick is available, and
if past elements are needed they must be retained explicitly, using delay. In
summary, data flow behaves as if each conceptual stream is realized as a single
clocked buffer variable.

While this model of communication is rather restrictive, it is very easy to
grasp and use correctly and reliably, and there are various different application
domains where algorithmic requirements fit this pattern neatly. In particular,
Sig algorithms can run in real time, given sufficient computational resources,
because they never violate causality or productivity: values may never depend
on the future or circularly on the present, nor take infinitely many steps to
compute. We have demonstrated the use of the Sig language and its Java-based
execution system in moderate real-time settings by creating a simple but non-
trivial, polyphonic live audio synthesis system with interactive MIDI input [15].

88 B. Trancón y Widemann and M. Lepper

The audio domain has a characteristic feature shared by many other real-
time application fields: subsystems operate at various rates, with the slow parts
controlling parameters of the fast parts (modulation), and the fast parts in turn
providing summary information to the slow parts for feedback (aggregation). For
instance in audio parlance,

– wave generators operate at audio rate, such as 44 kHz (CD), 96 kHz (studio);
– modulators of parameters such as pitch, volume and filter shape operate at

control rate, defined as either a fraction, such as 1/64, of audio rate, or as a
fixed rate, such as 1 kHz;

– notes and other sequencer events are controlled at a yet much slower rate,
such as the MIDI resolution of 24 per quarter note, or the infamous 120 bpm
‘techno’ beat;

– some computations concern only initialization, and operate at rate zero.

Data-flow networks written in Sig are not declared explicitly to operate at
particular rates. Rather, they constrain usable rates implicitly at two different
levels of abstraction:

– The abstract program itself imposes a system of qualitative constraints, that
is, equations and inequations between the rates of inputs and outputs, by its
formal synchronization properties.

– Any concrete implementation imposes additional quantitative constraints, that
is, ranges of achievable rates, by its technical throughput limits.

Since the latter can only be discussed properly in very detailed technological
context, we focus here on the former, which can be understood in terms of a few
language primitives and a static analysis.

The default behavior of primitive operations in Sig is to synchronize their in-
and outputs. Assume that a program has been reduced to a core representation
in static single-assignment (SSA) form, as discussed in detail in [14]. Then any
assignment of the form

y1, . . . , yn := f(x1, . . . , xm)

that is, any primitive hyperedge of the data flow graph, induces equations on
the rates of all concerned variables:

R(x1) = · · · = R(xm) = R(y1) = · · · = R(yn) (1)

It follows for a whole network, that variables are synchronized if and only if they
are connected by a path; data-independent subsystems can run at independent
rates. However, this does not yet allow for interference such as modulation or
aggregation. To this end, we add directed resampling primitives to the language.
The operation

y := upsample(x)

is a functional identity, such that x = y holds instantaneously at all times, but
y is allowed to be (re)used at a faster rate than x is produced.

R(x) ≤ R(y) (2)

Laminar Data Flow: On the Role of Slicing 89

Note that data flow from slow to fast subsystems is taken as instantaneous: when-
ever clock ticks for x and y coincide, y reflects the new value of x immediately.
This also allows us to subsume constant values consistently as data streams of
rate zero, provided that all clocks begin to tick simultaneously at initialization
time of the system (‘big bang’).

By contrast, the converse operation

y := downsample(i, x)

allows y to be used at a slower rate than x is produced. Namely, at each clock
tick of y, the most recent value of x is observed. Whenever clock ticks for x
and y coincide, y reflects the previous value of x. Obviously, the value of y at
initialization time is not determined by x; this is the purpose of the additional,
type-compatible input i; compare the analogous, synchronized expression i ; x.

R(y) ≤ R(x) (3)

The asymmetry of these two operations ensures that the scheduling strat-
egy of subsystems at different rates is independent of the actual program: the
instantaneous data flow at each coincidence of ticks is always from slow to fast.

Note that, when components are composed, their rate constraints accumu-
late. Since all inequalities are non-strict, there composite system is always satisfi-
able. However, it is possible for rates to be equated emergently in the composite,
say, by an inequation R(x) ≤ R(y) arising from one component, and a converse
inequation R(y) ≤ R(x) independently from another component. Resampling
operations along the path are rendered ineffective; the rate analysis pass should
notify the programmer about this potential usage error.

As an example of rate analysis and separation, consider the following mani-
festly multi-rate program:

⎡

⎢
⎢
⎢
⎣

() → wave, high
wave := upsample(amp) · sin(phase) m := max(abs(wave), (0 ; m))
phase := 0 ; (phase + α) high := downsample(0,m)
amp := 1 ; (amp · γ)

⎤

⎥
⎥
⎥
⎦

It produces an oscillation wave with current phase phase and amplitude amp,
which increase arithmetically and geometrically with parameters α and γ, respec-
tively. Since amplitude is a long-term modulating property in relation to phase,
the former is upsampled. Additionally the attained maximum absolute value m
of wave is recorded, and a downsampled copy high provided for monitoring.

Note that this program is not in proper SSA form, because there remain
nested expressions with unnamed intermediate variables. However, these play
no significant role in the rate analysis of the program. We shall take the same
liberty for harmless abbreviation in the following examples.

Note also the references to α and γ, which are parameters of the generic
component definition, and become private life-time constants for each component

90 B. Trancón y Widemann and M. Lepper

Fig. 2. Single-rate slices of example multi-rate component

instance. They are supplied by the higher-order programming mechanism of Sig,
the details of which are out of scope here.

For the example, straightforward application of rules (1)–(3) finds a synchro-
nous cluster R1R(wave) = R(phase) = R(m), and both R2 = R(amp) ≤ R1

and R3 = R(high) ≤ R1. Thus for instance, setting R1 to audio rate, R2 to
control rate, and R3 to the refresh rate of a graphical output device would yield
a consistent real-time execution context.

If different subnetworks are to be actually operated at different rates, they
can no longer be implemented directly as the transition of a monolithic Mealy
machine. Rather, the component should be sliced according to synchronicity, and
each slice translated to machine form independently. To this end, each resampling
operator is split into a fresh input–output pair of matching variables s+, s−,
respectively, and the program is sliced backwards, based on the synchronicity
partition of both original and synthetic outputs.

For our example, we obtain two synthetic variable pairs, up± and down±,
where R(up−) = R2 and R(down−) = R1, and thus the following three subcom-
ponents:

⎡

⎢
⎢
⎢
⎢
⎣

up+ → wave, down−

wave := up+ · sin(phase)
m := max(abs(wave), (0 ; m))

phase := 0 ; (phase + α)
down− := 0 ; m

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎣
() → up−

amp := 1 ; (amp · γ)
up− := amp

⎤

⎦

[
down+ → high
high := down+

]

The runtime scheduler takes care of the ‘anionic’ asynchronous data flow
up− � up+ and down− � down+ behind the scenes; see Fig. 2. Downsampling
is translated to delay at the operand rate. Note that the third component is
trivial and serves only to mask the synthetic variable down+ behind the original
variable high; by contrast, the second component exposes the previously internal
original variable amp as the synthetic output up−.

Laminar Data Flow: On the Role of Slicing 91

3.1 Transparent Local Scheduling

Under certain mild assumptions, the slices of a component for different rates
can be reassembled, as a component operating at the fastest concerned rate.
The slower rates are triggered intermittently by an internal, local scheduler,
whose action is transparent to the component’s environment. Local scheduling
may or may not be an option, depending on the technical context and the actual
rate proportions; however, the mere possibility adds to the compositionality
of the language, and hence merits some consideration. Furthermore, it is also
interesting from a purely algorithmic perspective.

Assume that a component operates at a finite number of distinct rates, 0 <
R1 < · · · < Rn. Assume furthermore that these rates are commensurable, that
is in rational proportion: there are integer numbers 0 < ρ1 < · · · < ρn such
that Ri = ρiR0 for some fundamental rate R0, which need not be present in the
component.

Equivalently, let 0 < Tn < · · · < T1 denote the periods of operation, with
Ti = R−1

i . Then there are integer numbers 0 < δn < · · · < δ1 such that Ti = δiT∗
for some atomic period T∗; namely δi = ρ∗/ρi and T∗ = T0/ρ∗, where ρ∗ is the
least common multiple of {ρ1, . . . , ρn}.

By normalization, we obtain rational numbers 0 < π1 < · · · < πn = 1, where
πi = ρi/ρn = δn/δi. The time of the k-th tick of the i-th clock is given as
ti,k = k · δi.

Now assume that it is valid to quantize all clocks at the fastest occurring rate
ρn, as opposed to the atomic rate ρ∗, as long as the causal order is maintained.
When a tick of the (slower) i-th clock falls between two ticks of the (fastest) n-
th clock, say tn,m < ti,k < tn,(m+1), it can be safely quantized to the successor,
since the operational model of Sig explicitly allows instantaneous data flow from
slow to fast subcomponents. From the perspective of the n-th clock, we obtain
the most recent tick of the i-th clock by rounding tn,k first down to a multiple
of δi, then we obtain its quantization by rounding up to a multiple of δn. This
is conveniently expressed as qi,k = δn

⌈�k · πi�/πi

⌉
.

Note that, with respect to the exact tick sequence ti, qi is both rounded up to
a multiple of δn and stretched out to match the pacing of tn = qn; whereas ti is
injective, qi has runs of average length π−1

i . Note also that qi,k ≤ qn,k. Morally,
the i-th component is still assumed to operate at a constant rate, reflected by
the special nullary Sig primitive dt, which evaluates to its own clock period and
is a lifetime constant for each component instance. Unless a component is run
in an embedded context and connected to very hard real-time input/output, the
micro-latency induced by quantification goes undetected.

The local scheduler, which is operated at the fastest rate Rn, needs to per-
form a computation of the i-th subcomponent at its k-th invocation, if and only
if qi,k = qn,k. Conveniently enough, this can be achieved by a variant of Bre-
senham’s algorithm for quantized line drawing [1]. Scheduling a commensurable
two-rate component for one period of its fundamental rate is analogous to draw-
ing a rastered two-dimensional straight line with extent Δx = ρ2 and Δy = ρ1:
advancement by one pixel in the x and y dimension corresponds to quantized
clock ticks at ρ2 and ρ1, respectively.

92 B. Trancón y Widemann and M. Lepper

var s := 0
invariant − ρ2 s ≤< +ρ1

for each step do
let up := s ≥ 0
s := s + ρ1

if up then
s := s − ρ2

step component 1
end if
step component 2

end for

Fig. 3. Component scheduling, Bresenham style

Fig. 4. Top – quantization timelines; n = 3, ρ∗ = 30, interval of 2T0 shown. Bottom –
discrete (clock) time over continuous (real) time; tick sequences ti as points on identity
line (dashed), quantized time qi as step functions.

Note that we have 0 < Δy ≤ Δx, the base case of Bresenham’s algorithm
to which other cases are reduced. Thus at most one tick at rate R1 happens per
tick at rate R2. The algorithm is adapted by changing the rounding mode, and
omitting the main loop such that one turn is performed at each invocation of
the component, and the slope is extrapolated indefinitely to the right. Figure 3
shows the basic algorithm in pseudocode.

For n > 2 components, additional counters s2, . . . , sn−1 can be added. For
rates Ri that also are multiples of, or may be quantized to, Rj for some j < n,
the scheduling problem can be decomposed hierarchically. The latter approach
is generally more efficient, in particular when Rj � Rn.

Figure 4 shows an example multi-rate ensemble with relative rates ρ =
(2, 3, 5), depicting the evolution of its three clocks over an interval of 2T0.

Laminar Data Flow: On the Role of Slicing 93

Fig. 5. Diagram depiction and syntax for state transitions.

4 Slicing for Declarative Initialization

From the semantics perspective it is tempting to neglect the initial values of
delayed streams as a minor detail. Indeed, the pattern seen in the preceding
examples, namely delayed feedback to a monoid operation, with the monoid unit
as the natural initial value, is quite common, and suggests an implicit solution
by inference. Note that some clocked synchronous data-flow formalisms omit the
specification of initial values altogether, for instance Faust [10]. However, not all
common uses of delay fit the bill; an example is given in (†) on p. 10 below, after
a summary of the Sig implementation of delay [14]. In this section, we discuss a
slicing technique to address the issue.

Sig front-end programs are neutral about whether each name is bound to a
single value or a stream. For the domain of synchronous data-flow algorithms,
this is an elegant and adequate abstraction: virtually all primitive computations
operate element-wise anyway, such that the distinction would provide no insight;
the only, but ubiquitous exception being delay operations.

In the semantics as specified in [14], delay operations are replaced by private
(buffer) state, by a syntax-directed program transformation. The resulting SSA-
style intermediate representation can be read directly as element-wise formal
semantics, namely as the transition rule of a Mealy machine, in the form of a
quaternary relation R ⊆ (S×A)×(B×S), where A,B are the products of ranges
of input (x) and output (y) variables, respectively, and S is the product of ranges
of inferred state variables, in the double role of pre-state (s) and post-state (s′);
see Fig. 5.

In this view, a single-step delay operation is simply the special case of a
square identity δA = IA×A ⊆ (A × A) × (A × A): at each clock tick, the pre-
state becomes output, while the input simultaneously becomes post-state, to be
output in the next cycle, etcetera.

These element-wise transition relations can be depicted graphically and
admit three different meaningful compositions, namely parallel (‖), functional
(◦) and temporal (�) composition, respectively; see Fig. 6. The desired stream-
wise semantics of a data-flow program is ‘morally’ the infinite temporal replica-
tion of the corresponding element-wise transition relation:

lim
n→∞ R � · · · � R

︸ ︷︷ ︸
n

94 B. Trancón y Widemann and M. Lepper

Fig. 6. Composition axes of transition relations, adapted from [14]

It takes an initial pre-state and a whole input stream to a whole output stream;
there is no final post-state. Between clock ticks, post-state is fed back to pre-
state. In [14] we have given a rigorous coinductive construction.

However, there is a catch: because the initial states are outside of this seman-
tic interpretation, they can only be given as uninterpreted constants. In practice,
one would certainly like to have the full expression language to denote complex
initial values. Hence one-off initialization and repeated element-wise computa-
tion should be compiled together, and only separated for code generation by
static analysis and slicing. For example, consider the following program

⎡

⎢
⎢
⎢
⎣

() → x
x := 1 ; y
y := (a / 2) ; (a · y − x)
a := 2 − α · α

⎤

⎥
⎥
⎥
⎦

(†)

which computes a very resource-efficient, numerically stable approximation of
the sequence xn = cos(n · α). It uses a magic constant a both at initialization
and at each clock tick. The remainder of this section specifies a general program
analysis and transformation in several steps, interleaved with applications to this
example for immediate illustration.

The embedding of initialization expressions works as follows: For each vari-
able v that is the result of a delay operation,

v := i ; u

perform a statification (sic): introduce a pre–post pair of fresh matching state
variables sv, s

′
v, respectively; then add a pair of statements according to the

semantics of delay given earlier in this section

v := sv s′
v := ι(i, u)

Laminar Data Flow: On the Role of Slicing 95

where ι is a special primitive, a variant of the well-known φ operator of SSA,
which selects its first operand when evaluated during initialization of the com-
ponent, and its second operand otherwise. For the example, we obtain:

⎡

⎢
⎢
⎢
⎣

sx, sy / () → x / s′
x, s

′
y

x := sx s′
x := ι(1, y)

y := sy s′
y := ι(a / 2, a · y − x)

a := 2 − $step · $step

⎤

⎥
⎥
⎥
⎦

Note the slash notation to enclose the input/output interface in the state context,
as in Fig. 5.

The subsequent static analysis works as follows. Several ‘virtual’ slices are
are formed based on forward or backward data flow:

– The forward slice D (dynamic) for all statements depending on pre-state
and/or input;

– the backward slice I (initial) for all statements affecting post-state, consider-
ing only the first operand of each ι operator;

– the backward slice L0 (loop) for all statements affecting output and/or post-
state, considering only the second operand of each ι operator; this slice is split
into the subslice L of statements also contained in D plus their immediate
data-flow predecessors, and its relative complement
 = L0 ∩ L. The intuition
here is that statements in L/
 are directly/indirectly relevant for the loop
phase, respectively.

They yield a multidimensional classification: statements. . .

– in I ∩ L0 are dead (they play no role for output or state);
– in I∩L0 are computed for initialization only (they play no role for loop output

or post-state);
– in D∩I are causally illegal attempts to read from a stream during initialization

(they depend on loop input or pre-state but affect initial state), except for the
safe case of ι operations whose first operand is not in D;

– in D ∩ L are recomputed at each clock tick (they depend on loop input or
pre-state and affect output or post-state);

– in D∩L are loop invariant, computed at initialization and retained as constants
(they do not depend on loop input or pre-state but directly affect output or
post-state);

– in
 are computed privately at initialization, and used by the preceding (they
do not depend on loop input or pre-state but indirectly affect output or post-
state).

The full classification of a statement consists of two binary decisions, namely
{D,D} and {I, I}, and a ternary decision, {L0, L.
}. The classification of a
statement is inherited by its result variable(s).

For the example, we find that x, y ∈ D ∩ I ∩ L and s′
x, s′

y ∈ D ∩ I ∩ L and
a ∈ D ∩ I ∩ L (and its unnamed intermediates in D ∩ I ∩
). It follows that a
needs to be retained as a constant.

96 B. Trancón y Widemann and M. Lepper

This is achieved by a transformation that introduces synthetic delay with
identical feedback: replace each statement of the form

c := e

where e is in D ∩ L, with
c := e ; c

and apply ι-introduction as above. For the example, we obtain:
⎡

⎢
⎢
⎢
⎣

sx, sy, sa / () → x / s′
x, s

′
y, s

′
a

x := sx s′
x := ι(1, y)

y := sy s′
y := ι(a / 2, a · y − x)

a := sa s′
a := ι(2 − α · α, a)

⎤

⎥
⎥
⎥
⎦

The ι-introduction rule has created trivial copy statements. Clean up by
performing copy propagation on statified variables, substituting sv for v, with
one crucial exception: for references to statified variables v in the first operand
of a ι operator, s′

v is substituted instead.
For the example, we obtain:

⎡

⎢
⎢
⎢
⎣

sx, sy, sa / () → x / s′
x, s′

y, s
′
a

x := sx s′
x := ι(1, sy)

s′
y := ι(s′

a / 2, sa · sy − sx)

sa := ι(2 − α · α, sa)

⎤

⎥
⎥
⎥
⎦

In the final step, two slices are computed:

– an initialization slice, which retains just the statements affecting post-state,
and replaces each ι operator by its first operand;

– a loop slice, which retains all statements affecting post-state and/or output,
and replaces each ι operator by its second operand.

For the example, we obtain:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sx, sy, sa / () → x / s′
x, s

′
y, s

′
a

s′
x := 1

s′
y := s′

a / 2

s′
a := 2 − α · α
x := sx

s′
x := sy

s′
y := sa · sy − sx

s′
a := sa

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where initialization and loop are above and below the dashed line, respectively.
The execution model assumes that the initialization slice is evaluated once;

afterwards and for conceptually infinitely many clock ticks, post-state is fed back

Laminar Data Flow: On the Role of Slicing 97

to pre-state and the loop slice is evaluated. Note that, at least for common simple
cases, suitable efficient implementations of state feedback can be suggested by
peephole optimizations: for the example,

– the statement s′
a := sa witnesses that a is constant, and can be eliminated in

the obvious way by allocating sa and s′
a to the same storage location;

– the statement s′
x := sy witnesses that the pair y, x is a buffer queue. While

this particular instance is of trivial size and needs no special attention, longer
queues that are candidates for a ring buffer implementation can be found by
simple flow graph pattern matching.

5 Slicing for Conditional Execution

Sig has no concept of true user-defined control flow, such as jumps, loops or
recursion; the infinite unfolding of output streams is the only means of iteration.
However, the language does have pattern matching constructs as expressive and
general means of dynamic case distinction. Because all Sig expressions are totally
productive (may not diverge element-wise), case distinction can be seen as a
data-flow, rather than control-flow issue: the semantics allows for all alternative
rules to be evaluated concurrently. Such speculative evaluation may fail on a
matching rule because of a refuted pattern on the left hand side. In that case,
the right hand side is taken to evaluate to the special value ⊥, which can be
conceived of as an exception.

In the core language, a special primitive γ is used to guard the actual result
of the right hand side, conditional on the success of matching. From the set of
alternatives, a second special primitive ϕ selects a successful rule, conceptually
catching the exceptions. All other operations are strict with respect to ⊥. Our
usage of ϕ differs from its classical namesake φ in SSA in the sense that choice
is not based on incoming control flow; instead it is generally nondeterministic
but avoids ⊥ whenever possible. If rules are mutually exclusive and jointly total,
as they are in a normalized well-defined pattern-matching expression, then the
final result is total and deterministic. A static analysis enforces that ⊥ is never
leaked from a component.

As in the previous section, we interleave general descriptions of compilation
tasks, and particular illustrations. For example, consider the following Sig pro-
gram, which defines a wave generator component with an additional switch to
silence the output, a gate in audio parlance:

⎡

⎣
gate → wave
wave := if gate then sin(phase) else 0
phase := 0 ; (phase + α)

⎤

⎦

The if-then-else construct is syntactic sugar for pattern matching on the enu-
merated datatype {true, false}. Pattern matching is eliminated according to a
nontrivial syntax-directed program transformation duly specified in [14], and

98 B. Trancón y Widemann and M. Lepper

replaced by a network of ϕ and γ operators. For the example, performing also
statification of delay as described in the previous section, we obtain:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s / gate → wave / s′

wave := ϕ(a, b)
a := γ(sin(phase), gate = true)
b := γ(0, gate = false)

phase := s s′ := ι(0, phase + α)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

The ϕ operator selects the output value from either of the complementary
branches a and b. Each of these is given by a γ operation that yields the first
operand if the constraint expressed by the other operand(s) is satisfied, or ⊥
otherwise. In a well-typed context, exactly one branch is defined (non-⊥) at
all times. For the example, by copy propagation and initialization slicing as
described in the previous section, we obtain:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s / gate → wave / s′

s′ := 0
wave := ϕ(a, b)

a := γ(sin(s), gate = true)
b := γ(0, gate = false)
s′ := s + α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

On massively parallel execution platforms, such as FPGAs, it is perfectly
reasonable and efficient to evaluate both branches independently and implement
ϕ as a multiplexer. From this perspective, the whole body of a component is just a
single basic block. By contrast, on more conventional sequential platforms, such
as ordinary CPUs and virtual machines, it is often desirable to save time by
evaluating only relevant branches. To this end, statements should be organized
in smaller basic blocks guarded by conditional branching instructions, as usual
for conventional sequential imperative languages.

The Sig compiler, which currently targets the Java virtual machine platform,
has an experimental pass for automatic sequentialization of programs with ϕ
and γ operations, thus converting data flow into control flow. It works roughly
as follows [9]:

– For each variable, determine the condition under which it is defined. Since
the only sources of undefinedness are failed pattern-matching operations, this
is a straightforward backwards data-flow analysis. The result is a positive
propositional formula, where pattern matching primitives, γ and ϕ contribute
literals, conjunctions and disjunctions, respectively.

– Group statements according to the definition conditions of their results.
– Nest groups according to logical implication of their conditions. Simplify

nested conditions relative to their parents.
– Split each group into as few basic blocks as possible, such that inter-group

data-flow dependencies do not connect blocks circularly.

Laminar Data Flow: On the Role of Slicing 99

– Guard the entry into each basic block by conditional branching.
– Re-interpret ϕ operations as their traditional SSA φ counterparts.
– Optionally, follow up with a standard SSA cleanup pass, which attempts to

allocate all operands of a φ operation to the same storage location, thus elim-
inating it completely; otherwise, the set of φ operations at the beginning of
a basic block is transposed to a set of simultaneous moves at the end of each
predecessor block [5].

Note that it may appear simpler to sequentialize case distinctions directly as
they appear in the front-end syntax. But code transformations such as common
subexpression elimination and algebraic simplification are dramatically effective
on the pure data-flow form, and can disrupt the original block structure.

For the example, on the whole we obtain a sequential program that can be
described by the following pseudocode with conditional execution:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s / gate → wave / s′

s′ := 0
wave := sin(s) if gate = true
wave := 0 if gate = false

s′ := s + α

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Note that both a and b have been re-allocated to wave, and all administrative
moves have been eliminated thereby.

It follows that the, possibly expensive, expression sin(s) is only evaluated
when necessary. However, this example is misleading about the generality of the
approach as outlined above: it depends crucially on all conditional statements
being stateless primitives; if calls to dynamically bound, potentially stateful sub-
components are allowed, as they are in full Sig, then näıve conditional execution
is no longer safe.

Consider a variation of the preceding example, where the waveform shape is
no longer a pure function, but a statically non-fixed stream generator component
reference: [

gate → wave
wave := if gate then shape() else 0

]

This can be seen as a modularization, where the concerns of wave generation,
including private phase state, and of gate operation are separated. The original
form is restored by plugging in the following simple generator:

⎡

⎣
() → wave
wave := sin(phase)
phase := 0 ; (phase + α)

⎤

⎦

The problem with this ‘morally equivalent’ situation is that, by design, the
component instance state referred to by shape is private, and the output and
transition operations are tied up together in a monolithic quaternary machine
relation, as discussed in the preceding section. Hence the call to the subcom-
ponent cannot be assumed to be side-effect-free, and hence it cannot be simply

100 B. Trancón y Widemann and M. Lepper

omitted at some clock ticks, lest spurious local time-freezes arise. For the exam-
ple, the phase of the generator would simply stop whenever the gate is shut down,
which may or may not be pragmatically acceptable depending on context, but
is certainly not in accordance with the principle of least surprise.

A number of partial or universal solutions to this dilemma are conceivable:
– Simply call subcomponents unconditionally, wasting any opportunity for inter-

component work saving.
– Record statelessness in the type system; call only manifestly stateless subcom-

ponents conditionally.
– The original version that has no issues can be restored by inlining; simply

defer code generation until parameters are bound.
– Generally separate state transition and output production, delegate the former

to a central scheduler. However, separation can be difficult because of arbitrary
data-flow inter-dependencies, and decentral solutions are decidedly more light-
weight and elegant.

– Create an alternative and more efficient, tacit variant of each component, to
be used under conditions where the outputs are not needed.

The last solution has little impact on our execution model as described before,
and good modularity. Furthermore, it can be implemented by straightforward
program slicing, namely as the backward slice of all statements affecting post-
state, with no outputs. For the simple wave generator, after initialization slicing
we obtain the component on the left, and its tacit variant on the right:

⎡

⎢
⎢
⎣

s / () → wave / s′

s′ := 0
wave := sin(s)

s′ := s + α

⎤

⎥
⎥
⎦

⎡

⎣
s / () → () / s′

s′ := 0
s′ := s + α

⎤

⎦

Note that, just like in the monolithic original example, the tacit variant saves
work by not computing sin(s). The two component definitions are understood
to be instantiated together, and share state.

The sequentialization algorithm can be fixed to support stateful subcompo-
nents by adding the following clause:
– After grouping statements by condition, for each statement that calls a sub-

component c, add a corresponding call to the tacit variant c0 under the com-
plementary condition.

Note that, since all condition literals are about closed algebraic datatypes, the
complement of a condition is again a finite positive formula. The rule is sound
but redundant also for unconditional calls; the additional tacit call is unreachable
by construction.

For the modularized example, we obtain:
⎡

⎢
⎢
⎢
⎣

gate → wave
wave := shape() if gate = true

() := shape0() if gate = false
wave := 0 if gate = false

⎤

⎥
⎥
⎥
⎦

Laminar Data Flow: On the Role of Slicing 101

In general, components may have more than one output variable. In that
case, there are candidates for intermediate variants between the full and the
tacit version; namely one for each subset of outputs. Each of these variants can
be obtained by the same straightforward slicing policy. But because of expo-
nentially growing number of combinations and diminishing relative gains, we
do not envisage a static exploration. Nevertheless, intermediate slices may occur
dynamically on execution platforms supporting run-time program specialization.

6 Conclusion

6.1 Related Work

The design of Sig draws on inspirations and results from many paradigms. Sev-
eral characteristic features are inherited from the ‘French school’ of synchronous
languages; in particular we are indebted to Lucid Synchrone [2] for the initialized
delay operator and implicit handling of (multi-)rate. However, Lucid suffers from
being based on an impure functional core language. Faust [10] has pioneered the
virtue of purity and its benefits in powerful code transformations. Functional
reactive programming (FRP) based on the theory of arrows [6], provides many
of the elegant core properties we aim at, although in a more abstract and general,
and less down-to-earth setting. Extensions of its axiomatic theory exists to deal
with advanced features such as complex initialization and control flow, namely as
causal commutative arrows [8] and arrows with choice [7], respectively, although
a grand unifying picture remains elusive.

There are remarkably few attempts to apply slicing to functional or data-
flow languages: Ganapathy and Ramesh apply slicing to a statechart variant [4].
Their definition of a slice is based on behavioral equivalence with respect to one
selected output signal and thus quite different from ours. Clarke et al. [3] apply
slicing to VHDL, a declarative hardware description language. Astonishingly,
they take the detour of converting VHDL into an imperative language (C) and
then apply a commercial slicing tool, instead of exploiting the functional aspects
of VHDL. A positive example of applying slicing to pure functional programs
by pure functional means is due to Rodrigues and Barbosa [12]; while they
operate very elegantly on an abstract semantic formalism (Bird–Meertens), they
cannot promise that their approach does scale, what can easily be shown for our
approach, which is syntax-directed and thus more directly applicable.

For the embedding of explicit case distinctions in functional data-flow for-
malisms, see [11] and [7] for monads and arrows, respectively.

6.2 Summary and Outlook

Because of the rigorously puristic and mathematically elegant design of the Sig
semantics framework, very basic and easily implemented, data-flow-based pro-
gram analyses and transformations go a long way. We have demonstrated the

102 B. Trancón y Widemann and M. Lepper

wide applicability of slicing transformations to a number of conceptually inde-
pendent issues: advanced support for high-level front-end features, such as multi-
rate networks with resampling; necessary support for orthogonality of basic fea-
tures, such as complex expressions and initialized delay; optimized support for
resource-efficient, state-transparent embedding of modular subcomponents.

The whole Sig compiler pipeline is a prototype and subject to ongoing
research and development at various ends. Of the slicing applications we have
presented here, initialization slicing is stably implemented in the current version
of the compiler. Tacit slicing is implemented in principle, but its practical use is
deferred pending the integration of the very recent, externally developed sequen-
tialization pass. Multi-rate slicing is in the process of implementation, and the
current main focus of our efforts, since it would allow us to raise our demonstra-
tions in the application domain of audio and digital music [15] to a significantly
more sophisticated level. Encouraging preliminary results and a first non-trivial
case study are discussed in [16].

References

1. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J.
4(1), 25–30 (1965)

2. Caspi, P., Pouzet, M.: Lucid Synchrone, a functional extension of Lustre. Technical
report, Université Pierre et Marie Curie, Laboratoire LIP6 (2000)

3. Clarke, E.M., Fujita, M., Rajan, S.P., Reps, T., Shankar, S., Teitelbaum, T.: Pro-
gram slicing of hardware description languages. Technical report, Carnegie Mellon
University (1999)

4. Ganapathy, V., Ramesh, S.: Slicing synchronous reactive programs. SLAP 2002,
ENTCS 65(5), 50–64 (2002). doi:10.1016/S1571-0661(05)80440-2

5. Hack, S.: Register Allocation for Programs in SSA Form. Ph.D. Thesis, Universität
Karlsruhe, (2007). http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532

6. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, robots, and functional
reactive programming. In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS, vol.
2638, pp. 159–187. Springer, Heidelberg (2003). doi:10.1007/978-3-540-44833-4 6

7. Hughes, J.: Programming with arrows. In: Vene, V., Uustalu, T. (eds.) AFP 2004.
LNCS, vol. 3622, pp. 73–129. Springer, Heidelberg (2005)

8. Liu, H., Cheng, E., Hudak, P.: Causal commutative arrows. J. Funct. Program.
21, 467–496 (2011). doi:10.1017/S0956796811000153

9. Loth, A.: Synthese von Kontrollfluss für eine Synchrone Datenflusssprache. Mas-
ter’s thesis, Technische Universität Ilmenau (2015)

10. Orlarey, Y., Fober, D., Letz, S.: Syntactical and semantical aspects of Faust. Soft
Comput. 8(9), 623–632 (2004). doi:10.1007/s00500-004-0388-1

11. Petricek, T., Mycroft, A., Syme, D.: Extending monads with pattern matching. In:
Haskell Symposium 2011, pp. 1–12. ACM (2011). doi:10.1145/2034675.2034677

12. Rodrigues, N.F., Barbosa, L.S.: Slicing functional programs by calculation. In:
Beyond Program Slicing. Dagstuhl Seminar 05451 (2005)

13. Trancón y Widemann, B., Lepper, M.: tSig: Towards semantics for a
functional synchronous signal language. In: KPS 2011, Arbeitsbericht des
Instituts für Wirtschaftsinformatik 132, pp. 163–168. Westfälische Wilhelms-
Universität Münster (2011). https://www.wi.uni-muenster.de/sites/default/files/
publications/arbeitsberichte/ab132.pdf

http://dx.doi.org/10.1016/S1571-0661(05)80440-2
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532
http://dx.doi.org/10.1007/978-3-540-44833-4_6
http://dx.doi.org/10.1017/S0956796811000153
http://dx.doi.org/10.1007/s00500-004-0388-1
http://dx.doi.org/10.1145/2034675.2034677
https://www.wi.uni-muenster.de/sites/default/files/publications/arbeitsberichte/ab132.pdf
https://www.wi.uni-muenster.de/sites/default/files/publications/arbeitsberichte/ab132.pdf

Laminar Data Flow: On the Role of Slicing 103

14. Trancón y Widemann, B., Lepper, M.: Foundations of total functional dataflow pro-
gramming. In: MSFP 2014, EPTCS 153, pp. 143–167 (2014). doi:10.4204/EPTCS.
153.10

15. Trancón y Widemann, B., Lepper, M.: Sound, soundness: practical total functional
data-flow programming. In: FARM 2014, pp. 35–36. ACM (2014). Demo abstract.
doi:10.1145/2633638.2633644

16. Trancón y Widemann, B., Lepper, M.: The Shepard tone, higher-order multi-rate
synchronous data-flow programming in Sig. In: FARM 2015, pp. 6–14. ACM (2015).
doi:10.1145/2808083.2808086

17. Weiser, M.: Program slicing. In: ICSE 1981, pp. 439–449. IEEE (1981)

http://dx.doi.org/10.4204/EPTCS.153.10
http://dx.doi.org/10.4204/EPTCS.153.10
http://dx.doi.org/10.1145/2633638.2633644
http://dx.doi.org/10.1145/2808083.2808086

A Shallow Embedded Type Safe Extendable
DSL for the Arduino

Pieter Koopman(B) and Rinus Plasmeijer

Institute for Computing and Information Sciences, Radboud University,
Nijmegen, The Netherlands
{pieter,rinus}@cs.ru.nl

Abstract. This paper extends our method to construct a shallow
embedded domain specific language, DSL, embedded in a function pro-
gramming language. We show how one can add functions and tasks that
are typed by the type system of the functional host language.

The DSL is clearly separated from its host functional language to
facilitate the compilation to small executables in C++. The type system
of the host language verifies the types in the DSL, including the types
and proper use of variables. The DSL is extendable by new language
constructs and interpretations without breaking any existing code. The
type system guarantees that everything used in a DSL program is prop-
erly defined. We apply these techniques for a DSL to program Arduino
microprocessor systems from Clean. The long term goal is to incorporate
these microprocessors in the iTask system.

1 Introduction

The internet of things, IoT, will for a large part consist of devices equipped with
a small microprocessor executing some tailor made program. The Arduino is a
family of popular open-source microcontroller boards [2,3]. The Arduino Uno
is the archetype of these development boards. The first version was released in
2005. The current version, R3, of this board contains a 8-bit ATMega328 micro-
processor running at 16 MHz. It provides 32 KB of flash memory and 2 KB RAM.
This board is very suited for control tasks since it provides 14 digital input/out-
put pins (of which 6 can be used as PWM outputs), 6 analog inputs, and serial
communication via an USB connection. Arduino boards can be extended by
shields. These shields provide various kinds of additional input/output options
like motor controls, Blue Tooth communication, Ethernet, LCD, buttons and
relays. These elementary and cheap systems are extremely well suited for simple
input/output intensive control tasks.

From a software point of view these tiny systems are too small to run any
operating system. The standard way to program Arduino’s uses it’s own dialect
of C++. The Arduino IDE compiles this to binary code. This code is uploaded to
the Arduino via an USB connection. For this purpose every Arduino is shipped
with a tiny boot loader. Arduino programs define two functions for creating a
runnable program. The setup() function is executed once to initialize the board,
c© Springer International Publishing Switzerland 2016
M. Serrano and J. Hage (Eds.): TFP 2015, LNCS 9547, pp. 104–123, 2016.
DOI: 10.1007/978-3-319-39110-6 6

A DSL for the Arduino 105

like the constructor of an object. The loop() function is executed repeatedly until
the board powers off. Both of these functions can be empty. Since there is no
operating system or other thread, executing the loop() over and over again is
the only thing the microprocessor has to do and can do.

Since the Arduino boards are very well suited to control input/output devices
and cheap, it is tempting to use them for interfacing iTask programs with the
real world [19]. Due to the limited hardware provided by the Arduino board,
it is unfeasible to execute complete high level functional programs with these
microprocessors. To prevent that we need two separate programs, one for the
Arduino and one iTask program, we introduce a Domain Specific Language1 to
program Arduino’s. In the near future we want to incorporate this language
in the iTask system. This paper focuses on the architecture of our ARDSL, for
Arduino DSL. Due to the limited power of the Arduino and the necessity to
interact with the world ARDSL has imperative components. There is a user
defined collection of variables that captures the state of the program between
subsequent iterations of the loop. The contribution of this paper is a method to
construct DSLs with the following properties:

– Our DSL is extendable without requiring changes to existing code. This is
achieved by a DSL consisting of a set of type classes. This is enable us to add
tailor made objects to control shields. The C++ class associated with such an
shield models the use of this shield. In our DSL we add a class of functions
that mimics the constructor and methods in C++.

– We use type constructor classes with an argument for the type of the expres-
sion in the DSL. In this way expressions in the DSL are typed by the host
language, the effect is similar to the types in Generalized Algebraic Data
Types, GADTs, [6,14].

– We use functions in the host language to introduce variables in the DSL. The
variables themselves are represented by an instance of the type constructor
class. This ensures that only defined variables are used. The type system of
the host language guarantees the well-typed use of DSL variables.

– We use phantom types to ensure that only a subset of expressions on the left-
hand side of an assignment are allowed. This eliminates the need of special
read and write operations for variables.

To the best of our knowledge this combination of properties is not realized by
any DSL implementation technique. We show that an architecture based on type
classes is able to match all these requirements.

In Sect. 2 we will highlight the aspects of the Arduino that are used in this
paper. The design considerations of our DSL are discussed in Sect. 3. Section 4
introduces our actual DSL. In Sect. 5 we show how this DSL is compiled to C++
code. In its turn this is compiled to binary code for the Arduino using the stan-
dard Arduino IDE. To show that our DSL can be interpreted in different ways,
has multiple views, we show in Sect. 6 how a program in our DSL is simulated
1 DSL = Domain Specific Language, also called DSEL for Domain Specific Embedded

Language.

106 P. Koopman and R. Plasmeijer

by the iTask system. In Sect. 7 we show how the DSL can be extended with
the necessary operations to handle shields. In Sect. 8 we compare our work to
relevant related work. We draw conclusions in Sect. 9.

2 The Arduino

The Arduino is a small board with a microprocessor and many input/output
ports. The standard programming environment allows us to write Arduino pro-
grams in a dialect of C/C++. Since there is no operating system and there are
no other threads, our program must provide work for each and every clock cycle
of the microprocessor. This is achieved by the function loop() that is executed
over and over again. The initialization of the system is done by the definition of
variables and a function setup().

The hello world program for the Arduino blinks the onboard LED at pin 13.

boolean ledOn = false ; // variable definitions
long lastTime = 0; // time of last state change

void setup() {
pinMode(D13 , OUTPUT) ; // set pin13 as an output

}
void loop() {

i f (millis() / 500 > lastTime) { // two steps per second
ledOn = not ledOn ; // f l ip led status
digitalWrite(D13 , ledOn) ; // set pin 13 to status
lastTime += 1; // increment the time counter

}
}

We use here the function millis() to get the number of milliseconds after
starting the microprocessor. A solution using the current time is extendable to
several time dependent task for the Arduino and more stable2 than the more
common solution with a delay(1000) to stop the entire processing for 1000 ms.

There are many libraries to control special hardware connected to the
Arduino. These libraries typically define a class with methods for to control the
hardware. An object of this class is used to maintain the state of the hardware
and apply the state changes.

The Servo library controls the angle of a servo using Pulse Width Modulation,
PWM. A physical servo is connected to one of the pins of an Arduino. An Servo

object is attached to the same pin in the software. The write method of this
object generates a PWM signal such that the physical servo takes a position with
the corresponding angle in degrees. A program that sweeps the servo between
10 and 170 degrees is:

#include <Servo .h> // include library

Servo s ; // create an servo object

2 A better program anticipates the overflow of the clock in longs after 25 days.

A DSL for the Arduino 107

int pos = 10; // servo position
int step = 1; // angle change of servo
long time = 0; // time of last state change

void setup() {
s .attach(A0) ; // attach servo on pin A0 to object

}
void loop() {

i f (millis() / 25 > time) { // 40 step per second
time += 1;
pos += step ;
i f (pos > 170 | | pos < 10) { // outside preferred angle range?
step = −step ; // turn the direction of the servo
pos += step ;

}
s .write(pos) ; // set servo angle in degrees

}
}
These examples describe only a tiny fractions of the possibilities of the Arduino.
See for instance the Arduino websites [2,3], for a more complete overview.

3 Design Considerations

Our long term goal is to perform these kind of hardware control from the iTask
environment [18]. The iTask environment is a library that supports Task Oriented
Programming, TOP. A tasks here is any kind of job to be executed by a human
or a machine. The iTask system has primitives to coordinate tasks, to generate
web-interfaces for tasks to be executed by humans, and to visualize the state
of tasks. The iTask system is implemented as a large library in the functional
programming language Clean [20]. It uses generic programming in many places,
for instance to generate web-based user interfaces for arbitrary data types.

Running a complete Clean program on an Arduino is unfeasible given the
modest processing power of this hardware platform. One option is to run a task
in the iTask framework on an ordinary computer that controls the Arduino,
for instance via the Firmata protocol [8]. This is the solution implemented by
hArduino [12]. We want to execute independent tasks on the Arduino instead of
basically execute the task on an ordinary computer that controls the Arduino
step by step. These task should only communicate with the iTask system when
it is needed for the algorithm of the tasks. This implies that we need a separate
program to control the Arduino that cannot be written in full Clean.

Writing the program for the Arduino in another programming language,
like C++, than the rest of the TOP program is undesirable. This would imply
two source files using different libraries and compilers that need to cooperate
smoothly on a single task. Since the iTask system is often used for rapid proto-
typing, these programs change often. A single source file is very desirable.

The solution introduced here is to define a DSL to control the Arduino. This
ARDSL is embedded in Clean, the host language of the iTask system. In contrast

108 P. Koopman and R. Plasmeijer

to most DSLs we have to delimit the features our ARDSL inherits from the host
language Clean. We need to translate ARDSL to the Arduino and translating too
much of Clean to this hardware platform is beyond its capabilities. Hence, we
have to be able to distinguish ARDSL parts from the rest of Clean.

Since ARDSL has to interact directly with various kind of hardware and have
to compile to compact Arduino code, we have currently chosen a rather low
level of abstraction in ARDSL. Others have investigated the possibilities to use
functional reactive programming [17], or state machines [21] for this purpose.
We have a user defined global state containing typed variables for the entire
ARDSL program. This captures the state of the task between various iterations
of the loop. Inside the ARDSL program we can read and write the pins of the
Arduino. Apart from these imperative constructs we have a monadic bind to use
the result of one expression in other parts of the program. To prevent issues with
the evaluation order, we give ARDSL an eager semantics. Although ARDSL is an
embedded DSL with a different character than the host language, we require that
the type system of Clean prevents runtime time problems in ARDSL programs.

The main interpretation of ARDSL programs is as code for an Arduino. We
will first translate ARDSL program to C++ code. This C++ code is translated
by the existing compiler to a binary for the Arduino and loaded to the micro-
processor. However, we require a DSL that is suited for multiple interpretations,
called views, like the simulation in Sect. 6.

In addition the ARDSL must be extendable without breaking existing code.
This is used to add the control for specific peripherals by need. Such control
is represented by a set of strongly typed functions. Since ARDSL is extendable,
we will compose the entire language piece by piece. The Clean type checker
guarantees that the required language parts and views needed are available in
each and every ARDSL program.

4 Definition of the DSL

Our DSL consists of a set of type constructor classes. All these type constructor
classes have two arguments. The first argument is the type of that language
construct within ARDSL, or more precisly the representation of that ARDSL
type in the host language Clean, e.g. the Clean type Int for int and long in
ARDSL or Bool for boolean. The role of this type argument is very similar to the
type argument in a GADT. The second argument of the type class is a phantom
type controlling the read/update access of that language element in ARDSL.
Each and every element has Read access, only parts of the state have Update
access.

4.1 Standard Values and Operations

First we define constants and standard operations, like addition and equality,
in our DSL. The simplest of these type classes is lit, for literal. It lifts a value
from the Clean domain to ARDSL. The type constraint type t ensures that only
proper ARDSL types can be lifted from Clean to ARDSL.

A DSL for the Arduino 109

class lit v where lit :: t → v t Read | type t

The type variable v of this class indicates the view of the DSL. A view is here an
interpretation of the DSL. We introduce the compilation and simulation views
of our DSL below.

The class arith contains the arithmetic operators in ARDSL. For many type
classes we list only some representative members here. The appendix contains a
complete overview of ARDSL. The arithmetic operators require elements of the
current view v as argument. These arguments should be of the same type t. This
type t should be a proper type in ARDSL, and we should have the corresponding
operation available in Clean for t. The read/update access of the arguments is
not relevant, they can even be different. The result is a value with Read access.

class arith v where
(+.) i n f i x l 6 :: (v t p) (v t q) → v t Read | type , + t

(-.) i n f i x l 6 :: (v t p) (v t q) → v t Read | type , - t

We have added a dot to the name of the operators in ARDSL. Since the type
is slightly different from the type of the operator in Clean, a a->a, we cannot
replace the new operator +. by an instance of the native + from Clean. In an
embedded language both operators have to coexist, hence we introduce new
names.

The logical operators take Boolean expressions as arguments and produce a
Boolean result.

class logical v where
(|.) in f ixr 2 :: (v Bool p) (v Bool q) → v Bool Read

(&.) in f ixr 3 :: (v Bool p) (v Bool q) → v Bool Read

¬. :: (v Bool p) → v Bool p

Equality and ordening of expressions of type t in view v are expressed by
the classes eq and ord respectively.

class eq v where (=.=) inf ix 4 :: (v t p) (v t q)→v Bool Read | type ,Eq t

class ord v where (<.) inf ix 4 :: (v t p) (v t q)→v Bool Read | type ,Ord t

These classes show also why it is not possible to make the type of the expres-
sions in ARDSL, t, an argument of the type class. We would have a type class
like class arith v t where ... In many situations this would be convenient
since we can add restrictions on t tailored to the view. However, in the class
logical the type variable t would not be used at all. The type system requires
that every argument of a type class is used in all of its members. This implies
that t cannot be a class variable. Hence, any restriction required by one or more
views must be specified in definition. This is exactly the same in GADTs.

The conditional expression, cond c t else e, requires a Boolean argument and
two other arguments of the same type. We have a shortcut IF that allows that
these arguments have different types. it produces a VOID result. The variant If
has only a then-part.

class ifelse v where
cond :: (v Bool q) (v t p) Else (v t p) → v t p | type t

110 P. Koopman and R. Plasmeijer

IF :: (v Bool q) (v t p) Else (v u r) → v VOID Read | type t & type u

If :: (v Bool q) (v t p) → v VOID Read | type t

4.2 Arduino Specific Operations

Our ARDSL has a number of Arduino specific operations. The class time pro-
vides the delay operation and the function millis that yields the time in
milliseconds.

class time v where
delay :: (v Int p) → (v Int Read)
millis :: (v Int Read)

To prevent that one uses illegal pin-numbers we use enumeration types for
the digital and analog pins. The enumeration type PinMode captures the three
possible modes of the pins: input, output, and input with an internal pull-up
resitor (this ensures that the input of unconnected pins is High).

:: DigitalPin

= D0 | D1 | D2 | D3 | D4 | D5 |D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13

:: AnalogPin = A0 | A1 | A2 | A3 | A4 | A5

:: PinMode = INPUT | OUTPUT | INPUT_PULLUP

There is a class pin with instances for DigitalPin and AnalogPin. This can be
used to ensure that a specific argument is one of these two kinds of pins.

The class pinMode mimics the control of the pin-mode of these pins.

class pinmode v where pinmode :: p PinMode → v VOID Read | pin p

Note that both arguments are plain values instead of ARDSL expressions that
yields a value of these types. It is very well possible to define a version that
allows expressions as arguments:

class pinmode v where pinmode :: (v p x) (v PinMode y)→v VOID Read | pin p

The analog pins have a builtin AD converter. We can read and write 10-bit
decimal numbers on these ports. These numbers are represented by ordinary
integers values.

class analogIO v where
analogRead :: AnalogPin → v Int Read

analogWrite :: AnalogPin (v Int p) → v Int Read

Again there is no expression for the port number, just a plain port number is
allowed here. However, there is an integer expression for the value to be written.

Digital IO is actually Boolean input and output. We can use any pin for this
kind of IO. For the analog pins an appropriate conversion is applied automati-
cally. The type constrains readPinD and writePinD are needed in the simulation
view in Sect. 6.

class digitalIO v where
digitalRead :: p → v Bool Read | pin , readPinD p

digitalWrite :: p (v Bool q) → v Bool Read | pin , writePinD p

A DSL for the Arduino 111

4.3 Variables and Assignment

Assignments are strongly typed. They require an updatable expression of the
same type t as the right-hand side as left-hand side.

class assign v where
(=.) in f ixr 1 :: (v t Update) (v t q) → v t Read | type t

The only way to make these updatable expressions in the current version of
ARDSL is with the introduction of state variables.

class varDef v where
int :: ((v Int Update)→ARDSL (v t p) (v u q))→ARDSL (v t p) (v u q)
long :: ((v Int Update)→ARDSL (v t p) (v u q))→ARDSL (v t p) (v u q)
boolean :: ((v Bool Update)→ARDSL (v t p) (v u q))→ARDSL (v t p) (v u q)

These definitions have a Clean function, usually a λ-expression, as argument.
This function puts the variable in the right position. The view v determines how
the variables look for that interpretation of ARDSL. Note that the variables are
defined in an entire ARDSL program, defined in Subsect. 4.4, instead of just an
arbitrary piece of ARDSL code.

In addition there is a monadic bind, >==. Although such a bind is compiled
to a variable definition, the given type signature determines that these variables
cannot be used in assignments. By just changing the Read to an Update, this
design decision is changed. The :. operator is the variant of the bind where
the right-hand side does not need the result of the left hand side, it is just the
semicolon from imperative language.

class bind v where
(>==) in f ixr 0 :: (v t p)((v t Read)→(v u q))→(v u q) | type t & type u

(:.) in f ixr 0 :: (v t p) (v u q) →(v u q) | type t & type u

The difference of this bind with the vanilla flavored version in a monad is that
our operator >== has a v t Read as argument of the function on the right-hand
side. In the vanilla bind this function has just a plain value t as argument. This
prevents that arguments ‘leak’ back from ARDSL to the host language Clean.

There is no need for a return in this class. With a lit we can already promote
values from the Clean world to the ARDSL world. Each and every expression of
type v t p can be viewed as an implicit return whenever that is needed.

Other language constructs can be introduced by need. The advantage of an
expandable language is that it is always possible to add constructs by need
without breaking existing code. The downside of this is that it is also possible
to add constructs that spoil the design, there are limited possibilities to prevent
these kind of disasters.

The class ardsl is just the union of all classes defined above. To write typed
program fragments we can just add the class restriction ardsl v, instead of
listing a restriction for all classes used in this program. We can of course omit
the type and let the Clean compiler derive the required type.

112 P. Koopman and R. Plasmeijer

4.4 Complete Programs

For a complete program we require that the user writes two of these expressions,
one will become the setup function and the other one the loop function. The
record ArDSL just combines two named values to a single value.

:: ArDSL a b =
{ setup :: a

, loop :: b

}
Inside the language implementation we need a few additional fields to record infor-
mation about the variables defined and libraries imported. We use a new record
and the associated conversion function ardsl :: (ArDSL a b)→ARDSL a b.

:: ARDSL a b =
{ setup1 :: a

, loop1 :: b

, defs :: [Var]
, includes :: [String]
}

:: Var =
{ vname :: String // name
, vnum :: Int // number
, vtype :: String // String representation of the type
, args :: String // arguments of definition, used for objects
, dynv :: Dyn // value represented as a generic dynamic
}

The additional fields are filled by variable definitions, instances of the class
varDef above, and extensions (like the servo class) as defined in Sect. 7.

4.5 An Example ARDSL Program

The hello world program from Sect. 2 represented in our DSL reads:

helloworld :: ARDSL (a Bool Read) (a VOID Read) | ardsl a

helloworld =
boolean λledOn.
int λlastTime.
ardsl {

setup =
pinmode D13 OUTPUT :.

digitalWrite D13 (lit False)
, loop =
If (millis /. lit 500 >. lastTime) (

ledOn =. ¬. ledOn >== λb.
digitalWrite D13 b :.

lastTime =. lastTime +. lit 1
)

}

A DSL for the Arduino 113

This shows that syntactic overhead for embedding this program in the host
language Clean is fortunately very limited. Future versions of ARDSL have a
notion of functions and tasks to make programs more concise.

5 Compiling the DSL

The language ARDSL is completely specified by its classes. When we generate
code for ARDSL we only have to provide appropriate instances for these classes.
It is not necessary to cope with other parts of the host language Clean. When
there are Clean expressions within an ARDSL program, they are evaluated at
compile time. Clean is just the macro language of ARDSL.

This compiler view translates ARDSL to the Arduino variant of C/C++.
Since our DSL adds only a tiny bit of abstraction to the native C++ language of
the Arduin, compilation is rather straight forward. First, we introduce the basic
building blocks of this view.

5.1 The Compiler View

The classes defined above determine that every view has two arguments: the type
of that DSL construct and its read/update type. The compiler view does not use
these arguments. It is a function that transforms a compiler state, CompState.
This compiler state contains the file that is used to collect the generated code.
There are two additional items in the compiler state: idNum is a counter to
generate fresh numbers for identifiers in the compiler, and indnt is the current
indentation for pretty printed layout in the output file.

:: Code a p = Code (CompState → CompState)

:: *CompState =
{ idNum :: !Int

, indnt :: !Int

, gcode :: !*File

}
In the compilation view we will have as little direct acces to this data type

as possible. We define a small set of manipulation functions that directly access
the compiler state. First there is the operator +.+ to append two changes to the
compiler state. It is just function composition.

(+.+) in f ixr 1 :: (Code a p) (Code b q) → Code c r

(+.+) (Code f) (Code g) = Code (g o f)

The function addCode adds a string to the output file. The function toCode gets
a value, transforms it to a string wich in its turn is written to the output file.

addCode :: String → Code a p

addCode str = Code λs=:{gcode}.{s & gcode = gcode<<< str}

toCode :: a → Code b p | toString a

toCode a = addCode (toString a)

114 P. Koopman and R. Plasmeijer

The functions indIndnt and decIndnt increment and decrement the indentation
counter in the state. The function nl uses this indent to generate the desired
amount of indent after a newline in the output file.

incIndnt :: Code a p

incIndnt = Code λc=:{indnt}.{c & indnt = inc indnt}
The function genName generates a fresh identifier name and gives it to the argu-
ment of genName. This transforms this function to a piece of code.

genName :: (String → Code a p) → Code a p

genName f = Code λs=:{idNum}.(unCode (f ("x" + toString idNum))
{s & idNum = idNum + 1})

5.2 Instance of ARDSL for the Compilation View

Based on these primitives we define the code generation view. For literals we
just have to convert the value to its string representation in C++ syntax and
add this string to the output. The function valCode takes care of converting a
value to code. It is provided by the class type.

instance lit Code where lit x = addCode (valCode x)

Generating code is very similar for all operators. Hence, we introduce some helper
functions. The function codeOp2 generates code for a two argument operator.
This requires code for the first argument, the operator itself, and code for the
second argument. The prevent binding problems in the generated code we enclose
every composed expressions in brackets. Code generating for the arguments is
quite simple, they are instances of Code and hence compile themselves.

codeOp2 :: (Code a p) String (Code b q) → Code c r

codeOp2 x n y = brackets (x +.+ addCode n +.+ y)

brackets :: (Code a p) → Code a p

brackets x = addCode "(" +.+ x +.+ addCode ")"

The generation of code for addition and subtraction uses these functions. All
other operators are similar and omitted here.

instance arith Code where
(+.) x y = codeOp2 x "+" y

(-.) x y = codeOp2 x "-" y

The code generation for other constructs in ARDSL is similar. We only show
the code generation for the class time as example.

instance time Code where
delay x = addCode "delay" +.+ brackets x

millis = addCode "millis ()"

The code generating for conditionals is slightly more interesting. For cond that
produces a typed result we generate an inline conditional in C++. For the IF
that produces a VOID we generate an ordinary conditional statement.

A DSL for the Arduino 115

instance ifelse Code where
cond c t Else e =

brackets (c +.+ addCode "?" +.+ incIndnt +.+ nl +.+

t +.+ addCode ":" +.+ nl +.+ e +.+ decIndnt)
IF c t Else e =

addCode "if" +.+ brackets c +.+

braces t +.+ addCode "else" +.+ braces e

Variables and Assignment. In this target language the handling of variables
is very easy. We just have to generate the name of the variable and the Arduino
compiler will give it the desired read or update interpretation. When other parts
of the compilation ensure that the code for a variable is the adding of its name
to the code, the code for assignment becomes just

instance assign Code where (=.) v e = v +.+ addCode "=" +.+ e

This determines how to generate code for the introduction of variables. The
argument given to the function f that generates the ardsl is just an instance
of the code generation that writes the name of the variable to the file: addCode
name. We do not yet generate code for the variable definition itself, we delay this
until we have collected all variable definitions and libraries we have to collect.

instance varDef Code where
int f = {ardsl & defs = [var: ardsl.defs]} where
ardsl = f (addCode name)
name = intToName vnum

vnum = newName ardsl

var = {vname = name ,vnum = vnum ,vtype = "int" ,args = "" ,dynv = toDyn 0}
For a bind operator we generate a variable that is used to store the result of

the first argument of the bind. For the right-hand side of the bind we just have
to provide code that generates the variable name as argument. The name of the
new variable is generated by genName discussed above.

instance bind Code where
(>==) x f =
genName λv.addCode (typeCode (code2val x) + "" + v + "=") +.+ x +.+

addCode ";" +.+ nl +.+ f (addCode v)

The function compile :: *File (ARDSL (Code a p) (Code b q)) → *File
completes the compilation view of ARDSL. This function writes a header to the
given file, define the imports and variables from the give program followed by
the code for the given setup and loop.

Example. The code generation described here applied to the example in
Subsect. 4.5 produces:

boolean v1 ;
int v0 ;

116 P. Koopman and R. Plasmeijer

void setup() {
pinMode (13, OUTPUT) ;
digitalWrite (13, false) ;

}
void loop() {

i f (((millis () / 500) > v0)) {
boolean x2 = v1 = (not v1) ;
digitalWrite (13, x2) ;
v0 = (v0 + 1);

};
}

6 Simulating the DSL

To demonstrate that our DSL can have multiple interpretations we develop a
simulator for ARDSL programs. The simulator is able to apply the setup or
the loop function to the state of the simulator. In order to do this we need a
tailor made state containing the variables of the ARDSL program and view that
translates the ARDSL program to a state manipulating function.

6.1 Simulation State

The simulation state contains the values of all variables in the global state of
the program, the value of all input/output pins used and the current time.

:: State =
{ vars :: [(String , Dyn)]
, dpins :: [(DigitalPin , Bool)]
, apins :: [(AnalogPin , Int)]
, time :: Int

}
Variable are indicated by their index in the list vars. The string in the tuple is
the name used in the ARDSL program, it is included just as a reference. Since
there are variables of different types, we store their value as a dynamic of type
Dyn. In the type Dyn every value is represented as a list of strings. There are
generic [1] functions for the transformation to and from Dyn. We use this tailor-
made type instead of the type Dynamic from Clean to ensure the values are
human readable during the simulation.

The variables in our DSL need some special treatment in this translation.
The interpretation of variables depends on the context where they are used. In
all usual cases a variable should be replaced by its actual value in a simulator.
In the left-hand side of an assignment however, a variable indicated the position
is the state that needs to be updated. This is handled by the type RW that is
given as additional argument to the state transition function. The R indicates a
read action, W a is a write of the given value, and F f applies the given function
to the value in the state3.
3 Every W a can be replaced by F λ_.a, but W a is a convenient shortcut.

A DSL for the Arduino 117

:: RW a = R | W a | F (a → a)

The function readVar reads a variable from the state and applies the indicated
action. Just a read for W, a replacement by the given value for W a, or an appli-
cation of the given function followed by an update for F f.

readVar :: VarId (RW a) State → (a , State) | dyn a

readVar v R s=:{vars} = (fromJust (fromDyn (snd (vars !! v))) , s)
readVar v (W a) s=:{vars}

= (a , {s & vars = updateAt v ((fst (vars !! v)) , toDyn a) vars})
readVar v (F f) s=:{vars}

� (n ,d) = vars !! v

� o = f (fromJust (fromDyn d))
= (o,{s & vars = updateAt v (n , toDyn o) vars})

For the simulator we make an instance of the type Eval for all classes in
ARDSL. This is just a state transformer that takes the read/write type RW as
additional argument.

:: Eval a p = Eval ((RW a) State → (a , State))

For convenience we define an instance of the class monad for this type.

instance monad Eval where
(>>==) (Eval x) f = Eval λrw s.let (a , t) = x R s in unEval (f a) R t

rtrn a = Eval λ_ s.(a , s)

6.2 Simulation View

The instances for this view for all standard functions are the usual monadic
definitions of an evaluator. For a literal constant we just return the given value.

instance lit Eval where lit x = rtrn x

All operators are eager. They evaluate their arguments and return the computed
value. For instance the arithmetic operators are defined as:

instance arith Eval where
(+.) x y = eval2 x y (+)
(-.) x y = eval2 x y (-)

eval2 :: (m a p) (m b q) (a b→c) → m c r | monad m

eval2 x y f = x >>== λa. y >>== λb. rtrn (f a b)

For the conditional expressions we evaluate the boolean expression. Based
on its value the then or else part is evaluated. For the If and IF we apply the
desired type conversions.

instance ifelse Eval where
cond c t Else e = c >>== λb. i f b t e

IF c t Else e = c >>== λb. i f b (t >>==λa.rtrn VOID)(e >>== λa.rtrn VOID)
If c t = c >>== λb. i f b (t >>== λa.rtrn VOID) (rtrn VOID)}

118 P. Koopman and R. Plasmeijer

The instance for variable definitions is surprisingly similar to the definition
for code generation shown above. We update the administration inside the ARDSL
to record the definition of a new variable. The difference between the previous
instance and this one is that we replace each applied occurrence of the variable
by a readVar vnum in the simulator.

instance varDef Eval where
int f = {ardsl & defs = [var: ardsl.defs]} where
ardsl = f (Eval (readVar vnum))
name = intToName vnum

vnum = newName ardsl

var = {vname = name ,vnum = vnum ,vtype = "int" ,args = "" ,dynv = toDyn 0}
Other operations manipulating the state, i.e. the read and write of pins and
accessing the time, are implemented with a similar access to the state.

After these preparations the implementation of the assignment is simple. We
just have to give the new value to the readVar vnum function inside the variable.
The new value is obtained by evaluating the right-hand side.

instance assign Eval where (=.) v e = e >>== λa.Eval λr s.unEval v (W a) s

For this view of the bind operator we do not need to introduce a variable in the
state. Since these variable introduced here is read-only, we can use a λ-expression
to directly support its value to all applied occurrences. This is exactly what the
monad of this simulation view does:

instance bind Eval where (>==) x f = x >>== f o rtrn

This completes the simulation view of our ARDSL.

6.3 iTask Simulator

Using the simulation view of ARDSL programs is very easy to make a simple
simulator for programs in the iTask system. The state is just a data structure.
The generic mechanism of the iTask system is able to generate a web-based
display and editor for this data structure by derive class iTask State. In
the task it is initially possible to apply the setup function. In the next state
we can either apply the loop, or a reset function. The editor allows the user to
inspect and change the state between steps. There is a shutdown button in each
state.

simulate :: (ARDSL (Eval a p) (Eval b q)) → Task ()
simulate {setup1=(Eval codesetup) ,loop1=(Eval codeloop) ,defs} = simsetup

where
simsetup =
updateInformation "State" [] s0 >>*

[OnAction ActionFinish (always shutDown)
, OnAction (Action "setup" []) (hasValue (simloop o snd o codesetup R))
]

simloop s =
updateInformation "State" [] s >>*

A DSL for the Arduino 119

[OnAction ActionFinish (always shutDown)
, OnAction (Action "Reset" []) (always simsetup)
, OnAction (Action "loop" []) (hasValue (simloop o snd o codeloop R))
]
s0 = { vars = [(v.vname , v.dynv) \\ v ← reverse defs]

, dpins = [] , apins = [] , time = 0}

Fig. 1. Screenshot of the simulation of the blinking LED example.

Figure 1 shows a screenshot of the simulation of our hello world example.
The translation generated the name v0 for variable time and v1 for the Boolean
ledOn respectively. Output D13 is True or high to indicate that the LED is on.

7 Extending the DSL

The entire design of ARDSL is modular and prepared to be extended. Adding
a additional class is nothing new for our DSL. We use this mechanism to add a
typed representation of C++ class controlling a shield to our DSL.

The servo library is a simple example. It contains a function servo to define
a Servo object. It is very similar to the definition of variables in the state. The
most notable difference is that the read/update attribute is Read, this ensures
that it is not possible to update a servo variable. Each servo object has two
methods, or manipulation functions. These functions have (a reference to) the
servo object as their first argument. The attach function connects the servo to
the specified pin. The writeS function sets the servo to the given position in
degrees.

:: Servo = {pin :: String , pos :: Int}

class servo x where

120 P. Koopman and R. Plasmeijer

attach :: (x Servo q) p → x VOID Read | pin p

writeS :: (x Servo q) (x Int q) → x VOID Read

servo :: ((x Servo Read)→ARDSL (x a p) (x b q)) → ARDSL (x a p) (x b q)

An ARDSL program that sweeps the servo gently between 10 and 170 degrees is:

servosweep :: ARDSL (a VOID Read) (a VOID Read) | ardsl , servo a

servosweep =
servo λs.
int λpos.
int λstep.
long λtime.
ardsl {
setup =

pos =. lit 10 :.

step =. lit 1 :.

attach s A5

, loop =
If (millis /. lit 25 >. time) (

time =. time +. lit 1 :.

pos =. pos +. step :.

If (pos >. lit 170 |. pos <. lit 10) (
step =. lit 0 -. step

) :.

writeS s pos

)
}

The record Servo contains the fields necessary to simulate a servo, it is the
value of a servo in ARDSL. This servo object becomes one of the variables in
the ARDSL record. Implementing the views Comp and Eval for this class follows
exactly the pattern of the other classes. It contains no surprises. by deriving an
iTask representation for it, we can include a servo directly in the simulation. It
is possible to make a custom view of a servo in the simulation.

In the same style we can add other libraries, for instance to drive liquid crystal
displays. LCDs are often used to improve the output potions of an Arduino.

8 Related Work

There is very much work done in the field of DSLs embedded in functional pro-
gramming languages. Back in 1998 Paul Hudak described a way to make mod-
ular DSLs with a single view [13]. The next year Leijen and Meijer described a
way to compile a DSL [16]. Elliott wrote one of the many improvements of these
techniques [7]. Augustsson actively contributes to the development of implemen-
tations of a DSL embedded in a functional programming language, e.g. [4]. A
more recent step in the development is described by Gill [11]. In his CEFP paper
Gibbons delivers a recent overview of deep and shallow embedding techniques
to build a DSL [9]. He also contribute to the efficient implementation of DSLs
by folding [10].

A DSL for the Arduino 121

The particular multi-view strongly typed extendable way to make a DSL
described in this paper is to the best of our knowledge new. Dynamically typed
variants implementing a version of the λ-calculus are available [5,15].

9 Conclusion

This paper introduces new techniques to make an embedded DSL. By using a
set of classes as DSL, it is extendable. We can always add a class. By making
a new instance of these classes we make a new view of our DSL. By using a
type constructor class with the type of the DSL component as argument, the
type system of the host language checks the types of the DSL. An additional
phantom type argument of the type constructor class controls the desired read
write behavior of DSL fragments. The approach to construct a DSL only requires
type constructor classes in the host language. A DSL that is based on data types,
deep embedding, requires GADTs for type safety inside the DSL. These GADTs
must be extendable to handle the addition of new libraries without breaking
existing code. This are much higher demands on the host language.

We use function in the host language to let the system introduce variables
in the DSL. In this way we can assure that all variables used in DSL program
exist and are properly typed. This paper illustrates these techniques in a DSL
to program Arduino microprocessors hosted in Clean.

Since the host language compiler does most of the work, the compile and
simulate view are very efficient. They only have to execute the functions selected
by the Clean compiler. Due to the low abstraction level of ARDSL, the generated
C++ code is as compact and efficient as the corresponding C++ code. Future
improvements of this DSL should enhance the abstraction level to make programs
more task oriented and compact. This will be achieved by the introduction of a
notion of recursive functions and tasks.

Acknowledgement. We thank the reviewers for their valuable feedback.

Appendix

The classes defining the core of ARDSL.

class lit v where
lit :: t → v t Read | type t

class arith v where
(+.) i n f i x l 6 :: (v t p) (v t q) → v t Read | type , + t

(-.) i n f i x l 6 :: (v t p) (v t q) → v t Read | type , - t

(*.) i n f i x l 7 :: (v t p) (v t q) → v t Read | type , * t

(/.) i n f i x l 7 :: (v t p) (v t q) → v t Read | type , / t

(%.) i n f i x l 7 :: (v t p) (v t q) → v t Read | type , rem t

class logical v where
(|.) in f ixr 2 :: (v Bool p) (v Bool q) → v Bool Read

(&.) in f ixr 3 :: (v Bool p) (v Bool q) → v Bool Read

122 P. Koopman and R. Plasmeijer

¬. :: (v Bool p) → v Bool p

class eq v where
(=.=) inf ix 4 :: (v t p) (v t q) → v Bool Read | type , Eq t

(!.=) inf ix 4 :: (v t p) (v t q) → v Bool Read | type , Eq t

class ord v where
(<.) inf ix 4 :: (v t p) (v t q) → v Bool Read | type , Ord t

(<.=) inf ix 4 :: (v t p) (v t q) → v Bool Read | type , Ord t

(>.) inf ix 4 :: (v t p) (v t q) → v Bool Read | type , Ord t

(>.=) inf ix 4 :: (v t p) (v t q) → v Bool Read | type , Ord t

class bind v where
(>==) in f ixr 0 :: (v t p)((v t Read)→(v u q))→(v u q) | type t & type u

(:.) in f ixr 0 :: (v t p) (v u q) →(v u q) | type t & type u

class digitalIO v where
digitalRead :: p → v Bool Read | pin , readPinD p

digitalWrite :: p (v Bool q) → v Bool Read | pin , writePinD p

class analogIO v where
analogRead :: AnalogPin → v Int Read

analogWrite :: AnalogPin (v Int p) → v Int Read

class time v where
delay :: (v Int p) → (v Int Read)
millis :: (v Int Read)

class pinMode v where
pinmode :: p PinMode → v VOID Read | pin p

class assign v where
(=.) in f ixr 1 :: (v t Update) (v t q) → v t Read | type t

class ifelse v where
cond:: (v Bool q) (v t p) Else (v t p) → v t p | type t

If :: (v Bool q) (v t p) → v VOID Read | type t

IF :: (v Bool q) (v t p) Else (v u r) → v VOID Read | type t & type u

class varDef v where
int :: ((v Int Update) →ARDSL (v t p) (v u q))→ARDSL (v t p) (v u q)
long :: ((v Int Update) →ARDSL (v t p) (v u q))→ARDSL (v t p) (v u q)
boolean :: ((v Bool Update)→ARDSL (v t p) (v u q))→ARDSL (v t p) (v u q)

class ardsl v | lit , arith , logical , eq , ord , bind , digitalIO , analogIO ,
time , pinMode , assign , ifelse , varDef v

class type t where
type :: t → String

typeCode :: t → String

valCode :: t → String

instance type Int , Bool , Real , Char , VOID , String , DigitalPin , AnalogPin

References

1. Alimarine, A.: Generic Functional Programming: Conceptual Design, Implemen-
tation and Applications. UB Radboud University Nijmegen (2003)

2. arduino.cc website (2015). www.arduino.cc

www.arduino.cc

A DSL for the Arduino 123

3. arduino.org website (2015). www.arduino.org
4. Augustsson, L.: Making edsls fly (2012). http://vimeo.com/73223479
5. Carette, J., Kiselyov, O., Shan, C.C.: Finally tagless, partially evaluated: tagless

staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–543
(2009)

6. Cheney, J., Hinze, R.: First-class phantom types. Technical report, Cornell Uni-
versity (2003)

7. Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. J. Funct. Pro-
gram. 13(2), 455 (2003). Updated version of paper by the same name that appeared
in SAIG2000 Proceedings. http://conal.net/papers/jfp-saig/

8. Firmata protocol (2015). http://firmata.org/wiki/Main Page, http://github.com/
firmata/protocol

9. Gibbons, J.: Functional programming for domain-specific languages. In: Zsók, V.,
Horváth, Z., Csató, L. (eds.) CEFP 2013. LNCS, vol. 8606, pp. 1–28. Springer,
Heidelberg (2015)

10. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embed-
dings (functional pearl). SIGPLAN Not. 49(9), 339–347 (2014)

11. Gill, A.: Domain-specific languages and code synthesis using haskell. Queue 12(4),
30:30–30:43 (2014)

12. hArduino.: package that allows haskell programs to control arduino boards using
the Firmata protocol (2013). http://hackage.haskell.org/package/hArduino

13. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of the 5th
International Conference on Software Reuse. ICSR 1998, p. 134. IEEE Computer
Society, Washington DC (1998)

14. Johann, P., Ghani, N.: Foundations for structured programming with gadts. SIG-
PLAN Not. 43(1), 297–308 (2008)

15. Koopman, P.: Functional semantics. In: Achten, P., Koopman, P. (eds.) The Beauty
of Functional Code. LNCS, vol. 8106, pp. 60–78. Springer, Heidelberg (2013)

16. Leijen, D., Meijer, E.: Domain specific embedded compilers. SIGPLAN Not. 35(1),
109–122 (1999)

17. Lindberg, R.: fpr-arduino: Functional Reactive Programming for the Arduino
(2015). http://github.com/frp-arduino

18. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: executable specifications of inter-
active work flow systems for the web. In: Hinze, R., Ramsey, N. (eds.) Proceedings
of the ICFP 2007, pp. 141–152. ACM, Freiburg (2007)

19. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-oriented
programming in a pure functional language. In: Proceedings of the 14th Symposium
on Principles and Practice of Declarative Programming. PPDP 2012, pp. 195–206.
ACM, New York (2012)

20. Plasmeijer, R., van Eekelen, M.: Clean language report (version 2.1) (2002). http://
clean.cs.ru.nl

21. Schwaab, C., Pfeiffer, M., Brady, E.: Safety first: targeting embedded systems with
full-spectrum dependent types, TFP 2015 Draft Proceedings (2015)

www.arduino.org
http://vimeo.com/73223479
http://conal.net/papers/jfp-saig/
http://firmata.org/wiki/Main_Page
http://github.com/firmata/protocol
http://github.com/firmata/protocol
http://hackage.haskell.org/package/hArduino
http://github.com/frp-arduino
http://clean.cs.ru.nl
http://clean.cs.ru.nl

Programmable Signatures

Anders Persson(B) and Emil Axelsson

Chalmers University of Technology, Gothenburg, Sweden
anders.persson@chalmers.se

Abstract. When compiling Embedded Domain Specific Languages
(EDSLs) into other languages, the compiler translates types in the source
language into corresponding types in the target language. The transla-
tion is often driven by a small set of rules that map a single type in the
source language into a single type in the target language. This simple
approach is limiting when there are multiple possible mappings, and it
may lead to poor interoperability and poor performance in the generated
code. Instead of hard-wiring a single set of translation rules into a com-
piler, this paper introduces a small language that lets the programmer
describe the mapping of each argument and function separately.

1 Introduction

Feldspar is an embedded domain specific language written in Haskell [1,2].1 The
purpose of Feldspar is to implement high-performance software, especially in the
domain of signal processing in embedded systems [3].

Feldspar comes with an optimizing compiler that translates Feldspar expres-
sions into C99 code.2 When translating a function signature, the compiler uses
a specific calling convention as detailed in Chap. 1.4.2 in reference [3]:

– All functions return void

– Scalar values are passed by value
– Structured values (structs, arrays) are passed by reference
– Arrays are represented using a data structure struct array

– Return values are passed through caller provided pointers

For example, the following is the type of an FFT function in Feldspar:

1 fft :: Data [Double] -> Data [Double]

The type constructor Data denotes a Feldspar expression, and its parameter
denotes the type of value computed by that expression. For historical reasons,
Feldspar uses [] to denote immutable arrays.

The compiler translates the fft function into the following C99 signature,

1 void fft(struct array *v0, struct array **out);

1 https://hackage.haskell.org/package/feldspar-language.
2 https://hackage.haskell.org/package/feldspar-compiler.

c© Springer International Publishing Switzerland 2016
M. Serrano and J. Hage (Eds.): TFP 2015, LNCS 9547, pp. 124–135, 2016.
DOI: 10.1007/978-3-319-39110-6 7

https://hackage.haskell.org/package/feldspar-language
https://hackage.haskell.org/package/feldspar-compiler

Programmable Signatures 125

where struct array is a Feldspar specific data structure with metadata, such as
the number of elements, and a pointer to the data area.

The Feldspar compiler uses its calling convention for a number of reasons, but
the primary reasons are consistency and generality. The convention ensures that
all arguments fit into a register, which helps avoid spilling arguments to the call
stack. By passing arrays as references bundled with their length, the compiler
can generate code that works with different array sizes and still preserve the
same number of arguments.

Note that the calling convention only applies to the main function that one
wants to compile. Due to the embedding in Haskell, any helper functions that
are used will be inlined into the main function before code generation. Take the
following Feldspar program as an example:

1 f :: Data Double -> Data Double
2 f x = x*2
3

4 g :: Data Double -> Data Double
5 g y = f (y+1)

Compiling the function g is equivalent to compiling the function \y -> (y+1)*2.
In the future, we want to allow the possibility of marking certain Feldspar

functions as non-inlineable. But in that case, we expect that the compiler will
automatically handle the internal calling conventions.

1.1 Issues with Fixed Mappings

With a fixed signature mapping, it is easy to derive the target language type
from the source language type. But the fixed mapping leaves little room to
change the generated signature to fit into existing software. Code generated
from Feldspar will usually be part of a larger system, and the calling convention
is naturally dictated by the system rather than by the Feldspar compiler. If the
calling convention of the system differs from that of Feldspar, glue code has to
be written to interface with functions generated from Feldspar.

In a typical embedded system, arrays are passed as two arguments: a pointer
to the data buffer and an integer that gives the number of elements of the array.
However, there are many variations on this theme. Should the length come before
or after the buffer? Can the length argument be used for more than one array if
they always have the same length? And so on.

Even if we allow flags to customize the compiler, a fixed set of mapping rules
will never be able to cover all possible situations. Instead, we would like to put
the exported signature in the hands of the programmer. As a concrete example,
take the following function for computing the scalar product of two vectors:

1 scProd :: Data [Double] -> Data [Double] -> Data Double

126 A. Persson and E. Axelsson

The generated signature with the default mapping is:

1 void scProd(struct array *v0, struct array *v1, double *out);

By default, the Feldspar compiler automatically makes up names for the
arguments. Apart from the problem that Feldspar’s struct array is an unconven-
tional array representation, this code may also be considered too general: it has
to cater for the fact that the arrays may have different lengths. Since it does not
make sense to call scProd with arrays of different lengths, a more appropriate
signature might be:

1 double scProd(uint32_t len, double *v1_buf, double *v2_buf);

Here, the arrays are passed as two pointers to the corresponding data buffers
and a single length argument. This signature is more likely to occur in a practical
system, and it has the advantage that the function does not have to decide what
to do if the lengths are different. However, the system may expect a different
order of the arguments, and might expect the result to be passed by value instead
of by reference.

In addition to being able to customize the calling convention, we might also
want to affect non-functional aspects of functions. For example, we can name
arguments for readability and debugging purposes. This is helpful since Feldspar
is an embedded language and that syntactic information is lost when the Haskell
compiler reads the source file.

In future work we want to extend the annotations to include attributes to
help the C compiler, including restrict and volatile.

1.2 Contributions

To address the problems above, this paper presents three contributions:

– We define a simple EDSL to specify type conversions and annotations when
exporting a Feldspar function to an external system (Sect. 2).

– We give an implementation of the EDSL as a small wrapper around the existing
Feldspar compiler (Sect. 3). The implementation relies on a simple interface to
the underlying compiler.

– A generalized version of the implementation and the interface are provided as
part of the imperative-edsl3 package.

2 The Signature Language

Dissatisfied with hard-wired rules and global compiler options, we propose a
small language as a more flexible way to drive the compiler.

3 https://hackage.haskell.org/package/imperative-edsl-0.4.

https://hackage.haskell.org/package/imperative-edsl-0.4

Programmable Signatures 127

1 -- | Capture an argument
2 lam :: (Type a) => (Data a → Signature b) → Signature (a → b)
3

4 -- | Capture and name an argument
5 name :: (Type a) => String → (Data a → Signature b) → Signature (a → b)
6

7 -- | Create a named function return either by value or reference
8 ret :: (Type a) => String → Data a → Signature a
9 ptr :: (Type a) => String → Data a → Signature a

Listing 1.1. Signature language

The Signature language allows the programmer to express the mapping of
individual arguments separately. Specifically it allows the programmer to add
annotations to every argument and control the data representation. These anno-
tations can be as simple as just giving a name to a parameter, using the name

combinator. Or, it can change the arity of the function by introducing new para-
meters, like the native and exposeLength combinators in Listing 1.2.

Like Feldspar, the Signature language is a typed domain specific language,
embedded in Haskell. The Signature language preserves the type safety of
Felspar.

The Signature language interface is given in Listing 1.1. The combinators lam

and name are used to bind (and possibly annotate) an argument, while ret and
ptr are used to return the result of the function to be generated.

As our running example, we will reuse the scProd function from Sect. 1.1.

1 scProd :: Data [Double] -> Data [Double] -> Data Double

We can mimic the standard rules of the Feldspar compiler by wrapping the
function in our combinators.

1 ex1 :: Signature ([Double] -> [Double] -> Double)
2 ex1 = lam $ \xs -> lam $ \ys -> ptr "scProd" (scProd xs ys)

which generates the following C signature when compiled

1 void scProd(struct array *v0, struct array *v1, double *out);

Using name instead of lam, we change the embedding to name the first argument

1 ex2 :: Signature ([Double] -> [Double] -> Double)
2 ex2 = name "xs" $ \xs -> lam $ \ys -> ptr "scProd" (scProd xs ys)

resulting in

1 void scProd(struct array *xs, struct array *v1, double *out);

Finally, we change the function to return by value, by using ret instead of ptr

1 ex3 :: Signature ([Double] -> [Double] -> Double)
2 ex3 = name "xs" $ \xs -> name "ys" $ \ys -> ret "scProd" (scProd xs ys)

128 A. Persson and E. Axelsson

which produces

1 double scProd(struct array *xs, struct array *ys);

The basic constructors in the language are useful for simple annotations on
the arguments. But it is also possible to create constructors that will change the
arity or introduce interface code into the embedded function. The interface code
can bridge different representation formats.

Without the Signature language, we would have to write a C wrapper around
the generated function. A wrapper written in C is not polymorphic, but declared
with concrete types, like int or double. In contrast, the Feldspar functions are
often polymorphic and the concrete types are decided at compile time. A hand-
written wrapper would have to change for different concrete types, and thus
becomes a maintenance burden. Also, the wrapper code is a separate function
and can not be optimized together with the generated code. In contrast, the
Signature language combinators are applied before optimization and code gener-
ation, and the wrapper code fuses with the function.

For example, consider the scProd function again. In earlier versions it suffered
from two problems.

1. The two arrays may have different lengths and the generated code has to
defensively calculate the minimum length (see line 6 below).

2. The arrays are passed using a struct array pointer which results in extra
dereferencing. On line 9 below at is a macro that indexes into a struct array

and to do that it must do an extra dereference to find the buffer.

1 void scProd(struct array *v0, struct array *v1, double *out)
2 {
3 double e4;
4 uint32_t len5;
5

6 len5 = min(getLength(v0), getLength(v1));
7 e4 = 0.0;
8 for (uint32_t v2 = 0; v2 < len5; v2 += 1) {
9 e4 = e4 + at(double, v0, v2) * at(double, v1, v2);

10 }
11 *out = e4;
12 }

To help alleviate these problems we can define smart constructors that modify
the code before optimization. Note that these smart constructors are extensions
to the Signature language and can be expressed by the end user.

The native function changes an array argument to a native C array with length
l. Lam is a constructor of the Signature type (see Sect. 3). It is like lam, except that it
takes an extra annotation as argument. In this case, the annotation Native l says
that the argument bound by Lam should be a native C array of length l. By using
the Feldspar setLength function, size information is added to the array arguments,
so that the function f can use the argument as an ordinary Feldspar array that has
an associated length.

Programmable Signatures 129

1 -- | Pass the argument as a native array of length @len@
2 native :: (Type a)
3 => Data Length → (Data [a] → Signature b) → Signature ([a] → b)
4 native l f = Lam (Native l) $ λa → f $ setLength l a
5

6 -- | Expose the length of an array
7 exposeLength :: (Type a)
8 => (Data [a] → Signature b) → Signature (Length → [a] → b)
9 exposeLength f = name "len" $ λl → native l f

Listing 1.2. Smart signature constructors

In Sect. 3 we show how the Native constructor produces the interface code
needed to translate between native and struct array formats.

The exposeLength function adds an extra length argument to the signature
and passes this length to native. The effect is to break up a standard array
argument into two arguments: a length and a native array.

With our new combinators, we can create a version of the scProd function
that accepts native arrays of a fixed (runtime specified) length

1 scProdNative = name "len" $ \len ->
2 native len $ \as ->
3 native len $ \bs ->
4 ret "scProd" $ scProd as bs

which compiles to:

1 double scProd(uint32_t len, double *v1_buf, double *v2_buf)
2 {
3 struct array v2 = {.buffer =v2_buf, .length =len, .elemSize =
4 sizeof(double), .bytes =sizeof(double) * len};
5 struct array v1 = {.buffer =v1_buf, .length =len, .elemSize =
6 sizeof(double), .bytes =sizeof(double) * len};
7 double e5;
8

9 e5 = 0.0;
10 for (uint32_t v3 = 0; v3 < len; v3 += 1) {
11 e5 = e5 + at(double, &v1, v3) * at(double, &v2, v3);
12 }
13 return e5;
14 }

Note how the Feldspar compiler now realizes that both vectors have the same
length, and thus removes the defensive minimum length calculation.

The first two declarations in the generated code are for converting the native
array in the interface to struct array which is what the body of the function
expects. When the struct arrays are allocated on the stack and not visible outside
the function, an optimizing C compiler can often remove the extra dereference.
Instead of relying on compiler optimizations, we plan to make it possible to use
native arrays throughout the generated code, when stated so in the signature, but
that requires a change to the Feldspar compiler and is out of scope for this paper.

130 A. Persson and E. Axelsson

3 Implementation

The language is implemented as a simple deep embedding (Listing 1.3) on top
of which the programmer interface in Listing 1.1 is defined. The simplicity of
the deep embedding means that the compiler has a small set of constructs to
deal with. Still it supports the definition of a richer interface to the user. For
example, the exposeLength function could be implemented entirely in terms of
simpler constructs. This way of combining a deep embedding with shallow user-
facing functions has been shown to be very powerful for implementing EDSLs [4].

We can think of Signature as adding top-level lambda abstraction and result
annotations to the existing expression language Data. The use of a host-language
function in the Lam constructor is commonly known as higher-order abstract syntax
(HOAS) [5]. HOAS allows us to construct signatures without the need to generate
fresh variable names. As we will see in section Sect. 3.1, names are instead gener-
ated when we generate code from the signature.

In this paper we show the Signature implementation specialized to the
Feldspar language. A generalized version of the implementation is provided as
part of the imperative-edsl library.

3.1 Code Generation

Signature is defined as a wrapper type around the Feldspar expression type Data.
In order to generate code for signatures, we first need to be able to generate code
for Data. To this end, the Feldspar compiler provides the following interface:

1 varExp :: Type a => VarId -> Data a
2 compExp :: (MonadC m) => Data a -> m C.Exp
3 compTypeF :: (MonadC m, Type a) => proxy a -> m C.Type

The first function, varExp, is used to create a free variable in Feldspar. Natu-
rally, this function is not exported to ordinary users. The function compExp is used
to compile a Feldspar expression to a C expression Exp. Since compilation nor-
mally results in a number of C statements in addition to the expression, compExp

returns in a monad m capable of collecting C statements that can later be pretty

1 -- | Annotations to place on arguments or result
2 data Ann a where
3 Empty :: Ann a
4 Native :: Type a => Data Length → Ann [a]
5 Named :: String → Ann a
6

7 -- | Annotation carrying signature description
8 data Signature a where
9 Ret :: (Type a) => String → Data a → Signature a

10 Ptr :: (Type a) => String → Data a → Signature a
11 Lam :: (Type a)
12 => Ann a → (Data a → Signature b) → Signature (a → b)

Listing 1.3. Signature Language (deep embedding)

Programmable Signatures 131

printed as C code. Finally, compTypeF is used to generate a C type from a type a

constrained by Feldspar’s Type class. The argument of type proxy a is just used
to determine the type a.

The code generator is defined in Listing 1.4. Before explaining how it works,
we will explain the code generation technique used.

We use a C code generation monad for producing the C code. Operations
of this monad are accessed via the MonadC type class. Among other things, it
provides a method for generating fresh names, methods for adding statements
to the generated code and for adding parameters to the currently generated
function definition.

The concrete pieces of C code to be generated are written as actual C code
using quasi-quoters [6] for C code, provided by the package language-c-quote4.

For example, consider the following two lines from Listing 1.4:

17 addParam [cparam| $ty:t *out |]
18 addStm [cstm| *out = $e; |]

The first line adds a parameter to the generated C function, and the second
line adds a statement that assigns the result to the output pointer. The [q| ...

|] syntax is for quasi-quotation, where q is the name of the quoter. The quoter
parses the C code inside the brackets, and turns it into a representation of a
piece of code that can be collected in the code generation monad.

Quasi-quoters also allow the splicing of Haskell values into the quoted code.
In the above example, $ty:t splices in the Haskell value t as a C type, and $e

splices in e as a C expression. For the code to type check, t must have the type
C.Type and e must have the type C.Exp.

The signature is compiled by recursively traversing the Lam constructors and
building up the argument list. Finally, the Ret or Ptr case combines the argu-
ments to produce the function signature. The compilation of the function body
is delegated to the Feldspar compiler (by calling compExp).

The Lam (Native l) case (lines 24–38 from Listing 1.4) is an example of how
the Signature language can generate interface code.

24 go fun@(Lam n@(Native l) f) prelude = do
25 t <- compTypeF (elemProxy n fun)
26 i <- freshId
27 let w = varExp i
28 C.Var (C.Id m _) _ <- compExp w
29 let n = m ++ "_buf"
30 withAlias i (’&’:m) $ go (f w) $ do
31 prelude
32 len <- compExp l
33 addLocal [cdecl| struct array $id:m = { .buffer = $id:n
34 , .length=$len
35 , .elemSize=sizeof($ty:t)
36 , .bytes=sizeof($ty:t)*$len
37 }; |]
38 addParam [cparam| $ty:t * $id:n |]

4 http://hackage.haskell.org/package/language-c-quote.

http://hackage.haskell.org/package/language-c-quote

132 A. Persson and E. Axelsson

1 -- | Compile a @Signature@ to C code
2 translateFunction :: forall m a. (MonadC m) => Signature a → m ()
3 translateFunction sig = go sig (return ())
4 where
5 go :: forall d. Signature d → m () → m ()
6 go (Ret n a) prelude = do
7 t ← compTypeF a
8 inFunctionTy t n $ do
9 prelude

10 e ← compExp a
11 addStm [cstm| return $e; |]
12 go (Ptr n a) prelude = do
13 t ← compTypeF a
14 inFunction n $ do
15 prelude
16 e ← compExp a
17 addParam [cparam| $ty:t *out |]
18 addStm [cstm| *out = $e; |]
19 go fun@(Lam Empty f) prelude = do
20 t ← compTypeF (argProxy fun)
21 v ← varExp <$> freshId
22 C.Var n _ ← compExp v
23 go (f v) $ prelude >> addParam [cparam| $ty:t $id:n |]
24 go fun@(Lam n@(Native l) f) prelude = do
25 t ← compTypeF (elemProxy n fun)
26 i ← freshId
27 let w = varExp i
28 C.Var (C.Id m _) _ ← compExp w
29 let n = m ++ "_buf"
30 withAlias i (’&’:m) $ go (f w) $ do
31 prelude
32 len ← compExp l
33 addLocal [cdecl| struct array $id:m = { .buffer = $id:n
34 , .length=$len
35 , .elemSize=sizeof($ty:t)
36 , .bytes=sizeof($ty:t)*$len
37 }; |]
38 addParam [cparam| $ty:t * $id:n |]
39 go fun@(Lam (Named s) f) prelude = do
40 t ← compTypeF (argProxy fun)
41 i ← freshId
42 withAlias i s $ go (f $ varExp i) $
43 prelude >> addParam [cparam| $ty:t $id:s |]
44

45 argProxy :: Signature (b → c) → Proxy b
46 argProxy _ = Proxy
47

48 elemProxy :: Ann [b] → Signature ([b] → c) → Proxy b
49 elemProxy _ _ = Proxy

Listing 1.4. Signature translation

Programmable Signatures 133

Apart from allocating a fresh parameter, it creates a local struct array object
(lines 33–37) on the function stack and initializes it with the length l and the
buffer parameter. Then compilation continues with f applied to the address of
the local struct array object.

4 Related Work

The purpose of the Signature language is to customize the compilation of embedded
languages. It is related to Foreign Function Interfaces (FFI) which exist in many
forms [7,8].With theFFI, the signature can be controlled by annotations (e.g. new-
type argument wrappers), but annotations are typically limited to individual argu-
ments. The Signature language takes the annotations further by allowing them to
for example change the arity and the order of the arguments.

MATLAB Coder [9]5 is a tool that generates standalone C and C++ code
from MATLAB code. One purpose of MATLAB Coder is to export MATLAB
functions to an external system. Since MATLAB is dynamically typed, the same
function can operate on values of different type. When generating C code, the
user must specify a type for the function, and optionally sizes or size bounds for
matrix arguments. This can be done on the command line using what can be
seen as a restricted DSL.

However, judging from code examples provided by MathWorks, the signature
mapping of MATLAB Coder appears to be rather restricted. For example, stack
allocated matrices are passed as two arguments: a pointer to a data buffer and
a length vector. If a static size is given for the matrix, the length vector goes
away. But if a different argument order is needed, or if one wants to use the
same length vector for two different matrices, this likely requires introducing a
wrapper function with a different interface.

5 Discussion and Future Work

The Signature language enables us to customize the signature of compiled
Feldspar functions. It also allows generation of interface code fused with the
original function.

Why is a new language needed? Why not just add annotations to the Lam

abstraction constructor in the Feldspar Core language? Simple annotations, like
parameter naming, can be implemented using a combination of newtypes and
type classes. In addition to simple annotations, the Signature language supports
complex manipulations including changing the function arity.

The Signature language is a proper extension of the Feldspar Core language,
which means it is optional and can co-exist with other extensions. Since the Sig-

nature is built using a combination of deep and shallow embedding, the language
is possible to extend by the end user. Also, the Signature language can be seen as
a replacement for the top-level lambda abstractions in the Feldspar expression.

5 Matlab Coder http://www.mathworks.com/products/matlab-coder.

http://www.mathworks.com/products/matlab-coder

134 A. Persson and E. Axelsson

1 -- | Signature annotations
2 data Ann expr a where
3 Empty :: Ann expr a
4 Named :: String → Ann expr a
5 Native :: (VarPred expr a) => expr len → Ann expr [a]
6

7 -- | Signatures
8 data Signature expr a where
9 Ret :: (VarPred expr a) => String → expr a → Signature expr a

10 Ptr :: (VarPred expr a) => String → expr a → Signature expr a
11 Lam :: (VarPred expr a) => Ann expr a → (expr a → Signature expr b)
12 → Signature expr (a → b)

Listing 1.5. Generalized implementation

A generalized implementation of the Signature language is available in the
imperative-edsl package. That implementation works with any expression lan-
guage that supports the interface in Listing 1.5. The imperative-edsl repository6

contains an example with a different expression language.

Acknowledgements. This research is funded by the Swedish Foundation for Strate-
gic Research (which funds the Resource Aware Functional Programming (RAW FP)
Project) and the Swedish Research Council.

References

1. Axelsson, E., Dévai, G., Horváth, Z., Keijzer, K., Lyckeg̊ard, B., Persson, A.,
Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: a domain specific language for
digital signal processing algorithms. In: Formal Methods and Models for Codesign,
MemoCode. IEEE Computer Society (2010)

2. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson, A.:
The design and implementation of Feldspar. In: Hage, J., Morazán, M.T. (eds.) IFL
2010. LNCS, vol. 6647, pp. 121–136. Springer, Heidelberg (2011)

3. Persson, A.: Towards a functional programming language for baseband signal
processing. Thesis for the Degree of Licentiate of Engineering (2014). ISSN: 1652–
876X

4. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding for EDSL.
In: Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 21–36. Springer,
Heidelberg (2013)

5. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation,
pp. 199–208. ACM, New York (1988)

6. Mainland, G.: Why it’s nice to be quoted: quasiquoting for Haskell. In: Proceedings
of the ACM SIGPLAN Workshop on Haskell, pp. 73–82. ACM, New York (2007)

6 https://github.com/emilaxelsson/imperative-edsl/blob/signatures-camera-ready/
examples/Signature.hs.

https://github.com/emilaxelsson/imperative-edsl/blob/signatures-camera-ready/examples/Signature.hs
https://github.com/emilaxelsson/imperative-edsl/blob/signatures-camera-ready/examples/Signature.hs

Programmable Signatures 135

7. Chakravarty, M.M.: The Haskell 98 Foreign Function Interface 1.0 - An Addendum
to the Haskell 98 Report (2003)

8. Chakravarty, M.M.: Foreign inline code: systems demonstration. In: Proceedings of
the 2014 ACM SIGPLAN Symposium on Haskell, pp. 119–120. ACM (2014)

9. MathWorks: MATLAB User’s Guide (MATLAB Coder), Version: 2011a. http://
www.mathworks.com/help/toolbox/coder/index.html

http://www.mathworks.com/help/toolbox/coder/index.html
http://www.mathworks.com/help/toolbox/coder/index.html

Termination Proofs for Recursive Functions
in FoCaLiZe

Catherine Dubois1 and François Pessaux2(B)

1 ENSIIE – CEDRIC, Paris, France
catherine.dubois@ensiie.fr

2 ENSTA ParisTech – U2IS, Paris, France
francois.pessaux@ensta.fr

Abstract. FoCaLiZe is a development environment allowing the writ-
ing of specifications, implementations and correctness proofs. It gen-
erates both OCaml (executable) and Coq code (for verification needs).
This paper extends the language and the compiler to handle termina-
tion proofs relying on well-founded relations or measures. We propose
an approach where the user’s burden is lightened as much as possible,
leaving glue code to the compiler. Proofs are written using the declarative
proof language provided by FoCaLiZe, and the automatic theorem prover
Zenon. When compiling to Coq we rely on the Coq construct Function.

Keywords: Formal proof · Functional programming · FoCaLiZe · Coq ·
Recursion · Termination

1 Introduction

The FoCaLiZe environment [1] (formerly FoCaL [12]) allows one to incrementally
build programs or library components with a high level of confidence and qual-
ity. FoCaLiZe units may contain specifications, implementations and proofs that
the implementations satisfy their specifications. These ones are first-order like
formulas while implementations are given as a set of functions in a syntax close
to OCaml’s one. Proofs are done using hints to the automatic prover Zenon [2,7]
in a declarative style. Inheritance and parametrization allow the programmer to
reuse specifications, implementations and proofs. FoCaLiZe units are translated
into OCaml executable code and verified by the Coq proof assistant.

When specifying properties that the result of a function should follow, we
assume that the function does compute a result. This hypothesis is trivial for
functions such as identity or square; others may require the programmer to
restrict their domain (e.g. division) or lead to extra proof obligations to show
that the -recursive- functions terminate. The problem of termination is known
as undecidable, however it is tractable in many cases. We rely on classical tech-
niques also used in PVS, Coq or Isabelle consisting in showing that the arguments
of each recursive call in the function are strictly lower than the arguments of
the initial call according to a measure or a well-founded relation. Some tools,
c© Springer International Publishing Switzerland 2016
M. Serrano and J. Hage (Eds.): TFP 2015, LNCS 9547, pp. 136–156, 2016.
DOI: 10.1007/978-3-319-39110-6 8

Termination Proofs for Recursive Functions in FoCaLiZe 137

e.g. Isabelle and Agda [3,10], try to automatically find a convenient lexicographic
order and verify termination. In FoCaLiZe, we adopt for termination checking, a
solution in line with the general proof discipline which consists in guiding Zenon
in its proof search by giving some hints. So, the programmer will indicate the
well-founded relation or the measure the proof will use, the recursive argument
and provide the proof that the argument is decreasing and the proof that the
relation is a well-founded one when necessary. FoCaLiZe provides some helps
and computes the statements of the required proofs. Furthermore we do want
as much as possible to write the proofs with Zenon. However Zenon relies on
first-order and thus cannot cope with higher-order statements, such as the ones
that could be required to prove that a certain relation is well-founded. How-
ever in many practical cases, the relation is a usual one (e.g. the usual order on
natural numbers) or a lexicographic one obtained by combining some standard
orders. Hence, with a toolbox offering some standard orders, Zenon will be able
to perform the required proofs. As said previously, all the proofs must be checked
by Coq. In this context, the FoCaLiZe compiler translates a FoCaLiZe function
into a Coq function that is required to be total. Thus, when the recursion is
structural, the function is translated into a Coq Fixpoint, and we benefit from
the syntactic termination verification made by Coq. When the function is recur-
sive but implements a general recursion, we translate it into a general recursive
Coq function, using the Function construct [5]. This latter requires to deter-
mine the relation and asks for proofs that the argument is decreasing and when
necessary a proof that the relation is well-founded. In order to be as general
as possible, we rely on a compilation scheme that restricts Function to use a
well-founded relation or a measure defined on the tuple of all the arguments of
the recursive function. This general compilation process will ease future work,
e.g. allowing the user to set a measure involving several arguments or to make
several arguments decrease. Thus, the translation is not syntactic and the com-
piler has to re-build the relation and the proofs required by Function and Coq
from the ones provided by the FoCaLiZe programmer. Our approach strongly
distinguishes these two views: the user/programmer view and the internal view.
The compiler does the glue because it is not the burden of the programmer to fit
to a scheme imposed by the certification process (Coq verification). Furthermore,
we believe that the user view allows for targeting different compilation schemes
or certification environments (e.g. Isabelle).

The rest of the paper is organized as follows. Section 2 presents very briefly
the FoCaLiZe environment, in particular its proof language. Section 3 is devoted
to the definition of recursive functions whose termination proof requires a well-
founded relation: both the user view and the internal view are illustrated on an
example. Section 4 follows the same roadmap but for functions that can rely on a
measure to prove termination. Section 5 explains the current limitations and pro-
poses some work in progress and perpectives. Many works exist on termination
proof, so in Sect. 6, we discuss some related work.

138 C. Dubois and F. Pessaux

2 Overview of FoCaLiZe

FoCaLiZe [1] is a development environment providing a unique language to write
properties, functions and proofs, allowing high-level programming constructs like
inheritance, late-binding, and parametrization. It is the continuation of FoC [8]
and FoCaL [18].

A FoCaLiZe development is compiled into an executable (or object to link)
OCaml code and a Coq term. The OCaml code only contains the computational
aspects of the development, while the Coq code is a complete model, also embed-
ding the logical aspects (i.e. properties and proofs). During the compilation
process, the logical model is sent to Coq that acts as an assessor (i.e. it checks
the code issued by the FoCaLiZe compiler and Zenon).

The basic brick of a FoCaLiZe development is the species, a grouping structure
embedding methods which may be an internal datatype, properties (to be proved
later), theorems, signatures (declarations of functions to be defined later) or def-
initions. Once a species has all its signatures defined and properties proved, it
can be submitted to an abstraction process turning it into an abstract datatype
(a collection in the FoCaLiZe terminology) only showing its signatures and prop-
erties. Collections can then be used to parameterize species, bringing their own
material.

The code generation model extensively uses a dependency calculus to han-
dle late-binding and parametrization and λ-lifts both types and methods to
allow code consistency and sharing [17,18]. The dependency calculus has been
extended to take into account termination proofs which are not different from
other proofs. Roughly speaking, a method m depending on the declaration (type)
of a method n is said having a decl-dependency on n. In the definition of m, n
then gets λ-lifted to circumvent its missing definition or final redefinition. If m
depends on the definition of n, then it has a def-dependency. In this case, no λ-
lifting is done, and the real definition of m is used in n. Dependencies on species
parameters methods exist and can be considered as decl-dependencies.

Proofs are written in the FoCaLiZe Proof Language, providing a hierar-
chical decomposition into intermediate steps [16]. Each step states hypotheses,
one goal and a proof of this latter. Each proof can either invoke Zenon to unfold
definitions, use previous outer steps, properties, induction or can be a sub-proof.

As an example, the following proof has two outer steps <1>1 and <1>2. The
step <1>1 introduces the hypotheses h1, h2, h3 and the sub-goal c. It is proved
by a 2-step subproof. The step <2>1 uses h1 and h2 to prove b. The step <2>2
uses <2>1 and h3 in order to prove c. The step <1>2 ends the whole proof.
theorem t : all a b c : bool , a -> (a -> b) -> (b -> c) -> c
proof =

<1>1 assume a b c : bool ,
hypothesis h1: a, hypothesis h2: a -> b, hypothesis h3: b -> c,
prove c

<2>1 prove b by hypothesis h1, h2
<2>2 qed by step <2>1 hypothesis h3

<1>2 qed by step <1>1

Termination Proofs for Recursive Functions in FoCaLiZe 139

During the compilation process, proofs are compiled and sent to Zenon which
tries to find a proof and returns a Coq term. This proof term is then injected in
the final generated Coq script which is sent to Coq. If Zenon fails finding a proof
with the hints given by the user, then the compilation process fails. Because
Zenon does not support higher-order, λ-lifting must be temporarily replaced
by Coq Hypothesis and Variable in Sections. This requires the compiler to
prepare a suitable Coq environment to host the term that Zenon will return. The
compiler must also transmit the user’s hints to Zenon. This leads to a slightly
verbose generated code for proofs but this remains still readable.

A “backdoor” mechanism is however available, allowing to directly inline
Coq scripts in proofs when Zenon does not suffice (e.g. higher-order) or to bind
already existing Coq notions. With this solution, the user is required to have
a good knowledge of Coq, of the compiler transformations. Unfortunately this
mechanism makes the proofs not portable. So it is mostly reserved for the stan-
dard library.

3 Well-Founded Relations

The essence of terminating recursion is that there are no infinite chains of nested
recursive calls. This intuition is commonly mapped to the mathematical idea of
a well-founded relation and we stick to this view which is also the Coq app-
roach. More precisely, Coq uses accessibility to define well-founded relations.
Accessibility describes those elements from which one cannot start an infinite
descending chain. A relation on T is well-founded when all the elements of type
T are accessible (see Fig. 1 for the Coq definition).

In this section we illustrate our approach with the simple example of the
function div that computes the quotient in the Euclidean division of two positive
integers. The function, whose definition is given below, is made total in order to
only focus on its termination.

let rec div (a, b) =
if a <= 0 || b <= 0 then 0
else (if (a < b) then 0 else 1 + div ((a - b), b))

termination proof = order pos_int_order on a ... ;;

3.1 User View

From the user’s point of view, despite div has two arguments, only the first one a
is of interest for termination. The well-founded relation used here, pos int order
(of type int → int → bool), is the usual ordering on positive integers provided
by the standard library:

let pos_int_order (i1, i2)=(0 <=i2)&& (i1 < i2)
The well-foundedness obligation of this relation is stated by is well founded
pos int order, which relies on the FoCaLiZe standard library’s definition of
is well founded as:

(fun f => well_founded (fun x y => Is_true (f x y)))

140 C. Dubois and F. Pessaux

The well-foundedness obligation is easily proved thanks to the library the-
orem pos int order wf. Notice that well founded here is the Coq predicate,
defined in the Coq standard library (Fig. 1). This exemplifies that a FoCaLiZe
specification can mix definitions and properties defined with the FoCaLiZe lan-
guage together with Coq exported definitions and theorems (and also OCaml
definitions but it is not the case in this work).

Variable A : Type.
Variable R : A -> A -> Prop.
Inductive Acc (x: A) : Prop :=

Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.
(* A relation is well -founded if every element is accessible . *)
Definition well_founded := forall a:A, Acc a.

Fig. 1. Coq definition of well founded

The function div having only one recursive call, the only decreasing proof
obligation is:

∀a : int,∀b : int,¬(a ≤ 0 ∨ b ≤ 0) → ¬(a < b) → pos int order(a − b, a)
where the conditions on the execution path leading to the recursion must be
accumulated as hypotheses.

The termination proof consists in as many steps as there are recursive calls,
each one proving the ordering (according to the relation) of the decreasing argu-
ment and the initial one, then one step proving that the termination relation is
well-founded and an immutable concluding step telling to the compiler to assem-
ble the previous steps, generate some stub code using a built-in Coq script to
close the proof. The complete termination proof for div is given in Fig. 2. The
statements of proof obligations (lines 3–5 and 21) are indicated by the compiler
to the user who has just to cut and paste them in the source file. The proof that
the argument of the recursive call is smaller than the initial one is quite long
because Zenon has no support for arithmetic. However, this could be improved
by using Zenon Arith, an extension of Zenon able to handle linear arithmetic [11].

To summarize, from the user’s point of view, a recursive function whose ter-
mination relies on a well-founded relation is given by the four following elements:

1. the relation,
2. the theorem stating that this relation is well-founded,
3. a theorem for each recursive call, stating that the arguments of the recursive

calls are smaller than the initial arguments according to the given relation,
4. the recursive definition with a termination proof of the shape (the order of

the obligations does not matter):
<1>x proofs of decreasing for each recursive call arguments

(the same statements as the corresponding theorems in point 3,
even if it is possible to directly inline the proofs instead)

<1>x + 1 proof of the relation being well -founded
(same statement as in point 2, same remark than in steps <1>x)

<1>x + 2 qed coq proof {* wf_qed*}

Termination Proofs for Recursive Functions in FoCaLiZe 141

1 let rec div (a, b) = ...
2 termination proof = order pos_int_order on a
3 <1>1 prove all a : int , all b : int ,
4 ~ (a <= 0 || b <= 0) ->
5 ~ (a < b) -> pos_int_order (a - b, a)
6 <2>1 assume a : int , b : int ,
7 hypothesis H1: ~ (a <= 0 || b <= 0),
8 hypothesis H2: ~ (a < b),
9 prove pos_int_order (a - b, a)

10 <3>1 prove b <= a
11 by property int_not_lt_ge , int_ge_le_swap hypothesis H2
12 <3>2 prove 0 <= a
13 by property int_not_le_gt , int_ge_le_swap , int_gt_implies_ge
14 hypothesis H1
15 <3>3 prove 0 < b
16 by property int_not_le_gt , int_gt_lt_swap hypothesis H1
17 <3>4 prove (a - b) < a
18 by step <3>1, <3>2, <3>3 property int_diff_lt
19 <3>e qed by step <3>4, <3>2 definition of pos_int_order
20 <2>e conclude (* = qed by all previous steps of this nesting level. *)
21 <1>2 prove is_well_founded (pos_int_order)
22 by property pos_int_order_wf
23 <1>e qed coq proof {* wf_qed *} ;

Fig. 2. Termination proof for div

3.2 Internal View

From the compiler’s point of view, the code generation is split in 4 steps:

1. Creation of the relation expected by Function. This one takes two
tuples with as many arguments as the user’s recursive function has. It extracts
the decreasing one from each tuple, and applies the user’s relation on them.

2. Creation of the user-side termination theorem containing the compiled
proof of the user. This theorem only operates on the decreasing argument,
hence uses the user’s relation. This theorem is the conjunction of the decreas-
ing obligations and the well-foundedness obligation.

3. Creation of the Function-side termination theorem. This theorem
operates on the tuple of arguments of the function and uses the generated
relation. Roughly speaking, this theorem states the same property as the pre-
vious one, but operating on tuples and referring to the relation synthesized
at step 1. This proof is fully done by the compiler, using the proof of well-
foundedness of the user’s relation and a Coq theorem (wf inverse image)
stating that the reverse image of a well-founded relation by any function
(here, tuple projectors) is a well-founded relation.

4. Creation of the recursive function definition using Function. The
Function body is obtained using the usual FoCaLiZe compilation scheme,
the termination part is filled with the relation generated at step 1 and a final
proof built with the theorem generated at the previous step.

Figure 3 gives an overview of the structure of the compilation of a function.
Grayed blocks are those generated by the compiler while white ones are the code
of the user.

142 C. Dubois and F. Pessaux

Coq’s "Function"

+ proof of decreasing for each call
+ proof of well−foundedness of the relation

WF Relation

Coq’s "Function"−side Termination Theorem

User relation

User−side Termination Theorem

User recursive function

Fig. 3. Global structure of a function with its proof

3.2.1 Function

In this part, we briefly recall how the Coq command Function works
Function [5] (see also the Coq manual reference).

The Coq proof assistant provides the command that allows the definition
of both structural and well-founded recursive functions. When defining a non-
structurally recursive function, the user is asked to provide a well-founded rela-
tion (or a measure function) and an argument (the decreasing one) and to show
that the corresponding arguments in the recursive calls are smaller than the ini-
tial ones according to the well-founded relation (or the measure). Furthermore,
the user has also to prove that the relation is indeed a wellfounded one. So a
definition using this construct looks like a definition by pattern-matching in a
functional language, annotated with a measure or a wellfounded relation and
completed with some proof scripts discharging the termination proof obligations
generated by Function. Note that the statements of the termination proof oblig-
ations do not appear in the definition. These ones are made explicit in a FoCaLiZe
definition. Once the definition has been accepted by Coq, a set of definitions is
automatically derived, in particular a fixpoint equation and an induction prin-
ciple that follows the structure of the function.

3.2.2 Creation of the Relation Expected by Function

The expected relation takes two arguments x and y being tuples of all
the function arguments. To extract the one used for decreasing, a built-in
projection is used. In Coq, tuples are encoded as pairs nested to the left:
(x, y, z) ≡ ((x, y), z). Projections are part of the low-level standard library of
FoCaLiZe and internally known by the compiler which generates the right name
from the number of components of the tuple and the position of the component
to extract. Here the projection tpl firstprj2 extracts the first component of
a 2-uple. and is defined as:
Definition __tpl_firstprj2 (__var_a : Set) (__var_b : Set)
(x : (__var_a * __var_b)) : __var_a := __left __var_a __var_b x.

Once components are extracted, there remains to apply the user relation to
them. The corresponding Coq definition is as follows (where stands for inferred
arguments):

Termination Proofs for Recursive Functions in FoCaLiZe 143

Definition div wforder (__x __y : (int__t * int__t)) : Prop :=
Is_true

(pos_int_order (__tpl_firstprj2 _ _ __x) (__tpl_firstprj2 _ _ __y)).

3.2.3 Creation of the User-Side Termination Theorem
The user’s termination proof must now be compiled and generated. Except the
concluding step, all steps are compiled using the usual FoCaLiZe compilation
process. Because Zenon does not handle higher-order, dependencies cannot be
λ-lifted (see Sect. 2). Instead, we enclose the proof in a Coq section, where depen-
dencies lead to Variable and Hypothesis clauses. For the same reason, each
proof step is also embedded in a Section. In the generated proof below, line
numbers and proof steps refer to the code given at Fig. 2.

Section Proof_of_div.
Section __A_1.

(* Step <1>1 line 3. *)
Theorem __A_1_LEMMA :

forall a : int__t , forall b : int__t ,
~ Is_true (_bar__bar_ (_lt__eq_ a 0) (_lt__eq_ b 0)) ->
~ Is_true (_lt_ a b) -> Is_true (pos_int_order (_dash_ a b) a).

(* ... Zenon proof term inlined here ... *)
End __A_1.

Section __A_2.
(* Step <1>2 line 21. *)
Theorem __A_2_LEMMA : ((is_well_founded _) pos_int_order).
(* ... Zenon proof term inlined here ... *)
End __A_2.

(* Theorem ’s body. *)
Theorem for zenon div :

(forall a : int__t , forall b : int__t ,
~ Is_true (_bar__bar_ (_lt__eq_ a 0) (_lt__eq_ b 0)) ->
~ Is_true (_lt_ a b) -> Is_true (pos_int_order (_dash_ a b) a))

/\
(well_founded (fun __a1 __a2 => Is_true (pos_int_order __a1 __a2))).

Proof.
generalize __A_2_LEMMA.
generalize __A_1_LEMMA.
unfold is_well_founded.
intros.
SplitandAssumption.
Qed.

End Proof_of_div.

Once each step of the proof but the concluding one has been generated, the
compiler detects that the concluding one refers to termination. It then gener-
ates and proves the theorem for zenon div stating the termination obligations
as the user sees them: only dealing with the unique decreasing argument. This
theorem’s statement is the conjunction of all the decreasing lemmas and the
well-foundedness of the user’s relation introduced in Sect. 3.1. Since the user
is expected to have proved the different parts of this conjunction in the previ-
ous steps, each lemma introduced by the steps is generalized, and a Coq tactic
SplitandAssumption is used to automate splitting the goal then picking in the
context to solve each sub-goal.

144 C. Dubois and F. Pessaux

3.2.4 Creation of the Function-Side Termination Theorem
Once the user-side theorem is available, its counterpart as expected by Function
must be generated as a separate theorem. This theorem states the same proof
obligations, but dealing with the tuple of arguments of the recursive function.
Hence it must use the relation automatically generated in Sect. 3.2.2 and the
user-side termination theorem generated in Sect. 3.2.3 as shown in the following
generated code.

Theorem div termination :
(forall a : int__t , forall b : int__t ,
~ Is_true (_bar__bar_ (_lt__eq_ a 0) (_lt__eq_ b 0)) ->
~ Is_true (_lt_ a b) -> div wforder ((_dash_ a b), b) (a, b))
/\
(well_founded (div wforder)).

Proof.
unfold div wforder;simpl.
elim for zenon div.
intro __user_dec1.
intro __user_rem_dec_n_wf.
(* Separate decreasing obligations and well - foundedness. *)
split.
auto. (* For each rec call. *)
(* There , only remains the well - foundedness obligation . *)
set (R := (fun __a __b => Is_true (pos_int_order __a __b))).
change

(well_founded (fun __c __d : (int__t * int__t)
=> R (__tpl_firstprj2 _ _ __c) (__tpl_firstprj2 _ _ __d))).

apply wf_inverse_image.
assumption.
Qed.

The proof of the theorem is automatically generated by the compiler. The
proof proceeds as follows. It first introduces in the hypothesis context the con-
clusions of the user-side termination theorem (named here user dec1 and
user rem dec n wf). The proof is split, thus separating the decreasing and

well-foundedness obligations. Decreasing obligations are proved automatically
thanks to the simplification of the goal and hypotheses found in the context.
This is to be repeated as many times as there are recursive calls. The last
part proves that the relation defined for Function is well-founded. We refor-
mulate the goal statement such that it appears as well-foundedness of the user-
defined relation (denoted by R in the proof script) composed with the projection
needed to extract the decreasing argument from the tuple of arguments (here
tpl firstprj2). The proof ends with the application of the Coq standard

library theorem wf inverse image that establishes that if a relation is well-
founded then this relation composed with any function is also well-founded. It
asks for the well-foundedness of the user-relation which is a hypothesis (here
user rem dec n wf).

3.2.5 Creation of the Recursive Function Definition Using Function

The Coq Function can now be generated, using the generated relation (in our
example, div wforder). The compiler emits the “glue code” of the final proof,
using the theorem generated in Sect. 3.2.4 and some low-level theorems of the

Termination Proofs for Recursive Functions in FoCaLiZe 145

FoCaLiZe standard library. These low-level theorems mostly deal with properties
about the equality.

Function div (__arg: (int__t * int__t))
{wf div wforder __arg}: int__t :=
match __arg with

| (a, b) =>
(if (_bar__bar_ (_lt__eq_ a 0) (_lt__eq_ b 0)) then 0
else ((if ((_lt_ a b)) then 0 else _plus_ 1 (div ((_dash_ a b), b)))))

end.
Proof.

elim div termination.
intros __for_function_dec1 __for_function_rem_dec_n_wf.
split. intros.
eapply __for_function_dec1 ; eauto ||

(apply coq_builtins.EqTrue_is_true; assumption) ||
(apply coq_builtins.IsTrue_eq_false2; assumption) ||
(apply coq_builtins.syntactic_equal_refl).

(* Remaining proof of well - foundedness ... *)
assumption.
Qed.

Figure 4 gives a detailed structure of the complete compilation of a function
f whose termination relies on a relation r. Grayed blocks are those generated
by the compiler while white ones are the code of the user.

Definition f_wforder (..., a, ...) (..., b, ...) :=

 r a b

(* User−side theorem *)

Theorem for_zenon_f: all x y,

 r (...) x /\

 well_founded (fun a b −> r a b)
 r (...) x /\
 ...

proof =

termination proof = order r on x ...
let rec f (..., x, ...) = ...

(* Function−side theorem *)

Theorem f_termination: all ... b ...,

 f_wforder (...) b /\
 ...
 f_wforder (...) b /\

 well_founded f_wforder
proof =

(* Rec call 1 *)

(* Rec call n *)

(* Rec call 1 *)

(* Rec call n *)

Function f ...

proof =

let r (y) = ... : int

Fig. 4. Detailed structure of a function with its proof

4 Measure Functions

We consider here the particular case when the termination relies on a measure –
a function that returns a natural number – which must decrease at each recursive
call. We want to ease such termination proofs even if it would be possible for
the user to use the previous approach, by constructing himself a well-founded
relation from the measure. Precisely, the compiler does this job for him.

A measure has to be positive, which will be a proof obligation. However, the
relation built from the measure being internalized, its well-foundedness is no
more asked of the user. From the user’s point of view, the proof obligation for

146 C. Dubois and F. Pessaux

each recursive call must now show that the measure decreases on the argument
of interest between each call. The compiler must build a well-founded relation
from the measure, operating on all the arguments of the function, to prove its
well-foundedness and build the final proof expected by Coq construct Function.

Let us notice that Function natively supports a measure annotation that we
do not use. Indeed, we think that only relying on a well-founded relation leaves
the compilation scheme more open to other logical target languages.

We illustrate the approach with the function qsort that implements the
quicksort algorithm and thus sorts the elements of a list. The type of these
elements is provided by the parameter A of the species AList together with an
ordering method le. The function qsort performs two recursive calls on two
sub-lists obtained by splitting the initial list. The termination is ensured by the
shorter lengths of these sub-lists compared to the initial list. We first write the
method length whose termination is simply structural on its argument l. The
sorting function requires a partition method to split a list into the two sub-lists
respectively containing the elements lower or equal and strictly greater than a
“pivot” value, according to the method le of the parameter A. Finally, we write
the method qsort, stating a termination proof using the measure length on its
argument l, but we do not show the proof itself yet:
species AList (A is Comparable) =

let rec length (l : list (A)) =
match l with
| [] -> 0
| h :: q -> 1 + length (q)
termination proof = structural l ;

let rec partition (l , x : A) =
match l with
| [] -> ([], [])
| h :: q ->

let p = partition (q, x) in
if A!le (h, x) then

(h :: (fst (p)), snd (p))
else (fst (p), h :: (snd (p)))

termination proof = structural l ;

let rec qsort (l : list (A)) =
match l with
| [] -> []
| x :: r ->

match r with
| [] -> l
| y :: q ->

let p = partition (r, x) in
app (qsort (fst (p)),

x :: (qsort (snd (p))))
termination proof =

measure length on l ... ;
end ;;

Using the species and collection parameters features of FoCaLiZe, this exam-
ple also shows that the compilation model introduced in this paper fits the usual
dependency calculus and λ-lifting mechanisms used by the compiler.

Note that in this example, qsort has only one argument. In this particular
case, the mechanism described in Sect. 3 to manage the tuple of all the arguments
of a function is irrelevant here.

4.1 User View

From the user’s point of view, the measure being length on the argument l, the
first proof obligation is ∀l : list(A), 0 ≤ length(l).

Then, the method qsort having two recursive calls, the two decreasing proof
obligations are:
∀l : list(A), ∀x : A, ∀r : list(A),∀y : A, ∀q : list(A), ∀p : list(A) ∗ list(A),

(l = x :: r) → (r = y :: q) → (partition(r, x) = p) → length(fst(p)) < length(l)

Termination Proofs for Recursive Functions in FoCaLiZe 147

and
∀l : list(A),∀x : A, ∀r : list(A), ∀y : A, ∀q : list(A), ∀p : list(A) ∗ list(A),

(l = x :: r) → (r = y :: q) → (partition(r, x) = p) → length(fst(p)) < length(l)

where variables bound on the execution path leading to the recursive call must be
accumulated as hypotheses. Here, the recursive calls being in pattern-matching
cases, x and r must be related to the matched value l (idem for y, q and r). The
core of the decreasing facts is the < relation between the length of the recursive
calls arguments and the length of the list in the current call.

For readability, instead of inlining the proofs of these obligations, the user
can state two related properties or theorems before the function qsort itself:

property length_pos : all l: list (A), 0 <= length (l) ;

theorem mes_decr_fst :
all l : list (A), all x : A, all r : list (A), all y : A,
all q : list (A), all p : list (A) * list (A),
(l = x :: r) -> (r = y :: q) -> (partition (r, x) = p) ->

length (fst (p)) < length (l)
proof = ... ;

theorem mes_decr_snd :
all l : list (A), all x : A, all r : list (A), all y : A,
all q : list (A), all p : list (A) * list (A),
(l = x :: r) -> (r = y :: q) -> (partition (r, x) = p) ->

length (snd (p)) < length (l)
proof = ... ;

Note that length pos is a property, not a theorem: it is not yet proved.
Hence, thanks to the dependency calculus, it will be λ-lifted. This shows that
our code generation model is not impacted by termination proofs.

Now the termination proof (see Fig. 5) consists in as many steps as there
are recursive calls, each one proving the strict decreasing of the measure, then
one step proving that the measure is positive and an immutable concluding step
telling the compiler to assemble the previous steps and generate some stub code
to close the proof.

To summarize, from the user’s point of view, a recursive function whose
termination relies on a measure is given by the four following items:

1. the measure function returning a regular integer (which raises the issue that
< is well-founded on naturals, not integers),

2. the theorem stating that the measure is always positive or null,
3. a theorem for each recursive call, stating that the measure on the argument

of interest decreases,
4. the recursive definition with a termination proof of the following shape:

<1>x proofs of decreasing for each recursive call
(the same statements as corresponding theorems in point 3,
even if it is possible to directly inline the proofs instead)

<1>x + 1 proof of the measure being always positive or null
(same statement as in point 2, same remark than in steps <1>x)

<1>x + 2 qed coq proof {* wf_qed*}

148 C. Dubois and F. Pessaux

1 let rec qsort (l : list (A)) = ...
2 termination proof = measure length on l
3 <1>1 prove all l : list (A), all x : A,
4 all r : list (A), all y : A, all q : list (A),
5 all p : list (A) * list (A),
6 (l = x :: r) -> (r = y :: q) -> (partition (r, x) = p) ->
7 length (fst (p)) < length (l)
8 by property mes_decr_fst
9 <1>2 prove all l : list (A), all x : A,

10 all r : list (A), all y : A, all q : list (A),
11 all p : list (A) * list (A),
12 (l = x :: r) -> (r = y :: q) -> (partition (r, x) = p) ->
13 length (snd (p)) < length (l)
14 by property mes_decr_snd
15 <1>3 prove all l: list (A), 0 <= length (l)
16 by property length_pos
17 <1>e qed coq proof {* wf_qed *} ;

Fig. 5. Termination proof for qsort

4.2 Internal View

From the compiler’s point of view, the code generation is split in 4 parts:

1. Creation of the relation expected by Function. It takes two tuples
with as many arguments as the user’s recursive function has. It extracts the
decreasing one from each tuple, say x and y. It finally states that the measure
on y is positive and that the measure on x is strictly lower than the measure
on y. The first part of this definition is needed by the proof done in point 3.

2. Creation of the user-side termination theorem containing the compiled
proof of the user. This theorem only operates on the decreasing argument,
hence uses the user’s measure function. This theorem is the conjunction of
the decreasing obligations and the measure positive obligation.

3. Creation of the Function-side termination theorem. This theorem
operates on the tuple of arguments of the function and uses the generated
relation. Roughly speaking, this theorem states the same property as the pre-
vious one, but operating on tuples and referring to the relation generated at
step 1. This proof is fully done by the compiler, using the user’s proof that
the measure is always positive and a Coq theorem stating that the usual order
on positive integers is well-founded.

4. Creation of the recursive function definition using Function. This
step computes the Function body and the final proof built with the theorem
generated at the previous step for the termination part.

The last point is exactly the same as for a termination proof using a well-
founded relation. This allows a code generation model as close as possible for
both kinds of proofs.

Figure 6 gives an overview of the compilation process of a function. Grayed
blocks are those generated by the compiler while white ones are the code of the
user.

Termination Proofs for Recursive Functions in FoCaLiZe 149

+ proof of decreasing for each call
User recursive function

WF Relation

Coq’s "Function"−side Termination Theorem

User−side Termination Theorem

User measure

Coq’s "Function"

+ proof measure always >= 0

Fig. 6. Global structure of a function with its proof

4.2.1 Creation of the Relation Expected by Function

The dependency calculus of FoCaLiZe, extended to termination proofs indicates
that the proof decl-depends on the declarations of length, app, partition,
length pos, mes decr fst and mes decr snd. Hence these dependencies are first
λ-lifted and lead to extra parameters (whose names are prefixed by abst) for
the relation. Since Coq makes polymorphism explicit, the types of collection
parameters also must be λ-lifted (here p A T: Set for the parameter A).

The expected relation takes two arguments x and y on which the user
measure is applied. There remains to compare the results with the standard order
on naturals (<, which is generated as lt , itself bound to the corresponding Coq
definition). The generated relation is given below (where amper amper denotes
the conjunction):

Definition qsort wforder (_p_A_T : Set)
(abst_app : list__t _p_A_T -> list__t _p_A_T -> list__t _p_A_T)
(abst_length : list__t _p_A_T -> int__t)
(abst_partition : list__t _p_A_T -> _p_A_T ->

list__t _p_A_T * list__t _p_A_T)
(abst_length_pos :

forall l : list__t _p_A_T , Is_true (_lt__eq_ 0 (abst_length l)))
(abst_mes_decr_fst : ...) (abst_mes_decr_snd : ...) :=
(__x __y : list__t _p_A_T) : Prop :=

Is_true (_amper__amper_
(_lt__eq_ 0 (abst_length __y))
(_lt_ (abst_length __x) (abst_length __y))).

4.2.2 Creation of the User-Side Termination Theorem
Next, the user termination proof must be generated. We find again the Section
mechanism used in Sect. 3.2.3 in order to keep Zenon in a first-order environment.
The shape of the generated code is very close to the one generated for termination
proofs by a relation and is shown below. Line numbers and proof steps refer to
the code given at Fig. 5.

Section qsort.
Section Proof_of_qsort.
Variable _p_A_T , abst_app , abst_length , abst_partition : ...
Hypothesis abst_length_pos , abst_length_pos , abst_mes_decr_fst ,

abst_mes_decr_snd : ...
Section __E_1.

(* Step <1>1 line 3. *)

150 C. Dubois and F. Pessaux

Theorem __E_1_LEMMA : forall ...,
Is_true ((_eq_ _) l (@ List.cons _p_A_T x r)) ->
Is_true ((_eq_ _) r (@ List.cons _p_A_T y q)) ->
Is_true ((_eq_ _) (abst_partition r x) p) ->
Is_true (_lt_ (abst_length ((fst _ _) p)) (abst_length l)).

(* ... Zenon proof term inlined here ... *)
End __E_1.

Section __E_2.
(* Step <1>2 line 9. *)
Theorem __E_2_LEMMA : forall ...,

Is_true ((_eq_ _) l (@ List.cons _p_A_T x r)) ->
Is_true ((_eq_ _) r (@ List.cons _p_A_T y q)) ->
Is_true ((_eq_ _) (abst_partition r x) p) ->
Is_true (_lt_ (abst_length ((snd _ _) p)) (abst_length l)).
(* ... Zenon proof term inlined here ... *)
End __E_2.

Section __E_3.
(* Step <1>3 line 16. *)
Theorem __E_3_LEMMA :

forall l : (list__t _p_A_T), Is_true (_lt__eq_ 0 (abst_length l)).
(* ... Zenon proof term inlined here ... *)

(* Theorem ’s body. *)
Theorem for zenon qsort :

(forall ...,
(Is_true ((_eq_ _) l (@ List.cons _p_A_T x r))) ->
(Is_true ((_eq_ _) r (@ List.cons _p_A_T y q))) ->
(Is_true ((_eq_ _) (abst_partition r x) p)) ->
Is_true (_lt_ (abst_length ((snd _ _) p)) (abst_length l)))

/\
(forall ...,

(Is_true ((_eq_ _) l (@ List.cons _p_A_T x r))) ->
(Is_true ((_eq_ _) r (@ List.cons _p_A_T y q))) ->
(Is_true ((_eq_ _) (abst_partition r x) p)) ->
Is_true (_lt_ (abst_length ((fst _ _) p)) (abst_length l)))

/\
(forall __x , Is_true (_lt__eq_ 0 (abst_length __x))).

Proof.
generalize __E_3_LEMMA. generalize __E_2_LEMMA. generalize __E_1_LEMMA.
unfold is_well_founded. intros. SplitandAssumption. Qed.

End Proof_of_qsort.

Once each step of the proof but the concluding one has been generated, the
compiler detects that the concluding one refers to termination. It then generates
and proves the theorem for zenon qsort stating the termination obligations
as the user sees them. The statement of this theorem is the conjunction of
all the decreasing lemmas and the positiveness of the measure introduced in
Sect. 4.1. The proof generated by the compiler is again very close to the one
for a termination by a well-founded relation, and uses the same automation
techniques.

4.2.3 Creation of the Function-Side Termination Theorem
Since the user-side theorem is available, its counterpart as expected by Function
has to be emitted. Like for proofs by a relation in Sect. 3.2.4, this theorem states
the same proof obligations as the user-side theorem but dealing with the well-
founded relation previously built. This theorem requires the same Variable and
Hypothesis as the user-side one since the dependencies are the same. To lighten
the presentation we do not repeat them in the following generated code sample.

Termination Proofs for Recursive Functions in FoCaLiZe 151

Theorem qsort termination :
(forall ...,

(Is_true ((_eq_ _) l (@ List.cons _p_A_T x r))) ->
(Is_true ((_eq_ _) r (@ List.cons _p_A_T y q))) ->
(Is_true ((_eq_ _) (abst_partition r x) p)) ->
(qsort wforder

_p_A_T abst_app abst_length abst_partition abst_length_pos
abst_mes_decr_fst abst_mes_decr_snd) ((snd _ _) p) l)

/\
(forall ...,

(Is_true ((_eq_ _) l ((@ List.cons _p_A_T x r)))) ->
(Is_true ((_eq_ _) r ((@ List.cons _p_A_T y q)))) ->
(Is_true ((_eq_ _) (abst_partition r x) p)) ->
(qsortwforder

_p_A_T abst_app abst_length abst_partition abst_length_pos
abst_mes_decr_fst abst_mes_decr_snd) ((fst _ _) p) l)

/\
(well_founded

(qsortwforder
_p_A_T abst_app abst_length abst_partition abst_length_pos
abst_mes_decr_fst abst_mes_decr_snd)).

Proof.
unfold qsort wforder;simpl.
elim (for zenon qsort _p_A_T abst_app abst_length abst_partition

abst_length_pos abst_mes_decr_fst abst_mes_decr_snd).
intro __user_dec1.
intro __user_rem_dec_n_wf.
(* Separate decreasing obligations and well - foundation . *)
split. intros. apply coq_builtins.andb_intro; eauto.
split. intros. apply coq_builtins.andb_intro; eauto.
(* There , only remains the well - foundation obligation . *)
set (R := fun x y : int__t =>

Is_true (_amper__amper_ (_lt__eq_ 0 y) (_lt_ x y))).
change (well_founded (fun __c __d : ((list__t _p_A_T)) =>

R (abst_length __c) (abst_length __d))).
apply wf_inverse_image.
apply wf_incl with (R2 := (fun x y : Z => 0 <= y /\ x < y)).
unfold inclusion , R.
unfold int__t , _amper__amper_ , _lt__eq_ , _lt_ , bi__and_b , bi__int_leq ,

bi__int_lt.
intros x y.
elim (Z_le_dec 0 y); intro; elim (Z_lt_dec x y); simpl; intros;
intuition. apply (Zwf_well_founded 0). Qed.

Again, the proof of the theorem is automatically generated by the compiler.
It also consists in separating the decreasing and well-foundedness obligations.
The interconnecting Coq script is more complex than for proofs by a relation.
In particular, in the first part about measure decreasing, the proof is not so
straightforward than previously because we have to deal with integers and the
< relation. The well-foundedness obligation proof follows the same scheme, it
relies on three library theorems, wf inverse image to deal with the relevant
projection, Zwf well founded 0 which is the proof that the restriction of < to
the positive integers is a well-founded relation and wf incl establishing that a
relation included in a well-founded one, is also well-founded.

4.2.4 Creation of the Recursive Function Definition Using Function

The Coq Function can now be generated, using the generated relation. Exactly
in the same way as for proofs with a relation, the compiler ensures the glue to
build the final proof, taking benefit from the theorem generated in Sect. 4.2.3.

152 C. Dubois and F. Pessaux

In particular, the final soldering Coq script is exactly the same as for a termina-
tion proof with a relation. Because of dependencies in the user code that were
λ-lifted, qsort wforder had some extra arguments. They must be instantiated
to provide Function with a correct relation in its wf clause. This is done by
applying qsort wforder to the effective methods definitions computed by the
late-binding resolution (p A T, abst length, etc.). Below is shown the final and
complete code of the compiled function qsort.

Function qsort (__arg: (list__t _p_A_T))
{wf (qsort_wforder _p_A_T abst_app abst_length abst_partition

abst_length_pos abst_mes_decr_fst abst_mes_decr_snd) __arg}:
list__t _p_A_T :=
match __arg with (l) =>

match l with
| List.nil => @ List.nil _p_A_T
| List.cons x r =>

match r with
| List.nil => l
| List.cons y q =>

let p := abst_partition r x in
abst_app (qsort ((fst _ _) p))

(@ List.cons _p_A_T x ((qsort ((snd _ _) p))))
end

end
end.
Proof.
elim qsort termination.
intros __for_function_dec1 __for_function_rem_dec_n_wf.
elim __for_function_rem_dec_n_wf. clear __for_function_rem_dec_n_wf.
intros __for_function_dec2 __for_function_rem_dec_n_wf.
split. intros. eapply __for_function_dec1 ; eauto || (apply coq_builtins.

EqTrue_is_true; assumption) || (apply coq_builtins.IsTrue_eq_false2;
assumption) || (apply coq_builtins.syntactic_equal_refl).

split.intros. eapply __for_function_dec2 ; eauto || ... (* Same than above.
*)

(* Remaining well - foundation ... *)
assumption. Qed.

Figure 7 gives a detailed structure of the complete compilation of a function
f whose termination relies on a measure m. Grayed blocks are those generated
by the compiler while white ones are the code of the user.

5 Limitations and Perspectives

The termination proofs as described in this paper are available in the FoCaLiZe
repository. A “toolbox” containing some low-level theorems proved in Coq is also
available to “manually” wrap a measure in a well-founded relation.

Termination proofs using lexicographic orders are currently under study.
Again, we want to stick to our approach that provides the user with some
comfort for termination proofs. The compiler will have to generate itself the
lexicographic order and its well-foundedness proof from the user’s orders and
their own well-foundedness proofs.

Some known limitations exist. Termination proofs being based on the Coq
construct Function, only methods of species and toplevel functions are sup-
ported. Local recursive functions cannot be handled this way. Nested recursion

Termination Proofs for Recursive Functions in FoCaLiZe 153

Function f ...

proof =

0 <= m (b) /\ m (a) < m (b)

Definition f_wforder (..., a, ...) (..., b, ...) :=

termination proof = measure m on x ...
let rec f (..., x, ...) = ...

(* Function−side theorem *)

Theorem f_termination: all ... b ...,

 f_wforder (...) b /\
 ...
 f_wforder (...) b /\

 well_founded f_wforder
proof =

(* User−side theorem *)

Theorem for_zenon_f: all x y,

 m (...) < m (x) /\

 0 <= m (y)
 m (...) < m (x) /\
 ...

proof =

(* Rec call 1 *)

(* Rec call n *)

(* Rec call 1 *)

(* Rec call n *)

let m (y) = ... : int

Fig. 7. Detailed structure of a function with its proof

is also not supported: the construct Function does also not. Mutual recursive
functions cannot be compiled with the present scheme. Although encodings exist
to deal with such functions, several issues already appear: what are the proof
obligations to impose to the user, how strong will they be impacted by the
encoding, how understandable will these obligations become, how to mix several
termination proof schemes?

Aside the kinds of termination proofs, it is not fully clear how to provide
late-binding at the termination level. In FoCaLiZe, definitions can use methods
only declared. The dependency calculus allows λ-lifting late-bound symbols. The
termination proof of a recursive function is part of its definition, hence delaying
the proof means delaying the function definition. The simplest solution would
be to consider the function as a simple signature until its proof is provided. This
would however delay other proofs depending on the definition of the function,
despite the termination proof is not relevant for them. Indeed, either the function
terminates and other functions are not interested in its termination, or it does
not terminate, and the complete logical model is possibly inconsistent.

Finally, only one of the function’s parameters can be used to prove decreasing.
There is no particular obstacle for this extension, it is only an implementation
matter. This restriction only impacts proofs by a measure (which could use sev-
eral parameters), since such an extension for orders directly leads to lexicographic
orders.

6 Related Work

Our work is in line with those about the definition of recursive functions in the-
orem provers, and more precisely the proposals made to facilitate the definition
and reasoning with general recursive functions. All these propositions allow some
separation of the computational and logical parts, as we do. As said previously,
we would like to go a step further in this direction and defer a termination proof.

154 C. Dubois and F. Pessaux

TFL [19], implemented for both HOL4 and Isabelle, allows the definition
and reasoning about total recursive programs written in a purely functional
manner. In this context, establishing the termination of a function requires the
introduction of a well-founded relation (proved as such) and the proof that the
arguments of the recursive calls decrease according to this relation.

Coq provides the Function package [5] that allows one to define recursive
functions in a way close to TFL. It relies on previous work done on termination by
Balaa and Bertot [4]. The main strength concerns induction principles automat-
ically generated from the algorithmic definition of the function, e.g. functional
induction. We decided to compile our - non structural - recursive functions to
Coq functions defined with Function because of traceability. Except for the usual
modifications due to the compilation of dependencies and the proof obligations
part, the text of the FoCaLiZe recursive function and the Coq one are very close.
Furthermore the fixpoint equation generated by Function and by the FoCaLiZe
compiler for Zenon reasoning are again very close. Another compilation choice
would have been to bypass Function and its limitations altogether and generate
Coq definitions on top of the basic Coq Wf package that provides a well-founded
induction principle. We could also have used Bertot and Komendantsky’s app-
roach [6] to general recursion. As said previously, the shapes of both definitions
in Coq and FoCaLiZe would have been too different and furthermore it would
have been more difficult to generate the proofs.

In [15], Krauss provides a way to define general well-founded recursion in
Isabelle. It is based on principles close to those used by Function in Coq, and
goes further in some directions (nested recursion, mutual recursion and par-
tiality). The main strength of this work is the advances in the automation of
termination proofs. It can prove automatically termination of a certain class
of functions by searching for a suitable lexicographic combination of size mea-
sures [10]. The termination for another class is handled by using the Size-Change
principle [14]. This principle is also used in [13] to provide a tool that automat-
ically determines whether one or mutually recursive functions terminate. This
approach allows for a local increasing of recursive arguments. FoCaLiZe does not
intend to automatically find proofs: it lets this task to an external prover thanks
to some hints given by the user. Moreover, it is yet unclear how to generate a
Coq term from such a termination proof.

More generally, Bove, Krauss and Sozeau review in [9] different techniques
that have been proposed to formalize partial and general recursive functions in
interactive theorem provers.

7 Conclusion

This work integrates in FoCaLiZe means to prove the termination of recursive
functions that are not only structural. It brings the ability to state a well-founded
relation or a measure and write the termination proof using the usual FoCaL-
iZe proofs shape: with a hierarchical structure and using the Zenon automated
theorem prover to relieve the user. Proof obligations are indicated to the user

Termination Proofs for Recursive Functions in FoCaLiZe 155

by the compiler, which avoids tedious errors and the need to guess what proof
obligations the compiler is expecting. The proofs done by the user are based on
the usual termination proof obligations for a well-founded relation or a measure,
and ask the user only to consider the decreasing argument of his function. This
point of view is indeed the one always used for handmade proofs and it would
be annoying to ask the user to cope with all the other arguments since they are
of no interest for the termination.

Termination proofs can transparently involve late-bound methods (i.e. meth-
ods that are only declared, e.g. properties used in proof obligations or even the
measure or the well-founded relation) thanks to the λ-lifting mechanism used by
FoCaLiZe.

A more general compilation scheme seems required to solve the pending issues
and have a more unified code generation model. But this scheme remains to be
found. However, the current work is already an appreciable help for the user
and a first step toward a more global problem. It already allowed to write some
previously assumed termination proofs of the FoCaLiZe standard library.

Acknowledgements. We thank Renaud Rioboo for the useful discussions and case
studies. Thanks to Julien Forest for the helpful discussions about Function. Lastly we
thank William Bartlett for his work on a very first prototype.

References

1. http://focalize.inria.fr/
2. http://zenon-prover.org/
3. Abel, A., Altenkirch, T.: A predicative analysis of structural recursion. J. Funct.

Program. 12(1), 1–41 (2002)
4. Balaa, A., Bertot, Y.: Fix-point equations for well-founded recursion in type theory.

In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 1–16.
Springer, Heidelberg (2000)

5. Barthe, G., Forest, J., Pichardie, D., Rusu, V.: Defining and reasoning about recur-
sive functions: a practical tool for the Coq proof assistant. In: Hagiya, M. (ed.)
FLOPS 2006. LNCS, vol. 3945, pp. 114–129. Springer, Heidelberg (2006)

6. Bertot, Y., Komendantsky, V.: Fixed point semantics and partial recursion in Coq.
In Proceedings of PPDP 2008, Valencia, Spain, pp. 89–96 (2008)

7. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) Logic
for Programming, Artificial Intelligence, and Reasoning. LNCS, vol. 4790, pp. 151–
165. Springer, Heidelberg (2007)

8. Boulmé, S., Hardin, T., Hirschkoff, D., Ménissier-Morain, V., Rioboo, R.: On the
way to certify computer algebra systems. In: Proceedings of the Calculemus Work-
shop of FLOC 1999. ENTCS, vol. 23. Elsevier (1999)

9. Bove, A., Krauss, A., Sozeau, M.: Partiality and recursion in interactive theorem
provers an overview. Math. Struct. Comput. Sci. FirstView, 1–51 (2015)

10. Bulwahn, L., Krauss, A., Nipkow, T.: Finding lexicographic orders for termination
proofs in Isabelle/HOL. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS,
vol. 4732, pp. 38–53. Springer, Heidelberg (2007)

http://focalize.inria.fr/
http://zenon-prover.org/

156 C. Dubois and F. Pessaux

11. Bury, G., Delahaye, D.: Integrating simplex with tableaux. In: Nivelle, H.D. (ed.)
Automated Reasoning with Analytic Tableaux and Related Methods. LNCS, vol.
9323, pp. 86–101. Springer, Heidelberg (2015)

12. Dubois, C., Hardin, T., Donzeau-Gouge, V.: Building certified components within
FOCAL. Trends in Functional Programming, vol. 5, pp. 33–48 (2006)

13. Hyvernat, P.: The Size-change termination principle for constructor based lan-
guages. Logical Methods Comput. Sci. 10(1) (2014)

14. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007)

15. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
J. Autom. Reason. 44(4), 303–336 (2010)

16. Lamport, L.: How to write a proof. Research report, Digital Equipment Corpora-
tion (1993)

17. Pessaux, F.: Focalize: Inside an F-IDE. In: Proceedings 1st Workshop on For-
mal Integrated Development Environment, F-IDE 2014, Grenoble, France, April
6, 2014. EPTCS, vol. 149, pp. 64–78 (2014)

18. Prevosto, V.: Conception et Implantation du langage FoC pour le développement
de logiciels certifiés. Ph.D. thesis, Université Paris 6, September 2003

19. Slind, K.: Another look at nested recursion. In: Aagaard, M.D., Harrison, J. (eds.)
TPHOLs 2000. LNCS, vol. 1869, pp. 498–518. Springer, Heidelberg (2000)

Author Index

Alkemade, Thijs 60
Axelsson, Emil 1, 124

Dubois, Catherine 136

Earle, Clara Benac 40

Fowler, Jonathan 22
Fredlund, Lars-Åke 40

Huttom, Graham 22

Jeuring, Johan 60

Koopman, Pieter 104

Lepper, Markus 85

Persson, Anders 124
Pessaux, François 136
Plasmeijer, Rinus 104

Trancón y Widemann, Baltasar 85

Vezzosi, Andrea 1

	Preface
	Organization
	Contents
	Lightweight Higher-Order Rewriting in Haskell
	1 Introduction
	1.1 Running Example
	1.2 Overview of the Paper

	2 A Generic Library for Rewrite Rules
	2.1 Representation of Terms and Patterns
	2.2 Matching and Rewriting

	3 Higher-Order Rewriting
	3.1 Tractability
	3.2 Rewriting Based on Pattern Unification
	3.3 Most General Solutions

	4 Extending the Library to Higher-Order Rewriting
	4.1 Object-Language Variables and Binders
	4.2 Rewriting
	4.3 Quantifying over Meta-Variables

	5 Case Study -- Feldspar
	6 Related Work
	7 Discussion and Future Work
	References

	Towards a Theory of Reach
	1 Introduction
	2 The Reach Problem
	2.1 Forward Reach

	3 A Minimal Language
	4 Adding Free Variables
	4.1 Substitutions
	4.2 Reachability

	5 Lazy Narrowing Semantics
	5.1 Preliminaries
	5.2 Semantics
	5.3 Forward Reachability

	6 Correctness of the Narrowing Semantics
	6.1 Soundness
	6.2 Completeness
	6.3 Correctness

	7 Agda Formalisation
	8 Extending the Language
	9 Related Work
	10 Conclusions and Future Work
	References

	Functional Testing of Java Programs
	1 Introduction
	2 Related Work
	3 The JavaErlang Library
	3.1 Internal Design
	3.2 Boxing and Unboxing
	3.3 Automatic Garbage Collection
	3.4 Java Threads and Timeouts
	3.5 Implementing Java Classes Using Erlang
	3.6 Limitations

	4 Testing Java Code Using QuickCheck
	4.1 QuickCheck State Machines
	4.2 Testing a Large Java Library

	5 Conclusions
	References

	Type Class Instances for Type-Level Lambdas in Haskell
	1 Introduction
	2 Using Existing Concepts
	2.1 Type Synonym Instances
	2.2 More Type Classes
	2.3 Newtype Wrappers
	2.4 Associated Type Families
	2.5 Conclusion

	3 Type-Level Lambdas
	3.1 Undecidability
	3.2 Adding Type-Level Lambdas
	3.3 Decidable Unification of Type-Level Lambda Terms

	4 Type Checking Haskell
	4.1 Example
	4.2 Generating Constraints
	4.3 Solving Constraints

	5 Adding Type-Level Lambdas to GHC
	5.1 Parser
	5.2 Evaluation of Type-Level Lambdas
	5.3 Constraint Solving
	5.4 Termination
	5.5 Implementation

	6 Results
	7 Compatibility with Other GHC Features
	7.1 MultiParamTypeClasses
	7.2 PolyKinds

	8 Related Work
	8.1 Guided Higher-Order Unification
	8.2 Scala

	9 Conclusion
	References

	Laminar Data Flow: On the Role of Slicing in Functional Data-Flow Programming
	1 Introduction
	2 The Sig Language
	3 Slicing for Multi-Rate Data Flow
	3.1 Transparent Local Scheduling

	4 Slicing for Declarative Initialization
	5 Slicing for Conditional Execution
	6 Conclusion
	6.1 Related Work
	6.2 Summary and Outlook

	References

	A Shallow Embedded Type Safe Extendable DSL for the Arduino
	1 Introduction
	2 The Arduino
	3 Design Considerations
	4 Definition of the DSL
	4.1 Standard Values and Operations
	4.2 Arduino Specific Operations
	4.3 Variables and Assignment
	4.4 Complete Programs
	4.5 An Example ARDSL Program

	5 Compiling the DSL
	5.1 The Compiler View
	5.2 Instance of ARDSL for the Compilation View

	6 Simulating the DSL
	6.1 Simulation State
	6.2 Simulation View
	6.3 iTask Simulator

	7 Extending the DSL
	8 Related Work
	9 Conclusion
	References

	Programmable Signatures
	1 Introduction
	1.1 Issues with Fixed Mappings
	1.2 Contributions

	2 The Signature Language
	3 Implementation
	3.1 Code Generation

	4 Related Work
	5 Discussion and Future Work
	References

	Termination Proofs for Recursive Functions in FoCaLiZe
	1 Introduction
	2 Overview of FoCaLiZe
	3 Well-Founded Relations
	3.1 User View
	3.2 Internal View

	4 Measure Functions
	4.1 User View
	4.2 Internal View

	5 Limitations and Perspectives
	6 Related Work
	7 Conclusion
	References

	Author Index

