
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XXIIILN

CS
 9

48
0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e Tran Khanh Dang · Nam Thoai
Guest Editors

Selected Papers from FDSE 2014

Lecture Notes in Computer Science 9480

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain • Josef Küng
Roland Wagner • Tran Khanh Dang
Nam Thoai (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XXIII
Selected Papers from FDSE 2014

123

Editors-in-Chief
Abdelkader Hameurlain
IRIT, Paul Sabatier University
Toulouse
France

Josef Küng
FAW, University of Linz
Linz
Austria

Guest Editors
Tran Khanh Dang
Ho Chi Minh City University of Technology
Ho Chi Minh City
Vietnam

Roland Wagner
FAW, University of Linz
Linz
Austria

Nam Thoai
Ho Chi Minh City University of Technology
Ho Chi Minh City
Vietnam

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-49174-4 ISBN 978-3-662-49175-1 (eBook)
DOI 10.1007/978-3-662-49175-1

Library of Congress Control Number: 2015958557

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The First International Conference on Future Data and Security Engineering (FDSE)
was held in Ho Chi Minh City, Vietnam, November 19–21, 2014. FDSE is to become
an annual international forum designed for researchers and practitioners interested in
state-of-the-art and state-of-the-practice activities in data, information, knowledge, and
security engineering to explore cutting-edge ideas, present and exchange their research
results and advanced data-intensive applications, as well as to discuss emerging issues
on data, information, knowledge, and security engineering. We invited the submission
of both original research contributions and industry papers. At the annual FDSE,
researchers and practitioners will not only be able to share research solutions to
problems of today’s data and security engineering society, but also identify new issues
and directions for future related research and development work.

FDSE 2014 received 66 submissions and, after a careful review process, only 23
papers were selected for presentation. Among those great papers, we selected only five
papers to invite the authors to revise, extend, and resubmit for publication in this
special issue. The main focus of this special issue is on advanced computing issues in
information and security engineering as well as their promising applications.

The great success of FDSE 2014 as well as this special issue of TLDKS was the
result of the efforts of many people, to whom we would like to express our gratitude.
First, we would like to thank all authors who extended and submitted papers to this
special issue. We would also like to thank the members of the committees and external
reviewers for their timely reviewing and lively participation in the subsequent dis-
cussion in order to select such high-quality papers published in this issue. Finally yet
importantly, we thank Gabriela Wagner for her enthusiastic help and support during the
whole process of preparation for this publication.

September 2015 Tran Khanh Dang
Nam Thoai

Organization

Editorial Board

Reza Akbarinia Inria, France
Bernd Amann LIP6 - UPMC, France
Dagmar Auer FAW, Austria
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria, Italy
Qiming Chen HP-Lab, USA
Tommaso Di Noia Politecnico di Bari, Italy
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Stefan Fenz Vienna University of Technology, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Andreas Herzig IRIT, Paul Sabatier University, France
Hilda Kosorus FAW, Austria
Dieter Kranzlmüller Ludwig-Maximilians-Universität München, Germany
Philippe Lamarre INSA Lyon, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Mukesh Mohania IBM India, India
Franck Morvan Paul Sabatier University, IRIT, France
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Gultekin Ozsoyoglu Case Western Reserve University, USA
Themis Palpanas Paris Descartes University, France
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Klaus-Dieter Schewe University of Linz, Austria
David Taniar Monash University, Australia
A. Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

Reviewers

Lam Son Le HCMC University of Technology, Vietnam and University
of Wollongong, Australia

Thanh Binh Nguyen HCMC University of Technology, Vietnam

Minh-Quang Tran HCMC University of Technology, Vietnam and National
Institute of Informatics, Japan

Hoang Tam Vo SAP and National University of Singapore, Singapore
Nguyen Ngoc Thien An University College Dublin, Ireland
Viet-Hung Nguyen University of Trento, Italy
Phan Trong Nhan Johannes Kepler University Linz, Austria
Quoc Cuong To INRIA Rocquencourt, Versailles, France
Le Thi Kim Tuyen Sungkyunkwan University, South Korea
Tran Tri Dang HCMC University of Technology, Vietnam

VIII Organization

Contents

A Natural Language Processing Tool for White Collar Crime Investigation . . . 1
Maarten van Banerveld, Mohand-Tahar Kechadi,
and Nhien-An Le-Khac

Data Leakage Analysis of the Hibernate Query Language on a Propositional
Formulae Domain . 23

Raju Halder, Angshuman Jana, and Agostino Cortesi

An Adaptive Similarity Search in Massive Datasets. 45
Trong Nhan Phan, Josef Küng, and Tran Khanh Dang

Semantic Attack on Anonymised Transactions . 75
Jianhua Shao and Hoang Ong

Private Indexes for Mixed Encrypted Databases . 100
Yi Tang, Xiaolei Zhang, and Ji Zhang

Author Index . 125

http://dx.doi.org/10.1007/978-3-662-49175-1_1
http://dx.doi.org/10.1007/978-3-662-49175-1_2
http://dx.doi.org/10.1007/978-3-662-49175-1_2
http://dx.doi.org/10.1007/978-3-662-49175-1_3
http://dx.doi.org/10.1007/978-3-662-49175-1_4
http://dx.doi.org/10.1007/978-3-662-49175-1_5

A Natural Language Processing Tool for White
Collar Crime Investigation

Maarten van Banerveld2, Mohand-Tahar Kechadi1,
and Nhien-An Le-Khac1(&)

1 School of Computer Science and Informatics,
University College Dublin, Belfield, Dublin 4, Ireland

{tahar.kechadi,an.lekhac}@ucd.ie
2 Surinameweg, 42035 VA Haarlem, The Netherlands
mj.van.barneveld@belastingdienst.nl

Abstract. In today’s world we are confronted with increasing amounts of
information every day coming from a large variety of sources. People and
corporations are producing data on a large scale, and since the rise of the
internet, e-mail and social media the amount of produced data has grown
exponentially. From a law enforcement perspective we have to deal with these
huge amounts of data when a criminal investigation is launched against an
individual or company. Relevant questions need to be answered like who
committed the crime, who were involved, what happened and on what time,
who were communicating and about what? Not only the amount of available
data to investigate has increased enormously, but also the complexity of this
data has increased. When these communication patterns need to be combined
with for instance a seized financial administration or corporate document shares
a complex investigation problem arises. Recently, criminal investigators face a
huge challenge when evidence of a crime needs to be found in the Big Data
environment where they have to deal with large and complex datasets especially
in financial and fraud investigations. To tackle this problem, a financial and
fraud investigation unit of a European country has developed a new tool named
LES that uses Natural Language Processing (NLP) techniques to help criminal
investigators handle large amounts of textual information in a more efficient and
faster way. In this paper, we present this tool and we focus on the evaluation its
performance in terms of the requirements of forensic investigation: speed,
smarter and easier for investigators. In order to evaluate this LES tool, we use
different performance metrics. We also show experimental results of our eval-
uation with large and complex datasets from real-world application.

Keywords: Big data � Natural language processing � Financial and fraud
investigation � Hadoop/MapReduce

1 Introduction

Since the start of the digital information age to the rise of the Internet, the amount of
digital data has dramatically increased. Indeed, we are dealing with many challenges
when it comes to data. Some data is structured and stored in a traditional relational

© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIII, LNCS 9480, pp. 1–22, 2016.
DOI: 10.1007/978-3-662-49175-1_1

database, while other data, including documents, customer service records, and even
pictures and videos, is unstructured. Organizations also have to consider new sources
of data generated by new devices such as sensors. Moreover, there are other new key
data sources, such as social media, click-stream data generated from website interac-
tions, etc. The availability and adoption of newer, more powerful mobile devices,
coupled with ubiquitous access to global networks will drive the creation of more new
sources for data. As a consequence, we are living in the Big Data era. Big Data can be
defined as any kind of datasets that has three important characteristics: huge volumes,
very high velocity and very wide variety of data. Obviously, handling and analysing
large, complex, and velocity data have always offered the greatest challenges as well as
benefits for organisations of all sizes. Global competitions, dynamic markets, and rapid
development in the information and communication technologies are some of the major
challenges in today’s industry. Briefly, we have had a deluge of data from not only
science fields but also industry, commerce and digital forensics fields. Although the
amount of data available to us is constantly increasing, our ability to process it becomes
more and more difficult. This is especially true for the criminal investigation today. For
instance, a criminal investigation department CID1 of the Customs Force in a European
country has to analyse around 3.5 Terabyte of data (per case) to combat fiscal,
financial-economic and commodity fraud safeguards the integrity of the financial
system and to combat also organized crime, especially its financial component.

Actually, CID staff focuses on the criminal prosecution of: Fiscal fraud (including
VAT/carousel fraud, excise duty fraud or undisclosed foreign assets); Financial-
economic fraud (insider trading, bankruptcy fraud, property fraud, money laundering,
etc.); Fraud involving specific goods (strategic goods and sanctions, raw materials for
drugs, intellectual property, etc.). Seizing the business accounts is usually the first step
in the investigation. The fraud must be proved by means of the business accounts
(among other things). Investigation officers not only investigate paper accounts, but
also digital records such as computer hard disks or information on (corporate) net-
works. The fraud investigation unit uses special software to investigate these digital
records. In this way we gain an insight into the fraud and how it was committed.
Interviewing or interrogation of a suspect is an invariable part of the investigation.
A suspect can make a statement, but may also refuse this. In any case, the suspect must
be given the opportunity to explain the facts of which he is suspected. During their
activities the investigation officers can rely on the Information-gathering teams for
information and advice. These teams gather, process and distribute relevant information
and conduct analyses. With digital investigations we respond to the rapid digitalization
of society. This digitalization has led to new fraud patterns and methods, and all kinds
of swindle via the Internet. In order to trace these fraudsters we use the same digital
possibilities as they do.

As the CID handles around 450 criminal investigations every year, the amount of
(digital-) data that is collected increases year over year. A specific point of attention is
that the CID operates in another spectrum of investigations as ‘regular’ police

1 Real name of department as well as all of its customer names (banks, etc.) cannot be disclosed
because of confidential agreement of the project.

2 M. van Banerveld et al.

departments. The types of crime that the CID needs to investigate mostly revolve
around written facts. So the evidence that is collected by the CID by default contains of
large amounts of textual data. One can imagine how much textual data a multinational
firm produces, and how many e-mails are being sent in such companies. A specific
challenge for law enforcement departments that are involved with fraud investigations
is: how can we find the evidence we need in these huge amounts of complex data.
Because of the enormity of the large and complex data sets the CID seizes, it is
necessary need to look for new techniques that make computers perform some analysis
tasks, and ideally assist investigators by finding evidence. Recently, CID has developed
a new investigation platform called LES2. This tool is based on Natural Language
Processing (NLP) techniques [1] such as Named Entity Extraction [2] and Information
Retrieval (IR) [3] in combining with a visualization model to improve the analysis of a
large and complex dataset.

In this paper, we present LES tool (LES) and evaluate the performance of LES
because there are very few NLP tools that are being exploited to tackle very large and
complex datasets in the context of investigation on white-collar crimes. Indeed, the-
oretical understanding of the techniques that are used is necessary. This theoretical
review can help explain the usage of these new techniques in criminal investigations,
and pinpoint what work needs to be done before the most effective implementation and
usage is possible. The rest of this paper is organised as follows: Sect. 2 shows the
background of this research including related work in this domain. We present briefly
LES and evaluation methods in Sect. 3. We apply our method to analysis the perfor-
mance of LES on a distributed platform in Sect. 4. Finally, we conclude and discuss on
future work in Sect. 5.

2 Background

2.1 Natural Language Processing in Law Enforcement

NLP implemented techniques can be very useful in a law enforcement environment,
especially when unstructured and large amounts of data need to be processed by
criminal investigators. Already commonly used techniques like Optical Character
Recognition (OCR) [4] and machine translations [5] can be successfully used in
criminal investigations. For example OCR is used in fraud investigations to automat-
ically transform unstructured invoices and other financial papers into searchable and
aggregated spreadsheets. In the past more difficult to implement techniques like
automatic summarization of texts, information extraction, entity extraction and rela-
tionship extraction [1] are now coming into reach of law enforcement and intelligence
agencies. This is manly so because of the decline in cost per processing unit and the
fact that these techniques need a large amount of processing power to be able to used
effectively.

To zoom in on this a little further: for example the extraction of entities out of large
amounts of text can be useful when it is unclear what persons or other entities are

2 Again, real name of the tool cannot be disclosed because of confidential agreement of the project.

A Natural Language Processing Tool 3

involved in a criminal investigation. Combined with a visual representation of the
present relations between the extracted entities, this analysis can provide insight in the
corresponding (social-) networks between certain entities. Indeed, the usage of NLP
techniques to ‘predict’ criminality, for example grooming by possible paedophiles [6]
or trying to determine when hit-and-run crimes may happen by analysing Twitter
messages [7] is possible today. A movement from single available NLP techniques like
text summarization, text translation, information and relationship extraction towards
more intelligent NLP based implementations for law enforcement like crime prediction,
crime prevention, criminal intelligence gathering, (social-) network analysis and
anomaly detection can be observed in literature. Also theoretical frameworks and
models in the field of ‘forensic linguistics’ [8] are proposed which can be used behind
the technical implementation of NLP techniques in criminal investigations.

When (commercial-) solutions using these techniques come available, this could
lead to more extensive NLP based law enforcement systems that can handle Crime
prediction, deliver automated intelligence on criminal activities, analyse the behaviour
of subjects on social networks and detect anomalies in texts or other data. The output of
these systems is ideally presented in a visual comprehensible way so the criminal
investigator can quickly assess the data and take appropriate action.

2.2 Big Data in Criminal Investigations

No strict definition can be given for the concept Big Data [9] as such, but what can be
concluded is that Big Data at least has some common elements and that Big does not
necessarily mean large volumes. Complexity and the inner structure of the data are also
very important to determine if a dataset belongs to the concept of Big Data or not.
Another term that is commonly used when people talk about ‘Big Data’ is ‘Unstruc-
tured Data’. As law enforcement we are confronted with at least parts of the Big Data
problem; for instance in fraud investigations the fraud investigation unit regularly
seizes a complete company (network-) environment including cloud storage and all
belonging data. Because this data for the fraud investigation unit as outsiders is
unstructured, and from a variety of sources (computer images, servers, internal com-
munication, wiretap data, databases etc.) these datasets fall under the definition, and
elements, of Big Data in terms of volume and complexity (also known as variety of the
data). But also a very large e-mail database containing millions of suspect e-mails can
fall under the Big Data problem because of the complexity of this data set. Please note
that in most descriptions Big Data is measured against three axes: Volume, Variety and
Velocity. What we see is that in the fraud investigation unit’s types of investigation, the
focus is mostly on the volume and variety of the large data set. Velocity is not really an
issue as they are investigating a static data set. This is so because after seizure the data
that needs to be investigated will not (rapidly) change anymore.

What can be said is that the existence of Big Data poses new and unique challenges
for law enforcement when evidence needs to be found in an investigation with these
characteristics. What also was can be said is that not only the actual size of the total
seized data matters, but also the rate of complexity of the data that determines if a case
falls under a Big Data definition.

4 M. van Banerveld et al.

As an example, in a large carousel fraud case that the fraud investigation unit
investigated in the past, the suspect was a bank that operated from the fraud investi-
gation unit’s territory and several countries abroad. In this case investigation data was
collected and seized from a lot of sources: internet wiretaps, forensic disc images from
tens of workstations, user data from server systems, e-mail servers with literally mil-
lions of e-mails, company databases, webservers, and the complete banking back-end
systems containing all bank transactions. This investigation had the characteristics of
Big Data on both levels, a high complexity of the data (the complete banking system
had to be reconstructed and analysed) and a high amount of total data (the house
searches were in 2006, and in that time a total of 15 Terabyte of data was seized).

This paper is about the usage of NLP techniques in fraud investigations, there are
specific characteristics for these types of investigations that determine why another
approach towards Big Data investigation is necessary. In fact our fraud investigation
unit mostly investigates White Collar Crime cases. Most police departments focus on
other criminal offenses like murder cases, child abuse, threats, hacking, malware etc.
The fraud investigation unit on the other hand acts on criminal cases like money
laundering, terrorism funding, (tax-) fraud, etc.

This differentiation and specialism results in different “digital markers” for White
collar crime versus “Police types” of crime where, in general terms, evidence can be
found (Fig. 1).

For the fraud investigation unit this focus on White Collar crime means that the
fraud investigation unit has to be able to investigate: (i) Complex (unstructured-)
datasets; (ii) Large datasets; (iii) Company networks; (iv) Complex communication
networks between suspects; (v) Mostly text based evidence.

As you can see, this list shows that the fraud investigation unit will encounter Big
Data problems because of the specific criminal investigation domain, and that the
evidence the fraud investigation unit gathers is mostly text based. Before the intro-
duction of NLP techniques running on the new fraud investigation unit platform LES,
the fraud investigation unit had massive problems with handling the enormous amounts
of data that are so specific for white-collar crime investigations. These problems can be
summarised in:

Fig. 1. Digital Markers for White collar crime and general offenses

A Natural Language Processing Tool 5

• Time taken to process al data that was seized.
• Forensic software not able to handle the huge amounts of data items coming from

for instance e-mail databases.
• Crashing software when querying the investigation tooling database, because of

overload.
• Unacceptable waiting time for investigators when performing a query on the data

(up to 30 min per query).
• Too many search hits to make analysis of the evidence humanly possible in many

cases.
• Too much technical approach and interfacing for regular investigators by currently

used tooling.

What also can be observed is that most police cases can make use of the Digital
Forensics methodology and tooling as is described in literature [10]. Unfortunately the
fraud investigation unit has to use tooling that is best suitable for criminal investiga-
tions falling under Police Types of crime where evidence can be found in/from files,
desktop/mobile devices, email, network/memory analysis, etc.

2.3 Related Work

There are very few researches of NLP in the context of Digital Forensics, especially to
tackle the problem of Big Data of financial crimes. In the context of Digital Forensics,
[11] used NLP techniques to classify of file fragments. In fact, they use support vector
machines [12] along with feature vectors consisted of the unigram and bigram counts of
bytes in the fragment. The method proposed is efficient; it is however, not in the
context of investigating documents related to financial crimes. In [13], authors pro-
posed a corpus of text message data. This corpus can support NLP techniques in
investigating data located on mobile devices. This corpus is very useful in analysing
short text but it is not for long, complex documents such as MS word document,
presentations, spread sheets, etc. Related to the forensics financial crimes, [14] pro-
posed a semantic search based on text mining and information retrieval. Authors
however focus on documents from collaboration platform such as e-mail, forum as well
as in social networks. Their main objective is how to optimise the searching queries.

3 LES Tool and Method of Evaluation

In this section, we present briefly LES, a NLP based tool that has been developed to
study the possibilities and benefits the usage of NLP techniques can provide in complex
fraud investigations. Next, we describe the investigating process where we apply LES
tool to analyse evidence files. Finally we present methods we used to evaluate this tool.

6 M. van Banerveld et al.

3.1 LES Tool

Because of the problems of handing Big Data investigations mentioned earlier, our
fraud investigation unit decided to develop tooling in-house that would be able to
handle these specific types of investigations. The three most important requirements for
the new tool are:

• Improving the data processing time, to handle large amounts of data.
• Improving the data analysis time needed, to handle complex datasets.
• Enable end users to perform complex tasks with a very simple interface.

This tool was called LES (Fig. 2) and its main characteristics are:

• Running on an Apache Hadoop platform [15].
• Ability to handle large amounts of data.
• Use NLP techniques to improve evidence finding.
• Visualisation of found (possible-) evidence.
• A simple web based GUI with advanced search capabilities.

In house developed software components allow investigators to rapidly access
forensic disk images or copied out single files. MapReduce [16] jobs are then executed
over the data to make parallel processing possible over multiple server nodes. Other
MapReduce jobs are built in LES tool for text extraction and text indexing. At this
moment the following NLP techniques are implemented in LES:

• Information extraction.
• Named Entity Recognition (NER).
• Relationship Extraction.

Fig. 2. High level design of LES tool

A Natural Language Processing Tool 7

The Information and NER extraction process uses a combination of techniques to
extract useful information: tabular extraction (for lists of known and described entities),
regular expression extraction, and the Stanford NER library also known as
CRFClassifier [17]. The relationships between entities are arbitrarily determined by the
distance between these entities. If a distance is smaller than a threshold, a relationship
between two entities is stored in the LES system (a Hadoop cluster of computers
running LES tool). This implementation of relationship extraction is based on
co-reference between words, which in system tests appears to perform quite well.

3.2 Investigation Process

Evidence files are imported into the LES system by running specific MapReduce jobs
in a predefined sequence:

(1) Prepare Evidence.
(2) Extraction phase.
(3) Indexing phase.
(4) NER extraction phase.
(5) Relationship Extraction.
(6) Analysing.

The evidence acquired during house-searches by the digital investigators is mainly
recorded in a forensic format like raw dd files or Encase format. During the preparation
phase the evidence containers are mounted and integrity is checked. Then by default
only the most relevant files are extracted for further processing. At this moment these
files are the most common document and textual types and e-mail data. All files that
need to be investigated by LES tool are placed in a so-called binary ‘blob’ or data
stream on the Hadoop cluster. Pointers to the original files are recorded in the file index
on the cluster. This makes later viewing and retrieval of the original file much easier.
When all extracted files are present in the data stream the indexing job is run. Next, the
NER and RE phase are performed and finally all results are imported in the LES
Hadoop Elastic search environment.

3.3 Methodology

Our evaluation method is based on the combination of Microsoft’s MSDN performance
testing methodology [18], TMap NEXT [19] from Sogeti and some custom evaluation
items (quality characteristics). The combination of different methodologies has led to
the following concrete test case parameters that were evaluated:

• Test data set processing time, split in time to generate NER, extract relations,
generate keyword index.

• Test dataset query response times.
• Accuracy of the data retrieval: cross referencing with standard tooling.
• Data controllability: completeness of the data, evidence integrity and chain of

evidence reproducibility.

8 M. van Banerveld et al.

4 Experiments and Analysis of Results

In this section, we describe firstly a case study we used in our experiments. We also
show the platform where we performed our tests. Finally, we present and analyse the
results of these experiments.

4.1 Case Study Description

The test dataset is actual case data coming from an investigation against the FB bank
that the CID has worked on in the period 2006–2012. This offshore bank was suspected
of aiding carousel fraud (also known as MTIC fraud), illegal banking and money
laundering. During the height of this fraud an European country lost 400–600 million
pounds every month on illegal VAT repayments. All VAT repayments concerned were
transferred into FB bank customer accounts. Figure 3 shows the VAT repayments per
month in this European country for the period January 2001 until January 2006. In the
period our suspect was active the VAT repayments rise significantly (may 2005 until
June 2006). After searching in CID, the VAT repayments dropped back to a normal
level of 25 million euro per month. At that moment the most important questions that
our investigators needed to answer where:

• Where is the tax money?
• Who is responsible for this carousel fraud?
• How does the money laundering work?
• Is the FB bank an illegal bank in this European country?
• Did the bank management know about this fraud?

Fig. 3. VAT repayments over FB bank accounts

A Natural Language Processing Tool 9

To build a case against the suspect’s, house searches were performed in September
2006. Not only was the bank’s main office in one European country searched, but also
locations in other European countries and in North America. During these house
searches lots and lots of data was collected. Not only from digital sources, but also a lot
of paper was seized. All paper information was processed, scanned and OCR’ed.

4.2 Dataset

The dataset that was used is applicable for the two dimensions Volume and Variety
(Complexity) of Big Data. Velocity is not an issue for our experiments at this stage.
The data set that is used contains historical data from the period 2006–2012.

The total data set for the FB investigation was 15 Terabyte in size, an extract of the
most important data consisted of:

• Total size of dataset: 375 GB.
• Disk images (Encase E01): 292 disk images.
• Microsoft Exchange mail databases: 96 GB.
• Office documents: 481.000.
• E-mails: 1.585.500.
• Total size of documents to investigate: 156 GB.
• Total size of extracted textual data: 21 GB.

As we are looking for evidence in a fraud case we can expect that most incrimi-
nating content can be found in textual data, coming from documents, e-mails etc. LES
will automatically extract all files containing textual information out of file containers
like Encase images, Exchange databases, zip files etc.

Next, from these files all text is extracted leading to a total size of pure flat text of
21 GB out of a total dataset of 375 GB. As this investigation was performed in the past,
we today know that finding and processing the evidence that was needed, took a total
of six years investigation. Because the amount of total items to investigate, and the
complexity of this dataset, the time needed for this investigation took a lot longer than
was thought of at the start. Some statistics can be found as follows:

• Evidence items found in dataset: 2.718.
• Total textual items in test dataset: 2.144.254.
• Percentage of evidence found versus total textual items: 0,126 % (2718/

2.144.254) × 100 = 0,126 %).

As we can see, the percentage of usable evidence for this case was only 0,126
percent. This indicates the needle in the haystack problem we are facing for these types
of investigations.

4.3 Testing Platform

The testing system is a cluster consists of 14 physical servers with the following roles:

– 2x Hadoop Namenode (for redundancy purposes).

10 M. van Banerveld et al.

– 6x Hadoop Datanode (to store the data on).
– 1x Hadoop Edgenode (for cluster management).
– 4x Index nodes (to process the data).
– 1x webserver (for the end-user GUI).

Hadoop processing and storage:

– 18 TB storage.
– 24 cores Intel Xeon E5504.

Index nodes processing and storage:

– 12 TB storage.
– 12 cores Intel Xeon E5504.

Total cluster internal memory is 256 GB. The cluster has been build and configured
according to the Hadoop recommendations for building a Hadoop cluster.

4.4 Evaluation Criteria

We applied different criteria to LES tool. These criteria are divided in four
groups: performance acceptance, functionality, user-friendly interface and specific
requirements.

Performance acceptance criteria relate to the processing time, query response time,
evidence items and NER relation diagram:

• The processing time includes time taken to generate NLP NER database, time taken
to generate keyword index, time taken to generate edges and nodes database for
visualization, system time taken to find evidence items (using adaptive query
interface) and time taken to find evidence items (using NER and NER diagram).

• Two metrics are taken into account in query response time: keyword based search
response time and combination of keywords response time.

• For evidence items, we look at the total amount of items to investigate, amount of
items dropped or lost and amount of items per file type.

• For the NER relation diagram, we focus on time taken to generate diagram and time
taken to adjust levels.

In terms of the functionality acceptance, we look at two main characters: data
controllability and flexibility.

• Data controllability including (i) completeness of the processed data check;
(ii) chain of evidence correctness; (iii) evidence integrity and (iv) reproducibility of
found evidence.

• Flexibility including (i) number of search paths towards evidence item; (ii) number
of search methods supported and (iii) number of ways to present data.

In order to evaluate the user friendliness, we run the survey on the end users.
Finally, we evaluate NER relevance for case and NER diagram relevance for case as
specific requirements in the performance evaluation of our approach.

A Natural Language Processing Tool 11

4.5 Result Description and Analysis

We evaluate all the performance perspective of LES tool with different criteria
described in Sect. 4.4. In general terms we expect the following result of LES running
on the testing data:

• Less time needed for extracting textual information from files and forensic images.
• Less time needed to make a keyword based index.
• A NLP named entity extraction from the data set.
• A NLP relationship file generated from the data set.
• A graphical representation of NLP relations.
• Faster query response time than using traditional tools.
• More paths towards evidence items.
• Faster pinpointing of evidence in a large dataset.

We also compare the processing time between Forensic Toolkit (FTK) [20] and
LES tool on the same testing dataset. FTK has been configured in such a way that it
approached the LES way of processing data the most. That means that all images and
container items were read in FTK, but all extra options were disabled to make com-
parison fairer (Fig. 2). As you can see, FTK has been configured to not perform
Entropy test, carving, OCR. Indeed, only possible textual files were added as evidence
to the case (documents, spreadsheets, e-mail messages). Only from this selection FTK
was allowed to make a keyword based index (Fig. 4).

4.5.1 Processing Time
First of all, we discuss on the processing time of LES. As mentioned above, the
processing time is broken down in three main parts.

• Time taken to process test data T1. In fact, this is time taken for text extraction and
it takes LES tool 34 min to complete i.e. T1 = 34 min.

Fig. 4. FTK case configuration

12 M. van Banerveld et al.

• Time taken to generate NLP NER databases T2. We evaluate of the total time taken
to generate the Named Entity database based on the test data set. The named entity
database is an essential part of the LES NLP implementation, and is used to enhance
the evidence retrieval possibilities for investigators. The time taken to generate the
NLP NER database is measured on the LES cluster for the testing data set. System
monitoring is performed by the Ganglia system monitoring service. So in our
experiment, T2 is 38 min with 11.008.100 entities (edges) were extracted. Note that
this test also includes the generation of edges and nodes databases.

• Time taken to generate keyword index T3. In this test, we look at the total time
taken to generate the searchable keyword index based on the test data set in LES
tool and the T3 is 12 min.

Briefly, the total processing time of LES tool T is a sum of T1, T2 and T3 and it is
1 h and 34 min (T = T1 + T2 + T3 = 34 min + 38 min + 12 min). According to the FTK
processing log, the FTK processing time of the testing dataset, with the criteria shown
above is 10 h and 54 min.

Next, we look at time taken to find evidence items by using adaptive z interface.
For this evaluation we are using our known evidence items as reference items to find in
LES. We also use the chosen keywords as shown in response time test (Sect. 4.5.2,
Table 3) and add up the time needed for the system to present the correct evidence item
from the test data set. The total time response and retrieval test is used for the FTK
results to compare with our performance. Table 1 describes the comparison the per-
formance of LES tool and FTK.

We evaluate time taken to find evidence items not only by using adaptive query
interface but also by using NER and NER diagram. Basically, in LES tool, the
extracted named entities can be selected to find the needed evidence. A combination of
these entities should find the evidence items in a certain amount of time. To evaluate it,
we select entities from the known evidence items, and query LES on the same extracted
entities. Making a combination of entities that will show the relevant evidence items.
From our known evidence items the NLP extracted entities [NAME1], [NAME2],
[NAME3], [NAME4] and [NAME5] were used as input for the NER query to search
on. Table 2 shows the result of this test.

The system extracted the known named entities automatically and created the links
to the known evidence files. What is interesting is that the determination if an entity is a
person, location or organization is not always correct. The retrieval of the evidence
items is all handled under 0, 5 s by LES. In fact, the LES tool was evaluated by running

Table 1. Time taken to find evidence items using adaptive query interface (in seconds)

Document FTK LES

D-195 (.msg) 35.1 0.5
D-550 (.ppt) 29.2 0.5
D-718 (.xls) 28 0.5
D-735 (.msg) 16 0.5
D-805 (.txt) 20 0.5

A Natural Language Processing Tool 13

various experiments on the testing datasets. As we can see, the overall processing time
of this tool is 6 times faster than FTK with the same testing datasets. Furthermore,
when LES is configured to only create a keyword-based index, similar to Forensic
Toolkit, the LES tool is even 11 times faster than FTK running on the same datasets.
LES does however need extra processing time to perform the needed NLP calculations,
but enhances the ease of finding evidence by running these NLP processes.

4.5.2 Query Response Time
Regarding to the performance acceptance criteria, we evaluate moreover the query
response time including the keyword base search response time and the combination of
key words response time. Response times of LES tool are significantly better when it is
used to search through the test data by single keywords. Table 3 shows the response
time of keyword searching. FTK shows some remarkable slow response times when

Table 2. Time taken to find evidence items using NER and NER diagram

Entity Hits Response time (second) NER identified as

[NAME1] 24279 0.330 PERSON
[NAME2] 1006 0.420 PERSON, LOCATION, ORGANISATION
[NAME3] 1867 0.142 PERSON
[NAME4] 1 0.045 PERSON
[NAME5] 3439 0.358 PERSON

Table 3. Response time of single keyword search

Document Keywords FTK LES
Response
time (s)

Retrieve
time (s)

Response
time (s)

Retrieve
time (s)

D-195
(.msg)

Discontinue 6 27 0.005 <0.5
Fraud 3 41 0.078 <0.5
Revenue 6 287 0.119 <0.5

D-550
(.ppt)

Scrubbing 6 17 0.081 <0.5
Blacklists 5 14 0.099 <0.5
Violation 6 365 0.069 <0.5

D-718
(.xls)

[NAME1] 18 295 0.138 <0.5
Training 6 383 0.143 <0.5
Crime
control

7 4 0.195 <0.5

D-735
(.msg)

[NAME2] 3 22 0.006 <0.5
[NAME3] 5 52 0.023 <0.5
New York 5 195 0.141 <0.5

D-805
(.txt)

[NAME4] 5 4 0.038 <0.5
Bermuda 5 1190 0.091 <0.5
[NAME5] 5 33 0.020 <0.5

14 M. van Banerveld et al.

using single keywords to search for, whereas LES in most cases is a factor 1000 or
faster when searching through the data.

Furthermore, the retrieval times in LES tool are always under 0.5 s, but cannot be
shown in a counter, and therefore difficult to give an exact count in milliseconds.

However, this is not a very efficient approach to find unique evidence items, most
of the time using only one keyword leads to long lists of results. Also, it is very difficult
to make up the best fitting keyword to find the evidence. Normally a combination of
keywords or multiple search iterations is used, but in practice our investigators start
hypothesis building by trying single keywords and see what comes back as a result.
What can be seen from the FTK evaluation is that when using single keywords when
trying to pinpoint evidence, the retrieval time can be very long. When using single
keywords only and keywords are not chosen well or are not unique enough, waiting
time becomes unacceptable long from an end-user perspective when we choose a
response time of 20 s maximum. Of course investigators also need to be trained to
perform smart search actions when using FTK. It is essential to choose keyword
combinations well. Next, we use the five known evidence items to locate and use an
AND combination of keywords to evaluate response time and retrieval time of evi-
dence items. Table 4 shows the results of this experiment.

When a combination of keywords is used we see that the response times for FTK
are worse than single keyword search. On the other hand, using multiple keywords in
LES the response time is also milliseconds for the performed evaluations. From an
end-user perspective a response in milliseconds is more or less instant and thus leading
to a better investigation experience. When the various NLP techniques are used to
search for evidence, the LES tool response times are also in milliseconds. For instance
the selection of named entities and the drawing of a relation diagram are performed
very fast by the system.

Table 4. Response time of combined keyword search

Document Keywords FTK LES
Response
time (s)

Retrieve
time (s)

Response
time (s)

Retrieve
time (s)

D-195
(.msg)

Discontinue, fraud,
revenue

28 7.1 0.006 <0.5

D-550
(.ppt)

Scrubbing,
blacklists,
violation

24 5.2 0.138 <0.5

D-718
(.xls)

[NAME1], training
crime control

10 18 0.195 <0.5

D-735
(.msg)

[NAME2],
[NAME3],
NewYork

11 5 0.232 <0.5

D-805
(.txt)

[NAME4],
Bermuda,
[NAME5]

16 4 0.004 <0.5

A Natural Language Processing Tool 15

4.5.3 Evidence Items
Next, we evaluate the total amount of processed evidence items per file type analysing
system and processing log files for FTK and LES (Table 5).

As we are not sure how FTK counts evidence items, and which types are counted
and which are not, it is difficult to draw a conclusion from these figures. But what we
do know is that FTK counts for instance every OLE object item as a unique evidence
item for Microsoft Office documents. So that increases the count for FTK significantly.
However, since we have found all our randomly selected evidence items in both FTK
and LES we can be carefully positive that no essential data is lost in LES.

4.5.4 Data Controllability
Looking at the functionality perspective, LES has more possible search paths towards
an evidence item; this could mean that evidence can be found faster using LES, because
an investigator has more chance ‘hitting’ a useful search path. This coincides with the
fact that in LES evidence can be found in more ways, because more search methods are
implemented. These search methods increase the ways investigators can search for
evidence. Especially the implemented NLP entity selection in combination with other
search methods creates new evidence finding possibilities that previously were not
possible. When looking at the data presentation parts of the software evaluation we can
see that LES has more ways of presenting data to the investigator; the visualization
view of found evidence can help investigators finding new leads.

We investigate moreover how the chain of evidence is maintained and what
guarantees are built in the software to maintain the chain of evidence. Eventually, we
evaluate the evidence handling in FTK and LES. What information has to be recorded
for evidence items, how strong is the logging mechanism behind the tooling, etc.
For FTK, it operates according to known forensic procedures and standards. FTK
supports: Media sanitation, Write protection, Verification of evidence, Forensic copy
abilities and forensic analyses. For all these parts extensive logging is provided. In
short we can conclude that FTK is able to supports maintaining the needed chain of
evidence for handling criminal investigations. Regarding to LES, as it has been built
from another perspective, the extensiveness of maintaining the chain of evidence is less
than FTK. LES does however try to maintain at least essential parts to keep the chain of
evidence in tact:

Table 5. Total number of processed evidence items per file type

Document type Number of items per
file type
FTK LES

Email 1.585.500 1.641.063
Word documents 44.105 44.837
Spreadsheets 68.101 38.580
Presentations 6.548 2620

16 M. van Banerveld et al.

• Supporting forensic image formats
• Logging of data processing
• Logging of user activity, including search queries performed by the user
• Hashing of files that are included in the case
• Maintaining original path to file locations, and displaying file offsets

Another important functional part is the integrity of evidence. In fact we check hash
values for the known evidence files. File hashes for the known evidence items are
calculated with an external hash value calculator and compared with the hash value
reported in LES and FTK. Throughout this test, both LES and FTK have all hash
values matches.

Related to the data controllability, we also evaluate the reproducibility of found
evidence. This evaluation is to find out if an evidence item can be traced back to the
original source easily. This is essential to keep the chain of evidence intact. The
selected evidence items are used to check if they can be traced back to the original
source and how the tool supports this. For FTK, it supports logging, hashing and
keeping record of original file offset, path and belonging container (image). With FTK
it is easy to trace back to the original place of a file or evidence item. Also reports can
be generated where the original location is included. For a thorough forensic investi-
gation process, this is a must have. Using these reports it is also easy to use another tool
to check the results of FTK. In our experiments, all five selected evidence items were
found and could be traced back to the original source using the FTK interface.
Regarding to LES, it only records the original file path and file offset if possible
together with the analysed evidence file. In LES the original path can be seen for the
known evidence files, also the file offset is reported if the file is coming from an image
file. To retrace the file in the original container, external software is necessary, like
FTK or Encase.

Briefly, what can be seen is that FTK has better data control embedded, thus in
FTK the chain of evidence is maintained more thoroughly. Also, FTK has better file
control embedded; tracing back a file to its originating location is better implemented in
FTK than in LES, thus the chain of evidence is maintained better.

4.5.5 Flexibility
As mentioned in Sect. 4.4, we focus on the number of search paths toward evidence
item, the number of search methods supported and the number of ways to present data
in order to evaluate the flexibility of LES. The number of search paths is the amount of
possible search paths towards an evidence item determines how ‘easy’ it is to find a
specific item. The more paths you have towards an evidence item the higher the chance
that you will find the evidence needed. In this experiment, we take into account the
specific search paths that are available in FTK and LES. The possible search paths in
FTK include (i) browsing through tree; (ii) keyword search (combination) and
(iii) filtering on the file characteristics (type, date/time, etc.). If all three items could be
used alone or in combination with each other a total of 6 combinations are possible. On
the other hand, the possible search paths in LES include (i) keyword search combi-
nation; (ii) filtering on file characteristics (type, date/time etc.); (iii) using NLP NER list
and (iv) using NLP NER diagram. If all four items could be used alone or in

A Natural Language Processing Tool 17

combination with each other a total of 24 combinations are possible. As LES will add
additional search paths because of the implementation of new NLP techniques in the
near future this probably will lead to an increase in total search paths for LES. By
adding new search methods, the total amount of search paths also increases. Possibly
this could lead to investigators finding needed evidence quicker and more efficient.

Looking at the number of search methods supported, FTK only supports the
keyword-based search. LES tool moreover can support both keyword-based search and
NLP, NER based search.

Finally, FTK can display data on the 6 ways: List view, Tree view, Document
preview, Categories view, Evidence item view and Search view. LES can display data
on the 7 ways: List view, Document preview, Categories view, Evidence item view,
NER view, NER relations diagram view and Search view. This evaluation item gen-
erally describes the way information is presented towards the investigator. Of course
FTK has various sub-views that can be used, but only the most used views are counted,
and the most technical views are neglected, as these are not relevant for CID inves-
tigators in general. Also, FTK has a much more technical presentation of data, where
LES data views are more focused on non-technical investigators.

4.5.6 User-Friendly
LES is specifically designed to help the end-user (in this case the CID investigators)
search through Big Data more easily. As the CID process differs from technical
forensic investigations, LES has to deliver a different end-user experience. The CID
investigators have no technical IT background, but do need to be able to analyze
complex and large Big Data in the most fitting and comfortable way. To evaluate LES,
we look at (i) Analyse the end-user preferred way of looking at data; (ii) Investigate
what functionality is needed to suit the FIOD investigators needs in Big Data inves-
tigation and (iii) Analyse the end-user preferred GUI setup.

We have performed this evaluation with the help of an external contractor who
set-up various usability sessions. Investigators from the CID were asked to show how
they analyse data at this moment, and how they would like to work in the future. In
another session a real-time GUI mock-up was constructed with live input from the CID
investigators. During this session people could ask the GUI mock-up builder to add or
remove elements from the mock-up, or to change the position of GUI items on the
screen. Then an initial GUI was built with mock-up functionality that was evaluated by
letting CID investigators use this GUI mock-up. The investigators were filmed during-
and interviewed after this session. This resulted in a final GUI and LES functionality
report. All attendant investigators agree that this tool resulted in a very good combi-
nation of technology push of NLP techniques and LES backend together with an
end-user view of how fraud investigations need to be performed.

4.5.7 Specific Requirements
We evaluate moreover if the extracted named entities have significance for the known
data set. To do so, we select the top 100 most extracted entities over the whole data set.
Determine if these entities are relevant for the known case. Someone with enough
knowledge of the case can only perform this. Also, use the five known evidence items
to see if the extracted named entities belonging to these items relate to other known

18 M. van Banerveld et al.

entities coming from other documents. When selecting the top 100 entities of type
PERSON a list is generated with these entities. This list was analyzed against the
background of the known case, and the conclusion is that the list covers the most
important persons that were involved in this case. This indicates that an aggregation of
extracted entities is relevant for the known data set. In fact, it is interesting to see that
without prior knowledge a list of persons can be automatically generated out of a data
set. In this case the produced list was also relevant for the criminal investigation. In
new cases this could mean that running such a query can help identifying unknown
players in the investigation.

4.5.8 Further Discussion
A big advantage of LES is that LES has been developed with the end-user in mind, in
this case a financial and fraud investigator who needs to investigate a Big Data set.
Specifically the LES query interface is very flexible and helps analyzing complex and
large data sets, especially the possibility to add query windows (widgets) and refine
searches by doing that is very powerful.

Specific evaluation requirements that were mostly focused on the implementation
and usage of NLP techniques show that the implemented NLP techniques can help
investigators finding evidence in another way, possibly faster and more efficient. At the
minimum a new view towards complex data is presented for investigators. LES
requires less search iterations to find evidence, because of the implementation of
NLP NER and visualisation of evidence. On the other hand, FTK’s keyword based
search requires investigators to work through more data and refine search queries a lot
of times. For example, Fig. 5 shows the search results of keyword “Obama”. What you
can see here is that LEWIS highlights the search term “Obama” yellow. The purple
circles are still the documents that contain the named entity “Obama”. And all blue dots
are other entities in relation with “Obama”, like “Clinton”, “Qaida” etc. Indeed, when
interested in a document, the user only has to double click on the purple circle to show
the document, or click on a related entity to adjust the search parameters.

Besides, some noteworthy points that also came up during the evaluation were for
instance that it was difficult to find literature that evaluates AccessData forensic toolkit
on a performance and data controllability level. It looks like this tooling has not been
evaluated very thoroughly yet by a respectable authority. For Hadoop/MapReduce
techniques we found that the usage of a Hadoop cluster seems to be very efficient when
one needs to process large amounts of textual data. However, the programming
paradigm of Hadoop/MapReduce are more complex than regular programming prob-
lems because of the distributed and multi-processing nature of the Hadoop cluster. The
issues that we found during the evaluation were that a (too-) large edges and nodes file
leads to graphical representation problems. Too much named entities and extracted
relations leads to information overload for the end-user. The forensic chain of evidence
is more difficult to maintain in LES. This is because of the nature of LES’ inner
workings, and the fact that it extracts textual information out of forensic images.

At organization level, we found that the CID will need to explain the difference
between forensic computer investigation and analysis of Big Data. When to use what
tool all depends on the type of investigation, the needed evidence, and the amount and
complexity of the data. As the CID mainly has large fraud cases, a logical choice would

A Natural Language Processing Tool 19

be to use LES as the preferred tool for these kinds of investigations. One remark that
must be made is that all data found in LES must be verified using a (forensic-) tool until
LES has a proven track record in court of law.

As a conclusion, the usage of LES tool that uses NLP as key enabler to handle very
large and complex data investigations. This means LES tool improves the ‘white collar
crime’ investigation process in terms of speed and efficiency.

5 Conclusions and Future Work

In this paper, we present and evaluate LES tool that is based on NLP techniques to help
criminal investigators handle large amounts of textual information. In fact, we evaluate
different perspectives of LES tools. In terms of speed: the proposed solution is sig-
nificantly faster in handling complex (textual) data sets in less time compared to
traditional forensics approach. In terms of efficiency: the proposed solution is opti-
mized for the fraud investigation process. The usage of NLP techniques helps in
optimizing the investigation process. Investigators have more possibilities finding
evidence in very large and complex dataset, aided by smart NLP based techniques. This
greatly improves fraud investigation efficiency.

Some topics for further scientific and practical research is coming up. In terms of
LES tool, more functions have being added such as automatic summarisation of texts,
author recognition, detection of cover language, detection of communication patterns,
language detection, adding fraud domain knowledge to a NLP language corpus [21],

Fig. 5. LES visualisation search “obama”

20 M. van Banerveld et al.

visualisation of searching results, etc. In order to handle efficiently the fraud domain
knowledge we also consider using the knowledge map [22, 23]. We are moreover
working on the integration this tool with our anti-money laundering solution [24, 25].

References

1. Liddy Elizabeth, D.: Natural language processing, 2nd edn. In: Encyclopedia of Library and
Information Science. Marcel Decker, Inc., New York (2001)

2. Tjong, K.S., Erik, F.: Introduction to the CoNLL-2003 shared task: language-independent
named entity recognition. In: Proceedings of the Conference on Natural Language Learning,
June 2003, Edmonton, Canada (2003)

3. Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butteworths, London (1979)
4. Lais, S.: Quick Study: Optical Character Recognition. Computer World. http://www.

computerworld.com/s/article/73023/Optical_Character_Recognition. Accessed 25 Jun 2014
5. http://www.systransoft.com/systran/corporate-profile/translation-technology/what-is-

machine-translation/. Accessed 25 Jun 2014
6. Jurafsky, D., Martin James, H.: Speech and Language Processing - An Introduction to

Natural Language Processing, 2nd edn. Stanford University, University of Colorado at
Boulder, Pearson Prentice Hall (2009)

7. Fromkin, V., Rodman, R., Hyam, N.: An Introduction to language, 9th edn. Wadsworth,
Boston (2011)

8. Rafferty, A.N., de Marneffe, M.-C., Manning, C.D.: Finding Contradictions in Text. ACL
2008. http://nlp.stanford.edu/pubs/contradiction-acl08.pdf. Accessed 25 Jun 2014

9. Sokol, L., Ames, R.: Analytics in a Big Data Environment. IBM Redbooks (2012)
10. Innis Tasha, R., et al.: Towards applying text mining and natural language processing for

biomedical ontology acquisition. In: TMBIO 2006: Proceedings of the 1st international
Workshop on Text Mining in Bioinformatics, pp. 7–14 (2006)

11. Fitzgerald, S., et al.: Using NLP techniques for file fragment classification. Digital Invest. 9,
44–49 (2012)

12. Scholkopf, B.: A short tutorial on kernels. Technical report MSR-TR-200-6t, Microsoft
Research (2000)

13. O’Day, D.R., Calix, R.A.: Text message corpus: applying natural language processing to
mobile device forensics. In: IEEE International Conference on Multimedia and Expo, 5–9
July 2013, San Jose, USA (2013)

14. Van Dijk, D., Henseler, H.: Semantic search in e-Discovery: an interdisciplinary approach.
In: Workshop on Standards for Using Predictive Coding, Machine Learning, and Other
Advanced Search and Review Methods in E-Discovery, ICAIL 2013

15. http://hadoop.apache.org. Accessed 25 Jun 2014
16. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI

2004: Sixth Symposium on Operating System Design and Implementation, December 2004,
San Francisco, CA (2004)

17. Popowitch, F.: Using text mining and natural language processing for health care claims
processing. ACM SIGKDD Explor. Newsl. - Natural language processing and text mining 7
(1), 59–66 (2005)

18. Meier, J.D., et al.: Microsoft Performance Testing Guidance for Web Applications.
Redmond (2007). http://msdn.microsoft.com/en-us/library/bb924375.aspx

19. Buist, A.H., Kraaij, W., Raaijmakers, S.: Automatic summarization of meeting data:
a feasibility study. In: Proceedings of the 15th CLIN Conference (2005)

A Natural Language Processing Tool 21

http://www.computerworld.com/s/article/73023/Optical_Character_Recognition
http://www.computerworld.com/s/article/73023/Optical_Character_Recognition
http://www.systransoft.com/systran/corporate-profile/translation-technology/what-is-machine-translation/
http://www.systransoft.com/systran/corporate-profile/translation-technology/what-is-machine-translation/
http://nlp.stanford.edu/pubs/contradiction-acl08.pdf
http://hadoop.apache.org
http://msdn.microsoft.com/en-us/library/bb924375.aspx

20. http://www.accessdata.com/solutions/digital-forensics/ftk. Accessed 25 Jun 2014
21. Norvig, P.: Natural language corpus data. In: Beautiful Data, pp. 219–242 (2009)
22. Le-Khac, N.-A., Aouad, L.M., Kechadi M.-T., Knowledge map: toward a new approach

supporting the knowledge management in distributed data mining, KUI track. In: 3rd IEEE
International Conference on Autonomic and Autonomous Systems, 19–25 June 2007.
Computer Society Press, Athens (2007)

23. Le-Khac, N.-A., Aouad, L.M., Kechadi M.-T.: Distributed knowledge map for mining data
on grid platform. Int. J. Comput. Sci. Netw. Secur. 7(10), 98 (2007). ISSN 1738-7906

24. Le-Khac, N.-A., Kechadi, M.-T.: Apply data mining and natural computing in detecting
suspicious cases of money laundering in an investment bank: a case study. In: The 10th
IEEE International Conference on Data Mining, 14–17 December 2010, Sydney, Australia
(2010)

25. Le-Khac, N.-A., et al.: An efficient search tool for an anti-money laundering application of
an multi-national bank’s dataset. In: International Conference on Information and
Knowledge Engineering, 13–16 July 2009, Las Vegas, USA (2009)

22 M. van Banerveld et al.

http://www.accessdata.com/solutions/digital-forensics/ftk

Data Leakage Analysis of the Hibernate Query
Language on a Propositional Formulae Domain

Raju Halder1(B), Angshuman Jana1, and Agostino Cortesi2

1 Indian Institute of Technology Patna, Patna, India
{halder,ajana.pcs13}@iitp.ac.in

2 Università Ca’ Foscari Venezia, Venice, Italy
cortesi@unive.it

Abstract. This paper presents an information flow analysis of Hiber-
nate Query Language (HQL). We define a concrete semantics of HQL and
we lift the semantics on an abstract domain of propositional formulae.
This way, we capture variables dependences at each program point. This
allows us to identify illegitimate information flow by checking the satisfi-
ability of propositional formulae with respect to a truth value assignment
based on their security levels.

Keywords: Hibernate query language · Information flow analysis ·
Abstract interpretation

1 Introduction

Modern database applications are mostly implemented using Object Oriented
Programming (OOP) languages supported by relational databases at the back
end. Due to paradigm mismatch, the way to access data in object oriented
languages is fundamentally different than that in case of relational database
languages. Hibernate, an Object Relational Mapping (ORM) framework, miti-
gates this impedance mismatch problem by replacing direct persistence-related
database accesses with high-level object handling functions. Hibernate provides
Hibernate Query Language (HQL) which allows SQL-like queries to be written
against Hibernate’s data objects. Various methods in “Session” interface are
used to propagate object’s states from memory to the database (or vice versa).
Hibernate will detect any change made to an object in persistent state and syn-
chronizes the state with the database when the unit of work completes. A HQL
query is translated by Hibernate into a set of conventional SQL queries during
run time which in turn performs actions on the database. This way, HQL provides
a unified platform for the programmers to develop object-oriented applications
to interact with databases, without knowing much details about the underlying
databases [5,6,15].

Secure information flow is comprised of two related aspects: information con-
fidentiality and information integrity. Confidentiality refers to limiting the access
and disclosure of sensitive information to authorized users only. For instance,
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIII, LNCS 9480, pp. 23–44, 2016.
DOI: 10.1007/978-3-662-49175-1 2

24 R. Halder et al.

when we purchase something online, our private data, e.g. credit card number,
must be sent only to the merchant without disclosing to any third person during
the transmission. Dually, the notion of integrity indicates that data or messages
cannot be modified undetectably by any unauthorized person [34].

While access control and encryption prevent confidential information from
being read or modified by unauthorized users at source level, they do not regulate
the information propagation after it has been released for execution. Confiden-
tiality may be compromised during the flow of information along the control
structure of any software systems [29]. Assuming variables ‘h’ and ‘l’ are pri-
vate and public respectively, the following code fragments depict two different
scenarios (explicit/direct flow and implicit/indirect flow) of information leakage:

l := h Explicit/Direct flow
if(h=0) l:=5; else l:=10; Implicit/Indirect flow

Observe that confidential value in ‘h’ can be deduced by attackers observing ‘l’
on the output channel.

A wide range of language-based techniques are proposed in the past decades
to analyze this illegitimate flow in software products [4,9,16,21,24,28,29,32].
Works in this direction have been starting with the pioneering work of Dennings
in the 1970s [13]. As a starting point, the analysis classifies the program variables
into various security classes. The simplest one is to consider two: Public/Low
(denoted L) and Private/High (denoted H). Considering a mathematical lattice-
model of security classes with order L ≤ H, the secure information flow policy
is defined on the lattice: an upward-flow in the lattice is only permissible to
preserve confidentiality. Dually, in case of integrity, the lattice-model labels the
variables as Tainted (denoted T) and Untainted (denoted U), and follows a dual
flow-policy.

The correctness is guaranteed by respecting the non-interference principle
that says “a variation of confidential data does not cause any variation to public
data”: Given a program P and set of states Σ. The non-interference policy states
that ∀σ1, σ2 ∈ Σ. σ1 ≡L σ2 =⇒ [[P]]σ1 ≡L [[P]]σ2, where [[.]] is semantic function
and ≡L represents low-equivalence relation between states.

Most of the notable works which refer to imperative, object-oriented, func-
tional, database query languages, etc. [8,18,21,24,27–29] can not be applied
directly to the case of HQL due to the presence and interaction of high-level
HQL variables and database attributes through Session methods. Moreover, as
we are interested on persistent data, analyzing object-oriented features of HQL
does not meet our objectives neither. Let us illustrate a motivating example
depicted in Fig. 1. Two POJO classes c1 and c2 correspond to two underly-
ing database-tables by mapping class-fields into table-attributes. In the main
method of Service Class ExClass, values of the table corresponding to c1 are
used to make a list, and for each element of the list an update is performed on
the table corresponding to the class c2. Observe that there is an information-flow
from confidential (denoted by h) to public variables (denoted by l). In fact, the
confidential database information h1 which is extracted at statement 15, affects
the public view of the database information l2 at statement 20. This fact is

Data Leakage Analysis of the Hibernate Query Language 25

depicted in Fig. 1(d). The new challenge in this scenario w.r.t. state-of-the-art
of information leakage detection is that we need to consider both application
variables and SQL variables (corresponding to the database attributes).

In this paper1, we extend the abstract interpretation-based framework in [34]
to the case of HQL, focussing on Session methods which act as persistent man-
ager. This allows us to perform leakage analysis of sensitive database information
when is accessed through high-level HQL code.

The main contributions in this paper are:

– Defining the concrete and an abstract transition semantics of HQL, by using
symbolic domain of positive propositional formulae.

– Analyzing possible information leakage based on the abstract semantics,
focussing on variable dependences of database attributes on high-level HQL
variables.

The structure of the paper is as follows: Sect. 2 briefly discusses the related
works in the literature. In Sect. 3, we define the abstract syntax of HQL in
BNF. In Sects. 4 and 5, we formalize the concrete and an abstract transition
semantics of HQL, by using the symbolic domain of positive propositional for-
mulae. In Sect. 6, we perform information leakage analysis of programs based
on the abstract semantics which captures possible leakage of confidential data.
Section 7 concludes the paper.

2 Related Works

A comprehensive survey on language-based information-flow analysis is reported
in [29]. Most popular static analysis techniques are based on type systems [29,32,
33], dependence graphs [7,19–21,23,24,26], formal approaches [1,2,14,22,34,35],
etc. Besides the conservative nature of static analysis, the run-time monitoring
systems detect unauthorized information flow dynamically; however, precision
of the analysis completely depends on the execution overload, and of course, it
is very prone to false negative [3,31].

The security type system considers various security types (e.g., low and
high) and a collection of typing rules which determine the type of expres-
sions/commands to guarantee a secure information flow [29,32,33]. Some of the
typing rules from [29] are mentioned below:

– Expression Type: �exp: high
h�∈Var(exp)
�exp: low

– Explicit-flow Rules: [pc]�h:=exp
�exp: low

[low]�l:=exp

– Implicit-flow Rules: �exp: pc [pc]� c1 [pc]� c2
[pc]�if exp then c1 else c2

�exp: pc [pc]� c
[pc]�while exp do c

– Subsumption Rule: [high]�c
[low]�c

1 This work is a revised and extended version of [10].

26 R. Halder et al.

Fig. 1. A motivating HQL program P and its execution view

Data Leakage Analysis of the Hibernate Query Language 27

The notation [pc] denotes the security context which can be either [low] or
[high]. According to the subsumption rule, if a program is typable in a high
context then it is also typable in a low context. This allows to reset the program
security context to low after a high conditional or a loop.

Although type-based approach is provably sound, but a major drawback is
the lack of expressiveness. Moreover, it is not flow-sensitive which may produce
false alarm. For instance, consider the following code:

Although the program is secure with respect to the classical noninterference
principle as the output is always zero, but the type-based approach produces
false alarm according to the implicit-flow rule.

As information flow is closely related to the dependence information of pro-
grams, the notion of Program Dependence Graph (PDG) is used widely to cap-
ture illegitimate flow in programs [7,19–21,24]. As PDGs are flow-sensitive, the
analysis improves w.r.t. the type-based approach. For instance, in PDG-based
approaches, the above code is secure as there is no path in the corre-
sponding PDG. Various extensions of PDG exist, for example System Depen-
dence Graph (SDG) in case of inter-procedural call to capture context-sensitivity,
Class Dependence Graph (ClDG) in case of Object-Oriented Languages to cap-
ture object-sensitivity on dynamic dispatch, etc [20]. Once the dependence graph
of a program is constructed, static analysis is performed on the graph to iden-
tify the presence of possible insecure flow. An worth mentioning approach is
backward slicing which collects all possible paths (or source-nodes) influencing
(directly/indirectly) the observable nodes: to be secure, the levels of variables
in a path must not exceed the levels of observable variables in the output-node
of that path. In other words, slicing helps to partition any insecure program
(as a whole) in to secure and insecure part [7]. Semantics-based improvement
(e.g. path-conditions) is also proposed to disregard semantically unreachable
paths [20].

Approaches based on formal techniques, e.g. Abstract Interpretation theory,
Hoare Logic, Model Checking, etc. are proposed in [1,14,22,34,35] to analyze
secure information flow in software products. Leino and Joshi [22] first intro-
duced a semantics-based approach to analyzing secure information flow based
on the semantic equivalence of programs. [34,35] defined the concrete seman-
tics of programs and lift it to an abstract domain suitable for flow analysis. In
particular, they consider the domain of propositional formula representing vari-
ables’ dependences. The abstract semantics is further refined by combining with
numerical abstract domain which improves the precision of the analysis. A vari-
ety of logical forms are proposed to characterize information flow security. Amtoft

28 R. Halder et al.

and Banerjee [1] defined prelude semantics by treating program commands as
prelude transformer. They introduced a logic based on the Abstract Interpreta-
tion of prelude semantics that makes independence between program variables
explicit. They used Hoare logic and applied this logic to forward program slic-
ing: forward l-slice is independent of h variables and is secure from information
leakage. Authors in [2] defines a set of proof rules for secure information flow
based on axiomatic approach. Recently, [14] proposed a model checking-based
approach for reactive systems.

3 Syntax of HQL

Syntax of HQL is similar to object oriented constructs along with SQL variants
through Session objects. The syntactic sets and the abstract syntax of HQL is
depicted in Table 1. Like OOP, HQL programs are composed of a set of classes
including main class. That is, a HQL program P is defined as P = 〈cmain, L〉
where cmain ∈ Class is the main class and L ⊂ Class are the other classes.
Similarly, a class c ∈ Class contains a set of fields and methods, and therefore,
is defined as a triplet c = 〈init, F, M〉, where init is the constructor, F is the set
of fields, and M is the set of member methods.

An additional and attractive feature of HQL is the presence of Hibernate
Session which provides a central interface between the application and Hiber-
nate and acts as persistence manager. In HQL, an object is transient if it has just
been instantiated using the new operator. Transient instances will be destroyed
by the garbage collector if the application does not hold a reference anymore. A
persistent instance, on the other hand, has a representation in the database and
an identifier value assigned to it. Given an object, the Hibernate Session is
used to make the object persistent. Various methods in Hibernate Session are
used to propagate object’s states from memory to the database (or vice versa).

In abstract syntax, we denote a Session method by a triplet 〈C, φ, OP〉 where
OP is the operation to be performed on the database tuples corresponding to a
set of objects of classes c ∈ C satisfying the condition φ. For instance, consider
the following update statement which is invoked through a session object ‘ses’:

Query Q = ses.createQuery(‘‘UPDATE std SET rank= rank+1 WHERE mark>500’’)

The abstract syntax of Q is denoted by

〈C, φ, OP〉 = 〈{std}, mark>500, rank=rank+1〉

The descriptions of OP in various Session methods are as follows:

–
〈
C, φ, SAVE(obj)

〉
=

〈
{c}, false, SAVE(obj)

〉
: Stores the state of the object obj

in the database table t, where t corresponds to the POJO class c and obj is
the instance of c. The pre-condition φ is false as the method does not identify
any existing tuples in the database.

Data Leakage Analysis of the Hibernate Query Language 29

Table 1. Abstract syntax of HQL session methods

30 R. Halder et al.

–
〈
C, φ, UPD(�x, �exp)

〉
=

〈
{c}, φ, UPD(�v, �exp)

〉
: Updates the attributes correspond-

ing to the class fields �x by �exp in the database table t for the tuples satisfying
φ, where t corresponds to the POJO class c.

–
〈
C, φ, DEL()

〉
=

〈
{c}, φ, DEL()

〉
: Deletes the tuples satisfying φ in t, where t is

the database table corresponding to the POJO class c.

–
〈
C, φ, SEL

(
f(�exp′), r(�h(�x)), φ′, g(�exp)

)〉
: Selects information from the data-

base tables corresponding to the set of POJO classes C, and returns the equiv-
alent representations in the form of objects.

It is immediate that in case of SAVE() the condition φ is false and C is singleton
set {c}. As UPD() and DEL() always target single class, the set C is also singleton
{c} in those cases. However, C may not be singleton in case of SEL().

4 Concrete Semantics of HQL

In this section, we define the semantics of HQL by (i) extending the OOP seman-
tics [25] and (ii) defining the semantics of Session methods in terms of the
semantics of database query languages [17].

4.1 Concrete Semantics of OOP [25]

Let Var, Val and Loc be the set of variables, the domain of values and the set
of memory locations respectively. The set of environments, stores and states are
defined below:

– The set of environments is defined as Env : Var −→ Loc
– The set of stores is defined as Store : Loc −→ Val
– The set of states is defined as Σ : Env × Store. So, a state ρ ∈ Σ is denoted

by a tuple 〈e, s〉 where e ∈ Env and s ∈ Store.

Some special variables (pc, Vin, Vout) are used in the subsequent part which
represent the following: (i) ρ(pc) is the program counter; (ii) ρ(Vin) is the input
value of the current method; (iii) ρ(Vout) is the value returned by the current
method.

Constructor and Method Semantics. During object creation, the class con-
structor is invoked and object fields are instantiated by input values. Given a
store s, the constructor maps its fields to fresh locations and then assigns values
into those locations. Constructor never returns any output.

Definition 1 (Constructor Semantics). Given a store s. Let {ain, apc} ⊆
Loc be the free locations, Valin ⊆ Val be the semantic domain for input values.
Let vin ∈ Valin and pcexit be the input value and the exit point of the constructor.

Data Leakage Analysis of the Hibernate Query Language 31

Table 2. An example class

The semantic of the class constructor init, S[[init]] ∈ (Store×Val → ℘(Env×
Store)), is defined by

S[[init]](s, vin) =
{
(e0, s0) | (e0 � Vin → ain, pc → apc)∧(s0 � s[ain → vin, apc → pcexit])

}

Definition 2 (Method Semantics). Let Valin ⊆ Val and Valout ⊆ Val be
the semantic domains for the input values and the output values respectively.
Let vin ∈ Valin be the input values, ain and apc be the fresh memory locations,
and pcexit be the exit point of the method m. The semantic of a method m,
S[[m]] ∈ (Env × Store × Valin → ℘(Store × Env × Valout), is defined as

S[[m]](e, s, vin) =
{
(e′, s′, vout) | (e′ � e[Vin → ain, pc → apc])∧

(s′ � s[ain → vin, apc → pcexit]) ∧ vout ∈ Valout

}

Example 1. Consider the example of Table 2. The class constructor Demo() cre-
ates a new environment consists of field k. The semantics of constructor Demo()
and the semantics of the methods even() and mul() are defined below:

S[[Demo()]](s, i) =
{
(e0, s0) | (e0 � k → ain, pc → apc) ∧ (s0 � s[ain → i, apc → 5])

}

S[[even()]](e, s, ∅) =
{
(e, s′, vout) | (s′ � s[e(pc) → 10])∧(vout = if(s(e(k))%2) ?1 : 0)

}

S[[mul()]](e, s, j) =
{
(e, s′, vout) | (s′ � s[e(k) → s(e(k))∗j, e(pc) → 14])∧vout = e(k)

}

Observe that even() takes no input and returns an integer value as output,
whereas mul() takes an integer value as input and returns an address as output.

32 R. Halder et al.

Object and Class Semantics. Object semantics is defined in terms of inter-
action history between the program-context and the object. A direct interaction
takes place when the program-context calls any member-method of the object,
whereas an indirect interaction occurs when the program-context updates any
address escaped from the object’s scope. However, both direct or indirect inter-
action can cause a change in an interaction state (see Definition 3).

Definition 3 (Interaction States). The set of interaction states is defined by

Σ = Env × Store × Valout × ℘(Loc)

where Env, Store, Valout, and Loc are the set of application environments, the
set of stores, the set of output values, and the set of addresses respectively.

Definition 4 (Initial Interaction States). Let vin ∈ Valin be an input to the
class constructor init when creating an object. Let s ∈ Store be a store. Then
the set of initial interaction states is defined by

I0 =
{
〈e0, s0, φ, ∅〉 | S[[init]](vin, s) 〈e0, s0〉

}

Observe that φ denotes no output produced by the constructor and ∅ represents
the empty context with no escaped address.

Example 2 (Initial Interaction States). Consider the example of Table 2. The
input to the constructor is i. Given a store s, the initial interaction states are

I0 =
{
〈e0, s0, φ, ∅〉 | S[[Sample()]](i, s) (e0, s0)

}

=
{
〈e0, s0, φ, ∅〉 |(e0 � a → ain, pc → apc) ∧ (s0 � s[ain → i, apc → 5])

}

Observe that the third element in an initial state is φ because constructor does
not return any value as output. Similarly the fourth element is ∅ because no
address is escaped from the object’s scope after execution of sample().

Transition Relation. Let Lab = (M × Valin) ∪ {upd} be a set of labels, where
M is the set of class-methods, Valin is the set of input values and upd denotes
an indirect update operation by the context. The transition relation T : Σ →
℘(Σ × Lab) specifies which successor interaction states σ′ = 〈e′, s′, v′, Esc′〉 ∈ Σ
can follow

1. when an object’s methods m ∈ M with input vin ∈ Valin is directly invoked
on an interaction state σ = 〈e, s, v, Esc〉 (direct interaction), or

2. the context indirectly updates an address escaped from an object’s scope
(indirect interaction).

Definition 5 (Direct Interaction Tdir). Transition on Direct Interaction is
defined below:

Tdir(〈e, s, v, Esc〉) =
{(

〈e′, s′, v′, Esc′〉, (m, vin)
)

| S[[m]](〈e, s, vin〉) 〈e′, s′, v′〉
∧ Esc′ = Esc ∪ reach(v′, s′)

}

Data Leakage Analysis of the Hibernate Query Language 33

where

reach(v, s) =

⎧
⎪⎪⎨

⎪⎪⎩

if v ∈ Loc

{v} ∪ {reach(e′(f), s) | ∃B. B = {init, F, M}, f ∈ F,
s(v) is an instance of B, s(s(v)) = e′

else ∅
Example 3 (Direct interaction Tdir). Consider the example of Table 2. The con-
text can invoke any one of the two methods of Sample class. Therefore given an
interaction state σ = 〈e, s, v, Esc〉, the set of successor interaction states are

Tdir(〈e, s, v, Esc〉) ={(〈e, s′, v′, Esc〉, (parity(), φ)) | S[[parity()]](〈e, s, φ〉) � 〈e, s′, v′〉}
⋃{(〈e, s′, v′, Esc′〉, (incr(), j)) | S[[incr()]](〈e, s, j〉) � 〈e, s′, v′〉
∧ Esc’ = Esc ∪ {v′}}

Definition 6 (Indirect Interaction Tind). Transition on Indirect Interaction
is defined below:

Tind(〈e, s, v, Esc〉) =
{(

〈e, s′, v, Esc〉, upd
)

| ∃a ∈ Esc. Update(a, s) s′}

where Update(a, s) = {s′ | ∃v ∈ Val. s′ = s[a ← v]}

Definition 7 (Transition RelationT). Let σ ∈ Σ be an interaction state.
The transition relation T : Σ → ℘(Σ × Lab) is defined as T = Tdir ∪ Tind,
where Tdir and Tind represent direct and indirect transitions respectively.

Let us denote a transition between interaction states σ1 and σ2 by σ1
�−→ σ2

where � ∈ Lab.

Objects Fix-point Semantics. Given a store s ∈ Store, the set of initial interac-
tion states is defined as

I0 =
{
〈e0, s0, φ, ∅〉 | S[[init]](vin, s) 〈e0, s0〉, vin ∈ Valin

}

The fix-point trace semantics of obj, according to [12], is defined as

T [[obj]](I0) = lfp⊆
∅ F(I0) =

⋃

i≤ω

F i(I0)

where F(I) = λT . I ∪
{
σ0

�0−→ . . .
�n−1−−−→ σn

�n−→ σn+1 | σ0
�0−→ . . .

�n−1−−−→ σn ∈ T ∧
(σn+1, �n) ∈ T (σn)

}

Class Semantics. A class is nothing but a description of the set of objects. The
semantics of a class c is defined as

S[[c]] = ∪
{
T [[obj]](I0) | “obj” is an instance of a class c and I0 is the

set of initial interaction states
}

Observe that the semantic definitions of objects and classes aim at verifying
invariance properties of classes.

34 R. Halder et al.

Object-Oriented Program Semantics. Let P = 〈cmain, L〉 be an object-
oriented program. Let →⊆ (Env × Store)×(Env × Store) be a transition
relation and S0 ∈ ℘(Env×Store) be a set of initial states such that ∀ρ0 ∈
S0. ρ0(currentMethod) = cmain and ρ0(pc) = pcmain where pcmain is the entry
point of main method in cmain. The semantic of P is defined as

S[[P]](S0) =lfp⊆
∅ λ X. S0 ∪

{
ρ0 → ρ1 → · · · → ρn → ρn+1 | ρn+1 ∈ (Env × Store)∧

ρ0 → ρ1 → · · · → ρn ∈ X ∧ ρn → ρn+1

}

4.2 Concrete Semantics of HQL

In order to define the semantics of HQL, let us recall the notion of database
environment ρd and table environment ρt from [17].

Database Environment. We consider a database as a set of indexed tables {ti | i ∈
Ix} for a given set of indexes Ix. We define database environment by a function
ρd whose domain is Ix, such that for i ∈ Ix, ρd(i) = ti.

Table Environment. Given a database environment ρd and a table t ∈ d. We
define attr(t) = {a1, a2, ..., ak}. So, t ⊆ D1 × D2 × × Dk where, ai is the
attribute corresponding to the typed domain Di. A table environment ρt for a
table t is defined as a function such that for any attribute ai ∈ attr(t),

ρt(ai) = 〈πi(lj) | lj ∈ t〉

where π is the projection operator, i.e. πi(lj) is the ith element of the lj-th row.
In other words, ρt maps ai to the ordered set of values over the rows of the
table t.

Interaction State. We extend the notion of interaction states of OOP to the case
of HQL, considering the interaction of context with Session objects. To this
aim, we include database environment in the definition of HQL states. The set
of interaction states of HQL is, thus, defined by

Σ = Env × Store × Ed × Valout × ℘(Loc)

where Env, Store, Ed , Valout, and Loc are the set of application environments,
the set of stores, the set of database environments, the set of output values, and
the set of addresses respectively.

The set of initial interaction states of HQL is defined by

I0 =
{
〈e0, s0, ρd0 , φ, ∅〉 | S[[init]](vin, s) 〈e0, s0〉

}

where vin ∈ Valin is an input to the class constructor init when creating an
object and s ∈ Store is a store. ρd0 is the initial database environment.

The semantics of conventional constructors, methods, objects, classes in HQL
are defined in the same way as in the case of OOP. The Session methods require

Data Leakage Analysis of the Hibernate Query Language 35

an ‘ad-hoc’ treatment. We define its concrete semantics by specifying how the
methods are executed on (e, s, ρd) where e ∈ Env is an environment, s ∈ Store
is a store, and ρd ∈ Ed is a database environment, resulting into new state
(e′, s′, ρd′). The semantic definitions are expressed in terms of the semantics of
database statements SELECT, INSERT, UPDATE, DELETE [17].

We use the following functions in the subsequent part: map(v) maps v to
the underlying database object; var(exp) returns the variables appearing in exp;
attr(t) returns the attributes associated with table t; dom(f) returns the domain
of f .

The semantic function is defined as:

S[[(C, φ, op)]](e, s, ρd)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S[[(C, φ, op)]](e, s, ρt′) if ∃t1, . . . , tn ∈ dom(ρd) : C = {c1, . . . , cn}
∧(∀i ∈ [1 . . . n]. ti = map(ci)) ∧ t′ = t1 × t2 × · · · × tn.

⊥ otherwise.

Semantics of Session Method UPD(). Consider the Session method
〈{c}, φ, UPD(�v, �exp)〉. The semantics is defined below2:
S[[〈{c}, φ, UPD(�v, �exp)〉]]

=λ(e, s, ρt). let c = 〈init, F, M〉 such that map(F) = attr(t) and map(�v) = �a ⊆ attr(t)

where �v ⊆ F, and let φd = PE[[φ]](e, s, F) and �expd = PE[[�exp]](e, s, F) in
{
〈e, s, ρt′〉 | ρt′ ∈ S[[

〈
UPDATE(�a, �expd), φd

〉
]](ρt)

}
.

The auxiliary function PE[[X]] (which stands for partial evaluation) is used in
the definition above to convert variables in X into the corresponding database
objects. This is defined by

PE[[X]](e, s, F) = X ′

where X ′ = X[xi/vi] for all vi ∈ var(X) and xi =

⎧
⎪⎨

⎪⎩

map(vi) if vi ∈ F

E[[vi]](e, s) otherwise

Example 4. Let us consider a POJO class std which corresponds to the database
table t1 depicted in Table 3(a). Consider the following HQL code:

Query Q = ses.createQuery(“UPDATE std SET rank = rank + 1, mark

= mark − 50 × 2 WHERE mark > 500′′);
int R = Q.executeUpdate();

2 Observe that, for the sake of simplicity, we do not consider here the method
REFRESH() which synchronize the in-memory objects state with that of the underlying
database.

36 R. Halder et al.

Table 3. After execution of the UPDATE operation

The abstract syntax of the Session method above is
〈
{c}, φ, UPD(�v, �exp)

〉
, where

– {c}= {std},
– φ= “mark > 500”,
– UPD(�v, �exp)=UPD

(
〈rank,mark〉, 〈rank + 1,mark − 50 × 2〉

)

Given the table environment ρt1 in Table 3(a), the semantics is defined as:

S[[
〈
{std}, (mark > 500), UPD

(
〈rank,mark〉, 〈rank + 1,mark − 50 × 2〉

)〉
]]

=λ(e, s, ρt1). let std = 〈std(), F, M〉 such that F = 〈sid, mark, rank, dno〉 and

map(F) = attr(t) = 〈tsid, tmark, trank, tdno〉 and

map(�v) = map(〈rank, mark〉) = 〈trank, tmark〉 ⊆ attr(t), and let

(tmark > 500) = PE[[(std.mark > 500)]](e, s, F) and

〈trank + 1, tmark − 50 × 2〉 = PE[[〈rank + 1, mark − 50 × 2〉]](e, s, F) in
{
〈e, s, ρt2〉 | ρt2 ∈ S[[

〈
UPDATE(〈trank, tmark〉, 〈trank + 1, tmark − 50 × 2〉),

(tmark > 500)
〉
]](ρt1)

}
.

The resulting table environment ρt2 in shown in Table 3(b). The semantics of
other Session methods are in Table 4.

Fix-Point Semantics of HQL. Let us define transition relation, considering
nondeterministic executions, as T : Mses × Σ → ℘(Σ). This specifies which
successor interaction states σ′ = 〈e′, s′, ρd′ , 〉 ∈ Σ can follow when a Session
method mses = 〈C, φ, op〉 ∈ Mses is invoked on an interaction state σ = 〈e, s, ρd〉.
That is,

Tses[[mses]](〈e, s, ρd〉) =
{(

〈e′, s′, ρd′〉
)

| S[[mses]](〈e, s, ρd〉) 〈e′, s′, ρd′〉 ∧ mses ∈ Mses

}

We now define the transition relation, by considering (i) the direct interaction,
when a conventional method is directly invoked, (ii) the session interaction, when
a Session method is invoked, and (iii) the indirect transition, when context
updates any address escaped from the object’s scope.

Definition 8 (Transition Relation T). Let σ ∈ Σ be an interaction state.
The transition relation T : Lab×Σ → ℘(Σ) is defined as T = Tdir∪Tind∪Tses,
where Tdir, Tind and Tses represent direct, indirect, and session transitions
respectively. Lab represents the set of labels which include Session methods
Mses, conventional class methods M, and an indirect update operation Upd by the
context.

Data Leakage Analysis of the Hibernate Query Language 37

Table 4. Semantics of Session methods

We denote a transition by σ
a−→ σ′ when application of a label a ∈ Lab on

interaction state σ results into a new state σ′.
Let I0 be the set of initial interaction states. The fix-point trace semantics

of HQL program P is defined as

T [[P]](I0) = lfp⊆
∅ F(I0) =

⋃

i≤ω

F i(I0)

where F(I) = λT . I ∪
{
σ0

a0−→ . . .
an−1−−−→ σn

an−−→ σn+1 | σ0
a0−→ . . .

an−1−−−→ σn ∈ T
∧σn

an−−→ σn+1 ∈ T
}

5 Abstract Semantics of HQL

Abstract interpretation [11,12] provides a general theoretical foundation to spec-
ify static analyses, to guarantee their correctness, to tune their precision accord-
ing to efficiency issues, and to compare and to combine them in a modular

38 R. Halder et al.

way. It allows to deal separately with concerns that typically interleave, includ-
ing fix-point algorithms, abstract domains, and termination criteria handled by
widening operators. Its theoretical and practical impact has been demonstrated
in various application fields, in particular for safety and security analysis.

In [34,35], authors used the Abstract Interpretation framework to define an
abstract semantics of imperative languages using symbolic domain of positive
propositional formulae in the form

∧

0≤i≤n, 0≤j≤m

{yi → zj}

which means that the values of variable zj possibly depend on the values of vari-
able yi. Later, [18] extends this to the case of structured query languages. The
computation of abstract semantics of a program in the propositional formulae
domain provides a sound approximation of variable dependences, which allows
to capture possible information flow in the program. The information leakage
analysis is then performed by checking the satisfiability of formulae after assign-
ing truth values to variables based on their sensitivity levels.

Let Pos and L be the domain of propositional formulae and the set of program
points respectively. An abstract state σ� ∈ Σ� ≡ L×Pos is a pair 〈�, ψ〉 where ψ ∈
Pos represents the variable dependences, in the form of propositional formulae,
among program variables up to the program label � ∈ L.

Methods in HQL include a set of imperative statements3. We assume, for the
sake of the simplicity, that attackers are able to observe public variables inside of
the main method only. Therefore, our analysis only aims at identifying variable
dependences at input-output labels of methods.

The abstract transition semantics of constructors and conventional methods
are defined below.

Definition 9 (Abstract Transition Semantics of Constructor). Consider
a class c = 〈init, F, M〉 where init is a default constructor. Let � be the label of
init. The abstract transition semantics of init is defined as

T �[[�init]] = {(�, ψ) → (Succ(�init), ψ)}

where Succ(�init) denotes the successor label of init. Observe that the default
constructor is used to initialize the objects-fields only, and it does not add any
new dependence.

The abstract transition semantics of parameterized constructors are defined in
the same way as of class methods m ∈ M.

Definition 10 (Abstract Transition Semantics of Methods). Let U ∈
℘(Var) be the set of variables which are passed as actual parameters when invoked
a method m ∈ M on an abstract state (�, ψ) at program label �. Let V ∈ ℘(Var) be
3 For a detailed abstract transition semantics of imperative statements, see [34].

Data Leakage Analysis of the Hibernate Query Language 39

the formal arguments in the definition of m. We assume that U ∩ V = ∅. Let a
and b be the variable returned by m and the variable to which the value returned
by m is assigned. The abstract transition semantics is defined as

T �[[�m]] = {(�, ψ) → (Succ(�m), ψ′)}

where ψ′ = {xi → yi | xi ∈ U, yi ∈ V } ∪ {a → b} ∪ ψ and Succ(�m) is the label
of the successor of m.

Let us classify the high-level HQL variables into two distinct sets: Vard and Vara.
The variables which have a correspondence with database attributes belong to
the set Vard. Otherwise, the variables are treated as usual variables and belong
to Vara. We denote variables in Vard by the notation v, in order to differentiate
them from the variables in Vara. This leads to four types of dependences which
may arise in HQL programs: x → y, x → y, x → y and x → y, where x, y ∈ Vara

and x, y ∈ Vard.

Definition of Abstract Transition FunctionT � for Sessionmethods. The
abstract labeled transition semantics of various Session methods are defined
below, where by Var(exp) and Field(c) we denote the set of variables in exp
and the set of class-fields in the class c respectively. The function Map(v) is
defined as:

Map(v) =

{
v if v has correspondence with a database attribute,
v otherwise.

Notice that in the definition of T � the notation ṽ stands for either v or v. Let
SF(ψ) denotes the set of subformulas in ψ, and the operator � is defined by
ψ1 � ψ2 =

∧ (
SF(ψ1)\SF(ψ2)

)
.

The transition semantics for Session method msave

T �[[�msave]]
def
= T �[[�(C, φ, SAVE(obj))]]

def
= T �[[�({c}, FALSE, SAVE(obj))]]

def
= {〈�, ψ〉 SAVE−−−→ 〈Succ(�msave), ψ〉}

The transition semantics for Session method mupd

T �[[�mupd]]
def
= T �[[�(C, φ, UPD(�v, �exp))]]

def
= T �[[�({c}, φ, UPD(�v, �exp))]]

def
= {〈�, ψ〉 UPD−−→ 〈Succ(�mupd), ψ′〉}
where ψ′ =

∧ {
ỹ → zi | y ∈ Var[[φ]], ỹ = Map(y), zi ∈ �v

} ⋃

40 R. Halder et al.

∧ {
ỹi → zi | yi ∈ Var[[expi]], expi ∈ �exp, ỹi = Map(yi), zi ∈ �v

} ⋃
ψ′′

and ψ′′ =
{

ψ �
(
ã → zi | zi ∈ �v ∧ a ∈ Var ∧ ã = Map(a)

)
if φ is TRUE by default.

ψ otherwise

The transition semantics for Session method mdel

T �[[�mdel]]
def
= T �[[�(C, φ, DEL())]]

def
= T �[[�({c}, φ, DEL())]]

def
= {〈�, ψ〉 DEL−−→ 〈Succ(�mdel), ψ′〉}
where ψ′ =

∧ {
ỹ → z | y ∈ Var[[φ]], ỹ = Map(y), z ∈ Field(c)

} ⋃
ψ′′

and ψ′′ =
{

ψ �
(
ã → zi | zi ∈ �v ∧ a ∈ Var ∧ ã = Map(a)

)
if φ is TRUE by default.

ψ otherwise

The transition semantics for Session method msel

T �[[�msel]]
def
= T �[[�(C, φ, SEL(f(�exp′), r(�h(�x)), φ, g(�exp))]]

def
= {〈�, ψ〉 SEL−−−→ 〈Succ(�msel), ψ′〉}
where ψ′ =

∧ {
ỹ → z̃ | y ∈ (Var[[φ]] ∪ Var[[�e]] ∪ Var[[φ′]] ∪ Var[[�e′]]), z ∈ Var[[�x]],

ỹ = Map(y), z̃ = Map(z)
} ⋃

ψ

6 Information Leakage Analysis

We are now in position to use the abstract semantics defined in the previous
section to identify possible sensitive database information leakage through high-
level HQL variables. After obtaining over-approximation of variable dependences
at each program point, we assign truth values to each variable based on their
sensitivity level, and we check the satisfiability of propositional formulae repre-
senting variable dependences [34].

Since our main objective is to identify the leakage of sensitive database
information possibly due to the interaction of high-level variables, we assume,
according to the policy, that different security classes are assigned to database
attributes. Accordingly, we assign security levels to the variables in Vard based
on the correspondences. Similarly, we assign the security levels of the variables
in Vara based on their use in the program. For instance, the variables which are
used on output channels, are considered as public variables. Observe that for the
variables with unknown security class, it may be computed based on the depen-
dence of it on the other application variables or database attributes of known
security classes.

Let Γ : Var → {L,H,N} be a function that assigns to each of the variables
a security class, either public (L) or private (H) or unknown (N).

Data Leakage Analysis of the Hibernate Query Language 41

After computing abstract semantics of HQL program P , the security class of
variables with unknown level (N) in P are upgraded to either H or L, according
to the following function:

Upgrade(v) = Z if ∃ (u → v) ∈ T �[[P]]. Γ (u) = Z ∧ Γ (u) �= N ∧ Γ (v) = N

We say that program P respects the confidentiality property of database
information, if and only if there is no information flow from private to public
attributes. To verify this property, a corresponding truth assignment function Γ
is used:

Γ (x) =
{

T if Γ (x) = H
F if Γ (x) = L

If Γ does not satisfy any propositional formula in ψ of an abstract state, the
analysis will report a possible information leakage.

Let us illustrate this on the running example program P in Fig. 1. According
to the policy, let the database attribute corresponding to variable h1 is private,
whereas the attributes corresponding to id1, id2 and l2 are public. Therefore,

Γ (h1) = H and Γ (id1) = Γ (id2) = Γ (l2) = L

For other variables in the program, the security levels are unknown. That is,

Γ (R1.[0]) = Γ (R1.[1]) = Γ (obj[0]) = Γ (obj[1]) = Γ (pk) = Γ (h2) = N

Considering the domain of positive propositional formulae, the abstract
semantics yields the following formulae at program point 20 in P :

id1 → R1.[0]; h1 → R1.[1]; R1.[0] → obj[0]; R1.[1] → obj[1];
obj[0] → pk; obj[1] → h2; pk → l2; id2 → l2; h2 → l2;

According to the Upgrade() function, the security levels of the variables with
unknown security level N are upgraded as below:

Γ (R1.[0]) = L, Γ (R1.[1]) = H, Γ (obj[0]) = L, Γ (obj[1]) = H
Γ (pk) = L, Γ (h2) = H

Finally, we apply the truth assignment function Γ which does not satisfy the
formula h2 → l2, as Γ (h2) = T and Γ (l2) = F and T → F is false.

Therefore, the analysis reports that the example program P is vulnerable to
leakage of confidential database data.

7 Conclusions

We proposed a static analysis framework to perform information flow analysis
of HQL based on the Abstract Interpretation framework. Our approach cap-
tures information leakage on “permanent” data stored in a database when a
HQL program manipulates them. This may also lead to a refinement of the

42 R. Halder et al.

non-interference definition that focusses on confidentiality of the data instead of
variables. We are now investigating a possible enhancement of the analysis inte-
grating with other abstract domains. As various aggregate operations are often
performed on persistent data in HQL, to consider declassification policies [30] is
also our future aim. We are currently working on designing and implementing a
prototype based on our proposed approach.

Acknowledgement. This work is partially supported by PRIN “Security Horizons”
project and by the research grant (SB/FTP/ETA-315/2013) from the Science &Engi-
neering Research Board (SERB), Department of Science and Technology, Government
of India. We thank the anonymous reviewers for their valuable comments and sugges-
tions.

References

1. Amtoft, T., Banerjee, A.: A logic for information flow analysis with an application
to forward slicing of simple imperative programs. Sci. Comput. Program. 64, 3–28
(2007)

2. Andrews, G.R., Reitman, R.P.: An axiomatic approach to information flow in
programs. ACM Trans. Program. Lang. Syst. 2, 56–76 (1980)

3. Bao, T., Zheng, Y., Lin, Z., Zhang, X., Xu, D.: Strict control dependence and its
effect on dynamic information flow analyses. In: Proceedings of the 19th Inter-
national Symposium on Software Testing and Analysis, pp. 13–24. ACM Press,
Trento (2010)

4. Barbon, G., Cortesi, A., Ferrara, P., Pistoia, M., Tripp, O.: Privacy analysis of
android apps: implicit flows and quantitative analysis. In: Saeed, K., Homenda,
W. (eds.) CISIM 2015. LNCS, vol. 9339, pp. 3–23. Springer, New York (2015)

5. Bauer, C., King, G.: Hibernate in Action. Manning Publications Co., Greenwich
(2004)

6. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications Co.,
Greenwich (2006)

7. Cavadini, S.: Secure slices of insecure programs. In: Proceedings of the ACM Sym-
posium on Information, Computer and Communications Security, pp. 112–122.
ACM Press, Tokyo (2008)

8. Cortesi, A., Dovier, A., Quintarelli, E., Tanca, L.: Operational and abstract seman-
tics of the query language G-log. Theor. Comput. Sci. 275(1–2), 521–560 (2002)

9. Cortesi, A., Ferrara, P., Pistoia, M., Tripp, O.: Datacentric semantics for verifica-
tion of privacy policy compliance by mobile applications. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 61–79. Springer, Heidelberg
(2015)

10. Cortesi, A., Halder, R.: Information-flow analysis of hibernate query language. In:
Dang, T.K., Wagner, R., Neuhold, E., Takizawa, M., Küng, J., Thoai, N. (eds.)
FDSE 2014. LNCS, vol. 8860, pp. 262–274. Springer, Heidelberg (2014)

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the POPL 1977, pp. 238–252. ACM Press, Los Angeles (1977)

12. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, pp. 269–282. ACM Press, San Antonio (1979)

Data Leakage Analysis of the Hibernate Query Language 43

13. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19,
236–243 (1976)

14. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012)

15. Elliott, J., O’Brien, T., Fowler, R.: Harnessing Hibernate, 1st edn. O’Reilly,
Sebastopol (2008)

16. Halder, R.: Language-based security analysis of database applications. In: Proceed-
ings of the 3rd International Conference on Computer, Communication, Control
and Information Technology (C3IT 2015), pp. 1–4. IEEE Press (2015)

17. Halder, R., Cortesi, A.: Abstract interpretation of database query languages. Com-
put. Lang. Syst. Struct. 38, 123–157 (2012)

18. Halder, R., Zanioli, M., Cortesi, A.: Information leakage analysis of database query
languages. In: Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting (SAC 2014), 24–28 March 2014, pp. 813–820. ACM Press, Gyeongju (2014)

19. Hammer, C.: Experiences with PDG-based IFC. In: Massacci, F., Wallach, D.,
Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 44–60. Springer, Heidelberg
(2010)

20. Hammer, C., Krinke, J., Snelting, G.: Information flow control for java based
on path conditions in dependence graphs. In: Proceedings of the IEEE Interna-
tional Symposium on Secure Software Engineering (ISSSE 2006), pp. 87–96. IEEE,
Arlington (2006)

21. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8, 399–422 (2009)

22. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Sci.
Comput. Program. 37(1–3), 113–138 (2000)

23. Krinke, J.: Information flow control and taint analysis with dependence graphs. In:
Proceedings of the Third International Workshop on Code Based Software Secu-
rity Assessments (CoBaSSA). Technical report TUD-SERG-2007-023, Vancouver,
Canada, Delft University of Technology, pp. 6–9 (2007)

24. Li, B.: Analyzing information-flow in java program based on slicing technique.
SIGSOFT Softw. Eng. Notes 27, 98–103 (2002)

25. Logozzo, F.: Class invariants as abstract interpretation of trace semantics. Comput.
Lang. Syst. Struct. 35, 100–142 (2009)

26. Mantel, H., Sudbrock, H.: Types vs. PDGs in information flow analysis. In: Albert,
E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 106–121. Springer, Heidelberg (2013)

27. Myers, A.C.: Jflow: practical mostly-static information flow control. In: Proceed-
ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 1999), January 20–22 1999, pp. 228–241. ACM Press, San
Antonio (1999)

28. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program.
Lang. Syst. 25, 117–158 (2003)

29. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21, 5–19 (2003)

30. Sabelfeld, A., Sands, D.: Declassification: dimensions and principles. J. Comput.
Secur. 17, 517–548 (2009)

31. Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure infor-
mation flow. In: Proceedings of the 20th IEEE Computer Security Foundations
Symposium, CSF 2007, pp. 203–217. IEEE Computer Society, Washington DC
(2007). http://dx.doi.org/10.1109/CSF.2007.20

http://dx.doi.org/10.1109/CSF.2007.20

44 R. Halder et al.

32. Smith, G.: Principles of secure information flow analysis. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27, pp. 291–307. Springer, Nov Smokovec (2007)

33. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4, 167–187 (1996)

34. Zanioli, M., Cortesi, A.: Information leakage analysis by abstract interpretation.
In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 545–557. Springer, Heidelberg
(2011)

35. Zanioli, M., Ferrara, P., Cortesi, A.: Sails: static analysis of information leakage
with sample. In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing (SAC 2012), pp. 1308–1313. ACM Press, Trento (2012)

An Adaptive Similarity Search
in Massive Datasets

Trong Nhan Phan1(&), Josef Küng1, and Tran Khanh Dang2

1 Institute for Application Oriented Knowledge Processing,
Johannes Kepler University Linz, Linz, Austria

{nphan,jkueng}@faw.jku.at
2 Faculty of Computer Science and Engineering,

HCMC University of Technology, Ho Chi Minh City, Vietnam
khanh@cse.hcmut.edu.vn

Abstract. Similarity search is an important task engaging in different fields of
studies as well as in various application domains. The era of big data, however,
has been posing challenges on existing information systems in general and on
similarity search in particular. Aiming at large-scale data processing, we propose
an adaptive similarity search in massive datasets with MapReduce. Additionally,
our proposed scheme is both applicable and adaptable to popular similarity
search cases such as pairwise similarity, search-by-example, range queries, and
k-Nearest Neighbour queries. Moreover, we embed our collaborative refine-
ments to effectively minimize irrelevant data objects as well as unnecessary
computations. Furthermore, we experience our proposed methods with the two
different document models known as shingles and terms. Last but not least, we
conduct intensive empirical experiments not only to verify these methods
themselves but also to compare them with a previous related work on real
datasets. The results, after all, confirm the effectiveness of our proposed methods
and show that they outperform the previous work in terms of query processing.

Keywords: Similarity search � Massive datasets � Scalability � Adaptivity �
Collaborative filtering � Cosine � MapReduce � Hadoop

1 Introduction

The essential role of similarity search has been recognized not only in diverse fields of
studies such as machine learning, data mining, clustering, and information retrieval but
also in wide-ranges of applications and processes such as duplicate detection, decision
support systems, search engines, and data clustering, to name a few. Its main objective
is to look for other objects that are potentially similar to one another. There are different
kinds of similarity search cases such as pairwise similarity, search-by-example, range
queries, and k-Nearest Neighbor (k-NN) queries [13, 14].

In general, similarity search takes two main phases as follows: (1) Candidate
generation phase; and (2) Verification phase. The former is to produce candidate pairs
that have potential of similarity while the latter is to verify which pair is truly similar by
its similarity score. The similarity search task, unfortunately, is time-consuming. For
instance, doing the inceptive pairwise similarity in that all possible objects are

© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIII, LNCS 9480, pp. 45–74, 2016.
DOI: 10.1007/978-3-662-49175-1_3

considered and computed for their self-join similarity gives an exponential complexity
O(n2). Such a high cost demands either better innovations or further improvements on
similarity computing.

The issue has got many attentions from both academia and industry world-wide.
Some sorts of indexes or approximate but efficient approaches are proposed in order to
deal with this issue [5, 6]. Nevertheless, it becomes more challenging than ever when
we are in the era of big data. With the large amount of data rapidly increased, tradi-
tional processing mechanisms are in a high pressure towards their effectiveness and
efficiency. Consequently, state-of-the-art tends to benefit parallel mechanism either by
optimizing parallel algorithms [1] or by deploying computations on a novel parallel
paradigm like MapReduce [4, 8, 12, 19, 22] to improve large-scale similarity search
when dataset size never stops growing.

Being aware of the new trend and promoted by state-of-the-art, we propose an
adaptive similarity search in large data collections with MapReduce. This paper is the
extension of our work [14]. Our goal is to achieve an efficient large-scale processing
with big data volume. Hence, our main contributions are summed up as followings:

1. We present a general similarity search scheme toward scalability and embed col-
laborative strategic refinements, which reduce a large amount of candidate size
leading to eliminating unnecessary computing and costs, into it.

2. We effectively implement the proposed scheme with MapReduce paradigm, which
supports us for large-scale data processing.

3. We show that the proposed scheme flexibly adapts itself to well-known similarity
searches including pairwise similarity, search-by-example, range search, and
k-Nearest Neighbor search.

4. These methods are consolidated by empirical experiments with real datasets from
both DBLP [7] and Gutenberg [16] on Apache Hadoop Framework [3]. In addition,
we employ the two document models known as terms and shingles to experience
our proposed methods. Furthermore, these methods are evaluated and compared to
the related work in [10], which shows how much beneficial they might get when
processing large amount of data.

The rest of the paper is organized as follows: Sect. 2 shows related work that is
pretty close to our approach. Section 3 introduces basic concepts associated with our
current work. Next, we propose the general similarity search scheme in Sect. 4 and how
the scheme is applicable to diverse similarity search cases in Sect. 5. Relevant
experiments and analytics are then given in Sect. 6. Finally, we discuss some chal-
lenges as well as open issues towards our research work in Sect. 7 before making our
final remarks in Sect. 8.

2 Related Work

Due to the importance of similarity search, many literatures have been responding the
calls of its improvement against imposed new challenges whilst traditional mechanisms
are not able to suitably react and gradually become out-dated. Fenz et al. show an
efficient similarity search in very large string sets [11]. They propose a state set index

46 T.N. Phan et al.

based on a prefix index. The state set index is interpreted as a nondeterministic finite
automaton. Then each character of a string is mapped to a state, and the last character
defines an accepting state. Besides, they use edit distance with equal weights for
operations and tune the parameters of labeling alphabet size and the index length.
Nevertheless, their approach is a sequential processing while considering a set of
strings instead of document objects like the way we do with MapReduce.

Xiao et al. introduce efficient similarity joins for near duplicate detection [23]. They
propose an exact similarity join algorithm, together with positional filtering principle
combined with both prefix and suffix filtering, to detect near-duplicates. Their
approach, however, does not take parallel mode into account, which may limit the
capability of processing big data volume.

Zhang et al. present a unified approximate nearest neighbor search scheme by
combining data structure and hashing [24]. In their approach, they employ the prune
strategy from k-means clustering tree and the fast distance computation from Hamming
distance. Their goal, however, is towards only k-Nearest Neighbor queries. Moreover,
these methods are done without any parallel mechanism.

Meanwhile, Alabduljalil et al. present optimized parallel algorithms for computing
exactly all-pair similarity search [1]. The authors propose a hybrid indexing that
combine the forward indexing and the inverted indexing on which the similarity
computing is performed. In addition, they develop a partitioning method for static
filtering and parallelism. The basic idea is to ensure that dissimilar objects are in
different partitions. Though their methods are compatible with MapReduce paradigm,
only mappers are actually involved. Besides, they introduce a circular assignment that
assigns tasks computing the similarity between partitions to early remove unwanted I/O
and computations. Nevertheless, they assume that the normalization from Cosine
measure is already done before computing the similarity scores. We believe that the
missing normalization step is really important to be effectively handled due to its extra
high overheads.

Vernica et al. introduce efficient parallel set-similarity joins using MapReduce [22].
They propose a 3-stage approach for a self-join case: (1) Build a list of word frequency
is in an increased order; (2) Generate a list of record-ID pairs; and (3) Output the pairs
of records. Moreover, they also extend their approach for set joins and balance the
workloads based on term frequencies in a round-robin manner. Nevertheless, it seems
that duplicate values in each Map job are redundant, and how to calculate the similarity
score is not clearly shown.

Elsayed et al. present pairwise document similarity in large collections with
MapReduce [10]. Their main aim is to employ MapReduce paradigm to compute
pairwise similarity by accumulating the innter product of term frequencies between a
pair as follows: (1) Building a standard inverted index in that each term is associated
with a list of documents to which it belongs and its corresponding term frequency; and
(2) Calculating and summing all of the individual values of a pair to generate its final
similarity scores. The approach looks like using Cosine measure such that the inner
product of term frequency between a pair of documents is used to produce the simi-
larity scores. Normalization and strategic filtering, however, are not mentioned as they
are in our approach. Moreover, there is a redundancy when calculating the inner
product of all pairs when given a query. In other words, the proposed method does not

An Adaptive Similarity Search in Massive Datasets 47

make the best use of the query in order to avoid such unnecessary computing as our
proposed methods do.

Li et al. show batch text similarity search with MapReduce [12]. They propose a
two-phase as briefly following: (1) Generate word frequency dictionary, generate
vectors of all texts in the database according to the word frequency dictionary, and then
generate PLT inverted file; and (2) Transform the query text into vector texts, and then
calculate the prefix for each vector text. Finally, match the text which meets the
requirement in PLT inverted file. The basic idea is to firstly build a word frequency
dictionary. For each input, it is converted into vector texts when referenced to the
dictionary. Prefixes of each vector text are then generated and stored in a PLT inverted
file whose form of <word, textid, length, threshold value>. Whenever there is a query
text search, the query text is transformed into vector texts which have been later on
processed for their prefixes. In the end, words in each prefix will be searched from the
PLT inverted file to find the text pairs that satisfy the given similarity threshold.
Unfortunately, this approach consumes lots of computations and large amounts of
prefixes, which easily leads to slowing down the whole system due to the large amount
of datasets.

De Francisci Morales et al. propose their approach known as scaling out all pairs
similarity search with MapReduce [8]. They build inverted indexes from documents
and use Cosine measure as a metric. In addition, they eliminate some terms based on a
threshold and pruning techniques. Moreover, these eliminated terms are later retrieved
or distributed to reduce phase to contribute to the final similarity scores. The nor-
malization phase, however, is not mentioned.

3 Preliminaries

3.1 Concepts

A workset X consists of a set of N documents Di, which is represented as X = {D1, D2,
D3, …, Dn}, and each document Di composes of a set of words as termk, which is
shown as Di = {term1, term2, term3, …, termk}. In general, each document Di has the
probability to share its terms with others, and we define common terms as those
contained in all the considering documents in the workset Ω. Meanwhile, each termk

has its own term frequency tfik, which is described as the number of times the termk

occurs in the document Di. The inverse document frequency idfik shows how much
popular a termk of a document Di is across all the documents. In addition, there is
another way to represent a document by a set of K-shingles or n-grams [17, 20]. When
given a document Di as a string of characters, K-shingles are defined as any sub-string
having the length K found in the document. This concept is exploited in the field of
natural language processing to represent documents and avoid the miss-match when
two documents share the same number of terms but with different positions. With this
model, a document Di is alternatively represented by a set of shingles such as
Di = {SH1, SH2, …, SHk}, and the length of a document is known as the total
number of shingles belonging to the document. Last but not least, the sign [,] indicates
a list, the sign [[,], [,]] demonstrates a list of lists, the sign [,]ord denotes an ordered list,
and (u.v) gives the inner product between u and v.

48 T.N. Phan et al.

In this paper, we utilize the Cosine measure, which is popular and employed by the
work in [1, 4, 10, 23], to compute the similarity between a pair of documents Di and Dj,
whose formulae are defined as follows:

sim Di;Dj
� � ¼ Xt

k¼1

Wik �Wjk ð1Þ

Where Wik ¼
tfik � log N

nkffiPt
k¼1 tfikð Þ2� log N

nk

2
� �h ir ð2Þ

From the Eqs. (1) and (2), nk represents the total number of documents sharing the
same termk, and idfik is computed as the following equation: idfik ¼ log N

nk
. All of the

documents, however, have to be normalized before being further processed. We call
Wik the normalized weight of termk in the document Di, which is done by the Eq. (2).
The purpose of normalization integration is to avoid the much affection of large
documents to small ones and make the similarity scores fall into the interval [0, 1],
which is easily visualized to humans. Two documents are similar when the similarity
score is close to 1 and vice versa. Besides, bringing the normalization into the pro-
cessing makes sense in reality and not an assumption in the context of big data because
of its computation costs. Last but not least, we also exploit an inverted index, which
maps a termk to the document Di to which it originally belongs, in order to speed up the
processing then.

3.2 MapReduce Paradigm

MapReduce is a parallel programming paradigm which aims at many large-scale
computing problems [9]. The basic idea is to divide a large problem into independent
sub-problems which are then tackled in parallel by two operations known as Map and
Reduce. Its mechanism is deployed on commodity machines in that one is in charge of
a master node and the others are responsible for worker nodes. The master delivers
m Map jobs and r Reduce jobs to workers. Those which are assigned Map jobs are
called mappers whilst those which are assigned Reduce jobs are called reducers. In
addition, Map jobs are specified by a Map function while Reduce jobs are defined by a
Reduce function.

An overview of MapReduce paradigm is illustrated as in Fig. 1, where there are
m mappers and r reducers. Each mapper has its local data in order to store the inter-
mediate key-value pairs. Before reaching reducers, the intermediate key-value pairs are
shuffled and sorted by the keys. Generally, the single flow of MapReduce can be
shortly described as follows:

1. The input is partitioned in a distributed file system (e.g., Hadoop Distributed File
System – HDFS) [3], which produces key-value pairs of the form [key1, value1];

2. Mappers execute the Map function to generate intermediate key-value pairs of the
form [key2, value2];

An Adaptive Similarity Search in Massive Datasets 49

3. The shuffling process groups these pairs into [key2, [value2]] according to the keys;
4. Reducers execute the Reduce function to output the result;
5. The result is finally written back into the distributed file system.

4 The Proposed Scheme

In this section, we propose an overview scheme that derives similarity scores between
pairs of documents with MapReduce. From a general point of view and for simplicity,
we firstly show the scheme as in the traditional self-join case without any query
parameters in that we want to find pairwise similarity. Other specific cases following
the scheme are presented in Sect. 5 of the paper. As illustrated in Fig. 2, the whole
process consists of four MapReduce phases. Moreover, each phase is equipped with
filtering strategies in order to eliminate dissimilar pairs and reduce overheads including
storage, communication, and computing costs. The brief descriptions of these phases,
along with the filtering strategies, are given as follows:

• Phase 1 (MapReduce-1): Building the customized inverted index. At the first
MapReduce phase, sets of documents known as worksets are inputs to build the
customized inverted index. The data input are split into chunks and are later on

Fig. 1. The overview of MapReduce

50 T.N. Phan et al.

processed in the form of key-value pairs. In addition, Prior Filter is applied to
discard common words. The reason is that they contribute nothing to the final
similarity score but give a burden to the whole process.

• Phase 2 (MapReduce-2): Normalizing candidate pairs. At this phase, the cus-
tomized inverted index will be normalized. In parallel, Query Term Filtering and
Lonely Term Filtering are applied to filter those which only exist in a single doc-
ument or those which are not in the given query document, respectively. In addition,
the key-value pairs are ranked in a descending manner, which is according to their
values.

• Phase 3 (MapReduce-3): Building the normalized inverted index. These
key-value pairs from MapReduce-2 are then fed to MapReduce-3 so that the nor-
malized inverted index is generated. Besides, Pre-pruning-1 will be done to reduce
the candidate size when given a query document.

• Phase 4 (MapReduce-4): Computing similarity pairs. As a final phase, the
normalized inverted index is employed to compute the similarity between a pair.
Again, this phase filters candidate pairs according to specific query strategies like
Range Query Filtering for range queries or k-NN Query Filtering for k-Nearest
Neighbor (k-NN) queries before outputting similarity pairs. Moreover, it is worth
noting that Pre-pruning-2 will be utilized to reduce candidate size at the Map task
of this phase before the similarity score is actually calculated. More details of each
phase are given in Sect. 5 of the paper, which depends on specific similarity search
cases.

Fig. 2. The overview scheme [14]

An Adaptive Similarity Search in Massive Datasets 51

The overall MapReduce operations can be summarized in Table 1. In general, let Di

be the ith document of the workset, termk be the k
th word of the whole workset, tfik be

the term frequency of the termk in the document Di, idfik be the inverse document
frequency of the termk in the document Di,Wik be the normalized weight of the termk in
the document Di, Mi be the total weight of all the terms in the document Di, Wi be the
largest weight of the termk in the document Di, and SIM(Di, Dj) be the similarity score
between a document pair. A special character, e.g., @, is employed to semantically
separate the sub-values in the values of a pair. More specifically, the intermediate
key-value pairs after Map-1 method are of the form [termk, Di], which are then fed to
Reduce-1 method so that we can acquire the normalized inverted index of the form
[termk, [Di@tfik@idfik]]. In order to normalize the weight of the termk in the document
Di, Map-2 method is in charge of emitting its intermediate key-value pairs of the form
[Di, termk@tfik@idfik] and then Reduce-2 method executes the normalization process
according to the Eqs. (1) and (2) before outputting an ordered list of the form [Di,
[termk@Wik]]ord. After that, Map-3 method takes its responsibility to build the nor-
malized inverted index from the ordered list by emitting its intermediate key-value
pairs of the form [termk, Di@Mi@Wi@Wik] and Reduce-3 method processes them and
outputs the ordered key-value pairs of the form [termk, [Di@Mi@Wi@Wik]]ord. Finally,
Map-4 method computes the partial product of each corresponding pair and emits the
intermediate key-value pairs of the form [Dij, (Wik. Wjk)]. After that, Reduce-4
aggregates the final similarity score of each pair, which has the output of the form [Dij,
SIM(Di, Dj)].

5 Similarity Search Cases

The proposed scheme is applicable not only to popular similarity searches like pairwise
similarity and search-by-example but also to those with query strategies such as range
search and k-NN search. In each sub section below, we show in detail how it gets
insight on the specific similarity searches.

Table 1. The overall MapReduce operations [14]

Task Input Output

MAP-1 worksets½ � termk;Di½ �
REDUCE-1 termk;Di½ � termk; Di@tfik@idfik½ �½ �
MAP-2 termk; Di@tfik@idfik½ �½ � Di; termk@tfik@idfik½ �
REDUCE-2 Di; termk@tfik@idfik½ � Di; termk@Wik½ �ord
MAP-3 Di; termk@Wik½ �ord termk;Di@Mi@Wi@Wik½ �
REDUCE-3 termk;Di@Mi@Wi@Wik½ � termk; Di@Mi@Wi@Wik½ �ord

� �
MAP-4 termk; Di@Mi@Wi@Wik½ �ord

� �
Dij; Wik �Wjk

� �� �
REDUCE-4 Dij; Wik �Wjk

� �� �
Dij; SIM Di;Dj

� �� �

52 T.N. Phan et al.

5.1 Pairwise Similarity

Pairwise similarity search is the case in that we want to find out all possible similar
pairs. In other words, one is bound to every other to give their similarity. Following the
scheme, worksets are initially passed to mappers at Map-1 method, which produces
intermediate key-value pairs of the form [termk, Di]. They are then retrieved by
reducers at Reducer-1 method to output the key-value pairs of the form [termk,
[Di@tfik@idfik]], where tfik and idfik are derived. At this step, common words which
have idfik equal to 0 are discarded by the Prior Filter. For example, assuming that there
are three documents named D1, D2, and D3, and each document contains its corre-
sponding words as the input illustrated in Fig. 3. After Map-1 method, we have a list of
intermediate key-value pairs [[A, D1], [B, D1], [B, D1], [C, D1], [A, D1], [E, D1], [C,
D2], [A, D2], [D, D3], [B, D3], [A, D3], [E, D3]]. The list is then accessed by reducers at
Reduce-1 method. The common word A is ignored by the Common Term Filtering
while the lonely word D is marked as Terms Not Proceeded-{TNP}. The reason why
the lonely word D is not discarded right away but marked as a special sign at this phase
is that it should be kept joining the normalization step later on even though it does not
contribute to any similarity scores in the end. Therefore, we have the output list of the
form of key-value pairs as follows [[B, [D1@2@0.176, D3@1@0.176]], [C,
[D1@1@0.176, D2@1@0.176]], [{TNP}, D3@1@0.477]], [E, [D1@1@0.176,
D3@1@0.176]]].

Next, the key-value pairs from the first MapReduce are normalized at the second
MapReduce. The intermediate key-value pairs after Map-2 method have the form of
[Di, termk@tfik@idfik]. The Reduce-2 method normalizes these pairs into an ordered
list of the form [Di, [termk@Wik]]ord. The values are sorted by their sizes and then by

Fig. 3. MapReduce-1 operation [14]

An Adaptive Similarity Search in Massive Datasets 53

their Wik. Figure 4 shows the ongoing example at the second MapReduce. The mappers
at Map-2 method output the intermediate key-value pairs as the list [[D1,
B@2@0.176], [D3, B@1@0.176], [D1, C@1@0.176], [D2, C@1@0.176], [D3,
{TNP}@1@0.477], [D1, E@1@0.176], [D3, E@1@0.176]]. These pairs are later
normalized by the reducers at Reduce-2 method which gives us the normalized and
ordered output list as following [[D1, [B@0.8165, C@0.4082, E@0.4082]], [D3,
[B@0.3271, E@0.3271]], [D2, [C@0.1760]]]. It is worth noting that the lonely term
{TNP} is filtered by Lonely Term Filtering at Reduce-2 method.

After the normalization, the third MapReduce takes the normalized inverted index
into account. The mappers at Map-3 method emit the intermediate key-value pairs of
the form [termk, Di@Mi@Wi@Wik]. The reducers at Reduce-3 method output the
ordered key-value pairs of the form [termk, [Di@Mi@Wi@Wik]]ord. Figure 5 presents
the ongoing example at this phase. We have the list after Map-3 method as follows:

½½B; D3@0:6542@0:3271@0:3271�; ½E; D3@0:6542@0:3271@0:3271�;
½B; D1@1:6329@0:8165@0:8165�; ½C; D1@1:6329@0:8165@0:4082�;
½E; D1@1:6329@0:8165@0:4082�; ½C; D2@0:1760@0:1760@0:1760��

And we have the list after Reduce-3 method as follows:

½½B; ½D1@1:6329@0:8165@0:8165; D3@0:6542@0:3271@0:3271��;
½E; ½D1@1:6329@0:8165@0:4082; D3@0:6542@0:3271@0:3271��;
½C; D1@1:6329@0:8165@0:4082; D2@0:1760@0:1760@0:1760���:

Finally, the fourth MapReduce computes the partial product of each corresponding
term of a pair, which has the form [Dij, (Wik. Wjk)], at Map-4 method and leads to the
final similarity score of each pair, which has the form [Dij, SIM(Di, Dj)] after Reduce-4
method. The running example is closed at this phase from Fig. 6. The intermediate
key-value pairs [[D13, 0.2881], [D12, 0.0718], [D13, 0.1440]] after Map-4 method are

Fig. 4. MapReduce-2 operation [14]

54 T.N. Phan et al.

aggregated to the final similarity scores [[D13, 0.4321], [D12, 0.0718]] at Reduce-4
method. Last but not least, Query Parameter Filtering is optionally applied to obtain
closer results when query parameters are given.

5.2 Search-by-Example

Search-by-example is a well-known similarity search case when given a pivot object as
an example for the search. The goal is to find the most similar objects according to the
pivot. Once it is the case, not only are lonely words in the pivot discarded but also those
which do not exist in the pivot are ignored by Lonely Term Filtering and Query Term
Filtering at Reduce-2 method. The reason is that they do not contribute to the similarity
between a pair but make the process bulky. Doing so significantly contributes to the
reduction of overheads such as storage, communication, and computing costs through
the whole process of MapReduce jobs.

Fig. 5. MapReduce-3 operation [14]

Fig. 6. MapReduce-4 operation [14]

An Adaptive Similarity Search in Massive Datasets 55

Let us come to the example as illustrated in Fig. 7, and at this time, the document
D3 is considered as the pivot. According to the proposed scheme, the intermediate
key-value pairs emitted from the mappers at Map-1 method are of the form [termk,
Di] and the key-value pairs output from the reducers at Reduce-1 method are of the
form [termk, [Di@tfik@idfik]]. Specifically, the mappers at Map-1 method emit a list of
intermediate key-value pairs [[A, D1], [B, D1], [B, D1], [C, D1], [A, D1], [E, D1], [C,
D2], [A, D2], [D, D3], [B, D3], [A, D3], [E, D3]]. The list is later retrieved by the
reducers to build the customized inverted index. Again, the Common Term Filtering
filters the word A that is common among the documents whereas the lonely word D
belonging to D3 is marked as Terms Not Proceeded-{TNP}. Consequently, the
key-value pairs list from the reducers at Reduce-1 method is output as follows [[B,
[D1@2@0.176, D3@1@0.176]], [C, [D1@1@0.176, D2@1@0.176]], [{TNP},
D3@1@0.477]], [E, [D1@1@0.176, D3@1@0.176]]].

Then we come to the normalization phase at the second MapReduce as illustrated in
Fig. 8. At this phase, the intermediate key-value pairs emitted from Map-2 method are
of the form [Di, termk@tfik@idfik] before being normalized at Reduce-2 method into an
ordered list of the form [Di, [termk@Wik]]ord. More concretely, the mappers at Map-2
method emit the intermediate key-value pairs as the list [[D1, B@2@0.176], [D3,
B@1@0.176], [D1, C@1@0.176], [D2, C@1@0.176], [D3, {TNP}@1@0.477], [D1,
E@1@0.176], [D3, E@1@0.176]]. After that, these pairs are normalized by the
reducers at Reduce-2 method which gives us the normalized and ordered output list
[[D1, [B@0.8165, E@0.4082]], [D3, [B@0.3271, E@0.3271]]]. It is worth noting that
the lonely term {TNP} is filtered by Lonely Term Filtering at Reduce-2 method.
Besides, the Query Term Filtering is in active due to the fact that we are in the case of

Fig. 7. MapReduce-1 operation when given the pivot [14]

56 T.N. Phan et al.

search-by-example. Thus, the word C in D1 and the word C in D2 which are not
included in the pivot D3 are discarded in advance as shown in Fig. 8.

The other two MapReduce operations (i.e., MapReduce-3 and MapReduce-4)
conform to the proposed scheme as the examples in Figs. 5 and 6. Furthermore,
search-by-example can be leveraged by query strategies presented in Sect. 5.3, which
shows how soon candidate pairs are filtered to reduce the candidate size and make them
themselves fit the query.

5.3 Query Strategies

Most similarity searches are also accompanied with search query strategies such as
range search or k-NN search. The range search adds the similarity threshold ε so that
those pairs whose similarity is greater or equal to the threshold should be returned as
the final result. Meanwhile, the k-NN search looks for the k most similar objects from
the candidate sets. As a consequence, the parameters ε and k are utilized to filter objects
so that the final result, on the one hand, is as close as users’ needs and the search
process, on the other hand, is significantly improved. In order to exploit them for the
proposed scheme, both Pre-pruning-1, for the case a query document is given, and Pre-
pruning-2, for other cases, are attached but not mutually exclusive.

In the case of pairwise similarity, we do not actually want to find all-pair similarity
due to the fact that it is rarely used in a specific range of applications whereas its entire
result is not completely utilized. Moreover, such a big process consumes much time
and resources, which is not really suitable for most application scenarios, especially for
real-time intensive ones. Thus, the threshold ε is provided to filter necessary pairs from
the total candidates to meet certain needs. Pre-pruning-2 at Map-4 method catches this
line of thought. It employs the two below inequalities with the latter adopted in [1] to
do its task as candidate filtering:

Fig. 8. MapReduce-2 operation when given the pivot [14]

An Adaptive Similarity Search in Massive Datasets 57

sim Di;Dj
� � ¼ Xt

k¼1

Wik �Wjk � e ð3Þ

sim Di;Dj
� ��min Mi �Wj;Mj �Wi

� � ¼ r ð4Þ

From the inequalities (3) and (4), the filtering rule is to find those whose σ is greater
or equal to the threshold ε. Let us back to the example of pairwise similarity in
Sect. 5.1. At Map-4 method as illustrated in Fig. 9, the pair D1 and D3 has their σ as
0.5341 whilst the pair D1 and D2 has their σ as 0.1437. Assuming that the threshold ε
has the value 0.4, the pair D1 and D2 is early discarded. Meanwhile, Pre-pruning-1 is
able to sooner get rid of unnecessary pairs when given a query object, and this sup-
porting process takes place at Reduce-3 method. It is worth noting that the key-value
pairs at this phase have the form [termk, Di@Mi@Wi@Wik], so the above filtering rule
can be shortly derived. From the instance of search-by-example in Sect. 5.2, the Pre-
pruning-1 method indicated in Fig. 10 estimates candidate pairs whether σ is greater or
equal to ε. The value of σ is computed as 0.4006, which is the minimum between
0.4006 and 0.5342. Assuming the threshold ε has the value 0.4, the pair D1 and D3 is,
therefore, further processed to get their final similarity.

On the other hand, k-NN query is also attached together with a query object. Pre-
pruning-1 takes the k parameter into account to filter objects before their similarity is
computed. In other words, each mapper at Map-3 method approximately emits top-k
key-value pairs whose size is according to the total number of running mappers as the
Eq. (5) below:

Fig. 9. MapReduce-4 operation with Pre-pruning-2 [14]

58 T.N. Phan et al.

top� k pairs
for each mapper

¼ max
k2N

kP
Mappers

; 1
	

ð5Þ

It is totally possible because the key-value pair input of Map-3 method has been
ordered by its size and normalized weights from the second MapReduce operation.
Moreover, the probability a pair is the most similar is high when each combined object
has its largest size and normalized weights. As a consequence, the Eq. (5) helps reduce
both unnecessary computing and the candidate size.

6 Experiments

6.1 Environment Settings

In order to do our experiments with MapReduce, we employ the stable version 1.2.1 of
Hadoop [3]. The Hadoop framework is deployed in the cluster of commodity machines
called Alex, which has 48 nodes and 8 CPU cores with either 96 or 48 GB RAM for
each node [2]. In general, we leave Hadoop configurations in default mode as much as
possible, for we want to keep the most initial settings which a commodity machine may
get even though some parameters could be tuned or optimized to fit the Alex cluster.
The configured capacity is set to 5 GB per node, so the 48-node cluster totally has
240 GB. The number of reducers for a reduce operation is set to 168. The possible heap
size of the cluster is about 629 MB, and each HDFS file has 64 MB Block Size. It is
worth noting that Alex has suffered the overhead of other coordinating parallel tasks,
i.e., these nodes are not exclusively for the experiments. Last but not least, each
benchmark has its fresh running. In other words, data from the old benchmark are
removed before the new benchmark starts. All the experiments for one type of query

Fig. 10. MapReduce-3 operation with Pre-pruning-1 [14]

An Adaptive Similarity Search in Massive Datasets 59

are consecutively run so that their testing environments are kept closely as much as
possible.

6.2 Datasets

In this paper, we use DBLP datasets [7], which are used to do similarity search on the
title of publications. On the other hand, we also use Gutenberg datasets [16], whose
project is the first provider of free electronic books, to experience a large number of
long text files.

With DBLP Datasets. The datasets used for pairwise similarity and search-by-
example are synthetically partitioned into ten packages whose sizes are additionally
increased from 50 MB to 500 MB, respectively. In the cases of range query and k-NN
query, the datasets are made greater in size up to 700 MB. In addition, the replication
factor for DBLP datasets is set to 47, which also means that data are replicated into
each node in the cluster.

With Gutenberg Datasets. The datasets for pairwise similarity and search-by-
example are divided into five packages separately including 1000 files, 1500 files, 2000
files, 2500 files, and 3000 files. These files which are randomly selected from the
Gutenberg repository have their sizes ranging from 15 KB to 100 KB. Unlike DBLP
datasets, the replication factor used for Gutenberg datasets is preserved as 3 as its
default block replication.

6.3 Experiment Measurement

For our experiments, we step-by-step evaluate our proposed methods and the related
work as following:

• The naïve self-join: indicates the self-join approach without any filtering.
• The filtering self-join: implies the self-join approach with filtering.
• Search-by-example: mentions the case when given an object as an example for the

search.
• Range-query case: shows the case of similarity search when given a similarity

threshold ε.
• k-NN query case: denotes the case of searching for k most similar objects from the

candidate sets.
• Pivot case: refers to the case doing pairwise similarity when given a query.
• The work in 2008 [10]: builds the standard inverted index and term frequencies and

then employ them to compute similarity between a pair by their inner product. This
work only consumes two MapReduce phases due to the fact that normalization
phase is omitted.

Moreover, we experience the two document models known as terms model and
shingles model in Sect. 3.1. The former represents a document as a set of terms whilst
the latter represents a document as a set of shingles. Furthermore, we are interested in

60 T.N. Phan et al.

both the performance and the data volume of the proposed methods and the related
method, which is described as follows:

Performance Measurement. We measure the execution time of MapReduce jobs
known as the total processing time. The measuring time is bound since the time
MapReduce jobs start running to the time they finish writing the result to the distributed
file system. Moreover, we also separately consider the measuring time for each
MapReduce job. And from this point of view, the better performance actually costs less
processing time.

Data Volume Measurement. We observe how much data are produced throughout
MapReduce jobs and are then written into the distributed file system. The goal is to find
out how much the data volumes output and written to the distributed file system give
influences to the performance in overall.

6.4 Empirical Evaluations with DBLP Datasets

In this section, we perform some performance measurements for examining our
methods. First, Fig. 11 shows Pairwise similarity case with DBLP datasets among the
naïve self-join, the filtering self-join, and the work in 2008 [10] and search-by-
example. Apart from the work in 2008, the other approaches are based on our proposed
scheme in Sect. 4. Besides, we also compare the search-by-example case with the
pairwise similarity case. The dataset size is increased turn by turn from 50 MB to
500 MB. From Fig. 11a, the result shows that our proposed methods outperform the
work in 2008 in terms of query processing time. More concretely on the average, the
naïve self-join is 68.38 % faster than the work in 2008, the filtering self-join is 69.41 %
faster than the work in 2008, and the search-by-example is 73.03 % faster than the
work in 2008. The main reason is that the work in 2008 finds the term frequency right
away at mappers instead of reducers whose main goal is to perform reduced compu-
tations. In other words, the functionality of mappers is mistakenly used from the
beginning. Moreover, the work in 2008 computes all possible candidates without fil-
tering whilst our approach does. On the other hand, there is no big difference among the
naïve approach, the filtering self-join, and search-by-example while the dataset size is
still small, or to say, under a specific threshold. The reason is due to the operation cost
of the whole system. Once the dataset size is significantly increased, a big gap among
them emerges. On the average, the naïve self-join consumes 3.5 % more CPU time than
the filtering self-join and 15.1 % more CPU time than search-by-example.

In terms of data volumes, Fig. 11b shows the correlation of data quantity among the
approaches throughout MapReduce operations with DBLP datasets. The work in 2008
has fewer amounts of data output in the end. More specifically, the work in 2008
produces 75.21 % less data than the naïve self-join, 72.61 % less data than the filtering
self-join, and 17.70 % less data than search-by-example, respectively on the average.
The reason is that the proposed scheme, on the one hand, needs to normalize inputs
before computing the similarity whilst no filtering is accompanied. On the other hand, it
is worth noticing that the work in 2008 computes the similarity score between two
documents by summing the inner products of the term frequencies, which are not

An Adaptive Similarity Search in Massive Datasets 61

normalized yet. Normalization is essential because weight terms should be high if they
are frequent in relevant documents but infrequent in the collection as a whole. If
normalization is taken into account, the work in 2008 suffers more computations and
data volumes. Nevertheless, we implement it as the original version, i.e., without
normalization. Furthermore, the result indicates how much important the refinements
are applied in order for the filtering self-join to save 8.67 % data quantity and for
search-by-example to save 69.78 % data quantity, on the average, when compared to
the naïve self-join. Last but not least, the amount of data output from MapReduce-2
operation to MapReduce-4 operation, when filtering is applied, just gets 0.04 % data
proportion on the average compared to the whole data output in the case of
search-by-example itself. As a consequence, search-by-example has less data than the
naïve self-join. In summary, the data output volume without filtering is nearly double in
comparison with the data input size due to normalization. In addition, MapReduce
mechanism always writes down intermediate outputs into HDFS, whose disk access
costs are too expensive. Filtering strategies are, therefore, essential to reduce the
candidate size and related computing costs as well.

On the other side, we conduct experiments with query strategies when the DBLP
dataset size is step-by-step increasing from 300 MB to 700 MB, which are shown in
Fig. 12. The data values from Fig. 12a indicate that there is no big difference in terms of
query processing among range queries where the similarity thresholds are set to 90 %,
70 %, and 50 %. Likewise, the values from Fig. 12b point out the same evaluation for
k-NN queries where the values of parameter k are set to 100, 300, and 500, respectively.
Moreover, the two kinds of query strategies mostly have the same performance. In other
words, either the parameter ε for range queries or the parameter k for k-NN queries does
not give a big gap between them. Last but not least, the two kinds of query strategies
perform from 2.67 % to 4 % faster than search-by-example without pre-pruning.

6.5 Empirical Evaluations with Gutenberg Datasets

When working with Gutenberg datasets for pairwise similarity, both the naïve self-join
and the work in 2008 fail right away with 3000 Gutenberg files in the second Reduce

Fig. 11. Similarity-computing performance with DBLP datasets among the naïve self-join, the
filtering self-join, the work in 2008 and search-by-example; (a) the total processing time; and
(b) the saved data volume [14] (Color figure online)

62 T.N. Phan et al.

operations because of out of memory at reducers. This means that the reducers work
with massive key-value pairs that get over their memory capacity. Nevertheless, the
filtering self-join, pivot case (i.e., the case does pairwise similarity when given a
query), and search-by-example get rid of that problem due to the fact that they are
equipped with filtering strategies that help reduce candidate size. Figure 13 illustrates,
therefore, the similarity-computing performance among the filtering self-join, pivot
case, and search-by-example in Gutenberg datasets. In general, the performances
among them, as seen in Fig. 13a, are not much different when the number of files
increases from 1000 files to 2000 files. The performance among them has, however, a
gap when the number of files increases from 2000 files to 3000 files. This implies that
both pivot case and search-by-example perform better than the filtering self-join with
the average rates as 7.06 % and 5.74 %, respectively. The important key basically
comes from the fact that both pivot case and search-by-example deal with candidates
more efficiently than the filtering self-join does. Other than Lonely Term Filtering, both
pivot case and search-by-example take the advantage of Query Term Filtering when
given a pivot object. In other words, both of them avoid the outbreak case in the
filtering self-join, which has to compute similarity scores between one document and
every other in the corpus.

Fig. 12. Query strategies with DBLP datasets; (a) range query case; and (b) k-NN query case
[14] (Color figure online)

Fig. 13. Similarity-computing performance with Gutenberg datasets between the filtering
self-join and search-by-example; (a) the total processing time; and (b) the saved data volume
(Color figure online)

An Adaptive Similarity Search in Massive Datasets 63

Besides, the saved data experiments with Gutenberg datasets in Fig. 13b also
promote search-by-example among others. In general, search-by-example emits less
data than both the filtering self-join and pivot case do. Thanks to Query Term Filtering
and Pre-pruning-2, the data output of search-by-example of 90 % similarity is, on the
average, 59.84 % less than that of the filtering self-join and 3.13 % less than that of
pivot case. Meanwhile, Fig. 14 demonstrates the performances of query strategies with
Gutenberg datasets. From the data collected, we almost have the same trend when
examining range queries and k-NN queries with DBLP datasets. In overall, the per-
formances of both range queries, in Fig. 14a, and k-NN queries, in Fig. 14b, are not so
different. On the average when compared to search-by-example, the range queries
perform 1.24 % to 2.67 % faster when the similarity threshold changes from 90 %,
70 %, and 50 % whilst the k-NN queries have the speed-up rates from 3.18 % to 3.85 %
when the values of parameter k are set to 100, 300, and 500, respectively.

6.6 Empirical Evaluations Between Terms and Shingles

In these experiments, we want to evaluate our methods with shingles instead of terms.
In other words, each document in the Gutenberg datasets is respectively represented as
a set of terms and a set of shingles. As the data outbreak of pairwise similarity in the
work 2008 and the naïve self-join, Fig. 15 shows the similarity-computing performance
with Gutenberg datasets and shingles among the filtering self-join, pivot case, and
search-by-example. In terms of total processing time illustrated in Fig. 15a,
search-by-example tends to perform better than the others while the filtering self-join
tends to consume more processing time than the others. Nevertheless, there are no big
gaps among them. More specifically, the gap of total processing time between the
filtering self-join and search-by-example is around 0.26 %, the gap of total processing
time between the filtering self-join and pivot case is around 0.86 %, and the gap of total
processing time between pivot case and search-by-example is around 0.15 %.

On the other hand, there are visible differences among these similarity searches in
the view of the saved data volume as seen in Fig. 15b. Like what we have got when
doing this kind of experiments with terms, the filtering strategies really work. In
general, search-by-example keeps emitting the less total data output whilst the filtering

Fig. 14. Query strategies with Gutenberg datasets; (a) range query case; and (b) k-NN query
case (Color figure online)

64 T.N. Phan et al.

self-join does the most. Besides, the total data output in pivot case is a bit more in that
of search-by-example but much less than that of the filtering self-join. More specifi-
cally, the percentage difference of total data output between the filtering self-join and
search-by-example is around 46.07 %, the percentage difference of total data output
between the filtering self-join and pivot case is around 41.77 %, and the percentage
difference of total data output between pivot case and search-by-example is around
7.26 %. The reason behind that makes the big gap between the filtering self-join and the
others is mostly from the Query Term Filtering. In this case, it filters shingles by the
query shingles.

To compare the similarity-computing performance when the documents are rep-
resented as terms and shingles, we separately compare our methods into pairs. For the
performance comparison, we turn-by-turn show the total processing time of not only
the whole MapReduce operation, which is known as Total MR, but also the four
MapReduce sub-operations, which are called MR-1, MR-2, MR-3, and MR-4,
respectively. From now on, the left axis presents for the four sub-operations whereas
the right axis presents for the whole operations. Firstly, we compare the filtering
self-join with terms and shingles. Figure 16 demonstrates the performance of the
filtering self-join between them. Generally, the total MR with shingles performs better
than that with terms. On the one hand, the most time-consuming MapReduce operation
among one another falls into MR-1, which has to process large amounts of data and
compute term frequency as well as the inverse document frequency at the same time.
On the other hand, MR-4 also takes time to produce candidate pairs and the final
similarity scores. The others, MR-2 and MR-3, consume less time in comparison with
MR-1 and MR-4. More specifically in the comparison between terms and shingles, the
maximum difference between MR-1 with terms and MR-1 with shingles is about
10.14 %, the maximum difference between MR-2 with terms and MR-2 with shingles is
about 11.43 %, the maximum difference between MR-3 with terms and MR-3 with
shingles is about 7.5 %, the maximum difference between MR-4 with terms and MR-4
with shingles is about 44.32 %, and the maximum difference between Total MR with
terms and Total MR with shingles is about 14.25 %.

Fig. 15. Similarity-computing performance with Gutenberg datasets and shingles among the
filtering self-join, pivot case, and search-by-example; (a) the total processing time; and (b) the
saved data volume (Color figure online)

An Adaptive Similarity Search in Massive Datasets 65

In terms of data output, the total data output with shingles is generally much less
than that with terms as showed in Fig. 17. Although MR-3 operation takes little time to
complete, it emits the most data compared to the others. On the contrary, MR-4 takes
more time than MR-3 but produces the least data output. More specifically in the
comparison between terms and shingles, the maximum difference between MR-1 with
terms and MR-1 with shingles is about 7.66 %, the maximum difference between MR-2
with terms and MR-2 with shingles is about 19.82 %, the maximum difference between
MR-3 with terms and MR-3 with shingles is about 37.37 %, the maximum difference
between MR-4 with terms and MR-4 with shingles is about 27.85 %, and the maximum
difference between Total MR with terms and Total MR with shingles is about 22.67 %.

Secondly, we compare pivot case with terms and shingles. Figure 18 demonstrates
the performance of pivot case between them. In general, the total MR with shingles
performs better than that with terms only in the data package of 3000 files. In the other
data packages, the total MR with terms performs better than that with shingles. As
usual, the most time-consuming MapReduce operation falls into MR-1. On the other
hand, the others take not much time to complete their jobs. In particular, the maximum
difference between MR-1 with terms and MR-1 with shingles is about 14.05 %, the
maximum difference between MR-2 with terms and MR-2 with shingles is about
19.15 %, the maximum difference between MR-3 with terms and MR-3 with shingles is
about 9.09 %, the maximum difference between MR-4 with terms and MR-4 with
shingles is about 29.79 %, and the maximum difference between Total MR with terms
and Total MR with shingles is about 6.62 %.

In the point of view of data output, the total data output with shingles is generally
more than that with terms as showed in Fig. 19. In this case, MR-1 is the one which
emits the most data output while MR-4 is the one which produces the least. By
observing, the total data output from MR-4 is much less than that of MR-1, MR-2, and
MR-3, even with either terms or shingles. Specifically in the comparison between terms

Fig. 16. The performance of the filtering self-join with terms and shingles (Color figure online)

66 T.N. Phan et al.

and shingles, the maximum difference between MR-1 with terms and MR-1 with
shingles is about 7.66 %, the maximum difference between MR-2 with terms and MR-2
with shingles is about 76.86 %, the maximum difference between MR-3 with terms and
MR-3 with shingles is about 65.09 %, the maximum difference between MR-4 with
terms and MR-4 with shingles is about 40.04 %, and the maximum difference between
Total MR with terms and Total MR with shingles is about 19.20 %.

Thirdly, we compare search-by-example with terms and shingles when the simi-
larity threshold is set to 90 %. Figure 20 illustrates the performance of 90 %-similarity
search-by-example between them. Similarly with pivot case, the total MR with shingles
performs better than that with terms only in the data package of 3000 files. In the other
data packages, the total MR with terms performs better than that with shingles. One

Fig. 17. The data output of the filtering self-join with terms and shingles (Color figure online)

Fig. 18. The performance of pivot case with terms and shingles (Color figure online)

An Adaptive Similarity Search in Massive Datasets 67

again, the most time-consuming MapReduce operation falls into MR-1. On the other
side, the others take not much time to complete their jobs. What is more, the maximum
difference between MR-1 with terms and MR-1 with shingles is about 12.62 %, the
maximum difference between MR-2 with terms and MR-2 with shingles is about
24.39 %, the maximum difference between MR-3 with terms and MR-3 with shingles is
about 11.11 %, the maximum difference between MR-4 with terms and MR-4 with
shingles is about 17.07 %, and the maximum difference between Total MR with terms
and Total MR with shingles is about 7.37 %.

In the meantime, the total data output with shingles is generally more than that with
terms as indicated in Fig. 21. And at this time, MR-1 is the one which emits the most
data output while MR-4 produces the least. Nevertheless, the total data output from
MR-4 is much less than that of MR-1, MR-2, and MR-3, even with either terms or

Fig. 19. The data output of pivot case with terms and shingles (Color figure online)

Fig. 20. The performance of 90 %-similarity search-by-example with terms and shingles (Color
figure online)

68 T.N. Phan et al.

shingles. In the comparison between terms and shingles, the maximum difference
between MR-1 with terms and MR-1 with shingles is about 7.66 %, the maximum
difference between MR-2 with terms and MR-2 with shingles is about 76.88 %, the
maximum difference between MR-3 with terms and MR-3 with shingles is about
71.08 %, the maximum difference between MR-4 with terms and MR-4 with shingles is
about 73.90 %, and the maximum difference between Total MR with terms and
Total MR with shingles is about 17.27 %.

Finally, we compare k-NN queries with terms and shingles when the parameter k is
set to 500. Figure 22 presents the performance of 500-NN queries between them. In
these experiments, we observe that the total MR with shingles slightly performs better
than that with terms only in the data package of 3000 files. In the other data packages,
the total MR with terms performs pretty better than that with shingles. Normally, the

Fig. 21. The data output of 90 %-similarity search-by-example with terms and shingles (Color
figure online)

Fig. 22. The performance of 500-NN queries with terms and shingles (Color figure online)

An Adaptive Similarity Search in Massive Datasets 69

most time-consuming MapReduce operation falls into MR-1. On the contrary, the
others take not much time to complete their jobs. Moreover, the maximum difference
between MR-1 with terms and MR-1 with shingles is about 6.67 %, the maximum
difference between MR-2 with terms and MR-2 with shingles is about 23.91 %, the
maximum difference between MR-3 with terms and MR-3 with shingles is about
3.13 %, the maximum difference between MR-4 with terms and MR-4 with shingles is
about 6.25 %, and the maximum difference between Total MR with terms and
Total MR with shingles is about 2.41 %.

Meanwhile, the total data output with shingles is not much than that with terms as
indicated in Fig. 23. And in this case, MR-1 is the one which emits the most data output
while MR-4 produces the least. The total data output from MR-3 is, however,
approximately as small as that from MR-4. Consequently, the total data output from
both MR-3 and MR-4 is much less than that of MR-1 and MR-2, even with either terms
or shingles. In the comparison between terms and shingles, the maximum difference
between MR-1 with terms and MR-1 with shingles is about 7.65 %, the maximum
difference between MR-2 with terms and MR-2 with shingles is about 76.86 %, the
maximum difference between MR-3 with terms and MR-3 with shingles is about
30.54 %, the maximum difference between MR-4 with terms and MR-4 with shingles is
about 2.77 %, and the maximum difference between Total MR with terms and
Total MR with shingles is about 5.69 %.

7 Discussion

When doing experiments with terms and shingles, we observe that Query Term Fil-
tering applying to terms produces less data output than that applying to shingles. In
other words, the number of terms is filtered more than that of shingles in the same
method. More concretely, a number of terms are approximately 1.3x as many as that of
shingles on average in the filtering self-join. Nevertheless, a number of shingles are
approximately 1.15x as many as that of terms on average in pivot case, approximately

Fig. 23. The data output of 500-NN queries with terms and shingles (Color figure online)

70 T.N. Phan et al.

1.09x as many as that of terms on average in search-by-example, and approximately
1.03x as many as that of terms on average in 500-NN queries. As a consequence, these
numbers indicate that Query Term Filtering works with terms more effectively than it
does with shingles, which results in better performance. The main reason might come
from the unique characteristic of using shingles. It is worth noting that shingles gen-
erated by continuous terms bound by the length of K. Thus, the collision of two random
shingles is often smaller while there is a high probability of collision for two random
terms in the corpus. Because of this, the number of terms that might be shared in the
query is large whilst that of shingles that might be included in the query is small. As a
result, we observe that there are more filtered terms than filtered shingles against the
given query.

Besides, we further describe the important factors that most matter to achieving
high performance with MapReduce in order to additionally wrap up by the experiments
that have been conducted so far as follows:

• The MapReduce operations should not be too complex due to limited computing
resources. Moreover, neither complicated computations nor unoptimized processing
improves the performance;

• The less computations the similarity measure is, the high efficiency the whole
system gets [13]. Alternatively, there are different metrics to measure how similar a
pair of objects is. Nevertheless, these have their own characteristic and computing
complexity. One is of choice depends on specific applications and domains due to
the fact that it adds its complexity to the whole computing processes;

• Natural language processing such as filtering useless symbols is essential for the
proper model of documents, which leads to effectively filtering either terms or
shingles. If these special symbols are not handled properly, they might easily cause
unexpected errors when we process data strings by a programming language such as
Python;

• The load balancing also a big issue when we do with MapReduce, for the overall
performance is always finalized by the last MapReduce job. Though some imple-
mentations of MapReduce, like Hadoop, try to distribute the work load during their
execution, there is also a promising need to find out adaptive load-balancing
strategies for running algorithms so that the amounts of key-value pairs output by
either mappers or reducers are relatively the same among them;

• The ways of implementing Map and Reduce functions with key-value pairs also
affect the entire system and its performance. Hence, an optimized execution plan is
preferred;

• Depending on the characteristics of the cluster of commodity machines, the envi-
ronment settings in general and the configurations in particular can be further
optimized to improve the overall performance.

On the other hand, clustering techniques may be useful when being integrated into
the proposed methods. The idea behind is to partition the search space into several
sub-spaces in that only some spaces are promoted as candidates for similarity search.
From this point of view, clustering techniques help reduce the search space. The way of
clustering, however, gives big influences to the above goal. For instance, if there are a
few clusters, most of unnecessary shingles will be considered and this does not help at

An Adaptive Similarity Search in Massive Datasets 71

all in comparison either with or without the simple clustering methods. Otherwise, in
case there are too many clusters, extra costs from cluster checking become big and do
harm to the overall performance. Thus, finding out the trade-off optimally balancing the
two cases and well partitioning the search space is essentially an open research. One
possible solution, in our case, comes from a family of phonetic hashing methods (e.g.,
Double Metaphone [15]) to strengthen the power of pivots. The basic idea is to
transform the original search space into another one by grouping similar terms in
writing and pronunciation. Doing by this way makes the new search space become less
jumble and easily to be pruned, for most of the similar terms belong to the same cluster.
On the other side, one-way hashing functions should be optionally used not only to
support the clustering process but also to help reduce the size of k-shingles when the k
parameter is large. Using this way aims at saving data transferred throughout the
network and written into the distributed file system. Last but not least, one-way hashing
functions enhance data security, for real text data as well as query data should not be
revealed in the time of similarity search.

Other problems from our research work are also how to assure data quality as well
as data freshness. They require much effort on many intensive tasks to pre-process data
before feeding MapReduce operations. Normally, an update policy may be alterna-
tively set up when running MapReduce-1 operations by either automatically done in a
period of time or manually executed on request. Additionally, other similarity measures
or variants of simple forms such as Cosine, Dice, edit distance, or Hamming distance
[17, 18], and similarity computing methods like locality-sensitive hashing [20, 21]
should also be seriously considered when extracting similarity scores due to the fact
that the unique characteristics of application domains and similarity measures, them-
selves, may prefer different optimizations. For instance, the research studies in [13, 14]
show that doing MapReduce-based similarity search with Jaccard outperforms that
with Cosine. The reason is that Cosine measure demands more computations to nor-
malize the weights of documents, which adds more overheads in terms of performance
and data volume.

Moreover, approximate searches should be a shining point when integrated into our
methods in order to further improve the overall performance whilst keeping trying
ensuring the accuracy of the results. Furthermore, it would be great if the proposed
methods can adapt to other well-known similarity search cases such as pairwise sim-
ilarity and similarity joins. Last but not least, doing more comparisons with
state-of-the-art helps consolidate and enhance our methods. These matters above are
then left as our future work.

8 Summary

In this paper, we propose an adaptive similarity search scheme supporting large-scale
processing with MapReduce in massive datasets. In addition, we equip our proposed
scheme with collaborative strategic refinements that not only promote the potential
scalability of MapReduce paradigm but also eliminate unnecessary computations as
well as diminish candidate sizes. Besides, our proposed methods are flexibly adaptable
to popular similarity search cases such as pairwise similarity, search-by-example, range

72 T.N. Phan et al.

queries, and k-NN queries. Moreover, these methods are verified by many empirical
experiments on real datasets and experienced with Hadoop framework, which is
deployed in the commodity machines. Furthermore, we model our documents with
distinct n-grams known as shingles, together with terms representation, so that we
observe the difference between them from the proposed methods. Last but not least, we
discuss other challenges as our future work under the context of big data, together with
other open research issues, in order to further strengthen and enhance our methods
supporting data-intensive applications.

Acknowledgements. We would like to give our thanks to Mr. Faruk Kujundžić, Information
Management team, Johannes Kepler University Linz, for kindly supporting us in Alex Cluster.

References

1. Alabduljalil, M.A., Tang, X., Yang, T.: Optimizing parallel algorithms for all pairs similarity
search. In: Proceedings of the 6th ACM International Conference on Web Search and Data
Mining, USA, pp. 203–212 (2013)

2. Alex cluster. http://www.jku.at/content/e213/e174/e167/e186534. Accessed 4 Feb 2014
3. Apache Software Foundation: Hadoop: A Framework for Running Applications on Large

Clusters Built of Commodity Hardware (2006)
4. Baraglia, R., De Francisci Morales, G., Lucchese, C.: Document similarity self-join with

MapReduce. In: Proceedings of the 10th IEEE International Conference on Data Mining,
pp. 731–736 (2010)

5. Dang, T.K., Küng, J.: The SH-tree: a super hybrid index structure for multidimensional data.
In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol.
2113, pp. 340–349. Springer, Heidelberg (2001)

6. Dang, T.K.: Solving approximate similarity queries. Int. J. Comput. Syst. Sci. Eng. 22(1–2),
71–89 (2007). CRL Publishing Ltd., UK

7. DBLP data set. http://dblp.uni-trier.de/xml/. Accessed 8 Mar 2014
8. De Francisci Morales, G., Lucchese, C., Baraglia, R.: Scaling out all pairs similarity search

with MapReduce. In: Proceedings of the 8th Workshop on Large-Scale Distributed Systems
for Information Retrieval, pp. 25–30 (2010)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:
Proceedings of the 6th Symposium on Operating Systems Design and Implementation,
pp. 137–150. USENIX Association (2004)

10. Elsayed, T., Lin, J., Oard, D.W.: Pairwise document similarity in large collections with
MapReduce. In: Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics on Human Language Technologies, Companion Volume,
Columbus, Ohio, pp. 265–268 (2008)

11. Fenz, D., Lange, D., Rheinländer, A., Naumann, F., Leser, U.: Efficient similarity search in
very large string sets. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338,
pp. 262–279. Springer, Heidelberg (2012)

12. Li, R., Ju, L., Peng, Z., Yu, Z., Wang, C.: Batch text similarity search with MapReduce. In:
Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A. (eds.) APWeb 2011. LNCS, vol. 6612,
pp. 412–423. Springer, Heidelberg (2011)

An Adaptive Similarity Search in Massive Datasets 73

http://www.jku.at/content/e213/e174/e167/e186534
http://dblp.uni-trier.de/xml/

13. Phan, T.N., Küng, J., Dang, T.K.: An elastic approximate similarity search in very large
datasets with MapReduce. In: Hameurlain, A., Dang, T.K., Morvan, F. (eds.) Globe 2014.
LNCS, vol. 8648, pp. 49–60. Springer, Heidelberg (2014)

14. Phan, T.N., Küng, J., Dang, T.K.: An efficient similarity search in large data collections with
MapReduce. In: Dang, T.K., Wagner, R., Neuhold, E., Takizawa, M., Küng, J., Thoai, N.
(eds.) FDSE 2014. LNCS, vol. 8860, pp. 44–57. Springer, Heidelberg (2014)

15. Philips, L.: The double metaphone search algorithm. C/C++ Users J. 18(6), 38–43 (2000)
16. Project Gutenberg. http://www.gutenberg.org/. Accessed 8 Mar 2014
17. Rajaraman, A., Ullman J.D.: Finding similar items. In: The book Mining of Massive

Datasets, 1st edn., pp. 71–127. Cambridge University Press (2011). Chapter 3
18. Rong, C., Lu, W., Wang, X., Du, X., Chen, Y., Tung, A.K.H.: Efficient and scalable

processing of string similarity join. IEEE Trans. Knowl. Data Eng. 25(10), 2217–2230
(2013)

19. Szmit, R.: Locality sensitive hashing for similarity search using MapReduce on large scale
data. In: Kłopotek, M.A., Koronacki, J., Marciniak, M., Mykowiecka, A., Wierzchoń, S.T.
(eds.) IIS 2013. LNCS, vol. 7912, pp. 171–178. Springer, Heidelberg (2013)

20. Theobald, M., Siddharth, J., Paepcke, A.: Spotsigs: robust and efficient near duplicate
detection in large web collections. In: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 563–570
(2008)

21. Ture, F., Elsayed, T., Lin, J.: No free lunch: brute force vs. locality-sensitive hashing for
cross-lingual pairwise similarity. In: Proceedings of the 34th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 943–952
(2011)

22. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapReduce. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
USA, pp. 495–506 (2010)

23. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate detection.
In: Proceedings of the 17th International World Wide Web Conference, pp. 131–140 (2008)

24. Zhang, D., Yang, G., Hu, Y., Jin, Z., Cai, D., He, X.: A unified approximate nearest
neighbor search scheme by combining data structure and hashing. In: Proceedings of the
23rd International Joint Conference on Artificial Intelligence, pp. 681–687 (2013)

74 T.N. Phan et al.

http://www.gutenberg.org/

Semantic Attack on Anonymised Transactions

Jianhua Shao(B) and Hoang Ong

School of Computer Science and Informatics, Cardiff University, Cardiff, UK
ShaoJ@cardiff.ac.uk

Abstract. A transaction is a data record that contains items associated
with an individual. For example, a set of movies rated by an individual
form a transaction. Transaction data are important to applications such
as marketing analysis and medical studies, but they may contain sensitive
information about individuals which must be sanitised before being used.
One popular approach to anonymising transaction data is set-based gen-
eralisation, which attempts to hide an original item by replacing it with
a set of items. In this paper, we study how well this method can protect
transaction data. We propose an attack that aims to reconstruct original
transaction data from its set-generalised version by analysing semantic
relationships that exist among the items. Our experiments show that
set-based generalisation may not provide adequate protection for trans-
action data, and about 50 % of the items added to the transactions during
generalisation can be detected by our method with a precision greater
than 80 %.

Keywords: Data privacy · Semantic attack · Transaction data

1 Introduction

Transaction data are records that contain items about individuals. For example,
Fig. 1 shows a set of 4 transactions, each recording a set of medical conditions
associated with a patient. TID is a transaction identifier which is included here
for reference only; it is not part of the data.

TID Items

1 gastric, ulcer, acid, bacteria

2 cancer, moles, bleeding, cough, bowels

3 diabetes, glucose, tiredness, itching, blurred vision

4 kidney disease, swelling, urination

Fig. 1. An Example of Transaction Data

Transaction data are important to applications such as marketing analysis
and medical studies. However, such data can contain personal information which
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIII, LNCS 9480, pp. 75–99, 2016.
DOI: 10.1007/978-3-662-49175-1 4

76 J. Shao and H. Ong

must be sanitised before being used. Unfortunately, simply removing identifying
items such as names or telephone numbers is not sufficient to protect transac-
tions, because combinations of other items in a transaction may still be used
to identify an individual or reveal sensitive information associated with them
[27]. For example, knowing that Mary is in the dataset and has an ulcer will
be enough to link her to T1 in Fig. 1, thereby revealing her identity within the
dataset and disclosing other information about her.

A number of methods have been proposed to protect transaction data against
this type of privacy disclosure, including generalisation [9,15,24,28], suppres-
sion [15,24], bucketisation [12,26,31] and perturbation [4,16,17]. One popular
method is set-based generalisation, where an original item in a transaction is
replaced by a set of items. This is to ensure that combinations of certain items
(which an adversary may use to attack the data) will not appear infrequently
in the released dataset. For example, Fig. 2 is a set-generalised version of Fig. 1
where items in brackets are generalised items. As individual items are turned
into common sets by the generalisation, knowing that Mary has an ulcer will
no longer be enough to link her to T1 with certainty in Fig. 2. This provides
protection for Mary’s identity and privacy.

TID Items

1 gastric, (ulcer, moles, glucose), (itching, acid, bleeding),
(swelling, bacteria, tiredness)

2 cancer, (ulcer, moles, glucose), (itching, acid, bleeding), cough, bowels

3 diabetes, (ulcer, moles, glucose), (swelling, bacteria, tiredness),
(itching, acid, bleeding), blurred vision

4 kidney disease, (swelling, bacteria, tiredness), urination

Fig. 2. Set-Based Generalisation

However, set-based generalisation is largely a syntactic method. It works on
an implicit assumption that items are contextless or even meaningless literals,
and it does not take the whole transaction into account when forming a gener-
alising set. This makes it vulnerable to semantic attacks. For example, consider
the generalised items in Fig. 2 again. Although (ulcer, moles, glucose) in T1 sug-
gests that Mary could have ulcer, moles, glucose or any combination of them, the
presence of gastric implies that it is more likely to be ulcer. This type of semantic
analysis will allow an adversary to reduce a generalised item to its original form,
thereby breaking protection for privacy.

In the paper, we study how well transaction data can be protected by set-
based generalisation. More specifically,

– We propose an attack that aims to reconstruct original transaction data from
their set-generalised version by analysing semantic relationships that exist
among the items. This is in contrast to other studies on quantifying privacy
risk involved in publishing transaction data, where an adversary is assumed

Semantic Attack on Anonymised Transactions 77

either to have de-identified but not anonymised data to attack [7,22], or to
have some auxiliary information about original data available [11]. We attack
anonymised transactions and require no additional information apart from the
released data. Thus, our attack represents a realistic assessment of privacy risk
associated with set-based generalisation.

– To determine semantic relationship among data items, we build our work on
a measure called Normalised Google Distance [5]. This measure establishes
semantic relationship between two terms by querying the Google repository
of WWW pages: the more pages in which the two terms appear together, the
more related they are considered to be. This eliminates the need to construct
a single comprehensive dictionary or corpus for testing term relationships and
ensures that our approach is generic and practical.

Our experiments on real-world datasets show that set-based generalisation
may not provide adequate protection for transaction data, and about 50 % of the
items added to transactions during generalisation can be detected by our method
with a precision greater than 80 %. This is significant as it suggests that by using
semantic relationship, it is highly likely that items added into a transaction as
a cover by the generalisation process may be eliminated by an adversary and
original transactions may be reconstructed. As our approach uses information
that is readily available from the released data and Google, the privacy risks
identified in this paper are real.

The rest of the paper is organised as follows. Section 2 reviews the related
work. Section 3 provides concepts and notations necessary to understanding
the proposed approach. In Sect. 4, we describe the three key steps of our de-
anonymisation approach in detail. We report experimental results in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Related Work

Privacy risks associated with data publishing have been studied extensively in
recent years, which has led to a range of possible attacks on released data being
identified. In this section we give a brief overview of these attacks. We first
introduce those that attempt to identify individuals and the sensitive information
associated with them from published data directly. Then we review the attacks
which aim to reconstruct original data from anonymised ones.

2.1 Identification Attacks

It has been well recognised that if some items or combinations of items appear
infrequently within a dataset, then such data may be used by an adversary to
identify an individual contained in the dataset. For example, Sweeney [25] con-
sidered link attack where an adversary may use so-called quasi-identifiers such
as postcode, gender and age to identify an individual. Machanavajjhala et al.
[21] introduced homogeneity attack which can reveal the sensitive information

78 J. Shao and H. Ong

associated with an individual without having to identify the individual first.
Li et al. [19] suggested a distribution based attack where an adversary obtains
sensitive information about an individual by observing the difference between
distributions of sensitive values in the original and released datasets. Narayanan
and Shmatikov [22] specifically considered the identification of individuals from
transactions. They assume that data are de-identified (i.e. having identifying
items such as names removed), and that an adversary has some auxiliary infor-
mation (i.e. knowing that several items are associated with an individual) when
attacking the data. All these attacks rely on the frequency or distribution of
data items in a dataset to identify individuals, and to protect data against these
attacks, low frequency items are often generalised or suppressed. In contrast,
we analyse semantic relationships that exist among the items and attempt to
recover original data from generalised ones.

Other identification attacks assume that an adversary possesses additional
knowledge beyond the data about individuals in the released data. Wong et al.
[29] introduced minimality attack: if an adversary knows that data has been gen-
eralised only to meet the minimum protection requirement, then that knowledge
can be used to identify an individual. Xiao et al. [32] proposed transparency
attack which assumes that the adversary knows the algorithm that has been
used to sanitise the data, and uses this knowledge to uncover sensitive infor-
mation about individuals. Inference attack has also been studied, where data
analysis techniques such as correlation analysis [18] or data mining [8] are used
to discover sensitive information or patterns about individuals from de-identified
or sanitised data. While these attacks go beyond data frequency analysis and
explore relationships among data or between data and anonymisation processes,
they do not consider the type of semantic relationship that we consider in this
paper.

2.2 Reconstruction Attacks

Reconstruction attacks do not attempt to identify individuals from published
datasets directly, but instead they consider how original data may be recovered
from sanitised ones. For example, when a set of data is transformed to protect
privacy but the transformed dataset preserves Euclidean distances in order to
support certain analytic studies, an adversary may break the transformation
and recover the original values by using a few known data points in the dataset
[11]. Once the original data have been reconstructed, the privacy is deemed
to be broken and individuals may be identified using the identification attacks
discussed above. The majority of studies in this area have been carried out
for statistic data releasing [13,16]. Common techniques analyse correlations and
distributions in data perturbed through noise addition [1] or data swapping [6].
In contrast, we consider set-generalised data and analyse semantic relationships
among the data items, rather than relying on certain statistic properties that
are assumed to be preserved in the released data. Moreover, we do not require
any prior knowledge about the data, and rely on the released data only.

Semantic Attack on Anonymised Transactions 79

Anandan and Clifton studied how a sanitised term in a text may be re-
identified based on its semantic relationships with others [2]. They assume that
the term is generalised according to a specific taxonomy, and they measure its
semantic relationships with others w.r.t. this taxonomy in order to re-identify
it. In so doing, they rely on the existence of a taxonomy for semantic analysis,
which is not entirely realistic in practice. Sánchez and Rovira [23], on the other
hand, considered the possibility of uncovering a suppressed term from a sanitised
text without using a taxonomy. Similar to our work, they use Normalised Google
Distance to measure semantic relationships among the terms. While we share
the view that semantic relationships among terms must be taken into account
when anonymising data and the Normalised Google Distance is a practical way
to analyse their relationships, our work has a different focus from theirs. Given
a sensitive term, Sánchez and Rovira apply semantic analysis before anonymisa-
tion to assess whether it is sufficient to suppress this term only or other terms
must also be suppressed in order to protect it. In contrast, we apply semantic
analysis after anonymisation, i.e., attempting to reduce a set-generalised item to
its original form.

3 Preliminaries

In this section, we present some notations and concepts necessary to under-
standing our approach. Let I = {i1, ..., im} be a finite set of literals called
items. A transaction T over I is a set of items T = 〈a1, a2, . . . , ak〉, where each
aj , 1 ≤ j ≤ k is a distinct item in I. A transaction dataset D = {T1, ..., Tn} is a
set of transactions over I.

Definition 1 (Itemset and Support). Any subset I ⊆ I is called an itemset.
An itemset I is supported by transaction T if I ⊆ T . We use σ(I,D) to represent
the number of transactions in D that support I, and we call these transactions
supporting transactions of I in D.

For example, 〈gastric, ulcer, acid, bacteria〉 is a transaction in Fig. 1.
〈gastric, ulcer〉 is an itemset and is supported by T1, hence has the support
of σ(〈gastric, ulcer〉,D) = 1. T1 is its supporting transaction.

When the support for an itemset is low, i.e. the itemset appeared infrequently
within a transaction dataset, an attacker may use it to identify an individual
with a high probability. A popular approach to ensuring that such itemsets would
not compromise privacy is set-based generalisation [20], where individual items
are replaced by a set of items.

Definition 2 (Set-Based Generalisation). A set-based generalisation is a
partition Ĩ of I in which each item i ∈ I is replaced by the partition to which it
belongs. Each partition is called a generalised item, and each i is mapped to its
generalised version ĩ using a generalisation function Φ : I → Ĩ. When an item
is generalised to itself, we say that the item is trivially generalised.

80 J. Shao and H. Ong

We denote a generalised item by listing its items in brackets, e.g. (ulcer,
moles, glucose) in Fig. 2 is a generalised item, and we interpret a generalised
item as representing any non-empty subset of its member items, e.g. (ulcer,
moles, glucose) may represent ulcer, moles, glucose or any combination of them.
Generalisation can help prevent identity disclosure as it increases the number of
transactions in the dataset that may be linked to an individual through com-
binations of items [20]. For example, consider the mapping of item swelling in
Fig. 1 to the generalised item (swelling, bacteria, tiredness) in Fig. 2. (swelling,
bacteria, tiredness) is supported by 3 transactions in Fig. 2, whereas swelling is
only supported by 1 transaction in Fig. 1.

Various privacy models have been proposed and they require different privacy
constraints to be satisfied by the released data [10,20,27,33]. For the purpose of
this paper, we use a simple, but commonly adopted privacy protection model,
based on support count.

Definition 3 (Protected Transactions). Let D̃ = {T̃1, T̃2, . . . , T̃n, } be a set
of set-generalised transactions, and p = (I, σmin) be a privacy constraint that
requires an itemset I to have a minimum support of σmin in D̃. D̃ is protected
w.r.t. p if either σ(I, D̃) ≥ σmin or σ(I, D̃) = 0.

Given a set of protected transactions w.r.t. a set of privacy constraints, we
are interested to see if any constraint may be “violated” by performing some
semantic analysis on the published (set-generalised) data. That is, we are inter-
ested to know if some items in a generalised item could be removed based on
their semantic relationships with other items in a transaction, thereby reducing
the extent of generalisation and recovering some low frequency itemsets from
the published transactions.

4 Context Based Semantic Attack

In this section we describe our proposed semantic attack. Given a generalised
item ĩ = (̂i1, î2, . . . , îs), where each îj , 1 ≤ j ≤ s is either an original item or a
non-original item that has been added to the transaction by the anonymisation
process to provide a cover for the original items, our goal is to identify and remove
non-original items from ĩ based on semantic analysis. Our approach is outlined in
Fig. 3, which takes any set-generalised transactions as input, and produces a de-
anonymised dataset with as many non-original items removed from generalised
items as possible as output. In the following sections we describe the three key
steps of our approach, context extraction, scoring and elimination, in detail.

4.1 Context Extraction

We consider items in a transaction to have some semantic relationships between
them. That is, we would expect items in a transaction to occur in a coher-
ent manner. For example, items in transaction 〈gastric, ulcer, acid, bacteria〉 in
Fig. 1 are all related to a particular medical diagnosis, and one would not expect

Semantic Attack on Anonymised Transactions 81

Fig. 3. Context Based Semantic Attack

to see item sky, for instance, to occur in it. Thus, items in a transaction can
be seen as collectively forming a context for the transaction, which can be used
to judge if it is plausible for a particular item to occur in the transaction. Our
approach is based on this observation, and our first step is to extract a suitable
context from a transaction.

Definition 4 (Transaction Context). Given a generalised transaction T̃ ,
C ⊂ T̃ is a context of T̃ , if each item ik ∈ C, 0 ≤ k ≤ |C| is trivially gen-
eralised. We call an item in C a contextual item.

Note that only original items can be used to form a context. This is because
generalised items may contain items added by the anonymisation process, there-
fore they may not provide reliable contextual information for the transaction.
Given a generalised transaction, many contexts may be formed. However, a large
C is not desirable. This is because a large transaction (hence the possibility of a
large context) may contain multiple contexts. For example, a patient discharge
report may contain the diagnoses of several diseases that the patient has. Using
too many contextual items could confuse semantic analysis and result in wrong
estimation of semantic relationships. Moreover, it will incur substantial compu-
tation as semantic relationships between generalised items and each contextual
item need to be analysed. This implies a large number of queries to Google which
is time consuming.

In our work, therefore, we extract only the neighbouring items to a gener-
alised item to form a context. For example, given transaction 〈kidney disease,
(swelling, bacteria, tiredness), urination〉 in Fig. 2, we use kidney disease and uri-
nation as contextual items for generalised item (swelling, bacteria, tiredness). For

82 J. Shao and H. Ong

simplicity of discussion in this paper we assume that there is at least one trivially
generalised item in a generalised transaction T̃ . If no trivially generalised items
available in a generalised transaction, then items in other generalised items may
be used as contextual items. Detailed discussion on how this may be done is
beyond the scope of this paper.

4.2 Scoring

The scoring step is to establish relationships between items in a generalised item
and the transaction’s contextual items. For example, in Fig. 2, to identify any
non-original items from generalised item (ulcer, moles, glucose) using gastric
as a context, the scoring step will measure semantic relationship between every
item in (ulcer, moles, glucose) and item gastric.

One approach to measuring how a given pair of items is related is to use an
expert-specified ontology, such as the Wordnet [3]. Ontologies provide hierarchies
of concepts and allow class inclusion or subsumption to be inferred, thus can help
determine if the two items are related conceptually. However, such measures are
not suitable for our purpose because they tend to measure similarity rather than
relatedness, and they do not take different contexts into account. For example,
“string” and “cord” may be deemed similar by an ontology when they are both
taken to mean a thin rope, but it does not suggest if these two terms are likely
to be used together, nor they actually represent similar concepts if we consider
the use of the two terms in a programming context.

An alternative approach is to use a corpus of texts, and the relatedness of
two items is judged by how they appear together within the corpus of texts [14].
This can help establish term relatedness based on how they are actually used in
a context, rather than just if the terms are conceptually similar. However, this
approach needs to construct a comprehensive and unbiased corpus for testing
the usage of any terms, and this is not always feasible in practice.

In this paper, we follow the corpus based approach, but to avoid the need
to construct a comprehensive corpus, we adopt the Normalised Google Distance
(NGD) [5] measure which considers the entire world-wide-web as a corpus. Given
two terms x and y, their semantic relatedness is established by

NGD(x, y) =
max(log f(x), log f(y)) − log f(x, y)

log(N) − min(log f(x), log f(y))
(1)

where f(x) denotes the number of Google pages containing x, f(y) the number
of pages containing y, f(x, y) the number of pages containing both x and y,
and N is the total number of pages Google has in its repository. The lower the
NGD score is, the more closely related the two terms are considered to be. For
example, we have NGD(“paracetamol”,“HIV”) > NGD(“paracetamol”,“Cold”),
which suggests that in general Paracetamol is more likely to be associated with
Cold than with HIV.

Given a generalised transaction, we may have a number of contextual items
available, and any subset of these context items may be used to attack a given

Semantic Attack on Anonymised Transactions 83

generalised item. Let C be a set of contextual items used in attacking a gener-
alised item ĩj and î be an item in ĩj . We measure semantic relatedness between
î and C by

dC,̂i =

∑
j∈C NGD(j, î)

|C|
where |C| is the number of contextual items in C. That is, when multiple con-
textual items are used, an average score between î and its context set C is used
as a measure of how likely î belongs to the transaction. For example, given
T̃ = 〈i1, i2, i3, (i7, i8), i4, i5, i6〉, the semantic relatedness between i7 and its con-
text C = {i3, i4} is measured by dC,i7 = (NGD(i3, i7) + NGD(i4, i7))/2.

One requirement of set-based generalisation is that generalised items form
k-equivalence groups. That is, each generalised item will appear at least k times
within the released transactions. This is to ensure that the probability of using
generalised items to link an individual to a transaction is no more than 1/k.
Therefore, when attacking a generalised item ĩ = (̂i1, î2, . . . , îs), we consider the
whole equivalence group together by performing NGD scoring on each occurrence
of ĩ in different transactions and record the result in a distance table: (Fig. 4)

î1 ... îs

C1 dC1 ,̂i1
... dC1 ,̂is

...

Ck dCk ,̂i1
... dCk ,̂is

Fig. 4. Distance Table

where columns are items in the generalised item under attack, and rows are con-
textual items selected from each transaction in the equivalence group to attack
the generalised item. Note that while the generalised item ĩ is identical in every
transaction within the equivalence group, the contextual items that are selected
and used to attack it need not to be the same. In fact, as each transaction is
different and contexts are likely to be different, thereby allowing the membership
of î in ĩ to be discriminated in a given transaction. For example, applying our
scoring function to the generalised item (ulcer,moles, glucose) in Fig. 2 using
C1, C2 and C3 as contexts, we obtain the distance table in Fig. 5.

ulcer moles glucose

C1 = {gastric} 0.87 0.77 1.17

C2 = {cancer} 1.02 1.45 0.85

C3 = {diabetes} 1.11 1.98 0.73

Fig. 5. An Example Distance Table

84 J. Shao and H. Ong

This generalised item contains 3 items and forms a 3-equivalence group, there-
fore the distance tables has 3 columns and 3 rows. The largest distance is 1.98
between moles and diabetes, suggesting that they are not as related as others
are, hence moles is likely to be an item introduced into T3 by the generalisation
process, rather than an original item in T3. Note that in this example, we used
a single contextual item to attack the generalised item. In general, any number
of contextual items may be used if they are available.

4.3 Elimination

Elimination is a step that applies a set of criteria to eliminate non-original items
from a distance table, based on the scores obtained from the scoring step. This
corresponds to eliminating items which are less related to the context of a trans-
action. Once the semantic relatedness between the contextual items and the
items in a generalised item is established, we employ some heuristics to elimi-
nate those that are deemed to be not belonging to the original transactions from
the generalised items. In the following sections, we give some heuristic methods
to find such items.

Maximum Distance Attack (MDA). Given a distance table for an equiv-
alence group of k transactions and an generalised item, it is easy to see from
the definition of set-based generalisation that there exists at least one item that
does not belong to the original transactions. So a conservative method is to con-
sider the one with the greatest value in the distance table to be that item, and
eliminate it from the generalised item. That is, we have

De = D \ max(D)

where max(D) is the greatest value in the distance table D. For example, apply-
ing this method to Fig. 5, we eliminate moles from T3 (distance values in bold
indicate original items): (Fig. 6)

ulcer moles glucose

C1 = {gastric} 0.87 0.77 1.17

C2 = {cancer} 1.02 1.45 0.85

C3 = {diabetes} 1.11 - 0.73

Fig. 6. An Example of MDA

The resultant de-anonymised transactions are shown in Fig. 7. The data is
no longer considered to offer sufficient protection for privacy, because with the
de-anonymised dataset, if an adversary knows that an individual has moles, he
or she can link this individual to a specific transaction in the dataset with a
probability of 1/2, which is higher than the 1/3 offered by the anonymised data.

Semantic Attack on Anonymised Transactions 85

TID Items

1 gastric, (ulcer, moles, glucose), (itching, acid, bleeding),
(swelling, bacteria, tiredness)

2 cancer, (ulcer, moles, glucose), (itching, acid, bleeding), cough, bowels

3 diabetes, (ulcer, moles, glucose), (swelling, bacteria, tiredness),
(itching, acid, bleeding), blurred vision

4 kidney disease, (swelling, bacteria, tiredness), urination

Fig. 7. De-anonymised Fig. 2 Following MDA

Threshold Distance Attack (TDA). MDA is however very conservative, and
it does not attempt to eliminate all possible non-original items from a generalised
item. A more aggressive attack could consider all items with a distance above
a certain threshold to be non-original, therefore eliminate them all from the
generalised item. That is, given a parameter δ and a distance table, we perform
the following as long as d is not the last item left in a column or row in D:

De = D \
⋃

d∈D,d>δ

d

The method is given in Algorithm 1, which checks if each distance value is
above a threshold δ and eliminates it if it is. In this paper, we use the average
distance in D as δ:

δ =
∑

d∈D
d

|D|
where |D| is the number of items in D.

Algorithm 1. Threshold Distance Attack (D,δ)
Input: Distance table D and threshold value δ
Output: De-anonymised distance table De

1: Ds = ∅
2: for αij ∈ D do
3: if αij > δ then
4: Ds ← αij

5: end if
6: end for
7: return De = D \ Ds

For example, the average distance in Fig. 5 is 1.11. Eliminating items with
a distance greater than this threshold from Fig. 5 we obtain Fig. 8. Note that
while this method has eliminated more non-original items than MDA did from
generalised items, it has also eliminated a wrong one. For brevity of presentation,
we will not give the de-anonymised transactions themselves hereafter as they are
obvious from the final distance table.

86 J. Shao and H. Ong

ulcer moles glucose

C1 = {gastric} 0.87 0.77 -

C2 = {cancer} 1.02 - 0.85

C3 = {diabetes} 1.11 - 0.73

Fig. 8. An Example of TBA

The effectiveness of TDA however depends on the amount of original items
in generalised items or equivalently in a distance table.

Definition 5 (Density). Given a distance table D and a set of original items
Do ⊂ D, the density of D is defined as:

θ =
|Do|
|D|

So the lower the density is, the more non-original items we have in generalised
items. When the density is low, the average distance tends to be greater than
those associated with original items, hence elimination tends to be more effective.
We will further explore this in Sect. 5.

Weighted Distance Attack (WDA). We observe that when an item is elimi-
nated, it should have an affect on the other items in a distance table. Intuitively,
removing one item should suggest that the other items are more likely to be
original. Based on this observation we propose a weighted distance attack which
eliminates items from a distance table in iterations: one item is eliminated in
each iteration, then the remaining distances in the table are updated w.r.t. the
item that has been eliminated. This continues until no more elimination can be
performed.

Observe that each row or column in a distance table always contains at least
one original item. So if a row or column contains m items, we can assume that
each item has at least a probability of 1/m to be an original one. As items are
eliminated from the distance table, these probabilities will change and we use
these probabilities as weights to revise the distances recorded in the distance
table as follows:

Definition 6 (Weighted Distance). Let D be a distance table and αij be the
distance value at row i and column j in D. The weighted distance αw

ij for αij is
calculated by

αw
ij = αij × (1 − 1

Nr − Ei
r

) × (1 − 1
Nc − Ej

c

)

where Nr and Nc are the number of rows and columns in D, and Ei
r and Ej

c are
the number of eliminated items in row i and column j, respectively.

Semantic Attack on Anonymised Transactions 87

That is, αij is first revised by the row weights (1
Nr−Ei

r
) and then by the col-

umn weights (1

Nc−Ej
c
). The more items are eliminated from a row (column), the

more likely the remaining items in the row (column) will be original, and revision
given in Definition 6 reflects that. So unlike MDA or TDA, each elimination by
WDA affects how the rest of items may be processed. Algorithm 2 shows the
WDA method.

Algorithm 2. Weighted Distance Attack (D, Nr, Nc)
Input: A distance table D with Nr rows and Nc columns
Output: De-anonymised distance table De

1: Ec, Er ← initialise()
2: D

w ← W(D, Nr, Nc, Er, Ec)

3: δ ←
∑

d∈Dw d

|Dw|
4: mij ← max(Dw) if Nr − Ei

r > 1 and Nc − Ej
c > 1

5: while mij > δ do
6: D

w
ij ← ∅

7: Ei
r ← Ei

r + 1, Ej
c ← Ej

c + 1
8: D

w ← W(D, Nr, Nc, Er, Ec)
9: mij ← max(Dw) if Nr − Ei

r > 1 and Nc − Ej
c > 1

10: end while
11: return D

w as De

Step 1 initialises Er and Ec which are used to record the number of elimi-
nations in each row and column. They help update weighted distances without
having to scan the table multiple times. Step 2 calculates a weighted distance
table D

w according to Definition 6 using Algorithm 3. A threshold δ is derived
in Step 3 using the initial scores in D. Step 4 finds the maximum score mij in
D

w as long as it is not the last item in row i or column j. If it is greater than δ
(Step 5), then mij is eliminated (set the entry in D

w to empty) in Step 6, and Ec

and Er are updated in Step 7. Dw is re-calculated and a new mij is selected in
Steps 8 and 9. This continues until no distance values are above the threshold,
and the resultant distance table is returned in Step 11.

As an example, consider Fig. 5 again. To start with, we assume that one item
in each row and column is original and each item is equally likely to be the
original item, hence we have the two initial weights tables as shown in Figs. 9(a)
and (b). The entries in Fig. 5 are then revised using these two tables according
to Definition 6 to produce Fig. 9(c) (contexts C1, C2 and C3 refer to the same
contexts as given in Fig. 8):

The elimination of an item from Fig. 9(c) is then carried out, based on the
following conditions: (a) the item has the greatest distance in the table, (b) the
item is not the last one in a row or column, and (c) its distance is greater than
the average distance in the table. Note that in this case, the average threshold is
calculated from the revised table, i.e. δ = 0.49. moles in T3 satisfies these three
conditions, hence is eliminated.

88 J. Shao and H. Ong

Algorithm 3. W(D, Nr, Nc, Er, Ec)
Input: A distance table D with Nr rows and Nc columns, and elimination counters

Er and Ec

Output: A weighted distance table D
w

1: D
w ← ∅

2: for i = 0 to Nr do
3: for j = 0 to Nc do

4: D
w
ij ← Dij × (1 − 1

Nr−Ei
r
) × (1 − 1

Nc−E
j
c
)

5: end for
6: end for

7: return D
w

ulcer moles glucose

C1 1/3 1/3 1/3

C2 1/3 1/3 1/3

C3 1/3 1/3 1/3

(a) Row Weights

ulcer moles glucose

C1 1/3 1/3 1/3

C2 1/3 1/3 1/3

C3 1/3 1/3 1/3

(b) Column Weights

ulcer moles glucose

C1 0.39 0.34 0.52

C2 0.45 0.65 0.38

C3 0.49 0.88 0.32

(c) Weighted Table

Fig. 9. First Iteration of WDA

After moles is removed, the two weights tables are updated and the results
are shown in Figs. 10(a) and (b). These two tables are then used to revise Fig. 5
to give Fig. 10(c):

ulcer moles glucose

C1 1/3 1/3 1/3

C2 1/3 1/3 1/3

C3 1/2 - 1/2

(a) Row Weights

ulcer moles glucose

C1 1/3 1/2 1/3

C2 1/3 1/2 1/3

C3 1/3 - 1/3

(b) Column Weights

ulcer moles glucose

C1 0.39 0.26 0.52

C2 0.45 0.48 0.38

C3 0.37 - 0.24

(c) Weighted Table

Fig. 10. Second Iteration of WDA

Following the same process, glucose in T1 is eliminated, and weights are
updated and the weighted table is re-calculated to produce Fig. 11. Now, no
more distances in Fig. 11(c) are above the threshold, so the elimination process
terminates. It is interesting to compare the result to that obtained using MDA
and TDA: it has eliminated more non-original items than MDA did, but has not
wrongly eliminated moles from T2 as TDA did. This suggests that WDA is a
more effective attacking method, and we shall further demonstrate this in Sect. 5
when we report our experimental results.

We now consider the performance of WDA in the worst case scenario, where
WDA eliminates items until there is only one item left in each row and column
of a distance table. In this case, the algorithm can perform maximum Nr ×
Nc −max(Nr, Nc) number of iterations. In each iteration, the weight calculation

Semantic Attack on Anonymised Transactions 89

ulcer moles glucose

C1 1/2 1/2 -

C2 1/3 1/3 1/3

C3 1/2 - 1/2

(a) Row Weights

ulcer moles glucose

C1 1/3 1/2 -

C2 1/3 1/2 1/2

C3 1/3 - 1/2

(b) Column Weights

ulcer moles glucose

C1 0.29 0.19 -

C2 0.45 0.48 0.28

C3 0.37 - 0.18

(c) Weighted Table

Fig. 11. Third and Final Iteration of WDA

(Algorithm 3) requires Nr×Nc time to process. Therefore, the overall complexity
of WDA is O((Nr ×Nc −max(Nr, Nc))×(Nr ×Nc)) = O((Nr ×Nc)2). So, WDA
is more expensive than TDA which has a linear cost of O(Nr ×Nc), as it searches
through the distance table and eliminates all items having higher distances than
the threshold in one pass.

4.4 Discussion

In this section we consider two further issues associated with our proposed
context-based semantic attack.

Generalised Items Unmarked. The attacks we described in the previous
section are based on an assumption that an adversary knows which items are
generalised, so that they can identify contextual items to attack the data. This
may not be the case in practice. A data publisher may not release the data with
generalised items clearly marked. For example, a set of generalised transactions
may be released as shown in Fig. 12.

To identify which items form a generalised item and which ones can be used
as contextual items from such data, we may use the following rules:

– Any item that appears in k or more transactions is considered to be part of
a generalised item, where k is a privacy requirement which we have described
previously.

– Any item that appears in less than k transactions is considered to be an
original item, thus may be used as a contextual item.

TID Items

1 gastric, ulcer, moles, glucose, itching, acid, bleeding,
swelling, bacteria, tiredness

2 cancer, ulcer, moles, glucose, itching, acid, bleeding, cough, bowels

3 diabetes, ulcer, moles, glucose, swelling, bacteria, tiredness,
itching, acid, bleeding, blurred vision

4 kidney disease, swelling, bacteria, tiredness, urination

Fig. 12. Anonymised Transactions with Unmarked Generalised Items

90 J. Shao and H. Ong

Note that while it is easy to identify items appearing in at least k transac-
tions from the released data, grouping them correctly into generalised items may
not be straightforward, especially when a transaction contains more than one
generalised item. This can result in a large distance table when too many items
are grouped incorrectly into one generalised item, making the attacks expen-
sive to perform, or wrong semantic relationships being estimated due to wrong
items being grouped together. How to best group such items into generalised
transaction needs further study, and we do not discuss this further in this paper.

Semantic Relationships among Data. The attacks we described in the pre-
vious section also assumed that semantic relationships naturally exist among the
items of a transaction, which can then be used to filter out non-original items.
However, this may not be the case in some applications. For example, items in a
shopping basket typically form a transaction, but items in such transactions may
not have the type of semantic relationship that we consider in this paper. For
instance, in 〈milk, (bread, bacon), cheese, medicine〉, bread may be considered
to be more likely to be an original item than bacon is by our methods, since it
appears more frequently with milk and cheese than bacon does. However, this
would be unjustified, as items of a transaction in this case are related more by
shopping preferences, rather than by semantic relationships. Our methods are
unsuitable to use to attack this type of transaction data.

5 Experiments

In this section, we report our experimental results and compare the effectiveness
of our proposed methods. We first describe the datasets used in our experiments,
and then compare our methods in terms recall and precision in identifying and
correctly eliminating non-original items from a generalised item.

5.1 Datasets and Preparation

We used three datasets with different characteristics in our experiments. These
datasets contain transactions that are extracted from i2b2 documents1, articles
from GoArticles.com2 and AOL search query logs3, and their characteristics are
summarised in Table 1.

The AOL dataset is already in the form of transaction: each user’s search
session is a transaction and each searching keyword is an item in the transac-
tion. The i2b2 transactions are extracted from documents, using the Stanford
1 i2b2 (www.i2b2.org) is a set of de-identified notes from the Research Patient Data

Repository at Partners Health Care released for a series of NLP Challenges organized
by Dr. Ozlem Uzuner.

2 The data are collected from articles at http://www.goarticles.com covering various
topics.

3 http://gregsadetsky.com/aol-data/.

http://www.GoArticles.com
www.i2b2.org
http://www.goarticles.com
http://gregsadetsky.com/aol-data/

Semantic Attack on Anonymised Transactions 91

Table 1. Properties of Datasets

Properties AOL i2b2 GoArticle

Size (No of transactions) 758 643 263

Length (items in a transaction) 1 to 5 150 to 200 150 to 200

Items to be protected 127 112 45

Original/Generalised 1/6 1/6 1/3

Quality Few typos Many typos and abbreviations Content cleansed

Context Multiple Single (Medical) Multiple

POS Tagger package4. We extract nouns and noun-phases only from the docu-
ments. Each document results in one transaction and the nouns and noun phases
extracted from the document become items in the transaction. For the GoArti-
cle dataset, we selected a set of articles that share contexts and then manually
extracted terms from the articles to form transactions. All our transactions do
not contain duplicated items and the order in which the terms appear in a doc-
ument is preserved in the extracted transaction.

After the transactions are prepared, we anonymise them using COAT [20],
a set-base generalisation method for anonymising transactions. COAT works by
specifying two sets of constraints. Items to be protected form privacy constraints.
In our experiments, they are randomly selected from the transactions, and the
number of items selected for each dataset is given in Table 1. Items that can be
used together to generalise an item form utility constraints. In our experiments
we use the most general one: the entire set of items. That is, we allow any item
to be used in any generalising set.

5.2 Random Attack

We compare our proposed heuristics to a baseline method which performs a
random attack on generalised items. The baseline method essentially assumes
that an adversary has no other information than the released dataset, and he or
she can only randomly guess whether an item in a generalised item is an original
one or not. There are ways that an adversary may perform a random attack:

– On each item, the adversary decides whether it should be eliminated or not.
Assuming that each item is equally like to be original or introduced by the
generalisation, each item has a 50 % chance to be eliminated.

– The adversary randomly picks up a random number of items to eliminate from
generalised items.

We use the second method in the experiments as it allows more variation in
outcome and offers better comparison for our heuristics.
4 http://nlp.stanford.edu/software/tagger.shtml.

http://nlp.stanford.edu/software/tagger.shtml

92 J. Shao and H. Ong

5.3 Results

We use precision (p) and recall (r) to measure how well our methods can detect
non-original items correctly, and we also use the standard F-score to measure
their overall quality.

r =
correct eliminations

all non-original items
p =

correct eliminations
all eliminations

Figure 13 shows the results of our experiments. We have not included MDA as
it does not attempt to remove all non-original items, hence it is not meaningful to
measure its recall and compare it to other methods. In attacking a generalised
item ĩ, we use two closest items on either side of ĩ as contextual items. We
measured recall, precision and F-score against k, the minimum size that an
equivalence group must have in the released dataset. The higher the k is, the
more items are likely to be added into generalised items, hence more eliminations
are to be expected.

It is easy to see that TDA and WDA both outperformed the Random Attack.
This suggests that semantic relationship among the items of transactions can be
used to de-anonymise set-generalised transactions. This is especially so when

Fig. 13. Comparison of Attack Effectiveness

Semantic Attack on Anonymised Transactions 93

we deal with transactions that are extracted from text, because such extracted
items (nouns and noun phrases) are often related in some context, as we have
observed in our experiments. For example, about 50 % of the introduced items
were removed from generalised items and precision of doing so was as high as
80 %. So transaction data sanitisation without considering semantic relationships
among their items may not provide sufficient protection for individual privacy.

It is worth noting that as k increased, recall actually decreased as can be
observed in Fig. 13. We attribute this to the use of thresholds in both TDA and
WDA. As k increases, more non-original items are likely or needed to be added
into a generalised item in order to form required equivalence groups. As a result,
the average distance between the items in a generalised item and its contextual
items is likely to increase, as added items are likely to be less semantically related
to the contextual items. This will result in a higher threshold and a lower recall.
How to set a suitable threshold needs to be investigated further.

WDA did not perform as well as TDA in terms of the overall F-score in our
experiments. This is a surprise, but we believe that this is mainly due to the
characteristics of the datasets used in the experiments. For all three datasets,
we observed that relatively largely number of items were added into generalised
items, because the data were high dimensional and sparse. This resulted in the
NGD scores for the original items to be mostly below the average threshold.
With TDA, this gives a very good recall (and F-score), as all the items above
the threshold were removed. The Weighted Distance Attack, on the other hand,
is more conservative. Anytime an item is removed, it makes the rest more likely
to be original. Consequently, it eliminates less, and has a lower recall and a
higher precision. This is evident from Fig. 13. To verify this, we undertook further
experiments to vary the thresholds used in elimination. The result is shown in
Fig. 14.

Fig. 14. Comparison of Effect of Threshold

As can be seen, when thresholds are set very low (i.e. anticipating most of
the items non-original), the Weighted Distance Attack performed better. This
is because as the thresholds lowered, more original items will have NGD scores
that are above the threshold. They will therefore be wrongly removed by the
Threshold Distance Attack, significantly reducing precision and F-score. The
Weighted Distance Attack on the other hand is able to use the “enlarged” range

94 J. Shao and H. Ong

to remove more non-original items while maintain relatively good precision due
to its iterative process of elimination. This results in a better overall F-score.
When the thresholds have increased to a point where it places most of the
original scores below it, the threshold method works better. Again, how to find
an appropriate threshold needs to be investigated further.

5.4 Effect of Data Density

As the density of a dataset is one of the important properties that can affect
the performance of our methods, we study how our methods will perform with
different levels of data density. To set up this experiment, we selected subsets of
transactions from the datasets used in the previous experiments to have average
density levels from 0.1 to 0.7.

As can be seen in Fig. 15, the precision gets lower when the density level
gets higher. This is expected because when increasing the density level, less non-
original items are added into generalised transactions by the process, and as our
methods eliminate all possible non-original items above a fixed threshold, more
wrong eliminations are likely to be made, resulting in a decreased precision. It
is useful to observe that WDA has a better precision than TDA has in general
and TDA’s precision decreases faster than WDA does due to the use of weights.
Finally, the recalls of our methods are largely unchanged with increasing density.
This is because we use average distance as a criterion for eliminating items,
which seems to have regulated the number of items to be removed: we observed
that when less items are added into a generalised transaction in a high density
dataset, less items are removed from it, resulting a relatively stable recall.

5.5 Effect of Utility Constraints

In the previous experiments, we used the most general utility constraint to
anonymise a set of transactions. That is, we allow any item to be used to form
a generalizing set. This helps test how our methods would perform in dealing
with any utility constraint in general, but one could argue that this makes it
potentially easier for an adversary to identify non-original items in a generalised

Fig. 15. Comparing Different Density Levels

Semantic Attack on Anonymised Transactions 95

item, as it is more likely for the generalisation process to introduce semantically
inconsistent items into a transaction.

To test how our method would deal with more carefully constructed utility
constraints, we carried out another experiment where a dataset is anonymised by
more semantically consistent utility constraints. That is, we only use the items
that semantically related to the item to be protected to form a generalising set
during generalisation. We did this experiment with the GoArticle dataset as its
multiple contexts and higher density allow us to construct some semantically
very consistent utility constraints.

We used the same setup for the GoArticle dataset as in Fig. 13, except that
utility constraints are constructed using the following steps:

– We first extract all the items in the dataset to form a set I as the domain of
the dataset. We include all items so that items are less likely to be suppressed
by COAT.

– Given a privacy constraint (i1, i2, . . . , in), we search all items in I which are
semantically close to i1. To determine the closeness of two terms im and in, we
use a similarity measure given by Wu and Palmer [30] based on the WordNet
ontology:

similarity = 2 × depth(im, in)/(depth(im) + depth(in))

where depth(im) and depth(in) are the distances from the root to items im
and in on the ontology tree, and depth(im, in) is the distance from the root
to the lowest common ancestor of im and in. Two terms are deemed to be
sufficiently related if their similarity score is above 0.5.

– We do the same for other items in the privacy constraint. This results in a
utility constraint that contains only the items that are semantically consistent
with the privacy constraint. Because not all items in the domain will be added
into a utility constraint, COAT may need to suppress some items in order
to satisfy the privacy constraint. However, as our methods do not consider
attacking suppressed items, suppressed items are ignored during attack and
are not included in distance tables.

Figure 16 compares the results of attacking the same dataset anonymised
using general utility constaints and semantically consistent ones. We use TDA’
and WDA’ to denote the results associated with the dataset that are generalised
using semantically consistent utility constraints, and TDA and WDA the gen-
eral ones. As can be seen, recalls associated with semantically consistent utility
constraints are slightly lower as a result of introducing semantically more con-
sistent items into transactions, resulting in a distance table with close distances,
and less items are above the average distance than before. The precisions are
also slightly lower because some added items are actually related to the context,
causing other original items to be eliminated. This can be expected as when we
add semantically similar items into a generalised item, they are also likely to be
related to the context in the same way. However, the overall results in F-Score

96 J. Shao and H. Ong

Fig. 16. Comparing General and Semantic Utility Constraints

show that our methods are not significantly affected by the types of utility con-
straints, hence we strongly believe that the context of transaction can be used
to identify non-original items even though care has been taken to only generalise
an item with semantically similar or consistent items.

5.6 Time Efficiency

Figure 17 shows the time efficiency of our methods. As the complexity of our
algorithms is dependent on the size of the distance tables, we evaluate the per-
formance of our methods by varying distance table sizes. We use Nr × Nr to
denote the size of a distance table, where Nr is the number of rows and Nc

is the number of columns. Timing is the time needed to attack a dataset in
milliseconds.

Our experiments confirmed our analysis in Sect. 4 that TDA scales linearly,
whereas WDA grows exponentially. We have not included the time taken for
scoring in this experiment as the process is run remotely on the Google server
and is mostly dependent on the Internet speed and external searching algorithms.
But performing NGD is generally expensive. For example, in our experiment, it
took more than 24 hours to run all these experiments (excluding the time that
Google blocks the IP address because of mass requests to the server in a short
period).

Fig. 17. Performance of attacking algorithms

Semantic Attack on Anonymised Transactions 97

6 Conclusions

In this paper, we examined if set-based generalisation can provide sufficient
protection for transactions. We proposed methods which use semantic related-
ness among the items to detect if certain items are unlikely to be in a gener-
alised transaction. We have shown that about 50 % of the non-original items
can be eliminated from generalised items with a precision greater than 80 % in
our experiments. This suggests that without considering semantic relationships,
anonymising transactions using set-based generalisation may not provide ade-
quate protection for individual privacy. Furthermore, unlike other works, we do
not assume any adversary background knowledge in attacking the data. The only
information that an adversary needs in order to attack the data is the released
data and Google repository. Thus, the privacy risks we identified in this paper
are real.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of ACM
SIGMOD International Conference on Management of Data, pp. 439–450 (2000)

2. Anandan, B., Clifton, C.: Significance of term relationships on anonymization. In:
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT), pp. 253–256 (2011)

3. Budanitsky, A., Hirst, G.: Semantic distance in WordNet: an experimental,
application-oriented evaluation of five measures. In: Workshop on WordNet and
Other Lexical Resources, Second Meeting of the North American Chapter of the
Association for Computational Linguistics, pp. 29–34 (2001)

4. Chen, K., Liu, L.: Privacy preserving data classification with rotation perturbation.
In: Proceedings of IEEE International Conference on Data Mining, pp. 589–592
(2005)

5. Cilibrasi, R., Vitányi, P.: The Google similarity distance. IEEE Trans. Knowl. Data
Eng. 19(3), 370–383 (2007)

6. Dalenius, T., Reiss, S.: Data-swapping: a technique for disclosure control. J. Stat.
Plann. Infer. 6(1), 73–85 (1982)

7. Datta, A., Sharma, D., Sinha, A.: Provable De-anonymization of large datasets with
sparse dimensions. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and
Trust. LNCS, vol. 7215, pp. 229–248. Springer, Heidelberg (2012)

8. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy pre-
serving data mining. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, pp. 211–222 (2003)

9. Fung, B., Wang, K., Yu, P.: Top-down specialization for information and privacy
preservation. In: Proceedings 21st International Conference on Data Engineering,
pp. 205–216 (2005)

10. Ghinita, G., Tao, Y., Kalnis, P.: On the anonymization of sparse high-dimensional
data. In: IEEE International Conference on Data Engineering, pp. 715–724 (2008)

11. Giannella, C.R., Liu, K., Kargupta, H.: Breaching Euclidean distance-preserving
data perturbation using few known inputs. Data Knowl. Eng. 84, 93–110 (2013)

98 J. Shao and H. Ong

12. He, X., Xiao, Y., Li, Y., Wang, Q., Wang, W., Shi, B.: Permutation anonymization:
improving anatomy for privacy preservation in data publication. In: Proceedings
of International Workshop on New Frontiers in Applied Data Mining, pp. 111–123
(2011)

13. Huang, Z., Du, W., Chen, B.: Deriving private information from randomized data.
In: Proceedings of ACM SIGMOD International Conference on Management of
data, pp. 37–48 (2005)

14. Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similarity
and string similarity. Trans. Knowl. Discov. Data 2(2), 1–25 (2008)

15. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings
of ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 279–288 (2002)

16. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Proceedings of IEEE Inter-
national Conference on Data Mining, pp. 99–106 (2003)

17. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: Random-data perturbation
techniques and privacy-preserving data mining. Knowl. Inform. Syst. 7(4), 387–
414 (2004)

18. Kifer, D.: Attacks on privacy and de Finetti’s theorem. In: Proceedings of ACM
SIGMOD International Conference on Management of Data, pp. 127–138 (2009)

19. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity
and l-diversity. In: Proceedings of IEEE International Conference on Data Engi-
neering, pp. 106–115 (2007)

20. Loukides, G., Gkoulalas-Divanis, A., Malin, B.: COAT: constraint-based
anonymization of transactions. Knowl. Inform. Syst. 28(2), 251–282 (2010)

21. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-Diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007)

22. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: IEEE Symposium on Security and Privacy, pp. 111–125 (2008)

23. Sánchez, D.: Detecting term relationships to improve textual document saniti-
zation. In: Proceedings of Pacific Asia Conference on Information Systems, pp.
105–119 (2013)

24. Sweeney, L.: Achieving k-anonymity privacy protection using generalisation and
suppression. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10(5), 571–588
(2002)

25. Sweeney, L.: k-Anonymity: a model for protecting privacy. Int. J. Uncertainty
Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)

26. Terrovitis, M., Liagouris, J., Mamoulis, N., Skiadopoulos, S.: Privacy preservation
by disassociation. Proc. VLDB Endowment 5(10), 944–955 (2012)

27. Terrovitis, M., Mamoulis, N., Kalnis, P.: Anonymity in unstructured data (2008)
28. Wang, K., Yu, P., Chakraborty, S.: Bottom-up generalization: a data mining solu-

tion to privacy protection. In: Proceedings of the 4th IEEE International Confer-
ence on Data Mining, pp. 249–256 (2004)

29. Wong, R., Fu, A., Wang, K., Pei, J.: Minimality attack in privacy preserving data
publishing. In: Proceedings of the 33rd International Conference on Very Large
Data Bases, pp. 543–554 (2007)

30. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the
32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138
(1994)

Semantic Attack on Anonymised Transactions 99

31. Xiao, X., Tao, Y.: Anatomy: simple and effective privacy preservation. In: Proceed-
ings of the 32nd International Conference on Very Large Data Bases, pp. 139–150
(2006)

32. Xiao, X., Tao, Y., Koudas, N.: Transparent anonymization: thwarting adversaries
who know the algorithm. ACM Trans. Database Syst. 35(2) (2010)

33. Xu, Y., Fung, B., Wang, K., Fu, A., Jian, P.: Publishing sensitive transactions for
itemset utility. In: Proceedings of the 8th IEEE International Conference on Data
Mining, pp. 1109–1114 (2008)

Private Indexes for Mixed Encrypted Databases

Yi Tang1,2(B), Xiaolei Zhang1,2, and Ji Zhang1,2

1 School of Mathematics and Information Science,
Guangzhou University, Guangzhou 510006, China

2 Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong
Higher Education Institutes,

Guangzhou University, Guangzhou 510006, China
ytang@gzhu.edu.cn

Abstract. Data privacy and query performance are two closely
linked and inconsistent challenges for outsourced databases. Using
mixed encryption methods on data attributes can partially reach a
trade-off between the two challenges. However, encryption cannot
always hide the correlations between attribute values. When the
data tuples are accessed selectively, inferences based on comparing
encrypted values could be launched, and some sensitive values may
be disclosed. In this paper, we explore the intra-attribute based and
inter-attribute based inferences in mixed encrypted databases. We
develop a method to construct private indexes on encrypted values
to defend against those inferences while supporting efficient selec-
tive access to encrypted data. We have conducted some experiments
to validate our proposed method.

1 Introduction

Encryption is an essential technique for securing outsourced databases. Many
popular encryption methods such as the block ciphers and the RSA algorithm are
implemented in current programming environments and can be adopted directly
in managing outsourced data tuples. How to execute SQL queries securely and
efficiently over those encrypted data is a main challenge in database research
community, especially when the data tuples are needed to be accessed by different
users with different access rights.

Early efforts are focused on translating plain queries at trusted client side
into corresponding encrypted queries on untrusted server side and assume that
each tuple is encrypted with a single key [4,7]. This implies that all data tuples
are shared in a set of legitimate users. Access control provides users selective
rights to access data tuples. The selective encryption methods use different keys
to encrypt different data portions such as tuples or attributes [9]. To avoid users
from managing too many keys, the keys can be derived from user hierarchy
[5] and the ciphers can be changed into some other newer asymmetric methods
such as the attribute-based encryption method [17]. Although these methods can
provide an effective and possible way to combine encryption with access control,
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIII, LNCS 9480, pp. 100–123, 2016.
DOI: 10.1007/978-3-662-49175-1 5

Private Indexes for Mixed Encrypted Databases 101

the fulfillment of access control depends on the precision of locating encrypted
data. It needs purified techniques to locate encrypted tuples on server side as
precisely as possible.

The granularity of data encryption in outsourced databases can be a tuple
or an attribute. When the encryption is on tuple level, it generally needs to
introduce auxiliary attributes for indexing those attributed values involved in
encrypted tuples [7], and the constructed indexes can be value-based or bucket-
based [15]. It is obviously that value-based method provides more accuracies in
locating encrypted tuples than the bucket-based method. Encrypting a tuple as
a whole may limit the efficiency of data operation because it needs decryption
before performing further data operations. Compared to the encryption in tuple,
encryption on attribute level may provide more flexibilities in data operations.
To meet the requirements with different data operations, an attribute value may
be encrypted by mixed encryption methods. For example, in order to meet the
various query requirements, an attribute value may be simultaneously encrypted
by a symmetric encryption, an order preserving encryption, or a homomorphic
encryption, respectively [11]. When an attribute is encrypted by mixed encryp-
tion methods, it may also require extra attributes to represent related encrypted
values [14]. Note that in this case, the attribute index is value-based which can
be built directly on the encrypted values.

In the scenario of outsourced databases, on one hand, the database service
provider is not required to guarantee a strict separation among data portions
available to different users. On the other hand, if encrypted values on some
attributes cannot be distinguished on the tuples with different access control
lists, the equality relations on the plain values among those tuples will be demon-
strated implicitly. This may lead an adversary user draw inferences on those
tuples although he has no right to access them.

In this paper, we consider the case of data encryption granularity in
attributes. We will address the issue of defend against inference attacks by
mitigating the explicit equality relations among attributes. We try to make a
trade-off between efficient querying and selective encryption for access controls.
The contributions of this paper can be enumerated as follows.

1. We explore the inferences of sensitive information due to the equality relations
between encrypted attribute values.

2. We argue that the inference attacks may be not only launched on the equality
relations between values of a same attribute but also on the equality relations
between different attributes.

3. We introduce an encryption key constructing method which is not only
depended on the key materials shared between specified users and data owners
but also depended on the attribute related access control policy.

The rest of this paper is structured as follows. In Sect. 2, we first overview
some encryption methods addressed in mixed encrypted databases, and then
give an example to show the cases of combining access control lists with
encrypted attributes. We also demonstrate possible inference attacks in those
cases. In Sect. 3, we discuss the intra-attribute inference attack and the inter-
attribute attack and introduce random salt to construct private indexes to defend

102 Y. Tang et al.

against the inference attacks. In Sect. 4, we discuss how to define some auxiliary
attributes to support the execution of SQL queries in mixed encrypted data-
base. In Sect. 5, we give some considerations in delete, insert, and update the
encrypted tuples. In Sect. 6, we propose an entropy-based measure to measure
the encrypted value distribution protected in encrypted database and then pro-
pose a split strategy to defend against frequency-based linking attacks. In Sect. 7,
we conduct some experiments to validate our proposed method. And finally, the
conclusion is drawn in Sect. 8.

2 Background

As illustrated in Fig. 1, three parties are involved in the outsourced database
scenario where the users and the proxy are on client side and a provider on
server side provides outsourced database services. When user u initiates a query
qu, a proxy at client side will translate the plain qu into an encrypted version qsu
and send it to the remote server. After executing the query qsu over encrypted
data on server side, the query result T s

u will be returned to the proxy as replies.
The proxy will decrypt tuples in T s

u , perform computations over the decrypted
tuples according to the conditions in qu, and finally return results to user u. The
specified user, Administrator (shortened as a), acts as the owner of the data.
He maintains the access control lists and shares some secrets with users. He also
has his own private secrets to deal with data tuples.

2.1 Encryption Methods

Encryption is the basic technique to ensure the privacy of data stored in remote
database servers. Because of the randomness of encrypted data introduced by
encryption methods, how to perform SQL queries over encrypted data directly
in real applications becomes a hot topic in database community.

Two encryption methods, the symmetric key and the asymmetric key, are
often adopted in real applications. The symmetric key encryption is traditional
and uses a same key for both encryption and decryption. This key is uniquely

Fig. 1. The outsourced databases scenario

Private Indexes for Mixed Encrypted Databases 103

associated with one or more users and should be made private. The AES algo-
rithm is a typical symmetric key encryption algorithm. When using AES cipher
to encrypt a message, the ciphertext is determined by the encryption key and the
initialization vector (IV). It implies that the encrypted results is deterministic
when the encryption key and IV are given. In this case, the mapping between
plaintext and ciphertext is injective. We label this kind of encryption as DS.

Order-preserving encryption (OP) is a kind of symmetric encryption scheme
that preserves numerical ordering of plaintext. It means that x < y ⇔ OP (x) <
OP (y) where x and y are plain values, and OP (x) and OP (y) are corresponding
OP -encrypted version, respectively. The OP was first suggested in [1], and was
deeply studied in [2,3]. The order-preserving feature of the OP method makes
it possible to perform order comparisons on encrypted data without decrypting
them.

The asymmetric key encryption is another class of encryption algorithms
whose keys are in pairs. This method is also known as public key cryptography,
since each user will be assign with a key pair which one is made public (the public
key) and the other secret (the private key). When encrypting a message with
an asymmetric key encryption algorithm, a random nonce is often introduced
to confuse the intermediate results. This implies that the final encrypted results
are variable in different encryption procedures.

Running a database application often requires some computations on data
attributes. In the case of outsourced databases, an ideal solution is to perform
computations directly on encrypted data. Since homomorphic encryption (HE)
enables an equivalent relation exists between one operation performed on the
plaintext and another operation on the ciphertext, it is considered as an effective
solution to this issue. According to the relations supported, the homomorphic
encryption methods can be partially (PH) [10] or fully (FH) [6]. Considering
that the current FH methods need huge space and computing cost, they are
impractical in real applications. It seems that the PH methods are more practi-
cal in applications although the computations are still expensive. For example,
the Paillier cryptosystem, a kind of PH method, is an additive homomorphic
cryptosystem [10] which is considered as a probabilistic asymmetric encryption
algorithm.

It is noted that there in fact needs a trade-off between the data privacy and
query performance in outsourced databases. For example, the DS method keeps
the encrypted results equality for equal original plain values, but it also intro-
duces the equality-based inferring or frequency-based linking attacks. Making
encryption keys variable could mitigate those attacks but may introduce more
query computations. The OP method can be viewed as the extension of the DS
method and demonstrates more performance advantages in range queries, but
it leaks more relations between encrypted values. While the PH method keeps
the encrypted value non-comparable, but it only benefits the computations over
encrypted data and it needs other efficient ways to locate targeted encrypted
tuples.

104 Y. Tang et al.

2.2 The Assumptions

In this paper, we focus on the inference attack introduced by the comparison
between encrypted attribute values in different encrypted tuples. We do not
consider the scenario that the attacker can undetectably corrupt the commu-
nications between clients and servers. We suppose that the communication is
supported by some secure suites such as the SSL protocol. The attacker can snif-
fer the network traffic but cannot identify and tamper the encrypted attribute
values.

We assume that the proxy is trust and secure, and the user can access any
outsourced data based on his access rights. The service provider is honest but
curious, sometimes a bit greedy. This means that the provider can provide the
service he claims to be able to provide but he may leak some stored encrypted
tuples out to others for curiosity or benefits. When no ambiguity is possible, we
also call the service provider as the server.

We also assume that the encryption algorithms used in data attributes are
limited in the three methods we discussed previously, i.e., the deterministic sym-
metric encryption DS, the order-preserving encryption method OP , and the
partially homomorphic encryption method PH. Additionally, we assume that
the access control policy is based on tuples.

Table 1. A Relation in plain and encrypted with ACL.

(a) Original Relation with ACL

ACL Sales Inventory ShopID
t1 u 80 50 3
t2 u 60 40 2
t3 u, v 60 80 1
t4 v 50 40 5
t5 v,w 60 50 4

(b) Encrypted Relation with ACL-specified Mixed Encrypted Version

tid Sal DS Sal OP Sal PH Inv DS ShopID
ts1 1 DSu(80) OPu(80) PHu(80) DSu(50) 3
ts2 2 DSu(60) OPu(60) PHu(60) DSu(40) 2
ts3 3 DSuv(60) OPuv(60) PHuv(60) DSuv(80) 1
ts4 4 DSv(50) OPv(50) PHv(50) DSv(40) 5
ts5 5 DSvw(60) OPvw(60) PHvw(60) DSvw(50) 4

(c) Encrypted Relation with user-specified Mixed Encrypted Version

tid Sal DS Sal OP Sal PH Inv DS ShopID
ts1 1 DSu(80) OPu(80) PHu(80) DSu(50) 3
ts2 2 DSu(60) OPu(60) PHu(60) DSu(40) 2
ts3 3 DSu(60)DSv(60) OPu(60)OPv(60) PHu(60)PHv(60) DSu(80)DSv(80) 1
ts4 4 DSv(50) OPv(50) PHv(50) DSv(40) 5
ts5 5 DSv(60)DSw(60) OPv(60)OPw(60) PHv(60)PHw(60) DSv(50)DSw(50) 4

Private Indexes for Mixed Encrypted Databases 105

2.3 An Outsourced Database Example

Considering an original relation R with an access control list (ACL) demon-
strated in Table 1(a), three users, u, v, and w, are associated with this table, and
the encryption granularity is in attributes. Suppose that the attributes Sales and
Inventory must be kept privacy and the ShopID can be in plain, and the following
four SQL queries are needed to execute over the relation R.

q1: select ShopID from R where Sales = 60
q2: select ShopID from R where Sales < 65
q3: select sum(Sales) from R
q4: select ShopID from R where Inventory = 60

We consider that the query indexes are directly on encrypted attributes.
To perform above queries effectively and efficiently over encrypted data, we
need three encryption methods, DS, OP, and PH to encrypt the attribute Sales
and Inventory. For example, the comparison and summation are performed on
attribute Sales, and it needs the three encryption methods to encrypt the Sales
values, respectively. Note that we also need to define four extra attributes,
Sal DS, Sal OP, Sal PH, and Inv DS, to support queries on server side. To sim-
plify the key management at client side for users, the data owner will encrypt all
attributes of a tuple with a same key although the attributes and the encryption
methods are both different.

An intuitive key assignment method is ACL-specified which means that the
encryption key is assigned on the ACL items. For the case in Table 1(a), the key
used to encrypt attributes, such as Sales and Inventory, in each tuple depends
on the corresponding ACL items. As shown in Table 1(b), these keys are associ-
ated with the ACL items. For example, when using the DS encryption method,
t1.Sales, whose value is 80, is encrypted by the key assigned to user u, and the
encrypted value is denoted by DSu(80), while the t3.Sales, whose value is 60,
is encrypted by the key assigned to both user u and user v, and the encrypted
value is denoted by DSuv(60).

It is not easy for a specified user to make clear that which ACL item is bound
to a certain tuple he can access. To find out the real item in a set of possible ACL
item combinations associated with this user, he needs to maintain encryption keys
for every possible combination. For a database system with large number of users,
it may introduce overloads for database users. For example, when user u issues the
query q1, the condition Sales = 60 will be translated into Sal DS = DSu(60) or
Sal DS = DSuv(60) or Sal DS = DSuw(60) or Sal DS = DSuvw(60). We general it
as an OR-expression, OR {DSu(60),DSuv(60),DSuw(60),DSuvw(60)}, and this
OR-expression is with length 4. In general, when translating a plain query into an
encrypted version, the where condition will be translated into an OR-expression.
The number of operands in an OR-expression is called as the length of this OR-
expression. For the ACL-specified key assignments, the length of OR-expression
for n users can be reached to

∑n−1
i=0 P i

n−1 where the notation P i
n−1 denotes the

number of i-combinations from a set with n − 1 elements. The ACL-specified key

106 Y. Tang et al.

assignment method obviously increases computation costs either in client side or
in server side.

We consider the user-specified key assignment method. It means that the
data owner will assign each user a key to encrypt the attribute values. Table 1(c)
demonstrates the encrypted relation with user-specified key assignments. In this
case, the query q1 issued from user u, the condition Sales = 60 will be trans-
lated into Sal DS = OR {DSu(60)}. This makes the size of corresponding OR-
expression reach to 1. It is obviously concise and efficient when comparing to
the scenario of ACL-specified key assignment.

It seems perfect when executing query over encrypted data with user-specified
mixed encryption methods. However, the service provider is a pure storage ser-
vice provider, he has no obligation to design appropriate storage constraints to
separate tuple sets on access rights. A set of encrypted tuples may be leaked
intentionally or unintentionally. This means that an adversary user could poten-
tially get some encrypted tuples that he cannot access. Though the adversary
cannot take the plain values by decryption, the same encrypted values could
open a door to draw inferences on those tuples and thus the inference attack
could be launched.

There are two kinds of inferences which could be launched in the Table 1(c).

• The Intra-attribute-based Inference Considering the tuples ts2 and ts3, user u
can access ts2 and ts3, and user v can only access ts3 according to the ACL lists.
However, v can realize that the decrypted value of ts2.Sal DS is 60 because he
finds that the value of ts2.Sal DS is appeared in ts3.Sal DS and he knows that
t3.Sales is 60. Note that in this case, v neither has the right to access t2 nor
has the key associated with user u.

• The Inter-attribute-based Inference Considering the tuples ts4 and ts5, user v
can access ts4 and ts5, and user w can only access ts5 according to the ACL lists.
However, w can realize that the decrypted value of ts4.Sal DS is 50 because he
finds that the value of ts4.Sal DS is appeared in ts5.Inv DS and he knows that
t5.Inventory is 50. Note that in this case, w neither has the right to access t4
nor has the key associated with user v.

The reason why these attacks could be launched is because of the con-
flicts introduced by the inconsistent relationships between the equal encrypted
attribute values and the unequal access control lists in some tuples. For example,
the tuples t2 and t3 are such tuples that are conflicting over attribute Sales. This
inference can be prevented if the equality relation between encrypted values is
destroyed.

3 The Inference Attacks and Defences

In this section, we will explore the inference attack which is based on the equality
relations among encrypted attribute values.

We assume that ti and tj are two tuples in relation R with N tuples where
ti �= tj , and A be the attribute set in R.

Private Indexes for Mixed Encrypted Databases 107

3.1 The Intra-attribute Based and Inter-attribute Based Inferences

Definition 1. The tuples ti and tj are called intra-attribute conflicting tuples
over attribute A, denoted by ti ∼A tj, if the condition, ti.A = tj .A ∧ ti.ACL �=
tj .ACL ∧ ti.ACL ∩ tj .ACL �= φ, is satisfied.

The notion of conflicting tuple is first proposed in [15]. It describes the con-
flicts introduced by the mismatch between two tuple with a same value in a
specified single attribute (intro-attribute) and different but intersected access
control lists. For the tuples in Table 1(a), we have t2 ∼Sales t3 because of the sat-
isfied condition t2.Sales = t3.Sales ∧ t2.ACL �= t3.ACL ∧ t2.ACL ∩ t3.ACL �= φ.
It means that t2 and t3 are intra-attribute conflicting over attribute Sales.

Definition 2. The tuples ti and tj are called inter-attribute conflicting tuples
over attributes A and B, denoted by ti ∼A,B tj, if the condition, ti.A = tj .B ∧
ti.ACL �= tj .ACL ∧ ti.ACL ∩ tj .ACL �= φ, is satisfied.

For the tuples in Table 1(a), we have t4 ∼Sales, Inventory t5. This is because that
the condition t4.Sales = t5.Inventory∧ t4.ACL �= t5.ACL∧ t4.ACL∩ t5.ACL �= φ
is satisfied, and we say t4 and t5 are inter-attribute conflicting over attributes
Sales and Inventory.

Definition 3. The encryption method enc : X → Y is equality-preserved if
∀x1, x2 ∈ X with x1 = x2, we have enc(key, x1) = enc(key, x2) where key is an
encryption key.

For the encryption methods we discussed previously, both DS and OP meth-
ods are equality-preserved, but the PH method is not equality-preserved. Fur-
thermore, both DS and OP are also injective.

Back to the two kinds of inference attacks we discussed before, the logic
behind them lies in the observation that the fact of two equal images of an
equality-preserved injective mapping implies that the corresponding preimages
are equal. Recall the case in Table 1(c), if the attribute values are encrypted
by an equality-preserved injective function and an adversary user obtains some
encrypted tuples he has no rights to access, he could infer some plain attribute
values in those tuples via intra-attribute conflicting or inter-attribute conflicting
tuples which he is involved.

As inference instances, if user v can obtain encrypted tuples ts2 in Table 1(c),
he can infer that ts2.Sal DS is the encrypted version of value 60 because of the
intra-conflicting relationship over attribute Sales between t2 and t3. Similarly, if
user w can obtain encrypted tuples ts4 in Table 1(c), he can infer that ts4.Sal DS
is the encrypted version of value 50 because of the inter-conflicting relationship
over attributes Sales and Inventory between t4 and t5.

Definition 4. A function f is conflict-free over A if ∀ti, tj ∈ R and ∀A,B ∈ A,
A �= B,

1. if ti ∼A tj ,∀u ∈ ti.ACL ∩ tj .ACL, f(ti.A) �= f(tj .A);
2. if ti ∼A,B tj ,∀u ∈ ti.ACL ∩ tj .ACL, f(ti.A) �= f(tj .B).

108 Y. Tang et al.

To illustrate the notion of conflict-free function, we consider the two encryp-
tion methods, OP and PH, we discussed before. Review the encrypted tuples
ts2 and ts3 in Table 1(c), user v can access the tuple t3 but cannot access t2.
He can infer that t2.Sales = 60 by simply comparing the two encrypted values,
ts2.Sal DS and ts3.Sal DS. This is because that user u use DS method to encrypt
t2.Sales and t3.Sales with the same key. It implies that when the DS method
is executed with a same key, it is not conflict-free. Meanwhile, user v cannot
infer that t2.Sales = 60 by comparing the two encrypted values, ts2.Sal PH and
ts3.Sal PH. This is because that the PH is executed with a random nonce. Though
user u use PH method to encrypt t2.Sales and t3.Sales with the same key, the
encrypted results stored in ts2.Sal PH and ts3.Sal PH are significantly different. It
implies that the PH is conflict-free.

We can find that if the encryption function is conflict-free, both inferences
could be blocked. The problem is that some encryption functions are equality-
preserved if using invariable encryption keys. Changing the encryption keys
when encountering conflicting tuples is a possible method to mitigate the infer-
ences. To construct a conflict-free function, we intend to change the equality-
preserved function into a kind of piecewise function to destroy the characteristics
of equality-preserved in conflicting tuples.

3.2 Constructing Conflict-Free Partitions

Definition 5. A conflict-free partition PA with size m is a set of non-empty
tuple sets {P1, P2, ..., Pm} such that ∪m

i=1Pi = R, Pi ∩ Pj = φ where i �= j and
1 ≤ i, j ≤ m, and ∀P ∈ PA, |P | > 1 : ∀ti′ , tj′ ∈ P, ti′ �= tj′ : ∀A,B ∈ A,
ti′ �A tj′ ∧ ti′ �A,B tj′ .

Considering the last condition in Definition 5, if only the ti′ �A tj′ is satisfied,
the partition PA is called intra-attribute conflict-free, meanwhile, while if only
the ti′ �A,B tj′ is satisfied, the partition PA is called inter-attribute conflict-free.

According to the Definition 5, the tuples in the same tuple set P , P ∈ PA,
are not conflicting tuples. Particularly, if there are N tuples in relation R and we
can construct a partition PA with size N where each tuple set Pi just contains
one tuple. For this case, we say that this conflict-free partition reaches maximum
size. Note that when the equality-preserved encryption method is used to encrypt
attribute values, a user can use different keys to perform encryption according
to the tuple sets in the constructed conflict-free partition and hence makes the
encryption method conflict-free. This implies that the size of PA determines the
number of keys maintained by users. We are interested in finding conflict-free
partition with minimum size.

We first consider the graph coloring problems (GCPs). The GCPs are typical
NP-hard problems. One of the GCPs is as follows: given an undirected graph
G = (V,E) where V is a set of vertices and E is a set of pairs of vertices called
edges, and a set of enough number of available colors S = {1, 2, ..., k}. The
problem is to find a minimum number of colors to color the graph such that
u.color �= v.color where u, v ∈ V and (u, v) ∈ E.

Private Indexes for Mixed Encrypted Databases 109

Lemma 1. [15] Finding an intra-attribute conflict-free partition with minimum
size is NP-hard.

Proof. We only need to translate the problem into a GCP. To construct an
undirected graph G = (V,E), translate each tuple t in R into a vertex v and
construct E, the set of vertices. For each tuple pair (ti, tj), i.e., the corresponding
vertex pair (vi, vj), add (vi, vj) into E, the set of edges, if ti, tj are intra-attribute
conflicting tuples over attribute A, i.e., ti ∼A tj . Considering that the conflict-free
partition requires ti �A tj for tuples ti, tj in the same partition, it implies that
vi, vj should have different colors when (vi, vj) ∈ E. Therefore finding an intra-
attribute conflict-free partition over attribute A with minimum size represent
finding a solution for a GCP.

Definition 6. Let A = {A1,A2, ...,An}, an extended attribute ExtA over A is
the attribute vector (Ai1 ,Ai2 , ...,Aik) where 1 ≤ i1 < i2 < ... < ik ≤ n.

For the example in Table 1(a), let A = {Sales, Inventory, ShopID}. The
extended attribute SI can be defined as SI = (Sales, Inventory).

Definition 7. Let ti and tj be two tuples in relation R over A = {A1,A2, ...,An}
and ExtA is an extended attributes over A, ti.ExtA =ext tj .ExtA if ∃k : 1 ≤ k ≤
n : ti.Ak = tj .Ak ∨ ∃k1, k2 : 1 ≤ k1 < k2 ≤ n, ti.Ak1 = tj .Ak2 .

Following the example previously, as the extended attribute SI is introduced,
we have t2.SI =ext t3.SI because of t2.Sales = t3.Sales. And also t4.Sales =
t5.Inventory because of t4.SI =ext t5.SI.

Definition 8. The tuples ti and tj are called conflicting tuples over the extended
attribute ExtA, denoted by ti ∼ExtA tj, if the condition, ti.ExtA =ext tj .ExtA ∧
ti.ACL �= tj .ACL ∧ ti.ACL ∩ tj .ACL �= φ, is satisfied.

Considering the ACL relationships among tuples t2, t3, t4, and t5, it is easy
to show that t2 ∼SI t3 and t4 ∼SI t5.

In general, the conflict-free partition over attribute set A can be viewed as the
intra-attribute conflict-free partition over attribute extA, we have the following
lemma.

Lemma 2. Finding a conflict-free partition is equivalent to finding an intra-
attribute conflict free partition over an extended attribute.

Proof. Let ExtA be an extended attribute over A = {A1,A2, ...,An}. For two
conflicting tuples ti and tj over ExtA, the notation ti ∼ExtA tj implies that
ti.ExtA =ext tj .ExtA, i.e., ∃k : 1 ≤ k ≤ n : ti.Ak = tj .Ak ∨ ∃k1, k2 : 1 ≤ k1 <
k2 ≤ n, ti.Ak1 = tj .Ak2 , and ti.ACL �= tj .ACL ∧ ti.ACL ∩ tj .ACL �= φ. It
also implies that ti and tj are intra-attribute conflicting tuples over a certain
attribute or inter-attribute conflicting tuples over two attributes. According to
the Definition 5, the conflict-free partition PExtA is also the conflict-free partition
PA, and we have the conclusion.

With previously discussed two lemmas, we have the following theorem.

110 Y. Tang et al.

Theorem 1. Finding a conflict-free partition with minimum size is NP-hard.

Proof. According to Lemma 2, finding a conflict-free partition over A is equiva-
lent to finding an intra-attribute conflict free partition over an extended attribute
ExtA. According to Lemma 1, finding an intra-attribute conflict-free partition
with minimum size is NP-hard. Therefore, finding a conflict-free partition with
minimum size is NP-hard.

3.3 The Algorithms

If we can find a conflict-free partition and define a conflict-free function over tuple
sets according to the conflict-free partition, we can find a solution to prevent
the inference attacks. A simple and direct strategy is combining random salts
with user-specified keys when encrypting data attributes. If two tuples in a same
partition are accessible to user u, the same salt can be used to construct a key and
then encrypt attribute values in both tuples, i.e., the encryption key is the same
when user u performs attribute encryptions on the two tuples. Meanwhile, if two
tuples in different partitions, the corresponding salts are different. It means that
different keys are used by user u when he encrypts tuples in different partitions.
The number of salts depends on the size of partition.

However, as described in Theorem 1, finding a conflict-free partition with
minimum size is NP-hard. It needs heuristic methods to find approximate opti-
mal solutions. There are two ways to construct a conflict-free partition. The
attribute level method defines partitions on each single attribute while the rela-
tion level method defines partitions on a set of attributes. The attribute level
method may introduce smaller sizes of conflict-free partitions but may also lead
to intricate computations. For example, it needs to determine the number of salts
for each attributes. Considering that we will perform analytical computations
on encrypted data, the relation level method is a better choice. We will adopt a
relation level heuristic method. Algorithm 1 demonstrates such a method to find
conflict-free partition PA over attribute set A.

According to this algorithm, we initialize the conflict-free partition PA as an
empty set. When given a tuple t, we will distribute it into a chosen partition
P ∈ PA such that t does not conflict with any tuples in P . To achieve this,
we first construct a set of candidate partitions CandP where each partition
P ∈ CandP is the possible partition that t will be distributed. If the set CandP
is empty, we create a new partition, distribute t into it, and append it into PA.
Otherwise, we random choose a partition P ∈ CandP and distribute t into P .
This procedure will be continued until all tuples are distributed, and finally, we
can obtain a conflict-free partition PA.

We use the notation t.u.salt to represent the salt that user u used in tuple
t. The process of salt assignment is demonstrated in Algorithm 2.

As shown in Algorithm 2, we use the conflict-free partition constructed by
Algorithm 1 to assign salts user by user. For each user u and each partition
C ∈ PA, we extract tuple set Pu, Pu ⊆ C, where u is accessible to each tuple
in Pu. We assign a salt saltu to u to construct a key to encrypt attributes in

Private Indexes for Mixed Encrypted Databases 111

Algorithm 1. Constructing Conflict-free Partition PA over Attribute Set A
1: PA = φ
2: for each t ∈ RA do
3: if PA == φ then
4: P = {t}
5: PA = PA ∪ {P}
6: else
7: CandP = {P |P ∈ PA : ∀t

′ ∈ P : ∀A,B ∈ A : t
′
�A t ∧ t

′
�A,B t}

8: if CandP �= φ then
9: random pick Pr ∈ CandP

10: Pr = Pr ∪ {t}
11: else
12: P = {t}
13: PA = PA ∪ {P}
14: end if
15: end if
16: end for.

t ∈ Pu. Hence, user u can build a private index with private selected random
salt for mixed encrypted databases over encrypted data.

Algorithm 2. Assigning salt via the Conflict-free Partition PA
1: for each user u do
2: i = 1
3: for each P ∈ PA do
4: Pu = {t|t ∈ P ∧ u ∈ t.ACL}
5: if Pu �= φ then
6: saltu = GenerateSaltu(i)
7: for each t ∈ Pu do
8: t.u.salt = saltu
9: end for

10: i = i + 1
11: end if
12: end for
13: end for.

4 Extra Attributes for Supporting SQL Queries

4.1 Representation of Set Data

With the user-specified mixed encryption, multiple encrypted values (one for
each authorized user and the number is associated to the user number in corre-
sponding ACL item) may be defined for the same encrypted attribute. Formally,

112 Y. Tang et al.

a tuple t with access control item ACL will be firstly translated into a tuple set
Tt = {tu|tu = t ∧ u ∈ t.ACL ∧ tu.ACL = {u}}, and then user u ∈ t.ACL will
encrypt tu combining with assigned salt. The multiple encrypted values means
that the attribute is a set type. However, current SQL database implementations
do not support this kind of attribute. We will adopt the duplicating-tid strategy
to support the representation of sets of values. As an example, after finishing the
process of conflict-free partition and the salt assignment, the table in Table 1(c)
is translated into the table in Table 2.

As an example for encrypted attributes in Table 2, we analyze the notation
DSu(u1, 80) for attribute Sal DS. This notation denotes an encrypted value of
80. Firstly, user u combine salt u1 with the secret shared with the data owner to
generate a private key. And then, this key is used in DS encryption to encrypt the
value 80. Finally, the encrypted value is obtained and denoted by DSu(u1, 80).
Other encrypted attributes can be analyzed in similar way except the attribute
Sal PH. As an example, the notation PHu(80) denotes the value 80 is encrypted
with a PH method and the encryption key is from the secret shared between
user u and the data owner.

To support SQL query over encrypted data on our proposed indexes, we add
two attributes, the attribute tid is used to distinguish the duplicate tuples in
original tables and the attribute sid is used to represent the salt used in this
tuple. We use user-specified function sid() to generate corresponding sid values.
For example, we can define sid() by using a cryptological hash function.

Table 2. Conflict-free encrypted relation with mixed encrypted relation.

tid sid Sal DS Sal OP Sal PH Inv DS ShopID

1 sidu(u1) DSu(u1, 80) OPu(u1, 80) PHu(80) DSu(u1, 50) 3
2 sidu(u1) DSu(u1, 60) OPu(u1, 60) PHu(60) DSu(u1, 40) 2
3 sidu(u2) DSu(u2, 60) OPu(u2, 60) PHu(60) DSu(u2, 80) 1
3 sidv(v1) DSv(v1, 60) OPv(v1, 60) PHv(60) DSv(v1, 80) 1
4 sidv(v1) DSv(v1, 50) OPv(v1, 50) PHv(50) DSv(v1, 40) 5
5 sidv(v2) DSv(v2, 60) OPv(v2, 60) PHv(60) DSv(v2, 50) 4
5 sidw(w1) DSw(w1, 60) OPw(w1, 60) PHw(60) DSw(w1, 50) 4

To support the SQL queries over the proposed conflict-free mixed encrypted
database, each user u has the knowledge of: (1)the maximum number of random
salts for tuples that he can access; (2)the salt generation function used by the
data owner to generate; (3)the secret shared by the data owner to construct
encryption key.

4.2 Examples of Query Translation

Recall the queries we discussed in Sect. 2

Private Indexes for Mixed Encrypted Databases 113

q1: select ShopID from R where Sales = 60
q2: select ShopID from R where Sales < 65
q3: select sum(Sales) from R
q4: select ShopID from R where Inventory = 60

We consider the single equality query q1. The server side query translation
for q1 is direct. When user u issues this query, q1 will be translated into qsu,1:
select ShopID from Rs where Sal DS = OR {DSu(u1, 60), DSu(u2, 60)}. The
length of translated OR-expression is not bigger than the maximum salt number
for user u encrypting tuples.

It is something different when user a, the Administrator, issues this query, it
will be translated into qsa,1: select distinct ShopID from Rs where Sal DS = OR
{DSu(u1, 60),DSu(u2, 60),DSv(v1, 60),DSv(v2, 60),DSw(w1, 60)}. In this case,
the length of translated OR-expression is not bigger than the sum of all the
maximum salt number for each users.

Similar methods could be adopted to the query q4 because it is also a single
equality query.

For the query q2, the introduction of salt destroy the preserved order in
attribute Sal OP for each user, we add an auxiliary attribute, sid, into encrypted
relation to distinguished different salts. For example, when user u issues this
query, it will be translated into qsu,2: select ShopID from Rs where OR {(sid
== sidu(u1) and Sal OP < OPu(u1, 65)), (sid == sidu(u2) and Sal OP <
OPu(u2, 65))}.

For the query q3, the computation is different. The sum can be directly
computed over encrypted data because of the additive homomorphic encryp-
tion. When user u issues this query, the server side query qsu,3 will be as select
sum(Sal PH) from Rs where sid = OR {sidu(u1), sidu(u2)}. However, when
user Administrator, the query will be translated into following sequences:

1. select distinct tid, sid, Sal PH into TempRs from Rs

2. select @sumu = sum(Sal PH) from TempRs where sid = OR {sidu(u1),
sidu(u2)}

3. select @sumv = sum(Sal PH) from TempRs where sid = OR {sidv(v1),
sidv(v2)}

4. select @sumw = sum(Sal PH) from TempRs where sid = OR {sidw(w1)}
5. @sum = sumu + sumv + sumw

5 Some Considerations in Managing Encrypted Tuples

Algorithms 1 and 2 are used to initialize the conflict-free encrypted database
when translating a plain one. However, data tuples are not always in static, the
operations, such as insert and delete, may make tuples dynamic. It is important
to keep data tuples conflict-free after the dynamic operations.

114 Y. Tang et al.

5.1 Conflicting Tuples with Respect to Injective Functions

Definition 9. The tuples ti and tj are called intra-attribute conflicting tuples
with respect to function f over attribute A, denoted by f(ti) ∼A f(tj), if the
condition, f(ti.A) = f(tj .A) ∧ ti.ACL �= tj .ACL ∧ ti.ACL ∩ tj .ACL �= φ, is
satisfied.

For example, tuple t2 and tuple t3 in Table 1(a) are intra-attribute conflicting
tuples with respect to encryption function DS over attribute Sales when user u
encrypts attribute Sales values in these two tuples with the same encryption key.

Definition 10. The tuples ti and tj are called inter-attribute conflicting tuples
with respect to function f over attributes A and B, denoted by f(ti) ∼A,B f(tj),
if the condition, f(ti.A) = f(tj .B) ∧ ti.ACL �= tj .ACL ∧ ti.ACL ∩ tj .ACL �= φ,
is satisfied.

For example, tuple t4 and tuple t5 in Table 1(a) are inter-attribute conflicting
tuples with respect to encryption function DS over attribute Sales and attribute
Inventory when user v encrypts attribute Sales value in t4 and attribute Inventory
value in t5 with the same encryption key.

Theorem 2. Given an injective function f, A, B are attributes, and two tuples
ti and tj are over relation R,

(1). if f(ti) ∼A f(tj), ti ∼A tj;
(2). if f(ti) ∼A,B f(tj), ti ∼A,B tj.

Proof. Since f is an injection, we have ti.A = tj .A because of f(ti.A) = f(tj .A).
Considering that ti.ACL �= tj .ACL ∧ ti.ACL ∩ tj .ACL �= φ, we have ti ∼A tj .
Similarly, we have ti ∼A,B tj if f(ti) ∼A,B f(tj).

With Theorem 2 and considering that the DS and OP encryption methods
are injective, we can perform both inter- and intra-attribute-based conflict tests
over encrypted tuples at server side.

We define a server-running test function IsConflictedu(f(s, t∗)) to test
whether or not there exists a conflicting tuple with respect to f over a certain
attribute or attribute pair for a tuple t∗, where f where s is a salt maintained
by user u. The function IsConflictedu(f(s, t∗)) returns TRUE if there exists a tuple
t such that t and t∗ are intra- or inter-attribute conflicting tuples with respect
to function f, that is, ∃A, B ∈ A, t ∈ R, u ∈ t∗.ACL ∩ t.ACL : f(s, t∗) ∼A

f(s, t) ∨ f(s, t∗) ∼A,B f(s, t), otherwise, returns FALSE.
We also define two sets for storing sid data for user u, while the set SIDu is

for currently using and the set RSIDu is for revoked sids.

5.2 Delete an Encrypted Tuple

Removing an existing tuple cannot introduce any conflicting tuples, our atten-
tion is in managing salt identifier sid related to some users. For user u, If salt
identifier sidu of the deleting tuple does not appear in encrypted database after
deletion, we will put it into the revoked salts set RSIDu. Algorithm 3 sketches
the procedure of deleting a tuple from an encrypted table.

Private Indexes for Mixed Encrypted Databases 115

Algorithm 3. Delete an encrypted tuple rt

1: for each u ∈ rt.ACL do
2: RSidu = {t|t ∈ R ∧ u ∈ t.ACL ∧ t.sid == rt.sidu}
3: if |RSidu| == 1 then
4: Insert rt.sidu into RSIDu

5: Remove rt.sidu from SIDu

6: end if
7: Delete rtu
8: end for.

5.3 Insert a New Tuple

When inserting a new tuple into the encrypted relation, a key issue is to choose
a specified salt to make the tuple conflict-free with each other. To reduce the
salt number that a user maintains, the first choice is to reuse the salt from the
salt set currently using, and then considering a revoked one which was used ever,
and finally use a new generating one.

Algorithm 4 sketches the procedure of insertion. We use status denote the
three sources that the salt s comes from, while SID SALT denotes from currently
using salts, RSID SALT from revoked salts, and NEW SALT a new generated salt.
To reuse one of the currently using salts, it is important to avoid conflicts when
using this salt in encryption. For each encryption method addressed in attribute
value encryption (in our case, the DS and OP), the encrypted value must pass
the conflict test IsConflicted(·) to ensure the inserted tuple conflict-free. For the
salt comes from revoked salts, the corresponding sid must be removed from the
revoked sid set RSID and insert into the currently using set SID. Also, if the
salt is the new generated salt, its sid must be inserted into SID.

5.4 Update a Tuple

Updating a tuple will change some attribute values and hence may introduce
new coming conflicting. A simple strategy to perform update operation is delete-
insert. This implies that deleting a tuple at first and insert a new tuple with an
updated one.

6 Defending Against Frequency-Based Linking Attack

As we discussed before, some encryption methods, such as DS and OP , are
equality-preserved, it also implies that the frequencies of encrypted data are
related to the ones of original plain values. When an adversary user has some
background knowledge, such as some original value distributions, the frequency-
based linking attacks could be launched. It is useful to mitigate the equality rela-
tions between plain values and encrypted values. We consider a defence method
to protect the encrypted value distribution based on information theory.

116 Y. Tang et al.

Algorithm 4. Insert new tuple nt

1: for each u ∈ nt.ACL do
2: status = NOT_CHOOSEN
3: repeat
4: random select sid ∈ SIDu

5: find salt s such that sid(s) == sid
6: if (∀ Encryption method enc: IsConflictedu(enc(s, nt)) == FALSE) then
7: tsalt = s
8: status = SID_SALT
9: break

10: end if
11: until SIDu has been traversed
12: if status == NOT CHOOSEN then
13: repeat
14: random select sid ∈ RSIDu

15: find salt s such that sidu(s) == sid
16: if (∀ Encryption method enc:IsConflictedu(enc(s, nt)) == FALSE)

then
17: tsalt = s
18: status = RSID_SALT
19: Insert sidu(tsalt) into SIDu

20: Remove sidu(tsalt) from RSIDu

21: break
22: end if
23: until RSIDu has been traversed
24: end if
25: if status == NOT CHOOSEN then
26: generate a new salt tsalt
27: Insert sidu(tsalt) into SIDu

28: status = NEW_SALT
29: end if
30: ntu ← Encrypted nt with salt tsalt
31: Insert ntu into R
32: end for.

6.1 Information Entropy

The concept of entropy is the central role of information theory. The entropy of
a random variable is defined in terms of its probability distribution and can be
shown to be a good measure of randomness or uncertainty.

Let the ensemble X be a triple (x,Dx, Px), where the outcome x is the value
of a random variable, the set Ax = {a1, a2, ..., an} is a set of possible values, the
set Px = {p1, p2, ..., pn} is a set of probabilities with p(x = ai) = pi, pi ≥ 0 and∑

ai∈Ax
pi = 1. Assume that 0 · log 0 = 0, the entropy of the ensemble X can be

defined by

Private Indexes for Mixed Encrypted Databases 117

H(X) = −
∑

x∈Ax

p(x) · log p(x),

which measures the average information content or uncertainty of the ensem-
ble X.

Recall the case of encrypted data, let EV be the encrypted value set when
using an equality-preserved encryption method enc, EV = {e|e = 〈v, ev, ne〉 ∧
ev = enc(v)} with v is an attribute value and ne is the frequency of ev appeared
in encrypted database. Let N =

∑
ev ne, the following formula can be used to

compute the entropy of EV :

H(EV) = −
∑

e

ne

N
· log

ne

N

We use the above formula to measure the degree of original data distribution
protected in a given encrypted database. It is obviously that the H(EV) reaches
its maximize value log |EV | when the frequencies of each encrypted value are
the same.

6.2 The Defence Method

Intuitively if the frequencies of each encrypted value are nearly the same, an
adversary need more efforts to guess the distribution of encrypted values stored
on the database server, even if he knows the probability distribution of original
data and a few exact values. This intuition is consistent with the notion of
information entropy. It is noted that the information entropy is a measure of
unpredictability. The larger the entropy, the more distribution privacy protected
in an encrypted database.

Definition 11. For an element e = 〈v, ev, nev〉 ∈ EV , we say e is split into
two elements e1 = 〈v, ev1, ne1〉, e2 = 〈v, ev2, ne2〉 iff all the original value v are
encrypted into two different values ev1 and ev2, and ne1 �= 0, ne2 �= 0.

We denote EVs as the new encrypted value set after an element is split. This
leads EVs = EV ∪ {e1, e2} − {e}.

Theorem 3. If an element e ∈ EV is split into two elements e1, e2, we have
H(EVs) > H(EV).

Proof. We only need to proof that ne1+ne2
N ·log ne1+ne2

N >
∑2

i=1
nei

N ·log nei

N . Since
ne1 �= 0, ne2 �= 0, we have log ne1+ne2

N > log ne1
N . And then ne1

N log ne1+ne2
N >

ne1
N log ne1

N . Similarly, ne2
N log ne1+ne2

N >
ne2
N log ne2

N . And we have the result.

This theorem indicates that when an element is split into two elements, the
entropy of encrypted value set becomes larger.

Theorem 4. If user u performs the split operation over encrypted data, the salt
number is increased at most one.

118 Y. Tang et al.

Proof. Suppose an attribute value value is encrypted by user u with salt s and
the encrypted data, DSu(s, value), have n (n > 1) occurrences. Obviously, any
encrypted tuples with DSu(s, value) are not conflicting with other tuples. Sup-
pose n is splitted into two positives, n1 and n2, where n1 + n2 = n. We keep
the DSu(s, value) appears in n1 occurrences, i.e., use the same salt s encrypt
n1 values. For the remaining n2 values, we choose another salt s

′
to perform

encryption as methods described in Algorithm 4 and make DSu(s
′
, value) be not

conflicting with other tuples. In worst case, s
′

is the new salt, and hence, the
salt number is increased at most one.

To defend against frequency-based linking attacks, a simple strategy is to
split same attribute values for each user to change the encrypted value frequency
distribution. For each user, the introduced cost is at most to manage one more
extra salt. Furthermore, we can define a threshold value α such that the entropy
of encrypted value after split is at least α.

7 Experiments and Discussion

7.1 Measuring Query Time Cost Based on OR-Expression

The introduction of random salts will make the where condition of a plain SQL
query translate into an OR-expression. Different lengths of OR-expression may
lead to different SQL query response time. We run a set of experiments to confirm
this intuition.

These experiments are on an HP mini-210 with Intel Atom N450 1.66 GHz
and 1 GB memory, running Windows XP sp3 and MS SQL2000. We create 5
tables with 20k integers where those integers are evenly distributed in inter-
vals [1, 1k], [1, 2k], [1, 5k], [1, 10k], and [1, 20k], respectively, and the 5 tables are
denoted by Ti with i = 1, 2, 3, 4, 5.

0 5 10 15 20
0

10

20

30

40

50

Length of OR−Expression

Ti
m

e(
m

s)

Fig. 2. Time cost on OR-expression

The executed queries are in the defined form select ∗ from T where OR-
expression. We regulate the OR-expression in order to retrieve 20 tuples on each

Private Indexes for Mixed Encrypted Databases 119

table. For example, given a ∈ [1, 1k], the query, select ∗ from T1 where value =
a, will return 20 tuples. While given a, b ∈ [1, 1k], the query,
select ∗ from T2 where value = a or alue = b, will also return 20 tuples. The
time cost comparisons in these two queries can be used to demonstrate the query
performance comparisons between OR-expressions with length 1 and length 2.

In our conducted experiments, we randomly generate the OR-expression, exe-
cute the query, and record the response time. The average time in 1,000 tests is
shown as in Fig. 2.

Figure 2 demonstrates that as the length of OR-expression increases, the
query retrieved the same number of tuples needs more response times. Consid-
ering that the length of OR-expression is associated with number of salts, the
number of salts can approximate reflect the query performance of our proposed
method.

7.2 Measuring Salt Numbers Users Maintained

To evaluate the behavior of our proposed method, we need two types of materials
for experiments, the data tuples and the authorized users for tuples.

For the data tuples, we first generate a relational table with 800000
tuples following the TPC-H benchmark specifications, and then randomly
select 3000, 8000, 13000, and 18000 tuples to construct tables Data3k, Data8k,
Data13k, and Data18k, respectively. Each table contain the same three
attributes, including 10000, 9999, and 1000 distinct integers, respectively.

For the authorized users for tuples, we extract the authors coauthored with
Professor Xuemin Shen from the DBLP repository. In particular, we extract
the top m most productive authors and construct authors set of size n from
the repository. We view the constructed authors set as the authorized users
set, i.e., the ACL lists for tuples. In our experiments, we set m as 40, 90, 140,
and 190, respectively, and correspondingly, we set n as 60, 124, 204, and 297,
respectively. We denote our constructed ACL lists as ACL1, ACL2, ACL3, and
ACL4, respectively.

We construct the conflict-free partitions for each instance table with each con-
structed ACL list and compute the maximum/median number of salts assigned
to each user. We repeat the computation 100 times and compute the average
maximum/median number of salts per user. Our experiments are focused on
counting the number of salts assigned to users. This is because that the number
of salts per user assigned determines the extra computation costs when a user
executes SQL queries at client side.

Figure 3 demonstrates the average number of salts per user on different
datasets, where Fig. 3(a) shows the average maximum salt number and Fig. 3(b)
shows the average median salt number. We find that as the number of tuples
increasing, both maximum number and median number are also increasing. For
the average maximum number of salts a user could be used is limited in the
interval [4, 12]. This means that when translating client side SQL queries into
server side query versions, the average number of test index values is at most
12. Comparing with the ACL-specified indexes, we can achieve the same query

120 Y. Tang et al.

results with much smaller computation overloads in both client side and server
side. It is noted that in our experiments, the maximum salt numbers are closely
related with the tuple numbers. It is almost irrelevant with the sizes of ACL
lists.

Fig. 3. Average number of salts per user on tuples

Fig. 4. Average number of salts per user on users

On the other hand, as demonstrated in Fig. 4 with Fig. 4(a) shows the average
maximum salt number and Fig. 4(b) shows the average median salt number per
user, respectively, comparing to the user numbers. We find that the number of
salts is decreased as the number of users is increased when given a certain dataset.
This is because the increased number of users will decrease the possibilities of
conflicting tuples.

7.3 Related Work

Outsourcing data to third parties out of the control of data owners requires stor-
ing data encrypted on remote servers. To avoid storing many different encrypted
versions of a same tuple on servers, encrypting each tuple with a single key

Private Indexes for Mixed Encrypted Databases 121

is a common knowledge. Since the early efforts on outsourced databases [4,7]
are focused on how to translate the client-side plain queries into corresponding
server-side encrypted versions, they assume that all the tuples are encrypted by
a same key. It implies that a certain user may have the full rights to access any
encrypted tuples if he gets the decryption key.

The selective encryption methods use different keys to encrypt different data
portions such as tuples or attributes [9]. To avoid users from managing too
many keys, the keys can be derived from user hierarchy [5]. And also, the tradi-
tional ciphers are replaced with the attribute-based encryption (ABE) method
to encrypt data [17]. However, the access controls provided by these methods
depend on the readability of decrypted data. This means that some decryption
efforts on client side are wasteful.

Other efforts are on developing new ciphers for keyword searching on
encrypted data. However, either the symmetric encryption scheme [12] or the
asymmetric encryption scheme [16] cannot prevent the curious service provider
locating the positions with the same method. We note that locating encrypted
tuples implies execute comparison operations over encrypted data on server with-
out decryption. The partially [10] or fully [6] homomorphic encryption methods
can be used to perform the comparison. But, as mentioned previously, if the
comparison results could be distinguished on server, the curious service provider
could also manipulate in the same way to obtain the results of comparison.

To improves the speed of encrypted data retrieval operations on server, sev-
eral index techniques are proposed. The CryptDB scheme [11] defines layers of
encryption for different types of database queries. For executing a specific query,
layers of encryption are removed by decrypting to an appropriate layer and the
tuple index is directly on the encrypted data. This method may lead many sen-
sitive values be stored to the level defined by the weakest encryption scheme. No
inference attacks are considered in this scheme. Based on the CryptDB scheme,
MONOMI [14] can support more analytical queries over encrypted data by split
query execution across client side and server side. Although both schemes sup-
port different keys to encrypt different tuples, they do not consider the inference
attacks addressed in our works.

The DAS (Database as a Service) model [7] proposes a bucketization method
to construct the index. This index is defined on an auxiliary attribute which is
associated with the corresponding original attribute. However, there is no formal
security analysis about this kind of index. Value-based index is discussed in [4].
Comparing with the bucketization index, the value-based index locate encrypted
data in high accuracy but also disclose many other useful information such as
the data distribution. Based on the DAS model, the authors in [8] deeply analyze
the bucketization technique and algorithmically build privacy-preserving indexes
on sensitive attributes. However, their assumptions are on shared data in users.
It implies that all the attribute values are encrypted with a single key and the
index tags are built on value intervals.

To our knowledge, the authors in [15] firstly address the inferences of
encrypted data in outsourced databases. They discuss a kind of inference attack

122 Y. Tang et al.

introduced by the value-based index. The addressed inferences are on the explicit
equality relations among tuples with different access rights which we call intra-
attribute based inference in this paper. But they do not address the inter-
attribute based inference on the equality relations between attributes. In [13],
the authors propose secure distributed querying protocols based on the use of
secure hardware in client side. They also partition query execution across client
side and server side and introduce fake tuples to defend against frequency-based
attacks. However, the fake tuples would limit the computation over encrypted
data and introduce some more post-decryption efforts to filter those fake tuples.

8 Conclusion

Ensuring data privacy and improving query performance are two closely linked
challenges for outsourced databases. Using different encryption methods to data
attributes can reach an explicit trade-off between these two challenges. However,
encryption cannot always conceal relations between attribute values. When the
data tuples are accessed selectively, inference attacks by comparing encrypted
values could be launched. In this paper, we explore the intra-attribute based
and inter-attribute based inferences in mixed encrypted databases. We develop a
method to construct private indexes on user-specified encrypted values to defend
against the inferences while supporting efficient selective access to encrypted
data. Possible future work may include the data consistency management in
various encrypted versions and the defence of inference attacks which is intro-
duced by the collusion between other users and the service providers.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption
for numeric data. In: Proceedings of SIGMOD 2004, pp. 563–574 (2004)

2. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmet-
ric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
224–241. Springer, Heidelberg (2009)

3. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg
(2011)

4. Damiani, E., Vimercati, S., Jajodia, S., Paraboschi, S., Samarati, P.: Bal-
ancing confidentiality and efficiency in untrusted relational DBMSs. In: Pro-
ceedings of ACM CCS 2003, pp. 93–102 (2003)

5. Damiani, E., Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Key management for multi-user encrypted databases. In: Proceedings of
Storage SS 2005, pp. 74–83 (2005)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of STOC 2009, pp. 169–178 (2009)

Private Indexes for Mixed Encrypted Databases 123

7. Hacigumus, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database-service-provider model. In: Proceedings of ACM SIG-
MOD 2002, pp. 216–227 (2002)

8. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range
queries. In: Proceedings of VLDB 2004, pp. 223–235 (2004)

9. Miklau, G., Suciu, D.: Controlling access to published data using cryptog-
raphy. In: Proceedings of VLDB 2003, pp. 898–909 (2003)

10. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–
238. Springer, Heidelberg (1999)

11. Popa, R., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting
confidentiality with encrypted query processing. In: Proceedings of SOSP
2001, pp. 85–100 (2011)

12. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on
encrypted data. In: Proceedings of IEEE S&P 2000, pp. 44–55 (2000)

13. To, Q., Nguyen, B., Pucheral, P.: Privacy-preserving query execution using
a decentralized architecture and tamper resistant hardware. In: Proceedings
of EDBT 2014, pp. 487–198 (2014)

14. Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing analytical
queries over encrypted data. In: Proceedings of VLDB 2013 (2013)

15. Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Pri-
vate data indexes for selective access to outsourced data. In: Prodeedings
of WPES 2011, pp. 69–80 (2011)

16. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryp-
tion with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 119–131. Springer, Heidelberg (2010)

17. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-
grained data access control in cloud computing. In: Proceedings of INFO-
COM 2010, pp. 534–542 (2010)

Author Index

Cortesi, Agostino 23

Dang, Tran Khanh 45

Halder, Raju 23

Jana, Angshuman 23

Kechadi, Mohand-Tahar 1
Küng, Josef 45

Le-Khac, Nhien-An 1

Ong, Hoang 75

Phan, Trong Nhan 45

Shao, Jianhua 75

Tang, Yi 100

van Banerveld, Maarten 1

Zhang, Ji 100
Zhang, Xiaolei 100

	Preface
	Organization
	Contents
	A Natural Language Processing Tool for White Collar Crime Investigation
	Abstract
	1 Introduction
	2 Background
	2.1 Natural Language Processing in Law Enforcement
	2.2 Big Data in Criminal Investigations
	2.3 Related Work

	3 LES Tool and Method of Evaluation
	3.1 LES Tool
	3.2 Investigation Process
	3.3 Methodology

	4 Experiments and Analysis of Results
	4.1 Case Study Description
	4.2 Dataset
	4.3 Testing Platform
	4.4 Evaluation Criteria
	4.5 Result Description and Analysis
	4.5.1 Processing Time
	4.5.2 Query Response Time
	4.5.3 Evidence Items
	4.5.4 Data Controllability
	4.5.5 Flexibility
	4.5.6 User-Friendly
	4.5.7 Specific Requirements
	4.5.8 Further Discussion

	5 Conclusions and Future Work
	References

	Data Leakage Analysis of the Hibernate Query Language on a Propositional Formulae Domain
	1 Introduction
	2 Related Works
	3 Syntax of HQL
	4 Concrete Semantics of HQL
	4.1 Concrete Semantics of OOP [25]
	4.2 Concrete Semantics of HQL

	5 Abstract Semantics of HQL
	6 Information Leakage Analysis
	7 Conclusions
	References

	An Adaptive Similarity Search in Massive Datasets
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Concepts
	3.2 MapReduce Paradigm

	4 The Proposed Scheme
	5 Similarity Search Cases
	5.1 Pairwise Similarity
	5.2 Search-by-Example
	5.3 Query Strategies

	6 Experiments
	6.1 Environment Settings
	6.2 Datasets
	6.3 Experiment Measurement
	6.4 Empirical Evaluations with DBLP Datasets
	6.5 Empirical Evaluations with Gutenberg Datasets
	6.6 Empirical Evaluations Between Terms and Shingles

	7 Discussion
	8 Summary
	Acknowledgements
	References

	Semantic Attack on Anonymised Transactions
	1 Introduction
	2 Related Work
	2.1 Identification Attacks
	2.2 Reconstruction Attacks

	3 Preliminaries
	4 Context Based Semantic Attack
	4.1 Context Extraction
	4.2 Scoring
	4.3 Elimination
	4.4 Discussion

	5 Experiments
	5.1 Datasets and Preparation
	5.2 Random Attack
	5.3 Results
	5.4 Effect of Data Density
	5.5 Effect of Utility Constraints
	5.6 Time Efficiency

	6 Conclusions
	References

	Private Indexes for Mixed Encrypted Databases
	1 Introduction
	2 Background
	2.1 Encryption Methods
	2.2 The Assumptions
	2.3 An Outsourced Database Example

	3 The Inference Attacks and Defences
	3.1 The Intra-attribute Based and Inter-attribute Based Inferences
	3.2 Constructing Conflict-Free Partitions
	3.3 The Algorithms

	4 Extra Attributes for Supporting SQL Queries
	4.1 Representation of Set Data
	4.2 Examples of Query Translation

	5 Some Considerations in Managing Encrypted Tuples
	5.1 Conflicting Tuples with Respect to Injective Functions
	5.2 Delete an Encrypted Tuple
	5.3 Insert a New Tuple
	5.4 Update a Tuple

	6 Defending Against Frequency-Based Linking Attack
	6.1 Information Entropy
	6.2 The Defence Method

	7 Experiments and Discussion
	7.1 Measuring Query Time Cost Based on OR-Expression
	7.2 Measuring Salt Numbers Users Maintained
	7.3 Related Work

	8 Conclusion
	References

	Author Index

