
Mohammad Taghi Hajiaghayi
Mohammad Reza Mousavi (Eds.)

 123

LN
CS

 9
54

1

The First IFIP WG 1.8 International Conference, TTCS 2015
Tehran, Iran, August 26–28, 2015
Revised Selected Papers

Topics in Theoretical
Computer Science

Lecture Notes in Computer Science 9541

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mohammad Taghi Hajiaghayi
Mohammad Reza Mousavi (Eds.)

Topics in Theoretical
Computer Science
The First IFIP WG 1.8 International Conference, TTCS 2015
Tehran, Iran, August 26–28, 2015
Revised Selected Papers

123

Editors
Mohammad Taghi Hajiaghayi
Computer Science Department
University of Maryland
College Park, MD
USA

Mohammad Reza Mousavi
Centre for Research on Embedded Systems
Halmstad University
Halmstad
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-28677-8 ISBN 978-3-319-28678-5 (eBook)
DOI 10.1007/978-3-319-28678-5

Library of Congress Control Number: 2015958862

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

Welcome to the proceedings of the First IFIP International Conference on Topics in
Theoretical Computer Science (TTCS 2015)!

This volume contains the revised papers presented at TTCS 2015. The conference
was held during August 26–28, 2015, at the Institute for Research in Fundamental
Sciences (IPM), Tehran, Iran.

For this first edition of TTCS, we received 48 submissions from 12 different
countries. An international Program Committee comprising 45 leading scientists from
14 countries reviewed the papers thoroughly providing on average five review reports
for each paper. We ended up accepting 11 submissions, which translates into less than
23 % of all submissions. This means that the process was highly selective and only
very high quality papers were accepted.

The program also included three invited talks by the following world-renowned
computer scientists:

– Prof. Anuj Dawar, Cambridge University, UK,
– Prof. Michael Fellows, Charles Darwin University, Australia, and
– Dr. Mehrnoosh Sadrzadeh, Queen Mary University of London, UK.

These invited lectures are also represented either by an abstract or by a full paper in
the proceedings.

Additionally, the program featured four talks in the PhD Forum, which are not
included in the proceedings.

We thank IPM, and in particular the Organizing Committee, for having provided
various facilities and for their generous support. We believe that, thanks to their help,
the conference organization was run smoothly and conveniently. We are also grateful
to our program committee for their professional and hard work in providing expert
review reports and thorough discussions leading to a very interesting and strong pro-
gram. We also acknowledge the excellent facilities provided by the EasyChair system,
which have been crucial in managing the process of submission, selection, revision,
and publication of the manuscripts included in the proceedings.

November 2015 Mohammad Taghi Hajiaghayi
Mohammad Reza Mousavi

Organization

Program Committee

Mohammad A. Abam Sharif University of Technology, Tehran, Iran
Saeed Akbari Sharif University of Technology, Tehran, Iran
Saeed Alaei Cornell University, USA
Farhad Arbab CWI and Leiden University, The Netherlands
S. Arun-Kumar Indian Institue of Technology Delhi, India
Mohammad H. Bateni Google Research, USA
Salman Beigi IPM, Iran
Ilaria Castellani Inria Sophia Antipolis Mediterranee, France
Dave Clarke Uppsala University, Sweden
Pieter Cuijpers Eindhoven University of Technology, The Netherlands
Amir Daneshgar Sharif University of Technology, Iran
Fedor Fomin University of Bergen, Norway
Fatemeh Ghassemi University of Tehran, Iran
Ali Ghodsi University of Waterloo, Canada
Mohammad Ghodsi Sharif University of Technology, Iran
Mohammad T. Hajiaghayi University of Maryland, USA
Ichiro Hasuo University of Tokyo, Japan
Matthew Hennessy Trinity College Dublin, Ireland
Nicole Immorlica Microsoft Research, USA
Mohammad M. Jaghoori AMC of University of Amsterdam, The Netherlands
Amin Karbasi Yale University, USA
Jeroen Keiren Open University Netherlands, The Netherlands
Amit Kumar Indian Institute of Technology Delhi, India
Bas Luttik Eindhoven University of Technology, The Netherlands
Mohammad Mahdian Google Research, USA
Hamid Mahini University of Maryland, USA
Mohammad Mahmoody University of Virginia, USA
Jose Meseguer University of Illinois, USA
Vahab Mirrokni Google Research, USA
Bojan Mohar Simon Fraser University, Canada
Morteza Monemizadeh Frankfurt University, Germany
Lary Moss Indiana University, USA
Mohammad R. Mousavi Halmstad University, Sweden
Shayan Oveisgharan University of Washington, USA
Jun Pang University of Luxembourg, Luxembourg
Debmalya Panigrahi Duke University, USA
Jorg Sack Carleton University, Canada

Gerardo Schneider Chalmers — University of Gothenburg, Sweden
Mohit Singh Microsoft Research, USA
Marjan Sirjani Reykjavik University, Reykjavik, Iceland
Dimitrios M. Thilikos CNRS, France and University of Athens, Greece
S. Venkatasubramanian University of Utah, USA
Walter Vogler Augsburg University, Germany
Jan Vondrak IBM Almaden Research Center, USA
Tim Willemse Eindhoven University of Technology, The Netherlands

Additional Reviewers

Abbasi Zadeh, Sepehr
Alégroth, Emil
Baharifard, Fatemeh
Banijamali, Ershad
Beohar, Harsh
Bujtor, Ferenc
Chen, Lin
Clairambault, Pierre
Corby, Olivier
Damaschke, Peter
Deng, Yuxin

Fox, Kyle
Gacs, Peter
Haney, Samuel
Homapour, Hamid
Jonker, Hugo
Kell, Nathaniel
Khamespanah, Ehsan
Krčál, Jan
Langetepe, Elmar
Melliès, Paul-André
Nemati, Soheil

Sabahi Kaviani, Zeynab
Schmaltz, Julien
Shameli, Seyed Ali
Shariatpanahi,

Seyed Pooya
Sidorova, Natalia
Suykens, Johan
Tichy, Matthias
Visser, Arnoud
Volpato, Michele

VIII Organization

Abstracts of Invited Talks

New Directions in Parameterized Algorithmics

Michael Fellows

Charles Darwin University, Australia

The talk will review some basics of the field, and then focus on some new directions in
parameterized/multivariate algorithmics. These include:

• The systematic deconstruction of NP-hardness results for problems unrealistically
legislated with real numbers, by parameterizing on the size of a relevant finitized
arithmetic system.

• Fresh paradigms for deploying parameterization to FPT-turbocharge heuristics
(such as greedy algorithms) and other subroutines of current approaches in practical
computing for NP-hard problems.

• Aggressive aggregate parameterization including generative parameterization of
typical instances of hard problems, building on and deepening the parameter
ecology program.

• Parameterization in the context of dynamic problems where inputs change (a bit)
and solutions need to be changed (a bit).

• The axiomatization of groovy FPT, where canonically structured kernelization is
canonically convertible to: P-time approximation algorithms; inductive gradients for
local search; sharper turbocharging for greedy algorithms, local search and genetic
recombination heuristics — opening up a whole new level of groovy lower bound
questions, such as the existence of groovy polynomial kernels. (Recent results show
that some FPT parameterized problems admit polynomial kernels, but do not admit
groovy polynomial kernelization unless P = NP.)

• The accidental origins of parameterized complexity in graph minor theory (well
quasi-ordering + FPT order tests) is a general phenomenon: it has recently been
shown that a parameterized problem is FPT if and only if this can be derived from a
well-behaved WQO context. Where this leads is entirely open.

Distributional Sentence Entailment Using
Density Matrices

Esma Balkr1, Mehrnoosh Sadrzadeh1, and Bob Coecke2

1 Queen Mary University of London
2 University of Oxford

Abstract. Categorical compositional distributional model of Clark, Coecke, and
Sadrzadeh suggests a way to combine grammatical composition of the formal,
type logical models with the corpus based, empirical word representations of
distributional semantics. This paper contributes to the project by expanding the
model to also capture entailment relations. This is achieved by extending the
representations of words from points in meaning space to density operators,
which are probability distributions on the subspaces of the space. A symmetric
measure of similarity and an asymmetric measure of entailment is defined,
where lexical entailment is measured using von Neumann entropy, the quantum
variant of Kullback-Leibler divergence. Lexical entailment, combined with the
composition map on word representations, provides a method to obtain entail-
ment relations on the level of sentences. Truth theoretic and corpus-based
examples are provided.

On Symmetric and Choiceless Computation

Anuj Dawar

University of Cambridge Computer Laboratory, William Gates Building,
J.J. Thomson Avenue, Cambridge, CB3 0FD, UK

anuj.dawar@cl.cam.ac.uk

Formal models of computation such as Turing machines are usually defined as per-
forming operations on strings of symbols. Indeed, for most purposes, it suffices to
consider strings over a two-letter alphabet {0, 1}. Decision problems are defined as sets
of strings, and complexity classes as sets of decision problems. However, many natural
algorithms are described on more abstract structure (such as graphs) because this is the
natural level of abstraction at which to describe the problem being solved. Of course,
we know that the abstract structures can be ultimately represented as strings (and,
indeed, have to be in actual computational devices), but the representation comes at a
cost. The same abstract structure may have many different string representations and
the implementation of the algorithm may break the intended abstraction.

Research in the area of finite model theory and descriptive complexity (see [11, 13])
has, over the years, developed a number of techniques of describing algorithms and
complexity classes directly on classes of relational structures, rather than strings. Along
with this, many methods of proving inexpressiblity results have been shown, often
described in terms of games. A key question that has been the focus of this research
effort is whether the complexity class P admits a descriptive characterisation (see [10,
Chap. 11]).

A recent paper [1] ties some of the logics studied in finite model theory to natural
circuit complexity classes, and shows thereby that inexpressibility results obtained in
finite model theory can be understood as lower bound results on such classes. In this
presentation, I develop the methods for proving lower bound results in the form of
combinatorial arguments on circuits, without reference to logical definability. The
present abstract gives a brief account of the results and methods.

Contents

Distributional Sentence Entailment Using Density Matrices 1
Esma Balkir, Mehrnoosh Sadrzadeh, and Bob Coecke

On Symmetric and Choiceless Computation . 23
Anuj Dawar

Robots’ Cooperation for Finding a Target in Streets 30
Mohammad Abouei Mehrizi, Mohammad Ghodsi,
and Azadeh Tabatabaei

Some Properties of Continuous Yao Graph. 44
Davood Bakhshesh and Mohammad Farshi

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect
Matchings in a Simple Polygon . 56

Ahmad Biniaz, Prosenjit Bose, Anil Maheshwari, and Michiel Smid

Visibility Graphs of Anchor Polygons . 72
Hossein Boomari and Alireza Zarei

Automating the Verification of Realtime Observers Using Probes
and the Modal mu-calculus . 90

Silvano Dal Zilio and Bernard Berthomieu

Minimizing Walking Length in Map Matching . 105
Amin Gheibi, Anil Maheshwari, and Jörg-Rüdiger Sack

Rainbow Domination and Related Problems on Some Classes
of Perfect Graphs . 121

Wing-Kai Hon, Ton Kloks, Hsiang-Hsuan Liu, and Hung-Lung Wang

Efficient Computation of Generalized Ising Polynomials on Graphs
with Fixed Clique-Width . 135

Tomer Kotek and Johann A. Makowsky

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference
Hierarchy . 147

Stéphane Le Roux

Deterministic Algorithm for 1-Median 1-Center Two-Objective
Optimization Problem . 164

Vahid Roostapour, Iman Kiarazm, and Mansoor Davoodi

Author Index . 179

http://dx.doi.org/10.1007/978-3-319-28678-5_1
http://dx.doi.org/10.1007/978-3-319-28678-5_2
http://dx.doi.org/10.1007/978-3-319-28678-5_3
http://dx.doi.org/10.1007/978-3-319-28678-5_4
http://dx.doi.org/10.1007/978-3-319-28678-5_5
http://dx.doi.org/10.1007/978-3-319-28678-5_5
http://dx.doi.org/10.1007/978-3-319-28678-5_6
http://dx.doi.org/10.1007/978-3-319-28678-5_7
http://dx.doi.org/10.1007/978-3-319-28678-5_7
http://dx.doi.org/10.1007/978-3-319-28678-5_8
http://dx.doi.org/10.1007/978-3-319-28678-5_9
http://dx.doi.org/10.1007/978-3-319-28678-5_9
http://dx.doi.org/10.1007/978-3-319-28678-5_10
http://dx.doi.org/10.1007/978-3-319-28678-5_10
http://dx.doi.org/10.1007/978-3-319-28678-5_11
http://dx.doi.org/10.1007/978-3-319-28678-5_11
http://dx.doi.org/10.1007/978-3-319-28678-5_12
http://dx.doi.org/10.1007/978-3-319-28678-5_12

Distributional Sentence Entailment
Using Density Matrices

Esma Balkir1, Mehrnoosh Sadrzadeh1(B), and Bob Coecke2

1 Queen Mary University of London, London, UK
m.sadrzadeh@qmul.ac.uk

2 University of Oxford, Oxford, UK

Abstract. Categorical compositional distributional model of Clark,
Coecke, and Sadrzadeh suggests a way to combine grammatical compo-
sition of the formal, type logical models with the corpus based, empirical
word representations of distributional semantics. This paper contributes
to the project by expanding the model to also capture entailment rela-
tions. This is achieved by extending the representations of words from
points in meaning space to density operators, which are probability dis-
tributions on the subspaces of the space. A symmetric measure of simi-
larity and an asymmetric measure of entailment is defined, where lexical
entailment is measured using von Neumann entropy, the quantum vari-
ant of Kullback-Leibler divergence. Lexical entailment, combined with
the composition map on word representations, provides a method to
obtain entailment relations on the level of sentences. Truth theoretic
and corpus-based examples are provided.

1 Introduction

The term distributional semantics is almost synonymous with the term vector
space models of meaning. This is because vector spaces are natural candidates
for modelling the distributional hypothesis and contextual similarity between
words [11]. In a nutshell, this hypothesis says that words that often occur in the
same contexts have similar meanings. So for instance, ‘ale’ and ‘lager’ are similar
since they both often occur in the context of ‘beer’, ‘pub’, and ‘pint’. The obvious
practicality of these models, however, does not guarantee that they possess the
expressive power needed to model all aspects of meaning. Current distributional
models mostly fall short of successfully modelling subsumbtion and entailment
[19]. There are a number of models that use distributional similarity to enhance
textual entailment [4,13]. However, most of the work from the distributional
semantics community has been focused on developing more sophisticated metrics
on vector representations [17,20,27].

In this paper we suggest the use of density matrices instead of vector spaces
as the basic distributional representations for the meanings of words. Density
matrices are widely used in quantum mechanics, and are a generalization of vec-
tors. There are several advantages to using density matrices to model meaning.
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 1–22, 2016.
DOI: 10.1007/978-3-319-28678-5 1

2 E. Balkir et al.

Firstly, density matrices have the expressive power to represent all the informa-
tion vectors can represent: they are a suitable implementation of the distribu-
tional hypothesis. They come equipped with a measure of information content,
and so provide a natural way of implementing asymmetric relations between
words such as hyponymy-hypernymy relations. Futhermore, they form a com-
pact closed category. This allows the previous work of [7,10] on obtaining repre-
sentations for meanings of sentences from the meaning of words to be applicable
to density matrices. The categorical map from meanings of words to the mean-
ing of the sentence respects the order induced by the relative entropy of density
matrices. This promises, given suitable representations of individual words, a
method to obtain entailment relations on the level of sentences, inline with the
lexical entailment of natural logic, e.g., see [21], rather than the traditional logical
entailment of Montague semantics.

Related Work. This work builds upon and relates to the literature on compo-
sitional distributional models, distributional lexical entailment, and the use of
density matrices in computational linguistics and information retrieval.

There has been a recent interest in methods of composition within the dis-
tributional semantics framework. There are a number of composition methods
in literature. See [14] for a survey of compositional distributional models and a
discussion of their strengths and weaknesses. This work extends the work pre-
sented in [7,10], a compositional model based on category theory. Their model
was shown to outperform the competing compositional models in [15].

Research on distributional entailment has mostly been focused on lexical
entailment. One notable exception is the work in [3], which uses the distribu-
tional data on adjective-noun and quantifier-noun pairs to train a classifier; the
results are then utilized to detect novel noun pairs that have the same rela-
tion. There are a number of non-symmetric lexical entailment measures, e.g., see
[8,17,19,27], all of which rely on some variation of the Distributional Inclusion
Hypothesis: “If u is semantically narrower than v, then a significant number of
salient distributional features of u are also included in the feature vector of v”
[17]. In their experiments, the authors of [12] show that while if a word v entails
another word w then the characteristic features of v is a subset of the ones for w,
it is not necessarily the case that the inclusion of the characteristic features v in
w indicate that v entails w. One of their suggestions for increasing the prediction
power of their method is to include more than one word in the features.

The work presented in [23] uses a measure based on entropy to detect
hyponym-hypernym relationships in given pairs. The measure they suggest rely
on the hypothesis that hypernyms are semantically more general than hyponyms,
and therefore tend to occur in less informative contexts. The authors of [16] rely
on a very similar idea, and use KL-divergence between the target word and the
basis words to quantify the semantic content of the target word. They conclude
that this method performs equally well in detecting hyponym-hypernym pairs
as their baseline prediction method that only considers the overall frequency of
the word in corpus. They reject the hypothesis that more general words occur
in less informative contexts. Their method differs from ours in that they use

Distributional Sentence Entailment Using Density Matrices 3

relative entropy to quantify the overall information content of a word, and not
to compare two target words to each other.

The work presented in [22] extend the compositional model of [7,10] to
include density matrices as we do, but use it for modeling homonymy and pol-
ysemy. Their approach is complementary to ours, and in fact, they show that
it is possible to merge the two constructions. The work presented in [6] uses
density matrices to model context effects in a conceptual space. In their quan-
tum mechanics inspired model, words are represented by mixed states and each
eigenstate represents a sense of the word. Context effects are then modelled as
quantum collapse. The authors in [5] use density matrices to encode dependency
neighbourhoods, with the aim of modelling context effects in similarity tasks; the
work presented in [26] uses density matrices to sketch out a theory of informa-
tion retrieval, and connects the logic of the space and of density matrices via an
order relation that makes the set of projectors in a Hilbert space into a complete
lattice. They then use this order to define an entailment relation. Finally, the
work presented in [25] shows that using density matrices to represent documents
provides significant improvement on realistic IR tasks.

This paper is based on the MSc Thesis of the first author [2].

2 Background

Definition 1. A monoidal category is compact closed if for any object A,
there are left and right dual objects, i.e. objects Ar and Al, and morphisms
ηl : I → A ⊗ Al, ηr : I → Ar ⊗ A, εl : Al ⊗ A → I and εr : A ⊗ Ar → I that
satisfy:

(1A ⊗ εl) ◦ (ηl ⊗ 1A) = 1A (εr ⊗ 1A) ◦ (1A ⊗ ηr) = 1A

(εl ⊗ 1Al) ◦ (1Al ⊗ ηl) = 1Al (1Ar ⊗ εr) ◦ (ηr ⊗ 1Ar) = 1Ar

Compact closed categories are used to represent correlations, and in categor-
ical quantum mechanics they model maximally entangled states. [1] The η and
ε maps are useful in modeling the interactions of the different parts of a system.
To see how this relates to natural language, consider a simple sentence with an
object, a subject and a transitive verb. The meaning of the entire sentence is not
simply an accumulation of the meanings of its individual words, but depends on
how the transitive verb relates the subject and the object. The η and ε maps
provide the mathematical formalism to specify such interactions. The distinct
left and right duals ensure that compact closed categories can take word order
into account.

There is a graphical calculus used to reason about monoidal categories [9].
In the graphical language, objects are wires, and morphisms are boxes with
incoming and outgoing wires of types corresponding to the input and output
types of the morphism. The identity object is depicted as empty space, so a
state ψ : I → A is depicted as a box with no input wire and an output wire with
type A. The duals of states are called effects, and they are of type A → I. Let

4 E. Balkir et al.

f : A → B, g : B → C and h : C → D, and 1A : A → A the identity function on
A. 1A, f , f ⊗ h, g ◦ f are depicted as follows:

A

A

B

f

A

B

C

D

f h

A

B

C

f

g

The state ψ : I → A, the effect π : A → I, and the scalar ψ ◦ π are depicted as
follows:

A

ψ A

π π

ψ

The maps ηl, ηr, εl and εr take the following forms in the graphical calculus:

Ar A A Al

A Ar Al A
ηr: ηl: εr: εl:

The axioms of compact closure, referred to as the snake identities because of
the visual form they take in the graphical calculus, are represented as follows:

A

A
=

A

A

A

A
=

A

A

Ar

Ar

=

Ar

Ar

Al

Al

Al

Al

=

More generally, the reduction rules for diagrammatic calculus allow continu-
ous deformations. One such deformation we will make use of is the swing rule:

ψ
=

ψ

ψ

ψ

=

Definition 2 [18]. A pregroup (P,≤, ·, 1, (−)l, (−)r) is a partially ordered
monoid in which each element a has both a left adjoint al and a right adjoint ar

such that ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara.

Distributional Sentence Entailment Using Density Matrices 5

If a ≤ b it is common practice to write a → b and say that a reduces to b. This
terminology is useful when pregroups are applied to natural language, where
each word gets assigned a pregroup type freely generated from a set of basic
elements. The sentence is deemed to be grammatical if the concatenation of the
types of the words reduce to the simple type of a sentence. For example reduction
for a simple transitive sentence is n(nrsnl)n → 1 snln → 1 s1 → s.

A pregroup P is a concrete instance of a compact closed category. The
ηl, ηr, εl, εr maps are ηl = [1 ≤ p · pl], εl = [pl · p ≤ 1], ηr = [1 ≤ pr · p],
εr = [p · pr ≤ 1].

FVect as a Concrete Compact Closed Category. Finite dimensional vector spaces
over the base field R, together with linear maps form a monoidal category,
referred to as FVect. The monoidal tensor is the usual vector space tensor
and the monoidal unit is the base field R. It is also a compact closed category
where V l = V r = V . The compact closed maps are defined as follows:

Given a vector space V with basis {−→ei }i,

ηl
V = ηr

V : R → V ⊗ V

1 �→
∑

i

−→ei ⊗ −→ei

εl
V = εr

V : V ⊗ V → R

∑

ij

cij
−→vi ⊗ −→wi �→

∑

ij

cij〈−→vi |−→wi〉

Categorical Representation of Meaning Space. The tensor in FVect is com-
mutative up to isomorphism. This causes the left and the right adjoints to be
the same, and thus the left and the right compact closed maps to coincide. Thus
FVect by itself cannot take the effect of word ordering on meaning into account.
[7,10] propose a way around this obstacle by considering the product category
FVect × P where P is a pregroup.

Objects in FVect × P are of the form (V, p), where V is the vector space
for the representation of meaning and p is the pregroup type. There exists a
morphism (f,≤) : (V, p) → (W, q) if there exists a morphism f : V → W in
FVect and p ≤ q in P.

The compact closed structure of FVect and P lifts componentwise to the
product category FVect × P:

ηl : (R, 1) → (V ⊗ V, p · pl) ηr : (R, 1) → (V ⊗ V, pr · p)

εl : (V ⊗ V, pl · p) → (R, 1) εr : (V ⊗ V, p · pr) → (R, 1).

Definition 3. An object (V, p) in the product category is called a meaning
space, where V is the vector space in which the meanings −→v ∈ V of strings of
type p live.

Definition 4. From-Meanings-of-Words-to-the-Meaning-of-the-Sente-
nce Map. Let v1v2 . . . vn be a string of words, each vi with a meaning space rep-
resentation −→vi ∈ (Vi, pi). Let x ∈ P be a pregroup type such that [p1p2 . . . pn ≤ x]
Then the meaning vector for the string is −−−−−−−→v1v2 . . . vn := f(−→v1 ⊗ −→v2 ⊗ . . . ⊗ −→vn) ∈
(W,x), where f is defined to be the application of the compact closed maps

6 E. Balkir et al.

obtained from the reduction [p1p2 . . . pn ≤ x] to the composite vector space
V1 ⊗ V2 ⊗ . . . ⊗ Vn.

This framework uses the maps of the pregroup reductions and the elements
of objects in FVect. The diagrammatic calculus provides a tool to reason about
both. As an example, take the sentence “John likes Mary”. It has the pregroup
type nnrsnln, and the vector representations

−−−→
John,

−−−→
Mary ∈ V and

−−−→
likes ∈

V ⊗ S ⊗ V . The morphism in FVect × P corresponding to the map defined
in Definition 4 is of type (V ⊗ (V ⊗ S ⊗ V) ⊗ V, nnrsnln) → (S, s). From the
pregroup reduction [nnrsnln → s] we obtain the compact closed maps εr1εl. In
FVect this translates into εV ⊗ 1S ⊗ εV : V ⊗ (V ⊗ S ⊗ V) ⊗ V → S. This
map, when applied to

−−−→
John ⊗ −−−→

likes ⊗ −−−→
Mary, has the following depiction in the

diagrammatic calculus:

likesJohn Mary

Note that this construction treats the verb ‘likes’ essentially as a relation that
takes two inputs of type V , and outputs a vector of type S. For the explicit cal-
culation, note that

−−−→
likes =

∑
ijk cijk

−→vi ⊗−→sj ⊗−→vk, where {−→vi }i is an orthonormal
basis for V and {−→sj }j is an orthonormal basis for S. Then

−−−−−−−−−−−−−→
John likes Mary = εV ⊗ 1S ⊗ εV (

−−−→
John ⊗ −−−→

likes ⊗ −−−→
Mary) (1)

=
∑

ijk

〈−−−→
John|−→vi 〉−→sj 〈−→vk|−−−→

Mary〉 (2)

The reductions in diagrammatic calculus help reduce the final calculation to
a simpler term. The non-reduced reduction, when expressed in dirac notation is
(〈εr

V | ⊗ 1S ⊗ 〈εl
V |) ◦ |−−−→

John ⊗ −−−→
likes ⊗ −−−→

Mary〉. But we can swing
−−−→
John and

−−−→
Mary

in accord with the reduction rules in the diagrammatic calculus. The diagram
then reduces to:

likes

John Mary

This results in a simpler expression that needs to be calculated: (〈−−−→
John| ⊗

1S ⊗ 〈−−−→
Mary|) ◦ |−−−→

likes〉.

3 Density Matrices as Elements of a Compact Closed
Category

Recall that in FVect, vectors |−→v 〉 ∈ V are in one-to-one correspondence with
morphisms of type v : I → V . Likewise, pure states of the form |−→v 〉〈−→v | are in

Distributional Sentence Entailment Using Density Matrices 7

one-to-one correspondence with morphisms v◦v† : V → V such that v† ◦v = idI ,
where v† denotes the adjoint of v (notice that this corresponds to the condition
that 〈v|v〉 = 1). A general (mixed) state ρ is a positive morphism of the form
ρ : V → V . One can re-express the mixed states ρ : V → V as elements
ρ : I → V ∗ ⊗ V . Here V ∗ = V l = V r = V .

Definition 5. f is a completely positive map if f is positive for any positive
operator A, and (idV ⊗ f)B is positive for any positive operator B and any
space V .

Completely positive maps in FVect form a monoidal category [24]. Thus one
can define a new category CPM(FVect) where the objects of CPM(FVect)
are the same as those of FVect, and morphisms A → B in CPM(FVect) are
completely positive maps A∗ ⊗ A → B∗ ⊗ B in FVect. The elements I → A in
CPM(FVect) are of the form I∗ ⊗I → A∗ ⊗A in FVect, providing a monoidal
category with density matrices as its elements.

CPM(FVect) in Graphical Calculus. A morphism ρ : A → A is positive if and
only if there exists a map

√
ρ such that ρ =

√
ρ†◦√

ρ. In FVect, the isomorphism
between ρ : A → A and �ρ� : I → A∗ ⊗ A is provided by ηl = ηr. The graphical
representation of ρ in FVect then becomes:

ρ =

√
ρ

√
ρ

=
√

ρ
√

ρ

Notice that the categorical definition of a positive morphism coincides with the
definition of a positive operator in a vector space, where

√
ρ is the square root

of the operator.
The graphical depiction of completely positive morphisms come from the

following theorem:

Theorem 1 (Stinespring Dilation Theorem). f : A∗⊗A → B∗⊗B is completely
positive if and only if there is an object C and a morphism

√
f : A → C ⊗ B

such that the following equation holds:

B B

A

B

A

B

f
√

f=
√

f

A A

C

√
f and C here are not unique. For the proof of the theorem see [24].

8 E. Balkir et al.

Theorem 2. CPM(FVect) is a compact closed category where as in FVect,
V r = V l = V and the compact closed maps are defined to be:

ηl = (ηr
V ⊗ ηl

V) ◦ (1V ⊗ σ ⊗ 1V) ηr = (ηl
V ⊗ ηr

V) ◦ (1V ⊗ σ ⊗ 1V)

εl = (1V ⊗ σ ⊗ 1V) ◦ (εr
V ⊗ εl

V) εr = (1V ⊗ σ ⊗ 1V) ◦ (εl
V ⊗ εr

V)

where σ is the swap map defined as σ(v ⊗ w) = (w ⊗ v).

Proof. The graphical construction of the compact closed maps boils down to
doubling the objects and the wires. The identities are proved by adding bends
in the wires. Consider the diagram for ηr:

=

V ∗ V V ∗ V V ∗ V V ∗ V

These maps satisfy the axioms of compact closure since the components do.

The concrete compact closed maps are as follows:

ηl = ηr : R → (V ⊗ V) ⊗ (V ⊗ V)

::1 �→
∑

i

−→ei ⊗ −→ei ⊗
∑

j

−→ej ⊗ −→ej

εl = εr : (V ⊗ V) ⊗ (V ⊗ V) → R

::
∑

ijkl

cijkl
−→vi ⊗ −→wj ⊗ −→uk ⊗ −→pl �→

∑

ijkl

cijkl 〈−→vi |−→uk〉〈−→wj |−→pl 〉

Let ρ : V1 ⊗ V2 ⊗ . . . ⊗ Vn → V1 ⊗ V2 ⊗ . . . ⊗ Vn be a density operator defined on
an arbitrary composite space V1 ⊗ V2 ⊗ . . . ⊗ Vn. Then it has the density matrix
representation ρ : I → (V1 ⊗ V2 ⊗ . . . ⊗ Vn)∗ ⊗ (V1 ⊗ V2 ⊗ . . . ⊗ Vn). Since the
underlying category FVect is symmetric, it has the swap map σ. This provides
us with the isomorphism:

(V1⊗V2⊗. . .⊗Vn)∗⊗(V1⊗V2⊗. . .⊗Vn) ∼ (V ∗
1 ⊗V1)⊗(V ∗

2 ⊗V2)⊗. . .⊗(V ∗
n ⊗Vn)

So ρ can be equivalently expressed as ρ : I → (V ∗
1 ⊗V1)⊗ (V ∗

2 ⊗V2)⊗ . . .⊗ (V ∗
n ⊗

Vn). With this addition, we can simplify the diagrams used to express density
matrices by using a single thick wire for the doubled wires. Doubled compact
closed maps can likewise be expressed by a single thick wire.

:= := :=

The diagrammatic expression of a from-meanings-of-words-to-the-meaning-
of-the-sentence map using density matrices will therefore look exactly like the
depiction of it in FVect, but with thick wires.

Distributional Sentence Entailment Using Density Matrices 9

4 Using Density Matrices to Model Meaning

If one wants to use the full power of density matrices in modelling meaning,
one needs to establish an interpretation for the distinction between mixing and
superposition in the context of linguistics. Let contextual features be the salient,
quantifiable features of the contexts a word is observed in. Let the basis of the
space be indexed by such contextual features. Individual contexts, such as words
in an n-word window of a text, can be represented as the superposition of the
bases corresponding to the contextual features observed in it. So each context
corresponds to a pure state. Words are then probability distributions over the
contexts they appear in. The simple co-occurrence model can be cast as a special
case of this more general approach, where features and contexts are the same.
Then all word meanings are mixtures of basis vectors, and they all commute
with each other.

Similarity for Density Matrices. Fidelity is a good measure of similarity between
two density matrix representations of meaning because of its properties listed
below.

Definition 6. The fidelity of two density operators ρ and σ is F (ρ, σ) :=
tr

√
ρ1/2σρ1/2.

Some useful properties of fidelity are:

1. F (ρ, σ) = F (σ, ρ).
2. 0 ≤ F (ρ, σ) ≤ 1.
3. F (ρ, σ) = 1 if and only if ρ = σ.
4. If |φ〉〈φ| and |ψ〉〈ψ| are two pure states, their fidelity is equal to |〈φ|ψ〉|.

These properties ensure that if the representations of two words are not equal
to each other, they will not be judged perfectly similar, and, if two words are
represented as projections onto one dimensional subspaces, their similarity value
will be equal to the usual cosine similarity of the vectors.

Entailment for Density Matrices. To develop a theory of entailment using density
matrices as the basic representations, we assume the following hypothesis:

Definition 7 (Distributional Hypothesis for Hyponymy). The meaning
of a word w subsumes the meaning of a word v if and only if it is appropriate to
use w in all the contexts v is used.

This is a slightly more general version of the Distributional Inclusion Hypoth-
esis (DIH) stated in [17]. The difference lies in the additional power the density
matrix formalism provides: the distinction between mixing and superposition.
Further, DIH only considers whether or not the target word occurs together
with the salient distributional feature at all, and ignores any possible statisti-
cally significant correlations of features; here again, the density matrix formalism
offers a solution.

10 E. Balkir et al.

Note that [12] show that while there is ample evidence for the distributional
inclusion hypothesis, this in itself does not necessarily provide a method to detect
hyponymy-hypernymy pairs. One of their suggestions for improvement is to con-
sider more than one word in the features, equivalent to what we do here by
taking correlations into account in a co-occurrence space where the bases are
context words.

Relative entropy quantifies the distinguishability of one distribution from
another. The idea of using relative entropy to model hyponymy is based on the
assumption that the distinguishability of one word from another given its usual
contexts provides us with a good metric for hyponymy. For example, if one is
given a sentence with the word dog crossed out, it will be not be possible for
sure to know whether the crossed out word is not animal just from the context
(except perhaps very particular decelerational sentences which rely on world
knowledge, such as ‘All – bark’.)

Definition 8. The (quantum) relative entropy of two density matrices ρ
and σ is N(ρ||σ) := tr(ρ log ρ) − tr(ρ log σ), where 0 log 0 = 0 and x log 0 = ∞
when x = 0 by convention.

Definition 9. The representativeness between ρ and σ is R(ρ, σ) := 1/(1 +
N(ρ||σ)), where N(ρ||σ) is the quantum relative entropy between ρ and σ.

Quantum relative entropy is always non-negative. For two density matrices
ρ and σ, N(ρ||σ) = ∞ if supp(ρ) ∩ ker(σ) = 0, and is finite otherwise. The
following is a direct consequence of these properties:

Corollary 1. For all density matrices ρ and σ, R(ρ, σ) ≤ 1 with equality if and
only if ρ = σ, and 0 ≤ R(ρ, σ) with equality if and only if supp(ρ) ∩ ker(σ) = 0

The second part of the corollary reflects the idea that if there is a context
in which it is appropriate to use v but not w, then v is perfectly distinguishable
from w. Such contexts are exactly those that fall within supp(ρ) ∩ ker(σ).

Characterizing Hyponyms. The quantitative measure on density matrices given
by representativeness provide a qualitative preorder on meaning representations
as follows:

ρ ≺ σ if R(ρ, σ) > 0
ρ ∼ σ if ≺ σ and σ ≺ ρ.

Proposition 1. The following are equivalent:

1. ρ ≺ σ
2. supp(ρ) ⊆ supp(σ)
3. There exists a positive operator ρ′ and p > 0 such that σ = pρ + ρ′.

Distributional Sentence Entailment Using Density Matrices 11

Proof. (1) ⇒ (2) and (2) ⇒ (1) follow directly from Corollary 1.
(2) ⇒ (3) since supp(ρ) ⊆ supp(σ) implies that there exists a p > 0 such

that σ − pρ is positive. Setting ρ′ = σ − pρ gives the desired equality.
(3) ⇒ (2) since p > 0, and so supp(ρ) ⊆ supp(σ) = supp(pρ + ρ′).

The equivalence relation ∼ groups any two density matrices ρ and σ with
supp(ρ) = supp(σ) into the same equivalence class, thus maps the set of density
matrices on a Hilbert space H onto the set of projections on H. The projections
are in one-to-one correspondence with the subspaces of H and they form an
orthomodular lattice, providing a link to the logical structure of the Hilbert
space [26] aims to exploit by using density matrices in IR.

Let ŵ and v̂ be density matrix representations of the words v and w. Then
v is a hyponym of w in this model if v̂ ≺ ŵ and v̂ � ŵ.

Notice that even though this ordering on density matrices extracts a yes/no
answer for the question “is v a hyponym of w?”, the existence of the quantitative
measure lets us to also quantify the extent to which v is a hyponym of w. This
provides some flexibility in characterizing hyponymy through density matrices in
practice. Instead of calling v a hyponym of w even when R(v̂, ŵ) gets arbitrarily
small, one can require the representativeness to be above a certain threshold
ε. This modification, however, has the down side of causing the transivity of
hyponymy to fail.

5 From Meanings of Words to the Meanings of Sentences
Passage

As in the case for FVect × P, CPM(FVect) × P is a compact closed category,
where the compact closed maps of CPM(FVect) and P lift component-wise to
the product category.

Definition 10. A meaning space in this new category is a pair (V ∗ ⊗ V, p)
where V ∗ ⊗ V is the space in which density matrices v : I → V ∗ ⊗ V of the
pregroup type p live.

Definition 11. Let v1v2 . . . vn be a string of words, each vi with a meaning
space representation v̂i ∈ (V ∗

i ⊗ Vi, pi). Let x ∈ P be a pregroup type such that
[p1p2 . . . pn ≤ x]. Then the meaning density matrix for the string is defined as:

̂v1v2 . . . vn := f(v̂1 ⊗ v̂2 ⊗ . . . ⊗ v̂n) ∈ (W ∗ ⊗ W,x)

where f is defined to be the application of the compact closed maps obtained from
the reduction [p1p2 . . . pn ≤ x] to the composite density matrix space (V1 ⊗V ∗

1)⊗
(V ∗

2 ⊗ V2) ⊗ . . . ⊗ (V ∗
n ⊗ Vn).

From a high level perspective, the reduction diagrams for CPM(FVect) × P
look no different than the original diagrams for FVect × P, except that we
depict them with thick instead of thin wires. Consider the previous example:

12 E. Balkir et al.

“John likes Mary”. It has the pregroup type n(nrsnl)n, and the compact closed
maps obtained from the pregroup reduction is (εr ⊗ 1 ⊗ εl).

One can also depict the diagram together with the internal anatomy of the
density representations in FVect:

likes likesJohn John Mary Mary

The graphical reductions for compact closed categories can be applied to the
diagram, establishing (εr ⊗1⊗ εl)(Ĵohn⊗ l̂ikes⊗M̂ary) = (Ĵohn⊗1⊗M̂ary)◦
l̂ikes.

As formalised in natural logic, one expects that if the subject and object of
a sentence are common nouns which are, together with the verb of the sentence,
moreover, upward monotone, then if these are replaced by their hyponyms, then
the meanings of the original and the modified sentences would preserve this
hyponymy. The following proposition shows that the sentence meaning map for
simple transitive sentences achieves exactly that.

Theorem 3. If ρ, σ, δ, γ ∈ (N∗⊗N,n), α, β ∈ (N∗⊗N ⊗S∗⊗S⊗N∗⊗N,nlsnr

ρ ≺ σ, δ ≺ γ and α ≺ β then

f(ρ ⊗ α ⊗ δ) ≺ f(σ ⊗ β ⊗ γ)

where f is the from-meanings-of-words-to-the-meaning-of-the-sentence map in
Definition 11.

Proof. If ρ ≺ σ, δ ≺ γ, and α ≺ β, then there exists a positive operator ρ′ and
r > 0 such that σ = rρ+ρ′, a positive operator δ′ and d > 0 such that γ = dδ+δ′
and a positive operator α′ and a > 0 such that β = aα + α′ by Proposition 1.
Then

f(σ ⊗ β ⊗ γ) = (εr ⊗ 1 ⊗ εl)(σ ⊗ β ⊗ γ)

= (σ ⊗ 1 ⊗ γ) ◦ β

= ((rρ + ρ′) ⊗ 1 ⊗ (dδ + δ′)) ◦ (aα + α′)

= (rρ ⊗ 1 ⊗ dδ) ◦ (aα + α′) + (ρ′ ⊗ 1 ⊗ δ′) ◦ (aα + α′)

= (rρ ⊗ 1 ⊗ dδ) ◦ aα + (rρ ⊗ 1 ⊗ dδ) ◦ α′ + (ρ′ ⊗ 1 ⊗ δ′) ◦ (aα + α′),

f(ρ ⊗ α ⊗ δ) = (ρ ⊗ 1 ⊗ δ) ◦ α

since r, d, a = 0, supp(f(ρ⊗α⊗δ)) ⊆ supp(f(σ⊗β⊗γ)), which by Proposition 1
proves the theorem.

Distributional Sentence Entailment Using Density Matrices 13

6 Truth Theoretic Examples

We present several examples that demonstrate the application of the from-
meanings-of-words-to-the-meaning-of-sentence map, where the initial meaning
representations of words are density matrices, and explore how the hierarchy on
nouns induced by their density matrix representations carry over to a hierarchy
in the sentence space.

6.1 Entailment Between Nouns

Let “lions”, “sloths”. “plants” and “meat” have one dimensional representations
in the noun space of our model:

l̂ions = |−−−→
lions〉〈−−−→

lions| ŝloths = |−−−−→
sloths〉〈−−−−→

sloths|
m̂eat = |−−−→

meat〉〈−−−→
meat| p̂lants = |−−−−→

plants〉〈−−−−→
plants|

Let the representation of “mammals” be a mixture of one dimensional represen-
tations of individual animals:

̂mammals = 1/2|−−−→
lions〉〈−−−→

lions| + 1/2|−−−−→
sloths〉〈−−−−→

sloths|
Notice that

N(l̂ions|| ̂mammals) = tr(l̂ions log l̂ions) − tr(l̂ions log ̂mammals)

= log 1 − 1
2

log
1
2

= 1

Hence R(l̂ions, ̂mammals) = 1/2. For the other direction, since the intersection
of the support of ̂mammals and the kernel of l̂ions is non-empty, R(̂mammals,

l̂ions) = 0. This confirms that l̂ions ≺ ̂mammals.

6.2 Entailment Between Sentences in One Dimensional Truth
Theoretic Space

Consider a sentence space that is one dimensional, where 1 stands for true and
0 for false. Let sloths eat plants and lions eat meat; this is represented as follows

êat =(|−−−−→
sloths〉|−−−−→

plants〉 + |−−−→
lions〉|−−−→

meat〉)(〈−−−−→
sloths|〈−−−−→

plants| + 〈−−−→
lions|〈−−−→

meat|)
≈(|−−−−→

sloths〉〈−−−−→
sloths| ⊗ |−−−−→

plants〉〈−−−−→
plants|) + (|−−−−→

sloths〉〈−−−→
lions| ⊗ |−−−−→

plants〉〈−−−→
meat|)

+ (|−−−→
lions〉〈−−−−→

sloths| ⊗ |−−−→
meat〉〈−−−−→

plants|) + (|−−−→
lions〉〈−−−→

lions| ⊗ |−−−→
meat〉〈−−−→

meat|)
The above is the density matrix representation of a pure composite state that
relate “sloths” to “plants” and “lions” to “meat”. If we fix the bases {−−−→

lions,
−−−−→
sloths}

for N1, and {−−−→
meat,

−−−−→
plants} for N2, we will have êat : N1 ⊗ N1 → N2 ⊗ N2 with

the following matrix representation:

14 E. Balkir et al.

⎛

⎜⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟⎟⎠

“Lions Eat Meat”. This is a transitive sentence, so as before, it has the pregroup
type: nnlsnrn. Explicit calculations for its meaning give:

(εl
N ⊗ 1S ⊗ εr

N)(l̂ions ⊗ êat ⊗ m̂eat)

= 〈−−−→
lions|−−−−→

sloths〉2〈−−−−→
plants|−−−→

meat〉2

+ 〈−−−→
lions|−−−−→

sloths〉〈−−−→
lions|−−−→

lions〉〈−−−→
meat|−−−→

meat〉〈−−−−→
plants|−−−→

meat〉
+ 〈−−−→

lions|−−−→
lions〉〈−−−→

lions|−−−−→
sloths〉〈−−−→

meat|−−−→
meat〉〈−−−−→

plants|−−−→
meat〉

+ 〈−−−→
lions|−−−→

lions〉2〈−−−→
meat|−−−→

meat〉2
= 1

“Sloths Eat Meat”. This sentence has a very similar calculation to the one above
with the resulting meaning:

(εl
N ⊗ 1S ⊗ εr

N)(ŝloths ⊗ êat ⊗ m̂eat) = 0

“Mammals Eat Meat”. This sentence has the following meaning calculation:

(εlN ⊗ 1S ⊗ εrN)(̂mammals ⊗ ̂eat ⊗ m̂eat) =

(εlN ⊗ 1S ⊗ εrN)((
1

2
l̂ions +

1

2
ŝloths) ⊗ ̂eat ⊗ m̂eat) =

1

2
(εlN ⊗ 1S ⊗ εrN)(l̂ions ⊗ ̂eat ⊗ m̂eat) +

1

2
(εlN ⊗ 1S ⊗ εrN)(ŝloths ⊗ ̂eat ⊗ m̂eat) =

1

2

The resulting meaning of this sentence is a mixture of “lions eat meat”,
which is true, and “sloths eat meat” which is false. Thus the value 1/2 can be
interpreted as being neither completely true or completely false: the sentence
“mammals eat meat” is true for certain mammals and false for others.

6.3 Entailment Between Sentences in Two Dimensional Truth
Theoretic Space

The two dimensional truth theoretic space is set as follows:

true ≡ |0〉 ≡
(

1
0

)
false ≡ |1〉 ≡

(
0
1

)

The corresponding true and false density matrices are |0〉〈0| and |1〉〈1|.
In the two dimensional space, the representation of “eats” is set as follows.

Let A = {lions, sloths} and B = {meat, plants}, then

Distributional Sentence Entailment Using Density Matrices 15

êat ≡
∑

a1,a2∈A
b1,b2∈B

|−→a1〉〈−→a2| ⊗ |−→x 〉〈−→x | ⊗ |−→b1〉〈−→b2 |

where

|x〉 ≡
{

|0〉 if |a1〉|b1〉, |a2〉|b2〉 ∈ {|−−−→
lions〉|−−−→

meat〉, |−−−−→
sloths〉|−−−−→

plants〉}
|1〉 otherwise

The generalized matrix representation of this verb in the spirit of [14] is:
⎛

⎜⎜⎝

1 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0

⎞

⎟⎟⎠

“Lions Eat Meat”. The calculation for the meaning of this sentence is almost
exactly the same as the case of the one dimensional meaning, only the result is
not the scalar that stands for true but its density matrix:

(εl
N ⊗ 1S ⊗ εr

N)(l̂ions ⊗ êat ⊗ m̂eat) = |0〉〈0|
“Sloths Eat Meat”. Likewise, the calculation for the meaning of this sentence
returns false:

(εl
N ⊗ 1S ⊗ εr

N)(ŝloths ⊗ êat ⊗ m̂eat) = |1〉〈1|
“Mammals Eat Meat”. As we saw before, this sentence has the meaning that is
the mixture of “Lions eat meat” and “Sloths eat meat”; here, this is expressed
as follows:

(εlN ⊗ 1S ⊗ εrN)(̂mammals ⊗ ̂eat ⊗ m̂eat)

=
1

2
(εlN ⊗ 1S ⊗ εrN)(l̂ions ⊗ ̂eat ⊗ m̂eat) +

1

2
(εlN ⊗ 1S ⊗ εrN)(ŝloths ⊗ ̂eat ⊗ m̂eat)

=
1

2
|1〉〈1| +

1

2
|0〉〈0|

So in a two dimensional truth theoretic model, “Mammals eat meat” give the
completely mixed state in the sentence space, which has maximal entropy. This is
equivalent to saying that we have no real knowledge whether mammals in general
eat meat or not. Even if we are completely certain about whether individual
mammals that span our space for “mammals” eat meat, this information differs
uniformly within the members of the class, so we cannot generalize.

Already with a two dimensional truth theoretic model, the relation l̂ions ≺
̂mammals carries over to sentences. To see this, first note that we have

N(̂lions eat meat|| ̂mammals eat meat) = N

(
|0〉〈0|

∣∣∣∣

∣∣∣∣
1
2
|0〉〈0| +

1
2
|1〉〈1|

)

= (|0〉〈0|) log(|0〉〈0|) − (|0〉〈0|) log
(

1
2
|0〉〈0| +

1
2
|1〉〈1|

)
= 1

16 E. Balkir et al.

In the other direction, we have N(̂mammals eat meat|| ̂lions eat meat) = ∞,
since the intersection of the support of the first argument and the kernel of the
second argument is non-trivial. These lead to the following representativeness
results between sentences:

R(̂lions eat meat, ̂mammals eat meat) = 1/2

R(̂mammals eat meat|| ̂lions eat meat) = 0

As a result we obtain:

̂lions eat meat ≺ ̂mammals eat meat

Since these two sentences share the same verb phrase, from-meaning-of-
words-to-the-meaning-of-sentence map carries the hyponymy relation in the sub-
ject words of the respective sentences to the resulting sentence meanings. By
using the density matrix representations of word meanings together with the
categorical map from the meanings of words to the meanings of sentences, the
knowledge that a lion is an animal lets us infer that “mammals eat meat” implies
“lions eat meat”:

(l̂ions ≺ ̂mammals) → (̂lions eat meat ≺ ̂mammals eat meat)

“Dogs Eat Meat”. To see how the completely mixed state differs from a perfectly
correlated but pure state in the context of linguistic meaning, consider a new
noun d̂og = |−→

dog〉〈−→
dog| and redefine eat in terms of the bases {−−−→

lions,
−−→
dogs} and

{−−−→
meat,

−−−−→
plants}, so that it will reflect the fact that dogs eat itboth meat and

plants. We define “eat” so that it results in the value of being “half-true half-
false” when it takes “dogs” as subject and “meat” or “plants” as object. The
value “half-true half-false” is the superposition of true and false: 1

2 |0〉 + 1
2 |1〉.

With this assumptions, êat will still be a pure state with the following represen-
tation in FVect:

|−→eat〉 = |−−−→
lions〉 ⊗ |0〉 ⊗ |−−−→

meat〉 + |−−−→
lions〉 ⊗ |1〉 ⊗ |−−−−→

plants〉
+ |−−→dogs〉 ⊗ (

1
2
|0〉 +

1
2
|1〉) ⊗ |−−−→

meat〉 + |−−→dogs〉 ⊗ (
1
2
|0〉 +

1
2
|1〉) ⊗ |−−−−→

plants〉
Hence, the density matrix representation of “eat” becomes:

êat = |−→eat〉〈−→eat|
The calculation for the meaning of the sentence is as follows:

(εl
N ⊗ 1S ⊗ εr

N)(d̂ogs ⊗ êat ⊗ m̂eat)

= (εl
N ⊗ 1S ⊗ εr

N)(|−−→dogs〉〈−−→dogs| ⊗ |−→eat〉〈−→eat| ⊗ |−−−→
meat〉〈−−−→

meat|)
= (

1
2
|0〉 +

1
2
|1〉)(1

2
〈0| +

1
2
〈1|)

So in this case, we are certain that it is half-true and half-false that dogs eat
meat. This is in contrast with the completely mixed state we got from “Mammals
eat meat”, for which the truth or falsity of the sentence was entirely unknown.

Distributional Sentence Entailment Using Density Matrices 17

“Mammals eat meat”, again. Let “mammals” now be defined as:

̂mammals =
1
2
l̂ions +

1
2
d̂ogs

The calculation for the meaning of this sentence gives:

(εl
N ⊗ 1S ⊗ εr

N)(̂mammals ⊗ ̂eat ⊗ m̂eat)

=
1

2
(εl

N ⊗ 1S ⊗ εr
N)(l̂ions ⊗ ̂eat ⊗ m̂eat) +

1

2
(εl

N ⊗ 1S ⊗ εr
N)(̂dogs ⊗ ̂eat ⊗ m̂eat)

=
3

4
|0〉〈0| +

1

4
|0〉〈1| +

1

4
|1〉〈0| +

1

4
|1〉〈1|

This time the resulting sentence representation is not completely mixed. This
means that we can generalize the knowledge we have from the specific instances
of mammals to the entire class to some extent, but still we cannot generalize
completely. This is a mixed state, which indicates that even if the sentence is
closer to true than to false, the degree of truth isn’t homogeneous throughout
the elements of the class. The non-zero non-diagonals indicate that it is also
partially correlated, which means that there are some instances of “mammals”
for which this sentence is true to a degree, but not completely. The relative
similarity measures between true and false and the sentence can be calculated
explicitly using fidelity:

F
(|1〉〈1|, ̂mammals eat meat

)
= 〈1| ̂mammals eat meat|1〉 =

1
4

F
(|0〉〈0|, ̂mammals eat meat

)
= 〈0| ̂mammals eat meat|0〉 =

3
4

Notice that these values are different from the values for the representative-
ness for truth and falsity of the sentence, even thought they are proportional:
the more representative their density matrices, the more similar the sentences
are to each other. For example, we have:

N
(|1〉〈1| ‖ ̂mammals eat meat

)
=

tr
(|1〉〈1|) log(|1〉〈1|)) − tr

(|1〉〈1| log(
3
4
|0〉〈0| +

1
4
|0〉〈1| +

1
4
|1〉〈0| +

1
4
|1〉〈1|)) ≈ 2

Hence, R
(|1〉〈1| ‖ ̂mammals eat meat

) ≈ .33. On the other hand:

N
(|0〉〈0| ‖ ̂mammals eat meat

)

=

tr
(|0〉〈0|) log(|0〉〈0|))− tr

(|0〉〈0| log(
3

4
|0〉〈0| +

1

4
|0〉〈1| +

1

4
|1〉〈0| +

1

4
|1〉〈1|)) ≈ 0.41

Hence, R
(|0〉〈0| ‖ ̂mammals eat meat

) ≈ 0.71.

18 E. Balkir et al.

7 Distributional Examples

The goal of this section is to show how one can obtain density matrices for words
using lexical taxonomies and co-occurrence frequencies counted from corpora of
text. We show how these density matrices are used in example sentences and how
the density matrices of their meanings look like. We compute the representative-
ness formula for these sentences to provide a proof of concept that this measure
does makes sense for data harvested from corpora distributionally and that its
application is not restricted to truth-theoretic models. Implementing these con-
structions on real data and validating them on large scale datasets constitute
work in progress.

7.1 Entailment Between Nouns

Suppose we have a noun space N . Let the subspace relevant for this part of
the example be spanned by lemmas pub, pitcher, tonic. Assume that the (non-
normalized version of the) vectors of the atomic words lager and ale in this
subspace are as follows:

−−−→
lager = 6 × −→

pub + 5 × −−−−→
pitcher + 0 × −−−→

tonic
−→
ale = 7 × −→

pub + 3 × −−−−→
pitcher + 0 × −−−→

tonic

Suppose further that we are given taxonomies such as ‘beer = lager + ale’,
harvested from a resource such as WordNet. Atomic words (i.e. leafs of the
taxonomy), correspond to pure states and their density matrices are the pro-
jections onto the one dimensional subspace spanned by |−→w 〉〈−→w |. Non-atomic
words (such as beer) are also density matrices, harvested from the corpus using
a feature-based method similar to that of [12]. This is done by counting (and
normalising) the frequency of times a word has co-occurred with a subset B of
bases in a window in which other bases (the ones not in B) have not occurred.

Formally, for a subset of bases {b1, b2, ..., bn}, we collect co-ordinates Cij for
each tuple |bi〉|bj〉 and build the density matrix

∑
ij Cij |bi〉|bj〉.

For example, suppose we see beer six times with just pub, seven times with
both pub and pitcher, and none-whatsoever with tonic. Its corresponding density
matrix will be as follows:

b̂eer = 6 × |−→
pub〉〈−→

pub| + 7 × (|−→
pub〉 + |−−−−→

pitcher〉)(〈−→
pub| + 〈−−−−→

pitcher|)

= 13×|−→
pub〉〈−→

pub|+7×|−→
pub〉〈−−−−→

pitcher|+7×|−−−−→
pitcher〉〈−→

pub|+7×|−−−−→
pitcher〉〈−−−−→

pitcher|
To calculate the similarity and representativeness of the word pairs, we first

normalize them via the operation ρ
Trρ , then apply the corresponding formulae.

For example, the degree of similarity between ‘beer’ and ‘lager’ using fidelity is
as follows:

Tr

√
l̂ager

1
2 · b̂eer · l̂ager

1
2 = 0.93

Distributional Sentence Entailment Using Density Matrices 19

The degree of entailment lager ≺ beer is 0.82 as computed as follows:

1

1 + Tr(l̂ager · log(l̂ager) − l̂ager · log(b̂eer))
= 0.82

The degree of entailment beer ≺ lager is 0, like one would expect.

7.2 Entailment Between Sentences

To see how the entailment between sentences follows from the entailment between
words, consider example sentences ‘Psychiatrist is drinking lager’ and ‘Doctor
is drinking beer’. For the sake of brevity, we assume the meanings of psychiatrist
and doctor are mixtures of basis elements, as follows:

̂psychiatrist = 2 × |−−−−→
patient〉〈−−−−→

patient| + 5 × |−−−−→
mental〉〈−−−−→

mental|
̂doctor = 5 × |−−−−→

patient〉〈−−−−→
patient| + 2 × |−−−−→

mental〉〈−−−−→
mental| + 3 × |−−−−−→surgery〉〈−−−−−→surgery|

The similarity between psychiatrist and doctor is:

S(̂psychiatrist, d̂octor) = S(d̂octor, ̂psychiatrist) = 0.76

The representativeness between them is:

R(̂psychiatrist, d̂octor) = 0.49 R(d̂octor, ̂psychiatrist) = 0

We build matrices for the verb drink following the method of [15]. Intuitively
this is as follows: the value in entry (i, j) of this matrix will reflect how typical
it is for the verb to have a subject related to the ith basis and an object related
to the jth basis. We assume that the small part of the matrix that interests us
for this example is as follows:

Drink Pub Pitcher Tonic

Patient 4 5 3

Mental 6 3 2

Surgery 1 2 1

This representation can be seen as a pure state living in a second order
tensor. Therefore the density matrix representation of the same object is d̂rink =
|−−−→
drink〉〈−−−→

drink|, a fourth order tensor. Lifting the simplifications introduced in
[15] from vectors to density matrices, we obtain the following linear algebraic
closed forms for the meaning of the sentences:

̂Psychiatrist is drinking lager = d̂rink � (̂psychiatrist ⊗ l̂ager)

̂Doctor is drinking beer = d̂rink � (d̂octor ⊗ b̂eer)

20 E. Balkir et al.

Applying the fidelity and representativeness formulae to sentence representa-
tions, we obtain the following values:

S(̂Psychiatrist is drinking lager, ̂Doctor is drinking beer) = 0.81

R(̂Psychiatrist is drinking lager, ̂Doctor is drinking beer) = 0.53

R(̂Doctor is drinking beer, ̂Psychiatrist is drinking lager) = 0

From the relations psychiatrist ≺ doctor and lager ≺ beer we obtain the desired
entailment between sentences:

Psychiatrist is drinking lager ≺ Doctor is drinking beer .

The entailment between these two sentences follows from the entailment between
their subjects and the entailment between their objects. In the examples that
we have considered so far, the verbs of sentences are the same. This is not a
necessity. One can have entailment between sentences that do not have the same
verbs, but where the verbs entail each other, examples can be found in [2]. The
reason we do not present such cases here is lack of space.

8 Conclusion and Future Work

The often stated long term goal of compositional distributional models is to
merge distributional and formal semantics. However, what formal and distribu-
tional semantics do with the resulting meaning representations is quite different.
Distributional semanticists care about similarity while formal semanticists aim
to capture truth and inference. In this work we presented a theory of meaning
using basic objects that will not confine us to the realm of only distributional
or only formal semantics. The immediate next step is to develop methods for
obtaining density matrix representations of words from corpus, that are more
robust to statistical noise, and testing the usefulness of the theory in large scale
experiments.

The problem of integrating function words such as ‘and’, ‘or’, ‘not’, ‘every’
into a distributional setting has been notoriously hard. We hope that the charac-
terization of compositional distributional entailment on these very simple types
of sentences will provide a foundation on which we can define representations
of these function words, and develop a more logical theory of compositional
distributional meaning.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp.
415–425. IEEE Computer Science Press (2004). arXiv:quant-ph/0402130

2. Balkır, E.: Using density matrices in a compositional distributional model of mean-
ing. Master’s thesis, University of Oxford (2014)

http://arxiv.org/abs/quant-ph/0402130

Distributional Sentence Entailment Using Density Matrices 21

3. Baroni, M., Bernardi, R., Do, N-Q., Shan, C-C.: Entailment above the word level in
distributional semantics. In: Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 23–32. Association
of Computational Linguists (2012)

4. Beltagy, I., Chau, C., Boleda, G., Garrette, D., Erk, K., Mooney, R.: Montague
meets markov: deep semantics with probabilistic logical form. In: Second Joint
Conference on Lexical and Computational Semantics, vol. 1, pp. 11–21. Association
of Computational Linguists (2013)

5. Blacoe, W., Kashefi, E., Lapata, M.: A quantum-theoretic approach to distribu-
tional semantics. In: Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 847–857 (2013)

6. Bruza, P.D., Cole, R.: Quantum logic of semantic space: an exploratory investiga-
tion of context effects in practical reasoning. In: We Will Show Them: Essays in
Honour of Dov Gabbay, pp. 339–361 (2005)

7. Clark, S., Coecke, B., Sadrzadeh, M.: A compositional distributional model of
meaning. In: Proceedings of the Second Symposium on Quantum Interaction (QI-
2008), pp. 133–140 (2008)

8. Clarke, D.: Context-theoretic semantics for natural language: an overview. In: Pro-
ceedings of the Workshop on Geometrical Models of Natural Language Semantics,
pp. 112–119. Association for Computational Linguistics (2009)

9. Coecke, B.: Quantum picturalism. Contemp. Phys. 51(1), 59–83 (2010)
10. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical foundations for a composi-

tional distributional model of meaning. Linguist. Anal. 36 (2010)
11. Firth, John R.: A Synopsis of Linguistic Theory, 1930–1955. Studies in Linguistic,

Analysis, pp. 1–32 (1957)
12. Geffet, M., Dagan, I.: The distributional inclusion hypotheses and lexical entail-

ment. In: Proceedings of the 43rd Annual Meeting on Association for Computa-
tional Linguistics, pp. 107–114. Association for Computational Linguistics (2005)

13. Glickman, O., Dagan, I., Koppel, M.: Web based probabilistic textual entailment.
In: Proceedings of the PASCAL Challenges Workshop on Recognizing Textual
Entailment (2005)

14. Grefenstette, E.: Category-Theoretic Quantitative Compositional Distributional
Models of Natural Language Semantics. Ph.D. thesis, University of Oxford (2013)

15. Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical compo-
sitional distributional model of meaning. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp. 1394–1404. Association
for Computational Linguistics (2011)

16. Herbelot, A., Ganesalingam, M.: Measuring semantic content in distributional vec-
tors. In: Proceedings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics, vol. 2, pp. 440–445. Association for Computational Linguistics
(2013)

17. Kotlerman, L., Dagan, I., Szpektor, I., Zhitomirsky-Geffet, M.: Directional distri-
butional similarity for lexical inference. Nat. Lang. Eng. 16(04), 359–389 (2010)

18. Lambek, J.: Type grammars as pregroups. Grammars 4(1), 21–39 (2001)
19. Lenci, A., Benotto, G.: Identifying hypernyms in distributional semantic spaces. In:

Proceedings of the First Joint Conference on Lexical and Computational Seman-
tics, vol. 2, pp. 75–79. Association for Computational Linguistics (2012)

20. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the
International Conference on Machine Learning, pp. 296–304 (1998)

22 E. Balkir et al.

21. MacCartney, B., Manning, C.D.: Natural logic for textual inference. In: ACL Work-
shop on Textual Entailment and Paraphrasing, Association for Computational Lin-
guistics (2007)

22. Piedeleu, R., Kartsaklis, D., Coecke, B., Sadrzadeh, M.: Open system categorical
quantum semantics in natural language processing (2015). arXiv:1502.00831

23. Santus, E., Lenci, A., Lu, Q., Walde, S.S.I.: Chasing hypernyms in vector spaces
with entropy. In: Proceedings of the 14th Conference of the European Chapter of
the Association for Computational Linguistics, vol. 2, pp. 38–42 (2014)

24. Selinger, P.: Dagger compact closed categories and completely positive maps. Elec-
tron. Notes Theoret. Comput. Sci. 170, 139–163 (2007)

25. Sordoni, A., Nie, J-Y., Bengio, Y.: Modeling term dependencies with quantum
language models for ir. In: Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 653–662.
Association for Computational Linguistics (2013)

26. Van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge Univer-
sity Press, New York (2004)

27. Weeds, J., Weir, D., McCarthy, D.: Characterising measures of lexical distributional
similarity. In: Proceedings of the 20th International Conference on Computational
Linguistics, Number 1015. Association for Computational Linguistics (2004)

http://arxiv.org/abs/1502.00831

On Symmetric and Choiceless Computation

Anuj Dawar(B)

University of Cambridge Computer Laboratory, William Gates Building,
J.J. Thomson Avenue, Cambridge CB3 0FD, UK

anuj.dawar@cl.cam.ac.uk

Formal models of computation such as Turing machines are usually defined as
performing operations on strings of symbols. Indeed, for most purposes, it suf-
fices to consider strings over a two-letter alphabet {0, 1}. Decision problems
are defined as sets of strings, and complexity classes as sets of decision prob-
lems. However, many natural algorithms are described on more abstract struc-
ture (such as graphs) because this is the natural level of abstraction at which
to describe the problem being solved. Of course, we know that the abstract
structures can be ultimately represented as strings (and, indeed, have to be
in actual computational devices), but the representation comes at a cost. The
same abstract structure may have many different string representations and the
implementation of the algorithm may break the intended abstraction.

Research in the area of finite model theory and descriptive complexity
(see [11,13]) has, over the years, developed a number of techniques of describing
algorithms and complexity classes directly on classes of relational structures,
rather than strings. Along with this, many methods of proving inexpressiblity
results have been shown, often described in terms of games. A key question that
has been the focus of this research effort is whether the complexity class P admits
a descriptive characterisation (see [10, Chap. 11]).

A recent paper [1] ties some of the logics studied in finite model theory to
natural circuit complexity classes, and shows thereby that inexpressibility results
obtained in finite model theory can be understood as lower bound results on such
classes. In this presentation, I develop the methods for proving lower bound
results in the form of combinatorial arguments on circuits, without reference to
logical definability. The present abstract gives a brief account of the results and
methods.

Symmetric Circuits. We start with a brief introduction to the formalism of
circuit complexity. A language L ⊆ {0, 1}∗ can be described as a family of
Boolean functions: (fn)n∈ω : {0, 1}n → {0, 1}. Each fn can be represented by a
circuit Cn which is a directed acyclic graph where we think of the vertices as
gates suitably labeled by Boolean operators ∧,∨,¬ for the internal gates and by
inputs x1, . . . , xn for the gates without incoming edges. One gate is distinguished
as determining the output. If there is a polynomial p(n) bounding the size of
Cn (i.e. the number of gates in Cn), then the language L is said to be in the
complexity class P/poly. If, in addition, the family of circuits is uniform, meaning
that the function that takes n to Cn is itself computable in polynomial time,
then L is in P. For the definition of either of these classes, it does not make a

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 23–29, 2016.
DOI: 10.1007/978-3-319-28678-5 2

24 A. Dawar

difference if we expand the class of gates that we can use in the circuit beyond the
Boolean basis to include, for instance, threshold or majority gates. The presence
of such gates can make a difference for more restricted circuit complexity classes,
for instance when we limit the depth of the circuit to be bounded by a constant,
but not when we allow arbitrary polynomial-size circuits. Also, in the circuit
characterization of P, it does not make a difference if we replace the uniformity
condition with a stronger requirement. Say, we might require that the function
taking n to Cn is computable in DLogTime.

We are interested in languages that represent properties of relational struc-
tures such as graphs. For simplicity, let us restrict attention to directed graphs,
i.e. structures in a vocabulary with one binary relation. A property of such graphs
that is in P can be recognised by a family (Cn)n∈ω of Boolean circuits of poly-
nomial size and uniformity, as before, where now the inputs to Cn are labelled
by the n2 potential edges of an n-vertex graph, each taking a value of 0 or 1.
Given an n-vertex graph G, there are many ways that it can be mapped onto the
inputs of the circuit Cn, one for each bijection between V (G)—the vertices of
G—and [n]. So, to ensure that the family of circuits is really defining a property
of graphs, we require it to be invariant under the choice of this mapping. That
is, each input of Cn carries a label of the form (i, j) for i, j ∈ [n] and we require
the output to be unchanged under any permutation π ∈ Sn acting on the inputs
by the action (i, j) �→ (π(i), π(j)). It is clear that any property of graphs that is
invariant under isomorphisms of graphs and is in P is decided by such a family
of circuits. Say that a circuit Cn is symmetric if any permutation π ∈ Sn can be
extended to an automorphism of Cn which takes each input (i, j) to (π(i), π(j)).
Below, we do not distinguish notationally between the permutation π and its
extension to an automorphism of Cn.

Lower Bounds for Symmetric Circuits. It is clear that symmetric cir-
cuits are necessarily invariant and it is not difficult to come up with exam-
ples that show that the converse is not true. That is, we can show that there
are polynomial-time decidable properties of graphs that are not decided by
polynomial-size families of Boolean circuits. Indeed, one can show that the prop-
erty of a graph G having an even number of edges cannot be decided by any
such family. It is rather more challenging to show that there are polynomial time
decidable properties that are not decided by polynomial-size families of symmet-
ric circuits with threshold gates. The proof is based on three ingredients, which
are elaborated next.

Support Theorem. The first is a combinatorial analysis of symmetric circuits
establishing the so-called bounded support property. For a gate g in Cn, a sym-
metric circuit taking n-vertex graphs as input, we say that a set X ⊆ [n] supports
g if for every π ∈ Sn such that π(x) = x for all x ∈ X, we also have π(g) = g.
The support theorem in [1] establishes that if (Cn)n∈ω is a family of symmetric
circuits of polynomial size then there is a k such that all gates in Cn have a
support of at most k elements.

On Symmetric and Choiceless Computation 25

Theorem 1 [1]. For any polynomial p, there is a k such that for all sufficiently
large n, if C is a symmetric circuit on [n] of size at most p(n), then every gate
in C has a support of size at most k.

The theorem as proved in [1] establishes this in greater generality, allowing for
circuit sizes that group super-polynomially and yielding support sizes that are
then also non-constant. However, the simpler version suffices for the lower bounds
state here. The proof is a combinatorial analysis of the action of permutations
on a symmetric circuit and the interested reader should refer to [1] for details.

Bijection Games. The second ingredient in the lower bound proof is the bijection
game of Hella [12], which in combination with the support theorem, gives us
a tool for showing that certain pairs of graphs are not distinguished by any
circuit where all gates have bounded size supports. Hella defined this game as
a characterization of equivalence in a fragment of first-order logic where the
number of variables is limited, but we have counting quantifiers. The logic does
not concern us here. We regard the game as defining a family of equivalence
relations ≡k, parameterized by a positive integer k. The game is played on graphs
G and H (or, more generally, finite relational structures) by two players called
Spoiler and Duplicator using pebbles a1, . . . , ak on G and b1, . . . , bk on H. At
any point in the game, the pebbles may be placed on vertices of the respective
graphs and we do not distinguish notationally below between the pebble and the
vertex on which it is placed. One move of the game proceeds as follows:

– Spoiler chooses a pair of pebbles ai and bi;
– Duplicator chooses a bijection h : V (G) → V (H) such that for pebbles aj and

bj (j 	= i), h(aj) = bj ; and
– Spoiler chooses a ∈ V (G) and places ai on a and bi on h(a).

If, after this move, the map a1 . . . ak �→ b1 . . . bk is not an isomorphism between
the subgraphs of G and H induced by the pebbled vertices, the game is over
and Spoiler wins, otherwise it can continue. We say that G ≡k H if Duplicator
has a strategy for playing forever. Clearly, if G and H are isomorphic, then
G ≡k H as Duplicator can always play the isomorphism as its choice of bijection.
Conversely, if k ≥ n then Spoiler can force a win as long as G and H are not
isomorphic. Thus G ≡n H implies that G and H are isomorphic. For smaller
values of k, the equivalence relation provides an approximation of ismorphism.
The family of equivalence relations so defined is also known as the Weisfeiler-
Lehman equivalences (see [5] for an account).

What links these games with symmetric circuits is the following.

Theorem 2. If C is a symmetric circuit on n-vertex graphs such that every
gate of C has a support of size at most k, and G and H are graphs such that
G ≡2k H then, C accepts G if, and only if, C accepts H.

Proof. (Sketch). To prove this, we show that if C distinguishes G from H, it
provides a winning strategy for Spoiler in the 2k-pebble bijection game played
on G and H, which guarantees a win in at most kd moves, where d is the depth

26 A. Dawar

of the circuit C. Specifically, Spoiler plays by maintaining a pointer to a gate g
of C and a bijection α : V (G) → [n] between the vertices of G and [n] so that
the following conditions are satisfied in any game position (ū, v̄) that arises in
the game:

– α(ū) includes the support of g; and
– for any bijection β : V (H) → [n] such that β−1α(ū) = v̄, we have Cg(α(G)) 	=

Cg(β(H)).

Here, Cg(α(G)) denotes the value that the gate g takes in the evaluation of the
circuit C when the inputs are assigned the edges of G according to the map α.
Similarly, Cg(β(H)) denotes the value that the gate g takes in the evaluation
of the circuit C when the inputs are assigned the edges of H according to the
map β.

These conditions are initially satisfied by taking α to be any bijection and
letting g be the output gate of C, since C is assumed to be symmetric and to
distinguish G from H. The key step in the proof shows that, given that the
conditions are satisifed, Spoiler can, within k moves, move the pointer to a child
of g so that the conditions are still satisfied. Indeed, suppose γ : V (G) → V (H)
is the bijection that Duplicator plays. Since, by assumption, g is evaluated dif-
ferently under the assignments α(G) and αγ−1(H), there must be a child h
of g so that Ch(α(G)) 	= Ch(αγ−1(H)). Spoiler aims to place pebbles on the
vertices of G in α−1(s) where s is the support of h, within k moves. At each
move, Duplicator may change the bijection γ. However, since the elements cor-
responding to the support of g are pebbled, there is an automorphism of C
that fixes g, corresponding to the changed bijection. This enables us to show
that Spoiler can indeed force pebbles onto the elements α−1(s) where s is
the support of a suitable h, within k moves, while maintaining the conditions
(1) and (2) above.

Thus, within kd moves, the conditions are satisfied with the pointer at a gate
which is an input gate of C, say labelled with the input (i, j). The support of
this gate is just the set {i, j} so, by assumption, there are pebbles on u = α−1(i)
and v = α−1(j) in G and corresponding pebbles on γ(u) and γ(v). The condition
that Cg(α(G)) 	= Cg(αγ−1(H)) tells us that one of these is an edge and the other
is not, which means that Spoiler has won the bijection game.

Cai-Fürer Immerman Graphs. The final ingredient in proving a lower bound is
the construction of pairs of graphs that are not isomorphic, but are equivalent
in the relation ≡k. Just such a construction is provided by Cai et al. [5]. To be
precise, they show that there is sequence of pairs of graphs Gk and Hk (k ∈ N)
so that for each k we have Gk ≡k Hk and there is a polynomial-time decidable
property of graphs that includes all the Gk and excludes all Hk. In particular,
it follows from our discussion above that this polynomial-time property is not
decided by any polynomial-size family of symmetric circuits, even in the presence
of threshold gates.

The graphs Gk and Hk are obtained from a single graph G by replacing the
vertices and edges of G by suitably defined gadgets. In particular, each edge of

On Symmetric and Choiceless Computation 27

G is replaced in Gk and Hk by a pair of parallel edges. Swapping the endpoints
of one such pair of edges distinguishes Gk from Hk. It can then be shown that
if the graph G we start from is sufficiently well connected, in particular if it has
tree-width at least k, then Gk ≡k Hk. For details of the construction, including
the connection to tree-width and pebble games, we refer the reader to [9].

Reductions and Complete Problems. Having established a super-
polynomial lower bound for symmetric threshold circuits for one (artificial) prob-
lem, we are able to tranfer such lower bounds to other problems by means of
reductions. The appropriate notion of reduction here is a symmetric version of
AC0 reductions, i.e. reductions given by families of constant-depth, polynomial-
size Boolean circuits. In order to formally define such reductions, we have to con-
sider circuits which do not have a single output but can, instead, be used to define
a relation on [n] when presented with an n-vertex graph, and we need to extend the
definition of symmetry to such circuits. This is done formally in [1]. To be precise,
we have a circuit C along with an injective function Ω : [n] → C. The requirement
for symmetry now says any permutation π ∈ Sn extends to an automorphism of
C so that π(Ω(x)) = Ω(π(x)).

Reductions defined by constant-depth symmetric circuits are closely related
to reductions given by formulas of first-order logic (FO-reductions). In partic-
ular, it is easy to show that if a problem P is recucible to Q by means of
an FO-reduction, it is reducible by means of a symmetric AC0-reduction. It is
known from the work of Lovász and Gács [14] that a version of the Boolean sat-
isfiability problem SAT (suitably represented as a class of relational structures)
is NP-complete under FO-reductions. It follows immediately that this problem
cannot be solved by polynomial-size symmetric threshold circuits. If it could, all
problems in NP would be solved by such circuit families and we have already
established that this is not the case. A similar result holds for the class of
Hamiltonian graphs, since this is also known to be NP-complete under FO-
reductions by a construction due to Dahlhaus [6].

On the other hand, there are natural graph problems, such as 3-colourability,
which are NP-complete under the usual sense of polynomial-time reductions but
which are provably not NP-complete under FO-reductions (the latter follows from
results in [8]). It remains an open question whether 3-SAT (with a natural repre-
sentation as a class of relational structures) is NP-complete under FO-reductions.
Nonetheless, it is possible to use FO-reductions from established lower bounds to
show that neither 3-SAT nor 3-colourability is solvable by polynomial-size sym-
metric threshold circuits (these results follow from constructions in [3]). In the
case of 3-colourability, there is also a construction that deploys bijection games
(as in [7]) directly to show that this problem is not decidable by such families.
These lower bounds should be contrasted with the fact that the existence of
perfect matchings in graphs is definable in the logic FPC [2] and therefore is
decidable by polynomial-size symmetric threshold circuits.

The following table gives a list of problems that are known to be solvable by
polynomial-size symmetric threshold circuits (under upper bounds) and a list of
closely related problems that are provably not solvable by such families (under

28 A. Dawar

lower bounds). It should be noted that the lower bound results are unconditional
in that they do not rely on unproved complexity-theoretic assumptions such as
P 	= NP.

Upper bounds Lower bounds

Circuit value problem SAT

2-Colourability 3-Colourability

2-SAT 3-SAT

Perfect matching Hamiltonian cycle

Linear programming XOR-SAT

Isomorphism on planar graphs Isomorphism on bounded-degree graphs

Choiceless Computation. Another way of describing algorithms that work
directly with relational structures rather than strings that encode them are the
abstract state machines of Gurevich (see [4] and references therein). Here, the
ability of a classical machine to make arbitrary choices is eschewed in favour of a
high degree of parallelism. While such machines are universal, and can describe
any algorithm at a high level of abstraction, it remains an open question whether
every polynomial-time decidable class of structures is decidable in polynomial-
time by such a machine. Specifically, Blass et al. [4] define the class CPTC
of problems decidable in choiceless polynomial time with counting and ask the
question whether this includes all of P. They conjecture that it does not, but the
question remains unresolved. An interesting angle to this question is to examine
it through the lens of circuits.

References

1. Anderson, M., Dawar, A.: On symmetric circuits and fixed-point logics. In: 31st
International Symposium Theoretical Aspects of Computer Science (STACS 2014),
pp. 41–52 (2014)

2. Anderson, M., Dawar, A., Holm, B.: Maximum matching and linear programming
in fixed-point logic with counting. In: 28th Annual ACM/IEEE Symposium Logic
in Computer Science, pp. 173–182 (2013)

3. Atserias, A., Bulatov, A., Dawar, A.: Affine systems of equations and counting
infinitary logic. Theor. Comput. Sci. 410(18), 1666–1683 (2009)

4. Blass, A., Gurevich, Y., Shelah, S.: Choiceless polynomial time. Ann. Pure Appl.
Logic 100, 141–187 (1999)

5. Cai, J.-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12(4), 389–410 (1992)

6. Dahlhaus, E.: Reduction to NP-Complete Problems by Interpretation. LNCS, vol.
171. Springer, London (1984)

7. Dawar, A.: A restricted second order logic for finite structures. Inf. Comput. 143,
154–174 (1998)

On Symmetric and Choiceless Computation 29

8. Dawar, A., Grädel, E.: Properties of almost all graphs and generalized quantifiers.
Fundamenta Informaticae 98(4), 351–372 (2010)

9. Dawar, A., Richerby, D.: The power of counting logics on restricted classes of finite
structures. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp.
84–98. Springer, Heidelberg (2007)

10. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg
(1999)

11. Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema,
Y., Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg
(2007)

12. Hella, L.: Logical hierarchies in PTIME. In: Proceedings of the 7th IEEE Sympo-
sium on Logic in Computer Science, pp. 360–368 (1992)

13. Immerman, N.: Descriptive Complexity. Springer, New York (1999)
14. Lovász, L., Gács, P.: Some remarks on generalized spectra. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 23, 27–144 (1977)

Robots’ Cooperation for Finding a Target
in Streets

Mohammad Abouei Mehrizi1(B), Mohammad Ghodsi2,
and Azadeh Tabatabaei1

1 Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran

{abouei,atabatabaei}@ce.sharif.edu
2 School of Computer Science Institute for Research in Fundamental Sciences (IPM),

Sharif University of Technology, Tehran, Iran
ghodsi@sharif.edu

Abstract. We study the problem of finding a target t from a start point
s in street environments with the cooperation of two robots which have a
minimal sensing capability; that is, robots do not know any information
about the workspace including information on distances, edges, coordi-
nates, angles etc. They just can detect the discontinuities in the visibility
region of their location. The robots can detect target point t as soon as
it enters their visibility region and have communication peripherals to
send messages to each other. Our aim is to minimize the length of the
path passed by the robots. We propose an online algorithm for robots
such that they move in the workspace and find the target. This algorithm
generates a search path from a start point s to a target point t such that
the distance traveled by the robots is at most 2 times longer than the
shortest path. Also, we prove that this ratio is tight.

Keywords: Computational geometry · Visibility · Motion planning ·
Minimal sensing · Multi robot’s cooperation

1 Introduction

The problem of finding a target in an environment is a fundamental problem in
computational geometry and robotics [5,7,10]. This problem is known as explo-
ration which appears in many applications where the environment is unknown
and no geometric map of the scene is available. In this problem, the robot’s sen-
sors are the only input device to gather information. Depending on the ability of
the sensors, information will be exact. Simple sensor robots have many benefits
such as low cost, less sensitivity to failure, stable against noise etc. [3].

In this research robots have a limited ability in sensing the environment.
They have an abstract sensor to detect discontinuities of the work space (called
gaps) in their visibility region. Discontinuity means a portion of the environment
that is not visible to the robot (Fig. 1). The robot can assigning a label L or R to

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 30–43, 2016.
DOI: 10.1007/978-3-319-28678-5 3

Robots’ Cooperation for Finding a Target in Streets 31

Fig. 1. (a) A street in which Lchain is the left chain and Rchain is the right chain.
The colored region is the visibility polygon of the point robot R in the street. (b) The
position of discontinuities in the depth information detected by the sensor. Note that
robot cannot detect the angular information of gaps, it just can detect the position of
gap and move toward them (Color figure online).

every gap g. When robot is scanning the environment counter clockwise, if a gap
is sensed such that discontinuity is near to far then gap is a right gap (labeled
by R), otherwise it is a left gap (labeled by L). In Fig. 1 (a) A and B are right
gaps while C and D are left gaps. Also, the robots are capable of recognizing a
target point t when it is in the robots’ visibility region.

Robots do not need any data structure to store the topological map of the
environment and just store some fixed data for navigation. They have to move
towards the gaps to cover the hidden region behind each gap. Note that the
robots do not have to measure any angles or distances to the walls of the scene
or infer their position but have an infinite and omnidirectional field of view.
Robots’ cooperation will be done by sending messages to each other. Cooperation
is necessary for some situation. For example, when one robot find out its path is
along the shortest path (from s to t), it send a message and help the other robot
to find the correct path. Messages are some kind of data known for both robots.
In this paper, the workspace is assumed to be a restricted simple polygon called
a street.

Definition 1. A simple polygon P with two vertices s and t is called a street if
the counter-clockwise polygonal chain Rchain from s to t and the clockwise chain
Lchain from s to t are mutually weakly visible [6].

Definition 1 means each point on the left chain Lchain must be visible from
at least one point on the right chain Rchain and vice versa (Fig. 1). A street
polygon is also known as L-R visible polygon [2].

This paper will present an algorithm such that two point robots that are
equipped with a gap sensor and communication device start navigating from s
to reach target t. The robots have no geometric map of the scene and have to

32 M.A. Mehrizi et al.

make decisions to achieve the target only based on the information gathered
through the sensor and received messages.

This paper is organized as follows. Section 2 will review related works, Sect. 3
will present structures and the model used; Sect. 4 will present preliminaries.
Section 5 will present the algorithm, and Sect. 6 will present the conclusions.

2 Related Works

Because of application and usefulness of path finding in online problems, it
has recently received much attention from researchers. Klein proposed the first
competitive online strategy for searching a target point in a street [6]; The robot
employed in [6] is equipped with a 360 degree vision system. Also, it can measure
each angle or distance to the walls of the street. As the robot moves, a partial
map is constructed from what has been seen so far. Klein proved an upper bound
of 5.72 for the competitive ratio (the ratio of the length of the traversed path
to the shortest path from s to t) of this problem. Also, it was proved later that
there is no strategy with the competitive ratio less than

√
2 for this problem.

A strategy similar to Klein’s with the competitive ratio of π+1 has been intro-
duced in [8,9] which is robust under small navigation errors. Other researchers
have presented several algorithms with the competitive ratios between

√
2 and

the upper bound of 5.72 [7,9]. Icking et al. presented an optimal strategy with
the competitive ratio of

√
2 [5].

The limited sensing model that we use in this paper was first introduced by
Lavalle et al. [13]. Gap Navigation Tree (GNT) has been proposed to maintain
and update the gaps seen along the navigating path. This tree is built by detect-
ing the discontinuities in the depth information and updated by the topological
changes of the information. The topological changes are appearances, disappear-
ances, merges, and splits of gaps.

Another minimal sensing model was introduced by Suri and Vicari [11] for a
simple robot. They assume that the robot can only sense the combinatorial (non-
metric) properties of their surroundings. The sensor can detect vertices of the
polygon in its visibility region, and can report if there is a polygon edge between
consecutive vertices. The information is maintained in two combinatorial vec-
tors, called the combinatorial visibility vector (cvv) and the point identification
vector (piv). Despite minimal capability, they show that the robot can obtain
enormous geometric reasoning and can accomplish many non-trivial tasks.

Tabatabaei and Ghodsi [23] presented an online algorithm to find the target
point t from the start points with one minimal sensing robot in the street envi-
ronment. Beacuse their model is minimal sensing their problem is more difficult
than Kleins problem. Their strategy is doubling to find the target such that the
robot will move 11 times as long as the shortest path with just one pebble and
if the robot has access to many pebbles, this ratio reduces to 9. In the doubling
strategy, the robot moves back and forth on the line, such that at each stage
i, it walks 2i steps in one direction, comes back to the origin, walks 2i+1 steps
in the opposite direction until the target is reached. Also pebble is some thing

Robots’ Cooperation for Finding a Target in Streets 33

portable and distinguishable by the robot. Showing that this ratio is optimal
in this model, they presented an optimal strategy for walking in streets with
minimum number of turns [14].

Path finding for multiple robots where paths are collision-free is still an
interesting and difficult problem which has been studied for many years [19–
22]. Jingjin Yu and Steven M. LaValle reported a reduction from a special case
of multi agent path planning to network flow [18]. They introduced a multiflow
based ILP algorithm for planning optimal, collision-free paths for multiple robots
on graphs, introducing complete ILP algorithms to solve time optimal and dis-
tance optimal multi-robot path planning problems [16]. They also proved that
computing a minimum total arrival time, a minimum makespan, or a minimum
total distance solution is NP-complete for some kinds of cooperation multi-robot
path planning [17].

Luna and Bekris proposed an algorithm that guarantees completeness for a
general class of problems without any assumptions about the graph’s topology.
Their algorithm required two primitive operations: push? where agents move
towards their goals and do this to arrive a point where no progress can be made.
Swap allows two agents to swap their positions. Their approach can address any
solvable instance in a graph of size n where there are at most n − 2 agents [20].

Mikael Hammar et al. [15] have presented constant competitive strategies to
explore a rectilinear simple polygon in the L1 metric with one or more robots.
They also proved there is no deterministic strategy for path exploration of a
rectilinear polygon with one robot that has competitive ratio 2− ε for any ε > 0.
They also showed there are no deterministic strategies for exploring a rectilinear
polygon with two or three robots having smaller competitive ratio than 2

3 but
their results are not tight.

In this paper we propose an online search strategy for two point robots
equipped with the gap sensor and a communication peripheral like Bluetooth,
Wi-Fi with wireless antenna, etc. with respect to expansion of environment. The
aim of the algorithm is to minimize the minimum path length of the two robots
from the start point s to the target point t in a street workspace. We will show
the minimum search path which is generated by the strategy is at most 2 times
as long as the shortest path that is tight for this situation. To our knowledge,
this is the first result providing some competitive ratio for two robots walking
in streets in a minimal sensing model.

3 The Sensing Model and Communications

3.1 Gap Sensor

Gap sensor used in this paper is a visual sensing model. At any position q of
the environment, a cyclically ordered location of the depth discontinuities in
the visibility region of the point is what the robot’s sensor detects, as shown
in (Fig. 1). When the robot reports the discontinuities counterclockwise from a
visibility region, it assigns a left label to a transition from far to near and assigns
a right label to a transition from near to far [12] (Fig. 2). The robot can only

34 M.A. Mehrizi et al.

Fig. 2. The dark circle denotes the location of the robot. (a) Existing gaps at the
beginning. (b) A split event. (c) An appearance event. (d) A merge event.

walk towards the gaps, this restriction cannot get us into trouble and despite
this constraint we will present a 2-approximation algorithm.

GNT data structure has been introduced as a means for the robot system
to navigate in an unknown scene [12]. This structure is bassed on four critical
events. In the strategy proposed here, the robots do not need to store GNT; they
just pay attention to the events which will change the number of gaps. Each
robot just stores two special gaps (later will discuss about these gaps) and sets
its orientation to one of them and moves toward it until a critical event occurs.

3.2 Communications

In the algorithm (presented in Sect. 5) we will use two robots to find the target.
To achieve a good ratio, robots are equipped with communication peripherals for
sending data together. The type of communication device depends on whether
the expansion of workspace can be detected. For example, if robots will not have
more than a 100 m distance, we can use Bluetooth as the communication device.
If more than 100 m is needed, we can use Wi-Fi devices and wireless network
antenna prepared in the workspace.

In this research we will not explain communication methods and their poten-
tial difficulties, like message failure. We assume that robots can have communi-
cation together and send messages to each other as well as possible.

Robots’ Cooperation for Finding a Target in Streets 35

3.3 Motion Primitive

Robots in their movement can sense gaps and their labels (right or left) in
counter-clockwise order. Gaps’ labels are not unique and just show that the gap
is a left gap (L) or a right one (R) (Fig. 2). These gaps may change during the
robots’ movement. Robots can set their direction to a gap and move toward
it. During walking they cannot detect geometric properties of the environment.
They can only walk to gaps until a critical event occurs or the gap disappears;
then they will make a decision and find a direction for movement and walk
around the workspace. Also, robots can detect and move toward target t as soon
as it enters the visibility region.

4 Preliminaries

In this paper we use the notation used in [14]; some of the definitions and lemmas
that will be used in our strategy are mentioned here.

At each point p of the robots’ search paths, their sensor either sees the
target or achieves a set of gaps with the label of L or R (l-gap and r-gap for
abbreviation). If the target is visible, the robot moves towards the target to reach
it. When the robots report the position of the gaps, they should move towards
the gaps to find the target.

Definition 2. In the set of l-gaps, the gap that is on the right side of the others
is called most-advanced left gap and is denoted by gl. Analogously, in the set of
r-gaps, the gap that is on the left side of the others is called most-advanced right
gap and is denoted by gr [14].

Note: Accourding to the Definition 2, we know in visibility region of robots,
all of the right gaps are near together and then all of the left gaps are near to
each other (counter clockwise). Definition 2 means when robot is scanning its
visibility region counter clockwise, the last right gap is called most-advanced
right gap and the first left gap is called most-advanced left gap. In any street
polygon (circular, general etc.) this is correct.

Lemma 1. At any point of the robot’s search paths, if the target is not visible,
then it is behind one of the most-advanced gaps [14].

As the robots move in the environment, gl and gr may dynamically change.
The critical events in which the structure of the robot’s visibility region changes
can also change gl and gr. In the next section, we show how the critical events
change the left most advanced gaps such that a sequence of the left most
advanced gaps, [gl1, gl2, ..., glm], appears in the robots’ visibility region, while
exploring the street. Similarly, a sequence of the right most advanced gaps,
[gr1, gr2, ..., grn], may occur.

At each point, if there is exactly one of the two gaps (gl or gr), then the goal
is hidden behind that gap. Thus, there is no ambiguity and the robots move
toward the gap. If both gr and gl exist, then the target is hidden behind one

36 M.A. Mehrizi et al.

of these gaps. This case is called a funnel. As soon as a robot enters a point in
which both gr and gl exist, a funnel situation starts. This case continues until
one of gl or gr disappears or until they become collinear. When a robot enters a
point in which there is a funnel situation, it will wait for the other robot. In this
situation the only non-trivial case in this navigation occurs. Before describing
our strategy, we state some features of a street and the gaps that are applied in
the algorithm.

When the robot enters a funnel situation, there are two convex chains in
front of it: the left convex chain that lies on the left chain (Lchain) of the street,
and the right convex chain that lies on the right chain (Rchain) of the street.
The two chains have the following main property.

Lemma 2. When a funnel situation starts, the shortest path from s to t
lies completely on the left convex chain, or on the right convex chain of the
funnel [14].

Theorem 1. For any vertex vj ∈ Lchain(or, vj ∈ Rchain), the shortest path from
s to vj makes a left turn (respectively, a right turn) at every vertex of Lchain

(respectively, Rchain) in the path [4].

Lemma 3. Each of the two convex chains, in a funnel situation, contains a
point at which the funnel situation ends or a new funnel situation starts [14].

Note: Lemmas 1, 2 and 3 are about the features of environment (street
polygon) and are not related to the robots1.

5 Algorithm

In this section we explain our movement strategy for the robots to move in the
environment (street polygon) from s to t. We use R1 for the first robot and R2

for the second one. Note that both robots start at point s, and if R1(respectively,
R2) achieves t, it will send a message (target-founded) to the R2(respectively,
R1); when R2(respectively, R1) receives the message, it stops searching. This
moment represents the end of movement for both robots.

Obviously, this strategy minimizes the robots’ search paths. That is, our
aim is:

Minimize : Min{path1, path2}

Such that path1 is the length of the path traversed by R1 and path2 is the
length of the path traversed by R2 from s to t.

As mentioned, since our sensing model is minimal, then robots decide to
move in the environment based on the information gathered by their sensor.
The intuition behind the algorithm is when robots are in the funnel situation,
then according to Lemma 1, when the target is visible from neither R1 nor R2,

1 Capabilities or number of robots does not have any relation to these lemmas.

Robots’ Cooperation for Finding a Target in Streets 37

then the target is behind one of the most-advanced gaps. Because robots do not
know which gap is correct, then R1 will move to gl and R2 will move to gr; since
we refer to R1 as Rleft and R2 as Rright. If there is just one of gl or gr, for each
robot, it will get moving toward that gap.

In the set of l-gaps, the gap which is on the right side of the others for Rleft

is called the most left robot advanced left gap and is denoted by gll; In the set
of r-gaps, the gap which is on the left side of the others for Rleft is called the
most left robot advanced right gap and is denoted by glr. Analogously, In the set
of l-gaps, the gap which is on the right side of the others for Rright is called the
most right robot advanced left gap and is denoted by grl; in the set of r-gaps, the
gap which is on the left side of the others for Rright is called the most right robot
advanced right gap and is denoted by grr (Fig. 3).

Fig. 3. The red line is the direction of Rright and blue line is the direction of Rleft

from the start point s. Rright moves to grr and Rleft moves to gll. In the visibility
region of Rright, gaps are different from those in the visibility region of Rleft (Color
figure online).

We know in each funnel situation either Rleft or Rright passes the shortest
path. If there is just one advanced gap (gl or gr), the target is behind it, and
then both robots move toward it. If a robot finds out that its path is along the
shortest path, it will send a message to the other robot and the other will correct
its direction.

5.1 Critical Events

In any funnel situation, both robots start from one point and search the
workspace. During the movement, some critical events may occur for each robot.
Critical events usually occur when the visibility region of a robot changes such
that it makes a change to the direction of robots. These events may happen for

38 M.A. Mehrizi et al.

either Rleft or Rright and change their direction. Events that may occur while
the robots are moving and the corresponding operations are mentioned bellow.

i. When the Rright crosses a bitangent complement of grl and an r-gap, then
grr will be replaced by the r-gap (Fig. 4.a).

ii. When the Rleft crosses a bitangent complement of glr and an l-gap, then gll

will be replaced by the l-gap (Fig. 4.b).
iii. When the Rright crosses a bitangent complement of grl and another l-gap,

then grl splits and will be replaced by the l-gap (Fig. 4.c).
iv. When the Rleft crosses a bitangent complement of glr and another r-gap,

then glr splits and will be replaced by the r-gap (Fig. 4.d).
v. When the Rright crosses a bitangent of grr and another r-gap, at the point

in which grr disappears, grr will be replaced by the r-gap (disappearance
and split events occur simultaneously). In this situation, if there are more
than one gap similar to the r-gap, grr will be replaced by the one which is
on the left side of the others (Fig. 4.e).

vi. When the Rleft crosses a bitangent of gll and another l-gap, at the point in
which gll disappears, gll will be replaced by the l-gap (disappearance and
split events occur simultaneously). In this situation, if there are more than
one gap similar to the l-gap, gll will be replaced by the one which is on the
right side of the others (Fig. 4.f).

vii. When the Rleft/Rright crosses over an inflection ray, each of gll/grl or grl/grr

which is adjacent to the ray, disappears and is eliminated from the detected
gaps automatically.

If Rright goes to grr and event i occurs there will be two different situations
(let rright ∈ r-gap be the right gap that event i occured for it):

– ‖ Rright − grl ‖<‖ Rright − rright ‖. This situation is shown in Fig. 4 (a), after
replacing grr, Rright will change its direction to grl (grl and grr are collinear)
and keep going until it touches it. When Rright touches grl, there may occur
some critical events that update grr or/and grl. Then Rright will continue its
routing by going toward grr.

– ‖ Rright − grl ‖>‖ Rright − rright ‖. In this situation Rright is shown in Fig. 5
after replacing the grr, like before, Rright will change its direction to grl (grl

and grr are collinear) and keep going until it touches it. But when Rright goes
to grl there will occur two different events.
• grr disappears and there is no split event (no new r-gap (grr) will be cre-

ated): in this situation Rright moves toward to grl until an split event occurs
and grr is found (Fig. 5 (a)).

• When the robot arrives at grr, event v happens and grr will update. In this
situation Rright will move toward grl until touches it. Then Rright will keep
going to the grr (Fig. 5 (b)).
Note: In Fig. 5 (b) just two gaps are visible at start point s, because
robots are capable of detecting the discontinuities of environment and other
reflex vertices do not create any gap, then robots cannot distinguish them.

Robots’ Cooperation for Finding a Target in Streets 39

Fig. 4. Critical events will occur during the robots movement. (a) Rright finds a new
r-gap in its visibility region which is on left side of grr. (b) Rleft finds a new l-gap in its
visibility region which is on right side of gll. (c) Split event occurs for l-gaps of Rright.
(d) Split event occurs for r-gaps of Rleft. (e) Split event occurs for r-gaps of Rright.
(f) Split event occurs for l-gaps of Rleft. (g) Critical message event occurs for Rright;
when Rleft arrives at point gll, gll disappears and a new right gap will appear. It finds
out that its path is along the shortest path and sends bad-direction message to Rright,
and Rright corrects its direction. (h) Like (g) critical message event occurs for Rleft.

When Rright is going to grr no critical event occur (appearance a new gap
is not a critical event) until Rright crosses bitangent complement of grl and
an r-gap (event i), then the above situation will be done.

When Rleft goes to gll and event ii occurs, Rleft will act like Rright as
mentioned above.

Note: When Rright crosses a bitangent complement of grl and an r-gap, it knows
that it has to change its direction to grl and it does not need to measure any
distance; It just change its direction to grl and keep going, during movement
some critical events will happen and Rright can update its important gaps (grl,
grr).

5.2 Message Events

These events occur when a robot receives a message from the other, then it
will manipulate it and do corresponding operations. These message events are
mention here.

1. When the Rleft crosses a bitangent of gll and an r-gap, at the point in which
gll disappears and the r-gap appears due to split event (disappearance and
split events occur simultaneously), Rleft sends a bad-direction message to
Rright, then Rright will change its direction to grl (Fig. 4.g).

2. When the Rright crosses a bitangent of grr and an l-gap, at the point in which
grr disappears and the l-gap appears, Rright sends a bad-direction message
to Rleft, then Rleft will change its direction to glr (Fig. 4.h).

40 M.A. Mehrizi et al.

Fig. 5. Rright crosses the bitangent of grl and an r-gap such that ‖ Rright - r-gap‖<‖
Rright − grl ‖. (a) When Rright goes to the grl there will not be any right gap. (b)
When Rright goes to grl there will be right gap and grr is found.

Both robots will keep going until the current funnel situation ends and arrives
at a point which is the start of next funnel situation. Then the earlier robot will
send a funnel-situation message to another one and waits there until the other
robot arrives. When a robot receives a funnel-situation message it will keep going
until it arrives at the new funnel situation, then it sends a start-funnel to the
other robot and both do this algorithm for new funnels until finding the target t.

From the start point of any funnel situation, Rleft just saves gll, glr and
moves toward gll; and Rright just saves grr,grl and moves toward grr. Note that
in the start point s, the gaps coincide for both robots, but when they move in
the environment, their gaps may be different from each other (Fig. 3). Rleft will
keep going to gll and Rright will keep going to grr all of the time, as often as
each of the following events occurs (robots will ignore the other events):

– When one of the critical events that are mentioned in Sect. 5.1 occurs.
– When one of the message events that are mentioned in Sect. 5.2 occurs.

Note: Some other events may occur during robots’ movement, but they are not
important for us. It means, robots just pay attention to mentioned events in
Sects. 5.1 and 5.2, robots will ignore the other events.

5.3 Analysis

Lemma 4. In the strategy mentioned in Sect. 5, robot Rright/Rleft will change
its direction only when the robot crosses bitangent of grl/glr and an r-gap/l-gap,
or receives a message event.

Proof. Directly concludes from the critical and message events presented in
Sects. 5.1 and 5.2.

Lemma 5. Assume both robots are in point s and are in the funnel situation,
Rleft moves toward gll and Rright moves toward grr, if Rleft/Rright passes along
the shortest path to arrive at gll/grr, then Rright/Rleft will pass a detour with
the length of at most 3 ‖ s − gll/grr ‖ to arrive at gll/grr.

Robots’ Cooperation for Finding a Target in Streets 41

Proof. According to Lemma 2 either Rleft or Rright passes along the shortest
path. Without loss of generality, assume Rleft passes along the shortest path and
Rright goes in a bad direction. Let a =‖ s−gll ‖, we know Rleft after traversing a
distance of length a, understands that it has passed the shortest path and sends
bad-direction message to Rright, Rright passes the distance a (like Rleft), in the
worst case Rright has to come back to the point s and then moves to gll. Then
it will pass at most 3 ‖ s − gll ‖. This is true when Rright passes the shortest
path and Rleft goes in a bad direction.

Both robots will pass a path with at most 4 times as long as the shortest
path because in any funnel situation one robot is along the shortest path and the
other will pass a detour at most 3 times as long as the shortest path (according
to Lemma 5).

Theorem 2. Min{path1, path2} ≤ 2pathoptimal, such that Rleft passes along
path1, Rright passes along path2 and pathoptimal is shortest path from s to t.

Proof. Let α be the length of the shortest path from s to t. We know in any
funnel situation one robot is along the shortest path. To maximize the length of
Min{path1, path2} we should take | path1 |=| path2 | and Rleft passes at most α

2
along the shortest path and detours 3α

2 . Then Rleft passes at most α
2 + 3α

2 = 2α.
This is the case for Rright too; in Fig. 6, a tight example for 2 − ε(ε > 0) ratio
is shown.

Fig. 6. (a) The workspace is shown, the pink segment on the Rchain is visible just from
the pink point on the Lchain and the green segment on the Lchain is visible just from
the green point on the Rchain. The shortest path from s to t has a length of 2a + ε0.
(b) The red line shows the path of Rright according to the presented algorithm. As we
can see, Rright will pass a path with almost 4a + ε0 − ε1 length. (c) The red line shows
Rleft path according to the presented algorithm. As we can see, Rleft will pass a path
with almost 4a + ε0 − ε2 length too. Then the algorithm is tight for ratio 2 − ε(ε > 0)
(Color figure online).

42 M.A. Mehrizi et al.

6 Conclusion

In this research, we proposed an online algorithm for two simple robots, such
that they find the target t from the start point s. Minimal sensing means that
robots do not have any sense from the environment and can only detect the
discontinuities (known as gap), and move to their directions. Also, the robots
can detect the target t, as soon as it enters their visibility region. We prepared
an algorithm to find target such that there exists one robot whose path from s to
t is at most 2 times as long as the shortest path; this ratio is tight. Introducing
more general classes of polygons which admit competitive searching with minimal
sensing multi robots is an interesting open problem.

References

1. Baezayates, R.A., Culberson, J.C., Rawlins, G.J.: Searching in the plane. Inf. Com-
put. 106(2), 234–252 (1993)

2. Das, G., Heffernan, P.J., Narasimhan, G.: LR-visibility in polygons. Comput.
Geom. 7(1), 37–57 (1997)

3. Gfeller, B., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Counting targets with
mobile sensors in an unknown environment. In: Kuty�lowski, M., Cichoń, J., Kubiak,
P. (eds.) ALGOSENSORS 2007. LNCS, vol. 4837, pp. 32–45. Springer, Heidelberg
(2008)

4. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cam-
bridge (2007)

5. Icking, C., Klein, R., Langetepe, E.: An optimal competitive strategy for walking in
streets. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 110–120.
Springer, Heidelberg (1999)

6. Klein, R.: Walking an unknown street with bounded detour. In: Proceedings of the
32nd Annual Symposium on Foundations of Computer Science, 1991, pp. 304–313,
October 1991

7. Kleinbergt, J.M.: On-line search in a simple polygon. In: Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms, No. 70, p. 8. SIAM (1994)

8. Lopez-Ortiz, A.: On-line target searching in bounded and unbounded domains.
University of Waterloo (1996)

9. Lopez-Ortiz, A., Schuierer, S.: Simple, efficient and robust strategies to traverse
streets. In: Proceedings of the 7th Canada Conference on Computational Geometry
(1995)

10. Mitchell, J.S.: Geometric shortest paths and network optimization. Handb. Com-
put. Geom. 334, 633–702 (2000)

11. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: from local
visibility to global geometry. Int. J. Robot. Res. 27(9), 1055–1067 (2008)

12. Tovar, B., Murrieta-Cid, R., LaValle, S.M.: Distance-optimal navigation in an
unknown environment without sensing distances. IEEE Trans. Robotics 23(3),
506–518 (2007)

13. Tovar, B., LaValle, S.M., Murrieta, R.: Optimal navigation and object finding
without geometric maps or localization. In: Proceedings of the IEEE International
Conference on Robotics and Automation 2003, ICRA 2003, vol. 1, pp. 464–470,
September 2003

Robots’ Cooperation for Finding a Target in Streets 43

14. Tabatabaei, A., Ghodsi, M.: Optimal strategy for walking in streets with minimum
number of turns for a simple robot. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.)
COCOA 2014. LNCS, vol. 8881, pp. 101–112. Springer, Heidelberg (2014)

15. Hammar, M., Nilsson, B.J., Persson, M.: Competitive exploration of rectilinear
polygons. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp.
234–245. Springer, Heidelberg (2003)

16. Yu, J., LaValle, S.M.: Planning optimal paths for multiple robots on graphs. In:
2013 IEEE International Conference on Robotics and Automation (ICRA), pp.
3612–3617, May 2013

17. Yu, J., LaValle, S.M.: Structure and intractability of optimal multi-robot path
planning on graphs. In: AAAI, June 2013

18. Yu, J., LaValle, S.M.: Multi-agent path planning and network flow. In: Frazzoli,
E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics
X. STAR, vol. 86, pp. 157–173. Springer, Heidelberg (2013)

19. Erdmann, M., Lozano-Perez, T.: On multiple moving objects. Algorithmica 2(1–4),
477–521 (1987)

20. Luna, R., Bekris, K.E.: Push and swap: fast cooperative path-finding with com-
pleteness guarantees. In: IJCAI, pp. 294–300, July 2011

21. Ryan, M.R.K.: Exploiting subgraph structure in multi-robot path planning. J.
Artif. Intell. Res. 31, 497–542 (2008)

22. Silver, D.: Cooperative pathfinding. In: AIIDE, pp. 117–122, June 2005
23. Tabatabaei, A., Ghodsi, M.: Walking in streets with minimal sensing. J. Comb.

Optim. (2014). http://link.springer.com/article/10.1007/s10878-014-9791-4

http://link.springer.com/article/10.1007/s10878-014-9791-4

Some Properties of Continuous Yao Graph

Davood Bakhshesh and Mohammad Farshi(B)

Combinatorial and Geometric Algorithms Laboratory, Department of Computer
Science, Yazd University, Yazd, Iran

dbakhshesh@gmail.com, mfarshi@yazd.ac.ir

Abstract. Given a set S of points in the plane and an angle 0 < θ ≤ 2π,
the continuous Yao graph cY (θ) with vertex set S and angle θ defined
as follows. For each p, q ∈ S, we add an edge from p to q in cY (θ) if
there exists a cone with apex p and angular diameter θ such that q is
the closest point to p inside this cone.

In this paper, we prove that for 0 < θ < π/3 and t ≥ 1
1−2 sin(θ/2)

,

the continuous Yao graph cY (θ) is a C-fault-tolerant geometric t-spanner
where C is the family of convex regions in the plane. Moreover, we show
that for every θ ≤ π and every half-plane h, cY (θ) � h is connected,
where cY (θ) � h is the graph after removing all edges and points inside
h from the graph cY (θ). Also, we show that there is a set of n points in
the plane and a convex region C such that for every θ ≥ π

3
, cY (θ) � C

is not connected.
Given a geometric network G and two vertices x and y of G, we call

a path P from x to y a self-approaching path, if for any point q on P ,
when a point p moves continuously along the path from x to q, it always
get closer to q. A geometric graph G is self-approaching, if for every pair
of vertices x and y there exists a self-approaching path in G from x to y.
In this paper, we show that there is a set P of n points in the plane such
that for some angles θ, Yao graph on P with parameter θ is not a self-
approaching graph. Instead, the corresponding continuous Yao graph on
P is a self-approaching graph. Furthermore, in general, we show that for
every θ > 0, cY (θ) is not necessarily a self-approaching graph.

Keywords: t-spanner · Region-fault tolerant spanner · Continuous Yao
graph · Self-approaching graph

1 Introduction

Let S be a set of n points in R
d and let t ≥ 1 be a real number. A geometric

graph is an edge-weighted graph on S ⊆ R
d such that the weight of each edge is

the Euclidean distance between its endpoints. A geometric graph G with vertex
set S is called a t-spanner for S, if for each two points p and q in S, there
exists a path Q in G between p and q whose length is at most t times |pq|, the
Euclidean distance between p and q. The length of a path is defined to be the
sum of the lengths, or weight, of all edges on the path. The path Q is called a
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 44–55, 2016.
DOI: 10.1007/978-3-319-28678-5 4

Some Properties of Continuous Yao Graph 45

t-spanner path (or t-path) between p and q. We denote the length of path Q by
|Q|. The stretch factor (or dilation) of G is the smallest value of t for which G is a
t-spanner. The t-spanners were introduced by Peleg and Schäffer [14] in the scope
of distributed computing and, then, by Chew [6] in the scope of computational
geometry. The t-spanners are applicable in many scopes such as graph theory,
network topology design, distributed systems, robotics. We refer the reader to
[5,8,12,16] for reading about the t-spanners and their applications.

The problem of efficient construction of a t-spanner for a given point set and
a constant t > 1 has been studied extensively. One can see the major algorithms
for building spanners in the book by Narasimhan and Smid [13].

The Yao graph used by Andrew Yao to construct Euclidean minimum span-
ning tree on high-dimensional Euclidean space [17]. For a set S of points in the
plane, the Yao graph Yk, for k ≥ 2, is defined as follows. At each point u ∈ S,
we draw k cones with apex at u and angle 2π

k . For each point u ∈ S and cone
C, we add an edge between u and the closest point to u in C. If one chooses k
sufficiently large, the Yao graph becomes a t-spanner.

In 2014, Barba et al. [3] introduced the continuous Yao graph as a variation
of Yao graph. The continuous Yao graph cY (θ) with vertex set S and angle θ
defined as follows: For each p, q ∈ S, we add an edge from p to q in cY (θ) if
there exists a θ-cone, a cone with aperture θ, with apex at p such that q is the
closest point to p inside this θ-cone. In continuous Yao graph, for each u ∈ S, we
rotate a θ-cone with apex u around u continuously, and connect u to the closest
point inside the θ-cone during this rotation. They showed that cY (θ) has stretch
factor at most 1/(1−2sin(θ/4)) for 0 < θ < 2π/3. Unlike Yao graphs that always
have a linear number of edges for any constant k, in the worst case, continuous
Yao graphs may have a quadratic number of edges. Since cY (θ) ⊆ cY (γ) for
any θ ≥ γ, the continuous Yao graphs are useful in potential applications that
require scalability. Moreover, when some rotations apply on the input point set
the continuous Yao graphs are invariant [3].

One of the useful properties of a network is fault tolerance that is after one
or more vertices or edges fail, the remaining graph is still a good network of
alive vertices. In particular, a graph G = (S,E) is called k-vertex fault-tolerant
t-spanner [10] for S, denoted by (k, t)-VFTS for a given real number t ≥ 1
and non-negative positive integer k, if for each set S′ ⊆ S with cardinality
of at most k, the graph G\S′ is a t-spanner for S\S′. Also, G is called a
k-edge fault-tolerant t-spanner [10] for S, denoted by (k, t)-EFTS, if for each
set E′ ⊆ E with cardinality at most k and for each pair of points p and q in S,
the graph G\E′ contains a path P between p and q with |P | ≤ t|PS | where PS

is the shortest path between p and q in the graph KS\E′ in which that KS is
Euclidean complete graph on S. Levcopoulos et al. [10] for the first time con-
sidered the problem of constructing fault-tolerant spanners in Euclidean spaces
efficiently. They proposed three algorithms that construct k-vertex fault-tolerant
spanners. Some other works on the fault tolerant spanners have been done [7,11].

In 2009, Abam et al. [1] introduced the concept of region-fault tolerant span-
ner for planar point sets. For a fault region F and a geometric graph G on a

46 D. Bakhshesh and M. Farshi

point set S, assume G � F is the remaining graph after removing the vertices of
G that lie inside F and all edges that intersect F . For a set F of regions in the
plane, an F-fault tolerant t-spanner is a geometric graph G on S such that for
any region F ∈ F , the graph G � F is a t-spanner for Gc(S) � F , where Gc(S) is
the complete geometric graph on S. They showed for any set of n points in the
plane and any family C of convex regions, one can construct a C-fault tolerant
spanner of size O(n log n) in O(n log2 n) time.

In 2013, Alamdari et al. [2] introduced the concept of self-approaching and
increasing-chord graph drawings. The problem is that, we are given a graph
and we need to check if the graph has an self-approaching or increasing-chord
embedding in the Euclidean space.

A geometric graph is self-approaching, if for every pair s and t of vertices of
the graph, there exists a self-approaching path from s to t, denoted by st-path.
A path from s to t is a self-approaching path if for each q on the path, not only
the vertices, but any place of the path, if a point p starts at s and moves toward
q, it always get closer to q in its movement. Also, a graph G is called increasing-
chord if, for each pair u and v of its vertices, there exists a path between u
and v such that the path is self-approaching both from u to v and from v to u.
Obviously, an increasing-chord graph is a self-approaching graph.

In the geometric context, the position of the vertices of the graph is fixed,
so we just want to know whether a given geometric graph is self-approaching or
increasing-chord. One of the interesting properties of these graph is the following.
It is known that the stretch factor (or dilation) of any self-approaching graph
is at most 5.3332 [9] and the stretch factor of any increasing-chord graph is at
most 2.094 [15].

Our Results. In this paper, we prove the following results. For the rest of the
paper S denotes a set of n points in the plane.

1. The continuous Yao graph cY (θ) on S is a C-fault-tolerant geometric
t-spanner of S, where 0 < θ < π/3 and t ≥ 1

1−2 sin(θ/2) .
2. For any θ ≤ π the graph cY (θ)�h on S is connected, where h is an arbitrary

half-plane in the plane.
3. There is a set of n points in the plane and a convex region C such that for

every θ ≥ π
3 , cY (θ) � C is not connected.

4. There is a set P of n points in the plane such that for some angles θ, Yao
graph on P with parameter θ is not a self-approaching graph. Instead, the
corresponding continuous Yao graph on P is a self-approaching graph.

5. For every θ > 0, cY (θ) is not necessarily a self-approaching graph.

2 cY (θ) is Fault-Tolerant

In this section, we show that the continuous Yao graph cY (θ) for 0 < θ < π/3
and t ≥ 1

1−2 sin(θ/2) is a C-fault-tolerant geometric t-spanner where C is the family
of convex regions in the plane. Furthermore, we show that for every θ ≤ π and
every half-plane h, cY (θ)�h is connected. Moreover, we show that there is a set

Some Properties of Continuous Yao Graph 47

of n points such that for a some convex region C, cY (θ) � C is not connected
for every θ ≥ π

3 . We need the following lemmas.

Lemma 1 [4]. Let a, b and c be three points such that |ac| ≤ |ab| and ∠bac ≤
α < π. Then

|bc| ≤ |ab| − (1 − 2sin(α/2))|ac|.

Lemma 2 [1]. A geometric graph G on S is a C-fault tolerant t-spanner if and
only if it is an H-fault-tolerant t-spanner, where H is the family of all half-planes.

Now, we prove the following theorem:

Theorem 1. Let θ be a real number with 0 < θ < π/3 and let t be a real number
with t ≥ 1

1−2 sin(θ/2) . For any point set S, the continuous Yao graph cY (θ) is a
C-fault-tolerant geometric t-spanner.

Proof. By Lemma 2, it is sufficient to prove that cY (θ) is an H-fault-tolerant
geometric t-spanner.

Let h be an arbitrary half-plane in H. We must show that for each pair of
points p, q ∈ S outside h, there is a t-path between p and q in cY (θ) � h. The
proof is by induction on the rank of distance |pq|.

For the base step, suppose that the pair p and q is the closest pair in cY (θ)�h.
Without loss of generality, assume the distance between p and h is less than of
equal to the distance between q and h. Since p and q are outside h and θ < π/2,
there is a θ-cone Cp with apex at p completely outside h such that q ∈ Cp. Since
pair p and q is the closest pair, by the construction of cY (θ), the edge (p, q) must
be in cY (θ) � h. Note that if both p and q have same distance to h, then we
can choose both p and q as apex, but we have to choose the point such that the
corresponding θ-cone does not intersect h.

For the induction hypothesis step, suppose for each pair u, v ∈ S outside h
with |uv| < |pq| there is a t-path between u and v connecting them in cY (θ)�h.

Now we consider the induction step. Since p and q are outside h, there is a
θ-cone Cp with apex at p such that q ∈ Cp (here we assumed that p is closer
than q to h).

Suppose that r is the closest point to p inside the cone Cp (see Fig. 1). Since
θ < π/3, 1 − 2 sin(θ/2) > 0, and also since |pr| ≤ |pq|, by Lemma 1 we have
|rq| < |pq|. Therefore, by the induction hypothesis, there is a t-path Q between
r and q in cY (θ) � h. Now consider the path P := {(p, r)} ∪ Q. Clearly the path
P connects p and q, and P is in cY (θ) � h. Now by Lemma 1, we have

|P | = |pr| + |Q|
≤ |pr| + t|rq|
≤ |pr| + t (|pq| − (1 − 2 sin(θ/2))|pr|)
= t|pq| + (1 − t(1 − 2 sin(θ/2))) |pr|
≤ t|pq|

(
since t ≥ 1

1 − 2 sin(θ/2)

)
.

Thus P is a t-path in cY (θ) � h between p and q. This completes the proof. �	

48 D. Bakhshesh and M. Farshi

p

r

qQ

C

h

Fig. 1. Illustrating of the proof of Theorem 1.

Note that even though cY (θ) is a C-fault tolerant spanner, it is not necessarily
connected. It is because in fault-tolerant spanners, we compare the graph with
the complete graph. So if the complete graph after removing points in some
regions becomes disconnected, then some of fault-tolerant spanners of the points
set might be disconnected. In the following, we show that for every half-plane h
in the plane, the graph cY (θ) � h is a connected graph for every θ ≤ π.

Lemma 3. The continuous Yao graph cY (π) on each set S contains CH(S),
the convex hull of S.

Proof. Proof is straightforward. �	
Theorem 2. For any θ ≤ π the graph cY (θ) � h on S is connected, where h is
a half-plane.

Proof. It is easy to see that for every α, β > 0, if α ≥ β then cY (α) ⊆ cY (β).
So, to prove the theorem, it is sufficient to show that cY (π) � h is connected for
every half-plane h.

Let h be an arbitrary half-plane in the plane. Suppose that cY (π) � h is not
connected.

Since cY (π)�h is disconnected, it has more than one connected component.
At least one of the connected components of cY (π) � h contains a point from
CH(S). Suppose C and C ′ are two (distinct) connected components of cY (π)�h
such that at least one of them, say C, contains a point from CH(S). If both of
C and C ′ contains a point from CH(S) then by Lemma 3, part of CH(S) which
lies outside h is connected which is a contradiction because we assumed that C
and C ′ are distinct connected components of cY (π) � h.

Now, assume C ′ contains no vertices on CH(S). Let x be the intersection of
boundary of h and CH(S) and let � be a line through x and tangent to C ′ (see
Fig. 2). We have two cases.

Some Properties of Continuous Yao Graph 49

C ′

h

C

x

y

�

Fig. 2. Illustrating of the proof of Theorem 2: case 1.

Case 1: � ∩ C ′ contains exactly one point denoted by y.
If x �∈ S then clearly by the construction of graph cY (π), the vertex y should

be connected to a vertex of C that is contradiction, since we assumed that C and
C ′ are distinct connected components of cY (π) � h. Now, suppose that x ∈ S.
Since � ∩ C ′ contains exactly one point, we can with continuously rotating the
line � around the point y (in Fig. 2, we rotate � counter-clockwise), find a line
�′ such that �′ ∩ C ′ contains exactly one point that is y, and also the point
in the intersection of �′ and boundary h does not belong to S. Hence, by the
construction of graph cY (π), point y should be connected to a vertex of C. That
is a contradiction with that C and C ′ are distinct connected components of
cY (π) � h.

Case 2: � is tangent to C ′ in at least two points.
We claim that there is a line �′ that is tangent to exactly one point of S on

the convex hull of C ′ (denoted by s). Suppose that s be the farthest point of
S on � with respect to x, and suppose that r be the next point after s on the
convex hull of C ′ in counterclockwise order (see Fig. 3). Let �′′ be a line that
through of s and r, and let z be the intersection of �′′ and boundary of h. Now
suppose that w be a point on the segment xz (w �= x, z). Let �′ be a line that
through of w and s. Clearly �′ is tangent to exactly one point of S that is s
on the convex hull of C ′. Now by the construction of cY (π), vertex s should be
connected to a vertex of connected component of C. This contradicts with the
assumption that C and C ′ are distinct connected components of cY (π) � h.

According to the above mentioned cases, cY (π) � h is connected. This com-
pletes the proof. �	

50 D. Bakhshesh and M. Farshi

h

C

x h

sr

C ′

zw

�
�′

�′′

Fig. 3. Illustrating of the proof of Theorem 2: case 2.

In the following, we give an example such that for every θ ≥ π
3 , cY (θ) � C for

some convex region C is not necessarily connected.
Assume P0 =

{
(0, 0), (1,

√
3), (2, 0)

}
which is the vertices of a equilateral

triangle. Let Pi be the translation of P0 by value c × i horizontally where c is a
sufficiently large constant positive integer. Here, we consider c = 10 (see Fig. 4).
We choose the set P :=

⋃k−1
i=0 Pi.

Let θ be an angle with θ ≥ π
3 . Consider cY (θ) on P . Note that for θ ≥ π

3 ,
cY (θ) on the vertices of an equilateral triangle is exactly the complete graph
of their vertices. Now, let C be a convex region such that C only contains the
points (1,

√
3), (2, 0), (10, 0) and (11,

√
3) from P (see Fig. 4). Since in the cY (θ)

the vertex (0, 0) is only connected to the vertices (1,
√

3) and (2, 0), clearly in
cY (θ) � C there is no path between (0, 0) and (12, 0). Hence cY (θ) � C is not
connected.

P0 P1 Pk−1

C
(1,

√
3) (11,

√
3)

(0, 0) (2, 0) (10, 0) (12, 0)

Fig. 4. An example that cY (θ) is disconnected after convex region fault.

Some Properties of Continuous Yao Graph 51

3 cY (θ) is Not Self-approaching

In this section, we show that there is a set P of n points in the plane such that for
some angles θ, Yao graph on P with parameter θ is not a self-approaching graph.
Instead, the corresponding continuous Yao graph on P is a self-approaching
graph. Finally, we show that there is a set of n points in the plane such that for
every θ > 0, continuous Yao graph cY (θ) is not a self-approaching graph.

In the following, we assume that the number of cones is even. With making
some modifications, similar results holds for odd number of cones.

Now, let p = (0, 0), q = (1, 0), r = (r1, r2) and s = (s1, s2) be four points
in the plane. For three points x, y and z, let ∠yxz be the angle between the
segment xy and xz. Now, assume that ∠qpr = α1, ∠pqr = α2, ∠prq = α3,
∠qps = β1, ∠pqs = β2, ∠psq = β3, for some angles αi and βi with 0 < αi < π/2
and 0 < βi < π/2 for i = 1, 2, 3 (see Fig. 5).

We call the quadrilateral on the four points p, q, r and s a bad quadrilateral
if we have the following properties:

1. |pq| cos α1 < |pr| < |pq|.
2. |pq| cos α2 < |qr| < |pq|.
3. |pq| cos β1 < |ps| < |pq|.
4. |pq| cos β2 < |qs| < |pq|.

p
q

α1 α2

α3

β2β1

β3

r

s

Fig. 5. A bad quadrilateral on the points p, q, r and s.

Now, we consider k cones, generated by the k-rays through origin, where the
ith ray has angle (i − 1)θ with the positive x-axis. The ith cones contains the
points p such that the angle of line op with positive x-axis is bigger than or equal
(i − 1)θ and less than iθ.

Let V be a set of four points p = (0, 0), q = (1, 0), r = (r1, r2) and s = (s1, s2)
such that the quadrilateral on the vertices p, q, r and s is a bad quadrilateral.

52 D. Bakhshesh and M. Farshi

It is easy to see that, for every θ with α1 < θ ≤ π
2 such that 2π

θ is even number
and β2 < θ, the Yao graph Yk on V where k = 2π

θ does not contain the edge
{p, q} but it contains the edges {p, r}, {p, s}, {q, r} and {q, s}. So the Yao graph
Yk on the point set V is not a self-approaching graph, since every path from p
to q is not a pq-path. Indeed, the following lemma shows that cY (θ) on V is a
self-approaching graph.

Lemma 4. Let α1 + β1 ≥ π
2 or α2 + β2 ≥ π

2 . For every θ such that

(a) α1 < θ ≤ π
2 , and

(b) θ < α1 + β1 or θ < α2 + β2, and
(c) 2π

θ is even number, and
(d) β2 < θ,

continuous Yao graph cY (θ) on V contains the edge {p, q}. Furthermore, cY (θ)
on V is a self-approaching graph.

Proof. We prove the theorem for the case that θ < α1 + β1. Similar argument
works for the case θ < α2 + β2.

Since θ < α1 + β1, by construction of cY (θ), clearly there is a θ-cone C with
apex p that only contains the point q. Hence the edge {p, q} is in cY (θ).

On the other hand, the Yao graph on V with angle parameter θ is a sub-
graph of cY (θ), so the edges {p, r}, {p, s}, {q, r} and {q, s} are in cY (θ). So,
we only need to show that there is a self-approaching path from r to s and a
self-approaching path from s to r.

Since α1 + β1 ≥ π
2 or α2 + β2 ≥ π

2 , the path r → q → s or r → p → s
is an rs-path and in the reverse direction is an sr-path. So there is an xy-path
between all ordered pairs {x, y} for x, y ∈ V . Hence, cY (θ) is a self-approaching
graph on V . This completes the proof. �	

Next, we will give another point set such that the Yao graph on the point set
is not self-approaching graph, but the continuous Yao graph is a self-approaching
graph.

Let P be a set of n points as follows:

P = V ∪ {x1, x2, . . . , xn−4}, (1)

with xj = (c + j, 0) for 1 ≤ j ≤ n − 4 where c is a sufficiently large constant
positive integer. Here, we consider c = 19 (see Fig. 6).

Now, using Lemma 4 we can easily find the following result.

Lemma 5. Let α1 + β1 ≥ π
2 or α2 + β2 ≥ π

2 . For every θ such that

(a) α1 < θ ≤ π
2 , and

(b) θ < α1 + β1 or θ < α2 + β2, and
(c) 2π

θ is even number, and
(d) β2 < θ,

continuous Yao graph cY (θ) on P is self-approaching and Yk is not a self-
approaching for k = 2π

θ .

Some Properties of Continuous Yao Graph 53

p q

r

r′
x1 x2 x3 x4

Fig. 6. The set P with n = 8.

Note that there are some point set that satisfy the conditions mentioned in
above lemmas. For example, let V = {p, q, r, s} with p = (0, 0), q = (1, 0), r =
(0.7839, 0.4422), s = (0.2161,−0.4422), and suppose that k = 4 and θ = π

2 . We
can easily verify that the quadrilateral on the points of V is a bad quadrilateral.
Moreover we have

α1 = 29.4271◦, α2 = 63.9535◦, α3 = 86.6198◦,

β1 = 29.4271◦, β2 = 63.9535◦, β3 = 86.6198◦.

Now, suppose that P = V ∪{x1, x2, . . . , xn−4} where xi = (19+ i, 0). This point
set satisfies Lemma 5.

At the first view, it seems that the continuous Yao graph is a self-approaching
graph, but this is not true in general. Next, we give a point set such that for
each θ, the continuous Yao graph cY (θ) on the point set is not a self-approaching
graph.

Theorem 3. There is a set P of n points such that for every θ > 0, cY (θ) on
P is not a self-approaching graph.

Proof. We prove the theorem for 0 < θ ≤ 2π
3 . Since for every α1 and α2 with

α1 ≤ α2 we have cY (α2) ⊆ cY (α1), the theorem holds for every θ > 0.
Consider two points p = (0, 0) and q = (1, 0). Let C be a circle centered

at the midpoint of the segment pq, with radius 1
2 . Let Dp and Dq be circles

respectively centered at p and q with radius one. Let � be the perpendicular
bisector of segment pq (see Fig. 7).

Consider x and y as points outside C and inside Dp ∩Dq such that ∠xpq < θ
2

and ∠ypq < θ
2 . Let x′ and y′ be the symmetries of x and y with respect to line

�, respectively.
Now let V = {p, q, x, y, x′, y′}, and consider cY (θ) on V . Since ∠xpy =

∠x′qy′ < θ, cY (θ) does not contain the edge {p, q}. So, by our selection of
points x, y, x′ and y′, there is no self-approach path between p and q. Hence,
cY (θ) on V is not self-approaching.

54 D. Bakhshesh and M. Farshi

< θp qθ >

x

y

x′

y′

Dp Dq

C

�

a

b

Fig. 7. Illustrating of the proof of Theorem 3.

One can extend this point set to a point set with arbitrary number of points
such that cY (θ) is not a self-approaching graph of the point set. To this end, one
can add any point to V which is sufficiently far from the points in the original set
V , because adding points which are far can not help in making a self-approaching
path from p to q. �	

4 Concluding Remarks

We proved that for 0 < θ < π/3 and t ≥ 1
1−2 sin(θ/2) , the continuous Yao graph

cY (θ) is a C-fault-tolerant geometric t-spanner. Furthermore, we showed that for
every θ ≤ π and every half-plane h, cY (θ) � h is connected. Finally, we showed
that for every θ > 0, cY (θ) is not necessarily a self-approaching graph. The
question whether cY (θ) for π

3 ≤ θ ≤ π is a C-fault-tolerant geometric spanner
with constant stretch factor remains open.

References

1. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant
geometric spanners. Discrete Comput. Geom. 41(4), 556–582 (2009)

2. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching
graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp.
260–271. Springer, Heidelberg (2013)

Some Properties of Continuous Yao Graph 55

3. Barba, L., Bose, P., de Carufel, J.L., Damian, M., Fagerberg, R., van Renssen, A.,
Taslakian, P., Verdonschot, S.: Continuous Yao graphs. In: Proceedings of the 26th
Canadian Conference on Computational Geometry, CCCG 2014, August 2014

4. Barba, L., Bose, P., Damian, M., Fagerberg, R., Keng, W.L., O’Rourke, J.,
van Renssen, A., Taslakian, P., Verdonschot, S., Xia, G.: New and improved span-
ning ratios for Yao graphs. In: Annual ACM Symposium on Computational Geom-
etry, p. 30. ACM (2014)

5. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph
spanners. In: Proceedings of the Eighth Annual ACM Symposium on Computa-
tional Geometry, pp. 192–201. ACM (1992)

6. Chew, P.: There is a planar graph almost as good as the complete graph. In:
Proceedings of the Second Annual ACM Symposium on Computational Geometry,
pp. 169–177. ACM (1986)

7. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discrete Comput. Geom.
32(2), 207–230 (2004)

8. Eppstein, D.: Spanning trees and spanners. In: Handbook of Computational Geom-
etry, pp. 425–461 (1999)

9. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. In: Mathemati-
cal Proceedings of the Cambridge Philosophical Society, vol. 125, pp. 441–453.
Cambridge University Press, Cambridge (1999)

10. Levcopoulos, C., Narasimhan, G., Smid, M.: Improved algorithms for constructing
fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002)

11. Lukovszki, T.: New results on fault tolerant geometric spanners. In: Dehne, F.,
Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
193–204. Springer, Heidelberg (1999)

12. Lukovszki, T.: New results on geometric spanners and their applications. Ph.D.
thesis, Heinz Nixdorf Institute and Department of Mathematics and Computer
Science, Paderborn University, Paderborn, Germany (1999)

13. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

14. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theor. 13(1), 99–116 (1989)
15. Rote, G.: Curves with increasing chords. In: Mathematical Proceedings of the

Cambridge Philosophical Society, vol. 115, pp. 1–12. Cambridge University Press,
Cambridge (1994)

16. Smid, M.: Closest point problems in computational geometry. In: Handbook on
Computational Geometry (1997)

17. Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM J. Comput. 11(4), 721–736 (1982)

Plane Geodesic Spanning Trees, Hamiltonian
Cycles, and Perfect Matchings

in a Simple Polygon

Ahmad Biniaz(B), Prosenjit Bose, Anil Maheshwari, and Michiel Smid

Carleton University, Ottawa, Canada
ahmad.biniaz@gmail.com

Abstract. Let S be a finite set of points in the interior of a simple
polygon P . A geodesic graph, GP (S, E), is a graph with vertex set S and
edge set E such that each edge (a, b) ∈ E is the shortest path between a
and b inside P . GP is said to be plane if the edges in E do not cross. If the
points in S are colored, then GP is said to be properly colored provided
that, for each edge (a, b) ∈ E, a and b have different colors. In this paper
we consider the problem of computing (properly colored) plane geodesic
perfect matchings, Hamiltonian cycles, and spanning trees of maximum
degree three.

1 Introduction

Let S be a set of n points in the interior of a simple polygon P with m vertices.
For two points a and b in the interior of P , the geodesic π(a, b), is defined to
be the shortest path between a and b in the interior of P . A geodesic graph,
GP (S,E), is a graph with vertex set S and edge set E such that each edge
(a, b) ∈ E is the geodesic π(a, b) in P . If P is a convex polygon, then GP is a
straight-line geometric graph.

Let π1 and π2 be two, possibly self-intersecting, curves. We say that π1 and
π2 cross if by traversing π1 from one of its endpoints to the other endpoint we
encounter a neighborhood of π1 where π2 intersects π1 and switches from one
side of π1 to the other side [12]. We say that π1 and π2 are non-crossing if they do
not cross. Two non-crossing curves can share an endpoint and can “touch” each
other. If π1 and π2 are geodesics in a simple polygon, then they can intersect
only once. They may have common line segments, but once they break apart,
they do not meet again. See Fig. 1. A geodesic graph is said to be plane if the
edges in E are pairwise non-crossing.

If the points in S are colored, then a geodesic graph GP is said to be properly
colored provided that, for each edge (a, b) ∈ E, a and b have different colors.
For simplicity, in this paper we refer to a properly colored graph as a “colored
graph”. Let {S1, . . . , Sk}, where k ≥ 2, be a partition of S. Let KP (S1, . . . , Sk)
be the complete multipartite geodesic graph on S which has an edge between

Research supported by NSERC.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 56–71, 2016.
DOI: 10.1007/978-3-319-28678-5 5

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings 57

π1

π2

π1

π2

(a) (b)

Fig. 1. (a) Two crossing geodesics, and (b) two non-crossing geodesics.

every point in Si and every point in Sj , for all 1 ≤ i < j ≤ k. Imagine the points
in S to be colored, such that all the points in Si have the same color, and for
i �= j, the points in Si have a different color from the points in Sj . We say that
S is a k-colored point set. Any colored geodesic graph, GP (S,E), is a subgraph
of KP (S1, . . . , Sk).

If GP is a perfect matching, a spanning tree, or a Hamiltonian cycle, we call it
a geodesic matching, a geodesic tree, or a geodesic Hamiltonian cycle, respectively.
A colored geodesic matching is a geodesic matching in KP (S1, . . . , Sk). Similarly,
a colored geodesic tree (resp. a colored geodesic Hamiltonian cycle) is a geodesic
tree (resp. geodesic Hamiltonian cycle) in KP (S1, . . . , Sk). A plane colored geo-
desic matching is a colored geodesic matching which is non-crossing. Similarly,
a plane colored geodesic tree (resp. a plane colored geodesic Hamiltonian cycle)
is a colored geodesic tree (resp. colored geodesic Hamiltonian cycle) which is
non-crossing. Given a (colored) point set S in the interior of a simple polygon
P , we consider the problem of computing a plane (colored) geodesic matching,
geodesic Hamiltonian cycle, and geodesic 3-tree in KP (S1, . . . , Sk). A t-tree is a
tree of maximum degree t. See Fig. 2.

)b()a(

Fig. 2. (a) A plane colored geodesic matching, and (b) a plane colored geodesic 3-tree
(Color figure online).

1.1 Preliminaries

We say that a set S of points in the pale is in general position if no three points
of S are collinear. Moreover, we say that a set S of points in a simple polygon is
geodesically in general position provided that, for any two points a and b in S,
π(a, b) does not contain any point of S \ {a, b}.

58 A. Biniaz et al.

Toussaint [12] defined weakly-simple polygons—as a generalization of simple
polygons—because in many situations concerned with geodesic paths the regions
of interest are not simple but weakly-simple. A weakly simple polygon is defined
as a closed polygonal chain P = (p1, . . . , pm), possibly with repeated vertices,
such that every pair of distinct vertices of P partitions P into two non-crossing
polygonal chains [12]. Alternatively, a closed polygonal chain P is weakly simple
if its vertices can be perturbed by an arbitrarily small amount such that the
resulting polygon is simple. From the computational complexity point of view,
almost all data structures and algorithms developed for simple polygons work
for weakly simple polygons with only minor modifications that do not affect
the time or space complexity bounds. Hereafter, we consider a weakly simple
polygon to be a simple polygon.

For two points a and b in the interior of a simple polygon P , π(a, b) consists
of a sequence of straight-line segments. We refer to a and b as the external
vertices of π(a, b), and refer to the other vertices of π(a, b) as internal vertices.
Moreover, we refer to the line segment(s) of π(a, b) which are incident on a or
b as the external segments and the other segments as internal segments. In the
special case where π(a, b) is a straight-line segment, π(a, b) does not have any
internal vertex nor any internal segment.

Observation 1. The set of internal vertices of any geodesic in a simple polygon
P is a subset of the reflex vertices of P .

The oriented geodesic, −→π (a, b), is the geodesic π(a, b) which is oriented from
a to b. The extended geodesic, π(a, b), is obtained by extending the external
segments of π(a, b) till they meet the boundary of P . Let a′ and b′ be the points
where π(a, b) meet the boundary of P . Then, π(a, b) is equal to π(a′, b′). An
extended geodesic divides P into two (weakly) simple polygons. See Fig. 3.

a′

b′

b

a

P
S T1

T2

P1

P2

(a) (b)

Fig. 3. A color-balanced point set S in the interior of a simple polygon P . (a) A
balanced geodesic π(a, b) with external vertices a and b. (b) The extended geodesic
π(a, b) divides P into P1, P2, and partitions S into T1, T2 (Color figure online).

Assume S is partitioned into color classes, i.e., each point in S is colored by
one of the given colors. S is said to be color-balanced if the number of points of
each color is at most �n/2	, where n = |S|. In other words, S is color-balanced
if no color is in strict majority. Moreover, S is said to be weakly color-balanced if
the number of points of each color is at most
n/2�. Assume S is color-balanced

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings 59

and is in the interior of a simple polygon P . Let π be a geodesic in P . Let P1

and P2 be the (weakly) simple polygons on each side of the extended geodesic π.
Let T1 and T2 be the points of S in P1 and P2, respectively. We say that π is a
balanced geodesic if both T1 and T2 are color-balanced and the number of points
in each of T1 and T2 is at most 2n

3 + 1. See Fig. 3. The ham-sandwich geodesic
(see [5]) is a balanced geodesic: given a set R of red points and a set B of blue
points in a simple polygon P , a ham-sandwich geodesic is a geodesic which has
its endpoints on the boundary of P and has at most |R|/2 red points and at
most |B|/2 blue points on each side.

By Observation 1, both endpoints of any internal segment of a ham-sandwich
geodesic are reflex vertices of P . Thus, we have the following observation:

Observation 2. Let R and B be two disjoint sets of points in a simple poly-
gon P . Let F be the set of reflex vertices of P . Let π be a ham-sandwich geodesic
for R and B in P . If R ∪ B ∪ F is in general position, then

• the internal segments of π do not contain any point of R ∪ B.
• if |R| (resp. |B|) is an even number, then the external segments of π do not

contain any point of R (resp. B).
• if |R| (resp. |B|) is an odd number, then exactly one of the external segments

of π contains exactly one point of R (resp. B). Moreover, if both |R| and
|B| are odd numbers, then the two points which are on π, belong to different
external segments of π (assuming π is not a straight-line segment).

Bose et al. [5] presented an O((n+m) log m) expected-time randomized algo-
rithm for finding a ham-sandwich geodesic. Their algorithm is optimal in the
algebraic computation tree model.

1.2 Non-crossing Structures in the Plane

Let S be a set of points in general position in the plane. Let K(S) be the complete
straight-line geometric graph on S. One can compute a plane Hamiltonian cycle
in K(S) in the following way. Let c be a point in R

2 \ S which is in the interior
of the convex hull of S. Sort the points in S radially around c, then connect each
point to its successor. The resulting structure, say H, is a plane Hamiltonian
cycle in K(S). By removing any edge from H a plane 2-tree is obtained. By
picking every second edge of H a plane perfect matching is obtained (assuming
|S| is an even number).

Hereafter, assume S is partitioned into {S1, . . . , Sk}, where k ≥ 2, and the
points in Si are colored Ci. Let K(S1, . . . , Sk) be the complete straight-line
multipartite geometric graph on S. Observe that if K(S1, . . . , Sk) contains a
plane Hamiltonian path, then S is weakly color-balanced. The reverse may not
be true; if S is (weakly) color-balanced, it is not always possible to find a plane
Hamiltonian path (or a plane 2-tree) in K(S1, . . . , Sk). See [1,8] for examples.
Kaneko [7] showed that if k = 2 and S is color-balanced, i.e., |S1| = |S2|, then
K(S1, S2) contains a plane 3-tree. Kano et al. [9] extended this result for k ≥ 2:
if S is weakly color-balanced, then K(S1, . . . , Sk) contains a plane 3-tree.

60 A. Biniaz et al.

A necessary and sufficient condition for the existence of a perfect matching
(or colored matching) in K(S1, . . . , Sk) follows from a result of Sitton [11].

Corollary 1. Let {S1, . . . , Sk} be a partition of a point set S in the plane, where
k ≥ 2 and |S| is even. Then, K(S1, . . . , Sk) has a colored matching if and only
if S is color-balanced.

Aichholzer et al. [2], and Kano et al. [9] show that the same condition as
in Corollary 1 is necessary and sufficient for the existence of a plane colored
matching in K(S1, . . . , Sk):

Theorem 1 (Aichholzer et al. [2], and Kano et al. [9]). Let {S1, . . . , Sk}
be a partition of a point set S in the plane, where k ≥ 2 and |S| is even. Then,
K(S1, . . . , Sk) has a plane colored matching if and only if S is color-balanced.

In fact, they show something stronger. Aichholzer et al. [2] showed that any
minimum-weight colored matching in K(S1, . . . , Sk), which minimizes the total
Euclidean length of the edges, is plane. Kano et al. [9] presented a constructive
proof for the existence of a plane colored matching in K(S1, . . . , Sk). Biniaz
et al. [4] presented an algorithm which computes a plane colored matching in
K(S1, . . . , Sk) optimally in Θ(n log n) time.

Fig. 4. (a) A minimum-weight colored geodesic matching which is crossing. (b) A non-
crossing matching in the plane, and (c) its geodesic mapping which is crossing. (d) A
non-crossing geodesic matching (Color figure online).

Although any minimum-weight colored matching in K(S1, . . . , Sk) is non-
crossing, this is not always the case for any minimum-weight colored geodesic
matching in KP (S1, . . . , Sk), where the weight of a geodesic is defined to be the
total Euclidean length of its line segments. Figure 4(a) shows a minimum-weight
colored geodesic matching which is crossing.

As shown in Figs. 4(b)–(d) if we map a non-crossing matching in the plane
to a geodesic matching inside a simple polygon, then the resulting matching
may cross. This is also the case for non-crossing Hamiltonian cycles and non-
crossing trees. Therefore, in order to compute a non-crossing geodesic structure
in a simple polygon, it may not be an option to compute a non-crossing structure
in the plane first, and then map it to a geodesic structure in the polygon.

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings 61

1.3 Our Contributions

We generalize the notion of non-crossing (colored) structures for the case when
the points are in the interior of a simple polygon and the edges are geodesics.
Note that the problem of computing a non-crossing (colored) structure for points
in the plane is the special case when the simple polygon is convex.

Let S be a set of n points in a simple polygon P with m vertices. Let KP (S)
be the complete geodesic graph on S. In Sect. 2, we show that KP (S) contains a
plane geodesic Hamiltonian cycle. This also proves the existence of a plane geo-
desic matching and a plane geodesic 2-tree in KP (S). We show how to construct
such a cycle in O(m + n log(n + m)) time.

Let {S1, . . . , Sk}, where k ≥ 2, be a partition of S. Imagine the points in S
to be colored, such that all the points in Si have the same color, and for i �= j,
the points in Si have a different color from the points in Sj . In Sect. 3 we extend
the result of Kano et al. [9] for geodesic 3-trees. We show that if S is weakly
color-balanced and S ∪ F is in general position, then KP (S1, . . . , Sk) contains a
plane geodesic 3-tree and it can be computed in O(nm+n2 log(n+m)) time. In
Sect. 4, we prove that if S is color-balanced and S∪F is in general position, then
there exists a balanced geodesic for S in P . Moreover, if |S| is even, then there
exists a balanced geodesic which partitions S into two point sets each of even
size. In either case, a balanced geodesic can be computed in O((n + m) log m)
time. In Sect. 5 we compute a plane geodesic matching in KP (S1, . . . , Sk) in
O(nm log m + n log n log m) time by recursively finding balanced geodesics.

2 Plane Geodesic Hamiltonian Cycles

2.1 Sweep-Path Algorithm

Let S be a set of n points in the plane. In a sweep-line algorithm, an imaginary
vertical line scans the plane from left to right. The sweep line meets the points in
S in the order determined by their x-coordinates. In a variant of the sweep-line
algorithm, which is known as a radial sweep algorithm, an imaginary half-line,
which is anchored at a point s in the plane, scans the plane in counter-clockwise
order around s. The radial sweep meets the points in S in angular order around
s. We extend the radial sweep algorithm for point set S in the interior of a
simple polygon P . In the new algorithm, which we call sweep-path algorithm,
an imaginary path which is anchored at a vertex s of P , scans P in “counter-
clockwise” order around s. It gives a “radial ordering” for the points in S.

The sweep-path algorithm runs as follows. Let s be a vertex of P such that
S ∪{s} is geodesically in general position. Let t be a point which is initially at s.
The algorithm moves t, in counter-clockwise order, along the boundary of P . See
Fig. 5(a). At each moment the sweep-path is the oriented geodesic −→π (s, t). The
algorithm stops as soon as t reaches its initial position, i.e., s. For two points
a, b ∈ S we say that a ≺ b if −→π (s, t) meets a before b. Thus, the sweep-path
algorithm defines a total ordering S = (s1, . . . , sn) on the points in S such that

62 A. Biniaz et al.

Fig. 5. (a) The shortest path tree rooted at s (in bold) which is extended (by dashed
lines) to form the shortest path map for s. (b) The skeleton tree of SPT(s) (in bold)
which is enhanced by the vertices representing the regions in SPM(s).

si ≺ sj , for all 1 ≤ i < j ≤ n. See Fig. 7(a). We show how to obtain S in
O(m + n log(n + m)) time, where m is the number of vertices of P .

Let s be a vertex of P such that S∪{s} is geodesically in general position. We
start by constructing the shortest path tree for s, denoted by SPT(s). This tree
is defined to be the union of the shortest paths from s to all vertices of P . Then,
we construct the shortest path map for s, denoted by SPM(s). The shortest path
map for s is an enhancement of the shortest path tree rooted at s. See Fig. 5(a).
Whereas the shortest path tree encodes the shortest path from every vertex of P
to s, the shortest path map encodes the shortest path from every point inside P
to s. Given SPT(s), the SPM(s) can be produced by partitioning the funnels of
all edges of P in SPT(s). For each edge of P , we partition the funnel associated
with it by extending the funnel edges. This partitions the funnel into triangular
sectors (regions), each with a distinguished vertex called apex. The resulting
subdivision is SPM(s). For a particular triangular region R in SPM(s) let a(R)
denote the apex of R (Fig. 5(a)). For any point p inside R the predecessor of p
along −→π (s, p) is a(R). Moreover, all points of R have the same internal vertex
sequence in their shortest path to s.

Let T be the skeleton tree obtained from SPT(s) by removing its leaves
(Fig. 5(b)). T contains the apex of all regions in SPM(s). For each region R in
SPM(s) create a vertex which represents R, then, connect that vertex as a child
to a(R) in T . See Fig. 5(b). We order the children of each internal vertex v ∈ T
as follows. Let P (v) be the union of the regions having v as their apex. See
Fig. 6. Note that P (v) is the union of a sequence of adjacent triangular regions
all anchored at v, where v is a vertex of the boundary of P (v). We order the
children of v in counter-clockwise order.

We run depth-first-search on T to obtain an ordering R = (R1, R2, . . .) on
the regions of SPM(s). See Figs. 5(b) and 6. Then, we locate the points of S in
SPM(s). For each region R in SPM(s), let L(R) be the list of points of S within
R which are sorted counter-clockwise around a(R). By replacing each Ri in R
with L(Ri) the desired ordering S is obtained. See Fig. 7(a).

SPM(s) has O(m) size and can be computed in O(m) time in a triangulated
polygon using the algorithm of Guibas et al. [6]. A planar point location data

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings 63

Fig. 6. The skeleton tree T (in bold) which is enhanced by the vertices representing
the regions of SPM(s). For each v ∈ T , the children of v are ordered counter-clockwise.

structure for SPM(s) can be constructed in O(m) time and answers point loca-
tion queries in O(log m) time [10]. Thus, we can locate the points of S in SPM(s)
in O(m+n log m) time. Making T to be an ordered tree takes O(m) time by the
construction of SPM(s) [6]. Sorting the points of S takes O(n log n) time for all
regions. The depth first search algorithm runs in O(m) time, and substituting
each Ri with L(Ri) takes O(m + n) time. Thus, the total running time of the
sweep-path algorithm is O(m + n log(n + m)).

See the full version of the paper for the proof of the following lemma.

Lemma 1. Let S = (s1, . . . , sn) be the ordering of the points in S obtained by
the sweep-path algorithm. Let si, sj, sk and sl be points in S such that 1 ≤ i <
j ≤ k < l ≤ n. Then, π(si, sj) and π(sk, sl) are non-crossing.

2.2 Plane Geodesic Hamiltonian Cycles

Given a set S of n points in a simple polygon P with m vertices, in this section
we show how to compute a plane geodesic Hamiltonian cycle on S.

A set Q ⊆ P is called geodesically (or relative) convex if for any pair of points
a, b ∈ Q the geodesic between a and b in P , also lies in Q. The geodesic hull (or
relative convex hull) of S in P , denoted by GH(S), is defined to be the smallest
geodesically convex set in P that contains S. Toussaint [12] showed that the
geodesic hull of S in P is a weakly simple polygon, and can be computed in
O(m + n log(n + m)) time. Since for any two points a and b in S, π(a, b) lies
in GH(S), without loss of generality, we assume that P = GH(S). Let s0 be a
point of S on GH(S). We run the sweep-path algorithm for S \ {s0} in GH(S).
It gives an ordering S = (s1, . . . , sn−1) for the points in S \ {s0}. We compute
the following geodesic Hamiltonian cycle C (see Fig. 7),

C = {(si, si+1) : 1 ≤ i ≤ n − 2} ∪ {(s0, s1), (s0, sn−1)}.

Note that s1 and sn−1 are the neighbors of s0 on GH(S). Therefore, (s0, s1)
and (s0, sn−1) are non-crossing and do not cross (si, si+1) for all 1 ≤ i ≤ n − 2.
In addition, by Lemma 1 for 1 ≤ i < j ≤ k < l ≤ n − 1, (si, sj) and (sk, sl)

64 A. Biniaz et al.

Fig. 7. (a) Points of S which are sorted by the sweep-path algorithm. (b) A plane
geodesic Hamiltonian cycle (assuming s0 is a point of S).

are non-crossing. This proves the planarity of C. By removing any edge from C,
a plane geodesic 2-tree for S is obtained. By picking every second edge of C, a
plane geodesic matching for S is obtained. Computing GH(S) and running the
sweep-path algorithm takes O(m + n log(n + m)) time. Note that even if S is
not geodesically in general position, one can compute C by simply modifying
the sweep-path algorithm. Therefore, we have proved the following theorem:

Theorem 2. Let S be a set of n points in a simple polygon with m vertices.
Then, a plane geodesic Hamiltonian cycle, a plane geodesic 2-tree, and a plane
geodesic matching for S can be computed in O(m + n log(n + m)) time.

3 Plane Geodesic Trees

Let S be a set of n points in the interior of a simple polygon P with m vertices.
Let {S1, . . . , Sk} be a partition of S, where the points in Si are colored Ci. In this
section we show that if S is weakly color-balanced and geodesically in general
position, then there exists a plane colored geodesic 3-tree on S.

If k ≥ 4, then by using the technique in the proof of Lemma 2 in [4], in O(n)
time we can reduce S to a weakly color-balanced point set with three colors such
that any plane colored geodesic tree on the resulting 3-colored point set is also
a plane colored geodesic tree on S. Therefore, from now on we assume that S is
weakly color-balanced and its points colored by two or three colors. Let CH(S)
denote the convex hull of S. For a (geodesic) tree T and a given vertex s in T , let
dT (s) denote the degree of s in T . Kano et al. [9] proved the following lemma and
theorems for colored points in the plane. We adjusted the statements according
to our setting and definitions.

Lemma 2 (Kano et al. [9]). Let (s1, . . . , sn) be a sequence of n ≥ 3 points
colored with at most 3 colors1 such that s1 and sn have the same color. If
{s1, . . . , sn} is weakly color-balanced, then there exists an even number p, 2 ≤ p ≤
n − 1, such that both {s1, . . . , sp} and {sp+1, . . . , sn} are weakly color-balanced.

1 Actually, they prove the statement of the theorem for 2- and 3-colored point sets.

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings 65

Theorem 3 (Kano et al. [9]). Let S be a set of points in general position in
the plane which are colored red and blue. Let R be the set of red points and B the
set of blue points. Let s be a vertex of CH(S). If one of the following conditions
holds, then there exists a plane colored 3-tree, T , on S such that dT (s) = 1.

(i) |B| = 1, 1 ≤ |R| ≤ 3, and s ∈ R,
(ii) 2 ≤ |B|, |R| = |B| + 2, and s ∈ R,
(iii) 2 ≤ |B| ≤ |R| ≤ |B| + 1.

Theorem 4 (Kano et al. [9]). Let S be a weakly color-balanced point set in
general position in the plane which is colored by three colors. Let s be a vertex of
CH(S). Then, there exists a plane colored 3-tree, T , on S such that dT (s) = 1.

We extend Theorems 3 and 4 to prove the existence of plane geodesic trees
on the colored points in the interior of a simple polygon. We adjust the proofs
given in [9] to our setting, skipping the details.

Theorem 5. Let S be a set of n points which is geodesically in general position
in a simple polygon P with m vertices. Assume the points in S are colored red and
blue. Let R be the set of red points and B the set of blue points. Let s be a vertex
of GH(S). If one of the following conditions holds, then in O(nm+n2 log(n+m))
time, one can compute a plane colored geodesic 3-tree, T , with vertex set S in P
such that T is rooted at s and dT (s) = 1.

(i) |B| = 1, 1 ≤ |R| ≤ 3, and s ∈ R,
(ii) 2 ≤ |B|, |R| = |B| + 2, and s ∈ R,
(iii) 2 ≤ |B| ≤ |R| ≤ |B| + 1.

Proof. The proof is by construction. Since for any two points a and b in S, π(a, b)
lies in GH(S), without loss of generality, we may assume that P = GH(S). If
Condition (i) holds, the proof is trivial. Hence, assume that (ii) or (iii) holds.
Let x and y be the left and the right neighbors of s on the boundary of GH(S).
If s and a neighboring vertex, say x, have distinct colors, then let T1 be the tree
obtained recursively on S \{s} which is rooted at x. Observe that x is a vertex of
GH(S \ {s}) and π(s, x) does not intersect GH(S \ {s}). Then, T = T1+π(s, x)
is the desired tree.

If s, x, and y have the same color, then let S = (s1, . . . , sn−1), where s1 = x
and sn−1 = y, be the ordering of the points in S \ {s} obtained by the sweep-
path algorithm around s. See Fig. 8(a). If s ∈ B, then let S = (s1, . . . , sn), where
s1 = s, s2 = x, and sn = y. See Fig. 8(b). In either case—s ∈ R or s ∈ B—by
Lemma 2 there exists an element sp, with p even, such that if S1 and S2 be the
points of S on each side of π(s, sp) (not including s and sp), then both S1 ∪{sp}
and S2 are weakly color-balanced. Moreover, each of S1 ∪ {sp} and S2 ∪ {sp}
satisfies one of the conditions (i), (ii), or (iii). Observe that π(s, sp) does not
cross any of GH(S1 ∪ {sp}) and GH(S2 ∪ {sp}). In addition, sp is a vertex of
both GH(S1 ∪ {sp}) and GH(S2 ∪ {sp}). Let T1 (resp. T2) be the tree obtained
recursively on S1∪{sp} (resp. S2∪{sp}) which is rooted at sp. Since dT1(sp) = 1
and dT2(sp) = 1, T = T1 + T2 + π(s, sp) is the desired tree.

66 A. Biniaz et al.

Fig. 8. Illustration of Theorem 5: (a) |R| = |B|+2, s ∈ R, and (b) |R| = |B|+1, s ∈ B
(Color figure online).

Computing the geodesic hull and running the sweep-path algorithm take
O(m+n log(n+m)) time. In the worst case, we recurse O(|S|) times. Thus, the
total running time of the algorithm is O(nm + n2 log(n + m)). ��
Theorem 6. Let S be a 3-colored point set of size n which is geodesically in
general position in a simple polygon P with m vertices. Let s be a vertex of
GH(S). If S is weakly color-balanced, then in O(nm + n2 log(n + m)) time, we
can compute a plane colored geodesic 3-tree, T , with vertex set S in P such that
T is rooted at s and dT (s) = 1.

Proof. Assume the points in S are colored red, green, and blue. Let R, G, and
B be the set of red, green, and blue colors, respectively. Assume that |B| ≤
|G| ≤ |R|. The proof is by construction. If |R| =
|S|/2�, we assume that G
and B have the same color and solve the problem by Theorem 5. Assume that
|R| ≤
|S|/2� − 1. Observe that in this case S \ {s} is weakly color-balanced.
Let x and y be the left and the right neighbors of s on the boundary of GH(S).
If s and a neighbor vertex, say x, have distinct colors, then let T1 be the tree
obtained recursively on S \{s} which is rooted at x. Observe that x is a vertex of
GH(S \ {s}) and π(s, x) does not intersect GH(S \ {s}). Then, T = T1+π(s, x)
is the desired tree.

If s, x, and y have the same color, then let S = (s1, . . . , sn−1), where s1 = x
and sn−1 = y, be the ordering of points in S \ {s} obtained by the sweep-
path algorithm on s. By Lemma 2 there exists an element sp, with p even,
such that if S1 and S2 be the points of S on each side of π(s, sp), then both
S1 ∪{sp} and S2 are weakly color-balanced. Since |R| ≤
|S|/2�− 1, S2 ∪{sp} is
also color-balanced. Moreover, π(s, sp) does not cross any of GH(S1 ∪ {sp}) and
GH(S2 ∪ {sp}). Let T1 (resp. T2) be the tree obtained recursively on S1 ∪ {sp}
(resp. S2 ∪ {sp}) which is rooted at sp. Since dT1(sp) = 1 and dT2(sp) = 1,
T = T1 + T2 + π(s, sp) is the desired tree.

As in the proof of Theorem 5, the running time is O(nm + n2 log(n + m)). ��

4 Balanced Geodesics

Let S be set of n ≥ 3 points in the interior of a simple polygon P with m vertices.
Let F be the set of reflex vertices of P . Let {S1, . . . , Sk} be a partition of S,

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings 67

where the points in Si are colored Ci. Assume S is color-balanced. Recall that
a balanced geodesic has its endpoints on the boundary of P and partitions S
into two point sets T1 and T2, such that both T1 and T2 are color-balanced and
max{|T1|, |T2|} ≤ 2n

3 + 1. We prove that if S ∪ F is in general position, then
there exists a balanced geodesic for S in P . In fact, we show how to find such a
balanced geodesic in O((n + m) log m) time by using a similar idea as in [4].

Theorem 7 (Balanced Geodesic Theorem). Let S be a color-balanced point
set of n ≥ 3 points which is in the interior of a simple polygon P with m vertices.
Let F be the set of reflex vertices of P . If S ∪ F is in general position, then in
O((n + m) log m) time we can compute a geodesic π such that

1. π does not contain any point of S.
2. π partitions S into two point sets T1 and T2, where

(a) both T1 and T2 are color-balanced,
(b) both T1 and T2 contains at most 2

3n + 1 points,
(c) if n is even, then both T1 and T2 have an even number of points.

Proof. Let {S1, . . . , Sk} be the partition of S such that the points in Si are
colored Ci. We differentiate between three cases when k = 2, k = 3, and k ≥ 4.

If k = 2, then |S1| = |S2|. Without loss of generality assume the points in S1

are colored red and the points in S2 are colored blue. Let π be a ham-sandwich
geodesic of S in P . By Observation 2, if |S1| and |S2| are even numbers then
π does not contain any point of S and hence it is a desired balanced geodesic.
If |S1| and |S2| are odd, then one of the external segments of π contains a red
point, say r, and the other external segment contains a blue point, say b. We
adjust the external segments of π (by slightly moving its external vertices on P)
such that both r and b lie on the same side of π. If π is a straight line segment,
then we move π slightly such that both r and b lie on the same side of π. In
either case, π is a desired balanced geodesic.

If k ≥ 4, then by using the technique in the proof of Lemma 2 in [4], in O(|S|)
time we can reduce S to a color-balanced point set with three colors such that
any balanced geodesic for the resulting 3-colored point set is also a balanced
geodesic for S. Therefore, from now on we assume that S color-balanced and its
points are colored by three colors, i.e., k = 3.

Fig. 9. Illustrating Theorem 7. The blue points in X are indicated by bounding circles.
The ham-sandwich geodesic is in dashed lines. The geodesic π, with endpoints p and
q, is a balanced geodesic when: (a) |R| is even, and (b) |R| is odd (Color figure online).

68 A. Biniaz et al.

Let the points in S to be colored red, green, and blue. Let R, G, and B denote
the set of red, green, and blue points, respectively. Without loss of generality
assume that 1 ≤ |B| ≤ |G| ≤ |R|. Since P is color-balanced, |R| ≤ �n

2 	. Let X
be an arbitrary subset of B such that |X| = |R| − |G|; note that X = ∅ when
|R| = |G|, and |X| = |B| when |R| = n

2 (when n is even). Let Y = B − X. Let π
be a ham-sandwich geodesic for R and G∪X in P (by imagining that the points
in G ∪ X have the same color). Let T1 and T2 denote the set of points of S on
each side of π; see Fig. 9(a). Let R1, G1, and B1(= X1 ∪ Y1) be the set of red,
green, and blue points in T1 such that X1 = X ∩ T1 and Y1 = Y ∩ T1. Similarly,
we define R2, G2, B2, X2, and Y2 as subsets of T2.

If |R| is an even number, then π does not contain any point of R ∪ G ∪ X. If
π contains any point y ∈ Y , then by Observation 2, y is on an external segment
of π. We adjust that external segment (by slightly moving its external vertex
on either side) such that it does not contain any point of S. If |R| is an odd
number, then π contains a point x ∈ R and a point y ∈ G ∪ X; see Fig. 9(b).
By Observation 2, x and y are on different external segments of π (unless π is a
straight line segment). In this case, without loss of generality, assume |B2| ≥ |B1|.
We adjust the external segments of π slightly such that x and y lie on the same
side as T2, i.e., T2 = T2 ∪ {x, y} (if π is a straight-line segment, then we move π
slightly such that T2 = T2 ∪ {x, y}); see Fig. 9(b). We prove that π satisfies the
statement of the theorem. In either case we have |R1| = �|R|/2	, |R2| =
|R|/2�,
|G1| + |X1| = |R1|, and |G2| + |X2| = |R2|. Therefore,

|T1| ≥ |R1| + |G1| + |X1| = 2�|R|/2	,
|T2| ≥ |R2| + |G2| + |X2| = 2
|R|/2�. (1)

By the ham-sandwich geodesic we have |G1| ≤ |R1|. This and Inequality (1)
imply that |G1| ≤ |R1| = �|R|/2	 ≤ |T1|/2. Similarly, we have |G2| ≤ |R2| =

|R|/2� ≤ |T2|/2. In order to prove that T1 and T2 are color-balanced, we have
to show that |B1| ≤ |T1|/2 and |B2| ≤ |T2|/2. Let t1 and t2 be the total number
of red and green points in T1 and T2, respectively; that is t1 = |R1 ∪ G1| and
t2 = |R2 ∪ G2|. Then,

|T1| = t1 + |B1| and |T2| = t2 + |B2|. (2)

In addition,

t1 = |R1| + |G1|
= |R1| + (|R1| − |X1|)
≥ 2|R1| − |X|
= 2�|R|/2	 − (|R| − |G|)
=

{ |G| if R is even
|G| − 1 if R is odd,

t2 = |R2| + |G2|
= |R2| + (|R2 − |X2|)
≥ 2|R2| − |X|
= 2
|R|/2� − (|R| − |G|)
=

{ |G| if R is even
|G| + 1 if R is odd.

(3)

Recall that |B| ≤ |G|. Equation (2) and Inequality (3) imply that |B2| ≤
|T2|/2. If |R| is an even number, then Eq. (2) and Inequality (3) imply that

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings 69

|B1| ≤ |T1|/2. If |R| is an odd number, then by assumption we have |B1| ≤ |B2|;
this implies that |B1| ≤ |B| − 1. Again by Eq. (2) and Inequality (3) we have
|B1| ≤ |T1|/2. Therefore, both T1 and T2 are color-balanced.

Now we prove the upper bound on the sizes of T1 and T2. By Inequality (1)
both |T1| and |T1| are at least 2�|R|/2	. This implies that,

max{|T1|, |T2|} ≤ n − 2� |R|
2

	 ≤ n − 2(
|R| − 1

2
) ≤ n − |R| + 1.

Since R is the largest color class, |R| ≥
n
3 �. Therefore, max{|T1|, |T2|} ≤

n − n
3 + 1 = 2n

3 + 1.
The ham-sandwich geodesic π for R and G ∪ X in P can be computed in

O((n+m) log m) time. Adjusting the external segments of π takes constant time.
Thus, the total running time is O((n + m) log m).

See the full version of the paper for the proof of case (c), when n is even. ��

5 Plane Colored Geodesic Matchings

Let S be a set of n points, with n an even number, which is in the interior of a
simple polygon P with m vertices. Let F be the set of reflex vertices of P . Let
{S1, . . . , Sk}, where k ≥ 2, be a partition of S such that the points in Si are
colored Ci. Assume S is color-balanced. In this section we show that if S ∪ F
is in general position, then KP (S1, . . . , Sk) contains a plane colored geodesic
matching. In fact we show how to compute such a matching. If k ≥ 4, by the
technique of Lemma 2 in [4], in O(n) time we can reduce S to a color-balanced
point set with three colors such that any plane colored geodesic matching on
the resulting 3-colored point set is also a plane colored geodesic matching on S.
Thus, we assume that S color-balanced and its points are colored by at most
three colors.

As in Theorem 6, we can adjust the technique used by Kano et al. [9]—for
computing a non-crossing colored matching in the plane—to our setting. As a
result we can compute a plane colored geodesic matching for S in P in O(nm +
n2 log(n + m)) time.

Now we present an algorithm that computes a plane colored geodesic matching
by recursively applying Balanced Geodesic Theorem as follows. By Theorem 7, we
can find a balanced geodesic π that partitions P into simple polygons P1 and
P2 containing point sets T1 and T2 such that both T1 and T2 are color-balanced
with an even number of points, and max{|T1|, |T2|} ≤ 2n

3 +1. Let M1 (resp. M2)
be a plane colored geodesic matching for T1 (resp. T2) in P1 (resp. P2). Since P1

and P2 are separated by π, M1 ∪ M2 is a plane colored geodesic matching for
S. Therefore, in order to compute a plane colored geodesic matching for S in P ,
we compute a balanced geodesic for S in P , and then recursively compute plane
colored geodesic matchings for T1 in P1 and for T2 in P2.

Let T (n,m) denote the running time of the recursive algorithm on S and P ,
where |S| = n and |P | = m. By Theorem 7, the balanced geodesic π can be
computed in O((n+m) log m) time. The size of each of P1 and P2 is at most the

70 A. Biniaz et al.

size of P , and hence the recursions take T (|T1|,m) and T (|T2|,m) time. Thus,
the running time of the algorithm can be expressed by the following recurrence:

T (n,m) = T (|T1|,m) + T (|T2|,m) + O((n + m) log m).

Since |T1|, |T2| ≤ 2n
3 + 1 and |T1| + |T2| = n, this recurrence solves to

T (n,m) = O(nm log m + n log n log m).

Theorem 8. Let S be a color-balanced point set of size n, with n even, in a
simple polygon P with m vertices, whose reflex vertex set is F . If S ∪ F is
in general position, then a plane colored geodesic matching for S in P can be
computed in min{O(nm + n2 log(n + m)), O(nm log m + n log n log m)} time.

Remark 1. By using the geodesic-preserving polygon simplification method
of [3], the running time of any algorithm presented in this paper as O(f(n,m))
can be stated as O(m + f(n, r)), where r is the number of reflex vertices of P .

Remark 2. In Sect. 3, in each recursion step we run the sweep-path algorithm
to sort the points around sp. Having a semi-dynamic data structure for maintain-
ing the geodesic hull which supports point deletions in O(polylog(nm)) worst
case time, we can avoid the repetitive sorting. This would improve the running
time for computing a plane colored geodesic 3-tree and a plane colored geodesic
matching to O((n + m)polylog(nm)).

References

1. Abellanas, M., Garcia-Lopez, J., Hernández-Peñalver, G., Noy, M., Ramos, P.A.:
Bipartite embeddings of trees in the plane. Discrete Appl. Math. 93(2–3), 141–148
(1999)

2. Aichholzer, O., Cabello, S., Monroy, R.F., Flores-Peñaloza, D., Hackl, T., Huemer,
C., Hurtado, F., Wood, D.R.: Edge-removal and non-crossing configurations in
geometric graphs. Discrete Math. Theor. Comput. Sci. 12(1), 75–86 (2010)

3. Aichholzer, O., Hackl, T., Korman, M., Pilz, A., Vogtenhuber, B.: Geodesic-
preserving polygon simplification. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.)
Algorithms and Computation. LNCS, vol. 8283, pp. 11–21. Springer, Heidelberg
(2013)

4. Biniaz, A., Maheshwari, A., Nandy, S.C., Smid, M.: An optimal algorithm for plane
matchings in multipartite geometric graphs. In: Dehne, F., Sack, J.-R., Stege, U.
(eds.) WADS 2015. LNCS, vol. 9214, pp. 66–78. Springer, Heidelberg (2015)

5. Bose, P., Demaine, E.D., Hurtado, F., Iacono, J., Langerman, S., Morin, P.: Geo-
desic ham-sandwich cuts. Discrete Comput. Geom. 37(3), 325–339 (2007)

6. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica 2, 209–233 (1987)

7. Kaneko, A.: On the maximum degree of bipartite embeddings of trees in the plane.
In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp.
166–171. Springer, Heidelberg (2000)

Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings 71

8. Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane—a
survey. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and Computa-
tional Geometry. Algorithms and Combinatorics, pp. 551–570. Springer, Heidelberg
(2003)

9. Kano, M., Suzuki, K., Uno, M.: Properly colored geometric matchings and 3-trees
without crossings on multicolored points in the plane. In: Akiyama, J., Ito, H.,
Sakai, T. (eds.) JCDCGG 2013. LNCS, vol. 8845, pp. 96–111. Springer, Heidelberg
(2014)

10. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–35 (1983)

11. Sitton, D.: Maximum matchings in complete multipartite graphs. Furman Univ.
Electron. J. Undergraduate Math. 2, 6–16 (1996)

12. Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Revue
D’Intelligence Artificielle 3(2), 9–42 (1989)

Visibility Graphs of Anchor Polygons

Hossein Boomari(B) and Alireza Zarei

Department of Computer Science, Sharif University of Technology, Tehran, Iran
mh.hima@gmail.com

Abstract. Visibility graph of a polygon corresponds to its internal diag-
onals and boundary edges. For each vertex on the boundary of the poly-
gon, we have a vertex in this graph and if two vertices of the polygon
see each other there is an edge between their corresponding vertices in
the graph. Two vertices of a polygon see each other if and only if their
connecting line segment completely lies inside the polygon. Recognizing
visibility graphs is the problem of deciding whether there is a simple
polygon whose visibility graph is isomorphic to a given graph. Another
important problem is to reconstruct such a polygon if there is any. These
are well-known and well-studied, but yet open problems in geometric
graphs and computational geometry. However, these problems have been
solved efficiently for special cases where the target polygon is known to
be a tower or a spiral polygon. In this paper, we solve these recognizing
and reconstruction problems for another type of polygons, named anchor
polygons.

Keywords: Visibility graph · Polygon reconstruction · Recognizing
visibility graph · Anchor polygon

1 Introduction

Visibility graph of a simple planar polygon is a graph in which there is a vertex
for each vertex of the polygon and for each pair of visible vertices of the polygon
there is an edge between their corresponding vertices in this graph. Two points
in a simple polygon are visible from each other if and only if their connecting
segment completely lies inside the polygon. In this definition, each pair of adja-
cent vertices on the boundary of the polygon are assumed to be visible from each
other. This implies that we have always a Hamiltonian cycle in a visibility graph
which determines the order of vertices on the boundary of the corresponding
polygon.

Computing the visibility graph of a given simple polygon has many applica-
tions in computer graphics [10], computational geometry [9] and robotics [11].
There are several efficient polynomial time algorithms for this problem [9].

This concept has been studied in reverse as well: Is there any simple polygon
whose visibility graph is isomorphic to a given graph and if there is such a
polygon, is there any way to reconstruct it (find positions for its vertices on

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 72–89, 2016.
DOI: 10.1007/978-3-319-28678-5 6

Visibility Graphs of Anchor Polygons 73

the plain)? The former problem is known as recognizing visibility graphs and
the latter one is known as reconstructing polygon from visibility graph. Both
these problems are widely open. The only known result about the computational
complexity of these problems is that they belong to PSPACE [1] complexity class
and more specifically belong to the class of Existence theory of reals [8]. This
means that it is not even known whether these problems are NP-Complete or can
be solved in polynomial time. Even, if we are given the Hamiltonian cycle of the
visibility graph which determines the order of vertices on the boundary of the
target polygon, the exact complexity class of these polygons are still unknown.

However, these problems have been solved efficiently for special cases of tower
and spiral polygons. In these special cases, we know that the given graph and
the Hamiltonian cycle correspond to a tower polygon or a spiral one. A tower
polygon consists of two concave chains on its boundary whose share one vertex
and the other end point of these chains are connected by a segment (See Fig. 1.a).
A spiral polygon has exactly one concave and one convex chain on its boundary
(See Fig. 1.b). The recognizing and reconstruction problems have been solved
for tower polygons in linear time in terms of the size of the graph [3]. It has
been shown in [3] that a given graph is the visibility graph of a tower polygon if
and only if by removing the edges of the Hamiltonian cycle from the graph, an
isolated vertex and a connected bipartite graph are obtained and the bipartite
graph has strong ordering following the order of vertices in the Hamiltonian
cycle. A strong ordering on a bipartite graph G(V,E) with partitions U and
W is a pair of <V and <W orderings on respectively U and W such that if
u <U u′, w <W w′, and there are edges (u,w′) and (u′, w) in E, the edges
(u′, w′) and (u,w) also exist in E. Graphs having such ordering are also called
strong permutation graphs. The recognizing and reconstruction problems have
been solved efficiently for spiral polygons, too [2]. Because we need this method
in our algorithm, we describe this method in more details in Sect. 2.

Although there is a bit progress on the recognizing and reconstruction
problems, there have been plenty of studies on characterizing visibility graphs
[2,3,5,6,12–14]. In 1988, Ghosh introduced three necessary conditions for visibil-
ity graphs and conjectured their sufficiency [5]. In 1990, Everett proposed a graph
that rejects Ghosh’s conjecture [1]. He also refined the third necessary condition
of Ghosh to a new stronger condition [6]. In 1992, Abello et al. built a graph sat-
isfying Ghosh’s conditions and the stronger version of the third condition which
was not the visibility graph of any simple polygon [15] rejecting the sufficiency
of these conditions. Again, in 1997, Ghosh added his forth necessary condition
and conjectured that this condition along with his first two conditions and the
stronger version of the third condition are sufficient for a graph to be a visibility
graph. Finally, in 2005 Streinu proposed a counter example for this conjecture [7].
Alongside these tries in 1994, Abello et al. proposed four necessary constraints
for a graph to be visibility graph of a polygon and they conjectured that these
constraints are verifiable efficiently [17]. Later in 1995, Abello et al. showed these

74 H. Boomari and A. Zarei

constraints are sufficient for recognizing and reconstruction of 2-spiral polygons1,
without much contribution to their computational complexity [16].

In this paper, we consider these problems for another type of polygons called
anchor polygons. The boundary of an anchor polygon is composed of two con-
cave chains and a convex one (See Fig. 1.c). We characterized these polygons
with some efficiently realizable constraints and show that both recognizing and
reconstruction problems for a given pair of visibility graph and Hamiltonian
cycle of an anchor polygon can be solved in O(n2) time where n is the number
of vertices of the graph, or equivalently, the number of vertices of the anchor
polygon.

In the remainder of this paper, we first introduce the algorithm of solving
reconstruction and recognizing problems for spiral polygons in Sect. 2. Also, in
this section we present some preliminaries and definitions used in next sections.
In Sect. 3, we give an overview of our algorithm and extract key features from
the graph to be used in our reconstruction algorithm. In Sect. 4 we present the
algorithm and analyze its efficiency in Sect. 5.

A

B C

X

Y

A

B C

(a) (b) (c)

Fig. 1. (a) Tower polygon, (b) Spiral polygon, (c) anchor polygon.

2 Preliminaries and Definitions

In this section, we first briefly describe the recognizing and reconstruction algo-
rithm for spiral polygons. We need these details in some parts of our algorithm.
Then, we introduce some definition and basic facts to be used in next sections.

2.1 Spiral Polygons

Assuming that a pair of visibility graph and Hamiltonian cycle belong to a spiral
polygon, Everret and Corneil proposed an efficient method to solve recognizing
and reconstruction problems in these cases [2]. Here, we briefly describe their
method.

1 Polygons with at most 2 concave chains.

Visibility Graphs of Anchor Polygons 75

The visibility graph of a spiral polygon is a limited subclass of interval
graphs [2]. This means that any interval graph satisfying another necessary con-
dition corresponds to the visibility graph of a spiral polygon and vice versa
(For the sake of brevity we skip describing this extra condition). This property
helps to solve the recognizing problem for the visibility graphs of spiral polygons.

In any interval graph, and equivalently in the visibility graph of a spiral
polygon, there are at least two vertices which form cliques with all their neigh-
bors. Moreover, by removing one of these vertices, the remaining graph is still
an interval graph. In a spiral polygon two joint vertices that connect its convex
and concave chains have this property (form a clique with their neighbors) and
by removing one of these vertices the residual graph will be another spiral poly-
gon. Performing this elimination scheme from one of the joint vertices toward
the other one will finally give us an ordered sequence of removed vertices and a
subset of vertices which make a clique composed of the other joint vertex and
its neighbors.

Assume that < v1, v2, ..., vk > is the ordered sequence of removing vertices
and {vk+1, ..., vn} is the set of remaining vertices which make a clique. Assume
that vn is a joint vertex and vk+1 is the only concave vertex in this set. We
put {vk+1, ..., vn} on the boundary of an arbitrary convex polygon. Then, the
position of the vertices < v1, v2, ..., vk > are located in reverse order inductively
as follows: Assume that vc is the last located convex vertex before vl and vr is the
last located concave vertex before vl. For the induction base step, we set vr = vn
and vc = vk+2. To locate the position of vl−1 in an inductive step, assume that
vt is the closest convex vertex to vr which sees vl−1. By closest we mean that
vt is the first vertex on the Hamiltonian cycle when we move from vr along the
reconstructed part of the concave chain and then go along the reconstructed
part of the convex chain. If vl is a convex vertex, vl−1 is located somewhere in
the angle ̂v′

tvrv
′
t−1 (see Fig. 2.a) where vrv

′
t (resp. vrv

′
t−1) is the half line from

vl along vrvt (resp. vrvt−1) and in opposite side of vt (resp. vt−1) and in such
a way that the new boundary do not cross itself. Otherwise (if vl is a concave
vertex), vl−1 is located somewhere in angle ̂v′

tvlv
′
t−1 (see Fig. 2.b) where vlvt and

vlvt−1 half lines are defined similarly.
An important feature of this reconstruction algorithm is that starting from

the initial convex polygon vk+1, ..., vn, the remainder of the spiral polygon can
be reconstructed in an arbitrary close area of the concave vertex of this convex
polygon. We use this feature in our reconstruction algorithm.

2.2 Definitions

In an anchor polygon, there are three specific vertices joining the three chains on
the boundary of such a polygon. As shown in Fig. 1.c, the joint vertex between
the concave chains is named A and the other joint vertices are named B and C.
For simplicity, we assume that we have a left concave chain from A to B and a
right concave chain from A to C and an underneath convex chain from B to C.
We may refer to A as top joint vertex and to B and C as the left and right joint

76 H. Boomari and A. Zarei

vertices, respectively. These names are consistent in all figures and inside the
text to help readers have better perspective about the target anchor polygon.

We use term PQi for the ith vertex of the boundary of the polygon when
we move from vertex P to vertex Q which both lies on the same chain. For
example, AB0 will be vertex A and AB1 is the first vertex after A on the left
concave chain. We also use UV (P) as the closest vertex to U on chain UV which
is visible to vertex P . In this notation, U and V can be any of the joint vertices
A, B or C.

2.3 Basic Facts

From the convexity or concavity of the chains we have the following basic obser-
vations.

Observation 1. Adjacent vertices (in the given Hamiltonian cycle) of each ver-
tex a /∈ {A,B,C} of concave chains are not visible from each other.

Observation 2. Two vertices of the convex chain BC see each other if and only
if no vertex of the concave chains blocks their visibility.

Observation 3. If a vertex vi on the convex chain sees another vertex vj on
this chain, all vertices from vi to vj on this chain see each other. Moreover, if a
vertex vi on the convex chain does not see another vertex vj on this chain and
vi is closer to B on chain BC, then none of the vertices from B to vi see any
one of the vertices from vj to C.

Observation 4. The vertices AB1 and AC1 are always visible from each other.

Observation 5. At least one of the pairs of vertices (BC1, BA1) and
(CB1, CA1) are visible from each other.

Proof. The blocking vertices of (BC1, BA1) must lie on chain AC and blocking
vertices of (CB1, CA1) must lie on chain AB. If BC1 and BA1 are not visible
from each other, then none of the vertices of the chain AB can block the visibility
of CB1 and CA1. ��

X

vr
vl

vt−1
vt

vl−1

(b)

vc

X

vr
vl

vt−1
vt

vl−1

(a)

vc

Fig. 2. The reconstruction algorithm for spiral polygons

Visibility Graphs of Anchor Polygons 77

3 Recognizing Algorithm: Determining Joint Vertices

We propose a constructive algorithm to solve both recognizing and reconstruc-
tion problems for anchor polygons. In this algorithm, we first determine the three
chains on the given Hamiltonian cycle. During this process, some necessary con-
ditions of the recognizing algorithm are verified. Then, the area of the target
polygon is decomposed into four sub-polygons: a tower polygon, a convex poly-
gon and two spiral polygons. The tower polygon is reconstructed first. Then, the
convex polygon is constructed under the base edge of the built tower, and, finally
the spiral polygons are built and attached to the sides of the constructed tower
and convex polygons (See Fig. 5). Again, during this reconstruction process, the
necessary conditions of the given visibility graph are checked to have a recogniz-
ing algorithm as well as the reconstruction one.

The details of the decomposition and reconstruction phases are described in
Sect. 4. Here, we give a method for identifying the joint vertices A, B and C from
which the three chains on the boundary of the target polygon are obtained. To
do this, we first assume that we know vertex A and propose an algorithm for
finding vertices B and C. Then, we propose a method for identifying candidate
vertices for A.

3.1 Finding Joint Vertices B and C

When we move from A on the Hamiltonian cycle in both directions, from
Observations 1 and 5 we can find at least one of the joint vertices B or C. This is
the first visited vertex in these walks whose adjacent vertices in the Hamiltonian
cycle see each other. Our algorithm for finding the other vertex is exactly the
same: Walk along the Hamiltonian cycle from A in both directions until a vertex
with this property (its adjacent vertices in Hamiltonian cycle see each other) is
found in each direction. This algorithm will successfully find correct vertices as
B and C if both pairs (BA1, BC1) and (CA1, CB1) are visible from each other.
But, in some cases one of these pairs are not visible. Then, it seems that, our
algorithm is failed to find joint vertex B or C.

We assume that both concave chains has at least one vertex other than
the joint vertices. Otherwise, the target polygon will be a spiral one and can be
recognized and reconstructed by algorithm proposed in [2]. Assume that G(V,E)
and H are the given pair of visibility graph and Hamiltonian cycle. The following
theorem shows that the joint vertices B and C obtained by our algorithm along
with A are the joint vertices of an anchor polygon whose visibility graph and
Hamiltonian cycle are equivalent to the given pair of G(V,E) and H if and only
if G(V,E) and H belongs to an anchor polygon.

Theorem 1. Assume that for a given visibility graph G(V,E) and Hamiltonian
cycle H and a vertex A, the vertices B and C are the first visited vertices on
H when we walk from A in both sides whose adjacent vertices see each other.
Then, G and H correspond to an anchor polygon with top vertex A if and only if
there is an anchor polygon with joint vertices A, B and C whose pair of visibility
graph and Hamiltonian cycle are respectively isomorphic to G and H.

78 H. Boomari and A. Zarei

Note that the proof, we proposed for this theorem is too long. Therefore, we
present it in the Appendix section.

3.2 Determining Joint Vertex A

As a main part of our recognition algorithm, we describe a method for identify-
ing the joint vertex A. If one of the concave chains AB or AC has only one edge
(two vertices), the target polygon will be a spiral one and recognizing and recon-
struction problems can be solved in such cases using the method proposed in [2].
Therefore, we assume that both chains AB and AC have at least one non-joint
vertex. Then, the following observations are true for the joint vertex A.

Observation 6. The pairs (A,AB2) and (A,AC2) do not see each other, but,
the pair (AB1, AC1) are visible from each other.

Observation 7. All visible vertices from A see each other and along with A
form a clique in the visibility graph.

From these observations we have necessary conditions to find candidate ver-
tices for A. We use these conditions in the first phase of our algorithm by moving
along the Hamiltonian cycle and finding those vertices whose adjacent vertices
see each other, but do not see vertices of distance 2 in the Hamiltonian cycle. For
any one of the vertices passing this check we also check Observation 7. Then, we
use our algorithm for finding other joint vertices (B and C) corresponding to any
one of the candidate vertices for A. Clearly, for any candidate vertex p for A we
must find corresponding joint vertices Bp and Cp where chain BpCp is convex.
Each pair of visible vertices in convex chain BpCp must satisfy Observation 3.
We show that there are at most three candidate vertices for A which pass the
above conditions.

Assume that the given pair of visibility graph and Hamiltonian cycle belongs
to an anchor polygon P with joint vertices AP , BP and CP . Then, we have the
following theorems.

Theorem 2. If our algorithm find another candidate vertex for the top joint
vertex A other than AP , BP and CP , both chains APBP and APCP in P must
lie completely on the same side of the line through vertices APBP

1 and APCP
1.

Proof. Assume that a vertex v satisfies all conditions we check in our algorithm
for finding candidate vertex A. While v /∈ {AP , BP , CP }, BP and CP are distinct
vertices. This implies that v and its corresponding other joint vertices Bv and
Cv (obtained by our algorithm for finding vertices B and C for a given vertex
A) must lie on the convex chain BPCP of P . Then, both chains APBP and
APCP must lie on the convex chain BvCv of the corresponding top joint vertex
v. For the sake of a contradiction, assume that the chain APBP or APCP does
not completely lie on one side of the line through APBP

1 and APCP
1. Without

loss of generality (W.l.o.g.), assume that APBP
2 lies below this line (See Fig. 3).

From convexity of the chain BPCP , no vertex will block the visibility of APBP
2

Visibility Graphs of Anchor Polygons 79

Ap

B

C

AvBv
1

AvCv
1

AvBv
2

AvCv
2

Fig. 3. Both chains APBP and APCP must completely lie on the same side of the line
through APBP

1 and APCP
1.

and APCP
1. On the other hand, these vertices lie on the convex chain BvCv of

the top joint vertex v. Therefore, according to Observation 3 AP and APBP
2

must also see each other which is a contradiction. ��

Theorem 3. Our algorithm finds at most one candidate vertex for the top joint
vertex A out of {AP , BP , CP }. Moreover, if any one of the joint vertices BP and
CP be a candidate vertex for A, there can be no more candidate vertex on the
convex chain BPCP out of BP and CP .

Proof. For the sake of a contradiction, assume that our algorithm finds two
candidate vertices A1 and A2 for the top joint vertex A out of {AP , BP , CP }. As
said in the proof of Theorem 2, both these vertices and their corresponding other
joint vertices must lie on the convex chain BPCP in P . W.l.o.g, assume that A2

lies between BP and A1 on this convex chain (See Fig. 4). From the definition of
joint vertices B and C and conditions for the top joint vertex, A2 and A2BP

2

must be invisible and BPAP
1 and BPCP

1 must be visible pairs. This forces
that there must be at least one vertex between BP and A2 which means that
A2BP

1 can not be equal to BP . While A2 and A2BP
2 are an invisible pair on the

convex chain of P , there must be a blocking vertex b on APBP or APCP chains
preventing their visibility. Clearly, b must be visible to A2. On the other hand,
both of the corresponding joint vertices of the top joint vertex A1 (according to
our algorithm) lies between vertices A2 and CP on the convex chain of P . This
implies that all vertices of chain BPCP from A2 to BP and vertices of the chains
APBP and APCP in P lies on the convex chain of the candidate top joint vertex
A1. From Observation 3, when two vertices A2 and b on this convex chain see
each other, all vertices from A2 to b, including A2BP

2, must also see each other
and form a clique which is a contradiction.

By the same argument we can prove that if the joint vertex CP (or BP) be a
candidate for the top joint vertex, there cannot be any candidate vertex for the
top joint vertex on the convex chain BPCP out of {BP , CP }. ��

From the above theorems, we conclude that according to our algorithm
there will be at most three candidates for the top joint vertex A. Precisely,

80 H. Boomari and A. Zarei

A

B

C

A1
A2

A2B
1

BA1

Fig. 4. A2 and A2B
2 must be invisible and A2B

1 and A2C
1 must be visible pairs.

if there was any other candidate other than A, either it is a vertex A′ on BPCP

(A′ /∈ {BP , CP }) or we have at most two candidates from B and C. From
Observations 3 and 6 we can conclude that for the latter case the candidate ver-
tices does not see any of the vertices of convex chain BPCP except the adjacent
one in the Hamiltonian cycle.

4 Reconstruction Algorithm

In this section, we assume that we are given a pair of visibility graph, G(V,E)
and Hamiltonian cycle, H, and three joint vertices A, B and C and the goal
is to obtain an anchor polygon G(V,E) corresponding to these graph and cycle
with A, B and C as its top, left and right joint vertices, respectively. Moreover,
we assume that the visibility graph and the joint vertices satisfy conditions
described in previous observations and conditions of previous algorithms (the
joint vertices have been obtained by the algorithms described in Sect. 3). From
previous section, we know that there are at most three options for these joint
vertices. Therefore, to solve the recognizing algorithm we may run the following
algorithm at most three times and if one of these runs leads to an anchor polygon
it will be returned as a solution and if none of them produce a polygon it means
that G(V,E) and H do not belong to an anchor polygon.

Our reconstruction algorithm consists of two phases. Initially we decompose
the target polygon into at most four regions and then these regions are recon-
structed to build the final anchor polygon.

4.1 Anchor Polygon Decomposition

We define a line d as a bi-tangent line for both chains AB and AC if it passes
through vertices M and M ′ on AB and AC, respectively, and both chains lie
completely on the same side of it (See Fig. 5). From the visibility graph edges

Visibility Graphs of Anchor Polygons 81

A

B C

M
M ′

N ′
N

Fig. 5. Decomposition of an anchor polygon

we can find such a bi-tangent line: There is no edge from vertices of AM (resp.
AM ′) to vertices of M ′C (resp. MB) except the edge MM ′. Also, the polygon
with boundary AM , AM ′ and edge MM ′ is a tower polygon.

Observation 8. Each anchor polygon has exactly one bi-tangent line.

Observation 9. The bi-tangent line of an anchor polygon passes through its
joint vertices B and C if and only if B and C see each other. In these cases,
the convex chain BC lies completely on the opposite side of the bi-tangent line
compare to A and all of the vertices of this convex chain are visible from each
other, and so, they form a clique in the visibility graph.

Let N and N ′ be vertices BC(M ′) and CB(M), respectively (See Fig. 5).
As we stated before, the polygon with boundary vertices < M, ..., B, ...,M ′ >
is a tower polygon and polygon with boundary vertices < M,N, ..., N ′,M ′ >
is a convex one. Also, both polygons with boundary < M, ..., B, ..., N > and
< M ′, ..., C, ..., N ′ > are spiral polygons and there is no edge between the vertices
of one of them to the other one or the tower sub-polygon, except edges have an
end point in {N,N ′,M,M ′} (See Fig. 5). Otherwise, we report that the pair
G(V,E) and H does not correspond to any anchor polygon with joint vertices
A, B and C. Note that based of the shape of the anchor polygon, some of these
four sub-polygons may not exist (it may be only a point or an edge).

This decomposition of the anchor polygon can be obtained from a given
G(V,E) and H and the three joint vertices A, B and C. After obtaining
the bi-tangent line and the tower polygon as discussed above, the vertices N
and N ′ are obtained from G(V,E) and H according to their definition (N =
BC(M ′) and N ′ = CB(M)). Now (after checking the previous observations),

82 H. Boomari and A. Zarei

because some of the vertices of these spiral sub-polygons may see some of the
convex ones, we will extend boundary of them to < M, ..., B, ..., N, ..., N ′,M ′ >
and < M ′, ..., C, ..., N ′, ..., N,M >, respectively (clearly both of them are spiral
polygons yet). The visibility graph of any one of these sub-polygons must satisfy
the sub-polygon conditions. Precisely, the induced sub-graph of G on vertices of
the tower polygon (resp. spiral polygons) must have necessary conditions of the
visibility graph of a tower polygon (resp. spiral polygon) with these boundary
vertices, and, the induced sub-graph of G on the convex sub-polygon must be
a complete graph. Otherwise, we report that the pair G(V,E) and H does not
belong to an anchor polygon with the given joint vertices A, B and C.

4.2 Reconstructing Sub-polygons

Now, we are ready to propose the final step of our constructive algorithm for
solving both recognizing and reconstruction problems. If we consider the union
of the tower and convex sub-polygons, in the decomposition phase, as a single
polygon, it will be an anchor polygon as well. But, this anchor polygon has
this property that its bi-tangent passes through its non-top joint vertices B and
C. We call such anchor polygons simple anchor polygons. The visibility graph
of a simple anchor polygon with joint vertices A, B and C has the following
properties.

Observation 10. Each concave vertex of an anchor polygon sees one continues
sub-chain of the convex chain.

Observation 11. The joint vertices B and C of a simple anchor polygon see
the whole convex chain.

Observation 12. For each concave vertex p of a simple anchor polygon, the
vertices of the convex chain which are visible to pA1 are a subset of the vertices
visible from p.

Observation 13. If both convex vertices p and pB1 of a simple anchor polygon
lie on the right side of the line through A and AB1, the set of visible concave
vertices from p is a subset of such set for pB1 (See Fig. 6.a). Symmetrically, this
is true for p and pC1 if both lie on the left side of the line through A and AC1.

Observation 14. Assume that q = AB(p) is the closest vertex of the concave
chain AB to A which is visible to a convex vertex p on the left side of the line
through A to AC1 in a simple anchor polygon. Then, none of the vertices of
the sub-chain from A to s = AC(q)A1 is visible from p and all vertices of the
sub-chain from C to t = AC(qB1) are visible from p (See Fig. 6.b). It means
that AC(p) must be one of the vertices of the left concave chain from s to t.

Symmetrically, for a convex vertex p lying on the right side of the line through
A and AB1 and q = AC(p), AC(p) must be one of the vertices of the right
concave chain from AB(q)A1 to AB(qC1).

Visibility Graphs of Anchor Polygons 83

B

A

C
B

A

C

(a) (b)

p

pB1

p

q = AB(p)
qB1

AC(p)

AC(q)

AC(q)A1

AC(qB1)

Fig. 6. (a) Visible points from p is a subset of the visible points from pB1 (b) Visible
and invisible vertices of concave chain AC from p

Trivially all above observations must be hold on the visibility graphs induced
to the vertices of the tower and convex sub-polygons in our decomposition
algorithm presented in Sect. 4.1. If these conditions hold, we reconstruct sim-
ple anchor polygon which corresponds to the obtained tower and convex sub-
polygons.

To reconstruct a simple anchor polygon, we first reconstruct the tower poly-
gon using the method presented in [3] (we use the method as a block-box proce-
dure). Then the vertices of the convex chain are put on a convex curve from B to
C supporting their order on the Hamiltonian cycle and the visibility graph con-
straints. To do this, we divide these vertices into these groups: The first group,
called VA, contains those vertices that see all vertices of both concave chains.
From the above observations, these vertices must lie on the convex curve between
the lines passing through A and AB1, and A and AC1 (See Fig. 7.a). The other
groups are the sets VB and VC as shown in Fig. 7. To locate an arbitrary vertex
v ∈ VB it must satisfy two conditions: assume that p = AB(v) and q = AC(v)
are respectively, the top most vertices on chains AB and AC which are visible
to v. According to the visibility graph constraints, p must lie on the left of the
line through p and pA1 and to the right of the line through p and q. Moreover,
v does not see qA1 and p is a blocking vertex for this invisibility. Therefore, if
qA1 is visible from p then v must lie to the left of the line through p and qA1.
Otherwise, as v lies to the left of the line through p and pA1, the vertex p will
block the visibility of v and qA−1 and there is no need to add more constraint
to restrict position of v on the convex curve. Therefore, the intersection of the
convex curve and this region must be non-empty. If this happens, we can put
p on an arbitrary point of this part of the convex curve and for all points p
that must be located in this region, we put them according to their order in

84 H. Boomari and A. Zarei

Hamiltonian cycle. As the last point of our algorithm, we must show that the
intersection of the convex curve and constructed region of v is not empty. The
region is restricted to lines d1 and d2 or lines d2 and d3 (See Fig. 7). It is sim-
ple to show that in both cases q is visible from p and in the latter one qA1 is
visible from p and lies above q. This implies that in both cases the region, and
consequently, the intersection is not empty. Note that finding the corresponding
regions and intersections for vertices of set VC can be done similarly.

B

A

C

(a)

B

A

C

(b)

v

p
qB1

q

qA1

AC1
AB1

VC
VB

VA

v

p

q

B

A

C

(c)

v

p
qB1

q

qA1

Fig. 7. (a) VA, VB and VC (b) Invisibility of v and qA1 needs to be cared (c) Invisibility
of v and qA1 do not need to be cared

After reconstructing the simple anchor polygon of the tower and the convex
sub-polygons, we must build and attach the spiral sub-polygons to the sides of
this simple anchor polygon. Recall that the boundary of the right and left sub-
polygons are < M, ..., B, ..., N, ..., N ′,M ′ > and < M ′, ..., C, ..., N ′, ..., N,M >,
respectively. Moreover, remember that in these polygons there is no edge between
the vertices of < M, ..., B, ..., N > and < M ′, ..., C, ..., N ′ > except edges that
have an end point in {N,N ′,M,M ′}. This helps to build these parts indepen-
dently. Note that we can apply this independency by locating the remained ver-
tices of these spiral polygons above the line through M and M ′. We describe how
to build the left spiral polygon and the right one can be built Symmetrically. If we
apply the elimination scheme starting from the joint vertex B, we find a sequence
of removed vertices, which includes all vertices of the left spiral polygon except
vertices of the convex sub-polygon. Moreover, the remained vertices of this spi-
ral polygon (which make a convex sub-polygon with respect to the Hamiltonian
cycle) are the vertices of our convex sub-polygon < M,M ′, N ′, N >, which is
already reconstructed. The spiral polygon reconstruction algorithm described in
Sect. 2 says that we can start from an arbitrary convex polygon for the remained
vertices and the sequence of the removed vertices can be put in an arbitrary
small neighborhood of the only concave vertex (here it is M). This means that,
by considering the convex sub-polygon as the starting convex polygon, we can

Visibility Graphs of Anchor Polygons 85

reconstruct the left spiral polygon arbitrary close to M without intersecting the
constructed tower polygon. Note that by using this method all vertices of the
removed sequence are forced to be located above the line through M and M ′.

5 Complexity Analysis

In this section we analyse the time complexity of our algorithm for recog-
nizing and reconstruction of an anchor polygon from its visibility graph and
Hamiltonian cycle.

Before beginning the analysis we assume that for each vertex we know its
maximal cliques with its previous and successor vertices according to their order
in Hamiltonian cycle separately. It means that for each vertex p we know how
many vertices consecutively after (resp. before) p will make a clique with it as
a number denoted by C+(p) (resp. C−(p)). We can calculate these numbers in
O(n2) for all the vertices using Dynamic Programming [4] where n is number of
vertices in the visibility graph. In addition, we denote by D+(p) (resp. D−(p))
the distance between p and the first visible vertex after (resp. before) its maximal
clique, visible to p.

The first part of our algorithm finds candidate vertices. For this purpose our
algorithm iterate on each vertex of the visibility graph for checking necessary
conditions to be a candidate vertex. For each vertex p checking for visibility of
the vertices adjacent to it in Hamiltonian cycle and checking for invisibility of
(pB1, pB2) and (pC1, pC2) (B and C used here to illustrate vertices after and
before vertex p) needs O(1) for each vertex and O(n) overally. Then, Finding ver-
tex Bp and Cp will take O(n) time for each vertex p and O(n2) overally. After
finding these vertices, we should check for necessary sight condition between
convex vertices which could be done in O(n) for each vertex, using functions
C−, C+, D− and D+, and O(n2) for all vertices. So, we can check necessary
conditions for candidate vertices and finding them in O(n2) and will begin the
reconstruction for each of them independently. As the number of candidate ver-
tices are in O(1), the time complexity of the reconstruction algorithm is the time
required for one candidate set of A, B and C.

The reconstruction algorithm, take at most O(n2) for finding the bi-tangent
line and then decomposing polygon into a simple anchor polygon and two spiral
polygons. After reconstructing the tower polygon of that simple anchor polygon
in O(|E|) [3], it will take O(n2) for checking necessary and sufficient conditions
for recognizing simple polygon and reconstructing it. Finally, recognizing each
spiral polygon will take O(n2) using the algorithm of [2]. Summing all, our
algorithm will recognize and reconstruct an anchor polygon in O(n2) time, where
n is the number of vertices of the input visibility graph.

Appendix

Proof of Theorem1

Proof. Trivially, the theorem is true when B and C are the joint vertices of the
target polygon of G and H. Moreover, the theorem is trivially true when there is

86 H. Boomari and A. Zarei

no anchor polygon with visibility graph G and Hamiltonian cycle H. Therefore,
it is enough to prove the theorem for the cases where G and H belong to an
anchor polygon P with joint vertex A and at least one of the other joint vertices
of P is not in {B,C}. According to Observation 5, assume that C is a joint
vertex of P and the other joint vertex is another vertex B′ �= B. This means
that B′ lies on the convex chain of P , and equal to a vertex BCi where i > 0,
while B′ = BC0 in anchor polygon P . We prove the theorem by induction on
i. For i = 1, it means that when BA1 and BC1 do not see each other in P , we
can consider the joint vertex B as a vertex of the left concave chain of P and
considering BC1 as the left joint vertex, and the visibility graph of this anchor
polygon is still equivalent to G. This has been shown in Fig. 9 where (a) is the
original polygon and (b) is the new one with BC1 as a joint vertex.

B
BC1

BA1

C

AC(B)

AC(BC1)

CA(B)

CA(BC1)

A

B

BC1

BA1

C

AC(B)

AC(BC1)

CA(B)
CA(BC1)

A

(a) (b)

Fig. 8. Considering BC1 as a joint vertex in (b) while BC1 and BA1 are invisible
in (a).

To complete the proof we must show that it is always possible to locate BC1

on the left concave chain of some anchor polygon without disturbing the visibility
graph constraints. This is done by first proving that the induced visibility graph
on vertices U =< A,AB1, ..., B,BC1 > and W =< A,AC1, ..., CA(BC1) >
have strong ordering with partitions U and W (Then, we can build a tower
polygon on these vertices in which B is a concave vertex on the left chain and
BC1 is the vertex on this concave chain) and second, proving that it is possible
to place other vertices < BC2, ..., C > and < CA(BC1), ..., C > supplying the
visibility graph edges.

For the first one, we know from P that the induced visibility graph on U ′ =
< A,AB1, ..., B > and W ′ =< A,AC1, ..., CA(B) > have strong ordering. Then
it is enough to consider the pairs (BC1, w) and (u,w′), where w,w′ ∈ W and
w <W w′, w is visible from BC1, and u ∈ U is visible from w′. As shown in Fig. 8
if BC1 sees w and w′ is further than w from A, then u′ must also be visible from
BC1, which means that (BC1, w′) exists in the graph. On the other hand, while

Visibility Graphs of Anchor Polygons 87

BC1 and BA1 are invisible from each other, u can only be the vertex B. Then,
if u = B sees w′ it will also see all closer vertices to A than w′ which are visible
from BC1. This complete the existence of the strong ordering on U and W .

For the second one, we show that after building the tower polygon on U
and W , we can add remained vertices to find an anchor polygon with A, BC1

and C as its joint vertices with the same visibility graph as P . These remaining
vertices are the vertices of the right concave chain of P from C to CA(BA1)
and the vertices of convex chain from C to BC1. Later we will add the first set
as a concave chain of a spiral polygon starts from CABC1 and above the line
passing from vertices BC1 and CA(BC1). This is consistent with the visibility
graph because none of these vertices see anyone of the vertices of the tower (See
Fig. 8.b). The convex vertices from C to BC1 = B′ are divided into three parts:

(V1) The visible vertices from B.
(V2) The visible vertices from B′ but not visible to B.
(V3) The invisible vertices from B′.

It is simple to check that none of these vertices are visible from BA1 and
all of them visible from B are also visible from B′. According to Fig. 9, assume
that d1 is the line from BA1 and CA(BA1), d2 is the line from B to CA(B)
and d3 is the line from B′ to CA(B′). The vertices of V 1 ∪ V 2 ∪ V 3 are put
on a convex chain from B′ to C in such a way that vertices of V 1 lie inside
α, vertices of V 2 lie inside β and vertices of V 3 lie above d3. As the slope of
d3 is more than d2 and slope of d2 is more than d1 so both α and β are non-
empty. Therefore, by considering these constraints, our placement supply edges
between vertices of left chain and convex vertices in visibility graph. So we have
to consider some constraints to supply edges between right chain and convex
vertices. We know that all vertices of the right chain between A and AC(BA1),
are invisible to convex chain (Because AC(BA1) blocks visibility of B′ and BA1).
So, by placing convex vertices above d1 (includes both regions α and β) these
invisibilities can be supplied and we do not need to add more constraints for
it. Moreover, Any convex vertex which are visible to B′ (equivalently V 1 ∪ V 2)
sees CA(B′) (because all vertices of the right concave chain are above the line
through B′ and CA(B′) and can not block the visibility of them). Therefore,
for any convex vertex p ∈ V 1 ∪ V 2, p sees all vertices of vertices of the right
chain between CA(B′) and CA(p). Moreover, CA(p) blocks the visibility of p
and any vertex of vertices of the right chain between A and CA(p). Hence, p

must be placed somewhere above the line, dp, through CA(p)A1 and CA(p) (See
Fig. 9). For any p′ ∈ V 1 (resp. p′ ∈ V 2), which is closer to C than p, slope of the
line through CA(p′)A1 and CA(p′) is more than dp and d1 (resp. d2) and less
than d2 (resp. d3). Moreover all these lines will intersect each other above d3.
Consider and arbitrary convex curve from B′, that lies completely below d3 and
intersect d1, d2 and dCB(B′) strictly below d3. So, By considering all constraints
above, we can place all vertices of the set V 1 ∪ V 2 on this curve, so that, they
supply edges of the induced visibility graph on vertices of the sub-chain from A
to CA(B′) and vertices of V 1 ∪ V 2, and form a convex chain with respect to
their order in the Hamiltonian cycle.

88 H. Boomari and A. Zarei

The convex vertices from B′ to C and the concave vertices from CA(B′) to
C build a spiral polygon and we have already build a convex sub-polygon from
it with boundary vertices {B′, CA(B′)} ∪ V 1 ∪ V 2 (with B′ as one of its joint
vertices, and other vertices as all neighbors of B′). So the remaining vertices of
this spiral polygon (equivalently, the remaining vertices of the anchor polygon)
can be reconstructed according to the method described in Sect. 2 in a close
neighborhood of CA(B′), so that its boundary do not intersect the rest of the
anchor polygon. Note that this reconstruction forces the vertices of V 3 to be
located above d3. This completes our induction proof for i = 1.

Now we can prove the induction step of our proof. From the proof of the
base step of the induction, we conclude that for any anchor polygon P , with
pair of G(V,E) as its visibility graph, H as its Hamiltonian cycle and A, B
and C as its top, left and right joint vertices, respectively, and BCi as the left
joint vertex found by our algorithm, we have another anchor polygon P ′ such
that, its visibility graph and Hamiltonian cycle are isomorphic to G(V,E) and
H, respectively, and A, B′ = BC1 and C as its top, left and right joint vertices,
respectively. So in P ′ our algorithm will find B′Ci−1 as its left joint vertex.
So, by repeating this step, there will be a polygon P

′′
with visibility graph and

Hamiltonian cycle isomorphic to G(V,E) and H, respectively and A, BCi and
C as its top, left and right joint vertices, respectively. So the theorem is true. ��

BA1

B

B′

d1

d2

d3

α

β

A

CA(BA1)

CA(B)

CA(B′)

p

dp

Fig. 9. Lines d1 and d2, parts α and β and other constraints

References

1. Everett, H.: Visibility graph recognition, Ph.d. Dissertation, University of Toronto
(1990)

Visibility Graphs of Anchor Polygons 89

2. Everett, H., Corneil, D.G.: Recognizing visibility graphs of spiral polygons. J. Algo-
rithms 11(1), 1–26 (1990)

3. Colley, P., Lubiw, A., Spinrad, J.P.: Visibility graphs of towers. Comput. Geom.
7, 161–172 (1997)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3 edn. MIT Press (2009). ISBN 978-0-262-03384-8, pp. I-XIX, 1–1292

5. Ghosh, S.K.: On recognizing and characterizing visibility graphs of simple poly-
gons. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 96–104.
Springer, Heidelberg (1988)

6. Ghosh, S.K.: On recognizing and characterizing visibility graphs of simple poly-
gons. Discrete Comput. Geom. 17(2), 143–162 (1997)

7. Streinu, I.: Non-stretchable pseudo-visibility graphs. Comput. Geom. 31(3), 195–
206 (2005)

8. Richter-Gebert, J.: Mnëvs universality theorem revisited. Séminaire Lotaringien
de Combinatoire (1995)

9. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press
(2007). ISBN 0521875749

10. Teller, S.J., Hanrahan, P.: Global visibility algorithms for illumination computa-
tions. In: SIGGRAPH, pp. 239–246 (1993)

11. Belta, C., Isler, V., Pappas, G.J.: Discrete abstractions for robot motion planning
and control in polygonal environments. IEEE Trans. Robot. 21(5), 864–874 (2005)

12. Abello, J., Egecioglu, Ö., Kumar, K.: Visibility graphs of staircase polygons and the
weak Bruhat order, I: from visibility graphs to maximal chains. Discrete Comput.
Geom. 14(3), 331–358 (1995)

13. Coullard, C.R., Lubiw, A.: Distance visibility graphs. Int. J. Comput. Geom. Appl.
2(4), 349–362 (1992)

14. Elgindy, H.A.: Hierarchical Decomposition of Polygons with Applications. McGill
University, Quebec (1985)

15. Abello, J., Hua, L., Sekhar, P.: On visibility graphs of simple polygons. Congressus
Numerantium 90, 119–128 (1992)

16. Abello, J., Kumar, K.: Visibility graphs of 2-spiral polygons (extended abstract).
In: Baeza-Yates, R., Poblete, P.V., Goles, E. (eds.) LATIN 1995. LNCS, vol. 911,
pp. 1–15. Springer, Heidelberg (1995)

17. Abello, J., Kumar, K.: Visibility graphs and oriented matroids (extended abstract).
In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 147–158. Springer,
Heidelberg (1995)

Automating the Verification of Realtime
Observers Using Probes and the Modal

mu-calculus

Silvano Dal Zilio1,2(B) and Bernard Berthomieu1,2

1 LAAS, CNRS, 7 avenue colonel Roche, 31400 Toulouse, France
dalzilio@laas.fr

2 LAAS, Université de Toulouse, 31400 Toulouse, France

Abstract. A classical method for model-checking timed properties—
such as those expressed using timed extensions of temporal logic—is
to rely on the use of observers. In this context, a major problem is to
prove the correctness of observers. Essentially, this boils down to proving
that: (1) every trace that contradicts a property can be detected by the
observer; but also that (2) the observer is innocuous, meaning that it
cannot interfere with the system under observation. In this paper, we
describe a method for automatically testing the correctness of realtime
observers. This method is obtained by automating an approach often
referred to as visual verification, in which the correctness of a system
is performed by inspecting a graphical representation of its state space.
Our approach has been implemented on the tool Tina, a model-checking
toolbox for Time Petri Net.

1 Introduction

A classical method for model-checking timed behavioral properties—such as
those expressed using timed extensions of temporal logic—is to rely on the use of
observers. In this approach, we check that a given property, P, is valid for a sys-
tem S by checking the behavior of the system composed with an observer for the
property. That is, for every property P of interest, we need a pair (ObsP , φP) of a
system (the observer) and a formula. Then property P is valid if and only if the
composition of S with ObsP , denoted (S ||ObsP), satisfies φP . This approach is
useful when the properties are complex, for instance when they include realtime
constraints or involve arithmetic expressions on variables. Another advantage
is that we can often reduce the initial verification problem to a much simpler
model-checking problem, for example when φP is a simple reachability property.

In this context, a major problem is to prove the correctness of observers.
Essentially, this boils down to proving that every trace that contradicts a prop-
erty can be detected. But this also involves proving that an observer will never
block the execution of a valid trace; we say that it is innocuous or non-intrusive.

This work was partly supported by the ITEA2 Project OpenETCS.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 90–104, 2016.
DOI: 10.1007/978-3-319-28678-5 7

Automating the Verification of Realtime Observers 91

In other words, we need to assure that the “measurements” performed by the
observer can be made without affecting the system.

In the present work, we propose to use a model-checking tool chain in order to
check the correctness of observers. We consider observers related to linear time
properties obtained by extending the pattern specification language of Dwyer
et al. [7] with hard, realtime constraints. In this paper, we take the example of
the pattern “Present a after b within [d1, d2[”, meaning that event a must occur
after d1 units of time (u.t.) of the first occurrence of b, if any, but not later than
d2. Our approach can be used to prove both the soundness and correctness of
an observer when we fix the values of the timing constraints (the values of d1
and d2 in this particular case).

Our method is not enough, by itself, to prove the correctness of a verifica-
tion tool. Indeed, to be totally trustworthy, this will require the use of more
heavy-duty software verification methods, such as interactive theorem proving.
Nonetheless our method is complementary to these approaches. In particular it
can be used to debug new or optimized definitions of an observer for a given
property before engaging in a more complex formal proof of its correctness.

Our method is obtained by automating an approach often referred to as visual
verification, in which the correctness of a system is performed by inspecting a
graphical representation of its state space. Instead of visual inspection, we check
a set of branching time (modal μ-calculus) properties on the discrete time state
space of a system. These formulas are derived automatically from a definition
of the pattern expressed as a first-order formula over timed traces. The gist of
this method is that, in a discrete time setting, first-order formulas over timed
traces can be expressed, interchangeably, as regular expressions, LTL formulas
or modal μ-calculus formulas.

This approach has been implemented on the tool Tina [4], a model-checking
toolbox for Time Petri Net [11] (TPN). This implementation takes advantage of
several components of Tina: state space exploration algorithms with a discrete
time semantics (using the option -F1 of Tina); model-checkers for LTL and for
modal μ-calculus, called selt and muse respectively; a new notion of verification
probes recently added to Fiacre [3,5], one of the input specification language of
Tina. While model checkers are used to replace visual verification, probes are
used to ensure innocuousness of the observers.

Outline and Contributions. The rest of the paper is organized as follows. In
Sect. 2, we give a brief definition of Fiacre and the use of probes and observers
in this language. In Sect. 3, we introduce the technical notations necessary to
define the semantics of patterns and timed traces and focus on an example of
timed patterns. Before concluding, we describe the graphical verification method
and show how to use a model-checker to automate the verification process1.

The theory and technologies underlying our verification method are not new:
model-checking algorithms, semantics of realtime patterns, connection between
path properties and modal logics, . . . Nonetheless, we propose a novel way to
combine these techniques in order to check the implementation of observers and
1 Code is available at http://www.laas.fr/fiacre/examples/visualverif.html.

http://www.laas.fr/fiacre/examples/visualverif.html

92 S.D. Zilio and B. Berthomieu

in order to replace traditional “visual” verification methods that are prone to
human errors.

Our paper also makes some contributions at the technical level. In partic-
ular, this is the first paper that documents the notion of probe, that was only
recently added to Fiacre. We believe that our (language-level) notion of probes is
interesting in its own right and could be adopted in other specification languages.

2 The Fiacre Language

We consider systems modeled using the specification language Fiacre [3,5]. (Both
the system and the observers are expressed in the same language.) Fiacre is a
high-level, formal specification language designed to represent both the behav-
ioral and timing aspects of reactive systems.

Fiacre programs are stratified in two main notions: processes, which are well-
suited for modeling structured activities, and components, which describes a
system as a composition of processes. Components can be hierarchically com-
posed. We give in Fig. 1 a simple example of Fiacre specification for a computer
mouse button capable of emitting a double-click event. The behavior, in this
case, is to emit the event double if there are more than two click events in strictly
less than one unit of time (u.t.).

Fig. 1. A double-click example in Fiacre

Processes. A process is defined by a set of parameters and control states,
each associated with a set of complex transitions (introduced by the keyword
from). The initial state of a process is the state corresponding to the first from

declaration.
Complex transitions are expressions that declare how variables are updated

and which transitions may fire. They are built from deterministic constructs

Automating the Verification of Realtime Observers 93

available in classical programming languages (assignments, conditionals, sequen-
tial composition, . . .); non-deterministic constructs (such as external choice, with
the select operator); communication on ports; and jump to a state (with the to

or loop operators).
For example, in Fig. 1, we declare a process named Push with four communi-

cation ports (click to delay) and one local boolean variable, dbl. Ports may send
and receive typed data. The port type none means that no data is exchanged;
these ports simply act as synchronization events. Regarding complex transitions,
the expression related to state s1 of Push, for instance, declares two possible tran-
sitions from s1: (1) on a click event, set dbl to true and stay in state s1; and (2) on
a delay event, change to state s2.

Components. A component is built from the parallel composition of processes
and/or other components, expressed with the operator par P0 || . . . || Pn end. In
a composition, processes can interact both through synchronization (message-
passing) and access to shared variables (shared memory).

Components are the unit for process instantiation and for declaring ports
and shared variables. The syntax of components allows to associate timing con-
straints with communications and to define priorities between communication
events. The ability to express directly timing constraints in programs is a distin-
guishing feature of Fiacre. For example, in the declaration of component Mouse

(see Fig. 1), the port statement declares a local event delay and asserts that a
transition from s1 to s2 should take exactly one unit of time. (Time passes at the
same rate for all the processes.) Additionally, the priority statement asserts that
a transition on event click cannot occur if a transition on delay is also possible.

Probes and Observers. The Fiacre language has been extended, recently,
to allow the definition of observers, which are a distinguished category of sub-
programs that interact with other Fiacre components only through the use of
probes. A probe is used to observe modifications in the system without interfering
with it; probes react to the occurrence of an event without engaging in it.

A typical probe declaration is of the form path/obs, where obs denotes
the observable and path defines its context, that is a path to the component
(or process) instance where obs is defined (see for example http://www.laas.fr/

fiacre/properties.html). In our setting, observable events are instantaneous actions
involved in the evolution of the system: it can be a synchronization over a port p

(denoted event p); a process that enters the state s (denoted state s); or an expres-
sion including shared variables, say exp, that changes value (denoted value exp).
For instance, in the case of the Mouse component of Fig. 1, a probe triggered
when the (only instance of) process Push is in state s2 would have the form
(Mouse/1/state s2).

The use of probes greatly simplifies the proof of innocuousness of an observer.
In particular, with probes, an observer can only influence a system by “blocking
the evolution of time”, that is by performing an infinite sequence of actions in

http://www.laas.fr/fiacre/properties.html
http://www.laas.fr/fiacre/properties.html

94 S.D. Zilio and B. Berthomieu

Fig. 2. A simple observer example

finite time. Therefore, proving that an observer is innocuous amounts to proving
that it has no Zeno behaviors, which is always possible when a system is bounded.

An observer is a Fiacre component where ports are associated to probes
(using the keyword is); ports associated with a probe have the reserved type sync.
We give a naive example of observer in Fig. 2, where the component Obs monitors
synchronizations on the event click. In this example, the process neverTwice will
reach the state error if its probe parameter, a, is triggered more than once.

In the remainder of the text, we use the notation (Mouse ||Obs) to denote
the program obtained by concatenating the declaration of these two components
(i.e. the code from Fig. 1 with the code from Fig. 2). As a consequence, we are
able to detect if the system can emit two single click events just by checking if
the process neverTwice can reach the state error in (Mouse ||Obs).

3 Timed Traces and First-Order Formulas Over Traces

The semantics of Fiacre (and the properties we want to check) are based on
a notion of timed traces, which are sequences mixing events and time delays.
In this context, a “realtime property” can be defined as a set of timed traces,
which define timing and behavioral constraints on the acceptable execution of
a system. In this work, we consider properties derived from realtime patterns,
that can be expressed using first-order formulas over timed traces.

Timed Traces. In our context, observable events are: communication on a port;
the change of state of a process; and the change of value of a variable. We use
a dense time model, meaning that we consider rational time delays and work
both with strict and non-strict time bounds. Hence a timed trace is a (possibly
infinite) sequence of events a, b, . . . and durations δ ∈ Q

+:

σ ::= ε | σ a | σ δ

Given a finite trace σ and a—possibly infinite—trace σ′, we denote σσ′ the
concatenation of σ and σ′. We will also use the expression Δ(σ) to denote the
duration (time length) of a trace σ, that is the sum of the individual delays in
σ. The semantics of a system expressed with Fiacre, say S, can be defined as a
set [[S]] of timed traces. We use the notation σ |= S when the trace σ is in the
set [[S]]. The semantics of a property (timed pattern) will be expressed as the set
of all timed traces where the pattern holds. We say that a system S satisfies a
timed requirement P if [[S]] ⊆ [[P]].

Automating the Verification of Realtime Observers 95

Realtime Properties and Their Semantics. We propose to define properties
using First-Order Formulas over Timed Traces (FOTT). A FOTT formula Φ(x),
with free variables x = (x1, . . . , xn), is a first-order logic formula over traces with
equality between traces (σ = σ′), comparison between a duration and an interval
(Δ(σ) ∈ I) and concatenation (σ = σ1 σ2).

Φ(x) ::= Φ ∧ Φ′ | ¬Φ | ∃x . Φ | (x = σ) | (x = y z) | (Δ(x) ∈ I)

For instance, when referring to a timed trace σ and an event a, the following
formula is a tautology if the event a does not occur in σ:

(a /∈ σ) def= ¬ (∃x1, x2, x3 . (σ = x1 x2) ∧ (x2 = a x3))

Likewise, we can define the “scope” σ after b—that determines the part of a
trace σ located after the first occurrence of b—as the trace σ′ denoted by the
first-order formula: ∃x, y . (σ = x y) ∧ (y = b σ′) ∧ (b /∈ x).

The semantics of a formula Φ(x1, . . . , xn) is a set of valuation functions ς
associating a trace σi = ς(xi) to each of the variables xi with i ∈ 1..n, also
denoted [xi �→ σi]i∈1..n. The semantics of Φ can be defined inductively as follows:

[[Φ(x) ∧ Ψ(x)]] = [[Φ(x)]] ∩ [[Ψ(x)]] [[x = σ]] = {ς | ς(x) = σ}
[[∃y . Φ(x)]] = {ς | ς + [y �→ σ] ∈ [[Φ(x)]]} [[x = y z]] = {ς | ς(x) = ς(y) ς(z)}
[[Δ(x) ∈ I]] = {ς | Δ(ς(x)) ∈ I}

With these definitions, a regular set of timed traces is the set of traces “solu-
tions” of an existential FOTT formula with a single free variable, Φ(x); that is
the set of traces σ such that the valuation [x �→ σ] is in [[Φ(x)]].

In this paper, we will mainly restrict ourselves to the special case of timed
traces where events occur at integer dates; i.e. we restrict delays δ to be in
N rather than in Q

+. These traces can be generated using a “discrete time”
abstraction of the models, where special transitions (labeled with t) are used to
model the flow of time. Label t stands for the “tick” of the logical clock.

The discrete time semantics will be enough to prove all the properties needed
in our study. Indeed, when a model contains only “closed timing constraints”
(of the kind [d1, d2] or [d1,∞[), the discrete time semantics is enough to check
reachability properties.

With discrete time, a delay δ can be replaced by sequences of δ t’s, and there-
fore a finite timed trace can be simply interpreted as a word. In the remainder, we
also consider a special symbol, z, that stands for internal actions of the system.
Hence it is possible to interpret the semantics of (discrete) FOTT specification
as a language over the alphabet A = {z, t, a, b, . . .}. Actually, in the discrete case,
we can show that a regular set of timed traces is also a regular language. For
example, the semantics of the formula ∃y, z, w . ((x = y z) ∧ (z = a w)) is the
regular language corresponding to the expression A∗ · a · A∗.

This connection between different type of logics is at the core of our app-
roach. Our method could be applied to more high-level property languages, such
as timed extension of temporal logic [10], but would require a more complex
encoding into LTL when modalities can be nested.

96 S.D. Zilio and B. Berthomieu

Our Running Example: The Present Pattern. Users of Fiacre have access
to a catalog of specification patterns based on a hierarchical classification bor-
rowed from Dwyer [7]. Patterns are built from five basic categories—existence,
absence, universality, response and precedence—and can be composed using logi-
cal connectives. In each category, generic patterns may be specialized using scope
modifiers—such as before, after, between—that limit the range of the execution
trace over which the pattern must hold. Finally, timed patterns are obtained
using one of two possible kinds of timing modifiers that limit the possible dates
of events referred in the pattern: within I—used to constrain the delay between
two given events to be in the time interval I—and lasting d—used to constrain
the length of time during which a given condition holds (without interruption)
to be greater than d.

Due to limited space, we study only one example of timed pattern, namely
Present a after b within [d1, d2[. A complete catalog is available in [1]. This is
a simple example of existence patterns. Existence patterns are used to express
that, in every trace of the system, some events must occur. This pattern holds
for traces such that the event a occurs at a date t0 after the first occurrence of
b with t0 ∈ [d1, d2[. The property is also satisfied if b never holds. Hence traces
σ that satisfy this pattern are models of the existential FOTT formula:

Pres(x) def= (b /∈ x) ∨ ∃y, z, w . ((x = y b z a w) ∧ (b /∈ y) ∧ (Δ(z) ∈ [d1, d2[))

process Present [a:sync, b:sync] is
states idle , start, watch, error, stop
from idle b; to start
from start wait [d1 , d1]; to watch
from watch select

a; to stop
unless

wait [d2 − d1 , · · ·[; to error
end

Listing 1.1. Observer for the pattern: Present a after b within [d1, d2[

With the discrete semantics, formula Pres(x) matches exactly the words of
the form w1 bw2 aw3 where w1 contains no occurrences of b and w2 contains
exactly k occurrences of t with k ∈ [d1, d2[. (This is a regular language.) We show
in the next section how to (semi-)automatically generate the regular expression
corresponding to such FOTT formulas.

We give an example of observer associated to this pattern in Listing 1.1. This
observer is composed of one process that monitors the system through the ports
a and b (that should be instantiated with the relevant probes). The process
is initially in state idle and moves to start when b is triggered. When in state
start for d1 unit of time, the observer moves to state watch (this is the meaning
of the wait operator). The select operator is a non-deterministic choice, with

Automating the Verification of Realtime Observers 97

unless coding priorities. Hence, in state watch, the observer moves to stop if an
a occurs, unless a duration equals to (d2 − d1) elapses, in which case it moves
to the state error. As a consequence, the pattern is false whenever the probe
(Present/state error) is reachable. Hence the formula associated to the pattern is
φP

def=[] - (Present/state error).
To prove that an observer Obs for the pattern P is correct, we need to prove

that, for every system S, the program (S ||Obs) satisfies the formula φP if and
only if [[S]] ⊆ [[P]]. In [1], we have defined a mathematical framework to formally
prove these kind of properties, but this framework relies on manual proofs and is
not supported by any tooling. Efforts are also under way to completely mechanize
these proofs using the Coq proof assistant [8]. Nonetheless, formal proofs of
correctness can be quite tedious. Therefore, to detect possible problems with an
observer early on (that is, before spending a lot of efforts doing a formal proof
of correctness) we also rely on a “visual” verification method, that is akin to
debugging our observers.

In the next section, we show how to apply the visual verification approach on
our running example. One of the objectives of our work is to replace this visual
verification step with a more formal approach. This is done in Sect. 5.

4 Visual Verification of Observers

In the remainder of this section, we describe the visual verification method using
the particular case of the pattern Present a after b within [4, 5[; we assume that
Obs is the observer Present defined in Listing 1.1, that d1 = 4 and that d2 = 5.

To prove that the observer Present is correct, we need to prove, for every
system S, the equivalence between two facts: (1) the state (Present/state error) is
not reachable in the program (S || Present[a, b]); and (2) the traces of S are valid
for the property Pres, i.e. [[S]] ⊆ [[Pres]].

The first step is to get rid of the universal quantification on all possible
systems, S, that is introduced by our definition of correctness. The idea is to
check the observer on a particular Fiacre program—called Universal—that can
generate all possible combinations of delays and events a, b and z. We give
an example of universal process in Listing 1.2. The process Universal has only
one state and three possible transitions. Each transition changes the value of a
shared integer variable, x. The first and second transitions of Universal can be
fired without time constraints. In our context, the probe a will be triggered to
the event “setting x to 1” and b to “setting x to 2”. The third transition resets
the value of x to 0 immediately and corresponds to the internal event z.

We can now use our verification toolchain to generate the state graph for
the program (Universal || Present) using a discrete time exploration construction.
This can be obtained using the flag –F1 in Tina (it is possible to generate a state
graph with many different abstractions with Tina, including dense time models).

The resulting graph is displayed in Fig. 3. This state graph has been generated
and printed using the tool nd, which is also part of the Tina toolset; nd is an
editor and animator for extended Time Petri Nets that can export nets and state

98 S.D. Zilio and B. Berthomieu

process Universal (&x : nat) is
states s0
from s0 select

x := 1; to s0 /∗ setting x to 1 ∗/
[] x := 2; to s0 /∗ setting x to 2 ∗/
unless

on (x<> 0); wait [0,0]; x := 0; to s0
end

component Main is
var x : nat := 0
port a : sync is value (x = 1), b : sync is value (x = 2)
par Universal (&x) | | Present [a, b] end

Listing 1.2. Universal program in Fiacre

graphs in several, machine readable formats. This graph has only 26 states and
can therefore be easily managed manually. The main factor commanding the
number of states is the value of the timing constraints used in the pattern; in
our observations, all the generated state graphs were of manageable size.

The transitions in the state graph are also quite straightforward: we find the
visible and internal transitions as before, labeled with a, b, z and t. For ease of
reading, we have also changed the labels of internal transitions in the observer
Present. For instance, the transition from state 2 to 3 corresponds to the observer
entering the state start; likewise for the transitions labeled with watch, stop and
error. The states where the observer is in state error (the states that contradict
the property φP

def=[] - (Present/state error)) are Errors = {20, 22, 23}.
We can already debug the pattern Present a after b within [4, 5[by visually

inspecting the state graph.
For soundness, we need to check that, when the pattern is not satisfied—

for traces σ that do not satisfy formula Pres—then the observer will detect a
problem (observer Present eventually reaches a state in the set Errors).

For innocuousness we need to check that, from any state, it is always pos-
sible to reach a state where event a (respectively b and t) can fire. Indeed, this
means that the observer cannot selectively remove the observation of a particular
sequence of external transitions or the passing of time.

This graphical verification method has some drawbacks. As such, it relies on
a discrete time model and only works for fixed values of the timing parameters
(we have to fix the value of d1 and d2). Nonetheless, it is usually enough to catch
many errors in the observer before we try to prove the observer correct more
formally.

5 Automating the Visual Verification Method

A problem with the previous approach is that it essentially relies on an informal
inspection (and on human interaction). We show how to solve this problem by

Automating the Verification of Realtime Observers 99

b

15

b

19

z

t

0
b

2

b

start
3

z

z

4

a

6

a

1

z

z

t
5

b

9

a

8

z

z

t
7

b

12

a

11

z

z

t
10

a

14

z

watch
16

a

18

z
t

z
24

b

25

t
13

z

z

t

error

20

t

t
17

a

stop

21

a
22

b

23

Fig. 3. State graph for (Universal || Present)

replacing the visual inspection of the state graph by the verification of modal
μ-calculus formulas. (the Tina toolset includes a model-checker for the μ-calculus
called muse.) The general idea rests on the fact that we can interpret the state
graph as a finite state automaton and (some) sets of traces as regular languages.
This analogy is generally quite useful when dealing with model-checking prob-
lems. We start by defining some useful notations.

Label Expressions are boolean expressions denoting a set of (transition)
labels. For instance, Aext = (a ∨ b) denotes the external transitions, while the
expression -(a∨ b∨ t) is only matched by the silent transition label. We will
also use the expression � to denote the disjunction of all possible labels, e.g.
� = (–b) ∨ b. The model checker muse allows the definition of label expressions
using the same syntax.

Regular (Path) Expressions. In the following, we consider regular expres-
sions built from label expressions. For example, the regular expression t · (-t)∗
denotes traces of duration 1 with no events occurring at time 0.

Tick def= t · (-t)∗ (1)

We remark that it is possible to define the set of (discrete) traces where the
FOTT formula Pres holds using the union of two regular languages: (1) the

100 S.D. Zilio and B. Berthomieu

traces where b never occurs, (-b)∗; and (2) the traces where there is an a four
units of time after the first b. The latter corresponds to the regular expression
(x = y b z aw) ∧ (b /∈ y) ∧ (Δ(z) ∈ [4, 5[)

Pres
def= R1 ∨ R2 (2)

R1
def= (-b)∗ (3)

R2
def= (-b)∗ · b · (-t)∗ · Tick · Tick · Tick · Tick · a · �∗ (4)

By construction, the regular language associated to R1 ∨R2 is exactly the set of
finite traces matching (the discrete semantics) of Pres. In the most general case,
a regular expression can always be automatically generated from an existential
FOTT formula when the time constraints of delay expressions are fixed (the
intervals I in the occurrences of (Δ(x) ∈ I)).

The next step is to check that the observer agrees with every trace conforming
to R2. For this we simply need to check that, starting from the initial state
of (Universal || Present), it is not possible to reach a state in the set Errors by
following a sequence of transitions labeled by a word in R2.

This is a simple instance of a language inclusion problem between finite state
automata. More precisely, if Present is the set of states visited when accepting
the traces in R1∨R2, we need to check that Errors is included in the complement
of the set Present (denoted Present). In our example of Fig. 3, we have that
Present = {17, 20, 22, 23}, and therefore Errors ⊆ Present .

This automata-based approach has still some drawbacks. This is what will
motivate our use of a branching time logic in the next section. In particular,
this method is not enough to check the soundness or the innocuousness of the
observer. For innocuousness, we need to check that every event may always even-
tually happen. Concerning soundness, we need to prove that Errors ⊇ Present ;
which is false in our case. The problem lies in the treatment of time divergence
(and of fairness), as can be seen from one of the counter-example produced
when we use our LTL model-checker to check the soundness property, namely:
b.start.z.t.t.t.t.watch.t.t.· · · (ending with a cycle of t transitions). This
is an example where the error transition is continuously enabled but never fired.

Branching Time Specification. We show how to interpret regular expres-
sions over traces using a modal logic. In this case, the target logic is a modal
μ-calculus with operators for forward and backward traversal of a state graph
. (Many temporal logics can be encoded in the μ-calculus, including CTL∗). In
this context, the semantics of a formula ψ over a Kripke structure (a state graph)
is the set of states where ψ holds.

ψ ::= φ ∧ ψ | ¬ψ | <A> ψ | ψ <A> | X | (min X |ψ)

The basic modalities in the logic are <A>ψ and ψ<A>, where A is a label
expression. A state s is in <A>ψ if and only if there is a (successor) state s′ in
ψ and a transition from s to s′ with a label in A. Symmetrically, s is in ψ<A>

Automating the Verification of Realtime Observers 101

if and only if there is a (predecessor) state s′ in ψ and a transition from s′ to s
with a label in A. In the following, we will also use two constants, T, the true
formula (matching all the states), and ‘0, that denotes the initial state of the
model; and the least fixpoint operator min X | ψ(X).

For example, the formula <a>T matches all the states that are the source of
an a-transition, likewise Reach a

def=min X | (<a>T ∨ <Z>X) matches all the states
that can lead to an a-transition using only internal transitions. As a consequence,
we can test innocuousness by checking that the formula (Reach a ∧ Reach b ∧
Reach t) is true for all states.

The soundness proof relies on an encoding from regular path expressions
into modal formulas. We define two encodings: ((R)) that matches the states
encountered while firing a trace matching a regular expression R; and ((R))e that
matches the state reached (at the end) of a finite trace in R. These encodings rely
on two derived operators. (Again, we assume here that A is a label expression.)

ψ o A
def= ψ<A> ψ *A

def= min X | ψ ∨ X<A>

((R · A))e
def= ((R))e oA ((R · A)) def= ((R)) ∨ ((R · A))e

((R · A∗))e
def= ((R))e *A ((R · A∗)) def= ((R)) ∨ ((R · A∗))e

((R · Tick))e
def= (((R))e o t) * (-t) ((R · Tick)) def= ((R)) ∨ ((R · Tick))e

((R1 ∨ R2))e
def= ((R1))e ∨ ((R2))e ((R1 ∨ R2))

def= ((R1)) ∨ ((R2))
((ε))e

def= ‘0 ((ε)) def= ‘0

Lemma 1. Given a Kripke structure K, the states matching the formula ((R))e
(respectively ((R))) in K are the states reachable from the initial state after firing
(resp. all the states reachable while firing) a sequence of transitions matching R.

Proof (Sketch). By induction on the definition of R. For example, if we assume
that ψ correspond to the regular expression R, then ψ ∗A matches all the states
reachable from states where ψ is true using (finite) sequences of transition with
label in A; i.e. formula ψ * A corresponds to R · A∗. Likewise, we use the inter-
pretation of the empty expression, ε, to prefix every formula with the constant
‘0 (that will only match the initial state). This is necessary since μ-calculus for-
mulas are evaluated on all states whereas regular path expressions are evaluated
from the initial state. ��

For example, we give the formula for ((R2))e below, where ψ o Tick stands
for the expression (ψ o t) * (-t):

((R2))e
def= ‘0 * (-b) o b * (-t) o Tick o Tick o Tick o Tick o a * T

If ψErr is a modal μ-calculus formula that matches the error condition of the
observer, then we can check the correctness and soundness of the observer Present
by proving that the equivalence (EQ), below, is a tautology (that it is true on
every states of (Universal || Present)).

((Pres)) ⇔ −ψErr (EQ)

102 S.D. Zilio and B. Berthomieu

Again, we can interpret the “error condition” using the μ-calculus. The definition
of errors is a little bit more involved than in the previous case. We say that a
state is in error if the transition error is enabled (the formula <error>T is true) or
if the state can only be reached by firing the error transition (which corresponds
to the formula (T<error> * T) ∧ (‘0 * (− error)). Hence ψErr is the disjunction
of these two properties:

ψErr
def= <error>T ∨ ((T<error> * T) ∧ − (‘0 * (−error)))

The formula (EQ) can be checked almost immediately (less than 1 s on a standard
computer) for models of a few thousands states using muse. Listing 1.3 gives a
muse script file that can be used to test this equivalence relation.

Results are displayed as set of states. Use ”output card” to see the cardinality
output set;

definition of derived operators

infix X ∗ L =min Y | X ∨Y〈L〉; infix X o L =X〈L〉;
op TICK X =min Y | X〈t〉 ∨Y〈−t〉; op NEVER L = (‘0) ∗ (−L);
op EXT = a ∨ b ∨ t; # labels of the external transitions
op REACH L =min X | (〈L〉T) ∨ 〈−EXT〉X;

INNOCUOUSNESS

op Innocuous = (REACH a) ∧ (REACH b) ∧ (REACH t);

SOUNDNESS

op A0 = (NEVER b) o b; op S0 = (NEVER b) ∨A0;
op A1 =A ∗ (−t); op S1 = S0 ∨A1;
op A2 =TICK(A1); op S2 = S1 ∨A2;
op A3 =TICK(A2); op S3 = S2 ∨A3;
op A4 =TICK(A3); op S4 = S3 ∨A4;
op A5 =TICK(A4); op S5 = S4 ∨A5;
op A6 =A5 o a; op S6 = S5 ∨A6;
op A7 =A6 ∗ T; op S7 = S6 ∨A7;

op R1 =NEVER b; op R2 = S7
op Pres =R1 ∨R2;
op ERRORS = 〈error〉T ∨ (((T〈error〉) ∗ T) ∧ − ((‘0) ∗ (−error)));

Pres ⇔ (− ERRORS); # this is a tautology if all the states are listed

Listing 1.3. Script file for muse to check that ((Pres)) ⇔ −ψErr is a tautology

Automating the Verification of Realtime Observers 103

6 Related Work and Conclusion

Few works consider the verification of model-checking tools. Indeed, most of
the existing approaches concentrate on the verification of the model-checking
algorithms, rather than on the verification of the tools themselves. For example,
Smaus et al. [15] provide a formal proof of an algorithm for generating Büchi
automata from a LTL formula using the Isabelle interactive theorem prover. This
algorithm is at the heart of many LTL model checkers based on an automata-
theoretic approach. The problem of verifying verification tools also appears in
conjunction with certification issues. In particular, many certification norms,
such as the DO-178B, requires that any tool used for the development of a critical
equipment be qualified at the same level of criticality than the equipment. (Of
course, certification does not necessarily mean formal proof!) In this context,
we can cite the work done on the certification of the SCADE compiler [14], a
tool-suite based on the synchronous language Lustre that integrates a model-
checking engine. Nonetheless, only the code-generation part of the compiler is
certified and not the verification part. Finally, another possibility is to rely on a
kind of “Proof-Carrying Code” approach, where the model checker can produce
a deductive proof on either success or failure [12]. This proof can then be checked
separately, using a tool independent from the model checker.

Concerning observer-based model-checking, most of the works rely on an
automatic way to synthesize observers from a formal definition of the properties.
For instance, Aceto et al. [2] propose a method to verify properties based on the
use of test automata. In this framework, verification is limited to safety and
bounded liveness properties since the authors focus on properties that can be
reduced to reachability checking. In the context of Time Petri Net, Toussaint
et al. [16] also propose a verification technique based on “timed observers”,
but they only consider four specific kinds of time constraints. None of these
works consider the complexity or the correctness of the verification problem.
Another related work is [9], where the authors define observers based on Timed
Automata for each pattern. Our approach is quite orthogonal to the “synthesis
approach”. Indeed we seek, for each property, to come up with the best possible
observer in practice. To this end, using our toolchain, we compare the complexity
of different implementations on a fixed set of representative examples and for a
specific set of properties and kept the best candidates. The need to check multiple
implementations for the same patterns has motivated the need to develop a
lightweight verification method for checking their correctness.

Compared to these works, we make several contributions. We define a com-
plete verification framework for checking observers with hard realtime con-
straints. This framework has been tested on a set of observers derived from
high-level timed specification patterns. This work is also our first public appli-
cation of the probe technology, that was added to Fiacre only recently. To the
best of our knowledge, the notion of probes is totally new in the context of
formal specification language. Paun and Chechik propose a somewhat similar
mechanism in [6,13]—in an untimed setting—where they define new categories
of events. However our approach is more general, as we define probes for a richer

104 S.D. Zilio and B. Berthomieu

set of events, such as variables changing state. We believe that this (language-
level) notion of probes is interesting in its own right and could be adopted by
other formal specification languages. Finally, we propose a formal approach that
can be used to gain confidence on the implementation of our model-checking
tools and that replaces traditional “visual verification methods” that are prone
to human errors.

References

1. Abid, N., Dal Zilio, S., Le Botlan, D.: A formal framework to specify and verify
real-time properties on critical systems. Int. J. Crit. Comput.-Based Syst. 5(1/2),
4–30 (2014)

2. Aceto, L., Burgueño, A., Larsen, K.G.: Model checking via reachability testing for
timed automata. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 263–280.
Springer, Heidelberg (1998)

3. Berthomieu, B., Bodeveix, J.-P., Fillali, M., Hubert, G., Lang, F., Peres, F., Saad,
R., Jan, S., Vernadat, F.: The syntax and semantics of fiacre - version 3.0 (2012).
http://www.laas.fr/fiacre/

4. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool Tina - construction of abstract
state spaces for Petri nets and time Petri nets. Int. J. Prod. Res. 42, 14 (2004)

5. Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: Fiacre: an intermediate language for model verification in
the topcased environment. In: Proceedings of ERTS (2008)

6. Chechik, M., Paun, D.O.: Events in property patterns. In: Dams, D.R., Gerth, R.,
Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 154–167. Springer,
Heidelberg (1999)

7. Dwyer, M.B., Dillon, L.: Online repository of specification patterns. http://
patterns.projects.cis.ksu.edu/

8. Garnacho, M., Bodeveix, J.-P., Filali-Amine, M.: A mechanized semantic frame-
work for real-time systems. In: Braberman, V., Fribourg, L. (eds.) FORMATS
2013. LNCS, vol. 8053, pp. 106–120. Springer, Heidelberg (2013)

9. Gruhn, V., Laue, R.: Patterns for timed property specifications. Electr. Notes
Theor. Comput. Sci. 153(2), 117–133 (2006)

10. Koymans, R.: Specifying realtime properties with metric temporal logic. Realtime
Syst. 2, 255–299 (1990)

11. Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis
(1974)

12. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)

13. Paun, D.O., Chechik, M.: Events in events in linear-time properties. CoRR J. vol.
cs.SE/9906031 (1999)

14. Esterel technologies. SCADE Tool Suite. http://www.esterel-technologies.com/
products/scade-suite

15. Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Büchi automata for LTL
model checking verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 424–439. Springer,
Heidelberg (2009)

16. Toussaint, J., Simonot-Lion, F., Thomesse, J.-P.: Time constraints verification
methods based on time Petri nets. In: Proceedings of FTDCS. IEEE (1997)

http://www.laas.fr/fiacre/
http://patterns.projects.cis.ksu.edu/
http://patterns.projects.cis.ksu.edu/
http://www.esterel-technologies.com/products/scade-suite
http://www.esterel-technologies.com/products/scade-suite

Minimizing Walking Length in Map Matching

Amin Gheibi(B), Anil Maheshwari, and Jörg-Rüdiger Sack

School of Computer Science, Carleton University, Ottawa, ON, Canada
{agheibi,anil,sack}@scs.carleton.ca

Abstract. In this paper, we propose a geometric algorithm for a map
matching problem. More specifically, we are given a planar graph, H,
with a straight-line embedding in a plane, a directed polygonal curve, T ,
and a distance value ε > 0. The task is to find a path, P , in H, and a
parameterization of T , that minimize the sum of the length of walks on
T and P whereby the distance between the entities moving along P and
T is at most ε, at any time during the walks. It is allowed to walk for-
wards and backwards on T and edges of H. We propose an algorithm with
O (mn (m + n) log(mn)) time complexity and O (mn (m + n)) space com-
plexity, where m (n, respectively) is the number of edges of H (of T ,
respectively). As we show, the algorithm can be generalized to work
also for weighted non-planar graphs within the same time and space
complexities.

1 Introduction

Trajectory data are often obtained from global positioning system (GPS) devices.
Such devices have accuracy limitations due to noise, sampling intervals, or poor
signals (e.g., inside buildings) thus raw spatial trajectories tend not to be accu-
rate. Under the assumption that the travel captured by the trajectory was follow-
ing edges of a map (stored as a graph) the map matching problem arises. It asks
to find a path on the map that “corresponds well” to the given trajectory. Map
matching arises in different contexts and is a necessary step in preprocessing raw
data before data mining [1]. A variety of approaches have been used to solve the
map matching problem (e.g. geometric, probabilistic methods, fuzzy logic, neural
networks). In [2], Chen et al. discussed recent map matching algorithms when a
trajectory is obtained from low-frequency GPS data of vehicles driving on a road
network. Ruan et al. [3] studied indoor map matching technology based on per-
sonal motion states. In [4], Asakura et al. proposed a pedestrian-oriented map
matching algorithm in the context of disasters. In this context, refugees have
battery-driven mobile GPS terminals and move to shelters at walking speed.
They stated that in order to reduce battery consumption (which is vital in this
context), they chose a geometric approach in which computation resources are
less utilized when compared e.g., with probabilistic methods.

A. Gheibi, A. Maheshwari and J.-R. Sack—Research supported by Natural Sciences
and Engineering Research Council of Canada.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 105–120, 2016.
DOI: 10.1007/978-3-319-28678-5 8

106 A. Gheibi et al.

In this paper, we focus on geometric approaches. We assume that a map is
given as a planar graph via a straight-line embedding in a plane. Therefore, a
path in the graph corresponds to a polygonal curve in the plane. A trajectory
is given as a directed polygonal curve from a starting point to an ending point.
The objective is to find a path in the map which is most similar to the given
trajectory.

To measure similarity, [1,7] observe that methods which consider global fea-
tures of the input trajectories achieve more accurate results than local approaches.
The Fréchet distance is a global similarity measure between curves, see e.g., the
seminal paper [6]. Commonly, the Fréchet distance is illustrated as follows: Sup-
pose a person wants to walk along one curve and his/her dog on another; the
person is keeping the dog at a leash. Both person and dog walk, from start-
ing point to ending points along their respective curves. The standard Fréchet
distance is the minimum leash length required without either person or dog
needing to backtrack. The weak Fréchet distance is a variant of the standard
Fréchet distance in which backtracking on one or both curves is allowed. Alt
and Godau [6] proposed algorithms to compute the standard and weak Fréchet
distances in O(n2 log n) time, where n is the maximum number of segments in
the input polygonal curves. Har-Peled and Raichel [15] showed that the weak
Fréchet distance can be computed in quadratic time.

In [5], Alt et al. discussed the map matching problem set in the context of the
standard Fréchet distance. I.e., their algorithm finds a path in the planar graph
with minimum Fréchet distance to the given trajectory. The time complexity
of their algorithm is O(mn log2 mn) where m (n, respectively) is the number
of edges in the input planar graph (the input polygonal curve, respectively).
Brakatsoulas et al. [7], extended the map matching algorithm of [5] for the weak
Fréchet distance. The time complexity of their algorithm is O(mn log mn). In [8],
Chen et al. proposed a (1 + ε)-approximation algorithm for the map matching
problem when the similarity measure is the standard Fréchet distance and input
model is more “realistic”. They assumed that the input polygonal curve is c-
packed and the input graph is φ-low density in R

d (see Sect. 2 of [8]).
In [10], Gheibi et al. studied a natural optimization problem on the weak

Fréchet distance, called the minimum backward Fréchet distance (MBFD) prob-
lem. There, the task is to determine a pair of walks for a given input leash
length such that the total length of backtracking on both input polygonal curves
is minimized. The cost of backtracking could represent, for example, the cost of
moving against a flow, or the cost for a moving entity (e.g., a human, a humanoid
robot) to move backwards because of the entity’s physiology [9]. They proposed
an algorithm solving this problem within time complexity O(n2 log n) and space
complexity O(n2), where n is the maximum number of segments in the polygonal
curves. In [11], the weighted variant of the MBFD problem is solved in O(n3)
time. In this variant, each edge of the input polygonal curves has an associated
non-negative weight to capture different costs for backward movement.

In this paper, we study the map matching problem when the similarity mea-
sure is the MBFD. More specifically, as input, we are given: a planar graph, H,

Minimizing Walking Length in Map Matching 107

with a straight-line embedding in a plane, a directed polygonal curve, T , and a
distance ε > 0. As motions, both forward and backward motions along T and
the edges of H are allowed. The objective is to find a path, P , in H, and a
parameterization of T , that minimize the sum of the walk lengths along T and
P while keeping a leash length of at most ε. We restrict the start and end point
of P to be at a vertex of H. However, P may partially contain an edge of H. The
difference between this problem setting and that optimization setting of [5,7], is
that here the total walking length along T and P is minimized while in the other
settings the leash length is minimized. The optimization problem introduced in
this paper, can also be used to track objects moving on road networks. To ensure
high-quality tracking, the mobile tracker must remain within a distance of ε to
the moving object, at all time. To minimize energy consumption, the tracker
wants to minimizes walking distance. This type of scenario has been discussed
in the context of wireless networks (see [12,13]).

Figure 1 shows an example of an embedding of a planar graph, H, in R
2, a

polygonal curve, T , and a length ε. The dog walks on T from T (0) to T (4) and the
person chooses a path in H, from one vertex of H to another vertex. Two points,
a and b, are determined on 〈v4, v5〉 and 〈v3, v4〉 respectively. A path in H, and
a walk on T , that minimize the walking lengths on H and T , are as follows: the
dog starts at T (0) and continues on T . The person starts at v1 and walks on the
edges 〈v1, v3〉, 〈v3, v4〉, and 〈v4, v5〉. They move together in a forward direction
until the dog reaches the end of the second segment of T and the person reaches
the point a on 〈v4, v5〉. Then, the dog continues to move forwards until the end
of the third segment of T is reached, while the person moves backwards from a
to v4 and then to b. At the final step, they move forwards again together until
the dog reaches the end of T and the person reaches v5. We show the path in
the graph by the sequence of its vertices, P ∗ = [v1, v3, v4, a, v4, b, v4, v5].

The structure of this paper is as follows. In Sect. 2, we discuss preliminaries
and define the problem formally. In Sect. 3, we propose a polynomial time algo-
rithm for the map matching problem introduced. Then, in Sect. 4, we develop
an algorithm with improved time and space complexities. In Sect. 5, we sketch
a solution to a weighted problem variant. Finally, in Sect. 6, we conclude the
paper.

2 Preliminaries and Definitions

A geometric path in R
2 is a sequence of points in 2D Euclidean space, R2. A

polygonal curve, or a discrete geometric path, is a geometric path, sampled by a
finite sequence of points (called vertices), which are connected by line segments
(called edges) in order. Let T : [0, n] → R

2 be a polygonal curve with n segments.
A vertex of T is denoted by T (i), i = 0, . . . , n. Let H = 〈VH , EH〉 be a planar
graph with a straight-line embedding in R

2 where VH (EH , respectively) is the
set of vertices (edges, respectively) of H. In this paper, the geometric embedding
of H is crucial and we simply refer to the straight-line embedding of the graph
in R

2 as H. A path, P , in H, is a polygonal curve P : [0, 1] → H, such that
P ⊂ H and P (0), P (1) ∈ VH .

108 A. Gheibi et al.

Fig. 1. An embedding of a planar graph, H, a polygonal curve, T , and a length ε are
given. The path P ∗ = [v1, v3, v4, a, v4, b, v4, v5], in H, is a part of a solution to the map
matching problem instance. The edges of H that P ∗ lies on, are illustrated in bold.

A parameterization of a polygonal curve, T : [0, n] → R
2, is a continuous

function f : [0, 1] → [0, n], where f(0) = 0 and f(1) = n. Note that a parame-
terization is corresponding to a walk on T and the interval [0, 1] is representing
time during the walk.

Walking Length. Let f be a parameterization of a polygonal curve, T . Let
Df ⊆ [0, 1] be the closure of the set of times in which f(t) is decreasing (i.e., the
movement is backward). The walking length of T is defined by Formula 1, where
‖.‖ is the Euclidean norm and (.)′ is derivative.

Lf (T) := ||T || + 2
∫

t∈Df

||(T (f (t)))′||dt (1)

Note that if f is monotone (i.e., there is no backward movements on T), then
Lf (T) = ||T ||.
Problem Definition. Suppose H, T and a length, ε > 0, are given. The objec-
tive is to find a path in H and a parameterization of T such that sum of the
length of P and the walking length of T is minimized (Formula 2). We consider
only paths in the graph and parameterizations of T that guarantee to maintain
the leash length at most ε, during the walks.

Mε(H,T) := inf
P⊂H,f

{||P || + Lf (T)}. (2)

Minimizing Walking Length in Map Matching 109

Deformed Free-Space Surface. The free-space diagram is a structure, used
to decide whether the Fréchet distance between two polygonal curves is upper
bounded by a given ε [6]. In [5], Alt et al. introduced a 3D structure, called
free-space surface, to solve the decision version of their map matching problem.
Here, we use both free-space diagram and free-space surface. However, we modify
them slightly, to fit our problem setting.

Let P : [0, 1] → H be a path in H with k + 1 vertices, [p0, p1, . . . , pk]. The
free-space diagram is the rectangle [0, 1]×[0, 1], partitioned into n columns and k
rows. It consists of nk parameter cells Cx,y, for x = 1, ..., n and y = 1, ..., k. Cell
Cx,y is the result of the product of two sub-intervals of [0, 1] that are mapped
to edge

−−−−−−−−−→
T (x − 1)T (x) of T and edge −−−−→py−1py of P , respectively. We call a point

(t1, t2) ∈ [0, 1]2 white if d(T (f(t2)), P (t1)) ≤ ε, where d is the Euclidean distance;
otherwise, we call it black. It has been shown that the set of all white points
inside a cell Cx,y is determined by the intersection of an ellipse with Cx,y. This
set is called the free-space region of that cell. The boundaries of a cell and its
corresponding ellipse intersect at most eight times. These intersection points
form at most four intervals of white points on the boundary of the cell (i.e., at
most one interval per side of the cell). Note that two adjacent cells have the
same interval on the shared side between the cells. The union of all cells’ free-
spaces is the free-space (or white-space) of the diagram; it is denoted by WP .
The complement of WP is the forbidden-space (or black-space) of the diagram
and is denoted by BP . We stretch/compress the columns and rows of the free-
space diagram, such that their widths and heights are equal to the lengths of
the corresponding segments of T and P , respectively. The resulting diagram is
called the deformed free-space diagram and is denoted by Fε(T, P). In Fig. 2,

a

b

T

P ∗

v3

v4

v4

v4

v5

Fig. 2. The free-space diagram Fε(T, P ∗) is drawn. WP is the white area and BP is
the gray area.

110 A. Gheibi et al.

the free-space diagram Fε(T, P ∗) is drawn, where P ∗ = [v1, v3, v4, a, v4, b, v4, v5]
is a path in H, denoted as a sequence of its vertices.

Note that if the path P contains only a single vertex of H, vi ∈ VH , then
Fε(T, P) is a line segment and its length is equal to the Euclidean length of T .
We call this 1D free-space diagram, Fi, the deformed free-space line of vi. We
denote the left endpoint of Fi (i.e., the endpoint corresponding to T (0)) by si

and the right endpoint of Fi (i.e., the endpoint corresponding to T (n)) by ti. If
P contains only an edge, 〈vi, vj〉 ∈ EH , of H, then Fε(T, P) has only one row.
We call this row the deformed free-space face of 〈vi, vj〉, and denote it by F j

i .
Note that Fj

i and Fk
j have Fj in common. Therefore, gluing F j

i and Fk
j along

Fj produces a conforming surface. Thus, we can construct the deformed free-
space surface as follows. We first lay out the straight-line embedding of H in the
xy-plane. For each edge 〈vi, vj〉 ∈ EH , we lay out F j

i , orthogonal to the xy-plane,
along z axis, such that Fi (Fj , respectively) is on top of vi (vj , respectively) and
si (sj , respectively) is in the xy-plane. Note that Fj

i is stretched along z axis
from the plane z = 0 to the plane z = ‖T‖. Suppose Adj(vj) is the set of all

Fig. 3. The free-space surface for the example of Fig. 1 is drawn from two different
viewpoints in 3D. The yellow line segments show the intervals on the cell boundaries.
The red dashed polygonal curve is a path on the white-surface that realizes an optimal
solution to our problem setting (Color figure online).

Minimizing Walking Length in Map Matching 111

vertices vk ∈ VH such that 〈vj , vk〉 ∈ EH . We glue F j
i to Fk

j along Fj , where
vk ∈ Adj(vj). Also, we glue F j

i to F i
h along Fi, where vi ∈ Adj(vh). The result

is a conforming 3D surface between two planes, z = 0 and z = ‖T‖, called
deformed free-space surface and is denoted by S = H × [0, ‖T‖]. Note that si is
on the plane z = 0 and ti is on the plane z = ‖T‖, i = 1, . . . , |VH |. The union of
the white-space (black-space, respectively) of all faces of S is called the white-
surface (black-surface, respectively) and is denoted by W (B, respectively). For
the given planar graph H, the polygonal curve T , and the length ε in Fig. 1, the
corresponding deformed free-space surface is shown in Fig. 3, from two points of
views. Since the white-space of each cell of any Fj

i is convex, for simplicity, we
just draw the white-space intervals on the boundary of the cells. In this figure,
the red dashed polygonal curve is a path on the white-surface W, from s1 to
t5, that realizes P ∗ = [v1, v3, v4, a, v4, b, v4, v5], in H, and a parameterization of
T , that is an optimal solution to our problem setting. It intersects the following
free-space faces sequentially: F3

1 , F4
3 , F5

4 , F4
3 , F5

4 .

3 Algorithm

In this section, we first transform the map matching problem to a shortest path
problem on a weighted graph, G = 〈V,E〉; this yields a polynomial time algo-
rithm. Before discussing the construction of G, we introduce a set of Steiner
points on the boundary of the cells of S.

Steiner Points. We position Steiner points so as to create intervals on the
boundary of the cells of S. There are two types of intervals, Type 1 and Type 2.
We classify the Steiner points based on the type of the intervals that they belong
to. We denote the set of Type 1 (Type 2, respectively) Steiner points by S1 (S2,
respectively).

Type 1. We say an interval is Type 1, if it lies completely in a plane, z = c,
parallel to the xy-plane, where c is a constant. Each deformed free-space face,
F j

i , may have n + 1 Type 1 intervals, FIj
i (�), � = 0, . . . , n, shared between its

cells (where n is the number of edges in T). For each interval FIj
i (�), we project

the endpoints of FIj
i (�) orthogonally to all FIj

i (k), k �= �. If the line segment
from an endpoint of FIj

i (�) to its projection on FIj
i (k) lies in the free-space of

Fj
i and the projection point is not identical with an endpoint of FIj

i (k), then
we take the projection point as a Type 1 Steiner point (see Fig. 4). The set of
all Steiner points, obtained by the projections on Fj

i , for all 〈vi, vj〉 ∈ EH , is
denoted by S1.

Type 2. We say an interval is Type 2 if it lies completely on a deformed free-
space line. As we mentioned in Sect. 2, a plane z = c corresponds to a point on
the given trajectory T . The intersection of z = c and S is an instance of H,
denoted by Hc. Note that some part (possibly empty) of Hc is in W. Let z = hj

be the corresponding plane of T (j), a vertex of T . The part of the deformed
free-space surface, S, between the two parallel planes, z = hj−1 and z = hj ,

112 A. Gheibi et al.

vi, vj

Fig. 4. The free-space face Fj
i is drawn. The endpoints of the intervals, FIj

i (�), are
shown by points and the Type 1 Steiner points are shown by squares.

j = 1, . . . , n, corresponds to edge
−−−−−−−−−→
T (j − 1)T (j) of T . We denote this part of

S by T j
j−1 = H × [hj−1hj]. In T j

j−1, j = 1, . . . , n, there is at most one Type
2 interval per vertex vi ∈ VH . We denote these Type 2 intervals by T Ij

j−1(i),
i = 1, . . . , |VH |. Suppose z = c is the plane that is passing through an endpoint,
p, of T Ij

j−1(i). Let the intersection of z = c with T Ij
j−1(k), k �= i, be qk.

Note that both p and qk are on the graph Hc. Then, if qk is not an endpoint
of T Ij

j−1(k) and there is a path, from p to qk, in Hc, that is in W, then qk is
a Type 2 Steiner Point. The set of all Type 2 Steiner points is denoted by S2.
An example is given in Fig. 5. Suppose it is T j

j−1, for j = 1. In this example,
there are four yellow intervals, T Ij

j−1(1), T Ij
j−1(3), T Ij

j−1(5), and T Ij
j−1(6).

The black points show the interval endpoints and red points show the Type 2
Steiner points. For simplicity, only two, out of eight planes, are drawn. The plane
z3 (z6, respectively) is passing through an endpoint of T Ij

j−1(3) (T Ij
j−1(6),

respectively). The intersections of z3 with T Ij
j−1(5) and T Ij

j−1(6) are Steiner
points. However, the intersection of z6 with T Ij

j−1(3) is not a Steiner point.

Constructing Graph. Now, we explain the construction of G = 〈V,E〉. Recall
that the white-surface (the white-space of S) is denoted by W. The vertices of
W are the end points of the intervals on the boundary of the cells in S (at most

Minimizing Walking Length in Map Matching 113

Fig. 5. An example of T j
j−1, for j = 1, is drawn. In this example, there are four intervals

that are shown by yellow color. The black balls show the interval endpoints and red
balls show the Type 2 Steiner points (Color figure online).

4 intervals may exist per cell). We denote the set of vertices of W by VW . The
set of vertices, V , of G, is V = VW ∪ S1 ∪ S2. Note that V contains all si and
ti if they are in W. Every two vertices, v1, v2 ∈ V , that are on the boundary of
a cell, are linked by two directed edges in E, from v1 to v2, 〈v1, v2〉, and vice
versa, 〈v2, v1〉. The weight of an edge e = 〈v1, v2〉 ∈ E, is its length in the L1

metric, |e|1.
Obtain an Optimal Solution. In order to have an optimal solution, at least
one si and one tj ,i, j = 1, . . . , |VH |, must be in W. The main steps of the algo-
rithm are as follows:

– Find all the vertices in VH that are in ε distance of T (0) (T (n), respectively),
vi1 , . . . , vik1

(vj1 , . . . , vjk2
, respectively).

– Add an extra node, s′, to G, and add k1 extra directed edges, 〈s′, si1〉, . . . , 〈s′,
sik1

〉, to E. The weight of these k1 edges are set to zero. Analogously, add
another extra node, t′, to G, and add k2 extra directed edges, 〈tj1 , t′〉, . . . , 〈tjk2

,
t′〉, to E. The weight of these k2 edges are also set to zero.

– Find a shortest path, from s′ to t′, in G. Note that if there is no path from s′

to t′ in G, then there is no solution for the given leash length.
– Remove s′ and t′ from the head and tail of the shortest path. The remaining

path is from one si to one tj . It gives an optimal solution to our problem
setting.

Note that, a vertex of G (except s′ and t′) is also represented by a point in
W. Therefore, the geometric embedding of a path, from one si to one tj , in G,
is constructed by connecting the consecutive vertices of the path in W by line
segments.

114 A. Gheibi et al.

Observation 1. Let Π be a path in the white-space, W, of a deformed free-
space surface, S, from one si to one tj. Π realizes a path, P : [0, 1] → H, in H,
and a parameterization, f : [0, 1] → [0, n], of T , that maintain the leash length
at most ε, for all t ∈ [0, 1].

Constructing a Path in H. We can construct a path P in H, from the given
path Π in W, as follows. As we mentioned earlier in this section, we have two
types of intervals on the boundary of the cells, Type 1 and Type 2. A Type 1
interval lies completely on a plane, z = c, parallel to the xy-plane. A Type 2
interval lies completely on a deformed free-space line, Fi. The path Π intersects
a sequence of intervals (of both types). The path P in H is constructed by
processing the intervals in this sequence. For each interval in this sequence, if it
is Type 2 interval, on Fi, then we append vi to the tail of P . If it is Type 1, then
the intersection point, q, of Π and that interval, is appended to the tail of P , as
a vertex of P . Note that q may not be a vertex of H. However, it is a point on
an edge of H. At the end, we connect the consecutive vertices in P by straight
line segments.

Correctness. To establish the correctness, we use norms in two spaces: (1) the
Euclidean space of the embedding of the input graph and the polygonal curve,
called the input space, (2) the deformed free-space surface, called the configu-
ration space. In the input space, we denote the Euclidean length of a polygonal
curve T by ‖T‖. We also defined walking length of T , Lf (T), based on a parame-
terization f . Note that if f is a monotone parameterization, then Lf (T) = ‖T‖.
In configuration space, a path from an si to a tj in W, is also denoted by its
vertices, Π : 〈si = p1, p2, . . . , pk = tj〉. The length, |.|1, of each segment of Π is
calculated by the L1 metric. The length of a path, |Π|1, is the sum of the length
of its segments.

Lemma 1 is at the heart of the correctness proof. This section is concluded
by a corollary to Lemma 1 and Observation 1, that is, in order to find a solution
for our problem setting, it suffices to find a shortest path from s′ to t′ in G.

Lemma 1. For any path Π : 〈si = p1, p2, . . . , pk1 = tj〉 in W, there is a path
Π ′ : 〈si = p′

1, p
′
2, . . . , p

′
k2

= tj〉 in W such that Π ′ ⊂ G and |Π ′|1 ≤ |Π|1.
Proof. The path Π intersects a sequence, SF , of deformed free-space faces. Every
two consecutive faces in SF share a deformed free-space line. Therefore, we can
unfold the free-space faces in the sequence, along the shared free-space lines. The
result is a 2D free-space diagram, denoted by Fε(SF). W.l.o.g., we can assume
that Fε(SF) is axis aligned in R

2. The path Π is also unfolded into a 2D path
in the white-space, WSF , of Fε(SF). Note that unfolding does not change the
length of a path. As an example, in Fig. 6a, the result of unfolding the faces that
are intersected by the red dashed polygonal curve in Fig. 3, is shown.

Let Πopt : 〈si = q1, q2, . . . , qk3 = tj〉 be a L1 shortest path, from si to tj , in
WSF . Then, |Πopt|1 ≤ |Π|1. To prove the lemma, it suffices to show that there
is a path Π ′ ⊂ G = 〈V,E〉, from si to tj , in WSF , such that |Π ′|1 = |Πopt|1.

We know that the vertices of Πopt are endpoints of some intervals on the
boundary of the cells of Fε(SF) [14] (the well known rubber band property of

Minimizing Walking Length in Map Matching 115

a
b

T
s1

t5

a b

qi

qi+1

〈v1, v3〉

〈v3, v4〉

〈v4, v5〉

Fig. 6. (a) The result of unfolding the sequence of deformed free-space faces that are
intersected by the red dashed polygonal curve in Fig. 3. It is a 2D free-space diagram,
Fε(SF). The red dashed polygonal curve is shown after unfolding. (b) Illustration of
case 1 in the proof of Lemma 1 (Color figure online).

shortest paths). Therefore, the vertices of Πopt are in V (i.e., the set of ver-
tices of G). Thus, it is sufficient to show that for each edge, −−−→qiqi+1, of Πopt,
there is a path, πqiqi+1 , from qi to qi+1, in G, that |−−−→qiqi+1|1 = |πqiqi+1 |1. Two
cases arise depending on whether −−−→qiqi+1 lies completely within a row (or a col-
umn) of Fε(SF), or not. We need a definition before discussing these cases. We
assume that Fε(SF) is an axis-aligned rectangle in a 2D Cartesian coordinate
system, where the x-axis corresponds to T (Fig. 6a). We say a path Π ∈ WSF is
x-monotone (y-monotone, respectively), if any vertical (horizontal, respectively)
line intersects it at most ones. Π is said to be xy-monotone, if it is both x- and
y-monotone.

Case 1. In this case, −−−→qiqi+1 lies completely within a column (or a row) of Fε(SF).
Here, we discuss the case when it lies within a column (see Fig. 6b); the argu-
ments are analogous for case of a row. W.l.o.g we assume that −−−→qiqi+1 is xy-
increasing. The other cases are symmetric. Edge −−−→qiqi+1 intersects a sequence
of horizontal intervals, Iz, within a column. They are sorted based on their y
coordinates. We construct πqiqi+1 sequentially and always denote the last vertex
appended to πqiqi+1 by πlast. Initially, πqiqi+1 contains only qi and πlast = qi.
The sequence of intervals are processed sequentially. Suppose we processed inter-
val Iz and now we want to process Iz+1. We project orthogonally from πlast to
Iz+1. If the projection point exists (i.e., the perpendicular line from πlast to Iz+1

intersects Iz+1), then append the projection point on Iz+1 to πqiqi+1 and update
πlast. Otherwise, the closest endpoint of Iz+1 to πlast is appended to πqiqi+1 and
we update πlast. When all intervals, Iz, have been processed, qi+1 is appended
to πqiqi+1 .

116 A. Gheibi et al.

Since the sorted list of intervals withing a column are traversed by πqiqi+1

sequentially, the path πqiqi+1 is y-monotone. Also, by construction, each ver-
tex of πqiqi+1 either has the same x as its preceding vertex in πqiqi+1 (i.e., it
is the result of the orthogonal projection) or its x is greater than its preced-
ing vertex’s x (since the orthogonal projection does not exist and −−−→qiqi+1 is xy-
increasing inside the white-space). Therefore, the path πqiqi+1 is x-monotone.
Thus, the path πqiqi+1 is xy-monotone. We know that the L1 length of two
xy-monotone paths that have the same starting and ending points, are equal.
Therefore, |−−−→qiqi+1|1 = |πqiqi+1 |1.

Now, we prove that πqiqi+1 ⊂ G = 〈V,E〉. It suffices to show that each vertex
of πqiqi+1 is in V and between every two consecutive vertices of πqiqi+1 there is an
edge in E. Each vertex of πqiqi+1 is either the result of the orthogonal projection
or an endpoint of an interval. Therefore, each vertex is either a Steiner point
or a vertex of the white-surface. In both cases, the vertex is in V . In addition,
between every two consecutive vertices of πqiqi+1 there is an edge in E because
every two consecutive vertices of πqiqi+1 lie on the boundary of a cell and, by the
construction of G, all members of V that lie on the boundary of a cell are linked
by edges in E.

Case 2. In [11], Sect. 4, Lemma 4, it is proved that if −−−→qiqi+1 does not lie com-
pletely within a row and within a column of Fε(SF), then there is a xy-monotone
path π′

qiqi+1
, from qi to qi+1, such that its edges lie completely within a row and

within a column of Fε(SF). For each edge of π′
qiqi+1

, we apply case 1. Then,
we concatenate the resulting xy-monotone paths for edges of π′

qiqi+1
, to obtain

πqiqi+1 . Since, xy-monotone paths for edges of π′
qiqi+1

are in G (as we proved
in Case 1), the resulting path, πqiqi+1 , is a xy-monotone path in G. Therefore,
|−−−→qiqi+1|1 = |πqiqi+1 |1.
Corollary 1. For any pair of si and tj, if tj is reachable from si by a path in
W, then there is a path from si to tj, in G, that is a L1 shortest path in W.

Corollary 2. A shortest path in G, from s′ to t′, yields an optimal solution for
our problem setting.

Proof. Let Π ′
opt be a shortest path in G, from s′ to t′. We remove s′ and t′

from the head and tail of Π ′
opt. The result, Πij , is a shortest path from si to tj .

Therefore, among all possible shortest paths Πk�, for sk and t�, k, � = 1, . . . , |VH |,
the pair (si, tj) has a shortest L1 shortest path, Πij . By Corollary 1, Πij ⊂ G is
a L1 shortest path in W. Each point on Πij is corresponding to a point, p, on
H and a point, q, on T , such that the Euclidean distance of p and q is less than
ε. By Observation 1, Πij , is corresponding to a path, P , in H, from vi ∈ VH

to vj ∈ VH , and a parameterization, f , of T . The summation of the Euclidean
length of P , ‖P‖, and the walking length of T , Lf (T), is equal to the L1 length
of Πij . Since Πij is a shortest L1 shortest path, P and f minimize the matching
cost, Mε(H,T) Eq. (2).

Theorem 1. Let H be a planar graph with a straight-line embedding in a plane,
T be a directed polygonal curve, and ε > 0 be a distance. A path, P : [0, 1] → H,

Minimizing Walking Length in Map Matching 117

between two vertices of H, and a parameterization, f , of T , that minimize the
sum of the walking length of T and P , can be found in polynomial time and
space. It is guaranteed that at any time t ∈ [0, 1], the Euclidean distance between
P (t) and T (f(t)) is at most ε.

Proof. The correctness follows directly from Corollary 2. The deformed free-
space surface, S, has O(mn) cells, where m (n, respectively) is the number
of edges of H (T , respectively). Each cell of S has at most four intervals and
at most O(m + n) Steiner points on its intervals. Therefore, the graph G has
O (mn(m + n)) vertices and O (

mn(m + n)2
)

edges (including the extra edges
that connect s′ and t′ to the graph). In addition, it takes O (

n2
)

time to compute
all Type 1 Steiner points for each free-space face. Therefore, computing S1 takes
O (

mn2
)

time. In order to compute Type 2 Steiner points, we use breadth first
search for each interval endpoint to propagate the projection on the instance
of the graph, Hc, in the plane z = c. Therefore, computing S2 takes O (

nm2
)

time. At the end, it is possible to find a shortest path in G, from s′ to t′, in
O (

mn(m + n)2
)

time, by using Dijkstra’s algorithm. Therefore, both the total
time and space complexities are O (

mn(m + n)2
)
.

4 Improvement

In Sect. 3, we showed that the graph G = 〈V,E〉 contains a path that yields an
optimal solution for our problem setting. The bottleneck in the time complexity
of the algorithm in Sect. 3 is due to the number of edges of G. In this section,
we construct a new graph G′ = 〈V,E′〉, such that |E′| < |E| and it preserves the
connectivity information of G. More precisely, if there is a path, from vi ∈ V to
vj ∈ V , in G, then there is a path, from vi to vj , in G′, with the same L1 length.

Based on the construction of G, there are at most O(m + n) vertices in V
(including the interval endpoints and Steiner points) on the boundary of each
cell, C, of S. We connect these O(m + n) vertices by a linear number of edges,
in E′, as follows. The weight of each edge in E′ is equal to its L1-length. Let
T , B, L, and R be the intervals on the top, bottom, left and right side of C,
respectively. Suppose cell C is in a 2D Cartesian coordinate system and the
vertices on each interval I ∈ {T,B,L,R} are sorted by x and y. Every two
adjacent vertices, vi and vi+1, on I, are linked by two directed edges, 〈vi, vi+1〉
and 〈vi+1, vi〉 (Fig. 7). Every two of the eight interval endpoints are linked by
two directed edges assuming they are not identical. A vertex vi on interval L
(T , respectively), is linked by two directed edges to another vertex v′

i on R (B,
respectively) if v′

i has the same y (x, respectively) coordinate as vi; the two edges
are denoted by 〈vi, v

′
i〉 and 〈v′

i, vi〉, respectively. By this approach, each vertex
of G′ on the boundary of C is connected to a constant number of vertices of G′

on the boundary of C. It is now straightforward to prove the following lemma.

Lemma 2. Let vi and vj be two vertices, in V , on the boundary of a cell, C,
of S. There is a path, from vi to vj, in G′, that has the same L1 length as the
direct line segment between them.

118 A. Gheibi et al.

T

B

L
R

Fig. 7. A cell of the free-space surface is drawn. The red solid line segments show
the four intervals on the boundary of the cell. The arcs show the edges in E0 that
connect every two adjacent vertices of G0, on each interval. The dashed black line
segments show the edges in E0 that connect a vertex with its orthogonal projection
on the opposite side of the cell. The dash dotted blue line segments show some of the
edges that connect endpoints of the intervals. For simplicity, we did not draw all of
them (Color figure online).

Corollary 3. There is a path in G′ that realizes an optimal solution for our
problem setting.

Theorem 2. Let H be a planar graph with a straight-line embedding in a plane,
T be a directed polygonal curve, and ε > 0 be a distance. A path, P : [0, 1] → H,
between two vertices of H, and a parameterization, f , of T , that minimize the
sum of the walking length of T and P , can be found in O(nm(n + m) log(nm))
time and O(nm(n+m)) space, where n (m, respectively) is the number of edges
of T (H, respectively). It is guaranteed that at any time t ∈ [0, 1], the Euclidean
distance between P (t) and T (f(t)) is at most ε.

Proof. The correctness follows directly from Corollary 3. The number of vertices
and edges of G′ (and the total space complexity) is upper-bounded by O(nm(n+
m)). Using Dijkstra’s algorithm, we find a shortest path in G′, from s′ to t′.
Therefore, the time complexity of our algorithm is O(nm(n+m) log(nm)). Note
that if there is no pair of (sk, t�), k, � = 1, . . . , |VH |, in a connected component
of G′, then there is no feasible solution.

5 Weighted Non-planar Graphs

We assumed that the input graph H is planar. That makes the illustration of the
algorithm easier since the faces of the free-space surface do not intersect except at
the boundary of the faces. However, all lemmas and theorems, derived in Sects. 3
and 4, are proved without making an assumption regarding the planarity of H.
Therefore, the algorithm proposed in this paper remains correct for any graph

Minimizing Walking Length in Map Matching 119

for which a straight-line embedding in a plane is provided (see [5], Sect. 2.7). In
the embedding, the edges of the graph may intersect. Transition from one edge
to another is allowed only at a vertex.

We also assumed that H is unweighted. Here, we sketch how the proposed
algorithm can be generalized to also handle the problem instance, when H is
weighted. Suppose that each edge of H has a non-negative, real weight. A weight
could represent the cost of moving on the edge of the graph. The edges of the
input polygonal curve T could also have weights capturing the costs of moving
forwards and backwards. The objective is to find a path in H whose weighted
walking length is minimized. In the weighted problem setting, inside each cell of
the free-space surface, there are two weights, one corresponding to an edge of T
and one corresponding to an edge of H. These weights are fixed inside the cell and
do not change. Therefore, in the construction of G or G′, instead of computing
the L1 length for each edge, e, we compute the orthogonal projections of e
onto H and T . Then, we multiply the projection lengths with the corresponding
weights, and the sum of these multiplications is the weight that we assign to e.
The remaining parts of the algorithm remains the same and the time and space
complexities do not change.

6 Conclusion

In this paper, we discussed a geometric algorithm for the map matching problem
that minimizes the walking length. We established that this problem setting is
dual to a weighted shortest path problem. Then, we proposed an algorithm with
O (mn (m + n) log(mn)) time and O (mn (m + n)) space complexities, where m
(n, respectively) is the number of edges of H (T , respectively). At the end, we
discussed that the proposed algorithm is easily adaptable to handle weighted
non-planar graphs. It is still open if we can improve the proposed algorithm
further, for planar graphs. The main challenge here is the existence of cycles in
the input graph and propagation through the cycles.

Acknowledgment. The authors would like to thank Carola Wenk for suggesting this
topic and constructive comments, and Omid Gheibi for valuable discussions.

References

1. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol.
6(3), 29, Article 1 (2015)

2. Chen, B., Yuan, H., Li, Q., Lam, W., Shaw, S., Yan, K.: Map-matching algorithm
for large-scale low-frequency floating car data. Int. J. Geogr. Inf. Sci. 28(1), 22–38
(2014)

3. Ruan, F., Deng, Z., An, Q., Wang, K., Li, X.: A method of map match-
ing in indoor positioning. In: Sun, J., Jiao, W., Wu, H., Lu, M. (eds.) CSNC
2014 Proceedings: Volume III. Lecture Notes in Electrical Engineering, vol. 305,
pp. 669–679. Springer, Berlin (2014)

120 A. Gheibi et al.

4. Asakura, K., Takeuchi, M., Watanabe, T.: A pedestrian-oriented map matching
algorithm for map information sharing systems in disaster areas. Int. J. Know.
Web Intel. 3(4), 328–342 (2012)

5. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. In: Proceeding of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 589–598
(2003)

6. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

7. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: Proceeding of VLDB, pp. 853–864. ACM (2005)

8. Chen, D., Driemel, A., Guibas, L., Nguyen, A., Wenk, C.: Approximate map
matching with respect to the Fréchet distance. In: Proceeding of 13th ALENEX,
pp. 75–83 (2011)

9. Flynn, T., Connery, S., Smutok, M., Zeballos, R., Weisman, I.: Comparison of
cardiopulmonary responses to forward and backward walking and running. Med.
Sci. Sports Exerc. 26(1), 89–94 (1994)

10. Gheibi, A., Maheshwari, A., Sack, J.-R., Scheffer, C.: Minimum backward Fréchet
distance. In: Proceedings of the 22nd ACM SIGSPATIAL, pp. 381–388 (2014)

11. Gheibi, A., Maheshwari, A., Sack, J.-R.: Weighted minimum backward Fréchet
distance. Accepted to 27th CCCG, Kingston (2015)

12. Bhuiyan, M.Z.A., Wang, G., Vasilakos, A.V.: Local area prediction-based mobile
target tracking in wireless sensor networks. IEEE Trans. Comput. 64(7), 1968–1982
(2015)

13. Vachhani, H.: Continuous spatio temporal tracking of mobile targets, Master’s
thesis, Arizona State University (2014)

14. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility
graphs. SIAM J. Comput. 20(5), 888–910 (1991)

15. Har-Peled, S., Raichel, B.: The Fréchet distance revisited and extended. In:
Proceedings of the 27th ACM SoCG, pp. 448–457 (2011)

Rainbow Domination and Related Problems
on Some Classes of Perfect Graphs

Wing-Kai Hon1(B), Ton Kloks1, Hsiang-Hsuan Liu1,2, and Hung-Lung Wang3

1 Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
{wkhon,hhliu}@cs.nthu.edu.tw

2 University of Liverpool, Liverpool, England
hhliu@liv.ac.uk

3 Institute of Information and Decision Sciences,
National Taipei University of Business, Taipei, Taiwan

hlwang@ntub.edu.tw

Abstract. Let k ∈ N and let G be a graph. A function f : V (G) → 2[k]

is a rainbow function if, for every vertex x with f(x) = ∅, f(N(x)) =
[k], where [k] denotes the integers ranging from 1 to k. The rainbow
domination number γkr(G) is the minimum of

∑

x∈V (G) |f(x)| over all
rainbow functions. We investigate the rainbow domination problem for
some classes of perfect graphs.

1 Introduction

In 2008, Bres̆ar et al. [2] introduced the k-rainbow domination problem, which is
a generalized formulation of graph domination. In the graph domination prob-
lem, a set of vertices is selected as the “guards” such that each vertex not selected
has a guard as a neighbor; while in the k-rainbow domination problem, k differ-
ent types of guards are required in the neighborhood of a non-selected vertex.
The k-rainbow domination-problem drew our attention because it is solvable in
polynomial time for classes of graphs of bounded rankwidth but, unless one fixes
k as a constant, it seems not formulatable in monadic second-order logic. Let us
start with the definition.

Definition 1. Let k ∈ N and let G be a graph. A function f : V (G) → 2[k] is a
k-rainbow function if, for every x ∈ V (G),

f(x) = ∅ implies ∪y∈N(x) f(y) = [k].

The k-rainbow domination number of G is

γrk(G) = min
{ ‖f‖ | f is a k-rainbow function for G

}
,

where ‖f‖ =
∑

x∈V (G)
|f(x)|.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 121–134, 2016.
DOI: 10.1007/978-3-319-28678-5 9

122 W.-K. Hon et al.

We call ‖f‖ the cost of f over the graph G. When there is danger of confusion, we
write ‖f‖G instead of ‖f‖. We call the elements of [k] the colors of the rainbow
and, for a vertex x we call f(x) the label of x. For a set S of vertices we write

f(S) = ∪x∈S f(x).

It is a common phenomenon that the introduction of a new domination vari-
ant is followed chop-chop by an explosion of research results and their write-
ups. One reason for the popularity of domination problems is the wide range
of applicability and directions of possible research. We leave our bibliography
of recent publications on this specific domination variant to the full version of
this paper [20]. We refer to [28] for the description of an application of rainbow
domination.

To begin with, Bres̆ar et al. showed that, for any graph G,

γrk(G) = γ(G�Kk), (1)

where γ denotes the domination number and where � denotes the Cartesian
product. This observation, together with Vizing’s conjecture, stimulated the
search for graphs for which γ = γr2 (see also [1,21]). Notice that, by Eq. (1)
and Vizing’s upperbound γrk(G) ≤ k · γ(G) [29].

Chang et al. [7] were quick on the uptake and showed that, for k ∈ N, the
k-rainbow domination problem is NP-complete, even when restricted to chordal
graphs or bipartite graphs. The same paper shows that there is a linear-time
algorithm to determine the parameter on trees. A similar algorithm for trees
appears in [30] and this paper also shows that the problem remains NP-complete
on planar graphs.

Notice that Eq. (1) shows that γrk(G) is a non-decreasing function in k.
Chang et al. show that, for all graphs G with n vertices and all k ∈ N,

min { k, n } ≤ γrk(G) ≤ n and γrn(G) = n.

For trees T , Chang et al. [7] give sharp bounds for the smallest k satisfying
γrk(T) = |V (T)|.

Many other papers establish bounds and relations, e.g., between the 2-rainbow
domination number and the total domination number or the (weak) roman dom-
ination number, or study edge- or vertex critical graphs with respect to rainbow
domination, or obtain results for special graphs such as paths, cycles, graphs with
given radius, and the generalized Petersen graphs. A detailed survey can be found
in [20].

Pai and Chiu [23] develop an exact algorithm and a heuristic for 3-rainbow
domination. They present the results of some experiments. Let us mention
that the k-rainbow domination number may be computed, via Eq. (1), by an
exact, exponential algorithm that computes the domination number. For exam-
ple, this shows that the k-rainbow domination number can be computed in
O(1.4969nk) [24,25].

Rainbow Domination and Related Problems 123

Whenever domination problems are under investigation, the class of strongly
chordal graphs are of interest from a computational point of view. Farber showed
that a minimum weight dominating set can be computed in polynomial time on
strongly chordal graphs [14]. Recently, Chang et al. showed that the k-rainbow
dominating number is equal to the so-called weak {k}-domination number for
strongly chordal graphs [2,3,8]. A weak {k}-dominating function is a function
g : V (G) → {0, . . . , k} such that, for every vertex x,

g(x) = 0 implies
∑

y∈N(x)

g(y) ≥ k. (2)

The weak domination number γwk(G) minimizes
∑

x∈V (G) g(x), over all weak
{k}-dominating functions g. In their paper, Chang et al. show that the k-rainbow
domination number is polynomial for block graphs. As far as we know, the k-
rainbow domination number is open for strongly chordal graphs.

It is easy to see that, for fixed k, the k-rainbow domination problem can be
formulated in monadic second-order logic. For example, a function f : V (G) →
2[k] can be defined using k vertex subsets V1, . . . , Vk, such that f(x) = {i | x ∈
Vi}, and the property of k-rainbow can be formulated as

∃V0⊆V (G)∃V1⊆V (G) · · ·∃Vk⊆V (G)

[
(∀x∈V (G)∃i∈[k]∪{0} x ∈ Vi) ∧

(∀i∈[k] V0 ∩ Vi = ∅) ∧ (∀x∈V0∀i∈[k] N(x) ∩ Vi �= ∅)
]
.

The k-rainbow domination number is the minimal value of
∑k

i=1 |Vi|, where
(V1, . . . , Vk) defines a k-rainbow function. This shows that, when k is fixed,
the parameter is computable in linear time for graphs of bounded treewidth or
rankwidth [12].

Theorem 1. Let k ∈ N. There exists a linear-time algorithm that computes
γrk(G) for graphs of bounded rankwidth.

For example, Theorem 1 implies that, for each k, γrk(G) is computable in
polynomial time for distance-hereditary graphs, i.e., the graphs of rankwidth 1.
Also, graphs of bounded outerplanarity have bounded treewidth, which implies
bounded rankwidth.

A direct application of the monadic second-order theory involves a constant
which is an exponential function of k. In the following section we show that,
in some cases, this exponential factor can be avoided. Moreover, besides weak
{k}-domination, another variant, weak {k}-L-domination, is also conducted. A
formal definition is given later in Sect. 3. The corresponding parameter, the weak
{k}-L-domination number, is denoted by γwkL(G). We note here that this variant
was formulated in order to solve the k-rainbow domination problem [7,8]. In more
detail, the results presented in this paper (see Fig. 1) consist of

– linear-time algorithms for cographs on γrk and γwk, respecitvely (Sect. 2).
– a linear-time algorithm for trivially perfect graphs on γwkL (Sect. 3).

124 W.-K. Hon et al.

Fig. 1. Results on k-rainbow domination over graph classes. Double-lined rectangles
indicate the graph classes conducted in this paper. The arrows “→” denote the relation
of containment, i.e., A → B means A is a superclass of B. A graph is Cameron if it is
(Bull, Gem, Co-Gem, C5)-free [6].

– a polynomial-time algorithm for interval graphs on γr2, which is equal to γw2

(Sect. 4).
– The NP-completeness of computing γrk and γwk for splitgraphs (Sect. 5).

Because of the space limitation, some proofs and related results are omitted.
The details are available in the full version [20].

2 k-Rainbow Domination on Cographs

Cographs are the graphs without an induced P4. As a consequence, cographs
are completely decomposable by series and parallel operations, that is, joins and
unions [15]. In other words, a graph is a cograph if and only if every nontrivial,
induced subgraph is disconnected or its complement is disconnected. Cographs
have a rooted, binary decomposition tree, called a cotree, with internal nodes
labeled as joins and unions [11].

For a graph G and k ∈ N, let F (G, k) denote the set of k-rainbow functions
on G. Furthermore, define

F+(G, k) = { f ∈ F (G, k) | ∀x∈V (G) f(x) �= ∅ }
and F−(G, k) = F (G, k) \ F+(G, k).

Theorem 2. There exists a linear-time algorithm to compute the k-rainbow
domination number γrk(G) for cographs G and k ∈ N.

Proof. We describe a dynamic programming algorithm to compute the k-rainbow
domination number. A minimizing k-rainbow function can be obtained by back-
tracking.
Clearly, for a k-rainbow function that has no empty-set label, the minimal cost
is the number of vertices. We therefore concentrate on those k-rainbow functions
for which some labels are the empty set.

Rainbow Domination and Related Problems 125

For a cograph H define

R+(H) = min { ‖f‖H | f ∈ F+(H, k) and f(V (H)) = [k] },

R−(H) = min { ‖f‖H | f ∈ F−(H, k) }.

Here, we adopt the convention that R−(H) = ∞ if F−(H, k) = ∅.
Notice that

R+(H) = max { |V (H)|, k }. (3)

Assume that H is the union of two smaller cographs H1 and H2. Then clearly,

R−(H) = min {R−(H1)+|V (H2)|, R−(H2)+|V (H1)|, R−(H1)+R−(H2)}. (4)

Now assume that H is the join of two smaller cographs, H1 and H2. We claim

R−(H) = min { R+(H1), R+(H2), R−(H1), R−(H2), 2k }. (5)

To show that Eq. (5) holds, let f be a k-rainbow function from F−(H, k) with
minimum cost over H. First, one can observe that

‖f‖H ≤ 2k (6)

since in each of H1 and H2, labeling exactly one vertex with [k] and the others
with ∅ results in a k-rainbow function of cost 2k.

If there exists i in {1, 2} such that f(x) �= ∅ for all x ∈ V (Hi), then there
is a vertex labeled with ∅ in H3−i. Let L = ∪y∈V (H3−i)f(y). Define another
k-rainbow function f ′ of H as follows. Choosing an arbitrary vertex x in V (Hi),
let f ′(x) = f(x)∪L. For y ∈ V (Hi)\{x}, let f ′(y) = f(y), and for z ∈ V (H3−i),
let f ′(z) = ∅. Notice that f ′(V (Hi)) = [k], and thus, f ′ is a k-rainbow function
with cost at most ‖f‖H . This shows that R−(H) = R+(Hi).

If each of H1 and H2 contains a vertex with label ∅, let

L1 = f(V (H1)) and L2 = f(V (H2)).

For each color � ∈ [k], let ν� be the number of times that � is used in a label,
that is,

ν� = |{ x | x ∈ V (H) and � ∈ f(x) }|.
If for all �, ν� ≥ 2. It follows that ‖f‖H ≥ 2k. Together with inequality Eq. (6),
we have R−(H) = 2k. Otherwise, there exists some � with ν� = 1. Let u be the
unique vertex with � ∈ f(u). Assume that u ∈ V (H1). The case where u ∈ V (H2)
is similar. Clearly, u is adjacent to all x ∈ V (H) with f(x) = ∅. Modify f to f ′ so
that f ′(u) = f(u)∪(L2\L1), f ′(x) = f(x) for all x ∈ V (H1)\{u}, and f ′(y) = ∅

for all y ∈ V (H2). It is not difficult to verify that f ′ is a k-rainbow function from
F−(H, k) with cost at most ‖f‖. Moreover, f ′ restricted to H1 is a k-rainbow
function with minimum cost over H1. Thus, in this case, R−(H) = R−(H1).
At the root of the cotree, we obtain γrk(G) via

γrk(G) = min { |V (G)|, R−(G) }.

126 W.-K. Hon et al.

The cotree can be obtained in linear time (see, e.g., [5,10,18]). Each R+(H)
is obtained in O(1) time via Eq. (3), and R−(H) is obtained in O(1) time via
Eqs. (4) and (5).
This proves the theorem. ��

The weak {k}-domination number (recall the definition near Eq. (2)) was
introduced by Bres̆ar, Henning and Rall in [3] as an accessible, ‘monochromatic
version’ of k-rainbow domination. In the following theorem we turn the tables.

In general, for graphs G one has that γwk(G) ≤ γrk(G) since, given a k-
rainbow function f one obtains a weak {k}-dominating function g by defining,
for x ∈ V (G), g(x) = |f(x)|. The parameters γwk and γrk do not always coincide.
For example γw2(C6) = 3 and γr2(C6) = 4. Bres̆ar et al. ask, in their Question 3,
for which graphs the equality γw2(G) = γr2(G) holds. As far as we know this
problem is still open. Chang et al. showed that weak {k}-domination and k-
rainbow domination are equivalent for strongly chordal graphs [8].

For cographs equality does not hold. For example,

when G = (P3 ⊕ P3) ⊗ (P3 ⊕ P3) then γw3(G) = 4 and γr3(G) = 6.

Let G be a graph and let k ∈ N. For a function g : V (G) → {0, . . . , k} we write
‖g‖G =

∑
x∈V (G) g(x). Furthermore, for S ⊂ V (G) we write g(S) =

∑
x∈S g(x).

Theorem 3. There exists an O(k2 · n) algorithm to compute the weak {k}-
domination number for cographs when a cotree is a part of the input.

Proof. Let k ∈ N. For a cograph H and q ∈ N ∪ {0}, define

W (H, q) = min { ‖g‖H | g : V (H) → {0, . . . , k} and
∀x∈V (G) g(x) = 0 ⇒ g(N(x)) + q ≥ k }.

When a cograph H is the union of two smaller cographs H1 and H2 then

γwk(H) = γwk(H1) + γwk(H2).

In such a case, we have

W (H, q) = W (H1, q) + W (H2, q).

When a cograph H is the join of two cographs H1 and H2 then the minimal cost
of a weak {k}-dominating function is bounded from above by 2k. Then

W (H, q) = min { W1+W2 | W1 = W (H1, q+W2) and W2 = W (H2, q+W1) }.

The weak {k}-domination number of a cograph G, W (G, 0), can be obtained via
the above recursion, spending O(k2) time in each of the n nodes in the cotree.
This completes the proof. ��
Remark 1. Similar results can be obtained for, e.g., the {k}-domination num-
ber [13] and the (j, k)-domination number [26,27].

Remark 2. A frequently studied generalization of cographs is the class of P4-
sparse graphs. A graph is P4-sparse if every set of 5 vertices induces at most one
P4 [19,22]. We show in the full version that the rainbow domination problem
can be solved in linear time on P4-sparse graphs.

Rainbow Domination and Related Problems 127

3 Weak {k}-L-Domination on Trivially Perfect Graphs

Chang et al. were able to solve the k-rainbow domination problem (and the weak
{k}-domination problem) for two subclasses of strongly chordal graphs, namely
for trees and for blockgraphs. In order to obtain linear-time algorithms, they
introduced a variant, called the weak {k}-L-domination problem [7,8]. In this
section we show that this problem can be solved in O(k · n) time for trivially
perfect graphs.

Definition 2. A {k}-assignment of a graph G is a map L from V (G) to ordered
pairs of elements from {0, . . . , k}. Each vertex x is assigned a label L(x) =
(ax, bx), where ax and bx are elements of {0, . . . , k}. A weak {k}-L-dominating
function is a function w : V (G) → {0, . . . , k} such that, for each vertex x the
following two conditions hold.

w(x) ≥ ax, and

w(x) = 0 ⇒ w(N [x]) ≥ bx.

The weak {k}-L-domination number is defined as

γwkL(G) = min { ‖g‖ | g is a weak{k}-L-dominating function on G }.

Notice that

∀x∈V (G) L(x) = (0, k) ⇒ γwk(G) = γwkL(G).

Definition 3. A graph is trivially perfect if it has no induced P4 or C4.

Wolk investigated the trivially perfect graphs as the comparability graphs of
forests. Each component of a trivially perfect graph G has a model which is a
rooted tree T with vertex set V (G). Two vertices of G are adjacent if, in T , one
lies on the path to the root of the other one. Thus each path from a leaf to the
root is a maximal clique in G and these are all the maximal cliques. See [9,17]
for the recognition of these graphs. In the following we assume that a rooted
tree T as a model for the graph is a part of the (connected) input.

We simplify the problem by using two basic observations. (See [7,8] for similar
observations.) Let T be a rooted tree which is the model for a connected trivially
perfect graph G. Let R be the root of T ; note that this is a universal vertex in
G. We assume that G is equipped with a {k}-assignment L, which attributes
each vertex x with a pair (ax, bx) of numbers from {0, . . . , k}.

(I) There exists a weak {k}-L-dominating function g of minimal cost such that

∀x∈V (G)\{R} ax > 0 ⇒ g(x) = ax.

(II) There exists a weak {k}-L-dominating function g of minimal cost such that

∀x∈V (G)\{R} ax = 0 and bx ≤
∑

y∈N [x]

ay ⇒ g(x) = 0.

128 W.-K. Hon et al.

Definition 4. The reduced instance of the weak {k}-L-domination problem is
the subtree T ′ of T with vertex set V (G′) \ W , where

W = { x | x ∈ V (G) \ {R} and ax > 0 } ∪
{ x | x ∈ V (G) \ {R} and ax = 0 and

∑

y∈N [x]

ay ≥ bx }.

The labels of the reduced instance are, for x �= R, L(x) = (a′
x, b′

x), where

a′
x = 0 and b′

x = bx −
∑

y∈N [x]

ay,

and the root R has a label L(R) = (a′
R, b′

R), where

a′
R = aR and b′

R = max { 0, b −
∑

x∈V (G)\{R}
ax }.

The previous observations prove the following lemma.

Lemma 1. Let T ′ and L′ be a reduced instance of a weak {k}-L-domination
problem. Then

γwkL(G) = γwkL′(G′) +
∑

x∈V (G)\{R}
ax.

In the following, let G be a connected, trivially perfect graph and let G
be equipped with a {k}-assignment. Let G′ = (V ′, E′) be a reduced instance
with model a T ′ and a root R, and a reduced assignment L′. Let g be a weak
{k}-L′-dominating function on G′ of minimal cost. Notice that we may assume
that

∀x∈V (G′)\{R} g(x) ∈ {0, 1}.

Let x be an internal vertex in the tree T ′ and let Z be the set of descendants
of x. Let P be the path in T ′ from x to the root R. Assume that Z is a union
of r distinct cliques, say B1, . . . , Br. Assume that the vertices of each Bj are
ordered xj

1, . . . , x
j
rj

such that

p ≤ q ⇒ b′
xj

p
≥ b′

xj
q
.

Define dxj
p

= b′
xj

p
− p + 1. Relabel the vertices of Z as z1, . . . , z� such that

p ≤ q ⇒ dzp
≥ dzq

.

Lemma 2. There exists an optimal weak {k}-L′-dominating function g such
that g(zi) ≥ g(zj) when i < j.

Rainbow Domination and Related Problems 129

We refer to [20] for further details.

Definition 5. For a ∈ {0, . . . , k}, a ≥ a′
R, let Γ (G′, L′, a) be the minimal cost

over all weak {k}-L′-dominating functions g on G′ on condition that g(P) ≥ a.

Lemma 3. Define dz�+1 = a. Let i∗ ∈ {1, . . . , � + 1} be such that

(a) max { a, dz∗
i

} + i∗ − 1 is smallest possible, and
(b) i∗ is smallest possible with respect to (a).

Let H = G′ − Z. Let LH be the restriction of L′ to V (H) with the following
modifications.

∀y∈P bH
y = max { 0, b′

y − i∗ + 1 }.

Let aH = max { a, dzi∗ }. Then

Γ (G′, L′, a) = Γ (H,LH , aH) + i∗ − 1.

We refer to [20] for further details.
The previous lemmas prove the following theorem.

Theorem 4. Let G be a trivially perfect graph with n vertices. Let T be a rooted
tree that represents G. Let k ∈ N and let L be a {k}-assignment of G. Then there
exists an O(k ·n) algorithm that computes a weak {k}-L-dominating function of G.

The related (j, k)-domination problem can be solved in linear time on trivially
perfect graphs. The weak {k}-L-domination problem can be solved in linear time
on complete bipartite graphs. A detailed discussion can be found in the full
version [20].

4 2-Rainbow Domination of Interval Graphs

In [3] the authors ask four questions, the last one of which is, whether there
is a polynomial algorithm for the 2-rainbow domination problem on (proper)
interval graphs. In this section we show that 2-rainbow domination can be solved
in polynomial time on interval graphs.

We use the equivalence of the 2-rainbow domination problem with the weak
{2}-domination problem. The equivalence of the two problems, when restricted
to trees and interval graphs, was observed in [3]. Chang et al., proved that it
holds for general k when restricted to the class of strongly chordal graphs [8].
The class of interval graphs is properly contained in that of the strongly chordal
graphs.

An interval graph has a consecutive clique arrangement. That is a linear
ordering [C1, . . . , Ct] of the maximal cliques of the interval graph such that, for
each vertex, the cliques that contain it occur consecutively in the ordering [16].

Bres̆ar and S̆umenjak proved the following theorem.

130 W.-K. Hon et al.

Theorem 5. (See [3]). When G is an interval graph,

γw2(G) = γr2(G).

In the following, let G = (V,E) be an interval graph.

Lemma 4. There exists a weak {2}-dominating function g, with g(V) = γr2(G),
such that every maximal clique has at most 2 vertices assigned the value 2.

Proof. Assume that Ci is a maximal clique in the consecutive clique arrangement
of G. Assume that Ci has 3 vertices x, y and z with g(x) = g(y) = g(z) = 2.
Assume that, among the three of them, x has the most neighbors in ∪j≥iCj

and that y has the most neighbors in ∪j≤iCj . Then any neighbor of z is also a
neighbor of x or it is a neighbor of y. So, if we redefine g(z) = 1, we obtain a
weak {2}-dominating function with value less than g(V), a contradiction. ��
Lemma 5. There exists a weak {2}-dominating function g with minimum value
g(V) = γr2(G) such that every maximal clique has at most four vertices with
value 1.

Proof. The proof is similar to that of Lemma 4. Let Ci be a clique in the consec-
utive clique arrangement of G. Assume that Ci has 5 vertices xi, i ∈ {1, . . . , 5},
with g(xi) = 1 for each i. Order the vertices xi according to their neighbor-
hoods in ∪j≥iCj and according to their neighborhoods in ∪j≤iCj . For simplicity,
assume that x1 and x2 have the most neighborhoods in the first union of cliques
and that x3 and x4 have the most neighbors in the second union of cliques. Then
g(x5) can be reduced to zero; any other vertex that has x5 in its neighborhood
already has two other 1’s in it.

This proves the lemma. ��
Theorem 6. There exists a polynomial algorithm to compute the 2-rainbow
domination number for interval graphs.

The proof of this theorem and some remarks are moved to the full version [20].
We obtained similar results for the class of permutation graphs. We refer to

the full version [20] for the details.

5 NP-Completeness for Splitgraphs

A graph G is a splitgraph if G and Ḡ are both chordal. A splitgraph has a
partition of its vertices into two sets C and I, such that the subgraph induced
by C is a clique and the subgraph induced by I is an independent set.

Although the NP-completeness of k-rainbow domination for chordal graphs
was established in [7], their proof does not imply the intractability for the class
of splitgraphs. However, that is easy to mend.

Theorem 7. For each k ∈ N, the k-rainbow domination problem is NP-complete
for splitgraphs.

Rainbow Domination and Related Problems 131

Proof. Since domination is NP-complete for splitgraphs [4], this proves that k-
rainbow domination is NP-complete for k = 1. For k ≥ 2, assume that G is a
splitgraph with maximal clique C and independent set I. Construct an auxiliary
graph G′ by making k − 1 pendant vertices adjacent to each vertex of C. Thus
G′ has |V (G)|+ |C|(k −1) vertices, and G′ remains a splitgraph. We prove that

γrk(G′) = γ(G) + |C| · (k − 1).

We first show that

γrk(G′) ≤ γ(G) + |C| · (k − 1).

Consider a dominating set D of G with |D| = γ(G). We use D to construct a
k-rainbow function f for G′ as follows:

– For any v ∈ D, if v ∈ C, let f(v) = [k]; else, if v ∈ I, let f(v) = {k};
– For any v ∈ V (G) \ D, let f(v) = ∅;
– For the k − 1 pendant vertices attaching to a vertex v ∈ C, if f(v) = [k],

then f assigns to each of these pendant vertices an empty set. Otherwise, if
f(v) = ∅, then f assigns the distinct size-1 sets {1}, {2}, . . . , {k − 1} to these
pendant vertices, respectively.

It is straightforward to check that f is a k-rainbow function. Moreover, we have

γrk(G′) ≤
∑

x∈V (G′)

|f(x)| = γ(G) + |C| · (k − 1).

We now show that

γrk(G′) ≥ γ(G) + |C| · (k − 1).

Consider a minimizing k-rainbow function f for G′. Without loss of generality,
we further assume that f assigns either ∅ or a size-1 subset to each pendant
vertex.1 Define D ⊆ V (G) as

D = { x | f(x) �= ∅ and x ∈ V (G) }.

That is, D is formed by removing all the pendant vertices in G′, and selecting all
those vertices where f assigns a non-empty set. Observe that D is a dominating
set of G.2 Moreover, we have

1 Otherwise, if a pendant vertex p attaching v is assigned a set with two or more
labels, say f(p) = {�1, �2, . . .}, we modify f into f ′ so that f ′(p) = {�1}, f ′(v) =
f(v) ∪ (f(p) \ {�1}), and f ′(x) = f(x) for the remaining vertices; the resulting f ′ is
still a minimizing k-rainbow function.

2 That is so because for any v ∈ V (G) \ D, we have f(v) = ∅ so that the union of
labels of v’s neighbor in G′ is [k]; however, at most k−1 neighbors of v are removed,
and each was assigned a size-1 set, so that v must have at least one neighbor in D.

132 W.-K. Hon et al.

|D| =
∑

x∈C

[f(x) �= ∅] +
∑

x∈I

[f(x) �= ∅]

≤
∑

x∈V (G′)\I

|f(x)| − |C| · (k − 1) +
∑

x∈I

|f(x)|

≤
∑

x∈V (G′)

|f(x)| − |C| · (k − 1),

where the first inequality follows from the fact that for each v ∈ C and its
corresponding pendant vertices Pv,

|f(v)| +
∑

x∈Pv

|f(x)| − (k − 1) =

{
0 if f(v) = ∅

≥ 1 if f(v) �= ∅.

Consequently, we have

γ(G) ≤ |D| ≤ γrk(G′) − |C| · (k − 1).

This proves the theorem. ��
Similarly, we have the following theorem.

Theorem 8. For each k ∈ N, the weak {k}-domination problem is NP-complete
for splitgraphs.

Proof. Let G be a splitgraph with maximal clique C and independent set I.
Construct the graph G′ as in Theorem 7, by adding k − 1 pendant vertices to
each vertex of the maximal clique C. We prove that

γwk(G′) = γ(G) + |C| · (k − 1).

First, let us prove that

γwk(G′) ≤ γ(G) + |C|(k − 1).

Let D be a minimum dominating set. Construct a weak {k}-domination function
g : V (G′) → {0, . . . , k} as follows.

(i) For x ∈ D ∩ C, let g(x) = k.
(ii) For x ∈ D ∩ I, let g(x) = 1.
(iii) For x ∈ V (G) \ D, let g(x) = 0.
(iv) For a pendant vertex x with N(x) ∈ D, let g(x) = 0.
(v) For a pendant vertex x with N(x) /∈ D, let g(x) = 1.

It is easy to check that g is a weak {k}-dominating function with cost

γwk(G′) ≤
∑

x∈V (G′)

g(x) = γ(G) + |C| · (k − 1).

Rainbow Domination and Related Problems 133

To prove the converse, let g be a weak {k}-dominating function for G′ of minimal
cost. We may assume that g(x) ∈ {0, 1} for every pendant vertex x. Define

D = { x | x ∈ V (G) and g(x) > 0 }.

Then D is a dominating set of G. Furthermore,

γ(G) ≤ |D| =
∑

x∈C

[g(x) > 0] +
∑

x∈I

[g(x) > 0]

≤
∑

x∈V (G′)\I

g(x) − |C| · (k − 1) +
∑

x∈I

g(x)

≤
∑

x∈V (G′)

g(x) − |C| · (k − 1)

≤ γwk(G′) − |C| · (k − 1).

This proves the theorem. ��

Acknowledgments. The authors would like to thank the anonymous reviewers for
helpful comments. Wing-Kai Hon and Hsiang-Hsuan Liu were supported in part by
MOST grant 102-2221-E-007-068. Hung-Lung Wang was supported in part by MOST
grant 103-2221-E-141-004. Both grants are from the Ministry of Science and Technol-
ogy, Taiwan.

References

1. Aharoni, R., Szabó, T.: Vizing’s conjecture for chordal graphs. Discrete Math. 309,
1766–1768 (2009)

2. Bres̆ar, B., Henning, M., Rall, D.: Rainbow domination in graphs. Taiwanese J.
Math. 12(1), 213–225 (2008)

3. Bres̆ar, B., S̆umenjak, T.: On 2-rainbow domination in graphs. Discrete Appl.
Math. 155(17), 2394–2400 (2007)

4. Bertossi, A.: Dominating sets for split and bipartite graphs. Inf. Process. Lett. 19,
37–40 (1984)

5. Bretscher, A., Corneil, D., Habib, M., Paul, C.: A simple linear time LexBFS
cograph recognition algorithm. SIAM J. Discrete Math. 22, 1277–1296 (2008)

6. Cameron, P.: Two-graphs and trees. Discrete Math. 127, 63–74 (1994)
7. Chang, G., Wu, J., Zhu, X.: Rainbow domination on trees. Discrete Appl. Math.

158, 8–12 (2010)
8. Chang, G., Li, B., Wu, J.: Rainbow domination and related problems on strongly

chordal graphs. Discrete Appl. Math. 161, 1395–1401 (2013)
9. Chu, F.: A simple linear time certifying LBFS-based algorithm for recognizing

trivially perfect graphs and their complements. Inf. Process. Lett. 107, 7–12 (2008)
10. Corneil, D., Lerchs, H., Stewart-Burlingham, L.: Complement reducible graphs.

Discrete Appl. Math. 3, 163–174 (1981)
11. Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs.

SIAM J. Comput. 14, 926–934 (1985)

134 W.-K. Hon et al.

12. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. Handbook of Graph Grammars and Graph Transfor-
mations. World Scientific Publishing Co. Inc., River Edge (1997)

13. Domke, G., Hedetniemi, S., Laskar, R., Fricke, G.: Relationships between integer
and fractional parameters of graphs. In: Alavi, Y., Chartrand, G., Oellermann, O.,
Schwenk, A. (eds.) Graph Theory, Combinatorics, and Applications: Proceedings
of the 6th Quadrennial International Conference on the Theory and Applications
of Graphs 1 (Kalamzaoo 1988), pp. 371–387. Wiley (1991)

14. Farber, M.: Domination, independent domination, and duality in strongly chordal
graphs. Discrete Appl. Math. 7, 115–130 (1984)

15. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hung. 18, 25–
66 (1967). A translation appears in Ramı́rez-Alfonśın, J., Reed, B. (eds.): Perfect
Graphs. Interscience series in discrete mathematics and optimization. John Wiley
& Sons, Chichester (2001)

16. Gilmore, P., Hoffman, A.: A characterization of comparability graphs and of inter-
val graphs. Canadian J. Math. 16, 539–548 (1964)

17. Golumbic, M.: Trivially perfect graphs. Discrete Math. 24, 105–107 (1978)
18. Habib, M., Paul, C.: A simple linear time algorithm for cograph recognition. Dis-

crete Appl. Math. 145, 183–197 (2005)
19. Hoàng, C.: A class of perfect graphs, Master’s Thesis. School of Computer Science,

McGill University, Montreal (1983)
20. Hon, W.-K., Kloks, T., Liu, H.-H., Wang, H.-L.: Rainbow domination and related

problems on some classes of perfect graphs (2015). arXiv:1502.07492 [cs.DM]
21. Hartnell, B., Rall, D.: On dominating the cartesian product of a graph and K2.

Discussiones Mathematicae Graph Theory 24, 389–402 (2004)
22. Jamison, B., Olariu, S.: A tree representation for P4-sparse graphs. Discrete Appl.

Math. 35, 115–129 (1992)
23. Pai, K., Chiu, W.: 3-Rainbow domination number in graphs. In: Proceedings of

the Institute of Industrial Engineers Asian Conference 2013, pp. 713–720. Springer,
Science+Business Media Singapore (2013)

24. van Rooij, J., Exact exponential-time algorithms for domination problems in
graphs, Ph.D. Thesis, Utrecht University (2011)

25. van Rooij, J., Bodlaender, H.: Exact algorithms for dominating set. Discrete Appl.
Math. 159, 2147–2164 (2011)

26. Rubalcaba, R., Slater, P.: Efficient (j, k)-domination. Discussiones Mathematicae
Graph Theory 27, 409–423 (2007)

27. Rubalcaba, R., Slater, P.: A note on obtaining k dominating sets from a k-
dominating function on a tree. Bull. Inst. Combin. Appl. 51, 47–54 (2007)

28. S̆umenjak, T., Rall, D., Tepeh, A.: Rainbow domination in the lexicographic prod-
uct of graphs (2012). arXiv:1210.0514

29. Vizing, V.: Some unsolved problems in graph theory. Uspehi Mat. Naukno. (in
Russian) 23, 117–134 (1968)

30. Yen, C.: 2-Rainbow domination and its practical variations on weighted graphs. In:
Chang, R.-S., Jain, L.C., Peng, S.-L. (eds.) Advances in Intelligent Systems and
Applications - Volume 1. Smart Innovation, Systems and Technologies, vol. 20, pp.
59–68. Springer, Berlin (2013)

http://arxiv.org/abs/1502.07492
http://arxiv.org/abs/1210.0514

Efficient Computation of Generalized Ising
Polynomials on Graphs with Fixed Clique-Width

Tomer Kotek1(B) and Johann A. Makowsky2

1 TU Vienna, Vienna, Austria
tkotek@tuwien.ac.at

2 Technion — Israel Institute of Technology, Haifa, Israel
janos@cs.technion.ac.il

Abstract. Graph polynomials which are definable in Monadic Second
Order Logic (MSOL) on the vocabulary of graphs are Fixed-Parameter
Tractable (FPT) with respect to clique-width. In contrast, graph polyno-
mials which are definable in MSOL on the vocabulary of hypergraphs are
fixed-parameter tractable with respect to tree-width, but not necessarily
with respect to clique-width. No algorithmic meta-theorem is known for
the computation of graph polynomials definable in MSOL on the vocab-
ulary of hypergraphs with respect to clique-width. We define an infinite
class of such graph polynomials extending the class of graph polynomi-
als definable in MSOL on the vocabulary of graphs and prove that they
are Fixed-Parameter Polynomial Time (FPPT or XP) computable, i.e.
that they can be computed in time O(nf(k)), where n is the number of
vertices and k is the clique-width.

1 Introduction

In recent years there has been growing interest in graph polynomials, functions
from graphs to polynomial rings which are invariant under isomorphism. Graph
polynomials encode information about the graphs in a compact way in their
evaluations, coefficients, degree and roots. Therefore, efficient computation of
graph polynomials has received considerable attention in the literature. Since
most graph polynomials which naturally arise are �P-hard to compute (see e.g.
[11,25,40]), a natural perspective under which to study the complexity of graph
polynomials is that of parameterized complexity.

Parameterized complexity is a successful approach to tackling NP-hard prob-
lems [18,20], by measuring complexity with respect to an additional parameter
of the input; we will be interested in the parameters tree-width and clique-
width. A computational problem is fixed-parameter tractable (FPT) with
respect to a parameter k if it can be solved in time f(k) · p(n), where f is a

Tomer Kotek was supported by the Austrian National Research Network S11403-
N23 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and
Technology Fund (WWTF) grant PROSEED.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 135–146, 2016.
DOI: 10.1007/978-3-319-28678-5 10

136 T. Kotek and J. Makowsky

computable function of k, n is the size of the input, and p(n) is a polynomial
in n. Many NP-hard problems are fixed-parameter tractable for an appropriate
choice of parameter, see [20] for many examples. Every problem in the infinite
class of decision problems definable in Monadic Second Order Logic (MSOL)
is fixed-parameter tractable with respect to tree-width by Courcelle’s Theorem
[9,13,14] (though the result originally was not phrased in terms of parameterized
complexity).

The computation problem we consider for a graph polynomial
P (G;x1, . . . , xr) is the following:

P − Coefficients
Instance : A graph G

Problem : Compute the coefficients ai1,...,ir
of the monomials xi1

1 · · · xir
r .

For graph polynomials, a parameterized complexity theory with respect to tree-
width has been developed. Here, the goal is to compute, given an input graph,
the table of coefficients of the graph polynomial. The Tutte polynomial has been
shown to be fixed-parameter tractable [8,37]. [34] used a logical method to study
the parameterized complexity of an infinite class of graph polynomials, including
the Tutte polynomial, the matching polynomial, the independence polynomial
and the Ising polynomial. [34] showed that the class of graph polynomials defin-
able in MSOL in the vocabulary of hypergraphs1 is fixed-parameter tractable.
This class contains the vast majority of graph polynomials which are of interest
in the literature.

Going beyond tree-width to clique-width the situation becomes more com-
plicated. [15] studied the class of graph polynomials definable in MSOL in the
vocabulary of graphs. They proved that every graph polynomial in this class is
fixed-parameter tractable with respect to clique-width. However, this class of
graph polynomials does not contain important examples such as the chromatic
polynomial, the Tutte polynomial and the matching polynomial. In fact, [21]
proved that the chromatic polynomial and the Tutte polynomial are not fixed-
parameter tractable with respect to clique-width (under the widely believed
complexity-theoretic assumption that FPT �= W[1]). [36] proved that the chro-
matic polynomial and the matching polynomial are Fixed-Parameter Poly-
nomial Time (FPPT)2 computable with respect to clique-width, meaning that
they can be computed in time nf(cw(G)), where n is the size of the graph, cw(G)
is the clique-width of the graph and f is a computable function. [27] proved an
analogous result for the Ising polynomial. The main result of this paper is a
meta-theorem generalizing the fixed-parameter polynomial time computability
of the matching polynomial and the Ising polynomial to an infinite family of
graph polynomials definable in MSOL analogous to [15].
1 In [14], MSOL in the vocabulary of hypergraphs is denoted MS2, while MSOL in

the vocabulary of graphs is denoted MS1.
2 Note that the class XP of slicewise polynomial-time languages (see [18, Chap. 15])

is exactly the class of FPPT languages.

Efficient Computation of Generalized Ising Polynomials 137

Theorem 1. Let P be an MSOL-Ising polynomial. P is fixed-parameter poly-
nomial time computable with respect to clique-width.

The class of MSOL-Ising polynomials is defined in Sect. 2.1.

2 Preliminaries

Let [k] = {1, . . . , k}. Let τG be the vocabulary of graphs τG = 〈E〉 consisting of
a single binary relation symbol E. A k-graph is a structure (V,E,R1, . . . , Rk)
which consists of a simple graph G = (V,E) together with a partition R1, . . . , Rk

of V . Let τk
G denote the vocabulary of k-graphs τk

G = 〈E,R1, . . . ,Rk〉 extending
τG with unary relation symbols R1, . . . ,Rk.

The class CW (k) of k-graphs of clique-width at most k is defined inductively.
Singletons belong to CW (k), and CW (k) is closed under disjoint union � and two
other operations, ρi→j and ηi,j , to be defined next. For any i, j ∈ [k], ρi→j(G, R̄)
is obtained by relabeling any vertex with label Ri to label Rj . For any i, j ∈ [k],
ηi,j(G, R̄) is obtained by adding all possible edges (u, v) between members of
Ri and members of Rj . The clique-width of a graph G is the minimal k such
that there exists a labeling R̄ for which (G, R̄) belongs to CW (k). We denote
the clique-width of G by cw(G). The clique-width operations ρi→j and ηi,j are
well-defined for k-graphs. The definitions of these operations extend naturally
to structures (V,E, S) which expand k-graphs with S ⊆ v.

A k-expression is a term t which consists of singletons, disjoint unions �, rela-
beling ρi→j and edge creations ηi,j , which witnesses that the graph val(t) obtained
by performing the operations on the singletons is of clique-width at most k. Every
graph of tree-width at most k is of clique-width at most 2k+1 + 1, cf. [16]. While
computing the clique-width of a graph is NP-hard, S. Oum and P. Seymour showed
that given a graph of clique-width k, finding a (23k+2 − 1)-expression is fixed para-
meter tractable with clique-width as parameter, cf. [38,39].

For a formula ϕ, let qr(ϕ) denote the quantifier rank of ϕ. For every q ∈ N

and vocabulary τ , we denote by MSOLq(τ) the set of MSOL-formulas on the
vocabulary τ which have quantifier rank at most q. For two τ -structures A and B,
we write A ≡q B to denote that A and B agree on all the sentences of quantifier
rank q.

Definition 1 (Smooth Operation). An �-ary operation Op on τ -structures
is called smooth if for all q ∈ N, whenever Aj ≡q Bj for all 1 ≤ j ≤ �, we have

Op(A1, . . . ,A�) ≡q Op(B1, . . . ,B�).

Smoothness of the clique-width operations is an important technical tool for us:

Theorem 2 (Smoothness, cf. [33])

1. For every vocabulary τ , the disjoint union � of two τ -structures is smooth.
2. For every 1 ≤ i �= j ≤ k, ρi→j and ηi,j are smooth.

138 T. Kotek and J. Makowsky

It is convenient to reformulate Theorem 2 in terms of Hintikka sentences
(see [19]):

Proposition 3 (Hintikka Sentences). Let τ be a vocabulary. For every q ∈ N

there is a finite set
Hq

τ = {h1, . . . , hα}
of MSOLq(τ)-sentences such that

1. Every h ∈ Hq
τ has a finite model.

2. The conjunction h1 ∧ h2 of any two distinct h1, h2 ∈ Hq
τ is unsatisfiable.

3. Every MSOLq(τ)-sentence θ is equivalent to exactly one finite disjunction of
sentences in Hq

τ .
4. Every τ -structure A satisfies a unique member hinq

τ (A) of Hq
τ .

In order to simplify notation we omit the subscript τ in hinq
τ when τ is clear

from the context.
Let τS the be the vocabulary consisting of the binary relation symbol E and

the unary relation symbol S. Let τS,k extend τS with the unary relation symbols
R1, . . . ,Rk. From Theorem 2 and Proposition 3 we get:

Theorem 4. For every k ∈ N
+:

1. There is F� : Hq
τS,k

× Hq
τS,k

→ Hq
τS,k

such that, for every M1 and M2,
F�(hinq(M1), hinq(M2)) = hinq(M1 � M2).

2. For every unary operation op ∈ {ρp→q, ηp,q : p, q ∈ [k]}, there is Fop : Hq
τS,k

→
Hq

τS,k
such that, for every M, Fop(hinq(M)) = hinq(op(M1 � M2)).

2.1 MSOL-Ising Polynomials

For every t ∈ N
+, let τt = τ ∪ {S1, . . . ,St}, where S1, . . . ,St are new unary

relation symbols.

Definition 5 (MSOL-Ising Polynomials). For every t ∈ N
+, θ ∈ MSOL(τt)

and G = (V,E) we define Pt,θ(G; X̄, Ȳ) as follows:

Pt,θ(G; X̄, Ȳ) =
∑

S1�···�St=V :
G|=θ(S1,...,St)

t∏

i=1

X
|Si|
i

∏

1≤i1≤i2≤t

Y
|(Si1×Si2)∩E|
i1,i2

Pt,θ is the sum over partitions S1, . . . , St of V such that (G,S1, . . . , St) satisfies
θ of the monomials obtained as the product of X

|Si|
i for all 1 ≤ i ≤ t and

Y
|(Si1×Si2)∩E|
i1,i2

for all 1 ≤ i1 < i2 ≤ t.

Example 1 (Ising polynomial). The trivariate Ising polynomial Z(G;x, y, z) is a
partition function of the Ising model from statistical mechanics used to study

Efficient Computation of Generalized Ising Polynomials 139

phase transitions in physical systems in the case of constant energies and external
field. Z(G;x, y, z) is given by

Z(G;x, y, z) =
∑

S⊆V

x|S|y|∂S|z|E(S)|

where ∂S denotes the set of edges between S and V \S, and E(S) denotes the
set of edges inside S. Z(G;x, y, z) was the focus of study in terms of hardness of
approximation in [24] and in terms of hardness of computation under the expo-
nential time hypothesis was studied in [27]. [27] also showed that Z(G;x, y, z) is
fixed-parameter polynomial time computable.

Z(G;x, y, z) generalizes a bivariate Ising polynomial, which was studied for
its combinatorial properties in [7]. [7] showed that Z(G;x, y, z) contains the
matching polynomial, the van der Waerden polynomial, the cut polynomial,
and, on regular graphs, the independence polynomial and clique polynomial.

The evaluation of P2,true(G;X1,X2, Y1,1, Y1,2, Y2,2) at X1 = x,X2 = 1, Y1,1 =
z, Y1,2 = y and Y2,2 = 1 gives Z(G;x, y, z) and therefore Z(G;x, y, z) is an
MSOL-Ising polynomial.

Example 2 (Independence-Ising Polynomial). The independence-Ising polyno-
mial IIs(G;x, y) is given by

IIs(G;x, y) =
∑

S⊆V

S is an independent set

x|S|y|∂S|

IIs(G;x, y) contains the independence polynomial as the evaluation I(G;x) =
IIs(G;x, 1). See the survey [32] for a bibliography on the independence polyno-
mial. The evaluation y = 0 is IIs(G;x, 0) = (1 + x)iso(G), where iso(G) is the
number of isolated vertices in G. IIs(G;x, y) is an evaluation of an MSOL-Ising
polynomial:

IIs(G;x, y) = P2,θI
(G; 1, x, 1, y, 1)

where θI(S) = ∀x∀y (E(x, y) → (¬S2(x) ∨ ¬S2(y))).

Example 3 (Dominating-Ising Polynomial). The Dominating-Ising polynomial
is given by DIs(G;x, y, z)

DIs(G;x, y, z) =
∑

S⊆V

S is a dominating set

x|S|y|∂S|z|E(S)|

where ∂S denotes the set of edges between S and V \S. DIs(G;x, y, z) contains
the domination polynomial D(G;x). D(G;x) is the generating function of its
dominating sets and we have DIs(G;x, 1, 1) = D(G;x). The domination poly-
nomial first studied in [10] and it and its variations have received considerable
attention in the literature in the last few years, see e.g. [1–6,12,17,26,29,31].
Previous research focused on combinatorial properties such as recurrence rela-
tions and location of roots. Hardness of computation was addressed in [30].

140 T. Kotek and J. Makowsky

DIs(G;x, y, z) encodes the degrees of the vertices of G: the number of vertices
with degree j is the coefficient of xyj in DIs(G;x, y, z). DIs(G;x, y, z) is an
MSOL-Ising polynomial given by P2,θD

(G;x, 1, z, y, 1), where

θD = ∀x (S1(x) ∨ ∃y (S1(y) ∧ E(x, y))) .

2.2 MSOL-Ising Polynomials vs MSOL-Polynomials

Two classes of graph polynomials which have received attention in the litera-
ture are:

1. MSOL-polynomials on the vocabulary of graphs, and
2. MSOL-polynomials on the vocabulary of hypergraphs.

See e.g. [28] for the exact definitions. The former class contains graph polynomi-
als such as the independence polynomial and the domination polynomial. The
latter class contains graph polynomials such as the Tutte polynomial and the
matching polynomial. Every graph polynomial which is MSOL-definable on the
vocabulary of graphs is also MSOL-definable on the vocabulary of hypergraphs.

The class of MSOL-Ising polynomials strictly contains the MSOL-
polynomials on graphs, see Fig. 1. The containment is by definition. For the
strictness, we use the fact that by definition the maximal degree of any indeter-
minate in an MSOL-polynomial on graphs grows at most linearly in the number
of vertices, while the maximal degree of y in the Ising polynomial Z(Kn,n;x, y, z)
of the complete bipartite graph Kn,n equals n2.

Every MSOL-Ising polynomial Pt,θ is an MSOL-polynomial on the vocabu-
lary of hypergraphs, given e.g. by

∑

S̄

∑

B̄

t∏

i=1

X
|Si|
i

∏

1≤i1≤i2≤t

Y
|Bi1,i2 |
i1,i2

MSOL-polynomials
on graphs

MSOL-Ising polynomials

MSOL-polynomials
on hypergraphs

Fig. 1. Containments of classes of graph polynomials definable in MSOL.

Efficient Computation of Generalized Ising Polynomials 141

where the summation over S̄ is exactly as in Definition 5, and the summation
over B̄ is over tuples B̄ = (Bi1,i2 : 1 ≤ i1 ≤ i2 ≤ t) of subsets of the edge set of
G satisfying

∧
i1,i2

ψi1,i2 , where

ψi1,i2 = ∀x∀y (Bi1,i2(x, y) ↔ (E(x, y) ∧ (Si1(x) ∧ Si2(y) ∨ Si1(y) ∧ Si2(x))))

We use the fact that S1, . . . , St is a partition of the set of vertices is definable in
MSOL.

3 Main Result

We are now ready to state the main theorem and prove a representative case
of it.

Theorem 6 (Main Theorem). For every MSOL-Ising polynomial Pt,θ there
is a function f(k, θ, t) such that Pt,θ(G; X̄, Ȳ , Z̄) is computable on graphs G of
size n and of clique-width at most k in running time O(nf(k,θ,t)).

We prove the theorem for graph polynomials of the form

Qθ(G;X,Y) =
∑

S:G|=θ(S)

X |S|Y |∂S|

for every θ ∈ MSOL(τS). The summation in Qθ is over subsets S of the vertex
set of G. The graph polynomials Qθ are a notational variation of Pt,θ with t = 2,
X2 = 1 and Y1,1 = Y2,2 = 1: for every θ ∈ MSOL(τ2), P2,θ(G;X, 1, 1, Y, 1) =
Qθ′(G;X,Y), where θ′ is obtained from θ by substituting S1 with S and S2 with
¬S. The proof for the general case is in similar spirit.

For every q ∈ N there is a finite set Aq of MSOL(τS,k)-Ising polynomials
such that, for every formula θ ∈ MSOLq(τS), Qθ is a sum of members of Aq

(see below). The algorithm computes the values of the members of Aq on G by
dynamic programming over the parse term of G, and using those values, the
value of Qθ on G.

More precisely, for every β ∈ Hq
τS,k

, let

Aβ(G; x̄, ȳ) =
∑

S:G|=β(S)

∏

1≤c≤k

x|S∩Rc|
c

∏

1≤c1,c2≤k

y
|(Rc1∩S)×(Rc2\S)|
c1,c2

and let
Aq = {Aβ : β ∈ Hq

τS,k
}.

Every θ ∈ MSOLq(τS) also belongs to MSOLq(τS,k), and hence there exists by
Proposition 3 a set H ⊆ Hq

τS,k
such that

θ ≡
∨

h∈H
h

142 T. Kotek and J. Makowsky

Hence,
Qθ(G;X,Y) =

∑

h∈H
Ah(G; x̄, ȳ) (1)

setting xc = X and yc1,c2 = Y for all 1 ≤ c, c1, c2 ≤ k.
For tuples b̄ = ((bc : c ∈ [k]), (bc1,c2 : c1, c2 ∈ [k])) ∈ [n]k × [n]k

2
, let

coeffG
θ (b̄) ∈ N be the coefficient of

∏

c

xbc
c

∏

c1,c2

y
bc1,c2
c1,c2

in Aβ(G; x̄, ȳ).

Algorithm. Given a k-graph G, the algorithm first computes a parse tree t as in
[38,39]. The algorithm then computes Aβ(G; x̄, ȳ) for all β ∈ Hq

τS,k
by induction

over t:

1. If G is a graph of size 1, then Aβ(G) is computed directly.
2. Let G be the disjoint union of HA and HB . We compute coeffG

β (b̄) for every
β ∈ Hq

τS,k
and b̄ ∈ [n]k × [n]k

2
as follows:

coeffG
β (b̄) =

∑

h1,h2:F�(h1,h2)|=β

∑

d̄+ē=b̄

coeffHA

β (d̄)coeffHB

β (ē)

3. Let G = ρp→q(H). We compute coeffG
β (b̄) for every β ∈ Hq

τS,k
and b̄ ∈ [n]k ×

[n]k
2

as follows:

coeffG
β (b̄) =

∑

h:Fρp→q (h)|=β

∑

d̄

coeffH
h (d̄)

where the inner summation is over d̄ such that

bc =

⎧
⎪⎨

⎪⎩

dc c /∈ {p, q}
dp + dq c = q

0 c = p

and

bc1,c2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dc1,c2 c1, c2 /∈ {p, q}
0 p ∈ {c1, c2}
dq,q + dp,p + dp,q + dq,p c1 = c2 = q

dq,c2 + dp,c2 c1 = q, c2 �∈ {q, p}
dc1,q + dc1,p c2 = q, c1 �∈ {q, p}

4. Let G = ηp,q(H) with p �= q. Let nG be the number of vertices in G. We
compute coeffG

β (b̄) for every β ∈ Hq
τS,k

and b̄ ∈ [n]k × [n]k
2

as follows:

coeffG
β (b̄) =

∑

h:Fηp,q (h)|=β

∑

d̄

coeffH
h (d̄)

Efficient Computation of Generalized Ising Polynomials 143

where the summation is over d̄ such that bc = dc and

bc1,c2 =

⎧
⎪⎨

⎪⎩

dc1,c2 {c1, c2} �= {p, q}
dp(nG − dq) c1 = p, c2 = q

dq(nG − dp) c1 = q, c2 = p

Finally, the algorithm computes Qθ as the sum from Eq. (1).

3.1 Runtime

The main observations for the runtime analysis are:

– The size of the set Hq
τS,k

of Hintikka sentences is a function of k but does not
depend on n. Let sq

τS,k
= |Hq

τS,k
|.

– By definition of Aβ , for a monomial
∏

1≤c≤k xic
c

∏
1≤c1,c2≤k y

jc1,c2
c1,c2 to have a

non-zero coefficient, it must hold that ic ≤ n and jc1,c2 ≤ (
n
2

)
, since ic and

jc1,c2 are sizes of sets of vertices and sets of edges, respectively.
– The coefficient of any monomial of Aβ is at most 2n.
– The parse tree guaranteed in [38,39] is of size O(ncf1(k)) for suitable f1 and c.

The algorithm performs a single operation for every node of the parse tree.

Singletons: the coefficients of every Aβ ∈ Aq for a singleton k-graph can be
computed in time O(k), which can be bounded by O(nk).

Disjoint Union, Recoloring and Edge Additions: the algorithm sums over

(1) h ∈ Hq
τS,k

or pairs (h1, h2) ∈
(
Hq

τS,k

)2

and (2) over d̄ ∈ [n]k × [n]k
2

or

pairs (d̄, ē) ∈
(
[n]k × [n]k

2
)2

, then (3) performs a fixed number of arithmetic
operations on numbers which can be written in O(n) space.

Each node in the parse tree requires time at most

O

(
nk(sq

τS,k
)2

(
[n]k × [n]k

2
)2

)
. Since the size of the parse tree is O(ncf1(k)),

the algorithm runs in fixed-parameter polynomial time.

4 Conclusion

We have defined a new class of graph polynomials, the MSOL-Ising polynomi-
als, extending the MSOL-polynomials on the vocabulary of graphs and have
shown that every MSOL-Ising polynomial can be computed in fixed-parameter
polynomial time. This result raises the question of which graph polynomials
are MSOL-Ising polynomials. In previous work [23,28,35] we have developed a
method based on connection matrices to show that graph polynomials are not
definable in MSOL over either the vocabulary of graphs or hypergraphs.

Problem 1. How can connection matrices be used to show that graph polynomi-
als are not MSOL-Ising polynomials?

144 T. Kotek and J. Makowsky

The Tutte polynomial does not seem to be an MSOL-Ising polynomial. [22]
proved that the Tutte polynomial can be computed in subexponential time for
graphs of bounded clique-width. More precisely, the time bound in [22] is of the
form exp(n1−f(cw(G))), where 0 < f(i) < 1 for all i ∈ N.

Problem 2. Is there a natural infinite class of graph polynomials definable in
MSOL which includes the Tutte polynomial such that membership in this class
implies fixed parameter subexponential time computability with respect to clique-
width (i.e., that the graph polynomial is computable in exp(n1−g(cw(G))) time
for some function g satisfying 0 < g(i) < 1 for all i ∈ N)?

Acknowledgement. We are grateful to Nadia Labai for her comments and
suggestions.

References

1. Akbari, S., Alikhani, S., Oboudi, M.R., Peng, Y.-H.: On the zeros of domination
polynomial of a graph. Comb. Graphs 531, 109–115 (2010)

2. Akbari, S., Alikhani, S., Peng, Y.: Characterization of graphs using domination
polynomials. Eur. J. Comb. 31(7), 1714–1724 (2010)

3. Akbari, S., Oboudi, M.R.: Cycles are determined by their domination polynomials.
Ars Comb. 116, 353–358 (2014)

4. Alaeiyan, M., Bahrami, A., Farahani, M.R.: Cyclically domination polynomial of
molecular graph of some nanotubes. Digest J. Nanomaterials Biostructures 6(1),
143–147 (2011)

5. Alikhani, S., Peng, Y.-H.: Dominating sets and domination polynomials of paths.
Int. J. Math. Math. Sci. 2009, 10 (2009)

6. Alikhani, S., Peng, Y.: Introduction to domination polynomial of a graph. Ars
Comb. 114, 257–266 (2014)

7. Andrén, D., Markström, K.: The bivariate ising polynomial of a graph. Discrete
Appl. Math. 157(11), 2515–2524 (2009)

8. Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded
treewidth. DMATH: Discrete Math. 190, 39–54 (1998)

9. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

10. Arocha, J.L., Llano, B.: Mean value for the matching and dominating polynomial.
Discussiones Math. Graph Theor. 20(1), 57–69 (2000)

11. Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. In:
STACS 2008, pp. 97–108. IBFI Schloss Dagstuhl (2008)

12. Brown, J.I., Tufts, J.: On the roots of domination polynomials. Graphs Comb.
30(3), 527–547 (2014)

13. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inform. Comput. 85(1), 12–75 (1990)

14. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach, vol. 138. Cambridge University Press, Cambridge
(2012)

15. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theor. Comput. Syst. 33(2), 125–150
(2000)

Efficient Computation of Generalized Ising Polynomials 145

16. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1), 77–114 (2000)

17. Dod, M., Kotek, T., Preen, J., Tittmann, P.: Bipartition polynomials, the ising
model and domination in graphs. Discussiones Math. Graph Theor. 35(2), 335–353
(2015)

18. Downey, R.G., Fellows, M.R.: Parameterized Complexity, vol. 3. springer,
Heidelberg (1999)

19. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer Science & Business
Media, Heidelberg (2005)

20. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series, vol. 14. Springer, Heidelberg (2006)

21. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Algorithmic lower
bounds for problems parameterized with clique-width. In: Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17–19, 2010, pp. 493–502 (2010)

22. Giménez, O., Hlinenỳ, P., Noy, M.: Computing the Tutte polynomial on graphs of
bounded clique-width. SIAM J. Discrete Math. 20(4), 932–946 (2006)

23. Godlin, B., Kotek, T., Makowsky, J.A.: Evaluations of graph polynomials. In:
Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS,
vol. 5344, pp. 183–194. Springer, Heidelberg (2008)

24. Goldberg, L.A., Jerrum, M., Paterson, M.: The computational complexity of two-
state spin systems. Random Struct. Algorithms 23(2), 133–154 (2003)

25. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the
jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc. 108(01), 35–53
(1990)

26. Kahat, S.S., Khalaf, A.J.M., Roslan, R.: Dominating sets and domination polyno-
mial of wheels. Asian J. Appl. Sci. 2(3) (2014)

27. Kotek, T.: Complexity of ising polynomials. Comb. Prob. Comput. 21(05), 743–772
(2012)

28. Kotek, T., Makowsky, J.A.: Connection matrices and the definability of graph
parameters. Logical Methods in Computer Science, 10(4) (2014)

29. Kotek, T., Preen, J., Simon, F., Tittmann, P., Trinks, M.: Recurrence relations
and splitting formulas for the domination polynomial. Electr. J. Comb. 19(3), P47
(2012)

30. Kotek, T., Preen, J., Tittmann, P.: Domination polynomials of graph products. To
appear in Journal of Combinatorial Mathematics and Combinatorial Computing

31. Kotek, T., Preen, J., Tittmann, P.: Subset-sum representations of domination poly-
nomials. Graphs Comb. 30(3), 647–660 (2014)

32. Levit, V.E., Mandrescu, E.: The independence polynomial of a graph-a survey.
In: Proceedings of the 1st International Conference on Algebraic Informatics,
pp. 233–254 (2005)

33. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure
Appl. Logic 126(1), 159–213 (2004)

34. Makowsky, J.A.: Coloured Tutte polynomials and Kauffman brackets for graphs of
bounded tree width. Discrete Appl. Math. 145(2), 276–290 (2005)

35. Makowsky, J.A.: Connection matrices for MSOL-definable structural invariants.
In: Ramanujam, R., Sarukkai, S. (eds.) Logic and Its Applications. LNCS (LNAI),
vol. 5378, pp. 51–64. Springer, Heidelberg (2009)

36. Makowsky, Johann A., Rotics, Udi, Averbouch, Ilya, Godlin, Benny: Computing
graph polynomials on graphs of bounded clique-width. In: Fomin, Fedor V. (ed.)
WG 2006. LNCS, vol. 4271, pp. 191–204. Springer, Heidelberg (2006)

146 T. Kotek and J. Makowsky

37. Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width.
In: Combinatorics, Probability and Computing, vol. 7, Cambridge University Press
(1998)

38. Oum, S.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.)
WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)

39. Oum, S.-I., Seymour, P.: Approximating clique-width and branch-width. J. Comb.
Theor. Ser. B 96, 514–528 (2006)

40. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

Infinite Subgame Perfect Equilibrium
in the Hausdorff Difference Hierarchy

Stéphane Le Roux(B)

Université Libre de Bruxelles, Brussels, Belgium
stephane.le.roux@ulb.ac.be

Abstract. Subgame perfect equilibria are specific Nash equilibria in
perfect information games in extensive form. They are important because
they relate to the rationality of the players. They always exist in infinite
games with continuous real-valued payoffs, but may fail to exist even in
simple games with slightly discontinuous payoffs. This article considers
only games whose outcome functions are measurable in the Hausdorff
difference hierarchy of the open sets (i.e. Δ0

2 when in the Baire space),
and it characterizes the families of linear preferences such that every
game using these preferences has a subgame perfect equilibrium: the
preferences without infinite ascending chains (of course), and such that
for all players a and b and outcomes x, y, z we have ¬(z <a y <a x ∧ x <b

z <b y). Moreover at each node of the game, the equilibrium constructed
for the proof is Pareto-optimal among all the outcomes occurring in the
subgame. Additional results for non-linear preferences are presented.

Keywords: Infinite multi-player games in extensive form · Subgame
perfection · Borel hierarchy · Preference characterization · Pareto-
optimality

1 Introduction

Game theory is the theory of competitive interactions between agents having
different interests. Until the late 1960’s an agent would usually represent a human
or group of humans, when game theory was mainly meant for economics and
political science. Then game theory was also applied to evolutionary biology [24]
and to theoretical computer science [4], especially to system verification and
system synthesis (against given specifications). Classically, the verification or
synthesis problem is represented as a game with two players: the system trying
to win the game by meeting the specifications, and the environment trying to
win the game by preventing the system from doing so. The two players play this
game in turn and deterministically on a finite or infinite directed graph, and the
key notion is that of winning strategy. For a decade, though, computer scientists
such as Ummels [26] have been considering multi-player games to represent more
complex verification or synthesis problems, e.g. relating to distributed systems.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 147–163, 2016.
DOI: 10.1007/978-3-319-28678-5 11

148 S. Le Roux

The notion of winning strategy is specific to two-player win-lose games, but in
a multi-player setting it may be replaced with a faithful extension, namely the
famous notion of (pure) Nash equilibrium. It does not only accommodate more
than two players, it also allows for refined/quantitative objectives.

The deterministic turn-based games on graphs may be unfolded, usually with-
out much loss of information, into deterministic turn-based games on finite or
infinite trees, which have been widely studied in game theory. It is one reason
why this article focuses on perfect information games in extensive form (i.e.
played on trees) and their deterministic strategies, unless otherwise stated.

Kuhn [12] proved the existence of Nash equilibrium (NE) in finite games
with real-valued payoffs. His proofs uses backward induction and constructs a
special kind of NE that was later called subgame perfect equilibrium (SPE) by
Selten [23]. An extension of Kuhn’s result [13] characterizes the preferences that
always yield finite games with NE/SPE: the acyclic preferences. Also, Escardó
and Oliva [5] studied generalizations of backward induction in possibly infinite
yet well-founded game trees, i.e. without infinite plays. The SPE have nice extra
properties and are usually preferred over the more general NE: for psychology in
a broad sense an SPE amounts to the absence of empty threats, and for system
engineering in a broad sense it amounts to stability of a system regardless of the
initial state.

The concept of infinite horizon is convenient in economics and also in com-
puter science, e.g., for liveness. Gale and Stewart [9] studied infinite two-player
win-lose games, but backward induction is no longer applicable since there may
not be leaves to start the induction at. Nevertheless, they proved that if the win-
ning set of each player is open or closed (with the usual topology), one player
has a wining strategy. This result was extended by Wolfe [27] for Σ 0

2 and Π 0
2

sets, then by other people to more complex sets, and eventually by Martin for
Borel [19] and even quasi-Borel [20] sets. This is called (quasi-)Borel determinacy.

Mertens and Neymann [21, p.1567] found that Borel determinacy can be used
to show existence of ε-NE in infinite games with bounded Borel-measurable real-
valued payoffs. By generalizing their technique, an abstract result about point-
classes and determinacy [14] implies a characterization of the preferences that
always yield games with NE, in games with (quasi-)Borel-measurable outcome
functions, countably many outcomes, and an arbitrary cardinality of players:
the preferences whose inverses are well-founded. Then it was shown [16] that
two-player antagonistic games (i.e. abstract zero-sum games) with finitely many
outcomes and (quasi-)Borel-measurable outcome function have SPE.

When the outcome function is a continuous real-valued payoff function,
Fudenberg and Levine [8] showed that there is always an SPE in multi-player
games. Similar results were obtained recently via an abstract and uniform den-
sity argument [16]. The continuity assumption may be slightly relaxed if one is
willing to accept approximate SPE. Indeed existence of ε-SPE was proved for
lower-semicontinuous [6] and upper-semicontinuous [22] payoffs.

However, when the real-valued payoff function is discontinuous enough and
the preferences are not antagonistic, there may be no (ε-)SPE, as in the following

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy 149

example which is similar to [25, Example 3]. Let a and b be two players with
preferences z <a y <a x and x <b z <b y. They are alternatively given the
possibility to stop and yield outcomes y and z, respectively, but the outcome is
x if no one ever stops.

start a b a b x

y z y z

In addition, a real-valued two-player game [7] was recently designed with the
following features: it has a similar preference pattern as in the example above,
and it has no ε-SPE for small enough ε even when the players are allowed to use
mixed strategies at every node of the game tree. All this shows that Mertens [21]
was right when writing that “Subgame perfectness is a completely different issue”
from NE. This article solves the issue partially, and the contribution is two-fold.
First, it characterizes the linear preferences that always yield SPE in games with
outcome functions in the Hausdorff difference hierarchy of the open sets: the
preferences that are void of infinite ascending chains (of course) and of the SPE
killer from the example above. Said otherwise, if ¬(z <a y <a x ∧ x <b z <b y)
holds for all players a and b and all outcomes x, y and z of a multi-player
game with outcome function in the difference hierarchy (and preferences without
infinite ascending chains), the game has an SPE, and even a global-Pareto one,
as in Definition 5. Second contribution, the characterization still holds for two-
player games with strict weak order preferences, but no longer for three-player
games. (Strict weak orders are important since they are an abstraction of the
usual preference order over the real-valued payoff functions.)

Section 2 consists of definitions; Sect. 3 proves the characterization for many
players and linear preferences; Sect. 4 proves the characterization for two players
and strict weak order preferences.

Related Works. Characterizing the preferences that guarantee existence of NE in
interesting classes of games is not a new idea: earlier than the two examples above
[13,14], Gimbert and Zielonka [10] “characterise the family of payoff mappings for
which there always exist optimal positional strategies for both players” in some
win-lose games played on finite graphs. Also, [15] characterizes the preferences
that guarantee existence of NE in determined, countable two-player game forms.

The notion of SPE has also been studied in connection with system verifica-
tion and synthesis, at low levels of the Borel hierarchy: in [26] with qualitative
objectives, in [2] with quantitative objective for reachability, and in [3] with
quantitative objectives and a weak variant of SPE.

Finally, some specific infinite games in extensive form (such as the dollar
auction) and especially their SPE have been studied using co-algebraic methods
in [1,18].

150 S. Le Roux

2 Technical Background

The games in this article are built on infinite trees, which may be defined as
prefix-closed sets of finite sequences. The elements of a tree are called nodes.
Intuitively, a node represents both a position in the tree and the only path from
the root to this position.

Definition 1 (Tree). Let Σ be a set.

– Σ∗ (Σω) is the set of finite (infinite) sequences over Σ, and a tree over Σ is
a subset T of Σ∗ such that γ � δ (i.e. γ is a prefix of δ) and δ ∈ T implies
γ ∈ T .

– For a node γ in a tree T , let succ(T, γ) := {δ ∈ T | γ � δ ∧ |δ| = |γ| + 1},
where |γ| is the length of γ.

– A tree T is pruned if succ(T, γ) �= ∅ for all γ ∈ T .
– Let T be a tree over Σ. The set [T] is made of the infinite paths of T , namely

the elements of Σω whose every finite prefix is in T .
– Let T be a tree over Σ. For γ ∈ T let Tγ := {δ ∈ Σ∗ | γδ ∈ T}.
In this article the outcomes of a game correspond to some partition of the infi-
nite paths of the game tree, and the subsets of the partition are restricted to the
Hausdorff difference hierarchy of the open sets. This hierarchy is defined in, e.g.,
[11, 22.E], but a probably-folklore result [17, Sect. 2.4] gives an equivalent pre-
sentation, which is in turn rephrased in Definition 3 below. These new definitions
facilitate the proofs by induction in this article. Then, the Hausdorff-Kuratowski
theorem (see, e.g., [11, Theorem 22.27]) implies that, in the Baire space (i.e. NN),
the difference hierarchy is equal to Δ0

2, the sets that are both countable unions
of closed sets and countable intersections of open sets. This equality tells how
low the difference hierarchy lies in the Borel hierarchy.

For every pruned tree T , let {γ[Tγ] | γ ∈ T} be a basis for the open subsets
of [T]. Definition 2 below is a special case of a more general definition that can
be found, e.g., in [11, 22.E].

Definition 2 (Difference Hierarchy). Let T be a pruned tree, θ > 0 be a
countable ordinal, and (Aη)η<θ be an increasing sequence of open subsets of [T].
Dθ((Aη)η<θ) is defined as below.

x ∈ Dθ((Aη)η<θ) :⇔ x ∈ ∪η<θAη and the least η < θ with x ∈ Aη has parity
opposite to that of θ.

And Dθ([T]) := {Dθ((Aη)η<θ) | ∀η < θ,Aη is an open subset of [T]}.
Observation 1. Dθ+1((Aη)η<θ+1) = Aθ \ Dθ((Aη)η<θ)

Definition 3, Lemma 1, and Proposition 1 relate to [17, Sect. 2.4].

Definition 3 (Quasi-Difference Sets). Let T be a pruned tree. The set D([T])
is defined by transfinite induction below.

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy 151

– Every open set of [T] is in D([T]).
– Let (γi)i∈I be pairwise non-comparable nodes in T , and for all i ∈ I let Di ∈

D([T]) be such that Di ⊆ γi[Tγi
]. Then ∪i∈IDi ∈ D([T]).

– The complement in [T] of a set in D([T]) is also in D([T]).

One can prove Observation 2 below by induction along Definition 3.

Observation 2. Given a node γ of a pruned tree T , and A ∈ D([T]), γ[Tγ]∩A ∈
D([T]).

Lemma 1. Dθ ⊆ D([T]) for all non-zero countable ordinal θ and all pruned
tree T .

Proof. By induction on θ, which holds for θ = 1 since D1([T]) is made of the open
subsets of [T]. Let θ > 1 be an ordinal and let A ∈ Dθ, so A = Dθ((Aη)η<θ) for
some family (Aη)η<θ of open subsets of [T] that is increasing for the inclusion.
Every Aη is open so it can be written ∪i∈Iγη,i[Tγη,i

] where γη,i and γη,j are
not proper prefixes of one another (but are possibly equal) for all η < θ and
i, j ∈ I. We can also require some minimality for all γη,i, more specifically
γ � γη,i ⇒ ¬(γ[Tγ] ⊆ Aη). Let F consists of the minimal prefixes among {γη,i |
i ∈ I ∧ η < θ}, and for all γ ∈ F let f(γ) be the least η such that γ = γη,i

for some i ∈ I. So f(γ) < θ for all γ ∈ F , and A ⊆ ∪η<θAη = ∪γ∈F γ[Tγ], so
A = ∪γ∈F A ∩ γ[Tγ]. Let γ ∈ F and let us make a case disjunction to show that
A ∩ γ[Tγ] ∈ D([T]). First case, f(γ) and θ have the same parity, so A ∩ γ[Tγ] =
Df(γ)((Aη ∩ γ[Tγ])η<f(γ)) ∈ Df(γ)([T]), so A ∩ γ[Tγ] ∈ D([T]) by induction
hypothesis. Second case, f(γ) and θ have opposite parity, so

A ∩ γ[Tγ] = Df(γ)+1((Aη ∩ γ[Tγ])η<f(γ)+1) by Definition 2,

= (Af(γ) ∩ γ[Tγ]) \ Df(γ)((Aη ∩ γ[Tγ])η<f(γ)) by Observation 1,

= γ[Tγ] \ Df(γ)((Aη ∩ γ[Tγ])η<f(γ)) by definition of F � γ and f(γ),

∈ D([T]) by induction hypothesis and Observation 2.

Therefore A ∈ D([T]).

Proposition 1 below shows that the quasi-difference sets coincide with the sets
in the difference hierarchy for countable trees, just like quasi-Borel sets [20] and
Borel sets coincide on Polish spaces.

Proposition 1. D([T]) = ∪θ<ω1Dθ([T]) for all countable pruned tree T .

Proof. ∪θ<ω1Dθ ⊆ D([T]) was already proved in Lemma 1, so let A ∈ D([T]). Let
us prove that A ∈ Dθ([T]) for some θ, by induction on the definition of D([T]).
Base case, if A is open, A ∈ D1([T]).

Second case, let (γi)i∈I be pairwise non-comparable nodes in T , and let Ai ∈
D([T]) ∩ γi[Tγi

] for all i ∈ I, such that A = ∪i∈IAi. By induction hypothesis
Ai ∈ Dθi

for some θi < ω1. Let θ := supi∈I θi, so θ < ω1 by countability of T ,

152 S. Le Roux

and Ai ∈ Dθ for all i ∈ I. For all i ∈ I let (Ai,η)η<θ be an increasing sequence
of open sets such that Ai = Dθ((Ai,η)η<θ). So A = ∪i∈IDθ((Ai,η)η<θ) =
Dθ((∪i∈IAi,η)η<θ), which shows that A ∈ Dθ([T]).

Third case, A is the complement of B ∈ Dθ([T]) for some θ < ω1. So B =
Dθ((Bη)η<θ) for some increasing sequence of open sets of [T]. Let Bθ = [T], so
A = Dθ+1((Bη)η<θ+1).

Informally, a play of a game starts at the root of an infinite game tree and at each
stage of the game the unique owner of the current node chooses a child of the
node. The articles [14,16] used game trees of the form C∗ because it was more
convenient and done without much loss of generality, but this article works with
general pruned trees because they will be cut in a non-uniform way. Moreover
pruned trees are general enough, since leaves in infinite games can be simulated
by the pseudo-leaves defined below.

Definition 4 (Game, Subgame, Pseudo-Leaf). An infinite game g is a
tuple 〈A, T, d,O, v, (≺a)a∈A〉 complying with the following.

– A is a non-empty set (of players).
– T is a non-empty pruned tree (of possible finite plays).
– d : T → A (assigns a decision maker to each stage of the game).
– O is a non-empty set (of possible outcomes of the game).
– v : [T] → O (uses outcomes to value the infinite plays in the tree).
– Each ≺a is a binary relation over O (modelling the preference of player a).

For γ ∈ T , the subgame gγ is defined by dγ : Tγ → A such that dγ(δ) := d(γδ)
and by vγ : [Tγ] → O such that vγ(p) := v(γp). A x-pseudo-leaf of g is a shortest
node γ ∈ T such that only the outcome x occurs in gγ .

Definition 5 (strategy Profile, Induced Play, Global-Pareto Equilib-
rium). Let g = 〈A, T, d,O, v, (≺a)a∈A〉 be a game.

– A strategy profile is a function s : T → T such that s(γ) ∈ succ(T, γ) for all
γ ∈ T . Let Sg be the set of the strategy profiles for g. For γ ∈ T and s ∈ Sg

the subprofile sγ : Tγ → Tγ is defined by the equality γsγ(δ) = s(γδ).
– For γ ∈ T and s ∈ Sg, the play p = pγ(s) induced by s at γ is defined

inductively by p0 . . . p|γ|−1 := γ and pn := s(p0 . . . pn−1) for all n > |γ|.
– A Nash equilibrium is a profile s ∈ Sg such that

NEg(s) :=∀s′ ∈ Sg,∀a ∈ A, ¬(v◦pε(s) ≺a v◦pε(s′)
∧ (∀γ ∈ T, s(γ) �= s′(γ) ⇒ d(γ) = a))

A subgame perfect equilibrium is a profile s ∈ Sg such that NEgγ
(sγ) for all

γ ∈ T .
– Let O′ ⊆ O. One says that x ∈ O′ is Pareto-optimal in O′ if for all y ∈ O′ and

a ∈ A such that x ≺a y there exists b ∈ B such that y ≺b x. A global-Pareto
Nash equilibrium (GP-NE) is an NE whose induced outcome is Pareto-optimal
in the outcomes occurring in the underlying game. A GP-SPE is a profile that
induces a GP-NE in every subgame.

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy 153

The proofs in this article do not build SPE by mere backward induction, but
more generally by recursively refining rational behavioral promises. At each stage
the refinement is optimal given the existing promises and regardless of the future
ones. Since a promise not to choose a specific successor of a given node cannot
be represent by a strategy profile, the more general notion of quasi-profile is
defined below.

Definition 6 (Quasi Profile). Let g = 〈A, T, d,O, v, (≺a)a∈A〉 be a game.

– A quasi profile is a multivalued function q : T � T such that ∅ �= q(γ) ⊆
succ(γ) for all γ ∈ T . Let Qg be the set of the quasi profiles for g. For γ ∈ T
and q ∈ Qg the sub-quasi-profile qγ : Tγ � Tγ is defined by the equality
γqγ(δ) = q(γδ).

– For γ ∈ T and q ∈ Qg, the tree induced by q starting at γ is defined inductively
by ε ∈ Tγ(q), where ε is the empty sequence, and δ ∈ Tγ(q) ⇒ qγ(δ) ⊆ Tγ(q).

– Let q ∈ Qg. Let (γi)i∈I be the nodes of T such that γi /∈ q(γ) for all γ ∈ T ,
and let G(g, q) := {gγi

|Tγi
(q)}i∈I .

Making a promise in a game g by defining a quasi-profile q splits the game into
“smaller” games, formally via G(g, q). If the promise is rational, these “smaller”
games can be processed independently since gluing any of their respective SPE
will yield an SPE for g. Towards this, Observation 3 below suggests that the
recursive refinement will lead to a fully defined strategy profile of g, if performed
a sufficiently great (ordinal) number of times.

Observation 3. Let g be a game on a tree T , let q be a quasi profile for g, and
let G(g, q) = {gγi

|Tγi
(q)}i∈I . Then {γiTγi

(q)}i∈I is a partition of T .

3 Many Players with Linearly Ordered Preferences

This section characterizes the linear preferences that always yield SPE in games
with Dω1-measurable outcome functions: the families of preferences without infi-
nite ascending chains and without the SPE killer, i.e. the pattern z <a y <a

x ∧ x <b z <b y for some players a and b and outcomes x, y, z. The main difficulty
is tackled by Lemma 2 and corollary 1 below. It consists in slightly generaliz-
ing an existing result [16] stating that two-player Borel games with antagonist
preferences have SPE by considering preferences that are almost antagonist, but
in addition there is an outcome y that is the worst one for both players, and
the set of plays with outcome y is a closed set (union an open set). This is then
generalized for a set in Dω1 by induction, and eventually to multi-player games
without the SPE killer thanks to a combinatorial result.

Lemma 2. Let a game involve two players a and b, preferences y <a xn <a

· · · <a x1 and y <b x1 <b · · · <b xn for some n, such that all plays without
pseudo-leaves have outcome y. The game has a global-Pareto subgame perfect
equilibrium.

154 S. Le Roux

Proof. Let us consider only infinite games involving two players a and b, prefer-
ences y <a xn <a · · · <a x1 and y <b x1 <b · · · <b xn for some n. Let us call a
game weak-stop if every play without pseudo-leaves has outcome y, and strong-
stop if in addition every node that does not lie on a play with outcome y has
a prefix that is a pseudo-leaf. Note the following: in every weak-stop game the
plays with outcome y form a closed set; for every quasi profile q for a weak-stop
game g, the set G(g, q) contains only weak-stop games; and modifying the out-
come function of a weak-stop game such that it is constant on given subgames
yields a weak-stop game. (But the same does not hold for strong-stop games.)
Let us call a node of a strong-stop game an ak (bk) node if it is owned by player
a (b), and if it is the parent of a xk-pseudo-leaf. Let us call every ak (bk) node
a a-stop (b-stop) node, and furthermore let us call every a-stop or b-stop node a
stop node.

Let us prove the claim by induction on n, which holds for n = 0 and n = 1,
so let us assume that 1 < n. Five transformations on games are defined below,
and they are meant to be applied recursively to a weak-stop game.

1. “Weak-stop towards strong-stop”: Let g be a weak-stop game on tree T .
Let γ be a node such that gγ involves more than one outcome but not y. By
construction gγ is an antagonist game, and it amounts, when seeing a pseudo-
leaf as a leaf, to a game without infinite plays, but possibly without uniform
bound on the length of the plays. By [5] it has a GP-SPE sγ nonetheless, which
induces some xk. Let us derive a weak-stop game g′ from g by modification of
the outcome function: for all p ∈ [T] let v′(p) := xk if γ � p and v′(p) := v(p)
otherwise. Pasting sγ at node γ on a GP-SPE s′ for g′ yields a GP-SPE s for
g. Formally s(γδ) := sγ(δ) for all δ ∈ Tγ and s(δ) := s′(δ) for all δ ∈ T such
that γ �� δ.

2. “Emptying the interior of y”: Let g be a strong-stop game on tree T and let γ
be a y-pseudo-leaf. If γ = ε all profiles for g are GP-SPE. If γ is not the root
of g let us define a quasi profile q for g by letting the owner of the parent of γ
ignore γ. Formally, q(δ) := succ(T, δ)\{γ} for all δ ∈ T . Since y is the worst
outcome for both players, none will have an incentive to deviate from this
promise, regardless of the future choices at the other nodes. G(g, q) contains
gγ and a weak-stop game g′. Combining any profile sγ for gγ and a GP-SPE
for g′ yields a GP-SPE for g.

3. “b chooses xn”: Let g be a strong-stop game on tree T , let γ be a bn node
and let δ ∈ succ(T, γ) be an xn-pseudo-leaf. Let us define a quasi profile q for
g by letting b choose δ at γ. Formally, q(γ) := {δ} and q(α) := succ(T, α) for
all α ∈ T\{γ}. Since xn is b’s preferred outcome, she will have no incentive
to deviate from this choice, regardless of the choices at the other nodes. So,
finding a GP-SPE for every weak-stop game in G(g, q) will complete the
definition of a GP-SPE for g.

4. “a ignores xn”: Let g be a strong-stop game. Let γ be a node in g such that
gγ involves outcome y but no b-stop nodes, and such that every subgame of
gγ involving outcome y has an ak node for some k < n. Let us define a quasi
profile q for g by letting a ignore all xn-pseudo-leaves at all an nodes below
γ. The set G(g, q) is made of games involving only outcome xn and of one g′

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy 155

such that g′
γ does not involve xn. By induction hypothesis g′

γ has an GP-SPE
s′

γ , which induces some xk. Let us define g′′ by modification of the outcome
function of g: for all p ∈ γ[Tγ] let v′′(p) := xk and for all p ∈ [T]\γ[Tγ] let
v′′(p) := v(p). Pasting s′

γ on a GP-SPE s′′ for g′′ yields a GP-SPE for g.
5. “a chooses xn”: Let g be a strong-stop game. Let γ be such that gγ involves

outcome y and every subgame of gγ involving y has some an nodes but no
ak node for all k < n. To build for gγ a GP-SPE sγ inducing xn on all of
its subprofiles, it suffices, first, to choose arbitrary profiles for the subgames
rooted at the xn-pseudo-leaves of gγ , and second, to fix consistently paths
from each node to an xn-pseudo-leaf. This second step can be done by letting
player a choose an xn-pseudo-leaf at some node, which defines a quasi profile
q, and by repeating it recursively for the games in G(gγ , q). This sγ is a
GP-SPE because every subprofile induces outcome xn, which is b’s preferred
outcome, and the only alternative for a in every subprofile is outcome y since
all a-stop nodes are an nodes. Let us define g′ by modification of the outcome
function of g: for all p ∈ γ[Tγ] let v′(p) := xn and for all p ∈ [T]\γ[Tγ] let
v′(p) := v(p). Pasting sγ on a GP-SPE s′ for g′ yields a GP-SPE for g.

Given a weak-stop game g, let us apply to it the five transformations above,
sequentially, non-deterministically whenever they are applicable, and until none
of them is applicable, i.e. possibly an ordinal number of times. This yields a set
G of strong-stop games (otherwise Transformation 1 could be applied) whose
subgames that involve outcome y all have stop nodes (otherwise Transforma-
tion 2 could be applied), without bn nodes (otherwise Transformation 3 could
be applied), such that every subgame that involves y but no b-stop nodes has a
subgame without ak nodes for all k < n (otherwise Transformation 4 could be
applied), and such that every subgame h′ of every game in G has the following
property (otherwise Transformation 5 could be applied): if every subgame of h′

has a a-stop node, h′ has an ak node for some k < n.
Let h′ be a subgame of h ∈ G, and that involves y. If h′ has no b-stop

nodes, combining the properties above shows that all of its subgames have a-
stop nodes, so one of them has only an nodes, contradiction, so every subgame
of h that involves y has a b-stop node.

For every h ∈ G let us define the quasi profile q by letting a ignore all the
xn-pseudo-leaves. G(h, q) is made of games involving the outcome xn only and
of one h′ void of xn. Since every subgame of h that involves y has a b-stop node,
it also holds for h′. By induction hypothesis, h′ has a GP-SPE, which is easily
extended to a GP-SPE for h, thus completing the definition of a GP-SPE for
the original g.

Corollary 1. Given a game g with two players a and b, a quasi-Borel measur-
able outcome function, and preferences y <a xn <a · · · <a x1 and y <b x1 <b

· · · <b xn for some n. If the plays with outcome y form the union of an open set
and a closed set, the game has a global-Pareto subgame perfect equilibrium.

Proof. Let the plays with outcome y be the union Y = Yo∪Yc of an open set and
a closed set. Wlog Yo and Yc are disjoint. Let us derive g′ from g by removing

156 S. Le Roux

the plays in Yo. So the plays of g′ that do not yield outcome y form an open set,
i.e. a disjoint union of clopen balls with defined by the prefixes (γi)i∈I . Every
game gγi

is antagonist and quasi-Borel, so it has an SPE si by [16]. Let us define
g′′ by modification of the outcome function of g′: every play going through γi

yields the outcome induced by si. This g′′ has a GP-SPE s′′ by Lemma 2, and
together with the si it can be used to build a GP-SPE for g.

Let us extend Corollary 1 from open union closed to the difference hierarchy.

Lemma 3. Let be a game on a tree T , with two players a and b and preferences
y <a xn <a · · · <a x1 and y <b x1 <b · · · <b xn, and let us assume that each set
of plays with outcome xi is quasi-Borel and that Y the set of plays with outcome
y is in Dω1([T]). Then the game has a global-Pareto subgame perfect equilibrium.

Proof. By transfinite induction on the level of Y in the difference hierarchy. The
base case where Y is open or closed is solved by Corollary 1.

For the inductive case, let us make a case disjunction depending on the last
step of the construction of Y . For the union case, Y = ∪i∈NγiYi for some Yi

that have lower levels than Y in the difference hierarchy, and where the γi are
not prefixes of one another. By induction hypothesis each gγi

has a GP-SPE si

inducing either y or an outcome xk(i). Let us start the construction of a profile
s for g by fixing the si as the respective subprofiles for the g |γiTγi

. Let us define
g′ by modification of the outcome function of g: let each play going through γi

yield the outcome induced by si. This is a quasi-Borel game and the plays with
outcome y form an open set, so it has a GP-SPE s′ by Corollary 1, which we
use to complete the definition of s. It is easy to check that s is a GP-SPE for g.

For the complementation case, Y = [T]\([T]\Y), where [T]\Y is equal to
∪i∈NγiXi for some Xi that have lower levels than [T]\Y (and Y) in the difference
hierarchy, and where the γi are not prefixes of one another. Since all Y ∩[γiTγi

] =
[γiTγi

]\γiXi have lower levels than Y in the difference hierarchy, by induction
hypothesis each gγi

has a GP-SPE si inducing either y or an outcome xk(i). Let
us start the construction of a profile s for g by fixing the si as the respective
subprofiles for the g |γiTγi

. Let us define g′ by modification of the outcome
function of g: let each play going through γi yield the outcome induced by si.
This is a quasi-Borel game and the plays with outcome y form the union of an
open set and the closed set [T]\∪i∈I [γiTγi

], so it has a GP-SPE s′ by Corollary 1,
which we use to complete the definition of s. It is easy to check that s is a GP-
SPE for g.

The combinatorial Lemma 4 below shows that the “local” absence of the
SPE-killer amounts to a very simple “global” structure.

Lemma 4. Let A be a non-empty set and for all a ∈ A let <a be a strict linear
order over some non-empty set O. The following assertions are equivalent.

1. ∀a, b ∈ A,∀x, y, z ∈ O, ¬(z <a y <a x ∧ x <b z <b y).
2. There exists a partition {Oi}i∈I of O and a linear order < over I such that:

(a) i < j implies x <a y for all a ∈ A and x ∈ Oi and y ∈ Oj.
(b) <b|Oi

=<a|Oi
or <b|Oi

=<a|−1
Oi

for all a, b ∈ A.

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy 157

If 1. and 2. hold, we may also assume that <b|Oi
=<a|−1

Oi
is witnessed for all

i ∈ I. Also, Oi is always a <a-interval for all (i, a) ∈ I × A, as implied by 2a.

Proof. 2 ⇒ 1 is straightforward, so let us assume 1. Let x ∼ y stand for ∃a, b ∈
A, x ≤a y ≤b x, which defines a reflexive and symmetric relation, and note that
due to the SPE killer z <a y <a x ∧ x <b z <b y the following holds: if x <a y
and y <b x, then x <a z <a y iff y <b z <b x. To show that ∼ is transitive too,
let us assume that x ∼ y ∼ z. If x, y, z are not pairwise distinct, x ∼ z follows
directly, so let us assume that they are pairwise distinct, so by assumption there
exist a, b, c, d ∈ A such that y <a x <b y <c z <d y. To show that x ∼ z
there are three cases depending on where z lies with respect to y <a x, all cases
invoking the (above-mentioned) forbidden-pattern argument: if y <a z <a x
then x <b z <b y, and x ∼ z follows; if y <a x <a z then z <d x <d y and
subsequently y <c x <c z, by invoking twice the forbidden-pattern argument,
and x ∼ z follows; third case, let us assume that z <a y <a x. If x <b z then
x ∼ z follows, and if z <b x then z <b x <b y, so y <c x <c z, and x ∼ z
follows. Therefore ∼ is an equivalence relation; let {Oi}i∈I be the corresponding
partition of O.

Now let us show that the ∼-classes are <a-intervals for all a, so let x ∼ y
and x <a z <a y. By definition of ∼, there exists b such that y <b x, in which
case y <b z <b x by the forbidden-pattern argument, so x ∼ z by definition.

Let x ∈ Oi and y ∈ Oj be such that x <a y. Since Oi and Oj are intervals,
x′ <a y′ for all x′ ∈ Oi and y′ ∈ Oj . Since ¬(x′ ∼ y′) by assumption, x′ <b y′ for
all b ∈ A, by definition of ∼. In this case defining i < j meets the requirements.

Before proving 2b let us prove that if x <a y and y <b x and z ∼ y, then
z <a y iff y <b z: this is trivial if z equals x or y, so let us assume that x �= z �= y,
and also that z <a y. If z <b y, then y <c z for some c since z ∼ y, and wherever
x may lie with respect to y <c z, it always yields a SPE killer using <a or <b, so
y <b z. The converse is similar, it follows actually from the application of this
partial result using <−1

b and <−1
a instead of <a and <b.

Now assume that <b|Oi
�=<a|Oi

for some Oi, so x <a y and y <b x for some
x, y ∈ Oi. Let z, t ∈ Oi. By the claim just above z <a y iff y <b z, so by the
same claim again z <a t iff t <b z, which shows that <b|Oi

=<a|−1
Oi

. This proves
the equivalence.

Finally, let us assume that the assertions hold. By definition of ∼, if Oi is not
a singleton, x <a y and y <b x for some a, b ∈ A and x, y ∈ Oi, so <b|Oi

=<a|−1
Oi

is witnessed.

Theorem 1 extends Lemma 3 to many players and more complex preferences.

Theorem 1. Let g be a quasi-Borel game with players in A, outcomes in O, and
linear preferences <a for all a ∈ A. Let us assume that the inverses of the <a are
well-ordered, and that there exists a partition {Oi}i∈I of O and a linear order <
of I such that:

– i < j implies x <a y for all a ∈ A and x ∈ Oi and y ∈ Oj.
– <b|Oi

=<a|Oi
or <b|Oi

=<a|−1
Oi

for all a, b ∈ A and i ∈ I.

158 S. Le Roux

Let us further assume that for all i ∈ I the plays with outcome in ∪j<iOj form
a Dω1 set. Then g has a global-Pareto subgame perfect equilibrium.

Proof. By Lemma 4 let us further assume wlog that <b|Oj
=<a|−1

Oj
is witnessed

for all j ∈ I, so the Oj are finite by well-ordering. Let us build a GP-SPE for
g as the limit of a recursive procedure: Let Oi be such that some outcome of
Oi occurs in g and such that for all j > i no outcome from Oj occurs in g. Let
(γk)k∈K be the shortest nodes of g such that the outcomes occuring in gγk

are
in ∪j<iOj only. Let us define a quasi profile q for g by having the γk ignored by
their parents. G(g, q) consists of the gγk

and of a game g′. By Lemma 3 there is
a GP-SPE s′ for g′. (To see this, replace ∪j<iOj with one single fresh outcome y,
i.e. y /∈ O and set y <a x for all a ∈ A and x ∈ Oi.) Combining s′ with GP-SPE
for the gγk

(obtained recursively) yields a GP-SPE for g, since the choices made
in g′ hold regardless of the choices made in the gγk

.

Corollary 2. Let A and O be non-empty finite sets (of players and of outcomes)
and for all a ∈ A let <a be a linear preference. The following are equivalent.

1. ∀a, b ∈ A,∀x, y, z ∈ O, ¬(z <a y <a x ∧ x <b z <b y).
2. Every Dω1-Gale-Stewart game using A, O and the <a has a GP-SPE.

Proof. For 1. ⇒ 2. invoke Lemma 4 and Theorem 1, and prove 2. ⇒ 1. by
contraposition with the following folklore example which is detailed, e.g., in [16].

start a b a b x

y z y z

Corollary 2 and the results that lead to it considers linear preference only.
Proposition 2 below show that this restriction incurs a loss of generality, which
is partly solved in Sect. 4.

Proposition 2. Let us define two binary relations by z, t ≺a x, y and y ≺b z ≺b

x ≺b t.

1. Dω1 infinite games with players a and b and preferences ≺a and ≺b have SPE.
2. The SPE killer occurs in any strict linear extensions of ≺a and ≺b.

Proof. 1. follows Theorem 2. For 2. let ≺′
a be a linear extension of ≺a. If x ≺′

a y
then z ≺′

a x ≺′
a y and y ≺b z ≺b x. If y ≺′

a x then t ≺′
a y ≺′

a x and y ≺b x ≺b t.

4 Two Players with Strict Weak Order Preferences

The preferences considered in Proposition 2 are strict weak orders. Informally,
strict weak orders are strict partial orders that can be seen as strict linear orders
from afar, i.e. up to an equivalence relation. Traditionally in game theory the
outcomes are real-valued payoff functions f, g : A → R and the preferences are
defined by f ≺a g iff f(a) < g(a). These preferences are not strict linear orders
but they are strict weak orders, so the results from Sect. 3 are worth generalizing.
Strict weak orders are defined below.

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy 159

Definition 7 (Strict Weak Order). A strict weak order is a strict partial
order whose complement is transitive, i.e. is satisfies ¬(x ≺ x) and x ≺ y ∧ y ≺
z ⇒ x ≺ z and ¬(x ≺ y) ∧ ¬(y ≺ z) ⇒ ¬(x ≺ z).

Lemma 4 above describes the structure of strict linear orders void of the SPE
killer. A similar result for strict weak orders will be useful. Lemma 5 below is
part to it, and the other part appears directly in the proof of Lemma 6.

Lemma 5. Let ≺a and ≺b be two strict weak orders over some finite O.

1. If ≺a and ≺b are void of the SPE killer, if there exists a ≺a-non-extremal
element and a ≺b-non-extremal element, and if there is no partition {Ou, Ol}
of O such that ¬(x ≺a y) and ¬(x ≺b y) for all (x, y) ∈ Ou × Ol, then
≺a ∩ ≺b= ∅.

2. If ≺a ∩ ≺b= ∅, there exists a linear extension < of ≺a such that ≺b⊆<−1.

Proof.

1. Let x be ≺b-minimal among the ≺a-maximal elements, and let y be ≺a-
minimal among the ≺b-maximal elements, so x �= y by the partition assump-
tion. Towards a contradiction let us assume that, e.g., x is not ≺b-minimal,
and let z be ≺b-minimal. For all t ≺b x, it follows that t is not ≺a-maximal
by definition of x, and ¬(y ≺a t) by absence of the SPE killer. So y is not
≺a-minimal, otherwise z is also ≺a-minimal, thus contradicting the partition
assumption. So likewise, for all t ≺a y, it follows that t is not ≺b-maximal
by definition of y, and ¬(x ≺b t) by absence of the SPE killer. So the two-
element partition induced by {t ∈ O | t ≺a y ∨ t ≺b x} contradicts the
partition assumption. This shows that x is ≺b-minimal and y is ≺a-minimal.
Towards a contradiction let us assume that t(≺a ∩ ≺b)z for some t, z ∈ O.
So {x, y} ∩ {z, t} = ∅. By the partition assumption z is not both ≺a and ≺b-
maximal, so, e.g., z ≺a x, and t is not both ≺a and ≺b-minimal. By absence
of the SPE killer t is ≺b-minimal, so y ≺a t by the partition assumption., and
subsequently z is ≺b-maximal. By assumption there exists γ that is neither
≺b-maximal nor ≺b-minimal. Wherever γ lies wrt ≺a, the SPE killer occurs.

2. By induction on the cardinality of O, which holds for |O| = 0. Let x be
≺b-minimal among the ≺a-maximal elements, so x is also ≺b-minimal since
≺a ∩ ≺b= ∅. By induction hypothesis let <x witness the claim for ≺a|O\{x}
and ≺b|O\{x}. The linear order < :=<x ∪{(y, x) | y ∈ O\{x}} witnesses the
claim.

Lemma 6 below is a generalization of Corollary 1 from an order-theoretic point
of view and a special case thereof from a topological point of view. Due lack of
space and strong similarities with the proof of Lemma 2, the proof of Lemma 6
is in appendix.

Lemma 6. Let g be a game with two players a and b, finitely many outcomes
O, and strict weak order preferences void of the SPE killer. If each outcome
corresponds to the union of an open set and a closed set, the game has an SPE.

160 S. Le Roux

Furthermore, for every node γ of g let {Oγ
1 , . . . , Oγ

nγ
} be a partition of the

outcomes of gγ such that ¬(x ≺a y) and ¬(x ≺b y) for all 1 ≤ k < nγ and
(x, y) ∈ Oγ

k+1 ×Oγ
k . There exists an SPE for g such that the outcome induced at

every node γ belongs to Oγ
nγ

.

Proof. By induction on the number of outcomes, which holds up to two outcomes.
Let us make a case disjunction for the inductive case. First main case, there is
no partition {Ou, Ol} of O such that ∀(x, y) ∈ Ou × Ol,¬(x ≺a y) ∧ ¬(x ≺b y).
Let us make a nested case distinction. First nested case, there exists a ≺a-non-
extremal element and a ≺b-non-extremal element, so by Lemma 5 let < be a
linear extension of ≺a such that ≺b⊆<−1. By [16] the antagonist game with
preference < has an SPE, which is also an SPE for ≺a and ≺b.

Second nested case, one preference, e.g., ≺a has only extremal elements. By
the partition assumption let y be ≺b-maximal and ≺a-minimal. Let Y be the set
of plays with outcome y, and let us define a quasi-profile q as follows. Let γ be
the parent of a y-pseudo-leaf. If γ is owned by a, let a ignore the y-pseudo-leaves
at γ; otherwise let b choose a y-pseudo-leaf at γ. Let us apply this construction
recursively (an ordinal number of times) to the games in G(g, q) that do not
involve y, until the Y ′ of each remaining game has empty interior. It is easy to
check that Y ′ is also closed since Y is the union of an open set and a closed
set, by assumption. So let (γi)i∈I be the shortest nodes that are not on any play
with outcome y. The gγi

do not involve y, so by induction hypothesis they have
suitable SPE si inducing some xi ∈ O, which allow us to start the definition of
a suitable SPE for g. Let us define g′ by modification of the outcome function of
g: let v′(γip) := xi for all i ∈ I and let v′(p) := v(p) when γi �� p for all i ∈ I.
Let Ma be the ≺a-maximal outcomes, and let us define a quasi-profile q′ for g′

as follows. Let γ be the parent of a Ma-pseudo-leaf, i.e. a shortest node involving
outcome in Ma only. If γ is owned by a, let a choose a Ma-pseudo-leaf at γ;
otherwise let b ignore the Ma-pseudo-leave at γ. Let us apply this recursively to
the games in G(g′, q) that involve y. In the remaining games a can deviate from
a play with outcome y only to reach a (O\)Ma-pseudo-leaf, so every profile that
follows plays with outcome y whenever possible is a suitable SPE.

Second main case, there exist partitions {Ou, Ol} of O such that ∀(x, y) ∈
Ou × Ol,¬(x ≺a y) ∧ ¬(x ≺b y). Among these partitions let us consider the one
with the smallest possible Ou. Let us make a further case disjunction. First case,
|Ol| > 1. As is now customary, let us start defining a suitable SPE for g by using
the induction hypothesis on the maximal subgames involving only outcomes in
Ol, and on the game derived from g by replacing outcomes in Ol with a fresh
outcome y that is the new ≺a and ≺b-minimum.

Second case, |Ol| = {y}. By minimality of |Ou|, there is no partition
{Ouu, Oul} of Ou such that ∀(x, y) ∈ Ouu × Oul,¬(x ≺a y) ∧ ¬(x ≺b y). There-
fore the situation is reminiscent of the first main case above, but for ≺a|Ou

and ≺b|Ou
instead of ≺a and ≺b. In both nested cases from the first main case,

there exists some xn that is, e.g., ≺a|Ou
-minimal and ≺b|Ou

-maximal. Applying
the proof of Lemma 2 almost verbatim yields a suitable SPE for g

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy 161

Theorem 2. Let g be a game with two players a and b, finitely many out-
comes, a Dω1-measurable outcome function, strict weak order preferences such
that ¬(z ≺a y ≺a x ∧ x ≺b z ≺b y) for all outcomes x, y and z. Then the game
has an SPE.

Furthermore, for every node γ of g let {Oγ
1 , . . . , Oγ

nγ
} be a partition of the

outcomes of gγ such that ¬(x ≺a y) and ¬(x ≺b y) for all 1 ≤ k < nγ and
(x, y) ∈ Oγ

k+1 ×Oγ
k . There exists an SPE for g such that the outcome induced at

every node γ belongs to Oγ
nγ

.

Proof. By induction on the levels in the difference hierarchy of the sets of plays
corresponding to the outcomes. The base case holds by Lemma 6.

For the inductive case, let y be an outcome whose corresponding set Y has
level more than one in the difference hierarchy, and let us make a case disjunction
depending on the last step of the construction of Y . The remainder of the proof
can be taken almost verbatim from the proof of Lemma 3, but by replacing “GP-
SPE” with “suitable SPE”, and by invoking Lemma 6 or the induction hypothesis
instead of Corollary 1.

Theorem 2 considers two-player games only. Observation 4 shows that absence
of the SPE killer is no longer a sufficient condition for a three-player game with
strict weak order preferences to have an SPE.

Observation 4. Let three players a,b and c have preferences z ≺a y ≺a x and
t ≺b z ≺b y and x ≺c t ≺c y. (and, e.g., y ∼a t, z ∼b x, and y ∼c z or x ∼c z)

1. The SPE killer does not occur in the strict weak orders ≺a and ≺b and ≺c.
2. The following game with ≺a and ≺b and ≺c has no SPE.

start a b c a b c x

y z t y z t

Proof. For 2. Towards a contradiction let us assume that there exists an SPE
for the game. Let us consider a node where player a chooses y. Then at the node
right above it c chooses to continue to benefit from y, and at the node above b
chooses to continue, too. The induced outcome at the node further above is y
regardless of the choice of a, and so on up to the root.

Let us make a case disjunction: first case, there exists infinitely many nodes
where a chooses y, so b and c always continue by the remark above, so a has
an incentive to continue too, to induce outcome x, contradiction. Second case,
there exists a node below which a always continues. From then on, one player
must stop at some point, otherwise the outcome is x and c has an incentive to
stop. The first player to stop cannot be b, otherwise a would stop before b, and
it cannot be c, otherwise b would stop before c, contradiction.

Proposition 3 below shows that considering only strict weak orders incurs a loss
of generality.

162 S. Le Roux

Proposition 3. Let us define two binary relations by γ ≺a y ≺a x and z ≺a

β ≺a α and x ≺b z ≺ y and α ≺b γ ≺b β.

1. The SPE killer occurs in every strict weak order extensions of ≺a and ≺b.
2. Dω1-games with players a and b and preferences ≺a and ≺b have SPE.

Proof.

1. Let ≺′
a be a strict weak order extension of ≺a. If z ≺′

a y, the SPE killer
occurs, with x. If ¬(z ≺′

a y), then γ ≺′
a β and the SPE killer occurs, with α.

2. It suffices to prove the claim for games where each outcome set is the union
of an open set and a closed set. (Then using a transfinite induction as in the
proof of Lemma 3 will do.) The techniques from Lemmas 2 and 6 are suitable
here, and used without details. If the outcome x does not occur in the game,
note that ≺a|O\{x} and ≺b|O\{x} can be extended into the strict weak orders
z ≺′

a γ ∼′
a β ≺′

a y ∼′
a α and z ∼′

b α ≺′
b γ ≺′

b y ∼′
b β, respectively, and that the

SPE killer is absent from these. So by Theorem 2 the game has an SPE wrt
≺′

a and ≺′
b and therefore also wrt ≺a and ≺b. (And likewise if the outcome α

does not occur in the game.)
Now one can reduce the set for x to a closed set by letting a choose the clopen
balls with constant outcome x and by letting b ignore them. The plays with
outcomes different from x can be seen as belonging to a union of subgames
without x, so by the remark above they have SPE. It allows us to replace these
subgames with (pseudo)-leaves with outcomes the ones induced by the SPE.
Now one can let a choose the pseudo-leaves with outcome α and b ignore
them, which yields a game without outcome α. So by the remark above there
is an SPE for the game.

Acknowledgements. I thank Vassilios Gregoriades and Arno Pauly for useful
discussions. The author is supported by the ERC inVEST (279499) project.

References

1. Abramsky, S., Winschel, V.: Coalgebraic analysis of subgame-perfect equilibria in
infinite games without discounting (2012). arXiv preprint

2. Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On subgame perfection in quan-
titative reachability games. Logical Methods in Computer Science, vol. 9 (2012)

3. Brihaye, T., Bruyère, V., Meunier, N., Raskin, J.F.: Weak subgame perfect equi-
libria and their application to quantitative reachability (2015)

4. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Trans. Am. Math. Soc. 138, 295–311 (1969)

5. Escardó, M., Oliva, P.: Selection functions, bar recursion and backward induction.
Math. Struct. Comput. Sci. 20(4), 127–168 (2010)

6. Flesch, J., Kuipers, J., Mashiah-Yaakovi, A., Schoenmakers, G., Solan, E., Vrieze,
K.: Perfect-information games with lower-semicontinuous payoffs. Math. Oper. Res.
35, 742–755 (2010)

7. Flesch, J., Kuipers, J., Mashiah-Yaakovi, A., Schoenmakers, G., Shmaya, E., Solan,
E., Vrieze, K.: Non-existence of subgame-perfect ε-equilibrium in perfect informa-
tion games with infinite horizon. Int. J. Game Theor. 43(4), 945–951 (2014)

Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy 163

8. Fudenberg, D., Levine, D.: Subgame-perfect equilibria of finite- and infinite-horizon
games. J. Econ. Theor. 31(2), 251–268 (1983)

9. Gale, D., Stewart, F.M.: Infinite games with perfect information. Ann. Math. Stud.
28, 245–266 (1953)

10. Gimbert, H., Zielonka, W.: Games where you can play optimally without any
memory. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp.
428–442. Springer, Heidelberg (2005)

11. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics,
vol. 156. Springer, New York (1995)

12. Kuhn, H.W.: Extensive games and the problem of information. In: Contributions
to the Theory of Games II, pp. 193–216 (1953)

13. Le Roux, S.: Acyclic preferences and existence of sequential nash equilibria: a
formal and constructive equivalence. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 293–309. Springer,
Heidelberg (2009)

14. Le Roux, S.: Infinite sequential Nash equilibrium. Logical Methods in Computer
Science, 9 (2013). Special Issue for the Conference Computability and Complexity
in Analysis, (CCA 2011)

15. Le Roux, S.: From winning strategy to Nash equilibrium. Math. Logic Q. 60, 354–
371 (2014)

16. Le Roux, S., Pauly, A.: Infinite sequential games with real-valued payoffs. In: Pro-
ceedings of LiCS (2014)

17. Le Roux, S., Pauly, A.: Weihrauch degrees of finding equilibria in sequential games.
In: Proceedings of CiE 2015 (2015) (to appear)

18. Lescanne, P., Perrinel, M.: Backward coinduction, Nash equilibrium and the ratio-
nality of escalation. Acta Informatica 49(3), 117–137 (2012)

19. Martin, D.A.: Borel determinacy. Ann. Math. 102, 363–371 (1975)
20. Martin, D.A.: An extension of Borel determinacy. Ann. Pure Appl. Logic 49, 279–

293 (1990)
21. Mertens, J-F.: Repeated games. In: Proceedings of the International Congress of

Mathematicians, pp. 1528–1577. American Mathematical Society (1987)
22. Purves, R., Sudderth, W.: Perfect information games with upper-semicontinuous

payoffs. Math. Oper. Res. 36, 468–473 (2011)
23. Selten, R.: Spieltheoretische Behandlung eines Oligopolmodells mit Nach-

frageträgheit. Zeitschrift für die desamte Staatswissenschaft, vol. 121 (1965)
24. Smith, M.J., Price, G.R.: The logic of animal conflicts. Nature 246, 15–18 (1973)
25. Solan, E., Vieille, N.: Deterministic multi-player dynkin games. J. Math. Econ.

39(8), 911–929 (2003)
26. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer

games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
212–223. Springer, Heidelberg (2006)

27. Wolfe, P.: The strict determinateness of certain infinite games. Pac. J. Math. 5,
841–847 (1955)

Deterministic Algorithm for 1-Median 1-Center
Two-Objective Optimization Problem

Vahid Roostapour(B), Iman Kiarazm, and Mansoor Davoodi

Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
{v.roostapour,i.kiarazm,mdmonfared}@iasbs.ac.ir

Abstract. k-median and k-center are two well-known problems in facil-
ity location which play an important role in operation research, manage-
ment science, clustering and computational geometry. To the best of our
knowledge, although these problems have lots of applications, they have
never been studied together simultaneously as a multi objective optimiza-
tion problem. Multi-objective optimization has been applied in many
fields of science where optimal decisions need to be taken in the presence
of trade-offs between two or more conflicting objectives. In this paper
we consider 1-median and 1-center two-objective optimization problem.
We prove that Ω(n log n) is a lower bound for proposed problem in one
and two dimensions in Manhattan metric. Also, by using the proper-
ties of farthest point Voronoi diagram, we present a deterministic algo-
rithm which output the Pareto Front and Pareto Optimal Solutions in
O(n log n) time.

Keywords: Computational geometry · Pareto optimal solutions ·
1-center · 1-median · Multi-objective optimization

1 Introduction

When evaluating different solutions from a design space, it is often the case that
more than one criterion comes into play. For example, when choosing a route to
drive from one point to another, we may care about the time it takes, the distance
traveled and the complexity of the route (e.g. number of turns). When designing a
(wired or wireless) network, we may consider its cost, capacity and coverage. Such
problems are known as Multi-Objective Optimization Problems (MOOP). Multi-
objective optimization can be described in mathematical terms as follows:

S = {x ∈ R
d : h(x) = 0, g(x) ≥ 0}

min [f1(x), f2(x), . . . , fN (x)]
x ∈ S,

where N > 1, fi is a scalar function for 1 ≤ i ≤ N and S is the set of constraints.
The space in which the objective vector belongs is called objective space. The

scalar concept of optimality does not apply directly in the multi-objective setting.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved.
M.T. Hajiaghayi and M.R. Mousavi (Eds.): TTCS 2015, LNCS 9541, pp. 164–178, 2016.
DOI: 10.1007/978-3-319-28678-5 12

Deterministic Algorithm for MOOP 165

Here the notion of Pareto optimality and dominance has to be introduced. In a
multi-objective minimization problem, a solution s1 ∈ S dominates a solution
s2 ∈ S, denoted by s1 ≺ s2, if fi(s1) ≤ fi(s2) for all i ∈ {1, . . . , N}, with at
least one strict inequality. A point s∗ is said to be a Pareto optimum or a Pareto
optimal solution for the multi-objective problem if and only if there is no s ∈ S
such that s ≺ s∗. The image of such an efficient set, i.e., the image of all the
efficient solutions in the objective space are called Pareto optimal front or Pareto
curve.

One of the common approaches for such problems is evolutionary algo-
rithms [7]. These algorithms are iterative and converge to Pareto front. However
they need more time as the complexity of the Pareto front increases. Moreover,
all of these approaches have major problems with local optimums. On the other
hand there are some classical approaches like weighted sum and ε-constraint
which can apply on MOOPs. Although these approaches guarantee finding solu-
tions on the entire Pareto optimal set for problems having a convex Pareto front,
they are largely depend on chosen weight and ε vectors respectively. Moreover,
these approaches require some information from user about the solution space.
Furthermore, in most nonlinear MOOPs, a uniformly distributed set of weight
vectors wont necessarily find a uniformly distributed set of Pareto optimal solu-
tions. Also there may exist multiple minimum solutions for a specific weight
vector [8]. However we find the Pareto front of a MOOP with deterministic algo-
rithm. Here we consider two famous propounded facility location problems [17].

k-median: In this problem the goal is to minimize summation of distances
between each demand point and its nearest center. Charikar et al. proposed
the first constant time approximation algorithm which its outputs is 62

3 times
the optimal [5]. This improved upon the best previously known result of
O(log p log log p), which was obtained by refining and derandomizing a ran-
domized O(log n log log n)-approximation algorithm of Bartal [4]. The currently
best known approximation ratio is 3 + ε achieved by a local search heuris-
tic of Arya et al. [1]. Moreover, Jain et al. proved that the k-median prob-
lem cannot be approximated within a factor strictly less than 1 + 2/e, unless
NP ⊆ DTIME[nO(log log n)] [12]. This was an improvement over a lower bound of
1 + 1/e [16]. Using sampling technique Meyerson, et al. presented an algorithm
with running time O(p(p2

ε log p)2 log(p
ε log p)). This was the first k-median algo-

rithm with fully polynomial running time that was independent of n, the size
of the data set. It presented a solution that is, with high probability, an O(1)-
approximation, if each cluster in some optimal solution has Ω(n·ε

p) points [14].
Har-Peled and Kushal presented a (p, ε)-coreset of size O(p2/εd) for k-median
clustering of n points in R

d, which its size was independent of n [9]. Also, Har-
Peled and Mazumdar showed that there exist small coresets of size O(pε−d log n)
for the problems of computing k-median clustering for points in low dimension
with (1 + ε)-approximation. Their algorithm has linear running time for a fixed
p and ε [10]. Moreover, using random sampling for k-median problem Badoiu
et al. proposed a (1+ε)-approximation algorithm with 2(p/ε)O(1)

dO(1)n logO(p) n
expected time [3].

166 V. Roostapour et al.

k-center: In this problem the goal is to minimize the maximum distance between
each demand point from its nearest center. Megiddo and Supowit proved that
k-center and k-median are NP-hard even to approximate the k-center problems
sufficiently closely [13]. Hochbaum and Shmoys proposed the first constant factor
approximation algorithm which its output is 2 times the optimal. It is the best
possible algorithm unless P �= NP [11]. It is shown that there is an algorithm
with O(dO(d)n) time for 1-center problem [6]. In the high dimension, Badoiu
and Clarkson presented a (1 + ε)-approximation algorithm which find a solu-
tion in �2/ε	 passes using O(nd/ε + (1/ε)5) total time and O(d/ε) space [2].
Also, for problem of 1-center with outliers, Zarrabi-Zadeh and Mukhopadhyay
proposed a 2-approximation one pass streaming algorithm in high dimension
which for z, as the number of outliers, needs O(zd2) space [19]. Moreover,
Zarrabi-Zadeh and Chan presented an streaming one pass 3/2-approximation
algorithm for 1-center [18]. Badoiu et al. for 1-center problem, extracted a core-
set of size O(1/ε2) which its solution is (1 + ε)-approximation set of points in
R

d [3]. Also, for k-center they presented a 2O((p log p)/ε2).dn time algorithm with
(1 + ε)-approximation solution using previous result.

1-median and 1-center are practical problems which have not been considered
as a two-objective optimization problem yet. Imagine mayor of a small city wants
to build a fire station in a way that minimizes the distance between farthest
building to the station, also since the number of fire engines is limited and each
fire engine must return to the station after a service, it has to minimizes the total
distance of station from all other buildings. As an another example, consider
power distribution network. Due to the dependency of energy leakage to wire
length, minimizing of the longest wire in the network would be regarded as an
essential factor. Also, any decrement in total wire length of network considered
as a second objective. The first objective is 1-median, M(u), the summation of
distances of demand points from center u and the second objective is 1-center,
C(u), the farthest input point from center p. It can be described in mathematical
terms as follow:

Definition 1. 1-Median 1-Center Two-Objective Optimization Prob-
lem: Let P = {p1, . . . pn} be a set of demand points in R

d. Consider functions
M(u) =

∑n
i=1 D(u, pi) and C(u) = max1≤i≤n D(u, pi) are the values of point

u ∈ R
d as a center for 1-median and 1-center objectives respectively for a certain

distance function D. The goal is finding u∗ to minimize the objectives.

We study this problem in one and two dimensions in Manhattan metric. We
assume no input points have the same x or y coordinate.

This is a convex combinatorial multi-objective optimization problem which
has been studied with a different approach called ε-Pareto. In [15] it is shown
that this approximate Pareto curve can be constructed in time polynomial in
the size of the instance and 1/ε, but here we propose a deterministic algorithm
for computing the exact Pareto curve because of specifying the problem.

This paper starts with considering 1-median and 1-center as two-objective of
MOOP in one dimension. We will find the optimal of objectives and in terms of
placement of optimums we will also find the Pareto set in time O(n) (Lemma 1).

Deterministic Algorithm for MOOP 167

(a) n is odd. (b) n is even.

Fig. 1. 1-median optimal.

We continue with a proof for convexity of Pareto set. At the end of second section
we give an algorithm to compute Pareto optimal front of 1-median 1-center
two-objective optimization problem and prove the optimality of the algorithm.
In section three the same problem considered in two dimensional space. First
we find optimums of 1-median objective. After that by using the properties of
farthest point Voronoi diagram we determine the optimum of 1-center. Finally
after limiting the solution space to regions which Pareto set lies on, we specifically
present Pareto solutions. Convexity of Pareto front is proven in Theorem2.

2 One Dimensional

Let P = {x1, x2, . . . xn} be a set of input points in one dimension, the goal is
to minimize M(x) =

∑n
i=1 |x − xi| and C(x) = max1≤i≤n |x − xi|. According

to the properties of the absolute value function and some simple calculations,
it is easy to see that M(x) is a continuous piecewise linear function which its
minimum depends on n. The minimum can either be one point or an interval
which we denote by Mopt in the rest of the paper. Also without loss of generality
we assume that input points are sorted increasingly. In one dimensional space,
Mopt = [mi,mj] ⊂ R for 1 ≤ i, j ≤ n such that mi = xi, mj = xj . For odd
n we have j = i and for even n, j = i + 1. Moreover, the function is strictly
decreasing before its minimum and is strictly increasing after it (Fig. 1). For
C(x) suppose copt ∈ R denote the point which C(copt) is minimum. Obviously
copt = (x1 +xn)/2. Similarly to M(x), C(x) is strictly decreasing before optimal
point and strictly increasing after that.

Lemma 1. Pareto optimal set in one dimensional 1-median 1-center two-
objective optimization problem is the smallest interval consisting of a solution
with 1-center optimal and a solution with 1-median optimal.

Proof. Suppose that n is even (the proof is similar for odd n). As shown in Fig. 2,
there are three different cases:

168 V. Roostapour et al.

(a) copt and Mopt have intersection. (b) copt is on the right side of Mopt.

(c) copt is on the left side of Mopt.

Fig. 2. Pareto set computation in one dimension.

First consider the case that copt and Mopt have an intersection (Fig. 2a). In
this case the intersection point is the only member of Pareto optimal solutions.
Because not only it is optimal in both objectives, but also it is the only point
where C(x) is optimal. So it dominates all the other solutions and no solution
dominates it.

As shown in Fig. 2b there are three regions in the second case. In region
C both functions are strictly increasing. Therefore, copt has the best value in
both objectives. It dominates all solutions of this region. In A, C(x) is strictly
decreasing, thus C(mj) is strictly smaller than 1-center objective of all the other
solutions. Moreover, M(mj) is smaller than or equal with 1-median objective
of the other solutions. Hence mj dominates all solutions of A. Finally we claim
that B is Pareto set. By contradiction, suppose it is not true, then there must be
a point p which dominates q ∈ B. It has to be on the left side or right side of q.
Let p be on the right side, we know that M(x) is strictly increasing in this side.
Hence M(q) < M(p) and it contradicts with dominance of p. Similarly there is
a contradiction if p lies on the left side of q, because C(x) is strictly decreasing
in this side, i.e. C(q) < C(p). This implies that all the solutions that lie on B
are Pareto set.

The proof is similar for the third case which copt is on the left side of Mopt

(Fig. 2c). ��

Lemma 2. Pareto optimal front of one dimensional 1-median 1-center two-
objective optimization problem forms a continuous, convex and piecewise linear
function.

Proof. If there is an intersection between copt and Mopt the lemma is held. Now
suppose there is no such intersection and consider copt is on the right side of
Mopt (resp. on the left side of Mopt). From Lemma 1 for Pareto solutions we
have Ps = [mj , copt] (resp. Ps = [copt,mi]). Since C(x) derivation is constant and
M(x) is piecewise linear in Ps, the diagram of M(x)-C(x) is piecewise linear and
break points are

(
C(xi),M(xi)

)
such that mj ≤ xi ≤ copt (resp. copt ≤ xi ≤ mi).

The absolute value of slope of M(x) increases on each linear piece in Ps. Thus

Deterministic Algorithm for MOOP 169

. . .

C(mj)C(copt)

C(x)

M(x)

Fig. 3. One dimensional 1-median 1-center two-objective Pareto optimal front.

Pareto optimal front is convex (Fig. 3). Also we can conclude that piecewise linear
Pareto front is one-to-one and invertible corresponding to Pareto solutions. ��
Lemma 3. Computing Pareto front of one dimensional 1-median 1-center two-
objective optimization problem requires Ω(n log n) time.

Proof. The proof is based on reduction from sorting problem. By contradic-
tion assume there is an algorithm which return set O =

{(
C(α1),M(α1)

) · · · ,(
C(αm),M(αm)

)}
–lexicographical ordered break points of the piecewise lin-

ear Pareto front function– besides the Pareto solutions interval in o(n log n)
running time. Let A = {a1, . . . , an} is the set of input values of sorting prob-
lem, l = arg min1≤i≤n ai and h = arg max1≤i≤n ai. Suppose b1, . . . , bn+1 and
t are values such that b1 < · · · < bn+1 < al and t = 2 · ah − b1 + 1, then
B = A ∪ {b1, · · · , bn+1, t} is defined in O(n). For the set B as input points of
one dimensional 1-median 1-center two-objective optimization, 1-median optimal
interval is [bn+1, al] and 1-center optimal point is between ah and t. Using lemma
2 we conclude that m = n + 1 and α1 = al < · · · < αm−1 = ah < αm = (b1+t)

2 .
Therefore, we can sort input points by given algorithm which implies that no
algorithms with o(n log n) running time can compute Pareto front of one dimen-
sional 1-median 1-center two-objective optimization problem. ��
Note 1. If the algorithm output the Pareto optimal
front as O =

{(
C(α1),M(α1)

)−(
C(α2),M(α2)

)
, · · · ,

(
C(α2m−1),M(α2m−1)

)−(
C(α2m),M(α2m)

)}
, start points and end points of m segments, since the slope

of each segment is an integer of O(n), the segments can be sorted in O(n).
Therefore, we can have sorted break points of Pareto front function and the
above proof holds.

Theorem 1. Algorithm1 compute one dimensional 1-median 1-center two-
objective Pareto front and Pareto solutions interval in O(n · log n).

170 V. Roostapour et al.

Proof. C(x) can be computed easily in constant time and M(x) can be computed
in O(log n) using binary search, we obtain that line 13 is O(log n) running time.
Therefore, we can conclude that Algorithm1 is O(n · log n). ��
Corollary 1. Pareto front of one dimensional 1-median 1-center two-objective
optimization problem can be computed in θ(n log n).

Algorithm 1. Compute Pareto Optimal Front

Input: Set I s.t. |I| = n
Output: Ps(Pareto solutions), Pf (Pareto front)
1: Sort I increasingly to {x1, x2, . . . , xn}
2: if n is even then
3: b = n

2
+ 1

4: else
5: b = n+1

2

6: end if
7: Ps = [xb, (x1 + xn)/2]
8: Pf = Φ
9: Add

(

C(xb), M(xb)
)

to Pf

10: i = b
11: while xi+1 < (x1 + xn)/2 do
12: i = i + 1
13: Add

(

C(xi), M(xi)
)

to Pf

14: end while
15: Add

(

C(x(x1+xn)/2), M(x(x1+xn)/2)
)

to Pf

16: return Ps, Pf

Due to space limitation, Algorithm1 is just for the case that copt is on the right
side of Mopt. The case that copt is on the left side is similar. If there is an
intersection, solution is obviously the intersection point.

3 Two Dimensional

In this section we consider the problem in R
2. The aim is to find the Pareto

front and Pareto solutions in terms of Mopt and Copt.

3.1 1-Median Objective

For each point p ∈ R
2 we have:

M(u) =
n∑

i=1

‖u − pi‖1

=
n∑

i=1

|ux − pix| +
n∑

i=1

|uy − piy| (1)

Deterministic Algorithm for MOOP 171

−2x + 2y + cn
2 , n2 +2 2y + cn

2 +1, n2 +2 2x + 2y + cn
2 +2, n2 +2

−2x + cn
2 , n2 +1 cn

2 +1, n2 +1 2x + cn
2 +2, n2 +1

−2x − 2y + cn
2 , n2

−2y + cn
2 +1, n2

2x − 2y + cn
2 +2, n2

(a) Number of equations is even, 1-median optimal is a rectangular (blue) region.

−x − y + cn+1
2 ,

n+1
2

x − y + cn+3
2 ,

n+1
2

−x + y + cn+1
2 ,

n+3
2

x + y + cn+1
2 +1, n+3

2

(b) Number of equations is odd, 1-median is a (blue) point.

Fig. 4. 1-median optimal and equation of M(p) in middle cells (Color figure online).

We can observe that we need O(n) time to deterministically minimize Eq. 1.
Moreover, because of the assumption that no points have same coordinate the
optimal of Mopt may be just a point or area of a rectangle.

In the rest of this paper we assume that n is even (all proofs and discussions
are similar when n is odd.). Consider lines y = pix and x = piy such that
1 ≤ i ≤ n which partition the xy-plane into (n + 1)2 cells where boundary
cells are unbounded. The equation of M(p) for points in each cell is the same
because of the absolute value function. Furthermore, for points in a column
(resp. row) equation of

∑n
i=1 |x − pix | (resp.

∑n
i=1 |y − piy |) do not change but

for transformation to upper (resp. right) cell coefficient of y (resp. x) increases
by 2 (Fig. 4).

3.2 1-Center Objective

Let FVD be the farthest point Voronoi diagram of input points in Manhattan
metric, also let RFVD(p) denote the region of FVD which consist of p and

172 V. Roostapour et al.

A

B

C

D

(a) Farthest point Voronoi diagram re-
gions in Manhattan metric.

a

b

A

B

C

D

E

(b) Possible region for site of C is A\E .

Fig. 5. Farthest point Voronoi diagram properties.

SFVD(R) denote the site of region R. According to the definition of 1-center
objective, C(p) is ‖p−SFVD(RFVD(p))‖1. Besides the FVD partition the plane
into at least two and at most four regions (Fig. 5a).

According to the structure of FVD, it is impossible for regions A and C to
have a common site. However, either B (resp. D) can merge with A (resp. C)
or B (resp. D) can merge with C (resp. A), i.e. B and D cannot merge with a
common region simultaneously.

Proposition 1. Site of region C is in A\E. Otherwise distances between points
on segment ab and SFVD(C) are not equal and ab is not an edge of FVD (Fig. 5b).

From Proposition 1 it can be concluded that C(p) for p ∈ C is equal to distance
of p from segment ab add up to distance between segment ab and SFVD(C).

Proposition 2. As shown in Fig. 6a distances of m1,m2 ∈ A from line �1 is
equal to their distances from segment ab. For point m1 both distances are obvi-
ously the same and are equal to ‖m1 −m′

1‖1. For point m2 we have Δpqm′
2 and

Δqm′
2a as equal isosceles triangles. Therefore, segments qm′

2 and qa are equal.
Hence ‖m2 − m′

2‖1 = ‖m2 − a‖1.
The following two propositions determine the equation of C(p) in the plane and
proof that it depends on which region of FVD includes p.

Proposition 3. For point p ∈ C (resp. p ∈ A), C(p) = kopt + c − px − py (resp.
C(p) = kopt − c + px + py) where c is y-intercept of �1 (Fig. 6b).

Proof. Suppose equation of line �1 is y = −x + c and distance between site
of C and segment ab is kopt, then projection of point p = (x, y) on �1 is p′ =
(c−y+x

2 , c+y−x
2). Using Propositions 1 and 2 can obtain that:

C(p) = kopt +‖p−p′‖1 = kopt +c−px −py. ��

Deterministic Algorithm for MOOP 173

a

b

m′
2

m′
1

q

p

X

Y

m1

m2

�1

(a) Property of 1-center optimal seg-
ment in Manhattan metric.

p

p′

a

b

A

B

C

D

�1

(b) Projection of points to line 1.

Fig. 6. Property of 1-center optimal segment in Manhattan metric.

Proposition 4. In Fig. 7a since site of D is in hatched region or on its border,
for point q ∈ D we have C(q) as the distance of point a from SFVD(D) add
up to distance between point a and point q. Also since point a is an FVD vertex,
we know that distance of point a from SFVD(D) is equal to its distance from
SFVD(C) and as equal to kopt, hence:

C(q) = kopt + ‖a − q‖1 = kopt − c1 − qx + qy

c1 = ay − ax

Similarly it can be proven that for q ∈ B:

C(q) = kopt + ‖b − q‖1 = kopt + c2 + qx − qy

c2 = by − bx.

Corollary 2. According to Propositions 3 and 4 we can conclude that points in
A and C which are on segments parallel to segment ab have the same 1-center
objective value. Also for B and D these points are on segments perpendicular to
ab. Moreover, points on ab are optimal of 1-center objective (Fig. 7b).

3.3 Pareto Optimal Solutions

Suppose Mopt and Copt are calculated. Obviously if they have intersection, it is
the set of Pareto solutions. Hence in the rest of this section we assume that Mopt

and Copt have no intersection.

Possible Region for Pareto Optimal Set. Here the goal is to find the region
P such that its boundary points dominate all points of the plane, i.e. Pareto set
is definitely in P.

174 V. Roostapour et al.

a

b

AD

B

C

(a) Possible region for site of D.

a

b

A

B

C

D

(b) Points with the same 1-center
value.

Fig. 7. Possible region for site of D.

According to the optimal of M(p) and C(p), three cases are possible. In the
first case Mopt is in regions A or C, in the second case Mopt is in regions B or
D and in the third case Mopt intersects with the axis aligned the edges of FVD.
For the first case (Fig. 8a) let e be the lower left point of Mopt and let ef and ed
be the vertical and horizontal segments hitting the edges of FVD. For all points
u on line of ed and w on half-line segment �1 perpendicular to �ed, C(u) < C(w)
and M(u) ≤ M(w). Thus u dominates all points on �1. Similarly for point q on
�ef and w on half-line segment �2, q ≺ w. There are similar results for other
edges of adefb which make us able to conclude that polygon adefb is P.

Second and third cases are similar and we consider them simultaneously
(Fig. 8b and c). Let bcde be in region B. Obviously above discussion holds for
points p, q, r, s and half-line segments �1, �2, �3 and �4 respectively. Moreover, a
dominates all points of D, any point t on ab dominates all points on horizontal
(resp. vertical) half-line segment which starts from t and pass through C (resp. A)
and b dominates all points on ab. Therefore, we can conclude that points on the
border of bcde dominate all points outside of it and bcde is P. It is the same
when bcde is in D.

Pareto Optimal Solutions. We have shown that M(p) partitions the plane
to cells in which equation of M(p) is known. According to this partitioning and
Copt, seven cases are possible. First three cases happen when Mopt is in A or C
of FVD. Next three cases occur when Mopt is in B or D. Last case occurs when
Mopt and axis aligned edges of FVD have intersection.

The claim is that cells in P whose equations are M(p) = αpx + βpy + c such
that α = β, are part of Pareto set.

Deterministic Algorithm for MOOP 175

a

b

e

f

d u

�1

t�6

s

�4

�5 s

�3

q �2

P

B
C

D

Mopt

A

(a) Mopt is in A.

b

d

c

e
q

�2

r�3

s

�4

p �1

A

B
C

P

Mopt

(b) Mopt is in B.

b c

q

d
e

�2

r�3
s

�4

p �1

A

B
C

P Mopt

(c) Mopt is on the axis aligned edge of
FVD.

Fig. 8. Mopt is in A.

Proposition 5. Let P be in A. For each cell with M(p) = αpx + βpy + c where
α/β > 1, points on the right and bottom edges dominate other points of the cell.

Proof. For each point p in the cell, points with the same 1-median values are
on a line which is parallel to y = −α/β. This line will hit the border of the cell
in points p′ and p′′ such that p′

x > p′′
x, i.e. p′ is on bottom or right edge. Since

α/β > 1 we have C(p′) < C(p) < C(p′′) and p′ dominates p and p′′. ��
Proposition 6. Suppose P is in A (resp. C). In P let q be a point in a cell with
equation M(q) = αqx + αqy + c such that α < 0 (resp. α > 0). Suppose � be the

176 V. Roostapour et al.

line passing through q with equation y = −x + c′. By extending Proposition 5,
for all p on � or bellow (resp. on � or above) we have M(q) ≤ M(p). The same
result holds for B and D when � is y = x + c′.

The following lemma introduces special cells in P which are part of Pareto set.
In the rest of this paper we refer to them as Pareto cells.

Lemma 4. Suppose P is in A (resp. C). All points like p of cells with M(p) =
αpx + βpy + c such that α = β and α < 0 (resp. α > 0), are all or part of
Pareto set.

Proof. Here we assume P ⊂ A but the proof is similar when P ⊂ C. Consider
p ∈ P such that M(p) = αpx + αpy + c and α < 0. Suppose q dominates p and
� be a line passing through p with y = −x + c′ equation. if q is above � then
C(q) is greater than C(p). Therefore, q is on or bellow �. By Proposition 6, if q is
bellow � it means M(p) < M(q) otherwise q is on �; but if both are in the same
cell it concludes that C(p) = C(q) and M(p) = M(q), otherwise M(p) < M(q).
We can obtain from these contradictions that no point dominates p. ��

Similar to Lemma 4, cells with M(p) = αpx + βpy + c such that β = −α and
α > 0 (resp. α < 0) are Pareto cells in region B (resp. D).

For intersection of a Pareto cell with edges of FVD several cases are possible.
If the Pareto cell intersects with a horizontal (resp. vertical) edge, segment from
b (resp. a) to border of the Pareto cell will be the rest of Pareto solutions, we
refer to this segment as Pareto segment. Suppose point q dominates p ∈ Pareto
segment and let � be the line passing through p and parallel to y = −x, then q
must be on or below this line, otherwise C(q) > C(p). But if q is on or below �,
since p is in a cell that α/β > 1, M(p) < M(q). If Pareto cell intersects with ab,
the part of cell which is in P is also Pareto cell (Fig. 9).

Lemma 5. Points of a Pareto cell in solution space are a segment in objective
space.

Proof. In a Pareto cell M(p) = αpx + αpy + c (α < 0) and C(p) = px + py + c′.
Therefore, M(p)−αC(p) = c′′. This implies that Pareto cell in solution space is
a segment with Y − αX = c′′ equation in objective space. It is easy to see that
this holds for Pareto segments. ��
Theorem 2. Pareto Front of two dimensional 1-median 1-center two-objective
optimization problem is continuous, convex and piecewise linear function.

Proof. By Lemma 5 we can conclude that Pareto optimal front is piecewise linear.
Since in the sequence of Pareto cells from Mopt to Copt each cell have a common
point with the next cell, the sequence of segments of Pareto front is continuous.
Moreover, since in each cell the coordinate of x and y in M(p) is smaller than
the previous ones, slope of segment of that cell in objective space will be bigger
than segments of previous cells which guarantees convexity of Pareto front. ��
Corollary 3. Finding Pareto front and Pareto Solution set of two dimensional
1-median 1-center two-objective optimization problem is θ(n log n).

Deterministic Algorithm for MOOP 177

B

C

D
A

B

C

D
Mopt

Mopt

Mopt

Fig. 9. Intersection of Pareto cells with edges of FVD

4 Conclusion and Future Work

In this paper we introduced an important and useful multi-objective optimization
problem with 1-median and 1-center in Manhattan metric as its objectives. We
considered the problem in one and two dimensional space. We also determined
the Pareto optimal front and Pareto set simultaneously. Furthermore we proved
finding Pareto front and Pareto solution set of proposed problem is θ(n log n).

In higher dimensions, considering Manhattan metric, similar to two dimen-
sional space we can show that optimal of 1-median, i.e. M(x), will be a d dimen-
sional hypercube. Also, it can be computed in O(dn). For optimal of 1-center,
i.e. C(x), the propositions are not straight forward. However finding the small-
est circumferential hypercube drives us to the hyperplane which is the locus
of cube’s center (optimal of 1-center). Moreover, it seems that farthest point
Voronoi diagram has the most 2d regions. Thus we guess the Pareto optimal set
is very similar to two dimensional space; i.e. smallest interval of hypercubes from
M(x) to C(x) which are connected by their corners in direction perpendicular
to locus of optimal of C(x).

In Euclidean metric, we think this problem will be much harder and the
Pareto solutions cannot be computed exactly. In this case we have to approximate
Pareto solutions and Pareto front. Moreover, this approximation can be followed
for harder objectives such as 2-median and 2-center.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

178 V. Roostapour et al.

2. Badoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for
Industrial and Applied Mathematics, pp. 801—802 (2003)

3. Bādoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Pro-
ceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing,
pp. 250–257. ACM (2002)

4. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In: Proceedings of 37th Annual Symposium on Foundations of Computer
Science, pp. 184–193. IEEE (1996)

5. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. In: Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, pp. 1–10. ACM (1999)

6. Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimiza-
tion problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)

7. Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for
Solving Multi-objective Problems, vol. 242. Springer, Verlag (2002)

8. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16.
Wiley, Chichester (2001)

9. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering. In:
Proceedings of the Twenty-First Annual Symposium on Computational Geometry,
pp. 126–134. ACM (2005)

10. Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-median clustering and
their applications, pp. 291–300 (2004)

11. Hochbaum, D., Shmoys, D.: A best possible approximation algorithm for the
k-center problem. Math. Oper. 10, 180–184 (1985)

12. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location
problems. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory
of Computing, pp. 731–740. ACM (2002)

13. Megiddo, N., Supowit, K.J.: On the complexity of some common geometric location
problems. SIAM J. Comput. 13(1), 182–196 (1984)

14. Meyerson, A., O’Callaghan, L., Plotkin, S.: A k-median algorithm with running
time independent of data size. Mach. Learn. 56(1–3), 61–87 (2004)

15. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of 41st Annual Symposium on Foun-
dations of Computer Science, pp. 86–92. IEEE (2000)

16. Shmoys, D.B.: Approximation algorithms for facility location problems. In:
Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 27–32. Springer,
Heidelberg (2000)

17. Tansel, B.C., Francis, R.L., Lowe, T.J.: State of the artlocation on net- works: a
survey. part i: the p-center and p-median problems. Manage. Sci. 29(4), 482–497
(1983)

18. Zarrabi-Zadeh, H., Chan, T.M.: A simple streaming algorithm for minimum enclos-
ing balls. In: CCCG. Citeseer (2006)

19. Zarrabi-Zadeh, H., Mukhopadhyay, A.: Streaming 1-center with outliers in high
dimensions. In: CCCG, pp. 83–86 (2009)

Author Index

Bakhshesh, Davood 44
Balkir, Esma 1
Berthomieu, Bernard 90
Biniaz, Ahmad 56
Boomari, Hossein 72
Bose, Prosenjit 56

Coecke, Bob 1

Dal Zilio, Silvano 90
Davoodi, Mansoor 164
Dawar, Anuj 23

Farshi, Mohammad 44

Gheibi, Amin 105
Ghodsi, Mohammad 30

Hon, Wing-Kai 121

Kiarazm, Iman 164
Kloks, Ton 121
Kotek, Tomer 135

Le Roux, Stéphane 147
Liu, Hsiang-Hsuan 121

Maheshwari, Anil 56, 105
Makowsky, Johann A. 135
Mehrizi, Mohammad Abouei 30

Roostapour, Vahid 164

Sack, Jörg-Rüdiger 105
Sadrzadeh, Mehrnoosh 1
Smid, Michiel 56

Tabatabaei, Azadeh 30

Wang, Hung-Lung 121

Zarei, Alireza 72

	Preface
	Organization
	Abstracts of Invited Talks
	New Directions in Parameterized Algorithmics
	Distributional Sentence Entailment Using Density Matrices
	On Symmetric and Choiceless Computation

	Contents
	Distributional Sentence Entailment Using Density Matrices
	1 Introduction
	2 Background
	3 Density Matrices as Elements of a Compact Closed Category
	4 Using Density Matrices to Model Meaning
	5 From Meanings of Words to the Meanings of Sentences Passage
	6 Truth Theoretic Examples
	6.1 Entailment Between Nouns
	6.2 Entailment Between Sentences in One Dimensional Truth Theoretic Space
	6.3 Entailment Between Sentences in Two Dimensional Truth Theoretic Space

	7 Distributional Examples
	7.1 Entailment Between Nouns
	7.2 Entailment Between Sentences

	8 Conclusion and Future Work
	References

	On Symmetric and Choiceless Computation
	References

	Robots' Cooperation for Finding a Target in Streets
	1 Introduction
	2 Related Works
	3 The Sensing Model and Communications
	3.1 Gap Sensor
	3.2 Communications
	3.3 Motion Primitive

	4 Preliminaries
	5 Algorithm
	5.1 Critical Events
	5.2 Message Events
	5.3 Analysis

	6 Conclusion
	References

	Some Properties of Continuous Yao Graph
	1 Introduction
	2 cY() is Fault-Tolerant
	3 cY() is Not Self-approaching
	4 Concluding Remarks
	References

	Plane Geodesic Spanning Trees, Hamiltonian Cycles, and Perfect Matchings in a Simple Polygon
	1 Introduction
	1.1 Preliminaries
	1.2 Non-crossing Structures in the Plane
	1.3 Our Contributions

	2 Plane Geodesic Hamiltonian Cycles
	2.1 Sweep-Path Algorithm
	2.2 Plane Geodesic Hamiltonian Cycles

	3 Plane Geodesic Trees
	4 Balanced Geodesics
	5 Plane Colored Geodesic Matchings
	References

	Visibility Graphs of Anchor Polygons
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Spiral Polygons
	2.2 Definitions
	2.3 Basic Facts

	3 Recognizing Algorithm: Determining Joint Vertices
	3.1 Finding Joint Vertices B and C
	3.2 Determining Joint Vertex A

	4 Reconstruction Algorithm
	4.1 Anchor Polygon Decomposition
	4.2 Reconstructing Sub-polygons

	5 Complexity Analysis
	References

	Automating the Verification of Realtime Observers Using Probes and the Modal mu-calculus
	1 Introduction
	2 The Fiacre Language
	3 Timed Traces and First-Order Formulas Over Traces
	4 Visual Verification of Observers
	5 Automating the Visual Verification Method
	6 Related Work and Conclusion
	References

	Minimizing Walking Length in Map Matching
	1 Introduction
	2 Preliminaries and Definitions
	3 Algorithm
	4 Improvement
	5 Weighted Non-planar Graphs
	6 Conclusion
	References

	Rainbow Domination and Related Problems on Some Classes of Perfect Graphs
	1 Introduction
	2 k-Rainbow Domination on Cographs
	3 Weak {k}-L-Domination on Trivially Perfect Graphs
	4 2-Rainbow Domination of Interval Graphs
	5 `39`42`"613A``45`47`"603ANP-Completeness for Splitgraphs
	References

	Efficient Computation of Generalized Ising Polynomials on Graphs with Fixed Clique-Width
	1 Introduction
	2 Preliminaries
	2.1 MSOL-Ising Polynomials
	2.2 MSOL-Ising Polynomials vs MSOL-Polynomials

	3 Main Result
	3.1 Runtime

	4 Conclusion
	References

	Infinite Subgame Perfect Equilibrium in the Hausdorff Difference Hierarchy
	1 Introduction
	2 Technical Background
	3 Many Players with Linearly Ordered Preferences
	4 Two Players with Strict Weak Order Preferences
	References

	Deterministic Algorithm for 1-Median 1-Center Two-Objective Optimization Problem
	1 Introduction
	2 One Dimensional
	3 Two Dimensional
	3.1 1-Median Objective
	3.2 1-Center Objective
	3.3 Pareto Optimal Solutions

	4 Conclusion and Future Work
	References

	Author Index

