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ETAPS Foreword

Welcome to the proceedings of ETAPS 2016, which was held in Eindhoven, located in
“the world’s smartest region,” also known as the Dutch Silicon Valley. Since ETAPS’
second edition held in Amsterdam (1999), ETAPS returned to The Netherlands this
year.

ETAPS 2016 was the 19th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, consisting of five constituting conferences (ESOP, FASE, FoSSaCS, TACAS,
and POST) this year. Each conference has its own Programme Committee and its own
Steering Committee. The conferences cover various aspects of software systems,
ranging from theoretical computer science to foundations to programming language
developments, analysis tools, formal approaches to software engineering, and security.
Organizing these conferences in a coherent, highly synchronized conference program,
enables attendees to participate in an exciting event, having the possibility to meet
many researchers working in different directions in the field, and to easily attend the
talks of various conferences. Before and after the main conference, numerous satellite
workshops took place and attracted many researchers from all over the globe.

The ETAPS conferences received 474 submissions in total, 143 of which were
accepted, yielding an overall acceptance rate of 30.2 %. I thank all authors for their
interest in ETAPS, all reviewers for their peer-reviewing efforts, the Program Com-
mittee members for their contributions, and in particular the program co-chairs for their
hard work in running this intensive process. Last but not least, my congratulations to all
the authors of the accepted papers!

ETAPS 2016 was greatly enriched by the unifying invited speakers Andrew Gordon
(MSR Cambridge and University of Edinburgh, UK), and Rupak Majumdar (MPI
Kaiserslautern, Germany), as well as the conference-specific invited speakers (ESOP)
Cristina Lopes (University of California at Irvine, USA), (FASE) Oscar Nierstrasz
(University of Bern, Switzerland), and (POST) Vitaly Shmatikov (University of Texas
at Austin, USA). Invited tutorials were organized by Lenore Zuck (Chicago) and were
provided by Grigore Rosu (University of Illinois at Urbana-Champaign, USA) on
software verification and Peter Ryan (University of Luxembourg, Luxembourg) on
security. My sincere thanks to all these speakers for their inspiring and interesting talks!

ETAPS 2016 took place in Eindhoven, The Netherlands. It was organized by the
Department of Computer Science of the Eindhoven University of Technology. It was
further supported by the following associations and societies: ETAPS e.V., EATCS
(European Association for Theoretical Computer Science), EAPLS (European Asso-
ciation for Programming Languages and Systems), and EASST (European Association
of Software Science and Technology). The local organization team consisted of Mark
van den Brand, Jan Friso Groote (general chair), Margje Mommers, Erik Scheffers,
Julien Schmaltz, Erik de Vink, Anton Wijs, Tim Willemse, and Hans Zantema.



The overall planning for ETAPS is the main responsibility of the Steering
Committee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), and Tarmo Uustalu (Tallinn). Other members of the Steering Com-
mittee are: Parosh Abdulla (Uppsala), David Basin (Zurich), Giuseppe Castagna
(Paris), Marsha Chechik (Toronto), Javier Esparza (Munich), Jan Friso Groote
(Eindhoven), Reiko Heckel (Leicester), Marieke Huisman (Twente), Bart Jacobs
(Nijmegen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Kim G. Larsen (Aalborg),
Axel Legay (Rennes), Christof Löding (Aachen), Matteo Maffei (Saarbrücken),
Pasquale Malacaria (London), Tiziana Margaria (Limerick), Andrzej Murawski
(Warwick), Catuscia Palamidessi (Palaiseau), Frank Piessens (Leuven), Jean-Francois
Raskin (Brussels), Mark Ryan (Birmingham), Julia Rubin (Massachussetts), Don
Sannella (Edinburgh), Perdita Stevens (Edinburgh), Gabriele Taentzer (Marburg), Peter
Thiemann (Freiburg), Luca Vigano (London), Igor Walukiewicz (Bordeaux), Andrzej
Wąsowski (Copenhagen), and Hongseok Yang (Oxford).

I sincerely thank all ETAPS Steering Committee members for all their work in
making the 19th edition of ETAPS a success. Moreover, thanks to all speakers,
attendees, organizers of the satellite workshops, and Springer for their support. Finally,
a big thanks to Jan Friso and his local organization team for all their enormous efforts
enabling ETAPS to take place in Eindhoven!

January 2016 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President
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Preface

TACAS 2016 was the 22nd edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series. The
conference took place during April, 2016, on the campus of the Eindhoven University
of Technology as part of the 19th European Joint Conferences on Theory and Practice
of Software (ETAPS 2016).

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building systems.

The research areas covered by TACAS 2016 include specification and verification
techniques; software and hardware verification; analytical techniques for real-time,
hybrid, or stochastic systems; analytical techniques for safety, security, or depend-
ability; model-checking; theorem-proving; SAT and SMT solving; static and dynamic
program analysis; testing; abstraction techniques for modeling and verification; com-
positional and refinement-based methodologies; system construction and transforma-
tion techniques; tool environments and architectures; tool demonstrations, as well as
applications and case studies.

As in former years, TACAS 2016 solicited four types of submissions:

– Research papers, identifying and justifying a principled advance to the theoretical
foundations for the construction and analysis of systems, where applicable sup-
ported by experimental validation

– Case study papers, reporting on case studies and providing information about the
system being studied, the goals of the study, the challenges the system poses to
automated analysis, research methodologies and approaches used, the degree to
which goals were attained, and how the results can be generalized to other problems
and domains

– Regular tool papers, presenting a new tool, a new tool component, or novel
extensions to an existing tool, with an emphasis on design and implementation
concerns, including software architecture and core data structures, practical appli-
cability, and experimental evaluations

– Short tool demonstration papers, focusing on the usage aspects of tools

This year, 175 papers were submitted to TACAS, among which 157 were research,
case study, or tool papers, and 18 were tool demonstration papers. After a rigorous
review process followed by an online discussion, the Program Committee accepted 44
full papers and nine tool demonstration papers.

This volume also includes an invited paper by the ETAPS unifying speaker Rupak
Majumdar titled “Robots at the Edge of the Cloud.”



TACAS 2016 also hosted the 5th International Competition on Software Verification
(SV-COMP), chaired and organized by Dirk Beyer. The competition had a record
number of participants: 35 verification tools from 16 countries were submitted for the
systematic comparative evaluation. This volume includes an overview of the competi-
tion results, and short papers describing 14 of the participating tools. These papers were
reviewed by a separate Program Committee (PC); each of the papers was assessed by
four reviewers. Two sessions in the TACAS program were reserved for the presentation
of the results: the summary by the SV-COMP chair and the participating tools by the
developer teams.

Many people worked hard and offered their valuable time generously to make
TACAS 2016 successful. First of all, the PC chairs would like to thank the 493
researchers from 30 countries who worked hard to complete and submit papers to the
conference. In all, 525 reviews (three for each submission) were written by PC
members and their 227 external reviewers in order to select the papers to be presented
at the conference. Steering Committee members also deserve a special recognition.
Without them, a competitive and peer-reviewed international symposium like TACAS
simply could not take place. Also, we would like to express a special thanks to Joost-
Pieter Katoen, who answered many of our questions during the preparation of TACAS
2016.

Finally, we thank EasyChair for providing us with the infrastructure to manage the
submissions, the reviewing process, the PC discussion, and the preparation of the
proceedings.

January 2016 Marsha Chechik (TACAS PC Co-chair)
Jean-Francois Raskin (TACAS PC Co-chair)

Radu Mateescu (TACAS Tools Chair)
Dirk Beyer (SV-COMP Chair)
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Abstract. Computers have come a long way from their roots as fast
calculating devices. We live in a world in which computers collect, store,
and analyze huge volumes of data. We are seeing the beginnings of a new
revolution in the use of computers. In addition to collecting and analyz-
ing data, computers are influencing the physical world and interacting
autonomously, and in complex ways, with large groups of humans. These
cyber-physical-social systems have the potential to dramatically alter the
way we lead our lives. However, designing these systems in a reliable
way is a difficult problem. In this paper, we enumerate a set of research
challenges that have to be overcome in order to realize the potential of
cyber-physical-social systems.

1 Motivation

The computer has come a long way from its initial role as a fast calculating
device. We live in a world where a large number of geographically distributed and
physically embedded computing devices increasingly participate in our everyday
actions. Our digital activities generate and consume data at unprecendented vol-
umes. This data is collected, stored, and combined in novel ways. Storage, com-
munication, and processing of this data has moved out of individual workstations
into large ensembles of geographically distributed computers (“cloud comput-
ers”) connected via the Internet and dynamically managed for data processing
tasks. Data processing in the cloud has revolutionized the way we approach
large-scale design and deployment of software systems. Over the past decade, a
similar revolution is happening in the monitoring of the physical world through
large swarms of sensors wirelessly connected with each other and with a cloud
computing backbone (called variously “Internet of Things” (IoT) or “sensory
swarm” [31]).

The next wave in this progression is in large-scale interaction with the physi-
cal world through autonomous systems with actuation capabilities and symbiotic
relationships of these autonomous systems with large groups of humans. These
autonomous systems, call them robots, will connect wirelessly with each other
as well as with the cloud and the sensor swarm. They will interact with large
groups of people, and their actuation capabilities will allow them to modify the
state of the physical world. For the purposes of this paper, and keeping with
marketing practice, let us call this next progression the “Internet of Robots”
(IoR).
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 3–13, 2016.
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The notion of “closing the control loop” on sensor networks is not novel
(see, e.g., [44]), and indeed, the whole field of cyber-physical systems studies
the interaction between software and the physical world. However, the potential
for IoR today, with the computing and sensing infrastructure available through
the cloud and IoT, is much greater. On the one hand, we can expect systems
with a large number of dynamically interacting autonomous agents co-ordinating
through the cloud. On the other hand, we can expect systems in which software
agents and humans co-operate towards a common goal. In contrast to the “tra-
ditional” view where the human is in charge and the machines perform his or
her bidding, the IoR vision is that human agents and software or robotic agents
interact equally, or even with robots in charge.

While the IoR vision holds enormous promise, as with other grand visions,
realizing it requires overcoming a number of very hard research problems. In this
paper, we discuss some challenges for IoR, and posit that implementing the IoR
vision is a grand challenge for computer science. We structure the problems in
three core directions: challenges in the correct design of core algorithmic com-
ponents (controller synthesis), challenges in software engineering, and challenges
in human-robot interaction.

2 Formal Design of Control Systems

At the core of IoR is the notion of feedback control of mixed discrete-continuous
dynamical systems. Feedback control has a long history in both the continuous
world of dynamical systems and in the discrete world of automata theory.

In continuous control, one starts with a model of the system in continuous
time, where the continuous state of the system evolves based on the current state,
a control input, and a disturbance input. The goal is to provide feedback to the
system through the control input, that depends on the sensed value of the state,
so that the controlled system has “good” properties. Typically, the properties
studied in control are stability or performance. When restricted to these prop-
erties, under suitable restrictions on the dynamics, methods from continuous
control theory show how to synthesize the feedback controller.

In control of discrete systems, usually called reactive synthesis, one models
the system as a two-player game on graphs, and the goal is to come up with
a strategy, a state machine that looks at the history of the game and defines
the next move in the game, so that the outcome satisfies “good” properties.
Properties are typically specified in a temporal logic such as linear-time temporal
logic (LTL) or using automata [17].

The combination of continuous and discrete dynamics leads to cyber-physical
systems (CPS). In a cyber-physical system, the discrete component ranges over
nodes of a graph —as in reactive synthesis— and for each node of the graph,
there is a separate continuous dynamics. Cyber-physical systems arise in control
problems when one mixes the higher-level logical decision making (e.g., planning
a trajectory to reach a goal while avoiding obstacles) with lower-level dynamics
(e.g., navigation). At the level of the continuous dynamics, the specification is,
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as before, related to stability and performance. At the level of the discrete state,
the specification is, as in reactive synthesis, given as a temporal logic formula.

The controller for a cyber-physical system combines a strategy at the discrete
level with strategies at the continuous level. Traditionally, such controllers would
be designed “by hand” and verified through extensive simulation or through sym-
bolic techniques such as model checking. Recent research attempts to synthesize
controllers directly from the specification and the model [30,34,46]. Typically,
these synthesis techniques compute a finite-state abstraction of the continuous
dynamical system and apply reactive synthesis to the abstraction. One step of
the discrete strategy —for example, a request to go from one abstract state to
the next— can be refined to a continuous controller in the original continuous
system. Under certain assumptions on the dynamics, one can show that the
original and the abstracted systems are related by an ε-bisimulation relation
[24,46]. This guarantees that controllers synthesized on the abstraction can be
implemented on the original system.

While initial results on controller synthesis through abstractions is encour-
aging, there are several difficult technical challenges before the techniques can
be applied more widely and to larger classes of systems. We outline some key
research questions.

Scalability of Synthesis. The major challenge in using formal synthesis techniques
is their scalability. The abstraction of a continuous system yields a discrete
system which is exponential in the dimension. In addition, reactive synthesis
algorithms, even with symbolic implementations, are expensive (cubic for broad
classes of properties [13], but doubly exponential for full linear temporal logic
[37]). When the modeling paradigm is extended to include probabilities or other
numerical parameters, the problem is even harder.

Recent approaches attempt to get around the scalability by adapting receding
horizon control techniques for temporal logic [52]. There are also some interesting
initial approaches based on deductive approaches [20], compositional synthesis
[38,41] and hierarchical decompositions [43]. In addition to techniques for state-
space reduction, an important open direction is to handle dynamically changing
specifications in open environments.

Notions of Robustness. A system is robust if small changes to its inputs cause
small changes in its outputs. Robustness is a classical notion in control theory
and a natural requirement when designing control systems. However, appropriate
notions of robustness are difficult to obtain for cyber-physical systems. Physical
systems are modeled and analyzed using continuous mathematics and concepts
such as continuity are readily available to help describe robustness. On the other
hand, discrete systems are modeled and analyzed using discrete mathematics for
which it is far less obvious what a meaningful notion of robustness can be. There
are several current attempts to define notions of robustness [11,47]. However, a
challenge is to come up with a definition that is broadly applicable and has good
algorithmic properties.
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Quantitative Properties. Related to robustness are quantitative specification lan-
guages for synthesis. A specification in LTL classifies system behaviors as “true”
or “false.” In many cases, such specifications are too strict, and it is preferable
to use a quantitative formalism that associates a numerical score with system
behaviors. Recent work in the theory of quantitative languages and synthesis
[12,14,16], in quantitative logics such as signal temporal logic (STL) [21], and in
metrics on systems such as the Skorokhod metric [19,35], move in this direction.
The use of quantitative specifications also opens the door to more data-driven
approaches that optimize or learn system parameters [23,51]. Combinations of
learning with synthesis is an interesting emerging area.

System Co-design. The controller is one component of a complex stack integrat-
ing sensing, computation, communication, and actuation running several control
loops at various different levels of granularity. An end-to-end design, which co-
designs the controller along with other components of the system can achieve
better resource usage than one which designs each component in isolation. For
example, by designing a controller robust to intermittent steps in which the
control input is not computed, one can schedule more processes in the same
processor without sacrificing control performance [36,42,45]. At the same time,
co-design techniques may involve loss of modularity in the design. It is a challeng-
ing question whether tradeoffs between design choices of different components
can be captured in an abstract interface —controller-scheduler co-design is one
example where this is possible [42].

Co-design also requires reasoning about the underlying architecture. For
example, in order to guarantee a certain system performance, it may be nec-
essary to provide bounds on worst case execution times or worst case latencies.
This is a hard problem, and may require a fundamental redesign of architectural
elements for cyber-physical systems [7,33].

Co-design considers the various algorithmic components of a system together.
A new set of challenges arise when we consider the software implementation of
a system, which we describe next.

3 Programming Model and the Software Stack

Formal synthesis and verification is a key step towards more reliable and large-
scale IoR systems. However, synthesis of controllers is only the “core” algorithm.
For end-to-end development, these algorithms must be embedded in a software
stack. We now discuss the challenges of developing programming models and
software infrastructure for IoR applications.

We start with an analogy in the cloud computing scenario. Cloud comput-
ing abstracts the computing, distribution, communication, and storage needs
of a large-scale, distributed application. The end user can write computational
tasks focusing on the functionality. The cloud infrastructure manages physical
resources for the computation such as compute-servers, distribution, and fault
tolerance. The cloud can dynamically provision additional resources for computa-
tion and storage, or distribute or replicate a data structure across geographically
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separated infrastructure. However, for the most part, this is transparent to the
user application.

A dominant application on the cloud is statistical analysis of large data sets.
For this application, there is a declarative programming model (querying data
in specialized languages such as Pig Latin [5] or HiveQL [4]) that compiles into
a computational model (map-reduce [3,18] or Spark [6]) for fast execution on
parallel machines. The programmer’s view of the data is abstracted to centralized
database tables, and the query is made at a logical level. The infrastructure takes
care of executing the “program” on distributed and dynamic infrastructure. This
includes not only scheduling parallel jobs for low latency but also fault tolerance
and replication. While not a panacea for all applications, the abstraction enables
the separation between the programming abstraction (logical operations on a
dataset) and the infrastructure on which the operations are performed.

We lack a corresponding “programming model” for large-scale IoR applica-
tions. Currently, applications are written in low level programming languages
and use ad hoc mechanisms to implement layering between logical task models
and the underlying continuous controllers. Communication is mediated through
middleware such as ROS [39], but the resulting message-passing programs are
difficult to design and verify, especially when the number of components grow
large and when components can dynamically enter or leave the system.

A key design challenge for IoR is to develop programming tools for cyber-
physical systems. We outline some research challenges in this direction.

Programming Models and Run-time Systems. One major success of programming
models we use today is that they abstract from the real world. The “step” of a
Turing machine is a purely logical step. When we program, we do not, for most
applications, reason about the details of the physical world. This abstraction
breaks when we design cyber-physical systems where the controller must react
to events within a given (real) time bound. Indeed, dealing with the real world
and real time is one reason designing and verifying these systems is so difficult.
The difficulty is compounded when we consider large ensembles of autonomous
agents concurrently sensing and actuating the physical world. It is yet unclear
what programming models will enable ordinary developers design large-scale IoR
applications. One possibility is the programming idiom of actors [1], extended
to faithfully represent interactions in the physical world. A different possibility
is a specialized programming model such as the globally asynchronous locally
synchronous (GALS) model that abstracts out the part of the timing behavior
that the underlying compiler and run time systems enforce [9,15,49]. Very likely,
declarative techniques to specify controller behaviors —e.g., in LTL or STL—
will be integrated within the programming model; the compiler will be expected
to generate the code that enforces these behaviors at run time.

Developing languages, compilers, and run-time systems for large-scale sens-
ing, co-ordination, computing, and actuation is an outstanding open problem.

Managing Uncertainty. A second challenge is to incorporate uncertainty as a
first-class construct in the language. IoR applications will necessarily work in
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environments that are not completely specified, or whose behaviors may change
over time in unexpected ways. There is a lot of recent work on introducing uncer-
tainty and probabilistic reasoning in programming languages [26,27]. Integration
of uncertainty management with controller synthesis in a programming model is
likely to be the next step.

Managing Dynamic Resources. Embedded control systems are currently pro-
grammed with well-defined resource requirements at compile time. Since their
correctness depends on real-time requirements, a conservative static analysis
bounds required resources and pre-allocates these resources. Such a program-
ming model can be overly pessimistic in dynamic environments where require-
ments change and resources can be provisioned dynamically. It is a challenge
to set up a programming model and run-time where critical resources are stat-
ically allocated (to ensure basic safety) but other resources can be dynamically
provisioned.

4 Cyber-Physical-Social Systems

In many IoR applications, groups of autonomous agents interact with humans.
For example, in an autonomous vehicle, the human may be kept in the loop
to compensate for driving conditions not familiar to the autonomous driver. In
a traffic management scenario involving both autonomous and human drivers,
a central server may provide route suggestions to ensure optimal flow of traf-
fic based on dynamically collected data, while individual drivers —human and
autonomous— may decide to follow the suggestions or not, based on individual
rational preferences. In an energy distribution scenario, human-operated electric
vehicles may be used to store energy and redistribute it in the grid. In these
and many other emerging scenarios, humans interact closely with computers
and controllers in a dynamic fashion [29]. These systems raise a number of new
challenges in design, implementation, and analysis.

First, the interaction between humans and computers may not be “one way”
—the human initiating a task that the controller implements— but involve coop-
eration between the two, and even be initiated by the controller. Second, formal
reasoning about such systems requires understanding social behavior and the
incentives that enable human participants to act in a way that optimizes the
overall system behavior. Third, these systems must implement infrastructure to
manage privacy, accountability, compliance, and reputation. We focus on two
directions.

Specification Challenges. Computers can follow algorithms that enforce logically-
specified behaviors. Unfortunately, it is hard to enforce similar logical specific-
tions for human behaviors. Instead, humans participate in activities motivated
by incentives, such as the desire for a particular beneficial outcome, or extrinsic
motivations such as money or reputation. Thus, the design of cyber-social sys-
tems requires not only logical specifications but also incentive mechanisms that
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ensure the participants engage in behaviors that are beneficial to the system.
There is some initial work on the modeling of human participants in human-
in-the-loop control (see, e.g., [22,32]), but a unified science for formal design of
cyber-physical-social systems remains a big challenge. Traditionally, design of
protocols for rational agents is the realm of (algorithmic) mechanism design. An
open question is whether approaches to synthesis from control, reactive synthe-
sis, and mechanism design can be combined profitably.

At the programming level, human-agent collectives also introduce new chal-
lenges. First, the natural interaction of humans with robots is not at the level of
code or of logical specifications but at the level of natural languages or gestural
user interfaces. Second, the programming model has to support incentive mecha-
nisms that allow groups of humans to come together for a system task, in cooper-
ation with autonomous participants. Designing such programming abstractions
that interoperate between code, natural user interfaces, and incentive mecha-
nisms is a hard problem.

We are encouraged by some programming abstractions that are emerging in
projects such as participatory sensing [40,48] and crowd-sourced computation
(such as the Mechanical Turk API [2] and its embedding in programming plat-
forms [10,50]). It remains to be seen how such platforms can be integrated with
control and co-ordination capabilities.

Privacy, Accountability, and Trust. A system that allows large scale interaction
between humans and autonomous agents also leads to social and ethical prob-
lems. Human social actions often follow incentives such as social responsibility
and reputation: we behave in the way we do because we care about how our
actions are perceived by others, and we are held accountable for our interactions
with other humans. It is unclear how norms of social behavior change when we
interact with robots. Can we “hurt the feelings” of an autonomous controller
by ignoring its suggestion? Moreover, when things go wrong, due to errors or
malicious behavior, how is accountability shared between human participants
and autonomous ones? Many of these questions involve social sciences or law in
addition to engineering and computer science.

Related to the problem of accountability is the problem of privacy. The use
of information relating to individuals may be necessary to engineer a system to
its optimal outcomes, but revealing personal information may not be allowed
due to individual preferences or regulatory limitations. The tradeoff between
accountability and privacy, or related tradeoffs between privacy and trust, must
be understood as we design more complex systems [8]. This problem is already
relevant in social computing systems without physical controllers; it takes a
larger role in complex applications where robots actuate the physical world.

5 Conclusion

IoR applications have the potential to transform the way we interact with com-
puters and with each other. The road to reliable and massive-scale IoR appli-
cations is long, and has many exciting research challenges, both technical and
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social. While the list of problems in this paper is partial, they already demon-
strate the richness of the research landscape.

Acknowledgements.. This work is partially funded by the ERC Synergy grant
ImPACT. Thanks to Dmitry Chistikov, Samira Farahani, and Anne-Kathrin Schmuck
for useful discussions on these topics. I was inspired by several excellent overview arti-
cles on the topic of this paper [28,29,31].
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Abstract. We propose an abstract-interpretation-based analysis for
recurrent sets. A recurrent set is a set of states from which the execution
of a program cannot or might not (as in our case) escape. A recurrent set
is a part of a program’s non-termination proof (that needs to be comple-
mented by reachability analysis). We find recurrent sets by performing a
potentially over-approximate backward analysis that produces an initial
candidate. We then perform over-approximate forward analysis on the
candidate to check and refine it and ensure soundness. In practice, the
analysis relies on trace partitioning that predicts future paths through
the program that non-terminating executions will take. Using our tech-
nique, we were able to find recurrent sets in many benchmarks found
in the literature including some that, to our knowledge, cannot be han-
dled by existing tools. In addition, we note that typically, analyses that
search for recurrent sets are applied to linear under-approximations of
programs or employ some form of non-approximate numeric reasoning.
In contrast, our analysis uses standard abstract-interpretation techniques
and is potentially applicable to a larger class of abstract domains (and
therefore – programs).

1 Introduction

Termination is a fundamental property of software routines. The majority of code
is required to terminate (e.g., dispatch routines of device drivers or other event-
driven code, GPU programs) and the existence of a non-terminating behavior is a
severe bug that might freeze a device, an entire system [1], or cause a multi-region
cloud service disruption [2]. The problem of proving termination has seen much
attention lately [15,16,33], but the techniques are sound and hence necessarily
incomplete. That is, failure to prove termination does not imply the existence
of non-terminating behaviors. Hence, proving non-termination is an interesting
complementary problem.

Several modern analyses [8,13,14,26] characterize non-terminating behav-
iors with a notion of recurrent set, i.e., a set of states from which an execution
of the program or fragment cannot or might not escape (there exist multiple
definitions). In this paper, we focus on the notion of an existential recurrent
set – a set of states, s.t., from every state in the set there exists at least one
non-terminating execution. Typically, the analyses that find existential recurrent
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 17–35, 2016.
DOI: 10.1007/978-3-662-49674-9 2
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sets and/or prove non-termination are applied to linear under -approximations
of programs [13] and/or employ some form of non-approximate numeric reason-
ing, e.g., using an SMT-solver as in [12], or applying Farkas’ lemma as (to our
knowledge) in [10]. This allows the analyses to produce genuine recurrent sets. In
the context of abstract interpretation (that may go beyond numeric reasoning),
under-approximation is problematic. For example, as we show later, fixed-point
characterization of an existential recurrent set involves set union, and in most
abstract domains it is hard to define an under-approximate join operation.

In this paper, we propose a sound abstract-interpretation-based analysis
that finds existential recurrent sets via approximate reasoning. The proposed
analysis works in two steps. First, we perform approximate (potentially, over-
approximate) backward analysis to find a candidate recurrent set. An important
technique that allows finding successful candidates is trace partitioning (for trace
partitioning in forward analysis, see [29]). Then, we perform over-approximate
forward analysis on the candidate to check and refine it and ensure soundness.
We define the analysis for imperative programs without procedures, and we
apply it separately for every loop of the program (i.e., every strongly connected
component of the program graph). We evaluated the analysis on the test set [3]
of Invel [35], on non-terminating programs from the SV-COMP 2015 [4] termi-
nation category, and on a set of non-deterministic numeric programs that we
produced ourselves. In this paper, we make a number of assumptions on the
memory domain. In particular, we assume that there exists a meet operation
that allows backward analysis to build a descending chain; then, we use lower
widening to ensure convergence of backward analysis. Non-numeric domains may
employ different techniques. For example, in shape analysis with 3-valued logic
[31], convergence is due to the use of a finite domain of bounded structures. Our
backward analysis would need to be modified to be applicable to this and similar
domains.

Finally, we note that finding a recurrent set is a sub-problem of proving non-
termination (in this paper, by proving non-termination we mean proving the
existence of at least one non-terminating execution). To prove non-termination,
we would need to show that a recurrent set is reachable from the program entry
which we do not address in this paper for practical reasons. In theory, our analy-
sis may find a recurrent set in any program or fragment (not necessarily strongly
connected), and if the inferred set contains an initial program state, this proves
the existence of non-terminating behaviours. In practice, we have so far obtained
satisfactory results only with finding recurrent sets of individual loops. There
also exists work on showing feasibility of abstract counterexamples (including,
for non-numeric abstract domains [9]), and techniques from that area would also
be applicable to show reachability of a recurrent set.

2 Background

We use 1 and 0 to mean logical truth and falsity respectively. We use Kleene’s
3-valued logic [25] to represent truth values of state formulas in abstract states
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and sets of concrete states. The logic uses a set of three values K = {0, 1/2, 1}
meaning false, maybe, and true respectively. K is arranged in partial information
order �K, s.t. 0 and 1 are incomparable, 0 �K 1/2, and 1 �K 1/2. For k1, k2 ∈ K,
the least upper bound �K is s.t. k1 �K k2 = k1 if k1 = k2, and 1/2 otherwise. For
a lattice L ordered by � and a monotonic function F :L → L, we use lfp� F to
denote the least fixed point of F and gfp� F to denote the greatest fixed point.

States, Statements, and Programs. Let M be the set of memory states.
A memory state may map program variables to their values, describe the shape
of the heap, etc. A memory-state formula θ denotes a set of memory states
�θ� ⊆ M. In this paper, the formulas will usually be conjunctions of linear
inequalities over the program variables. E.g., the formula x > 0 will denote the
set of memory states where x is positive. We say that a memory state m ∈ M

satisfies θ if m ∈ �θ�. For a memory-state formula θ and a set of memory states
M ⊆ M, the value of θ over M is defined as: eval(θ,M) = 1 if M ⊆ �θ�;
eval(θ,M) = 0 if M �= ∅ ∧ M ∩ �θ� = ∅; eval(θ,M) = 1/2 otherwise. That is, a
formula evaluates to 1 in a set of memory states if all the memory states in the
set satisfy the formula; to 0 if the set is non-empty and no memory states in the
set satisfy the formula; and to 1/2 if some memory states satisfy the formula and
some do not.

Let C be the set of atomic statements. For a statement C ∈ C, its input-
output relation is TM(C) ⊆ M × M. A pair of memory states (m,m′) ∈ TM(C),
iff it is possible to produce m′ by executing C in m. We assume that C includes
(but is not limited to):

(i) a passive statement skip with TM(skip) = {(m,m) | m ∈ M}; and
(ii) an assumption statement [θ] for every memory-state formula θ, with

TM([θ]) = {(m,m) | m ∈ �θ�}. The main use of assumption statements
is to represent branch and loop conditions.

What other the statements are in C depends on the class of programs we’re
working with; e.g., for numeric programs, C may include assignments of the
form x = expr .

We assume that for other atomic statements, their input-output relations are
given. We require that for every non-assumption statement C ∈ C, the input-
output relation of C is left-total, i.e., for every memory state m ∈ M, there
exists a successor state m′ ∈ M, s.t., (m,m′) ∈ TM(C). In this paper, we do
not discuss the analysis of unsafe programs, but if executing C in some m ∈ M

may fail, we assume that there exists a distinguished error memory state ε, s.t.
(m, ε) ∈ TM(C). In this paper, we work with programs that manipulate numeric
variables, most often (but not necessarily) integer-valued. Thus, given the set of
program variables V, we can assume M = (V → Z) ∪ {ε}.

A program P is a graph (L, l�, E, c) where L is a finite set of program locations
that are vertices of the graph; l� ∈ L is a distinguished initial location; E ⊆ L×L

is a set of edges ; and c :E → C labels edges with atomic statements. A location
without outgoing edges is a final location. Intuitively, an execution of the program
terminates iff it reaches a final location. For a location l ∈ L, the successors of l
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Fig. 1. Loop with non-
deterministic branching.

is the set succ(l) = {l′ ∈ L | (l, l′) ∈ E}. Note that for
l, l′ ∈ L, we allow at most one edge from l to l′. This
simplifies the presentation, but does not restrict the
allowed class of programs.

An example of a program is shown in Fig. 1. It is
a loop where in every iteration, the execution makes
a non-deterministic choice: whether to increment or
decrement the variable x (thus, V = {x}). The set of
location L = {l1, · · · , l4}, the initial location l� = l1.
The program does not have a final location and can

be assumed to be a fragment of a larger program (as discussed later, our analysis
works with such fragments). Also note how we cannot have multiple edges from l2
to l1, and we use locations l3 and l4 to work around that (for the edges displayed
without a label, we assume the label skip).

Set S = L×M is the set of program states. We say that a program state s ∈ S

is final iff s = (l,m) for a final location l ∈ L and some memory state m ∈ M.
For a program P, the transition relation on program states TS(P) ⊆ S × S is s.t.
a pair of program states ((l,m), (l′,m′)) ∈ TS(P) iff one of the following holds:
(i) (l, l′) ∈ E and (m,m′) ∈ TM(c(l, l′)); or (ii) l is final, l′ = l, and m′ = m.
That is, the transition relation consists of pairs of program states (s, s′), s.t. it
is possible to reach s′ by executing an atomic statement from s or by staying in
the same final state.

Traces and Executions. To use trace partitioning, we need to be able to reason
not only about memory states and locations, but also about traces. A path is
a pair (p, i) ∈ L

N × N, where p = 〈l0, l1, l2, . . .〉 ∈ L
N is an infinite sequence of

locations, and i ≥ 0 is a (current) position. Intuitively, a path is a sequence of
locations that is visited by a potential run of the program, together with a point
in the run where we currently are. We denote the set of paths by Π. For a path
π = (p, i) ∈ Π, p(0) and π(0) denote the first location in the path; p(j) and π(j)

denote the j+1-th location.
A trace is a pair (t, i) ∈ S

N × N, where t = 〈s0, s1, s2, . . .〉 ∈ S
N is an infinite

sequence of program states, and i ≥ 0 is a (current) position. Intuitively, a trace
is a sequence of program states that is visited by a potential run of the program,
together with a point in the run where we currently are. We denote the set of traces
by Σ. For a trace τ ∈ Σ, t(0) and τ(0) denote the first state of the trace; t(j) and
τ(j) denote the j +1-th state. For a location l ∈ L, the set of all traces at l is
Σ|l = {(t, i) ∈ Σ | ∃m ∈ M. t(i) = (l,m)}. The set of all traces at l and position
i is Σ|l,i = {(t, i) ∈ Σ | ∃m ∈ M. t(i) = (l,m)}. For example, Σ|l�,0 is the set of
traces, s.t. they start at the initial program location l�, and the current position
is 0. For a trace τ ∈ Σ, its path p(τ) ∈ Π is produced by removing information
about the memory states. For τ = (〈(l0,m0), (l1,m1), (l2,m2), . . .〉, i) ∈ Σ, p(τ) =
(〈l0, l1, l2, . . .〉, i) ∈ Π. We say that a trace is terminating iff there exists j ≥ 0, a
final location l ∈ L, and a memory state m ∈ M, s.t., for every k ≥ j, τ(k) = (l,m).
We say that a trace is non-terminating iff it is not terminating.
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Given a program P, not every trace can be produced by it. A trace τ ∈ Σ is
a semi-execution of P iff for every j ≥ 0, (τ(j), τ(j+1)) ∈ TS(P). A trace τ ∈ Σ
is an execution, if it is a semi-execution and τ(0) = (l�,m) for some memory
state m ∈ M. Intuitively, an execution, as its first component, has a sequence
of program states that is produced by starting in the initial program location
in some memory state, and running the program either infinitely (producing a
non-terminating execution) or until it terminates in a final location (producing a
terminating one). For the program in Fig. 1, we can produce a non-terminating
execution by, e.g., alternating the increment and decrement of x:

(〈((l1, x �→
0), (l2, x �→ 0), (l3, x �→ 1), (l1, x �→ 1), (l2, x �→ 1), (l4, x �→ 0))N〉, i). A trace (t, i) ∈
Σ is an execution prefix iff t(0) = (l�,m) for some memory state m ∈ M, and
for every j, s.t. 0 ≤ j < i, (t(j), t(j+1)) ∈ TS(P). Intuitively, for an execution
prefix (t, i), the prefix of t up to position i is produced by starting in the initial
location in some memory state and making i steps through the program. A trace
(t, i) ∈ Σ is an execution postfix iff for every j ≥ i, (t(j), t(j+1)) ∈ TS(P). We lift
the program transition relation to traces and paths. The transition relation on
traces is TΣ(P) = {((t, i), (t, i+1)) ∈ Σ×Σ | (t(i), t(i+1)) ∈ TS(P)}. The transition
relation on paths is TΠ(P) = {((p, i), (p, i+1)) ∈ Π × Π | (p(i), p(i+1)) ∈ E}.

Non-Termination Analysis and Set-of-States Abstraction. For a set of
traces S ⊆ Σ, the closed subset (|S|) = {(t, i) ∈ S | ∀j ≥ 0. (t, j) ∈ S}. That is,
(|S|) is the largest subset of S closed under shifting the position.

Given some set S0 and a transition relation T ⊆ S0 × S0, the post-condition
and pre-condition of a set S ⊆ S0 via T are the sets:

post(T, S) = {s′ ∈ S0 | ∃s ∈ S. (s, s′) ∈ T}, pre(T, S) = {s ∈ S0 | ∃s′ ∈ S. (s, s′) ∈ T}

For a program P, non-termination analysis of P is the greatest fixed point:

gfp⊆ λX.
(
(
⋃

{Σ|l for non-final l ∈ L}) ∩ pre(TΣ(P),X)
)

(1)

Lemma 1. For a program P the closed subset of its non-termination analysis
gives the set of all non-terminating semi-executions of the program.

Proof idea. Intuitively, non-termination analysis retains non-terminating execu-
tion postfixes. Taking closed subset keeps only the traces that also are execution
prefixes: if (t, i) is in the closed subset, then for every j, s.t., 0 ≤ j < i, (t, j)
must be in the closed subset and thus must be an execution postfix, i.e., (t, i)
must be a semi-execution. ��
Note that usually, a pre-condition through the whole program is computed as
a union of pre-conditions through the program statements. This makes it hard
to define a sound computable non-termination analysis, since in most abstract
domains it is hard to define an under-approximate join operation.

For a set of traces S ⊆ Σ, the set-of-states abstraction αs(S) ∈ S collects
current program states of every trace: αs(S) = {s′ ∈ S | ∃(t, i) ∈ S. t(i) = s′}.
The corresponding concretization γs, for S′ ⊆ S produces the set of traces that
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have an element of S′ at the current position: γs(S′) = {(t, i) ∈ Σ | t(i) ∈ S′}.
For S′ ⊆ S, (|γs(S′)|) = {(t, i) ∈ Σ | ∀j ≥ 0. t(j) ∈ S′}. This is the set of traces
that only visit program states from S′.

Existential Recurrent Set. For a program P, a set of program states S∃ ⊆ S

is an existential recurrent set if for every s ∈ S∃, s is not final and there exists
s′ ∈ S∃, s.t., (s, s′) ∈ TS(P). Intuitively, this is a set of program states, from which
the programmay run forever. Note that by this definition, an empty set is trivially
existentially recurrent. The authors of [13] use a similar (but stronger) notion of
open recurrent set, requiring that all the states in the open recurrent set are reach-
able. In this paper, by just recurrent set we mean existential recurrent set.

Lemma 2. Set-of-states abstraction of non-termination analysis gives the
largest existential recurrent set.

Proof idea. Intuitively a recurrent set S∃ is s.t. from every element of S∃ we
can start a non-terminating semi-execution that only visits elements of S∃. Non-
termination analysis produces the set of all non-terminating execution postfixes,
and by applying set-of-states abstraction to it, we produce the set of all pro-
gram states from which we can start a non-terminating semi-execution, i.e., the
maximal recurrent set. ��

The problem of finding a recurrent set is a sub-problem of proving non-
termination. To prove non-termination (i.e., the existence of at least one non-
terminating execution), we would need to find a recurrent set and show that it
is reachable from an initial state. In this paper, though, we focus on finding a
recurrent set only.

Memory and Path Abstraction. From the set-of-states abstraction of an
analysis, one can produce a computable over-approximate analysis by performing
further memory abstraction, which is standard in abstract interpretation. We
introduce memory abstract domain Dm, with least element ⊥m, greatest element
�m, partial order �m, and join �m. Every element, or abstract memory state,
a ∈ Dm represents a set of memory states γm(a) ⊆ M. For the analysis of numeric
programs, Dm can be a polyhedral domain where an element is a conjunction of
linear inequalities over the program variables.

We lift concretization to sets of abstract memory states: for A ⊆ Dm, γm(A) =⋃{γm(a) | a ∈ A}. We introduce over-approximate versions of post, pre, and eval,
s.t. for a statement C ∈ C, an element a ∈ Dm, and a memory-state formula θ,

γm(postm(C, a)) ⊇ post(TM(C), γm(a)) evalm(θ, a) �K eval(θ, γ(a))
γm(prem(C, a)) ⊇ pre(TM(C), γm(a))

Normally, evalm is given for atomic formulas; for arbitrary formulas it is defined
by induction over the formula structure, using 3-valued logical operators, possi-
bly over-approximate w.r.t. �K. In this paper, we make additional assumptions
on Dm. We assume there exists meet operation, s.t., for a1, a2 ∈ Dm, a1 �m

a2 �m a1 and a1 �m a2 �m a2. This allows producing descending chains in Dm
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and performing approximation of greatest fixed points even with non-monotonic
abstract transformers. If Dm admits infinite descending chains, we assume there
exists lower widening operation �m. Similarly, if Dm admits infinite ascending
chains, we assume there existswidening operation�m. To produce a standard over-
approximate analysis one transitions to the domain L → Dm, where every element
represents a set of program states partitioned with locations.

We are going to use trace partitioning and we take an additional step to
introduce what we call a path abstract domain Dp, with least element ⊥p, greatest
element �p, partial order �p, join �p and meet �p. Every element, or abstract
path, q ∈ Dp represents a set of paths γp(q) ⊆ Π. We introduce over-approximate
versions of post and pre, s.t. for an edge e ∈ E and an element q ∈ Dp,

γp(postp(e, q)) ⊇ post(TΠ(P)|e, γp(q)) γp(prep(e, q)) ⊇ pre(TΠ(P)|e, γp(q))

where TΠ(P)|e = {((p, i), (p, i+1)) ∈ Π×Π | (p(i), p(i+1)) = e}, i.e., it restricts the
transition relation on paths to an edge e ∈ E. For our purposes, we also assume
that Dp is finite, and there exists abstraction function αp that, together with
γp forms a Galois connection between Dp and P(Π). This allows to partition
memory states with elements of L × Dp, similarly to how a standard analysis
partitions memory states with locations.

Abstract Domain of the Analysis. Given a memory abstract domain Dm and
path abstract domain Dp with required properties, we can construct the abstract
domain D� ⊆ Dp ⇀ Dm (where ⇀ denotes a partial function). We require that
every element D ∈ D� is what we call reduced : for every q ∈ dom(D), q �= ⊥p and
D(q) �= ⊥m; and for every pair of abstract paths q1, q2 ∈ dom(D), q1 �p q2 = ⊥p.
Intuitively, D is a collection of abstract memory states partitioned with disjoint
abstract paths.

Idea of the Construction. D� is ordered by �� point-wise, �� = {�p �→ �m},
and ⊥� is the empty partial function. For every partial function D′ :Dp ⇀ Dm,
we can produce a reduced element D ∈ D�: we remove “bottoms” and then
repeatedly join the pairs from D′ (thinking of a function as of a set of pairs)
that have non-disjoint abstract paths. From this point, it is straightforward to
construct join ��, abstract post-condition post�(e, d), and abstract pre-condition
pre�(e, d), e ∈ E and d ∈ D�. When taking meet of D1,D2 ∈ D�, we meet the
tuples from D1 and D2 pair-wise. As both D1 and D2 are reduced, it follows
that D1 �� D2 is reduced; and D1 �� D2 �� D1 and D1 �� D2 �� D2. Widening
and lower widening are defined point-wise.

Then, we transition from D� to Dl� = L → D� in which backward analysis is
performed. Such transition is standard in abstract interpretation (usually, it is
from Dm to L → Dm) and we do not describe it. We only note that in Dl�, the
post-condition postl�(P, · ) and pre-condition prel�(P, · ) are taken with respect
to the whole program. We prefer to think of an element Dl ∈ Dl� as of a collection
of abstract program states partitioned by location and abstract path.
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3 Finding a Recurrent Set

In this section we describe the main analysis steps: a backward analysis for
a candidate recurrent set that is performed below the set of reachable states;
followed by a forward refinement step that produces a genuine recurrent set.

We start by performing a standard forward pre-analysis of the whole program
P to find the over-approximation of the set of reachable program states F ∈ Dl�. F
is the stable limit of the sequence of {fi}i≥0 where f0 = {l� �→ ��; l �= l� �→ ⊥�};
for i ≥ 1, fi = fi−1�l�(fi−1 �l� postl�(P, fi−1)); and �l� is a widening operator.

3.1 Backward Analysis for a Candidate

Next, we perform approximate (possibly, over-approximate) backward analy-
sis to find candidate recurrent sets. We do it separately for every strongly
connected sub-program Ps that represents a loop of the original program P.
More formally, we perform the analysis for every strongly connected component
[32] Ps = (Ls, ls�, Es, c|Es

) where Ls ⊆ L; Es ⊆ (Ls × Ls) ∩ E; |Ls| > 1 or
(ls�, ls�) ∈ Es (i.e., the component represents a loop in the program); c|Es

is
the restriction of c to the edges of Ps; and ls� ∈ Ls is the head of the strongly
connected component which is usually selected as the first location of the com-
ponent encountered in P by a depth-first search. We can restrict the notion of
successors to a sub-program: for l ∈ Ls, succ(l)|Ps

= {l′ ∈ Ls | (l, l′) ∈ Es}. Note
that since Ps is strongly connected, it does not have final locations.

For every strongly connected sub-program Ps, we find the candidate recur-
rent set Ws ∈ Dl� as the stable limit of the sequence of elements {wi}i≥0 that
approximates non-termination analysis below F . Here, w0 = F |Ls

(the restric-
tion of F to the locations of Ps); for i ≥ 1, wi = wi−1�l�(wi−1�l�prel�(Ps, wi−1));
and �l� is a lower widening operator. Note that we use over-approximate oper-
ations (join, backward transformers) to compute Ws, and hence Ws may over-
approximate non-termination analysis and might not represent a genuine recur-
rent set. Although formally an element of Dl� concretizes to a set of traces, we
can think that Ws represents a candidate recurrent set αs(γl�(Ws)) = {(l,m) ∈
S | ∃q ∈ Dp. m ∈ γm(Ws(l)(q))}. In the next step, we will produce a refined
element Rs �l� Ws representing a genuine recurrent set.

In theory, a recurrent set does not have to be below F , but in practice,
a combination of backward and forward analyses is known to be more precise
than just, e.g., backward analysis [17], and we found that performing backward
analysis below F (rather than below �l�) better directs the search for a recurrent
set. Intuitively, some information (e.g., conditions of assumption statements) is
better propagated by forward analysis, and this information may be important
to find a genuine recurrent set. Another feature important for precision is trace
partitioning. We observe that for many imperative programs, non-terminating
executions take a specific path through the loop. When we perform backward
analysis with trace partitioning, abstract memory states in Ws are partitioned
by the path through the loop that the program run would take from them. If the
path domain is precise enough, s.t., (states, from which exist) non-terminating
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semi-executions get collected in separate partitions, the analysis is more likely
to find a genuine recurrent set.

3.2 Checking and Refining the Candidate

Approximate backward analysis for every strongly connected component Ps of
the original program, produces an element Ws ∈ Dl�, which represents a candi-
date recurrent set. We use over-approximate operations (join, backward trans-
formers) to compute Ws, and hence Ws may over-approximate non-termination
analysis and might not represent a genuine recurrent set. We refine Ws to a
(possibly, bottom) element Rs �l� Ws representing a genuine recurrent set of
Ps and hence of the original program P. That is, we produce such Rs that
∀s ∈ αs(γl�(Rs)). ∃s′ ∈ αs(γl�(Rs)). (s, s′) ∈ TS(Ps). To do so, we define a
predicate CONT, s.t. for an abstract memory state a ∈ Dm, a set of abstract
memory states A ⊆ Dm, and an atomic statement C ∈ C, if CONT(a,C,A)
holds (we say that the run of the program can continue from a to A through C)
then ∀m ∈ γm(a). ∃m′ ∈ γm(A). (m,m′) ∈ TM(C). We define CONT separately
for different kinds of atomic statements. In this paper, we consider numeric pro-
grams, which, apart from passive and assumption statements, can use:

(i) a deterministic assignment x = expr , which assigns the value of an expres-
sion expr to a program variable x;

(ii) a nondeterministic assignment, or forget operation, x = ∗, which assigns a
non-deterministically selected value to a program variable x.

For the memory abstract domain, let us introduce an additional coverage
operation �+

m that generalizes abstract order. For an abstract memory state
a ∈ Dm and a set A ⊆ Dm, it should be that if a �+

m A (we say that a is covered
by A) then γm(a) ⊆ γm(A). For an arbitrary domain, coverage can be defined
via Hoare order: a �+

m A iff ∃a′ ∈ A. a �m a′. For a numeric domain, it is usually
possible to define a more precise coverage operation. For example, the Parma
Polyhedra Library [6] defines a specialized coverage operation for finite sets of
convex polyhedra.

We define CONT as follows. For a ∈ Dm, A ⊆ Dm,

(i) For the passive statement skip, CONT(a, skip, A) ≡ a �+
m A. Indeed, if

a �+
m A then γm(a) ⊆ γm(A), and hence ∀m ∈ γm(a). ∃m′ = m ∈

γm(A). (m,m′) = (m,m) ∈ TM(skip).
(ii) For an assumption statement [θ], CONT(a, [θ], A) ≡ evalm(θ, a) = 1 ∧ a �+

m

A. Indeed, if evalm(θ, a) = 1, then γm(a) ⊆ �θ�, and if additionally a �+
m A

then ∀m ∈ γm(a). ∃m′ = m ∈ γm(A). (m,m′) = (m,m) ∈ TM([θ]).
(iii) For a nondeterministic assignment x = ∗, we use the fact that in many

numeric domains (including the polyhedral domain) the pre-condition of x =
∗ can be computed precisely (via cylindrification operation [24]). That is, for
a ∈ Dm, γm(prem(x = ∗, a)) = {m ∈ M | ∃m′ ∈ γm(a). (m,m′) ∈ TM(x =
∗)}. In this case, CONT(a, x = ∗, A) ≡ a �+

m {prem(x = ∗, a′) | a′ ∈ A}.
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(iv) Finally, for every other atomic statement C with left-total input-output
relation TM(C) (e.g., a deterministic assignment), CONT(a,C,A) ≡
postm(C, a) �+

m A. Indeed, in this case γm(A) ⊇ γm(postm(C, a)) ⊇
post(C, γm(a)). Since additionally, TM(C) is left-total then for every m ∈
γm(a). ∃m′ ∈ γm(A). (m,m′) ∈ TM(C).

Another way to look at it is that (iv) represents a general case that allows
handling atomic statements with left-total input-output relations. Then, we spe-
cialize CONT for non-deterministic statements and for statements with non-left-
total input-output relations. Case (iii) specializes CONT for non-deterministic
assignments. It allows us to detect a situation where there exists a specific
non-deterministic choice (i.e., a specific new value of a variable) that keeps the
execution inside the recurrent set. Case (ii) specializes CONT for assumption
statements (with non-left-total input-output relations). By extending the defi-
nition of CONT, we can extend our analysis to support more kinds of atomic
statements. Note that the predicate CONT is defined using operations that are
standard in program analysis.

Theorem 1. Let Rs ∈ Dl� be an element of Dl� and Ps be a sub-program. Let it
be that for every location l ∈ Ls, abstract path q ∈ Dp, and an abstract memory
state a ∈ Dm, s.t., Rs(l)(q) = a, there exists a successor location l′ ∈ succ(l)|Ps

,
s.t. CONT(a, c(l, l′), {a′ | ∃q′ ∈ Dp. a′ = Rs(l′)(q′)}). Then, Rs represents a
recurrent set of Ps and hence the whole program P.

Proof idea. The proof is a straightforward application of the definitions of CONT
and TS. Intuitively, if Rs ∈ Dl� satisfies the condition of the lemma, from every
program state in αs(γl�(Rs)) we can form a non-terminating semi-execution that
only visits the elements of αs(γl�(Rs)) – by executing the statements of Ps in a
specific order. ��

Thus, in the refinement step, we start with an element Ws ∈ Dl� produced by
the backward analysis, and from every location l ∈ Ls, we repeatedly exclude the
tuples (q, a) ∈ Ws(l) that do not satisfy the condition of Theorem 1. Eventually,
we arrive at an element Rs �l� Ws that satisfies Theorem 1 and hence, represents
a recurrent set. Note that the refinement step that we implement in this paper
is coarse. For some disjunct (q, a) ∈ Ws(l), we either keep it unchanged or
remove it as a whole. In particular, an empty set is trivially recurrent, and it
is still sound to produce Rs = ⊥l�. This is acceptable, as the main purpose
of the refinement step is to ensure soundness, and the form of the recurrent
set in our current implementation is inferred by the preceding backward and
forward analyses. Although, the analysis would benefit from the ability to modify
individual disjuncts during refinement (we leave this for future work).

Theorem 1 requires that for every location l ∈ Ls and abstract memory
state a = Rs(l)(q) (for some q ∈ Dp), there is at least one edge (l, l′) ∈ Es,
s.t., for every program state s ∈ {(l,m) ∈ S | m ∈ γm(a)} there exists s′ ∈
{(l′,m′) | ∃q ∈ Dp. m′ ∈ γm(Rs(l′)(q))}, s.t. (s, s′) ∈ TS(Ps). That is, for every
abstract memory state in Rs, there exists at least one edge, s.t. taking this edge



Finding Recurrent Sets with Backward Analysis and Trace Partitioning 27

from any corresponding concrete state keeps the execution inside the recurrent
set. This is viable in practice because of the choice of path domain Dp (which
is described in the following section). Our path domain ensures that at every
branching point, backward analysis always partitions the memory states by the
branch that they are going to take at this branching point.

Finally, note that Theorem 1 can be used to find a recurrent set of the whole
program (not necessarily a strongly connected sub-program Ps) and this way,
prove non-termination. If γ�(Rs(l�)) �= ∅, then there exists at least one non-
terminating program execution (a non-terminating semi-execution starting in
the initial location). Unfortunately, so far, we have not had practical success with
this approach. Our path domain Dp, while sufficient to capture non-terminating
paths through loops (esp., non-nested loops), is not precise enough to capture
non-terminating paths through the whole program. Thus, for practical reasons,
we search for recurrent sets of individual loops and assume that reachability
analysis will be used to complete the non-termination proof.

3.3 Path Domain

For the path domain, in this paper, we use finite sequences of future branching
choices. A branching point is a location l ∈ L, s.t., there exists at least two edges
from l. A branching choice is an edge (l, l′) ∈ E, s.t., l is a branching point. We
denote the set of all branching choices by Eb ⊆ E. For every non-bottom element
q ∈ Dp, q is a finite sequence of branching choices: q = 〈e0, e1, . . . , en〉 ∈ E

∗
b; top

element �p is the empty sequence 〈〉; and bottom is a distinguished element
⊥p /∈ E

∗
b. E.g., for our running example in Fig. 1, l2 is a branching point, and the

branching choices are (l2, l3) and (l2, l4) For q1, q2 ∈ Dp, q1 �p q2 if q1 = ⊥p or q2

is a prefix of q1. For q1, q2 ∈ Dp, join q1�p q2 is q2 if q1 = ⊥p, q1 if q2 = ⊥p, or the
longest common prefix of q1 and q2 otherwise. For q1, q2 ∈ Dp, meet q1 �p q2 = q1

if q1 �p q2, q2 if q2 �p q1, and ⊥p otherwise. Additionally, we require that every
element q ∈ Dp is bounded, i.e., every branching choice e ∈ Eb appears in q at
most k times for a parameter k ≥ 1. For a sequence of branching choices q′ ∈ E

∗
b

(or ∈ E
N

b ), we can produce a bounded element bk(q′) ∈ Dp by keeping the longest
bounded prefix of the sequence. An element q = 〈e0, e1, . . . , en〉 ∈ E

∗
b represents

the set of paths γp(q) ⊆ Π, s.t. π = (〈l0, l1, . . .〉, i) ∈ γp(q) iff for j = 0..n, there
exists a strictly increasing sequence of indices {xj} : i ≤ x0 < . . . < xn, s.t.,
every π(xj) is a branching point, (π(xj), π((xj)+1)) = ej , and for every index z,
s.t. i ≤ z < xn, if z /∈ {xj}, then π(z) is not a branching point. Let us define
a corresponding abstraction function. For a path π = (〈l0, l1, . . .〉, i) ∈ Π and
j ≥ 0 let {yj} be a strictly increasing sequence of indices of branching points
at or after position i: i ≤ y0 < y1 < . . ., every π(yj) is a branching point, and
for every index z ≥ i, if z /∈ {yj}, then π(z) is not a branching point. Then,
the abstraction of π is αp(π) = bk(〈(π(y0), π((y0)+1)), (π(y1), π((y1)+1)), . . .〉). For
a set of paths V , αp(V ) =

⊔
p{αp(π) | π ∈ V }. For an edge e ∈ E and q ∈ Dp,

prep(e, q) = ⊥p if q = ⊥p; bk(e · q) if q �= ⊥p and e is a branching choice; and q
otherwise. Here · denotes concatenation. Respectively, postp(e, q) = q′ if q = e·q′
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for some q′ ∈ Dp; ⊥p if q = e′ · q′ for some q′ ∈ Dp and e′ �= e; �p if q = �p; and
⊥p if q = ⊥p.

Intuitively, an abstract path q ∈ Dp predicts a bounded number of branching
choices that an execution would make. For our running example in Fig. 1, if we
take k = 1 then the abstraction of the infinite path 〈(l1, l2, l3)N〉 is 〈(l2, l3)〉. We
observe that our path domain works well for non-nested loops, and the bound k
is the number of loop iterations for which we keep the branching choices. In most
our experiments, k = 1 or 2 was enough to find a recurrent set. Note that the
forward transformer postp leaves �p unchanged. Thus, our backward analysis
does use trace partitioning, but the forward pre-analysis does not (with the
current path domain). The forward pre-analysis, is initialized with f0 = {l� �→
��; l �= l� �→ ⊥�} where �� = {�p �→ �m}, i.e., during the forward pre-analysis,
every location is mapped either to ⊥� or to {�p �→ m} for some m ∈ Dm.

4 Examples of Handling Non-Determinism

In this section, we present numeric examples that demonstrate how different com-
ponents of the analysis (trace partitioning, CONT, lower widening) are impor-
tant for different kinds of non-terminating behaviors. In all examples, we assume
that program variables are unbounded integers, and the analysis uses the poly-
hedral domain [19]. In Examples 1, 2 and 3, we focus on a single loop and ignore
that it can be a part of a larger program: e.g., we omit the branch that exits a
loop, although it would usually be present in a program.

Example 1 − Non-deterministic Branches. For the program in Fig. 1, a
non-terminating execution in every iteration needs to make the choice depend-
ing on the current value of x, so that it does not go outside the range [0, 100]. This
is captured by our path domain with k = 1 (the bound on the occurrences of the
same branching choice in the abstract path). The first two steps (pre-analysis and
backward analysis) yield the candidate recurrent set Ws. We do not describe these
steps in detail, but Ws(l1) = {〈(l2, l3)〉 �→ (0 ≤ x ≤ 99); 〈(l2, l4)〉 �→ (1 ≤ x ≤
100)}, Ws(l2) = Ws(l1), Ws(l3) = {〈(l2, l3)〉 �→ (1 ≤ x ≤ 99); 〈(l2, l4)〉 �→ (1 ≤
x ≤ 100)}, and Ws(l4) = {〈(l2, l3)〉 �→ (0 ≤ x ≤ 99); 〈(l2, l4)〉 �→ (1 ≤ x ≤ 99)}.

Fig. 2. Loop that assigns a
non-deterministic value to a
variable in every iteration.

Fig. 3. Loop that requires a
specific range of y for non-
termination.

Fig. 4. GCD algorithm
with an introduced bug.
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This can be interpreted as follows. If the execution is at location l1 and, as
the next branching choice, is going to increment x (by taking the edge (l2, l3)),
then, for the execution to not leave the loop, it must be that 0 ≤ x ≤ 99.
Indeed, if x < 0, the execution will not enter the loop, and if x > 99, the
execution will exit the loop after incrementing x. Similarly, if the execution is
going to decrement x, it must be that 1 ≤ x ≤ 100. That is, if the execution is at
location l1, and 0 ≤ x ≤ 100, there exists a branching choice at location l2 that
keeps x in range [0, 100]. This way we can construct a non-terminating execution.
Note that Ws represents a genuine recurrent set, and the final (refinement) step
of the analysis yields Rs = Ws.

Example 2 − Non-deterministic Assignment in the Loop. Figure 2
shows a loop that in every iteration, first assigns a non-deterministic value
to y and then adds it to x. Intuitively, if at location l1 x is in range [0, 100],
then for the edge (l2, l3), there is always a choice of y, s.t. x+y is still in the
range [0, 100]. This way, we can construct a non-terminating execution. The way
we specialize the predicate CONT to non-deterministic assignments allows us
to handle such cases. The first two steps (pre-analysis and backward analysis)
yield the candidate recurrent set Ws, s.t. Ws(l1) = {〈〉 �→ (0 ≤ x ≤ 100)},
Ws(l2) = Ws(l1) , and Ws(l3) = {〈〉 �→ (0 ≤ x ≤ 100 ∧ 0 ≤ x+y ≤ 100)}. We
show that Ws satisfies Theorem 1 and thus represents a genuine recurrent set.
Indeed. For location l1, the successor location is l2, and (0 ≤ x ≤ 100) satisfies
the memory-state formula of the assumption statement that labels (l1, l2). That
is, for every state at location l1 with 0 ≤ x ≤ 100, we will stay in the recurrent
set after executing the assumption statement. This corresponds to case (ii) of
the predicate CONT. For location l2, the successor location is l3 and c(l2, l3)
is the non-deterministic assignment y = ∗. Note that for every value of x it is
possible to choose a value of y, s.t. 0 ≤ x+y ≤ 100 holds. Or, more formally,
prem(y = ∗, (0 ≤ x ≤ 100∧0 ≤ x+y ≤ 100)) = (0 ≤ x ≤ 100) which corresponds
to case (iii) of the predicate CONT. Finally, for location l3, the successor location
is l1 and c(l3, l1) is x = x+y. Also, postm(x = x + y, (0 ≤ x ≤ 100 ∧ 0 ≤ x+y ≤
100)) = (0 ≤ x−y ≤ 100 ∧ 0 ≤ x ≤ 100) � (0 ≤ x ≤ 100) which corresponds to
case (iv) of the predicate CONT. Therefore, Ws represents a genuine recurrent
set, and the final step of the analysis yields Rs = Ws.

Example 3 − Non-deterministic Assignment Before the Loop. Figure 3
shows a loop that in every iteration adds y to x. Both x and y are not initialized
before the loop, and are thus assumed to take non-deterministic values. If at
location l1, x ≥ 0 and y ≥ 0, it is possible to continue the execution forever.
Let us see how the constraint y ≥ 0 can be inferred with lower widening. For
this program, the pre-analysis produces the invariant F , s.t., F (l1) = {〈〉 �→ �},
and F (l2) = {〈〉 �→ x ≥ 0}. Then, consider a sequence of approximants {wi}i≥0

where w0 = F and for i ≥ 1, wi = wi−1 �l� prel�(P, wi−1) which corresponds to
running the backward analysis without lower widening. Then, we will observe
that the i-th approximant at location l1 represents the condition that ensures
that the execution will make at least i iterations through the loop. For i ≥ 0,
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let w′
i = wi(l1)(〈〉). Then, w′

0 = �, w′
1 = x ≥ 0, w′

2 = (x ≥ 0 ∧ x+y ≥ 0),
w′

3 = (x ≥ 0 ∧ x+2y ≥ 0), w′
4 = (x ≥ 0 ∧ x+3y ≥ 0), and so on. That is, for

i ≥ 1, w′
i = (x ≥ 0 ∧ x + iy ≥ 0) (a polyhedron with a “rotating” constraint),

and we would like a lower widening technique that would produce an extrapo-
lated polyhedron (x ≥ 0 ∧ y ≥ 0) which is the limit of the chain {w′

i}i≥0. Notice
how this limit is below w′

i for every i ≥ 0. This explains why we use lower widen-
ing (and not, e.g., narrowing) to ensure convergence of the backward analysis.
Here, we use lower widening as proposed by A. Miné [30]. Intuitively, it works
by retaining stable generators (which can be seen as dual to standard widening
that retains stable constraints). Additionally, we use widening delay of 2 and a
technique of threshold rays (also described in [30]), adding the coordinate vec-
tors and their negations to the set of thresholds. Alternatively, instead of using
threshold rays, one could adapt to lower widening the technique of evolving rays
[7]. This allows the backward analysis to produce the extrapolated polyhedron
(x ≥ 0∧y ≥ 0). Eventually, backward analysis produces the candidate Ws where
Ws(l1) = {〈〉 �→ (x ≥ 0 ∧ y ≥ 0)} and Ws(l2) = Ws(l1). Ws represents a genuine
recurrent set, and the final (refinement) step of the analysis yields Rs = Ws.

Example 4. This example is a program “GCD” from the test set [3] of Invel
[35]. The program given in pseudocode in Fig. 4 is based on the basic algorithm
that computes the greatest common divisor of two numbers: a and b – but has
an introduced bug that produces non-terminating behaviors. For the loop in this
program, our analysis (with k = 2) is able to show that if at line 3, it is the case
that (a > b ∧ a > 2b) or (b > a ∧ 2b > a), the execution will never terminate
and will alternate between these two regions. This example demonstrates how the
interaction between the components of the analysis allows finding non-trivial non-
terminating behaviors. In a program graph, the condition a �= b will be represented
by a pair of edges, labelled by assumption statements: [a > b] and [a < b]. Thus,
these assumption statements become branching choices at line 3. Then, the path
domain (with k at least 2) allows the analysis to distinguish the executions that
alternate between these two assumption statements for the first k loop iterations.
By doing numeric reasoning, one can check that there exist non-terminating exe-
cutions that alternate between the two assumption statements indefinitely.

The example also demonstrates a non-trivial refinement step. At line 3, back-
wards analysis actually yields two additional disjuncts, one of those being (a >
b ∧ 2b > a ∧ 3b − a > 4). These are the states that take the branching choice
[a > b] for at least two first loop iterations. But from some of the concrete states
in the disjunct, e.g., (a = 6, b = 4), the loop eventually terminates. As currently
implemented, the refinement step has to remove the whole disjunct from the final
result.

Finally, note how for this example, recurrent set cannot be represented by a
single convex polyhedron (per program location). Our approach allows to keep
multiple polyhedra per location, corresponding to different abstract paths.

To Summarize, the components of the analysis are responsible for han-
dling different features of non-terminating executions. Trace partitioning allows
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predicting paths that non-terminating executions take; predicate CONT deals
with non-deterministic statements in a loop; lower widening infers the required
values of variables that are non-deterministically set outside of a loop.

5 Experiments

Our prototype implementation supports numeric programs (with some restric-
tions) and uses the product of polyhedra and congruences (via Parma Polyhedra
Library [6]) as the memory domain. We applied our tool to the test set [3] of Invel
[35], to non-terminating programs from SV-COMP 2015 [4] termination category
(manually converted to our tool’s input language), and additionally, to a set of
non-deterministic numeric programs that we produced ourselves (all test pro-
grams are non-terminating, i.e., every program has at least one non-terminating
behavior). Table 1 summarizes the results for the Invel and SV-COMP non-
terminating programs and compares our tool to 3 existing tools: AProVE [20],
Automizer [22], and HipTNT+ [27], and additionally to the authors’ previ-
ous work on finding universal recurrent sets with forward analysis [8], column
“SAS15”. For Automizer and HipTNT+, we do not have the results for Invel pro-
grams, and for [8], there are no results for SV-COMP benchmarks. For AProVE,
we give results for Invel programs as reported by [12] and for SV-COMP pro-
grams, as reported by the Non-Termination competition 2015 [5] (the version
of AProVE that participated in SV-COMP did not include a non-termination
prover for C programs). For our tool, column “OK” is the number of programs
for which our tool finds a recurrent set. In most cases k = 1 or 2 was enough to
find a recurrent set. In some cases, we need k = 4. The sets were later checked
manually for reachability. Most test programs consist of a single non-terminating
loop and a stem that gives initial values to program variables; and to check reach-
ability, we only needed to intersect the inferred recurrent set with the produced
set of initial states. Column“M” is the number of programs that originally fall
outside of the class that our tool can handle, but after we introduced small mod-
ifications (e.g., replaced a non-linear condition with an equivalent linear one),
our tool finds a recurrent set for them. Column “U” is the number of programs
for which no recurrent set could be found due to technical limitations of our tool
that does not support arrays, pointers, some instances of modular arithmetic,
etc. Column “X” is the number of programs for which no recurrent set could be
found for other reasons. This is usually due to overly aggressive lower widening,
which could be improved in the future by introducing relevant widening heuris-
tics. Note that our tool always terminates, i.e., failure means that it produced
an empty recurrent set. For the other tools, the columns “OK” and “X” give
the number of programs for which the tools were able, and respectively failed to
prove non-termination. In brackets, we give the number of programs for which
our tool gives the opposite outcome. Column “?” gives the number of programs
for which we did not find reported results.

Table 1 should not be interpreted as a direct comparison of our tool or app-
roach with the other tools. On one hand, our results are not subsumed by other



32 A. Bakhirkin and N. Piterman

Table 1. Experimental results

This paper AProVE Automizer HipTNT+ SAS15

Tot. OK M U X OK ? X OK X OK X OK ? X

Invel 53 46 5 2 - 51 - 2 - - - - 39(+1) 1 13(+12)

SVCOMP 44 32 - 9 3 30(+6) 4 10(+6) 37(+11) 7(+6) 35(+7) 9(+4) - - -

tools, and we were able to find recurrent sets for some programs, where other
tools failed to prove non-termination. On the other hand, the tools prove differ-
ent things about the programs. Our tool finds recurrent sets of loops; AProVE
and Automizer prove the existence of at least one non-terminating execution;
the analysis of [8] and HipTNT+ (to our knowledge) prove that from some
initial states, all executions are non-terminating. Also, the analysis of [8] is not
optimized for numeric programs: e.g., it uses interval domain, while the analysis
that we present uses the more expressive polyhedral domain.

6 Related Work

The idea of proving non-termination by looking at paths of a certain form
appears in multiple existing approaches. An early analysis by Gupta et al. [21]
produces proofs of non-termination from lasso-shaped symbolic executions using
Farkas’ lemma. Automizer [22,23] decomposes the original program into a set
of lasso-programs (a stem and a loop with no branches) to separately infer ter-
mination or non-termination [28] arguments for them. AProVE [20] implements
a range of techniques. One of those [12], from a set of paths through a loop,
produces a formula that is unsatisfiable if there is a set of states that cannot
be escaped by following these paths. In a similar way, our approach uses trace
partitioning to identify a path through a loop that a non-terminating execution
takes. This does not have to be the same path segment repeated infinitely often,
but may be an alternation of different segments. We see a strength of our app-
roach in that it is parameterized by a path domain. That is, the partitioning
scheme can be improved in future work and/or specialized for different classes
of programs.

Chen et al. [13] use a combination of forward and backward analysis, but
in a different way. With forward analysis, they identify terminating abstract
traces; then using backward analysis over a single trace, they restrict the pro-
gram (by adding assumption statements) to remove this trace. In contrast, our
approach uses backward analysis to produce a candidate recurrent set, by com-
puting an approximation of its fixed point characterization. Then, they show
that the restricted program has at least one execution (non-terminating by con-
struction). This is similar to the final step of our analysis.

A number of approaches prove that from some input states, a program does
not have terminating behaviors (in contrast to proving the existence of at least
one non-terminating behavior). That is, they find a set of states from which
a program cannot escape. This can be done using Farkas’ lemma [14], forward
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[8] or backward [34] abstract interpretation based analysis, or by encoding the
search as a max-SMT problem [26]. Le et al. propose a specification logic and
an inference algorithm [27] (implemented in HipTNT+) that can capture the
absence of terminating behaviors. Invel [35] uses a template and a refinement
scheme to infer invariants proving that final states of a program are unreachable.

A distinctive approach implemented in E-HSF [10] allows to specifying the
semantics of programs and expressing verified properties (including the existence
of different kinds of recurrent sets) in the form of ∀∃ quantified Horn clauses.

Finally, [29] presents a different formalization of trace partitioning (in the
context of standard forward analysis), and [18] – of trace semantics.

7 Conclusion and Future Work

We proposed an analysis that finds existential recurrent sets of the loops in
imperative programs. The analysis is based on the combination of forward and
backward abstract interpretation and an important technique that we use is trace
partitioning. To our knowledge, this is the first application of trace partitioning
to backward analysis. The implementation of our approach for numeric programs
demonstrated results that are comparable to those of state-of-the-art tools. As
directions of future work we see: first, to develop a more precise path domain.
Having a domain that can represent, e.g., lasso-shaped paths would allow better
handling of nested loops and extending our technique to proving non-termination
(rather than finding recurrent sets). Second, to extend our prototype to support
additional memory domains (e.g., for shape analysis). Finally, the analysis of
numeric programs will benefit from a specialized numeric refinement step.
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Abstract. Many modern program verifiers are based on automated the-
orem provers, which enable full hiding of proof details and allow users to
focus all their effort on the program text. This has the advantage that
the additional expertise of theorem provers is not required, but has the
drawback that when the prover fails to verify a valid program, the user
has to annotate the program text with guidance for the verifier. This can
be tedious, low-level and repetitive, and may impact on the annotation
overhead, readability of the program text and overall development time.
Inspired by proof tactics for interactive theorem provers [19], a notion
of ‘tactics’ for the state-of-the-art Dafny program verifier, called Tacny,
is developed. With only minor extensions to the Dafny syntax, a user
can encode high-level proof patterns as Dafny tactics, liberating herself
from low-level and repetitive search tasks, whilst still working with famil-
iar Dafny programming constructs. Manual search and guidance can be
replaced with calls to such tactics, which will automate this task. We
provide syntax and semantics for Tacny, and show feasibility through a
prototype implementation, applied to several examples.

1 Introduction

Properties that programs should satisfy are commonly expressed by contracts:
given a precondition the program guarantees that a given postcondition holds.
Many modern program verifiers can then be used to verify that a program satis-
fies its contract by automatically generating verification conditions (VCs), which
are sent to an automated theorem prover. Failure to prove VCs will then be
highlighted in the program text, and the user must then update the code with
auxiliary annotations to guide the proof. A feature of this approach is that all
interaction, including proof guidance, is conducted in the program text using a
single programming language. Spec# [6], VCC [9], Verifast [24], Dafny [27], and
SPARK 2014 [34] are program verifiers that follow this approach.

The ability of users to guide the prover for the cases where the underlying
theorem prover fails to verify a correct program is crucial. Such guidance involves
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changing, and in most cases adding, auxiliary annotations, and, in many cases,
manipulation of a ghost state: a state that can be updated and used as normal,
but is only used for verification purposes and will not be compiled.

With the exception of generic lemmas that can be reused in e.g. Dafny, the
support for reuse of previous verification tasks in order to reduce the required
user interaction is limited. In particular, there is no support for users to encode
knowledge of common “proof” steps used for verification tasks. Some trial-and-
error is involved as several known “verification patterns” may be attempted, and
there could be multiple options for each of them. For these cases, the verification
guidance process can be unnecessarily tedious and cost-ineffective.

This paper presents a novel extension to program verifiers, by extending the
Dafny program verifier with a tactic language where users can encode more
abstract and reusable verification patterns. Our hypothesis is that

it is possible to abstract over low-level manual proof guidance by encoding
high-level and reusable verification patterns in the program text of Dafny.

The work is inspired by proof tactics for interactive theorem provers (ITPs),
which allow users to encode re-usable proof patterns [19], and our main contri-
bution is the introduction of such a tactic language on top of Dafny. A high-level
introduction is given in Sect. 2 before giving the details of the syntactic exten-
sion and semantics in Sect. 3, and the implementation as the Tacny system in
Sect. 4. We believe that Dafny tactics can be used to (i) reduce the annotation
overhead1; (ii) reduce development time; and (iii) increase readability of the
program text by abstracting low-level proof details. Based upon experiments in
Tacny, Sect. 5 provides some evidence for (i), Sect. 6 contains related work; while
we conclude and discuss future work, including how we plan to address (ii) and
(iii), in Sect. 7.

2 Dafny Tactics by Example

Dafny [27] is a programming language and program verifier for the .NET plat-
form, developed by Microsoft Research. The language is an imperative object-
oriented language, containing both methods and proper functions (i.e. without
side-effects). It also supports advanced features such as inductive [28] and co-
inductive [29] datatypes and higher-order types [26]. It uses familiar notations
for assignment (x := e), declarations (var x := e;), conditionals (if and if-else)
and loops (e.g. while). It also supports pattern matching (match) and a ‘such
as’ operator, where x :| p means that x is assigned a value such that p holds2.

Dafny has been designed for verification. Properties are specified by contracts
for methods/functions in terms of preconditions (requires) and postconditions
(ensures). To verify a program, Dafny translates it into an intermediate verifi-
cation language (IVL)3 called Boogie [5]. From Boogie a set of VCs is generated
1 To illustrate, [37] reported on 4.8 Lines of Annotation for each Line of Code.
2 Full details of all examples and results in the paper available from [2].
3 An IVL can be seen as a layer to ease the process of generating new program verifiers.
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and sent to the Z3 SMT solver [35]. If it fails, then the failure is translated back
to the Dafny code, via Boogie.

In the case of failure, a user must provide guidance in the program text4. The
simplest form is to add assertions (assert) of true properties in the program text.
In the case of loops, we might also provide loop invariants (invariant). Loops and
recursion have to be shown to terminate and for advanced cases a user needs to
provide a variant (decreases) to help Dafny prove this.

For more advanced verification tasks, one can make use of the ghost state.
A ghost variable (ghost var) or ghost method can be introduced and used by
the verifier. A lemma (lemma) is a type of ghost method that can be used to
express richer properties, where assumptions are preconditions, and the conclu-
sion becomes the postcondition. The proof is a method body that satisfies the
postcondition, given the precondition. We will see examples of this below, but
note that standard programming language elements are used in the body of the
lemma, which illustrates the close correspondence between proofs and programs.

To illustrate Dafny, consider a simple compiler for arithmetic expressions5.
Here, an inductive data type is used to capture arithmetic expressions as num-
bers, variables or addition:

datatype aexp = N(n : i n t ) | V( x : vname ) | Plus (0 : aexp , 1 : aexp )

A state s is a Dafny map from vnames to integers; Total(s) states that the state
s is total; aval(a,s) is the evaluation of the arithmetic expression a over the
state s; while asimp const(a) performs constant folding of arithmetic expression
a: constants added together are recursively replaced by their sum. The following
lemma proves that constant folding preserves the behaviour for a total state:

lemma AsimpConst ( a : aexp , s : s t a t e )
r e qu i r e s Tota l ( s ) ;
ensures a v a l ( a s imp con s t ( a ) , s ) = a v a l ( a , s ) ;

{ match a
case N(n ) ⇒
case V( x ) ⇒
case Plus ( a0 , a1 ) ⇒ AsimpConst ( a0 , s ) ; AsimpConst ( a1 , s ) ; }

The proof follows by structural induction: using pattern matching, a case is
introduced for each constructor and for the recursive case the lemma is applied
recursively for each argument. Next, consider another example6 where a list of
expressions is defined as:

datatype L i s t = N i l | Cons ( Expr , L i s t )

SubstL(l,v,val) is a function that replaces variable v with value val for each expres-
sion in list l. The following lemma proves that SubstL is idempotent:

4 We assume correct programs: verification may also fail because the program is incor-
rect and in this case the program (or specification) needs to change.

5 This example is taken from NipkowKlein-chapter3.dfy on the Dafny webpage.
6 Substitution.dfy, also taken from the Dafny webpage; both examples available at [2].

https://sites.google.com/site/tacnyproject/tacas-2016/NipkowKlein-chapter3.dfy
https://sites.google.com/site/tacnyproject/tacas-2016/Substitution.dfy
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lemma Lemma( l : L i s t , v : i n t , v a l : i n t )
ensures SubstL ( SubstL ( l , v , v a l ) , v , v a l ) = SubstL ( l , v , v a l ) ; {

{ match l
case N i l ⇒
case Cons ( e , t a i l ) ⇒Theorem ( e , v , v a l ) ; Lemma( t a i l , v , v a l ) ; }

This proof follows more or less the same pattern, with the difference that a
separate lemma Theorem is applied for the first case, which shows idempotence
for substitution of a single expression. Theorem is not discussed further here.

AsimpConst and Lemma illustrate two Dafny verification tasks that exhibit
the same verification pattern: a case analysis for each constructor of an inductive
data type, with two possible lemma applications. Still, a user has to spell out all
the proof details. To abstract over such details, we introduce a tactic construct
that allows the user to encode the verification pattern. The proof details of the
lemmas can then be replaced by a single tactic application. This is achieved by
extending Dafny with a new ghost method called tactic, without any contracts.
The following tactic captures the proofs of AsimpConst and Lemma:

t a c t i c CasePerm ( v : Element )
{ s o l v e d {

var lem1 : | lem1 i n lemmas ( ) ;
var lem2 : | lem2 i n lemmas ( ) ;
c a s e s ( v ){ var v a r s := v a r i a b l e s ( ) ;

perm ( lem1 , v a r s ) ; perm ( lem2 , v a r s ) ;}} }
The tactic takes an input v, expected to be a variable of an inductive data type.
It then picks two lemma names, lem1 and lem2. Here, all possible combinations
of lemma names will be generated as separate branches of the search space. Then
for each branch, cases(v) will generate a match statement with a case for each
constructor ofv. Within each case the “body” of cases is evaluated. Here, all
variables in scope are found (vars). The invocation of perm(lem1,vars) generates
all possible permutations of applying lemma lem1 with arguments found in any
sub-set of vars in separate branches of the search space. The second application
of perm does the same for lem2. The keyword solved{ body } states that the
program has to verify when body has been evaluated. This is required here as a
tactic may be used to progress a proof without completing it, which is desirable
in certain cases. Note that the tactic will stop evaluating when a proof is found,
thus the body will not be applied for cases such as Nil above. For that reason,
CasePerm(b) will also work for the following lemma found in the first example:

lemma Bs impCorrect ( b : bexp , s : s t a t e )
r e qu i r e s Tota l ( s ) ;
ensures bva l ( bsimp ( b ) , s ) = bva l (b , s ) ; {

{ match b
case Bc( v ) ⇒
case Not ( b0 ) ⇒ Bs impCorrect ( b0 , s ) ;
case And( b0 , b1 ) ⇒ Bs impCorrect ( b0 , s ) ; Bs impCorrect ( b1 , s ) ;
case Les s ( a0 , a1 ) ⇒ As impCorrect ( a0 , s ) ; As impCorrect ( a1 , s ) ; }
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This lemma states a similar property to AsimpConst, with the difference that it
is applied to boolean expressions. It works for the Not(b0) case as it will stop
evaluating when the case verifies. Thus, in the Not(b0) case the second call to
perm will not be applied as BsimpCorrect(b0,s) is sufficient. To apply a tactic the
body is replaced by a call to it, illustrated for Lemma:

lemma Lemma2( l : L i s t , v : i n t , v a l : i n t )
ensures SubstL ( SubstL ( l , v , v a l ) , v , v a l ) = SubstL ( l , v , v a l ) ;

{ CasePerm ( l ) ; }
The tactic language is metalanguage for Dafny, where tactic evaluation works at
the Dafny level: it takes a Dafny program with tactics and tactic applications,
evaluates the tactics and produces a new valid Dafny program, where tactic
calls are replaced by Dafny constructs generated by the tactics. The advantages
of working on the Dafny level are: (i) iterative development and debugging is
supported as a user can partly develop a tactic, inspect the result and then
extend or modify it; (ii) soundness as users can inspect and validate the result
and the tool is independent of its encoding into Boogie; (iii) modularity as it
becomes easier to adapt to new versions of Dafny.

While we can rely on the soundness of Dafny for the actual verification, a
program transformation could in principle make changes to both the program
and its specification. A tactic should not make such changes to Dafny programs
as this is changing what we are attempting to prove:

Definition 1 (Contract Preserving Transformation). A contract preserv-
ing transformation is a program transformation that preserves the behaviour and
the contract of a method (or lemma or function).

The evaluation of a tactic call will transform the code by replacing the call with
the code the tactic generates. To illustrate, the evaluation of Lemma2 should
generate the same body as Lemma (or similar verifiable code that fits the pattern
encoded by the tactic). As a lemma is a ghost construct, and the contract is
unchanged, the transformation is contract preserving.

By reusing Dafny constructs, users can develop schematic and intuitive tac-
tics, comparable to declarative or schematic tactics found in some modern ITP
tactic languages, e.g. [4]. To illustrate, a proof by ‘mathematical induction’ over
a variable n, where we assume existence of tactic base tac(), which handles the
base case (when n is 0), and tactic step tac(), which is used for the step case,
can be written as follows:

t a c t i c InductTac ( n : Element )
{ i f n = 0 { ba s e t a c ( ) ; }

e l s e { var c u r r := c u r r e n t ( ) ; c u r r (n−1); s t e p t a c ( ) ; } }
Variable curr will point to the “current” method or lemma in which the tactic
was called from (and the generated code will be added). curr(n-1) is therefore an
application of the induction hypothesis before the step case is handled.

The if statement of InductTac is at the object level, i.e. it will be part of the
generated Dafny code after applying the tactic. Statements such as if (and while)
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are also used at the meta-level, i.e. used by Tacny and will not be generated.
These levels are distinguished by whether the tactic evaluator can evaluate the
condition. If it cannot be evaluated then it is an object-level feature. In this case,
we do not know the value of n hence we cannot resolve whether n = 0 is true or
false.

Such schematic tactics provide a very elegant way of composing tactics, a well
known problem for ITP tactics [3]. cases(v){ body } illustrated another example
of composition where { body } is used to separate tactics applied within each
case, from tactics that should follow the match statement.

Both CasePerm and InductTac have a parameter of type Element. This is a
Tacny-specific type denoting the name of an element of the Dafny program text,
such as a variable, method name or lemma name. For CasePerm this is assumed
to be a variable of an inductively defined datatype while for InductTac it should
be a variable that is a natural number. To simplify, we are using a single type
to refer to this; type safety is handled by Dafny which will fail when we try to
verify a wrongly typed program. This is another example of modularity, albeit
at the expense of efficiency in this case. Note that for InductTac we cannot use
nat as this refers to a number and not a variable of nat type.

3 The Tacny Language

The Tacny language is designed to be as familiar for Dafny users as possible.
A tactic definition is a type of Dafny ghost method, with the following syntax:

tactic Id(Params){ TStmts }
where a parameter Param has the syntax Id : Type. A type here is any Dafny
type [26], with two additional types: Element, already discussed; and Term, the
term representation of a Dafny expression. A Tacny statement TStmt is:

TStmt := Atom | Id(TExprs); | var Id := TExpr; | Id := TExpr;
| var Id : | TExpr; | Id : | TExpr; | { TStmts }
| if TExpr { TStmts } | if TExpr { TStmts } else{ TStmts }
| while TExpr Invs { TStmts } | TStmt || TStmt;

With the exception of || and Atom, these constructs are part of the Dafny lan-
guage. However, within a tactic they have different semantics: e.g. a declared
variable in a tactic will not appear in the Dafny program resulting from tac-
tic evaluation. Atom refers to the atomic tactics of the Tacny language. These
are the hard-coded building blocks of Tacny, and all tactics are compositions of
them. The set of atomic tactics is expected to change and develop, but hopefully
converge. So far, we have identified the following atomic tactics:

Atom := id(); | fail (); | invariant TExpr; | decreases TExpr;
| assert TExpr; | fresh var Id := TExpr; | fresh var Id : | TExpr;
| try{ TStmts }catch{ TStmts } | cases(Element){ TStmts }
| solved{ TStmts } | perm(Element,seq<Element>);
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Dafny’s contract and loop (in)variant Inv is extended with tactic calls
Id(TExprs), with the syntax definition omitted for space reasons. A TExpr is an
extension of Dafny’s expression Expr :

TExpr := Expr | current() | variables () | lemmas() | params() | · · ·
Note that to understand the evaluation of Tacny expressions, the full details
of Dafny expressions are not required and thus omitted. To evaluate a Tacny
expression, a context C, containing relevant details of the program at the point
a tactic call was made, and a state s, which holds a map from Tacny-specific
variables to values, are given. These may be updated during evaluation. The
evaluation of an expression is given by �−�〈C,s〉, with the following semantics:

�e1 op e2�〈C,s〉 := when op ∈ {+,−, ∗, /}
�e1�〈C,s〉 op �e2�〈C,s〉 and �e1�〈C,s〉 and �e2�〈C,s〉 are numbers.

�!e�〈C,s〉 := ¬�e�〈C,s〉 when �e�〈C,s〉 �= ⊥
�|e|�〈C,s〉 := length(�e�〈C,s〉) when �e�〈C,s〉 �= ⊥
�e�〈C,s〉 := true when tautology(e)
�e�〈C,s〉 := false when tautology(!e)
�n�〈C,s〉 := s(n) when n ∈ dom(s)
�v�〈C,s〉 := v when v is a value

�f ()�〈C,s〉 := C.f when f ∈ {current, variables, lemmas, params}
�e�〈C,s〉 := ⊥ otherwise

tautology is a simple tautology checker for proposition logic with (in)-equality;
length returns the length of a sequence, and a dot-notation is used to project val-
ues from the context. If an expression cannot be evaluated, then ⊥ is returned.
In that case, the expression is treated as object level. E.g. if we cannot eval-
uate the condition of an if-statement, then an if-statement will be generated,
which enables us to write declarative/schematic tactics in Tacny. In such cases,
Tacny-level variables need to be instantiated (using the state s) and Tacny-level
expressions (current, variables, lemmas, params) unfolded (using the context C).
This is achieved by [−]〈C,s〉, which we do not provide further details of. In the
semantics we often try �e�〈C,s〉 first, applying [−]〈C,s〉 if it fails (i.e. returns ⊥):

�e�?〈C,s〉 :=
{

�e�〈C,s〉 when �e�〈C,s〉 �= ⊥
[e]〈C,s〉 otherwise

We give Plotkin-style big-step operational semantics [38], using a nonde-
terministic relation −→. 〈C, s, c, stmt〉 −→ 〈C ′, s′, c′〉 should be read as: given
context C, state s, generated Dafny code c and Tacny statement stmt, evalua-
tion will produce a new context C′, state s′ and Dafny code c′. The inference
rules are given in Figs. 1 and 2. For space reasons we do not provide a full set of
rules7. We focus on the interesting cases, omitting rules for generating context
and evaluating methods and lemmas, where tactics are called from, which is only
briefly discussed.
7 For full details we refer to the ‘Tacny system working document’ [21].
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Fig. 1. Operational semantics for Tacny statements [1/2]

To evaluate ||, as shown in Fig. 1, either the statement on the left or on
the right is evaluated. Sequential composition depends on whether the program
verifies after the first statement is completed. If the set of verification conditions
vcs is empty, the evaluation stops; if not, it continues to the next statement.
When a block is evaluated then only changes to the given state s are kept and the
context is only updated with the VCs8. A declaration or assignment will update
s, and the expression e is evaluated by �e�?〈C,s〉, meaning it may not evaluate fully.
The projections C.v and C.p are the set of declared variables and parameters,
respectively, of the method the tactic was called from. To evaluate the : | operator

8 S � R restricts the domain of relation/map R to the set S.
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Fig. 2. Operational semantics for Tacny statements [2/2]

we find a value where the property holds. This has to be enumerable, and P has
to have the syntactic form x in X, possibly followed by further constraints on x.
X must be a collection that can be derived from s and/or C.

The identity atomic tactic id() only changes the context, by attempting to
verify the program using Dafny. In order to apply Dafny to verify it, the code
surrounding a tactic call (or other construct as seen below) must be given. This
is provided by C.M in the context, with a “hole” [−] where the code generated
by the tactic can be “plugged in”, as illustrated by C.M [c] in the identity tactic.
verify is used to represent a call to Dafny, returning a set of open VCs. If Dafny
fails to execute, e.g. due to type errors, then the rule will fail. fail() always fails
and is therefore not given an inference rule following a closed world assumption.

We will only discuss the while control structure as this is the most interesting
and complicated; conditionals (if and if-else) have comparable semantics but are
omitted for space reasons. while is captured by 4 inference rules. The first is the
trivial case where the condition is false and nothing is changed. The second
case is when the condition is true and the resulting program verifies, in which
case the loop is terminated. Note that the body is prefixed by a call to the
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identity tactic to enforce a call to the verifier before a tactic is applied. The
third case is the “step case” where the program does not verify and the loop is
recursively applied. The final case is the most interesting one. This is an example
of a schematic tactic, where the while loop will be generated in the Dafny code.
Here, it is not possible to evaluate the condition, meaning [−]〈C,s〉 is applied to
the generated condition. As the loop annotations (loop invariants and decrease
clauses) may have tactic calls, this is first evaluated in an annot mode we will
return to below. We then evaluate the body. Note that C.M is updated with the
loop (using λ notation for the hole) as the verifier has to know about the loop
when applied within the body; this change is local to the loop and is discarded
afterwards. ε denotes empty code, and · concatenates code.

The rule to make a call to another tactic is shown in Fig. 2. The input state
of the method only contains the parameters, meaning there is no shared state
between tactics. These are evaluated as far as possible. A tactic call within a
lemma or method has the same semantics, with c set to ε. C.tac maps tactic
names to their definition. The solved tactic is similar to a block, but requires
that the program verifies on termination of the block; decreases statements are
only valid in the annot mode, i.e. contract or loop annotations. Note that the
expression is simplified by [−]〈C,s〉 which e.g. allows us to write more generic
tactics by including Tacny level variables. Note that the verifier is not applied in
the annotations, however it is after an assertion is added. This requires a code
mode, i.e. generation of Dafny statements.

The perm(m,as) tactic generates all possible ways of applying m with argu-
ments taken from as. Here, m is first found in the context among the methods,
lemmas and functions, and checked that it is a ghost construct. The rule allows
all possible combinations, while Dafny is used to ensure type checking as part
of the verification. The cases tactic has the most involved semantics. The given
variable has to of an inductively-defined type and the constructors (with fresh
argument names) are created. Each case is evaluated separately, and to control
the verifier the other cases are assumed to be false9.

Most state-of-the-art ITP systems follow the LCF-approach [19] which
reduces soundness to a small “trusted kernel” of axioms and inference rules.
The following proposition states a similar feature for Tacny without proof:

Proposition 1. −→ is a contract preserving transformation if the atomics are
contract preserving.

To increase soundness, our aim is to converge to a small “trusted kernel” of
atomic tactics we can show are contract preserving. This is straightforward to
show for the atomic tactics discussed here:

Proposition 2. id(), fail(), perm, cases, decreases, assert, solved are contract
preserving.

9 The underscore ‘ ’ is not valid Dafny syntax in pattern matching but used for brevity.
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4 The Tacny System

The Tacny tool provides a proof-of-concept implementation of the semantics. The
architecture of this tool is shown in Fig. 3, where the shaded boxes represent
Dafny components. The tool accepts a Dafny program extended with tactics
(.tacny) and the Dafny Parser has therefore been updated with the grammar
discussed in the previous section.

The parsed program is then sent to the Interpreter, which is discussed in
detail below. It uses the Generator, which removes all tactics and tactic calls
from the source program, thus making it a valid Dafny (.dfy) program. This
is used at the end, to generate “a proof”, in terms of a valid Dafny program,
and during interpretation. In the latter case, the Dafny Resolver performs
type checking and prepares the program for translation to Boogie, which is
conducted by the Verifier. As with the Parser, this is a minor update of
the existing Dafny code, with some additional book-keeping. The result from
Boogie is then sent back to the Interpreter.

{.tacny}

{.dfy}
PARSER INTERPRETER GENERATOR

GENERATOR DAFNY RESOLVER BOOGIEVERIFIER

Fig. 3. Tacny tool architecture

procedure Interpreter(prog : Tacny)
r ← InitTask(prog)
r ← r

[
pc := NextTac(r)

]

if EndOfFile(r.pc) then
return [r]

res, solutions ← [r], []
repeat

for each r ∈ Maps(Tac, res) do
r ← r

[
pc := NextTac(r)

]

if r.vcs = {}∨EndOfFile(r.pc) then
solutions ← solutions + r

else res ← res + r

until res = []
return solutions

procedure Tac(t : Task)
res ← [t]
repeat

for each r ∈ Maps(Step, res) do
if r.vcs = {} then return [r]

res ← res + r′

until EndOfTac(t.pc)
return res

procedure Step(t : Task)
res ← []
for each r ∈ TacStep(t) do

dfy ← Generate(r)
if dfy = Null then return []

bgy ← Boogie(dfy)
if Proven(bgy) then

return [r[vcs := {}]]

if SubGoals(bgy) then
res ← res + [r[vcs := bgy]]

return res

Fig. 4. Tacny interpreter
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The main work of Tacny happens in the Interpreter, and the algorithm is
given in Fig. 4. It first generates an initial task by InitTask. A task is a record
containing a state, context and Tacny program similar to the input of −→ from
Sect. 3. In addition, it contains a program counter. InitTask will generate the
context, and initialise the state to empty. NextTac will then find the next tactic
call, or reach the end of the file (EndOfFile) if there are no more calls.

In the main loop, the Interpreter keeps track of intermediate results res
and completed solutions. It then applies a breadth-first search strategy by apply-
ing a single tactic application, represented by the undefined TacStep procedure,
for each element of the result list. This continues until either there are no “open”
VCs or there are no more tactic calls. Each tactic evaluation involves a step by
step evaluation where after each step a Dafny program is generated. Tacny works
on a method-by-method basis, and to focus verification on the current method,
the body of all other methods is removed, and all tactics and tactic calls are
removed to make it a valid Dafny program. The Dafny Resolver may fail,
e.g. if the program does not type check, returning Null; in that case that par-
ticular task is aborted. If not, Boogie is applied and the result is returned. If
Boogie can prove that the program is correct, then the task is completed. This
modularity has the advantage that extensions to Dafny and Boogie can be easily
integrated: Tacny is a layer on top of Dafny. Currently, some features of Sect. 3
are not supported, such as object level (schematic) loops.

5 Experiments

In Sect. 2 we introduced the CasePerm tactic and showed that it was applicable
for multiple examples. Table 1 shows the results from our experiments10, with
results from running CasePerm above the double line (1). Calls refers to the
number of tactic calls for each file; TLoC and DLoC are the LoC for the
respective Tacny and (analysed) Dafny programs; Vars is the highest number
of variables in a branch; #B is the number of branches; #DB is the number of
discarded branches before a solution was found; T is the running time for Tacny
in seconds.

A user must often provide a variant in form of a decreases clause to prove
that a loop or recursive method terminates. This can often be a trial-and-error
process, where the user may have some ideas in hand. Here, we give a generic
tactic to generate either a single variable or a subtraction of two variables:

t a c t i c Var iantGen ( ){
s o l v e d { var x : | x i n params ( ) + v a r i a b l e s ( ) ;

decreases x ||
{ var y : | x i n params ( ) + v a r i a b l e s ( ) ∧ x �= y ;

decreases x−y } ; }
}

10 All examples are taken from the Dafny repo [1], with code used available from [2].
Experiments conducted running Windows 8.1 on Intel i7 2.4 GHz with 4GB RAM.
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Table 1. Results from executing: CasePerm (1) and VariantGen (2).

Tac Program Calls TLoC DLoC Vars #B #DB T(sec)

(1) NipkowKlein-chapter3.dfy 2 186 192 4 1473 506 113

Substitution.dfy 2 52 84 5 21739 4758 190

InductionVsCoinduction.dfy 1 74 70 5 1137 544 30

Streams.dfy 7 221 228 3 62 0 37

CoqArt-InsertionSort.dfy 2 201 198 2 58 0 15

(2) Dijkstra.dfy 1 126 117 19 4 8

SchorrWaite.dfy 1 204 195 34 7 11

Prime.dfy 1 232 224 54 9 20

SetIterator.dfy 1 82 63 48 6 20

SimpleInduction.dfy 1 66 65 11 0 5

The results from applying this to a set of examples can be seen below the double
line (2) in Table 1. The number of variables are omitted as they are not relevant.

The fact that a single tactic can be applied to several examples (14 and
5) and, for CasePerm several lemmas within each example, provides evidence
for our hypothesis that tactics for Dafny are feasible. In most cases, CasePerm
reduces the annotation overhead. For the other cases, the size has not reduced
for 2 reasons: (i) the proofs replaced where short; and (ii) although the tactic is
the same for all examples, it had to be copied into each example for technical
reasons. This is the reason why VariantGen increased the LoC: each variant is
a single line, thus replacing it with a tactic call will have the same LoC. For
this tactic, we cannot argue reduced annotation overhead, however the manual
search task is replaced by a tactic, thus development time should decrease.

For some examples CasePerm has a very high branching factor, in particular
when there are 4 or more variables. This is due to the naivety of the perm tactic,
and we are working on improvements to this. We believe that this has potential
for a very generic tactic if we can extend it and, at the same time, improve on
the branching factor. VariantGen is discussed further in Sect. 7.

6 Related Work

An alternative approach to Dafny tactics is the more traditional approach of
proving the generated VCs in an interactive prover and developing tactics at
this level. This has the following drawbacks: users have to (additionally) learn
how to use and develop tactics in the interactive prover11; and certain tactics,
such as adding an invariant, precede VC generation. Thus, a richer set of tactics
can be developed in the program text. Most tactic languages for ITP systems,

11 It commonly takes at least six months just to become a proficient user of an ITP
system (see e.g. [30]), and even longer to have sufficient expertise to develop tactics.
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dating back to the seminal LCF system [19], contain a combinator language to
compose tactics into larger and more powerful ones. For example, the solved tac-
tic is common. As far as possible, we have attempted to use Dafny’s constructs to
compose tactics to keep them as familiar as possible. Within ITP, there is also a
trend towards building tactic languages at the proof script level, compared with
the implementation language of the system. LTac for Coq [14] and EisBach for
Isabelle [33] are examples of such languages. Non-trivial tactic compositions are
hard to get right for tactic languages due to their procedural nature; see e.g.
[18] for a discussion. Inspired by declarative proof scripts, with Mizar [36] and
Isabelle/Isar [40] probably the most well-known, [4] develops a declarative tactic
language, where a tactic is given a more schematic description. Such schematics
are also supported in Tacny, and provide a more intuitive mechanism for tactic
composition. Most of the popular ITPs follow the so-called LCF approach [19],
where soundness is ensured by a small “trusted kernel” of axioms and inference
rules. The type system ensures that all proof steps go through this kernel. We
are following this approach by reducing our correctness property (contract pre-
serving transformation) to the atomic tactics, where all the code is generated.
We hope the set of atomics will converge into a small kernel. These resemblences
to ITP tactics are the reason that we have adopted the ‘tactic’ name for our
language. It is also considered good practice that each refactoring should only
make small changes to the code as this is easier to analyse [17]. [41] applies
refactoring to proof scripts to improve existing proofs; however, it is not used to
support the proof process of open conjectures, as is the case for Tacny.

We are not familiar with any other work attempting to develop a tactic lan-
guage at the program text level for program verifiers12. Chen [7] describes a
simple imperative language that includes verification constructs. This may pro-
vide the foundations to encode a tactic language, similar to ours, but it is not
clear how this can be done. Moreover, our goal is to work with existing program
verifiers. The Aris project [32] uses case-based reasoning to re-use specifications
from a large corpus of existing proofs in Spec# [6], and it would be interesting
to see if the Tacny language could be used as a target language for the general-
isation of such specifications. There has also been work at “lower-levels”: Leino
[28] has developed an “induction tactic” for Dafny. This is an optimisation of the
encoding into Boogie, and requires deep understanding of the underlying Dafny
implementation. Moreover, working at this level one has to be very careful not
to introduce inconsistencies in the logic. At an even lower-level, a tactic lan-
guage has been developed for the underlying Z3 prover [13] – again, this requires
expertise in SMT solving and Z3.

To improve readability of the program text, Dafny supports Dijkstra-style
calculational proofs (calc) [30], comparable to declaritive proofs in e.g. Mizar or
Isabelle/Isar. A considerable amount of work has been done using static analy-
sis techniques on the program text in order to reduce the number of required
annotations by automatically generating these (in particular loop invariants)
[16,22,23,39]. Techniques include abstract interpretation [12], constraint-based

12 Unpublished early ideas for tactics by the first author is available on ArXiV [20].
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techniques [10], inductive logic programming [16], and declarative machine learn-
ing [31]. Stretching our “ITP analogy”, comparing this work to Tacny, is like
comparing tactic languages to decision procedures: we are not proposing a new
technique to improve automation, but a language in which users can encode
patterns so they can improve automation. Note that Dafny uses abstract inter-
pretation at the Boogie level [5].

The perm tactic can seen as a limited form of term synthesis at the Dafny
level. This technique is used in theory exploration tools, such as IsaCosy [25] and
HipSpec [8]. The perm tactic can also be seen as a form of a brute-force tactic
that essentially tries various combinations without an overall proof pattern. The
cases tactic introduces ‘proof by cases’ for inductive data types. This can eas-
ily be extended to support structural induction, by adding recursive calls. The
CasePerm tactic is a generalisation of this and similar to how one would prove
simple inductive lemmas in ITPs: apply induction followed by a powerful tactic.
The VariantGen tactic is used to guide the search for a termination measure.
There is a considerable amount of work on proving termination (see e.g. [11]),
which is beyond the discussion here.

7 Conclusion and Future Work

We have extended the Dafny program verifier by adding support for users to
encode reusable verification patterns using a novel tactic language in the pro-
gram text. We have provided formal syntax and semantics for this extension,
implemented as the Tacny tool. Our experiments have shown that it is possible
to encode Dafny tactics and reuse them accross verification tasks. This has been
illustrated by two tactics, used to automate 19 lemmas that required interaction.
10 different Dafny programs were used in order to illustrate generality.

We are continously developing, re-engineering and analysing Dafny programs,
in order to extract common verification patterns, and use this to develop new
(atomic) tactics, which we hope will converge as a result of this work. Based
upon ITP kernels we hope that around 15 − 20 will be sufficient. We are cur-
rently investigating better integration of the proof failure information into the
language, e.g. the solved condition of VariantGen could be weakened to ‘no termi-
ation VCs’. We are also starting to incorporate (dynamic) contracts to rule out
invalid branches earlier. We also plan to extend the language to: allow function
definitions at the Tacny level for more readable tactics; allow “a tactic body” as
an“argument” for user defined tactics (as is used for the cases atomic tactic); and
use of the recently added higher order features in Dafny [26] to allow tactics as
arguments, e.g. allow us to write tactic Maybe(t : Tactic){id() ‖ t(); }. Through
user evaluations, we would like to validate if/when users find the program text
more readable when low-level proofs are replaced by tactics.

The perm tactic is a starting point for a generic brute force tactic, and we
are working on extending it to support richer parameters (e.g. constructors and
operators which themselves have parameters), and support for assignments, con-
trol structures and use within calculations [30]. We would also like to create a
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more generic VariantGen tactic, with better control of the execution: e.g. only use
variables that change, and determine in which cases one variant is more likely
to work, thus replacing non-deterministic choice with a conditional.

The Tacny tool is only a proof-of-concept and not particularly fast and we
have identified multiple improvements. Firstly, some of the tactics have an ad-hoc
implementation and we plan to refactor the code into a more generic framework,
where it is easy to extend it with new atomic tactics and expressions and the
ability to explore different search strategies. Ideally, tactics should be able to
tailor their search strategy. We also plan to explore the use of lazy lists and lazy
evaluation to improve memory consumption, and data parallelisation to improve
speed. We would also like to see how calls to Dafny/Boogie can be reduced,
possibly adding such control to the user via e.g. a form of atomic statement.

Longer term we would like to have a closer integration with Dafny and added
support for Tacny in the Visual Studio Dafny IDE. We would also like to investi-
gate how general the approach is by exploring tactics for other program verifiers.
“Dafny style proof” has been shown to be feasible in Spark 2014 [15], and we
would like to try to develop tactics for Spark 2014 and other program verifiers.

References

1. Dafny. research.microsoft.com/dafny
2. The Tacny projectd: TACAS 2016 information. https://sites.google.com/site/

tacnyproject/tacas-2016. Accessed 16 October 2015
3. Asperti, A., Ricciotti, W., Sacerdoti, C., Tassi, C.: A new type for tactics. In:

PLMMS 2009, pp. 229–232 (2009)
4. Autexier, S., Dietrich, D.: A tactic language for declarative proofs. In: Kaufmann,

M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 99–114. Springer,
Heidelberg (2010)

5. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boogie: a
modular reusable verifier for object-oriented programs. In: Boer, F.S., Bonsangue,
M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387.
Springer, Heidelberg (2006)

6. Barnett, M., M. Leino, K.R., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

7. Chen, Y.: Programmable verifiers in imperative programming. In: Qin, S. (ed.)
UTP 2010. LNCS, vol. 6445, pp. 172–187. Springer, Heidelberg (2010)

8. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol.
7898, pp. 392–406. Springer, Heidelberg (2013)

9. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

10. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

http://research.microsoft.com/dafny
https://sites.google.com/site/tacnyproject/tacas-2016
https://sites.google.com/site/tacnyproject/tacas-2016


52 G. Grov and V. Tumas

11. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, pp. 84–96. ACM (1978)

13. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)

14. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg
(2000)

15. Dross, C.: Manual Proof with Ghost Code in SPARK (2014). http://www.
spark-2014.org/entries/detail/manual-proof-in-spark-2014. Accessed 01 October
2015

16. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, A.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1), 35–45 (2007)

17. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Menlo Park (1999)

18. Giero, M., Wiedijk, F.: MMode, a Mizar Mode for the proof assistant Coq. Tech-
nical report, 07 January 2004

19. Gordon, M.J., Milner, R., Wadsworth, C.P.: Edinburgh LCF. Springer, Heidelberg
(1979)

20. Grov, G.: Some Ideas for Program Verifier Tactics. arxiv:1406.2824
21. Grov, G., Tumas, V.: The Tacny system (working document). Version generated,

16 October 2015. Available from [2]
22. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,

A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009)
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Abstract. In this work, we present a novel approach based on recent
advances in software model checking to synthesize ranking functions and
prove termination (and non-termination) of imperative programs.

Our approach incrementally refines a termination argument from
an under-approximation of the terminating program state. Specifically,
we learn bits of information from terminating executions, and from
these we extrapolate ranking functions over-approximating the number
of loop iterations needed for termination. We combine these pieces into
piecewise-defined, lexicographic, or multiphase ranking functions.

The proposed technique has been implemented in SeaHorn – an
LLVM based verification framework – targeting C code. Preliminary
experimental evaluation demonstrated its effectiveness in synthesizing
ranking functions and proving termination of C programs.

1 Introduction

The traditional method for proving program termination and other liveness
properties is based on the synthesis of ranking functions, that is, for any
potentially looping computation, proving that some well-founded metric strictly
decreases every time around the loop.

State-of-the-art termination provers (e.g., [5,10,16]) reduce termination to
the safety property that no program state is repeatedly visited (and it is not
covered by the current termination argument), and compose termination argu-
ments by repeatedly invoking ranking function synthesis tools (e.g., [4,8,26]).

In this work, we present a novel approach based on recent advances in soft-
ware model checking to synthesize ranking functions and prove termination (and
non-termination) of imperative programs. The core of our approach lies on an
innovative use of safety verification techniques to build termination arguments.
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Fig. 1. Overview of our approach.

We use a safety verifier to systematically sample terminating program execu-
tions and extrapolate from these a candidate ranking function for the program,
or to otherwise provide a witness for program non-termination. More specifi-
cally, rather than verifying that no program state is repeatedly visited, we verify
the safety property that no program state is terminating (and it is not covered
by the current termination argument). The counterexamples are terminating
program executions which provide an under-approximation of the terminating
program states. From these we extrapolate a candidate ranking function which
over-approximates the number of loop iterations to termination and is possi-
bly valid also for other terminating program executions. The candidate ranking
function can be an affine function, or a piecewise-defined, lexicographic, or multi-
phase combination of affine functions. We then use the safety verifier to validate
that the candidate ranking function is indeed a ranking function, or to provide
a counterexample non-terminating program state.

The proposed approach has been implemented in SeaHorn [15] targeting C
code. We show empirically that it performs well on a wide variety of benchmarks
collected from SV-COMP 20151, is competitive with the state-of-the-art and is
able to analyze programs that are out of the reach of existing techniques.

Overview. Figure 1 provides an overview of our approach for proving termination
via safety verification. The overall algorithm is presented in Sect. 3.2. A program
P systematically undergoes a transformation Tterm described in Sect. 4.1 which
allows sampling terminating executions β not covered by the current candidate
ranking function rank. The candidate rank is systematically refined as described
in Sect. 4.2 until no terminating execution β is left uncovered. Finally, P under-
goes a final transformation Trank described in Sect. 4.1 which allows validat-
ing the ranking function rank or providing a counterexample non-terminating
state η.
1 http://sv-comp.sosy-lab.org/2015/.

http://sv-comp.sosy-lab.org/2015/
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Fig. 2. Traces and ranking function.

2 Preliminaries

In this section, we introduce the basic concepts that serve in subsequent sections
and we establish the notation used throughout the paper.

Transition Systems. We formalize programs using transition systems 〈Σ, τ〉
where Σ is the set of program states and τ ⊆ Σ × Σ defines the transi-
tion relation. Note that this model allows representing programs with (possibly
unbounded) non-determinism. In the following, a program state s ∈ Σ is a pair
〈l, x̄〉 consisting of a program control point l ∈ L and a vector x̄ of integers
representing the values of the program variables at that control point. We write
τ(s, s′) for 〈s, s′〉 ∈ τ . The set of initial states is I def= {〈i, x̄〉 | i ∈ L} ⊆ Σ,
where i ∈ L is the program initial control point, and the set of final states is
F def= {〈f, x̄〉 | f ∈ L} ⊆ Σ, where f ∈ L is the program final control point.

Given a transition system 〈Σ, τ〉, a trace is a non-empty sequence of states in Σ
determined by the transition relation τ , that is τ(s, s′) for each pair of consecutive
states s, s′ ∈ Σ in the sequence. A state s′ ∈ Σ is reachable from another state
s ∈ Σ if and only if there exists a trace from s to s′. In the following, we write
τ∗(s, s′) to denote the existence of a trace from s to s′. A state s′ ∈ Σ is reachable
if and only if it is reachable from an initial state s ∈ I.

A state s ∈ Σ is terminating if and only if all traces to which it belongs are
finite, potentially non-terminating if and only if it belongs to at least one infinite
trace. Dually, it is non-terminating if and only if all traces to which it belongs are
infinite, and potentially terminating if and only if it belongs to at least one finite
trace. Note that, terminating states are also potentially terminating states, and
non-terminating states are also potentially non-terminating states. For instance,
consider the traces depicted in Fig. 2a: the states labeled with T are terminating,
the states labeled with N are non-terminating, and the state labeled with P is
potentially non-terminating and potentially terminating.

Ranking Functions. The traditional method for proving termination dates back
to Turing [29] and Floyd [14] and it requires finding a ranking function:

Definition 1 (Ranking Function). Given a transition system 〈Σ, τ〉, a rank-
ing function is a partial function rank whose domain dom(rank) is a subset
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int 1x := ?

while 2(x �= 0) do

if 3(x < 10) then
4x := x + 1

else
5x := −x

fi

od6

(a)

1

2 6

3

4 5

(b)

Fig. 3. Terminating program 3pieces (a) and its control flow graph (b).

of the program states and whose value (i) strictly decreases through transitions
between program states, that is ∀s, s′ ∈ dom(rank) : τ(s, s′) ⇒ rank(s′) <
rank(s), and (ii) is bounded from below, that is ∀s ∈ dom(rank) : rank(s) ≥ 0.

For instance, an obvious ranking function maps each program state to
some well-chosen upper bound on the number of transitions until termination.
Figure 2b shows a ranking function labeling the terminating states of Fig. 2a.

Control Flow Graphs. The control flow graph (CFG) induced by a transition
system 〈Σ, τ〉 is a graph whose nodes are the program control points L and
whose edges E ⊆ L × L are pairs of control points corresponding to transitions
in the transition system: ∀〈l, x̄〉, 〈l, x̄′〉 ∈ Σ : τ(〈l, x̄〉, 〈l, x̄′〉) ⇒ 〈l, l′〉 ∈ E . In the
following, we restrict our attention to reducible control flow graphs. A loop is a
strongly connected component of the CFG with a single entry node h called loop
header. The loops nested within a loop are the strongly connected components
of the loop after removing the loop header. A loop entry edge is an edge whose
source is outside the loop and whose target is inside the loop, a loop edge is an
edge whose source and target are within the loop, and a loop exit edge is an edge
whose source is inside the loop and whose target is outside the loop. Similarly,
we can partition the corresponding transitions in the transition system into loop
entry transitions, loop transitions, and loop exit transition.

Example 1. Consider the program in Fig. 3a: the integer variable x is initialized
non-deterministically; then, at each loop iteration, the value of x is increased by
one or negated when it becomes greater than or equal to ten, until x becomes
zero. The control flow graph of the program is depicted in Fig. 3b. The program
while loop corresponds to the strongly connected component of the CFG formed
by the nodes 2, 3, 4 and 5. The loop header is the node 2. There is a single
entry edge 〈1,2〉 and a single exit edge 〈2,6〉.
Remark 1. Note that it is not necessary for a ranking function to strictly decrease
at each transition but only around each loop iteration [11]: ∀〈h, x̄〉, 〈h, x̄′〉 ∈
dom(rank) : τ∗(〈h, x̄〉, 〈h, x̄′〉) ⇒ rank(〈h, x̄′〉) < rank(〈h, x̄〉).
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Example 2. The program 3pieces of Fig. 3a terminates whatever the initial
value of the variable x. The following piecewise-defined function:

f(x) =

⎧
⎪⎨

⎪⎩

−x x ≤ 0
21 − x 0 < x < 10
x + 1 10 ≤ x

is a valid ranking function for the program, which maps the initial value of x to
the number of loop iterations needed for termination.

3 Verifying Termination via Safety

In the late 1970s, Lamport suggested a classification of program properties into
the classes of safety and liveness properties [20]. Safety properties represent
requirements that should be continuously maintained by the program. On the
other hand, liveness properties represent requirements that need not hold con-
tinuously but whose eventual or repeated realization must be guaranteed. Thus,
a counterexample to a safety property is a finite (prefix of a) program execution,
while for a liveness property a counterexample is an infinite execution on which
an event of interest does not occur. A prominent example of a liveness property is
termination. Instead, non-termination is a safety property since any terminating
(and, thus, finite) program execution is a witness against non-termination.

3.1 Verifying Safety Properties

The verification of safety properties often amounts to checking the reachability
of an error location: a program is safe when the error location is unreachable;
otherwise, the program is unsafe. In the former case, safety provers often pro-
vide an invariant testifying the validity of the property. In the latter case, safety
provers usually provide a counterexample trace violating the safety property.
In the following, we propose some examples to informally illustrate how safety
properties can be verified by checking the (un)-reachability of an error.

Verifying Non-Termination [6]. Consider the program in Fig. 4a: the integer
variables x and y are initialized with value zero and nine, respectively; then, at
each iteration, x and y are increased by one, until x becomes equal to y. Since
safety provers report counterexample traces reaching an error location, in order
to verify that the program is non-terminating, we turn terminating traces into
counterexamples to be found. In Fig. 4b, we added an error location — defined
as assert(false) — before the end of the program of Fig. 4a: only terminating
traces would execute assert(false), thus the program is non-terminating since
in this case the error location is in fact unreachable.
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int 1x := 0, y := 9
while 2(x �= y) do

3x := x + 1
4y := y + 1

od5

(a)

int 1x := 0, y := 9
while 2(x �= y) do

3x := x + 1
4y := y + 1

od

assert (false)5

(b)

Fig. 4. Non-terminating program (a) annotated with an error location (b).

int 1x := ?, r := max{−x, 21 − x, x + 1}
while 2(x �= 0) do

r := r − 1
assert (r ≥ 0)
if 3(x < 10) then 4x := x + 1 else 5x := −x fi

od6

Fig. 5. Program 3pieces annotated with a ranking function.

Verifying a Ranking Function. Safety provers can also be used to verify whether a
given function is a ranking function for a program. For instance, to check wether
max{−x, 21 − x, x + 1} is a ranking function for the program 3pieces shown
in Fig. 3a, we instrument the program as shown in Fig. 5: we add a variable r
initialized with the given function max{−x, 21 − x, x + 1}; then, within the loop,
according to Definition 1 and Remark 1 (i) we strictly decrease the value of r
(i.e., we decrease r by one), and (ii) we assert that the value of r is bounded
from below (i.e., we assert that r is greater than or equal to zero). Note that the
counterexample traces that would violate the assertion are either (prefixes of)
non-terminating traces, or (prefixes of) traces that are terminating but require a
higher number of loop iterations with respect to the initial value of r. In this case,
since the assertion is never violated, the given function max{−x, 21 − x, x + 1}
is a valid ranking function for the program 3pieces.

3.2 Verifying Termination via Safety

In the following, we describe the overall algorithm for proving termination via
safety. We detail our specific implementation choices in Sect. 4.

The overall algorithm is illustrated by Algorithm 1. We verify termination
of each loop in a program, implicitly constructing a lexicographic ranking func-
tion for nested sets of loops [1]. The function isTerminating takes as input
a transition system 〈Σ, τ〉 and returns either true : R, meaning that the pro-
gram is terminating and R is a ranking function, or false : ρ, meaning that the
program is potentially non-terminating and ρ is a counterexample potentially
non-terminating initial state. Specifically, isTerminating invokes the function
isLoopTerminating for each loop in the program (identified by the func-
tion getLoops, cf. Line 4) and maps each loop header h (cf. Line 3) to the
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Algorithm 1. Program Termination
1: function IsTerminating(〈Σ, τ〉)
2: R ← ∅
3: for h ∈ getLoops(〈Σ, τ〉) do � h is a loop header in the program
4: r : ρ ← isLoopTerminating(h, 〈Σ, τ〉)
5: if r then � the loop is terminating
6: R ← R [h 	→ ρ]
7: else return false : ρ � ρ is a potentially non-terminating state

8: return true : R � R is a ranking function for the program

Algorithm 2. Loop Termination
1: function IsLoopTerminating(h,〈Σ, τ〉) � h is the loop header
2: rank ← 0 � candidate ranking function initialization
3: B ← ∅
4: while true do
5: β ← getTerminatingTrace(h, 〈Σ, τ〉, rank)
6: if β then � there are terminating traces violating rank
7: B ← B ∪ β
8: rank ← getCandidateRankingFunction(rank, B)
9: else � there are no terminating traces violating rank

10: η ← isRankingFunction(rank)
11: if η then � η is a potentially non-terminating state
12: return false : η
13: else � rank is a ranking function for the loop
14: return true : rank

returned ranking function (cf. Line 6), or returns as soon as a counterexample
non-terminating state ρ is found (cf. Line 7). The function getLoops imple-
ments a standard control-flow analysis to identify (natural) loops within the
CFG induced by the transition system 〈Σ, τ〉. We omit its pseudocode due to
space limitations. The identified program loops are analyzed in no specific order.

The function isLoopTerminating is shown in Algorithm 2. Initially,
isLoopTerminating assumes that all program states within the loop are non-
terminating and looks for a counterexample, that is, a terminating trace β (cf.
Line 5). Then, the call to the function getCandidateRankingFunction com-
putes a candidate ranking function rank for the (potentially terminating) states
along this trace (cf. Line 8). The original non-termination property is weak-
ened to only search for terminating traces violating the candidate rank, and the
process starts over. The information provided by the collected terminating traces
is used to incrementally refine the candidate rank with further ranking function
pieces. In case no further terminating traces violating rank are found (cf. Line 9),
the call to the function isRankingFunction checks wether all program states
within the loop are terminating (cf. Line 10): if so, rank is a ranking function
for the loop (cf. Line 14); if not, a counterexample potentially non-terminating
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initial state η (that is, η belongs to at least one infinite trace) is returned (cf.
Line 12). Note that isLoopTerminating might also not terminate (cf. Line 4).

4 Counterexample-Guided Ranking Function Synthesis

We now detail our implementation choices for the functions getTerminating-

Trace, isRankingFunction and getCandidateRankingFunctions. We
omit their pseudocode due to space limitations.

4.1 Search for Ranking Function Counterexamples

In Sect. 3.1, we have seen how to use a safety prover for verifying non-termination
by turning terminating traces into counterexamples (cf. Fig. 4). In our approach,
we use a similar intuition to systematically detect terminating traces violating
a given candidate ranking function rank.

In the following, we consider a generic candidate rank and we introduce two
program transformations Tterm and Trank implemented by the functions get-

TerminatingTrace and isRankingFunction, respectively. We detail these
transformations with respect to a specific candidate rank in Sect. 4.2.

TTERM Transformation. Let h be a loop header within a program 〈Σ, τ〉 and
let rank be a candidate ranking function for the loop. We modify the program
in order to turn terminating traces violating rank into counterexamples to be
found. Specifically, we modify Σ in order to include the value of rank and we
add an error state ω 
∈ Σ: (Σ ×Z)∪{ω}. In the following, s, s′, and 〈h, x̄〉 denote
program states in Σ. We also define the modified transition relation τ as follows:

– for each loop entry transition τ(s, 〈h, x̄〉) there exists an entry transition τrank

which also includes the candidate rank:

τ rank(〈s, r〉, 〈〈h, x̄〉, r′〉) ⇔ τ(s, 〈h, x̄〉) ∧ r′ = rank(x̄)

– for each loop transition τ(〈h, x̄〉, s) whose source is the loop header h there
exists a loop transition τ� which also strictly decreases the value of rank:

τ�(〈〈h, x̄〉, r〉, 〈s, r′〉) ⇔ τ(〈h, x̄〉, s) ∧ r′ = r � 1

– for each loop exit transition τ(s, s′) there exists transition τ� to the error
state ω when the candidate ranking function is negative:

τ�(〈s, r〉, ω) def= r � 0

For every other transition τ(s, s′) there exists a transition τ ′(〈s, r〉, 〈s′, r′〉) ⇔
τ(s, s′) ∧ r′ = r. The counterexample traces that reach the error state are traces
that are leaving the considered loop but violate the candidate rank since they
require a higher number of loop iterations with respect to the initial value of
rank. The function getTerminatingTrace returns any of these counterex-
amples.
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int 1x := ?, r := rank
while 2(x �= 0) do

r := r − 1
if 3(x < 10) then 4x := x + 1 else 5x := −x fi

od

assert (r ≥ 0)6

Fig. 6. Program 3pieces annotated with a candidate ranking function rank.

Theorem 1. Let h be a loop header of a program 〈Σ, τ〉 and let 〈Σ′, τ ′〉 be the
program resulting from the Tterm transformation for a given candidate ranking
function rank. Then, τ ′∗(〈〈h, x̄〉, rank(x̄)〉, 〈s, r〉)∧τ(〈s, r〉, ω) if and only if there
exist s′ ∈ Σ τ(s, s′) and the transition is an exit transition, and τ∗(s, s′) and the
trace visits the loop header h strictly more than rank(x̄) times.

Example 3. Consider again the program 3pieces of Fig. 3a. The transformation
that we have just described intuitively corresponds to modifying 3pieces as
illustrated in Fig. 6: we add a variable r initialized with the candidate rank
within the entry transition 〈1,2〉; then, within the loop transition 〈2,3〉, we
decrease the value of r by one and, after the loop, we assert that the value of r
is greater than or equal to zero. The assertion is equivalent to adding an error
transition 〈2,ω〉 when r is negative. The counterexample traces that violate the
assertion are traces that leave the loop after rank − r loop iterations, where r is
the (negative) value of the variable r after the loop.

TRANK Transformation. Note that traces that never leave the considered loop
are not counterexamples since they never reach the error state. For this reason
Algorithm 2 includes a final validation of the ranking function (cf. Lines 10–14).
We implement this using an analogous program transformation: we define entry
transitions τ rank and loop transitions τ� as before:

τ rank(〈s, r〉, 〈〈h, x̄〉, r′〉) ⇔ τ(s, 〈h, x̄〉) ∧ r′ = rank(x̄)

τ�(〈〈h, x̄〉, r〉, 〈s, r′〉) ⇔ τ(〈h, x̄〉, s) ∧ r′ = r � 1

unlike before, for each loop transition τ(s, s′) we also define a transition τ� to
the error state ω when the candidate ranking function is negative:

τ�(〈s, r〉, ω) def= r � 0

Other transitions are again defined as τ ′(〈s, r〉, 〈s′, r′〉) def= τ(s, s′) ∧ r′ = r. The
counterexample traces that violate the assertion are necessarily (prefixes of) non-
terminating traces, since the Tterm transformation has excluded all terminating
traces violating the candidate ranking function. The function isRankingFunc-

tion returns the initial state of any of these counterexamples.
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Theorem 2. Let h be a loop header of a program 〈Σ, τ〉 and let 〈Σ′, τ ′〉 be the
program resulting from the Trank transformation for a given candidate rank-
ing function rank. Then, τ ′∗(〈〈h, x̄〉, rank(x̄)〉, 〈s, r〉) ∧ τ(〈s, r〉, ω) if and only
if τ∗(〈h, x̄〉, s) and the trace is the prefix of an infinite trace and visits the loop
header h strictly more than rank(x̄) times.

Example 4. The transformation that we have just described intuitively corre-
sponds to modifying the program 3pieces of Fig. 3a as illustrated in Fig. 5 and
described in Sect. 3.1.

4.2 Synthesis of Candidate Ranking Functions

The function getCandidateRankingFunction uses the terminating traces
collected by getTerminatingTrace to extrapolate ranking function pieces
which are combined into a candidate loop ranking function. We only consider
affine pieces and leave the extrapolation of non-linear pieces for future work.

In Algorithm 2, the initial candidate is the constant function equal to zero
(cf. Line 2). Then, the candidate ranking function is systematically updated in
order to be valid for the newly discovered terminating traces, and possibly for
other terminating traces not explicitly enumerated.

We extrapolate an affine ranking function piece from terminating traces map-
ping the initial states of these traces to the number of loop iterations needed
for termination, and then finding an affine ranking function which fits these bits
of information. More specifically, let {〈x̄1, r1〉, 〈x̄2, r2〉, . . . } be the set of pairs
mapping the initial states x̄1, x̄2, . . . of the collected terminating traces to the
number r1, r2, . . . of loop iterations needed for termination. We find a fitting
affine function m̄ · x̄ + q of the program variables x̄ by linear interpolation, that
is by solving the system of equations:

m̄ · x̄1 + q = r1

m̄ · x̄2 + q = r2

...

for the unknowns m̄ and q.

Example 5. Let {〈9, 12〉, 〈4, 17〉} be the set of pairs mapping some initial states
of the program 3pieces of Fig. 3a to the number of loop iterations needed for
termination: the initial state with x = 9 needs 12 loop iterations, and the initial
state with x = 4 needs 17 loop iterations. Solving the system of equations:

m · 9 + q = 12
m · 4 + q = 17

yields the affine function 21 − x of the program variable x. Note that this is a
valid ranking function for all initial states with 0 < x < 10, and not only for the
given initial states with x = 9 and x = 4 (cf. Example 2).
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When the system is unsatisfiable, we discard all collected states and we start
over by building a new ranking function piece. The ranking function pieces are
alternatively combined into piecewise-defined, lexicographic, or multiphase rank-
ing functions [24]. These combinations have complementary strengths: piecewise-
defined combinations are well-suited when multiple paths are present within
loops (cf. Fig. 3a), lexicographic combinations are convenient for loops featur-
ing unbounded non-determinism (cf. Fig. 7), and multiphase combinations target
loops that go through a number of phases in their executions [3]. The choice of
the combination is a parameter of the analysis.

Piecewise-Defined Ranking Functions. We represent piecewise-defined affine
ranking functions using max combinations of affine ranking functions [25]:

max{rank1, . . . , rankn}

where rank1, . . . , rankn are the affine ranking function pieces.
In the transformations Tterm and Trank described in Sect. 4.1, the modified

loop transitions τ� strictly decrease a max combination of ranking functions by
strictly decreasing all its pieces:

max{r1, . . . , rn} � 1 = max{r1 − 1, . . . , rn − 1}

In the added error transitions τ� a max combination of ranking functions is
negative when all its pieces are negative:

max{r1, . . . , rn} � 0 ⇔ r1 < 0 ∧ · · · ∧ rn < 0

Example 6. The transformations Tterm and Trank of the program 3pieces of
Fig. 3a are shown in Figs. 5 and 6, respectively.

Lexicographic Ranking Functions. Lexicographic ranking functions are tuples:

(rank1, . . . , rankn)

where rank1, . . . , rankn are affine ranking function pieces.
In the transformations Tterm and Trank, the modified loop transitions τ�

strictly decrease a lexicographic ranking function resetting the less significant
pieces to their initial affine expression:

(r1, . . . , ri, ri+1, . . . , rn) � 1 = (r1, . . . , ri − 1, ranki+1, . . . rankn)

were ri+1, . . . , rn are negative and get reset to the initial ranki+1, . . . , rankn. In
the added error transitions τ� a lexicographic combination of ranking functions
is negative when the first of its pieces is negative:

(r1, . . . , rn) � 0 ⇔ r1 < 0
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int 1x := ?, y := ?, r := (x, y)
while 2(x > 0 ∧ y > 0) do

if (snd(r) < 0) then r := (fst(r) − 1, y) else r := (fst(r), snd(r) − 1) fi

assert (fst(r) ≥ 0)
if 3(?) then 4x := x − 1; 5y := ? else 6y := y − 1 fi

od7

Fig. 7. Program annotated with a lexicographic ranking function.

Example 7. Consider the program in Fig. 7: the integer variables x and y are
initialized non-deterministically; then, at each iteration, either the value of y
is decreased by one or the value of x is decreased by one and the value of y
is reset non-deterministically, until either variable is less than or equal to zero.
The program terminates whatever the initial value of x and y. Let (x, y) be
a candidate lexicographic ranking function for the program. In this case, the
transformation Trank intuitively corresponds to adding a variable r initialized
with (x, y) within the entry transition 〈1,2〉; then, within the loop transition
〈2,3〉, decreasing the value of r lexicographically resetting its second component
snd(r) when negative, and asserting that its first component fst(r) is greater
than or equal to zero. The assertion is equivalent to adding an error transition
〈2,ω〉 when fst(r) is negative. In this case, since the assertion is never violated,
(x, y) is a valid lexicographic ranking function for the program.

Multiphase Ranking Functions. Multiphase ranking functions specify ranking
functions that proceed through a certain number of phases during program exe-
cution [24]. They are represented as tuples:

(rank1, . . . , rankn)

where rank1, . . . , rankn are affine ranking function pieces. Each piece represents
a phase of the ranking function. In the transformations Tterm and Trank, the
modified loop transitions τ� strictly decrease a multiphase combination of rank-
ing functions as follows:

(r1, . . . , ri, ri+1, . . . , rn) � 1 = (r1, . . . , ri − 1, ri+1, . . . rn)

were ri+1, . . . , rn are negative (and, unlike in the lexicographic combination,
are never reset). In the added error transitions τ� a multiphase combination of
ranking functions is negative when the first of its pieces is negative:

(r1, . . . , rn) � 0 ⇔ r1 < 0

In summary, our approach systematically collects terminating program exe-
cutions and searches for a function that uniformly captures the termination
argument of the program. The function can be an affine ranking function, or
a piecewise, lexicographic, or multiphase combination of affine functions. Then,
we either manage to validate the candidate ranking function or we provide a
witness for program non-termination.
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Tot Time

SeaHorn 135 1.71s

AProVE [28] 129 10.77s

FuncTion [30] 111 0.55s

HIPTnT+ [22] 152 0.62s

Ultimate [16] 109 8.45s

(a)

SeaHorn

AProVE [28] 39 33 96 22

FuncTion [30] 50 26 85 29

HIPTnT+ [22] 16 33 119 22

Ultimate [16] 55 29 80 26

(b)

Fig. 8. Overview of the experimental evaluation.

5 Implementation

Our approach is implemented in SeaHorn
2, an LLVM [21] based safety verifica-

tion framework. SeaHorn verifies user-supplied assertions as well as a number
of built-in safety properties (e.g., buffer and signed integer overflows). It can also
be used to check for inconsistent code in C programs [18].

SeaHorn is parameterized by the semantic representation of the program
using Constrained Horn Clauses (CHCs), and by the verification engine that
leverages the latest advances made in SMT-based Model Checking and Abstract
Interpretation. Detailed information about SeaHorn can be found in [15]. The
transformations Tterm and Trank presented in Sect. 4.1 are used to enhance
the CHCs passed to the verification engine. SeaHorn employs several SMT-
based model checking engines based on PDR/IC3 [2], including Spacer [19].
The synthesis of candidate ranking functions presented in Sect. 4.2 uses Z3 [12]
to find affine functions fitting the collected terminating states.

Experimental Evaluation. We compared SeaHorn to the participants in
the termination division of SV-COMP 2015: AProVE [28], FuncTion [30],
HIPTnT+ [22], and Ultimate Automizer [16]. We evaluated the tools against
190 terminating C programs collected from the SV-COMP 2015 benchmarks.
Specifically, we selected only the programs that all tools could analyze (e.g.,
without parse errors or other clear issues) among the two most populated verifi-
cation tasks of the termination category (i.e., crafted-lit and memory alloca). Note
that other tools (e.g., FuncTion) provide a very limited support for arrays and
pointers. Therefore, we were not able to analyze 30% of the considered bench-
marks. The experiments were performed on a machine with a 2.90 GHz 64-bit
Dual-Core CPU (Intel i5-5287U) and 4 GB of RAM, and running Ubuntu 14.04.

In the evaluation, we run in parallel three instances of SeaHorn parame-
terized with the different ranking function combinations presented in Sect. 4.2,
halting the analysis as soon as one instance reported a result. Figure 8 sum-
marizes our experimental evaluation and Fig. 9 shows a detailed comparison of
SeaHorn against each other tool. In Fig. 8a, the first column reports the total

2 http://seahorn.github.io/.

http://seahorn.github.io/
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Fig. 9. Detailed comparison of SeaHorn against AProVE [28] (a), FuncTion [30]
(b), HIPTnT+ [22] (c), and Ultimate Automizer [16] (d).

number of programs that each tool could prove terminating, and the second col-
umn reports the average running time in seconds for the programs where the tool
proved termination. We used a time limit of 30 s for each program. In Fig. 8b,
the first column (�) lists the total number of programs that the tool was not
able to prove termination for and that SeaHorn could prove terminating, the
second column (�) reports the total number of programs that SeaHorn was
not able to prove termination for and that the tool could prove terminating, and
the last two columns report the total number of programs that both the tool and
SeaHorn were able (×) or unable (�) to prove terminating. The same symbols
are used in Fig. 9.

Figure 8a shows that SeaHorn is able to prove termination of 3.2% more
programs than AProVE, 12.6% more programs than FuncTion, and 13.7%
more programs than Ultimate Automizer. HIPTnT+ is able to prove ter-
mination of 8.9% more programs than SeaHorn, but SeaHorn can prove
termination of 42.1% of the programs that HIPTnT+ is not able to prove
terminating (8.4% of the total program test cases, cf. Fig. 8b).
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Figure 8b highlights the complementary strengths of SeaHorn and each of
the other tools. Specifically, SeaHorn and AProVE seem to form the best
combination with respectively 20.5% and 17.4% of the total program test cases
that could be proved terminating only by one tool and not the other, and only
11.6% of the test case that could not be proved terminating by either tool.

Figure 9 shows that SeaHorn is generally faster than AProVE (cf. Fig. 9a)
and Ultimate Automizer (cf. Fig. 9d), and often slower than FuncTion (cf.
Fig. 9b) and HIPTnT+ (cf. Fig. 9c). In Fig. 9b and c, we also see that FuncTion

and HIPTnT+ give up earlier when unable to prove termination, while Sea-

Horn, AProVE, and Ultimate Automizer usually persist with the analysis
until the timeout (cf. also Fig. 9a and d).

Finally, we noticed that five of the SV-COMP 2015 program test cases could
be proved terminating only by SeaHorn (one only by AProVE, one only by
FuncTion, two only by HIPTnT+, and five only by Ultimate). No tool could
prove termination of six of the program test cases.

6 Related Work

In the recent past, termination analysis has benefited from many research
advances and powerful termination provers have emerged. Many approaches in
this area reduce termination to a safety property. For instance, the approach
implemented in Terminator [10] systematically verifies that no program state
is repeatedly visited (and it is not covered by the current termination argument).
The identified counterexamples are independently proved to be terminating [26]
building a disjunctive well-founded termination argument [27]. A similar incre-
mental approach is used in T2 [5] for the construction of lexicographic ranking
functions. An automata-based incremental approach is described in [17] and
implemented in Ultimate [16]. An approach based on conflict-driven learning
is used in [13] to enhance the abstract interpretation-based termination analy-
sis [31] implemented in FuncTion [30].

The incremental approach that we have proposed in this paper uses safety
verifiers for proving termination in a fundamentally different way than existing
methods: rather than systematically verifying that no program state is visited
repeatedly, we systematically verify that no program state is terminating. Thus,
our counterexamples are finite traces and do not need to be proven terminating.

The counterexample finite traces identified by our approach are used to
extrapolate affine ranking functions. The linear interpolation that we use resem-
bles the widening operator described in [31]. The extrapolated ranking functions
are combined into a piecewise-defined, lexicographic, or multiphase ranking func-
tion for a program. Thus, our method provides more valuable information than
just a positive or inconclusive answer like the methods based on the size-change
termination principle [23] and implemented in AProVE [28], or like the already
cited methods based on disjunctive well-foundedness and implemented in Termi-

nator. Finally, compared to the incomplete methods implemented in AProVE

and FuncTion, our method is also able to prove program non-termination.
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7 Conclusion and Future Work

This paper provides a new perspective on the use of safety verifiers for proving
program (non-)termination. We have proposed a novel incremental approach,
which uses a safety verifier to systematically sample terminating program exe-
cutions and synthesize from these a ranking function for the program, or to
otherwise provide a witness for program non-termination.

It remains for future work to adapt the approach in order to infer sufficient
preconditions for program termination [7,31]. We also plan to extend the app-
roach to other liveness properties [9,32].
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Abstract. A data automaton is a finite automaton equipped with vari-
ables (counters or registers) ranging over infinite data domains. A trace
of a data automaton is an alternating sequence of alphabet symbols
and values taken by the counters during an execution of the automa-
ton. The problem addressed in this paper is the inclusion between the
sets of traces (data languages) recognized by such automata. Since the
problem is undecidable in general, we give a semi-algorithm based on
abstraction refinement, which is proved to be sound and complete mod-
ulo termination. Due to the undecidability of the trace inclusion problem,
our procedure is not guaranteed to terminate. We have implemented our
technique in a prototype tool and show promising results on several non-
trivial examples.

1 Introduction

In this paper, we address a trace inclusion problem for infinite-state systems.
Given (i) a network of data automata A = 〈A1, . . . , AN 〉 that communicate via a
set of shared variables xA , ranging over an infinite data domain, and a set of input
events ΣA , and (ii) a data automaton B whose set of variables xB is a subset of
xA , does the set of (finite) traces of B contain the traces of A? Here, by a trace,
we understand an alternating sequence of valuations of the variables from the set
xB and input events from the set ΣA ∩ ΣB , starting and ending with a valuation.
Typically, the network of automata A is an implementation of a concurrent system
and B is a specification of the set of good behaviors of the system.

Consider, for instance, the network 〈A1, . . . , AN 〉 of data automata equipped
with the integer-valued variables x and ν shown in Fig. 1 (left). The automata
synchronize on the init symbol and interleave their a1,...,N actions. Each automa-
ton Ai increases the shared variable x and writes its identifier i into the shared
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Fig. 1. An instance of the trace inclusion problem.

variable ν as long as the value of x is in the interval [(i − 1)Δ, iΔ − 1], and it
is inactive outside this interval, where Δ � 1 is an unbounded parameter of the
network. A possible specification for this network might require that each firing
sequence is of the form init a∗

1,...,N a2 a∗
2,...,N . . .ai a∗

i for some 1 � i � N , and
that ν is increased only on the first occurrence of the events a2, . . . ,ai, in this
order. This condition is encoded by the automaton B (Fig. 1, right). Observe
that only the ν variable is shared between the network 〈A1, . . . , AN 〉 and the
specification automaton B—we say that ν is observable in this case. An example
of a trace, for Δ = 2 and N � 3, is: (v = 0) init (v = 1) a1 (v = 1) a1 (v = 1)
a2 (v = 2) a2 (v = 2) a3 (v = 3). Our problem is to check that this, and all
other traces of the network, are included in the language of the specification
automaton, called the observer.

The trace inclusion problem has several applications, some of which we detail
next. As the first potential application domain, we mention decision procedures
for logics describing array structures in imperative programs [16,17] that use
a translation of array formulae to integer counter automata, which encode the
set of array models of a formula. The expressiveness of such logics is currently
limited by the decidability of the emptiness (reachability) problem for counter
automata. If we give up on decidability, we can reduce an entailment between
two array formulae to the trace inclusion of two integer counter automata, and
use the method presented in this paper as a semi-decision procedure. To assess
this claim, we have applied our trace inclusion method to several verification
conditions for programs with unbounded arrays of integers [7].

Another application is within the theory of timed automata and regular spec-
ifications of timed languages [2] that can be both represented by finite automata
extended with real-valued variables [14]. The verification problem boils down
to the trace inclusion of two real-valued data automata. Our method has been
tested on several timed verification problems, including communication protocols
and boolean circuits [27].

When developing a method for checking the inclusion between trace lan-
guages of automata extended with variables ranging over infinite data domains,
the first problem is the lack of determinization and/or complementation results.
In fact, certain classes of infinite state systems, such as timed automata [2],
cannot be determinized and are provably not closed under complement. This is
the case due to the fact that the clock variables of a timed automaton are not
observable in its timed language, which records only the time lapses between
successive events. However, if we require that the values of all variables of a data
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automaton be part of its trace language, we obtain a determinization result,
which generalizes the classical subset construction by taking into account the
data valuations. Building on this first result, we define the complement of a data
language and reduce the trace inclusion problem to the emptiness of a product
data automaton L(A×B) = ∅. It is crucial, for this reduction, that the variables
xB of the right-hand side data automaton B (the one being determinized) are
also controlled by the left-hand side automaton A, in other words, that B has
no hidden variables.

The language emptiness problem for data automata is, in general, unde-
cidable [23]. Nevertheless, several semi-algorithms and tools for this problem
(better known as the reachability problem) have been developed [3,15,19,22].
Among those, the technique of lazy predicate abstraction [19] combined with
counterexample-driven refinement using interpolants [22] has been shown to be
particularly successful in proving emptiness of rather large infinite-state systems.
Moreover, this technique shares similar aspects with the antichain-based algo-
rithm for language inclusion in the case of a finite alphabet [1]. An important
similarity is that both techniques use a partial order on states, to prune the state
space during the search.

The main result of this paper is a semi-algorithm that combines the principle
of the antichain-based language inclusion algorithm [1] with the interpolant-
based abstraction refinement semi-algorithm [22], via a general notion of
language-based subsumption relation. We have implemented our semi-algorithm
in a prototype tool and carried out a number of experiments, involving hard-
ware, real-time systems, and array logic problems. Since our procedure tests
inclusion within a set of good traces, instead of empty intersection with a set of
error traces, we can encode rather complex verification conditions concisely, by
avoiding the blowup caused by an a-priori complementation of the automaton
encoding the property.

1.1 Overview

Fig. 2. Sample run of our semi-algorithm.

We introduce the reader to our
trace inclusion method by means of
an example. For space reasons, all
proofs are given in an extended ver-
sion of the paper [21].

Let us consider the network of
data automata 〈A1, A2〉 and the
data automaton B from Fig. 1. We
prove that, for any value of Δ,
any trace of the network 〈A1, A2〉,
obtained as an interleaving of the
actions of A1 and A2, is also a trace
of the observer B. To this end,
our procedure will fire increasingly
longer sequences of input events, in
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search for a counterexample trace. We keep a set of predicates associated with
each state (〈q1, q2〉, P ) of the product automaton where qi is a state of Ai

and P is a set of states of B. These predicates are formulae that define over-
approximations of the data values reached simultaneously by the network, when
Ai is the state qi, and by the observer B, in every state from P .

The first input event is init, on which A1 and A2 synchronize, moving
together from the initial state 〈q1

0 , q2
0〉 to 〈q1

1 , q2
1〉. In response, B can chose to

either (i) move from {p0} to {p1}, matching the only transition rule from p0, or
(ii) ignore the transition rule and move to the empty set. In the first case, the
values of ν match the relation of the rule p0

init,v′=1−−−−−→ p1, while in the second case,
these values match the negated relation ¬(v′ = 1). The second case is impossible
because the action of the network requires x′ = 0 ∧ v′ = 1. The only successor
state is thus (〈q1

1 , q2
1〉, {p1}) in Fig. 2(a). Since no predicates are initially available

at this state, the best over-approximation of the set of reachable data valuations
is the universal set (�).

The second input event is a1, on which A1 moves from q1
1 back to itself, while

A2 makes an idle step because no transition with a1 is enabled from q2
1 . Again,

B has the choice between moving from {p1} either to ∅ or {p1}. Let us consider
the first case, in which the successor state is (〈q1

1 , q2
1〉, ∅,�). Since q1

1 and q2
1

are final states of A1 and A2, respectively, and no final state of B is present in
∅, we say that the state is accepting. If the accepting state (in dashed boxes
in Fig. 2) is reachable according to the transition constraints along the input
sequence init.a1, we have found a counterexample trace that is in the language
of 〈A1, A2〉 but not in the language of B.

To verify the reachability of the accepting state, we check the satisfiability of
the path formula corresponding to the composition of the transition constraints
x′ = 0 ∧ v′ = 1 (init) and 0 � x < Δ ∧ x′ = x + 1 ∧ v′ = 1 ∧ ¬(v′ = v) (a1)
in Fig. 2(a). This formula is unsatisfiable, and the proof of infeasibility provides
the interpolant 〈v = 1〉. This formula is an explanation for the infeasibility of
the path because it is implied by the first constraint and it is unsatisfiable in
conjunction with the second constraint. By associating the new predicate v = 1
with the state (〈q1

1 , q2
1〉, {p1}), we ensure that the same spurious path will never

be explored again.
We delete the spurious counterexample and recompute the states along the

input sequence init.a1 with the new predicate. In this case, (〈q1
1 , q2

1〉, ∅) is
unreachable, and the outcome is (〈q1

1 , q2
1〉, {p1}, v = 1). However, this state was

first encountered after the sequence init, so there is no need to store a second
occurrence of this state in the tree. We say that init.a1 is subsumed by init,
depicted by a dashed arrow in Fig. 2(b).

We continue with a2 from the state (〈q1
1 , q2

1〉, {p1}, v = 1). In this case, A1

makes an idle step and A2 moves from q2
1 to itself. In response, B has the choice

between moving from {p1} to either (i) {p1} with the constraint v′ = v, (ii) {p2}
with the constraint v′ = v + 1, (iii) {p1, p2} with the constraint v′ = v ∧ v′ =
v + 1 → ⊥ (this possibility is discarded), (iv) ∅ for data values that satisfy
¬(v′ = v) ∧ ¬(v′ = v + 1). The last case is also discarded because the value of ν



Abstraction Refinement and Antichains for Trace Inclusion 75

after init constrained to 1 and the A2 imposes further the constraint v′ = 2 and
v = 1 ∧ v′ = 2 ∧ ¬(v′ = v) ∧ ¬(v′ = v + 1) → ⊥. Hence, the only a2-successor of
(〈q1

1 , q2
1〉, {p1}, v = 1) is (〈q1

1 , q2
1〉, {p2},�), in Fig. 2(b).

By firing the event a1 from this state, we reach (〈q1
1 , q2

1〉, ∅, v = 1), which
is, again, accepting. We check whether the path init.a2.a1 is feasible, which
turns out not to be the case. For efficiency reasons, we find the shortest suffix
of this path that can be proved infeasible. It turns out that the sequence a2.a1

is infeasible starting from the state (〈q1
1 , q2

1〉, {p1}, v = 1), which is called the
pivot. This proof of infeasibility yields the interpolant 〈v = 1,Δ < x〉, and a new
predicate Δ < x is associated with (〈q1

1 , q2
1〉, {p2}). The refinement phase rebuilds

only the subtree rooted at the pivot state, in Fig. 2(b).
The procedure then builds the tree on Fig. 2(c) starting from the pivot node

and finds the accepting state (〈q1
1 , q2

1〉, ∅,Δ < x) as the result of firing the
sequence init.a2.a2. This path is spurious, and the new predicate v = 2 is associ-
ated with the location (〈q1

1 , q2
1〉, {p2}). The pivot node is the same as in Fig. 2(b),

and, by recomputing the subtree rooted at this node with the new predicates,
we obtain the tree in Fig. 2(d), in which all frontier nodes are subsumed by their
predecessors. Thus, no new event needs to be fired, and the procedure can stop
reporting that the trace inclusion holds.

Related Work. The trace inclusion problem has been previously addressed in
the context of timed automata [25]. Although the problem is undecidable in
general, decidability is recovered when the left-hand side automaton has at most
one clock, or the only constant appearing in the clock constraints is zero. These
are essentially the only known decidable cases of language inclusion for timed
automata.

The study of data automata [5,6] usually deals with decision problems in log-
ics describing data languages for simple theories, typically infinite data domains
with equality. Although our notions of data words and data languages are sim-
ilar to the classical ones in the literature [5,6], the data automata defined in
this paper are different from [5], as well as [6]. The main difference consists in
the fact that the existing notions of data automata are controlled by equiva-
lence relations of finite index, whereas in our case, the transitions are defined
by unrestricted formulae in the first-order theory of the data domain. Moreover,
the emptiness problems [5,6] are decidable, whereas we consider an undecidable
model that subsumes the existing ones.

Data words are also studied in the context of symbolic visibly pushdown
automata (SVPA) [11]. Language inclusion is decidable for SVPAs with tran-
sition guards from a decidable theory because SVPAs are closed under comple-
ment and the emptiness can be reduced to a finite number of queries expressible
in the underlying theory of guards. Decidability comes here at the cost of reduc-
ing the expressiveness and forbidding comparisons between adjacent positions
in the input (only comparisons between matching call/return positions of the
input nested words are allowed).

Another related model is that of predicate automata [13], which recog-
nize languages over integer data by labeling the words with conjunctions of
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uninterpreted predicates. The emptiness problem is undecidable for this model
and becomes decidable when all predicates are monadic. Exploring further the
connection between predicate automata and our definition of data automata
could also provide interesting examples for our method, stemming from verifica-
tion problems for parallel programs.

Finally, several works on model checking infinite-state systems against CTL
[4] and CTL* [9] specifications are related to our problem as they check inclusion
between the set of computation trees of an infinite-state system and the set of
trees defined by a branching temporal logic specification. The verification of exis-
tential CTL formulae [4] is reduced to solving forall-exists quantified Horn clauses
by applying counterexample guided refinement to discover witnesses for existen-
tially quantified variables. The work [9] on CTL* verification of infinite systems
is based on partial symbolic determinization, using prophecy variables to summa-
rize the future program execution. For finite-state systems, automata are a strictly
more expressive formalism than temporal logics1. Such a comparison is, however,
non-trivial for infinite-state systems. Nevertheless, we found the data automata
considered in this paper to be a natural tool for specifying verification conditions
of array programs [7,16,17] and regular properties of timed languages [2].

2 Data Automata

Let N denote the set of non-negative integers including zero. For any k, � ∈ N,
k � �, we write [k, �] for the set {k, k + 1, . . . , �}. We write ⊥ and � for the
boolean constants false and true, respectively. Given a possibly infinite data
domain D, we denote by Th(D) = 〈D, p1, . . . , pn, f1, . . . , fm〉 the set of syntacti-
cally correct first-order formulae with predicate symbols p1, . . . , pn and function
symbols f1, . . . , fm. A variable x is said to be free in a formula φ, denoted as
φ(x), iff it does not occur under the scope of a quantifier.

Let x = {x1, . . . , xn} be a finite set of variables. A valuation ν : x → D
is an assignment of the variables in x with values from D. We denote by Dx

the set of such valuations. For a formula φ(x), we denote by ν |=Th(D) φ the
fact that substituting each variable x ∈ x by ν(x) yields a valid formula in the
theory Th(D). In this case, ν is said to be a model of φ. A formula is said to
be satisfiable iff it has a model. For a formula φ(x,x′) where x′ = {x′ | x ∈ x}
and two valuations ν, ν′ ∈ Dx, we denote by (ν, ν′) |=Th(D) φ the fact that the
formula obtained from φ by substituting each x with ν(x) and each x′ with ν′(x′)
is valid in Th(D).

Data Automata. Data Automata (DA) are extensions of non-deterministic
finite automata with variables ranging over an infinite data domain D,
equipped with a first order theory Th(D). Formally, a DA is a tuple A =
〈D,Σ,x, Q, ι, F,Δ〉, where:

1 For (in)finite words, the class of LTL-definable languages coincides with the star-free
languages, which are a strict subclass of (ω-)regular languages.
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– Σ is a finite alphabet of input events and 
 ∈ Σ is a special padding symbol,
– x = {x1, . . . , xn} is a set of variables,
– Q is a finite set of states, ι ∈ Q is an initial state, F ⊆ Q are final states, and
– Δ is a set of rules of the form q

σ,φ(x,x′)−−−−−→ q′ where σ ∈ Σ is an alphabet symbol
and φ(x,x′) is a formula in Th(D).

A configuration of A is a pair (q, ν) ∈ Q × Dx. We say that a configuration
(q′, ν′) is a successor of (q, ν) if and only if there exists a rule q

σ,φ−−→ q′ ∈ Δ
and (ν, ν′) |=Th(D) φ. We denote the successor relation by (q, ν) σ,φ−−→ A(q′, ν′),
and we omit writing φ and A when no confusion may arise. We denote by
succA(q, ν) = {(q′, ν′) | (q, ν) −→ A(q′, ν′)} the set of successors of a configuration
(q, ν).

A trace is a finite sequence w = (ν0, σ0), . . . , (νn−1, σn−1), (νn, 
) of pairs
(νi, σi) taken from the infinite alphabet Dx × Σ. A run of A over the trace w is
a sequence of configurations π : (q0, ν0)

σ0−→ (q1, ν1)
σ1−→ . . .

σn−1−−−→ (qn, νn). We
say that the run π is accepting if and only if qn ∈ F , in which case A accepts w.
The language of A, denoted L(A), is the set of traces accepted by A.

Data Automata Networks. A data automata network (DAN) is a non-
empty tuple A = 〈A1, . . . , AN 〉 of data automata Ai = 〈D,Σi,xi, Qi, ιi, Fi,Δi〉,
i ∈ [1, N ] whose sets of states are pairwise disjoint. A DAN is a succinct repre-
sentation of an exponentially larger DA Ae = 〈D,ΣA ,xA , QA , ιA , FA ,ΔA〉, called
the expansion of A, where:

– ΣA = Σ1 ∪ . . . ∪ ΣN and xA = x1 ∪ . . . ∪ xN ,
– QA = Q1 × . . . × QN , ιA = 〈ι1, . . . , ιN 〉 and FA = F1 × . . . × FN ,
– 〈q1, . . . , qN 〉 σ,ϕ−−→ 〈q′

1, . . . , q
′
N 〉 if and only if (i) for each i ∈ I, there exists

ϕi ∈ Th(D) such that qi
σ,ϕi−−→ q′

i ∈ Δi, (ii) for all i ∈ I, qi = q′
i, and (iii)

ϕ ≡ ∧
i∈I ϕi ∧ ∧

j �∈I τj , where I = {i ∈ [1, N ] | qi
σ,ϕi−−→ q′

i ∈ Δi} is the set
of DA that can move from qi to q′

i while reading the input symbol σ, and
τj ≡ ∧

x∈xj\(⋃i∈I xi) x′ = x propagates the values of the local variables in Aj

that are not updated by {Ai}i∈I .

Intuitively, all automata that can read an input symbol synchronize their
actions on that symbol whereas the rest of the automata make an idle step
and copy the values of their local variables which are not updated by the active
automata. The language of the DAN A is defined as the language of its expansion
DA, i.e. L(A) = L(Ae).

Trace Inclusion. Let A be a DAN and Ae = 〈D,Σ,xA , QA , ιA , FA ,ΔA〉 be its
expansion. For a set of variables y ⊆ xA , we denote by ν ↓y the restriction of
a valuation ν ∈ DxA to the variables in y. For a trace w = (ν0, σ0), . . . , (νn, 
)
∈ (DxA × ΣA)∗, we denote by w ↓y the trace (ν0 ↓y, σ0), . . . , (νn−1 ↓y, σn−1),
(νn ↓y, 
) ∈ (Dy × Σ)∗. We lift this notion to sets of words in the natural way,
by defining L(A) ↓y=

{
w ↓y| w ∈ L(A)

}
.

We are now ready to define the trace inclusion problem on which we focus in
this paper. Given a DAN A as before and a DA B = 〈D,Σ,xB , QB , ιB , FB ,ΔB〉
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such that xB ⊆ xA , the trace inclusion problem asks whether L(A) ↓xB
⊆ L(B)?

The right-hand side DA B is called observer, and the variables in xB are called
observable variables.

2.1 Boolean Closure Properties of Data Automata

Let A = 〈D,Σ,x, Q, ι, F,Δ〉 be a DA for the rest of this section. A is said to
be deterministic if and only if, for each trace w ∈ L(A), A has at most one
run over w. The first result of this section is that, interestingly, any DA can be
determinized while preserving its language. The determinization procedure is a
generalization of the classical subset construction for Rabin-Scott word automata
on finite alphabets. The reason why determinization is possible for automata
over an infinite data alphabet Dx ×Σ is that the successive values taken by each
variable x ∈ x are tracked by the language L(A) ⊆ (Dx × Σ)∗. This assumption
is crucial: a typical example of automata over an infinite alphabet, that cannot
be determinized, are timed automata [2], where only the elapsed time is reflected
in the language, and not the values of the variables (clocks).

Formally, the deterministic DA accepting the language L(A) is defined
as Ad = 〈D,Σ,x, Qd, ιd, F d,Δd〉, where Qd = 2Q, ιd = {ι}, F d =
{P ⊆ Q | P ∩ F = ∅} and Δd is the set of rules P

σ,θ−−→ P ′ such that:

– for all p′ ∈ P ′ there exists p ∈ P and a rule p
σ,ψ−−→ p′ ∈ Δ,

– θ(x,x′) ≡ ∧
p′∈P ′

∨
p

σ,ψ−−→p′∈Δ

p∈P

ψ ∧ ∧
p′∈Q\P ′

∧
p

σ,ϕ−−→p′∈Δ

p∈P

¬ϕ .

The main difference with the classical subset construction for Rabin-Scott
automata is that here we consider all sets P ′ of states that have a predecessor
in P , not just the maximal such set. The reason is that a set P ′ is not automat-
ically subsumed by the union of all such sets due to the data constraints on the
variables x. Observe, moreover, that Ad can be built for any theory Th(D) that
is closed under conjunction and negation.

Lemma 1. Given a DA A = 〈D,Σ,x, Q, ι, F,Δ〉, (1) for any w ∈ (Dx × Σ)∗

and P ∈ Qd, Ad has exactly one run on w that starts in P , and (2) L(A) =
L(Ad).

The construction of a deterministic DA recognizing the language of A
is key to defining a DA that recognizes the complement of A. Let A =
〈D,Σ,x, Qd, ιd, Qd \ F d,Δd〉. In other words, A has the same structure as Ad,
and the set of final states consists of those subsets that contain no final state,
i.e. {P ⊆ Q | P ∩ F = ∅}. Using Lemma 1, it is not difficult to show that
L(A) = (Dx × Σ)∗ \ L(A).

Next, we show closure of DA under intersection. Let
B = 〈D,Σ,x, Q′, ι′, F ′,Δ′〉 be a DA and define A × B =
〈D,Σ,x, Q × Q′, (ι, ι′), F × F ′,Δ×〉, where (q, q′) σ,ϕ−−→ (p, p′) ∈ Δ× if and only
if q

σ,φ−−→ p ∈ Δ, q′ σ,ψ−−→ p′ ∈ Δ′ and ϕ ≡ φ ∧ψ. It is easy to show that L(A × B) =
L(A) ∩ L(B). DA are also closed under union, since L(A) ∪ L(B) = L(A × B).
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Let us turn now to the trace inclusion problem. The following lemma shows
that this problem can be effectively reduced to an equivalent language emptiness
problem. However, note that this reduction does not work when the trace inclu-
sion problem is generalized by removing the condition xB ⊆ xA. In other words,
if the observer uses local variables not shared with the network2, i.e. xB\xA = ∅,
the generalized trace inclusion problem L(A) ↓xA∩xB

⊆ L(B) ↓xA∩xB
has a

negative answer iff there exists a trace w = (ν0, σ0), . . . , (νn, 
) ∈ L(A) such
that, for all valuations μ0, . . . , μn ∈ DxB\xA , we have w′ = (ν0 ↓xA∩xB∪ μ0, σ0), . . . , (νn ↓xA∩xB

∪ μn, 
) ∈ L(B). This kind of quantifier alternation
cannot be easily accommodated within the framework of language emptiness, in
which only one type of (existential) quantifier occurs.

Lemma 2. Given DA A = 〈D,Σ,xA, QA, ιA, FA,ΔA〉 and B
= 〈D,Σ,xB , QB , ιB , FB ,ΔB〉 such that xB ⊆ xA. Then L(A) ↓xB

⊆ L(B) if
and only if L(A × B) = ∅.

The trace inclusion problem is undecidable, which can be shown by reduction
from the language emptiness problem for DA (take B such that L(B) = ∅). How-
ever the above lemma shows that any semi-decision procedure for the language
emptiness problem can also be used to deal with the trace inclusion problem.

3 Abstract, Check, and Refine for Trace Inclusion

This section describes our semi-algorithm for checking the trace inclusion
between a given network A and an observer B. Let Ae denote the expansion
of A, defined in the previous. In the light of Lemma 2, the trace inclusion prob-
lem L(A) ↓xB

⊆ L(B), where the set of observable variables xB is included in
the set of network variables, can be reduced to the language emptiness problem
L(Ae × B) = ∅.

Although language emptiness is undecidable for data automata [23], several
cost-effective semi-algorithms and tools [3,15,18,22] have been developed, show-
ing that it is possible, in many practical cases, to provide a yes/no answer to this
problem. However, to apply one of the existing off-the-shelf tools to our problem,
one needs to build the product automaton Ae × B prior to the analysis. Due to
the inherent state explosion caused by the interleaving semantics of the network
as well as by the complementation of the observer, such a solution would not be
efficient in practice.

To avoid building the product automaton, our procedure builds on-the-fly an
over-approximation of the (possibly infinite) set of reachable configurations of
Ae × B. This over-approximation is defined using the approach of lazy predicate
abstraction [18], combined with counterexample-driven abstraction refinement
using interpolants [22]. We store the explored abstract states in a structure

2 For timed automata, this is the case since the only shared variable is the time, and
the observer may have local clocks.
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called an antichain tree. In general, antichain-based algorithms [28] store only
states which are incomparable w.r.t. a partial order called subsumption. Our
method can be thus seen as an extension of the antichain-based language inclu-
sion algorithm [1] to infinite-state systems by means of predicate abstraction and
interpolation-based refinement. Since the trace inclusion problem is undecidable
in general, termination of our procedure is not guaranteed; in the following, we
shall, however, call our procedure an algorithm for the sake of brevity.

3.1 Antichain Trees

We define antichain trees, which are the main data structure of the trace
inclusion procedure. Let A = 〈A1, . . . , AN 〉 be a network of automata
where Ai = 〈D,Σi,xi, Qi, ιi, Fi,Δi〉, for all i ∈ [1, N ], and let B =
〈D,Σ,xB , QB , ιB , FB ,ΔB〉 be an observer such that xB ⊆ ⋃N

i=1 xi. We also
denote by Ae = 〈D,ΣA ,xA , QA , ιA , FA ,ΔA〉 the expansion of the network A and
by Ae×B = 〈D,ΣA ,xA , Qp, ιp, F p,Δp〉 the product automaton used for checking
language inclusion.

An antichain tree for the network A and the observer B is a tree whose nodes
are labeled by product states (see Fig. 2 for examples). Intuitively, a product state
is an over-approximation of the set of configurations of the product automaton
Ae × B that share the same control state. Formally, a product state for A and
B is a tuple s = (q, P, Φ) where (i) (q, P ) is a state of Ae × B with q =
〈q1, . . . , qN 〉 being a state of the network expansion Ae and P being a set of
states of the observer B, and (ii) Φ(xA) ∈ Th(D) is a formula which defines an
over-approximation of the set of valuations of the variables xA that reach the
state (q, P ) in Ae ×B. A product state s = (q, P, Φ) is a finite representation of
a possibly infinite set of configurations of Ae × B, denoted as [[s]] = {(q, P, ν) |
ν |=Th(D) Φ}.

To build an over-approximation of the set of reachable states of the product
automaton, we need to compute, for a product state s, an over-approximation
of the set of configurations that can be reached in one step from s. To this end,
we define first a finite abstract domain of product states, based on the notion of
predicate map. A predicate map is a partial function that associates sets of facts
about the values of the variables used in the product automaton, called predi-
cates, with components of a product state, called substates. The reason behind
the distribution of predicates over substates is two-fold. First, we would like the
abstraction to be local, i.e. the predicates needed to define a certain subtree in
the antichain must be associated with the labels of that subtree only. Second,
once a predicate appears in the context of a substate, it should be subsequently
reused whenever that same substate occurs as part of another product state.

Formally, a substate of a state (〈q1, . . . , qN 〉, P ) ∈ Qp of the product automa-
ton Ae × B is a pair (〈qi1 , . . . , qik

〉, S) such that (i) 〈qi1 , . . . , qik
〉 is a subse-

quence of 〈q1, . . . , qN 〉, and (ii) S = ∅ only if S ∩ P = ∅. We denote the
substate relation by (〈qi1 , . . . , qik

〉, S) � (〈q1, . . . , qN 〉, P ). The substate relation
requires the automata Ai1 , . . . , Aik

of the network A to be in the control states
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qi1 , . . . , qik
simultaneously, and the observer B to be in at least some state of

S provided S = ∅ (if S = ∅, the state of B is considered to be irrelevant). Let
S〈A,B〉 = {r | ∃q ∈ Qp . r � q} be the set of substates of a state of Ae × B.

A predicate map Π : S〈A,B〉 → 2Th(D) associates each substate (r, S) ∈ Qi1 ×
. . . × Qik

× 2QB with a set of formulae π(x) where (i) x = xi1 ∪ . . . ∪ xik
∪ xB if

S = ∅, and (ii) x = xi1 ∪ . . . ∪ xik
if S = ∅. Notice that a predicate associated

with a substate refers only to the local variables of those network components
Ai1 , . . . , Aik

and of the observer B that occur in the particular substate.
We are now ready to define the abstract semantics of the product automaton

Ae × B, induced by a given predicate map. For convenience, we define first a
set Post(s) of concrete successors of a product state s = (q, P, Φ) such that
(r, S,Ψ) ∈ Post(s) if and only if (i) the product automaton Ae × B has a rule
(q, P ) σ,θ−−→ (r, S) ∈ Δp and Ψ(xA) → ⊥, where Ψ(xA) ≡ ∃x′

A . Φ(x′
A)∧θ(x′

A ,xA).
The set of concrete successors does not contain states with empty set of valua-
tions; these states are unreachable in Ae × B.

Given a predicate map Π, the set PostΠ(s) of abstract successors of a
product state s is defined as follows: (r, S,Ψ�) ∈ PostΠ(s) if and only
if (i) there exists a product state (r, S,Ψ) ∈ Post(s) and (ii) Ψ�(xA) ≡∧

r�(r,S)

∧ {π ∈ Π(r) | Ψ → π}. In other words, the set of data valuations that
are reachable by an abstract successor is the tightest over-approximation of the
concrete set of reachable valuations, obtained as the conjunction of the available
predicates from the predicate map that over-approximate this set.

Finally, an antichain tree (or, simply antichain) T for A and B is a tree whose
nodes are labeled with product states and whose edges are labeled by input
symbols and concrete transition relations. Let N

∗ be the set of finite sequences
of natural numbers that denote the positions in the tree. For a tree position
p ∈ N

∗ and i ∈ N, the position p.i is a child of p. A set S ⊆ N
∗ is said to be

prefix-closed if and only if, for each p ∈ S and each prefix q of p, we have q ∈ S
as well. The root is denoted by the empty sequence ε.

Formally, an antichain T is a set of pairs 〈s, p〉, where s is a product state
and p ∈ N

∗ is a tree position, such that (1) for each position p ∈ N
∗ there exists

at most one product state s such that 〈s, p〉 ∈ T , (2) the set {p | 〈s, p〉 ∈ T } is
prefix-closed, (3) (root〈A,B〉, ε) ∈ T where root〈A,B〉 = (〈ι1, . . . , ιN 〉, {ιB},�) is
the label of the root, and (4) for each edge (〈s, p〉, 〈t, p.i〉) in T , there exists a
predicate map Π such that t ∈ PostΠ(s). For the latter condition, if s = (q, P, Φ)
and t = (r, S,Ψ), there exists a unique rule (q, P ) σ,θ−−→ (r, S) ∈ Δp, and we shall
sometimes denote the edge as s

σ,θ−−→ t or simply s
θ−→ t when the tree positions

are not important.
Each antichain node n = (s, d1 . . . dk) ∈ T is naturally associated with a

path from the root to itself ρ : n0
σ1,θ1−−−→ n1

σ2,θ2−−−→ . . .
σ2,θk−−−→ nk. We denote by ρi

the node ni for each i ∈ [0, k], and by |ρ| = k the length of the path. The path
formula associated with ρ is Θ(ρ) ≡ ∧k

i=1 θ(xi−1
A ,xi

A) where xi
A =

{
xi | x ∈ xA

}

is a set of indexed variables.
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3.2 Counterexample-Driven Abstraction Refinement

A counterexample is a path from the root of the antichain to a node which
is labeled by an accepting product state. A product state (q, P, Φ) is said to
be accepting iff (q, P ) is an accepting state of the product automaton Ae × B,
i.e. q ∈ FA and P ∩ FB = ∅. A counterexample is said to be spurious if its
path formula is unsatisfiable, i.e. the path does not correspond to a concrete
execution of Ae × B. In this case, we need to (i) remove the path ρ from the
current antichain and (ii) refine the abstract domain in order to exclude the
occurrence of ρ from future state space exploration.

Let ρ : root〈A,B〉 = (q0, P0,Φ0)
θ1−→ (q1, P1,Φ1)

θ2−→ . . .
θk−→ (qk, Pk,Φk) be

a spurious counterexample in the following. For efficiency reasons, we would
like to save as much work as possible and remove only the smallest suffix of
ρ which caused the spuriousness. For some j ∈ [0, k], let Θj(ρ) ≡ Φj(x0

A) ∧
∧k

i=j θi(x
i−j
A ,xi−j+1

A ) be the formula defining all sequences of data valuations
that start in the set Φj and proceed along the suffix (qj , Pj ,Φj) −→ . . . −→
(qk, Pk,Φk) of ρ. The pivot of a path ρ is the maximal position j ∈ [0, k] such
that Θj(ρ) = ⊥, and −1 if ρ is not spurious.

Finally, we describe the refinement of the predicate map, which ensures that
a given spurious counterexample will never be found in a future iteration of
the abstract state space exploration. The refinement is based on the notion of
interpolant [22].

Definition 1. Given a formula Φ(x) and a sequence 〈θ1(x,x′), . . . , θk(x,x′)〉 of
formulae, an interpolant is a sequence of formulae I = 〈I0(x), . . . , Ik(x)〉 where:
(1) Φ → I0, (2) Ik → ⊥, and (3) Ii−1(x) ∧ θi(x,x′) → Ii(x′) for all i ∈ [1, k].

Any given interpolant is a witness for the unsatisfiability of a (suffix) path for-
mula Θj(ρ). Dually, if Craig’s Interpolation Lemma [10] holds for the considered
first-order data theory Th(D), any infeasible path formula is guaranteed to have
an interpolant.

Given a spurious counterexample ρ with pivot j � 0, an interpolant
I = 〈I0, . . . , Ik−j〉 for the infeasible path formula Θj(ρ) can be used to refine
the abstract domain by augmenting the predicate map Π. As an effect of
this refinement, the antichain construction algorithm will avoid every path
with the suffix (qj , Pj ,Φj) −→ . . . −→ (qk, Pk,Φk) in a future iteration. If
Ii ⇐⇒ C1

i (y1)∧ . . .∧Cmi
i (ymi

) is a conjunctive normal form (CNF) of the i-th
component of the interpolant, we consider the substate (r�

i , S
�
i ) for each C�

i (y�)
where l ∈ [1,mi]:

– r�
i = 〈qi1 , . . . , qih

〉 where 1 � i1 < . . . < ih � N is the largest sequence of
indices such that xig

∩ y� = ∅ for each g ∈ [1, h] and the set xig
of variables

of the network component DA Aig
,

– S�
i = Pj if xB ∩ y� = ∅, and S�

i = ∅, otherwise.

A predicate map Π is said to be compatible with a spurious path ρ : s0
θ1−→

. . .
θk−→ sk with pivot j � 0 if sj = (qj , Pj ,Φj) and there is an interpolant
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I = 〈I0, . . . , Ik−j〉 of the suffix 〈θ1, . . . , θk〉 wrt. Φj such that, for each clause
C of some equivalent CNF of Ii, i ∈ [0, k − j], it holds that C ∈ Π(r) for
some substate r � si+j . The following lemma proves that, under a predicate
map compatible with a spurious path ρ, the antichain construction will exclude
further paths that share the suffix of ρ starting with its pivot.

Lemma 3. Let ρ : (q0, P0,Φ0)
θ0−→ (q1, P1,Φ1)

θ1−→ . . .
θk−1−−−→ (qk, Pk,Φk) be

a spurious counterexample and Π be a predicate map compatible with ρ. Then,
there is no sequence of product states (qj , Pj ,Ψ0), . . . , (qk, Pk,Ψk−j) such that:
(1) Ψ0 → Φj and (2) (qi+1, Pi+1,Ψi−j+1) ∈ PostΠ((qi, Pi,Ψi−j)) for all i ∈
[j, k − 1].

Observe that the refinement induced by interpolation is local since Π asso-
ciates sets of predicates with substates of the states in Ae × B, and the update
impacts only the states occurring within the suffix of that particular spurious
counterexample.

3.3 Subsumption

The main optimization of antichain-based algorithms [1] for checking language
inclusion of automata over finite alphabets is that product states that are subsets
of already visited states are never stored in the antichain. On the other hand,
language emptiness semi-algorithms, based on predicate abstraction [22] use a
similar notion to cover newly generated abstract successor states by those that
were visited sooner and that represent larger sets of configurations. In this case,
state coverage does not only increase efficiency but also ensures termination of
the semi-algorithm in many practical cases.

In this section, we generalize the subset relation used in classical antichain
algorithms with the notion of coverage from predicate abstraction, and we define
a more general notion of subsumption for data automata. Given a state (q, P ) of
the product automaton Ae × B and a valuation ν ∈ DxA , the residual language
L(q,P,ν)(Ae × B) is the set of traces w accepted by Ae × B from the state (q, P )
such that ν is the first valuation which occurs on w. This notion is then lifted to
product states as follows: Ls(Ae × B) =

⋃
(q,P,ν)∈[[s]] L(q,P,ν)(Ae × B) where [[s]]

is the set of configurations of the product automaton Ae × B represented by the
given product state s.

Definition 2. Given a DAN A and a DA B, a partial order � is a subsumption
provided that, for any two product states s and t, we have s � t only if Ls(Ae ×
B) ⊆ Lt(Ae × B).

A procedure for checking the emptiness of Ae × B needs not continue the
search from a product state s if it has already visited a product state t that
subsumes s. The intuition is that any counterexample discovered from s can
also be discovered from t. The trace inclusion semi-algorithm described below in
Sect. 3.4 works, in principle, with any given subsumption relation. In practice,
our implementation uses the subsumption relation defined by the lemma below:
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Lemma 4. The relation defined s.t. (q, P, Φ) �img (r, S,Ψ) ⇐⇒ q = r, P ⊇
S, and Φ → Ψ is a subsumption.

3.4 The Trace Inclusion Semi-algorithm

With the previous definitions, Algorithm 1 describes the procedure for checking
trace inclusion. It uses a classical work-list iteration loop (lines 2-30) that builds
an antichain tree by simultaneously unfolding the expansion Ae of the network A
and the complement B of the observer B, while searching for a counterexample
trace w ∈ L(Ae × B). Both Ae and B are built on-the-fly, during the abstract
state space exploration.

The processed antichain nodes are kept in the set Visited, and their abstract
successors, not yet processed, are kept in the set Next. Initially, Visited = ∅

and Next = {rootA,B}. The algorithm uses a predicate map Π, which is initially
empty (line 1). We keep a set of subsumption edges Subsume ⊆ Visited ×
(Visited ∪ Next) with the following meaning: (〈s, p〉, 〈t, q〉) ∈ Subsume for two
antichain nodes, where s, t are product states and p, q ∈ N

∗ are tree positions,
if and only if there exists an abstract successor s′ ∈ PostΠ(s) such that s′ � t

Algorithm 1. Trace Inclusion Semi-algorithm
input:

1. a DAN A = 〈A1, . . . , AN 〉 such that Ai = 〈D, Σi,xi, Qi, ιi, Fi, Δi〉 for all i ∈ [1, N ],

2. a DA B = 〈D, Σ,xB , QB , ιB , FB , ΔB〉 such that xB ⊆ ⋃N
i=1 xi .

output: true if L(A) ↓xB
⊆ L(B), otherwise a trace τ ∈ L(A) ↓xB

\L(B) .

1: Π ← ∅, Visited ← ∅, Next ← 〈root〈A,B〉, ε〉, Subsume ← ∅

2: while Next �= ∅ do
3: choose curr ∈ Next and move curr from Next to Visited
4: match curr with 〈s, p〉
5: if s is an accepting product state then
6: let ρ be the path from the root to curr and k be the pivot of ρ
7: if k � 0 then
8: Π ← refinePredicateMapByInterpolation(Π, ρ, k)
9: rem ← subTree(ρk)
10: for (n, m) ∈ Subsume such that m ∈ rem do
11: move n from Visited to Next
12: remove rem from (Visited, Next, Subsume)
13: add ρk to Next
14: else
15: return extractCounterexample(ρ)

16: else
17: i ← 0
18: for t ∈ PostΠ(s) do
19: if there exists m = 〈t′, p′〉 ∈ Visited such that t � t′ then
20: add (curr, m) to Subsume
21: else
22: rem ← {

n ∈ Next | n = 〈t′, p′〉 and t′ � t
}

23: succ ← 〈t, p.i〉
24: i ← i + 1
25: for n ∈ Visited such that n has a successor m ∈ rem do
26: add (n, succ) to Subsume

27: for (n, m) ∈ Subsume such that m ∈ rem do
28: add (n, succ) to Subsume

29: remove rem from (Visited, Next, Subsume)
30: add succ to Next
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(Definition 2). Observe that we do not explicitly store a subsumed successor of a
product state s from the antichain; instead, we add a subsumption edge between
the node labeled with s and the node that subsumes that particular successor.
The algorithm terminates when each abstract successors of a node from Next is
subsumed by some node from Visited.

An iteration of Algorithm 1 starts by choosing an antichain node curr = 〈s, p〉
from Next and moving it to Visited (line 3). If the product state s is accepting
(line 5) we check the counterexample path ρ, from the root of the antichain to
curr, for spuriousness, by computing its pivot k. If k � 0, then ρ is a spurious
counterexample (line 7), and the path formula of the suffix of ρ, which starts with
position k, is infeasible. In this case, we compute an interpolant for the suffix and
refine the current predicate map Π by adding the predicates from the interpolant
to the corresponding substates of the product states from the suffix (line 8).

The computation of the interpolant and the update of the predicate map are
done by the refinePredicateMapByInterpolation function using the app-
roach described in Sect. 3.2. Subsequently, we remove (line 12) from the current
antichain the subtree rooted at the pivot node ρk, i.e. the k-th node on the path
ρ (line 9), and add ρk to Next in order to trigger a recomputation of this subtree
with the new predicate map. Moreover, all nodes with a successor previously
subsumed by a node in the removed subtree are moved from Visited back to
Next in order to reprocess them (line 11).

On the other hand, if the counterexample ρ is found to be real (k = −1),
any valuation ν ∈ ⋃|ρ|

i=0 Dxi
A that satisfies the path formula Θ(ρ) yields a coun-

terexample trace w ∈ L(A) ↓xB
\L(B), obtained by ignoring all variables from

xA \ xB (line 15).
If the current node is not accepting, we generate its abstract successors (line

18). In order to keep in the antichain only nodes that are incomparable w.r.t.
the subsumption relation �, we add a successor t of s to Next (lines 23 and 30)
only if it is not subsumed by another product state from a node m ∈ Visited.
Otherwise, we add a subsumption edge (curr,m) to the set Subsume (line 20).
Furthermore, if t is not subsumed by another state in Visited, we remove from
Next all nodes 〈t′, p′〉 such that t strictly subsumes t′ (lines 22 and 29) and add
subsumption edges to the node storing t from all nodes with a removed successor
(line 26) or a removed subsumption edge (line 28).

The following theorem shows completeness modulo termination.

Theorem 1. Let A = 〈A1, . . . , AN 〉 be a DAN such that
Ai = 〈D,Σi,xi, Qi, ιi, Fi,Δi〉 for all i ∈ [1, N ], and let B =
〈D,Σ,xB , QB , ιB , FB ,ΔB〉 be a DA such that xB ⊆ ⋃N

i=1 xi. If Algorithm 1
terminates and returns true on input A and B, then L(A) ↓xB

⊆ L(B).

The soundness question “if there exists a counterexample trace w ∈ L(A) ↓xB\L(B), will Algorithm 1 discover it?” has a positive answer, when exploring paths
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in breadth-first order3. The reason is that any real counterexample corresponds
to a finite path in the antichain, which will be eventually processed. Moreover, a
real counterexample always results in an abstract counterexample, for any given
predicate map.

4 Experimental Results

We have implemented Algorithm 1 in a prototype tool4 using the MathSat SMT
solver [8] for answering the satisfiability queries and computing the interpolants.
The results of the experiments are given in Tables 1 and 2. The results were
obtained on an Intel i7-4770 CPU @ 3.40 GHz machine with 32 GB RAM.

Table 1. Experiments with single-component networks.

Example A (|Q|/|Δ|) B (|Q|/|Δ|) Vars Res Time

Arrays shift 3/3 3/4 5 ok < 0.1s

Array rotation 1 4/5 4/5 7 ok 0.1s

Array rotation 2 8/21 6/24 11 ok 34s

Array split 20/103 6/26 14 ok 4m32s

HW counter 1 2/3 1/2 2 ok 0.2s

HW counter 2 6/12 1/2 2 ok 0.4s

Synchr. LIFO 4/34 2/15 4 ok 2.5s

ABP-error 14/20 2/6 14 cex 2s

ABP-correct 14/20 2/6 14 ok 3s

Table 1 contains
experiments where the
network A consists of
a single component.
We applied the tool
on several verification
conditions generated
from imperative pro-
grams with arrays [7]
(Array shift, Array
rotation 1+2, Array
split) available online
[24]. Then, we applied
it on models of hardware circuits (HW Counter 1+2, Synchronous LIFO) [26].
Finally, we checked two versions (correct and faulty) of the timed Alternating
Bit Protocol [29].

Table 2 provides a list of experiments where the network A has N > 1
components. First, we have the example of Fig. 1 (Running). Next, we have
several examples of real-time verification problems [27]: a controller of a rail-
road crossing [20] (Train) with T trains, the Fischer Mutual Exclusion protocol
with deadlines Δ and Γ (Fischer), and a hardware communication circuit with
K stages, composed of timed NOR gates (Stari). Third, we have modelled a
Producer-Consumer example [12] with a fixed buffer size B. Fourth, we have
experimented with several models of parallel programs that manipulate arrays
(Array init, Array copy, Array join) with window size Δ.

For the time being, our implementation is a proof-of-concept prototype that
leaves plenty of room for optimization (e.g. caching intermediate computa-
tion results) likely to improve the performance on more complicated examples.
Despite that, we found the results from Tables 1 and 2 rather encouraging.

3 In fact, our implementation uses a queue to represent the Next set.
4 http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/.

http://www.fit.vutbr.cz/research/groups/verifit/tools/includer/
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Table 2. Experiments with multiple-component networks (e.g., 2 × 2/2 + 2 × 3/3 in
column A means that A is a network with 4 components, of which 2 DA with 2 states
and 2 rules, and 2 DA with 3 states and 3 rules).

Example N A (|Q|/|Δ|) B (|Q|/|Δ|) Vars Res Time

Running 2 2×2/2 3/4 3 ok 0.2s

Running 10 10×2/2 11/20 3 ok 25s

Train (T = 5) 7 5×3/3 + 4/4 + 4/4 2/38 1 ok 4s

Train (T = 20) 22 20×3/3 + 4/4 + 4/4 2/128 1 ok 6m26s

Fischer (Δ = 1, Γ = 2) 2 2×5/6 1/10 4 ok 8s

Fischer (Δ = 1, Γ = 2) 3 3×5/6 1/15 4 ok 2m48s

Fischer (Δ = 2, Γ = 1) 2 2×5/6 1/10 4 cex 3s

Fischer (Δ = 2, Γ = 1) 3 3×5/6 1/15 4 cex 32s

Stari (K = 1) 5 4/5 + 2/4 + 5/7 + 5/7 + 5/7 3/6 3 ok 0.5s

Stari (K = 2) 8 4/5 + 2/4 + 2×5/7 + 2×5/7 + 2×5/7 3/6 3 ok 0.5s

Prod-Cons (B = 3) 2 4/4 + 4/4 2/7 2 ok 10s

Prod-Cons (B = 6) 2 4/4 + 4/4 2/7 2 ok 2m32s

Array init (Δ = 2) 5 5×2/2 2/6 2 ok 3s

Array init (Δ = 2) 15 15×2/2 2/16 2 ok 3m15s

Array copy (Δ = 20) 20 20×2/2 2/21 3 ok 0.3s

Array copy (Δ = 20) 150 150×2/2 2/151 3 ok 43s

Array join (Δ = 10) 4 2×2/2 + 2×3/3 2/3 2 ok 6s

Array join (Δ = 20) 6 3×2/2 + 3×3/3 2/4 2 ok 1m9s

5 Conclusions

We have presented an interpolation-based abstraction refinement method for
trace inclusion between a network of data automata and an observer where the
variables used by the observer are a subset of those used by the network. The
procedure builds on a new determinization result for DAs and combines in a
novel way predicate abstraction and interpolation with antichain-based inclu-
sion checking. The procedure has been successfully applied to several examples,
including verification problems for array programs, real-time systems, and hard-
ware designs. Future work includes an extension of the method to data tree
automata and its application to logics for heaps with data. Also, we foresee an
extension of the method to handle infinite traces.
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Abstract. We present an algorithm to compute exact aggregations of
a class of systems of ordinary differential equations (ODEs). Our app-
roach consists in an extension of Paige and Tarjan’s seminal solution
to the coarsest refinement problem by encoding an ODE system into a
suitable discrete-state representation. In particular, we consider a simple
extension of the syntax of elementary chemical reaction networks because
(i) it can express ODEs with derivatives given by polynomials of degree
at most two, which are relevant in many applications in natural sciences
and engineering; and (ii) we can build on two recently introduced bisim-
ulations, which yield two complementary notions of ODE lumping. Our
algorithm computes the largest bisimulations in O(r ·s·log s) time, where
r is the number of monomials and s is the number of variables in the
ODEs. Numerical experiments on real-world models from biochemistry,
electrical engineering, and structural mechanics show that our prototype
is able to handle ODEs with millions of variables and monomials, pro-
viding significant model reductions.

1 Introduction

Ordinary differential equations (ODEs) are widespread in many disciplines
including chemistry, epidemiology, systems biology, electrical engineering, and
control theory. Often, due to the complexity of the system under consideration,
the state space size (intended as the number of ODE variables) is so large that it
makes the numerical solution intractable (e.g., in protein-based interaction net-
works [1,2]). Formal kinds of analyses such as reachability computation suffer
from the curse of dimensionality, particularly for nonlinear systems (e.g., [3,4]).
It is therefore an important goal to be able to obtain reduced size models that
appropriately preserve the original dynamics.

For discrete-state quantitative models based on labeled transition systems,
the notion of bisimilarity has played a key role for model reduction, with efficient
algorithms [5–7] based on Paige and Tarjan’s celebrated solution to the coarsest
refinement problem [8]. The main contribution of this paper is to lift this app-
roach to ODE systems. In particular we focus on a class of polynomial systems,
c© Springer-Verlag Berlin Heidelberg 2016
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where the time derivatives are multivariate polynomials of degree at most two
in the ODE variables. This class is quite general because it incorporates models
frequently used in (bio-)chemistry (cf. [9]) as well as the ubiquitous linear ODEs.

We reconcile the established approaches based on discrete-state models with
the continuous-state semantics of ODEs by reasoning at the level of a discrete-
state syntactic representation of the ODE system. In particular, our class of
interest can be encoded into a variant of elementary chemical reaction networks
(CRNs). This consists of species (the ODE variables) interacting through unary
or binary reactions that are appropriately mapped onto monomials that govern
the derivative of the species involved. To be able to encode an arbitrary polyno-
mial ODE system (with degree at most two), we slightly extend the CRN syntax
by allowing negative rates. This has important repercussions on the applicabil-
ity of established results of CRN theory (e.g., [10]). Hence, to disambiguate, we
refer to this extension as Reaction Networks (RN). Instead, all the results for
exact quantitative bisimulations for CRNs, recently proposed by these authors
in [11] (cf. Sect. 2), do carry over to RN. The forward bisimulation (FB) gives a
partition of the ODE variables such that the sum of the ODEs can be written
as an explicit function of the sum of the variables. With backward bisimulation
(BB) species in the same block have the same ODE solution, provided that they
start with the same initial condition.

Our key idea is to exploit the fact that the syntactic conditions for an equiv-
alence relation over species to be either bisimulation can be expressed in the
Larsen-Skou style of probabilistic bisimulation [12]. (Actually, while this is imme-
diate for FB, in this paper we provide a novel characterization of BB tailored to
that format, cf. Sect. 3.1.) Thus, we can approach the problem of computing the
largest bisimulations by developing a variant of Paige and Tarjan’s algorithm,
along the lines of the efficient partition refinement algorithms of [6] and [7] for
Markov chain lumping [13], and of [5] for probabilistic transition systems. In par-
ticular, for technical reasons that will be clarified later, we build on the Markov
chain lumping algorithm of [7].

Our algorithm, presented in Sects. 3 and 4, runs in O(r ·s·log s) time, where s
is the number of variables and r is the number of monomials in the ODEs. Inter-
estingly, this can be related to continuous-time Markov chain (CTMC) lumping.
The time complexity of our algorithm is a tight increase, in the following sense:
Since RNs can encode arbitrary affine ODEs, a fortiori they can encode a CTMC
through its Kolmogorov equations (cf. Sect. 5). For this encoding we show that
FB and BB correspond to the well-known notions of ordinary and exact lumpa-
bility for CTMCs, respectively. In the affine ODE case, the time complexity of
our algorithm collapses to O(r · log s), which is equivalent to that of the most
efficient CTMC lumpability algorithms [6,7].

We show the practical usefulness of our algorithm by means of numerical
experiments (in Sect. 6), with a prototype available at http://sysma.imtlucca.it/
crnreducer/. Using the benchmark biochemical models of [11], we measure run-
time speed-ups of up to four orders of magnitude over our own more straightfor-
ward O(r2 · s5) algorithm used in [11]. We are now able to reduce the largest

http://sysma.imtlucca.it/crnreducer/
http://sysma.imtlucca.it/crnreducer/
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benchmark biochemical model within a few seconds on commodity hardware, as
opposed to almost one day as reported in [11]. To evaluate the effectiveness on affine
systems, we propose an application of the bisimulations beyond ODEs: we consider
linear systems of equations Ax = b. Stationary iterative methods such as Jacobi’s
(e.g., [14]) can be interpreted as an affine dynamical system in discrete time, to
which case the bisimulations carry over. For these, we report considerable aggre-
gations for real-world applications in atmospheric modeling, structural mechanics,
and electrical engineering, taken from the Sparse Matrix Collection [15].

Further Related Work. FB is a special case of the theory of ODE lump-
ing [16,17], which is more general because it considers an arbitrary linear trans-
formation of the state space, as opposed to a sum of variables for FB. While the
theory is established, no algorithm is available to compute such aggregations. BB
is a generalization of a behavioral equivalence originally defined for Markovian
process algebra [18]. FB and BB have been recently put in a unifying algorith-
mic context in [19], using the notions of forward and backward differential equiv-
alences for a low-level syntax describing a more general class of nonlinear ODE
systems. A symbolic partition-refinement algorithm to compute the largest differ-
ential equivalences is provided through a satisfiability modulo theories encoding.
Clearly, unlike this approach, the algorithm of [19] is independent of the restric-
tion of the RN language, and is not a variant of Paige and Tarjan’s approach. As
a result, it is more general but less efficient. Indeed, the runtimes reported in [19]
are at best only comparable to those of our earlier algorithm [11].

This is the first application of Paige and Tarjan’s seminal idea for a general
class of ODE systems, whereas automatic exact ODE reduction algorithms are
available for domain specific languages such as rule-based models of biochemical
networks [1] and Markovian process algebra using FB-like (though not BB-like)
conditions [20].

2 Background

Reaction Networks. An RN (S,R) is a pair of a finite set of species S and a
finite set of reactions R. A reaction is a triple written in the form ρ

α−−→ π, where
ρ and π are multisets of species, called reactants and products, respectively, and
α �= 0 is the reaction rate. We restrict to elementary reactions where |ρ| ≤ 2
(while no restriction is posed on the products). We denote by ρ(X) the multi-
plicity of species X in the multiset ρ, and by MS(S) the set of finite multisets
of species in S. The operator + denotes multiset union, e.g., X +Y +Y (or just
X + 2Y ) is the multiset {|X,Y, Y |}. We also use X to denote either the species
X or the singleton {|X|}.

The semantics of an RN (S,R) is given by the (autonomous) ODE system
V̇ = F (V ), with F : R

S → R
S , where each component FX , with X ∈ S is

defined as:

FX(V ) :=
∑

ρ
α−−→π∈R

(π(X) − ρ(X)) · α ·
∏

Y ∈S

V
ρ(Y )
Y .
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This ODE satisfies a unique solution V (t) = (VX(t))X∈S for any initial condition
V (0).

The restriction to elementary reactions ensures that the monomials are of
degree at most 2; unary reactions give degree-one monomials; a nullary reaction,
∅ c−→ X, adds a constant c to FX(V ). (The encoding of an arbitrary polynomial
ODE system is shown in Sect. 5.) Finally, we remark that a standard CRN with
mass-action semantics (where reactions speeds are proportional to the product
of the concentrations of the reactants) is recovered by restricting to positive
reaction rates and nonnegative initial conditions.

Example 1. We now provide a simple RN, (Se, Re), with Se = {A,B,C,D,E}
and Re ={A + C

α−−→ C + E,B + C
α−−→ C + E,C

β−−→ A,D
β−−→ B}, which will

be used as a running example in this section. Its ODE system is

V̇A = −αVAVC + βVC V̇C = −βVC V̇E = αVAVC + αVBVC

V̇B = −αVBVC + βVD V̇D = −βVD

We now overview the main definitions of [11], restating them in terms of an
RN.
Forward Bisimulation. FB induces a partition associating an ODE with each
block, representing the sum of the species in that block. It is defined in terms of
reaction and production rates.

Definition 1 (Reaction and Production rates). Let (S,R) be an RN,
X,Y ∈ S, and ρ ∈ S ∪ {∅}. The ρ-reaction rate of X, and the ρ-production
rate of Y-elements by X are defined respectively as

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr(X,Y, ρ) := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(Y )

Finally, for H ⊆ S we define pr[X,H, ρ] :=
∑

Y ∈H pr(X,Y, ρ).

Definition 2. Let (S,R) be an RN, R an equivalence relation over S and H =
S/R. Then, R is a forward RN bisimulation (FB) if for all (X,Y ) ∈ R, all
ρ ∈ S ∪ {∅}, and all H ∈ H it holds that

crr[X, ρ] = crr[Y, ρ] and pr[X,H, ρ] = pr[Y,H, ρ] (1)

For instance, it can be shown that HF = {{A,B}, {C}, {D}, {E}} for Example 1
is an FB. Indeed, the ODEs can be reduced by writing them in terms of VAB :=
VA + VB:

V̇AB = −αVABVC + βVC + βVD V̇C = −βVC V̇D = −βVD V̇E = αVABVC

Backward Bisimulation. BB leads to partitions where species in the same
block have the same solution when starting with the same initial condition. It is
defined according to the notion of flux rates.
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Definition 3 (Cumulative flux rate). Let (S,R) be an RN, X ∈ S, ρ ∈
MS(S), and M ⊆ MS(S). Then, we define

fr(X, ρ) :=
∑

ρ
α−−→π∈R

(π(X) − ρ(X)) · α, fr[X, M] :=
∑

ρ∈M
fr(X, ρ).

We call fr(X, ρ) and fr[X,M] ρ-flux rate and cumulative M-flux rate of X,
respectively.

Definition 4. Let (S,R) be an RN, R an equivalence relation over S, and H =
S/R. Then, R is a backward RN bisimulation (BB) if for any (X,Y ) ∈ R it
holds that

fr[X,M] = fr[Y,M] for all M ∈ {ρ | ρ
α−−→ π ∈ R}/ ≈H,

where any two ρ, σ ∈ MS(S) satisfy ρ ≈H σ when
∑

Y ∈H ρ(Y ) =
∑

Y ∈H σ(Y )
for all H ∈ H.

It can be shown that HB = {{A,B}, {C,D}, {E}} is a BB for the running
example. Indeed, it is easy to see that VA(t) = VB(t) and VC(t) = VD(t) at all
time points t ≥ 0 whenever VA(0) = VB(0) and VC(0) = VD(0). So, one can
remove the ODEs of V̇B , V̇D and replace each VB with VA and each VD by VC ,
yielding the reduced ODE:

V̇A = −αVAVC + βVC V̇C = −βVC V̇E = 2αVAVC

In [11] it is discussed how to additionally obtain a reduced network up to a
bisimulation H, having one species per block of H. For example, it can be shown
that HF induces the FB-reduced RN SF

e = {A,C,D,E} and RF
e ={A + C

α−−→
C + E,C

β−−→ A,D
β−−→ A}.

3 Computing the Coarsest RN Bisimulations

As introduced in Sect. 1, we exploit the fact that the conditions for FB and
BB are in the Larsen-Skou style of probabilistic bisimulation, whereby, roughly
speaking, two states are equivalent if their behavior toward any equivalence class
is the same.

For FB, the notion of pr[X,H, ρ] in Definition 2 is already in such desired
format: X is the species for which the equivalence is being checked, H is an
equivalence class of “target” states, while ρ plays the role of a “label”, identi-
fying partner species reacting with X (akin to an action type in a probabilis-
tic transition system). This is the intuitive correspondence that suggests us to
employ a partition refinement approach based on Paige and Tarjan’s algorithm,
iteratively refining an input partition based on a splitter block that tells apart
the behavior of two species toward that block, for some label ρ. One fundamental
aspect of such an approach is that, at each iteration, the blocks of the current
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partition are used as potential splitters. This ensures that the list of splitters
can be updated at essentially no additional cost while splitting the blocks.

For BB, instead, the situation is more delicate because the equivalence con-
dition is based on the flux rate fr[X,M]. Unlike FB, here M does not represent
an equivalence class of the species, but it is an equivalence class of multi-sets
of species (all the possible reagents in the RN), which are equal up to ≈H, i.e.,
the equivalence induced by the current partition H. Within this setting Paige
and Tarjan’s approach cannot be used directly because the splitters are not the
partition blocks of the equivalence relation of interest. Thus, we first provide an
alternative characterization of BB which allows to use (species) partition blocks
as splitters. Then, we discuss a parameterized algorithm that can compute the
coarsest refinement of a given partition of species up to FB or BB.

3.1 Splitter-Based Characterization of Backward Bisimulation

The alternative characterization of BB is based on the following.

Definition 5 (Cumulative splitter flux rate). Let (S,R) be an RN, X,Y ∈
S, H a partition of S, H ∈ H and H ′ ∈ H ∪ {{∅}}. We define

sr(X, Y, H ′) :=
∑

ρ′∈H′

∑

ρ
α−−→π∈R

ρ=Y+ρ′

(π(X) − ρ(X)) · α′, sr[X, H, H ′] :=
∑

Y ∈H

sr(X, Y, H ′).

with α′ = α
2 if Y �= ρ′ and Y ∈ H ′, or α′ = α otherwise. We call the quantity

sr[X,H,H ′] the cumulative (H,H ′)-splitter flux rate of X.

Note that we account for summands that are counted twice due to the sum-
mation over H and H ′ in sr[X,H,H ′] by choosing α′ ∈ {α, α

2 } in the above
definition.

Theorem 1. Let (S,R) be an RN, R an equivalence relation over S and H =
S/R. Then R is a BB if and only if for all (X,Y ) ∈ R, all H ∈ H and all
H ′ ∈ H ∪ {{∅}} it holds that sr[X,H,H ′] = sr[Y,H,H ′]. 1

With this characterization both pr and sr have three arguments, with anal-
ogous meaning, as discussed. In particular, the third argument of sr can now
be also interpreted as a label. However, while in FB this ranges over the set of
species (together with the distinguished species ∅ to indicate unary reactions),
in BB it ranges over blocks of the candidate BB partition to be checked (again,
together with the distinguished set {∅} for unary reactions). When used within
the partition refinement algorithm, splitting a partition block leads to a refine-
ment of the BB labels. In other words, unlike for FB the set of labels must be
updated at every iteration. However, differently from the original definition of
fr, this only requires splitting a block rather than computing an equivalence
relation over the species multi-sets appearing as reaction products. As we will
see, this can be done at no additional cost.
1 All proofs are given in a technical report available at http://sysma.imtlucca.it/

crnreducer/.

http://sysma.imtlucca.it/crnreducer/
http://sysma.imtlucca.it/crnreducer/
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Remark 1. The analogy with the probabilistic-bisimulation condition (where a
label corresponds to an action type and the rates correspond to probabilities)
may suggest to use a variant of the algorithm for probabilistic bisimilarity devel-
oped in [5]. Indeed, by suitably encoding an RN into a hyper-graph, the largest
FB can be computed with [5]. However, a similar algorithm cannot be straight-
forwardly adapted to BB because the set of labels changes at every iteration. In
particular, the bounds of Lemma 4.5 in [5] would not carry over if the labels were
not kept fixed. For this reason, in this paper we consider an extension of the more
recent [7], which also has the advantage of a simpler implementation because it
does not require the intertwining between two classes of splitters like [5], or splay
trees like [6].

3.2 Data Structures

We introduce the data structures used in our algorithm for computing the coars-
est RN bisimulations. To achieve tight time and space bounds, we make use of
pointer-based data structures only. Furthermore, we assume that species, par-
tition blocks and reactions are stored once and then referred by other data
structures via pointers.

Notation. Fix an RN (S,R), set s := |S|, r := |R| and let L(R) := {X | ∃X +
Y

α−−→ π ∈ R}∪{∅} be the set of all labels. Set l := |L(R)| which can be bounded
by O(min(s, r)). Finally, use p := max{∑X∈S 1{π(X)>0} | ρ

α−−→ π ∈ R} to
denote the maximum number of different species which appear as products of
a reaction. We will also use the fact that s is bounded by (2 + p) · r. This is
because each reaction can have at most 2 and p different species as reagents and
products, respectively.2

We remark that, in general, p is bounded by s. However, we prefer to explic-
itly use this parameter because in the main application of this paper, i.e., the
encoding of an arbitrary polynomial ODE system, p becomes a constant (i.e.,
3). Instead, when an RN is used directly as the input specification to describe a
model, as is the case in CRNs, p is typically small. For instance, in most reac-
tions of biological processes the number of distinct products is typically one (e.g.,
for binding and internal state modification) or two (for unbinding or catalytic
reactions). Indeed, across all the benchmark CRNs considered in Sect. 6, p never
exceeds 3. This is due, for instance, to unbinding reactions favored by a catalyst,
in the form AB + C → A + B + C.

RN Representation. Species are stored in a list. We assume that the set L(R)
is given and stored as a list of pointers to species (plus one entry for ∅), requiring
O(l) space. However, its computation requires O(r) time because the reactions
have to be scanned only once, assuming that a vector with a boolean entry per
species is used to check (in constant time) if it has been already added to the
list. Indices from 0 to s − 1 and from 0 and l − 1 are implicitly assigned to each
species and label, respectively. A reaction is a structure with two fields, one for
2 We implicitly disregard pathological cases with species not appearing in any reaction.
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each possible reagent, and a list of pairs in the form (species, multiplicity)
for the products. Storing R requires O(p · r) space.

We make use of two vectors, inc and out, indexed by species. Each inc[X]
entry points to a list of pairs (reaction, multiplicity) containing all reac-
tions with X in their products, accompanied by the corresponding product mul-
tiplicity of X for each reaction. Note that each reaction may appear in inc[X]
for at most p species, thus requiring O(p · r) to store inc. The vector out is
similar, but each out[X] entry points to a list of reactions having X in their
reagents. The space required by out is thus O(r).

In the algorithm we build sets of elements. However, insertions in sets can be
implemented in constant time because an element is never added to a set more
than once.

Refinable Partition. A partition is stored as a doubly linked list of pointers
to its blocks. Each block record contains an integer to store its size and pointers
to two doubly linked lists that divide the species into marked and unmarked (as
a result of operations that are used to split blocks, discussed later). Each species
has a pointer to its block in the current partition. Thus, finding the block for a
species, marking, and unmarking take constant time. Also, it is possible to scan
the species of a block in time linear with respect to its size, and to split it in
time proportional to the number of marked states.

The operation of splitting a block H creates a new block H1 containing
the marked species of H, while H maintains those that are not marked. This
requires to assign the list pointed by H.marked to H1.unmarked and to assign
an empty list to H.marked. These operations are done in constant time, while a
time proportional to originally marked species of H is necessary to update their
reference to the new block H1. If instead H originally contained just marked or
unmarked species, then no split is actually performed, and marked species get
unmarked at no further cost.

Splitters. The list of pointers spls refers to the blocks of the current partition
that will be used as splitters. An s× l matrix M of real numbers is maintained to
efficiently compute conditional, production and flux rates. A possible majority
candidate (pmc) of an array A of size s is either the value which appears more
than �s/2 times in A, or any other value if it does not exist. We calculate the
pmc row of M by extending the algorithm from [7] to vectors in a straightforward
manner.

We denote the row of species X in M by M[X], that is M[X] ∈ R
l. In the course

of splitting, we sort species according to the lexicographical order on their rows
in M. Clearly, sorting a set H ∈ H takes O(l · |H| · log |H|) time, as O(|H| · log |H|)
comparisons are needed, each requiring O(l) time.

This leads to an overall O(p · r + l · s) ≤ O(s · r + r · s) = O(r · s) space
complexity. Other auxiliary lists and sets of pointers presented in the remainder
of the section will respect the space bound given above.
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1 CoarsestRNBisimulation(χ,S,R,H) :=
2 M = build an s × l matrix of reals
3 i f (χ = FB)
4 H = RefineCRR(S,R,M,H)
5 spls = shallow copy of H
6 while(spls �= ∅)
7 Hsp = pop(spls)
8 Split(χ,S,R,M,H,Hsp,spls)

Algorithm 1. Computation of the coarsest bisimulations.

3.3 Overview

Algorithm 1 provides the parametric procedure CoarsestRNBisimulation for
computing the coarsest RN bisimulations that refine a given initial partition H
of species of an RN (S,R). The first argument (χ) specifies either FB or BB.

We first observe that the crr-condition of FB can be implemented as an
initialization step that pre-partitions the species according to the values of crr.
This is because crr is a “global” property of the RN, i.e., it does not depend
on the current partition. Instead, the conditions on pr and sr for FB and BB,
respectively, require the iterative partition-refinement treatment. Consequently,
our algorithm starts (Lines 3–4) by invoking, if necessary, the RefineCRR proce-
dure.

RefineCRR (Algorithm 2). This procedure provides the coarsest refinement
of H which satisfies the crr-condition of FB. It refines H according to the ρ-
reaction rates for each species X and label ρ. In particular, in this procedure
each entry M[X][ρ] is used to store crr(X, ρ), and is assumed to be initialized
with 0. We can thus compute the values of crr for all labels and species in one
iteration of R only (Lines 3–7), requiring O(r) time. Then, we refine H (Lines
10–12). This can be done, for each initial block H ∈ H, by sorting the species
X ∈ H according to a lexicographical ordering on their M[X] row. After sorting,
all species belonging to the same sub-block will be alongside each other, and
it is easy to transform them into new blocks in O(|H|) time. As discussed, the
sorting of each block requires O(l · |H| · log|H|) time, and the total time spent in
sorting is thus O(l ·∑H∈H |H| · log|H|) ≤ O(l ·∑H∈H |H| · log s) = O(l ·s · log s).
Finally, Line 13 resets to 0 all entries of M, requiring O(l · s) time.

Overall, this yields O(r+l ·s·log s) time complexity. Given that s ≤ (2+p)·r,
this can be bounded by O(r · p · l · log s).

Iterative Refinement (Algorithm 1, Lines 5–8). The procedure performs the
iterative partition refinement required by our bisimulations as an extension of
the algorithm for Markov chains of [7], as discussed. If χ = FB, blocks of H are
split into sub-blocks of species with same ρ-production rates towards the block
Hsp for all ρ ∈ L(R). Instead, if χ = BB, blocks are split with respect to their
(Hsp,H

′)-splitter flux rates with respect to all labels H ′ ∈ H ∪ {{∅}}.
Line 5 creates the linked list spls of initial candidate splitters containing

pointers to each H ∈ H: all blocks of H are considered as (initial) candidate
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1 RefineCRR(S,R,M,H) :=
2 // Iterate once R to compute crr[X, ρ] for all ρ and X

3 foral l (X
α−−→ π ∈ R)

4 M[X][∅] = M[X][∅] + α

5 foral l (X + Y
α−−→ π ∈ R)

6 M[X][Y ] = M[X][Y ] + α
7 M[Y ][X] = M[Y ][X] + α

8 // Refine H according to the M rows , and store it in H′

9 H′ = ∅
10 foral l (H ∈ H)
11 Sort and split H wrt crr[X], for all X ∈ H, yielding H1, . . . , Hb

12 Add H1, . . . , Hb to H′

13 CleanRowsOfMatrix(M,S)

14 return H′

15
16 CleanRowsOfMatrix(M,H) :=
17 foral l (X ∈ H and ρ ∈ L(R))
18 M[X][ρ]=0

Algorithm 2. Pre-partitioning according to the condition of FB on crr.

splitters. Then, Lines 6–8 iterate while there are candidate splitters to be con-
sidered: after selecting a splitter (Hsp) and removing it from spls, the procedure
Split is invoked to refine each block of H with respect to Hsp.

We now provide an overview of the Split procedure (Algorithm 3). A
detailed presentation is given in Sect. 4, together with the complexity results.
Split first computes either pr[X,Hsp, ρ] for all X ∈ S and ρ ∈ L(R) (FB case)
or sr[X,Hsp,H

′], for all X ∈ S and H ′ ∈ H ∪ {{∅}} (BB case). The rates are
computed for all labels at once and are stored in M similarly to RefineCRR. We
remark that BB uses different labels than FB. Nevertheless, as will be discussed
in Sect. 4, the number of labels used by BB is bounded by l as well, and hence
we can safely use M also in the BB case.

Then, we iterate over the set of blocks containing a species for which at least
one non-zero rate has been computed. Each partition block H is split in sub-
blocks with either same pr[·,Hsp, ρ] for all ρ ∈ L(R) (FB), or same sr[·,Hsp,H

′]
for all H ′ ∈ H∪{{∅}} (BB), updating the list spls. Following the usual approach
of Paige and Tarjan [8], a sub-block with maximal size is not added to spls.
However, this is done only if the block that is split (i.e., H) has been already used
as a splitter, as otherwise the algorithm would be incorrect (see the discussion
in [7]).

4 The Split Procedure

We now provide a detailed description of the Split procedure shown in Algo-
rithm 3. It begins (Line 2) by initializing the set of pointers ST that will refer to
all species X for which either there exists a ρ such that pr[X,Hsp, ρ] �= 0 if χ =
FB, or for which there exists a block H ′ (or {∅}) such that sr[X,Hsp,H

′] �= 0
if χ = BB. Similarly, Line 3 initializes the set HT which will point to the blocks
of the species in ST . We remark that only the blocks in HT may be split due
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1 Split(χ,S,R,M,H,Hsp,spls) :=
2 ST = ∅ //Set of species X with at least a non -zero pr/sr[X,Hsp,·]
3 HT = ∅ //Set of blocks containing the species in ST

4 foral l (Y ∈ Hsp)
5 i f (χ = FB)
6 ComputePR(Y,M) // Compute pr[X, Y, ρ] for all X and ρ. Populate ST

7 else

8 ComputeSR(Y,Hsp,M) // Compute sr[X, Y, H′] for all X and H′. Populate ST

9 //Now each M[X][ρ] stores pr[X, Hsp, ρ] (or sr[X, Hsp, H′], with ρ = H′.label)
10 foral l (X ∈ ST )
11 H = get block of X
12 Discard label of H, if any
13 i f (M[X] is not a zero row) // Discard spurious species from ST

14 i f (H contains no marked states) //Add only once H to HT

15 Add H to HT

16 Mark X in H
17 while(HT �= ∅)
18 H = pop(HT )
19 H1 = marked states of H
20 H = not marked states of H
21 i f (H = ∅)
22 Give the identity of H to H1
23 else
24 Make H1 a new block
25 pmc = PMCRow(H1,M)
26 H2 = {X ∈ H1 | M[X] not equal to the pmc -row}
27 H1 = H1 \ H2
28 i f (H2 = ∅)
29 b = 1 //No need to split H1.
30 else
31 Sort and split H2 according to M[X], yielding H2, . . . , Hb

32 Make each of H2, . . . , Hb a new block
33 i f (H ∈spls)
34 Add H1, . . . , Hb except H to spls
35 else

36 Add [H, ]?H1, . . . , Hb to spls except a sub -block of maximal size
37 while(ST �= ∅)
38 X = pop(ST )
39 touched[X]= false
40 CleanRowsOfMatrix(M,X)

Algorithm 3. The Split procedure.

to the current splitter Hsp. If χ = FB, Line 4–8 compute pr[X,Hsp, ρ] and
store it in M[X][ρ] for each X and ρ. This is done by ComputePR in Algorithm 4.
The procedure scans all the reactions in the inc list of each Y ∈ Hsp. We can
have either unary or binary reactions (Lines 2–3 or 4–6, respectively). In the
latter case, if the two reagents are equal (i.e., X = X ′) we add α · π(Y ) twice
to M[X][X]. This corresponds to the ρ(X) + 1 factor of Definition 1. The actual
updates on the entries of M are performed by the simple sub-routine Update in
Lines 9–13 of Algorithm 4 which also updates ST if necessary.

If χ = BB, Lines 4–8 of Algorithm 3 compute sr[X,Hsp,H
′] and store it in

M[X, ρH′ ] for each X ∈ S and H ′ ∈ H ∪ {{∅}}, with H the current partition.
The symbol ρH′ denotes a label in L(R) which identifies H ′ and is discussed
below. The flux rates are computed by ComputeSR of Algorithm 5. It is similar
to ComputePR, but it scans the reactions in the out lists of each species Y ∈ Hsp.
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By Definition 5, unary reactions contribute to splitter flux rates with {∅} as
third parameter. Here we associate the label ∅ ∈ L(R) to unary reactions. For
each unary reaction Y

α−−→ π ∈ out[Y ] (Lines 2–5), M[Y ][∅] is decreased by α
and we increase M[X][∅] of each species X in π by α · π(X). Instead, each binary
reaction Y + Y ′ α−−→ π ∈ out[Y ] contributes to those with the block of Y ′ as
third parameter. As depicted in Lines 6–15, we provide each block H ′ with a field
label used to point to the label in L(R) assigned to H ′. This will be a species in
H ′∩L(R). In particular, in Line 7 we get the block of Y ′ (H ′). Then, if no label
is currently assigned to H ′, we set Y ′ as label of H ′. Finally, the entries of M are
updated by Update similarly to the FB case, but using H ′.label as label. Note
that all reactions involving species Y ′ of a block H ′ will contribute to the same
H ′.label entries of M, thus computing the summation over the elements of H ′ of
Definition 5. We remark that we may have blocks H ′′ ∈ H with H ′′ ∩ L(R) = ∅.
Those do not contribute to ComputeSR as both reagents of an arbitrary binary
reaction are elements of L(R). Finally, we note that in Lines 10–11 we halve the
rate of reactions with two different reagents Y + Y ′ belonging to the splitter
block Hsp, as done in Definition 5.

Now that ST and M have been populated, Lines 10–16 of Algorithm 3 build
HT and mark all species in ST as discussed in Sect. 3.2. The marking operation
could have not been done in Lines 4–8 because it changes the order of species in
a block, and hence might interfere with the iteration of the forall statement of
Line 4. Note that Line 13 discards species in ST whose M-rows have only zeros.
This can happen because positive and negative values can sum up to zero (see,
e.g., lines 3 and 5 and of Algorithm 5). In addition, Line 12 reinitializes all label
fields of the blocks in HT , a super-set of those to which ComputeSR might have
assigned a label.

1 ComputePR(Y,M):=

2 foral l ((X
α−−→ π, π(Y )) ∈ inc[Y ])

3 Update(M,X,∅,π(Y ),α)

4 foral l ((X+X′ α−−→ π, π(Y )) ∈ inc[Y
])

5 Update(M,X,X′,π(Y ),α)

6 Update(M,X′,X,π(Y ),α)\\
7
8 //Sub -routine to update M and ST

9 Update(M,X,ρ,mult,α):=
10 i f (! touched[X])
11 touched[X] = true
12 add X to ST

13 M[X][ρ] = M[X][ρ] + α · mult

Algorithm 4. Compute pr wrt the
splitters.

1 ComputeSR(Y,Hsp,M):=

2 foral l (Y
α−−→ π ∈ out[Y ])

3 Update(M,Y ,∅,1,−α)
4 foral l (X ∈ π)
5 Update(M,X,∅,π(X),α)

6 foral l (Y +Y ′ α−−→ π ∈ out[Y ])

7 H′ = get block of Y ′

8 i f (H′ does not have a label)

9 H′.label = Y ′

10 i f (Y �= Y ′ and H′ = Hsp)
11 α = α/2

12 Update(M,Y ,H′.label ,1,−α)

13 Update(M,Y ′,H′.label ,1,−α)
14 foral l (X ∈ π)

15 Update(M,X,H′.label ,π(X),α)

Algorithm 5. Compute sr wrt the
splitters.

It is now possible to refine H and update the list of candidate splitters by
splitting each block H ∈ HT according to the pr or sr values (Lines 17–36).
Lines 19–20 perform the split operation discussed in Sect. 3.2. They split (in
constant time) the species in H which appear in HT (the marked ones) from
those which do not appear in HT (the unmarked ones). Those X ∈ H that yield
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M[X][·] �= 0 form the block H1, while the other remain in H. If the new H is
empty, H1 contains the elements originally present in H and thus receives its
identity. Otherwise H1 is made to a new block in O(|H1|) time.

Lines 25–27 further split H1 by moving some of its elements in a new block
H2 in O(|H1|) time. In particular, we calculate the pmc-row in order to split H1

into (a new) H1 and H2. In case more than half of the species of the original
H1 have their M-row equal, the new block H1 will contain those species with the
pmc-row; otherwise, it will contain any sub-set of H1 with same row in M. In both
cases the obtained H1 does not need to be further split. Instead H2 might need
to be split further. We note that H2 might be empty, meaning that there was no
need in splitting H1. In such case H1 remains unchanged; in the opposite case,
instead, H2 is split in Lines 31–32 and the obtained sub-blocks are added to H.
We remark that we are guaranteed that each sub-block of H2 has at most half
the elements originally in H. Moreover, it is worth noting that splitting blocks
in H affects spls because spls stores pointers to the elements of H.

Finally, we add the so obtained sub-blocks to spls by storing the correspond-
ing pointers in spls. As discussed, we do not add a sub-block with maximal size
if the original H has already been used as splitter (Line 36). Note that [H, ]?H1

means that we add only one of the two blocks to spls if Line 22 gave the iden-
tity of H to H1. Instead, in Line 34 there is no need to add the new H to spls
because it is already there (i.e., the original H was there, and hence the refined
H inherited its presence).

The procedure terminates by resetting the vector touched, used to build ST ,
and the rows of M regarding the species in ST .

Theorem 2. Algorithm 1 calculates the coarsest RN bisimulations that refine a
partition H. Its time complexity is O(r · p · l · log s), while its space complexity is
O(r · s).

The proof lifts the ideas of [7] to RNs. As discussed previously, the complexity
stated above relates to an arbitrary RN. We shall see next that in the encoding
of a polynomial ODE system the factor p · l simplifies to s, while it becomes a
constant for CTMCs.

5 Applications

We discuss how to encode into an RN an arbitrary polynomial ODE system of
degree at most two. Based on this, we consider the special case of an affine ODE
system, which gives reduced time and space complexities; here, we will show an
application of RN bisimulations for the numerical solution of systems of linear
equations using stationary iterative methods. Finally, we relate RN bisimulations
to CTMC lumpability [13].

It is easy to see that the encoding of polynomials ODEs to RNs is not unique
(cf. [21] for CRNs). Here, we propose one for which the algorithmic complex-
ity can be directly related to the number of monomials appearing in the ODE
system, leaving the question of investigating minimality issues to future work.
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Polynomial Systems. We consider the ODE system ẏ = G(y) with compo-
nents

ẏk = Gk(y) :=
∑

1≤i,j≤n

α
(k)
i,j · yi · yj +

∑

1≤i≤n

α
(k)
i · yi + β(k), 1 ≤ k ≤ n, (2)

and with α
(k)
i,j , α

(k)
i , β(k) ∈ R.

Lemma 1. The RN (SG, RG), with SG := {1, . . . , n} and

RG :=
{

i + j
α

(k)
i,j−−−→ i + j + k | α

(k)
i,j �= 0

}

∪
{

i
α

(k)
i−−−→ i + k | α

(k)
i �= 0

}
∪

{
∅ β(k)

−−−→ k | β(k) �= 0
}

,

has ODEs V̇k = Gk(V ), for 1 ≤ k ≤ n.

Note that with this encoding r relates to the number of monomials used in
the ODEs (while s is the number of ODE variables). As anticipated in Sect. 1,
Theorem 2 and Lemma 1 imply that Algorithm 1 gives the coarsest FB and BB
partitions of an arbitrary polynomial ODE system in O(r · s · log s) time and
O(r · s) space.

Affine Systems. Equation (2) also subsumes the interesting case of affine ODE
systems where G(y) = Cy + d for some C ∈ R

n×n and d ∈ R
n. In this case,

Theorem 2 and Lemma 1 imply that the complexity reduces to O(r·log s) time and
O(r + s) space. Here we consider the problem of computing a solution of a linear
system of equations Ax = b, with A ∈ R

n×n and x, b ∈ R
n. Stationary iterative

methods approximate a solution with updates in the form x(k + 1) = F (x(k))
where k is the iteration index and F is affine. For instance, Jacobi’s method is
written as x(k + 1) = −Rx(k) + D−1b, with x(0) = 0, where D,R are such that
D is a diagonal matrix and A = D + R. Under the assumption of strict diagonal
dominance for A, it converges to the solution of Ax = b (e.g., [14]). We interpret
this sequence as a dynamical system, but in discrete time, and observe that the
bisimulations carry over to the discrete time case. We denote the encoding of the
Jacobi iterations by the RN (SA,b, RA,b). Then, the following holds.

Theorem 3. An RN bisimulation H = {H1, . . . , Hm} on (SA,b, RA,b) induces a
reduced discrete-time model x̂(k +1) = Âx̂(k)+ b̂, with Â ∈ R

m×m and x̂(k), b̂ ∈
R

m. If H is an FB then, x̂i(k) =
∑

l∈Hi
xl(k) for all 1 ≤ i ≤ m and k ≥ 0. If H

is a BB then, x̂i(k) = xl(k) for all 1 ≤ i ≤ m, l ∈ Hi and k ≥ 0.

Here, Â and b̂ can be obtained by constructing the reduced RN up to FB/BB [11].

Continuous-time Markov Chains. Let us fix a CTMC with transition rate
matrix Q = (qi,j)1≤i,j≤n. Then the probability distribution π = (πi)1≤i≤n solves
the Kolmogorov linear ODEs π̇ = πQ.
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Lemma 2. Let Q be the transition matrix of a CTMC and (SQ, RQ) be the RN
encoding according to (2) of its Kolmogorov ODEs. Then, H is an ordinarily
(resp., exactly) lumpable partition for Q if and only if H is an FB (resp., a BB)
for (SQ, RQ).

By Theorem 2 and Lemma 1, Algorithm 1 calculates the coarsest ordinarily and
exactly lumpable partitions of Q in O(r · log s) time and O(r + s) space. Thus,
we recover the bounds of Markov-chain specific algorithms [6,7]. We also remark
that, in the case of BB, Lemma 2 recovers a result from [19] using an alternative
proof. Finally, it can be shown that Lemma 2 is still valid if the reactions are
encoded via RQ = {i

qi,j−−→ j | qi,j �= 0}, using one-to-one reactions only. Though
not affecting asymptotic complexity, this reduces memory and time consumption,
and thus we will use it in our prototype.

6 Evaluation

We evaluate our algorithm using (i) the biochemical networks evaluated in [11]
as case studies for degree-two polynomial systems; (ii) Ax = b systems from [15];
and (iii) selected CTMCs from the MRMC distribution [33]. Comparing against
the reductions of [11] and MRMC also allowed us to validate the implementation
of our algorithm.

The results are presented in Table 1. To ease layout, we label the models with
short identifiers (first column), and refer to the publications in the second column
for details. Headers |R| and |S| give the number of reactions and species of the
original and reduced RNs. Headers “Red. [11]” and “Red.” provide the runtimes
of the algorithm considered in [11] and of the proposed approach, respectively.
Measurements were taken on a 2.6 GHz Intel Core i5 machine with 4 GB of
RAM. The experiments are replicable using a prototype available at http://
sysma.imtlucca.it/crnreducer/.

Biochemical Models (M1–M13). For consistency, we computed the coarsest
bisimulations that refine the same initial partitions as specified in [11]. Specifi-
cally, for each RN (S,R), in the case of FB we considered the trivial partition
{S} (thus yielding the largest bisimulation); due to the side condition of BB, in
that case the initial partition was chosen in agreement with the initial conditions
— two species are in the same initial block if their initial conditions, read from
the original model specification, are equal (thus ensuring that the reduction is a
lossless simplification of the original one).

We refer to [11] for a description of the models and the biological interpre-
tation of the bisimulations therein computed. Here, we confirm the same reduc-
tions, at a much improved performance over that of [11]. For the largest model
(M1) we registered a speedup of four orders of magnitude—now all cases can be
reduced within seconds.

Systems of Linear Equations (F1–F5). These are encodings of the Jacobi
iterative method to solve large-scale real-world linear systems from the Sparse
Matrix Collection [15]. F1–F2 (original names Bourchtein/atmosmodl and

http://sysma.imtlucca.it/crnreducer/
http://sysma.imtlucca.it/crnreducer/
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Table 1. FB and BB reductions. Entries labeled with “—” indicate that the reduction
algorithm did not terminate within 24 hours. Greyed out entries indicate no reduction.

Original model FB reduction BB reduction

Id Ref. |R| |S| Red.(s) [11] Red.(s) |R| |S| Red.(s) [11] Red.(s) |R| |S|
Biochemical reaction networks

M1 [22] 3 538 944 262 146 4.61E+4 7.49E+0 990 222 7.65E+4 1.21E+1 2 614 222
M2 [22] 786 432 65 538 1.92E+3 1.58E+0 720 167 3.68E+3 2.51E+0 1 873 167
M3 [22] 172 032 16 386 8.15E+1 2.89E–1 504 122 1.77E+2 6.03E–1 1 305 122
M4 [22] 48 18 1.00E–3 1.00E–3 24 12 2.00E–3 2.00E–3 44 12
M5 [23] 194 054 14 531 3.72E+1 3.88E–1 142 165 10 855 1.32E+3 6.00E–1 91 001 6 634
M6 [24] 187 468 10 734 3.07E+1 6.09E–1 57 508 3 744 2.71E+2 1.40E+0 145 650 5 575
M7 [24] 32 776 2 506 1.26E+0 1.19E–1 16 481 1 281 1.66E+1 2.14E–1 32 776 2 506
M8 [25] 41 233 2 562 1.12E+0 2.69E–1 33 075 1 897 1.89E+1 3.97E–1 41 233 2 562
M9 [25] 5 033 471 1.91E–1 1.60E–2 4 068 345 4.35E–1 2.40E–2 5 033 471
M10 [26] 5 797 796 1.61E–1 1.90E–2 4 210 503 7.37E–1 3.30E–2 5 797 796
M11 [27] 5832 730 3.89E–1 1.50E–2 1296 217 6.00E–1 2.40E–2 237 217
M12 [28] 487 85 2.00E–3 2.00E–3 264 56 6.00E–3 3.00E–3 431 56
M13 [29] 24 18 1.20E–2 4.00E–3 24 18 7.00E–3 4.00E–3 7 3

Affine systems

F1 [15] 10 319 760 1 489 753 9.74E+3 8.70E+2 1 295 514 188 101 — 2.23E+2 10 319 760 1 489 753
F2 [15] 8 814 880 1 270 433 8.86E+2 5.58E+2 1 108 224 160 951 — 1.55E+2 4 420 168 639 509
F3 [15] 2 101 250 525 826 3.71E+2 1.24E+1 526 338 131 842 — 4.79E+1 2 101 250 525 826
F4 [15] 4 706 074 143 572 6.72E+0 6.70E+0 565 288 47 858 — 1.47E+1 2 739 188 112 444
F5 [15] 706 577 116 836 3.23E+0 3.11E+0 609 459 73 423 — 2.86E+0 609 307 73 348

Continuous-time Markov chains

C1 [30] 22 871 849 3 101 445 4.00E+4 2.01E+3 1 069 777 135 752 — 1.34E+3 1 166 931 148 092
C2 [31] 11 583 520 2 373 652 1.73E+2 9.78E+1 5 792 531 1 187 597 — 3.07E+2 5 814 622 1 187 597
C3 [32] 10 485 761 1 048 576 1.48E+1 1.76E+1 3301 792 — 1.23E+1 5083 792

Bourchtein/atmosmodd, respectively) arise from atmospheric modeling; F3
(Wissgott/parabolicFEM) is to be computed during a finite-element-method
solution to a convection-diffusion reaction; F4 (TTK/engine) comes from a prob-
lem in structural mechanics; F5 (IBMEDA/dc1) arises from the simulation of an
electrical circuit. For F1–F4 we verified (in O(r) steps) that the sparse matrix is
strictly diagonal dominant, a known sufficient condition for the convergence of
Jacobi’s method. All cases enjoy significant reductions with either bisimulation,
up to one order of magnitude fewer species and reactions for F1.

In some cases (i.e., F2, F4, and F5) the FB runtimes are comparable to those
of [11]. This can be explained by noting that, in the encoding of affine ODEs, the
splitting based on the “labels” cannot yield a significant improvement because
the RN has only unary reactions (hence only one label, ∅). This is not the
case in the biochemical benchmarks M1–M13, which as a matter of fact showed
significant runtime differences.

Regarding BB, the algorithm of [11] was not able to compute any BB reduc-
tion within 24 hours. The remarkable performance improvement is due to the
novel splitter-based characterization of BB (Sect. 3.1), while with [11] it was
required to compute, at each iteration, the equivalence classes for multi-sets of
species according to Definition 4.
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CTMCs (C1–C3). These are the three largest CTMCs of the MRMC dis-
tribution [33], used in [34] to study the impact of ordinary CTMC lumpabil-
ity in model checking. In particular, these are: a protocol for wireless group
communication (C1, original model name FDT3E3 PE16E4 S4OD40); a cluster
model (C2, WORKSTATION CLUSTER N256); and a peer-to-peer protocol
(C3. TORRENT N04). The initial partitions for both FB and BB are consistent
with the atomic propositions on the CTMC states.

Being affine ODE systems, the above observations regarding the runtime
comparisons with [11] carry over to these models. Instead, a thorough compari-
son against MRMC is difficult because of the different languages were used for
the implementation (C with specialized data structures for sparse matrices for
MRMC, vs. Java with plain data structures from its API in our prototype) and
because MRMC is CTMC-specific. However, MRMC ran one order of magnitude
faster and was less memory demanding, indicating the potential in improving
performance in optimized versions of our prototype.

7 Conclusion

The main advantage in aggregating dynamical systems from a chemical reaction
network syntax lies in adapting established and efficient bisimulation algorithms
for discrete-state models. The numerical benchmarks have demonstrated scal-
ability as well as the effectiveness of exact aggregations in non-synthetic mod-
els. Future work will concern the equivalences and related algorithms to handle
higher-degree polynomial nonlinearities.

Acknowledgment. This work was partially supported by the EU project QUANTI-
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and Tatjana Petrov1

1 IST Austria, Klosterneuburg, Austria
przemek@ist.ac.at

2 Institut Für Informatik, Technische Universität München, Munich, Germany

Abstract. We present a new algorithm for the statistical model check-
ing of Markov chains with respect to unbounded temporal properties,
including full linear temporal logic. The main idea is that we monitor
each simulation run on the fly, in order to detect quickly if a bottom
strongly connected component is entered with high probability, in which
case the simulation run can be terminated early. As a result, our simu-
lation runs are often much shorter than required by termination bounds
that are computed a priori for a desired level of confidence on a large
state space. In comparison to previous algorithms for statistical model
checking our method is not only faster in many cases but also requires
less information about the system, namely, only the minimum transition
probability that occurs in the Markov chain. In addition, our method can
be generalised to unbounded quantitative properties such as mean-payoff
bounds.

1 Introduction

Traditional numerical algorithms for the verification of Markov chains may be
computationally intense or inapplicable, when facing a large state space or lim-
ited knowledge about the chain. To this end, statistical algorithms are used
as a powerful alternative. Statistical model checking (SMC) typically refers to
approaches where (i) finite paths of the Markov chain are sampled a finite num-
ber of times, (ii) the property of interest is verified for each sampled path (e.g.
state r is reached), and (iii) hypothesis testing or statistical estimation is used to
infer conclusions (e.g. state r is reached with probability at most 0.5) and give
statistical guarantees (e.g. the conclusion is valid with 99% confidence). SMC
approaches differ in (a) the class of properties they can verify (e.g. bounded or
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unbounded properties), (b) the strength of statistical guarantees they provide
(e.g. confidence bounds, only asymptotic convergence of the method towards the
correct value, or none), and (c) the amount of information they require about
the Markov chain (e.g. the topology of the graph). In this paper, we provide an
algorithm for SMC of unbounded properties, with confidence bounds, in the set-
ting where only the minimum transition probability of the chain is known. Such
an algorithm is particularly desirable in scenarios when the system is not known
(“black box”), but also when it is too large to construct or fit into memory.

Most of the previous efforts in SMC has focused on the analysis of properties
with bounded horizon [5,12,13,21,27,28]. For bounded properties (e.g. state r is
reached with probability at most 0.5 in the first 1000 steps) statistical guaran-
tees can be obtained in a completely black-box setting, where execution runs of
the Markov chain can be observed, but no other information about the chain is
available. Unbounded properties (e.g. state r is reached with probability at most
0.5 in any number of steps) are significantly more difficult, as a stopping crite-
rion is needed when generating a potentially infinite execution run, and some
information about the Markov chain is necessary for providing statistical guar-
antees (for an overview, see Table 1). On the one hand, some approaches require
the knowledge of the full topology in order to preprocess the Markov chain. On
the other hand, when the topology is not accessible, there are approaches where
the correctness of the statistics relies on information ranging from the second
eigenvalue λ of the Markov chain, to knowledge of both the number |S| of states
and the minimum transition probability pmin.

Table 1. SMC approaches to Markov chain verification, organised by (i) the class of
verifiable properties, and (ii) by the required information about the Markov chain,
where pmin is the minimum transition probability, |S| is the number of states, and λ is
the second largest eigenvalue of the chain.

Our contribution is a new SMC algorithm for full linear temporal logic
(LTL), as well as for unbounded quantitative properties (mean payoff), which
provides strong guarantees in the form of confidence bounds. Our algorithm
uses less information about the Markov chain than previous algorithms that
provide confidence bounds for unbounded properties —we need to know only
the minimum transition probability pmin of the chain, and not the number of
states nor the topology. Yet, experimentally, our algorithm performs in many
cases better than these previous approaches (see Sect. 5). Our main idea is to
monitor each execution run on the fly in order to build statistical hypotheses
about the structure of the Markov chain. In particular, if from observing the
current prefix of an execution run we can stipulate that with high probability a
bottom strongly connected component (BSCC) of the chain has been entered,
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then we can terminate the current execution run. The information obtained from
execution prefixes allows us to terminate executions as soon as the property is
decided with the required confidence, which is usually much earlier than any
bounds that can be computed a priori. As far as we know, this is the first SMC
algorithm that uses information obtained from execution prefixes.

Finding pmin is a light assumption in many realistic scenarios and often does
not depend on the size of the chain – e.g. bounds on the rates for reaction kinetics
in chemical reaction systems are typically known, from a Prism language model
they can be easily inferred without constructing the respective state space.

Example 1. Consider the property of reaching state r in the Markov chain depicted
in Fig. 1. While the execution runs reaching r satisfy the property and can be
stopped without ever entering any vi, the finite execution paths without r, such
as stuttutuut, are inconclusive. In other words, observing this path does not rule
out the existence of a transition from, e.g., u to r, which, if existing, would even-
tually be taken with probability 1. This transition could have arbitrarily low
probability, rendering its detection arbitrarily unlikely, yet its presence would
change the probability of satisfying the property from 0.5 to 1. However, know-
ing that if there exists such a transition leaving the set, its transition probability
is at least pmin = 0.01, we can estimate the probability that the system is stuck
in the set {t, u} of states. Indeed, if existing, the exit transition was missed at
least four times, no matter whether it exits t or u. Consequently, the probability
that there is no such transition and {t, u} is a BSCC is at least 1 − (1 − pmin)4.

s

r v1 · · · vm
1 1

1
t u

0.5
0.5

1

0.99
0.99

0.01 0.01

Fig. 1. A Markov chain.

This means that, in order to
get 99% confidence that {t, u} is
a BSCC, we only need to see both
t and u around 500 times1 on a
run. This is in stark contrast to
a priori bounds that provide the
same level of confidence, such as
the (1/pmin)|S| = 100O(m) runs required by [4], which is infeasible for large m.
In contrast, our method’s performance is independent of m. �

Monitoring execution prefixes allows us to design an SMC algorithm for com-
plex unbounded properties such as full LTL. More precisely, we present a new
SMC algorithm for LTL over Markov chains, specified as follows:

Input: we can sample finite runs of arbitrary length from an unknown finite-
state discrete-time Markov chain M starting in the initial state2, and we are
given a lower bound pmin > 0 on the transition probabilities in M, an LTL
formula ϕ, a threshold probability p, an indifference region ε > 0, and two
error bounds α, β > 0,3

1 1 − (1 − pmin)
500 = 1 − 0.99500 ≈ 0.993.

2 We have a black-box system in the sense of [21], different from e.g. [28] or [20], where
simulations can be run from any state.

3 Except for the transition probability bound pmin, all inputs are standard, as used in
literature, e.g. [28].
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Output: if P[M |= ϕ] ≥ p + ε, return YES with probability at least 1 − α, and
if P[M |= ϕ] ≤ p − ε, return NO with probability at least 1 − β.

In addition, we present the first SMC algorithm for computing the mean
payoff of Markov chains whose states are labelled with rewards.

Related Work. To the best of our knowledge, we present the first SMC algo-
rithm that provides confidence bounds for unbounded qualitative properties with
access to only the minimum probability of the chain pmin, and the first SMC
algorithm for quantitative properties. For completeness, we survey briefly other
related SMC approaches. SMC of unbounded properties, usually “unbounded
until” properties, was first considered in [10] and the first approach was pro-
posed in [22], but observed incorrect in [9]. Notably, in [26] two approaches are
described. The first approach proposes to terminate sampled paths at every step
with some probability pterm. In order to guarantee the asymptotic convergence
of this method, the second eigenvalue λ of the chain must be computed, which is
as hard as the verification problem itself. It should be noted that their method
provides only asymptotic guarantees as the width of the confidence interval con-
verges to zero. The correctness of [16] relies on the knowledge of the second eigen-
value λ, too. The second approach of [26] requires the knowledge of the chain’s
topology, which is used to transform the chain so that all potentially infinite
paths are eliminated. In [9], a similar transformation is performed, again requir-
ing knowledge of the topology. The (pre)processing of the state space required
by the topology-aware methods, as well as by traditional numerical methods for
Markov chain analysis, is a major practical hurdle for large (or unknown) state
spaces. In [4] a priori bounds for the length of execution runs are calculated from
the minimum transition probability and the number of states. However, without
taking execution information into account, these bounds are exponential in the
number of states and highly impractical, as illustrated in the example above.
Another approach, limited to ergodic Markov chains, is taken in [20], based on
coupling methods. There are also extensions of SMC to timed systems [7]. Our
approach is also related to [8,18], where the product of a non-deterministic sys-
tem and Büchi automaton is explored for accepting lassos. We are not aware
of any method for detecting BSCCs by observing a single run, employing no
directed search of the state space.

Experimental Evaluation. Our idea of inferring the structure of the Markov
chain on the fly, while generating execution runs, allows for their early termi-
nation. In Sect. 5 we will see that for many chains arising in practice, such as
the concurrent probabilistic protocols from the Prism benchmark suite [15], the
BSCCs are reached quickly and, even more importantly, can be small even for
very large systems. Consequently, many execution runs can be stopped quickly.
Moreover, since the number of execution runs necessary for a required precision
and confidence is independent of the size of the state space, it needs not be very
large even for highly confident results (a good analogy is that of the opinion polls:
the precision and confidence of opinion polls is regulated by the sample size and
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is independent of the size of the population). It is therefore not surprising that,
experimentally, in most cases from the benchmark suite, our method outper-
forms previous methods (often even the numerical methods) despite requiring
much less knowledge of the Markov chain, and despite providing strong guar-
antees in the form of confidence bounds. In Sect. 6, we also provide theoretical
bounds on the running time of our algorithm for classes of Markov chains on
which it performs particularly well.

Due to space constraints, the proofs and further details can be found in [2].

2 Preliminaries

Definition 1 (Markov chain). A Markov chain (MC) is a tuple M = (S,P, μ),
where

– S is a finite set of states,
– P : S × S → [0, 1] is the transition probability matrix, such that for every

s ∈ S it holds
∑

s′∈S P(s, s′) = 1,
– μ is a probability distribution over S.

We let pmin := min({P(s, s′) > 0 | s, s′ ∈ S}) denote the smallest positive
transition probability in M. A run of M is an infinite sequence ρ = s0s1 . . . of
states, such that for all i ≥ 0, P(si, si+1) > 0; we let ρ[i] denote the state si. A
path in M is a finite prefix of a run of M. We denote the empty path by λ and
concatenation of paths π1 and π2 by π1 . π2. Each path π in M determines the
set of runs Cone(π) consisting of all runs that start with π. To M we assign the
probability space (Runs,F ,P), where Runs is the set of all runs in M, F is the σ-
algebra generated by all Cone(π), and P is the unique probability measure such
that P[Cone(s0s1 . . . sk)] = μ(s0) · ∏k

i=1 P(si−1, si), where the empty product
equals 1. The respective expected value of a random variable f : Runs → R is
E[f ] =

∫
Runs

f dP.
A non-empty set C ⊆ S of states is strongly connected (SC) if for every

s, s′ ∈ C there is a path from s to s′. A set of states C ⊆ S is a bottom strongly
connected component (BSCC) of M, if it is a maximal SC, and for each s ∈ C
and s′ ∈ S \ C we have P(s, s′) = 0. The sets of all SCs and BSCCs in M are
denoted by SC and BSCC, respectively. Note that with probability 1, the set of
states that appear infinitely many times on a run forms a BSCC. From now on,
we use the standard notions of SC and BSCC for directed graphs as well.

3 Solution for Reachability

A fundamental problem in Markov chain verification is computing the probability
that a certain set of goal states is reached. For the rest of the paper, let M =
(S,P, μ) be a Markov chain and G ⊆ S be the set of the goal states in M. We
let ♦G := {ρ ∈ Runs | ∃i ≥ 0 : ρ[i] ∈ G} denote the event that “eventually a
state in G is reached.” The event ♦G is measurable and its probability P[♦G]
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can be computed numerically or estimated using statistical algorithms. Since
no bound on the number of steps for reaching G is given, the major difficulty
for any statistical approach is to decide how long each sampled path should be.
We can stop extending the path either when we reach G, or when no more new
states can be reached anyways. The latter happens if and only if we are in a
BSCC and we have seen all of its states.

In this section, we first show how to monitor each simulation run on the fly,
in order to detect quickly if a BSCC has been entered with high probability.
Then, we show how to use hypothesis testing in order to estimate P[♦G].

3.1 BSCC Detection

We start with an example illustrating how to measure probability of reaching a
BSCC from one path observation.

Example 2. Recall Example 1 and Fig. 1. Now, consider an execution path stuttutu.
Intuitively, does {t, u} look as a good “candidate” for being a BSCC of M? We
visited both t and u three times; we have taken a transition from each t and u
at least twice without leaving {t, u}. By the same reasoning as in Example 1, we
could have missed some outgoing transition with probability at most (1−pmin)2.
The structure of the system that can be deduced from this path is in Fig. 2 and
is correct with probability at least 1 − (1 − pmin)2. �

Now we formalise our intuition. Given a finite or infinite sequence ρ =
s0s1 . . ., the support of ρ is the set ρ = {s0, s1, . . .}. Further, the graph of ρ
is given by vertices ρ and edges {(si, si+1) | i = 0, 1, . . .}.

Definition 2 (Candidate). If a path π has a suffix κ such that κ is a BSCC
of the graph of π, we call κ the candidate of π. Moreover, for k ∈ N, we call
it a k-candidate ( of π) if each s ∈ κ has at least k occurrences in κ and the
last element of κ has at least k + 1 occurrences. A k-candidate of a run ρ is a
k-candidate of some prefix of ρ.

Note that for each path there is at most one candidate. Therefore, we write K(π)
to denote the candidate of π if there is one, and K(π) = ⊥, otherwise. Observe
that each K(π) 
= ⊥ is a SC in M.

Example 3. Consider a path π = stuttutu, then K(π) = {t, u}. Observe that {t}
is not a candidate as it is not maximal. Further, K(π) is a 2-candidate (and as
such also a 1-candidate), but not a 3-candidate. Intuitively, the reason is that
we only took a transition from u (to the candidate) twice, cf. Example 2. �

s t u

Fig. 2. A graph of a path stuttutu.

Intuitively, the higher the k the more it
looks as if the k-candidate is indeed a BSCC.
Denoting by Candk(K) the random predicate
of K being a k-candidate on a run, the prob-
ability of “unluckily” detecting any specific
non-BSCC set of states K as a k-candidate,
can be bounded as follows.



118 P. Daca et al.

Lemma 1. For every K ⊆ S such that K /∈ BSCC, and every s ∈ K, k ∈ N,

P[Candk(K) | ♦s] ≤ (1 − pmin)k.

Example 4. We illustrate how candidates “evolve over time” along a run. Con-
sider a run ρ = s0s0s1s0 . . . of the Markov chain in Fig. 3. The empty and
one-letter prefix do not have the candidate defined, s0s0 has a candidate {s0},
then again K(s0s0s1) = ⊥, and K(s0s0s1s0) = {s0, s1}. One can observe that
subsequent candidates are either disjoint or contain some of the previous candi-
dates. Consequently, there are at most 2|S| − 1 candidates on every run, which
is in our setting an unknown bound. �

s0 s1 s2 · · · sn−1 sn
0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5
0.5 1

Fig. 3. A family (for n ∈ N) of Markov chains with large eigenvalues.

While we have bounded the probability of detecting any specific non-BSCC
set K as a k-candidate, we need to bound the overall error for detecting a
candidate that is not a BSCC. Since there can be many false candidates on a
run before the real BSCC (e.g. Fig. 3), we need to bound the error of reporting
any of them.

In the following, we first formalise the process of discovering candidates along
the run. Second, we bound the error that any of the non-BSCC candidates
becomes a k-candidate. Third, we bound the overall error of not detecting the
real BSCC by increasing k every time a different candidate is found.

We start with discovering the sequence of candidates on a run. For a run
ρ = s0s1 . . ., consider the sequence of random variables defined by K(s0 . . . sj)
for j ≥ 0, and let (Ki)i≥1 be the subsequence without undefined elements
and with no repetition of consecutive elements. For example, for a run � =
s0s1s1s1s0s1s2s2 . . ., we have K1 = {s1}, K2 = {s0, s1}, K3 = {s2}, etc. Let Kj

be the last element of this sequence, called the final candidate. Additionally, we
define K� := Kj for all � > j. We describe the lifetime of a candidate. Given a
non-final Ki, we write ρ = αiβibiγidiδi so that αi∩Ki = ∅, βibiγi = Ki, di /∈ Ki,
and K(αiβi) 
= Ki, K(αiβibi) = Ki. Intuitively, we start exploring Ki in βi; Ki

becomes a candidate in bi, the birthday of the ith candidate; it remains to be
a candidate until di, the death of the ith candidate. For example, for the run
� = s0s1s1s1s0s1s2s2 . . . and i = 1, α1 = s0, β1 = s1, b1 = s1, γ1 = s1, d1 = s0,
δ1 = s1s2s2�[8]�[9] . . .. Note that the final candidate is almost surely a BSCC of
M and would thus have γj infinite.

Now, we proceed to bounding errors for each candidate. Since there is an
unknown number of candidates on a run, we will need a slightly stronger defi-
nition. First, observe that Candk(Ki) iff Ki is a k-candidate of βibiγi. We say
Ki is a strong k-candidate, written SCandk(Ki), if it is a k-candidate of biγi.
Intuitively, it becomes a k-candidate even not counting the discovery phase. As
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Algorithm 1. ReachedBSCC

Input: path π = s0s1 . . . sn, pmin, δ ∈ (0, 1]
Output: Yes iff K(π) ∈ BSCC

C ← ⊥, i ← 0
for j = 0 to n do

if K(s0 . . . sj) �= ⊥ and K(s0 . . . sj) �= C then
C ← K(s0 . . . sj)
i ← i + 1

ki ← i−log δ
− log(1−pmin)

if i ≥ 1 and SCandki(K(π), π) then return Yes
else return No

a result, even if we already assume there exists an ith candidate, its strong
k-candidacy gives the guarantees on being a BSCC as above in Lemma 1.

Lemma 2. For every i, k ∈ N, we have

P[SCandk(Ki) | Ki /∈ BSCC] ≤ (1 − pmin)k.

Since the number of candidates can only be bounded with some knowledge
of the state space, e.g. its size, we assume no bounds and provide a method to
bound the error even for an unbounded number of candidates on a run.

Lemma 3. For (ki)∞
i=1 ∈ N

N, let Err be the set of runs such that for some
i ∈ N, we have SCandki

(Ki) despite Ki /∈ BSCC. Then

P[Err] <
∞∑

i=1

(1 − pmin)ki .

In Algorithm 1 we present a procedure for deciding whether a BSCC inferred
from a path π is indeed a BSCC with confidence greater than 1−δ. We use nota-
tion SCandki

(K,π) to denote the function deciding whether K is a strong ki-
candidate on π. The overall error bound is obtained by setting ki = i−log δ

− log(1−pmin)
.

Theorem 1. For every δ > 0, Algorithm1 is correct with error probability at
most δ.

We have shown how to detect a BSCC of a single path with desired con-
fidence. In Algorithm 2, we show how to use our BSCC detection method to
decide whether a given path reaches the set G with confidence 1 − δ. The func-
tion NextState(π) randomly picks a state according to μ if the path is empty
(π = λ); otherwise, if � is the last state of π, it randomly chooses its successor
according to P(�, ·). The algorithm returns Yes when π reaches a state in G,
and No when for some i, the ith candidate is a strong ki-candidate. In the latter
case, with probability at least 1 − δ, π has reached a BSCC not containing G.
Hence, with probability at most δ, the algorithm returns No for a path that
could reach a goal.
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3.2 Hypothesis Testing on a Bernoulli Variable Observed
with Bounded Error

In the following, we show how to estimate the probability of reaching a set of
goal states, by combining the BSCC detection and hypothesis testing. More
specifically, we sample many paths of a Markov chain, decide for each whether it
reaches the goal states (Algorithm 2), and then use hypothesis testing to estimate
the event probability. The hypothesis testing is adapted to the fact that testing
reachability on a single path may report false negatives.

Let Xδ
♦ be a Bernoulli random variable, such that Xδ

♦ = 1 if and only if
SinglePathReach(G, pmin, δ) = Yes, describing the outcome of Algorithm 2.
The following theorem establishes that Xδ

♦ estimates P[♦G] with a bias bounded
by δ.

Theorem 2. For every δ > 0, we have P[♦G] − δ ≤ E[Xδ
♦] ≤ P[♦G].

In order to conclude on the value P[♦G], the standard statistical model
checking approach via hypothesis testing [28] decides between the hypothesis
H0 : P[♦G] ≥ p + ε and H1 : P[♦G] ≤ p − ε, where ε is a desired indifference
region. As we do not have precise observations on each path, we reduce this
problem to a hypothesis testing on the variable Xδ

♦ with a narrower indifference
region: H ′

0 : E[Xδ
♦] ≥ p + (ε − δ) and H ′

1 : E[Xδ
♦] ≤ p − ε, for some δ < ε.

We define the reduction simply as follows. Given a statistical test T ′ for
H ′

0,H
′
1 we define a test T that accepts H0 if T ′ accepts H ′

0, and H1 otherwise.
The following lemma shows that T has the same strength as T ′.

Lemma 4. Suppose the test T ′ decides between H ′
0 and H ′

1 with strength (α, β).
Then the test T decides between H0 with H1 with strength (α, β).

Lemma 4 gives us the following algorithm to decide between H0 and H1. We
generate samples x0, x1, . . . , xn ∼ Xδ

♦ from SinglePathReach(G, pmin, δ), and
apply a statistical test to decide between H ′

0 and H ′
1. Finally, we accept H0 if

H ′
0 was accepted by the test, and H1 otherwise. In our implementation, we used

the sequential probability ration test (SPRT) [24,25] for hypothesis testing.

Algorithm 2. SinglePathReach

Input: goal states G of M, pmin, δ ∈ (0, 1]
Output: Yes iff a run reaches G

π ← λ
repeat

s ← NextState(π)
π ← π . s
if s ∈ G then return Yes � We have provably reached G

until ReachedBSCC(π, pmin, δ)
return No � By Theorem 1, P[K(π) ∈ BSCC] ≥ 1 − δ
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4 Extensions

In this section, we present how the on-the-fly BSCC detection can be used for
verifying LTL and quantitative properties (mean payoff).

4.1 Linear Temporal Logic

We show how our method extends to properties expressible by linear temporal
logic (LTL) [19] and, in the same manner, to all ω-regular properties. Given a
finite set Ap of atomic propositions, a labelled Markov chain (LMC) is a tuple
M = (S,P, μ,Ap, L), where (S,P, μ) is a MC and L : S → 2Ap is a labelling
function. Definition of LTL formulae is standard and for reader’s convenience
recalled in the full version [2], along with other standard details omitted in
this section. Given a labelled Markov chain M and an LTL formula ϕ, we are
interested in the measure P[M |= ϕ] := P[{ρ ∈ Runs | L(ρ) |= ϕ}], where L is
naturally extended to runs by L(ρ)[i] = L(ρ[i]) for all i.

For every LTL formula ϕ, one can construct a deterministic Rabin automaton
(DRA) A = (Q, 2Ap, γ, qo, Acc) that accepts all runs that satisfy ϕ [3]. Here Q
is a finite set of states, γ : Q × 2Ap → Q is the transition function, qo ∈ Q is
the initial state, and Acc ⊆ 2Q × 2Q is the acceptance condition. Further, the
product of a MC M and DRA A is the Markov chain M ⊗ A = (S × Q,P′, μ′),
where P′((s, q), (s′, q′)) = P(s, s′) if q′ = γ(q, L(s′)) and P′((s, q), (s′, q′)) = 0
otherwise, and μ′(s, q) = μ(s) if γ(qo, L(s)) = q and μ′(s, q) = 0 otherwise. Note
that M ⊗ A has the same smallest transition probability pmin as M.

The crux of LTL probabilistic model checking relies on the fact that the
probability of satisfying an LTL property ϕ in a Markov chain M equals the
probability of reaching an accepting BSCC in the Markov chain M ⊗ Aϕ. For-
mally, a BSCC C of M ⊗ Aϕ is accepting if for some (E,F ) ∈ Acc we have
C ∩ (S × E) = ∅ and C ∩ (S × F ) 
= ∅. Let AccBSCC denote the union of all
accepting BSCCs in M. Then we obtain the following well-known fact [3]:

Lemma 5. For every labelled Markov chain M and LTL formula ϕ, we have
P[M |= ϕ] = P[♦AccBSCC].

Algorithm 3. SinglePathLTL

Input: DRA A = (Q, 2Ap, γ, qo, Acc), pmin, δ ∈ (0, 1]
Output: Yes iff the final candidate is an accepting BSCC

q ← qo, π ← λ
repeat

s ← NextState(π)
q ← γ(q, L(s))
π ← π . (s, q)

until ReachedBSCC(π, pmin, δ) � P[K(π) ∈ BSCC] ≥ 1 − δ
return ∃(E, F ) ∈ Acc : K(π) ∩ (S × E) = ∅ ∧ K(π) ∩ (S × F ) �= ∅
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Since the input used is a Rabin automaton, the method applies to all ω-
regular properties. Let Xδ

ϕ be a Bernoulli random variable, such that Xδ
ϕ = 1

if and only if SinglePathLTL(Aϕ, pmin, δ) = Yes. Since the BSCC must be
reached and fully explored to classify it correctly, the error of the algorithm can
now be both-sided.

Theorem 3. For every δ > 0, P[M |= ϕ] − δ ≤ E[Xδ
ϕ] ≤ P[M |= ϕ] + δ.

Further, like in Sect. 3.2, we can reduce the hypothesis testing problem for

H0 : P[M |= ϕ] ≥ p + ε and H1 : P[M |= ϕ] ≤ p − ε

for any δ < ε to the following hypothesis testing problem on the observable Xδ
ϕ

H ′
0 : E[Xδ

ϕ] ≥ p + (ε − δ) and H ′
1 : E[Xδ

ϕ] ≤ p − (ε − δ).

4.2 Mean Payoff

We show that our method extends also to quantitative properties, such as mean
payoff (also called long-run average reward). Let M = (S,P, μ) be a Markov
chain and r : S → [0, 1] be a reward function. Denoting by Si the random
variable returning the i-th state on a run, the aim is to compute

MP := lim
n→∞E

[
1
n

n∑

i=1

r(Si)

]

.

This limit exists (see, e.g. [17]), and equals
∑

C∈BSCC P[♦C] ·MPC , where MPC is
the mean payoff of runs ending in C. Note that MPC can be computed from r and
transition probabilities in C [17]. We have already shown how our method esti-
mates P[♦C]. Now we show how it extends to estimating transition probabilities
in BSCCs and thus the mean payoff.

First, we focus on a single path π that has reached a BSCC C = K(π) and
show how to estimate the transition probabilities P(s, s′) for each s, s′ ∈ C. Let
Xs,s′ be the random variable denoting the event that NextState(s) = s′. Xs,s′

is a Bernoulli variable with parameter P(s, s′), so we use the obvious estimator
P̂(s, s′) = #ss′(π)/#s(π), where #α(π) is the number of occurrences of α in π.
If π is long enough so that #s(π) is large enough, the estimation is guaranteed
to have desired precision ξ with desired confidence (1 − δs,s′). Indeed, using
Höffding’s inequality, we obtain

P[P̂(s, s′) − P(s, s′)| > ξ] ≤ δs,s′ = 2e−2#s(π)·ξ2
. (1)

Hence, we can extend the path π with candidate C until it is long enough so that
we have a 1 − δC confidence that all the transition probabilities in C are in the
ξ-neighbourhood of our estimates, by ensuring that

∑
s,s′∈C δs,s′ < δC . These

estimated transition probabilities P̂ induce a mean payoff M̂PC . Moreover, M̂PC

estimates the real mean payoff MPC . Indeed, by [6,23],

|M̂PC − MPC | ≤ ζ :=
(

1 +
ξ

pmin

)2·|C|
− 1. (2)

Note that by Taylor’s expansion, for small ξ, we have ζ ≈ 2|C|ξ.
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Algorithm 4. SinglePathMP

Input: reward function r, pmin, ζ, δ ∈ (0, 1],
Output: M̂PC such that |M̂PC − MPC | < ζ where C is the BSCC of the generated

run
π ← λ
repeat

π ← π .NextState(π)
if K(π) �= ⊥ then

ξ = pmin((1 + ζ)1/2|K(π)| − 1) � By Equation (2)

k ← ln(2|K(π)|2)−ln(δ/2)

2ξ2
� By Equation (1)

until ReachedBSCC(π, pmin, δ/2) and SCandk(K(π), π)
return M̂PK(π) computed from P̂ and r

Algorithm 4 extends Algorithm 2 as follows. It divides the confidence para-
meters δ into δBSCC (used as in Algorithm 2 to detect the BSCC) and δC (the
total confidence for the estimates on transition probabilities). For simplicity, we
set δBSCC = δC = δ/2. First, we compute the bound ξ required for ζ-precision
(by Eq. 2). Subsequently, we compute the required strength k of the candidate
guaranteeing δC-confidence on P̂ (from Eq. 1). The path is prolonged until the
candidate is strong enough; in such a case M̂PC is ζ-approximated with 1 − δC

confidence. If the candidate of the path changes, all values are computed from
scratch for the new candidate.

Theorem 4. For every δ > 0, the Algorithm4 terminates correctly with proba-
bility at least 1 − δ.

Let random variable Xζ,δ
MP denote the value SinglePathMP(r, pmin, ζ, δ).

The following theorem establishes relation between the mean-payoff MP and
the expected value of Xζ,δ

MP.

Theorem 5. For every δ, ζ > 0, MP − ζ − δ ≤ E[Xζ,δ
MP] ≤ MP + ζ + δ.

As a consequence of Theorem 5, if we establish that with (1−α) confidence Xζ,δ
MP

belongs to the interval [a, b], then we can conclude with (1 − α) confidence that
MP belongs to the interval [a − ζ − δ, b + ζ + δ]. Standard statistical methods
can be applied to find the confidence bound for Xζ,δ

MP.

5 Experimental Evaluation

We implemented our algorithms in the probabilistic model checker Prism [14],
and evaluated them on the DTMC examples from the Prism benchmark suite
[15]. The benchmarks model communication and security protocols, distributed
algorithms, and fault-tolerant systems. To demonstrate how our method per-
forms depending on the topology of Markov chains, we also performed experi-
ments on the generic DTMCs shown in Figs. 3 and 4, as well as on two CTMCs
from the literature that have large BSCCs: “tandem” [11] and “gridworld” [27].
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Fig. 4. A Markov chain with two transient parts consisting of N strongly connected
singletons, leading to BSCCs with the ring topology of M states.

All benchmarks are parametrised by one or more values, which influence their
size and complexity, e.g. the number of modelled components. We have made
minor modifications to the benchmarks that could not be handled directly by
the SMC component of Prism, by adding self-loops to deadlock states and fixing
one initial state instead of multiple.

Our tool can be downloaded at [1]. Experiments were done on a Linux 64-bit
machine running an AMD Opteron 6134 CPU with a time limit of 15 min and
a memory limit of 5GB. To increase performance of our tool, we check whether
a candidate has been found every 1000 steps; this optimization does not violate
correctness of our analysis. See the full version of this paper [2] for a discussion
on this bound.

Reachability. The experimental results for unbounded reachability are shown
in Table 2. The Prism benchmarks were checked against their standard prop-
erties, when available. We directly compare our method to another topology-
agnostic method of [26] (SimTermination), where at every step the sampled path
is terminated with probability pterm. The approach of [4] with a priori bounds is
not included, since it times out even on the smallest benchmarks. In addition,
we performed experiments on two methods that are topology-aware: sampling
with reachability analysis of [26] (SimAnalysis) and the numerical model-checking
algorithm of Prism (MC). The full version [2] contains detailed experimental
evaluation of these methods.

The table shows the size of every example, its minimum probability, the
number of BSCCs, and the size of the largest BSCC. Column “time” reports the
total wall time for the respective algorithm, and “analysis” shows the time for
symbolic reachability analysis in the SimAnalysis method. Highlights show the
best result among the topology-agnostic methods. All statistical methods were
used with the SPRT test for choosing between the hypothesis, and their results
were averaged over five runs.

Finding the optimal termination probability pterm for the SimTermination
method is a non-trivial task. If the probability is too high, the method might
never reach the target states, thus give an incorrect result, and if the value is too
low, then it might sample unnecessarily long traces that never reach the target.
For instance, to ensure a correct answer on the Markov chain in Fig. 3, pterm has
to decrease exponentially with the number of states. By experimenting we found
that the probability pterm = 0.0001 is low enough to ensure correct results. See
the full version [2] for experiments with other values of pterm.

On most examples, our method scales better than the SimTermination
method. Our method performs well even on examples with large BSCCs, such



Faster Statistical Model Checking for Unbounded Temporal Properties 125

Table 2. Experimental results for unbounded reachability. Simulation parameters:
α = β = ε = 0.01, δ = 0.001, pterm = 0.0001. TO means time-out, and MO means
memory-out. Our approach is denoted by SimAdaptive here. Highlights show the best
result the among topology-agnostic methods.

as “tandem” and “gridworld,” due to early termination when a goal state is
reached. For instance, on the “gridworld” example, most BSCCs do not contain
a goal state, thus have to be fully explored, however the probability of reaching
such BSCC is low, and as a consequence full BSCC exploration rarely occurs.
The SimTermination method performs well when the target states are unreach-
able or can be reached by short paths. When long paths are necessary to reach
the target, the probability that an individual path reaches the target is small,
hence many samples are necessary to estimate the real probability with high
confidence.

Moreover, it turns out that our method compares well even with methods
that have access to the topology of the system. In many cases, the running
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Table 3. Experimental results for LTL and mean-payoff properties. Simulation para-
meters for LTL: α = β = ε = 0.01, δ = 0.001, for mean-payoff we computed 95 %-
confidence bound of size 0.22 with δ = 0.011, ζ = 0.08.

time of the numerical algorithm MC increases dramatically with the size of the
system, while remaining almost constant in our method. The bottleneck of the
SimAnalysis algorithm is the reachability analysis of states that cannot reach the
target, which in practice can be as difficult as numerical model checking.

LTL and Mean Payoff. In the second experiment, we compared our algorithm
for checking LTL properties and estimating the mean payoff with the numerical
methods of Prism; the results are shown in Table 3. We compare against Prism,
since we are not aware of any SMC-based or topology-agnostic approach for
mean payoff, or full LTL. For mean payoff, we computed 95%-confidence bound
of size 0.22 with parameters δ = 0.011, ζ = 0.08, and for LTL we used the same
parameters as for reachability. Due to space limitations, we report results only on
some models of each type, where either method did not time out. In general our
method scales better when BSCCs are fairly small and are discovered quickly.

6 Discussion and Conclusion

As demonstrated by the experimental results, our method is fast on systems
that are (1) shallow, and (2) with small BSCCs. In such systems, the BSCC is
reached quickly and the candidate is built-up quickly. Further, recall that the
BSCC is reported when a k-candidate is found, and that k is increased with
each candidate along the path. Hence, when there are many strongly connected
sets, and thus many candidates, the BSCC is detected by a k-candidate for a
large k. However, since k grows linearly in the number of candidates, the most
important and limiting factor is the size of BSCCs.

We state the dependency on the depth of the system and BSCC sizes formally.
We pick δ := ε

2 and let

sim =
− log β

1−α log 1−β
α

log p−ε+δ
p+ε−δ log 1−p−ε+δ

1−p+ε−δ

and ki =
i − log δ

− log(1 − pmin)
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denote the a priori upper bound on the number of simulations necessary for
SPRT [24,25] and the strength of candidates as in Algorithm2, respectively.

Theorem 6. Let R denote the expected number of steps before reach-
ing a BSCC and B the maximum size of a BSCC. Further, let T :=
maxC∈BSCC;s,s′∈C E[time to reach s′ from s]. In particular, T ∈ O(B/pB

min).
Then the expected running time of Algorithms 2 and 3 is at most

O(sim · kR+B · B · T ).

Systems that have large deep BSCCs require longer time to reach for the required
level of confidence. However, such systems are often difficult to handle also for
other methods agnostic of the topology. For instance, correctness of [26] on the
example in Fig. 3 relies on the termination probability pterm being at most 1−λ,
which is less than 2−n here. Larger values lead to incorrect results and smaller
values to paths of exponential length. Nevertheless, our procedure usually runs
faster than the bound suggest; for detailed discussion see [2].

Conclusion. To the best of our knowledge, we propose the first statistical
model-checking method that exploits the information provided by each simula-
tion run on the fly, in order to detect quickly a potential BSCC, and verify LTL
properties with the desired confidence. This is also the first application of SMC
to quantitative properties such as mean payoff. We note that for our method to
work correctly, the precise value of pmin is not necessary, but a lower bound is
sufficient. This lower bound can come from domain knowledge, or can be inferred
directly from description of white-box systems, such as the Prism benchmark.

The approach we present is not meant to replace the other methods, but
rather to be an addition to the repertoire of available approaches. Our method
is particularly valuable for models that have small BSCCs and huge state space,
such as many of the Prism benchmarks.

In future work, we plan to investigate the applicability of our method to
Markov decision processes, and to deciding language equivalence between two
Markov chains.
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Abstract. We consider controller synthesis for stochastic and par-
tially unknown environments in which safety is essential. Specifically, we
abstract the problem as a Markov decision process in which the expected
performance is measured using a cost function that is unknown prior to
run-time exploration of the state space. Standard learning approaches
synthesize cost-optimal strategies without guaranteeing safety proper-
ties. To remedy this, we first compute safe, permissive strategies. Then,
exploration is constrained to these strategies and thereby meets the
imposed safety requirements. Exploiting an iterative learning procedure,
the resulting strategy is safety-constrained and optimal. We show cor-
rectness and completeness of the method and discuss the use of several
heuristics to increase its scalability. Finally, we demonstrate the applica-
bility by means of a prototype implementation.

1 Introduction

Probabilistic Model Checking. Many formal system models are inherently sto-
chastic, consider for instance randomized distributed algorithms (where random-
ization breaks the symmetry between processes), security (e.g., key generation
at encryption), systems biology (where species randomly react depending on
their concentration), or embedded systems (interacting with unknown and vary-
ing environments). These various applications made the verification of stochastic
systems such as discrete-time Markov chains (MCs) or Markov decision processes
(MDPs) an important research topic in the last decade, resulting in several tools
like PRISM [1], LiQuoR [2], MRMC [3] or FMurphi [4]. The always growing set
of case studies in the PRISM benchmark suite [5] witnesses the applicability of
MDP and MC model checking.

Controller Synthesis. Contrarily, controller synthesis is a relatively new topic
in this setting. Consider a controllable system like, e. g., a robot or some other
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machine which is embedded into an environment. Having a formal model of
both the controllable entity and the environment, the goal is to synthesize a
controller that satisfies certain requirements. Again, often faithful models are
stochastic, imagine, e. g., sensor imprecisions of a robot, message loss, or unpre-
dictable behavior of the environment. Moreover, it might be the case that certain
information—such as cost caused by energy consumption—is not exactly known
prior to exploring and observation.

Our Problem. Given an MDP with a cost structure, synthesize an optimal strat-
egy subject to safety constraints, where optimality refers to expected perfor-
mance (cost). This multi-objective model checking problem is studied in [6–8].
But what if the cost function is not known? Consider for instance the following
motion planning scenario, placed in a grid-world where a robot wants to move
to a certain position. Acting unpredictably, a janitor moves randomly through
the grid. The robot reaches its goal safely if it moves according to a strategy
that avoids the janitor. Moreover, each movement of the robot occasions cost
depending on the surface. However, the robot only learns the actual costs during
physically executing actions within the environment; this requires the exclusion
of unsafe behavior prior to exploration. Consequently, a safe strategy for the
robot which simultaneously induces minimal cost is to be found.

We model robot behavior by an MDP and the stochastic behavior of the
environment by a MC. We are given a safety condition specified as a probabilistic
reachability objective. Additionally, we have a performance condition bounding
the expected costs for reaching a certain goal. A significant problem we are facing
is that the costs of certain actions are not known before they are executed. This
calls for using reinforcement learning [9] algorithms like Q-learning [10], where
optimal strategies are obtained without prior knowledge about the system. While
this is usually a suitable solution, in this case we have to ensure that no unsafe
actions are taken during exploration to ensure an optimal and safe strategy.

Our Approach. The setting does neither allow for using plain verification nor
direct reinforcement learning. On the one hand, verifying safety and performance
properties—in the formofmulti-objectivemodel checking—is not possible because
the costs of actions are not known. On the other hand, in practice learning means
that the robot will explore parts of the system. Doing that, we need to ensure that
all unsafe behavior is avoided beforehand. Our solution to these problems is to use
the notion of permissive schedulers. In contrast to standard schedulers, where for
each system run the next action to take is fixed, more permissiveness is given in the
sense that several actions are allowed. The first step is to compute a safe permissive
scheduler which allows only safe behavior. The system is then restricted according
to this scheduler (or strategy) and fit for safe exploration.

It would be desirable to compute a permissive scheduler which encompasses the
set of all safe schedulers. Having this would ensure that via reinforcement learn-
ing a safe scheduler inducing optimal cost would obtained. Unfortunately, there
is no efficient representation of such a maximal permissive scheduler. Therefore,
we propose an iterative approach utilizing SMT-solving where a safe permissive
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scheduler is computed. Out of this, reinforcement learning determines the locally
optimal scheduler. In the next iteration, this scheduler is explicitly excluded and
a new permissive scheduler is obtained. This is iterated until the performance cri-
terion is satisfied or until the solution is determined to be globally optimal which
can be done using known lower bounds on the occurring costs.

Related Work. In [11], the computation of permissive schedulers for stochas-
tic 2-player games is proposed for reward properties without additional safety-
constraints. A dedicated mixed-integer linear programming (MILP) encoding
optimizes w. r. t. certain penalties for actions. In [12], permissive safe scheduling
is investigated for transition systems and LTL properties. Safe or constrained
(e.g., by temporal logic specifications) exploration has also been investigated
in the learning literature. Some recent examples include [13,14]. In [15], safety
guarantees are added via the usage of Gaussian processes. An overview on safe
exploration using reinforcement learning can be found in [16].

Summary of the Contributions. We give the first approach to controller synthe-
sis for stochastic systems regarding safety and performance in a setting where
models are known but costs are not. This encompasses:

– an iterative approach to the computation of safe permissive schedulers based
on SMT-solving;

– exploitation of permissive schedulers for reinforcement learning towards glob-
ally optimal solutions;

– a discussion of several heuristics to both speed up the computations and avoid
too many iterations; and

– a prototype implementation showing promising results on several case studies.

The paper is structured as follows: First, we provide basic notations and for-
mal prerequisites in Sect. 2. In Sect. 3 we introduce our notion of permissive
schedulers, discuss efficient representations, and introduce technicalities that are
needed afterwards. Section 4 presents our main results on computing safe and
optimal schedulers. After presenting several case studies and benchmark results
in Sect. 5, we finally draw a conclusion and point to future work in Sect. 6.

2 Preliminaries

In this section, we introduce the required models and specifications considered
in this paper, and provide a formal problem statement.

Models. For a set X, let 2X denote the power set of X. A probability distribution
over a finite or countably infinite set X is a function μ : X → [0, 1] ⊆ R with∑

x∈X μ(x) = μ(X) = 1. In this paper, all probabilities are taken from Q. Let
the set of all distributions on X be denoted by Distr(X). The set supp(μ) =
{x ∈ X | μ(x) > 0} is the support of μ ∈ Distr(X). If μ(x) = 1 for x ∈ X and
μ(y) = 0 for all y ∈ X \ {x}, μ is called a Dirac distribution.
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Definition 1 (MDP). A Markov decision process (MDP) M = (S, sI ,Act ,P)
is a tuple with a finite set S of states, a unique initial state sI ∈ S, a finite set
Act of actions, and a (partial) probabilistic transition function P : S × Act →
Distr(S).

MDPs operate by means of nondeterministic choices of actions at each state,
whose successors are then determined probabilistically w. r. t. the associated
probability distribution. The set of enabled actions at state s ∈ S is denoted
by Act(s) = {a ∈ Act | ∃μ ∈ Distr(S). μ = P(s, α)}. To avoid deadlock states,
we assume that |Act(s)| ≥ 1 for all s ∈ S. A cost function ρ : S × Act → R≥0

for an MDP M adds a cost to each transition (s, a) ∈ S × Act with a ∈ Act(s).
A path in an M is a finite (or infinite) sequence π = s0a0s1a1 . . . with

P(si, α, si+1) > 0 for all i ≥ 0. The set of all paths in M is denoted by PathsM,
all paths starting in state s ∈ S by PathsM(s). The cost of finite path π is
defined as the sum of the costs of all transitions in π, i.e., ρ(π) =

∑n−1
i=0 ρ(si, ai)

where n is the number of transitions in π.
If |Act(s)| = 1 for all s ∈ S, all actions can be disregarded and the MDP M

reduces to a discrete-time Markov chain (MC), sometimes denoted by D, yielding
a transition probability transition function of the form P : S → Distr(S). The
unique probability measure PrD(Π) for set Π of infinite paths of MC D can be
defined by the usual cylinder set construction, see [17] for details. The expected
cost of the set Π of paths, denoted by ECD(Π), is defined as

∑
π∈Π Pr(π)·ρ(π).

In order to define a probability measure and expected cost on MDPs, the non-
deterministic choices of actions are resolved by so-called schedulers1. As in [11],
for practical reasons we restrict ourselves to memoryless schedulers; more details
about schedulers can be found in [17].

Definition 2 (Scheduler). A scheduler for an MDP M is a function σ : S →
Distr(Act) such that σ(s)(a) > 0 implies a ∈ Act(s). Schedulers using only
Dirac distributions are called deterministic. The set of all schedulers over M is
denoted by SchedM.

Deterministic schedulers are functions of the form σ : S → Act with σ(s) ∈
Act(s). Schedulers that are not deterministic are also called randomized. Apply-
ing a scheduler to an MDP yields a so-called induced Markov chain, as all non-
determinism is resolved.

Definition 3 (Induced MC). Let MDP M = (S, sI ,Act ,P) and scheduler
σ ∈ SchedM. The MC induced by M and σ is Mσ = (S, sI ,Act ,Pσ) where

Pσ(s, s′) =
∑

a∈Act(s)

σ(s)(a) · P(s, a)(s′) for all s, s′ ∈ S .

Intuitively, the transition probabilities in Mσ are obtained w. r. t. the random
choices of action of the scheduler.

1 Also referred to as strategies or policies.



134 S. Junges et al.

Remark 1. Deterministic schedulers pick just one action at each state and the
associated probability distribution determines the probabilities. In this case we
write for all states s ∈ S and a ∈ Act with σ(s)(a) = 1:

Pσ(s, s′) = P(s, a)(s′) .

Specifications. Specifications are given by combining reachability properties and
expected cost properties. A reachability property P≤λ(♦T ) with upper probabil-
ity bound λ ∈ [0, 1] ⊆ Q and target set T ⊆ S constrains the probability to
finally reach T from sI in M to be at most λ. Analogously, expected cost prop-
erties E≤κ(♦G) impose an upper bound κ ∈ Q on the expected cost to reach
goal states G ⊆ S. Combining both types of properties, the intuition is that
a set of bad states T shall only be reached with a certain probability λ (safety
specification) while the expected cost for reaching a set of goal states G has to be
below κ (performance specification). This can be verified using multi-objective
model checking [6–8], provided all problem data (i.e., probabilities and costs) are
a-priori known.

We overload the notation ♦T to denote both a reachability property and the
set of all paths that finally reach T from the initial state sI of an MC. The
probability and the expected cost for reaching T from sI are denoted by Pr(♦T )
and EC(♦T ), respectively. Hence, PrD(♦T ) ≤ λ and ECD(♦G) ≤ κ express that
the properties P≤λ(♦T ) and E≤κ(♦G) respectively are satisfied by MC D.

An MDP M satisfies both reachability property ϕ and expected cost property
ψ, iff for all schedulers σ it holds that the induced MC Mσ satisfies the properties
ϕ and ψ, i.e., Mσ |= ϕ and Mσ |= ψ. In our setting, we are rather interested
in the so-called synthesis problem, where the aim is to find a scheduler σ such
that both properties are satisfied (while this does not necessarily hold for all
schedulers). If Mσ |= ϕ, scheduler σ is said to admit the property ϕ; this is
denoted by σ |= ϕ.

Formal Problem Statement. Given an MDP M1 modeling possible controllable
behaviors and an MC D modeling the stochastic behavior of an environment, the
synchronous product (see e. g. [18]) is denoted by M1×D = M = (S, sI ,Act ,P).
Let ρ be a cost function over M that is unknown to the robot prior to exploring
the state space. We assume that for each transition (s, a), the cost is bounded
from below and from above, i. e. l(s,a) ≤ ρ(s, a) ≤ u(s,a) with l(s,a), u(s,a) ∈ Q

for any (s, a) ∈ S × Act . Let safety specification ϕ = P≤λ(♦T ) and performance
specification ψ = E≤κ(♦G) for M with T,G ⊆ S.

The synthesis problem is to find a scheduler σ ∈ SchedM such that Mσ |= ϕ
and Mσ |= ψ. The optimal synthesis problem is to find a scheduler σ∗ ∈ SchedM

such that Mσ∗ |= ϕ and σ∗ minimizes the expected cost to reach G.

3 Permissive Schedulers

As mentioned before, we will utilize the notion of permissive schedulers, where
not all nondeterminism is to be resolved. A permissive scheduler may select a
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set of actions at each state, such that at a state there might be several possible
actions or probability distributions over actions left open. In this sense, permis-
sive schedulers can be seen as sets of schedulers. Here, we discuss properties and
efficient representations that are needed later on. Analogously to schedulers, we
consider only memoryless notions.

Definition 4 (Permissive Scheduler). A permissive scheduler of MDP M =
(S, sI ,Act ,P) is a function θ : S → 2Distr(Act) \ ∅ and ∀s ∈ S.∀μ ∈
θ(s). supp(μ) ⊆ Act(s). The set of all permissive schedulers for M is PSchedM.

Intuitively, at each state there is not only one but several distributions over
actions available. Deterministic permissive schedulers are functions of the form
S → 2Act , i. e., there are different choices of action left open. We use the following
notations for connections to (non-permissive) schedulers.

Definition 5 (Compliance). A scheduler σ for the MDP M is compliant with
a permissive scheduler θ, written σ ∈ θ, iff for all s ∈ S it holds that σ(s) ∈ θ(s).

A permissive scheduler θS for M is induced by a set of schedulers S ⊆
SchedM, iff for each state s ∈ S and each distribution μ ∈ θS(s) there is a
scheduler σ ∈ S with σ(s) = μ.

We are interested in sets of schedulers that admit our safety specification.

Definition 6 (Safe and Maximal Permissive Scheduler). A permissive
scheduler θ ∈ PSchedM for the MDP M is safe for a reachability property
ϕ = P≤λ(♦T ) iff for all σ ∈ θ it holds that σ |= ϕ, denoted by θ |= ϕ. The
permissive scheduler θ is called maximal, if there exists no scheduler σ ∈ SchedM

with σ 
∈ θ and σ |= ϕ.

A safe permissive scheduler contains only schedulers that admit the safety
specification while a maximal safe permissive scheduler contains all such sched-
ulers (and probably more). Note that even for a set of safe schedulers, the induced
permissive scheduler might be unsafe; contradicting choices might evolve, i. e.,
choosing a certain action (or distribution) at one state might rule out certain
memoryless choices at other states; this is illustrated by the following example.

Example 1. Consider the MDP M depicted in Fig. 1, where the only nonde-
terministic choices occur at states s0 and s1. Assume a reachability property
ϕ = P≤0.3(♦{s2}). This property is violated by the deterministic scheduler
σ1 := {s0 �→ a, s1 �→ c} as s2 is reached with probability 0.36 exceeding
the threshold 0.3. This is the only unsafe scheduler; removing either action a
or c from M leads to a safe MDP, i. e. the possible deterministic schedulers
σ2 := {s0 �→ a, s1 �→ d}, σ3 := {s0 �→ b, s1 �→ c}, and σ4 := {s0 �→ b, s1 �→ d} are
all safe. However, consider the induced permissive scheduler θσ2,σ3,σ4 ∈ PSchedM

with θ :=
{
s0 �→ {a, b}, s1 �→ {b, c}}

, where in fact all nondeterministic choices
are left open. Unfortunately, it holds that the unsafe scheduler σ1 is compliant
with θσ2,σ3,σ4 , therefore θ is unsafe.
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Fig. 1. Example MDP M illustrating conflicting schedulers

Example 1 shows that in order to form a safe permissive scheduler it is not
sufficient to just consider the set of safe schedulers. Actually, one needs to keep
track that the very same safe scheduler is used in every state. Theoretically,
this can be achieved by adding finite memory to the scheduler in order to avoid
conflicting actions.

A succinct representation of the maximal permissive scheduler can be gained
by enumerating all minimal sets of conflicting action choices (now only consid-
ering deterministic schedulers), and excluding them from all possible schedulers.
We investigate the worst case size of such a set. Assume without loss of generality
that for all s ∈ S the sets Act(s) are pairwise disjoint.

Definition 7 (Conflict Set). C ⊆ Act is a conflict set for MDP M and
property ϕ iff there exists a deterministic scheduler σ ∈ SchedM such that
(∀a ∈ C.∃s ∈ S. σ(s) = a) and σ 
|= ϕ. The set of all conflict sets for
M and ϕ is denoted by Conf M

ϕ . C ∈ Conf M
ϕ is a minimal conflict set iff

∀C ′
� C.C ′ 
∈ Conf M

ϕ .

Lemma 1. The size of the set of all minimal conflict sets for M and ϕ poten-
tially grows exponentially in the number of states of M.

Proof Sketch. Let Mn = (S, sI ,Act ,P) be given by S = {s0, . . . , sn,⊥}, sI = s0,
Act = {a0, . . . , an−1, b0, . . . , bn−1, c, d} and

P(s, α)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5 if i < n, α = ai, s = si, t = si+1

0.5 if i < n, α = ai, s = si, t = ⊥
1 if i < n, α = bi, s = si, t = si+1

1 if α = c, s = sn, t = sn

1 if α = d, s = ⊥, t = ⊥
0 otherwise

Figure 2 shows the instance M4 where several copies of the ⊥-states have been
drawn and the d self-loops have been omitted for ease of presentation. Consider
the property ϕ = P≤λ(♦{sn}) with λ = 0.5

n
2 +1. Choosing any combination of n

2
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Fig. 2. MDP M4 inducing exponentially many (minimal) conflict sets

of the bi actions yields a minimal conflict set. Hence, there are at least
(

n
n
2

)
n:=2m=

(2m)!
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(m + 1)

1
· · · 2m

m︸ ︷︷ ︸
m factors ≥ 2

≥ 2m m:=n
2= 2

n
2 ∈ Ω

((√
2
)n)

minimal conflict sets. �

This strongly indicates that an exact representation of the maximal permis-
sive scheduler is not feasible. For algorithmic purposes, we strive for a more
compact representation. It seems natural to investigate the possibilities of using
MDPs as representation of permissive schedulers. Therefore, analogously to
induced MCs for schedulers (cf. Definition 3), we define induced MDPs for per-
missive schedulers. For a permissive scheduler θ ∈ PSchedM, we will uniquely
identify the nondeterministic choices of probability distributions μ ∈ θ(s) at each
state s ∈ S of the MDP by new actions as,μ.

Definition 8 (Induced MDP). For an MDP M = (S, sI ,Act ,P) and
permissive scheduler θ for M, the MDP induced by M and θ is Mθ =
(S, sI ,Actθ,Pθ) with Actθ = {as,μ | s ∈ S, μ ∈ θ(s)} and:

Pθ(s, as,μ)(s′) =
∑

a∈Act(s)

μ(s)(a) · P(s, a)(s′) for s, s′ ∈ S and as,μ ∈ Actθ .

Intuitively, we nondeterministically choose between the distributions over actions
induced by the permissive scheduler θ. Note that if the permissive scheduler
contains only one distribution for each state, i. e., in fact the permissive scheduler
is just a scheduler, the actions can be discarded which yields an induced MC as
in Definition 3, making this definition backward compatible.

Remark 2. Each deterministic scheduler σ ∈ SchedMθ

for the induced MDP
Mθ induces a (randomized) scheduler for the original MDP M. In particular,
σ induces a scheduler σ′ ∈ θ for M which is compliant with the permissive
scheduler θ: For all s ∈ S there exists an action as,μ ∈ Actθ such that σ(s) = as,μ.
The randomized scheduler σ′ is then given by σ′(s) = μ and it holds that

∑

a∈Act(s)

σ′(s)(a) · P(s, a)(s′) = Pθ(s, as,μ)(s′) .
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Fig. 3. Induced MDP Mθsafe

Remark 3. A deterministic permissive scheduler θdet ∈ PSchedM for the MDP
M simply restricts the nondeterministic choices of the original MDP to the ones
that are chosen with probability one by θdet. The transition probability function
Pθdet of the induced MDP Mθdet can be written as

Pθ(s, as,μ)(s′) = P(s, a)(s′) for all s ∈ S and as,μ ∈ Actθdet with μ(a) = 1 .

The induced MDP Mθ can be seen as a sub-MDP Msub = (S, sI ,Act ,Psub)
of M by omitting all actions that are not chosen. Hence, for all s, s′ ∈ S:

Psub(s, a)(s′) =

{
P(s, a)(s′) if ∃μ ∈ θ(s). μ(a) = 1
0 otherwise .

Example 2. Recall Example 1 with ϕ = P≤0.3(♦{s2}). The MDP Mθ induced by
the permissive scheduler θ is the same as M, as all available choices of actions
are included (see Example 1). Note that we use the simplified notation from
Remark 3. However, consider the safe (but not maximal) permissive scheduler
θsafe formed by {s0 �→ a, s1 �→ d} and {s0 �→ b, s1 �→ d}. The induced MDP is
the sub-MDP Mθsafe of M depicted in Fig. 3. This sub-MDP has no scheduler σ
with σ 
|= ϕ.

4 Safety-Constrained Reinforcement Learning

Recall that the synthesis problem amounts to determining a scheduler σ∗ of
the MDP M such that σ∗ admits the safety specification ϕ and minimizes the
expected cost (of reaching G). A naive approach to this problem is to iterate
over all safe schedulers σ1, σ2, σ3, . . . of M and pursue in the j-th iteration as
follows. Deploy the (safe) scheduler σj on the robot. By letting the robot safely
explore the environment (according to σj), one obtains the expected costs cj ,
say, of reaching G (under σj). By doing so for all safe schedulers, one obtains
the minimum cost. After checking all safe schedulers, we have obtained a safe
minimal one whenever some cn is below the threshold κ. The solution to the
synthesis problem is then the scheduler σn for which cn is minimal. Otherwise,
we can conclude that the synthesis problem has no solution. Note that while
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MDP M, minimally initialized cost function ρ,
safety specification ϕ, performance specification ψ

1. Compute safe permissive
scheduler θ ∈ PSchedM;
exclude all previously
computed schedulers

2. Obtain locally cost-
optimal scheduler σ ∈ θ
and refine cost function ρ
via reinforcement learning

4. Check if σ |= ψ
or if σ is optimal

3. Compute scheduler σl ∈
SchedM on the original

MDP M inducing a lower
bound on the expected cost

Return σ

Induced MDP Mθ

Scheduler σ

Cost function ρ

Scheduler σl

yes

no

Fig. 4. Overview of safety-constrained reinforcement learning

deploying the safe schedulers, the robot explores more and more possible tra-
jectories, thus becoming more knowledgeable about the (a-priori) unknown cost
structure of the MDP.

Although this approach is evidently sound and complete, the number of
deployments is excessive. Our approach avoids this by:

1. Testing permissive (i. e. sets of) schedulers rather than one scheduler at a
time. This is done by employing reinforcement learning.

2. Using that the expected costs c∗ under σ∗ cannot be smaller than the minimal
expected cost c in the MDP M (possibly achieved by some unsafe scheduler).
This allows for deciding minimality of scheduler σj by checking cj = c, pos-
sibly avoiding exploration of any further schedulers.

3. Preventing the deployment of safe scheduler σj whenever the minimal
expected cost ci of all schedulers checked so far (i < j) is smaller than the
expected cost under σj .

Let us now briefly explain our approach to synthesize a safe and optimal
scheduler; further details are given in the rest of this section. Figure 4 surveys
the approach. We initialize the cost function of the MDP by setting the cost of
transition (s, a) to its lower bound l(s,a). The synthesis of a safe and optimal
scheduler is done by iteratively considering permissive schedulers θ1, θ2, θ3, . . .
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according to which the MDP M is explored. This yields a scheduler σ whose
expected cost is minimal among the schedulers deployed so far. This search is
finished whenever either the expected costs under σ is below κ, σ is globally
optimal, or no further permissive schedulers can be found. In the j-th iteration,
the following four steps are carried out:

1. Determine the j-th safe permissive scheduler θj (if it exists) such that θj |= ϕ.
All previously considered schedulers are excluded from θ. This ensures that
θj is a fresh permissive scheduler; see Sect. 4.1 for details.

2. Check all compliant schedulers of θj by reinforcement learning. This yields
scheduler σj ∈ θj that minimizes the expected cost of reaching G. By
Remark 2 on Page 8, σj induces a (randomized) scheduler σ for M. The
scheduler σ is safe w. r. t. ϕ and cost-minimal among all compliant schedulers
to θ. During the learning process, the cost function ρ is refined with the actual
costs for the (newly) explored actions. See Sect. 4.2 for details.

3. Using the refined cost function, a scheduler σl inducing minimal expected cost
cl is computed for the original MDP M (neglecting being safe or not). As
this is computed using lower bounds on local costs and potentially using an
unsafe scheduler, the expected cost forms a lower bound on the cost obtained
using full knowledge of the cost function and only safe schedulers.

4. After learning the scheduler σ, we check whether ECMσ

(♦G) ≤ κ. More-
over, if the expected cost equals the lower bound computed in Step 3, i. e.,
ECMσ

(♦G) = cl, the scheduler σ is globally optimal (and safe).

Furthermore, the best scheduler found so far induces an upper bound on the
performance as it is optimal for the already learned parts of the MDP. After
computing a new candidate (permissive) scheduler, we can re-compute its per-
formance using the lower bounds on actions on the original MDP. If it does not
(potentially) admit a better performance, it does not need to be deployed at all.

Note that in the worst case, we actually enumerate all possible safe sched-
ulers, i. e. the maximal permissive scheduler. However, the iterative nature of
the procedure together with the optimizations allows for earlier termination as
soon as the optimum is reached or the gap between the lower and upper bounds
for the minimal expected cost is sufficiently small.

Theorem 1. Safety-constrained reinforcement learning is sound and complete.

The method is sound and complete because finally we iterate over all safe per-
missive schedulers and thereby over all possible safe schedulers.

4.1 Computing Permissive Schedulers

In the following, we discuss how to compute a safe deterministic permissive
scheduler that induces a safe sub-MDP such as illustrated in Example 2. More-
over, we indicate how a safe permissive scheduler can be computed in general
(for randomized schedulers). Recall that according to our setting we are given
an MDP M = (S, sI ,Act ,P) and a safety specification ϕ = P≤λ(♦T ) for T ⊆ S.
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The computation will be performed by means of an SMT encoding. This is
similar to the mixed linear integer programming (MILP) approach used in [11].
The intuition is that a satisfying assignment for the encoding induces a safe
permissive scheduler according to Definition 6. We use the following variables.

ys,a ∈ B = {true, false} for each state s ∈ S and each action a ∈ Act(s) is
assigned true iff action a is allowed to be taken in state s by the permissive
scheduler. These variables form the permissive scheduler.

ps ∈ [0, 1] ⊆ R for each state s ∈ S captures the maximal probability to reach
the set of target states T ⊆ S under each possible scheduler that is compliant
to the permissive scheduler.

The SMT encoding reads as follows.

psI
≤ λ (1)

∀s ∈ S.
∨

a∈Act(s)

ys,a (2)

∀s ∈ T. ps = 1 (3)

∀s ∈ S.∀a ∈ Act(s). ys,a → ps ≥
∑

s′∈S

P(s, a)(s′) · ps′ (4)

First, Constraint 1 ensures that the maximal probability at the initial state
sI achieved by any scheduler that can be constructed according to the valuation
of the ys,a-variables does not exceed the given safety threshold λ. Due to Con-
straint 2, at least one action a ∈ Act(s) is chosen by the permissive scheduler
for every state s ∈ S as at least one ys,a-variable needs to be assigned true.
The probability of target states is set to 1 by Constraint 3. Finally, Constraint 4
puts (multiple) lower bounds on each state’s probability: For all s ∈ S and
a ∈ Act with ys,a = true, the probability to reach the target states is computed
according to this particular choice and set as a lower bound. Therefore, only
combinations of ys,a-variables that induce safe schedulers can be assigned true.

Theorem 2. The SMT encoding given by Constraints 1–4 is sound and complete.

Proof Sketch. Soundness refers to the fact that each satisfying assignment for
the encoding induces a safe deterministic permissive scheduler for MDP M
and safety specification ϕ. This is shown by constructing a permissive sched-
uler according to an arbitrary assignment of ys,a-variables. Applying the other
(satisfied) constraints ensures that this scheduler is safe. Completeness means
that for each safe deterministic permissive scheduler, a corresponding satisfying
assignment of the constraints exists. This is done by assuming a safe determinis-
tic permissive scheduler and constructing a corresponding assignment. Checking
all the constraints ensures that this assignment is satisfying.

Now, consider a deterministic scheduler σ ∈ SchedM which we want to
explicitly exclude from the computation. It needs to be ensured that for a satisfy-
ing assignment at least for one state the corresponding ys,σ(s) variable is assigned
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false in order to at least make one different decision. This can be achieved by
adding the disjunction

∨
s∈S ¬ys,σ(s) to the encoding.

Using an SMT solver like Z3, this encoding does not ensure a certain grade
of permissiveness, i. e., that as many ys,a-variables as possible are assigned true.
While this is a typical setting for MAX-SMT [19], in the current stable version of
Z3 this feature is not available yet. Certain schedulers inducing high probabilities
or desired behavior can be included using the assumptions of the SMT solver. An
alternative would be to use an MILP encoding like, e. g., in [11,20], and optimize
towards a maximal number of available nondeterministic choices. However, in our
setting it is crucial to ensure incrementality in the sense that if certain changes
to the constraints are necessary this does not trigger a complete restart of the
solving process.

Finally, there might be safe randomized schedulers that induce better optimal
costs than all deterministic schedulers [7,8]. To compute randomized permissive
schedulers, the difficulty is that there are arbitrarily (or even infinitely) many
probability distributions over actions. A reasonable approach is to bound the
number of possible distributions by a fixed number n and introduce for each
state s, distribution μi, and action a a real-valued variable ys,μi,a for 1 ≤ i ≤ n.
Constraint 2 is modified such that for all states and actions the ys,μi,a-variables
sum up to one and the probability computation in Constraint 4 has to take proba-
bilities over actions into account. Note that the MILP approach from [11] cannot
be adapted to randomized schedulers as non-linear constraints are involved.

4.2 Learning

In the learning phase, the main goal of this learning phase is the exploration of
this MDP, as we thereby learn the cost function. In a more practical setting, we
should balance this with exploitation, i. e., performing close to optimal—within
the bounds of the permissive scheduler—during the learning. The algorithm we
use for the reinforcement learning is Q-learning [10]. To favor the exploration,
we initialize the learning with overly-optimistic expected rewards. Thereby, we
explore large portions of the MDP while favoring promising regions of the MDP.

Proper balancing of exploration vs. exploitation depends on the exact
scenario [21]. Here, the balance is heavily affected by the construction of per-
missive schedulers. For instance, if we try to find permissive schedulers which do
not exclude the currently best known scheduler, then the exploitation during the
learning phase might be higher, while we might severely restrict the exploration.

5 Experiments

We implemented a prototype of the aforementioned synthesis loop in C++ and
conducted experiments using case studies motivated by robotic motion planning.
Our prototype uses the SMT-based permissive scheduler computation described
in Sect. 4.1 and seeks a locally maximal permissive scheduler by successively
adding as many actions as possible.
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Every MDP considered in the case studies has a set of bad states (that
may only be reached with a certain probability) and a set of goal states that
the system tries to reach. All case studies feature a relatively large number
of nondeterministic choices in each state and a high amount of probabilistic
branching to illustrate the applicability of our method to practically relevant
models with a high number of schedulers that achieve various performances.

Janitor. This benchmark is loosely based on the grid world robot from [5]. It
features a grid world with a controllable robot. In each step, the robot either
changes its direction (while remaining on the same tile) or moves forward in
the currently selected direction. Doing so, the robot consumes fuel depending on
the surface it currently occupies. The goal is to minimize the fuel consumption
for reaching the opposite corner of the grid world while simultaneously avoiding
collision with a janitor that moves randomly across the board.

Following a Line Fragment. We consider a (discretized) variant of a machine that
is bound to follow a straight line, e. g. a sawmill. In each step, there is a certain
probability to deviate from the line depending on the speed the machine currently
operates at. That is, higher speeds come at the price of an increased probability to
deviate from the center. Given a fixed tolerable distance d, the system must avoid
to reach states in which the distance from the center exceeds d. Also, the required
time to complete the task or the required energy are to be minimized, both of which
depend on the currently selected speed mode of the system.

Communicating Explorer. Finally, we use the model of a semi-autonomous
explorer as described in e. g. [22]. Moving through a grid-like environment,
the system communicates with its controller via two lossy channels for which
the probability of a message loss depends on the location of the explorer. The
explorer can choose between performing a limited number of attempts to commu-
nicate or moving in any direction in each time step. Similarly to the janitor case
study, the system tries to reach the opposite corner of the grid while avoiding
states in which the explorer moved too far without any (successful) intermediate
communication. For this model, the cost to be optimized is the energy consump-
tion of the electronic circuit, which induces cost for movement, e. g. by utilizing
sensors, and (significantly higher) cost for utilizing the communcation channels.

Benchmark Results. Table 1 summarizes the results we obtained using our proto-
type on a MacBook Pro with an 2.67 GHz Intel Core i5 processor and a memory
limit of 2 GB. As SMT-backend, we used Z3 [23] in version 4.4.0. For several
instances of each case study, we list the number of states, transitions, and prob-
abilistic branches (i. e., the size of the support set of the distributions). Fur-
thermore, we give the bound λ used in the safety property and the optimal
performance over all safe schedulers. The following columns provide information
about the progress of the synthesis procedure over several selected iterations.
The first of these columns (i) shows the number of iterations performed thus
far, i. e., the number of permissive schedulers on which we applied learning.
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Table 1. Benchmark results

Benchmark States Trans. Branch. λ Opt. i t Lower Upper

Janitor 5,5 625 1125 3545 0.1 88.6 1 813 84 88.6

2 2578 84 88.6

FolLine 30,15 455 1265 3693 0.01 716.0 1 41 715.4 717.1

3 85 715.62 716.83

13 306 715.9 716.5

40,15 625 1775 5223 0.12 966.0 1 304 964.8 968.2

3 420 965.4 967.2

8 738 965.6 966.7

ComExp 6,6,6 823 2603 3726 0.08 54.5 1 5 0.3 113.3

2 26 0.3 74.9

3 105 0.3 57.3

8,8,6 1495 4859 6953 0.12 72.9 1 15 0.42 163.1

2 80 0.42 122.0

3 112 0.42 90.1

7 1319 0.42 78.2

For iteration i, we give the cumulative time t in seconds required for the com-
putation of the permissive scheduler as well as the current lower and upper
bound on the cost (w. r. t. the performance measure). The computation time for
simulating deployment and reinforcement learning are negligible.

Discussion of the Results. For the Janitor and FolLine case studies, we observe
that the investment of computing a locally maximal permissive scheduler pays
off, meaning that we get very tight lower and upper bounds already after the
first deployment. This investment comes at the cost of a higher computational
effort (per iteration). This could be reduced by more elaborate heuristics which
limit our search for (local) maximal permissiveness.

For the communicating explorer, the situation is more difficult. Since a sched-
uler that does not communicate at all has very low expected costs, a loose
lower bound has been obtained. This bound could be severely improved upon
by obtaining tighter lower bounds via multi-objective model checking.

Lessons Learned. Based on our experiments, we learned that quantifying per-
missiveness via the enabled number of actions yields counterintuitive results.
Observe that for unreachable states literally all actions can be included in the
scheduler without affecting the satisfaction of a property. This leads to the effect
that—in order to achieve a high permissiveness—it is best to have only few reach-
able states and allow all actions for unreachable states. This effect is unmentioned
by prior work in [11]. It thus follows that quantifying permissiveness should only
consider actually reachable states. This observation is related to the general
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problem of forcing a solver to ensure reachability of certain states, which would
also be beneficial for ensuring the reachability of, e. g., goal states. However, any
guidance towards this proved to drastically decrease the solver performance.

6 Conclusion and Future Work

We presented the—to the best of our knowledge—first approach on iteratively
computing safe and optimal strategies in a setting subject to random choices,
unknown cost, and safety hazards. Our method was shown to work on practical
benchmarks involving a high degree of nondeterminism. Future work will concern
improving the scalability by employing multi-objective model checking in order
to prove optimality at earlier iterations of the process. Moreover, extensions to
stochastic 2-player games for modeling adversarial environment behavior or the
investigation of unknown probability distributions seem very interesting.

Acknowledgements. We want to thank Benjamin Lucien Kaminski for the valuable
discussion on the worst case size of conflicting sets.
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8. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: Proceedings of CSL-LICS, pp. 1:1–1:10. ACM (2014)

9. Sutton, R., Barto, A.: Reinforcement Learning - An Introduction. MIT Press,
Cambridge (1998)

10. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Proceedings of ICML, pp. 157–163. Morgan Kaufmann (1994)



146 S. Junges et al.
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Abstract. We study the probabilistic safety verification problem for pure
jump Markov processes, a class of models that generalizes continuous-time
Markov chains over continuous (uncountable) state spaces. Solutions of
these processes are piecewise constant, right-continuous functions from
time to states. Their jump (or reset) times are realizations of a Poisson
process, characterized by a jump rate function that can be both time-
and state-dependent. Upon jumping in time, the new state of the solu-
tion process is specified according to a (continuous) stochastic conditional
kernel. After providing a full characterization of safety properties of these
processes, we describe a formal method to abstract the process as a finite-
state discrete-time Markov chain; this approach is formal in that it pro-
vides a-priori error bounds on the precision of the abstraction, based on
the continuity properties of the stochastic kernel of the process and of its
jump rate function. We illustrate the approach on a case study of thermo-
statically controlled loads.

1 Introduction

Stochastic processes evolving in continuous time are used to model many phe-
nomena in science and engineering. In recent years, there has been a lot of work
in the algorithmic analysis and formal verification of such models with respect to
quantitative temporal specifications. For example, the verification of continuous-
time Markov chains over finite state spaces has been widely addressed in the lit-
erature against properties expressed in temporal logics such as CSL [5–7], MTL
[13], and timed-automata specifications [14], and there exist efficient software
tools [24,27].

In this paper, we extend this line of work and study the class of continuous-
space, pure jump Markov processes (cPJMP, for short). A cPJMP evolves in
continuous time. The process starts at state Xt0 = x0 at time t = t0 and waits
until a random time t = T1, governed by a Poisson process depending on x0 and
possibly time-inhomogeneous, when it makes a jump to a new state XT1 = x1

based on a transition kernel that is conditional on the jumping time and on x0.
c© Springer-Verlag Berlin Heidelberg 2016
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DOI: 10.1007/978-3-662-49674-9 9
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Then it waits until time t = T2, when it makes another jump to state XT2 = x2

with probability that depends on the current time and on x1, and so on. The
states take values over a continuous domain, hence the transition kernel induces
continuous measures.

cPJMPs generalize continuous-time, finite-state Markov chains (CTMCs) by
allowing time-inhomogeneous behaviors (the waiting times and transition proba-
bilities can depend on time) and allowing for general, continuous state spaces. Cor-
respondingly, non-deterministic extensions of cPJMPs (not explicitly discussed in
this work, but directly obtainable from cPJMPs) extend general-space MDPs [10]
and LMPs [30] by allowing a random inter-arrival time in between stochastic resets
over their continuous state space. cPJMPs can be employed in the definition and
analysis of jump-diffusion processes [25]: of interest to this work, the jump com-
ponent can capture event-driven uncertainties, such as corporate defaults, opera-
tional failures, or insured events [31]. It is likewise possible to obtain a cPJMP by
random time sampling of a general stochastic differential equation (SDE) – indeed
cPJMPs can be as well thought of as SDEs with jumps, with drift and diffusion
terms that are equal to zero. This connection with diffusions driven by Wiener
processes renders cPJMP relevant to areas including financial and economic
modeling [31], systems biology [4], physics and chemistry [34].

We study the problem of approximately computing the bounded-time safety
probability of a cPJMP by generalizing the corresponding algorithms for
CTMCs. First, we show that a cPJMP can be embedded into a discrete-time,
continuous-space Markov process (DTMP). In this process, we “compile away”
the time inhomogeneity of the process by explicitly modeling the time as an
additional state variable. Second, we characterize the bounded-time safety prob-
ability of the discrete-time Markov process as the least fixed point solution of a
system of integral equations that generalize the Bellman equations for CTMCs.
Finally, under Lipschitz continuity assumptions on the jump rate function and
on the jump measure of the cPJMP, we show how the continuous-space discrete-
time Markov process can be approximated by a finite-state discrete-time Markov
chain (DTMC), up to any desired degree of precision. Our technical result shows
a guaranteed upper bound on the error incurred in computing the bounded-time
safety probability introduced by the finite-state approximation.

While we focus on bounded-time safety probability computation, our algo-
rithms can be generalized to provide approximate model checking algorithms for
more expressive temporal logics such as continuous-time stochastic logic (CSL)
[5,9]. We demonstrate our results on a case study from energy systems, modeling
thermostatically-controlled loads as a cPJMP.

2 Pure Jump Markov Processes in Continuous Time

2.1 Model Definition - Syntax and Semantics

Let (K,K) be a measurable space, where K is the (not necessarily finite) state
space and K is a sigma-algebra on K. Let Ω be a sample space. Let R≥0 be the
set of non-negative reals. We consider stochastic processes X : Ω × R≥0 → K



Safety Verification of Continuous-Space Pure Jump Markov Processes 149

in continuous time. For any t ∈ R≥0, the function X(·, t) : Ω → K is a random
variable, which we denote by Xt. For every I ⊆ R≥0 we write FI = σ(Xt, t ∈ I)
for the sigma-algebra on Ω generated by the stochastic process X restricted to
the index set I. We suppose that for every t ∈ R≥0 and x ∈ K, a probability
P

t,x is given on (Ω,F[t,∞)). The stochastic process X : Ω ×R≥0 → K is a (pure)
jump Markov process if the following conditions hold:

(a) K contains all one-point sets and P
t,x(Xt = x) = 1 for every t ∈ R≥0, x ∈ K.

(b) For every 0 ≤ t ≤ s and A ∈ K the function x �→ P
t,x(Xs ∈ A) is K-

measurable.
(c) [Markov property] For every 0 ≤ u ≤ t ≤ s, A ∈ K we have P

u,x(Xs ∈
A|F[u,t]) = P

t,Xt(Xs ∈ A), Pu,x-a.s.
(d) [Pure Jump property] For every ω ∈ Ω and t ≥ 0 there exists δ > 0 such

that Xs(ω) = Xt(ω) for s ∈ [t, t + δ]; this is equivalent to requiring that all
the trajectories of X are càdlàg [11] when K is given the discrete topology
(where all subsets are open).

(e) [Non-explosive property] For every ω ∈ Ω the number of jumps of the
trajectory t �→ Xt(ω) is finite on every bounded interval.

Condition (a) enables us to assign probabilities to any points x ∈ K. In particular,
the probability measure P

t,x assigns probability 1 to x, so that the process is ini-
tialized deterministically at x at time t. Condition (b) is essential for transporting
any probability measure on Xt to the events Xs ∈ A, A ∈ K, for any t ≤ s.

Intuitively, a Markov process X : Ω ×R≥0 → K in continuous time is a pure
jump process if, starting from any point x ∈ K, the process is right continuous,
admits constant trajectories except at isolated jumps, and allows only for a finite
number of isolated jumps within any bounded interval. A cPJMP is described
by means of the joint law Q of the first jump time T1 and of the corresponding
position XT1 . To proceed formally, we first fix t ≥ 0 and x ∈ K and define the
first jump time

T1(ω) = inf{s > t : Xs(ω) �= Xt(ω)}, (1)

with the convention that T1(ω) = ∞ if the indicated set is empty. Clearly, the
value of T1 depends on t. Its associated probability measure also depends on x
through P

t,x. Allowing this jump time to be equal to infinity requires extending
the definition of the process X as follows. Take an extra dummy point Δ /∈ K
and redefine X : Ω ×R≥0 ∪ {∞} → K ∪ {Δ} such that X(ω,∞) = X∞(ω) = Δ
for all ω ∈ Ω. Then XT1 : Ω → K ∪ {Δ} is well defined. Note that XT1 is
associated with a probability measure first through the random variable T1 (the
first jump time) and then through the process X conditioned on knowing this
jump time.

On the extended space S := (R≥0 × K) ∪ {(∞,Δ)} we consider the smallest
sigma-algebra, denoted by S, containing {(∞,Δ)} and all sets of B(R≥0) ⊗ K
(here and in the following B(Λ) denotes the Borel sigma-algebra of a topological
space Λ, and Y ⊗ Z is the product sigma-algebra of two sigma-algebras Y,Z,
that is the smallest sigma-algebra generated by subsets of the form A1 × A2,
A1 ∈ Y,A2 ∈ Z). Note that this sigma-algebra S is smaller than the product of
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two sigma-algebras defined on R≥0 ∪ {∞} and K ∪ {Δ}. The extended process
X ensures that S is sufficient to contain the associated probability measure of
(T1,XT1). With these definitions, (T1,XT1) is a random variable with values in
(S,S), and its law under P

t,x is denoted by Q(t, x, ·).
We first construct Q(t, x, ·) for the continuous part of S and later discuss

how to assign probabilities to the single point (∞,Δ). We will assume that Q is
constructed starting from a given transition measure from R≥0 ×K to K, called
rate measure and denoted by ν(t, x,A), t ∈ R≥0, x ∈ K,A ∈ K. We require that
A �→ ν(t, x,A) is a positive measure on K for all t ∈ R≥0 and x ∈ K, and that
(t, x) �→ ν(t, x,A) is B(R≥0) ⊗ K−measurable for all A ∈ K. We also assume
that the rate measure ν satisfies the two conditions

(f) sup{ν(t, x,K)|t ∈ R≥0, x ∈ K} < ∞ and
(g) ν(t, x, {x}) = 0 for all t ∈ R≥0, x ∈ K.

The condition (f) implies a finite number of jumps in a bounded interval, which
satisfies the non-explosive condition (e) raised above. The condition (g) enforces
no jump from a state to itself, which is in accordance with the definition of jump
time in (1). Define

λ(t, x) = ν(t, x,K), π(t, x,A) =

⎧
⎨

⎩

ν(t, x,A)
λ(t, x)

, if λ(t, x) > 0,

1A(x), if λ(t, x) = 0,

where 1A(·) is the indicator function of any set A. Therefore λ is a nonnegative
bounded measurable function and π is a transition probability on K satisfying

π(t, x, {x}) =
{

0, if λ(t, x) > 0,
δx, if λ(t, x) = 0,

where δx is the Dirac measure at x. Function λ is called the jump rate function,
and π the jump measure. Note that we have ν(t, x,A) = λ(t, x)π(t, x,A),∀t ∈
R≥0, x ∈ K,A ∈ K. Given the rate measure ν, we require that for the Markov
process X we have, for 0 ≤ t ≤ a < b ≤ ∞, x ∈ K,A ∈ K,

Q(t, x, (a, b) × A) =
∫ b

a

π(s, x,A)λ(s, x) exp
[
−

∫ s

t

λ(r, x)dr

]
ds, (2)

where Q was described above as the law of (T1,XT1) under P
t,x. Note that (2)

completely specifies the probability measure Q(t, x, ·) on (S,S): indeed simple
computations show that

P
t,x(T1 = ∞) = Q(t, x, (∞,Δ))

:= 1 − Q(t, x, (t,∞) × K) = exp
[
−

∫ ∞

t

λ(r, x)dr

]
, (3)

P
t,x(T1 ∈ (s,∞]) = 1 − Q(t, x, (t, s] × K) = exp

[
−

∫ s

t

λ(r, x)dr

]
, (4)
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for all s ≥ t and we clearly have P
t,x(T1 ≤ t) = Q(t, x, [0, t] × K) = 0. Note that

(3) assigns probability to the single point (∞,Δ), which completes the definition
of Q(t, x, ·) on (S,S).

We may interpret (4) as the statement that T1 has exponential distribution
on [t,∞] with variable rate λ(r, x), r ≥ t. Moreover, the probability π(s, x,A)
can be interpreted as the conditional probability that XT1 is in A ∈ K, given
that the jump time T1 = s, or more precisely,

P
t,x(XT1 ∈ A, T1 < ∞|T1) = π(T1, x, A)1T1<∞, P

t,x − a.s.

2.2 Examples and Related Models

Example 1 Poisson-driven differential equation [31, Section 1.7]. Let the
process {Nt | t ≥ 0} represent a standard Poisson process with homogeneous
rate λ.1 Consider a pure jump process X = {Xt, t ∈ R≥0,Xt ∈ R}, driven by
the Poisson process Nt, where its value Xt at time t satisfies the SDE

dXt = c(t,Xt−)dNt ∀t ∈ R≥0,

with the deterministic initial value X0 ∈ R. The function c : R≥0 × R → R

is called the jump coefficient. For the case of c(t, x) = c0x with the constant
c0 ∈ R≥0 and initial value X0 > 0, the process has an explicit representation2

Xt = X0(c0 + 1)Nt , for t ∈ R≥0.

From this explicit representation, we can compute properties of the process Xt,
such as the probability that the process does not exceed αh > 0 within the
time interval [0, T ]. This probability is analytically computable for the above
simple process: defining βh = (lnαh − ln X0) / ln(c0 + 1), this probability is
∑n≤βh

n=0 e−λT (λT )n/n!. �
Example 2 Compound Poisson processes [31, Section 1.1] represent a gen-
eralization of Poisson processes, with exponential waiting times between jumps
but where jump sizes, rather than being deterministic, follow an arbitrary distri-
bution. Let {yn}n≥1 be a sequence of independent random variables with distri-
bution μ for all n ≥ 1 and assume that the standard Poisson process {Nt | t ≥ 0}
with parameter λ > 0 is independent of {yn}n≥1. The compound Poisson process
Xt is represented in the form Xt =

∑Nt

n=1 yn. A typical application of compound
Poisson processes is to model the aggregate claim up to time t generated by a
portfolio of insurance policies, where the individual claims are distributed accord-
ing to μ. Let us assume the gamma distribution yn ∼ Γ (a, b) for the individual
claims [35] and answer the same safety question as in the previous example: what

1 Recall that a (homogeneous) Poisson process {Nt | t ≥ 0} with rate λ is a Lévy

process with N0 = 0 and P{Nt = n} = (λt)n

n!
e−λt.

2 The solution can be derived observing that the process satisfies the recursive equation
Xτn+1 −Xτn = c0Xτn , where the jumps occur at τn, n = 1, 2, 3, . . . according to Nt.
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is the probability that the aggregate claim does not exceed αh > 0 in the time
interval [0, T ]? This probability is also analytically computable, and results in

e−λT + e−λT
∞∑

n=1

γ (na, αh/b)
Γ (na)

(λT )n

n!
,

where Γ (·) is the gamma function, and γ(·, ·) is the lower incomplete gamma
function. �

Notice that the safety probability is expressible analytically in the above two
examples. This is first because the trajectories of the solution are always non-
decreasing, and secondly since the distribution of the solution process condi-
tioned on the value of the underlying Poisson process is computable analytically.
Unfortunately in general trajectories of cPJMPs cannot be derived explicitly,
and as such the safety probability is not analytically expressible. In Sect. 3 we
provide a general characterization of the solution of the probabilistic safety prob-
lem. In Sect. 4 we also work out a formal approximation method to numerically
compute the solution.

Example 3 Continuous-time Markov chains [8]. The class of cPJMP we
consider includes, as special cases, all the time-homogeneous, nonexplosive, jump
Markov processes: these correspond to a function ν not depending on the time
variable t. Within this time-homogeneous case we need to retain the boundedness
assumption in (f) for the rate function. Assuming further that K is a finite or
countably infinite set, we obtain the class of continuous-time Markov chains
characterized by the transition rates matrix ν(x, {y})x,y∈K , namely

P
t,x(XT1 = x′, T1 < ∞|T1) =

ν(x, {x′})
E(x)

[
1 − e−E(x)t

]
1T1<∞,

where E(x) =
∑

x′∈K ν(x, {x′}). The probability that the system stays within a
set A ⊆ K in the interval [0, T ] can be expressed as the solution of a system of
integral equations [7], which is a special case of the Bellman fixed-point equation
developed in Sect. 3 for cPJMPs, but not expressible in closed form. �
Example 4 cPJMP defined by dynamical systems. Consider a process X
with piecewise-constant trajectories, which resets (or jumps) at time t over a
space K according to a vector field f : K × R

n × R≥0 → K, so that

x(t+) = f(x(t−), ζ(t), t), (5)

where ζ(·) is a continuous-time stationary process with a given, time-independent
density function. The resets for the process follow a Poisson process Nt, t ≥
0,N0 = 0, with a rate λ depending on time t and on the continuous state of
the process x(t). Notice that the dependence of the vector field f on time is in
accordance with [25]. The map f , together with the distribution of the process
ζ(·), uniquely defines a jump measure π(t, x,A), which gives the probability of
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jumping from any state x at time t to any (measurable) subset of the state space
A ⊆ K [26, Proposition 7.6]:

π(t, x,A) = Tζ (ζ ∈ R
n : f(x, ζ, t) ∈ A) ,

where Tζ is the distribution of the random vector ζ(0) (in fact, of any ζ(t) since
the process is stationary and time-independent). �

2.3 Embedded Discrete-Time Markov Process of a cPJMP

We have defined a cPJMP on a measurable space (K, K) through the transition
measure ν. The trajectories of a cPJMP are piecewise constant, which makes
them fully representable by their jump times and corresponding values. It is
worth studying the properties of the random variables (Tn(w),XTn

(w)), n ∈
N := {0, 1, 2, . . .}, where Tn is the nth jump time and XTn

is the corresponding
value of the process. The ensuing Theorem1 states that (Tn,XTn

)n∈N can be
considered as a discrete-time Markov process (DTMP) by slight extension of the
definition of Q. The discrete time is indexed by nonnegative natural numbers
n ∈ N, as opposed to continuous time indexed by t ∈ R≥0.

Definition 1. A discrete-time Markov process (Yn)n∈N is uniquely defined by a
triple D = (Ey, Ey, Py), where (Ey, Ey) is a measurable space and Py : Ey ×Ey →
[0, 1] is a transition kernel such that for any y ∈ Ey and A ∈ Ey, Py(y,A) gives
the probability that Yn+1 ∈ A, conditioned on Yn = y. Ey is called the state
space of the DTMP D and the elements of Ey are the states of D. The process
is time-inhomogeneous if Py depends also on the time index n.

We adapt the following result from [23, Chapter III, Section 1, Theorem 2].

Theorem 1. Starting from T0 = t define inductively Tn+1 = inf{s > Tn :
Xs �= XTn

}, with the convention that Tn+1 = ∞ if the indicated set is empty.
Under the probability P

t,x, the sequence (Tn,XTn
)n∈N is a DTMP in (S,S) with

transition kernel Q, provided we extend the definition of Q making the state
(∞,Δ) absorbing, by defining Q(∞,Δ,R≥0 × K) = 0, Q(∞,Δ, {(∞,Δ)}) = 1.
Note that (Tn,XTn

)n∈N is time-homogeneous, although in general X is not.

Theorem 1 states that given the stochastic process X : Ω ×R≥0 → K with proba-
bilitymeasurePt,x asdefined inSect. 2,we canconstruct aDTMPon(S, S)with the
extended transition kernel Q, whose state includes jump times and jump values of
X. The inverse is also true, as described next, which allows for a simple description
of the process X. Suppose one starts with a DTMP (τn, ξn)n∈N in S with transi-
tion probability kernel Q and a given starting point (t, x) ∈ R≥0 × K. One can
then define a process Z in K setting Zt =

∑Ny

n=0 ξn1[τn,τn+1)(t), where Ny :=
sup{n ∈ N : τn < ∞}. Then Z has the same law as the process X under Pt,x.

Example 5. For a CTMC defined by its transition rate matrix ν(x, {x′}), we
get that π(x, {y})x,y∈K is the stochastic transition matrix of the corresponding
embedded discrete-time Markov chain (DTMC). �
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Fig. 1. Transition system for the safety problem.

3 Bounded-Time Safety Probability for cPJMPs

In this section, we characterize the bounded-time safety probability for a cPJMP
X, that is the quantity

pA(t0, x0, T ) = P
t0,x0 {Xu ∈ A, for all u ∈ [t0, T ]|Xt0 = x0} , (6)

for a given initial time t0 ∈ [0, T ], T < ∞, and initial state Xt0 = x0.3 Note that
in this setup we must account for the initial time t0 alongside the initial state
x0 because the process is time-inhomogeneous.

For the characterization of pA(t0, x0, T ), we first construct the DTMP M =
(S,S, Q) with state sn = (τn, xn) ∈ S according to Theorem 1. In order to
formulate the safety problem over the new process M, we introduce a transition
system with a set of states Q = {S,U,W} representing Safe, Unsafe, and Wait.
The transition system is initialized at W or U depending on whether the initial
state of the process is in the safe set or not. A transition from W to S is activated
if the next jump time τ+ is outside the interval T := [0, T ] and the next state
x+ ∈ K. A transition W → U is activated if τ+ ∈ T and the next state is
outside the safe set. Finally, the self loops at all the states of Q characterize all
other dynamics of the transition system.

Based on the transition system in Fig. 1, the quantity pA(t0, x0, T ) can be
characterized as the probability of reaching the state S in the transition system
under the dynamics of M, which is equal to the likelihood associated to the
set of words {W+S} = {WS,W2S,W3S, . . .} (we have denoted by W+ the
Kleene star without ε). This can be written as the infinite series pA(t0, x0, T ) =∑∞

n=1 P {WnS}, which equals to

pA(t0, x0, T ) =
∞∑

n=1

P {(s0, s1, . . . , sn) ∈ GnH|s0 = (t0, x0)} , (7)

where G := T ×A and H := (T,∞)×K ∪{(∞,Δ)}. Note that the non-explosive
condition posed in (e) and reinforced by assumption (f) on ν(·) implies that
lim

n→∞P {WnS} = 0, which is a necessary condition for the series (7) to converge.

3 A slight modification of the approach presented in this paper allows for verifying
more general quantitative questions such as P∼p(ΦU(T1,T2)Ψ), defined over any state
labels Ψ, Φ and over any (possibly unbounded) time interval (T1, T2) – an adaptation
is required on the construction of sets G, H in (7).
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We show in the rest of this section that the infinite series (7) converges and is
approximately computable via its partial sums under a mild assumption on the
jump rate function (a bound on the integral of λ(·) over the interval T ).

The reformulation of pA(t0, x0, T ) as (7) indicates its close relationship with
the infinite-horizon probabilistic reach-avoid specification over DTMPs. This
problem is studied in [32,33], which formulate the solution as a Bellman equation
and describe convergence properties of the series based on contractivity of the
stochastic operator associated to the DTMP. The next theorem can be seen
as an extension of [33, Section 3.1] and presents a Bellman equation for the
characterization of the safety probability pA(t0, x0, T ), which is an equation for
the infinite-horizon reach-avoid problem over the DTMP M with the safe set
(G ∪ H) ∈ S and target set H ∈ S.

Theorem 2. The solution of the probabilistic safety problem defined in (6) can
be characterized as pA(t0, x0, T ) = V (t0, x0) − 1H(t0, x0), where the value func-
tion V : S → [0, 1] is the least solution of the fixed-point Bellman equation

V (s) = 1H(s) + 1G(s)
∫

S

V (s̄)Q(s, ds̄), ∀s = (t, x) ∈ S. (8)

In order to characterize the solution of the fixed-point equation (8), we con-
sider the value functions Vn : S → [0, 1], k ∈ N, for the finite-horizon reach-avoid
probability Vn(s) := P

{
S,WS,W2S, . . . ,WnS

}
. These functions satisfy the

Bellman recursion

Vn+1(s) = 1H(s) + 1G(s)
∫

S

Vn(s̄)Q(s, ds̄), V0(s) = 1H(s). (9)

Then we have that V (s) = limn→∞ Vn(s), where the limit is point-wise non-
decreasing [33, Section 3.1]. Equation (9) indicates that the support of the value
functions Vn(·) is bounded by the set G ∪ H. These value functions are equal to
one over the set H and satisfy the following recursion for any s = (t, x) ∈ G:

Vn+1(s) = g(s) +
∫

G
Vn(s̄)Q(s, ds̄), g(t, x) := exp

[

−
∫ T

t

λ(r, x)dr

]

. (10)

In the following we provide an operator perspective to (10), show that the
associated operator is contractive, and quantify an upper bound for the quantity
‖V − Vn‖ as a function of n.

Let B denote the space of all real-valued, bounded and measurable functions
on G. Then B is a Banach space with a norm given by ‖f‖ := sups∈G |f(s)| for
f ∈ B. An operator J : B → B is called linear if

J (α1f1 + α2f2) = α1J (f1) + α2J (f2), ∀f1, f2 ∈ B,∀α1, α2 ∈ R.

The quantity ‖J ‖ = sup‖f‖≤1 ‖J (f)‖ is called the norm of the linear operator
J . We say that a linear operator J is a contraction whenever it holds that
‖J ‖ < 1. We define the linear operator IGf(s) :=

∫
G f(s̄)Q(s, ds̄), which is

associated with equation (10). The following lemma raises assumptions on the
jump rate function λ to render the operator IG contractive.
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Lemma 1. For a given set G = T ×A, with T = [0, T ] and bounded safe set A,
suppose there exists a finite constant κ ≥ sup

{∫ T

0
λ(r, x)dr, x ∈ A

}
. Then the

invariance operator IG is contractive with the norm ‖IG‖ ≤ 1 − e−κ.

Theorem 3. Under the assumption of Lemma 1 the sequence {Vn}n∈N satisfies

Vn+1(s) = g(s) + IGVn(s), ∀s ∈ G,

and converges uniformly to V (·). Moreover, ‖V −Vn‖ ≤ (1−e−κ)n for all n ∈ N.

The previous result allows us to select a sufficiently large n in order to make
the difference between V and Vn smaller than a predefined threshold. For a
given threshold, say ε1, one can select N ≥ ln ε1/ ln (1 − e−κ) and compute VN .
Theorem 3 then guarantees that |V (s) − VN (s)| ≤ ε1 for all s ∈ S. The next
section is devoted to the precise computation of VN over the uncountable state
space S, for a preselected N .

4 Finite DTMCs as Formal Approximations of cPJMPs

In the previous sections we have shown that the bounded-time safety verification
of the given cPJMP can be approximated by a step-bounded reach-avoid verifi-
cation of a DTMP, with guaranteed error bounds. Due to lack of analytical solu-
tions, the verification of DTMPs against PCTL specifications (amongst which
reach-avoid) is studied in the literature via finite abstractions [1,16], which result
in the PCTL verification of discrete time, finite space Markov chains (DTMCs)
[17,18]. In other words, the goal of the DTMC abstraction is to provide a dis-
crete and automated computation of the reach-avoid probability. The approach
is formal in that it allows for the computation of explicit bounds on the error
associated with the abstraction.

The DTMC is obtained by state-space partitioning of the DTMP: equation
(10) indicates that we only need to partition the bounded set G. The abstraction
procedure, presented in Algorithm1, generates a DTMC (Sa, Pa) with finite state
space Sa and transition probability matrix Pa. Over this DTMC we compute
pa(si, N), which is the probability of reaching target state sm+1, while avoiding
the unsafe state sm+2, during the step horizon 0, . . . , N , as a function of the
initial state si ∈ Sa. This is obtained via a discrete version of equation (10),
which boils down to via matrix manipulations [8].

We now introduce some regularity assumptions on the jump rate function
λ(·) (Assumption 1) and on the jump measure π(·) (Assumption 2), which are
needed to quantify the abstraction error resulting from the DTMC (Sa, Pa).

Assumption 1. Assume the space K is endowed with a metric ρ : K ×K → R.
Suppose the jump rate function λ(·) is bounded and Lipschitz-continuous, namely
that there are finite constants Λ and hλ such that λ(t, x) ≤ Λ and

|λ(t, x) − λ(t, x′)| ≤ hλρ(x, x′),

for all (t, x), (t, x′) ∈ G.
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Algorithm 1. Finite-state abstraction of the DTMP M

Require: DTMP M = (S, S, Q), the sets G = [0, T ] × A, H = (T, ∞) × K ∪ {(∞, Δ)}
1: Select an arbitrary finite partition of the set G = ∪m

i=1Di (Di are non-overlapping)

2: Define Dm+1 := H, Dm+2 := S\(G ∪ H), to obtain a partition of S = ∪m+2
i=1 Di

3: For each Di, select one representative point si ∈ Di

4: Introduce DTMC (Sa, Pa), with state space Sa = {s1, s2, . . . , sm+2}, and transition
matrix Pa:

Pa(i, j) =

⎧
⎪⎨

⎪⎩

Q(si, Dj) 1 ≤ i ≤ m, 1 ≤ j ≤ m + 2

1 i = j ∈ {m + 1, m + 2}
0 otherwise

5: return DTMC (Sa, Pa)

Assumption 1 implies the Lipschitz continuity of g(·).
Lemma 2. Under Assumption 1, the function g(·) in (10) is Lipschitz continu-
ous, namely for all s = (t, x), s′ = (t′, x′) ∈ G,

|g(t, x) − g(t′, x′)| ≤ Thλρ(x, x′) + Λ|t − t′|.

The next assumption is on the regularity of the jump measure π(·) through
its associated density function.

Assumption 2. Let K be the Borel sigma-algebra on K. Assume that the jump
measure π on (K,K) given (R≥0 ×K,B(R≥0)⊗K) is an integral kernel, i.e. that
there exists a sigma-finite basis measure μ on (K,K) and a jointly measurable
function p : R≥0 × K × K → R≥0 such that π(t, x, dy) = p(t, x, y)μ(dy), i.e.
π(t, x,A) =

∫
A

p(t, x, y)μ(dy) for any (t, x) ∈ R≥0 × K,A ∈ K. Suppose further
that the density function p(τ, x, y) is Lipschitz-continuous, namely that there
exists a finite constant hp, such that

|p(τ, x, y) − p(τ, x′, y)| ≤ hpρ(x, x′), ∀x, x′, y ∈ A, τ ∈ T .

Example 6. The density function p(t, x, y) is computable for the dynamical sys-
tem representation (5) in Example 4 under suitable assumptions on vector field
f given the density function of ζ(·) [19,21]. �
Remark 1. Assumption 2 enables us to specify the conditional density function
of the DTMP (Tn,XTn

)n∈N as

ts(τ, y|t, x) = p(τ, x, y)λ(τ, x) exp
[
−

∫ τ

t

λ(r, x)dr

]
1[t,∞)(τ),

which gives the integral representation of the stochastic kernel of the process as
Q(t, x, (a, b), A) =

∫ b

a

∫
A

ts(τ, y|t, x)μ(dy)dτ . �
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Using Assumptions 1 and 2, and its consequences Theorem 3 and Lemmas
1, 2, we finally establish the following result for the error computation of the
abstraction.

Theorem 4. Under Assumptions 1 and 2, the following inequality holds:

|pA(t0, x0, T ) − pa(sr, N)| ≤ (1 − e−κ)N + N(hxδx + htδt), ∀(t0, x0) ∈ G,

where hx = hpμ(A) + 3Thλ, ht = 3Λ, whereas κ is defined in Lemma 1. The
constants δx, δt denote the partition diameters of state-space and time, namely

δx = sup{ρ(x, x′), ∀(τ, x), (τ, x′) ∈ Di, i = 1, 2, . . . ,m},

δt = sup{|τ − τ ′|, ∀(τ, x), (τ ′, x) ∈ Di, i = 1, 2, . . . ,m}.

In the inequality above, sr is the representative point of the partition set to which
the state (t0, x0) belongs, and pa(sr, N) is the reach-avoid probability computed
over the DTMC (Sa, Pa) with finite step-horizon N .

Notice that there are two terms contributing to the error in Theorem4.
The first term is caused by replacing the discrete infinite-step reach-avoid prob-
lem with an N -step one. The second term results from the DTMC abstraction.
Augmenting the number of steps N decreases the first term exponentially and
increases the second term linearly: as such, this upper bound on the error can
be tuned by selecting a sufficiently large step-horizon N , and accordingly small
partition diameters δt, δx.

5 Case Study: Thermostatically Controlled Loads

Thermostatically Controlled Loads (TCLs) have shown potential to be engaged in
power system services such as load shifting, peak shaving, and demand response
programs. Recent studies have focused on the development of models for aggre-
gated populations of TCLs [12,20,28]. Formal abstraction techniques have also
been employed to verify properties of TCL models [2,20]. We employ the model
of a TCL as the case study in this paper. The model describes the continuous-
time evolution of the temperature in a TCL by a linear SDE. The value of the
temperature is available to a thermostat for regulation via a network of inde-
pendent asynchronous sensors [3,29]. We recast this model as a cPJMP and
quantitatively verify user comfort as a probabilistic safety problem.

Dynamical Model for the Case Study. The continuous-time evolution of
the temperature θ = {θt, t ∈ R≥0} in a cooling TCL can be specified by the
following linear SDE:

dθt =
dt

RC
(θa − qtRPrate − θt) + σdWt, (11)

where {Wt, t ∈ R≥0} is the standard Brownian motion, θa is the ambient tem-
perature, C and R indicate the thermal capacitance and resistance, Prate is the
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rate of energy transfer, and σ is standard deviation of the noise term. The process
{qt, t ∈ R≥0} represents the state of the thermostat at time t, qt ∈ {0, 1} for
OFF and ON modes (the latter meaning that the cooler is functioning), respec-
tively. For a given temperature θt at time t and a fixed mode qt, the temperature
at time s ≥ t is characterized by the solution of (11), namely

θs = aθt + (1 − a)(θa − qtRPrate) + ws,

where a = exp[−(s − t)/RC] and ws ∼ N (
0, 1

2σ2RC(1 − a2)
)
.

We assume the value of temperature is available to the thermostat via a
network of sensors at possibly non-uniform time samples {τn, n ∈ N}. For a
network of independent and asynchronous sensors, the time between two con-
secutive available values of temperature (τn+1−τn), when the number of sensors
is large, can be approximated by an exponential distribution [3,29]. We assume
that the associated rate depends on temperature, λ(θτn), where θτn is the latest
available temperature (at time τn).

The temperature of the cooling TCL is regulated by updating the thermostat
mode via the equation qτn+1 = f(qτn , θτn+1), which is based on discrete switching

f(q, θ) =

⎧
⎨

⎩

0, θ < θs − δd/2 := θ−
1, θ > θs + δd/2 := θ+
q, else,

(12)

where θs denotes a given temperature set-point and δd a dead-band, and together
characterize the temperature operating range. Then the mode qt is a piecewise-
constant and right-continuous function of time, which can change value from qτn

to qτn+1 at time τn+1 according to the logic in (12).

cPJMP for the Case Study. The values of temperature and the mode of the
thermostat evolve over the hybrid state space K = {0, 1} × R, namely a space
made up of discrete and continuous components [2]. The temperature space R

is endowed with the Euclidean metric and with the Borel sigma-algebra. The
jump measure of the process is an integral kernel (Assumption 2 is valid), with
μ being the Lebesgue measure and with the density function

p(τ − t, q, θ, q̄, θ̄) = δd

[
q̄ − f(q, θ̄)

]
φ

(
θ̄;my(τ − t, q, θ), σ2

y(τ − t)
)
,

where δd[·] is the Kronecker delta function, φ(·; m̄, σ̄2) is the Gaussian density
function with mean m̄ and variance σ̄2, and

my(u, q, θ) = a(u)θ + (1 − a(u))(θa − qRPrate),

σ2
y(u) = 2σ2RC(1 − a(u)2), a(u) = exp[−u/RC].

We are interested in quantifying a proxy for user comfort: we quantify whether
the likelihood of having the temperature inside a dead-band [θ−, θ+] during
the time interval [0, T ] is greater than a given threshold. This problem can be
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mathematically formulated as computing the safety probability of the model
over the safe set A = {0, 1} × [θ−, θ+].

Note that the density function π(·) is slightly different from the general for-
mulation of cPJMPs in Sect. 2 in that it depends on (τ − t) (through a(·)),
instead of just the jump time τ . This difference requires a slight modification of
the abstraction error, which is presented next.

Computation of Probabilistic Safety. We consider a jump rate function
λ(t, θ) = λ0e

−αt cosh[2β(θ − θs)] with positive constants λ0, α, and β. The term
e−αt models the reduction of the sampling rate of the sensors in time. The
cosine hyperbolic function cosh[2β(θ − θs)] shows that more frequent tempera-
ture measurements are provided by the sensors for larger deviation of the tem-
perature from the set-point. The assumption raised on the jump rate function in
Lemma 1 holds with constant κ = λ0 cosh(βδd)/α, whereas Assumption 1 holds
with hλ = 2λ0β sinh(βδd) and Λ = λ0 cosh(βδd). The application of the abstrac-
tion technique presented in this paper to the case study leads to the error

E = (1 − e−κ)N + N(h1δθ + h2δt + h3

√
δt), (13)

with constants h1, h2, h3 defined as

h1 := 3Thλ +
Λ

2σ

√
πRC, h2 := 3Λ +

Λθ+
√

π

2σ
√

RC
+

4Λ√
2π

, h3 :=
8Λ

√
RC√
π

.

The additional terms contributing to the error, in comparison with the results of
Theorem 4, are due to the dependence of the mean and variance of the Gaussian
density function φ from the current time t. We use the values in Fig. 2 (left)
for the parameters in the numerical simulation. The standard deviation of the
process noise is σ = 0.1 [◦Cs−1/2]. The time bound for the safety specification is
T = 1[h]. The parameters of the jump rate functions are α = 1, β = 1, λ0 = 1,
which means if the TCL is initialized at the set-point, the rate of temperature
observations is 20 times higher than the decay rate of the TCL (1/RC).

We have implemented Algorithm 1 for the abstraction and computation of
safety probability over the model using the software tool FAUST2 [22]. Figure 2
(right) shows the error bound from (13), as a function of numbers of partition
bins for the temperature nθ and the time nt, with a fixed step-horizon N = 8.
One can see that for instance the abstraction algorithm guarantees an error
bound of 0.23 by selecting nθ = nt = 4×103 (δθ = 1.25×10−4, δt = 2.5×10−4),
which generates a DTMC with 3.2 × 107 states. This indicates that meaningful
error bounds (less than one) may lead to large DTMCs.

The derived error bounds can be in general conservative. To demonstrate the
conservativeness of bounds, we perform the analysis with partition diameters
δθ = δt = 0.0125 (nθ = 40, nt = 80), which result in a DTMC with 6400 states
for which the error bounds are not meaningful. Figure 3 (top row) shows the
computed safety probabilities as a function of initial temperature θ0 at initial
time t0, the left plot for ON mode and the right plot for OFF mode. Figure 3,
bottom row, shows the safety likelihood estimated via Monte Carlo simulations
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Parameter Interpretation Value

θs temperature set-point 20 [◦C]
δd dead-band width 0.5 [◦C]
θa ambient temperature 32 [◦C]
R thermal resistance 2 [◦C/kW ]
C thermal capacitance 10 [kWh/◦C]
Prate power 14 [kW ]
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Fig. 2. Values of parameters for the TCL case study [20] (left). Error as a function of
numbers of partition sets for temperature nθ and time nt (right).
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Fig. 3. Safety probabilities as a function of initial temperature θ0 and initial time t0.
Left and right columns for ON q0 = 1 and OFF q0 = 0 modes, respectively. First and
second rows are computed via abstraction approach in this paper and via Monte Carlo
simulations, respectively.

with 1000 runs initialized at the representative points used in Algorithm1. The
computation and the estimation are very close to each other with a maximum
relative difference of 12%. The results suggest that the error bounds can be
reduced by employing advanced gridding techniques [18,21].

6 Conclusions

We have presented an abstraction-based safety verification procedure for pure
jump Markov processes with continuous states. While the focus of the work
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has been on the study of probabilistic safety, the technique can be extended
to verify richer temporal properties. The errors can be sharpened via adaptive,
non-uniform schemes [18,19]. cPJMP are a generalization of CTMC with an
assumption of constant values in between jumps: we plan to investigate the
challenging problem of non-constant dynamics between jumps [15].
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Abstract. We develop abstract learning frameworks for synthesis that
embody the principles of the CEGIS (counterexample-guided inductive
synthesis) algorithms in current literature. Our framework is based on
iterative learning from a hypothesis space that captures synthesized
objects, using counterexamples from an abstract sample space, and a
concept space that abstractly defines the semantics of synthesis. We show
that a variety of synthesis algorithms in current literature can be embed-
ded in this general framework. We also exhibit three general recipes for
convergent synthesis: the first two recipes based on finite spaces and
Occam learners generalize all techniques of convergence used in existing
engines, while the third, involving well-founded quasi-orderings, is new,
and we instantiate it to concrete synthesis problems.

1 Introduction

The field of synthesis, which includes several forms of synthesis including synthe-
sizing controllers [37], program expressions [43], program repairs [26], program
translations [11,23], loop invariants [16,17], and even entire programs [25,32], has
become a fundamental and vibrant subfield in programming languages. While
classical studies of synthesis have focused on synthesizing entire programs or
controllers from specifications [32,37], there is a surge of tractable methods that
have emerged in recent years in synthesizing small program expressions. These
expressions often are complex but small, and are applicable in niche domains
such as program sketching [43] (finding program expressions that complete code),
synthesizing Excel programs for string transformations [18], synthesizing super-
optimized code [40], deobfuscating code [21], synthesizing invariants to help in
verification [16,17], etc.

One prominent technique that has emerged in recent years for expression
synthesis is based on inductively learning expressions from samples. Assume the
synthesis problem is to synthesize an expression e that satisfies some specifica-
tion ψ(e). The crux of this approach is to ignore the precise specification ψ,
and instead synthesize an expression based on certain facets of the specification.
These incomplete facets of the specification are often much simpler in structure
and in logical complexity compared to the specification, and hence synthesiz-
ing an expression satisfying the constraints the facets impose is more tractable.
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 167–185, 2016.
DOI: 10.1007/978-3-662-49674-9 10
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The learning-based approach to synthesis hence happens in rounds— in each
round, the learner synthesizes an expression that satisfies the current facets, and
a verification oracle checks whether the expression satisfies the actual specifi-
cation ψ, and if not, finds a new facet of the specification witnessing this. The
learner then continues to synthesize by adding this new facet to its collection.

This counter-example guided inductive synthesis (CEGIS) approach [42] to
synthesis in current literature philosophically advocates precisely this kind of
inductive synthesis. The CEGIS approach has emerged as a powerful technique in
several domains of both program synthesis as well as program verification ranging
from synthesizing program invariants for verification [16,17] to specification min-
ing [3], program expressions that complete sketches [43], superoptimization [40],
control [22], string transformers for spreadsheets [18], protocols [45], etc.

The goal of this paper is to develop a theory of iterative learning-based syn-
thesis through a formalism we call abstract learning frameworks for synthesis.
The framework we develop aims to be general and abstract, encompassing sev-
eral known CEGIS frameworks as well as several other synthesis algorithms not
generally viewed as CEGIS. The goal of this line of work is to build a frame-
work, with accompanying concepts, definitions, and vocabulary that can be used
to understand and combine learning-based synthesis across different domains.

An abstract learning framework (ALF) (see Fig. 1) consists of three spaces:
H, S, and C. The (semantic) concept space C gives semantic descriptions of the
concepts that we wish to synthesize, the hypotheses space H comprises restricted
(typically syntactically restricted) forms of the concepts to synthesize, and the
sample space S consists of samples (modeling facets of the specification) from
which the learner synthesizes hypotheses. The spaces H and S are related by a
variety of functions that give semantics to samples and semantics to hypotheses
using the space C. The conditions imposed on these relations capture the learning
problem precisely, and their abstract formulation facilitates modeling a variety
of synthesis frameworks in the literature.

The target for synthesis is specified as a set of semantic concepts. This is
an important digression from classical learning frameworks, where often one can
assume that there is a particular target concept that the learner is trying to
learn. Note that in synthesis problems, we must implement the teacher as well,
and hence the modeling of the target space is important. In synthesis problems,
the teacher does not have a single target in mind nor does she know explicitly
the target set (if she knew, there would be no reason to synthesize!). Rather,
she knows the properties that capture the set of target concepts. For instance, in
invariant synthesis, the teacher knows the properties of a set being an invariant
for a loop, and this defines implicitly a set of invariants as target. The teacher
needs to examine a hypothesis and check whether it satisfies the properties defin-
ing the target set. Consequently, we can view the teacher as a verification oracle
that checks whether a hypothesis belongs to the implicitly defined target set.

We exhibit a variety of existing synthesis frameworks that can be naturally
seen as instantiations of our abstract-learning framework, where the formu-
lation shows the diversity in the instantiations of the spaces. These include
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(a) a variety of CEGIS-based synthesis techniques for synthesizing program
expressions in sketches (completing program sketches [43], synthesizing loop-free
programs [19], mining specifications [22], synthesizing synchronization code for
concurrent programs [10], etc.), (b) synthesis from input-output examples such
as Flashfill [18], (c) the CEGIS framework applied to the concrete problem of
solving synthesis problems expressed in the SMT-based SyGuS format [1,2], and
three synthesis engines that use learning to synthesize solutions, (d) invariant
synthesis frameworks, including Houdini [14] and the more recent ICE-learning
model for synthesizing loop invariants [16], spanning a variety of domains from
arithmetic [16,17] to quantified invariants over data structures [15], and (e)
synthesizing fixed-points and abstract transformers in abstract interpretation
settings [44].

Formalizing of synthesis algorithms as ALFs can help highlight the nuances
of different learning-based synthesis algorithms, even for the same problem. One
example comprises two inductive learning approaches for synthesizing program
invariants— one based on the ICE learning model [16], and the second which is
any synthesis engine for logically specified synthesis problems in the SyGuS for-
mat, which can express invariant synthesis. Though both can be seen as CEGIS-
based synthesis algorithms, the sample space for them are very different, and
hence the synthesis algorithms are also different— the significant performance
differences between SyGuS-based solvers and ICE-based solvers (the latter per-
forming better) in the recent SyGuS competition (invariant-synthesis track) sug-
gest that this choice may be crucial [4]. Another example are two classes of
CEGIS-based solvers for synthesizing linear integer arithmetic functions against
SyGuS specifications— one based on a sample space that involves purely inputs
to the function being synthesized [35,39], while the other is the more standard
CEGIS algorithm based on valuations of quantified variables.

We believe that just describing an approach as a learning-based synthesis
algorithm or a CEGIS algorithm does not convey the nuances of the approach—
it is important to precisely spell out the sample space and the semantics of this
space with respect to the space of hypotheses being learned. The ALF framework
gives the vocabulary in phrasing these nuances, allowing us to compare and
contrast different approaches.

Convergence. The second main contribution of this paper is to study conver-
gence issues in the general abstract learning-based framework for synthesis. We
first show that under the reasonable assumptions that the learner is consistent
(always proposes a hypothesis consistent with the samples it has received) and
the teacher is honest (gives a sample that distinguishes the current hypothesis
from the target set without ruling out any of the target concepts), the iterative
learning will always converge in the limit (though, not necessarily in finite time,
of course). This theorem vouches for the correctness of our abstract formalism
in capturing abstract learning, and utilizes all the properties that define ALFs.

We then turn to studying strategies for convergence in finite time. We pro-
pose three general techniques for ensuring successful termination for the learner.
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First, when the hypothesis space is bounded, it is easy to show that any consis-
tent learner (paired with an honest teacher) will converge in finite time. Several
examples of these exist in learning— learning conjunctions as in the Houdini
algorithm [14], etc., learning Boolean functions (like decision-tree learning with
purely Boolean predicates as attributes) or functions over bit-vector domains
(Sketch [43] and the SyGuS solvers that work on bit-vectors), and learning invari-
ants using specialized forms of a finite class of automata that capture list/array
invariants [15].

The second recipe is a formulation of the Occam’s razor principle that uses
parsimony/simplicity as the learning bias [6]. The idea of using Occam’s principle
in learning is prevalent (see Chap. 2 of [24] and [33]) though its universal appeal
in generalizing concepts is debatable [13]. We show, however, that learning using
Occam’s principle helps in convergence. A learner is said to be an Occam learner
if there is a complexity ordering, which needs to be a total quasi order where the
set of elements below any element is finite, such that the learner always learns
a smallest concept according to this order that is consistent with the sample.
We can then show that any Occam learner will converge to some target con-
cept, if one exists, in finite time. This result generalizes many convergent learn-
ing mechanisms that we know of in the literature (for example, the convergent
ICE-learning algorithms for synthesizing invariants using constraint solvers [16],
and the enumerative solvers in almost every domain of synthesis [26,28,36,45],
including for SyGuS [1,2], that enumerate by dovetailing through expressions).

The first two recipes for finite convergence cover all the methods we know in
the literature for convergent learning-based synthesis, to the best of our knowl-
edge. The third recipe for finite convergence is a more complex one based on
well-founded quasi orderings. This recipe is involved and calls for using clever
initial queries that force the teacher to divulge information that then makes
the learning space tractable. We do not know of any existing synthesis learn-
ing frameworks that use this natural recipe, but propose two new convergent
learning algorithms following this recipe, one for intervals, and the other for
conjunctive linear inequality constraints over a set of numerical attributes over
integers.

2 Abstract Learning Frameworks for Synthesis

In this section we introduce our abstract learning framework for synthesis.
Figure 1 gives an overview of the components and their relations that are intro-
duced in the following (ignore the target T , γ−1(T ), and the maps τ and λ for
now). We explain these components in more detail after the formal definition.

Definition 1 (Abstract Learning Frameworks). An abstract learning
framework for synthesis (ALF, for short), is a tuple A = (C,H, (S,�s,
�,⊥s), γ, κ), with

– A class C, called the concept space,
– A class H, called the hypothesis space,
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Fig. 1. Components of an ALF

– A class S, called the sample space, with a join semi-lattice (S,�s,�,⊥s)
defined over it,

– A concretization function γ : H → C, and
– A consistency function: κ : S → 2C satisfying κ(⊥s) = C and κ(S1 � S2) =

κ(S1) ∩ κ(S2) for all S1, S2 ∈ S. If the second condition is relaxed to κ(S1 �
S2) ⊆ κ(S1) ∩ κ(S2), we speak of a general ALF.

We say an ALF has a complete sample space if the sample space (S,�s,�,⊥s)
is a complete join semi-lattice (i.e., if the join is defined for arbitrary subsets of
S). In this case, the consistency relation has to satisfy κ(

⊔
(S ′)) =

⋂
S∈S′ κ(S)

for each S ′ ⊆ S (and κ(
⊔

(S ′)) ⊆ ⋂
S∈S′ κ(S) for general ALFs).

As in computational learning theory, as presented in e.g., in [5] or [24], we
consider a concept space C, which contains the objects that we are interested
in. For example, in an invariant synthesis setting in verification, an element
C ∈ C would be a set of program configurations. In the synthesis setting, C
could contain the objects we would like to synthesize, such as all functions from
Z

n to Z.
The hypothesis space H contains the objects that the learner produces. These

are representations of (some) elements from the concept space. For example, if
C consists of all functions from Z

n to Z, then H could consist the set of all
functions expressible in linear arithmetic.

The relation between hypotheses and concepts is given by a concretization
function γ : H → C that maps hypotheses to concepts (their semantics).

In classical computational learning theory for classification [24,33], one often
considers samples consisting of positive and negative examples. If learning is used
to infer a target concept that is not uniquely defined but rather should satisfy
certain properties, then samples consisting of positive and negative examples are
sometimes not sufficient. As we will show later, samples can be quite complex (see
Sect. 4 for such examples, including implication counterexamples and grounded
formulas).

We work with a sample space, which is a bounded join-semilattice (S,�s,
�,⊥s) (i.e., �s is a partial order over S with ⊥s as the least element, and � is
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the binary least upper-bound operator on S with respect to this ordering). An
element S ∈ S, when given by the teacher, intuitively, gives some information
about a target specification. The join is used by the learner to combine the
samples returned as feedback by the teacher during iterative learning. The least
element ⊥s corresponds to the empty sample. We encourage the reader to think
of the join as the union of samples.

The consistency relation κ captures the semantics of samples with respect to
the concept space by assigning to each sample S the set κ(S) of concepts that
are consistent with the sample. The first condition on κ says that all concepts
are consistent with the empty sample ⊥s. The second condition says that the
set of samples consistent with the join of two samples is precisely the set of
concepts that is consistent with both the samples. Intuitively, this means that
joining samples does not introduce new inconsistencies, and existing inconsisten-
cies transfer to bigger samples. The condition that κ(S1 � S2) ⊆ κ(S1) ∩ κ(S2)
is natural, as it says that if a concept is consistent with the join of two samples,
then the concept must be consistent with both of them individually. The condi-
tion that κ(S1 � S2) ⊇ κ(S1) ∩ κ(S2) is debatable; it claims that samples when
taken together cannot eliminate a concept that they couldn’t eliminate individ-
ually. We therefore mention the notion of general ALF in Definition 1. However,
we have not found any natural example that requires such a generalization, and
therefore prefer to work with ALFs instead of general ALFs in the rest of the
paper. In Definition 4, we comment on what needs to be adapted to make the
results of the paper go through for general ALFs.

Some other auxiliary definitions we will need: We define κH(S) := {H ∈
H | γ(H) ∈ κ(S)} to be the set of hypotheses that are consistent with S. For
a sample S ∈ S we say that S is realizable if there exists a hypothesis that is
consistent with S (i.e., κH(S) 
= ∅).

ALF Instances and Learners. An instance of a learning task for an ALF is given
by a specification that defines target concepts. The goal is to infer a hypothesis
whose semantics is such a target concept. In classical computational learning
theory, this target is a unique concept. In applications for synthesis, however,
there can be many possible target concepts, for example, all inductive invariants
of a program loop.

Formally, a target specification is just a set T ⊆ C of concepts. An ALF
instance combines an ALF and a target specification:

Definition 2 (ALF Instance). An ALF instance is a pair (A, T ) where A =
(C,H, (S,�s,�,⊥s), γ, κ) is an ALF and T ⊆ C is a target specification.

The goal of learning-based synthesis is for the learner to synthesize some
element H ∈ H such that γ(H) ∈ T . Furthermore, the role of the teacher is to
instruct the learner giving reasons why the hypothesis produced by the learner
in the current round does not belong to the target set.

There is a subtle point here worth emphasizing. In synthesis frameworks,
the teacher does not explicitly know the target space T . Rather she knows
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a definition of the target space, and she can examine a hypothesis H and check
whether it satisfies the properties required of the target set. For instance, when
synthesizing an invariant for a program, the teacher knows the properties of the
invariant (inductiveness, etc.) and gives counterexample samples based on failed
properties.

We say that the target specification is realizable by a hypothesis, or simply
realizable, if there is some H ∈ H with γ(H) ∈ T . For a hypothesis H ∈ H, we
often write H ∈ T instead of γ(H) ∈ T .

As in classical computational learning theory, we define a learner (see Fig. 1)
to be a function that maps samples to hypotheses, and a consistent learner to
be a learner that only proposes consistent hypotheses for samples.

Definition 3. A learner for an ALF A = (C,H, (S,�s,�,⊥s), γ, κ) is a map
λ : S → H that assigns a hypothesis to every sample. A consistent learner is a
learner λ with γ(λ(S)) ∈ κ(S) for all realizable samples S ∈ S.

Iterative learning. In the iterative learning setting, the learner produces a
hypothesis starting from some initial sample (e.g., ⊥s). For each hypothesis pro-
vided by the learner that does not satisfy the target specification, a teacher (see
Fig. 1) provides feedback by returning a sample witnessing that the hypothesis
does not satisfy the target specification.

Definition 4. Let (A, T ) be an ALF instance with A = (C,H, (S,�s,�,⊥s),
γ, κ), and T ⊆ C. A teacher for this ALF instance is a function τ : H → S that
satisfies the following two properties:

(i) Progress: τ(H) = ⊥s for each target element H ∈ T , and γ(H) /∈ κ(τ(H))
for all H /∈ T , and

(ii) Honesty: T ⊆ κ(τ(H)) for each H ∈ H.1

Firstly, progress says that if the hypothesis is in the target set, then the teacher
must return the “empty” sample ⊥s, signaling that the learner has learned a
target; otherwise, the teacher must return a sample that rules out the cur-
rent hypothesis. This ensures that a consistent learner can never propose the
same hypothesis again, and hence makes progress. Secondly, honesty demands
that the sample returned by the teacher is consistent with all target concepts.
This ensures that the teacher does not eliminate any element of the target set
arbitrarily.

When the learner and teacher interact iteratively, the learner produces a
sequence of hypotheses, where in each round it proposes a hypothesis λ(S) for
the current sample S ∈ S, and then adds the feedback τ(λ(S)) of the teacher to
obtain the new sample.

1 For general ALFs one has to require that the least upper bound of all samples returned
by the teacher is consistent with all targets (and for non-complete sample lattices the
least upper bound of all possible finite sets of samples returned by the teacher).
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Definition 5. Let (A, T ) be an ALF instance with A = (C,H, (S,�s,�,⊥s),
γ, κ), and T ⊆ C. Let λ : S → H be a learner, and let τ : H → S be a teacher.
The combined behavior of the learner λ and teacher τ is the function fτ,λ : S → S,
where fτ,λ(S) := S � τ(λ(S)).

The sequence of hypotheses generated by the learner λ and teacher τ is the trans-
finite sequence 〈Sα

τ,λ | α ∈ O〉, where O denotes the class of all ordinals, obtained
by iterative application of fτ,λ:

– S0
τ,λ := ⊥s;

– Sα+1
τ,λ := fτ,λ(Sα

τ,λ) for successor ordinals; and
– Sα

τ,λ :=
⊔

β<α Sβ
τ,λ for limit ordinals.

If the sample lattice is not complete, the above definition is restricted to the first
two items and yields a sequence indexed by natural numbers.

The following lemma states that the teacher’s properties of progress and honesty
transfer to the iterative setting for consistent learners if the target specification
is realizable. A proof can be found in the extended paper [31].

Lemma 1. Let T be realizable, λ be a consistent learner, and τ be a teacher. If
S is a complete sample lattice, then

(a) the learner makes progress: for all α ∈ O, either κ(Sα
τ,λ) � κ(Sα+1

τ,λ ) and
λ(Sα

τ,λ) /∈ κ(Sα+1
τ,λ ), or λ(Sα

τ,λ) ∈ T , and
(b) the sample sequence is consistent with the target specification: T ⊆ κ(Sα

τ,λ)
for all α ∈ O.

If S is a non-complete sample lattice, then (a) and (b) hold for all α ∈ N.

We end with an example of an ALF. Consider the problem of synthesizing
guarded affine functions that capture how a piece of code P behaves, as in pro-
gram deobfuscation. Then the concept class could be all functions from Z

n to
Z, the hypothesis space would be the set of all expressions describing a guarded
affine function (in some fixed syntax). The target set (as a subset of C) would
consist of a single function {ft}, where ft is the function computed by the pro-
gram P . For any hypothesis function h, let us assume we can build a teacher who
can compare h and P for equivalence, and, if they differ, return a counterexam-
ple of the form (i, o), which is a concrete input i on which h differs from P , and
o is the output of P on i. Then the sample space would consist of sets of such
pairs (with union for join and empty set for ⊥s). The set of functions consistent
with a set of samples would be the those that map the inputs mentioned in the
samples to their appropriate outputs. The iterative learning will then model the
process of synthesis, using learning, a guarded affine function that is equivalent
to P .
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3 Convergence of Iterative Learning

In this section, we study convergence of the iterative learning process. We start
with a general theorem on transfinite convergence (convergence in the limit) for
complete sample lattices. We then turn to convergence in finite time and exhibit
three recipes that guarantee convergence.

From Lemma 1 one can conclude that the transfinite sequence of hypotheses
constructed by the learner converges to a target set (see the extended paper [31]
for a proof).

Theorem 1. Let S be a complete sample lattice, T be realizable, λ be a con-
sistent learner, and τ be a teacher. Then there exists an ordinal α such that
λ(Sα

τ,λ) ∈ T .

The above theorem ratifies the choice of our definitions, and the proof (rely-
ing on Lemma 1) crucially uses all aspects of our definitions (the honesty and
progress properties of the teacher, the condition imposed on κ in an ALF, the
notion of consistent learners, etc.).

Convergence in finite time is clearly the more desirable notion, and we pro-
pose tactics for designing learners that converge in finite time. For an ALF
instance (A, T ), we say that a learner λ converges for a teacher τ if there is an
n ∈ N such that λ(Sn

τ,λ) ∈ T , which means that λ produces a target hypothesis
after n steps. We say that λ converges if it converges for every teacher. We say
that λ converges from a sample S in case the learning process starts from a
sample S 
= ⊥s (i.e., if S0

λ,τ = S).

Finite Hypothesis Spaces. We first note that if the hypothesis space (or the
concept space) is finite, then any consistent learner converges: by Lemma 1, the
learner always makes progress, and hence never proposes two hypotheses that
correspond to the same concept. Consequently, the learner only produces a finite
number of hypotheses before finding one that is in the target (or declare that no
such hypothesis exists).

There are several synthesis engines using learning that use finite hypothesis
spaces. For example, Houdini [14] is a learner of conjunctions over a fixed finite
set of predicates and, hence, has a finite hypothesis space. Learning decision trees
over purely Boolean attributes (not numerical) [38] is also convergent because of
finite hypothesis spaces, and this extends to the ICE learning model as well [17].
Invariant generation for arrays and lists using elastic QDAs [15] also uses a
convergence argument that relies on a finite hypothesis space.

Occam Learners. We now discuss the most robust strategy we know for con-
vergence, based on the Occam’s razor principle. Occam’s razor advocates par-
simony or simplicity [6], that the simplest concept/theory that explains a set
of observations is better, as a virtue in itself. There are several learning algo-
rithms that use parsimony as a learning bias in machine learning (e.g., pruning
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in decision-tree learning [33]), though the general applicability of Occam’s razor
in machine learning as a sound means to generalize is debatable [13]. We now
show that in iterative learning, following Occam’s principle leads to convergence
in finite time. However, the role of simplicity itself is not the technical reason for
convergence, but that there is some ordering of concepts that biases the learning.

Enumerative learners are a good example of this. In enumerative learning,
the learner enumerates hypotheses in some order, and always conjectures the
first consistent hypothesis. In an iterative learning-based synthesis setting, such
a learner always converges on some target concept, if one exists, in finite time.

Requiring a total order of the hypotheses is in some situations too strict.
If, for example, the hypothesis space consists of deterministic finite automata
(DFAs), we could build a learner that always produces a DFA with the smallest
possible number of states that is consistent with the given sample. However, the
relation � that compares DFAs w.r.t. their number of states is not an ordering
because there are different DFAs with the same number of states.

In order to capture such situations, we work with a total quasi-order � on H
instead of a total order. A quasi-order (also called preorder) is a transitive and
reflexive relation. The relation being total means that H � H ′ or H ′ � H for
all H,H ′ ∈ H. The difference to an order relation is that H � H ′ and H ′ � H
can hold in a quasi-order, even if H 
= H ′.

In analogy to enumerations, we require that each hypothesis has only finitely
many hypotheses “before” it w.r.t. �, as expressed in the following definition.

Definition 6. A complexity ordering is a total quasi-order � such that for each
x ∈ H the set {y ∈ H | y � x} is finite.

The example of comparing DFAs with respect to their number of states is
such a complexity ordering.

Definition 7. A consistent learner that always constructs a smallest hypothesis
with respect to a complexity ordering � on H is called an �-Occam learner.

Example 1. Consider H = C to be the interval domain over the integers consist-
ing of all intervals of the form [l, r], where l, r ∈ Z∪{−∞,∞} and l ≤ r. We define
[l, r] � [l′, r′] if either [l, r] = [−∞,∞] or max{|x| | x ∈ {l, r} ∩ Z} ≤ max{|x| |
x ∈ {l′, r′} ∩ Z}. For example, [−4,∞] � [1, 7] because 4 ≤ 7. This ordering �
satisfies the property that for each interval [l, r] the set {[l′, r′] | [l′, r′] � [l, r]}
is finite (because there are only finitely many intervals using integer constants
with a bounded absolute value). A standard positive/negative sample S = (P,N)
with P,N ⊆ N is consistent with all intervals that contain the elements from P
and do not contain an element from N . A learner that maps S to an interval
that uses integers with the smallest possible absolute value (while being consis-
tent with S) is an �-Occam learner. For example, such a learner would map the
sample (P = {−2, 5}, N = {−8}) to the interval [−2,∞]. ��

The next theorem shows that �-Occam learners ensure convergence in finite
time (see the extended paper [31] for a proof).
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Theorem 2. If T is realizable and λ is a �-Occam learner, then λ converges.
Furthermore, the learner converges to a �-minimal target element.

There are several existing algorithms in the literature that use such orderings
to ensure convergence. Several enumeration-based solvers are convergent because
of the ordering of enumeration (e.g., the generic enumerative solver for SyGuS
problems [1,2]). The invariant-generation ranging over conditional linear arith-
metic expressions described in [16] ensures convergence using a total quasi-order
based on the number of conditionals and the values of the coefficients. The learner
uses templates to restrict the number of conditionals and a constraint-solver to
find small coefficients for linear constraints.

Convergence Using Tractable Well Founded Quasi-Orders. The third
strategy for convergence in finite time that we propose is based on well founded
quasi-orders, or simply well-quasi-orders. Interestingly, we know of no exist-
ing learning algorithms in the literature that uses this recipe for convergence
(a technique of similar flavor is used in [9]). We exhibit in this section a learning
algorithm for intervals and for conjunctions of inequalities of numerical attributes
based on this recipe. A salient feature of this recipe is that the convergence actu-
ally uses the samples returned by the teacher in order to converge (the first two
recipes articulated above, on the other hand, would even guarantee convergence
if the teacher just replies yes/no when asked whether the hypothesis is in the
target set).

A binary relation � over some set X is a well-quasi-order if it is transitive
and reflexive, and for each infinite sequence x0, x1, x2, . . . there are indices i < j
such that xi � xj . In other words, there are no infinite descending chains and
no infinite anti-chains for �.

Definition 8. Let (A, T ) be an ALF instance with A = (C,H, (S,�s,
�,⊥s), γ, κ). A subset of hypotheses W ⊆ H is called wqo-tractable if

(a) there is a well-quasi-order �W on W, and
(b) for each realizable sample S ∈ S with κH(S) ⊆ W, there is some �W -

maximal hypothesis in W that is consistent with S.

Example 2. Consider again the example of intervals over Z ∪ {−∞,∞} with
samples of the form S = (P,N) (see Example 1). Let p ∈ Z be a point and let Ip

be the set of all intervals that contain the point p. Then, Ip is wqo-tractable with
the standard inclusion relation for intervals, defined by [�, r] ⊆ [�′, r′] iff � ≥ �′

and r ≤ r′. Restricted to intervals that contain the point p, this is the product
of two well-founded orders on the sets {x ∈ Z | x ≤ p} and {x ∈ Z | x ≥ p}, and
as such is itself well-founded [20, Theorem 2.3]. Furthermore, for each realizable
sample (P,N), there is a unique maximal interval over Z∪{−∞,∞} that contains
P and excludes N . Hence, the two conditions of wqo-tractability are satisfied.
(Note that this ordering on the set of all intervals is not a well-quasi-order; the
sequence [−∞, 0], [−∞,−1], [−∞,−2], . . . witnesses this.) ��
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On a wqo-tractable W ⊆ H a learner can ensure convergence by always
proposing a maximal consistent hypothesis, as stated in the following lemma
(a proof can be found in the extended paper [31]).

Lemma 2. Let T be realizable, W ⊆ H be wqo-tractable with well-quasi-order
�W , and S be a sample such that κH(S) ⊆ W. Then, there exists a learner that
converges from the sample S.

As shown in Example 2, for each p ∈ Z, the set Ip of intervals containing p
is wqo-tractable. Using this, we can build a convergent learner starting from the
empty sample ⊥s. First, the learner starts by proposing the empty interval, the
teacher must either confirm that this is a target or return a positive example,
that is, a point p that is contained in every target interval. Hence, the set of
hypotheses consistent with this sample is wqo-tractable and the learner can
converge from here on as stated in Lemma 2. In general, the strategy for the
learner is to force in one step a sample S such that the set κH(S) = Ip is
wqo-tractable. This is generalized in the following definition.

Definition 9. We say that an ALF is wqo-tractable if there is a finite set
{H1, . . . , Hn} of hypotheses such that κH(S) is wqo-tractable for all samples
S that are inconsistent with all Hi, that is, κH(S) ∩ {H1, . . . , Hn} = ∅.

As explained above, the interval ALF is wqo-tractable with the set {H1, . . . ,
Hn} consisting only of the empty interval.

Combining all the previous observations, we obtain convergence for
wqo-tractable ALFs (see the extended paper [31] for a proof).

Theorem 3. For every ALF instance (A, T ) such that A is wqo-tractable and
T is realizable, there is a convergent learner.

A convergent learner for conjunctive linear inequality constraints. We have illus-
trated wqo-tractability for intervals in Example 2. We finish this section by
showing that this generalizes to higher dimensions, that is, to the domain of
n-dimensional hyperrectangles in (Z ∪ {−∞,∞})n, which form the hypothesis
space in this example. Each such hyperrectangle is a product of intervals over
(Z ∪ {−∞,∞})n. Note that hyperrectangles can, e.g., be used to model con-
junctive linear inequality constraints over a set f1, . . . , fn : Z

d → Z of numerical
attributes.

The sample space depends on the type of target specification that we are
interested in. We consider here the typical sample space of positive and negative
samples (however, the reasoning below also works for other sample spaces, e.g.,
ICE sample spaces that additionally include implications). So, samples are of
the form S = (P,N), where P,N are sets of points in Z

n interpreted as positive
and negative examples (as for intervals, see Example 1).

The following lemma provides the ingredients for building a convergent learner
based on wqo-tractability (see the extended paper [31] for a proof).
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Lemma 3. (a) For each realizable sample S = (P,N), there are maximal hyper-
rectangles that are consistent with S (possibly more than one).

(b) For each p ∈ Z
n, the set Rp of hyperrectangles containing p is well-quasi-

ordered by inclusion.

We conclude that the following type of learner is convergent: for the empty
sample, propose the empty hyperrectangle; for every non-empty sample S,
propose a maximal hyperrectangle consistent with S.

4 Synthesis Problems Modeled as ALFs

In this section, we list a host of existing synthesis problems and algorithms
that can be seen as ALFs. Specifically, we consider examples from the areas of
program verification and program synthesis. We do not go into details of each
formalism; instead, we refer the reader to the extended paper [31] for a thorough
discussion. We encourage the reader to look up the referenced algorithms to
better understand their mapping into our framework. Moreover, we have new
techniques based on ALFs to compute fixed-points in the setting of abstract
interpretation using learning; due to lack of space, we again refer the reader to
the extended paper [31] regarding this.

ProgramVerification. While program verification itself does not directly relate
to synthesis, most program verification techniques require some form of help from
the programmer before the analysis can be automated. Consequently, synthesizing
objects that replace manual help has been an area of active research. We here
focus on learning loop invariants. For the purposes of this article, let us consider
while-programs with a single loop. Given a pre- and post-condition, assertions,
and contracts for functions called, the problem is to find a loop invariant that
proves the post-condition and assertions (assuming the program is correct).

A natural way to phrase this problem using ALFs is to model the concept
space to consist of all subsets of program configurations and the hypothesis space
to be the set of all logical formulas capturing the class of invariants from which
we want to synthesize. For a program, the target specification would be the
set TInv of all inductive invariants that prove the post-condition and assertions
correct.

A general approach to learning invariants, called ICE learning (for impli-
cation counterexamples), was recently proposed by Garg et al. [16], where the
learner learns from positive, negative, and implication counterexamples. The
corresponding ALF is AICE = (C,H, γ,S, κ), where C is the set of all subsets of
program configurations, the hypothesis space H is the language used to describe
the invariant, and the sample space S is defined as follows:

– A sample is of the form S = (P,N, I), where P,N are sets of program con-
figurations (interpreted as positive and negative examples), and I is a set of
pairs of program configurations (interpreted as implications).
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– A set C ∈ C of program configurations is consistent with (P,N, I) if P ⊆ C,
N ∩ C = ∅, and if (c, c′) ∈ I and c ∈ C, then also c′ ∈ C.

– The order on samples is defined by component-wise set inclusion; that is,
(P,N, I) �s (P ′, N ′, I ′) if P ⊆ P ′, N ⊆ N ′, and I ⊆ I ′.

– The join is the component-wise union, and ⊥s = (∅, ∅, ∅).

Based on this ALF, we can now show that there always exists a teacher since
a teacher can refute any hypothesis with a positive, a negative, or an implication
counterexample, depending on which property of invariants is violated. Further-
more, we can show that having only positive and negative samples precludes the
existence of teachers. In fact, we can show that if C = 2D (for a domain D) and
the sample space S consists of only positive and negative examples in D, then
a target set T has a teacher only if it is defined in terms of excluding a set B
and including a set G. Proofs can be found in the extended paper [31].

Several concrete implementations of ICE framework have been proposed:
Garg et al.’s original work on ICE [16], the approach proposed by Sharma
and Aiken [41] (which uses a learner based on stochastic search), the work by
Garg et al. [15] on synthesizing quantified invariants for linear data structures
such as lists and arrays, and the algorithm described by Neider [34].

Other non-ICE learning techniques for invariant synthesis that can be mod-
eled as ALFs are the Houdini algorithm [14], which is implemented in the Boo-
gie program verifier [7] and widely used (e.g., in verifying device drivers [29,30]
and in race-detection in GPU kernels [8]) and parts of the learning-to-verify
project [46], which leverages automata learning to the verification of infinite
state systems.

Program Synthesis. A prominent synthesis application is the sketch-based
synthesis approach [42], where programmers write partial programs with holes
and a system automatically synthesizes expressions or programs for these holes
so that a specification (expressed using input-output pairs or logical assertions)
is satisfied. The key idea is that given a sketch with a specification, we need
expressions for the holes such that for every possible input, the specification
holds. This roughly has the form ∃e.∀x. ψ(e,x), where e are the expressions to
synthesize and x are the inputs to the program.

The Sketch system implements a CEGIS technique using SAT solving, which
works in rounds: the learner proposes hypothesis expressions and the teacher
checks whether ∀x. ψ(e,x) holds (using SAT queries) and if not, returns a val-
uation for x as a counterexample. Subsequently, the learner asks, again using a
SAT query, whether there exists a valuation for the bits encoding the expressions
such that ψ(e,x) holds for every valuation of x returned by the teacher thus
far; the resulting expressions are the hypotheses for the next round.

The above system can be modeled as an ALF. The concept space consists of
tuples of functions modeling the various expressions to synthesize, the hypothesis
space is the set of expressions (or their bit encodings), the map γ gives meaning
to these expressions (or encodings), and the sample space can be seen as the
set of grounded formulae of the form ψ(e,v) where the variables x have been
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substituted with a concrete valuation. The relation κ maps such a sample to
the set of all expressions f such that the formulas in the sample all evaluate to
true if f is substituted for e. The Sketch learner can be seen as a learner in this
ALF framework that uses calls to a SAT solver to find hypothesis expressions
consistent with the sample.

The SyGuS format [2] is a competition format for synthesis, and extends the
Sketch-based formalism above to SMT theories, with an emphasis on syntactic
restrictions for expressions. More precisely, SyGuS specifications are parameter-
ized over a background theory T , and an instance is a pair (G,ψ(f)) where G
is a grammar that imposes syntactic restrictions for functions (or expressions)
and ψ is a formula in T , including function symbols f ; the functions f are typed
according to domains of T . The goal is to find functions g for the symbols f
in the syntax G such that ψ holds. SyGuS further restricts ψ to be of the form
∀x. ψ′(f ,x) where ψ′ is a quantifier-free formula in a decidable SMT theory.

There have been several solvers developed for SyGuS (cf. the first SyGuS com-
petition [1,2]), and all of them are in fact learning-based (i.e., CEGIS). In partic-
ular, three solvers have been proposed: an enumerative solver, a constraint-based
solver, and a stochastic solver. All these solvers can be seen as ALF instances:
the concept space consists of all tuples of functions over the appropriate domains
and the hypothesis space is the set of all functions allowed by the syntax of the
problem (with the natural γ relation giving its semantics). Note that the learn-
ers know ψ in this scenario. However, we can model SyGuS as ALFs by taking
the sample space to be grounded formulas ψ′(f ,v) consisting of the specifica-
tion with particular values v substituted for x. The learners can now be seen as
learning from these samples, without knowledge of ψ (similar to Sketch above).

We would like to emphasize that this embedding of SyGuS as an ALF clearly
showcases the difference between different synthesis approaches (as mentioned in
the introduction). For example, invariant generation can be done using learning
either by means of ICE samples or modeled as a SyGuS problem. However, it
turns out that the sample spaces (and, hence, the learners) in the two approaches
are very different ! In ICE-based learning, samples are only single configurations
(labeled positive or negative) or pairs of configurations, while in a SyGuS encod-
ing, the samples are grounded formulas that encode the entire program body,
including instantiations of universally quantified variables at intermediate states
in the execution of the loop.

Similarly, for synthesizing linear arithmetic expressions, there are again dif-
ferent kinds of solvers. The SyGuS solvers are based on the sample space
of grounded formulae as above, while certain other solvers of the Alchemist
variety [35,39] are based on a different sample space that involve counterexam-
ples that encode inputs on which the hypothesis is incorrect; these two classes are
consequently very different from each other (for instance, the latter use machine-
learning techniques to classify inputs that cannot be achieved with the former
kind of sample).

There are several algorithms that are self-described as CEGIS frameworks,
and, hence, can be modeled using ALFs. For example, synthesizing loop-free
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programs [19], synthesizing synchronizing code for concurrent programs [10] (in
this work, the sample space consists of abstract concurrent partially-ordered
traces), work on using synthesis to mine specifications [22], synthesizing bit-
manipulating programs and deobfuscating programs [21] (here, the use of sep-
arate I/O-oracle can be modeled as the teacher returning the output of the
program together with a counterexample input), superoptimization [40], deduc-
tive program repair [26], synthesis of recursive functional programs over
unbounded domains [27], as well as synthesis of protocols using enumerative
CEGIS techniques [45]. Finally, an example for employing a human as teacher is
Flashfill by Gulwani et al. [18], which synthesizes string manipulation macros
from user-given input-output examples in the context of Microsoft Excel.

5 Conclusions

We have presented an abstract learning framework for synthesis that encom-
passes several existing techniques that use learning or counter-example guided
inductive synthesis to create objects that satisfy a specification. (We refer to the
extended paper [31] for a discussion of extensions and limitations of our abstract
learning framework.) We were motivated by abstract interpretation [12] and how
it gives a general framework and notation for verification; our formalism is an
attempt at such a generalization for learning-based synthesis. The conditions we
have proposed that the abstract concept spaces, hypotheses spaces, and sam-
ple spaces need to satisfy to define a learning-based synthesis domain seem to
be cogent and general in forming a vocabulary for such approaches. We have
also addressed various strategies for convergent synthesis that generalizes and
extends existing techniques (again, in a similar vein as to how widening and nar-
rowing in abstract interpretation give recipes for building convergent algorithms
to compute fixed-points). We believe that the notation and general theorems
herein will bring more clarity, understanding, and reuse of learners in synthesis
algorithms.
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Abstract. We present a novel general technique that uses classifier
learning to synthesize piece-wise functions (functions that split the
domain into regions and apply simpler functions to each region) against
logical synthesis specifications. Our framework works by combining a
synthesizer of functions for fixed concrete inputs and a synthesizer of
predicates that can be used to define regions. We develop a theory of
single-point refutable specifications that facilitate generating concrete
counterexamples using constraint solvers. We implement the framework
for synthesizing piece-wise functions in linear integer arithmetic, com-
bining leaf expression synthesis using constraint-solving and predicate
synthesis using enumeration, and tie them together using a decision tree
classifier. We demonstrate that this approach is competitive compared
to existing synthesis engines on a set of synthesis specifications.

1 Introduction

The field of synthesis is an evolving discipline in formal methods that is seeing a
renaissance, mainly due to a variety of new techniques [1] to automatically synthe-
size small expressions or programs that are useful in niche application domains,
including end-user programming [14], filling holes in program sketches [32],
program transformations [7,18], automatic grading of assignments [2,30], synthe-
sizing network configurations and migrations [21,29], as well as synthesizing anno-
tations such as invariants or pre/post conditions for programs [12,13].

The field of machine learning [22] is close to program synthesis, especially
when the specification is a set of input-output examples. The subfield of induc-
tive programming has a long tradition in solving this problem using inductive
methods that generalize from the sample to obtain programs [19]. Machine learn-
ing, which is the field of learning algorithms that can predict data from training
data, is a rich field that encompasses algorithms for several problems, including
classification, regression, and clustering [22].

The idea of using inductive synthesis for more general specifications than
input-output examples has been explored extensively in program synthesis
research. The counterexample guided inductive synthesis (CEGIS) approach
to program synthesis advocates pairing inductive learning algorithms with a
verification oracle: in each round, the learner learns inductively from a set of
(counter-)examples and proposes an expression which the verification oracle
c© Springer-Verlag Berlin Heidelberg 2016
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checks against the specification, and augments the set of samples with a new
counterexample [32]. A majority of the current synthesis approaches rely on
counter-example guided inductive synthesis [12,13,16,32].

In this paper, we consider logical specifications for synthesis, where the goal of
synthesis is to find some expression e for a function f , in a particular syntax, that
satisfies a specification ∀�x. ψ(�x).1 We will assume that ψ is quantifier-free, that
the satisfiability of the quantifier-free theory of the underlying logic is decidable,
and that there is an effective algorithm that can produce models. The goal of this
paper is to develop a framework for expression synthesis that can learn piece-wise
functions using a learning algorithm for classifiers with the help of two other
synthesis engines, one for synthesizing expressions for single inputs and another
for synthesizing predicates that separate concrete inputs from each other. The
framework is general in the sense that it is independent of the logic used to write
specifications and the logic used to express the synthesized expressions.

A piece-wise function is a function that
partitions the input domain into a finite set
of regions, and then maps each region using
a simpler class of functions. The framework
that we build for expression synthesis is also
counterexample-guided, and proceeds in the
following fashion (see Fig. 1 on p. 195 and the
figure on the right):

– In every round, the learner proposes a piece-wise function H for f , and the
verification oracle checks whether it satisfies the specification. If not, it returns
one input �p on which H is incorrect. (Returning such a counterexample is
nontrivial; we will discuss this issue below.)

– We show that we can now use an expression synthesizer for the single input �p
which synthesizes an expression that maps �p to a correct value. This expression
synthesizer will depend on the underlying theory of basic expressions, and we
can use any synthesis algorithm that performs this task.

– Once we have the new expression, we compute for every counterexample input
obtained thus far the set of basic expressions synthesized so far that work
correctly for these inputs. This results in a set of samples, where each sample
is of the form (�p, Z), where �p is a concrete input and Z is the set of basic
expressions that are correct for �p (see points with sets of labels in figure above).
The problem we need to solve now can be seen as a multi-label classification
problem— that of finding a mapping from every input to an expression that
is consistent with the set of samples.

– Since we want a classification that is a piece-wise function that divides the
input domains into regions, and since the predicates needed to define regions
can be arbitrarily complex and depend on the semantics of the underlying
logical theory, we require a predicate synthesizer that synthesizes predicates
that can separate concrete inputs with disjoint sets of labels. Once we have

1 Note that this syntax can, of course, describe input-output examples as well.
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such a set of predicates, we are equipped with an adequate number of regions
to find a piece-wise function.

– The final phase uses classification learning, to generalize the samples to a
function from all inputs to basic expressions (see figure above). The learning
should be biased towards finding simple functions, finding few regions, or
minimizing the Boolean expression that describes the piece-wise function.

The framework above requires many components, in addition to the expres-
sion synthesizer and predicate synthesizer. First, given a hypothesis function H
and a specification ∀�x. ψ(f, �x), we need to find a concrete counterexample input
on which H is wrong. It turns out that there may be no such input point for some
specifications and even if there was, finding one may be hard. We develop a theory
of single-point definable specifications whose definition ensures such counterex-
ample inputs always exist, and a subclass of single-point refutable specifications
that reduce finding such counterexample inputs to satisfiability problems over the
underlying logical domain (which is decidable). Our framework works robustly for
the class of singe-point refutable specifications, and we show how to extract con-
crete counterexamples, how to automatically synthesize a new specification tai-
lored for any input �p to be given to the expression synthesizer, and how to evaluate
whether particular expressions work for particular inputs.

In current standard CEGIS approaches [1,32], when H and ∀�x. ψ(f, �x) are
presented, the teacher simply returns a concrete value of �x for which ¬ψ(H/f, �x)
is satisfied. We emphasize that such valuations for the universally quantified vari-
ables cannot be interpreted as inputs on which H is incorrect, and hence cannot
be used in our framework. The framework of single-point refutable specifications
and the counterexample input generation procedures we build for them is crucial
in order to be able to use classifiers to synthesize expressions.

The classifier learning algorithm can be any learning algorithm for multi-label
classification (preferably with the learning bias as described above) but must
ensure that the learned classifier is consistent with the given samples. Machine-
learning algorithms more often than not make mistakes and are not consistent
with the sample, often because they want to generalize assuming that the sam-
ple is noisy. In Sect. 4, we describe the second contribution of this paper— an
adaptation of decision-tree learning to multi-label learning that produces classi-
fiers that are consistent with the sample. We also explore a variety of statistical
measures used within the decision-tree learning algorithm to bias the learning
towards smaller trees in the presence of multi-labeled samples. The resulting
decision-tree learning algorithms form one class of classifier learning algorithms
that can be used to synthesize piece-wise functions over any theory that works
using our framework.

The third contribution of the paper is an instantiation of our framework to
build an efficient synthesizer of piece-wise linear integer arithmetic functions for
specifications given in the theory of linear integer arithmetic. We implement
the components of the framework for single-point refutable functions: to syn-
thesize input counterexamples, to reformulate the synthesis problem for a single
input, and to evaluate whether an expression works correctly for any input.
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These problems are reduced to the satisfiability of the underlying quantifier-free
theory of linear integer arithmetic, which is decidable using SMT solvers. The
expression-synthesizer for single inputs is performed using an inner CEGIS-based
engine using a constraint solver. The predicate synthesizer is instantiated using
an enumerative synthesis algorithm. The resulting solver works extremely well
on a large class of benchmarks drawn from the SyGuS 2015 synthesis competi-
tion [3] (linear integer arithmetic track) where a version of our solver fared sig-
nificantly better than all the traditional SyGuS solvers (enumerative, stochastic,
and symbolic constraint-based solvers). In our experience, finding an expression
that satisfies a single input is a much easier problem for current synthesis engines
(where constraint solvers that compute the coefficients defining such an expres-
sion are effective) than finding one that satisfies all inputs. The decision-tree
based classification, on the other hand, solves the problem of generalizing this
labeling to the entire input domain effectively.

Related Work. Our learning task is closely related to the syntax-guided syn-
thesis framework (SyGuS) [1], which provides a language, similar to SMTLib [5],
to describe synthesis problems. Several solvers following the counterexample-
guided inductive synthesis approach (CEGIS) [32] for SyGuS have been
developed [1], including an enumerative solver, a solver based on constraint solv-
ing, one based on stochastic search, and one based on the program synthesizer
Sketch [31]. Recently, a solver based on CVC4 [26] has also been presented.

There has been several works on synthesizing piece-wise affine models of
hybrid dynamical systems from input-output examples [4,6,11,34] (we refer the
reader to [24] for a comprehensive survey). The setting there is to learn an affine
model passively (i.e., without feedback whether the synthesized model satis-
fies some specification) and, consequently, only approximates the actual system.
A tool for learning guarded affine functions, which uses a CEGIS approach,
is Alchemist [28]. In contrast to our setting, it requires that the function to
synthesize is unique.

The learning framework we develop in this paper, as well as the synthesis
algorithms we use for linear-arithimetic (the outer learner, the expression syn-
thesizer and the predicate synthesizer) can be seen as abstract learning frame-
works [20] (see [23] for details).

2 The Synthesis Problem and Single-Point Refutable
Specifications

The synthesis problem we tackle in this paper is that of finding a function f that
satisfies a logical specification of the form ∀�x. ψ(f, �x), where ψ is a quantifier-free
first-order formula over a logic with fixed interpretations of constants, functions,
and relations (except for f). Further, we will assume that the quantifier-free
fragment of this logic admits a decidable satisfiability problem and furthermore,
effective procedures for producing a model that maps the variables to the domain
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of the logic are available. These effective procedures are required in order to
generate counterexamples while performing synthesis.

For the rest of the paper, let f be a function symbol with arity n representing
the target function that is to be synthesized. The specification logic is a formula
in first-order logic, over an arbitrary set of function symbols F , (including a
special symbol f), constants C, and relations/predicates P, all of which with
fixed interpretations, except for f . We will assume that the logic is interpreted
over a countable universe D and, further, and that there is a constant symbol
for every element in D. For technical reasons, we assume that negation is pushed
into atomic predicates.

The specification for synthesis is a formula of the form ∀�x.ψ(f, �x) where ψ is
a formula expressed in the following grammar (where g ∈ F , c ∈ C, P ∈ P):

Term t ::− x | c | f(t1, . . . , tn) | g(�t )

Formula ϕ ::− P (�t ) | ¬P (�t ) | ϕ ∨ ϕ | ϕ ∧ ϕ

We will assume that equality is a relation in the logic, with the standard model-
theoretic interpretation.

The synthesis problem is to find, given a specification ∀�x. ψ(f, �x), a definition
for the function f in a particular syntax that satisfies the specification. More
formally, given a subset of function symbols F̂ ⊆ F (excluding f) and a subset
of constants Ĉ and a subset of relation/predicate symbols P̂ ⊆ P, the task is to
find an expression e for f that is a term with free variables y1, . . . , yn adhering
to the following syntax (where ĝ ∈ F̂ , ĉ ∈ Ĉ, P̂ ∈ P̂)

Expr t ::− ĉ | yi | ĝ(�t ) | ite(P̂ (�t ), t, t),

such that e satisfies the specification, i.e., ∀�x. ψ(e/f, �x ) is valid.

Single-Point Definable Specifications. In order to be able to define a general
CEGIS algorithm for synthesizing expressions for f based on learning classifiers,
as described in Sect. 1, we need to be able to refute any hypothesis H that does
not satisfy the specification with a concrete input on which H is wrong. We
will now define sufficient conditions that guarantee this property. The first is a
semantic property, called single-point definable specifications, that guarantees the
existence of such concrete input counterexamples and the second is a syntactic
fragment of the former, called single-point refutable specifications, that allows
such concrete counterexamples to be found effectively using a constraint solver.

A single-point definable specification is, intuitively, a specification that
restricts how each input is mapped to the output, independent of how other
inputs are mapped to outputs. More precisely, a single-point definable specifi-
cation restricts each input �p ∈ Dn to a set of outputs X�p ⊆ D and allows any
function that respects this restriction for each input. It cannot, however, restrict
the output on �p based on how the function behaves on other inputs. Many syn-
thesis problems fall into this category (see Sect. 6 for several examples taken
from a recent synthesis competition).
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Formally, we define this concept as follows. Let I = Dn be the set of inputs
and O = D be the set of outputs of the function being synthesized.

Definition 1 (Single-point Definable (SPD) Specifications). A specifica-
tion α is said to be single-point definable if the following holds. Let F be the
class of all functions that satisfy the specification α. Let g : I → O be a function
such that for every �p ∈ I, there exists some h ∈ F such that g(�p) = h(�p). Then,
g ∈ F (i.e., g satisfies the specification α).

Intuitively, a specification is single-point definable if whenever we construct
a function that maps each input independently according to some arbitrary
function that satisfies the specification, the resulting function satisfies the spec-
ification as well. For each input �p, if X�p is the set of all outputs that functions
that meet the specification map �p to, then any function g that maps every input
�p to some element in X�p will also satisfy the specification. This captures the
requirement, semantically, that the specification constrains the outputs of each
input independent of other inputs.

For example, the following specifications are all single-point definable speci-
fications over the first-order theory of arithmetic:

– f(15, 23) = 19 ∧ f(90, 20) = 91 ∧ . . . ∧ f(28, 24) = 35.
More generally, any set of input-output samples can be written as a conjunc-
tion of constraints that forms a single-point definable specification.

– Any specification that is not realizable (has no function that satisfies it).
– ∀x. (f(0) = 0 ∧ f(x+1) = f(x) + 1).

The identity function is the only function that satisfies this specification. Any
specification that has a unique solution is clearly single-point definable.

While single-point definable specifications are quite common, there are
prominent specifications that are not single-point definable. For example, induc-
tive loop invariant synthesis specifications for programs are not single-point
definable, as counterexamples to the inductiveness constraint involve two coun-
terexample inputs (the ICE learning model [12] formalizes this). Similarly, rank-
ing function synthesis is also not single-point definable.

Note that for any SPD specification, if H is some expression conjectured for
f that does not satisfy the specification, there will always be one input �p ∈ Dn

on which H is definitely wrong in that no correct solution agrees with H on �p.
More precisely, we obtain the following directly from the definition.

Proposition 1. Let ∀�x. ψ(f, �x) be a single-point definable specification and let
h : Dn → D be an interpretation for f such that ∀�x. ψ(f, �x) does not hold. Then
there is an input �p ∈ Dn such that for every function h′ : Dn → D that satisfies
the specification, h(�p) �= h′(�p).

Single-Point Refutable Specifications. While the above proposition ensures
that there is a counterexample input for any hypothesized function that does not
satisfy a single-point definable function, it does not ensure that finding such an
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input is tractable. We now define single-point refutable specifications, which we
show to be a subclass of single-point definable specifications, and for which we
can reduce the problem of finding counterexample inputs to logical satisfiability
of the underlying quantifier-free logic.

Intuitively, a specification ∀�x. ψ(f, �x) is single-point refutable if for any given
hypothetical interpretation H to the function f that does not satisfy the specifi-
cation, we can find a particular input �p ∈ Dn such that the formula ∃�x. ¬ψ(f, �x)
evaluates to true, and where the truthhood is caused solely by the interpretation
of H on �p . The definition of single-point refutable specifications is involved as
we have to define what it means for H on �p to solely contribute to falsifying the
specification.

We first define an alternate semantics for a formula ψ(f, �x ) that is para-
meterized by a set of n variables �u denoting an input, a variable v denoting an
output, and a Boolean variable b. The idea is that this alternate semantics evalu-
ates the function by interpreting f on �u to be v, but “ignores” the interpretation
of f on all other inputs, and reports whether the formula would evaluate to b.
We do this by expanding the domain to D ∪ {⊥}, where ⊥ is a new element,
and have f map all inputs other than �u to ⊥. Furthermore, when evaluating
formulas, we let them evaluate to b only when we are sure that the evaluation
of the formula to b depended only on the definition of f on �u. We now define
this alternate semantics by transforming a formula ψ(f, �x ) to a formula with
the usual semantics, but over the domain D ∪ {⊥}. In this transformation, we
will use if-then-else (ite) terms for simplicity.

Definition 2 (The Isolate Transformer). Let �u be a vector of n first-order
variables (where n is the arity of the function to be synthesized), v a first-order
variable (different from ones in �u), and b ∈ {T, F}. Moreover, let D+ = D∪{⊥},
where ⊥ �∈ D, be the extended domain, and let the functions and predicates be
extended to this domain (the precise extension does not matter).

For a formula ψ(f, �x ), we define the formula Isolate�u,v,b(ψ(f, �x )) over the
extended domain by

Isolate�u,v,b(ψ(f, �x )) := ite

(∨

xi

xi = ⊥,¬b, Isol�u,v,b(ψ(f, �x ))
)

,

where Isol�u,v,b is defined recursively as follows:

– Isol�u,v,b(x) = x
– Isol�u,v,b(c) = c
– Isol�u,v,b(g(t1, . . . , tk)) =

ite(
∨k

i=1 Isol�u,v,b(ti) = ⊥,⊥, g(Isol�u,v,b(t1), . . . , Isol�u,v,b(tk)))
– Isol�u,v,b(f(t1, . . . , tn)) = ite(

∧n
i=1 Isol�u,v,b(ti) = u[i], v,⊥)

– Isol�u,v,b(P (t1, . . . , tk)) =
ite(

∨k
i=1 Isol�u,v,b(ti) = ⊥,¬b, P (Isol�u,v,b(t1), . . . , Isol�u,v,b(tk)))

– Isol�u,v,b(¬P (t1, . . . , tk)) =
ite(

∨k
i=1 Isol�u,v,b(ti) = ⊥,¬b,¬P (Isol�u,v,b(t1), . . . , Isol�u,v,b(tk)))
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– Isol�u,v,b(ϕ1 ∨ ϕ2) = Isol�u,v,b(ϕ1) ∨ Isol�u,v,b(ϕ2)
– Isol�u,v,b(ϕ1 ∧ ϕ2) = Isol�u,v,b(ϕ1) ∧ Isol�u,v,b(ϕ2)

Intuitively, the function Isolate�u,v,b(ψ) captures whether ψ will evaluate to
b if f maps �u to v and independent of how f is interpreted on other inputs.
A function of the form f(t1, . . . tn) is interpreted to be v if the input matches
�u and otherwise evaluated to ⊥. Functions on terms that involve ⊥ are sent
to ⊥ as well. Predicates are evaluated to b only if the predicate is evaluated
on terms none of which is ⊥— otherwise, they get mapped to ¬b, to reflect
that it will not help to make the final formula ψ evaluate to b. Note that when
Isolate�u,v,b(ψ) evaluates to ¬b, there is no property of ψ that we claim. Also,
note that Isolate�u,v,b(ψ(f, �x)) has no occurrence of f in it, but has free variables
�x, �u and v.

We can show (using a induction over the structure of the specification) that
the isolation of a specification to a particular input with b = F , when instantiated
according to a function that satisfies a specification, cannot evaluate to false (see
the full paper [23] for a proof).

Lemma 1. Let ∀�x. ψ(f, �x ) be a specification and h : Dn → D a function satis-
fying the specification. Then, there is no interpretation of the variables in �u and �x
(over D) such that if v is interpreted as h(�u), the formula Isolate�u,v,F (ψ(f, �x ))
evaluates to false.

We can also show (again using structural induction) that when the isolation
of the specification with respect to b = F evaluates to false, then v is definitely
not a correct output on �u (see the full paper [23] for a proof).

Lemma 2. Let ∀�x. ψ(f, �x ) be a specification, �p ∈ Dn an interpretation for �u,
and q ∈ D an interpretation for v such that there is some interpretation for
�x that makes the formula Isolate�u,v,F (ψ(f, �x )) evaluate to false. Then, there
exists no function h satisfying the specification that maps �p to q.

We can now define single-point refutable specifications.

Definition 3. (Single-point Refutable Specifications (SPR)). A specifi-
cation ∀�x. ψ(f, �x ) is said to be single-point refutable if the following holds. Let
H : Dn → D be any interpretation for the function f that does not satisfy the
specification (i.e., the specification does not hold under this interpretation for
f). Then, there exists some input �p that is an interpretation for �u and an inter-
pretation for �x such that when v is interpreted to be H(�u), the isolated formula
Isolate�u,v,F (ψ(f, �x )) evaluates to false.

Intuitively, the above says that a specification is single-point refutable if
whenever a hypothesis function H does not find a specification, there is a single
input �p such that the specification evaluates to false independent of how the
function maps inputs other than �p. More precisely, ψ evaluates to false for some
interpretation of �x only assuming that f(�p) = H(�p).

We can show that single-point refutable specifications are single-point
definable, which we formalize below (a proof can be found in [23]).
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Lemma 3. If a specification ∀�x. ψ(f, �x ) is single-point refutable, then it is
single-point definable.

In the following, we list some examples and non-examples of single-point
refutable specifications in the first-order theory of arithmetic:

– f(15, 23) = 19 ∧ f(90, 20) = 91 ∧ . . . ∧ f(28, 24) = 35.
More generally, any set of input-output samples can be written as a conjunc-
tion of constraints that forms a single-point refutable specification.

– ∀x.(f(0) = 0 ∧ f(x+1) = f(x) + 1 is not a single-point refutable specification
thought it is single-point definable. Given a hypothesis function (e.g., H(i) =
0, for all i), the formula f(x+1) = f(x) evaluates to false, but this involves the
definition of f on two inputs, and hence we cannot isolate a single input on
which the function H is incorrect. (In evaluating the isolated transformation
of the specification parameterized with b = F , at least one of f(x+1) and
f(x) will evaluate to ⊥ and hence the whole formula never evaluate to false.)

When a specification ∀�x. ψ(f, �x) is single-point refutable, given an expression H
for f that does not satisfy the specification, we can check satisfiability of the for-
mula ∃�u ∃v∃�x. (v=H(�u) ∧ ¬Isolate�u,v,F (ψ(H/f, �x)) ). Assuming the underlying
quantifier-free theory has a decidable satisfiability problem and can also come
up with a model, the valuation of �u gives a concrete input �p, and Lemma 2 shows
that H is definitely wrong on this input. This will form the basis of generating
counterexample inputs in the synthesis framework that we outline next.

3 A General Synthesis Framework by Learning Classifiers

We now present our general framework for synthesizing functions over a first-
order theory that uses machine-learning of classifiers. Our technique, as out-
lined in the introduction, is a counterexample-guided inductive synthesis approach
(CEGIS), and works most robustly for single-point refutable specifications.

Given a single-point refutable specification ∀�x. ψ(f, �x), the framework com-
bines several simpler synthesizers and calls to SMT solvers to synthesize a func-
tion, as depicted in Fig. 1. The solver globally maintains a finite set of expressions
E, a finite set of predicates A (also called attributes), and a finite set S of multi-
labeled samples, where each sample is of the form (�p, Z) consisting of an input
�p ∈ Dn and a set Z ⊆ E of expressions that are correct for �p (such a sample
means that the specification allows mapping �p to e(�p), for any e ∈ Z, but not to
e′(�p), for any e′ ∈ E \ Z).

Phase 1: In every round, the classifier produces a hypothesis expression H for
f . The process starts with a simple expression H, such as one that maps all
inputs to a constant. We feed H in every round to a counterexample input
finder module, which essentially is a call to an SMT solver to check whether
the formula

∃�u ∃v ∃�x. (v = H(�u) ∧ ¬Isolate�u,v,F (ψ(f, �x)))
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Fig. 1. A general synthesis framework based on learning classifiers

is satisfiable. Note that from the definition of the single-point refutable functions
(see Definition 3), whenever H does not satisfy the specification, we are guar-
anteed that this formula is satisfiable, and the valuation of �u in the satisfying
model gives us an input �p on which H is definitely wrong (see Lemma 2). If H
satisfies the specification, the formula would be unsatisfiable (by Lemma1) and
we can terminate, reporting H as the synthesized expression.
Phase 2: The counterexample input �p is then fed to an expression synthesizer
whose goal is to find some correct expression that works for �p. We facilitate this
by generating a new specification for synthesis that tailors the original specifi-
cation to the particular input �p. This new specification is the formula

ψ↓�p (f̂ , �x) := Isolate�u,v,T (ψ(f, �x))[�p/�u, f̂(�p)/v].

Intuitively, the above specification asks for a function f̂ that “works” for the
input �p. We do this by first finding the formula that isolates the specification
to �u with output v and demand that the specification evaluates to true; then,
we substitute �p for �u and a new function symbol f̂ evaluated on �p for v. Any
expression synthesized for f̂ in this synthesis problem maps �p to a value that
is consistent with the original specification. We emphasize that we can use any
expression synthesizer for this new specification.
Phase 3: Once we synthesize an expression e that works for �p, we feed it to the
next phase, which adds e to the set of all expressions E (if e is new) and adds �p
to the set of samples. It then proceeds to find the set of all expressions in E that
work for all the inputs in the samples, and computes the new set of samples. In
order to do this, we take every input �r that previously existed, and ask whether
e works for �r, and if it does, add e to the set of labels for �r. Also, we take the
new input �p and every expression e′ ∈ E, and check whether e′ works for �p.

To compute this labeling information, we need to be able to check, in general,
whether an expression e′ works for an input �r. We can do this using a call to an
SMT solver that checks whether the formula ∀�x. ψ↓�r (e′(�r)/f̂(�r), �x) is valid.
Phase 4: We now have a set of samples, where each sample consists of an input
and a set of expressions that work for that input. This is when we look upon the
synthesis problem as a classification problem— that of mapping every input in
the domain to an expression that generalizes the sample (i.e., that maps every
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input in the sample to some expression that it is associated with it). In order
to do this, we need to split the input domain into regions defined by a set of
predicates A. We hence need an adequate set of predicates that can define enough
regions that can separate the inputs that need to be separated.

Let S be a set of samples and let A be a set of predicates. Two samples
(�j, E1) and (�j′, E2) are said to be inseparable if for every predicate p ∈ A,
p(�j) ≡ p(�j′). The set of predicates A is said to be adequate for a sample S if any
set of inseparable inputs in the sample has a common label as a classification.
In other words, if every subset T ⊆ S, say T = {(�i1, E1), (�i2, E2), . . . (�it, Et)},
where every pair of inputs in T is inseparable, then

⋂t
i=1 Ei �= ∅. We require the

attribute synthesizer to synthesize an adequate set of predicates A, given the
set of samples.

Intuitively, if T is a set of pairwise inseparable points with respect to a set
of predicates P , then no classifier based on these predicates can separate them,
and hence they all need to be classified using the same label; this is possible only
if the set of points have a common expression label.
Phase 5: Finally, we give the samples and the predicates to a classification
learner, which divides the set of inputs into regions, and maps each region to a
single expression such that the mapping is consistent with the sample. A region
is a conjunction of predicates and the set of points in the region is the set of all
inputs that satisfy all these predicates. The classification is consistent with the
set of samples if for every sample (�r, Z) ∈ S, the classifier maps �r to a label in Z.
(In Sect. 4, we present a general learning algorithm based on decision trees that
learns such a classifier from a set of multi-labeled samples, and which biases the
classifier towards small trees.)

The classification synthesized is then converted to an expression in the logic
(this will involve nested ite expressions using predicates to define the regions
and expressions at leaves to define the function). The synthesized function is
fed back to the counterexample input finder, as in Phase 1, and the process
continues until we manage to synthesize a function that meets the specification.

4 Multi-Label Decision Tree Classifiers

In this section, we sketch a decision tree learning algorithm for a special case
of the so-called multi-label learning problem, which is the problem of learning
a predictive model (i.e., a classifier) from samples that are associated with mul-
tiple labels. For the purpose of learning the classifier, we assume samples to be
vectors of the Boolean values B = {F, T} (these encode the values of the various
attributes on the counterexample input returned). The more general case that
datapoints also contain rational numbers can be handled in a straightforward
manner as in Quinlan’s C5.0 algorithm [25,27].

To make the learning problem precise, let us fix a finite set L = {λ1, . . . , λk}
of labels with k ≥ 2, and let �x1, . . . , �xm denote m individual inputs (in the
following also called datapoints). The task we are going to solve, which we call
disjoint multi-label learning problem (cf. Jin and Ghahramani [17]), is
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Algorithm 1. Multi-label decision tree learning algorithm
Input: A finite set S of datapoints x ∈ B

m.

1 return DecTree (S, {1, . . . , m}).
2 Procedure DecTree (Set of datapoints S, Attributes A)
3 Create a root node r.
4 if if all datapoints in S have a label in common then
5 Select a common label λ and return the single-node tree r with label λ.
6 else
7 Select an attribute i ∈ A that (heuristically) best splits the sample S.
8 Split S into Si = {(�x, Y ) ∈ S | xi = T} and S¬i = {(�x, Y ) ∈ S | xi = F}.
9 Label r with attribute i and return the tree with root node r, left subtree

DecTree (Si, A \ {i}), and right subtree DecTree (S¬i, A \ {i}).

“Given a finite training set S = {(�x1, Y1), . . . , (�xm, Ym)} where Yi ⊆
L and Yi �= ∅ for every i ∈ {1, . . . , m}, find a decision tree classifier
h : Bm → L such that h(�x) ∈ Y for all (�x, Y ) ∈ S.”

Note that this learning problem is a special case of the multi-label learning
problem studied in machine learning literature, which asks for a classifier that
predicts all labels that are associated with a datapoint. Moreover, it is important
to emphasize that we require our decision tree classifier to be consistent with the
training set (i.e., it is not allowed to misclassify datapoints in the training set),
in contrast to classical machine learning settings where classifier are allowed to
make (small) errors.

We use a straightforward modification of Quinlan’s C 5.0 algorithm [25,27]
to solve the disjoint multi-label learning problem. (We refer to standard text on
machine learning [22] for more information on decision tree learning.) This mod-
ification, sketched in pseudo code as Algorithm alg:decisionspstree, is a recur-
sive algorithm that constructs a decision tree top-down. More precisely, given a
training set S, the algorithm heuristically selects an attribute i ∈ {1, . . . , m} and
splits the set into two disjoint, nonempty subsets Si = {(�x, Y ) ∈ S | xi = T} and
S¬i = {(�x, Y ) ∈ S | xi = F} (we explain shortly how the attribute i is chosen).
Then the algorithm recurses on the two subsets, whereby it no longer considers
the attribute i. Once the algorithm arrives at a set S′ in which all datapoints
share at least one common label (i.e., there exists a λ ∈ L such that λ ∈ Y for all
(�x, Y ) ∈ S′), it selects a common label λ (arbitrarily), constructs a single-node
tree that is labeled with λ, and returns from the recursion. However, it might
happen during construction that a set of datapoints does not have a common
label and cannot be split by any (available) attribute. In this case, it returns
an error, as the set of attributes is not adequate (which we make sure does not
happen in our framework).

The selection of a “good” attribute to split a set of datapoints lies at the heart
of the decision tree learner as it determines the size of the resulting tree and,
hence, how well the tree generalizes the training data. The quality of a split can be
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formalized by the notion of a measure, which, roughly, is a measure μ mapping
pairs of sets of datapoints to a set R that is equipped with a total order � over
elements of R (usually, R = R≥0 and � is the natural order over R). Given a set S
to split, the learning algorithm first constructs subsets Si and S¬i for each available
attribute i and evaluates each such candidate split by computing μ(Si, S¬i). It then
chooses a split that has the least value.

In the single-label setting, information theoretic measures, such as infor-
mation gain (based on Shannon entropy) and Gini, have proven to produce
successful classifiers [15]. In the case of multi-label classifiers, however, finding
a good measure is still a matter of ongoing research (e.g., see Tsoumakas and
Katakis [33] for an overview). Both the classical entropy and Gini measures can
be adapted to the multi-label case in a straightforward way by treating data-
points with multiple labels as multiple identical datapoints with a single label
(we describe these in the full paper [23]). Another modification of entropy has
been proposed by Clare and King [9]. However, these approaches share a disad-
vantage, namely that the association of datapoints to sets of labels is lost and all
measures can be high, even if all datapoints share a common label; for instance,
such a situation occurs for S = {(�x1, Y1), . . . , (�xn, Yn)} with {λ1, . . . , λ�} ⊆ Yi

for every i ∈ {1, . . . , n}.
Ideally, one would like to have a measure that maps to 0 if all datapoints in a

set share a common label and to a value strictly greater than 0 if this is not the
case. We now present a measure, based on the combinatorial problem of finding
minimal hitting sets, that has this property. To the best of our knowledge, this
measure is a novel contribution and has not been studied in the literature.

For a set S of datapoints, a set H ⊆ L is a hitting set if H ∩ Y �= ∅ for each
(�x, Y ) ∈ S. Moreover, we define the measure hs(S) = minhitting set H |H| − 1,
i.e., the cardinality of a smallest hitting set reduced by 1. As desired, we obtain
hs(S) = 0 if all datapoints in S share a common label and hs(S) > 0 if this
is not the case. When evaluating candidate splits, we would prefer to minimize
the number of labels needed to label the datapoints in the subsets; however, if
two splits agree on this number, we would like to minimize the total number
of labels required. Consequently, we propose R = N × N with (n,m) � (n′,m′)
if and only if n < n′ or n = n′ ∧ m ≤ m′, and as measures μhs(S1, S2) =
(max {hs(S1), hs(S2)}, hs(S1)+hs(S2)). As computing hs(S) is computationally
hard, we implemented a standard approximate greedy algorithm (the dual of
the standard greedy set cover algorithm [8]), which runs in time polynomial in
the size of the sample and whose solution is at most a logarithmic factor of the
optimal solution.

5 A Synthesis Engine for Linear Integer Arithmetic

We now describe an instantiation of our framework (described in Sect. 3) for
synthesizing functions expressible in linear integer arithmetic against quantified
linear integer arithmetic specifications.

The counterexample input finder (Phase 1) and the computing of labels for
counterexample inputs (Phase 3) are implemented straightforwardly using an
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SMT solver (note that the respective formulas will be in quantifier-free linear
integer arithmetic). The Isolate() function works over a domain D∪{⊥}; we can
implement this by choosing a particular element ĉ in the domain and modeling
every term using a pair of elements, one that denotes the original term and the
second that denotes whether the term is ⊥ or not, depending on whether it is
equal to ĉ. It is easy to transform the formula now to one that is on the original
domain D (which in our case integers) itself.

Expression Synthesizer. Given an input �p, the expression synthesizer has to
find an expression that works for �p. Our implementation deviates slightly from
the general framework.

In the first phase, it checks whether one of the existing expressions in the
global set E already works for �p. This is done by calling the label finder (as in
Phase 3). If none of the expressions in E work for �p, the expression synthesizer
proceeds to the second phase, where it generates a new synthesis problem with
specification ∀�x. ψ↓�p(f̂ , �x) according to Phase 2 of Sect. 3, whose solutions are
expressions that work for �p. It solves this synthesis problem using a simple
CEGIS-style algorithm, which we sketch next.

Let ∀�x. ψ(f, �x) be a specification with a function symbol f : Zn → Z, which
is to be synthesized, and universally quantified variables �x = (x1, . . . , xm). Our
algorithm synthesizes affine expressions of the form (

∑n
i=1 ai · yi) + b where

y1, . . . , yn are integer variables, ai ∈ Z for i ∈ {1, . . . , n}, and b ∈ Z. The algo-
rithm consists of two components, a synthesizer and a verifier, which implement
the CEGIS principle in a similar but simpler manner as our general framework.
Roughly speaking, the synthesizer maintains an (initially empty) set V ⊆ Z

m

of valuations of the variables �x and constructs an expression H for the function
f that satisfies ψ at least for each valuation in V (as opposed to all possible
valuations). Then, it hands this expression over to the verifier. The task of the
verifier is to check whether H satisfies the specification. If this is the case, the
algorithm has identified a correct expression, returns it, and terminates. If this
not the case, the verifier extracts a particular valuation of the variables �x for
which the specification is violated and hands it over to the synthesizer. The
synthesizer adds this valuation to V , and the algorithm iterates.

Predicate Synthesizer. Since the decision tree learning algorithm (which is
our classifier) copes extremely well with a large number of attributes, we do
not spend time in generating a small set of predicates. We build an enumerative
predicate synthesizer that simply enumerates and adds predicates until it obtains
an adequate set.

More precisely, the predicate synthesizer constructs a set Aq of attributes
for increasing values of q ∈ N. The set Aq contains all predicates of the form∑n

i=1 ai·yi ≤ b, where yi are variables corresponding to the function arguments of
the function f that is to be synthesized, ai ∈ Z such that each Σn

i=1|ai| ≤ q, and
|b| ≤ q2. If Aq is already adequate for S (which can be checked by recursively
splitting the sample with respect to each predicate in Aq and checking if all



200 D. Neider et al.

Fig. 2. Experimental results

samples at each leaf has a common label), we stop, else we increase the parameter
q by one and iterate. Note that the predicate synthesizer is guaranteed to find
an adequate set for any sample. The reason for this is that one can separate
each input �p into its own subsample (assuming each individual variable is also
an attribute) provided q is large enough.

6 Evaluation

We implemented the framework described in Sect. 5 for specifications written in
the SyGuS format [1]. The implementation is about 5 K lines in C++ with API
calls to the Z3 SMT solver [10].

The implementations of the LIA counter-example finder and the expression
synthesizer use several heuristics. The counter-example finder prioritizes data-
points that have a single classification, and returns multiple counterexamples in
each round. The expression synthesizer uses a combination of enumeration (for
small degree expressions) and constraint-solving (for larger ones), and prioritizes
returning expressions that work for multiple neighboring inputs. More details are
in the extended version [23].

We evaluated our tool parameterized using the different measures in Sect. 4
against 43 benchmarks, and report here a representative 24 of them. These
benchmarks are predominantly from the 2014 and 2015 SyGuS competition [1,3].
Additionally, there is an example from [16] for deobfuscating C code using bitwise
operations on integers (we query this code 30 times on random inputs, record its
output and create an input-output specification, Jha Obs, from it). The synthe-
sis specification max2Univ reformulates the specification for max2 using universal
quantification, as

∀x, r, y1, y2. (r < 0) ⇒ ((y1=x∧y2=x+r)∨(y1=x+r∧y2=x)) ⇒ max(y1, y2) = x.

All experiments were performed on a system with an Intel Core i7-4770HQ
2.20 GHz CPU and 4 GB RAM running 64-bit Ubuntu 14.04 with a 200 seconds
timeout. The results of the 24 representative benchmarks are depicted in Fig. 2.

Figure 2 compares three measures: e-gini, pq-entropy and hitting set
(pq-entropy refers to the measure proposed by Clare and King [9]). All solvers
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time-out on two benchmarks each. None of the algorithms dominates. The
hitting-set measure is the only one to solve LinExpr eq2. E-gini and pq-entropy
can solve the same set of benchmarks but their performance differs on the
example* specs, where e-gini performs better, and max* where pq-entropy per-
forms better.

The CVC4 SMT-solver based synthesis tool [26] (which won the linear integer
arithmetic track in the SyGuS 2015 competition [3]) worked very fast on these
benchmarks, in general, but does not generalize from underspecifications. On
specifications that list a set of input-output examples (marked with * in Fig. 2),
CVC4 simply returns the precise map that the specification contains, without
generalizing it. CVC4 allows restricting the syntax of target functions, but using
this feature to force generalization (by disallowing large constants) renders them
unsolvable. CVC4 was also not able to solve, surprisingly, the fairly simple spec-
ification max2Univ (although it has the single-invocation property [26]).

The general track SyGuS solvers (enumerative, stochastic, constraint-solver,
and Sketch) [1] do not work well for these benchmarks (and did not fare well
in the competition either); for example, the enumerative solver, which was the
winner in 2014 can solve only 15 of the 43 benchmarks.

The above results show that the synthesis framework developed in this paper
that uses theory-specific solvers for basic expressions and predicates, and com-
bines them using a classification learner yields a competitive solver for the linear
integer arithmetic domain. We believe more extensive benchmarks are needed
to choose the right statistical measures for decision-tree learning.

Acknowledgements. This work was partially supported by NSF Expeditions in
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Abstract. We propose a method to construct finite-state reactive con-
trollers for systems whose interactions with their adversarial environment
are modeled by infinite-duration two-player games over (possibly) infi-
nite graphs. The method targets safety games with infinitely many states
or with such a large number of states that it would be impractical—if not
impossible—for conventional synthesis techniques that work on the entire
state space. We resort to constructing finite-state controllers for such
systems through an automata learning approach, utilizing a symbolic
representation of the underlying game that is based on finite automata.
Throughout the learning process, the learner maintains an approxima-
tion of the winning region (represented as a finite automaton) and refines
it using different types of counterexamples provided by the teacher until
a satisfactory controller can be derived (if one exists). We present a sym-
bolic representation of safety games (inspired by regular model checking),
propose implementations of the learner and teacher, and evaluate their
performance on examples motivated by robotic motion planning.

1 Introduction

We propose an automata learning-based method to construct reactive controllers
subject to safety specifications. We model the interaction between a controlled
system and its possibly adversarial environment as a two-player game over a
graph [16]. We consider games over infinite graphs. In this setting, the conven-
tional techniques for reactive controller synthesis (e.g., fixed-point computations)
are not applicable anymore. We resort to learning for constructing finite-state
reactive controllers. The learning takes place in a setting akin to counterexample-
guided inductive synthesis (CEGIS) [14] between a teacher, who has knowledge
about the safety game in question, and a learner, whose objective is to identify
a controller using information disclosed by the teacher in response to (incorrect)
conjectures.

A natural context for our method is one in which the interaction between
the controlled system and its environment is so complex that it can be repre-
sented only by graphs with infinitely many vertices (e.g., motion planning over
unbounded grid worlds) or “practically infinitely many” states (i.e., the number
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 204–221, 2016.
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of possible configurations is so large that the game becomes impractical for con-
ventional techniques). Additionally, in situations in which a complete description
of the game is not available in a format amenable to existing game solvers [6,9],
there may still exist human experts (or automated oracles, as in Sect. 4) who
acts as teacher with their insight into how the controlled system should behave.

We focus on games with safety specifications, which already capture practi-
cally interesting properties (e.g., safety and bounded-horizon reachability). How-
ever, games over infinite graphs require special attention on the representation
and manipulation of the underlying graph structure. Hence, one of our main
contributions is a symbolic representation of safety games, called rational safety
games, that follows the idea of regular model checking [7] in that it represents
sets of vertices by regular languages and edges by so-called rational relations.

We develop an iterative framework for learning winning sets—equivalently
controllers—in rational safety games and particular implementations of a teacher
and learner. In each iteration, the learner conjectures a winning set, represented
as a deterministic finite automaton. The teacher performs a number of checks and
returns, based on whether the conjecture passes the checks, a counterexample.
Following the ICE learning framework [10] and partially deviating from the
classical learning frameworks for regular languages [1,11], the counterexample
may be one of the following four types: positive, negative, existential implication
and universal implication counterexamples. Based on the response of the teacher,
the learner updates his conjecture. If the conjecture passes all checks, the learning
terminates with the desired controller. However, our technique is necessarily a
semi-algorithm as reachability questions over rational relations are undecidable.

Even though the underlying game may be prohibitively large, a controller
with a compact representation may realize the specifications. For example,
depending on the given task specification in robotic motion planning, only a
small subset of all possible interactions between a robot and its environment is
often relevant. Based on this observation, our method possesses several desir-
able properties: (i) it usually identifies “small” solutions that are more likely
to be interpretable by users; (ii) its runtime mainly depends on the size of the
solution rather than the size of the underlying game; (iii) though the method is
applicable generally, it performs particularly well when the resulting controller
has a small representation; (iv) besides being applicable to infinite-state sys-
tems, the method performs well on finite-state problems by—unlike conventional
techniques—avoiding potentially large intermediate artifacts. We demonstrate
these properties empirically on a series of examples motivated by robotic motion
planning.

Related Work. Games over infinite graphs have been studied, predominantly
for games over pushdown graphs [15]. Also, a constraint-based approach to solv-
ing games over infinite graphs has recently been proposed [3]. Learning-based
techniques for reachability games over infinite graphs were studied in [19]; in
fact, our symbolic representation of safety games is a generalization of the rep-
resentation proposed there. In the context of safety games, recent work [20]
demonstrated the ability of learning-based approaches to extract small reactive
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controllers from a priori constructed controllers with a possibly large number of
states. In this work, we by-pass this a priori construction of reactive controllers
by learning a controller directly. Infinite (game) graphs occur often in the pres-
ence of data, and symbolic formalisms have been described for several domains,
including examples such as interface automata with data [13] and modal specifi-
cations with data [2]. However, we are not aware of learning algorithms for these
formalisms.

2 Rational Safety Games

We recap the basic notation and definitions used in the rest of the paper.

Safety Games.We consider safety games (i.e., infinite duration two-person games
on graphs) [16]. A safety game is played on an arena A = (V0, V1, E) consisting
of two nonempty, disjoint sets V0, V1 of vertices (we denote their union by V ) and
a directed edge relation E ⊆ V × V . In contrast to the classical (finite) setting,
we allow V0 and V1 to be countable sets. As shorthand notation, we write the
successors of a set X ⊆ V of vertices as E(X) = {y | ∃x ∈ X : (x, y) ∈ E}.

We consider safety games with initial vertices, which are defined as triples
G = (A, F, I) consisting of an arena A = (V0, V1, E), a set F ⊆ V of safe vertices,
and a set I ⊆ F of initial vertices. Such safety games are played by two players,
named Player 0 and Player 1, who play the game by moving a token along the
edges. Formally, a play is an infinite sequence π = v0v1 . . . ∈ V ω that satisfies
v0 ∈ I and (vi, vi+1) ∈ E for all i ∈ N. The set F defines the winning condition
of the game in the sense that a play v0v1 . . . is winning for Player 0 if vi ∈ F
for all i ∈ N—otherwise it is winning for Player 1 .

A strategy for Player σ ∈ {0, 1} is a mapping fσ : V ∗Vσ → V , which pre-
scribes how to continue playing. A strategy fσ is called winning if any play
v0v1 . . . that is played according to the strategy (i.e., that satisfies vi+1 =
fσ(v0 . . . vi) for all i ∈ N and vi ∈ Vσ) is winning for Player σ. A winning
strategy for Player 0 translates into a controller satisfying the given safety speci-
fications. Hence, we restrict ourselves to compute winning strategies for Player 0.
Computing a winning strategy for Player 0 usually reduces to finding a so-called
winning set.

Definition 1 (Winning set). Let G = (A, I, F ) be a safety game over the
arena A = (V0, V1, E). A winning set is a set W ⊆ V satisfying (1) I ⊆ W , (2)
W ⊆ F , (3) E({v}) ∩ W �= ∅ for all v ∈ W ∩ V0 ( existential closedness), and
(4) E({v}) ⊆ W for all v ∈ W ∩ V1 (universal closedness).

By computing a winning set, one immediately obtains a strategy for Player 0:
starting in an initial vertex, Player 0 simply moves to a successor vertex inside
W whenever it is his turn. A straightforward induction over the length of plays
proves that every play that is played according to this strategy stays inside F , no
matter how Player 1 plays, and, hence, is won by Player 0 (since I ⊆ W ⊆ F ).
A winning set is what we want to compute—or, more precisely, learn.
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Algorithmically working with games over infinite arenas require symbolic
representations. We follow the idea of regular model checking [7] and represent
sets of vertices by regular languages and edges by so-called rational relations.
Before we introduce our symbolic representation of safety games, however, we
recap some basic concepts of automata theory.

Basics of Automata Theory. An alphabet Σ is a nonempty, finite set, whose
elements are called symbols. A word over the alphabet Σ is a sequence u =
a1 . . . an of symbols ai ∈ Σ for i ∈ {1, . . . , n}; the empty sequence is called
empty word and denoted by ε. Given two words u = a1 . . . am and v = b1 . . . bn,
the concatenation of u and v is the word u · v = uv = a1 . . . amb1 . . . bn. The set
of all words over the alphabet Σ is denoted by Σ∗, and a subset L ⊆ Σ∗ is called
a language. The set of prefixes of a language L ⊆ Σ∗ is the set Pref (L) = {u ∈
Σ∗ | ∃v ∈ Σ∗ : uv ∈ L}.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, q0,Δ, F )
consisting of a nonempty, finite set Q of states, an input alphabet Σ, an initial
state q0 ∈ Q, a transition relation Δ ⊆ Q × Σ × Q, and a set F ⊆ Q of final
states. A run of A on a word u = a1 . . . an is a sequence of states q0, . . . , qn such
that (qi−1, ai, qi) ∈ Δ for i ∈ {1, . . . , n}. We denote this run by A : q0

u−→ qn. An
NFA A accepts a word u ∈ Σ∗ if A : q0

u−→ q with q ∈ F . The set L(A) = {u ∈
Σ∗ | A : q0

u−→ q, q ∈ F} is called language of A. A language L is regular if there
exists an NFA A with L(A) = L. NFAΣ denotes the set of all NFAs over Σ.

A deterministic finite automaton (DFA) is an NFA in which (p, a, q) ∈ Δ and
(p, a, q′) ∈ Δ imply q = q′. For DFAs, we replace the transition relation Δ by a
transition function δ : Q × Σ → Q.

We define infinite arenas by resorting to transducers. A transducer is an NFA
T = (Q, Σ̂, q0,Δ, F ) over the alphabet Σ̂ = (Σ ∪ {ε}) × (Γ ∪ {ε})—Σ and Γ
are both alphabets—that processes pairs (u, v) ∈ Σ∗ × Γ ∗ of words. The run
of a transducer T on a pair (u, v) is a sequence q0, . . . , qn of states such that
(qi−1, (ai, bi), qi) ∈ Δ for all i ∈ {1, . . . , n}, u = a1 . . . an, and v = b1 . . . bn;
note that u and v do not need to be of equal length since any ai or bi can be
ε. A pair (u, v) is said to be accepted by T if there exists a run of T on (u, v)
that starts in the initial state and ends in a final state. As an acceptor of pairs
of words, a transducer T defines a relation, namely the relation consisting of
exactly the pairs accepted by T , which we denote by R(T ). Finally, a relation
R ⊆ Σ∗ × Γ ∗ is called rational if there exists a transducer T with R(T ) = R.
(This definition is simplified from that in [5] but sufficient for our purpose.) Note
that transducers as defined above do not need to preserve the length of words.

Our learning framework relies on the two facts given in Lemma1.

Lemma 1. Let R ⊆ Σ∗ × Γ ∗ be a rational relation and X ⊆ Σ∗ a regular
set. Then, (1) the relation R−1 = {(y, x) | (x, y) ∈ R} is again rational, and
a transducer defining this set can be constructed in linear time; and (2) the set
R(X) = {y ∈ Γ ∗ | ∃x ∈ X : (x, y) ∈ R}, called the image of X under R, is again
regular, and an NFA accepting this set can be constructed effectively.
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Rational Safety Games. A rational safety game is a symbolic representation of
a safety game in terms of regular languages and rational relations.

Definition 2. A rational arena over the alphabet Σ is an arena AΣ = (V0, V1, E)
where V0, V1 ⊆ Σ∗ are regular languages and E ⊆ V × V is a rational relation.

Definition 3. A rational safety game over the alphabet Σ is a safety game GΣ =
(AΣ , F, I) with a rational arena AΣ over Σ and regular languages F, I ⊆ Σ∗.

We assume regular languages to be given as NFAs and rational relations
as transducers. We use these notions interchangeably; for instance, we write a
rational area AΣ = (V0, V1, E) as AΣ = (AV0 ,AV1 , TE) given that L(AV0) = V0,
L(AV1) = V1, and R(TE) = E.

Example 1. Consider an example motivated by motion planning (see Fig. 1a) in
which a robot moves on an infinite, one-dimensional grid that is “bounded on
the left”. It can move to an adjacent cell (provided that it has not reached left
edge) or it stays still. The grid is partitioned into a safe (shaded in Fig. 1a) and
an unsafe area. The safe area is parameterized by k ∈ N \ {0} and consists of all
positions greater than or equal to k. The robot starts inside the safe area.

Fig. 1. Illustration of the safety game discussed in the introductory example.

The robot’s movement is governed by two adversarial players, called system
and environment. The system can move the robot to the right or keep it at its
current position, whereas the environment can move the robot to the left (if the
edge has not been reached) or keep it at its current position. The players move
the robot in alternation, and the system moves first. The system’s objective is to
stay within the safe area, whereas the environment wants to move the robot out
of it. Note that the system can win, irrespective of k, by always moving right.

A formalization as safety game is straightforward. Player 0 corresponds to the
system and Player 1 corresponds to the environment. The arena A = (V0, V1, E)
consists of vertices V0 = {s} × N and V1 = {e} × N—s, respectively e, indicates
the player moving next—as well as the edge relation E =

{(
(s, i), (e, i+1)

) | i ∈
N

}∪{(
(e, i+1), (s, i)

) | i ∈ N
}
. The safety game itself is the triple Gk = (A, F, I)

with F = {s, e} × {i ∈ N | i ≥ k} and I = {s} × {i ∈ N | i ≥ k}. Figure 1b
sketches the game Gk for the case k = 2.
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We now turn Gk into a rational safety game. To this end, we label each
vertex uniquely with a finite word. In our example, we choose Σ = {s, e, l} and
associate the vertex (x, i) ∈ {s, e}×N with the word xli where li is the encoding
of i in unary. We represent the sets V0 and V1 by the following NFAs:

Moreover, we represent the edges by the following transducer:

Finally, the NFA

represents the set F ; similarly, I is represented by a copy of AF in which the

transition labeled with e is omitted.

It is worth mentioning that rational arenas not only subsume finite arenas
but also a rich class of infinite arenas, including such encoding computations of
Turing machines. Hence, the problem of determining the winner of a rational
safety game is undecidable, and any algorithm for computing a winning set can
at best be a semi-algorithm (i.e., an algorithm that, on termination, gives the
correct answer but does not guarantee to halt). The algorithm we design in this
paper is of this kind and guarantees to learn a winning set if one exists. For ease
of presentation, we always assume that a winning set exists.

3 The Learning Framework

Our learning framework is an extension of the ICE framework [10] for learning
loop invariants from positive and negative data as well as implications. The
learning takes place between a teacher, who has (explicit or implicit) knowledge
about the rational safety game in question, and a learner, whose objective is
to learn a DFA accepting a winning set, but who is agnostic to the game. We
assume that the teacher announces the alphabet of the game before the actual
learning starts.

The learning proceeds in a CEGIS-style loop [14]. In every iteration, the
learner conjectures a DFA, call it C, and the teacher checks whether L(C) is a
winning set—this kind of query is often called equivalence or correctness query.
Although the teacher does not know a winning set (the overall objective is to
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learn one after all), he can resort to Conditions (1)–(4) of Definition 1 in order to
decide whether L(C) is a winning set. If L(C) satisfies Conditions (1)–(4), then
the teacher replies “yes” and the learning ends. If this is not the case, the teacher
returns a counterexample witnessing the violation of one of these conditions, and
the learning continues with the next iteration. The definition below fixes the
protocol between the teacher and the learner, and defines counterexamples.

Definition 4 (Teacher for rational safety games). Let GΣ = (AΣ , F, I)
be a rational safety game over the rational arena AΣ = (V0, V1, E). Confronted
with a DFA C, a teacher for GΣ replies as follows:

1. If I �⊆ L(C), then the teacher returns a positive counterexample u ∈ I \L(C).
2. If L(C) �⊆ F , then the teacher returns a negative counterexample u ∈ L(C)\F .
3. If there exists u ∈ L(C) ∩ V0 such that E({u}) ∩ L(C) = ∅, then the teacher

picks such a word u and returns an existential implication counterexample
(u,A) ∈ Σ∗ × NFAΣ where L(A) = E({u}).

4. If there exists u ∈ L(C) ∩ V1 such that E({u}) �⊆ L(C), then the teacher picks
such a word u and returns a universal implication counterexample (u,A) ∈
Σ∗ × NFAΣ where L(A) = E({u}).

If C passes all four checks (in arbitrary order), the teacher replies “yes”.

It is easy to see that the language of a conjecture is indeed a winning set if the
teacher replies “yes” (since it satisfies all conditions of Definition 1). The meaning
of a positive counterexample is that any conjecture needs to accepts it but it was
rejected. Similarly, a negative counterexample indicates that any conjecture has
to reject it but it was accepted. An existential implication counterexample (u,A)
means that any conjecture accepting u has to accept at least one v ∈ L(A),
which was violated by the current conjecture. Finally, a universal implication
counterexample (u, A) means that any conjecture accepting u needs to accept
all v ∈ L(A). At this point, it is important to note that Definition 4 is sound
(in particular, both types of implication counterexamples are well-defined due
to Lemma 1 Part 2) and every counterexample is a finite object.

Example 2. We revisit Example 1 for k = 2 and describe how a winning set
is learned. Suppose the learner conjectures the DFA C0 with L(C0) = ∅. As C0

fails Check 4 (it passes all other checks), the teacher returns a positive coun-
terexample, say u = sll ∈ I. Next, suppose the learner conjectures the DFA
C1 with L(C1) = {sln | n ≥ 2}, which passes all checks but Check 4 (as the
players alternate but L(C1) does not contain a vertex of the environment). The
teacher replies with an existential implication counterexample, say (sll,A) with
L(A) = {ell, elll}. In the next round, suppose the learner conjectures the DFA
C2 with L(C2) = {sln | n ≥ 2} ∪ {elm | m ≥ 3}. This conjecture passes all checks
(i.e., L(C2) is a winning set), the teacher replies “yes”, and the learning ends.

It is important to note that classical learning frameworks for regular lan-
guages that involve learning from positive and negative data only, such as Gold’s
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passive learning [11] or Angluin’s active learning [1], are insufficient in our set-
ting. If the learner provides a conjecture C that violates Condition (3) or (4)
of Definition 1, the teacher is stuck. For instance, if C does not satisfy Condi-
tions (4), the teacher does not know whether to exclude u or to include E({u}).
Returning an implication counterexample resolves this problem by communicat-
ing exactly why the conjecture is incorrect and, hence, allows the learner to make
progress.1

4 A Generic Teacher

We now present a generic teacher that, taking a rational safety game as input,
answers queries according to Definition 4. For the remainder of this section,
fix a rational safety game GΣ = (AΣ ,AF ,AI) over the rational arena AΣ =
(AV0 ,AV1 , TE), and let C be a DFA conjectured by the learner.

To answer a query, the teacher performs Checks 1 to 4 of Definition 4 as
described below. If the conjecture passes all checks, the teacher returns “yes”;
otherwise, he returns a corresponding counterexample, as described next.

Check 1 (initial vertices). The teacher computes an NFA B with L(B) = L(AI)\
L(C). If L(B) �= ∅, he returns a positive counterexample u ∈ L(B).

Check 2 (safe vertices). The teacher computes an NFA B with L(B) = L(C) \
L(AF ). If L(B) �= ∅, he returns a negative counterexample u ∈ L(B).

Check 3 (existential closure). The teacher successively computes three NFAs:

1. An NFA B1 with L(B1) = R(TE)−1(L(C)); the language L(B1) contains all
vertices that have a successor in L(C).

2. An NFA B2 with L(B2) = L(AV0) \ L(B1); the language L(B2) contains all
vertices of Player 0 that have no successor in L(C).

3. An NFA B3 with L(B3) = L(C) ∩ L(B2); the language L(B3) contains all
vertices of Player 0 that belong to L(C) and have no successor in L(C).

Every u ∈ L(B3) is a witness that C is not existentially closed. Hence, if L(B3) �=
∅, the teacher picks an arbitrary u ∈ L(B3) and returns the existential implica-
tion counterexample (u,A) where L(A) = R(TE)({u}).

Check 4 (universal closure). The teacher computes three NFAs:

1. An NFA B1 with L(B1) =
(
L(AV0) ∪ L(AV1)

) \ L(C); the language L(B1)
contains all vertices not in L(C).

1 Garg et al. [10] argue comprehensively in the case of learning loop invariants of
While-programs why implications are in fact required. Their arguments also apply
here as one obtains a setting similar to theirs by considering a solitary game with
Player 1 as the only player.
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2. An NFA B2 with L(B2) = R(TE)−1(L(B1)); the language L(B2) contains all
vertices that have a successor not belonging to L(C).

3. An NFA B3 with L(B3) = L(AV1)∩L(C)∩L(B2); the language L(B3) contains
all vertices of Player 1 in L(C) with at least one successor not in L(C).

Every u ∈ L(B3) is a witness that C is not universally closed. Hence, if L(B3) �= ∅,
the teacher picks an arbitrary u ∈ L(B3) and returns the universal implication
counterexample (u, A) where L(A) = R(TE)({u}).

All checks can be performed using standard methods of automata theory. In
our implementation, the teacher performs the checks in the order 1 to 4.

5 A Learner for Rational Safety Games

We design our learner with two key features: (1) it always conjectures a DFA
consistent with the counterexamples received so far, and (2) it always conjectures
a minimal, consistent DFA (i.e., a DFA with the least number of states among all
DFAs that are consistent with the received counterexamples). The first feature
prevents the learner from making the same mistake twice, while the second
facilitates convergence of the overall learning (provided that a winning set exists).

Our learner stores counterexamples in a so-called sample, which is a tuple
S = (Pos,Neg ,Ex ,Uni) consisting of a finite set Pos ⊂ Σ∗ of positive words, a
finite set Neg ⊂ Σ∗ of negative words, a finite set Ex ⊂ Σ∗×NFAΣ of existential
implications, and a finite set Uni ⊂ Σ∗ × NFAΣ of universal implications. We
encourage the reader to think of a sample as a finite approximation of the safety
game learned thus far.

In every iteration, our learner constructs a minimal DFA consistent with the
current sample S = (Pos,Neg ,Ex ,Uni). A DFA B is called consistent with S if

1. Pos ⊆ L(B);
2. Neg ∩ L(B) = ∅;
3. u ∈ L(B) implies L(B) ∩ L(A) �= ∅ for each (u,A) ∈ Ex ; and
4. u ∈ L(B) implies L(A) ⊆ L(B) for each (u,A) ∈ Uni .

Constructing a DFA that is consistent with a sample is possible only if the
sample does not contain contradictory information. Contradictions can arise in
two ways: first, Pos and Neg are not disjoint; second, the (alternating) transitive
closure of the implications in Ex and Uni contains a pair (u, v) with u ∈ Pos and
v ∈ Neg . This observation justifies the notion of contradiction-free samples: a
sample S is called contradiction-free if a DFA that is consistent with S exists. If
Player 0 wins from set I, a winning set exists and the counterexamples returned
by the teacher always form contradiction-free samples.2

2 Checking for contradictions allows detecting that a game is won by Player 1. How-
ever, since determining the winner of a rational safety game is undecidable, any sam-
ple obtained during the learning might be contradiction-free despite that Player 1
wins.
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Algorithm 1. A learner for rational safety games
1 Initialize an empty sample S = (Pos,Neg ,Ex ,Uni) with Pos = ∅, Neg = ∅,

Ex = ∅, and Uni = ∅;
2 repeat
3 Construct a minimal DFA AS consistent with S;
4 Submit AS to an equivalence query;
5 if the teacher returns a counterexample then
6 Add the counterexample to S;
7 end

8 until the teacher replies “yes” to an equivalence query ;
9 return AS ;

Once a minimal, consistent DFA is constructed, the learner conjectures it to
the teacher. If the teacher replies “yes”, the learning terminates with a winning
set. If the teacher returns a counterexample, the learner adds it to S and iterates.
This procedure is sketched as Algorithm 1. Note that unravelling the game graph
provides additional examples without the need to construct conjectures, but
there is a trade-off between the number of iterations and the time needed to
compute consistent DFAs. We leave an investigation of this trade-off for future
work.

It is left to describe how the learner actually constructs a minimal DFA
that is consistent with the current sample. However, this task, known as passive
learning, is computationally hard (i.e., the corresponding decision problem is NP-
complete) already in the absence of implications [11]. We approach this hurdle
by translating the original problem into a sequence of satisfiability problems
of formulas in propositional Boolean logic and use highly optimized constraint
solvers as a practically effective means to solve the resulting formulas (note that
a translation into a logical formulation is a popular and effective strategy). More
precisely, our learner creates and solves propositional Boolean formulas ϕS

n , for
increasing values of n ∈ N, n ≥ 1, with the following two properties:

1. The formula ϕS
n is satisfiable if and only if there exists a DFA that has n

states and is consistent with S.
2. A model M of (i.e., a satisfying assignment of the variables in) ϕS

n contains
sufficient information to construct a DFA AM that has n states and is con-
sistent with S.

If ϕS
n is satisfiable, then Property 2 enables us to construct a consistent

DFA from a model. However, if the formula is unsatisfiable, then the parameter
n has been chosen too small and the learner increments it. This procedure is
summarized as Algorithm 2. We comment on its correctness later in this section.
A proof can be found in the extended paper [22].

The key idea of the formula ϕS
n is to encode a DFA with n states by means

of Boolean variables and to pose constraints on those variables. Our encoding
relies on a simple observation: for every DFA there exists an isomorphic (hence,
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Algorithm 2. Computing a minimal consistent DFA.

Input: A contradiction-free sample S
Output: A minimal DFA that is consistent with S

1 n ← 0;
2 repeat
3 n ← n + 1;

4 Construct and solve ϕS
n ;

5 until ϕS
n is satisfiable, say with model M;

6 return AM ;

equivalent) DFA over the state set Q = {0, . . . , n − 1} with initial state q0 = 0;
moreover, given that Q and q0 are fixed, any DFA with n states is uniquely
determined by its transitions and final states. Therefore, we can fix the state set
of the prospective DFA as Q = {0, . . . , n− 1} and the initial state as q0 = 0; the
alphabet Σ is announced by the teacher.

Our encoding of transitions and final states follows an idea from [12,21]
(similar to the approach of Biermann and Feldman [4]). We introduce Boolean
variables dp,a,q and fq where p, q ∈ Q and a ∈ Σ, which have the following
meaning: setting dp,a,q to true means that the transition δ(p, a) = q exists in the
prospective DFA, and setting fq to true means that q is a final state.

To make sure that the variables dp,a,q encode a deterministic transition func-
tion, we impose two constraints:

∧

p∈Q

∧

a∈Σ

∧

q,q′∈Q,q �=q′
¬dp,a,q ∨ ¬dp,a,q′ (1)

∧

p∈Q

∧

a∈Σ

∨

q∈Q

dp,a,q (2)

Let ϕDFA
n be the conjunction of Formulas (1) and (2). Given a model M of

ϕDFA
n (we assume a model to be a map from the variables of a formula to the

set {true, false}), deriving the encoded DFA is straightforward, as shown next.

Definition 5 (DFA AM). Given a model M of ϕDFA
n , we define the DFA AM =

(Q,Σ, q0, δ, F ) by (i) δ(p, a) = q for the unique q ∈ Q with M(dp,a,q) = true;
and (ii) F = {q ∈ Q | M(fq) = true}. (Recall that we fixed Q = {0, . . . , n − 1}
and q0 = 0.)

To ensure that AM is consistent with a sample S = (Pos,Neg ,Ex ,Uni),
we impose further constraints, corresponding to the requirements of consistent
DFAs: (i) A formula ϕPos

n asserting Pos ⊆ L(AM). (ii) A formula ϕNeg
n asserting

Neg∩L(AM) = ∅. (iii) A formula ϕEx
n asserting that u ∈ L(AM) implies L(AM)∩

L(A) �= ∅ for each (u,A) ∈ Ex . (iv) A formula ϕUni
n asserting that u ∈ L(AM)

implies L(AM) ⊆ L(A) for each (u,A) ∈ Uni . Then, ϕS
n := ϕDFA

n ∧ϕPos
n ∧ϕNeg

n ∧
ϕEx

n ∧ ϕUni
n . We here sketch formula ϕUni

n and refer the reader to the extended
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paper [22] for a detailed presentation of the remaining formulas. A description
of ϕPos

n and ϕNeg
n can also be found in [21].

The Formula ϕUni
n . We break the construction of ϕUni

n down into smaller parts.
Roughly, we construct a formula ϕι

n that asserts L(A) ⊆ L(AM) if u ∈ L(AM)
for each universal implication ι = (u,A) ∈ Uni . The formulas ϕUni

n is then the
finite conjunction

∧
ι∈Uni ϕι

n. For the remainder, let us fix a universal implication
ι ∈ Uni , say ι = (u,A) with A = (QA, Σ, qA

0 ,ΔA, FA), and let Ante(Uni) =
{u | (u,A) ∈ Uni} be the set of all words occurring as antecedent of a universal
implication.

As a preparatory step, we introduce auxiliary Boolean variables that track
the runs of AM on words of Pref (Ante(Uni)) in order to detect when AM accepts
the antecedent of a universal implication. More precisely, we introduce variables
xu,q where u ∈ Pref (Ante(Uni)) and q ∈ Q, which have the meaning that xu,q

is set to true if AM : q0
u−→ q (i.e., AM reaches state q on reading u):

xε,q0 (3)
∧

u∈Pref (Ante(Uni))

∧

q �=q′∈Q

¬xu,q ∨ ¬xu,q′ (4)

∧

ua∈Pref (Ante(Uni))

∧

p,q∈Q

(xu,p ∧ dp,a,q) → xua,q (5)

Formula (3) asserts that xε,q0 is set to true since any run starts in the initial state
q0. Formula (4) enforces that for every u ∈ Pref (Ante(Uni)) there exists at most
one q ∈ Q such that xu,q is set to true (in fact, the conjunction of Formulas (2)–
(5) implies that there exists a unique such state). Finally, Formula (5) prescribes
how the run of AM on a word u ∈ Pref (Ante(Uni)) proceeds: if AM reaches
state p on reading u (i.e., xu,p is set to true) and there exists a transition from
p to state q on reading the symbol a ∈ Σ (i.e., dp,a,q is set to true), then AM

reaches state q on reading ua and xua needs to be set to true.
We now define ϕι

n. The formula ranges, in addition to dp,a,q, fq, and xu,q,
over Boolean variables yι

q,q′ where q ∈ Q and q′ ∈ QA and yι
q,q′ track runs of A

and AM. More precisely, if there exists a word u ∈ Σ∗ with AM : q0
u−→ q and

A : qA
0

u−→ q′, then yι
q,q′ is set to true.

yι
q0,qA

0
and (6)

∧

p,q∈Q

∧

(p′,a,q′)∈ΔA

(yι
p,p′ ∧ dp,a,q) → yι

q,q′ . (7)

Formula (6) enforces yι
q0,qA

0
to be set to true because AM : q0

ε−→ q0 and A : qA
0

ε−→
qA
0 . Formula (7) is similar to Formula (5) and describes how the runs of AM and

A proceed: if there exists a word v such that AM : q0
v−→ p and A : qA

0
v−→ p′ (i.e.,

yι
p,p′ is set to true) and there are transitions (p′, a, q′) ∈ ΔA and δ(p, a) = q in

AM, then AM : q0
va−→ q and A : qA

0
va−→ q′, which requires yι

q,q′ to be set to true.
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Finally, the next constraint ensures that whenever AM accepts u (i.e., the
antecedent is true), then all words that lead to an accepting state in A also lead
to an accepting state in AM (i.e., the consequent is true):

( ∨

q∈Q

xu,q ∧ fq

) → ( ∧

q∈Q

∧

q′∈FA

yι
q,q′ → fq

)
(8)

Let ϕ
Ante(Uni)
n be the conjunction of Formulas (3), (4), and (5) as well as ϕι

n

the conjunction of Formulas (6), (7), and (8). Then, ϕUni
n is the (finite) conjunc-

tion ϕ
Ante(Uni)
n ∧ ∧

ι∈Uni ϕι
n.

Correctness of the Learner. We now sketch the technical results necessary
to prove the correctness of the learner—we refer the reader to the extended
paper [22] for a detailed proof. First, we state that ϕS

n has the desired properties.

Lemma 2. Let S be a sample, n ≥ 1, and ϕS
n be as defined above. Then, the

following statements hold: (1) If M |= ϕS
n , then AM is a DFA with n states that

is consistent with S. (2) If there exists a DFA that has n states and is consistent
with S, then ϕS

n is satisfiable.

The next theorem states the correctness of Algorithm 2, which follows from
Lemma 2 and the fact that n is increased by one until ϕS

n becomes satisfiable.

Theorem 1. Given a contradiction free-sample S, Algorithm 2 returns a min-
imal DFA (in terms of the number of states) that is consistent with S. If a
minimal, consistent DFA has k states, then Algorithm 2 terminates after k
iterations.

Finally, one can prove the correctness of our learner by using the facts that
(a) the learner never conjectures a DFA twice as it always constructs minimal
consistent DFAs, (b) conjectures grow in size, and (c) adding counterexamples
to the sample does not rule out correct solutions.

Theorem 2. Given a teacher, Algorithm 1, equipped with Algorithm 2 to con-
struct conjectures, terminates and returns a (minimal) DFA accepting a winning
set if one exists.

6 Experiments

We implemented a Java prototype of our technique based on the Brics automa-
ton library [17] and the Z3 [18] constraint solver.3 In addition to the learner of
Sect. 5, we implemented a learner based on the popular RPNI algorithm [23],
which is a polynomial time algorithm for learning DFAs from positive and neg-
ative words. For this learner, we modified the RPNI algorithm such that it
3 The source code, including the games described later, is available at https://www.

ae.utexas.edu/facultysites/topcu/misc/rational safety.zip.

https://www.ae.utexas.edu/facultysites/topcu/misc/rational_safety.zip
https://www.ae.utexas.edu/facultysites/topcu/misc/rational_safety.zip
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constructs a consistent DFA from existential and universal implications in addi-
tion to positive and negative words (a detailed presentation can be found in the
extended paper [22]). In contrast to Algorithm 2, this learner cannot guaran-
tee to find smallest consistent DFAs and, hence, the resulting learner is a fast
heuristic that is sound but in general not complete. Another limitation is that
it can only handle implication counterexamples (u,A) where L(A) is finite. To
accommodate this restriction, the arenas of the games used in the experiments
are of finite out-degree (i.e., each vertex of an arena has a finite, but not nec-
essarily bounded, number of outgoing edges). We refer to the learner of Sect. 5
as SAT learner and the RPNI-based learner as RPNI learner. As teacher, we
implemented the generic teacher described in Sect. 4.

We conducted three series of experiments, all of which contain games that
allow for small controllers. The first series serves to asses the performance of our
techniques on games over infinite arenas. The second and third series compare
our prototype to existing synthesis tools, namely GAVS+ [8] and TuLiP [24], on
games over finite arenas. More precisely, in the second series, we consider motion
planning problem in which an autonomous robot has to follow an entity through
a fairly complex 2-dimensional grid-world, while the third series compares the
scalability of different approaches on games of increasing size. We conducted all
experiments on an Intel Core i7-4790K CPU running at 4.00 GHz with a memory
limit of 16 GiB. We imposed a runtime limit of 300 s.

Games over Infinite Arenas. The first series of examples consists of the fol-
lowing games, which are predominantly taken from the area of motion planning.

Diagonal game: A robot moves on a two-dimensional, infinite grid world. Player 0
controls the robot’s vertical movement, whereas Player 1 controls the horizon-
tal movement. The players move in alternation, and, stating on the diagonal,
Player 0’s objective is to stay inside a margin of two cells around the diagonal.

Box game: A version of the diagonal game in which Player 0’s objective is to
stay within a horizontal stripe of width three.

Solitary box game: A version of the box game in which Player 0 is the only player
and has control over both the horizontal and the vertical movement.

Evasion game: Two robots, each controlled by one player, move in alternation on
an infinite, two-dimensional grid. Player 0’s objective is to avoid a collision.

Follow game: A version of the evasion game in which Player 0’s objective is to
keep his robot within a distance of two cells to Player 1’s robot.

Program-repair game: A finitely-branching version of the program-repair game
described by Beyene et al. [3].

Table 1 lists the overall runtimes (including the time taken by the teacher),
the number of iterations, the number of states of the learned DFA, and the
cardinality of each set of the final sample. As the table shows, the SAT learner
computed the winning sets for all games, whereas the RPNI learner computed
the winning sets for all but the Follow game. Since the RPNI learner does not
compute minimal consistent DFAs, we expected that it is faster on average than
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Table 1. Summary of results on games over infinite arenas.

the SAT learner, which turned out to be the case. However, the RPNI learner
fails to solve the Follow game within the time limit.

It is worth noting that the teacher replied implication counterexamples in
all but one experiment. This observation highlights that classical learning algo-
rithms, which learn from positive and negative words only, are insufficient to
learn winning sets (since the learning would be stuck at that point), and one
indeed requires a richer learning framework.

Motion Planning. The motion planning example is designed to
demonstrate the applicability of our techniques to motion plan-
ning problems in a fairly complex environment and compare it
to mature tools. We considered an autonomous robot that has to
follow some entity that is controlled by the environment through
the (randomly generated) 2-dimensional 9 × 9 grid-world shown
to the right (cells drawn black indicate obstacles that cannot be passed). More
precisely, both the robot and the entity start at the same position and the robot’s
objective is to maintain a Manhattan distance of at most 1 to the entity.

We modeled this game as rational safety game as well as for the tools TuLiP
and GAVS+. The SAT learner solved the game in 7.8 s, the RPNI learner in
2.1 s, and TuLiP in 5.4 s. GAVS+ did not solve the game (it could only solve
games on a 3 × 3 world).

Scalability. We compared the scalability of our prototype, GAVS+, TuLiP, as
well as a simple fixed-point algorithm (using our automaton representation) on
a slightly modified and finite version of the game of Example 1. In this modified
game, the one-dimensional grid world consists of m cells, of which all but the
rightmost cell are safe. The movement of the robot is slight changed as well: the
environment can move the robot to the right or stay; the system can move the
robot to the left or stay, a move to the left, however, is only allowed on the first
� = �m

2 � cells. As a result, any winning set is a subset of the cells smaller or equal
than �. (In the case of TuLiP, we had to disallow Player 1 to stay for technical
reasons; however, this does not change the described properties of the game.)
Note that the number of states of the automata AV0 , AV1 , and AF increase when
m increases as the automata need to count (in unary) to track the position of the
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robot. Moreover, note that this game is hard for algorithms based on fixed-point
computations since a fixed point is reached no sooner than after at least � steps.

Fig. 2. Results of the scalability benchmark.

Figure 2 compares the runtimes of the various techniques for varying values
of m (the number of vertices of the resulting arena is roughly 2m). The RPNI
learner performed best and solved games up to m = 50 000 (about 100 000
vertices), while the SAT learner ranked second and solved game up to m =
30 000. TuLiP, GAVS+, and the fixed-point algorithm, which all work with the
complete, large arena (explicitly or symbolically), performed worse. The third-
ranked algorithm TuLiP, for instance, solved games only up to m = 10 000 and
was one order of magnitude slower than the RPNI learner. Though designed
for games over infinite arenas, these results demonstrate that our learning-based
techniques perform well even on games over large finite arenas.

7 Conclusion

We developed an automata learning method to construct finite-state reactive
controllers for systems whose interactions with their environment are modeled
by infinite-state games. We focused on the practically interesting family of safety
games, introduced a symbolic representation, developed specific implementations
of learners and a teacher, and demonstrated the feasibility of the method on a
set of problems motivated by robotic motion planning. Our experimental results
promise applicability to a wide array of practically interesting problems.

Acknowledgements. We thank Mohammed Alshiekh for his support with the exper-
iments. This work has been partly funded by the awards AFRL #FA8650-15-C-2546,
ONR #N000141310778, ARO #W911NF-15-1-0592, NSF #1550212, DARPA
#W911NF-16-1-0001, and NSF #1138994.



220 D. Neider and U. Topcu

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Bauer, S.S., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: A modal spec-
ification theory for components with data. Sci. Comput. Program. 83, 106–128
(2014)

3. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based
approach to solving games on infinite graphs. In: POPL 2014, pp. 221–234. ACM
(2014)

4. Biermann, A., Feldman, J.: On the synthesis of finite-state machines from samples
of their behavior. IEEE Trans. Comput. C–21(6), 592–597 (1972)
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Abstract. We consider the problem of reasoning about the probability
of assertion violations in straight-line, nonlinear computations involving
uncertain quantities modeled as random variables. Such computations
are quite common in many areas such as cyber-physical systems and
numerical computation. Our approach extends probabilistic affine forms,
an interval-based calculus for precisely tracking how the distribution of
a given program variable depends on uncertain inputs modeled as noise
symbols. We extend probabilistic affine forms using the precise tracking
of dependencies between noise symbols combined with the expectations
and higher order moments of the noise symbols. Next, we show how to
prove bounds on the probabilities that program variables take on specific
values by using concentration of measure inequalities. Thus, we enable
a new approach to this problem that explicitly avoids subdividing the
domain of inputs, as is commonly done in the related work. We illus-
trate the approach in this paper on a variety of challenging benchmark
examples, and thus study its applicability to uncertainty propagation.

1 Introduction

We consider the problem of propagating uncertainty through computation that
generates random numbers with known distributions on-the-fly, and computes a
variety of arithmetic operations on these numbers. Such computations are com-
mon in a wide variety of applications including systems biology, robotics, con-
trol theory and randomized algorithms. Reasoning about uncertainties involves
answering queries about the probabilities of assertions over the program vari-
ables, expectations of expressions, and more generally, characterizing the possible
probability distributions of program expressions, at the output. Often, the ran-
dom number generators draw values from simple distributions such as uniform
random, gaussian or exponential. However, as a result of nonlinear operations,
the resulting distributions can be quite complex.

In this work, we restrict our attention to straight line computations involving
random variables. In other words, the programs do not branch on the values
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 225–243, 2016.
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of the random variables involved. Nevertheless, such computations are surpris-
ingly common in many applications arising from controls, robotics and scientific
computation that can generate thousands of random variables. Currently, these
applications are beyond many of the existing approaches for reasoning about
probabilistic programs. Our approach combines the framework of probabilistic
affine forms introduced by Bouissou et al. [7] to represent program variables in
terms of interval linear expressions involving uncertain noise symbols, and con-
centration of measure inequalities in probability theory [13] to answer queries.
This approach has two main advantages: (a) probabilistic affine forms can be
used to rapidly approximate several nonlinear arithmetic operations including
trigonometric operations, and (b) the application of concentration of measure
inequalities yields valid probability bounds without the need to perform expen-
sive subdivisions of the set of support. In fact, in situations involving more than
a few tens of noise symbols, such a subdivision is prohibitively expensive.

The contributions of this paper include (a) we extend probabilistic affine
forms with precise tracking of the bounds on the expectations and higher-order
moments of these forms, (b) we propose the use of concentration of measure
inequalities to reason about the probabilities of queries over affine forms and (c)
we demonstrate our approach on many challenging examples involving nonlinear
arithmetic operations. Wherever possible, we also compare our approach with
the previous use of probabilistic affine forms without concentration of measure
inequalities [7]. The experimental evaluation in this paper allows us to draw two
main conclusions. (A) Probabilistic affine forms are seen to be quite efficient
even for nonlinear trigonometric and rational functions over random variables.
However, this is at the cost of information lost due to linear approximation of
nonlinear computations. (B) Concentration of measure inequalities can prove
bounds on the probabilities of rare events for large affine forms, quite efficiently.
Often, such bounds seem beyond the reach of related techniques. On the flip
side, the bounds may sometimes be too conservative due to the abstraction.

Related Work

Many approaches have focused on the problem of reasoning about uncertainties
as they propagate through computation. These include approaches from interval
arithmetic, polynomial chaos approximations, symbolic verification, and statis-
tical approaches.

IntervalArithmetic and ImpreciseProbabilities: Imprecise probability rep-
resentations describe sets of probability distributions. These are well-suited for
describing situationswhere some values, or events are knownnon-deterministically
(e.g. values in an interval), whereas others are known probabilistically. Tools from
this domain include P-boxes [17] and Dempster-Shafer structures [33]. These have
been used to propagate both probabilistic and non-deterministic information in
numerical simulation for instance, see also [8,18,21,30,37,38]. Arithmetic rules
for P-boxes have been studied [39] and implemented in toolboxes such as DSI,
INTLAB, and RiskCalc [3,16,31]. Our work builds on probabilistic affine forms
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proposed by Bouissou et al., wherein a variety of operators over these forms includ-
ing meet, join and widening operators are presented [2,7].

However, these approaches rely on an explicit, finite representation of prob-
ability bounds that requires us to decompose the joint domain of distributions
of these random variables. Such a decomposition rapidly becomes intractable
beyond a few tens of random variables. We partly tackle this issue in our app-
roach using concentration of measure inequalities, whose application does not
require a decomposition.

Polynomial chaos approximations express the output distributions as polyno-
mials over the input random variables [40]. However, these approximations also
suffer from the curse of dimensionality. Moreover, polynomial chaos approxima-
tions focus on estimating moments, but not necessarily on providing probability
bounds.

Formal Verification Approaches: Prism and related model checking tools
have revolutionized the problem of reasoning about finite state probabilistic
programs [25]. This has spurred interest in infinite state programs involving more
complex random variables with distributions such as gaussian and exponential.

Related approaches include probabilistic symbolic executions that extend
traditional symbolic execution over probabilistic programs and probabilistic
abstract interpretation. Probabilistic symbolic execution has been explored for
analyzing complex programs computing over random variables [4,19,32]. These
approaches rely on expensive volume approximation techniques either off the
shelf [12], or using domain decomposition [32]. Barring a few exceptions [4], they
are restricted to programs with linear assignments and conditionals. However,
recent work by Chistikov et al. has demonstrated a randomized approximation
to volume estimation that holds the promise of scaling to larger systems involv-
ing thousands of random variables [10]. However, that approach is currently
restricted to linear arithmetic SMT formulas. The ProbReach tool by Shmarov
et al. also provides precise probability bounds for nonlinear continuous-time sys-
tems, building on top of the dReach tool [35]. While capable of precise reasoning
for complex nonlinear systems, it relies on domain decomposition. In particular,
it is currently restricted to systems with uncertainties in initial parameters as
opposed to stochastic systems that are driven by noisy inputs. Similar ideas using
Taylor models have been investigated by Enszer et al. [15]. Finally, the work of
Abate et al. derives discrete Markov chain abstractions to compute probability
of reaching unsafe states in general stochastic Markov processes [1]. The dis-
cretization also involves a subdivision of the state space of these processes with
a finer subdivision providing better results. In contrast, our approach does not
subdivide the state or random variables. However, our approach depends inti-
mately on obtaining good bounds for expectations and higher-order moments
for noise symbols.

Abstract domains for probabilistic programs have been investigated by Mon-
niaux [29] and Cousot and Monereau [11]. Whereas our approach focuses on finite
computations, abstract interpretation typically excels in dealing with unbounded



228 O. Bouissou et al.

Fig. 1. Left: A probabilistic program capturing the final position of 2D robotic end
effector. Right: Scatter plot showing the final (x, y) values.

length computations wherein approximations such as join (see also [2]) and
widening provide the ability to generalize. Previous work by Chakarov et al.
also uses concentration of measure inequalities in this context to handle loops in
probabilistic programs [9].

Statistical Approaches: Finally, statistical approaches use hypothesis testing
to answer queries on uncertainties [24,41]. The main advantage lies in the ability
to handle quite complex systems through simulations. However, the disadvan-
tages often involve rare events, wherein the number of simulations required to
gain a given degree of statistical confidence is simply prohibitive. In such situ-
ations, techniques like importance sampling have been applied to minimize the
number of simulations [23]. However, statistical approaches provide guarantees
that are fundamentally different from ours. Also, with very few exceptions [26],
they do not attempt to represent the output distribution but simply answer
queries by examining the evidence from simulations. As such, very little work
has been undertaken to relate the two types of guarantees. A related approach
by Bernholt et al. [5], introduces an explicit uncertainty data type to reason
about uncertainty using Bayesian hypothesis testing. Therein, the main idea is
to use Bayes networks to represent the influence of random variables over pro-
gram variables and allow hypothesis testing techniques to enable programmers
to deal with this uncertainty in making decisions.

2 Motivating Example

Figure 1 shows an example probabilistic program that models the (x, y) position
of a simple 2D robotic end effector that starts close to the origin and whose series
of motions is specified by the list angles. The initial position is uncertain with a
truncated normal distribution centered at the origin and with given variance as
shown in lines 3, 4. At each iteration, the effector moves from its current position
(x, y) to x + dj cos(θj), y + dj sin(θi), wherein dj is distributed as a uniform
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random number in the interval [0.95, 1.05] (line 9, modeling the distance 1.0
with a 5% uniform error). Likewise, θi is given by multiplying angles (i) with a
truncated Gaussian random variable centered around 1 with variance 0.01 in the
interval [0.95, 1.05] (line 12). The position update is shown in lines 14 and 15.
We are interested in the probability that an assertion violation is triggered in
line 17.

A scatter plot (Fig. 1) of the values of (x, y) at the end of the computation are
shown. As noted, 105 simulations do not produce any violations of the property
x ≥ 272. In fact, the largest value of x seen in our simulations is around 271.
Therefore, we may rightfully conclude that it is “quite rare” to reach x ≥ 272.
On the other hand, using nondeterministic semantics for the random choices
concludes a potentially reachable range of x ∈ [210.5, 324.3]. We therefore, seek
to know bounds on the probability that the assertion is satisfied.

Affine Forms at Output: Our approach uses symbolic execution to track the
value of x at the output as a function of random variables called noise symbols.
The affine form for x is (partially) shown below:

x :
(

[268.78, 268.82] + [1, 1] ∗ y0 + [0.984, 0.985] ∗ y2 + [0.030, 0.031] ∗ y3 + [−1, −1] ∗ y4 + [0.030, 0.031] ∗ y5
+[−1, −1] ∗ y6 + [0.49, 0.51] ∗ y9 + [0.90, 0.91] ∗ y10 + [−1, −1] ∗ y11 + [0.90, 0.91] ∗ y12+

· · ·
[0.03, 0.031] ∗ y6892 + [−1, −1] ∗ y6893 + [1, 1] ∗ y6896 + [−1, −1] ∗ y6898 + [−1, −1] ∗ y6899

)
.

Here, each yi is a noise symbol with associated information concerning it’s
range, dependencies with other noise symbol, expectations and higher order
moments (e.g., the second moment). For instance, y0 corresponds to the trun-
cated Gaussian random variable in line 3. Using this affine form, we conclude
at the end of computation that the value of x has an expectation in the range
[265.9, 268.9] and variance in the range [0.17, 0.23]. This matches with the empir-
ical evidence gathered from 105 simulations. The time required for the affine form
was ∼ 15 s and comparable to 105 simulations in Matlab (∼ 20 s).

Reasoning with Affine Forms: Finally, we utilize a concentration of measure
inequality to obtain the guarantee P(x ≥ 272) ≤ 6.2 × 10−7 [13]. We note that
such bounds on rare events are often valuable, and hard to establish.

3 Probabilistic Affine Forms

In this section, we introduce probabilistic affine forms involving random vari-
ables known as noise symbols, and discuss the approximation of straight line
computations using these affine forms.

3.1 Random Variables, Expectations, Moments and Independence

Let R represent the real numbers and R = R ∪ {∞,−∞}. Univariate random
variables over reals are defined by a cumulative density function (CDF) F :
R �→ [0, 1], wherein F (−∞) = 0, F (∞) = 1 and F is a non-decreasing, right
continuous function with left limits. The value of F (t) represents the probability
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P(X ≤ t) for any t ∈ R. The CDF naturally extends to multivariate random
variables as well [14].

The expectation of a function g(X) for random variable X, denoted by
E(g(X)) is defined as the integral: E(g(X)) :

∫
D g(x )dF (x ). Here D, the domain

of integration, ranges over the set of support for the random variable X. The
expectation exists if the integral is well-defined and yields a finite value. An
important property of expectations is their linearity. Whenever the expecta-
tions exist, and are finite, we have E(

∑k
i=1 aigi(x )) =

∑k
i=1 aiE(gi(x )), for

constants a1, . . . , ak and functions g1, . . . , gk. Likewise, the kth moment for
k ≥ 1 for a random variable X is defined as E(Xk). Its variance is defined
as Var(X) : E((X − E(X))2).

A pair of random variables (X1,X2) are independent if and only if their
CDF F (x1, x2) can be decomposed as F (x1, x2) : F1(x1)F2(x2). Otherwise, the
random variables are called correlated. More generally, (X1, . . . , Xn) are pairwise
independent iff F (x1, . . . , xn) : F1(x1) · · · Fn(xn). If X1,X2 are independent then
it follows that E(g(X1)h(X2)) = E(g(X1))E(h(X2)).

We assume that random variables that we encounter in this paper are well-
behaved in the following sense: (a) Each random variable has a bounded set
of support. However, we present a simple trick to handle distributions such as
gaussians that have unbounded sets of support. (b) Expectations and higher
moments of the random variables are finite and computable. We recall useful
properties of expectations:

Lemma 1. Let X be a (univariate) random variable whose set of support is the
interval I ⊆ R. It follows that E(X) ∈ I.

Let X1,X2 be two random variables. The following inequality holds:

−
√
E(X2

1 )E(X2
2 ) ≤ E(X1X2) ≤

√
E(X2

1 )E(X2
2 ) .

The inequality above follows from the Cauchy-Schwarz inequality.

3.2 Environments and Affine Forms

Before introducing affine forms, we first define noise symbols and the data associ-
ated with these symbols. Let y : (y1, . . . , yn) represent a set of random variables
called noise symbols. Each noise symbol yj is associated with an interval of
support Ij , and a vector of moment intervals I(yj) = (I(1)j , . . . , I

(k)
j ), wherein

E(yl
j) ∈ I

(l)
j .

Note that in addition to storing estimates of E(yl
i), we may optionally store

moments of the form E(yiyj) for pairs yi, yj ∈ y for i �= j. This can also extend to
higher order moments of the form E(yl1

1 · · · yln
n ) for monomials. In this presenta-

tion, we restrict ourselves to (marginal) expectations of single random variables
of the form E(yl

j), using Lemma 1 to conservatively estimate missing moment
information.

Finally, our approach produced new noise symbols yj that are functions of
other noise symbols yj : f(yj1 , . . . , yjm). While we abstract away the function f ,
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we remember these functional dependencies as a directed (functional) dependence
graph G with vertices V : {y1, . . . , yn} and edges E ⊆ V × V wherein the edge
(yi, yj) signifies that the random variable yi : f(· · · , yj , · · · ) for some function
f . Clearly, if (yi, yj) ∈ E and (yj , yk) ∈ E we will also require (yi, yk) ∈ E. The
edge relation E is thus a transitive relation over y . For simplicity, we also add
all self-loops (yi, yi) ∈ E.

Definition 1 (Environment). An environment E : 〈y, I,M, G〉 is a collection
of noise symbols y : (y1, . . . , yn), the sets of support for each noise symbol I :
(I1, . . . , In), the moment intervals for each noise symbol M : (I(m1), . . . , I(mn))
and the directed functional dependence graph G.

Based on the functional dependence graph, we define the notion of indepen-
dence between random variables.

Definition 2 (Probabilistic Dependence). Noise symbols yi and yj are
probabilistically dependent random variables if there exists yk such that (yi, yk)
and (yj , yk) belong to the graph G. Otherwise, they represent independent random
variables.

The probabilistic dependence graph Ĝ is an undirected graph where an undi-
rected edge (yi, yj) exists in Ĝ iff there exists yk such that (yi, yk), (yj , yk) ∈ E
of G1.

An affine form is an interval-valued linear expression over noise symbols [7].

Definition 3 (Affine Form). An affine form f(y) is a linear expression f(y) :
a0 +

∑n
j=1 ajyj, with real 2 coefficients aj.

Example 1 (Environments and Affine Forms). Let us consider an environment
E with the noise symbols y1, y2, y3. Here, yj is a random variable over the set of
support Ij : [−j, j], for j = 1, 2, 3, respectively. The moment vectors containing
information up to the 4th moments are provided below:

E(yj) E(y2
j ) E(y3

j ) E(y4
j )

I(m1) : ([0, 0], [23 , 2
3 ], [0, 0], [ 25 , 2

5 ]) ← Moments for y1
I(m2) : ([0, 0.1], [1, 1.1], [−0.1, 0.1], [0.1, 0.2]) ← Moments for y2
I(m3) : ([−1, 0.2], [0.1, 1.2], [−0.5, 0.5], [1.1, 2.3]) ← Moments for y3

The graph with dependencies is shown below (without the self-loops):

y2 y1 y3

As a result, the variables y1, y3 are independent. But y1 and y2 are dependent.
The expression f1 : [−1, 2] + [3, 3.1]y1 + [1.9, 2.3]y2 + [−0.3,−0.1]y3 is an affine
form over y1, . . . , y3 in the environment E .
1 The functional dependence graph is akin to the points-to graph in programs, whereas

the probabilistic dependence graph is analogous to the alias graph.
2 In the implementation, these coefficients will be safely over-approximated either by

intervals of floating-point numbers, or by floating-point coefficients but with addi-
tional noise terms over-approximating the error.
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Semantics: We briefly sketch the semantics of environments and affine forms.
An environment E with noise symbols y : (y1, . . . , yn) corresponds to a set

of possible random vectors Y : (Y1, . . . , Yn) that conform to the following con-
straints: (a) (Y1, . . . , Yn) must range over the set of support I1 × · · · × In. They
cannot take on values outside this set. (b) The moment vectors lie in the appro-
priate ranges defined by E : (E(Yj), . . . ,E(Y k

j )) ∈ I(mj). (c) If noise symbols
yi, yj are independent according to the dependence graph G (Definition 2), the
corresponding random variables Yi, Yj are mutually independent. Otherwise,
they are “arbitrarily” correlated while respecting the range and moment con-
straints above. Semantically, an affine form f(y) : a0 +

∑n
i=1 aiyi represents a

set of linear expressions �f(y)� over y :

�f(y)� :=

{

r0 +
n∑

i=1

riYi | ri ∈ ai, (Y1, . . . , Yn) ∈ �E�

}

.

We now present the basic operations over affine forms including sums, differ-
ences, products and continuous (and k-times differentiable) functions over affine
forms.

Sums, Differences and Products: Let f1, f2 be affine forms in an environment
E given by f1 : a ty + a0 and f2 : bty + b0. We define the sum f1 ⊕ f2 to be the
affine form (a + b)ty + (a0 + b0).

Likewise, let λ be a real number. The affine form λf1 is given by (λa)ty+λa0.
We now define the product of two forms f1 ⊗ f2.

f1 ⊗ f2 : a0b0 + a0f2 + b0f1 + approx(
n∑

i=1

n∑

j=1

aiajyiyj) .

The product operation separates the affine and linear parts of this summation
from the nonlinear part that must be approximated to preserve the affine form.
To this end, we define a function approx that replaces the nonlinear terms by
a collection of fresh random variables. In particular, we add a fresh random
variable yij to approximate the product term yiyj .

Dependencies: We add the dependency edges (yij , yi) and (yij , yj) to the graph
G to denote the functional dependence of the fresh noise symbol on yi and yj .

Set of Support: The set of support for yij is the interval product of the set
of supports for yi, yj , respectively. In particular if i = j, we compute the set of
support for y2

i . Let Iij be the interval representing the set of support for yij .

Moments: The moments of yij are derived from those of yi and yj , as follows.
Case-1 (i = j). If i = j, we have that the E(yp

ij) = E(y2p
i ). Therefore, the even

moments of yi are taken to provide the moments for yij . However, since we
assume that only the first k moments of yi are available, we have that the first
k
2 moments of yij are available, in general. To fill in the remaining moments, we
approximate using intervals as follows: E(yr

ij) ∈ Ir
ij . While this approximation

is often crude, this is a tradeoff induced by our inability to store infinitely many
moments for the noise symbols.
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Case-2 (i �= j). If i �= j, we have that E(yp
ij) = E(yp

i yp
j ). If yi, yj form an inde-

pendent pair, this reduces back to E(yp
i )E(yp

j ). Thus, in this instance, we can
fill in all k moments directly as entry-wise products of the moments of yi and
yj . Otherwise, they are dependent, so we use the Cauchy-Schwarz inequality

(see Lemma 1): −
√
E(y2p

i )E(y2p
j ) ≤ E(yp

ij) ≤
√
E(y2p

i )E(y2p
j ), and the interval

approximation E(yp
ij) ∈ Ip

ij .

Continuous Functions: Let g(y) be a continuous and (m + 1)-times differen-
tiable function of y . The Taylor expansion of g around a point y0 allows us to
approximate g as a polynomial.

g(y) = g(y0) + Dg(y0)(y − y0) +
∑

2≤|α|1≤m

Dαg(y0)(y − y0)α

α!
+ Rm+1

g ,

wherein Dg denotes the vector of partial derivatives ( ∂g
∂yj

)j=1,...,n, α : (d1, . . . , dn)
ranges over all vector of indices where di ∈ N is a natural number, |α|1 :

∑n
i=1 di,

α! = d1!d2! · · · dn!, Dαg denotes the partial derivative ∂d1g···∂dng

∂y
d1
1 ···∂ydn

n

and (y −y0)α :
∏n

j=1(yj −y0,j)dj . Finally, Rm+1
g is an interval valued Lagrange remainder. Since

we have discussed sums and products of affine forms, the Taylor approximation
may be evaluated entirely using affine forms.

The remainder is handled using a fresh noise symbol y
(m+1)
g . Its set of support

is Rm+1
g and moments are estimated based on this interval. The newly added

noise symbol is functionally dependent on all variables y that appear in g(y).
These dependencies are added to the graph G.

The Taylor expansion allows us to approximate continuous functions includ-
ing rational functions and trigonometric functions of these random variables.

Example 2. We illustrate this by computing the sine of an affine form.
Let y1 be a noise symbol over the interval [−0.2, 0.2] with the moments
(0, [0.004, 0.006], 0, [6 × 10−5, 8 × 10−5], 0). We consider the form sin(y1). Using
a Taylor series expansion around y1 = 0, we obtain

sin(y1) = y1 − 1
3!

y3
1 + [−1.3 × 10−5, 1.4 × 10−5] .

We introduce a fresh variable y2 to replace y3
1 and a fresh variable y3 for the

remainder interval I3 : [−1.3 × 10−5, 1.4 × 10−5].

Dependence: We add the edges (y2, y1) and (y3, y1) to G.
Set of Support: I2 : [−0.008, 0.008] and I3 : [−1.3 × 10−5, 1.4 × 10−5].
Moments: E(y2) = E(y3

1) = 0. Further moments are computed using interval
arithmetic. The moment vector I(m2) is (0, [0, 64×10−6], [−512×10−9, 512×
10−9], . . .). For y3, the moment vector I(m3) : (I3, square(I3), cube(I3), . . .).

The resulting affine form for sin(y1) is [1, 1]y1 − [0.16, 0.17]y2 + [1, 1]y3.



234 O. Bouissou et al.

3.3 Approximating Computations Using Affine Forms

Having developed a calculus of affine forms, we may directly apply it to prop-
agate uncertainties across straight-line computations. Let X = {x1, . . . , xp}
be a set of program variables collectively written as x with an initial value
x 0. Our semantics consist of a tuple (E , η) wherein E is an environment and
η : X → AffineForms(E) maps each variable xi ∈ X to an affine form over E .

The initial environment E0 has no noise symbols and an empty dependence
graph. The initial mapping η0 associates each xi with the constant xi,0. The
basic operations are of two types: (a) assignment to a fresh random variable,
and (b) assignment to a function over existing variables.

Random Number Generation: This operation is of the form xi := rand(I,m),
wherein I denotes the set of support interval for the new random variable, and m
denotes a vector of moments for the generated random variable. The operational

rule is (E , η)
xi:=rand(I,m)−−−−−−−−−→ (E ′, η′), wherein the environment E ′ extends E by

a fresh random variable y whose set of support is given by I and moments by
m. The dependence graph is extended by adding a new node corresponding to y
but without any new edges since freshly generated random numbers are assumed
independent. However, if the newly generated random variable is dependent
on some previous symbols, such a dependency is also easily captured in our
framework.

Assignment: The assignment operation is of the form xi := g(x ), assigning xi

to a continuous and (j + 1)-times differentiable function g(x ). The operational

rule has the form (E , η)
xi:=g(x)−−−−−→ (E ′, η′). First, we compute an affine form fg

that approximates the function g(η(x1), . . . , η(xn)). Let Yg denote a set of fresh
symbols generated by this approximation with new dependence edges Eg. The
environment E ′ extends E with the addition of the new symbols Yg and and new
dependence edges Eg. The new map is η′ : η[xi �→ fg].

Let C be a computation defined by a sequence of random number generation
and assignment operations. Starting from the initial environment (E0, η0) and
applying the rules above, we obtain a final environment (E , η). However, our
main goal is to answer queries such as P(xj ∈ Ij) that seek the probability that
a particular variable xj belongs to an interval Ij . This directly translates to a
query involving the affine form η(xj) which may involve a prohibitively large
number of noise symbols that may be correlated according to the dependence
graph G.

4 Concentration of Measure Inequalities

We present the use of concentration of measure inequalities to bound probabil-
ities of the form P(f ≥ c) and P(f ≤ c). Let f be an affine form in an environ-
ment E .

There are numerous inequalities in probability theory that provide bounds
on the probability that a particular function of random variables deviates “far”
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from its expected value [13]. Let X1, . . . , Xn be a sequence of random variables
that may be pairwise independent or depend on each other according to a prob-
abilistic dependence graph Ĝ. Consider their sum X :

∑n
j=1 Xj and its expected

value E(X) :
∑n

j=1 E(Xj). Under numerous carefully stated conditions, the sum
“concentrates” around its average value so that the “tail” probabilities: the right
tail probability P(X−E(X) ≥ t) of the sum being t > 0 to the right of the expec-
tation, or the left “tail” probability P(X −E(X) ≤ −t) are bounded from above
and rapidly approach zero as t → ∞. We note that concentration of measure
inequalities provide valid bounds on large deviations. In other words, they are
more powerful than asymptotic convergence results, although they are typically
used to prove convergence. A large category of concentration of measure inequal-
ities conform to the sub-gaussian type below.

Definition 4 (Sub-Gaussian Concentration of Measure). Let X1, . . . , Xn

be a set of random variables wherein each Xi has a compact set of support in
the interval [ai, bi]. A sub-gaussian type concentration of measure inequality is
specified by two parts: (a) a condition Ψ on the dependence structure between
the random variables Xi, and (b) a constant c > 0. The inequality itself has the
following form for any t ≥ 0,

P(X − E(X) ≥ t) ≤ exp

(
−t2

c
∑n

j=1(bi − ai)2

)

.

The expression for the left tail probability is derived identically.

In general, many forms of these inequalities exist under various assumptions.
We focus on two important inequalities that will be used here.
Chernoff-Hoeffding: The condition Ψ states that X1, . . . , Xn are independent.
Alternatively, the probabilistic dependence graph Ĝ does not have any edges. In
this situation, the inequality applies with a constant c = 1

2 .
Chromatic Number-Based: Janson generalizes the Chernoff-Hoeffding inequality
using the chromatic number of the graph Ĝ [22]. Let χ(Ĝ) be an upper bound on
the minimum number of colors required to color Ĝ (i.e., it’s chromatic number).
The condition Ψ states that the random variables depend according to Ĝ. In this
situation, the inequality applies with a constant c = χ(Ĝ)

2 . For the independent
case, χ(Ĝ) = 1 and thus, Chernoff-Hoeffding bounds are generalized.

The sub-gaussian bounds depend on the range [ai, bi] of the individual ran-
dom variables. Often, the variance σ2

i of each random variable is significantly
smaller. In such situations, the Bernstein inequality provides useful bounds.

Theorem 1 (Bernstein Inequality). Let X1, . . . , Xn be independent random
variables such that (a) there exists a constant M > 0 such that |Xi−E(Xi)| ≤ M
for each i ∈ [1, n], and (b) the variance of each Xi is σ2

i . For any t ≥ 0:

P(X − E(X) ≥ t) ≤ exp
( −t2

2
∑n

i=1 σ2
i + 2

3Mt

)

For the left tail probability, we may derive an identical bound.
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We now illustrate how these inequalities can be used for the motivating exam-
ple from Sect. 2. Let E be an environment and f(y) : a0 +

∑n
i=1 aiyi be an affine

form involving noise symbols y .

Chromatic Number-Based Inequality: The application of Janson’s depen-
dent random variable inequality requires the following pieces of information: (a)
An upper bound on the chromatic number of the graph χ(Ĝ). While the precise
chromatic number is often hard to compute, it is often easy to estimate upper
bounds. For instance, χ(Ĝ) ≤ 1 + Δ wherein Δ is the maximum degree of any
node in Ĝ. (b) We compute the expectation IE : E(f(y)) by summing up the
expectations of the individual terms. (c) Next, for each term aiyi, we compute
its set of support [ci, di] := aiIi wherein Ii is the range of the noise symbol yi in
E . Specifically, we calculate C :

∑n
i=1(di − ci)2.

Since the expectation IE is an interval, we apply the concentration of measure
inequality using the upper bound of IE for right tail inequalities and the lower
bound for the left tail inequalities.

Example 3. Continuing the affine form in the 2D robotic effector model in Fig. 1,
we compute the relevant constants to enable our application of the dependent
random variable inequality.

The chromatic number χ(Ĝ) ≤ 4. The sum C :
∑n

i=1(di − ci)2 was calcu-
lated as 12.2642. The expectation lies in the range [265.9, 268.9]. Combining, we
obtain the concentration of measure inequalities: P(f ≥ 268.9+ t) ≤ exp

(
−t2

24.53

)

Similarly, P(f ≤ 265.9 − t) ≤ exp
(

−t2

24.53

)
.

f ≤ 220 f ≤ 235 f ≤ 250 f ≤ 260 f ≥ 275 f ≥ 285 f ≥ 295 f ≥ 310
4.2E−35 1.2E−13 5E−5 0.48 0.21 2.2E−7 7E−13 9.2E−31

Applying Chernoff-Hoeffding and Bernstein Inequalities: The Bernstein
inequality and Chernoff-Hoeffding bounds require independence of the random
variables in the summation. However, the noise symbols involved in f(y) may
be dependent.

Suppose we compute the maximal strongly connected components (MSCC)
of the graph Ĝ. Note that symbols that belong to different MSCCs are mutually
independent. As a result, we decompose a given affine form f(y) into inde-
pendent clusters as f(y) : f1(y1) + · · · + fk(yk). Each cluster corresponds to
an affine form fj(y j) over noise symbols y j involved in the jth MSCC of Ĝ.
Note that each fi itself will be independent of fk for k �= i. Thus, we may
apply the Chernoff-Hoeffding bounds or the Bernstein inequality by treating
each fj(y j) as a summand. Let [
j , uj ] represent the set of support for each
cluster affine form fj(y j). To apply the Chernoff-Hoeffding bounds, we compute
C :

∑k
j=1(uj − 
j)2.

To apply the Bernstein inequality, we collect the information on the variance
σ2

j of each fj and compute M as maxn
j=1 (|uj − E(fj)|). The environment E

tracks the required information to compute σ2 :
∑n

j=1 σ2
j and M , respectively.
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Since the variance is estimated over an interval, when we apply the Bernstein
inequality, we always use the upper bound on σ2.

Example 4. We illustrate our ideas on the example from Fig. 1. For Chernoff-
Hoeffding bounds, the original form with nearly 6900 variables yields about
3000 clusters. The value of C is 17.027. Combining, we obtain the concentration
of measure inequalities: P(f ≥ 268.9 + t) ≤ exp

(
−t2

8.5138

)
for the right tail and

P(f ≤ 265.9 − t) ≤ exp
(

−t2

8.5138

)
for the left tail. This yields much improved

bounds when compared to the bounds in Example 3.

f ≤ 220 f ≤ 235 f ≤ 250 f ≤ 260 f ≥ 275 f ≥ 285 f ≥ 295 f ≥ 310
2.5E−108 2E−49 1.1E−13 0.016 0.21 4E−14 1E − 35 3E−87

Applying the Bernstein inequality, we note that σ2 ∈ [0.1699985951,
0.2292648934] and M = max(|fi − E(fi)|) = 0.1035521711.

f ≤ 220 f ≤ 235 f ≤ 250 f ≤ 260 f ≥ 275 f ≥ 285 f ≥ 295
5E−253 9E−161 2.6E−71 4E−18 4.2E−19 1.8E−72 2E−223

In particular, we obtain the result in Sect. 2: P(X ≥ 272) ≤ 6.2E−7.

Finally, it is sometimes seen that the value of M in Bernstein inequality is
large but the value of σ2 lies inside a small range. In such a situation, Chebyshev
inequalities are easy to apply and prove tight bounds.

Theorem 2 (Chebyshev-Cantelli Inequality). For any random variable X,
P(X −E(X) ≥ kσ) ≤ 1

1+k2 . A similar inequality holds for the right tail, as well.

Handling Unbounded Random Variables: Finally, we mention a simple
trick that allows us to bound random variables with distributions such as the
normal or the exponential.

Suppose the truncated Gaussian distributions in lines 3, 4 and 12 of the pro-
gram in Fig. 1 are all replaced by normal random variables. The concentration
of measure inequalities no longer apply directly. However, for most distribu-
tions the probability of a large deviation from the mean is easily computed. For
instance, it is known that for a normally distributed variable X with mean μ
and standard deviation σ, P(|X − μ| ≥ 5σ) ≤ 6 × 10−7. Therefore, we simply
truncate the domain of each such random variable to [μ−5σ, μ+5σ] and simply
add 6K × 10−7 to any probability upper bound, wherein K is the number of
times a Gaussian random variable is generated. Similar bounds can be obtained
for other common distribution types. Even if the distribution is not known but
its mean and variance are provided, a weaker Chebyshev inequality bound can
be derived: P(|X − μ| ≥ kσ) ≤ 1

k2 .
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Example 5. If the random variable in line 12 of Fig. 1 were a normally distributed
variable with σ = 0.01, we note that 1500 such variables are generated during
the computation. The result from Example 4 is updated as P(X ≥ 272) ≤
6.2 × 10−7 + 1500 × 6 × 10−7 ≤ 9.0062 × 10−4.

5 Experiments

In this section, we report on an experimental evaluation of our ideas and a
comparison the p-box based implementation of Bouissou et al. [7], wherever
possible.

Implementation: Our prototype analyzer is built as a data-type in C++ on
top of the boost interval arithmetic library with overloaded operators that make
it easy to carry out sequences of computations. Our implementation includes
support for nonlinear trigonometric operators such as sine and cosine. It tracks
the expectation and second moments of noise symbols. Currently, we do not
explicitly account for floating point/round off errors. However, as future work,
we will integrate our work inside the Fluctuat analysis tool that has a sophis-
ticated model of floating point errors [20]. The dependency G and probabilistic
dependency Ĝ graphs are maintained exactly as described in Sect. 3. All concen-
tration of measure inequalities presented in Sect. 4 have been implemented.

Table 1 reports on the results from our prototype on a collection of inter-
esting examples taken from related work : Ferson [2], Filter [2], Tank [2],
CartPole [36], Tumor [6], RmlsWhl [36], Anesthesia [28] as well as new
examples for this domain: DblWell, Euler, Arm2D, Steering. We present
for each example, the number of instructions including the random variables

Table 1. Experimental results at a glance: †: indicates a nonlinear example, #ins: total
number of instructions, #rv: random variable generator calls, n: number of noise sym-
bols, Taff : Time (seconds) to generate affine form, Tcmi: Time (seconds) to perform
concentration of measure inequality, χ: Chromatic number of the probabilistic depen-
dence graph Ĝ, #scc: number of strongly connected components, Jan.: Jansen 2004,
c-h.: Chernoff-Hoeffding, Bern.: Bernstein inequality, Cheb. Chebyshev inequality.

ID #ins #rv n Taff Tcmi χ #scc End of Range Probability

jan. c-h. bern. cheb.

Ferson † 20 2 20 <0.1 <0.1 19 2 0.95 0.55 0.78 1

Filter 182 32 32 <0.1 <0.1 1 32 0.2 0.2 0.1 0.1

Tank 78 52 52 <0.1 <0.1 1 52 5E-12 5E-12 5E-21 1E-4

CartPole † 180 40 164 0.2 <0.1 92 71 0.94 0.30 0.09 2.5E-4

Tumor † 400 100 200 2.7 0.1 200 1 0.94 0.65 0.31 0.05

DblWell† 400 100 200 <0.1 <0.1 99 102 0.95 0.63 0.43 0.34

Euler 3K 1K 1K 2.7 0.1 1 1K 1E-217 1E-217 3E-620 1E-8

Arm2D† 4K 2K 6.9K 5.8 9.5 5 3.1K 3E-44 3E-160 1.1E-309 1E-4

RmlsWhl † 6K 2K 3K 7.4 2.7 3 1K 0.32 0.07 0.02 0.03

Steering† 11.3K 45 4.5K 3 22 2.9K 1.5K 0.993 0.599 0.224 0.016

Anesthesia 22.4K 5.6K 5.6K 438.2 12.2 1 5.6K 9E-19 9E-19 3E-26 0.006
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involved. Note that for all but one example (Ferson), this number ranges from
many tens of random variables to many thousands. We also report on the num-
ber of noise symbols involved in our affine forms. Finally, the times to derive
the affine form and analyze it using concentration of measure inequalities (CMI)
are reported. To evaluate the performance of various CMIs at a single glance,
we simply compare the probability bounds that each CMI provides for the affine
form taking a value past its upper or lower bound. This probability should ide-
ally be zero, but most CMIs will ideally report a small value close to 0. We note
that Bernstein inequality is by far the most successful, thanks to our careful
tracking of higher order moments as part of the affine form. The overestima-
tion of chromatic number makes the Jansen inequality much less effective than
Chernoff-Hoeffding bounds. However, for the steering and tumor examples,
we find that CMIs do not yield bounds close to zero, whereas we still obtain
small bounds through Chebyshev inequality. We now highlight a few examples,
briefly. A detailed description of each benchmark is provided in the Appendix.

Comparison with p-Boxes: We directly compared our approach with the
previous work of Adjé et al. on three reported examples: ferson, tank and
filter [2]. At this stage, we could not handle any of the other examples using
that prototype.

The ferson example uses a large degree 5 polynomial p(θ1, θ2) over two
random variables θ1, θ2. In this example, Adjé et al. obtain a much smaller range
of [1.12, 1.17] for p due to the subdivisions of the domain of θ1, θ2. In contrast, our
tool reports a range of [1.05, 1.21]. Our approach produces a relatively narrow
bound on the expectation of p and is able to conclude that P(p ≤ 1.13) ≤ 0.5.
However, they report a much more precise bound of 0.05 for the same probability.
This suggests that subdividing random variables can indeed provide us more
precision. In contrast, our running time is roughly 0.01 s while Bouissou et al.
report a running time of nearly 100 s.

The tank example considers the process of filling a tank using noisy tap and
measurement devices. In this example, Adjé et al. bound the probability that
the tank does not fill within 20 iterations as 0.63. In fact, our approach bounds
the same probability by 0.5. Likewise, they incorrectly report that the tank will
always fill within 26 iterations. Our approach correctly proves a bound of at
most 10−6 on the probability that the tank is not full. A simple calculation also
reveals that this probability is tiny but non-zero.

Finally, we compare the filter example wherein the affine form is obtained as a
linear combination of independent random variables. Bouissou et al. [7] analyze
the same example and report probability bounds for the assertion y ≤ −1 as
P(y ≤ −1) ≤ 0.16. Our approach on the other hand finds a bound of 0.5 for
the same assertion. The difference here is a pitfall of using concentration of
measure inequalities which ignore characteristics of the underlying distributions
of the noise symbol. Our approach is quite fast taking less than 0.01 s whereas
depending on the number of subdivisions, Bouissou et al. report between 1 s to
5 min.
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We now consider models that could not be attempted by the P-Box imple-
mentation.

Anesthesia Model: The anesthesia model consists of a four chamber phar-
macokinetic model of the anesthetic fentanyl that is administered to a surgical
patient using an infusion pump [28]. This model is widely used as part of auto-
mated anesthesia delivery systems [34]. As part of this process, we model an
erroneous infusion that results in varying amounts of anesthesia infused over
time as truncated gaussian random noise. The target state variable x4 mea-
sures the concentration of anesthesia in the blood plasma. The goal is to check
the probability that the infusion errors result either in too much anesthesia
x4 ≥ 300ng/mL potentially causing loss of breathing or too little anesthesia
x4 ≤ 150ng/mL causing consciousness during surgery. Our approach bounds
the probability P(x4 ≥ 300) ≤ 7 × 10−13 and P(x4 ≤ 150) ≤ 10−23. These
bounds guarantee that small infusion errors alone have a very small probability
of causing safety violations.

Tumor Model: We examine a stochastic model of tumor growth with immu-
nization [6]:

xn+1 = xn + δ(axn − (b0 +
β

1 + x2
)x2 + xwn) ,

where xn denotes the fraction of tumor cells at time t = nδ. We use a = b0 = β =
1 and w as a truncated normal random variable with mean 0, variance σ2 = δ
and range [−10σ, 10σ]. We ask for the probability that x100 ≥ 0.6, and obtain
a Chebyshev inequality bound P(x100 ≥ 0.6) ≤ 0.405. Note that, the structure
of the model leads to a situation wherein all noise symbols in our final form end
up depending on each other.

Rimless Wheel Model: The rimless wheel model, taken from Tedrake
et al. [36], models a wheel with spokes but no rims rolling down a slope.
Such models are used as human gait models in robotics. Details of the model
are given in the appendix. As part of this model, we wish to verify whether
P (x1000 ≤ 0) ≤ 0.5. Our approach proves a bound of 0.07 on this probability,
verifying the property.

6 Conclusion and Future Work

Thus far, we have presented a tractable method for answering queries on proba-
bilities of assertions over program variables, using a combination of set-based
methods (affine forms), moment propagation and concentration of measure
inequalities. We showed that this method often yields precise results in a very
(time and space) efficient manner, especially when tracking rare events. However,
we also documented failures of this approach on some examples.

As part of the future work, we are considering extensions to programs with
conditional branches and the use of concentration of measure inequalities on
higher order moments. We are exploring possible improvements to our approach
using the so-called “moment problem” [27].
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Abstract. Controller synthesis for stochastic hybrid switched systems,
like e.g. a floor heating system in a house, is a complex computational
task that cannot be solved by an exhaustive search though all the con-
trol options. The state-space to be explored is in general uncountable
due to the presence of continuous variables (e.g. temperature readings in
the different rooms) and even after digitization, the state-space remains
huge and cannot be fully explored. We suggest a general and scalable
methodology for controller synthesis for such systems. Instead of off-line
synthesis of a controller for all possible input temperatures and an arbi-
trary time horizon, we propose an on-line synthesis methodology, where
we periodically compute the controller only for the near future based on
the current sensor readings. This computation is itself done by employing
machine learning in order to avoid enumeration of the whole state-space.
For additional scalability we propose and apply a compositional synthesis
approach. Finally, we demonstrate the applicability of the methodology
to a concrete floor heating system of a real family house.

1 Introduction

Home automation includes the centralized control of a number of functionalities
in a house such as lighting, HVAC (heating, ventilation and air conditioning),
appliances, security locks of gates and doors as well as other systems. The overall
goal is to achieve improved convenience, comfort, energy efficiency as well as
security. The popularity of home automation has increased significantly in recent
years through affordable smartphone and tablet connectivity. Also the emergence
of “Internet of Things” has tied in closely with the popularization of home
automation. In particular, several devices may be connected through a home
network to allow control by a personal computer, and may allow remote access
from the internet.

The connectivity in the home enables new, intelligent and personalized con-
trol strategies or (and across) activities in the house. One novel approach which
is being developed and applied in the on-going EU FP7 project CASSTING1

is that of game theory. Empowered with efficient techniques and tools, game

1 www.cassting-project.eu.
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theory comes with the promise of automatic synthesis of improved, optimal and
personalized control strategies produced on demand by the user herself. In fact,
the tool Uppaal Tiga has already been successfully2 applied to user-directed
and user-demanded synthesis of control strategies for lighting in a house, and
been implemented in a complete tool-chain on a Raspberry Pi [12].

Within the CASSTING project, we collaborate with the Danish company
Seluxit3 offering complete home automation solutions. The focus is on the floor-
heating system of a family house, where each room of the house has its own
hot-water pipe circuit. These are controlled through a number of valves based on
information about room temperatures communicated wirelessly (periodically due
to energy considerations) from a number of temperature sensors. In the present
system, a simple “Bang-Bang”-like strategy is applied. There are though several
problems with this strategy, as experienced by the house owner: it completely
disregards the interaction between rooms in terms of heat-exchange, the impact
of the outside temperature and weather forecast as well as information about
movements in the house. Taking this knowledge into account should potentially
enable the synthesis of significantly improved control strategies.

For the control synthesis of the lighting system, timed games and Uppaal
Tiga proved sufficient. However, in order to control a floor-heating system, we
must take into account continuous (temperature) as well as stochastic aspects
(outside temperature, movements). Hence we need to be able to (efficiently)
synthesize strategies for stochastic hybrid games.

A promising starting point is the recent branch Uppaal-Stratego [5,6],
which allows for the synthesis of safe and near-optimal strategies for stochas-
tic timed games using a combination of symbolic synthesis and reinforcement
learning. The tool has recently been extended to stochastic hybrid games with a
successful application to the synthesis of strategies for battery aware scheduling
problems [14] as well as safe and optimal adaptive cruise controllers for cars [9].

Facing the floor heating case study of CASSTING, direct application of
Uppaal-Stratego does not scale: due to the enormous number of control
modes it is virtually impossible to learn optimal control. Instead, we propose a
novel on-line synthesis methodology, where we periodically—and on-line—learn
the optimal controller for the near future based on the current sensor readings.
For additional scalability, we propose and apply a novel compositional synthesis
approach. As we shall see this combination allows us to significantly improve
upon the currently applied “Bang-Bang” control strategy.

Related Work. In [10,11] a method and tool (PESSOA) is presented for synthe-
sizing controllers for cyber-physical systems, represented by a set of smooth
differential equations and automata given a specification in a fragment of
Linear Temporal Logic (LTL). In [8] a class of hybrid systems that involve
random phenomena, in addition to discrete and continuous behaviour are con-
sidered, and abstraction techniques are presented and applied to the synthesis
of controllers. In [13] the authors provide an abstraction-refinement method for
2 [12] won the Embedded Thesis Award 2014 of the Federation of Danish Industry.
3 www.seluxit.com.

www.seluxit.com
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synthesis of controllers for discrete, stochastic dynamical systems with respect
to LTL objectives. In [7] a number of benchmarks for hybrid system verification
has been proposed, including a room heating benchmark. In [3] Uppaal SMC
was applied to the performance evaluation of several strategies proposed in the
benchmark. In [4] a combination of Uppaal SMC with ANOVA has been made
for efficient identification of optimal parameters of the various control strategies.

Our online approach may be seen as an instance of model predictive control or
receding time horizon control for hybrid systems (see e.g. [2]) where the optimal
solutions are already very expensive to compute. We tackle even a more gen-
eral class of systems (including stochasticity in particular) and apply a learning
heuristic that is cheaper on the cost but does not guarantee optimality.

The main novelty of our work, compared to the previous research, is that we
address an industrial-size case with its full complexity, where the already studied
methods and approaches do not scale. It is the combination of online learning
approach, employment of the very recent tool support and the compositional
approach that allowed us to significantly improve upon the performance of the
current controller used for the floor heating system in the existing house.

2 Switched Control Synthesis

We use a one-room heating control problem as a running example to demonstrate
our techniques in a simple setting: we model the problem, explain the necessary
theory behind the model, show how the model fits the theory and show how
Uppaal Stratego can be used to solve the problem.

The one-room system consists of a room with walls, a window, heater and its
controller. The objective of the controller is to maintain the room temperature
at the goal level (21 ◦C). Due to temperature sensor energy considerations the
controller receives temperature readings only once every 15 min and then it has
two options: either to turn the heater on (mode “HeatOn”) and keep it there or
switch the heater off (mode “HeatOff”). Consequently the temperature evolution
will be different in these modes due to different energy supply from the heater.
There is also a continuous leak of energy through the walls and the window to
the outside environment. In short, the temperature dynamics can be described
by the following differential equation:

d

dt
T (t) =

(
Te(t) − T (t)

) · A(t) + H(t)

where T (t) is the room temperature at time t, Te(t) is the outdoor temperature,
A(t) is the heat exchange factor specific to the walls and windows, and H(t) is
the power of the heater.

Figure 1b shows such differential equation with heater step functions mod-
elled in Uppaal Stratego as hybrid automaton with two discrete modes. The
continuous dynamics of T (t) is typeset as an invariant constraint over the clock
variable T derivative under the respective modes. The periodic behaviour of the
controller is enforced by the invariant x<=P and guard x==P over clock x with
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Fig. 1. Uppaal Stratego model of one room with one window

default derivative of 1. For the sake of simplicity, we assume static outdoor tem-
perature fixed to a specific value and modelled by the constant floating point
variable Te. All model variables (their types and initial values) are declared as
C structures in Fig. 1a. The window step function A(t) is modelled in Fig. 1c
as stochastic automaton with transitions between “Open” and “Closed” modes
and changing the floating point variable A. Thus the window process can change
the value of A discretely between values Aclosed and Aopen at any moment with
uniform probability distribution over time, but only at intervals specified by a
user profile. The profile is stored in arrays closedL/U and openL/U denoting
the lower and upper bounds of time intervals when the switch may happen. For
example, one can read the profile arrays by columns: the window starts and
stays closed during the night time, but it will open somewhere between 6 and 7
o’clock in the morning and close between 7 and 8 o’clock, then it will open again
between 11 and 12, and close between 12 and 13, etc.

The whole system model is then a composition of the controlled heating
process with the stochastic window process where temperature depends on the
heating mode and the mode of the window. We use stochastic hybrid game to
describe the controller synthesis formally.

Definition 1 (Stochastic Hybrid Game). A stochastic hybrid game G is a
tuple (C,U ,X,F , δ) where:

1. C is a controller with a finite set of (controllable) modes C,
2. U is the environment with a finite set of (uncontrollable) modes U ,
3. X = {x1, . . . , xn} is a finite set of continuous (real-valued) variables,
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4. for each c ∈ C and u ∈ U , Fc,u : R>0 × R
X → R

X is the flow-function that
describes the evolution of the continuous variables over time in the combined
mode (c, u), and

5. δ is a family of density functions, δγ : R≥0 × U → R≥0, where γ = (c, u, v) ∈
C × U × R

X . More precisely, δγ(τ, u′) is the density that U in the global
configuration γ = (c, u, v) will change to the uncontrollable mode u′ after a
delay of τ4.

We shall assume that among the continuous variables X, there is a variable
time measuring global time, i.e. Fc,u(τ, v)(time) = v(time) + τ for any mode-
configuration (c, u). In the above definition, the syntactic specification of flow
functions—e.g. using ODEs—has been left open. In the game G, the controller
C will only be permitted to change controllable mode at time-points being a
multiple of some given period P (hence the term switched control). In contrast,
the environment U will change its uncontrollable mode according to the family
of density functions δγ .

Example 1. In our one-room example, the controllable modes are HeatOff and
HeatOn with controllable transitions (using solid lines) between them, the uncon-
trollable are Open and Closed with uncontrollable transitions (using dashed
lines). We also have a number of continuous variables: temperature T and clocks
t, x and w. The differential equations together with discretely changing variables
are part of the flow-function definition. �

Now let C denote the set of global configurations C × U × R
X of the game

G. Then a (memoryless) strategy σ for the controller C is a function σ : C →
C, i.e. given the current configuration γ = (c, u, v), the expression σ(γ) is the
controllable mode to be used in the next period.

Let γ = (c, u, v) and γ′ = (c′, u′, v′). We write γ
τ→ γ′ in case c′ = c, u′ = u

and v′ = F(c,u)(τ, v). We write γ
τ→u γ′ in case c′ = c, v′ = F(c,u)(τ, v) and

δγ(τ, u′) > 0. Let σ : C → C be a (memoryless) strategy. Consider an interleaved
sequence π of configurations and relative time-delays of the form:

π = γo :: τ1 :: γ1 :: τ2 :: γ2 :: τ3 :: γ3 · · ·
where γi = (ci, ui, vi), τi ∈ R≥0 and for all n there exist i st.

∑
j≤i τj = n · P .

Then π is a run according to the strategy σ if for all i either γi
τi+1→ u γi+1 or

∑
j≤i+1 τj is a multiple of P and γi

τi+1→ (ci, ui, vi+1) with ci+1 = σ((ci, ui, vi+1))
and ui+1 = ui.

In fact, under a given strategy σ the game G becomes a completely stochastic
process G � σ, inducing a probability measure on sets of runs. Thus, if H ∈ N is
a given time-horizon, and D is a random variable on runs—e.g. measuring the
integrated deviation of the continuous variables wrt. given target values—then
E

G,γ
σ,H(D) ∈ R≥0 is the expected value of D with respect to random runs of G � σ

of length H starting in the configuration γ. We want to obtain a strategy σH

which minimizes (or maximizes) this expected value.
4 Note that

∑
u′
∫

τ
δ(c,u,v)(τ, u′)dτ = 1 for all (c, u, v).
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Example 2. The one-room controller’s goal is to keep the room temperature as
close as possible to the goal set point, therefore a desired controller would min-
imize the absolute difference T (t) − Tg. In order to encourage the minimization
even more we use a quadratic difference function to measure the distance between
the room T and the goal Tg temperatures, and then integrate it to achieve a dis-
tance function over complete trajectories. Conveniently, our distance function
is modelled using differential equation in Fig. 1d as a separate process. Before
we synthesize anything, we can inspect how does a uniform random choice fare
in Fig. 2a: the temperature curve is at the top and heating and window mode
trajectories are below and they jump up when the heating is on and window
is open respectively. The result is that the room temperature responds to the
mode changes and varies widely, tending to overshoot above the goal, and hence
the distance function after 24 h period is about 4200 on average. In order to
synthesize a strategy we pose the following query in Uppaal Stratego:

strategy opt = minE (D) [<=24*h]: <> t==24*h

which asks to find the strategy that will minimize the expected value of D when
we reach a state with t==24*h while considering simulations of up to 24*h in
duration. Once the strategy is available, we may inspect it by requesting a sim-
ulation plot:

simulate 1 [<=24*h] {T,Window.Open+14,Room.HeatOn+16} under opt

For example, the synthesized 24 h strategy using the “naive” learning method
yields the distance of 2750 on average as shown in Fig. 2b. The result is even more
improved by the “splitting” learning method in Fig. 2c where the temperature
oscillates around the goal very closely. �

Uppaal Stratego offers four learning methods focusing on various parts
of the model, therefore we consider the quality and the cost of each method
before we focus on our industrial-scale example. Table 1 shows a summary of the
evaluation of various methods on two variants of a one-room example: the purely
dynamical model is shown in Fig. 1 and another one that has an extra counter
incremented at each period P. The result is that among the offline methods
(discussed so far) the “splitting” method provides the smallest distance solution,
however it is costlier than others in CPU time and memory. The right side Table 1
shows that if we add a period counter to our model, then other methods dominate
and the “splitting” method is no longer as good and the “naive” computation
costs significantly less. Offline-6 section (strategy for six days) requires twice as
many resources as offline-3 (strategy for three days) which means that a linear
number of resources is needed in terms of duration of the strategy while using
the same number of runs, but the quality (distance) degraded almost four times
with a period counter.

2.1 Online Synthesis

Uppaal Stratego [5,6] provides a method for approximating E
G,γ
σ,H(D) ∈

R≥0 by computing a near-optimal strategy σH for a given horizon H using
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Fig. 2. One-room 24 h trajectories of various control strategies

reinforcement learning. However, the effort needed to learn the strategy σH

with a desired precision and confidence-level grows exponentially in the number
of dimensions (variables). The quality of the learned control degrades sharply
after the control options outnumber the number of simulation runs during learn-
ing, making this direct application of Uppaal Stratego limited in the time
horizon. For instance, given a realistic setting of eleven heating switches as con-
sidered in our case study, the controller is faced with 211 = 2048 distinct options
at each 15 min period and thus Uppaal Stratego manages to compute sensible
heating configurations only for the first two periods (yielding 20482 = 4194304
combinations in total) and then it simply resolves to default option of no heating
at all.

Instead of learning—at great computational expense—the entire strategy σH ,
we propose a method for attentively and online (i.e. while playing the game G
in the real setting) to compute a near-optimal strategy for controllable mode-
change at the next period. More precisely, the resulting online and periodic
strategy σO will base the mode-change at time n·P not only on the configuration
at that point (γn) but also on the configuration (γn−1) at time (n−1) ·P 5, which
will be used as the basis for online learning of short-horizon (h << H) strategies.
Formally:

σO(γn−1, γn) =def let
(
σh = argminσE

G,γn−1
σ,h (D)

)
in σh(γn) .

5 Note that there may be several configurations between γn−1 and γn due to the
environment U changing the uncontrollable mode.



Online and Compositional Learning of Controllers 251

Table 1. Performance evaluation of one room controller synthesis: offline-3(-6) methods
synthesize strategy for entire 72 h (144 h respectively) at once, strategy distance is
evaluated on 70 simulations; online-3 methods synthesize a strategy for 5 periods of
15 min ahead and repeat synthesis and execution until 72 h are covered, the distance
is averaged over 70 online simulations.

Synthesis Purely dynamical model Extra period counter
method Distance cpu,s mem,kB Distance cpu,s mem,kB

O
ffl

in
e
-3 naive 10227.8 1555.15 11884 3671.84 566.04 9448

splitting 517.9 1640.06 13424 2361.80 1608.48 90740
covariance 10227.8 1298.66 11896 1091.81 1668.45 22820
regression 10227.8 1368.34 11480 1387.84 1767.50 19196

O
ffl

in
e
-6 naive 19668.7 1855.36 11836 8032.86 1316.08 20820

splitting 593.7 3200.38 13112 8260.19 3120.03 167308
covariance 20234.3 2039.30 11528 2468.91 3258.09 39580
regression 19007.2 2525.13 12148 3425.62 3488.26 28416

O
n
li
n
e
-3 naive 584.7±1.0 1046.5±5.0 7240 526.6±0.5 1227.1±3.2 7328

splitting 547.7±0.6 1136.4±3.6 7384 526.1±0.6 1240.8±2.5 7384
covariance 587.5±1.2 1084.0±3.9 7272 527.1±0.6 1158.5±2.5 7624
regression 585.3±1.0 1173.9±3.4 9052 527.9±0.5 1337.1±2.5 7380

We leave the formal definition of runs under the one-step-memory strategy
σO to the reader (slightly more complicated version of runs under a memoryless
strategy given above). However, we note that σO may be used for an arbitrary
finite horizon H or even as a strategy of infinite horizon. To maximize the quality
of σO, the choice of the small horizon h should be such that it just allows the
learning of σh to be completed between the two configurations γn−1 and γn, i.e.
within the period P .

Example 3. We implemented the online strategy evaluation on the one-room
example by repeatedly calling Uppaal Stratego to synthesize and evaluate
the computed strategy. The following steps are involved:

1. Synthesize a strategy capable of adapting for 5 periods ahead where LastTime
starts with 0: strategy S = minE (D) [<=5*P]: <> t==LastTime+5*P

2. Simulate the system for 1 period using the strategy S and record its last state:
simulate 1 [<=P] { t, T, Room.HeatOn, x, Window.Open, w, i, D }

3. Create a copy of the original model and replace the initial state with the
recorded state from the simulation above.

4. Increment LastTime by P and repeat the synthesis and simulation from step 1
until a required number of periods is simulated.

5. Record the final value of the distance variable D.

The short trajectories from step 2 are then stitched together to produce a contin-
uous trajectory of the entire 3 day simulation. An example result of the first 24 h
is displayed in Fig. 2d which is also comparable to other strategies. The online-3
section of Table 1 shows the averages of the recorded distances together with the
overall synthesis effort for entire 3 day emulation. The encouraging result is that
the short strategy synthesis takes only 4–8 s and the overall quality of any online
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Fig. 3. Plan of the house

synthesis method is very close to the best and expensive offline-3 outcome (the
offline “splitting” method). �

3 Floor Heating Case Study

In Fig. 3 we see the plan of the house on which we will optimize the heating
strategy.

The house consists of 11 rooms, all of them heated with a floor heating
system where each room has its own pipe circuit that can be either open (hot
water circulates) or closed (water does not circulate). The opening and closing
of the circuits is executed by a number of valves located in room R7. Every
15 min a wireless temperature sensor in each room wakes up and reports its
current reading. Currently the bang-bang strategy runs every 15 min: it collects
the temperatures of all rooms, if a given room temperature is below its target
temperature (setup by the user) it opens the corresponding valve and similarly
if the temperature is above target it closes the valve.

The problem with this controller, as experienced by the house owner, is that it
completely disregards the thermodynamics of the house, the outside temperature
(and weather forecast) as well as the maximal capacity of the floor heating
system. We now outline the factors affecting the heating system in this house:

1. Heating capacity of the system. The heating system can only provide a limited
water pressure to make the water circulate within the pipes. If too many valves
are open, the water will only cycle in the shortest pipes. This is especially a
problem in the living room R11, as it has the longest pipe circuit, and is also
the most important room for the user, meaning that the temperature of this
room should be maintained close to the user’s wish. A smart heating system
should take the heating capacity into a consideration and never exceed it.

2. Behaviour of the doors. The heat exchange between rooms are significantly
affected by whether doors between the rooms are open or closed. The house
is not equipped with door sensors, so the position of each door is unknown.
This means that the control strategy has to work under a partial observability
and the status of each door can be inferred only indirectly by observing the
speed of heat propagation via temperature changes in the rooms.
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3. Physical layout of the pipe circuits. Finally, as the valves are all located in
room R7, the pipes leading to some of the remote rooms necessarily pass under
under rooms. Hence e.g. opening a valve for the room R2 will contribute also
to minor increase of the room temperature in rooms R3, R5, R4 and R6 under
which the pipe circuit is placed.

In our thermodynamic model of the floor heating, we take all these factors in
consideration. The aim of the controller program is to optimize the user comfort
and satisfaction according to some measure of how far the actual temperatures
are from some goal temperature.

Floor Heating Scenario as a Stochastic Hybrid Game. The floor heat-
ing scenario with n rooms and m doors is a stochastic hybrid game Gn,m =
(C,U ,X,F , δ), where the controller C has a finite set of controllable modes
V = Bn given by all possible valve opening/closing combinations. The envi-
ronment U has a finite set of uncontrollable modes D = Bm given by all possible
door opening/closing combinations. We assume that U given δ can switch among
modes with equal probability at every period. The state variables in X are given
by the room temperatures {T1, . . . , Tn} and the outside temperature Tenv.

We will denote by vector T the room temperatures and by Ti the i-th room
temperature. Given the current temperatures T , a controllable mode v ∈ V , an
uncontrollable mode d ∈ D and a time delay τ , the flow function Fv,d(τ, T ) gives
the room temperatures T ′ (after τ time units passed) that are the solutions to
the following differential equations:

d

dt
Ti(t) =

n∑

j=1

Ad
i,j(Tj(t) − Ti(t)) + Bi(Tenv(t) − Ti(t)) + Hv

j,i · vj dt

where Ad
i,j contains the heat exchange coefficients between room i and room j,

given the door mode d. Note that there are 2m matrices for the possible door
modes. The vector B contains the heat exchange coefficients between the outside
temperature and each room, and Hv contains the heat exchange coefficients for
each pipe and the rooms it traverses. A pipe heats a room if it traverses it
and valve vj is open. There is a capacity constraint on the water pressure, if
the capacity is exceed the coefficients in Hv prevent the rooms with the long
pipes from been heated. Finally, Tenv(t) is the current outside temperature at
time t. The initial conditions are given by the current temperatures T . Hence,
for a given room i, the temperature T ′

i is influenced by the adjacent rooms,
the door configuration (uncontrollable mode), the outside temperature Tenv, the
pipes traversing the room, and the valve configuration (controllable mode). For
the thermodynamics to be realistic, the time unit is minutes.

3.1 Experiments

Regarding our experiments, we have two major components: a simulator written
in Matlab and a number of controllers, including the ones produced by Uppaal
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Stratego. The simulator implements the floor heating stochastic hybrid game
Gn,m. For our experiments, in the simulator we fix a time horizon H of 3 days
with a period P of 15 min. As in the real house, every 15 min, the simulator
outputs the current room temperatures T which are read by the controller.
Subsequently, the controller inputs the control valves V which are used by the
simulator for the next 15 min. The house has vectors of desired temperatures T g

and weights W denoting the importance of each room. Our goal is to optimize
the comfort in the house. Intuitively, comfort is in proportion to the distance
between the desired temperatures and the current temperatures. To measure the
comfort provided by a controller (strategy) σ, we define a function dist on runs

of Gn,m � σ of the form π = γo
t1→ γ1

t2→ . . .
tk−1→ γk−1

tk→ γk where k = H/P is the
number of control steps in the run π. Let Ti(γj) denote the room temperature
Ti at configuration γj . Then the distance function is defined by

dist(π) =
k∑

j

n∑

i

(T g
i − Ti(γj))2 · Wi .

In our experiments, we evaluate a number of different controllers. The simulator
uses the distance function dist to compare the different controllers.

Controllers. In the following we introduce a number of controllers which we
use in our experiments. We present the current controller operating in the house,
two controllers proposed by engineers and the controller synthesized using online
synthesis and Uppaal-Stratego.

– Bang-Bang Controller. The bang-bang controller is currently running in the
physical house and after each reading of room temperatures T , it simply opens
the valves of every room i where Ti < T g

i and leaves the remaining valves
closed.

– Capacity Aware Bang-Bang Controller. The main problem with the bang-
bang strategy is that if all rooms are below their target temperatures, it
simply opens all valves in the house, violating the restriction on the maximal
capacity of the floor heating system. The capacity aware bang-bang controller,
at each time where a decision is to be taken, orders in descending order all
rooms according to their individual distance function, given for a room i by
Wi · (T i

g − T i)2 where Wi is the given priority of room i, and then opens in
this order the valves of all rooms that are below their target temperatures
(as the normal bang-bang controller) but only until the maximum capacity is
exceeded.

– Brute-Force Controller. This is an online controller with short horizon 1 that
for n valves by brute-force explores all possible 2n valve combinations and
selects a valve combination that minimizes the distance function. The con-
troller operates as follows: after the current reading of the temperatures T
and the valves configuration v, it guesses a random door mode d and using
this information it computes the expected temperatures T ′ exactly after P
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time units (recall that in our case study we fixed the period to P = 15); next
the controller considers all 2n possible valve configurations and computes the
predicted room temperatures T ′′ at time 2P . The controller then returns
the valve configuration that minimizes the distance function dist. Note that
already for the short horizon 1, the computation of the brute-force controller
takes over 170 seconds, so exploring by brute-force all 22n combinations (in
our case n = 11) needed for the short horizon of 2 is impossible due to the
15 min duration of the period.

– Stratego Online Controller. (Stratego-ON) The controller is synthesized by
Uppaal Stratego using the online strategy synthesis methodology intro-
duced in Sect. 2 with short horizon of 3. The aim is to learn the optimal valve
configurations for several steps ahead using machine learning methods and
hence avoid the exhaustive search done by the brute-force controller.

Evaluation Scenarios. In order to evaluate the performance of the different
controllers described above, we fix five realistic scenarios on which we perform
our experiments. We distinguish between the stability scenarios where the initial
room temperatures are equal to the target ones (T (0) = T g) and the task is to
maintain these temperatures throughout the next three days relative to different
weather conditions. We also study the vacation scenarios, where we assume that
a family returns from a vacation and shortly before this the house should move
from the energy-saving temperature vector T (0) into the target temperature T g

vector as quickly as possible.
The stability and vacation scenarios are then subject to two different weather

profiles, a mild winter where the outside temperature behaves according to real
data from the Aalborg airport from 03.02.2015, 00:20 to 07.02.2015, 23:50 where
the outside temperature ranges between 2 to 5 ◦C, and a tough winter using
the data from the Aalborg airport from 14.02.2015, 00:20 to 17.02.2015, 23:50
where the outside temperature ranges between -10 and 6 ◦C. We also consider
the spring scenario where the outside temperature is modelled using a sinusoid
T env(t) = 7 ∗ sin(2 ∗ pi/60 ∗ 24 ∗ t) + 19 such that most of the time the outside
temperature is below the target room temperatures but the peak environment
temperature during the middle of the day exceeds the target room temperatures.

In all scenarios, a fixed profile when a specific door is closed or open is used,
corresponding to the typical behaviour of the owner of the house. Note that none
of the controllers is aware of this fixed door profile.

Controller Evaluation for 5 Rooms. We show the applicability of our online-
synthesis methodology on the left part of the house consisting of rooms R1 to
R5 and doors D1 to D4 (see Fig. 3), i.e. the stochastic hybrid game G5,4. We
have restricted the maximum pressure capacity of the heating system to 50 %.
In our simulator for G5,4, we executed all the above controllers and scenar-
ios. The evaluation of the controllers is given in Table 2. Since we have fixed a
door profile and the controllers are deterministic (except for Stratego-ON),
we obtain a unique run π for every combination of scenarios and controllers.
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Table 2. Evaluation of controllers for 5 and 11 rooms of the house (see Fig. 3). The
simulation has a horizon H of 3 days, and a short horizon h of 3 periods. Temperatures
are read every 15 min.

5 Rooms 11 Rooms
Scenario Controller dist Time (sec.) dist Time (sec.)

mild winter
vacation

Bang-Bang 62704 < 1 53550 < 1
Bang-Bang-Cap-Aware 39755 < 1 31718 < 1

Brute-Force 36489 ∼ 2.4 28332 ∼ 171
Stratego-ON 36418 ∼ 2.9 31054 ∼ 77

Stratego-ON-CL — — 29541 ∼ 16

tough winter
vacation

Bang-Bang 248367 < 1 163635 < 1
Bang-Bang-Cap-Aware 155090 < 1 82250 < 1

Brute-Force 137266 ∼ 2.4 61897 ∼ 171
Stratego-ON 137223 ∼ 3.0 75792 ∼ 78

Stratego-ON-CL — — 66611 ∼ 17

mild winter
stability

Bang-Bang 24834 < 1 9654 < 1
Bang-Bang-Cap-Aware 18405 < 1 9430 < 1

Brute-Force 16765 ∼ 2.4 9260 ∼ 179
Stratego-ON 16708 ∼ 3.0 9972 ∼ 76

Stratego-ON-CL — — 9025 ∼ 16

tough winter
stability

Bang-Bang 199688 < 1 82849 < 1
Bang-Bang-Cap-Aware 121776 < 1 37099 < 1

Brute-Force 107065 ∼ 2.2 33917 ∼ 192
Stratego-ON 107027 ∼ 3.0 42229 ∼ 77

Stratego-ON-CL — — 34585 ∼ 16

spring
stability

Bang-Bang 4297 < 1 4493 < 1
Bang-Bang-Cap-Aware 4297 < 1 4419 < 1

Brute-Force 3875 ∼ 2.2 2861 ∼ 171
Stratego-ON 3755 ∼ 2.8 3239 ∼ 50

Stratego-ON-CL — — 2819 ∼ 16

For a controller, the column dist is the accumulated distance dist(π) between
the current temperatures and the desired temperatures during the 3 day simula-
tion. We observe that in all scenarios, the online controller Stratego-ONhas
the minimal distance, providing the best comfort among all the controllers. Our
final goal is to synthesize a controller for the full house with 11 rooms. However,
the corresponding state space hinders online strategy synthesis to scale with sat-
isfactory quality of the produced control strategy. We address this issue in the
next section.

4 Compositional Synthesis

Although online learning is an important step towards the scalability of our
approach, it does not enable us to learn small horizon strategies of sufficient
quality for the full version of the floor heating case study. Even though we have
decreased the horizon, the branching factor is enormous: for each period we have
to learn the optimal setting of 11 valves, i.e. the optimal of 211 modes. Given a
horizon h, this means that we have to learn the optimal sequence of modes out
of 211h possible sequences. Clearly, this becomes infeasible for small h.

However, often the set of modes C will be a product of two (or more) sub-
modes, i.e. C = C1 × C2; e.g. in the floor heating case study we may split the
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11 valves into two subsets i.e. valves 1 to 5 and valves 6 to 11. This suggests
the possibility of a compositional approach for the synthesis of σh based on the
synthesis of two sub-strategies σh

1 : C → C1 and σh
2 : C → C2, with σh(γ) =

(σh
1 (γ), σh

2 (γ)).
Given an initial sub-strategy σ0

1 : C → C1, the game G becomes a reduced
game G � σ0

1 with C2 as remaining controllable modes. With the significant
reduction in size, it may now be feasible to synthesize a near-optimal strategy,
σ0

2 : C → C2, with horizon h for this reduced game, i.e. σ0
2 = argminσE

G�σ0
1 ,γ

σ,h (D).
Now given σ0

2 , we may similarly learn an optimal sub-strategy, σ1
1 : C → C1, for

the reduced game G � σ0
2 with C1 as remaining controllable modes. Repeating this

process will generate a sequence of sub-strategies σi
1 : C → C1 and σi

2 : C → C2,
with σh

1 = σN
1 and σh

2 = σN
2 for some a priori chosen N . Clearly, this method

is a heuristic, with no guarantee of converging to the optimum overall strategy,
and where the quality depends on the initial sub-strategy chosen, the choice of
N as well as the game G itself. However, as we shall see, this heuristic may be
with success applied to our floor heating case study.

Stratego Online Compositional Controller. (Stratego-ON-CL) This controller
applies the previously introduced compositional synthesis together with online
synthesis. The controller uses two Uppaal Stratego models. In the first model,
valves 1 to 5 are controllable and valves 6 to 11 are fixed by a Bang-Bang
controller (the second model is constructed in a dual manner where the valves
1 to 5 are now fixed to the computed control strategy in the first model). At
every period, distributing the valve capacity between the left and right parts of
the house plays a key role. This controller dynamically assigns the maximum
allowed capacity for the two parts of the house proportionally to the distance
function dist of the two parts of the house.

Experiments for 11 Rooms. We implemented the floor heating stochastic
hybrid game G11,8 with 11 rooms and 8 doors in our simulator and evaluated
the Stratego compositional controller together with the previously defined con-
trollers and all the scenarios described in Sect. 3.1. Table 2 presents the results.
We observe that for all scenarios the Stratego online compositional controller
obtains results comparable to the Brute-Force controller, however, by an order
of magnitude faster.

In order to see how the Stratego-ON-CL controller can take weather infor-
mation into account, consider Fig. 4 that illustrates the spring stability scenario.
From points of time between 0 and 500 min, the outside temperature increases
and exceeds the target temperature. We observe that since the Stratego-ON-
CL controller is able to look at the weather forecast for the next 45 min, it shuts
down the valves much earlier than the other controllers. This results in energy
savings and increased comfort.

Comparing the Brute-Force controller with Stratego-ON-CL, we can see
that in the vacation scenarios and tough winter scenario Stratego-ON-CL
performs with a slightly larger discomfort due to the fact that the goal is to heat
up all the rooms as quickly as possible and hence looking more time periods
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Fig. 4. Room temperatures in the spring stability scenario

into the future does not help (there is only little risk of overshooting the target
temperatures). On the other hand, in the remaining scenarios where looking
more steps into the future can have an effect on the selected control strategy,
Stratego-ON-CL has a slightly better performance. Nevertheless, Stratego-
ON-CL is a clear winner in terms of the time needed to compute the strategy
which will be particularly important when moving to even larger case studies.

5 Conclusion

In the floor heating case study we evaluated the existing Uppaal Stratego con-
troller synthesis techniques and showed its limitations when applied on indus-
trial scale models. In order to solve the scalability issues, we proposed online
framework to compute and combine the short-term control strategies iteratively
on demand, while connected to the real house heating system. In addition, we
proposed a compositional methodology in order to scale the synthesis for more
rooms needed in our real scenario. The experimental evaluation showed that the
resulting strategies are outperforming the presently used controller and while
comparable in performance to the Brute-Force controller, our method can com-
pute the control strategy by an order of magnitude faster. Hence the devel-
oped framework is suitable for installation at home automation systems and we
have already constructed a scaled physical model of the house with the actual
hardware used by the company Seluxit, as a first step towards the industrial
employment of our methodology in their products.
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Abstract. Martingale theory yields a powerful set of tools that have
recently been used to prove quantitative properties of stochastic systems
such as stochastic safety and qualitative properties such as almost sure
termination. In this paper, we examine proof techniques for establishing
almost sure persistence and recurrence properties of infinite-state dis-
crete time stochastic systems. A persistence property ♦�(P ) specifies
that almost all executions of the stochastic system eventually reach P
and stay there forever. Likewise, a recurrence property �♦(Q) specifies
that a target set Q is visited infinitely often by almost all executions of
the stochastic system. Our approach extends classic ideas on the use of
Lyapunov-like functions to establish qualitative persistence and recur-
rence properties. Next, we extend known constraint-based invariant syn-
thesis techniques to deduce the necessary supermartingale expressions to
partly mechanize such proofs. We illustrate our techniques on a set of
interesting examples.

Keywords: Temporal logic · Stochastic systems · Markov processes ·
Stochastic control · Sum-of-squares programming

1 Introduction

In this paper, we study persistence (♦�(·)) and recurrence (�♦(·)) properties
for stochastic systems. Stochastic systems are commonly used to model the
effect of noise or random uncertainties on systems. Examples include probabilis-
tic programs [17,20] with random number generating constructs for modeling
uncertainties, cyber-physical systems under the influence of external stochastic
disturbances, financial process models, and biological models. Given a stochastic
system, we attempt to find proofs that for a subset of states T , the behaviors
of the system satisfy a persistence property ♦�(T ) with probability 1 (almost
surely), i.e., almost every behavior of the system eventually enters T , and stays
in T , forever. Similarly, we present an approach to prove �♦(T ), i.e., almost
every behavior of the system hits T infinitely often. Such persistence proper-
ties effectively prove facts about the asymptotic behavior of these processes
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which may take many forms, including convergence towards an “equilibrium”
region, or asymptotic divergence away from a particular set. Recurrence proper-
ties can be used, for instance, to show that the system keeps returning to a set of
desirable configurations even if forced to leave under the influence of stochastic
disturbances.

Persistence and recurrence properties are also of independent interest to the
verification and control theory community [5,21]. In standard model checking
approaches, we rely on showing that the system is forced to almost surely reach
a strongly connected component [11,13] which is a subset of T , and additionally
for proving ♦�(T ), that it has no outgoing transition from it. However, Baier
et al. have demonstrated that this technique is restricted to finite state stochastic
transition systems [5].

In comparison, the technique we propose here can handle infinite state,
discrete time, polynomial stochastic systems by automatically deriving super-
martingale expressions over the system variables and leveraging properties of
these supermartingale expressions. Specifically, our work extends the infinite
state probabilistic transition systems used in our earlier work [8], or the proba-
bilistic guarded command language proposed by McIver and Morgan [23] with
polynomial guards and updates. However, the ideas we present here can extend
to a larger class of Markov models.

In this paper, we introduce two types of proof rule arguments for proving per-
sistence and recurrence that derive directly from classic rules for Markov chains
such as the Foster-Lyapunov condition [16,24]: (a) “Geometric” rules involve
finding a nonnegative function V (x) over the state variables x, whose expecta-
tion in the next time step is some multiplicative factor α ∈ (0, 1) of its current
value V (x). These are inspired by Lyapunov functions used in control theory to
prove exponential stability. (b) “Additive” rules are analogous to ranking func-
tion arguments for (nondeterministic) program termination. These conditions
were studied for program termination as “supermartingale ranking functions”
(SMRFs) in our previous work [8] and proven complete for certain classes of prob-
abilistic systems by Fioriti et al. [15] and more recently by Chatterjee et al. [10].
However, SMRFs are designed to prove almost-sure termination properties of
the form ♦(T ). In the current work, we show—rather counterintuitively—that
SMRFs cannot in general prove ♦�(T ) properties. We provide a suitable techni-
cal condition (of bounded increase) under which SMRFs can prove ♦�(T ) prop-
erties. Next, we also show that both types of proofs are equivalent under some
technical conditions: a proof using a geometric proof rule can be transformed
into an equivalent proof using an additive rule, and vice-versa. Nevertheless,
both forms are useful when searching for certificates of a given form such as a
polynomial function over the state-variables.

Finally, we examine the problem of automatically synthesizing the functions
V (x) for polynomial, probabilistic transition systems to prove persistence and
recurrence properties. Assuming a parameterized “template” form of this func-
tion, we derive conditions that must be satisfied over the parameters for proving
a target property. We conclude by illustrating our approach on a variety of small,
but interesting examples.
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1.1 Motivating Example 1: Room Temperature Control

In [3] Abate et al. present a room temperature control problem subject to sto-
chastic temperature perturbations. Suppose that there are two adjacent rooms,
whose temperatures change according to the following stochastic difference
equation:

x′
i := xi + bi(x0 − xi) + a · ∑

i�=j

(xj − xi) + ci (1 − σ (xi)) + νi, for i ∈ {1, 2},

where a = 0.0625, b1 = 0.0375, b2 = 0.025 are respectively the inter-room
and external heat convection constants, x0 = 6◦C is the outdoor temperature,
c1 = 0.65, c2 = 0.6 are the heat units supplied to the two rooms by the heater,
and ν1, ν2 are i.i.d. stochastic noise. The behavior of the heater is governed by
the controller unit term σ. We focus on the evolution of the room temperatures
within the range [6, 33]2.

Abate et al. construct a (nonlinear) sigmoidal controller σ(t) that keeps the
temperatures within a comfortable range S : [17, 22] × [16, 23] and focus on
bounding the probability that the system leaves S (i.e., stochastic safety) within
finitely many steps under the influence of Gaussian noise. Figure 1 shows 100
sample executions of the system when the controller is approximated with a
degree-7 polynomial:

σ(t) : 29.2−13.42t+2.55t2−0.26t3+0.015t4−5.13×10-4t5+9.23×10-6tt−6.87×10-8t7

under two different types of random noise: uniform U on a given range and
normal N .

Controller σ was originally designed to keep the system in S with finite-time
(100 min) guarantees in mind. We prove that under mild stochastic disturbances
(left) the system satisfies the almost sure persistence property ♦�S, i.e., with
probability 1 the system eventually enters S and stays there forever. This is
demonstrated by the proof rule persist-geom of Sect. 3.1 and the certificate
V (x1, x2) : (x1 − 18.3)2 + (x2 − 18.8)2. When the level of stochastic disturbance
is increased (right) the almost sure persistence property no longer holds. This
is consistent with the results in [3]; however, a weaker, almost sure recurrence

Fig. 1. 100 simulations of the two-room controller system, with initial temperatures x1,
x2 uniformly drawn from [15, 22]2, under two different types of stochastic noise: (left)
νi ∼ U(−0.01, 0.01), with the red horizontal lines indicating the intervals [17.8, 18.7] (for
room 1) and [18.4, 19.3] (for room 2); (right) νi ∼ N (0, 0.25), with the red horizontal
lines indicating the intervals [16.9, 19.6] (for room 1) and [17.3, 20.2] (for room 2).
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property: �♦(16.9 ≤ x1 ≤ 19.6∧17.3 ≤ x2 ≤ 20.2) holds, i.e., with probability 1
the system visits the region infinitely often. This is demonstrated by proof rule
rec of Sect. 3.2 using the same certificate function V .

1.2 Motivating Example 2: Nonlinear Markov Jump System

Fig. 2. A nonlinear Markov
jump system with 2 modes.

Figure 2 shows a nonlinear Markov jump system
with two modes q1, q2 and two state variables x :
(x, y) that evolve according to the mode-dependent
difference equations. The system jumps between
modes with equal probability.

Observe that 0 is an equilibrium and X :
[−0.5, 0.5]2 is an invariant of the system, i.e., all
sample paths starting in X, stay in the set forever.
Figure 3(a) shows the sample paths that start inside
X converge towards 0. We establish that the per-
sistence property ♦�(|x| ≤ 0.1 ∧ |y| ≤ 0.1) holds
almost surely over all executions of the system,
by synthesizing the nonnegative certificate function
V (x) : 2.3x2 + 4.15xy + 3.7y2. After one time step,
the expected value of V is at most 1

2 -fraction of its
original value, i.e., (∀x ∈ X) E(V (x′)|x) ≤ 1

2V (x). Figure 3(b) plots the function
V over the sample paths, showing its convergence. We use the certificate V (x)
in Persist-Geom (Sect. 3.1) to establish the required property.

Outside X, the system appears unstable as shown in Fig. 3(c), yet the behav-
iors approach x = y asymptotically. Using the certificate V̂ (x) : (x − y)2 in
spersist-geom (Strong Persistence of Sect. 3.1) we can prove that (∀ ε >
0) ♦�(|x − y| ≤ ε).

Organization. Section 2 presents an infinite state discrete time stochastic sys-
tem model and formally states the problem of proving persistence and recurrence
(Sect. 2.2). Section 3 presents our main contribution in the form of proof rules for
persistence and recurrence properties with the soundness results of our analysis

Fig. 3. Sample paths of the Markov jump system described in Fig. 2.
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presented in Sect. 4. Section 5 presents the results of our prototype implemen-
tation on a set of benchmarks, followed by a summary of relevant related work
(Sect. 6) and conclusion (Sect. 7).

2 Preliminaries

In this section, we present the basic computational model of discrete-time sto-
chastic dynamical systems that we study here and introduce the notion of tail
invariant properties in the form of persistence and recurrence. We formulate a
problem statement for the rest of the paper and finally introduce supermartin-
gales. The proofs of all statements can be found in the extended version of the
paper.

2.1 Discrete Time Stochastic Systems

We present a simple yet general model of an infinite-state discrete time stochastic
system, and then examine a model of polynomial stochastic transition systems.
A purely deterministic system with state-space X is described by a rule of the
form x′ := F (x) and x0 ∈ X0, where x ∈ X and x0 is the initial state belonging
to initial set X0. Stochastic systems studied here are described by x′ := F (x, r)
and x0 ∼ D0, where r is a vector of random variables and initial state x0 is
drawn from initial distribution D0.

Definition 1 (DTSS). A discrete-time stochastic system (DTSS) Π is defined
as the tuple 〈Σ,R,F ,D0〉 with the following components:

1. a state space Σ and an associated Borel σ-algebra on it,
2. a probability space R : 〈R, FR, P 〉 (with individual samples denoted by r),
3. a transition function F : Σ × R → Σ, wherein F(x, r) denotes the next state

obtained from a state x ∈ Σ and random sample r ∈ R,
4. an initial probability distribution D0 over Σ.

Let Ω denote the sample set Σ × Rω, which consists of tuples
〈x0, r0, r1, · · · , rn, · · ·〉. Here x0 ∈ Σ denotes the starting state sample, and
r0, r1, . . . , rn, . . . denote successive draws of random variables from the sam-
ple set R of the probability space R. Given a discrete-time Markov process, the
model maps each ω : 〈x0, r0, . . .〉 ∈ Ω to a sample path (or trace) π(ω) as follows
π(ω) : x0

r0−→ x1
r1−→ x2

r2−→ · · · .
The stochastic process is defined by applying the Kolmogorov extension the-

orem starting from finite-dimensional distributions Pt1,...,tk(B) where B ⊆ Σk is
a measurable set. The semantics of the stochastic system is, therefore, equivalent
to an infinite-state discrete-time Markov chain (see the extended version of the
paper for details).

Independence of Samples. The formulation above naturally assumes that
the samples of the random variable ri are independent of the current state xi

and from previous samples r0, . . . , ri−1. While this is somewhat restrictive, in
practice it encompasses nearly all example instances that we are aware of.
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No Demonic Nondeterminism. The formulation also precludes any demonic
nondeterminism since F is a function.

In this work, we focus on polynomial (stochastic) systems, which are instances
of stochastic systems with piecewise polynomial update maps.

Definition 2 (Polynomial Stochastic System). A polynomial stochastic
system Π is a tuple 〈X, R, T ,D0〉, where (a) the state-space X ⊆ R

n is a semi-
algebraic set (i.e., X is the solution set of finitely many polynomial inequali-
ties), (b) R is a probability space for the stochastic inputs written collectively
as r : (rc, rb), wherein rc denotes the (possibly multivariate) continuous random
variable and rb denote the (discrete) random variables that take on finitely many
values, (c) T : {τ1, . . . , τm} is a finite set of transitions, and (d) D0 is an initial
state probability distribution over X.

Each transition τ ∈ T has two parts: a guard predicate ϕτ and an update
function fτ : X × R → X:

1. The guard ϕτ (x) is a conjunction of polynomial inequalities over x;
2. The update function fτ (x, r) : X ×R → X is a piecewise polynomial function

of the form:

fτ (x, r) :

⎧
⎪⎨

⎪⎩

gτ,1(x, rc), if ψτ,1(rb)
...

gτ,j(x, rc), if ψτ,j(rb) ,

where gτ,1, . . . , gτ,j are multivariate polynomials over x, rc and ψτ,1(rb), . . .,
ψτ,j(rb) represent mutually exclusive and exhaustive predicates over the ran-
dom variables with probability pτ,i : Prob(ψτ,i(rb)).

We refer to each function gτ,i as a fork of fτ guarded by ψτ,i with corre-
sponding fork probability pτ,i, for all i, 1 ≤ i ≤ j.

For a polynomial system to represent a stochastic system over X according
to Definition 1, we require that transitions together form a function over the
state-space X:

1. The guards are pairwise mutually exclusive: ϕτi ∧ ϕτj is unsatisfiable for all
i �= j.

2. The guards are mutually exhaustive:
∨k

j=1 ϕτj ≡ true.

With these conditions, it is easy to define an overall piecewise polynomial transi-
tion function over F that casts any polynomial transition system as a stochastic
system.

Example 1 (Strange Random Walk). Let {Yi} be a sequence of random variables
over R with Y0 distributed uniformly over [0, 1]. For all n ≥ 0, define:

Yn+1 =
{

Y 2
n , with probability 1

2 ,
2Yn − Y 2

n , with probability 1
2 .
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The corresponding polynomial stochastic system is Π : 〈R,R, {τ},D0〉, where
R is the probability space for the uniform distribution U(0, 1), the initial proba-
bility distribution D0 is U(0, 1), and transition τ : 〈true, fτ 〉, has update mapping

fτ (x, r) :
{

gτ,1(x) : x2, if ψτ,1(rb) : rb ≤ 1/2,
gτ,2(x) : 2x − x2, if ψτ,2(rb) : rb > 1/2,

and defines corresponding fork probabilities p1 = p2 = 1/2.

Pre-Expectations. Key to the analysis is the notion of pre-expectation. The
definitions below are inspired by [8,19,23] and are related to drift operators of
Markov processes [24]. We first formalize the notion of pre-expectations over gen-
eral stochastic systems and then provide a specialized definition for polynomial
stochastic systems.

Consider a stochastic system 〈Σ,R,F ,D0〉, and a function h : Σ → R over
the state-space. The pre-expectation of h w.r.t to F yields another function
ĥ : Σ → R such that for any state x ∈ Σ, ĥ(x) yields the expected value of
h(x′), where the expectation is taken over all states x′ reached in one step from
x. Formally, ĥ(x) : ER (h(F(x, r))). The pre-expectation can be difficult to
compute for a stochastic system, even if h(x) is of a simple form, for example,
polynomial.

Now, we translate this definition to polynomial stochastic transition systems.
We first define pre-expectations across transitions.

Definition 3 (Pre-Expectation across a Transition). Given a polyno-
mial stochastic transition system 〈X, R, T ,D0〉, a function h : X → R and
a transition τ ∈ T with forks gτ,1, . . . , gτ,j and corresponding fork proba-
bilities pτ,1, . . . , pτ,j, the pre-expectation of h across transition τ is a func-
tion preE(h, τ) : X → R defined as follows: ∀x ∈ X, preE(h, τ)(x) :
ER[h (fτ (x, rc)) |x] =

∑j
i=1 pτ,iERc[h (gτ,i(x, rc))], with expectation taken over

R from which the random choices r = (rb, rc) are drawn.

We now define the pre-expectation transformation over an entire stochastic
system.

Definition 4. The pre-expectation of a function h : X → R w.r.t. a polynomial
stochastic system Π : 〈X, R, {τ1, ..., τn},D0〉 is a function preE(h,Π) : X → R

defined by

preE(h,Π)(x) :
∑n

i=1 1(ϕi(x)) · preE(h, τi)(x), for all x ∈ X,

where ϕi is the guard of transition τi and 1(ϕ) is the indicator function of
predicate ϕ.

Related to the pre-expectation is the notion of a drift operator.

Definition 5 (Drift Operator). Let Π be a stochastic transition system and
h be a function over the state-space. The drift of h w.r.t. Π is the function
DΠh : preE(h,Π) − h.
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Wherever the system Π is clear from the context, we use Dh to denote the drift
operator DΠ applied to the function h.

Example 2. We return to Example 1 and compute the pre-expectation of
h(x) = x:

preE(h,Π) = 1(true) · preE(h, τ) = ER[p1h(g1(x)) + p2h(g2(x))]

= ER[12 (x2) + 1
2 (2x − x2)] = x.

It is clear that for any state x ∈ X, the value of h equals the value of preE(h,Π),
or equivalently, the drift Dh = 0. This function is an example of a martingale
expression and such functions are central to our analysis. We give their defini-
tion in Sect. 2.3 and present properties of martingale expressions relevant to our
analysis.

Assume that for any polynomial p(rc) involving the continuous random vari-
ables rc the expectation E(p(rc)) is finite. Then the drift of a polynomial is a
polynomial.

Lemma 1. Assume that all cross moments exist for the random variable rc. For
a polynomial h(x), the pre-expectation preE(h, τ) across a transition τ is also a
polynomial. Moreover, the pre-expectation preE(h,Π) is a piecewise polynomial
function of the form:

∑m
j=1 1(ϕj)qj(x), where ϕj is a transition guard and qj(x)

is a polynomial.

2.2 Persistence and Recurrence

Let Π be a polynomial stochastic system with a sample set Ω : X × Rω and
an associated σ-algebra generated by the Borel sets over X and R. Let Pr be
the associated measure that maps a measurable subset S ⊆ Ω to its probability
Pr(S). Let π be a function that maps each sample ω ∈ Ω to the corresponding
sample path of the system π(ω) : 〈x0,x1, . . . ,xm, . . .〉. Likewise, let πm map each
sample ω ∈ Ω to the state encountered at time m, i.e., πm(ω) : xm.

For a predicate ϕ over the system states, the persistence property ♦�ϕ is a
collection of sample paths: �♦�ϕ� : {ω ∈ Ω | ∃n ≥ 0,∀m ≥ n, πm(ω) |= ϕ}. It is
easy to show that this is a measurable set. The probability of the persistence
property ♦�ϕ is denoted Pr(♦�ϕ). We say the persistence property ♦�ϕ holds
almost surely (a.s.) iff Pr(♦�ϕ) = 1. Such a property is also known as qualitative
(probability 1) persistence property and can be stated in PCTL as P=1(♦� ϕ).

Similarly, a recurrence property �♦ϕ is a collection of sample paths: ��♦ϕ�
: {ω ∈ Ω | ∀n ≥ 0, ∃ m ≥ n, πm(ω) |= ϕ}. We say that the recurrence property
�♦ϕ holds almost surely iff Pr(�♦ϕ) = 1.

Problem Statement. Let Π be a polynomial stochastic system with state-
space X and let T ⊆ X be a measurable set of states. In this paper we are
interested in two related problems: (i) Establish that the persistence property
♦�(T ) holds a.s.; and/or, (ii) Establish that the recurrence property �♦(T )
holds a.s.
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2.3 Supermartingales and Their Properties

Following [32] we recall the notion of supermartingales and some key properties.

Definition 6. A discrete time real-valued stochastic process M = {Mi}∞
i=0 is

a supermartingale if E(Mn+1| Mn = mn, . . . ,M0 = m0) ≤ mn, for all n ≥ 0
and mn.

Since our work mostly concerns Markov processes, we will write
E(Mn+1|Mn = mn) to mean E(Mn+1| Mn = mn, . . . ,M0 = m0). We now pro-
pose the key definitions of additive and multiplicative supermartingales that will
be used in our work.

Definition 7 (Additive and Multiplicative Supermartingales). A super-
martingale M = {Mi}∞

i=0 is called (ε-)additive iff E(Mn+1|Mn = mn) ≤ mn−ε,
for all n ≥ 0 and mn, for some ε > 0. The supermartingale M is called (α-
)multiplicative iff E(Mn+1|Mn = mn) ≤ αmn, for all n ≥ 0, mn ≥ 0, and for
some 0 < α < 1.

First we state the following simple result about α-multiplicative
supermartingales.

Lemma 2. Let M = {Mi}∞
i=0 be a nonnegative α-multiplicative supermartin-

gale for some α ∈ (0, 1). Then M̂ = {M̂i : Mi

αi }∞
i=0 is a nonnegative

supermartingale.

Following [8], we relate supermartingales to polynomial stochastic systems.

Definition 8 (Supermartingale Expressions). Let e be an expression over
the state variables of a polynomial transition system Π (i.e., e is a real-valued
function over the state-space X of Π). The expression e is a supermartingale
expression for Π iff

(∀x ∈ X) preE(e,Π) ≤ e(x), or equivalently, (∀x ∈ X) De(x) ≤ 0.

The expression e is called (c-)additive or alternatively, a supermartingale rank-
ing function (SMRF) iff there exists c > 0 such that

(∀x ∈ X) preE(e,Π) ≤ e(x) − c, or equivalently, (∀x ∈ X) De(x) ≤ −c.

Similarly, e is an (α-)multiplicative supermartingale expression iff

(∃α ∈ (0, 1))(∀x ∈ X) preE(e,Π) ≤ αe(x).

By definition any (α-)multiplicative supermartingale expression of Π induces
a(n) (α-)multiplicative supermartingale when evaluated along the sample paths
of Π.
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3 Proof Rules for Persistence and Recurrence

In this section, we describe the main proof rules for persistence and recurrence
properties. All proof rules involve finding a suitable “certificate” in the form of
a stochastic analogue of a Lyapunov-like function over the state-space X. The
soundness of our approach (presented in Sect. 4) relies on certificate functions
behaving as supermartingale expressions over the state variables of the stochastic
system.

Let X be the state-space of interest and T ⊆ X be a target set.

3.1 Proof Rules for Persistence

We provide a series of proof rules for proving persistence properties. The relation
between these rules is examined in the extended version of the paper.

Both persist-geom and persist-add state that a polynomial stochastic
system Π satisfies ♦�(T ) almost surely if there exists a nonnegative certificate
function V (condition (p1)) whose value outside T is lower bounded by some
ε > 0 (condition (p2)). Moreover, the drift conditions ensure that in expected
value V in the next step does not increase inside T (condition (p3)), and decreases
by some fixed non-zero quantity outside T (an additive constant in (p5), or, a
multiplicative factor in (p4)). Intuitively, these conditions together guarantee
that V is a supermartingale whose drift condition outside T forces its value to
decrease along almost all sample paths and eventually reach a value ε at which
point the sample path is “forced” to enter T and persists forever.

Applications. We present an application of each rule and defer soundness to
Sect. 4.

Example 3. Consider a stochastic system Π with a single variable x over R, and
a single transition: x′ := 0.1(1 + w)x, where w is a standard Gaussian random
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variable. We show that the almost sure persistence property ♦�(T : |x| ≤ 0.1)
holds.

Consider the function m(x) : x2, which is nonnegative on X and m(x) ≥ 0.01
for all x ∈ X\T (conditions (p1), (p2)). Moreover, for all x ∈ X, preE(m,Π) =
Ew(m(xn+1)|xn) = 0.02x2

n, so Dm(x) ≤ −0.98m(x). Hence, m(x) defines a
0.02-multiplicative supermartingale expression (conditions (p3), (p4)).

Applying persist-geom, we conclude that ♦�(−0.1 ≤ x ≤ 0.1) holds a.s.

Example 4. For the polynomial stochastic system of Example 1 over the state-
space X = [0, 1], we establish the almost sure persistence property ♦�(x ≤
0.05 ∨ x ≥ 0.95).

Consider the certificate function V (x) = x(1 − x). For all x ∈ X, V (x) ≥ 0,
and for all x ∈ X \T = (0.05, 0.95), V (x) ≥ 0.0475 (conditions (p1), (p2)). Next,
note that preE(V,Π) = x(1 − x)(1 − x + x2), and DV (x) = x(1 − x)(x2 − x). It
is easy to check that for all x ∈ (0.05, 0.95), DV (x) ≤ −0.00225625, and for all
x ∈ [0, 0.05] ∪ [0.95, 1], DV (x) ≤ 0 (conditions (p3), (p5)).

Applying persist-add, we conclude that ♦�(x ≤ 0.05∨x ≥ 0.95) holds a.s.

Note 1. In both examples, the certificates m(x) and V (x) can be used in both
persist-geom and persist-add: Dm(x) ≤ −0.98x2 ≤ −0.0098, for all x ∈ X\T ,
and DV (x) ≤ x(1 − x)(x2 − x) ≤ −0.0475V (x). We expand on this point next.

Strong Persistence. Rules persist-geom and persist-add present sufficient
conditions under which certificates V prove that ♦�(T ) holds almost surely.
Unfortunately, the difference in constraints inside and outside T may force V to
be a high degree polynomial (or a piecewise polynomial function). To simplify
constraints and make the search for certificates for almost sure persistence prop-
erties tractable we propose a stronger version of proof rules for persistence of
the form: (∀ ε > 0) ♦�(V (x) ≤ ε).

Similarly, we provide an additive version of strong persistence rule. We say
a function V (x) has bounded increase over Π iff there is a constant C > 0 such
that, for every possible next state x′ reached from x (i.e., x r−→ x′), |V (x′) −
V (x)| ≤ C.
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sperist-geom presents a stronger, yet simpler to state and encode, version
of the drift requirement dictated by persist-geom (viz. inside the region T ).
Similarly, spersist-add does not insist on V being positive definite but only V
decreasing in expectation by −c everywhere. The benefit of the stronger formula-
tions of the persistence rule is that each level set of the Lyapunov-like certificate
V acts as a tail invariant : a set S that almost all traces of the stochastic system
reach and asymptotically confine to.

Relations Between Proof Rules. In Note 1 we allude to the fact that cer-
tificates for rule persist-geom can equivalently be used for rule persist-add
to prove persistence properties of polynomial stochastic systems. We state the
main result of importance here and defer all proofs and relationship between
proof rules to the extended version.

Theorem 1. Let m(x) be an ε-additive supermartingale expression that has
bounded increase in Π. Then there exist positive constants λ > 1 and α < 1
such that λm(x) is an α-multiplicative supermartingale expression. Moreover, let
κ ∈ R be such that {x ∈ X | m(x) ≤ κ} is nonempty. Then the system Π
satisfies the tail invariance property m(x) ≤ κ almost surely.

Under some technical conditions, it is possible to prove the converse of
Theorem 1. This shows that any positive α-multiplicative supermartingale
expression used to prove a tail invariant property has an equivalent additive
supermartingale (more precisely, SMRF) formulation and vice versa.

Incompleteness. We demonstrate that although sound, our approach is incom-
plete. The existence of a nonnegative α-multiplicative supermartingale expres-
sion or a SMRF of bounded increase is sufficient but not a necessary condition
for the system to almost surely satisfy a tail invariant property. Example 8 in
Sect. 4.2 demonstrates this result.

3.2 Proof Rule for Recurrence

We now focus on proof rules for proving the almost sure recurrence property:
�♦(T ), i.e., T is visited infinitely often by almost all sample paths. The proof
rule is almost identical to a related rule that establishes “positive recurrence” in
Markov chains [24].
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4 Soundness of Proof Rules

4.1 Supermartingales as Certificates of Geometric Persistence
Rules

We state two theorems that formally relate supermartingales and persistence
properties. The first establishes the convergence of nonnegative α-multiplicative
supermartingales.

Theorem 2. Let M = {Mi}∞
i=0 be nonnegative α-multiplicative supermartin-

gale for some α ∈ (0, 1). Then M converges almost surely (samplewise) to 0.

This result can be applied directly to stochastic transition systems. Let m(x)
be a nonnegative α-multiplicative supermartingale expression for a transition
system Π for some α ∈ (0, 1). For a sample path {xi}∞

i=0 of Π, we say that
m(xi) upcrosses a level κ > 0 iff m(xi) ≤ κ and m(xi+1) > κ. If m(x) converges
almost surely to 0 on all sample paths, then the number of upcrossings of m(x)
on any sample path is a.s. finite.

Lemma 3. Let m(x) be a nonnegative α-multiplicative supermartingale expres-
sion for a polynomial stochastic system Π. Then for all κ > 0, the number of
κ-upcrossings of m(x) is almost surely finite, i.e.,

Pr
({

ω ∈ Ω
∣
∣ {i |m(πi(ω)) ≤ κ ∧ m(πi+1(ω)) > κ} is finite

})
= 1.

Proof. The result follows directly from the almost sure convergence of m(x) to
zero on sample paths of Π. ��

This means that for any threshold κ > 0, m(x) ≤ κ is a tail invariant
property: i.e., ♦�(ϕ : m(x) ≤ κ) holds almost surely.

Theorem 3 (Soundness of PERSIST-GEOM). A polynomial stochastic sys-
tem Π satisfies the almost sure persistence property ♦�(T ) if there exists a
function V that satisfies conditions (p1)-(p4) of persist-geom.

Necessity. The two conditions on the multiplicative supermartingale m(x) are
α ∈ (0, 1) and m(x) nonnegative. We show their necessity through the following
example.

Example 5. Consider a stochastic transition system with a single variable x
defined over the state space [0,∞) with two transitions τ1 and τ2. Transition
τ1 has a guard x ≥ 1 and does not alter the value of x. Transition τ2 has a guard
x < 1 and chooses between x′ := 2x or x′ := x

2 with equal probabilities. That is:

x′ :=

⎧
⎪⎨

⎪⎩

x if x ≥ 1, and
2x if x < 1,with prob. 12
x
2 if x < 1,with prob.12
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The initial value of x is exponentially distributed over [0,∞). Note that m(x) : x
is a nonnegative α-multiplicative supermartingale only when α = 1. Clearly, m
does not converge almost surely to zero.

Consider another transition system involving x ∈ R having two forks: x′ := x
with probability 2

3 , and x′ := −x with probability 1
3 . Clearly, m(x) : x is a

1
3 -multiplicative supermartingale. However, m is not nonnegative over the state-
space R, so m does not prove any persistence property. Indeed, ♦�(x≤1) is not
a tail invariant for the system.

4.2 Supermartingales as Certificates of Additive Persistence Rules

Recall that an additive supermartingale expressions m(x) of Π satisfies the
condition

(∀ x ∈ X) preE(m(x),Π) ≤ m(x) − ε,

for some constant ε > 0. (See Definition 7.) Given an additive supermartingale
expression m, let Mκ : {x ∈ X| m(x) ≤ κ}. For any κ where Mκ �= ∅, we can
prove ♦(Mκ) holds a.s. [8,10,15]. Yet in general, the property ♦�(Mκ) does not
hold a.s.

Example 6. (MoonWalk) A MoonWalk system consists of a random walk
over the state-space X : Z≤0 of the nonpositive integers:

xn+1 :=
{

xn − 1 with prob. p(xn),
0 with prob. 1 − p(xn),

wherein p(x) : x−0.5
x−1 = 1 − 0.5

1−x , for x < 0, and p(0) = 1. In other words,
the random walk either chooses to decrease x by 1 with probability p(x) or
jumps to 0 with probability 1−p(x). The initial state follows a negative Poisson
distribution.

The function m(x) : x is an additive supermartingale expression for
the MoonWalk system: for xn < 0, E(m(xn+1)|xn) = xn − 0.5, and
E(m(xn+1)|0) = xn − 1. Yet the sublevel sets of the function m cannot be
used for establishing persistence properties, because of the following result.

Lemma 4. For any η < 0, the probability that a sample path of MoonWalk
satisfies ♦�(x ≤ η) is 0.

Using an additive supermartingale expression m to prove tail invariance prop-
erties of the form ♦�(m(x) ≤ κ) requires additional assumptions on the expres-
sion m. One such condition is the bounded increase (which was assumed in
Theorem 1, for establishing the soundness of proving persistence properties via
additive supermartingales).

Definition 9 (Bounded Increase Expression). An expression m(x) has
bounded increase for a stochastic transitions system Π iff there exists M > 0 so
that for all possible states x ∈ X and all possible next states x′ reachable from
x, |m(x′) − m(x)| ≤ M .
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We give an example of bounded increase expressions, which do not have to be
bounded functions: whether a particular expression m(x) has bounded increase
on a system depends as much on the system itself as on the growth of m.

Example 7. Consider a stochastic system over R, in which xn+1 := xn − 1+wn,
with wn a uniform random variable over [−1, 1]. Then the function m(x) : x has
bounded increase property.

If each wn is a Gaussian random variable, then m(x) does not satisfy the
bounded increase property. Restricting the set of support of distribution wn to a
compact set (by truncation), however, allows x to satisfy the bounded increase
property again.

Returning to the MoonWalk system in Example 6, the additive super-
martingale m(x) : x, whose sublevel sets do not prove any tail invariance prop-
erty (due to Lemma 4), does not satisfy the bounded increase property since it is
possible to move from x = −j, for any j > 0, to x = 0 with nonzero probability.

We close the section by demonstrating the incompleteness: an additive super-
martingale does not always need the bounded increase property for a tail invari-
ant property to be established.

Example 8 (Incompleteness). Consider the MoonWalk system with modified
probability p(x) : 1− 0.5

(x−1)2 , for x < 0, and p(0) = 1. The probability of the event
{x > κ} is

∑∞
j=−κ

0.5
(j+1)2 , which converges. By the Borel-Cantelli Lemma [14,

2.3.1], Pr(x > κ i.o.) = 0 holds, i.e., the tail invariant ♦�(x < κ) holds; however,
the system does not have the bounded increase property.

5 Implementation and Evaluation

Given a polynomial stochastic system and a semi-algebraic target set, the prob-
lem of finding “certificates” V that prove persistence or recurrence properties is
in general intractable. In practice, we impose several restrictions on the proof
rules so that their solutions are tractable, based on sum-of-squares (SOS) opti-
mization techniques (see e.g. [4,6] and the references therein). For illustration,
we only focus on spersist-geom and persist-geom; the formulations for the
other proof rules are similar.

Recall that for proving strong persistence properties via the geometric rule
spersist-geom, we need to find a function V such that conditions (p1), (p6)
hold. We impose the following restrictions to make the feasibility problem
tractable. First, we require that V is a polynomial of degree at most some inte-
ger d. This means that DV is also a polynomial, which can be expressed in terms
of the coefficients of V and the moments of the random variable rc. Second,
we replace the nonnegativity constraints by the more restrictive sum-of-squares
(SOS) constraints, i.e., we require that both V and −DV be sums of squares of
some unknown polynomial functions. We also require that V is positive definite,
which is a common regularity condition assumed in semidefinite optimization and
allows us to find an α ∈ (0, 1) such that the condition (p6) in spersist-geom
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holds. Under these two restrictions, the generally intractable feasibility problem
from spersist-geom is equivalent to a linear semidefinite feasibility problem:
a polynomial being a sum of squares (of polynomial functions) is equivalent to
its vector of coefficients being the image of an unknown positive semidefinite
matrix under a predetermined linear transformation. (For more details on SOS
relaxation techniques for solving polynomial feasibility/optimization problems,
see e.g. [4,6].)

For proving persistence properties with respect to a nonempty set T via the
geometric rule persist-geom, we need to find a function V such that conditions
(p1)-(p4) hold. Again, we require that V is a polynomial of degree at most d,
and that T = {x | g1(x) ≥ 0 ∧ · · · ∧ g�(x) ≥ 0} for some polynomials g1, . . . , g�.
Then we replace those constraints pertaining to the elements in T , by truncated
quadratic module membership. For instance, we replace the condition (p3) by
the tractable constraint:

DV = s0+s1g1+· · ·+s�g�, s0, s1, . . . , s� SOS of degree at most some integer d̃.

(The tractability is due to the fact that the polynomials si being SOS can be
phrased as semidefinite feasibility constraints.) Similar treatment can be applied
on those constraints pertaining to the elements in X \ T , which is also a semial-
gebraic set.

Many standard semidefinite optimization solvers1 and SOS optimization
front-ends (such as SOSTOOLS [25]) are available for solving the SOS opti-
mization problems outlined above. Below we present some simple examples on
the use of spersit-geom rules for proving persistence. In each example, an α-
multiplicative supermartingale expression is obtained using SDPT3-4.0 [31] on
MATLAB R2014b, taking less than 10 seconds on a Linux machine with Intel(R)
Core(TM) i7-4650U CPU @ 1.70GHz.

Example 9 (Rimless wheel model [7,22,27]). A rimless wheel with 8 equally
spaced inelastic spokes of length L rolls down a hill with stochastic slope angle γ.
Let ωn be the angular velocity at the n-th impact (which occurs when the stance
leg is vertical). In [7,27], the dynamics of the rimless wheel is described as:

xn+1 := cos2 θ
(
xn + 2g

L

(
1 − cos

(
θ
2 + γ

))) − 2g
L

(
1 − cos

(
θ
2 − γ

))
,

where xn = ω2
n, g is the gravitational constant, θ = 45◦ is the angle between two

consecutive spokes and γ ∼ N (8, 1) (in degrees). We approximate the functions
ξ �→ cos( θ

2 ± ξ) over the interval [5, 11] by degree 2 polynomials, and find that
the angular velocity in the approximated stochastic system goes to 0 almost
surely when L = 2g: the function V (x) : 0.00085x3 + x4 satisfies the conditions
(p1), (p6) with X : [0,∞) and α = 0.95: V and −DV are nonnegative on X and
DV (x) ≤ −0.05V (x) for all x ≥ 0. Hence V is a α-multiplicative supermartingale
for this system over X, and ♦�(V (x) ≤ ε) holds a.s. for any ε > 0. In other
words, despite the randomness in the slope of the terrain, the rolling rimless
wheel (with very long spokes) would eventually become stationary almost surely.
1 See e.g. the list in http://plato.asu.edu/sub/nlores.html#semidef.

http://plato.asu.edu/sub/nlores.html#semidef
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Example 10 (Room temperature control [3]). In the two-room temperature con-
trol example from Sect. 1.1, we are interested in the evolution of the room tem-
peratures within the range X = [6, 33]2. Consider the nonnegative function
V (x1, x2) : (x1 − 18.3)2 + (x2 − 18.8)2. When the noise follows the uniform
distribution U(−0.01, 0.01), DV is nonpositive on X, and V (x1, x2) ≥ 0.09 and
DV (x1, x2) ≤ −0.01V (x1, x2) for all x ∈ X \ [17.8, 18.7] × [18.4, 19.3]. Hence
conditions (p1)-(p4) hold, implying the persistence property ♦�(17.8 ≤ x1 ≤
18.7 ∧ 18.4 ≤ x2 ≤ 19.3).

In the case of Gaussian noise N (0, 0.25), DV (x1, x2) ≤ 0.25 for all (x1, x2) ∈
[16.9, 19.6]× [17.3, 20.2], and V (x1, x2) ≥ 0.8 and DV (x1, x2) ≤ −6×10-5 for all
(x1, x2) ∈ X \ [16.9, 19.6]× [17.3, 20.2]. Hence conditions (r1)-(r4) hold, implying
the recurrence property �♦(16.9 ≤ x1 ≤ 19.6 ∧ 17.3 ≤ x2 ≤ 20.2).

We list some additional examples in which a system is proved to satisfying a
persistence or recurrence property via some of the proof rules from Sect. 3. The
details of these examples can be found in the extended version of the paper.

Additional Stochastic Systems Noise uj (i.i.d.) Supermartingale V (x, y)

x′ := x + 1
2y + u1,

y′ := 1
2x + y − u2

N (−1, 1) max(x − y, 0)

(over X = R
2) (for proving recurrence)

x′ := 0.5(x + y) + 0.4u1
√

x2 + y2,

y′ := 0.5(x − y) + 0.4u2
√

x2 + y2,
N (0, 1) x2 + y2

(over X = R
2) (0.82-multi.)

x′ := 0.75y4 + 0.1u1,

y′ := 0.75x4 + 0.1u2,
U(−1, 1) 0.78x2 + 1.23xy + 0.78y2

(over X = {(x, y) | x2 + y2 ≤ 1}) (0.75-multi.)

x′ := 0.1(y(3x2 + 2y2 − 0.5) + u1
√

x2 + y2),

y′ := 0.1(y(2x2 + 4xy + 3y2 − 0.5) + u2
√

x2 + y2),
U(−√

3,
√
3) 1.55x2 + 2.36xy + 1.34y2

(over X = {(x, y) | x2 + y2 ≤ 1}) (0.5-multi.)

6 Related Work

Martingale analysis has been used to prove almost sure termination [8,10,15],
derive inductive invariant expressions [9] in probabilistic programs, and prove
stochastic reachability and safety [26,27] in the context of stochastic hybrid
systems. Our paper extends this set of properties to include tail invariant, or
qualitative persistence, properties.

Qualitative persistence properties are expressible in PCTL [18] and have been
studied by the model-checking community [5,21] in the context of finite-state
Markov processes. The approach leverages the fact that the system ends up a.s.
in a bottom strongly connected component (BSCC [11–13], a strongly connected
component with no outgoing edges), then uses a graph algorithm to efficiently
check that all states in the BSCC satisfy ϕinv. Baier et al. [5] have shown that
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while such results suffice for the analysis of finite-state Markov chains, they,
however, do not extend to infinite-state models.

Abate [1,2] and Tkachev et al. [29] present approaches to reducing the verifi-
cation problem of infinite-state Markov processes to that over finite-state Markov
chains. Specifically, [1,2] presents a framework for proving probabilistic bisimula-
tion between the original infinite-state system and its discretized (approximate)
finite-state version. Guarantees on the quality of the results are proved using
supermartingale bisimulation functions. Tkachev et al. [29] present a framework
for analyzing infinite-horizon reach-avoid properties (♦ϕ and �ϕ) for Markov
processes. They use locally-excessive (i.e., supermartingale) value functions to
identify a subset of the state-space where discretization guarantees a precise
approximate solution. In [28,30] Tkachev et al. tackle quantitative reachability,
invariance and reach-while-avoid properties operating directly over the infinite-
state model. [28] provides a characterization of the statespace based on harmonic
functions defining absorbing or stochastically attractive sets. Unfortunately, the
sufficient conditions for certificates in [28] define problems that in general have
no analytical or computation solution. Our paper can be seen as a set of practi-
cal sufficient conditions that yield efficiently computable problems (SOS, SDP)
for qualitative repeated reachability.

The problem of stability and identifying the limiting behavior of a stochas-
tic system has been well-studied in the theory of Markov chains [24]. Similar
“Foster-Lyapunov” [16] drift criteria have been derived to argue recurrence and
transience for sets of states. Unfortunately, most results rely on the topologi-
cal properties of the infinite-state Markov chains that may be difficult to check
automatically.

7 Conclusion

We presented an analysis framework capable of proving that the limiting behav-
ior of an infinite-state discrete-time polynomial stochastic system eventually
settles almost surely within a region S of the statespace (i.e., ♦�(S)). Our
analysis employs constraint-based invariant generation techniques to efficiently
infer polynomial functions over the states of the system: nonnegative α-
multiplicative supermartingale expressions and additive supermartingale expres-
sions of bounded increase. We established that both types of functions constitute
certificates verifying tail invariant properties and we demonstrated their equiva-
lence. Finally, we highlighted the individual strengths of each of the two types but
also the incompleteness of the general approach through the means of numerous
simple, yet intricate examples.
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Abstract. Complex probabilistic temporal behaviours need to be guar-
anteed in robotics and various other control domains, as well as in the
context of families of randomized protocols. At its core, this entails check-
ing infinite-state probabilistic systems with respect to quantitative prop-
erties specified in probabilistic temporal logics. Model checking methods
are not directly applicable to infinite-state systems, and techniques for
infinite-state probabilistic systems are limited in terms of the specifica-
tions they can handle.

This paper presents a deductive approach to the verification of
countable-state systems against properties specified in probabilistic
CTL∗, on models featuring both nondeterministic and probabilistic
choices. The deductive proof system we propose lifts the classical proof
system by Kesten and Pnueli to the probabilistic setting. However, the
soundness arguments are completely distinct and go via the theory of
martingales. Completeness results for the finite-state case and an infinite-
state example illustrate the effectiveness of our approach.

1 Introduction

Temporal reasoning in the presence of choice and stochastic uncertainty is a
fundamental problem in many domains. In the context of finite-state systems,
such reasoning can be automated and a long line of research in probabilistic
model checking has culminated in efficient tools that implement automatic model
checking algorithms for Markov decision processes with specifications given in
probabilistic temporal logics such as PCTL and PCTL∗ [2,7–9,20,26]. When it
comes to infinite-state systems, though, reasoning about probabilistic systems,
barring a few special classes of properties such as safety or almost-sure termi-
nation, is mostly ad hoc. This is unfortunate, since many probabilistic systems
are a priori infinite-state. For example, randomized distributed algorithms are
often designed to work no matter how many agents participate in the system.
Discrete time stochastic dynamical systems arising in control assume continuous
and unbounded state spaces. More recently, probabilistic programming languages
augment “normal” programming languages (with unbounded variables) with the
ability to sample from probability distributions and to condition behaviors on

c© Springer-Verlag Berlin Heidelberg 2016
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observations. We would like to formally reason about the temporal behavior of
these systems, but the current literature provides little direction.

In this paper, we extend the deductive approach to temporal logic verifi-
cation to systems that combine non-determinism and probabilistic choice with
the (quantitative) probabilistic temporal logic PCTL∗. Our central contribu-
tion is a novel set of proof rules enabling deductive proofs for PCTL and PCTL∗

properties on nondeterministic probabilistic programs with possibly infinite state
space. We consider both qualitative and quantitative properties, and use martin-
gale theory as our main mathematical tool. Conceptually, the rules we present
for PCTL and PCTL∗ can be considered as a probabilistic enhancements of
those developed by Kesten and Pnueli for CTL and CTL∗ [19]. At its core, the
enhancement echoes the apparent analogy between classical termination proofs
and proofs for almost sure termination of probabilistic programs. The latter was
first studied in the pioneering work of Hart, Sharir, and Pnueli [16] as a partic-
ular liveness property. Their 0-1 law is the foundation of several semi-automatic
approaches (e.g. [12,17,21]) for proving termination of finite and parametric sys-
tems. Pnueli [22] showed that the almost sure satisfaction of liveness properties
on probabilistic systems can be reduced to the non-probabilistic case adding
suitable fairness constraints. Pnueli and Zuck [1,23] later extended this app-
roach to a sound and complete characterization for finite state spaces. Almost
sure properties do not depend on the actual probability values, but instead on
the underlying graph structure. In contrast to this, the deductive rules devel-
oped in this paper do not rely on the graph structure. They instead reason about
and deduce the “average” behaviour of the program. This makes it possible to
analyse a considerably wider range of probabilistic programs and properties. We
make use of Lyapunov ranking functions, a widely used technique for proving
recurrence in Markov Chains. They were recently adapted to prove almost sure
termination of term rewriting systems [5] and infinite-state (non)deterministic
programs [6,13]. We extend these techniques to full quantitative PCTL∗.

When stretching the deductive approach of Kesten and Pnueli beyond PCTL,
we must account for path formulas that describe ω-regular languages. In the non-
probabilistic setting, Kesten and Pnueli reduce the reasoning about ω-regular
properties to reasoning about safety or reachability under a justice assumption
(justice is a form of fairness [15]). In the probabilistic setting, however, this
reduction is unsound: a probabilistic program may not have any fair scheduler,
thus the quantification over all fair schedulers is trivially satisfied, regardless
of the original formula being invalid. The root cause of the problem is that a
scheduler in the probabilistic setting generates a set of paths, opposed to just
a single path in the non-probabilistic case. So, if a non-null set of paths is not
fair, then the scheduler is not fair. To overcome this, we instead harvest and
extend the martingale approach to checking qualitative termination [6,13] with
the power to directly handle general ω-regular conditions. This is achieved by a
proof rule for Streett conditions which is complete in the finite-state case. The
key step to prove soundness uses Levy’s 0-1 law [11] to go to the limit behavior.
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For finite-state systems, the proof rules we present are complete, but they
are in general not complete for infinite-state systems. Technically, incomplete-
ness is inherited from the fact that Lyapunov ranking functions are not complete
for proving almost sure termination [13], in contrast to ranking functions wrt.
ordinary termination. If they were complete, we would instantly obtain a com-
pleteness result, just as Kesten and Pnueli. However, even an incomplete set of
proof rules can turn out to be very useful still, provided it can be effectively
applied to interesting cases. For example, we can verify several parameterized
randomized distributed algorithms, such as the choice coordination protocol by
Rabin [24] using our proof system [10].

2 Probabilistic Systems and Logics

2.1 Probabilistic Systems

Preliminaries. A probability space [11] is a triple (Ω,F , μ) where Ω is a sample
space, F ⊆ 2Ω is a σ-algebra, and μ : F → [0, 1] is a probability measure. A ran-
dom variable X : F → R on a probability space (Ω,F , μ) is a Borel-measurable
function; it is discrete if there exists a countable set A such that μ(X−1(A)) = 1.
A random predicate is a discrete random variable with co-domain {0, 1}.

Given a probability space (Ω,F , μ), random predicates P1, . . . , Pn+1, real
numbers q1, . . . , qn, and binary relations ��1, . . . , ��n∈ {≤, <,≥, >,=}, the pred-
icate P1 ⊗��1q1 . . . ⊗��nqn

Pn+1 is valid iff there exist disjoint measurable sets
A1, . . . An+1 with μ(A1 ∪ . . . ∪ An+1) = 1 such that for all k ∈ {1, . . . , n}, we
have Ak |= Pk and μ(Ak) ��k qk, and for n + 1 we have An+1 |= Pn+1.

In case of a countable sample space Ω, the powerset P(Ω) is a σ-algebra;
Distr(Ω) is the set of probability measures over P(Ω); and for all μ ∈ Distr(Ω)
Supp(μ) denotes the set {ω ∈ Ω | μ(ω) > 0}.

Probabilistic Guarded Commands. We model probabilistic systems as programs
in a probabilistic guarded-command language. A probabilistic program is a tuple
P = (x, C), where x is a finite set of variables with countable domains and
C is a finite set of guarded commands. A deterministic guarded command is
of the form g(x) 	→ x′ = e(x), and a probabilistic guarded command has the
form g(x) 	→ x′ = e1(x) ⊗=p1 . . . ⊗=pk

x′ = ek+1(x), where pi ∈ [0, 1] for each
1 ≤ i ≤ k. The guard g is a predicate over the variables x, and e and all ei are
expressions over x. Intuitively, a probabilistic guarded command assigns to x
the values of the expressions ei with probability pi, where pk+1 = 1 − ∑k

j=1 pj .

Example 1. As a running example, we consider the probabilistic model of a robot
moving on a discrete plane, starting at an arbitrary position. At each step the
robot performs a diagonal jump, and its goal is to visit the origin of the grid
(the point with coordinates (0, 0)) infinitely many times. A random force repels
the robot, making the visits hard. Every time the robot performs a step, there is
in each dimension a certain probability for it to go backwards a certain number of
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steps. The probability of going back and the number of steps is a function of the
robot’s position; this probability is higher when the robot is close to the origin.

The program has variables l ∈ {0, 1, 2}, x ∈ Z, y ∈ Z and guarded commands:

cNE : l = 0 	→ x′ = x + 1 ∧ y′ = y + 1 ∧ l′ = 1
cSE : l = 0 	→ x′ = x + 1 ∧ y′ = y − 1 ∧ l′ = 1

cNW : l = 0 	→ x′ = x − 1 ∧ y′ = y + 1 ∧ l′ = 1
cSW : l = 0 	→ x′ = x − 1 ∧ y′ = y − 1 ∧ l′ = 1

cx : l = 1 	→ (x′ = x + 9 · sign(x) ⊗= 1
|x|+1

x′ = x) ∧ y′ = y ∧ l′ = 2
cy : l = 2 	→ (y′ = y + 9 · sign(y) ⊗= 1

|y|+1
y′ = y) ∧ x′ = x ∧ l′ = 0

The first four commands, enabled in location l = 0, correspond to the differ-
ent jump directions of the robot (which controls the non-deterministic choices)
can select. Locations l = 1 and l = 2 model the effect of the random repelling
forces along the x and y co-ordinates, respectively. We assume that the force in
the x-axis is independent from the one in the y-axis. Despite its simplicity, this
problem cannot be solved using probabilistic model checking (the state space is
infinite), nor using current deductive proof systems based on fairness (the prob-
ability values do matter). The proof system described in this paper, on the other
hand, allows us to provide a simple and modular correctness argument. ��

Semantics of Probabilistic Programs. The semantics of a probabilistic pro-
gram P = (x, C) is a Markov decision process (MDP) M = (S, ρ) [14]. The
countable set of states S consists of the valuations of the variables x and
ρ : S → P(Distr(S)) is the transition relation defined by the guarded com-
mands in C. For a state s ∈ S we have μ ∈ ρ(s) iff either (1) there exists a
deterministic guarded command c : g 	→ x′ = e in C such that s |= g, and
for every s′ ∈ S it holds that μ(s′) = 1 if s′ = e(s), and μ(s′) = 0 other-
wise, where e(s) denotes the value of the expression e when the variables x are
evaluated according to s, or (2) there exists a probabilistic guarded command
c : g 	→ x′ = e1 ⊗=p1 . . . ⊗=pk

x′ = ek+1 in C such that s |= g, and for every
s′ ∈ S it holds that μ(s′) =

∑
s′=ei(s)

pi. We assume w. l. o. g. that all programs
are deadlock-free, i. e. ρ(s) = ∅. Note that with each state s and each command
c ∈ C with s |= gc, where with gc we denote the guard of c, the transition
relation ρ associates a unique distribution μs,c.

A path in M is a finite or infinite sequence s0, s1, . . . of states in S such that
for each i there exists μ ∈ ρ(si), such that μ(si+1) > 0. Given a state s ∈ S, we
denote with Paths(M, s) the set of paths in M originating in the state s.

Schedulers. A scheduler is a function α : S+ → Distr(C) such that α(τ ·s)(c) > 0
implies μs,c ∈ ρ(s). We call α memoryless if α(τ1 ·s) = α(τ2 ·s) for all τ1, τ2 ∈ S∗

and s ∈ S. A scheduler α is deterministic if |Supp(α(τ))| = 1 for all τ ∈ S+.
Given a probabilistic program P = (x, C) with a corresponding MDP

M = (S, ρ), a scheduler α defines a discrete time Markov chain (DTMC)
Mα = (Sα, ρα), where Sα = S∗ × S is the state space and ρα : Sα → Distr(Sα)
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is the Markov kernel defined as ρα((τ, s), (τ ′, s′)) =
∑

ρ(s, c, s′) · (α(τ · s)(c)) if
τ ′ = τ ·s and ρα((τ, s), (τ ′, s′)) = 0 otherwise. From any initial state s ∈ S we can
define a unique probability measure Probs,α over the set of infinite measurable
paths that start at s and obey the probability laws of ρα [11].

Example 2. One possible strategy for the robot is to always choose in location
l = 0 to decrease (when not accounting for the repelling force) the distance to the
origin: if x < 0 and y < 0 then choose cNE , if x < 0 and y ≥ 0 then choose cSE ,
if x ≥ 0 and y < 0 then choose cNW , and if x ≥ 0 and y ≥ 0 then choose cSW . ��

2.2 The Logics PCTL and PCTL∗

We work with a simple variant of probabilistic computation tree logic (PCTL) in
positive normal form [2]. Fix a set AP of assertions from an underlying assertion
language closed under Boolean operations. The set of PCTL formulas over AP
consists of two types of formulas: state formulas and path formulas.

State formulas are generated by the grammar Φ :: = a | ¬a | Φ1∧Φ2 | Φ1∨Φ2 |
P

∀
��p(ϕ) | P∃

��p(ϕ), where a ∈ AP , Φ1 and Φ2 are state formulas, ��∈ {≤, <,≥, >},
p ∈ R≥0, and ϕ is a path formula. Path formulas are generated by the grammar
ϕ:: = ©Φ | Φ1 U Φ2 | Φ1 RΦ2, where Φ,Φ1, Φ2 are state formulas. U and R
are the until and release operators of linear temporal logic (LTL), respectively.
Recall that R is the dual of U , that is, ϕR ψ is equivalent to ¬(¬ϕU ¬ψ). As
usual, we define the derived operators ♦ϕ = tt U ϕ and �ϕ = ¬♦¬ϕ = ff Rϕ.

The logic PCTL∗ generalizes PCTL by allowing ω-regular languages over
state formulas as path formulas. Let Φ be a PCTL∗ state formula. We call Φ
a basic state formula if it is of the form or P

Q

��p(ϕ) where Q∈ {∃,∀} and ϕ is
a PCTL∗ path formula which contains no probabilistic quantifiers (i.e. ϕ is an
LTL formula). In the case when Φ is a PCTL formula, ϕ contains exactly one
temporal operator, at the top level. We consider a presentation of PCTL∗ in
which LTL formulas are given as deterministic Streett automata whose alphabet
consists of sets of state formulas.1 Recall that the set of accepting paths of a
Streett automaton is measurable [7,26].

The qualitative versions of PCTL and PCTL∗ restrict the constants p in
P

Q

��p(ϕ) to the set {0, 1}.

Semantics. Let P = (x, C) be a probabilistic program and M = (S, ρ) be the
corresponding MDP. Let AP consist of assertions over the variables x.

PCTL∗ state formulas are interpreted over states of M , while path for-
mulas are interpreted over paths. The satisfaction relations |= are defined as
usual for assertions, boolean and temporal operators [2]. Formulas contain-
ing the operators P

∀ and P
∃ are interpreted using a probability measure over

sets of paths. More specifically, the satisfaction of P
∀
��p(ϕ) (resp., P

∃
��p(ϕ))

1 Usually, path formulas in PCTL∗ are defined using linear temporal logic (LTL)
[2]. Since the analysis of PCTL∗ proceeds by first converting LTL to a determinis-
tic automaton, we omit the intermediate step of converting LTL to automata and
assume the path formulas are given as deterministic Streett automata.
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in a state s is determined by the probability measures of the sets of paths
{τ ∈ Paths(Mα, s) | Mα, τ |= ϕ} where α ranges over all (resp., some) possible
schedulers, each of which defines a DTMC in which these sets are measurable.
Formally,

P, s |= P
∀
��p(ϕ) iff Probs,α({τ ∈ Paths(Mα, s) | Mα, τ |= ϕ}) �� p

for every scheduler α inducing a DTMC Mα,
P, s |= P

∃
��p(ϕ) iff Probs,α({τ ∈ Paths(Mα, s) | Mα, τ |= ϕ}) �� p

for some scheduler α inducing a DTMC Mα.

For convenience we use P |= Φ as an abbreviation for P, s |= Φ for all s. Finally,
we note that both PCTL and PCTL∗ are effectively closed under negation.

3 A Deductive Proof System for PCTL

We now develop a deductive proof system for PCTL. We do this in three steps.
First, we introduce some basic rules. Then, we show how to reason about quali-
tative formulas. Finally, we introduce rules for the full logic. For a probabilistic
program P and a PCTL state formula Φ, we write the judgement P � Φ to state
that the proof system derives that program P satisfies Φ from every state.

We assume that we can establish validities in the underlying assertion lan-
guage (first order logic, or a fragment of it) plus probabilities.

3.1 Preliminary Rules

Figure 1 shows the preliminary rules of our proof systems for PCTL and PCTL∗.
The rule basic-state allows us to reduce the verification of Φ to the verifi-

cation of formulas of the form π → Ψ , where π is an assertion and Ψ is a basic
state formula. A basic state formula Ψ occurring one or more times in Φ can be
replaced by an assertion π which underapproximates the set of states satisfying
the state formula Ψ . The rule’s soundness is shown by induction. By successively
applying the rule basic-state, in a bottom up manner, a proof obligation P � Φ
reduces to a set of proof obligations that are of the form P � π → Ψ , where Ψ is
a basic state formula. We assume this form in subsequent rules.

The other rules lift proof rules of propositional logic to the probabilistic
setting. The rule gen concludes that a valid assertion (a tautology) holds in
every state of a program P . The rules and (resp. or) formalize the distributivity
of conjunction w. r. t. universal almost sure satisfaction (resp. the distributivity
of disjunction w. r. t. existential satisfaction with positive probability).

Remark 1. For the rule mp in the existential case we must ensure that the sched-
uler from the second premise satisfies ϕ with probability 1. With an existential
quantifier in the first premise we cannot guarantee that both schedulers are the
same. This problem is also present in other proof rules. For simplicity of presen-
tation, we impose a stronger condition that requires that ϕ is satisfied regardless
of the resolution of the nondeterminism. Alternately, we could have a monolithic
proof rule that combines the proof rules for the premises. The price would be
more complex proof rules and lack of modularity.
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Fig. 1. Preliminary rules for Q∈ {∃, ∀}, state formula Φ and path formulas ϕ1, ϕ2, ϕ, ψ.

3.2 Proof Rules for Qualitative PCTL

Figure 2 shows rules for the qualitative fragment. Since we consider basic state
formulas, the formulas ϕ and ψ in these rules are assertions. Using the duality
between P

∀ and P
∃, and the closure of PCTL and PCTL∗ under negation, it is

sufficient to restrict attention to the operators P
∀
=1, P

∀
>0, P

∃
=1, and P

∃
>0.

The rules use (Lyapunov) ranking functions. For a DTMC (Sα, ρα) and a
well-founded set (A,�), a function δ : Sα → A is a ranking function if δ
decreases on each step, i. e., for each path s, s′, we have δ(s) � δ(s′). A function
δ : Sα → R≥0 is a Lyapunov ranking function if δ decreases in expectation on
each step, i. e., δ(s) � E(δ′ | s) =

∑
s′∈Sα δ(s′)ρα(s, s′) for all states s ∈ Sα.

Fig. 2. Proof rules for qualitative properties, where Q∈ {∃, ∀}. The quantification
( Qc ∈ C : gc : χ(x) stands for

∧
c∈C(gc(x)) → χ(x)) if Q= ∀ and for

∨
c∈C(gc(x) ∧

χ(x)) if Q= ∃. The primed versions of assertions and expressions are obtained by
replacing primed variables by the values assigned by the respective guarded command.
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We extend (Lyapunov) ranking functions to MDPs by quantifying over the set
of enabled commands.

The rule until

Q

=1 establishes almost sure liveness properties for states in
some set of initial states described by π. The rule is standard: the premises
require an assertion θ that defines an inductive invariant and a Lyapunov ranking
function that decreases in expectation when taking transitions from θ-states that
do not satisfy the target assertion ψ. The rule inv

Q

=1 establishes almost sure
invariance properties. In the case of universal quantification the rule corresponds
to the respective rule for CTL, while the existence of a scheduler is equivalent
to the existence of a winning strategy in a (non-probabilistic) safety game.

The proof rule until

Q

>0 allows us to establish liveness properties with positive
probability. Here, the rule for the existential case corresponds to the one for CTL,
while in the universal case the verification question is equivalent to the question
about the existence of a strategy in a (non-probabilistic) reachability game. The
proof rule inv

Q

>0 establishes invariance properties. The premises of this rule are
rather strong: they require reaching with positive probability a set of states in
which the temporal property holds almost surely. In Sect. 5.1 we give a weaker
rule, for the (more general) case of satisfaction with probability at least p.

The rules next

Q

=1 and next

Q

>0 handle the next operator in the obvious way.
Consider a proof obligation P � π → Ψ , where π is an assertion (which

can be tt) and Ψ is a basic state formula. By applying a rule corresponding to
the temporal operator in Ψ we can reduce the proof obligation to a set of state
validities P � θ where θ is an assertion. Such proof obligations can be discharged
by applying the rule gen using a solver for the respective logical theory.

The proof system Pqualitative consists of the proof rules gen, basic-state,
until

Q

=1, inv

Q

=1, next

Q

=1, until

Q

>0, inv

Q

>0 and next

Q

>0. The soundness of the
proof system is proven by relatively standard reasoning. We defer the discussion
about (in)completeness to Sect. 5.2.

Proposition 1. Pqualitative is sound: if P � ϕ in Pqualitative, then P |= ϕ.

Example 3. Consider the probabilistic system P from Example 1. We want to
prove P |= tt → P

∃
=1(♦ϕclose), where ϕclose ≡ |x|+ |y| ≤ 100. Take the strategy

which at location l = 0 selects the only command satisfying x′ = x−sign(x)∧y′ =
y − sign(y). Using rule until∃

=1, we have to find a Lyapunov ranking function δ
that decreases in expectation whenever ϕclose is not satisfied and we execute a
command from the chosen strategy. Take the following function

δ(l, x, y) =

⎧
⎪⎨

⎪⎩

x2 + y2 if l = 0,

x2 + y2 + 120 if l = 1,

x2 + y2 + 60 if l = 2.

We analyse the behaviour of E(δ′ | x, y). At l = 0 we have E(x′2 + y′2 | x, y) =
x2+y2−2·(|x|+|y|)+2 ≤ x2+y2−198. For the unique command at l = 1 we have
E(x′2 +y′2 | x, y) = x2 +y2 + 18|x|+92

|x|+1 ≤ x2 +y2 +59. The case l = 2 is similar. ��
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3.3 Full PCTL

Figure 3 introduces proof rules for quantitative probabilities. The rule inv

Q

��p for
quantitative invariance is defined analogously to the respective rule for satisfac-
tion with positive probability. The rule next

Q

��p for the next operator can be
defined in the obvious way, thus it is omitted here.

The rule until

Q

≥p establishes quantitative liveness properties. Its premises
require two auxiliary assertions θ and θ≥p such that from each θ≥p-state the set
θ is almost surely reachable, and every time a θ-state is reached a Bernoulli trial
is executed. By adapting the premises to use bound p + Δ for some Δ > 0, we
can easily obtain a rule for strict inequalities.

The proof rules until

Q

≥pm and until

Q

≤pm are slightly more complex. They
allow us to prove properties of the form P

Q

��q(ϕU ψ) provided the bound q has a
specific form. The rule until

Q

≥pm requires a ranking function which is initially
bounded from above by m and which decreases at each step with probability at
least p, thus guaranteeing that the target set of states is reached with probability
at least pm. The rule until

Q

≤pm establishes that an until formula is satisfied with
probability at most pm, by requiring a ranking function that is initially bounded
from below by m and is such that in order to reach 0 there should be at least m

Fig. 3. Proof rules for P

Q

��p for p > 0 and Q∈ {∃, ∀}.
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occurrences of a command that has probability of at least 1− p of going to a set
of states from which the formula cannot be satisfied. Rule until∀

≥1−p combines
until

Q

≤pm and until

Q

=1. Rule until

Q

≥p1·p2
lets us “chain” reachability proofs.

The proof system Pquantitative consists of the rules in the proof system Pqualitative

together with the rules in Fig. 3 and the rule next

Q

��p (omitted here).

Proposition 2. Pquantitative is sound: if P � ϕ in Pquantitative, then P |= ϕ.

Example 4. Consider the probabilistic system from Example 1. Here we show
that P |= ϕclose → P

∃
≥p(♦(x = 0 ∧ y = 0)), i. e., we want to find a lower bound

on the probability of reaching the origin from any state in ϕclose . Using rule
until∃

≥pm it is enough to find a ranking function that is bounded in ϕclose and
such that the probability of decreasing by one has a uniform lower bound in
ϕclose . For brevity, we consider a variant where the decision of the robot and the
repelling disturbances occur at once, not sequentially. Then, the ranking function

δ(l, x, y) =

{
max(|x|, |y|) if x ≡ y mod 2
max(|x|, |y|) + 5 if x ≡ y mod 2.

fullfils the requirements. When both coordinates have the same parity and one of
them is not 0, it is always possible to decrease δ by selecting a proper command
and assuming that the robot is not repelled in any direction. In case that they
have different parity we have to consider the case when the robot is repelled in
the coordinate with the largest absolute value. The lower bound is then p = 1

1012

as we have |x|, |y| ≤ 100 for the states satisfying ϕclose . ��

4 Proof System for PCTL∗

The proof rules presented in Sect. 3 are applicable to the PCTL fragment of
PCTL∗. We now extend the proof system Pquantitative to reason about PCTL∗.

The scope of the rules in Fig. 1, and in particular basic-state, is not limited
to PCTL. Thus, the rule basic-state can be applied to a PCTL∗ formula to
arrive at a PCTL∗ formula P

Q

��p(ϕ), where the formula ϕ is a Streett automaton
representing an ω-regular language over the alphabet of sets of assertions.

Streett Automata, Product Construction. Let AP be a finite set of assertions over
x. A deterministic Streett automaton is a tuple A = (Q,Σ, ρ, q0, {(Ei, Fi)}k

i=1),
where Q is a finite set of states, Σ ⊆ 2AP is a finite input alphabet, ρ ⊆ Q×Σ×Q
is a transition relation, such that if (q, σ1, q1) ∈ ρ and (q, σ2, q2) ∈ ρ and q1 = q2
then ϕσ1 ∧ ϕσ2 is unsatisfiable, where ϕσ = (

∧
θ∈σ θ) ∧ (

∧
θ∈AP\σ ¬θ) for σ ∈ Σ,

q0 ∈ Q is the initial state, and for all i = 1, . . . , k, Ei ⊆ Q and Fi ⊆ Q.
A run of A on an infinite sequence of states (valuations of the variables x)

τ ∈ Sω is a sequence η ∈ Qω of automaton states such that η[0] = q0 and for
every i ≥ 0 there exists σ ∈ Σ such that (η[i], σ, η[i + 1]) ∈ ρ and τ [i] |= ϕσ. A
run η on τ is accepting if for every i = 1, . . . , k it holds that if Inf(η) ∩ Ek = ∅,
then also Inf(η) ∩ Fk = ∅, where Inf(η) ⊆ Q is the set of states that occur
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infinitely often in η. A path τ is accepted by A iff there exists an accepting run
of A on τ . We write L(A) for the set of paths accepted by A.

Consider a probabilistic program P = (x, C) and a deterministic Street
automaton A with alphabet Σ which consists of sets of assertions over x.

The product of P and A is the probabilistic program PA = (xA, CA), where
xA = x ∪̇ {xq}, for a fresh variable xq with domain Q, and CA is the set of
guarded commands defined as follows. The set CA contains one guarded com-
mand for each pair of transition (q, σ, q′) ∈ ρ and probabilistic guarded command
c : g 	→ x′ = e1 ⊗=p1 . . . ⊗=pk

x′ = ek+1 in C, where (c, q, σ, q′) is the label of
the product guarded command, and the assertion ϕσ(x) represents the letter σ:
(c, q, σ, q′) : gc ∧ xq = q ∧ ϕσ(x) 	→ x′

q = q′ ∧ (x′ = e1 ⊗=p1 . . . ⊗=pk
x′ = ek+1).

Similarly, for deterministic guarded commands. For a given scheduler α and an
initial state s, the set of paths of PA on which A has an accepting run, denoted
Acc(P,A)α,s, is measurable [7,26].

Fig. 4. Rule basic-path

Basic Path Rule. Given a Streett automaton A, the
rule shown in Fig. 4 reduces the proof obligation P �
π → P

Q

��p(L(A)) to proving a statement of the form
P � π′ → P

Q

��p(Acc(P,A)), where π′ is an assertion.

Proposition 3. If the premises of the proof rule basic-path are satisfied then
it holds that P |= π → P

Q

��p(L(A)).

Fig. 5. Proof rules for almost sure repeated reachability, where Q∈ {∃, ∀}.

Rules for Repeated Reachability. The Streett acceptance condition of A can be
encoded as repeated reachability formulas of the form

∧k
i=1

(
�♦ϕi → �♦ψi

)
,

where ϕi and ψi are assertions over xA encoding the sets Ei and Fi for
i = 1, . . . , k. Figure 5 shows the corresponding rules for the almost sure case.

Proposition 4 (Soundness of rec∀
=1). Rules rec∀

=1 and rec∃
=1 are sound.

Proof (Sketch). We prove soundness of rec∀
=1. Fix an arbitrary scheduler α and

consider Mα. We can restrict the proof to the infinite paths that start in a θ-
state since any infinite path of P eventually visits only states in θ. Let S0, S1, . . .



Probabilistic CTL∗: The Deductive Way 291

be the random process such that Sk is the state visited after executing exactly
k instructions, and Fk be the smallest σ-algebra that makes Sk measurable.
Let ♦≥nψ denote the event {∃m ≥ n : Sm ∈ ψ} and [E ] denote the indicator
function for the event E . Notice that limn ♦≥nψ = �♦ψ.

[♦≥mψ] = lim
n

P(♦≥mψ | Fn) ≥ lim sup
n

P(♦≥nψ | Fn)

≥ lim inf
n

P(♦≥nψ | Fn) ≥ lim
n

P(�♦ψ | Fn) = [�♦ψ]

The equalities are a consequence of Levy’s 0-1 law [11, Theorem 5.5.8] and the
fact that ♦≥mψ and �♦ψ are measurable in σ(

⋃
n Fn). If we let m go to infinity

both extremes coincide and therefore limn P(♦≥nψ | Fn) = [�♦ψ].
From the last premise of the rule we have P(♦≥nψ | Fn) ≥ p[Sn ∈ ϕ], i. e.

the probability of reaching a ψ-state from a ϕ-state is at least p. Take ω an
arbitrary point event that satisfies �♦ϕ, then for infinitely many n we have
P(♦≥nψ | Fn)(ω) ≥ p > 0, and therefore [�♦ψ](ω) = 1. We thus conclude that
P |= π → P

∀
=1(�♦ϕ → �♦ψ).

The soundness of the existential rule is proved in a similar way; additionally,
one has to show how a witness scheduler can be constructed from the individual
schedulers that guarantee reachability of each ψi for i = 1, . . . ,m. ��

In the special case ϕ := tt in rule rec∀
=1, we obtain a proof rule for uncon-

ditional recurrence as the rule given by Hart and Sharir [16, Lemma 3.3].
The rule for rec∃

=1 in Fig. 5 requires that the assertion θ is invariant under
all possible schedulers instead of under some scheduler. The reason is the
following: the fact that there exist a scheduler that ensures the invariance and
schedulers that ensure reachability does not imply that these schedulers can be
combined in a scheduler that achieves both properties. Instead of referring to the
rule for proving P

∃
≥p

(♦ψi
)

we can alternatively include the respective premisses
and incorporate the requirement that the scheduler should guarantee that θ is
invariant. We omit this more complicated rule for simplicity of the presentation.

We can give a proof rule rec

Q

>0 for repeated reachability with positive prob-
ability that is analogous to the rule inv

Q

>0: Its premises require that some set of
states θ is reached with positive probability and in every state in that set the
repeated reachability property is satisfied almost surely. Analogously, we can
obtain a rule rec∃

≥p for the existential quantitative repeated reachability. The
rule rec∀

≥p for the universal quantitative case is a straightforward adaptation of
rec∀

=1: It requires that some set of states θ is invariant with probability at least
p and from every state in θ that satisfies ϕ a ψ-state is reached with probability
at least q for some q > 0. Strict inequalities are handled as in the PCTL case.

Example 5. We want to prove that there is a strategy for the robot in Example 1
that visits infinitely often the origin regardless of the initial state. This can be
specified in PCTL∗ as P |= tt → P

∃
=1(�♦(x = 0 ∧ y = 0)). From Example 3
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we have P � tt → P
∃
=1(♦ϕclose), and from Example 4 we have P � ϕclose →

P
∃
≥p(♦(x = 0 ∧ y = 0)). Then, we can conclude that P � tt → P

∃
≥p(♦(x =

0 ∧ y = 0)). The desired property follows immediately from the rule rec∃
=1 as

P � tt → P
∃
=1(�♦tt) is a tautology. ��

Unlike the deductive proof systems for CTL∗ [19] and ATL∗ [25] here we can-
not encode the accepting condition of the automaton A as a fairness requirement
in the product system. In [19] LTL formulas are translated to temporal testers
with fairness conditions, and their synchronous product with the original system
yields a fair discrete system. Justice (a specific form of fairness) is then han-
dled by specialized proof rules. Similarly, in [25] an LTL formula is transformed
to a deterministic automaton, whose synchronous composition with the system
yields an alternating discrete system with fairness conditions and the resulting
proof condition then contains strategy quantifiers ranging over fair strategies.
Subsequently, fair strategy quantifiers are transformed into unfair ones and the
fairness conditions are made explicit in the resulting temporal formula, which is
of a specific form and is treated by special proof rules.

The example below demonstrates that in the probabilistic case the encod-
ing of the winning condition of the automaton as a fairness constraint is not
equivalent to an explicit encoding in the temporal formula.

Example 6. Consider the probabilistic program P over variables s ∈ {0, 1, 2}
and x, y ∈ B. The transition relation is described by the guarded commands:

c0 : s = 0 	→ (s′ = 1 ∧ x′ = 0 ∧ y′ = 0) ⊗= 1
2

(s′ = 2 ∧ x′ = 1 ∧ y′ = 1),
c1 : s = 1 	→ s′ = 1 ∧ x′ = 0 ∧ y′ = 0,
c2 : s = 2 	→ s′ = 2 ∧ x′ = 1 ∧ y′ = 1.

Initially we have ι ≡ s = 0 ∧ x = 0 ∧ y = 0. A scheduler α is fair w.r.t. the
fairness requirement ϕ ≡ �♦(x = 1) if in the resulting DTMC starting from
any ι-state, �♦(x = 1) holds with probability 1. Thus, the set of schedulers that
are fair w.r.t. ϕ is empty and hence if quantifiers are interpreted over the set of
all fair schedulers we have that P |= ι → P

∃
≥1/2(�♦(y = 1)) does not hold and

P |= ι → P
∀
≥1/2(�♦(y = 1)) holds trivially. On the other hand, when quantifiers

range over all possible schedulers, we have that P |= ι → P
∃
≥1/2(�♦(x = 1) →

�♦(y = 1)) and P |= ι → P
∀
≥1/2(�♦(x = 1) → �♦(y = 1)) are satisfied. ��

The proof system P∗
quantitative consists of the rules in Pquantitative together with

the rules mp, and, or, the rule basic-path and the rules for repeated reacha-
bility rec∀

=1,rec
∃
=1,rec

Q

>0,rec
∀
��p and rec∃

��p.

Proposition 5. P∗
quantitative is sound: if P � ϕ in P∗

quantitative, then P |= ϕ.

5 Discussion

We have presented the first deductive proof system for PCTL∗. Our initial expe-
rience with the proof system has been positive: for example, we can prove the
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termination of Rabin’s choice coordination problem with probability at least
1 − 2− M

2 , for a parameter M denoting the size of the alphabet used in the pro-
tocol, for any number of processes. Like with any deductive proof system, one
has to come up with invariants and Lyapunov ranking functions. While we cur-
rently do this manually, it will be interesting to combine our proof system with
recent automated techniques [18]. We conclude with two technical discussions:
relaxations of our proof rules and completeness.

5.1 Variants of the Deduction Rules

Our choice of deduction rules has been driven by the intention to keep the expo-
sition simple. We now discuss some possible relaxations to our rules, motivated
by the incompleteness of some of the original rules.
Invariant with Positive Probability. As a first example, consider the rule for
inv∀

≥p, which checks if a set of states that each satisfy the invariant with prob-
ability one can be reached with probability at least p.

Consider the probabilistic program P with a single variable x over N that
describes a biased random walk. The initial state is x = 1 and the state x = 0
is absorbing. At each step x increases by 1 with probability 3/4 and decreases
by 1 with probability 1/4. We have that P |= (x = 1) → P

∀
≥ 2

3
(�(x > 0))

holds. However, from every state of P the state x = 0 is reached with positive
probability. Thus, we cannot provide an assertion θ as required by the premisses
of rule inv∀

≥p, as no subset of the set of states where x > 0 holds is invariant.
The rule inv∀

≥p in Fig. 6 is a generalisation of inv∀
≥p. The idea is to provide

assertions, θ1, θ2, . . . such that from each θi-state there is high enough probability
to eventually move to some θj where j > i, meaning that the infinite product of
these probabilities converges to the desired probability p for the invariant.

We can apply the rule inv∀
≥p in Fig. 6 to this random walk example as follows.

Let θk = (x = k) for each k > 0. Then, clearly, P � (x = 1) → ∨∞
k=1 θk and for

all k > 0 we have P � θk → ϕ. The probability of reaching θk+1 from a state in
θk is pk = 1−3−k

1−3−(k+1) and thus P � θk → P
∀
≥pk

(♦∨∞
j=k+1 θj) for all k > 0. Finally,

∏∞
k=1 pk = 2/3 which completes the proof. Clearly, the expressivity comes at a

price of more complex premises.
Repeated Reachability. As a second example, consider rule rec∀

=1 in Fig. 6, which
takes a different approach from the one in Fig. 5. Instead of ensuring that after
visiting a state satisfying ϕ we reach with probability at least p a state satisfying
ψ, we ensure that it is almost impossible to visit an infinite number of ϕ-states
without visiting a single ψ-state. The latter is a more relaxed condition. Take
any program that satisfies the former and add a self loop in a state satisfying
¬ϕ∧¬ψ that is reachable from a ϕ-state. The modified program does not satisfy
the premise of the original rule, although the property still holds. The modified
rule does not suffer from this.

More specifically, rule rec∀
=1 in Fig. 6 requires the existence of a Lyapunov

ranking function that decreases in expectation in states where ϕ holds but ψ
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does not hold, and cannot increase in expectation in states that do not satisfy
ψ. Thus, the rule can be successfully applied also in cases where a ϕ state is
visited only finitely many times. Its completeness is discussed in Sect. 5.2.

Fig. 6. More advanced proof rules.

5.2 Completeness for Finite State Systems

Our proof rules are in general incomplete for infinite-state probabilistic pro-
grams. For example, the rule until

Q

=1 relies on Lyapunov ranking functions that
are known to be incomplete for almost sure termination [5,13]. We focus the dis-
cussion to programs with finite state spaces, as most of our rules —or slight
variations thereof— are complete for this class. The completeness of the rule
inv

Q

=1 and the rules for positive probability follows from the non-probabilistic
case [19] (even for countable state spaces).
Until. If a program P satisfies almost surely ϕU ψ regardless of the scheduler,
then given an initial state s the expected amount of steps before reaching a
ψ-state is bounded. Moreover, there is an optimal memoryless scheduler that
maximizes this quantity for all states [3]. Then, the mapping that assigns to
each state the expected time of reaching a ψ-state using the optimal scheduler
is a valid Lyapunov ranking function. For the completeness of until∃

=1 we have
that there is a memoryless and deterministic scheduler that satisfies ϕU ψ [4].
Then we have to take θ as the set of states visited by the scheduler, and build a
Lyapunov ranking function for this sub-MDP in a similar way as above.
Streett Condition. The rule rec∃

=1 is not complete as the premise P � θ →
P

∀
=1(�θ) is too strong. The monolithic proof rule (see Remark 1) that guarantees

that θ is invariant w. r. t. the schedulers of the last premise is complete. We have
to choose θ as the states that the scheduler visits infinitely often with non-zero
probability. The set θ is almost surely reached and each of its states belongs to
at least one end component [8]. If a ϕi-state is visited infinitely often, then the
end component that the scheduler reaches must have a ψi-state, otherwise the
property will be violated. Then, the last premise is satisfied.

The rule rec∀
=1 presented in Sect. 5.1 is complete. We need to analyze the

maximal end components of the program. Consider the sub-MDP obtained from
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an end component E. From every state the maximum expected number of ϕ-
states visited before reaching a ψ-state is finite, since the maximal probability
of returning to a ϕ-state without visiting a ψ state is less than one. This quan-
tity can be used to build a Lyapunov function that decreases every time that
a ϕ ∧ ¬ψ-state is visited. Consider now the quotient MDP that is obtained
by lumping every maximal end component into a single state and removing
self-loops. It has no end component except for deadlock states. Then we can
build a Lyapunov ranking function that ensures that a deadlock state is reached
almost surely. We can combine all these local Lyapunov functions to build a
global one that satisfies the conditions of the rule rec∀

=1.

Acknowledgements. This work is supported by the EU FP7 projects 295261
(MEALS) and 318490 (SENSATION), by the DFG Transregional Collaborative
Research Centre SFB/TR 14 AVACS, and by the CDZ project 1023 (CAP).

References

1. Arons, T., Pnueli, A., Zuck, L.D.: Parameterized verification by probabilistic
abstraction. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 87–102.
Springer, Heidelberg (2003)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. Oper. Res. 16(3), 580–595 (1991)

4. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterminis-
tic systems. In: Thiagarajan, P.S. (ed.) FSTTCS. LNCS, pp. 499–513. Springer,
Heidelberg (1995)

5. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005)

6. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013)

7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

8. de Alfaro, L.: Formal verification of probabilistic systems. PhD thesis, Standford
(1997)

9. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the Kronecker rep-
resentation. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, p. 395. Springer,
Heidelberg (2000)

10. Dimitrova, R., Ferrer Fioriti, L.M., Hermanns, H., Majumdar, R.: PCTL∗: the
deductive way (extended version). Reports of SFB/TR 14 AVACS 114, (2016).
http://www.avacs.org

11. Durrett, R.: Probability: Theory and Examples. Series in Statistical and Proba-
bilistic Mathematics, 4th edn. Cambridge University Press, New York (2010)

12. Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs
using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 123–138. Springer, Heidelberg (2012)

http://www.avacs.org


296 R. Dimitrova et al.

13. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, complete-
ness, and compositionality. In: POPL, pp. 489–501 (2015)

14. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg
(1997)

15. Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer,
Heidelberg (1986)

16. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program.
ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)

17. Hurd, J.: Formal verification of probabilistic algorithms. PhD thesis, University of
Cambridge (2001)

18. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant gen-
eration for probabilistic programs. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010)

19. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor.
Comput. Sci. 331(2–3), 397–428 (2005)

20. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. SIGMETRICS Perform. Eval. Rev. 36(4),
40–45 (2009)

21. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, Heidelberg (2005)

22. Pnueli, A.: On the extremely fair treatment of probabilistic algorithms. In: Proceed-
ings of the 15th Annual ACM Symposium on Theory of Computing, pp. 278–290
(1983)

23. Pnueli, A., Zuck, L.D.: Probabilistic verification. Inf. Comput. 103(1), 1–29 (1993)
24. Rabin, M.O.: The choice coordination problem. Acta Informatica 17, 121–134

(1982)
25. Slanina, M., Sipma, H.B., Manna, Z.: Deductive verification of alternating systems.

Form. Asp. Comput. 20(4–5), 507–560 (2008)
26. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-

grams. In: FOCS, pp. 327–338 (1985)



Tool Papers I



Parametric Runtime Verification of C Programs

Zhe Chen1,2(B), Zhemin Wang1, Yunlong Zhu1, Hongwei Xi3, and Zhibin Yang1

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, 29 Jiangjun Avenue, Nanjing 211106, Jiangsu, China

{zhechen,wangzm,zhuyl,zhibinyang}@nuaa.edu.cn
2 Collaborative Innovation Center of Novel Software Technology and

Industrialization, Nanjing, China
3 Computer Science Department, Boston University, 111 Cummington Street,

Boston, MA 02215, USA
hwxi@cs.bu.edu

Abstract. Many runtime verification tools are built based on Aspect-
Oriented Programming (AOP) tools, most often AspectJ, a mature
implementation of AOP for Java. Although already popular in the Java
domain, there is few work on runtime verification of C programs via
AOP, due to the lack of a solid language and tool support. In this paper,
we propose a new general purpose and expressive language for defining
monitors as an extension to the C language, and present our tool imple-
mentation of the weaver, the Movec compiler, which brings fully-fledged
parametric runtime verification support into the C domain.

1 Introduction

Along with the popularity of runtime verification [16,19], many tools have been
developed. These runtime verification tools automatically synthesize the code
fragments of event extraction mechanisms and monitors from formal specifica-
tions, and then instrument the code into a target program, so that the moni-
tors can extract information from the program executions at runtime, to detect
and possibly react to observed behaviors satisfying or violating the specified
properties. As automated program instrumentation plays a key role in monitor
synthesis and weaving, many current tools are built based on Aspect-Oriented
Programming (AOP), which is a programming paradigm that supports the mod-
ular implementation of crosscutting concerns [15].

By using AOP compilers, these tools are hence built in the form of specification
transformers, that take an expressive high-level specification as input and produce
output code written in some AOP language, most often AspectJ, a mature imple-
mentation of AOP for the Java programming language [14]. For example, among
the large number of runtime verification tools, the most efficient parametric run-
time verification tool JavaMOP [4,13,17] is based on AspectJ. JavaMOP trans-
forms monitor definitions including desired properties into aspects, and then these
aspects are transformed into Java code fragments and weaved into target programs
using an AspectJ compiler. The desired properties can be automatically verified
at runtime by running the executable file generated by AspectJ. Other tools like
Tracematches [1,2] are designed in a similar way.
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 299–315, 2016.
DOI: 10.1007/978-3-662-49674-9 17
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Therefore, we believe that the popularity of runtime verification of Java pro-
grams is supported by the fact that a robust, reliable and efficient AOP compiler
such as ajc is available.

Although already popular in the Java domain, there is few work on runtime
verification of C programs via AOP, due to the lack of a solid language and tool
support. For example, AspectC++ is an implementation of AOP for C++, but
the generated code cannot be compiled by C compilers [20–23]. Coady et al.
used “AspectC” (a hypothetical and simple subset of AspectJ) to modularize
the implementation of prefetching within page fault handling in the FreeBSD
OS kernel, and showed significant benefits [9,10]. But they used only a paper
design for AspectC, supporting only join points of function calls and control
flow, and no implementation of AspectC exists. ACC (AspeCt-oriented C) is
the most advanced implementation of AOP for the C programming language at
present [11], but it is currently not maintained by its developers, and the latest
version is incorrect in many cases. For example, join points and pointcuts are
sometimes not correctly matched, and instrumented code is possibly not seman-
tically equivalent to its corresponding aspect. Worse, the ACC implementation
is not well modularized, so fixing ACC is hard.

However, the fact is that a large number of applications is still being devel-
oped in C, especially embedded software applications such as avionics systems,
which always require high dependability [7]. Thus, it is meaningful to provide
a runtime verification tool or an AOP tool for the C language, so programmers
can modularize the crosscutting concerns to improve maintainability, and based
on AOP tools, they can also develop or use runtime verification tools to monitor
and verify their programs at runtime.

In this paper, we propose a new general purpose and expressive language
for defining monitors as an extension to the C language, and present our tool
implementation of the weaver, the Movec compiler, which brings fully-fledged
parametric runtime verification and AOP support into the C domain. The major
contributions of our work include:

– We propose a new language for defining monitors for C programs by system-
atically redesigning the languages of AspectJ and JavaMOP. The main reason
is that, the C language uses the procedure-oriented programming paradigm,
which is very different from the object-oriented paradigm of Java, thus we have
to redesign what we learned from AspectJ and JavaMOP according to the spe-
cific peculiarities of the C language. Another reason is that, the traditional AOP
languages are somewhat conceptually confusing (the various types of pointcuts
and advices are not systematic), not enough elegant andnatural (somepointcuts
and advices are written in a redundant and uncomfortable way).

– We develop a new instrumentation algorithm for the new language. In the
AOP part, this is necessary because the philosophy of the C language is
very different from Java, so we cannot implement aspects as classes like in
AspectJ. Besides, the instrumentation algorithm of ACC, the most relevant
AOP implementation, is incorrect in many cases. In the runtime verification
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part, our algorithm has to implement more infrastructures than JavaMOP,
because we cannot use the powerful Java class library, such as hashmaps.

– We implement an integrated tool supporting both AOP and parametric run-
time verification. Getting AOP and runtime verification into the C language
is a hard and tedious task, and our implementation supports all features of
the new language and provides convenient user instructions. Experimental
performance evaluation shows that our tool is robust, reliable and efficient.

This paper is organized as follows. Section 2 introduces the Movec compiler,
including its software architecture, compilation process and theoretical founda-
tions. Section 3 presents an example to show the tool’s functionality, i.e., how to
write monitor definitions and run Movec. Section 4 focuses on the design of our
new language for defining monitors of C programs by introducing the semantics
of each language element. Section 5 explains the tool implementation of the new
language, including core data structures. Section 6 evaluates and compares the
performance of Movec and related tools by presenting the experimental results
on the same benchmark. We conclude and discuss future work in Sect. 7.

2 The Movec Compiler

Movec is an automated tool for runtime MOnitoring, VErification and Con-
trol of C programs as an extension to the C programming language. Movec

is influenced by AOP and parametric runtime verification, and is an integrated
implementation of these ideas for the C programming language. Movec aims
at providing an infrastructure of AOP, runtime verification and related tech-
nologies in the context of software written in C, especially targeting embedded
software such as avionics systems, leading to further explorations and investi-
gations not possible today, as no reliable, efficient and stable implementation of
these technologies for C programs exists.

Movec provides a source-to-source transformation that automatically
weaves monitor specifications written in Movec into Movec-unaware C pro-
grams, and generates instrumented C programs which can be compiled by any
compliant C compiler such as GCC and other platform-specific compilers. Note
that Movec does not directly compile the instrumented C programs into a
binary executable file, because many embedded platforms use their own C com-
pilers which may be not compatible with each other. Thus, by using source code
transformation, Movec can be used for all target platforms supported by C
compilers.

Software Architecture and Compilation Process. The inputs of Movec

are C programs and files containing monitor definitions, and the outputs are
instrumented C programs. There are five major modules in Movec, correspond-
ing to the five phases in the Movec compilation process: command line analysis
(i.e., parsing the options given in a command line), parsing C programs, parsing
monitor definitions, monitor generation (i.e., generating C code fragments for
monitor definitions) and weaving (i.e., generating instrumented C programs).
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Theoretical Foundations. Rosu and Chen et al. proposed the theoretical
foundation of parametric runtime monitoring and verification [3,5,12,18], and
implemented JavaMOP supporting parametric runtime verification of Java pro-
grams [4,13,17]. For the parametric runtime verification part, our tool imple-
ments their monitoring algorithm in the context of C programs. Our tool also
implements a formal semantics of runtime monitoring, verification, enforcement
and control [8], which is an instance of a more general computational model,
namely control systems [6].

3 A Demonstration of the Tool

Generally speaking, Movec extends the C language with monitor definitions
that implement crosscutting concerns in a modular way. A monitor definition is
composed of declarations of types, variables, pointcuts, actions, properties and
their handlers.

In this section, we will present a simple example to show how to write monitor
definitions and run Movec. Suppose malloc.c is a C source program, which
requests 10 blocks of memory from the heap by calling malloc, and then frees
7 of these blocks. Note that some blocks are not freed, resulting in memory
leakage. We will show how to detect the memory leakage by defining monitors.

Let monitor1.mon be a monitor file containing the monitor named mon in
Listing 1.1. This parametric monitor definition takes two parameters: size and
address, and includes two parametric named pointcuts, three actions, a property
and a handler. Movec creates a complete monitor instance for each observed
value pair of size and address, both of which are specified in the creation
action in this example (but not necessarily in other examples).

The first parametric named pointcut cm(s) refers to the function calls to
malloc, and the parameter s binds the value of its actual argument. The second
parametric named pointcut cf(p) refers to the function calls to free, and the
parameter p binds the value of its actual argument. The symbol % is a wildcard
character matching continuous strings of any length, e.g., any type name and
any parameter identifier. The symbol : is a renaming operator that renames a
parameter identifier to another one. The predefined pointcut call matches the
join points of the function calls to the matched functions.

The first parametric action named malloc prints the address range of
the allocated memory block, and is executed after any function call to malloc.
The predefined pointcut returning assigns an identifier to the return value of
the function call. The parameters address and size bind the address and size
of the allocated block respectively, and the variable tjp->loc is a predefined
variable which stores the line number of the function call. This action is also a
creation action, which creates a new monitor instance. The second parametric
action named free prints the address of the freed memory block, and is executed
after any function call to free. The last action named end is executed after the
execution of main. The symbol ... is a wildcard character matching item lists
of any length, e.g., any parameter list.
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Listing 1.1. A parametric monitor

1 monitor mon( s i z e t s i z e , void ∗ address )
2 {
3 po intcut cm( s ) = c a l l (% malloc(% %:s ) ) ;
4 po intcut c f (p) = c a l l (% f r e e (% %:p) ) ;
5

6 c r e a t i on ac t i on mal loc ( address , s i z e ) a f t e r cm( s i z e ) &&
7 r e tu rn ing ( address ) {
8 p r i n t f ( ”Al located address %p−%p ( s i z e %lu ) at l i n e %d\n” ,
9 address , address+s i z e , s i z e , t jp−>l o c ) ;

10 }
11

12 ac t i on f r e e ( address ) a f t e r c f ( address ) {
13 p r i n t f ( ”Freed address %p at l i n e %d\n” , address , t jp−>l o c ) ;
14 }
15

16 ac t i on end a f t e r execut ion(% main ( . . . ) ) ;
17

18 e re : ( mal loc f r e e )∗ malloc end ;
19 @match {
20 p r i n t f ( ” e r r o r : address %p ( s i z e %lu ) was not”
21 ” c o r r e c t l y f r e ed !\n” , monitor−>address , monitor−>s i z e ) ;
22 }
23 } ;

The property over actions malloc, free and end is specified in extended
regular expression (ERE). It matches undesired action sequences that start with
zero or more malloc free, followed by a malloc, and end with end. The handler
@match contains a code fragment that prints a message, which will be automat-
ically executed when an execution of the program matches the property, i.e., a
memory block was allocated, but was not correctly freed. The variable monitor
is a predefined structure variable that refers to the current monitor instance,
and its member variables monitor->address and monitor->size refer to the
parameters address and size of the current monitor instance, respectively.

Movec takes monitor files and C header/source files as inputs, and out-
puts instrumented header/source files, which can be compiled into monitored
programs by any compliant C compiler such as GCC. For example, the fol-
lowing command line takes the monitor file monitor1.mon and the C source
file malloc.c as inputs, automatically weaves them together, and outputs the
instrumented source file malloc.c to the destination directory /home/user.

$ movec -m monitor1.mon -c malloc.c -d /home/user
Besides the instrumented source file malloc.c, Movec also outputs two

additional header files monitor.h and hashmap.h to this directory. The instru-
mented source file malloc.c can be compiled into an executable file a.out by
GCC. Running a.out prints a list of messages, and the last three error mes-
sages indicates that 3 allocated memory blocks were not freed, along with their
addresses and sizes (the addresses may be different on your computer).

... (omitted) ...
error: address 0x790ad0 (size 160) was not correctly freed!
error: address 0x790cf0 (size 320) was not correctly freed!
error: address 0x792590 (size 5120) was not correctly freed!
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In this example, Movec created 10 complete monitor instances, i.e., one for each
value pair of size and address. Then the handler was invoked for each one of
the 3 monitors that reached matching states, whereas the other 7 monitors did
not invoke the handler because they did not reach matching states. Thus, the
result shows that there are 3 unmatched malloc actions at the end.

Note that the above example only demonstrated a small portion of the
language and features of Movec. In the following sections, we will introduce
in-depth the semantics of each language element.

4 The Language for Defining Monitors

4.1 Join Points, Pointcuts and Actions

We only briefly introduce these language elements, because these concepts stem
from AOP languages, although with some improvements such as more system-
atic design of pointcuts and advices and more concise and comfortable syntax.
The reader unfamiliar with these concepts may refer to the literature on AOP
languages [11,14,20].

A join point is a point in the execution of a program, such as function calls
via function names or pointers, function executions.

A pointcut is an expression that matches a set of join points scattered in
the execution of a program. Currently, Movec supports match expressions for
matching program objects such as identifiers, variable declarations and function
signatures, and primitive pointcuts, composite pointcuts and named pointcuts for
matching join points.

A literal match expression matches a program object only if they are exactly
the same, whereas a regular expression can match a program object by using
the symbols % and ... as wildcard characters. For example, the expression %
func%(..., int x, ...) matches any functions whose name starts with func
and parameter list contains a parameter int x, but the return type and other
parameters are left unspecified, e.g., int* func1 (float foo, int x).

The predefined primitive pointcuts fall into four classes: core pointcut func-
tions, naming pointcut functions, dynamic scope and static scope pointcut func-
tions. The core pointcut functions include the following functions.

– call(function-signature) matches the join points of the function calls to the
functions matched by function-signature. For example, the expression call(%
func%(..., in%, ...)) matches the function calls to any function whose
name starts with func, parameter list contains a parameter whose type starts
with in, but return type is left unspecified, e.g., int* func1(float foo,
int x).

– callp(function-signature) matches the join points of the function calls to the
functions matched by function-signature via function pointers.

– execution(function-signature) matches the join points of executing the func-
tions matched by function-signature.
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The naming pointcut functions are used to assign names to some objects in
the execution of a program, e.g., return values.

– returning(identifier) assigns an identifier to the return value of the function
call matched by call or callp pointcuts, or to the return value of the function
execution matched by execution pointcuts.

The dynamic scope pointcut functions are used to restrict the scope of
matched join points at runtime.

– inexec(function-signature) matches the join points which are invoked during
the dynamic execution of the functions matched by function-signature.

– condition(boolean-expression) matches the join points at which the condition
specified by boolean-expression holds.

The static scope pointcut functions are used to restrict the scope of matched
join points at compile-time.

– infunc(function-signature) matches the join points which statically appear in
the function definitions matched by function-signature.

– intype(identifier) matches the join points which statically appear in the type
definitions matched by identifier, such as structures, unions and enumerations.

– infile(identifier) matches the join points which statically appear in the files
whose names are matched by identifier.

A composite pointcut is a primitive pointcut, or a logical composition of
composite pointcuts with the operators: && (and), || (or), ! (not), and ( ).

To reuse pointcut declarations, we can assign a name to a pointcut by declar-
ing a named pointcut, then the named pointcut can be referred by using its name
in any places where a pointcut can be used. For example,

pointcut ppc1(x,y) = call(int foo(int x)) && returning(y);

An action declaration associates a code fragment to a pointcut, and the
code fragment will be automatically executed when a join point is reached in an
execution of the monitored program, such that the join point is matched by the
pointcut defined inside the action declaration. Actions are also called advices in
AOP and events in JavaMOP. The syntax of action declarations is as follows.

[creation] ("action" | "advice" | "event")
[ACTIONID ["(" <paramids-list> ")"] ]

("before" | "after" | "around") <pc-composite>
("{" <act-action> "}" | ";")

An action declaration specifies a passive action and an active action. The
passive action contains a composite pointcut expression pc-composite to pas-
sively match reached join points, and specifies the position where the active
action shall be triggered relative to the invocations of matched join points, e.g.,
before, after etc. The active action act-action is a code fragment enclosed
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in curly braces. The active action is automatically executed if the passive action
is matched.

For example, the following parametric action pact prints a message before
the execution of function foo, which takes only one integer parameter x. Note
that the parameter x is referred as a parameter of the action. As a result, the
value of x can be accessed and printed in its active action.

action pact(x) before execution(int foo(int x)) {
printf("before executing foo, x=%d\n",x);

}

4.2 Properties and Handlers

A property specifies the desired or undesired set of sequences of matched join
points in the execution of a program, and a handler can be automatically exe-
cuted when the property is matched or violated by an execution of the program.
Currently, we can express properties using Finite State Machines (FSM) and
Extended Regular Expressions (ERE).

An FSM includes a set of states, a set of actions and a set of transitions, in
which one of the states is the initial state and a subset of the states is matching
states (also called accepting states or final states). FSMs are also called Non-
deterministic Finite Automata (NFA) in formal language theory. The syntax of
FSM declarations is as follows.

"fsm" ":" ( STATEID1 "{"
(ACTIONID "->" STATEID2 ";")*
"}" )* ";"

An FSM declaration starts with the keyword fsm and a colon, possibly fol-
lowed by a list of state declarations, and finally ends with a semicolon. A state
declaration starts with its name STATEID1, followed by a list of transition dec-
larations enclosed in curly braces. A transition declaration consists of an action
name ACTIONID, the symbol ->, a state name STATEID2 and a semicolon in
sequence, denoting that the action ACTIONID will transfer the FSM from state
STATEID1 to state STATEID2, where STATEID1 and STATEID2 could be either the
same state or different states. If a state does not include a certain action, but
the action appears in other states, then the action will transfer the FSM from
the state to the implicit sink state, from which the FSM will never be matched.
Note that the first declared state is the initial state, and the states whose name
starts with acc are matching states.

For example, the following FSM declaration includes three states q0, q1,
acc1, two actions a, b and six transitions, in which the first declared state q0
is the initial state, and state acc1 is a matching state. For each state, there are
two transitions, e.g., state q0 has a transition labeled action a from q0 to q1.

fsm: q0 { a -> q1; b -> q2; }
q1 { a -> q1; b -> q0; }

acc1 { a -> q0; b -> acc1; };



Parametric Runtime Verification of C Programs 307

An ERE is a sequence of identifiers and operators that defines a pattern
to match sequences of identifiers. The operators in EREs include the concate-
nation of elements, the choice operator | which matches either the expression
before or the expression after the operator, the asterisk operator * which matches
the preceding element zero or more times, the plus operator + which matches the
preceding element one or more times, the question mark ? which matches the
preceding element zero or one time, and the parentheses () which are used to
define the scope and precedence of the operators. EREs can be translated into
equivalent Nondeterministic Finite Automata (NFA) in formal language theory.
The syntax of ERE declarations is as follows.

"ere" ":" <ere> ";"

An ERE declaration starts with the keyword ere and a colon, followed by
an extended regular expression <ere> over action names, and finally ends with a
semicolon. For example, the following ERE declaration over actions malloc, set,
get and free matches the action sequences that start with malloc, followed by
zero or more set and get, and end with free.

ere: malloc (set | get)* free;

A handler includes a category of property (e.g., match and violation)
and an active action (i.e., a code fragment). A property can be associated
with several handlers, so that an active action will be automatically executed
when an execution of the program transfers the property to the corresponding
category. Handlers can be used for many purposes, e.g., output or log-
ging observed information, controlling, recovering, blocking or terminating the
execution. The syntax of handler declarations is as follows.

"@" <cate> "{" <act-action> "}"

A handler starts with the symbol @, followed by a predefined category name
<cate>, and finally ends with an active action <act-action> enclosed in curly
braces. Note that different formalisms may have different sets of predefined cate-
gories, and the active action will be automatically executed when an execution of
the program transfers the property to the category. Currently Movec provides
two predefined categories match and fail for FSMs and EREs. The category
match means that the associated property is matched by the execution, fail
means that the property will never be matched by any extension of the execu-
tion.

4.3 Monitors

A monitor declaration collects multiple pointcuts, actions, properties and their
handlers together, to implement crosscutting concerns in a modular way. A mon-
itor declaration can also include additional type declarations and variable dec-
larations. The syntax of monitor declarations is as follows.
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<modifier>* ("monitor" | "aspect")
MONITORID ["(" <param-list> ")"] "{"

( <C-type-decl> | <C-var-decl>
| <pointcut-decl> | <action-decl>
| <property> <handler>* )* "}" ";"

A monitor declaration starts with a list of modifiers, then specifies the signa-
ture of the monitor. The signature declaration starts with one of the keywords
monitor or aspect, which can be used interchangeably. The keyword is followed
by a name MONITORID and possibly an enclosed parameter list param-list. If
the parameter list is given, then the parameter declarations should be separated
by commas in the parentheses, and the monitor is called a parametric monitor.

Then the monitor declaration specifies the body of the monitor enclosed
in curly braces, and a semicolon denotes the end of the declaration. In the
declaration body, we can declare types, variables, pointcuts, actions, properties
and their handlers. Note that,

– All declared types and variables will be instrumented as global declarations.
– At least one action declaration should be preceded by the keyword creation,

denoting that observing this action should create a new monitor instance
with different parameter values. If the monitor is parametric, then some of
the action declarations must be parametric, such that the union of all action
parameters is exactly the set of monitor parameters in param-list. That is,
creation actions do not necessarily contain all monitor parameters.

– Each property should be specified in one of the supported formalisms, and
can refer to the declared action names. Each property may be associated with
zero or more handlers.

– The handlers can access the declared types and variables, and can access
the predefined variable monitor which refers to the current monitor instance,
through which we can access the monitor parameters in param-list of the
current monitor instance.

5 Implementation of Parametric Monitoring

Recall that a monitor definition may contain a set of parameters, and Movec

may create a monitor (instance) for each parameter instance containing the
observed values of a subset of the parameters, to store the current state of each
parameter instance. That is, a monitor or parameter instance may be complete
or partial (i.e., containing a strict subset of the parameters). As the literature
shows, a program may create thousands of monitors during runtime monitoring,
thus storing these monitors using naive structures like linked lists or arrays will
significant increase runtime overhead. Therefore, developing an efficient algo-
rithm for indexing monitors is one of the most valuable and challenging parts in
implementing parametric runtime monitoring.

Indeed, thanks to the indexing algorithm of JavaMOP, it becomes the most
efficient parametric runtime verification tool at present. Our indexing algorithm
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Fig. 1. Data structures of hierarchical hashmap forests

is inspired by JavaMOP, but our task is even more hard and tedious. We have to
implement the data structures and related algorithms from scratch, because we
cannot use the powerful Java class library, which includes efficient data structures
such as hashmaps.

In this section, we present a new data structure, namely hierarchical hashmap
forests, which is implemented in Movec for indexing monitors. Generally speak-
ing, we maintain a list of hierarchical hashmap forests during runtime monitor-
ing, and each created monitor is added into a hierarchical hashmap according
to its corresponding property and parameter instance, so that all monitors can
be efficiently retrieved. Figure 1 shows the data structures used by hierarchical
hashmap forests. The monitor structure abstracts a monitor, including the val-
ues of parameters, a mask denoting the parameter instance, the current state
etc. In the followings, we will present these structures from the top level.

As show in Fig. 2, we maintain a list of hierarchical hashmap forests during
runtime monitoring. In the list, for each property pid, we create a node con-
taining a forest of hierarchical hashmaps. The capacity of the forest depends on
the number of parameters associated with the property. If a property includes
n parameters from p1 to pn, then there are 2n hashmaps in the node, and each
hashmap corresponds to a combination of the parameters. For example, the first
location corresponds to the empty set of parameters, and the last one corre-
sponds to the complete set. Note that the first location actually points to a
monitor, instead of a hashmap, because there is only one parameter instance
for this empty combination of parameters. Next we introduce the hierarchical
hashmap for a set of parameters.
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Fig. 2. A list of hierarchical hashmap forests

As shown in Fig. 3, a hierarchical hashmap is a multi-level hashmap, i.e., a
hashmap may have several child hashmaps, like a tree. Note that a hierarchical
hashmap corresponds to a set of parameters, thus each level corresponds to a
parameter, and the last level points to the stored objects, i.e., monitors. To put
these hashmaps in a tree, each hashmap contains not only the addresses of the
next level hashmaps, but also a pointer prn to its parent and a pointer ref to
the reference node in its parent hashmap, i.e., the pointer that refers to itself.

Recall that a hashmap maps keys to values, i.e., it uses a hash function to
compute an index from which the desired value or object can be found, e.g., using
modulo arithmetic. For our hierarchical hashmaps, we use parameter values as
the keys for the corresponding level of hashmaps. Furthermore, we use linked
lists to solve hash collisions.

For example, the hierarchical hashmap in Fig. 3 corresponds to the parame-
ters a and b, thus contains two levels. The first level is used to index the values
of variable a, while the second to index the values of variable b. Each monitor
stored in this hashmap corresponds to a parameter instance of a and b. The
monitor of the parameter instance a1b2 can be located via index 1 of the first

Fig. 3. A hierarchical hashmap
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level, and then index 2 of the second level. Suppose parameter instances aib2
and a1bj have the same index as a1b2, then we put them in a linked list to solve
the hash collisions. Similarly, the monitors of the parameter instances a2b1, apb1
and a2bq can be located via another path in the hierarchical hashmap.

6 Experimental Performance Evaluation

Movec uses a different weaving algorithm, compared with related tools. As Java-
MOP and ACC are the most relevant and advanced tools in the runtime verifi-
cation and AOP domains respectively, we compared the performance of Movec

and the latest versions of JavaMOP and ACC on the same benchmark respec-
tively. All experiments are done under the following platform: Intel i5-2410M
CPU at 2.30 GHz, 4 GB memory, running Ubuntu 14.04 LTS 64-bit operating
system.

Movec vs. JavaMOP. In our experiment, we designed a benchmark containing
four projects. Note that Movec and JavaMOP can only process C and Java
programs respectively, so each project is implemented as two equivalent versions,
written in C and Java respectively, and these two versions are also very similar
literally.

The first project unsafe-Enum creates a set of vectors, then creates an enu-
meration for each vector, and uses the enumeration to traverse the elements in
the vector. But for one of these vectors, the vector is modified by adding an
element while the enumeration is in use. A monitor with a regular expression
property is designed to match the unsafe case where a vector with an associ-
ated enumeration is modified while the enumeration is in use. If the property is
matched, a handler is invoked to print an error message.

The second project unsafe-File opens a set of files, then writes some strings
into the files, and finally closes all files, except one. A monitor with a regular
expression property is designed to match the unsafe case where a file was opened,
but has not been closed until the program terminates. If the property is matched,
a handler is invoked to increase a counter, and the count is printed when the
program terminates.

The third project unsafe-Grant creates a set of tasks and a set of resources,
then grants these resources to tasks, and finally these tasks release some of the
granted resources, but not all. A monitor with a regular expression property is
designed to match the unsafe case where a resource was granted to a task, but
has not been released by the task until the program terminates. If the property
is matched, a handler is invoked to increase a counter, and the count is printed
when the program terminates.

The last project unsafe-MapIterator creates a map, then creates a set of
collections for the map, creates an iterator for each collection, and adds an
element to the map. But for two of these iterators, the iterators are used to
get the next element in the collection, after the map is modified. A monitor
with a regular expression property is designed to match the unsafe case where
a map with an associated iterator is modified while the iterator is in use. If the
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property is matched, a handler is invoked to print an error message. This offers
a larger challenge, because the monitor creation actions do not contain all the
parameters (collections are created before iterators).

Table 1. Experimental performance evaluation

Movec JavaMOP

mon. orig. hand. run time orig. hand. run time

num time num time diff. time num time diff

Enum 1000 0.016 1 0.199 0.183 0.114 1 0.218 0.104

Enum 20000 0.141 1 21.715 21.574 0.179 1 0.817 0.638

File 1000 0.144 1 0.145 0.001 0.232 1 0.334 0.102

File 20000 2.585 1 2.793 0.208 1.867 0 2.106 0.239

Grant 1000 0.006 500 0.030 0.024 0.102 500 0.205 0.103

Grant 20000 0.010 10000 12.397 12.387 0.110 9370 0.499 0.389

MapIter 1000 0.006 2 0.079 0.073 0.104 0 0.228 0.124

MapIter 20000 0.019 2 35.735 35.716 0.118 0 22.782 22.664

Note: JavaMOP failed to correctly print the numbers of monitors and invoked
handlers.

For each of the two versions of each project, we used two settings to generate
different numbers of complete monitors. For each setting, we ran each version
for three times, and measured in average the original run time (in seconds), the
number of invoked handlers, the run time after instrumentation (in seconds) and
the time difference. The data is listed in Table 1. Note that the two versions create
the same number of complete monitors. Besides, JavaMOP failed to correctly
print the numbers of monitors and invoked handlers, so we have to get the
numbers by temporarily putting a println statement in the handlers.

The results show that Movec correctly invoked handlers for all projects,
whereas JavaMOP failed to correctly invoke handlers in 3 projects (denoted by
numbers with strikethrough lines), especially when the number of monitors is
large. We considered two criteria of overhead: absolute time difference (i.e., the
difference between the run time before and after instrumentation) and relative
time difference (i.e., the ratio of the increased run time after instrumentation).
Note that Java VM spends some time to load Java programs before execution,
which is included in original run time but not in the difference, thus Java pro-
grams will benefit if we use relative time difference. In contrast, absolute time
difference can avoid the effect of loading time. Indeed, absolute time difference
is largely due to the algorithm for indexing and retrieving monitors, thus can
more accurately reflect overhead. Hence, absolute time difference is an appropri-
ate criterion for comparing their performance. According to this criterion, our
algorithm is comparable with JavaMOP, because each tool succeeded in half of
the runs. We also note that JavaMOP outperforms Movec when the number of
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monitors is large. The reason probably is that JavaMOP uses the efficient data
structures from Java class library, such as hashmaps, whereas our data structures
and algorithms are less optimized.

Movec vs. ACC. For evaluating ACC, we have to use another benchmark,
because ACC does not support parametric monitoring. In our experiment, we
used ten projects from MiBench, a free and commercially representative embed-
ded benchmark suite. We evaluated the performance of Movec and ACC by
defining exactly equivalent monitors for each project, and of course in a differ-
ent syntax. Due to page limit, we do not list the data here. The results show
that the instrumentation time of Movec is less than ACC for all projects, and
Movec significantly outperforms ACC in reliability (the results of ACC are
incorrect for 7 projects, whereas Movec is correct for all projects according
to our manual inspection) and efficiency (the overhead introduced by ACC is
greater than Movec for all remaining 3 correctly executed projects of ACC).

7 Conclusion and Future Work

The main elements of the language design and compiler implementation are now
fairly stable, but the project is not nearly finished. We are focusing on fine-tuning
parts of the language design (e.g., adding more pointcuts and formalisms), opti-
mizing data structures and building the next generation compiler, to improve the
quality, performance and power of the compiler. We are also working on its IDE
extensions and documentation. We want to build up and support a real user com-
munity of Movec, and plan to work with them to empirically study the practical
value of Movec. We are open for suggestions how to further optimize the syn-
tax and semantics. Movec and a set of working code examples/benchmarks are
available for download from http://svlab.nuaa.edu.cn/zchen/projects/movec.
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1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

16. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

17. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transf. (STTT) 14(3),
249–289 (2012)

18. Rosu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Logical
Methods Comput. Sci. 8(1), 1–47 (2012)

19. RV: The Runtime Verification workshop series (2001–2015). http://www.
runtime-verification.org/

http://www.runtime-verification.org/
http://www.runtime-verification.org/


Parametric Runtime Verification of C Programs 315

20. Spinczyk, O.: AspectC++ language reference. Version 1.10, Pure-systems GmbH,
October 2012

21. Spinczyk, O.: AspectC++ compiler manual. Version 1.7, Pure-systems GmbH,
September 2013
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Abstract. User interfaces for interactive proof assistants have always
lagged behind those for mainstream programming languages. Whereas
integrated development environments—IDEs—have support for features
like project management, version control, dependency analysis and incre-
mental project compilation, “IDE”s for proof assistants typically only
operate on files in isolation, relying on external tools to integrate those files
into larger projects. In this paperwe presentCoqoon, an IDE forCoqdevel-
opments integrated intoEclipse.Coqoonmanages proofs as projects rather
than isolated source files, and compiles these projects using the Eclipse
common build system. Coqoon takes advantage of the latest features of
Coq, including asynchronous and parallel processing of proofs, and—when
used together with a third-party OCaml extension for Eclipse—can even
be used to work on large developments containing Coq plugins.

1 Introduction

In the last decade, computer-aided proof development has been gaining momen-
tum. Interactive proof assistants allow their users to state a mathematical the-
orem in a language that the system understands and then prove that theorem
within the system. As long as the proof assistant’s verification code is free from
bugs, this guarantees that all proofs are actually correct, that no details have
been overlooked, and that no mistakes were made. Mechanizing proofs in this way
makes very large proofs feasible and protects against subtle and hard-to-notice
human errors. Two recent milestones in computer science include the verifica-
tion of an optimising C compiler [6] and of a micro-kernel [17]. Proof assistants
have also been used to verify advanced results in mathematics, such as the Odd
Order Theorem, using Coq [12], and the proof of the Kepler conjecture, using
HOL-Light and Isabelle [14].

Meanwhile, on the other side of the great chasm between theory and practice,
software developers too have come to appreciate computer assistance as they
work. For a developer, though, that assistance comes not in the form of a proof
assistant, but of an integrated development environment (IDE).
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The IDE combines many important tools of the trade—such as editors, com-
pilers, refactorers, profilers, debuggers, and project and release managers—into
a single unified toolbox for working with code. At a glance, the developer has
an overview of every aspect of a project, and the repercussions of changes in
one area can be shown in every other affected area, allowing the developer to
make any necessary corrections. Many IDEs can even abstract away the build
process entirely, automatically inferring the relationships between source files
and libraries and rebuilding them when necessary.

The workflows of interactive proof assistants are sufficiently similar to con-
ventional programming languages that one might expect IDEs to exist for them
as well, but this is not the case. Even though proof assistants are gaining in pop-
ularity, there are still no real IDEs for them—none of them are truly integrated.
Coq is one of the most widely-used proof assistants available, but its proofs are
most often written using either Proof General or CoqIDE; these specialised text
editors operate only on individual files, leaving project management entirely to
developers. Projects are typically built using Makefiles, which in practice require
a POSIX-like environment; file dependencies are supported via command-line
tools; and complex inter-project dependencies are not supported at all, leaving
the work of building and linking projects together up to the user. Moreover, both
Proof General and CoqIDE have a workflow, often referred to as the waterfall
model, in which the editor is only aware of the state at one specific point: to
view the state elsewhere, the user must either execute all commands up to the
desired point or explicitly revert to an earlier point in the document, throwing
away all the computations back to that point in the process. This workflow is
not only alien to software developers, who are used to being able to edit their
files at arbitrary points and receive immediate feedback from the IDE on what
effect these changes had on the rest of their development, it is also very slow
(although upcoming versions of CoqIDE improve this situation somewhat).

We argue that the lack of tool support for proof assistants is to the detriment
of both theoreticians and software developers with an interest in verification.
Requiring that developers learn an old-fashioned workflow in order to try out
formal methods is unquestionably a deterrent, but that workflow is also a waste
of time and effort for those who have grown accustomed to it. Integration and
automation have made life easier for programmers: why should the same not
also be true for proof authors?

In this paper we present Coqoon—an Eclipse-based IDE for proof develop-
ment using the Coq proof assistant. Coqoon includes support for Coq projects,
much like Eclipse’s built-in support for Java projects: users can create Coq
projects, structure these projects using folder hierarchies, and add Coq source
files to these folders, and the Eclipse automatic build system will keep track of
the project dependencies behind the scenes. Whenever a file is changed, moved,
or renamed, everything that depends on it is automatically recompiled, and any
errors are reported to the user.

Coqoon does away with the waterfall model, instead allowing the user to make
changes anywhere in a file—and automatically and asynchronously reproving
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only the parts that are affected by that change. In this way, Coqoon behaves a
lot more like an IDE that software developers are familiar with than the tools
available to Coq developers today.

Coqoon is also an integrated development environment in the fullest sense of
the term. Eclipse has a wide variety of plugins available, ranging from version
control plugins like EGit to entire development environments like OcaIDE for
OCaml, which can be used alongside Coqoon. The combination of Coqoon and
OcaIDE is particularly useful, as it brings support for complex Coq developments
that contain both proofs and OCaml plugins.

Coqoon depends on features added to Coq in version 8.5. Architectural
changes to Coq 8.5 allow it to support Wenzel’s PIDE library for asynchronous
proof developments [25], which powers Coqoon’s replacement for the waterfall
model. Coq 8.5 also adds a two-step compilation process, known as the quick
compilation chain, that can optionally produce .vio files in place of standard
Coq .vo libraries; this new format produces larger, faster files whose proofs are
unchecked, but which can later be efficiently compiled into the traditional format
by checking the remaining proofs in parallel.

As a test case, we have imported the mechanised proof of the Odd Order
Theorem into Coqoon, which is one of the largest Coq 8.5-compatible develop-
ments available. Previous versions of this project took over two hours to compile,
but, using the quick compilation chain, the project can be compiled into .vio
form in just seven minutes, and then into .vo form in a further twenty minutes.
Coqoon is the first IDE to include native support for the quick compilation
chain—indeed, no other IDE for Coq has an integrated build system—which
makes it possible to work with even the most complex projects at speeds that
were hitherto unimaginable.

We have also adapted Pierce’s course on Software Foundations to be compat-
ible with this version. This development contains plenty of exercises that demon-
strate a wide variety of features of Coq, and can be used to try out Coqoon’s
capabilities in a smaller setting than the Odd-Order Theorem.

Download links and installation instructions for Coqoon, along with pre-
packaged example projects, can be found at https://coqoon.github.io/tacas2016.

2 Coqoon, Structured Projects, and the Build System

Coqoon is a family of plugins for the Eclipse framework that together implement
an IDE for Coq developments. It has support for structuring these developments
easily using Eclipse workspace projects, folders, and files, and for automatically
managing the verification and build processes in the face of changed dependen-
cies. To allow more interactive development of proof scripts, Coqoon processes
them in the background, showing Coq feedback directly in the proof text editor
using idioms familiar to programmers (e.g., by underlining errors in red).

As Coqoon is implemented on top of the Eclipse framework, it interoperates
with other Eclipse components: version control plugins like EGit [9], for example,
can be used with Coqoon projects.

https://coqoon.github.io/tacas2016
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Fig. 1. A screenshot of Coqoon, showing the project viewer, a Coq editor with syntax
highlighting, and the goal viewer. The progress bar at the bottom of the screen shows
the Coq project builder at work.

2.1 Structured Projects

Coqoon provides a more structured environment than Coq programmers are
accustomed to. From the moment the user first creates a Coq project in Coqoon,
it already has a complete build system; Coq source code must be placed in
designated source folders, and when files start to depend on other files, they
will automatically be marked for recompilation when their dependencies are
moved or changed, even if those dependencies are in other projects. A progress
bar—visible at the bottom of Fig. 1—displays the state of any build operations
scheduled by the builder.

This need for structure is not just the IDE being difficult: it is precisely
this structure that makes more sophisticated behaviour possible. The use of the
Coqoon integrated build system allows Coq projects to support dependencies on
other projects, or on external developments, whilst simultaneously freeing the
developer from the need to think about the build system and making it work on
all operating systems supported by Eclipse.

2.2 The Coq Model

Replacing unstructured collections of files with structured projects is a start, but
most IDEs go further. They transform source code files into a more structured
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representation (known as a model), providing a higher-level way of searching and
manipulating code than simple operations on plain text. Eclipse’s Java model,
for example, presents Java documents as abstract syntax trees; nodes in the tree
that represent identifiers can also be “resolved” through the model to see what
they refer to in that particular context.

Coqoon provides a similar model for Coq code. Most Coq-specific operations
on files begin by using the Coq model to convert an Eclipse file handle into a Coq
model file handle, which presents an alternative view of the file as a sequence of
parsed and tagged Coq sentences. The model also serves as a central place to cache
these sequences, so files whose content has not changed do not need to be reparsed.

In general, the goal of this model is to provide a useful, Coq-centric view
of the contents of an Eclipse project. Coq project handles, for example, have
methods for retrieving and modifying project configuration information, and
projects can be traversed using the visitor pattern [11] to find named lemmas
and definitions, making search algorithms easy to build.

The design of Coqoon’s Coq model is heavily based on that of Eclipse’s own
Java model, which has led to the internal use of some Java concepts in areas where
Coq lacks any particular convention: the Coqoon model considers projects to con-
sist of Java-style package roots (top-level source and output directories) containing
package fragments (those subdirectories of a root which contain source and output
files), for example, although the concept of a package is not one native to Coq.

2.3 Coq Interaction

Coqoon’s integrated Coq editor communicates using the PIDE library. Originally
developed for the Isabelle proof assistant, PIDE frees the user from having to
explicitly direct the prover to make progress through a source file. Proofs handled
by PIDE may be evaluated in parallel or out-of-order, and Coq’s state after the
evaluation of each sentence is saved, making it quick and easy to see how tactics
affect the state of a proof. Section 3 explains the operation of the PIDE protocol
in more detail.

When using PIDE, the operation of the prover in the background is trans-
parent to the user. Any status messages and goal information associated with a
command will automatically be displayed when the user moves the text cursor
onto it, and errors are highlighted when the user makes a mistake.

2.4 The Coq Build Process

When a Coq file is added to, modified in, or removed from a Coq project, the
integrated Coq builder is activated. The builder is responsible for compiling all
of a project’s Coq proofs into library files.

Whenever the Coqoon builder is activated, Eclipse provides it with a summary
of the changes to the project since the last activation. The builder then uses the
Coq model to extract the new dependency information from the changed files; it
then rebuilds all the changed files and their dependents in an appropriate order,
postponing the compilation of a file until its dependencies are also up-to-date.
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This behaviour is common to virtually all IDEs, and—although it is not sup-
ported by existing Coq interfaces—many projects have built ad-hoc emulations of
it for themselves. At the time of writing, for example, the CompCert project con-
tains a pair of shell scripts—one for use with CoqIDE, and one for use with Proof
General—which compiles the dependencies of a file, opens it in the appropriate
editor, and recompiles that file when the editor is subsequently closed.

A Second Implementation. As the integrated build system might conceivably
also be useful outside of Coqoon, we also provide a Python reimplementation of
it. This reimplementation is included by default in all Coqoon projects to make
it possible to work on them even in the absence of Eclipse.

Projects and Hybrid Projects

All Eclipse projects are collections of files coupled with Eclipse build system
metadata which expresses that project’s specific requirements. A Coqoon project
consists of Coq source code, information about the project’s internal structure
and its dependencies, and an instruction to the Eclipse build system explaining
that the project is a Coq development under the control of the Coqoon builder.

This mechanism is sufficiently general that a project’s metadata can have
multiple instructions for the Eclipse build system—for example, a Coq project
might declare that a bundled plugin is to be built with an OCaml builder.
Indeed, a copy of Eclipse equipped with Coqoon and OcaIDE, an OCaml IDE
for Eclipse[7], serves as a complete development environment for Coq projects
with OCaml plugins; Sect. 4.1 describes such a scenario in more detail.

Project Dependencies

The Coqoon builder uses a project’s load path to resolve the dependencies
present in that project’s source code, and also provides a user interface for
manipulating those dependencies. This functionality is loosely inspired by the
Java class path management found in Eclipse Java projects.

Coqoon supports five different kinds of load path entries:

– folders in Eclipse projects that contain source code files;
– folders in Eclipse projects that contain compiled source code;
– other Coqoon projects in the Eclipse workspace;
– folders in the local file system containing projects neither built with nor man-

aged by Coqoon; and
– “abstract” entries which are likely to be available everywhere but whose loca-

tion cannot be known in advance, like the Coq standard library.

The builder calculates how each of these kinds of entry should be represented
in the Coq load path, and uses this information to resolve the dependencies of
each file in the project.
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The dependency resolution process is sophisticated enough to recognize when
to prefer files that have yet to be compiled to files that are already available: if a
project contains a file called List.v, for example, then other files in that project
can safely depend on its compiled form by depending on List, even though the
Coq standard library contains an identically named file which could potentially
satisfy that dependency.

Abstract Dependencies. When Coqoon encounters an “abstract” entry, it
looks at that entry’s identifier and searches an internal registry for a class that
knows how to handle that identifier. These classes can then run arbitrary code
to resolve the identifier; for example, the handler for the Coq standard library
finds it by running a coqtop process with the -where option.

As this internal registry is also exposed through the standard Eclipse exten-
sion mechanism, it can also be used to add new kinds of dependencies to Coqoon.
We discuss one possible application of this technique in Sect. 5.2.

Aggressive Rebuilding

Coqoon’s internal dependency analysis behaves like that of make: when a file is
older than one of its dependencies, it becomes a candidate for recompilation. As
a result, making changes to a file with many transitive dependencies will trigger
the recompilation of many other files.

As Coq proofs do not have a clean separation between their externally-visible
interface and the internal implementation, this is the only safe way of ensuring
that changes to a fundamental proof are appropriately reflected throughout a
project. Coqoon offers two different mitigations to make this more palatable for
large developments: the builder can be configured to recompile projects only
when the user explicitly requests it, or it can be told to use the Coq 8.5 quick
compilation chain, speeding up compilation drastically by postponing the eval-
uation of proofs.

Neatness and Namespaces

Coq developments do not typically have a clean separation between source and
output folders. In a simpler setting, the resulting clutter is merely annoying; in
an IDE, however, compiled libraries and other derived files are normally entirely
hidden from the user, which is a much harder task when these files are not
systematically separated from source code.

The Coqoon builder emulates the behaviour of the Java builder to provide
this separation: the Coq source file src/SoftwareFoundations/Basics.v, for
example, is compiled into the library bin/SoftwareFoundations/Basics.vo,
the fully-qualified name of which would be SoftwareFoundations.Basics.
Although there are as yet no conventions for managing the Coq library
namespace, this approach is flexible enough to support any convention that
might be chosen in a future version of Coq.
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3 PIDE: Coqoon’s Interaction with Coq

PIDE is a middleware layer originally developed by Wenzel [25] to bridge the
gap between the Isabelle system, implemented in PolyML, and its user interface,
written in Java.

For both historical and technical reasons, many proof assistants are written
in a programming language that is a descendant of ML, a language conceived
with that particular application in mind. IDEs, on the other hand, are more
usually built atop industry-standard platforms like Java or .NET; a layer like
PIDE is thus necessary to enable provers to talk to the outside world.

3.1 PIDE in a Nutshell

PIDE consists of a relatively prover-agnostic frontend library, implemented in
Scala, and a prover-specific backend in the prover’s own implementation language
(i.e., PolyML for Isabelle, or OCaml for Coq). These two components co-operate
to ensure that frontend and backend both agree on the content and structure
of the user’s document. In this model, the backend has a complete view of the
document, and so is free to evaluate its commands in any order it sees fit; its
half of the PIDE implementation then relays the resulting—potentially out-of-
order—status and feedback messages back to the frontend (and thus to the user).
The frontend can also interrupt the backend with an update to the document,
or direct the backend to focus its attention on a different region.

To bring PIDE support to Coq, Tankink wrote an OCaml implementation of
the PIDE backend for use with Coq 8.5, also making some minor changes to the
Scala library in the process [4]. Although Coqoon has benefited greatly from this
work, it was not carried out with Coqoon in mind—it was originally intended for
use with jEdit, a more limited text editor used as the main interface for Isabelle.

Even though jEdit and Eclipse are two very different environments, adding
PIDE support to Coqoon has required only minor changes to PIDE, which shows
that the library is not tied to one particular style of frontend.

4 Test Cases

To assess the maturity of the tool we apply it to two Coq developments: the Odd
Order Theorem, a large formalization that comprises both Coq theories and a
Coq extension, and the widely used teaching course in Software Foundations by
Pierce.

4.1 The Odd Order Theorem and the Math.Comp. Library

The Odd Order Theorem by Feit and Thompson is a masterpiece of modern
mathematics for which its last author received the Fields medal in 1970 and
the Abel prize in 2008. This result was not only famous because of its profound
influence on the last fifty years of research in group theory, but also for its
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length, weighing in at more than two hundred and fifty pages. Indeed, its length
and intricacy caused many to raise concerns about the correctness of its entire
argument.

In 2012 a team of fifteen people, led by Gonthier [12], completed a formal
verification of the proof, and of the mathematical theories it builds upon, using
the Coq system. The project took six years to complete (including three years
of work on the part of this paper’s third author). The resulting body of formal-
ized mathematics is divided into two main parts: the so called Mathematical
Components library (Math.Comp. for short), that covers many general purpose
mathematical theories (group theory, linear algebra, character theory . . . ) and
the main proof which builds upon them.

The entire development sums up to 125 Coq modules for a total of 161,000
lines of code: 93 modules and approximately 121,000 lines for the Math.Comp.
library, and 32 modules and 40,000 lines for the main proof. All Coq modules
are written in a custom language, called SSReflect, that is provided by a plu-
gin for Coq. The plugin, itself a 7,500-line OCaml program, is also part of the
Math.Comp. library. The entire source code amounts to 7.4 MB.

This code base constitutes one of the largest developments for Coq, and
pushes the system close to its limits; as a consequence, building it and working
on it has never been a pleasant experience for the user. The dependency graph
of its components, for example, is too large to be printed in this paper,1 and
building the entire project takes around two hours. This time is how long one
needs to wait in order to build on top of the Math.Comp. library, or browse it
comfortably, or simply to be able to go back to work after having made a minor
change to one of the core modules. Despite that, other formalization projects
have started depending on (parts of) the Math.Comp. library, inheriting along
with it the complexity and time consumption of its build process. In particular,
building the SSReflect plugin by hand has always been a source of trouble for its
users, and the long time required to build the entire library eventually pushed
the authors of the library to provide reduced versions of it for those users who
did not need all of its power.

Importing this gargantuan project into Coqoon revealed a few deficiencies
in our implementation. Coqoon’s dependency resolver, for example, was over-
whelmed by the size of the dependency graph, in some cases taking more than
ten seconds to work out a file’s dependencies. Luckily, this was easily remedied
by the addition of a simple cache.

To spare the user from a prolonged compilation process, support for the
quick compilation [4] chain, a new feature provided by Coq 8.5, was also added to
Coqoon. This process separates Coq compilation into two phases: the first is very
quick, checking only definitions and statements, while the second, slower, phase
completes the compilation by checking the proofs. As the first phase produces
intermediate files that can be used in place of traditional Coq libraries, it only
takes around seven minutes of computation on an ordinary laptop computer
before the entire set of 125 modules is usable.

1 The interested reader can browse it online: http://coqfinitgroup.gforge.inria.fr/doc/.

http://coqfinitgroup.gforge.inria.fr/doc/
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As the user does not need to wait for the second phase in order to work with
the development, it can typically be run as a background task. Unlike the first
phase, it can take great advantage of parallel hardware, because each proof can
be checked independently of the others: on a computer with a dozen cores, the
proofs for the whole development can be completed in as few as 15 min.

In addition to that, we added support to OCaml modules to the Coq builder.
Combined with the OCaml builder provided by OcaIDE, this has made it pos-
sible to build both the SSReflect plugin and the Coq modules that depend on it
in a single integrated build process.

Finally, the PIDE backend for Coq was made more responsive and robust
when dealing with long modules. Most of the files in the Mathematical Compo-
nents library are more than a thousand lines of code in length, and some are
more than four thousand lines. For comparison, in the CompCert compiler, [6]
another Coq flagship project, composed of 5.2 MB of sources, more than 30 % of
the modules are longer than a thousand lines.

As a result of these changes, we believe Coqoon represents the best platform
for working on such large developments. In particular, at the time of writing, no
other IDE for Coq can handle projects that contain both OCaml and Coq code,
and Coqoon is the only one to incorporate the quick compilation chain as an
integrated part of an automatic build system.

4.2 Software Foundations

This is a relatively small Coq development that complements the Software Foun-
dations book by Pierce et al. It is a widely adopted course that touches on topics
like logic, functional programming, interactive theorem provers, and techniques
for software verification. Universities in the United States, Japan and Europe
use it in their curricula.

Coqoon has been used at the IT University of Copenhagen in conjunction
with the Software Foundations teaching material for three years. We have found
that the use of a more familiar development environment makes Coq much more
user-friendly for students, showing that building on top of an IDE brings advan-
tages for beginners and experts alike.

5 Building on Coqoon

5.1 Embedding Coq

Our work with OcaIDE shows that Coqoon can already interoperate with other
development environments built on the Eclipse platform. The next step in our
work is to provide even tighter integration between the Coq and Java develop-
ment environments.

Java projects can already be turned into “hybrid” projects containing both
Java programs and Coq proofs about those programs, but this is only a start.
There are already several tools that embed assertions and proofs directly into
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the source code that they describe, like Dafny [18], Spec# [3], and VeriFast [16].
The IDE seems like an obvious home for this functionality: that is, it should
be possible to extend the Java editor already present in Eclipse with Coqoon-
powered Coq proofs.

In fact, Coqoon’s predecessor, Kopitiam, provided just such an environment.
(We discuss Kopitiam in more detail in Sect. 6.1.) However, this environment
was built using cruder integration techniques and predated the introduction of
PIDE. A prototype inspired by Kopitiam, but built using Coqoon, PIDE, and a
custom text editor more aware of the interleaving between Coq and Java code,
is under development at the IT University.

5.2 Abstract Load Paths and OPAM

At the heart of Eclipse is an implementation of the OSGi component model [10],
which provides a platform for dynamically loading and unloading Java archives.
Eclipse extends these archives—known as “plugins” in the Eclipse context—with
extra metadata defining extension points, services which plugins can declare that
they contribute extensions to. Extension point definitions can require arbitrary
information from extensions, but this will typically include the fully-qualified
name of a class implementing a particular interface; in this way the original plu-
gin can instantiate, configure and use code contributed by one of its extensions.

Coqoon provides a number of Coq-specific extensions to Eclipse’s own core
plugins: for example, it contributes the Coqoon project builder to the resource
management plugin, and the PIDE document editor to the text editors plugin.
However, it also defines an extension point of its own, which allows other plugins
to add new handlers for abstract load path entries to Coqoon.

The Coq ecosystem has not traditionally provided any way of packaging and
distributing projects, which has made building on other people’s work difficult
and fragile. This is, however, about to change: Coq 8.5 will be distributed along-
side a repository of ready-to-install Coq projects for OPAM, the OCaml Package
Manager.

Making the abstract load path mechanism extensible means that Coqoon
is ready to adapt to this change. We expect to include a plugin with future
versions of Coqoon that will use the abstract load path mechanism to support
direct dependencies on OPAM projects, but this will not require any changes to
Coqoon itself.

6 Related Work

Over the last thirty years, there have been multiple attempts to make the inter-
action with proof assistants easier. Initially, all interaction was through a Read-
Eval-Print loop (REPL), a command-line interface that interprets each command
typed by the user and prints out the resulting goal state (or an error) before
requesting new commands. Some proof assistants, such as HOL [13] and HOL
Light [15], still use this as their primary mode of interaction.



Coqoon: An IDE for Interactive Proof Development in Coq 327

6.1 Waterfall Interaction

Proof General [1], based on Emacs, was the one of the first interfaces that offered
more than just a REPL, and is the only one of the early interfaces that endures
until today, going so far as to define the de facto standard method of interaction
with Coq: the waterfall model. Although this still required the user to direct
proof processing manually, it was nevertheless a significant improvement over
the bare REPL.

The Proof General model of interaction has been duplicated by several other
Coq tools, including CoqIDE, which is a GTK+-based interface bundled with
Coq [23], and three Eclipse plugins. The first was created by Aspinall as an attempt
to port Proof General itself to Eclipse [2]; the other by Charles and Kiniry who, as
part of the Moebius project, built the plugin ProverEditor for Coq in Eclipse [8];
the third, Kopitiam [20], by Mehnert, is Coqoon’s immediate predecessor.

CoqIDE is a custom cross-platform text editor. It does not add any truly new
interaction features, beyond some Coq-specific code templates and the ability
to invoke make and the Coq verifier from the interface. While it allows the
user to have multiple buffers open, there is no relation between the contents
of the buffers. The version of CoqIDE shipped with Coq 8.5 was improved by
Tassi to support processing the waterfall in parallel. However, the fundamental
interaction with Coq will not change: the user still needs to manually direct Coq
to process parts of the active document.

The Proof General plugin for Eclipse was only available for Isabelle, and has
not been under active development since 2010, based on its Eclipse update site at
http://proofgeneral.inf.ed.ac.uk/eclipse/products/. It offered interaction based
on the waterfall model, and a high-level overview of individual proofs, but did
not provide any support for structured projects.

Conversely, the ProverEditor plugin for Eclipse was only available for Coq.
Its project support consisted of automatic Makefile generation and support for
invoking make—unlike Coqoon, it did not integrate into Eclipse’s build system.
ProverEditor was discontinued in 2009, when the last update to their GitHub
page was made.

Kopitiam targeted the 8.3 series of Coq, which had no structured way of
sending and receiving messages: Coq 8.4 introduced an XML-based protocol for
executing commands, and Coq 8.5 allows developers to add support for entirely
new protocols such as PIDE, but Coq 8.3 only supported interaction through the
standard Coq REPL. This was extremely brittle, and required constant polling
to read responses from Coq. Kopitiam had no support for Coq projects.

Kopitiam offered one unconventional extension to the waterfall model: it
allowed Coq proofs to be interleaved with Java source code. Using aspect-oriented
programming to hook into the internals of the Java editor, it added Coq-like con-
trols to step through decorated Java programs: stepping over a Java command
would cause it to be ‘executed’ in an environment based on a separation logic
framework built by Bengtson et al. [5]. As the waterfall does not map cleanly onto
any Java concepts, this was fragile and difficult to use, but it was an interesting
extension—and one which we intend to reintroduce in the future using PIDE.

http://proofgeneral.inf.ed.ac.uk/eclipse/products/
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6.2 PIDE and Asynchronous Editors

With the introduction of PIDE, Wenzel ushered in the third generation of proof
assistant interaction: instead of requiring the user to micromanage the system’s
execution, it allows asynchronous interfaces, such as Coqoon. The flagship appli-
cation of the PIDE approach for Isabelle is Isabelle/jEdit [26], which is now the
standard frontend to the Isabelle system.

Because PIDE and Isabelle/jEdit have been developed in tandem, the editor
makes full use of the features we have described in Sect. 3: the editor allows
asynchronous interaction with Isabelle, and marks up the proof document using
information obtained during interpretation. Isabelle/jEdit has been partially
adapted to support Coq by Tankink [4]—the resulting combination being called
Coq/jEdit—but this adaptation does not have the full power of an IDE.

jEdit is an extensible text editor, not an IDE, and the way it was extended
by Wenzel in order to support entire developments is Isabelle specific. Following
the original design of provers of the HOL family, the Isabelle system does not
provide a notion of separate compilation: files are just loaded by a single prover
instance one after the other, with an option of using concurrent threads to speed
up the process. The PIDE protocol is even able to multiplex multiple text buffers
to the same prover instance, and expects the prover to sort that out.

The way Coq works is closer to how traditional programming languages work.
The Coq compiler can deal with one file at a time, and unrelated files can be
processed by different instances of the compiler, possibly in parallel. As a result
Coq/jEdit can only work with a single file and relies on the user to provide
their own build system for larger projects. Coqoon is able to take care of the
entire build process of large developments, even when they include custom Coq
plugins, as described in Sect. 2.4.

Another limitation of Coq/jEdit is that, while Isabelle/jEdit maintains a
model of proof documents using PIDE, Coq/jEdit does not. The design of
Isabelle’s language makes it much easier to integrate that model with jEdit’s
syntax-and-text oriented views. Isabelle’s proof language, Isar, is a two-tiered
language, that consists of an outer syntax that gives structure to proof docu-
ments, the Isar language proper, and numerous inner syntaxes used for specifica-
tion and proof methods, the most notable being the Higher Order Logic; HOL.
The transition between these languages is syntactically indicated using quota-
tion marks. The outer syntax has a simple structure and can easily be parsed
by the Scala library of PIDE. The inner syntaxes are more versatile, and the
parsing and processing is handled by the Isabelle side of PIDE. It is this outer
syntax that is exposed to jEdit. In Coq’s language, there is no syntactical sepa-
ration between the different languages used, making it difficult to implement a
Scala-side parser that exposes the structure. (Coqoon’s model takes some steps
in this direction, but it is necessarily full of special cases and heuristics.) This
lack of a Scala-implemented parser for Coq means that jEdit plugins that rely
on such a parser do not work.

Finally, because jEdit is not under active development, its plugins have also
grown stale, not being updated to new models and tools. For Isabelle/jEdit,
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Wenzel already had to change the core of jEdit to allow the PIDE plugin to
paint text when semantic information comes in. This means that Isabelle/jEdit
is a small fork of jEdit itself, and that it requires its users to install the entire
client, instead of just a plugin. Coqoon works on standard Eclipse distributions.

A second client in the PIDE ecosystem is Isabelle/Eclipse [24]. The develop-
ment of this Eclipse plugin is on hiatus at the moment, but the version that is
available, emulates the Isabelle/jEdit interaction model in Eclipse: it does not
provide any ‘Eclipse-specific’ features like project management or compilation
of single files. In its current state, it behaves much like Isabelle/jEdit, but using
Eclipse to provide the visual elements for the interface.

Clide [22] is another system that builds upon the PIDE architecture for
Isabelle. It is a web interface that is mainly aimed at real time collaboration on
proof documents. In a similar fashion to Google Docs, several users can work on
the same document, seeing each other’s modifications and the responses from
Isabelle. It supports projects, but only as a way of grouping together collabora-
tions with others; as such, files in a project are not verified when one file changes,
and errors in a proof document are not shown until it is opened.

6.3 Another Approach: The ALF Tradition

The ALF proof assistant [19] and its modern-day descendants–chief amongst
them Agda [21]—take a rather different approach to the construction of proofs.
Whereas Coq proofs consist of a sequence of invocations of tactics, each of which
manipulates Coq’s internal representation of a proof term, a proof in the ALF
tradition consists simply of the finished proof term: the indirect manipulations
performed by tactics in the Coq world are replaced by direct modifications of
potentially incomplete terms in source files. Compared to ALF-style proofs, Coq
proofs are thus somewhat akin to an edit script: they enumerate the steps taken
by the user to arrive at a complete proof term, which are analogous to the steps
that the user would perform directly in ALF.

Using this approach in practice requires a more intelligent interface than
a simple text editor. Agda proofs, for example, are typically written using an
advanced Emacs mode equipped with the ability to rewrite regions of the doc-
ument according to the transformations supported by the prover. However, this
mode shares many of the other drawbacks of tools built on extensible editors: in
particular, it has no support for project management.

7 Conclusion

This paper presents Coqoon, an IDE for the interactive proof assistant Coq in
Eclipse. Coqoon moves away from traditional synchronous proof development
and towards an asynchronous model that allows any part of a proof document
to be modified and rechecked without having to retract unrelated proofs. It also
supports Coq projects that are fully integrated into the Eclipse build system:
files can be added, deleted, and moved at will, and Coqoon will track these
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changes and rebuild affected files whenever necessary. Coqoon can also make use
of the large number of plugins already available for Eclipse, such as the OCaml
plugin OcaIDE, turning Coqoon into a complete development environment for
even the most complex Coq projects, or the version control plugin EGit.

Coqoon also brings support for Coq projects to other Eclipse projects and
plugins, paving the way for complete IDEs for software verification where pro-
grams and proofs of their correctness can be maintained within the same
project—or even in the same file.

Together, these features represent a significant advance: a truly integrated
and comprehensive proof assistant IDE, bringing to the world of proof assistants
a workflow that software developers have enjoyed for decades.
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22. Ring, M., Lüth, C.: Collaborative interactive theorem proving with clide. In: Klein,
G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 467–482. Springer, Heidel-
berg (2014)

23. The Coq Development Team. The Coq Reference Manual. http://coq.inria.fr/doc
24. Velykis, A.: Isabelle/Eclipse. http://andriusvelykis.github.io/isabelle-eclipse
25. Wenzel, M.: Asynchronous user interaction and tool integration in isabelle/PIDE.

In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 515–530. Springer,
Heidelberg (2014)

26. Wenzel, M.: System description: Isabelle/jEdit in 2014. In: UITP (2014)

http://coq.inria.fr/doc
http://andriusvelykis.github.io/isabelle-eclipse


Multi-core Symbolic Bisimulation Minimisation

Tom van Dijk(B) and Jaco van de Pol

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{dijkt,vdpol}@cs.utwente.nl

Abstract. Bisimulation minimisation alleviates the exponential growth
of transition systems in model checking by computing the smallest sys-
tem that has the same behavior as the original system according to some
notion of equivalence. One popular strategy to compute a bisimulation
minimisation is signature-based partition refinement. This can be per-
formed symbolically using binary decision diagrams to allow models with
larger state spaces to be minimised.

This paper studies strong and branching symbolic bisimulation for
labeled transition systems, continuous-time markov chains, and inter-
active markov chains. We introduce the notion of partition refinement
with partial signatures. We extend the parallel BDD library Sylvan to
parallelize the signature refinement algorithm, and develop a new paral-
lel BDD algorithm to refine a partition, which conserves previous block
numbers and uses a parallel data structure to store block assignments.
We also present a specialized BDD algorithm for the computation of inert
transitions. The experimental evaluation, based on benchmarks from the
literature, demonstrates a speedup of up to 95x sequentially. In addi-
tion, we find parallel speedups of up to 17x due to parallelisation with
48 cores. Finally, we present the implementation of these algorithms as
a versatile tool that can be customized for bisimulation minimisation in
various contexts.

Keywords: Multi-core · Parallel · Binary decision diagrams · Bisim-
ulation minimisation · Labeled transition systems · Continuous-time
Markov chains · Interactive Markov chains

1 Introduction

One core challenge in model checking is the state space explosion problem. The
space and time requirements of model checking increase exponentially with the
size of the models. Bisimulation minimisation computes the smallest equivalent
model (maximal bisimulation) under some notion of equivalence, which can sig-
nificantly reduce the number of states. This technique is also used to abstract
models from internal behavior, when only observable behavior is relevant.

The maximal bisimulation of a model is typically computed using parti-
tion refinement. Starting with an initially coarse partition (e.g. all states are
equivalent), the partition is refined until states in each equivalence class can no
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longer be distinguished. The result is the maximal bisimulation with respect to
the initial partition. Blom et al. [3] introduced a signature-based method for
partition refinement, which assigns states to equivalence classes according to a
characterizing signature. This method easily extends to various types of bisim-
ulation.

Another well-known method to deal with very large state spaces is sym-
bolic model checking, where sets of states are represented by their characteristic
function, which is efficiently stored using binary decision diagrams (BDDs). In
the literature, symbolic methods have been applied to bisimulation minimisa-
tion in several ways. Bouali and De Simone [5] refine the equivalence relation
R ⊆ S × S, by iteratively removing all “bad” pairs from R, i.e., pairs of states
that are no longer equivalent. For strong bisimulation, Mumme and Ciardo [19]
apply saturation-based methods to compute R. Wimmer et al. [25,26] use signa-
tures to refine the partition, represented by the assignment to equivalence classes
P : S → C. Symbolic bisimulation based on signatures has also been applied to
Markov chains by Derisavi [11] and Wimmer et al. [23,24].

The symbolic representation of the maximal bisimulation, when effective,
often tends to be much larger than the original model. One particular appli-
cation of symbolic bisimulation minimisation is as a bridge between symboli-
cal models and explicit-state analysis algorithms. Such models can have very
large state spaces that are efficiently encoded using BDDs. If the minimised
model is sufficiently small, then it can be analyzed efficiently using explicit-state
algorithms.

These techniques mainly reduce the memory requirements of model check-
ing. To take advantage of computer systems with multiple processors, developing
scalable parallel algorithms is the way forward. In [12,14], we implemented the
multi-core BDD package Sylvan, applying parallelism to symbolic model check-
ing. Parallelization has also been applied to explicit-state bisimulation minimisa-
tion. Blom et al. [2,3] introduced a parallel, signature-based algorithm for various
types of bisimulation, especially strong and branching bisimulation. Also, [17]
proposed a concurrent algorithm for bisimulation minimisation which combines
signatures with the approach by Paige and Tarjan [20]. Recently, Wijs [22] imple-
mented highly parallel strong and branching bisimilarity checking on GPGPUs.
As far as we are aware, no earlier work combines symbolic bisimulation minimi-
sation and parallelism.

In the current paper, we study bisimulation minimisation for labeled transi-
tion systems (LTSs), continuous-time Markov chains (CTMCs) and interactive
Markov chains (IMCs), which combines the features of LTSs and CTMCs. These
allow the analysis of quantitative properties, e.g. performance and dependability.

We concentrate on strong bisimulation and branching bisimulation. Strong
bisimulation preserves both internal behavior (τ -transitions) and observable
behavior, while branching bisimulation abstracts from internal behavior. The
advantage of branching bisimulation compared to other variations of weak bisim-
ulation is that it preserves the branching structure of the LTS, thus preserving
certain interesting properties such as CTL* without next-state operator [9].
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The current paper contains the following contributions. We introduce the
notion of partition refinement with partial signatures in Sect. 3. Section 4
discusses how we extend the multi-core BDD package Sylvan to parallelize
signature-based partition refinement. In particular, we develop two specialized
BDD algorithms. We implement a new refine algorithm, that refines a partition
according to a signature, but maximally reuses the block number assignment of
the previous partition (Sect. 4.3). This algorithm improves the operation cache
use for the computation of the signatures of stable blocks, and enables partition
refinement with partial signatures. We also present the inert algorithm, which,
given a transition relation and a partition, removes all transitions that are not
inert (Sect. 4.4). This algorithm avoids an expensive intermediate result reported
in the literature [26]. Section 5 discusses experimental data based on benchmarks
from the literature to demonstrate a speedup of up to 95x sequentially. In addi-
tion, we find parallel speedups of up to 17x due to parallelisation with 48 cores.
Finally, we present the implementation of these algorithms as a versatile tool
that can be customized for bisimulation minimisation in various contexts.

2 Preliminaries

We recall the basic definitions of partitions, of LTSs, of CTMCs, of IMCs, and
of various bisimulations as in [3,15,25–27].

Definition 1. Given a set S, a partition π of S is a subset π ⊆ 2S such that
⋃

C∈π

C = S and ∀C,C ′ ∈ π : (C = C ′ ∨ C ∩ C ′ = ∅).

If π′ and π are two partitions, then π′ is a refinement of π, written π′ 	 π,
if each block of π′ is contained in a block of π. The elements of π are called
equivalence classes or blocks. Each equivalence relation ≡ is associated with a
partition π = S/≡. In this paper, we use π and ≡ interchangeably.

Definition 2. A labeled transition system (LTS) is a tuple (S,Act,→), consist-
ing of a set of states S, a set of labels Act that may contain the non-observable
action τ , and transitions → ⊆ S × Act × S.

We write s
a→ t for (s, a, t)∈ →. and s

τ
� when s has no outgoing τ -transitions.

We use a∗→ to denote the transitive reflexive closure of a→. Given an equivalence
relation ≡, we write a→≡ for a→ ∩ ≡, i.e., transitions between equivalent states,
called inert transitions. We use a∗→≡ for the transitive reflexive closure of a→≡ .

Definition 3. A continuous-time Markov chain (CTMC) is a tuple (S,⇒), con-
sisting of a set of states S and Markovian transitions ⇒ ⊆ S × R

>0 × S.

We write s
λ⇒ t for (s, λ, t) ∈ ⇒. The interpretation of s

λ⇒ t is that the
CTMC can switch from s to t within d time units with probability 1−e−λ·d. For
a state s, let R(s)(s′) =

∑{λ | s
λ⇒ s′} be the rate to move from state s to state

s′, and let R(s)(C) =
∑

s′∈C R(s)(s′) be the cumulative rate to reach a set of
states C ⊆ S from state s.
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Definition 4. An interactive Markov chain (IMC) is a tuple (S,Act,→,⇒),
consisting of a set of states S, a set of labels Act that may contain the non-
observable action τ , transitions → ⊆ S × Act × S, and Markovian transitions
⇒ ⊆ S × R

>0 × S.

An IMC basically combines the features of an LTS and a CTMC. One feature
of IMCs is the maximal progress assumption. Internal interactive transitions, i.e.
τ -transitions, can be assumed to take place immediately, while the probability
that a Markovian transition executes immediately is zero. Therefore, we may
remove all Markovian transitions from states that have outgoing τ -transitions:
s

τ→ implies R(s)(S) = 0. We call IMCs to which this operation has been applied
maximal-progress-cut (mp-cut) IMCs.

For LTSs, strong and branching bisimulation are typically defined as
follows [26]:

Definition 5. An equivalence relation ≡S is a strong bisimulation on an LTS
if for all states s, t, s′ with s ≡S t and for all s

a→ s′, there exists a state t′ with
t

a→ t′ and s′ ≡S t′.

Definition 6. An equivalence relation ≡B is a branching bisimulation on an
LTS if for all states s, t, s′ with s ≡B t and for all s

a→ s′, either

– a = τ and s′ ≡B t, or
– there exist states t′, t′′ with t

τ∗→ t′ a→ t′′ and t ≡B t′ and s′ ≡B t′′.

For CTMCs, strong bisimulation is defined as follows [11,23]:

Definition 7. An equivalence relation ≡S is a strong bisimulation on a CTMC
if for all (s, t) ∈ ≡S and for all classes C ∈ S/≡S, R(s)(C) = R(t)(C).

For mp-cut IMCs, strong and branching bisimulation are defined as
follows [15,27]:

Definition 8. An equivalence relation ≡S is a strong bisimulation on an mp-cut
IMC if for all (s, t) ∈≡S and for all classes C ∈ S/≡S

– s
a→ s′ for some s′ ∈ C implies t

a→ t′ for some t′ ∈ C
– R(s)(C) = R(t)(C)

Definition 9. An equivalence relation ≡B is a branching bisimulation on an
mp-cut IMC if for all (s, t) ∈≡B and for all classes C ∈ S/≡B

– s
a→ s′ for some s′ ∈ C implies
• a = τ and (s, s′) ∈ ≡B, or
• there exist states t′, t′′ ∈ S with t

τ∗→ t′ a→ t′′ and (t, t′) ∈ ≡B and t′′ ∈ C.
– R(s)(C) > 0 implies

• R(s)(C) = R(t′)(C) for some t′ ∈ S such that t
τ∗→ t′ τ

� and (t, t′) ∈ ≡B.
– s

τ
� implies t

τ∗→ t′ τ
� for some t′
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3 Signature-Based Bisimulation

Blom and Orzan [3] introduced a signature-based approach to compute the maxi-
mal bisimulation of an LTS, which was further developed into a symbolic method
by Wimmer et al. [26]. Each state is characterized by a signature, which is the
same for all equivalent states in a bisimulation. These signatures are used to
refine a partition of the state space until a fixed point is reached, which is the
maximal bisimulation.

In the literature, multiple signatures are sometimes used that together fully
characterize states, for example based on the state labels, based on the rates of
continuous-time transitions, and based on the enabled interactive transitions. In
the current paper, these multiple signatures are considered elements of a single
signature that fully characterizes each state.

Definition 10. A signature σ(π)(s) is a tuple of functions fi(π)(s), that
together characterize each state s with respect to a partition π.

Two signatures σ(π)(s) and σ(π)(t) are equivalent, if and only if for all fi,
fi(π)(s) = fi(π)(t).

The signatures of five bisimulations from Sect. 2 are known from the litera-
ture. For all actions a ∈ Act and equivalence classes C ∈ π, we define

– T(π)(s) = {(a,C) | ∃s′ ∈ C : s
a→ s′}

– B(π)(s) = {(a,C) | ∃s′ ∈ C : s
τ∗→
π

a→ s′ ∧ ¬(a = τ ∧ s ∈ C)}
– Rs(π)(s) = C �→ R(s)(C)
– Rb(π)(s) = C �→ max({R(s′)(C) | ∃s′ : s

τ∗→
π

s′ τ
�})

The five bisimulations are associated with the following signatures:

Strong bisimulation for an LTS (T) [26]

Branching bisimulation for an LTS (B) [26]

Strong bisimulation for a CTMC (Rs) [23]

Strong bisimulation for an mp-cut IMC (T, Rs) [27]

Branching bisimulation for an mp-cut IMC (B,Rb, s
τ∗→ τ

�) [27]

Functions T and B assign to each state s all actions a and equivalence classes
C ∈ π, such that state s can reach C by an action a either directly (T) or via
any number of inert τ -steps (B). Rs equals R but with the domain restricted
to the equivalence classes C ∈ π, and represents the cumulative rate with which
state s can go to states in C. Rb equals Rs for states s

τ
�, and takes the highest

“reachable rate” for states with inert τ -transitions. In branching bisimulation
for mp-cut IMCs, the “highest reachable rate” is by definition the rate that all
states s

τ
� in C have. The element s

τ∗→ τ
� distinguishes time-convergent states

from time-divergent states [27], and is independent of the partition.
For the bisimulations of Definitions 5–9, we state:

Lemma 1. A partition π is a bisimulation, if and only if for all s and t that
are equivalent in π, σ(π)(s) = σ(π)(t).
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For the above definitions it is fairly straightforward to prove that they are
equivalent to the classical definitions of bisimulation. See e.g. [3,26] for the bisim-
ulations on LTSs and [27] for the bisimulations on IMCs.

3.1 Partition Refinement

The definition of signature-based partition refinement is as follows.

Definition 11 (Partition refinement with full signatures)

sigref(π, σ) := {{t ∈ S | σ(π)(s) = σ(π)(t)} | s ∈ S}
π0 := {S}

πn+1 := sigref(πn, σ)

The algorithm iteratively refines the initial coarsest partition {S} according
to the signatures of the states, until some fixed point πn+1 = πn is obtained.
This fixed point is the maximal bisimulation for “monotone signatures”:

Definition 12. A signature is monotone if for all π, π′ with π 	 π′, whenever
σ(π)(s) = σ(π)(t), also σ(π′)(s) = σ(π′)(t).

For all monotone signatures, the sigref operator is monotone: π 	 π′ implies
sigref(π, σ) 	 sigref(π′, σ). Hence, following Kleene’s fixed point theorem, the
procedure above reaches the greatest fixed point.

In Definition 11, the full signature is computed in every iteration. We pro-
pose to apply partition refinement using parts of the signature. By definition,
σ(π)(s) = σ(π)(t) if and only if for all parts fi(π)(s) = fi(π)(t).

Definition 13 (Partition refinement with partial signatures)

sigref(π, fi) := {{t ∈ S | fi(π)(s) = fi(π)(t) ∧ s ≡π t} | s ∈ S}
π0 := {S}

πn+1 := sigref(πn, fi) (select fi ∈ σ)

We always select some fi that refines the partition π. A fixed point is reached
only when no fi refines the partition further: ∀fi ∈ σ : sigref(πn, fi) = πn. The
extra clause s ≡π t ensures that every application of sigref refines the partition.

Theorem 1. If all parts fi are monotone, Definition 13 yields the greatest fixed
point.

Proof. The procedure terminates since the chain is decreasing (πn+1 	 πn),
due to the added clause s ≡π t. We reach some fixed point πn, since ∀fi ∈
σ : sigref(πn, fi) = πn implies sigref(πn, σ) = πn. Finally, to prove that we get
the greatest fixed point, assume there exists another fixed point ξ = sigref(ξ, σ).
Then also ξ = sigref(ξ, fi) for all i. We prove that ξ 	 πn by induction on n.
Initially, ξ 	 S = π0. Assume ξ 	 πn, then for the selected i, ξ = sigref(ξ, fi) 	
sigref(πn, fi) = πn+1, using monotonicity of fi. ��
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There are several advantages to this approach due to its flexibility. First, for
any fi that is independent of the partition, refinement with respect to that fi

only needs to be applied once. Furthermore, refinements can be applied accord-
ing to different strategies. For instance, for the strong bisimulation of an mp-cut
IMC, one could refine w.r.t. T until there is no more refinement, then w.r.t. Rs

until there is no more refinement, then repeat until neither T nor Rs refines the
partition. Finally, computing the full signature is the most memory-intensive
operation in symbolic signature-based partition refinement. If the partial signa-
tures are smaller than the full signature, then larger models can be minimised.

4 Symbolic Signature Refinement

This section describes the parallel decision diagram library Sylvan, followed by
the (MT)BDDs and (MT)BDD operations required for signature-based partition
refinement. We describe how we encode partitions and signatures for signature-
based partition refinement. We present a new parallelized refine function that
maximally reuses block numbers from the old partition. Finally, we present a
new BDD algorithm that computes inert transitions, i.e., restricts a transition
relation such that states s and s′ are in the same block.

4.1 Decision Diagram Algorithms in Sylvan

In symbolic model checking [7], sets of states and transitions are represented
by their characteristic function, rather than stored individually. With states
described by N Boolean variables, a set S ⊆ B

N can be represented by its char-
acteristic function f : B

N → B, where S = {s | f(s)}. Binary decision diagrams
(BDDs) are a concise and canonical representation of Boolean functions [6].

An (ordered) BDD is a directed acyclic graph with leaves 0 and 1. Each
internal node has a variable label xi and two outgoing edges labeled 0 and 1.
Variables are encountered along each path according to a fixed variable ordering.
Duplicate nodes and nodes with two identical outgoing edges are forbidden.
It is well known that for a fixed variable ordering, every Boolean function is
represented by a unique BDD.

In addition to BDDs with leaves 0 and 1, multi-terminal binary decision
diagrams have been proposed [1,8] with leaves other than 0 and 1, representing
functions from the Boolean space B

N onto any finite set. For example, MTBDDs
can have leaves representing integers (encoding B

N → N), floating-point numbers
(encoding B

N → R) and rational numbers (encoding B
N → Q). Partial functions

are supported using a terminal leaf ⊥.
Sylvan [12,14] implements parallelized operations on decision diagrams using

parallel data structures and work-stealing. Work-stealing [4,13] is a load balanc-
ing method for task-based parallelism. Recursive operations, such as most BDD
operations, implicitly form a tree of tasks. Independent subtasks are stored in
queues and idle processors steal tasks from the queues of busy processors.

Algorithm 1 describes the implementation of a generic binary operation F.
BDD operations mainly consist of consulting an operation cache, performing
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1 def apply(x, y, F):
2 if (x, y,F) ∈ cache : return cache[(x, y,F)] /* get from cache */

3 if x and y are terminals : return F(x, y) /* apply operator F */

4 v = topVar(x,y)
5 low ← apply(xv=0, yv=0, F) /* execute in parallel */

6 high ← apply(xv=1, yv=1, F)
7 result ← BDDnode(v, low, high) /* compute result */

8 cache[(x, y,F)] ← result /* put in cache */

9 return result

Algorithm 1. Generic algorithm that applies a binary operator F to BDDs x
and y.

some recursive step, and creating new BDD nodes using a unique table. The
operation cache is required to reduce the time complexity of BDD operations
from exponential to polynomial in the size of the BDDs. Sylvan uses a single
shared unique table for all BDD nodes and a single shared operation cache
for all operations. To obtain high performance in a multi-core environment,
the datastructures for the BDD nodes and the operation cache must be highly
scalable. Sylvan implements several non-blocking datastructures to enable good
speedups [14].

To compute symbolic signature-based partition refinement, several basic
operations must be supported by the BDD package (see also [26]). Sylvan imple-
ments basic operations such as ∧ and if-then-else, and existential quantifica-
tion ∃. Negation ¬ is performed in constant time using complement edges. To
compute relational products of transition systems, there are operations relnext
(to compute successors) and relprev (to compute predecessors and to concate-
nate relations), which combine the relational product with variable renaming.
Similar operations are also implemented for MTBDDs. Sylvan is designed to
support custom BDD algorithms. We present two new algorithms below.

4.2 Encoding of Signature Refinement

We implement symbolic signature refinement similar to [26]. Unlike [26], we do
not refine the partition with respect to a single block, but with respect to all
blocks simultaneously. We use a binary encoding with variables s for the current
state, s′ for the next state, a for the action labels and b for the blocks. We order
BDD variables a and b after s and s′, since this is required to efficiently replace
signatures (a, b) by new block numbers b (see below). Variables s and s′ are
interleaved, which is common in the context of transition systems.

To perform symbolic bisimulation we represent a number of sets by their
characteristic functions. See also Fig. 1.

– A set of states is represented by a BDD S(s);
– Transitions are represented by a BDD T (s, s′, a);
– Markovian transitions are represented by an MTBDD R(s, s′), with leaves

containing rational numbers (Q);
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Fig. 1. Schematic overview of the BDDs in signature refinement

– Signatures T and B are represented by a BDD σT (s, a, b);
– Signatures Rs and Rb are represented by an MTBDD σR(s, b).

In the literature, three methods have been proposed to represent π.

1. As an equivalence relation, using a BDD E(s, s′) = 1 iff s ≡π s′ [5,19].
2. As a partition, by assigning each block a unique number, encoded with vari-

ables b, using a BDD P(s, b) = 1 iff s ∈ Cb [11,26,27].
3. Using k = � log2 n� BDDs P0, . . . ,Pk−1 such that Pi(s) = 1 iff s ∈ Cb and

the ith bit of b is 1. This requires significant time to restore blocks for the
refinement procedure, but can require less memory [10].

We choose to use method 2, since in practice the BDD of P(s, b) is smaller
than the BDD of E(s, s′). Using P(s, b) also has the advantage of straight-
forward signature computation. The logarithmic representation is incompatible
with our approach, since we refine all blocks simultaneously. Their approach
involves restoring individual blocks to the P(s, b) representation, performing a
refinement step, and compacting the result to the logarithmic representation.
Restoring all blocks simply computes the full P(s, b).

We represent Markovian transitions using rational numbers, since they offer
better precision than floating-point numbers. The manipulation of floating-point
numbers typically introduces tiny rounding errors, resulting in different results
of similar computations. This significantly affects bisimulation reduction, often
resulting in finer partitions than the maximal bisimulation [23].

4.3 The refine Algorithm

In this section, we present a new BDD algorithm to refine partitions according
to a signature, which maximally preserves previously assigned block numbers.

Partition refinement consists of two steps: computing the signatures and com-
puting the next partition. Given the signatures σT and/or σR for the current
partition π, the new partition can be computed as follows.



Multi-core Symbolic Bisimulation Minimisation 341

1 def refine(σ, P):
2 if (σ, P, iter) ∈ cache : return cache[(σ, P, iter)]
3 v = topVar(σ, P)
4 if v equals si for some i :

# match paths on s in σ and P
5 low ← refine(σsi=0, Psi=0)

6 high ← refine(σsi=1, Psi=1)

7 result ← BDDnode(si, low, high)

8 else:
# σ now encodes the state signature

# P now encodes the previous block

9 B ← decodeBlock(P)
# try to claim block B if still free

10 if blocks[B].sig = ⊥ : cas(blocks[B].sig, ⊥, σ)
11 if blocks[B].sig = σ : result ← P
12 else:
13 B ← search or insert(σ, B)
14 result ← encodeBlock(B)

15 cache[(σ, P, iter)] ← result
16 return result

Algorithm 2. refine, the (MT)BDD operation that assigns block numbers
to signatures, given a signature σ and the previous partition P.

Since the chosen variable ordering has variables s, s′ before a, b, each path in
σ ends in a (MT)BDD representing the signature for the states encoded by that
path. For σT , every path that assigns values to s ends in a BDD on a, b. For σR,
every path that assigns values to s ends in a MTBDD on b with rational leaves.

Wimmer et al. [26] present a BDD operation refine that “replaces” these
sub-(MT)BDDs by the BDD representing a unique block number for each dis-
tinct signature. The result is the BDD of the next partition. They use a global
counter and a hash table to associate each signature with a unique block number.
This algorithm has the disadvantage that block number assignments are unsta-
ble. There is no guarantee that a stable block has the same block number in the
next iteration. This has implications for the computation of the new signatures.
When the block number of a stable block changes, cached results of signature
computation in earlier iterations cannot be reused.

We modify the refine algorithm to use the current partition to reuse the
previous block number of each state. This also allows refining a partition with
respect to only a part of the signature, as described in Sect. 3. The modification
is applied such that it can be parallelized in Sylvan. See Algorithm 2.

The algorithm has two input parameters: the (MT)BDD σ which encodes the
(partial) signature for the current partition, and the BDD P which encodes the
current partition. The algorithm uses a global counter iter, which is the current
iteration of partition refinement. This is necessary since the cached results of the
previous iteration cannot be reused. It also uses and updates an array blocks,
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which contains the signature of each block in the new partition. This array is
cleared between iterations of partition refinement.

The implementation is similar to other BDD operations, featuring the use
of the operation cache (lines 2 and 15) and a recursion step for variables in s
(lines 3–7), with the two recursive operations executed in parallel. refine simul-
taneously descends in σ and P (lines 5–6), matching the valuation of si in σ and
P. Block assignment happens at lines 9–14. We rely on the well-known atomic
operation compare and swap (cas), which atomically compares and modifies a
value in memory. This is necessary so the algorithm is still correct when paral-
lelized. We use cas to claim a block number for the signature (line 10). If the
block number is already used for a different signature, then this block is being
refined and we call a method search or insert to assign a new block number.

Different implementations of search and insert are possible. We imple-
mented a parallel hash table that uses a global counter for the next block number
when inserting a new pair (σ,B), similar to [26]. An alternative implementation
that performed better in our experiments integrates the blocks array with a
skip list. A skip list is a probabilistic multi-level ordered linked list. See [21].

4.4 Computing Inert Transitions

To compute the set of inert τ -transitions for branching bisimulation, i.e., s
τ→
π

s′,
or more generally, to compute any inert transition relation → ∩ ≡ where ≡ is
the equivalence relation corresponding to π computed by E(s, s′) = ∃b : P(s, b)∧
P(s′, b), the expression T (s, s′) ∧ ∃b : P(s, b) ∧ P(s′, b) must be computed. [26]
writes that the intermediate BDD of ∃b : P(s, b) ∧ P(s′, b), obtained by first
computing P(s′, b) using variable renaming from P(s, b) and then ∃b : P(s, b) ∧
P(s′, b) using and exists, is very large. This makes sense, since this intermediate
result is indeed the BDD E(s, s′), which we were avoiding by representing the
partition using P(s, b).

The solution in [26] was to avoid computing E by computing the signatures
and the refinement only with respect to one block at a time, which also enables
several optimizations in [25].

Fig. 2. Schematic overview of the BDDs in the inert algorithm
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1 def inert(T , Ps, Ps′
):

2 if (T , Ps, Ps′
) ∈ cache : return cache[(T , Ps, Ps′

)]

# find highest variable, interpreting si in Ps′
as s′

i

3 v = topVar(T , Ps, Ps′
)

4 if v equals si for some i :
# match si in T with Ps

5 low ← inert(Tsi=0, Ps
si=0, Ps′

)

6 high ← inert(Tsi=1, Ps
si=1, Ps′

)

7 result ← BDDnode(si, low, high)

8 elif v equals s′
i for some i :

# match s′
i in T with si in Ps′

9 low ← inert(Ts′
i=0, Ps, Ps′

si=0)

10 high ← inert(Ts′
i=1, Ps, Ps′

si=1)

11 result ← BDDnode(s′
i, low, high)

12 else:

# match the blocks Ps and Ps′

13 if Ps �= Ps′
: result ← False

14 else: result ← T
15 cache[(T , Ps, Ps′

] ← result
16 return result

Algorithm 3. Computes the inert transitions of a transition relation T accord-
ing to the block assignments to current states (Ps) and next states (Ps′

).

We present an alternative solution, which computes → ∩ ≡ directly using a
custom BDD algorithm. The inert algorithm takes parameters T (s, s′) (T may
contain other variables ordered after s, s′) and two copies of P(s, b): Ps and Ps′

.
The algorithm matches T and Ps on valuations of variables s, and T and Ps′

on valuations of variables s′. See Algorithm 3, and also Fig. 2 for a schematic
overview. When in the recursive call all valuations to s and s′ have been matched,
with Ss, Ss′ ⊆ S the sets of states represented by these valuations, then T is
the set of actions that label the transitions between states in Ss and Ss′ , Ps is
the block that contains all Ss and Ps′

is the block that contains all Ss′ . Then if
Ps �= Ps′

, the transitions are not inert and inert returns False, removing the
transition from T . Otherwise, T (which may still contain other variables ordered
after s, s′, such as action labels), is returned.

5 Experimental Evaluation

5.1 Tool Support

We implemented multi-core signature-based partition refinement in a tool called
SigrefMC, using the (MT)BDD-package Sylvan [12,14]. The tool computes
the same bisimulations as the original Sigref tool. SigrefMC LTSs, CTMCs
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and IMCs delivered in two input formats, the XML format used by the original
Sigref tool, and the BDD format that the tool LTSmin [16] generates for
various model checking languages. SigrefMC supports both the floating-point
and the rational representation of rates in continuous-time transitions.

One of the design goals of this tool is to encourage researchers to extend it
for their own file formats and notions of bisimulation, and to integrate it in other
toolsets. Therefore, SigrefMC is freely available online1 and licensed with the
MIT license. Documentation is available and instructions for extending the tool
for different input/output formats and types of bisimulation are included.

5.2 Experiments

To study the improvements presented in the current paper, we compared our
results (using the skip list variant of refine) to Sigref 1.5 [25] for LTS and
IMC models, and to a version of Sigref used in [23] for CTMC models. For the
CTMC models, we used Sigref with rational numbers provided by the GMP
library and SigrefMC with rational number support by Sylvan. For the IMC
models, version 1.5 of Sigref does not support the GMP library and the version
used in [23] does not support IMCs. We used SigrefMC with floating points
for a fairer comparison, but the tools give a slightly different number of blocks.

In the current paper, we restrict ourselves to the models presented in [23,26]
and an IMC model that is part of the distribution of Sigref. These models have
been generated from PRISM benchmarks using a custom version of the PRISM

toolset [18]. We refer to the literature for a description of these models.
We perform experiments on the three tools using the same 48-core machine,

containing 4 AMD OpteronTM 6168 processors with 12 cores each. We measure
the runtimes for partition refinement using Sigref, SigrefMC with only 1
worker, and SigrefMC with 48 workers.

Note that apart from the new refine and inert algorithms presented in the
current paper, there are several other differences. The first is that the original
Sigref uses the CUDD implementation of BDDs, while SigrefMC obviously
uses Sylvan, along with some extra BDD algorithms that avoid explicitly com-
puting variable renaming of some BDDs. The second is that Sigref has several
optimizations [25] that are not available in SigrefMC.

5.3 Results

See Table 1 for the results of these experiments. These results were obtained
by repeating each benchmark at least 15 times and taking the average. The
timeout was set to 3600 s. The column “States” shows the number of states before
bisimulation minimisation, and “Blocks” the number of equivalence classes after
bisimulation minimisation. We show the wallclock time using Sigref (Tw), using
SigrefMC with 1 worker (T1) and using SigrefMC with 48 workers (T48). We
compute the sequential speedup Tw/T1, the parallel speedup T1/T48 and the
total speedup Tw/T48.
1 https://github.com/utwente-fmt/sigrefmc.

https://github.com/utwente-fmt/sigrefmc
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Table 1. Results for the benchmark experiments. Each data point is an average of at
least 15 runs. The timeout was 3600 s.

LTS models (strong) Time Speedups

Model States Blocks Tw T1 T48 Seq. Par. Total

kanban03 1024240 85356 92.16 10.09 0.88 9.14 11.52 105.29

kanban04 16020316 778485 1410.66 148.15 11.37 9.52 13.03 124.06

kanban05 16772032 5033631 – 1284.86 73.57 – 17.47 –

kanban06 264515056 25293849 – – 2584.23 – – –

LTS models (branching) Time Speedups

Model States Blocks Tw T1 T48 Seq. Par. Total

kanban04 16020316 2785 8.47 0.52 0.24 16.39 2.11 34.60

kanban05 16772032 7366 34.11 1.48 0.43 22.98 3.47 79.81

kanban06 264515056 17010 118.19 3.87 0.83 30.55 4.65 142.20

kanban07 268430272 35456 387.16 8.83 1.66 43.86 5.31 232.71

kanban08 4224876912 68217 1091.67 17.91 2.98 60.96 6.02 366.72

kanban09 4293193072 123070 3186.48 34.23 5.51 93.10 6.21 578.59

CTMC models Time Speedups

Model States Blocks Tw T1 T48 Seq. Par. Total

cycling-4 431101 282943 220.23 26.72 2.60 8.24 10.29 84.84

cycling-5 2326666 1424914 1249.23 170.28 19.42 7.34 8.77 64.34

fgf 80616 38639 71.62 8.86 0.88 8.08 10.04 81.20

p2p-5-6 230 336 750.29 26.96 2.99 27.83 9.03 251.24

p2p-6-5 230 266 248.17 9.49 1.21 26.15 7.82 204.47

p2p-7-5 235 336 2280.76 24.01 2.97 94.99 8.08 767.12

polling-16 1572864 98304 792.82 118.50 10.18 6.69 11.64 77.85

polling-17 3342336 196608 1739.01 303.65 22.58 5.73 13.45 77.03

polling-18 7077888 393216 – 705.22 49.81 – 14.16 –

robot-020 31160 30780 28.15 3.21 0.60 8.78 5.36 47.04

robot-025 61200 60600 78.48 6.78 0.95 11.58 7.11 82.39

robot-030 106140 105270 174.30 12.26 1.47 14.21 8.33 118.44

IMC models (strong) Time Speedups

Model States Blocks Tw T1 T48 Seq. Par. Total

ftwc01 2048 1133 1.26 1.14 0.2 1.11 5.76 6.38

ftwc02 32768 16797 154.55 102.07 15.85 1.51 6.44 9.75

IMC models (branching) Time Speedups

Model States Blocks Tw T1 T48 Seq. Par. Total

ftwc01 2048 430 1.12 0.77 0.13 1.45 6.07 8.83

ftwc02 32786 3886 152.9 50.39 4.89 3.03 10.3 31.26
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Fig. 3. Time per iteration for Sigref and
SigrefMC (1 worker), and the number of
new blocks per iteration for strong bisim-
ulation of the kanban04 LTS model.

Due to space constraints, we do
not include all results, but restrict our-
selves to larger models. We refer to
the full experimental data that is avail-
able online2. In the full set of results,
excluding executions that take less
than 1 s, SigrefMC is always faster
sequentially and always benefits from
parallelism.

The results show a clear advan-
tage for larger models. One interest-
ing result is for the p2p-7-5 model.
This model is ideal for symbolic bisim-
ulation with a large number of states
(235) and very few blocks after min-
imisation (336). For this model, our
tool is 95x faster sequentially and has
a parallel speedup of 8x, resulting in a
total speedup of 767x. The best par-
allel speedup of 17x was obtained for
the kanban05 model.

In almost all experiments, the sig-
nature computation dominates with
70 %–99 % of the execution time
sequentially. We observe that the
refinement step sometimes benefits
more from parallelism than signature
computation, with speedups up to
29.9x. We also find that reusing block numbers for stable blocks causes a major
reduction in computation time towards the end of the procedure. The kanban
LTS models and the larger polling CTMC models are an excellent case study to
demonstrate this. See Fig. 3.

6 Conclusions

Originally we intended to investigate parallelism in symbolic bisimulation min-
imisation. To our surprise, we obtained a much higher sequential speedup using
specialized BDD operations, as demonstrated by the results in Table 1 and Fig. 3.
The specialized BDD operations offer a clear advantage sequentially and the inte-
gration with Sylvan results in decent parallel speedups. Our best result had a
total speedup of 767x. Similar to our experiments in symbolic reachability [14],
further parallel speedups might be obtained by disjunctively partitioning the
transition relations.

2 https://github.com/utwente-fmt/sigrefmc-tacas16.

https://github.com/utwente-fmt/sigrefmc-tacas16
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Abstract. For modeling and reasoning about complex systems, sym-
bolic methods provide a prominent way to tackle the state explosion
problem. It is well known that for symbolic approaches based on binary
decision diagrams (BDD), the ordering of BDD variables plays a cru-
cial role for compact representations and efficient computations. We
have extended the popular probabilistic model checker PRISM with sup-
port for automatic variable reordering in its multi-terminal-BDD-based
engines and report on benchmark results. Our extensions additionally
allow the user to manually control the variable ordering at a finer-grained
level. Furthermore, we present our implementation of the symbolic com-
putation of quantiles and support for multi-reward-bounded properties,
automata specifications and accepting end component computations for
Streett conditions.

1 Introduction

One prominent approach to cope with the well-known state-explosion problem
in model checking is the use of symbolic methods based on binary decision dia-
grams (BDDs) [8,31]. Various BDD-variants have been studied and implemented
in tools for the quantitative analysis of probabilistic systems, see, e.g., [4,10,17–
19,23,28,32,34]. The prominent probabilistic model-checker PRISM [26,34,35]
uses symbolic approaches relying on a multi-terminal binary decision diagram
(MTBDD) [3,15] representation of the model. Among others, PRISM provides
support for modeling and the analysis of discrete-time Markov chains (DTMC)
and Markov decision processes (MDP) as well as continuous-time Markov chains
(CTMC) against temporal logical specifications. While the behavior of Markov
chains is purely probabilistic, MDPs exhibit both probabilistic and nondetermin-
istic choices. The typical task of the analysis of MDPs is to compute a scheduler
for resolving the nondeterminism that maximizes or minimizes the probability
for a given path property or an expectation. The symbolic implementation of

The authors are supported by the DFG through the collaborative research entre
HAEC (SFB 912), the Excellence Initiative by the German Federal and State Gov-
ernments (cluster of excellence cfAED and Institutional Strategy), the Research
Training Groups QuantLA (GRK 1763) and RoSI (GRK 1907), the DFG/NWO-
project ROCKS, and Deutsche Telekom Stiftung.

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 349–366, 2016.
DOI: 10.1007/978-3-662-49674-9 20



350 J. Klein et al.

PRISM comes in three flavors: a purely symbolic engine Mtbdd and two semi-
symbolic engines, called Hybrid and Sparse. The Mtbdd engine performs all
computations using MTBDDs, while the Hybrid engine combines the MTBDD-
based representation of the transition matrix of the model with an explicit repre-
sentation of the solution state value vector in the computation [24]. The latter is
motivated by the observation that the MTBDD representation of such state value
vectors can be of substantive size even for models with compact MTBDD rep-
resentation during probabilistic model-checking algorithms. The Sparse engine
constructs an explicit, sparse matrix from the MTBDD-based transition matrix
for numerical computations and performs computations using this explicit rep-
resentation. In addition to the three symbolic engines, which rely internally on
the infrastructure of the C-based CUDD library [37] for MTBDD storage and
manipulation, the fourth engine, Explicit, is fully implemented in Java, builds
an explicit representation of the reachable state space of the model and carries
out all analysis on this explicit representation. Depending on the concrete model
structure and size, each of the four engines has situations where it can show its
particular strength.

It is well known that the variable order of the BDD variables plays a crucial
role for obtaining a compact representation of the model and for model checking
performance. PRISM provides limited influence on the variable order, mainly
during modeling by the order in which individual modules are placed in the model
file and the order of the individual state variables inside a module. While care has
been taken to use a sensible variable order derived from the structure of elements
in the model file [34], PRISM lacks any support for automatically identifying a
good variable order using techniques such as sifting [33,36], which are routinely
employed in symbolic model checkers for non-probabilistic systems (e.g., [11]).
In our previous work on complex case studies, we have reached several times
the point where we had to resort to manually swapping the module and variable
definitions in the model file to try and find a better ordering, in particular for
models where explicit approaches were infeasible (e.g., [13]).

Contribution. The main purpose of this paper is to present several refinements
of PRISM’s symbolic engines. First, we added support for the automated vari-
able reordering of the MTBDD-based model representation by enabling CUDD’s
implementation of group sifting and by extensions of PRISM’s input modeling
language that allow to rearrange and interleave the orders of the bits of state vari-
ables within the same module as well as (the bits) of state variables of different
modules. The impact of the automated reordering has been evaluated using the
examples from the PRISM benchmark suite [27] and in the context of the sym-
bolic quantile computations. Our second contribution are symbolic implementa-
tions of computation schemes for cost- or reward-bounded reachability properties
in discrete Markovian models (DTMCs or MDPs) and corresponding quantiles1.
The latter are, e.g., useful to compute the minimal energy budget required to

1 While PRISM supports the computation of expected costs or rewards and probabil-
ities for step-bounded properties, it does not contain implementations of algorithms
for computing probabilities for reachability conditions with cost/reward constraints.
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ensure a 90 % chance for completing a list of jobs. Algorithms for the computa-
tion of quantiles have been presented in [5,38] and prototypically implemented
using (non-symbolic) explicit representations of the model. Within this paper,
we report on the results of comparative experimental studies of the explicit and
the new symbolic implementation. The third contribution are enhancements of
PRISM’s engines for the automata-based analysis of DTMCs and MDPs. This
includes the treatment of Streett acceptance conditions in MDPs (PRISM only
offers engines for Rabin acceptance and its generalized variant) and an exten-
sion of PRISM’s property syntax for automata-specifications (rather than LTL-
specifications).

Outline. Section 2 presents our new approaches for variable reordering in
PRISM. Section 3 summarizes the main features of our implementations
for cost/reward-bounded properties and quantiles, while Sect. 4 presents the
automata-based extensions. For further details (implementation, experiments)
and an extended version [21] see http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/
TACAS16/. We are collaborating with PRISM’s authors to integrate our exten-
sions into the main PRISM version and would like to thank David Parker for
fruitful discussions.

2 Automatic Variable Reordering in PRISM

Here, we will briefly describe the relevant infrastructure in PRISM for dealing
with variable ordering. The MTBDD variable ordering of the symbolic model
representation is determined by the order of module and variable definitions in
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Fig. 1. Schema for the standard variable ordering used by PRISM. The arrows indicate
the effect of syntactic reordering in the PRISM model file on the variable order.
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the PRISM model file. Figure 1 sketches the general schema2. In a first block,
MTBDD variables for nondeterministic choices are allocated. This includes a
unary encoding of the synchronizing actions (i.e., one MTBDD variable for each
action), scheduling variables (one MTBDD variable indicating that a given mod-
ule is active) as well as several bits for representing local choices, e.g., between
alternative commands for the same synchronizing action. Then, two blocks of
extra variables are preallocated to serve in later model transformations, e.g.,
during a product construction with a deterministic ω-automaton for LTL model
checking. For each individual bit of a state variable in the model, two MTBDD
variables are allocated, one serving in the representation of the rows and one for
the columns of the transition matrix. The MTBDD variables for representing the
possible values of the (integer-valued) state variables are allocated in the order
in which they appear in the PRISM model file, with each state variable forming
a block of row/column pairs. The bits for each state variable are ordered from
most-significant to least-significant. Global state variables are treated as if they
were contained in a single module located before the “real” modules.

The arrows in Fig. 1 indicate the extent of the influence that can be applied
to the variable ordering by syntactically reordering the PRISM source file: At
the highest level, the order of the modules can be changed. Additionally, inside
each module, the order of the definition of the state variables can be changed.
Note that such changes of the ordering in the PRISM model file do not lead to
any semantic changes in the model, but can lead to cosmetic changes, e.g., in the
order of the states for exported models. To complement the manual, trial-and-
error approach for finding a good order in the model file, we detail our automatic
approach in the next section.

2.1 Automatic Variable Reordering Using Group Sifting

PRISM internally relies on the CUDD (MT)BDD library [37] for the manage-
ment of a set of BDDs that arise during probabilistic model checking. CUDD
provides implementations of several heuristics for (dynamic) variable reordering
which in principle should be available to be used by PRISM. Unfortunately, the
implementation of PRISM heavily relies on the assumption that the variable
ordering of the MTBDD does not change at all. The order of the MTBDD vari-
ables is assumed to correspond with the order of the respective variables in the
underlying PRISM model, i.e., that the variable index (logical index) and the
variable level (index in the current variable order) need to agree. Eliminating
this restriction on the variable order would require a substantial refactoring of
PRISM’s infrastructure, touching many parts of the implementation.

2 The depicted scheme corresponds to the default ordering for the Hybrid and Sparse
engines. There are subtle differences when using the Mtbdd engine, for a detailed
discussion see [21]. Additionally, standard PRISM preallocates only extra state vari-
ables, mainly for the product with deterministic automata. To support generic
symbolic model transformations, we also preallocate choice variables, i.e., for fresh
actions in the transformed MDP.
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Our approach presented in this section makes automatic variable reorder-
ing available to a PRISM user while avoiding any substantial refactoring of
PRISM’s infrastructure. First, a symbolic, MTBDD-based representation of the
model is built by PRISM as usual. After the model is built, we trigger the
group sifting reordering heuristic [33,36] via the CUDD library, using several
variable grouping constraints that will be detailed later. After this reordering,
the MTBDD-based model representation violates PRISM’s assumptions, which
renders further computations in PRISM impossible. Thus, we perform an analy-
sis of the variable ordering found by group sifting and translate the changes
in variable locations back to the source level of the PRISM model. This way,
we obtain a syntactically reordered PRISM model, where the placement of the
PRISM modules und state variables reflects the calculated variable ordering.
Our implementation then allows using this reordered model directly after the
reordering computation via the following trick: After reordering, we delete the
MTBDDs of the model and reset the variable ordering in CUDD to the one
that PRISM expects, where each variable index corresponds to the variable level
in the BDD. Then, we build the BDDs for the model a second time, this time
using the syntactically reordered PRISM model. We thus obtain the reordered
model again, but now with the underlying assumptions of PRISM intact, allow-
ing to use the full PRISM machinery. This approach provides transparent and
convenient access to the reordering functionality to the user. Additionally, we
also support exporting the reordered model to a file, which can then be used
in future PRISM runs. This way, the time for reordering can be amortized over
multiple model-checking runs.

For this approach to work, it is crucial that we are able to seamlessly convert
between the reordered variable ordering obtained after sifting and the variable
order that is induced by syntactically reordering the elements of the PRISM
model file. To achieve this, we introduce appropriate groups of MTBDD vari-
ables represented by a tree structure and used in the groups sifting. The group-
ing reflects the structure of the given model file: Each PRISM module forms
a group of BDD variables that can be reordered as a block. This corresponds
to syntactically changing the order of modules in the model file. Additionally,
inside each module, the MTBDD variables for each state variable form another
group. Reordering those groups corresponds to changing the order of the vari-
able declarations inside a PRISM module. The remaining variables, e.g., those
for nondeterministic choices remain in fixed positions. Hence, the above app-
roach allows for creating all variable orders that can result from permutations
of modules and state variables within the PRISM model file. In the next section
we show how a more fine-grained control can be achieved.

2.2 Bit-Level Control over the Variable Order Using Views

Although it is well known that for some operators, e.g., the addition of two
integers, an efficient representation relies on the interleaving of the individual
bit-variables, there is no way of interleaving the individual bits of multiple state
variables in PRISM up to now.
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module M

s_bit_2 : [0..1];

s_bit_1 : [0..1];

s_bit_0 : [0..1];

s : view (s_bit_2,s_bit_1,s_bit_0) <=> [2..7] init 3;

[inc] s<7 -> 1:(s’=s+1);

endmodule

Fig. 2. Defining a view s with data domain (2, 7) from three single-bit state variables.

Our implementation provides the option of syntactically “exploding the bits”
of all the state variables in a PRISM model file: Each multi-bit state variable
s is replaced with the appropriate number of single-bit variables si. To keep
this transformation simple and transparent to the user we introduce a syntactic
enhancement of the PRISM modeling language called a view. A view forms a
virtual variable s over bit variables sj . This virtual variable can be used in guards
and updates of transition definitions just as ordinary variables. Hence, exploding
the bits does not affect any of the transition definitions given in the model file.

As an example, consider the PRISM module in Fig. 2. Here, the virtual state
variable s with an integer data domain of 2 � s � 7 requires three bits to rep-
resent all values, as internally integer variables are encoded by first subtracting
the lower bound of the data domain (2 is internally represented as 0, etc.). The
actual storage is provided by the three single-bit state variables s bit i. The
order of the single-bit state variables in the view definition determines their use
in the encoding, with the most-significant bit appearing first. As can be seen, the
virtual view variable s is being used just like a standard PRISM state variable.

Note that “exploding the bits” of a PRISM model file alone will not change
the variable ordering and MTBDD representation, as the encoding and ordering
of the newly introduced single-bit state variables correspond to the standard
encoding used for the original variables. When applying the automatic reordering
detailed in the previous section to an “exploded” model file, the individual bits
of the state variables can be now be sifted and interleaved, as their grouping
is removed. However, the MTBDD variables are still restricted from crossing
module boundaries. We detail how to remove this restriction in the next section.

2.3 Interleaving State Variables of Different Modules

To overcome the limitation that state variables cannot be interleaved across mod-
ules our implementation provides the option of “globalizing” all state variables in
a PRISM model file: Each state variable inside a PRISM module is moved from
the module to become a global variable, while keeping the order they appeared in
the original model file. Realizing this requires to loosen some restrictions on the
use of global variables imposed by PRISM. In standard PRISM, global variables
cannot be updated in synchronous actions, as this has the potential of resulting
in conflicting updates from multiple modules. We removed this restriction, as in



Advances in Symbolic Probabilistic Model Checking with PRISM 355

module M1

x : [0..3] init 0;

[a] true -> 0.5:(x’=0)

+ 0.5:(x’=y);

endmodule

module M2

y : [0..3] init 0;

[a] true -> 1:(y’=0);

[b] y<3 -> 1:(y’=y+1);

endmodule

global x_bit_1 : [0..1];

global x_bit_0 : [0..1];

global y_bit_1 : [0..1];

global y_bit_0 : [0..1];

global x :

view (x_bit_1,x_bit_0) <=> [0..3] init 0;

global y :

view (y_bit_1,y_bit_0) <=> [0..3] init 0;

module M1

[a] true -> 0.5:(x’=0) + 0.5:(x’=y);

endmodule

module M2

[a] true -> 1:(y’=0);

[b] y<3 -> 1:(y’=y+1);

endmodule

Fig. 3. Example of both “exploding bits” and “globalizing variables” for a PRISM
model file (before on the left, after on the right).

our setting only the “previous owner” of a variable, i.e., the module in which the
variable was initially declared, will update the global variable in the transformed
model. This ensures that there can be no conflicting updates introduced by glob-
alizing variables. Our implementation supports such global variable updates for
similar situations as well, i.e., where it is apparent by a syntactic inspection that
no conflicting updates can happen.

The options for exploding the bits and globalizing the variables can be used
separately and in a combined fashion (cf. Fig. 3) and the resulting model yields
a starting point for group sifting. This way, fine-grained control of the variable
ordering for all state variables in the model becomes possible. Within the follow-
ing section we will evaluate our implementation by means of a number of case
studies.

2.4 Benchmarking Automatic Variable Reordering of PRISM
Models

To explore the effect of automatic variable reordering using our implementation,
we performed benchmarks using the DTMC, CTMC and MDP models in the
PRISM benchmark suite [27]. The models are parametrized in various parame-
ters, affecting both the number of states and the size of the MTBDD representa-
tion. In total, we performed benchmarks with 208 model instances (70 DTMCs,
70 CTMCs, 68 MDPs). We present here statistics for the “top” initial variable
ordering [34] used by default in the Hybrid engine. Results using the default
variable ordering of the Mtbdd engine were roughly similar.

Figure 4 presents statistics for the basic case, i.e., reordering without any syn-
tactic transformations beforehand. Similar plots for reordering with the “glob-
alize variables” (Sect. 2.3) and “explode bits” (Sect. 2.2) transformations being
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Fig. 4. Statistics for reordering without syntactic transformations: The number of
MTBDD nodes before reordering, the reduction (larger numbers represent more reduc-
tion) in the number of MTBDD nodes, the change in time for building the model
(before/after reordering) and the time spent reordering. Times below 0.1 s are clipped
to 0.1 for visualization purposes. There was one timeout, reordering the “csma4 6”
instance (45 min of the 1 h timeout spent on building, with 3,589,198 nodes).
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applied can be found in [21]3. In the plots, the model instances are grouped
by their base model. The size of the MTBDD refers to the number of nodes in
the shared MTBDD structure storing the various individual MTBDDs. Those
individual MTBDDs represent the model in PRISM, i.e., its transition matrix, a
0/1-version of the transition matrix representing the underlying graph structure
of the model, the set of reachable states, representations for the transition and
state rewards.

As can be seen in the second plot from the top in Fig. 4, the automatic
reordering was able to achieve significant reductions for many of the model
instances. As a particularly striking example, the reordering was very effective for
the “mapk-cascade” model, a CTMC: For the instance with parameter N = 8,
the MTBDD size was reduced from 1,478,511 nodes to 96,718 nodes, a reduc-
tion of more than 90%. The time for building the symbolic representation of
this model instance was reduced from 174 s to 2 s for the reordered model. Most
of the time, the reduction in the MTBDD size is accompanied by a reduction in
the time needed for building the MTBDDs for the reordered model. The major
outlier to this are several instances of the “crowds” model, where the time for
building the reordered model was substantially worse compared with the original
model. Our investigation revealed that this is due to the point in time at which
our reordering is performed, i.e., after the symbolic transition matrix has been
restricted to the reachable part of the state space, which is the symbolic represen-
tation that is then used for the actual model checking. The reordering heuristic
thus produced a variable order tailored for this state space and which is not
particularly suitable for the representation of the individual, not yet restricted
parts of the model used during the building phase. This is a classic example
of the case where an asynchronous reordering, i.e., continuously adapting the
variable ordering during the construction phase, would be helpful.

In general, the time for reordering tends to be related to the size of the
MTBDD before reordering, as expected. As noted above, even substantial
reordering times might be worthwhile, as the reordered model can be stored
and subsequently reused multiple times, profiting, e.g., from the reduced build
time and more compact symbolic representation.

There were three models (“brp”, “nand” and “poll”), where instances exhib-
ited an overall reduction in the size of the MTBDD, but an increase in the size
of the MTBDD for the transition matrix alone (in all cases the increase was less
than 10%). This is explained by the fact that the reordering operates on the
whole shared MTBDD data structure and thus does not necessarily optimize all
the individual MTBDD functions that are stored.

We have also benchmarked the effect of our syntactic transformations on the
automatic reordering and present here (Table 1) some notable examples. For fur-
ther, detailed statistics we refer to [21]. As already seen in Fig. 4, the “tandem”

3 The benchmarks for reordering were carried out on a machine with two Intel Xeon
L5630 4-core CPUs at 2.13 GHz and 192 GB RAM, with a timeout of 1 h and a
CUDD memory limit of 10 GB. The max-growth factor of CUDD was set to 2, i.e.,
allowing a doubling in MTBDD size before sifting is abandoned.
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Table 1. Selected statistics for the reduction achieved using reordering on the standard
model instance and where the “explode bits” and “globalize variables” transformations
were applied. In the last column, both transformations are applied. For reference, the
MTBDD size before reordering is included as well. For full details, see [21].

Model instance MTBDD before reduction in %

standard explode globalize exp.+glob.

tandem c=255 4 917 0.0 26.0 0.0 35.1

tandem c=4095 103 233 0.0 35.7 0.0 64.3

cluster N=32 7 391 45.5 47.9 52.2 8.3

cluster N=256 61 749 53.6 58.7 24.2 41.4

cluster N=512 132 908 55.1 59.3 61.5 46.2

kanban t=6 14 001 27.5 34.0 1.2 32.3

model has no reduction in MTBDD size when it is reordered as-is. However,
when the state variables are “exploded”, reordering becomes profitable, with
additional reductions when combined with the “globalize variables” transfor-
mations. Globally, for every model instance from the benchmark suite, at least
one of the variants achieved some reduction. As is to be expected, no variant
is uniformly best. Consider the statistics for the “cluster” model in Table 1. For
N = 32, “exploding” and “globalizing” are individually successful, but in com-
bination lead to only minor reductions. For N = 256, “exploding” is in the lead,
while for N = 512, “globalizing” by itself leads to the most reductions. For
“kanban” with t = 6, “globalizing” alone leads to worse reductions than reorder-
ing on the standard model. As can be seen, it remains an area of experimenta-
tion to select the reordering variant that is a good fit for a particular model and
model instance. As a good first assumption, the time for model checking tends
to be related in general to the compactness of the symbolic representation. We
experimented with some of the properties in the benchmark suite (cf. [21] for
some examples). In the next section, we will additionally report on significant
reductions in model-checking time in the context of quantile computations with
reordered models.

3 Computing Quantiles for Markov Decision Processes

Models in PRISM can be annotated with rewards (non-negative values) specify-
ing the costs or the gain for visiting certain states or taking certain transitions.
PRISM provides implementations of algorithms for reasoning about expected
rewards, but lacks support for computing the probabilities for reward-bounded
path properties, unless for unit-reward functions that count the number of steps.
We have extended PRISM with support for the computation of (extremal) prob-
abilities of cost-/reward-bounded simple path formulas for DTMCs and MDPs
with non-negative integer rewards, e.g., of Prmax(♦≤r Φ) for a reward bound r.
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This includes conjunctions of multiple reward bounds and step bounds [1], rely-
ing on a product transformation with a counter automaton tracking the accu-
mulated reward. This is implemented for both the explicit and symbolic engines.

In our recent work [5,38], we addressed the computation of quantiles for prob-
ability constraints on reward-bounded reachability conditions and carried out
experiments with a prototypical implementation based on PRISM’s Explicit
engine. In the mean time, this implementation has been refined and extended
by a symbolic implementation. In what follows, we describe some details of the
latter. We consider here MDP with a reward function rew : S × Act → N�0,
mapping state-action pairs (s, α) to the non-negative integer reward rew(s, α).
The quantiles under consideration (for details we refer to [5]) are optimal reward
thresholds that guarantee that the maximal or minimal probability of a reward-
bounded reachability path formula meets some probability bound. Examples are
min

{
r : Prmax(♦≤r Φ) > p

}
or max

{
r : Prmin(♦≥r Φ) > p

}
where r can

be seen as a parametric reward bound, Φ is a state formula and p a rational
probability bound. Quantiles yield a useful concept for the cost-utility analysis,
e.g., in terms of the minimal amount of energy r required to reach some goal Φ
with probability at least p for some/all schedulers. The approach for computing
quantiles as proposed in [5] consists of a two-step process. A precomputation
step determines all states s ∈ S for which the quantile exists, i.e., is finite. In
the simplest case, this amounts to the computation of the maximal probability
for unbounded reachability. In other cases, the computation requires the analy-
sis of zero-reward and positive-reward end components [5]. For the remaining
states, an iterative approach is used, which we illustrate here for a quantile of
the form min

{
r : Prmax(♦≤r Φ) > p

}
where we suppose the MDP has a unique

initial state s0. Successively, the values xs,r = Prmax
s (♦≤r Φ) for r = 1, 2, 3, . . .

are computed for all states s ∈ S until some r with xs0,r > p is reached, using
the equation xs,r = max{As, Bs} with

As = max
α∈Act(s),rew(s,α)=0

∑

t∈S
Pr(s, α, t) · xt,r

Bs = max
α∈Act(s),rew(s,α)>0

∑

t∈S
P (s, α, t) · xt,r−rew(s,α)

where Pr(s, α, t) is the probability of reaching state t when action α is chosen
in state s. For states satisfying Φ, xs,r is set to 1 for all r. The values As, han-
dling the zero-reward actions, are computed using value iteration. The values Bs,
handling the positive-reward actions, are determined by inserting the previously
calculated values xt,i for i < r. For the other quantile variants, similar compu-
tations are performed [5]. The time complexity of this approach is exponential,
meeting the complexity-theoretic optimum [16].

3.1 Symbolic Computation of Quantiles

We have extended PRISM with a symbolic implementation for the computation of
quantiles, following the general approach outlined above. For the precomputation
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step, we rely on the PRISM machinery for the computation of maximal/minimal
probabilities for unbounded path formulas and for the computation of (maximal)
end components, adapted for identifying states in positive-reward end components
and zero-reward end components by appropriate symbolic model transformations.

For the iterative computation of the values xs,r for r = 1, 2, 3, . . . until the
probability threshold p is reached, the values xs,r are stored symbolically, using
one MTBDD per bound r to represent the functions xr : S → Q. The state-action
pairs with positive reward are handled first, computing the MTBDD B : S → Q.
Here, all state-action pairs with identical reward value are handled simultane-
ously. Consequently, this symbolic approach tends to be most efficient if there
are many state-action pairs, but few distinct reward values in the model. To sub-
sequently handle the zero-reward state-action pairs, we symbolically transform
the MDP. First, all positive-reward actions are stripped and replaced by a single
fresh τ -action for each state. These τ -actions model the choice of choosing the
“best” positive-reward action in a state s and go to a special goal trap state
with probability B(s) and to a fail trap state with probability 1 − B(s). The
computation of xs,i then amounts to a standard maximal/minimal reachability
probability computation in the transformed model by means of value iteration,
relying on the computation engine chosen by the user, i.e., either the Mtbdd,
Hybrid or Sparse engine. As the state value vectors xr are stored symboli-
cally in all cases and the use of the semi-symbolic techniques of the Hybrid and
Sparse engines is thus limited, we denote these engines as SemiHybrid and
SemiSparse in the context of our symbolic quantile implementation.

3.2 Benchmarks for Quantile Computations

To perform benchmarking of our implementation, we have reused several models
and quantile queries that were first considered in [5] for benchmarking our quan-
tile implementation for PRISM’s Explicit engine. We present here (Table 2)
statistics for some noteworthy model instances, for further statistics and details
on the models and quantile queries we refer to [21]4.

As can be seen in Table 2, there are model instances were the quantile imple-
mentation in the Explicit engine easily outperforms our symbolic approach,
e.g., for the “self-stabilizing” case study, despite a very compact MTBDD rep-
resentation of the model. To put computation times such as 2153.2 s (for N=18)
into context, the number of iterations in the quantile computation has to be
kept in mind: Here, 392 iterations were required, with an average time per iter-
ation of around 5 s. The large number of iterations thus amplifies the time spent
in each iteration. For the “asynchronous leader-election” case study, our sym-
bolic implementation becomes competitive for N=8 because of the time spent
for model construction in the Explicit engine due to the large state space.
The symbolic computations still yield results for N=9, where the explicit app-
roach times out. A similar picture is seen for query Q7 of the “energy-aware

4 The benchmarks for the quantile computations were carried out on a machine with
two Intel E5-2680 8-core CPUs at 2.70 GHz with 384 GB of RAM running Linux.
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Table 2. Quantile computations for selected case studies, with statistics for the model
size (reachable state space, MTBDD size of symbolic transition matrix) and times spent
for model building and computing the quantile query (in seconds). The “it.” column
depicts the number of overall iterations in the quantile computation.

symbolic quantile computations
N States MTBDD it. Explicit SemiHybrid SemiSparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

Self-stabilizing algorithm (Israeli/Jalfon), N processes (query Q1)

11 2047 433 144 0.5 0.2 <0.1 2.5 <0.1 2.3 <0.1 2.0
15 32767 729 271 1.6 3.9 <0.1 119.1 <0.1 114.7 <0.1 159.3
18 262143 993 392 9.8 53.8 <0.1 2135.2 <0.1 2865.1 <0.1 2240.3

Asynchronous leader election, N processes (query Q3)

7 2095783 180383 206 63.1 83.2 5.9 358.8 7.0 369.8 7.6 402.7

8 18674484 392093 238 1633.2 891.8 20.6 1228.4 24.6 1307.4 21.9 1448.8

9 167748115 868257 279 – – 106.1 7751.9 92.3 5728.1 92.9 7545.6

Energy-aware job scheduling, N processes (query Q7)

5 6079533 187458 302 334.1 285.9 7.8 1196.2 7.2 1128.0 7.9 1142.9

6 44072357 507805 416 – – 21.7 3808.4 22.8 4045.9 25.0 3962.8

Energy-aware job scheduling, N processes (query Q8)

5 3049471 25363 13 62.5 398.6 0.8 86.0 0.9 74.3 0.9 104.6

6 7901694 38911 15 210.0 2375.5 1.8 390.6 1.8 378.1 1.3 317.1

job scheduling” case study. For the instances of this case study and query Q8
shown in Table 2, the symbolic implementation vastly outperforms the explicit
implementation. This is mainly due to the large amount of time spent there for
the precomputation step (1971 s for N=6), while the symbolic engines perform
this step in around 2 s. This appears to be due to inefficiencies in some of the end
component computations in the Explicit engine, which we are currently inves-
tigating and working on a potential fix. For the “energy-aware job scheduling”
case study, the computations were carried out in a reordered model, which lead
to a significant decrease in MTBDD size and computation time. For instance,
for (Q7) and N=6 we observed a reduction in the size of the transition matrix of
78.2 % and the quantile computation (SemiHybrid) took 43,832.9 s in the origi-
nal model instead of 3808.4 s in the reordered model, with similar reductions for
Mtbdd and SemiSparse.

Quantiles in Feature-Oriented Systems. In product lines, collections of
systems are described through the combination of features. Thus, the systems in
a product line usually share a lot of common behaviors, which makes symbolic
approaches appealing. Using a family-based approach, i.e., modeling the product
line in a single model, in previous work [13] we performed experiments on an
energy-aware server product line eServer. There, we illustrated the benefits of
symbolic representations in product-line verification and showed that variable
orderings have a crucial impact on the analysis performance. However, due to
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Table 3. Quantile computations for eServer, with statistics for the reachable state
space and MTBDD size of the transition matrix, reduction and time for reordering,
and time building the model and computing the quantile query (in seconds).

In
st

a
n
ce

2
In

st
a
n
ce

1

States MTBDD Reduction Mtbdd
nodes in % treorder tbuild tquery

original 145 984 112 64 030 - - 10.2 1 018.6
reordered “ 40 096 37.4 3.5 7.8 766.4
with explode “ 34 902 45.5 8.3 9.1 726.2
with globalize “ 36 149 43.5 2.9 6.3 704.3
with exp.+glob. “ 30 325 52.6 3.1 7.9 638.6

original 441 704 832 140 556 - - 27.2 3 664.6
reordered “ 72 565 48.4 68.5 16.6 3 510.5
with explode “ 66 874 52.4 32.3 17.7 3 204.7
with globalize “ 43 249 69.2 6.5 11.2 3 099.0
with exp.+glob. “ 37 674 73.3 8.5 12.1 2 833.0

the lack of a symbolic quantile implementation, an energy-utility analysis of
eServer had to be postponed as future work.

In Table 3, we summarize statistics for the computation of quantiles on two
instances of eServer, becoming possible due to our symbolic implementation.
We computed the minimal amount of energy required to guarantee in 95 % of
the cases a certain percentage of the time without any package drop. The table
shows the impact of our four reorder mechanisms on the model size and the
quantile computation time. We only included the results for the Mtbdd engine,
as the other engines struggled with the size of the model and reached a timeout
after one day. Within all computations, 1476 quantile iterations were required.
Interestingly, although the model presented in [13] already used heuristics to find
good initial variable orderings, the fully automatic reorder mechanisms presented
here allow for a further significant reduction of the model size and a speedup of
the analyses.

4 Additional Enhancements

We report here on additional enhancements we have implemented in PRISM both
for the symbolic and explicit engines, related to the support of ω-automata.

Accepting End Component Computations for Streett Conditions. Tra-
ditionally, PRISM has relied on an internal implementation of Safra’s deter-
minization construction for generating the deterministic Rabin automata used
for LTL model checking, e.g., for computing Prmax(ϕ) or Prmin(ϕ) for an LTL
formula ϕ. Recently, support was added for automata with generalized Rabin
acceptance [2,9] to benefit from advances in the construction of small determin-
istic automata [14,22]. This includes support for calling external tools for the
transformation of LTL formulas into deterministic Muller-automata, relying on
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the recent Hanoi Omega Automata (HOA) format [2], which supports the concise
representation of common acceptance conditions in a generic normal form.

We have extended PRISM’s MDP model checking with support for Streett
conditions, relying on the recursive algorithm for end-component analysis of [6].
Streett conditions are dual to Rabin conditions and are well suited for the speci-
fication of fairness constraints and for conjunctions of properties. They appear as
well in the computation of conditional probabilities in MDPs [7]. It is well known,
both in theory [29] and in practice [20], that for some languages, deterministic
Streett automata can be significantly smaller than Rabin automata.

Extremal Probabilities for Automata Specifications. We have further-
more extended the property syntax of the probability operators in PRISM to
allow the use of a HOA-automaton file instead of an LTL formula, providing the
full power of ω-regular languages. For DTMC models, the full range of accep-
tance conditions in the normal form of the HOA format [2] is supported. For
MDPs, Rabin, generalized Rabin and Streett conditions are supported. For the
computation of Prmin, which requires the complementation of the language of the
automaton, we support Rabin and Streett conditions, exploiting their duality.

5 Conclusion

In this paper, we have demonstrated the potential for automatic variable reorder-
ing for symbolic model checking in PRISM, including the benefits of now having
fine-grained control over the variable order using our syntactic transformations.
We have also shown that our symbolic implementation for quantiles is useful in
practice, particularly where explicit representations of the model are infeasible.

Future Work: In the area of automatic variable reordering, it would be inter-
esting to support more structured reordering: Often, models are obtained from
templates with parametrization, e.g., specifying the number of copies of certain
modules in the model. By swapping the variables of all copies simultaneously,
it might be possible to discover good initial variable orders from instances with
few copies and apply these to instances with more copies. This approach would
also be interesting when the aim is to apply symmetry reduction [12,25], as all
copies would remain symmetrical. While our syntactic transformations provide
very fine-grained reordering for the state variables, it would be interesting to
have the option of adding back some restrictions or hints for the reordering by
annotating the variable declarations in the PRISM model. This would allow to
state preferences which variable should be kept together, etc. In this context
it would also make sense to revisit previous work on heuristics for good initial
variable orderings in PRISM [30], making use of the finer-grained control that is
now possible. In addition, our benchmark results serve as an indication that it
would be worthwhile to attempt a refactoring of PRISM to remove the variable
order assumptions and add support for asynchronous reordering.

For our symbolic quantile computations, it appears worthwhile to consider an
iterative implementation that fully exploits the approach of the Hybrid engine,
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with a symbolic transition matrix and explicit state value vector storage. This
could allow the application of several of the techniques employed by the quantile
computations of the Explicit engine to speed-up the computations.

The implementation of the end component computation for Streett condi-
tions could serve as the base for supporting more complex types of fairness con-
ditions via the approach of [6], such as fairness for the scheduling of the modules
in a PRISM model. It would also be interesting to perform a detailed experi-
mental evaluation on the use of Streett versus (generalized) Rabin automata for
probabilistic model checking in practice.
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Abstract. In this paper we present PRISM-PSY, a novel tool that
performs precise GPU-accelerated parameter synthesis for continuous-
time Markov chains and time-bounded temporal logic specifications.
We redesign, in terms of matrix-vector operations, the recently formu-
lated algorithms for precise parameter synthesis in order to enable effec-
tive data-parallel processing, which results in significant acceleration on
many-core architectures. High hardware utilisation, essential for perfor-
mance and scalability, is achieved by state space and parameter space
parallelisation: the former leverages a compact sparse-matrix represen-
tation, and the latter is based on an iterative decomposition of the para-
meter space. Our experiments on several biological and engineering case
studies demonstrate an overall speedup of up to 31-fold on a single GPU
compared to the sequential implementation.

1 Introduction

Model checking of continuous-time Markov chains (CTMCs) against continuous
stochastic logic (CSL) formulae [1,27] has numerous applications in many areas
of science. In biochemistry, there is an interest in analysing hypotheses (for-
mulated using CSL) about reaction networks that can be adequately modelled
as CTMCs governed by the Chemical Master Equation [9,22,28]. In engineering
disciplines, CTMCs are used to study various reliability and performance aspects
of computer networks [5], communication [19] and security protocols [29].

Traditionally, stochastic model checking techniques assume that model para-
meters – namely, the transition rate constants – are known a priori. This is
often not the case and one has to consider ranges of parameter values instead,
for example, when the parameters result from imprecise measurements, or when
designers are interested in finding parameter values such that the model fulfils
a given specification. Such problems can be effectively formulated in the frame-
work of parameter synthesis for CTMCs [10,12,24]: given a time-bounded CSL
formula and a model whose transition rates are functions of the parameters, find
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parameter values such that the satisfaction probability of the formula meets a
given threshold, is maximised, or minimised. In [10,12] we developed synthesis
algorithms that yield answers that are precise up to within an arbitrarily small
tolerance value. The algorithms combine the computation of probability bounds
with the refinement and sampling of the parameter space.

The complexity of the synthesis algorithms depends mainly on the size of the
underlying model and on the number of parameter regions to analyse in order
to achieve the desired precision. However, existing techniques do not scale with
the model size and the dimensionality of the parameter space. For instance, as
reported in [12], the synthesis of two parameters for a model with 5.1 K states
requires the analysis of 5 K parameter regions and takes around 3.6 h.

In the last years, many-core graphical processing units (GPUs) have
been utilised as general purpose, high-performance processing resources in
computationally-intensive scientific applications. In light of this development, we
redesign the synthesis algorithms using matrix-vector operations so as to ensure
effective data-parallel processing and acceleration of the synthesis procedures on
many-core architectures. The novelty of our approach is a two-level parallelisa-
tion scheme that distributes the workload for the processing of the state space
and the parameter space, in order to optimally utilise the computational power
of the GPU. The state space parallelisation builds on a sparse-matrix encoding of
the underlying parametric CTMC. The parameter space parallelisation exploits
the fact that our synthesis algorithms require the analysis of a large number of
parameter regions during the parameter space refinement.

In this paper we present our new publicly available tool PRISM-PSY1 that
implements the data-parallel algorithms together with a number of optimisa-
tions of the sequential algorithms, and employs the front-end of the proba-
bilistic model-checker PRISM [26]. We systematically evaluate the performance
of PRISM-PSY and demonstrate the usefulness of our precise parameter syn-
thesis methods on several case studies, including survivability analysis of the
Google File System [2,16]. Our experiments show that the data-parallel synthe-
sis achieves on a single GPU up to a 31-fold speedup with respect to the optimised
sequential implementation and that our algorithms provide good scalability with
respect to the size of the model and the number of parameter regions to analyse.
As a result, PRISM-PSY enables the application of precise parameter synthesis
methods to more complex problems, i.e. larger models and higher-dimensional
parameter spaces.

The main contributions of this paper can be summarised as follows: (1)
improvement of the sequential algorithms of [10,12], leading in some cases to more
than 10-fold speedup; (2) formulation of a backward variant of the parametric tran-
sient analysis of [10] using matrix-vector operations, which enables data-parallel
implementation; (3) combination of the state space and parameter space paralleli-
sation in order to fully utilise the available computational power; (4) development
of the PRISM-PSY tool that enables precise parameter synthesis on many-core
architectures and (5) systematic experimental evaluation of the tool.

1 http://www.prismmodelchecker.org/psy/.

http://www.prismmodelchecker.org/psy/
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Related Work. The parameter synthesis problem for CTMCs and bounded
reachability specifications was first introduced in [24], where the authors resort
to the analysis of the polynomial function describing how the reachability prob-
ability depends on the parameter values. Due to the high degree of the polyno-
mials (determined by the number of uniformisation steps), only an approximate
solution is obtained through the discretisation of the parameter space.

The function describing how the satisfaction probability of a linear time-
bounded formula depends on the parameter values can be approximated through
statistical methods. A technique based on Gaussian Process regression is pre-
sented in [6] and implemented in the U-check tool [7]. In contrast to our app-
roach, statistical methods cannot provide guaranteed precision, and thus are not
suitable for safety-critical applications.

Parameter synthesis has also been studied for discrete-time Markovian mod-
els and unbounded temporal properties [15,23]. The synthesis algorithms are
based on constructing a rational function describing the satisfaction probabil-
ity by performing state elimination. This approach is implemented in the tool
PROPhESY [18] that supports incremental parameter synthesis using SMT tech-
niques, but is not suitable for time-bounded specifications and CTMCs.

Our tool builds on methods for the efficient GPU parallelisation of matrix-
vector multiplication [4] and probabilistic model checking [8,33]. In our previ-
ous work [3], we showed how the algorithms for LTL model checking can be
redesigned in order to accelerate verification on GPUs.

2 Precise Parameter Synthesis

In this section we summarise the parameter synthesis problem for CTMCs and
time-bounded CSL properties originally introduced in [12]. We also describe the
sequential synthesis algorithms of [10,12] and the improvements implemented in
the PRISM-PSY tool, which provide the foundation for the new data-parallel
algorithms (Sect. 3) and the baseline for evaluating the parallelisation speedup.

2.1 Problem Formulation

Parametric continuous-time Markov chains (pCTMCs) [24] extend the notion
of CTMCs by allowing transition rates to depend on parameters. We consider
pCTMCs with a finite set of states S and a finite set K of parameters ranging
over closed real intervals, i.e., [k⊥, k�] ⊆ R for k ∈ K. These induce a rectangular
parameter space P =

Ś

k∈K [k⊥, k�]. Subsets of P are referred to as parameter
regions or subspaces. Given a pCTMC and a parameter space P, we denote
with CP the set {Cp | p ∈ P}, where Cp is the instantiated CTMC obtained by
replacing the parameters in the parametric rate matrix R with the valuation p.

In the current implementation of the tool, we support only linear rate func-
tions of the following two forms: for any s, s′ ∈ S, R(s, s′) =

∑
k∈K k · ak,s,s′

(parametric rate) or R(s, s′) = bs,s′ (constant rate) where ak,s,s′ , bs,s′ ∈ R≥0.
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Such rate functions are sufficient to describe a wide range of systems, from bio-
logical to computer systems, as we will show in Sect. 4.

To specify properties over pCTMCs, we employ the time-bounded fragment
of Continuous Stochastic Logic (CSL) [1] extended with time-bounded reward
operators [27]. The current version of the tool considers only unnested formulae
given by the following syntax: Φ :: = P∼r[φ] | R∼r[C≤t] is a state formula,
φ :: = Ψ U I Ψ is a path formula, where Ψ :: = true | a | ¬Ψ | Ψ ∧Ψ , a is an atomic
proposition evaluated over states, ∼ ∈ {<,≤,≥, >}, r is a probability (r ∈ [0, 1])
or reward (r ∈ R≥0) threshold, t ∈ R≥0 is a time bound, and I is a time interval of
R≥0. The future operator, F I , can be derived as F I Ψ ≡ true U I Ψ . Let � denote
a satisfaction relation. Intuitively, a state s � P∼r[φ] iff the probability of the
set of paths starting in s and satisfying φ meets ∼ r. A path ω = s0t0s1t1 . . .
satisfies Φ UI Ψ iff there exists a time t ∈ I.(ω@t � Ψ ∧ ∀t′ ∈ [0, t).ω@t′ � Φ),
where ω@t denotes the state in ω at time t. A state s � R∼p[C≤t] iff the expected
rewards over the path starting in s cumulated until t time units satisfies ∼ p.
We remark that the synthesis algorithms can be adapted to support the full
fragment of time-bounded CSL including nested formulae, as shown in [10].

The satisfaction function captures how the satisfaction probability of a given
property relates to the parameters and initial state. Let φ be a CSL path formula,
CP be a pCTMC over a space P and s ∈ S. We denote with Λφ : P→S→ [0, 1]
the satisfaction function such that Λφ(p)(s) is the probability of the set of paths
(from state s) satisfying φ in Cp. The satisfaction function for reward formulae
can be defined analogously and is omitted to simplify the presentation.

We consider two parameter synthesis problems: the threshold synthesis prob-
lem that, given a threshold ∼ r and a CSL path formula φ, asks for the parame-
ter region where the probability of φ meets ∼ r; and the max synthesis problem
that determines the parameter region where the probability of the input formula
attains its maximum, together with probability bounds approximating that max-
imum. Solutions to the threshold synthesis problem admit parameter points left
undecided, while, in the max synthesis problem, the actual set of maximising
parameters is contained in the synthesised region. The min synthesis problem is
defined and solved in a symmetric way to the max case.

For CP , φ, an initial state s0, a threshold ∼ r and a volume tolerance ε > 0,
the threshold synthesis problem is finding a partition {T ,U ,F} of P, such that:
∀p ∈ T : Λφ(p)(s0) ∼ r; ∀p ∈ F : Λφ(p)(s0) �∼ r; and vol(U)/vol(P) ≤ ε, where
U is an undecided subspace and vol(A) =

∫
A

1dμ is the volume of A.
For CP , φ, s0, and a probability tolerance ε > 0, the max synthesis problem

is finding a partition {T ,F} of P and probability bounds Λ⊥
φ , Λ�

φ such that:
∀p ∈ T : Λ⊥

φ ≤ Λφ(p)(s0) ≤ Λ�
φ ; ∃p ∈ T : ∀p′ ∈ F : Λφ(p)(s0) > Λφ(p′)(s0); and

Λ�
φ − Λ⊥

φ ≤ ε.
Figure 1 depicts an example of threshold and max synthesis problems. On

the left, the satisfaction function describes the probability of the property (y-
axis) depending on the values of parameter k1 (x-axis). In the centre plot, we
highlight the parameter regions for which the threshold ≥ r is met (T , green), is
not met (F , red) and is undecided (U , yellow). On the right, the solution to the
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Fig. 1. Left: Example of a satisfaction function. Centre: Solution of the threshold
synthesis problem for ≥ r. Right: Solution of the max synthesis problem (Color figure
online).

max synthesis problem is the region (T , green) containing all the maximising
parameters and whose probability bounds meet the input tolerance ε.

2.2 Solution of the Synthesis Problems

The key ingredient for solving the aforementioned synthesis problems is a pro-
cedure that takes a pCTMC CP and CSL path formula φ, and provides safe
under- and over-approximations of the minimal and maximal probability that
CP satisfies φ: for all s ∈ S, it computes bounds Λmin(s) and Λmax(s) such
that Λmin(s) ≤ infp∈P Λφ(p)(s) and Λmax(s) ≥ supp∈P Λφ(p)(s). The procedure
builds on a parametric transient analysis that computes safe bounds for the
parametric transient probabilities in the discrete-time process derived from the
CTMC. This discretisation is obtained through standard uniformisation and the
Fox and Glynn algorithm [21] that is used to derive the required number of dis-
crete steps to consider (also called uniformisation steps or iterations) for a given
time bound2. See [10,27] for more details.

We now summarise the algorithms for threshold and max synthesis based on
the partitioning and iterative refinement of the parameter space [12]. Assume a
threshold synthesis problem for a path formula φ with threshold ≥ r. At each
step, the algorithm refines the undecided parameter subspace U , starting from
U = P: it generates a partition D of U and, for each R ∈ D, computes the
safe probability bounds ΛR

min and ΛR
max of the corresponding pCTMC CR. If

ΛR
min ≥ r, then the satisfaction of the threshold is guaranteed for the whole

region R, which is hence added to T . Otherwise, the algorithm tests whether R
can be added to F by checking if ΛR

max < r. If R is neither in T nor in F , it forms
an undecided subspace that is added to the set U . If the volume tolerance ε is
not met, the algorithm proceeds to the next iteration, where U is further refined.
The refinement procedure guarantees termination since the over-approximation
[ΛR

min, Λ
R
max] can be made arbitrarily precise by reducing the volume of R [13].

In the max synthesis case, the algorithm starts from T = P and iteratively
refines T until the tolerance ε is met. Let D be the partition of T at a generic
2 The Fox and Glynn algorithm returns a finite bound on the number of steps needed

to approximate transient probabilities up to a specified precision.
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step. The algorithm rules out from T subspaces that are guaranteed to be in F ,
by deriving an under-approximation M of the maximum satisfaction probability.
Indeed, for R ∈ D, ΛR

max < M implies that R is in F . M is derived by sampling
a set of parameter values from the region R with the highest ΛR

min and taking
the highest value of the satisfaction function over these values.

Improvements on the Sequential Algorithms. The PRISM-PSY tool introduces
several improvements on the prototype implementations used in [10,12]. Here
we present those having the most significant impact on performance.
(1) Backward computation of probabilistic bounds. In [10,12], the probability
bounds Λmin and Λmax are computed using a forward variant of the parametric
transient analysis, which requires a separate computation of the bounds for each
initial state. In our tool, we also implemented a more efficient solution that
requires only a single computation for all states, based on backward computation.
(2) Adaptive Fox-Glynn. While in previous implementations the number of uni-
formisation steps was fixed and obtained using the maximum exit rate (sum of
outgoing rates per a state) of the whole parameter space, the adaptive Fox-Glynn
technique computes the number of steps for each subregion separately, using the
maximum exit rate of the inspected subregion. For large parameter spaces, this
technique can significantly decrease the overall number of uniformisation steps,
improving the performance by more than a factor of two.
(3) Refinement Strategies. The tool employs improved refinement algorithms
that can decrease the total number of subregions to analyse. Specifically, for
threshold synthesis, at each step only the undecided subregions with the largest
volume are refined while, for max synthesis, only the regions with either the
lowest lower probability bound (Λ⊥

φ ) or the highest upper bound (Λ�
φ ).

3 Data-Parallel Algorithms for Parameter Synthesis

In this section we first introduce the basic concepts of the target hardware archi-
tecture, i.e. modern general-purpose GPUs. We then formulate the backward
variant of the parametric transient analysis using matrix-vector operations, and
describe the sparse-matrix representation of pCTMCs. Finally, we present a two-
level parallelisation of the synthesis algorithms. A detailed description of the
data-parallel algorithms for parameter synthesis can be found in [30].

3.1 Computational Model for Modern GPUs

Typical GPUs consist of multiple Streaming Multiprocessors (SMs), with each
SM following a single instruction multiple threads (SIMT) model. This approach
establishes a hierarchy of threads prior to the actual computation. Within this
hierarchy, threads are arranged into blocks that are assigned for parallel execu-
tion on SMs. Threads are hardwired into groups of 32 called warps, which form
a basic scheduling unit and execute instructions in a lock-step manner. If a suffi-
cient number of threads is dispatched, each SM maintains a set of active warps to
hide the memory access latency and maximise utilisation of its functional units.



PRISM-PSY: Precise GPU-Accelerated Parameter Synthesis 373

The SIMT approach supports code divergence within threads of the warp, but
this usually causes significant performance degradation due to the serialisation
of the execution. Another characteristic of GPUs that significantly affects their
performance is the way in which simultaneous memory requests from multiple
threads in a warp are handled. Requests exhibiting spatial locality are maximally
coalesced. Simply stated, accesses to consecutive addresses are served by a single
memory fetch as long as they are in the same memory segment.

A typical GPU program consists of a host code running on the CPU and a
device code running on the GPU. The device code is structured into kernels that
execute the same scalar sequential program in many independent data-parallel
threads. The combination of out-of-order CPU and data-parallel processing GPU
allows for heterogeneous computation.

3.2 Backward Computation of Probability Bounds

For a pCTMC CR over a region R =
Ś

k∈K [k⊥, k�] and a target set A ⊆ S, the
parametric backward analysis computes a series of vectors σmin

i and σmax
i such

that, for all s ∈ S, σmin
i (s) ≤ infp∈P σi,p(s) and σmax

i (s) ≥ supp∈P σi,p(s), where
σi,p(s) is the probability that, starting from the state s, a state in A is reached
after i discrete steps in Cp. From these vectors, the probability bounds Λmin(s)
and Λmax(s) are computed in a similar way to non-parametric CTMCs [27].

We define a matrix-vector operator  that computes the vector σmax
i+1 from

σmax
i and the parametric rate matrix R as σmax

i+1 (s) = (R  σmax
i )(s), where

σmax
0 (s) = 1 if s ∈ A and 0 otherwise. An analogous operator can be defined

for σmin
i+1 . Similarly to standard uniformisation, the definition of  exploits the

uniformised matrix, which is, in our case, parametric. For each s ∈ S, σmax
i+1 (s)

is first expressed by maximising the probability in s stepwise, i.e. after the i-th
step. Below, we expand the definition of the uniformised matrix using the uni-
formisation rate q given by the maximal exit rate and the time bound [21,27]:

σmax
i+1 (s) = max

p∈R

⎛

⎝
∑

s′∈S\{s}
σmax

i (s′)
Rp(s, s′)

q
+ σmax

i (s)

⎛

⎝1 −
∑

s′∈S\{s}

Rp(s, s′)
q

⎞

⎠

⎞

⎠ (1)

where Rp is the rate matrix instantiated with parameter p. The first sum rep-
resents the probability of entering a state s′ �= s and, from there, reaching A
in i steps. The second sum is the probability of staying in s and, from there,
reaching A in i steps. By expanding the parametric rate matrix R in Eq. 1 we
get:

σmax
i+1 (s) = σmax

i (s) +
∑

s′∈S\{s}

σmax
i (s′) − σmax

i (s)
q

·

⎧
⎨

⎩

∑

k∈K

k� · ak,s,s′ (2)

bs,s′ (3)

where k� = k� if σmax
i (s′) > σmax

i (s) and k⊥ otherwise. These equations allow
us to compute the vector σmax

i+1 using matrix-vector operations, as shown in the
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implementation of  in Algorithm 1. Note that Eq. 2 is used when the transition
from s to s′ has a parametric rate, while Eq. 3 is used when it has a constant
rate.

An approximation error is introduced because σmax
i+1 is computed by optimis-

ing σi+1,p locally, i.e. at each step and at each state, and the error accumulates at
each uniformisation step. We examine this error and its convergence in [13]. The
forward variant of the parametric transient analysis can also be formulated using
a vector-matrix operator [10], but the resulting code has more complex control
flow and higher branch divergence, which makes parallelisation less efficient.

3.3 Sparse-Matrix Representation of Parametric CTMCs

We introduce a sparse-matrix representation of parametric CTMCs that allows
us to implement the operator  in such a way that the resulting program has a
similar control flow and memory access pattern as the standard matrix-vector
multiplication, for which efficient data-parallel implementations exist [4,8,33].

We represent the data in a compact format based on the compressed sparse
row (CSR) matrix format. The CSR format stores only the non-zero values of
the rate matrix R using three arrays: non-zero values, their column indices, and
row beginnings. The CSR format is also used in the PRISM tool as the fastest
explicit representation for CTMCs [26].

To handle the non-parametric transitions separately in a more efficient way,
we decompose R into the non-parametric matrix, stored in the CSR format, and
the parametric matrix. To enable an efficient data-parallel implementation of the
operator , for a region R =

Ś

k∈K [k⊥, k�] and for each parametric transition
rate R(s, s′) two quantities, r⊥

s,s′ =
∑

k∈K k⊥·ak,s,s′ and r�
s,s′ =

∑
k∈K k�·ak,s,s′ ,

are stored. From Eq. 2, it is enough to test σmax
i (s′) − σmax

i (s) > 0 to decide
whether to use r�

s,s′ or r⊥
s,s′ in the multiplication, as illustrated in Algorithm1.

In the parallel version, we provide an additional implementation using data
structures based on the ELLPACK (ELL) sparse matrix representation [4]. The
advantage of ELL over CSR is that it provides a single-stride aligned access to the
data arrays, meaning that memory accesses within a single warp are reasonably
coalesced. ELL yields better performance than CSR for some problems.

3.4 GPU Parallelisation

We implemented PRISM-PSY in Open Computing Language (OpenCL) [32].
In contrast to other programming frameworks, OpenCL supports multiple plat-
forms and GPUs, and thus provides better portability. Moreover, its performance
is comparable with that of specialised frameworks (e.g. CUDA [20]).

The synthesis algorithms are executed in a heterogeneous way. The sequential
refinement procedure is executed on the CPU. For each parameter region R to
analyse, the CPU prepares a kernel that computes the probability bounds ΛR

min

and ΛR
max on the GPU, based on the backward parametric transient analysis

described above. Following [4,8,33], we implement a state space parallelisation,
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Algorithm 1. Kernel for two-level CSR parallelisation of the  operator
For all 0 ≤ n < |S| and 0 ≤ m < number of parallel regions, run in parallel:

1: e := number of non-zero elements in R
2: for j := matRowBeg[n]; j < matRowBeg[n + 1]; j := j + 1 do
3: dMax := σmax

i [m ∗ |S| + matCol[j]] − σmax
i [m ∗ |S| + n]

4: if dMax > 0 then σmax
i+1 [m ∗ |S| + n] += dMax ∗ matValTop[m ∗ e + j]

5: else σmax
i+1 [m ∗ |S| + n] += dMax ∗ matValBot[m ∗ e + j]

i.e. a single row of the rate matrix (corresponding to the processing of a single
state) is mapped to a single computational element. Note that the models we
consider typically have a balanced distribution of the state successors, and thus
yield a balanced distribution of non-zero elements in the rows of the matrix.
This ensures a good load balancing within the warps and blocks.

In the case of models with small numbers of states, this parallelisation is
not able to efficiently utilise all computational elements, since some of them
will be idle during the kernel execution. To overcome this potential performance
degradation, we combine state space parallelisation with parameter space paral-
lelisation that computes the probability bounds for multiple parameter regions
in parallel. As demonstrated in the experimental evaluation (Sect. 4), this two-
level parallelisation significantly improves performance on small models. In many
cases, this solution can improve the runtime of large models too, because it allows
the thread scheduler to better hide memory latency.

Since parallel kernel execution is unsupported by many GPU devices or it
may fundamentally decrease performance, we provide a way to perform, in a sin-
gle compute kernel, multiple matrix-vector operations over multiple parameter
regions. The solution exploits the fact that, in our case, the rate matrices for
different regions have the same structure and only differ in the values of r�

s,s′ and
r⊥
s,s′ . We extend the sparse-matrix representation of the pCTMC and store the

values r⊥
s,s′ and r�

s,s′ as well as σmax
i (s) and σmax

i+1 (s) for all regions. This allows
us to utilise m · |S| computational elements for m parallel regions. Algorithm1
illustrates the kernel for the two-level parallelisation using the CSR format. The
vectors matRowBeg and matCol, the same for all regions, keep the column indices
and row beginnings, respectively. The vectors matValTop and matValBot keep
the non-zero values of r�

s,s′ and r⊥
s,s′ , respectively. We store only the current σmax

i

and σmax
i+1 using two vectors and the vectors are swapped between the iterations.

Importantly, merging the computation for multiple regions requires modi-
fying the adaptive Fox-Glynn technique to consider the highest uniformisation
step among them. This means that the benefits of adaptive Fox-Glynn diminish
with the number of subspaces processed in parallel.

4 Experimental Evaluation

In this section we evaluate the performance of the data-parallel synthesis algo-
rithms on case studies of biological and computer systems. We discuss how model
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features affect parallelisation and show that parameter synthesis can be meaning-
fully employed to analyse various requirements, ranging from quality of service
to the reliability of synthetic biochemical networks.

All the experiments were run on a 4-core Linux workstation with an AMD
PhenomTM II X4 940 Processor @ 3 GHz, 8 GB DDR2 @ 1066 MHz RAM and
an NVIDIA GeForce GTX 480 GPU with 1.5 GB of GPU memory. The GPU
has 14 SMs, each having 32 cores and the capability to maintain up to 48 active
warps. Therefore, the GPU can simultaneously maintain and schedule up to
21504 active threads to maximise the utilisation of its computational elements.

In the following, Java denotes the optimised sequential implementation and
Csrn (Elln) the data-parallel implementation based on CSR (ELL) with n
subregions being processed in parallel. We report only an approximate value
for the number of final subregions, since it differs slightly in some experiments
due to parallel processing. We also report the results for the parameter space
parallelisation only up to the best performance is reached.

4.1 Google File System

We consider the performance evaluation case study of the replicated file system
used in the Google search engine known as Google File System (GFS). The model
was first introduced as a generalised stochastic Petri net (GSPN) [16] and then
translated to a CTMC [2]. Previous work on the model focused on survivability
analysis, i.e. the ability of the system to recover from disturbances or disasters,
and considers all model parameters to be fixed. Here, we work with a pCTMC
model and show how parameter synthesis can be used to examine survivability.

M soft d M hard d

M1 M up

m soft m hard

m fail

m hard re m soft re

replicate

destroy

keep

R present

C 1

R

R lost

C 2

c fail

C up
c soft c hard

C soft d

M

C hard d
c soft rec hard re

Fig. 2. Google File Sys-
tem from [2,16]. Transitions
can be immediate (grey) or
timed (white).

Figure 2 illustrates the GSPN model of the GFS.
Default values for stochastic rates can be found
in [2,16]. Files are divided into chunks of equal size.
Each chunk exists in several copies, located in differ-
ent chunk servers. There is one master server that
is responsible for keeping the locations of the chunk
copies, monitoring the chunk servers and replicat-
ing the chunks. The master can be: up and running
(token at M up); or failed (M1), due to a software
(M soft d) or hardware (M hard d) problem. The
model reproduces the life-cycle of a single chunk:
the numbers of available and lost copies are given
by places R present and R lost, respectively. Lost
chunks are replicated through transition replicate. R
is the maximum number of copies. We consider M
chunk servers whose behaviour is analogous to that
of the master. When a chunk server fails, a chunk
copy is lost (destroy) or not (keep) depending on
whether the server is storing the single chunk under
consideration. We set M = 60 and R = 3, yielding
a model with 21.6 K states and 145 K transitions.
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We first formulate a threshold synthesis problem for the CSL formula φGFS1 =
F [0,60] SL3, where SL3 = (M up = 1 and R present ≥ 3) is the QoS requirement
that the master is running and at least three chunk copies are available (service
level 3). The initial state models a severe hardware disaster: all the servers are
down due to hardware (C hard d = M and M hard d = 1) and all the chunk
copies have been lost (R lost = R). We are interested in synthesising the values
of parameter c hard re, that is, the rate at which chunk servers are repaired from
hardware failure. Importantly, c hard re can actually be controlled, e.g. by intensi-
fying the frequency of technical interventions. Figure 3(a) illustrates the synthesis
results for c hard re ∈ [0.5, 2] and probability threshold≥ 0.5. The property is met
for any c hard re above 1, and, in particular, SL3 is reached with high probability
for repair rates above 1.25.

We now evaluate a property requiring that SL3 is reached strictly within
the time interval [40, 60]: φGFS2 = ¬SL3 U [40,60] SL3. Although it is generally
sought to reach the required QoS as soon as possible, this property can be

c_hard_re
0.5 1 1.5 2

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

c_hard_re
0.5 1 1.5 2

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) (c)

Fig. 3. Synthesis results for the GFS model. Each box denotes a parameter region
(width and depth) and its probability bounds (height). Colour code is as in Fig. 1.
(a) Threshold synthesis, property φGFS1 , threshold ≥ 0.5 (dashed line) and volume tol-
erance ε = 0.01. (b) Max synthesis, property φGFS2 and probability tolerance ε = 0.01.
(c) Threshold synthesis, property φGFS2 , threshold ≥ 0.5 (semi-transparent plane) and
ε = 0.1. Parameter domains are c hard re ∈ [0.5, 2] (a,b,c) and c fail ∈ [0.01, 1] (c).
Numbers of final regions are 8 (a), 24 (b) and 136 (c).

Table 1. Performance of the GFS model: 21.6K states, 145K transitions, and ≤47K
iterations per subregion. Details of the synthesis problems are reported in Fig. 3.

Threshold synthesis φGFS1 Max synthesis fφGFS2 Threshold synthesis φGFS2

Impl. Time (s) Speedup Impl. Time (s) Speedup Impl. Time (s) Speedup

Java 842 1.0 Java 3279 1.0 Java 12221 1.0

Csr1 56 15.0 Csr1 257 12.8 Csr1 764 16.0

Csr4 51 16.5 Csr4 239 13.7 Csr8 660 18.5

Csr16 51 16.5 Csr8 211 15.5 Csr64 636 19.2

Ell16 41 20.5 Ell32 207 15.8 Ell16 505 24.2
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used in scenarios like planned downtime, where the service does not need to
be up before the time scheduled for maintenance. In Fig. 3(b), we report the
results of max synthesis for parameter c hard re. The maximising parameters
(indicated with a black arrow) are found in the region approximately given by
c hard re ∈ [1.2, 1.23], since for high repair rates SL3 is reached too early.

In the last experiment, we introduce one additional parameter, c fail, i.e. the
rate at which any failure (hardware or software) occurs in a chunk server. Since
the GFS is designed to run on cheap commodity hardware, this rate can be
controlled indirectly through the reliability of the machines used. We consider
a threshold synthesis problem with property φGFS2 and threshold ≥ 0.5. Results
in Fig. 3(c) evidence that, interestingly, the satisfaction probability is almost
independent from the failure rate, except when c fail approaches 1, and thus
slightly higher repair rates are needed.

Table 1 reports the performance of the tool on the above experiments, namely,
the speedup achieved by the data-parallel algorithms. Although the state space
parallelisation utilises the GPU sufficiently (enough threads are dispatched), the
parameter space parallelisation further improves performance, providing up to
24-fold and 16-fold speedup with respect to the sequential algorithm for threshold
and max synthesis, respectively. The efficiency of the parameter space paralleli-
sation depends on the effective usage of GPU resources, and thus the speedup
does not scale with respect to the number of regions processed in parallel. In
this case the adaptive Fox-Glynn technique does not bring any benefit, since the
parameters we analyse do not affect the maximal exit rate.

4.2 Epidemic Model

We further consider the stochastic epidemic model we analysed in [12] using the
prototype implementation, in order to evaluate the enhancements of the sequen-
tial implementation presented in this paper. It describes the epidemic dynamics
of susceptible (S), infected (I) and recovered (R) individuals using the follow-
ing biochemical reactions network with mass action kinetics: S + I

ki−→ I + I and
I

kr−→ R. With a total population of 100 individuals and initial state S = 95, I = 5
and R = 0, the model has 5.1 K states and 10K transitions. We consider the
same max synthesis problem as in [12]: parameter space PSIR = ki × kr ∈
[0.005, 0.3] × [0.005, 0.2] and property φSIR(t1, t2) = (I > 0) U [t1,t2] (I = 0),
expressing that the infection lasts at least t1 time units but dies out before time
t2. As shown in [12], for t1 = 100 and t2 = 120, the prototype implementation
produced around 5 K final parameter subspaces and required 3.6 h.

Table 2 (left) lists the results obtained with PRISM-PSY on the same synthe-
sis problem. We can see that the optimised sequential implementation is about
14-fold faster (918 sec. vs 3.6 h.). This significant acceleration is explained by:
more sophisticated refinement strategy for max/min synthesis, which reduces the
number of final regions to 3K (∼2-fold speedup); the adaptive Fox-Glynn tech-
nique, which reduces the number of iterations (∼ 2.5-fold speedup); and more
efficient data structures that accelerate the computation of the probability
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Table 2. Max synthesis for the epidemic model: parameter space PSIR and probability
toleranceε = 1 %. φSIR(100, 120): 5.1K states, 10K transitions and ≤ 3.1K iterations per
regionand ∼3.1K final regions. φSIR(100, 200): 20K states, 40K transitions and ≤12K
iterations per region and ∼826 final regions (depicted on the right).

φSIR(100, 120) φSIR(100, 200)

Impl. Time (s) Speedup Impl. Time (s) Speedup

Java 918 1.0 Java 3117 1.0
Csr1 363 2.5 Csr1 303 10.3
Csr4 269 3.4 Csr4 351 8.8
Csr16 207 4.4 Csr16 315 9.5
Csr128 167 5.5 Csr64 303 10.3
Ell128 162 5.6 Ell128 299 10.4 k i 10-3
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bounds as well as the refinement procedure (∼3-fold speedup). Note that the
actual benefits of these enhancements essentially depend on the structure of the
model and the synthesis problem. As the epidemic model is relatively small, the
state space parallelisation is not able to sufficiently utilise the GPU, and thus
the Csr1 implementation provides only a 2.5-fold speedup. The parameter space
acceleration further improves the speedup to 5.6 (ELL128 implementation).

We now consider a more complicated variant of the problem, where we double
the population size and extend the time horizon to t2 = 200. Results are pre-
sented in Table 2 (middle). In this case, the state space parallelisation sufficiently
utilises the GPU and for CSR1, we obtain a 10.3-fold speedup. On the other
hand, the parameter space parallelisation reduces the benefits of the adaptive
Fox-Glynn technique, and thus overall performance is improved only slightly.
Table 2 (right) depicts the results of max synthesis for the larger variant.

4.3 Signalling in Prokaryotic Cells

This model was introduced in [14,31] and describes a two-component signalling
pathway in prokaryotic cells with two signalling components both in phos-
phorylated and dephosphorylated forms: the histidine kinase H and Hp, and
the response regulator R and Rp. In this case, parameter synthesis is com-
putationally very demanding, since the model has 116 K states and 954 K
transitions. We consider a threshold synthesis problem that requires a rela-
tively small number of refinements, in order to demonstrate the benefits of
the state space parallelisation. We synthesise the production and degradation
rates (prodR and degrR) of R such that the input noise of response regula-
tors, defined as a quadratic deviation from the average population, is below
9 at least 80% of the time. This can be formalised as the cumulative reward
property ΦSIG = R≥0.8t[C≤t], where the reward in state is 1 if it satisfies
(R + Rp − avg)2 < 9, otherwise the reward is 0. We consider t = 10, avg = 30
and parameter space PSIG = prodR × degrR ∈ [0.1, 0.9] × [0.005, 0.02], which
reflects the setting in [14].
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Table 3. Threshold synthesis for the signalling model: property ΦSIG, parameter space
PSIG and ε = 9 %. The variant from [14]: 116K states, 954K transitions, ≤ 19K itera-
tions per region and ∼70 final regions (depicted on the right). The larger variant: 424K
states, 3.6M transitions, ≤ 24K iterations per region, and ∼67 final regions.

The variant from [14] The larger variant

Impl. Time (s) Speedup Impl. Time (s) Speedup

Java 16482 1.0 Java 95466 1.0
Csr1 868 19.0 Csr1 3870 24.7
Csr2 890 18.5 Csr2 3949 24.2
Csr4 866 19.0 Csr4 3946 24.2
Ell4 666 24.7 Ell4 3065 31.1

As shown in Table 3, a speedup up to 24.7 is obtained using ELL4, which
further improves the GPU utilisation and the memory access pattern of the
pure state space parallelisation. We also consider a larger variant of the
model (about 3.6-times), for which we obtain an even better speedup (up to
31.1-fold), so demonstrating good scalability of the data-parallel algorithm.
Table 3 (right) depicts the synthesis results for the small variant, evidencing
the non-monotonicity of the satisfaction function for the reward property.

4.4 Approximate Majority

The next model describes a chemical reaction network that computes the approx-
imate majority – the asymptotically fastest way to approximate a common deci-
sion by all members of a population [11]. We consider the network AM3,3#39:

A+B
k1=92.9−−−−−→ X+X, A+X

k2=26.2−−−−−→ A+A and B+X
k3=23.3−−−−−→ B+B synthesised

in [17] as the best network utilising only 3 species. The structure of the network
has been synthesised using an approach based on bounded model checking and
the kinetic parameters estimated by Monte Carlo-based optimisation.

As in [17], we consider small numbers of input molecules (A = 10, B = 4
and X = 0), and thus the model has only 120 states and 273 transitions. This

(a) True region (b) Undecided region (c) False region

Fig. 4. Threshold synthesis for the approximate majority model and property ΦAM.
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experiment, in contrast to the previous case studies, allows us to demonstrate
the performance of our tool on very small models. We synthesised the parameters
such that the probability of the correct decision being made after 100 time units
is at least 95%. The property is formalised as ΦAM = P≥0.95[F [100,100] Ψcorrect]
and the parameter space is PAM = k1 × k2 × k3 ∈ [1, 100]3.

Table 4. Threshold synthesis for
the approximate majority: prop-
erty ΦAM, parameter space PAM and
ε = 10 %. 120 states, 273 transi-
tions, ≤ 700K iterations per region
and ∼911 final regions.

Runtime (s) Speedup
Java 1097 1.0
Csr1 11375 0.1
Csr4 3057 0.4
Csr16 951 1.2
Csr64 319 3.4
Csr128 195 5.6
Ell128 193 5.7

Due to the low number of states, the state
space parallelisation utilises only a small
portion of the computational elements of
the GPU. Therefore, the GPU parallelisa-
tion using a small number of parallel para-
meter regions slows down the computation,
as shown in Table 4. Increasing the num-
ber of parallel regions (up to 128) improves
the GPU utilisation, and hence performance,
yielding up to 5.7-fold speedup.

This experiment also demonstrates that,
in contrast to the Monte Carlo-based opti-
misation, precise parameter synthesis pro-
vides detailed information about the impact
of parameters on the probability of correct
decision, as shown in Fig. 4. Note that the
backward transient analysis implemented in
our tool computes the probability bounds for all the reachable states, in this
case all the inputs satisfying A + B = 14.

4.5 Workstation Cluster

Table 5. Threshold synthesis for
the cluster model: property ΦCLU,
parameter space PCLU and ε =
10 %. 86K states, 415K transi-
tions, ≤9K iterations per region and
∼273 final regions.

Runtime (s) Speedup
Java 12074 1.0
Csr1 637 19.0
Csr4 674 17.9
Ell4 672 18.0

Finally, we consider a model describing a
cluster of workstations consisting of two sub-
clusters with N workstations in each, con-
nected in a star topology [25,34]. Both sub-
clusters have their own switch that connects
the workstations in the sub-cluster with a
central backbone. The cluster maintains the
minimum quality of service if at least 75 %
of the workstations are operational and con-
nected. We assume that one can control
the workstation inspection (ws check), repair
(ws repair) and failure (ws fail) rates.

We synthesise the parameters such that the minimum quality of service is
not maintained at most 0.1 % of the time. This is formalised as ΦCLU = R≤0.1·t
[C ≤ t], and associating a reward of 1 to states where the minimum quality of
service is not provided. In this experiment, we use t = 100 and parameter space
PCLU = ws check × ws repair × ws fail ∈ [5, 20] × [0.5, 5] × [0.001, 0.02].
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Table 5 presents the results for N = 48 (85K states and 415 K transitions).
In this model, the parameter space parallelisation considerably reduces the ben-
efits of the adaptive Fox-Glynn technique, and thus the CSR1 implementation
provides the best performance, leading to a 19-fold speedup.

4.6 Result Analysis

State space parallelisation improves the scalability of the computation with
respect to the model size. The experiments demonstrate that the speedup com-
pared to the sequential baseline tends to improve with the number of states (see
Tables 2 and 3). On the other hand, for smaller models, an insufficient number of
threads is dispatched, leading to performance degradation (see Table 4). In most
cases, the ELL format moderately outperforms the CSR format and it also works
better with the parameter space parallelisation due to the more coalesced mem-
ory access pattern. Since the refinement procedure (running solely on CPU) is
more complicated for max/min synthesis, for these instances the overall speedup
is lower than that for threshold synthesis.

Parameter space parallelisation allows us to efficiently utilise the GPU
even for small models. It scales well up to reaching the maximal number of
active threads that can be dispatched (see Table 4). In practice, performance
usually increases even beyond this point, since the parameter space parallelisa-
tion can improve the memory access locality. On the other hand, it mitigates
the advantage of the adaptive Fox-Glynn technique, which can lead to perfor-
mance degradation, as reported in Table 5. Importantly, PRISM-PSY can also be
configured to perform this parallelisation using multi-core CPUs (not discussed
here).

Our experiments clearly indicate that the tool is able to provide good scal-
ability with respect to the number of computational elements. Since
the two-level parallelisation can tune the GPU utilisation for various synthesis
problems, we expect that the execution of the tool on new generations of GPUs
with a larger number of cores will lead to a further improvement in acceleration.

5 Conclusion

We have introduced the tool PRISM-PSY that performs precise parameter syn-
thesis for CTMCs and time-bounded specifications. In order to overcome the high
computational demands, we have developed data-parallel versions of the algo-
rithms allowing us to significantly accelerate synthesis on many-core GPUs. As
a result, the tool provides up to 31-fold speedup with respect to the optimised
sequential implementation, and thus considerably extends the applicability of
precise parameter synthesis. In future we will extend the tool to support the full
fragment of time-bounded CSL and multi-affine rate functions [13].
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12. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter syn-
thesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone,
K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014)
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33. Wijs, A.J., Bošnački, D.: Improving GPU sparse matrix-vector multiplication for
probabilistic model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012)

34. PRISM - Case Studies - Workstation Cluster. http://www.prismmodelchecker.org/
casestudies/cluster.php. Accessed September 2015

http://www.prismmodelchecker.org/casestudies/cluster.php
http://www.prismmodelchecker.org/casestudies/cluster.php


Tool Papers II



T2: Temporal Property Verification

Marc Brockschmidt1(B), Byron Cook2, Samin Ishtiaq1, Heidy Khlaaf2,
and Nir Piterman3

1 Microsoft Research Cambridge, Cambridge, UK
mabrocks@microsoft.com

2 University College London, London, UK
3 University of Leicester, Leicester, UK

Abstract. We present the open-source tool T2, the first public release
from the TERMINATOR project [9]. T2 has been extended over the past
decade to support automatic temporal-logic proving techniques and to
handle a general class of user-provided liveness and safety properties.
Input can be provided in a native format and in C, via the support of
the LLVM compiler framework. We briefly discuss T2’s architecture, its
underlying techniques, and conclude with an experimental illustration of
its competitiveness and directions for future extensions.

1 Introduction

We present T2 (TERMINATOR 2), an open-source framework that implements,
combines, and extends techniques developed over the past decade aimed towards
the verification of temporal properties of programs. T2 operates on an input for-
mat that can be automatically extracted from the LLVM compiler framework’s
intermediate representation, allowing T2 to analyze programs in a wide range
of programming languages (e.g. C, C++, Objective C, . . . ). T2 allows users to
(dis)prove CTL, Fair -CTL, and CTL∗ specifications via a reduction to its safety,
termination and nontermination analysis techniques. Furthermore, LTL specifi-
cations can be checked using the automata-theoretic approach for LTL verifica-
tion [26] via a reduction to fair termination, which is subsumed by Fair-CTL.

In this paper we describe T2’s capabilities and demonstrate its effectiveness
by an experimental evaluation against competing tools. T2 is implemented in F#
and makes heavy use of the Z3 SMT solver [11]. T2 runs on Windows, MacOS,
and Linux. It is available under the MIT license at github.com/mmjb/T2.

Related Work. We focus on tool features of T2 and consider only related publicly
released tools. Note that, with the exception of KITTeL [13], T2 is the only open-
source termination prover and is the first open-source temporal property prover.
Similar to T2, ARMC [23] and CProver [19], implement a TERMINATOR-style
incremental reduction to safety proving. T2 is distinguished from these tools
by its use of lexicographic ranking functions instead of disjunctive termination
arguments [10]. Other termination proving tools include FuncTion [25], KIT-
TeL [13], and Ultimate [16], which synthesize termination arguments, but have
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 387–393, 2016.
DOI: 10.1007/978-3-662-49674-9 22
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weak support for inferring supporting invariants in long programs with many
loops. AProVE [14] is a closed-source portfolio solver implementing many suc-
cessful techniques, including T2’s methods. We know of only one other tool able
to automatically prove CTL properties of infinite-state programs:1 Q’ARMC [2],
however Q’ARMC does not provide an automated front-end to its native input
and requires a manual instantiation of the structure of the invariants. We do not
know tools other than T2 that can verify Fair-CTL and CTL∗ for such programs.

Limitations. T2 only supports linear integer arithmetic fragments of C. An
extension of T2 that handles heap program directly is presented in [1]2. As
in many other tools, numbers are treated as mathematical integers, not machine
integers. However, our C front-end provides a transformation [12] that handles
machine integers correctly by inserting explicit normalization steps at possible
overflows.

2 Front-End

T2 improves on TERMINATOR by supporting a native input format as well as
replacing the SLAM-based C interface by one based on LLVM.

Native Format. T2 allows input in its internal program representation to facili-
tate use from other tools. T2 represents programs as graphs of program locations
L connected by transition rules with conditions and assignments to a set of inte-
ger variables V. The location �0 ∈ L is the canonical start state. An example is
shown in Fig. 1(b). We assume that variables to which we do not assign values
remain unchanged. For precise semantics of program evaluations, we refer to [3].
C via LLVM. In recent years, LLVM has become the standard basis of program
analysis tools for C. We have thus chosen to extend llvm2kittel [13], which auto-
matically translates C programs into integer term rewriting systems using LLVM,

int main() {
int k = nondet();

int x = nondet();

if (k > 0)

while (x > 0)

x = x - k;

return 0; }

�0

�1

�2

�3

k := nondet();
x := nondet();

assume(k > 0);

assume(k ≤ 0);

assume(x > 0);
x := x − k;

assume(x ≤ 0);

Fig. 1. (a) C input program. (b) T2 control-flow graph of the program in (a).

1 We do not discuss tools that only support finite-state systems or pushdown
automata.

2 Alternatively, the heap-to-integer abstractions implemented in Thor [20] for C or the
one implemented in AProVE [14] for C and Java can be used as a pre-processing step.
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to also generate T2’s native format. Our implementation uses the existing dead
code elimination, constant propagation, and control-flow simplifications to sim-
plify the input program. Figure 1(a) shows the C program from which we generate
the T2 native input in Fig. 1(b). Further details can be found in [4].

3 Back-End

In T2, we have replaced the safety, termination, and non-termination procedures
implemented in TERMINATOR by more efficient versions. In addition, we added
support for temporal-logic model checking.

Proving Safety. To prove temporal properties, T2 repeatedly calls to a safety
proving procedure on instrumented programs. For this, T2 implements the
Impact [21] safety proving algorithm, and furthermore can use safety proving
techniques implemented in Z3, e.g. generalized property directed reachability
(GPDR) [17] and Spacer [18]. For this, we convert our transition systems into
sets of linear Horn clauses with constraints in linear arithmetic, in which one
predicate p� is introduced per program location �. For example, the transition
from �2 to �2 in Fig. 1(b) is represented as ∀x, k, x′ : p�2(x

′, k) ← p�2(x, k) ∧ x′ =
x − k ∧ x > 0.

Proving Termination. A schematic overview of our termination proving proce-
dure is displayed in Fig. 2. In the initial Instrumentation phase (described in [3]),
the input program is modified so that a termination proof can be constructed by
a sequence of alternating safety queries and rank function synthesis steps. This
reduces the check of a speculated (possibly lexicographic) rank function f for
a loop to asserting that the value of f after one loop iteration is smaller than
before that iteration. If the speculated termination argument is insufficient, our
Safety check fails, and the termination argument is refined using the found coun-
terexample in RF Synth. We follow the strategy presented in [10] to construct a
lexicographic termination argument, extending a standard linear rank function
synthesis procedure [22],3 implemented as constraint solving via Z3. The overall
procedure is independent of the used safety prover and rank function synthesis.

In our Preprocessing phase, a number of standard program analysis tech-
niques are used to simplify the remaining proof. Most prominently, this includes

Preproc.

Instrumentation

Safety RF Synth. RS Synth.

Termination Nontermination

Fail
Simplif. Counterex.

Safe

Fail

Refine

Fail

Succ.

Fig. 2. Flowchart of the T2 termination proving procedure

3 T2 can optionally also synthesize disjunctive termination arguments [24] as imple-
mented in the original TERMINATOR [9].
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the termination proving pre-processing technique presented in [3] to remove loop
transitions that we can directly prove terminating, without needing further sup-
porting invariants. In our termination benchmarks, about 80 % of program loops
(e.g. encodings of for i in 1 .. n do-style loops) are eliminated at this stage.

Disproving Termination. When T2 cannot refine a termination argument based
on a given counterexample, it tries to prove existence of a recurrent set [15]
witnessing non-termination in the RS Synth. step. A recurrent set S is a set of
program states whose execution can eventually lead back to a state from S. T2
uses a variation of the techniques from [5], restricted to only take a counterex-
ample execution into account and implemented as constraint solving via Z3.

Proving CTL. CTL subsumes reasoning about safety, termination, and nontermi-
nation, in addition to all state-based properties. T2 implements the bottom-up
strategy for CTL verification from [7]. Given a CTL property ϕ, T2 first com-
putes quantifier-free preconditions precondi for the subformulas of ϕ, and then
verifies the formula obtained from ϕ by replacing the subformulas by their pre-
conditions. Property preconditions are computed using a counterexample-guided
strategy where several preconditions for each location are computed simultane-
ously through the natural decomposition of the counterexample’s state space.

Proving Fair-CTL. T2 implements the approach for verification of CTL with
fairness as presented in [6]. This method reduces Fair-CTL to fairness-free CTL
using prophecy variables to encode a partition of fair from unfair paths. Although
CTL can express a system’s interaction with inputs and nondeterminism, which
linear-time temporal logics (LTL) are inadequate to express, it cannot model
trace-based assumptions about the environment in sequential and concurrent
settings (e.g. schedulers) that LTL can express. Fairness allows us to bridge said
gap between linear-time and branching-time reasoning, in addition to allowing
us to employ the automata-theoretic technique for LTL verification [26] in T2.

Proving CTL∗. Finally, T2 is the sole tool which supports the verification of CTL∗

properties of infinite-state programs as presented in [8]. A precondition synthesis
strategy is used with a program transformation that trades nondeterminism in
the transition relation for nondeterminism explicit in variables predicting future
outcomes when necessary. Note that Fair-CTL disallows the arbitrary interplay
between linear-time and branching-time operators beyond the scope of fairness.
For example, a property stating that “along some future an event occurs infinitely
often” cannot be expressed in either LTL, CTL nor Fair-CTL, yet it is crucial when
expressing “possibility” properties, such as the viability of a system, stating
that every reachable state can spawn a fair computation. Contrarily, CTL∗ is
capable of expressing CTL, LTL, Fair-CTL, and the aforementioned property.
Additionally, CTL∗ allows us to express existential system stabilization, stating
that an event can eventually become true and stay true from every reachable
state. Note that for properties expressible in Fair-CTL, our Fair-CTL prover is
relatively (to safety and termination subprocedures) complete, whereas our CTL∗

prover is incomplete.
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4 Experimental Evaluation and Future Work

We demonstrate T2’s effectiveness compared to competing tools. We do not know
of other tools supporting Fair-CTL and CTL∗ for infinite-state systems, thus we do
not present such experiments and instead refer to [6,8]. Note thatT2’s performance
has significantly improved since then through improvements in our back-end (e.g.
by using Spacer instead of Impact). We refer to [4] for a detailed discussion of the
properties and programs that these logics allowed us to verify.

Termination Experiments. We compare T2 as termination prover with the par-
ticipants of the Termination Competition 2014 and 2015 using the collection
of 1222 termination proving benchmarks used at the Termination Competition
2015 for integer transition systems. These benchmarks include manually crafted
programs from the literature on termination proving, as well as many exam-
ples obtained from automatic translations from programs in higher languages
such as Java (e.g. from java.util.HashSet) or C (e.g. reduced versions of Win-
dows kernel drivers). The experiments were performed on the StarExec platform
with a timeout of 300 s. Our version of T2 uses the GPDR implementation in
Z3 as safety prover. Furthermore, we also consider three further versions of T2,
using the three different supported safety provers. For these configurations, we
use no termination proving pre-processing (NoP) step and only use our safety
proving-based strategy, to better evaluate the effect of different safety back-
ends. The overall number of solved instances and average runtimes are displayed
in Fig. 3(a), and a detailed comparison of AProVE and T2-GPDR is shown in
Fig. 3(b)4. All provers are assumed to be sound, and no provers returned con-
flicting results.

Tool Term Nonterm Fail Avg. (s)

AProVE 641 393 188 49.1
CppInv 566 374 282 65.5
Ctrl 445 0 777 80.0

T2-GPDR 627 442 153 23.6

T2-GPDR-NoP 589 438 195 31.4
T2-Spacer-NoP 591 429 202 33.5
T2-Impact-NoP 529 452 241 37.2
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Fig. 3. Termination evaluation results. (a) Overview table. (b) Comparison of T2 and
AProVE. Green (resp. blue) marks correspond to terminating (resp. non-terminating)
examples, and gray marks examples on which both provers failed. A � (resp. a �)
indicates an example in which only T2 (resp. AProVE) succeeded, and ◦ indicates an
example on which both provers return the same result. (Color figure online).

4 All experimental data can be viewed on https://www.starexec.org/starexec/secure/
details/job.jsp?id=11121.

https://www.starexec.org/starexec/secure/details/job.jsp?id=11121
https://www.starexec.org/starexec/secure/details/job.jsp?id=11121
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The results show that T2’s simple architecture competes well with the port-
folio approach implemented in AProVE (which subsumes T2’s techniques), and is
more effective than other tools. Comparing the different safety proving back-ends
of T2 shows that our F# implementation of Impact is nearly as efficient as the
optimized C++ implementations of GPDR and Spacer. The different exploration
strategies of our safety provers yield different counterexamples, leading to differ-
ences in the resulting (non)termination proofs. The impact of our pre-processing
technique is visible when comparing T2-GPDR and T2-GPDR-NoP.
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CTL Experiments. We evaluate T2’s CTL verifica-
tion techniques against the only other available tool,
Q’ARMC [2] on the 56 benchmarks from its evaluation.
These benchmarks are drawn from the I/O subsystem
of the Windows OS kernel, the back-end infrastruc-
ture of the PostgreSQL database server, and the Sof-
tUpdates patch system. They can be found at http://
www.cims.nyu.edu/∼ejk/ctl/. The tools were executed
on a Core i7 950 CPU with a timeout of 100 s. Both
tools are able to successfully verify all examples. T2
needs 2.7 s on average, whereas Q’ARMC takes 3.6 s. The scatterplot above com-
pares proof times on individual examples.

Future Work. We wish to integrate and improve techniques for conditional ter-
mination, which will improve the strength of our property verification. We also
intend to support reasoning about the heap, recursion, and concurrency in T2.
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5. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for JavaBytecode. In: Beckert, B., Dami-
ani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer,
Heidelberg (2012)

6. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 384–398. Springer, Heidelberg
(2015)

7. Cook, B., Khlaaf, H., Piterman, N.: Faster temporal reasoning for infinite-state
programs. In: FMCAD 2014 (2014)

http://www.cims.nyu.edu/~ejk/ctl/
http://www.cims.nyu.edu/~ejk/ctl/
http://arxiv.org/abs/1512.08689


T2: Temporal Property Verification 393

8. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL∗ verification for infinite-
state systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 13–29. Springer, Heidelberg (2015)

9. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI 2006 (2006)

10. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795,
pp. 47–61. Springer, Heidelberg (2013)

11. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using
bitvector arithmetic. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 261–277. Springer, Heidelberg (2012)

13. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: RTA 2011 (2011)

14. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,
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Abstract. In this paper we present RTD-Finder, a tool which applies a
fully compositional and automatic method for the verification of safety
properties for real-time component-based systems modeled in the RT-
BIP language. The core method is based on the compositional computa-
tion of a global invariant which over-approximates the set of reachable
states of the system. The verification results show that when the invariant
catches the safety property, the verification time for large systems is dras-
tically reduced in comparison with exploration techniques. Nevertheless,
the above method is based on an over-approximation of the reachable
states set expressed by the invariant, hence false positives may occur in
some cases. We completed our compositional verification method with
a counterexample-based invariant refinement algorithm analyzing iter-
atively the generated counterexamples. The spurious counterexamples
which are detected serve to strengthen incrementally the global invari-
ant until a true counterexample is found or until it is proven that all the
counterexamples are spurious.

1 Introduction

The synchronous model of time makes the compositional verification of real-time
systems a challenging task. State-of-the-art tools [7,10,19,21] for the verification
of such systems rely mostly on exploration techniques. Consequently, they suffer
from the state-space explosion for systems with a large number of components.
The aim of compositional verification is to avoid such limitations. The basic idea
is to infer properties of a system from the properties of its components and the
interactions relating them. In general, as explained in [18], the compositional
verification rules concentrate on the following idea: if components B1 and B2

meet respectively properties φ1 and φ1, if some condition C(B1,B2) characterizes
their parallel composition, and if these properties imply conjointly a property
Ψ , then the system resulting from their composition satisfies Ψ .
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In [9], a compositional verification rule was proposed for untimed systems. It
is meant to prove invariance properties Ψ for systems built on an n-ary compo-
sition operation via an interaction set γ as follows:

B1 |= �φ1, B2 |= �φ2, II (γ), φ1 ∧ φ2 ∧ II (γ) ⇒ Ψ

‖γB1,B2 |= �Ψ
(D-Finder VR)

In the above rule, II (γ) is an interaction invariant expressing constraints on
global locations resulting from the interaction structure. If the computed invari-
ant (φ1 ∧ φ2 ∧ II (γ)) implies the safety property Ψ , then the system satisfies it.
The above rule was implemented in the D-Finder tool [8] and was successful on
several benchmarks. Nonetheless, the D-Finder tool does not handle time syntax.
Furthermore, this rule is rather weak for timed systems. A straightforward adapta-
tion of theD-Findermethod to timed systemsmostly yields false positives as shown
in [4]. The main reason behind its weakness is that it does not capture time syn-
chronization between components. In [4], we extended the above method precisely
with the goal of offering a more successful application to timed systems. At the
heart of the extension is the use of auxiliary history clocks (HC) in order to capture
relations between the clocks of the different components. These clocks are added
during the verification process and do not influence the behavior of the system.
More concretely, to each action a, we associate an action history clock ha which is
reset whenever a occurs. The intuition behind this is that, on the one hand, history
clocks are related to local clocks of their components thanks to the local invariants
of those components and on the other hand, relations between history clocks of dif-
ferent components are inferred from the structure of the interactions. For ease of
reference, we use E∗(γ) to denote all the additional clock constraints. Taking them
all together, we obtain relations between the clocks of the different components in
our global invariant. This invariant is made stronger, in case of conflicting interac-
tions (that is, interactions which share actions) by introducing history clocks for
interactions. New constraints on the interaction history clocks are gathered in the
so-called S(γ) invariant. All in all, the verification rule for a system with n compo-
nents can be written as follows:

Bh
1 |= �φ1,Bh

2 |= �φ2, II (γ), E∗(γ), S(γ), φ1 ∧ φ2 ∧ II (γ) ∧ E∗(γ) ∧ S(γ) ⇒ Ψ

‖γB1,B2 |= �Ψ
(VR)

where Bh
i represents the component Bi extended with action history clocks. The

tool RTD-Finder presented in this paper is an implementation of such a rule
in the context of RT-BIP, a component-based framework for real-time systems
where components synchronize through multi-party interactions.

2 Tool Structure and Main Functionalities

The structure of RTD-Finder is depicted in Fig. 1. The tool takes as input a Real-
time (RT) BIP [1] source file and a safety property Ψ to check for invariance.
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Real-Time BIP
Model

Safety property Ψ

II (γ) generation

Extension with HC
Bh

i

Components invariants∧
i CI(Bh

i )
Constraints on HC

E∗(γ) ∧ S(γ)

Ψ is not satisfied

YES NO

Deadlock-freedom

Ψ is satisfied

CEX analysis

valid CEX

false positive

Yices
sat-solver

OR

DLK computation

Negation of safety
property to check ¬Ψ

Global invariant
GI =

∧
i CI(Bh

i ) ∧ E∗(γ) ∧ S(γ) ∧ II (γ)

Satisfiability of GI ∧ ¬Ψ
Strengthen GI

Fig. 1. RTD-Finder tool structure

If the property is not provided by the user, the tool proceeds by default to
the verification of deadlock-freedom. Following this, it computes the predicate
characterizing the set of deadlock states, the so-called DLK module. The tool
extends each component Bi from the input file with history clocks (HC) into Bh

i .
It then computes the invariants of Bh

i as the set of reachable symbolic states.
Afterwards, it computes the interaction invariant and the inequalities on history
clocks (E∗(γ) and S(γ)). The combination of all the above invariants forms the
global invariant GI. Together with the property Ψ , this invariant is input to
Yices [12,13], an SMT solver. If GI ∧ ¬Ψ is unsatisfiable, the property is valid.
Else, a counter-example is generated. A guided backward analysis module is
developed to decide upon their validity (the dashed box in Fig. 1).

2.1 The RT-BIP Framework

BIP (Behavior-Interaction-Priority) is a framework for modeling heterogeneous
component-based systems. The BIP model is a superposition of three layers:
the lowest layer models the behaviors of the components, the middle layer con-
tains connectors describing interactions between the transitions of the different
components and the top layer gathers priority rules to schedule among enabled
interactions at a moment. Real-time (RT) BIP language extends BIP to support
the continuous model of time where components are timed automata. Interested
readers may refer to [1] for a detailed presentation.
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2.2 Invariants Generation

RTD-Finder implements methods to compute components invariants, interaction
invariants and the different constraints relating the history clocks:

Component Invariant Computation. The component invariant is a local
invariant proper to the component over-approximating its reachable states set.
We compute it on the component extended with history clocks Bh

i . Intuitevely,
the possible evaluations in a location li of component Bh

i is the disjunction
of zones expressing constraints on the component clocks (including the history
clocks). In our framework, the local invariant CI(Bh

i ) of Bh
i is computed as the

set Reach(Bh
i ) of the reachable symbolic states which are computed by a depth-

first-search algorithm. A symbolic state si = (li, ζi) of the component is defined
by a location li and a zone ζi. In order to consider the operations and constraints
on clocks during the computation of the reachability graph, we implemented
various operations on zones and we included them in a DBM (Difference Bound
Matrices [11,22]) library.

History Clocks Constraints Computation. Constraints E∗(γ) and S(γ)
relate local constraints obtained separately from the component invariants and
by transitivity induce relations between inner clocks of the different components.
Those constraints encode information like the fact that the history clock ha of an
action a is equal to the minimum among the history clocks of all the interactions to
which it belongs. In fact, an action (resp. interaction) history clock is reset when-
ever the related action (resp. interaction) occurs. It results that the smaller the
value of the history clock is, the more recent the related action (resp. interaction)
is. The computation of these constraints is detailed in [4].

Interaction Invariant Generation. Interaction invariant II (γ) over-
approximates the set of reachable global locations. It relates locations of dif-
ferent components and allows to disregard some unreachable configurations. As
in [9], II (γ) is computed by static analysis of the interaction structure. In order
to implement it in the RT-BIP context, we make an abstraction from all timing
aspects.

2.3 Checking Deadlock-Freedom and Invariance Properties

Checking Invariance Properties. After the computation of the global invari-
ant GI, we export it to Yices sat-solver to check the satisfiability of the predicate
GI ∧ ¬Ψ . The invariance safety properties follow this grammar:

Ψ :: = a | at(li) | Ψ1 ∧ Ψ2 | ¬Ψ

where a is an atomic clock constraint and at(li) is a predicate expressing the
presence of the component Bi at its location li.

If the predicate (GI ∧¬Ψ) is not satisfiable, then the property Ψ is valid on the
system and GI is strong enough to detect it. However, if a counter-example is gen-
erated, then RTD-Finder cannot conclude immediately on the validity of Ψ since
the computed invariant is an over-approximation of the global reachable states set.
A second stage of the tool aims at analyzing the generated counterexamples.
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Checking Deadlock-Freedom. Deadlock predicate DLK expresses the set of
global symbolic states from which all interactions are disabled. Checking dead-
lock freedom is equivalent to proving invariance of ¬DLK.

2.4 Counterexample-Based Invariant Refinement

The method is proven to be sound. It is, however, incomplete: since it relies on an
over-approximation of the reachable states set, a counter-example may satisfy the
global invariant GI and be nonetheless unreachable. The violation of the desired
safety property may be the outcome of some behavior in the over-approximation
which does not belong to the original model. False positives appear particularly
in heavily non-deterministic systems. To remedy this, we implemented a counter-
example analysis module to decide the validity of the counter-examples returned
by the sat-solver. Our approach is based on a backward state space search from
the raised counter-example to the initial state. The algorithm removes iteratively
false positives and verifies the existence of reachable bad states. It stops when
a true counter-example is found or until no suspected counter-example remains,
in which case we deduce that the property is valid.

The algorithm is shown in Fig. 2. To describe it, we extend the notion of
symbolic state from components to systems of parallel composition. The global
location of a system is a n-tuple containing one location of each component and
the zone of a global symbolic state is the conjunction of constraints relating the
different components clocks.

1 GI :=
∧

CI(Bh
i ) ∧ E∗(γ) ∧ S(γ) ∧ II (γ) ;

2 V := ∅ ;
3 while GI ∧ ¬Ψ is satisfiable do
4 Let θ a solution of GI ∧ ¬Ψ ;
5 Let (lθ, ζθ) := generalize(θ, Ψ) ;
6 Let P := {(lθ, ζθ)} ;
7 while P ∩ I = ∅ and P �= ∅ do
8 V := V ∪ P ;
9 P := pre(P) \ V ;

10 end
11 if P ∩ I �= ∅ then
12 stop ;
13 // The counterexample is valid

14 else
15 GI := GI ∧ ¬(at(lθ) ∧ ζθ) ;
16 // The counterexample is spurious

17 end
18 end
19 if GI ∧ ¬Ψ is not satisfiable then
20 Ψ is satisfied.
21 end

Fig. 2. Counterexample-based invariant refinement algorithm
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The Yices SMT-solver generates well-defined locations of components and a
precise valuation ν of clock variables of the counter-example (line 4). Therefore,
a counter-example is perceived as θ = (l, ν), where l is a global location and
where the clock valuation ν is the conjunction of equalities of the form xij = cij .
The variable xij is a clock of the component Bh

i and cij is the constant which it
equals in the solution generated by the sat-solver.

As the clocks space is infinite (R), we need to generalize the counter-example
θ such that the algorithm terminates. Instead of considering only the counter
example θ = (l, ν), we analyze a set of counter-examples having the common
global location l and gathered in a global symbolic state whose zone is generated
as follows:

generalize(θ, Ψ) = (l,
∧

zk∈L.ν|=zk

zk ∧
∧

zk∈L.ν �|=zk

¬zk)

where L stands for the set of literals constraining the clocks in the property Ψ .
The generalization reflects which literals of the safety property are satisfied by
the counterexample or not. This generalization operation is implemented in the
DBM library.

The backward computation starts from a generalized counterexample and
computes iteratively its preimage, resulting at each step in a set of global sym-
bolic states P, until the initial state I is reached or until the preimage is empty.

To ensure termination, at each step, the visited symbolic states set V relative
to the previous iterations is eliminated using the subtraction operator \ in order
to push the algorithm towards the initial state (line 11), else to conclude, if there
is no intersection between P and I and if P is empty, that (lθ, ζθ) does not con-
tain any valid counterexample. The set V is cumulative: it contains the states that
have been visited during the analysis of the previous counterexamples. They are
all eliminated during the subtraction operation. If there exists a symbolic state
s0 ∈ P ∩ I, then the length of the shortest path from s0 to (lθ, ζθ) is equal to the
number of preimage computation operations required to reach s0. For each ana-
lyzed counterexample, we note by the depth d the shortest path from (lθ, ζθ) to
the first backwards reachable state belonging to I. If such a state does not exist,
that is if the backward reachability algorithm reaches a set of symbolic states that
has an empty preimage and has no intersection with I, then the counterexample
is spurious and the global invariant can be refined with its negation (line 16). We
note that the operators \ and ∩ on global symbolic states sets are slightly differ-
ent from the usual set difference and conjunction operations on sets since symbolic
states are defined by locations and zones. We consider the case where the zone of
a symbolic state from a first set is strictly included in the zone of a symbolic state
from another set and has its same location.

3 Experimentation

RTD-Finder is implemented in the Java programming language. It takes as
input an RT-BIP file and a file where the property is expressed in Yices syntax.
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The tool saves all the computed invariants to an output Yices file and displays
the verification result after the satisfiability checking of GI ∧ ¬Ψ with Yices. If
a counter example is found, then the Yices output is parsed as a symbolic state
and is generalized with respect to the safety property. If a counterexample is
spurious, its negation is conjoined with the global invariant in the Yices file and
the satisfiability of GI ∧ ¬Ψ is further checked.

We show in this section the experimental results for four benchmarks with
different properties for each of them.

Train Gate Controller. The first example is the classical train gate con-
troller (TGC) system, where a controller, a gate and a number of trains interact
together. We verified two properties:

1. (P1) Utility property: The gate does not go down if all the trains are far from
the crossing.

2. (P2) Safety property: The gate is down when a train is in the crossing.

While the generated invariant was strong enough to verify the utility prop-
erty, a spurious counterexample raises for the P2 property. The counterexample-
based refinement algorithm was necessary in this case.

Temperature Control System. The second example is a timed adaptation of
the temperature control (TC) system in [9]. It represents a simplified model of a
nuclear plant. The system consists of a controller interacting with an arbitrary
number of rods in order to maintain the temperature within some bounds. When
the reactor spends 900 units of time in heating, a rod must be used to cool the
reactor. We verified two properties:

1. (P3) At least one rod is ready to take cool action together with the controller
when necessary.

2. (P4) No rod is in cool location if the controller and the other rods are in heat
position.

While (P3) property is implied by the computed invariant, the counterexample
analyis module is needed for (P4) property.

The TGC (resp. TC) example is run with great numbers of trains (resp. rods)
in order to show the scalability of the method.

Gear Controller System. The third benchmark is taken from [20] and models
a gear controller system embedded inside vehicles. It is composed of an interface
sending gear change requests to a gear controller component which interacts
with an engine, a clutch and a gear-box component. In order to ensure the
system correctness, some requirements have to be met. We verified the following
properties after making abstraction from the data variables of the system:

1. (P5) Predictability : When the engine is regulating the torque, the clutch
should be closed.
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2. (P6) Error detection: The controller detects and indicates the precise errors
when the clutch is not opened or closed at time and when the gear-box is
unable to set or release a gear at time. (P6) gathers 4 state properties.

3. (P7) The gear controller system is deadlock-free.

The computed invariant was strong enough to verify all the above-mentioned
correctness properties required for the gear control system.

Dual Chamber Implantable Pacemaker. We considered the verification of
a dual chamber implantable pacemaker modeled and verified in [16]. The system
is designed to manage the cardiac rhythm. In the considered pacemaker mode,
both the atrium and ventricle of the heart are paced. Based on the sensing of
both chambers, the pacing can be restrained or activated. For a safe operation,
it is essential that the ventricles of the heart should not be paced beyond a
maximum rate equal to a TURI constant. A ventricle pace (VP) can occur
at least TURI time units after a ventricle event. This requirement expresses the
Upper rate limit property. We summarize the verified properties in the following:

1. (P8) There is a minimum time elapse TURI between a ventricle (VS) sense
and a ventricle pace (VP) event.

2. (P9) There is a minimum time elapse TURI between two ventricle pace (VP)
events.

3. (P10) The pacemaker system is deadlock-free.

As in [16], we verified both of (P8) and (P9) properties by translating them into
a monitor component. Besides, our method offers another way to check the first
property without resorting to the monitor as it can be expressed by means of the
already introduced history clocks. In fact, the difference between the interactions
history clocks relative to those two events is bigger than the desired time elapse.
However, using history clocks to express the safety requirement is not possible
for the second property since it compares two occurrences of the same action.

The global invariant is strong enough to catch the (P8) property. Nevertheless,
the counterexample analysis is necessary to eliminate 28 raised spurious counterex-
amples appearingduring the verification of (P9) property.RTD-Finder verified also
deadlock-freedom (P10) after eliminating 11 spurious counterexamples.

Experimental Results

Table 1 gives an overview of the experimental results relative to the verification
of the properties where no counterexample raises. In this table, n is the num-
ber of components in the considered example, q is the total number of control
locations of its components and c (resp. h) is the number of system clocks (resp.
actions history clocks) and |γ| is the number of interactions. Finally, t shows the
total verification time required for GI invariant computation and satisfiability
checking of GI ∧ ¬Ψ and tyices specifies the satisfiablity checking time required
by the sat-solver.
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Table 1. Results from experiments where no counterexample raises

Model Property n q c |γ| h t tyices

Train gate controller (50 trains) P1 52 158 52 102 106 0.5 s 0.3 s

Train gate controller (100 trains) P1 102 308 102 202 206 5.3 s 0.6 s

Train gate controller (200 trains) P1 202 608 202 402 406 1m 33 s 5 s

Train gate controller (300 trains) P1 302 908 302 602 606 9m 8 s 20 s

Train gate controller (500 trains) P1 502 1508 502 1002 1006 1 h 13m 20 s 2m 52 s

Temperature control (20 rods) P3 21 42 21 40 42 0.07 s 0.01 s

Temperature control (50 rods) P3 51 102 51 100 102 0.35 s 0.04 s

Temperature control (100 rods) P3 101 204 102 200 204 3.7 s 0.08 s

Temperature control (300 rods) P3 301 602 302 600 602 5m 47 s 0.9 s

Gear controller P5, P6 5 65 4 17 32 15.1 s 0.14 s

Gear controller P7 5 65 4 17 32 17.6 s 0.04 s

Pacemaker (with monitor) P8 7 19 11 6 21 0.25 s 0.004 s

Pacemaker (without monitor) P8 6 16 9 6 19 0.24 s 0.004 s

The tool and the detailed output results are available at http://
www-verimag.imag.fr/RTD-Finder. We made a comparison of RTD-Finder with
the monolithic verification tool UPPAAL based on the complete method of
model-checking. UPPAAL incorporates reduction techniques that are very suc-
cessful on some benchmarks, like the train-gate-controller system. Yet, in gen-
eral, the state-space exploration has its costs. We made a comparison with RTD-
Finder on TC system. For 10 rods, UPPAAL generated no results after five hours
and 436519 explored states. Nevertheless, RTD-Finder checked the property for
300 rods in a few minutes, as shown in Table 1. All the experiments are run on
Linux machine Intel Core 3.20 GHz × 4 and 15.6 GiB Ram.

All of the properties shown in Table 1 are checked without resorting to the
counterexample analysis module, that is the computed invariant catches them.
At the opposite, the other properties are not implied by the invariant and for
that the generated counterexamples have been analyzed. The results are shown
in Table 2. For a spurious counterexample, d is the length of the path from the
suspected state (lθ, ζθ) to the symbolic states set P having an empty preimage.
Intuitively, the depth d is the number of backward computation steps required to
deduce the invalidity of the counterexample. The number dmax is the maximum
depth d amongst the analyzed spurious counterexamples. By p, we note the total
number of all the symbolic states computed and visited during the backward
analysis and contained in the P sets, while by kcex we refer to the number of
analyzed counterexamples. The total verification time is tcex.

The verification time is visibly less important when the invariant is strong
enough to detect the desired property, which was the case for all the properties
shown in Table 1. In some cases, even when counterexample analysis is needed,
RTD-Finder remains competitive to model checking using forward reachability
analysis. This is for instance the case of the temperature control system and
(P4) property which is verified in 3 min for 20 rods using the counterexample
analysis module compared to the inability to check the property in 5 h for 10
rods with UPPAAL.

http://www-verimag.imag.fr/RTD-Finder
http://www-verimag.imag.fr/RTD-Finder
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Table 2. Results from experiments where counterexamples analysis is needed

Model Property n |γ| dmax p kcex tcex

Train gate controller (3 trains) P2 5 8 22 440 1 0.6 s

Train gate controller (5trains) P2 7 12 22 2452 1 3.2 s

Train gate controller (10 trains) P2 12 22 22 22982 1 45 s

Train gate controller (20 trains) P2 22 42 22 199192 1 19 m 45 s

Temperature control (3 rods) P4 4 6 7 48 1 0.2 s

Temperature control (5 rods) P4 6 10 7 218 1 0.6 s

Temperature control (20 rods) P4 21 40 7 8914 1 3 m 46 s

Temperature control (50 rods) P4 51 100 7 128794 1 14 h 14 m

Pacemaker (with monitor) P9 7 3 6 126 28 0.6 s

Pacemaker P10 7 3 4 93 11 0.5 s

It is worth noting that some symmetry reduction techniques can be applied
in order to ameliorate the performances of the counterexample-guided invari-
ant refinement algorithm. Some of them were already applied under the model-
checking tool UPPAAL [14]. Symmetry reduction would notably allow to refine
the global invariant not only with the negation of a given counterexample proven
to be spurious, but also with a set of counterexamples to which it is symmetric.
It would also serve to reduce the complexity of the backward computation.

In Table 2, we notice that for the Train-gate-controller (resp. temperature
control) system, the number of backward steps dmax necessary to deduce the
invalidity of the counterexample remains the same, independently from the num-
ber of replicated trains (resp. rods) in the system. This suggests some similar
behaviors among systems differing only on the copies number of the replicated
component and motivates the consideration of an extension for the verification of
parameterized timed systems adapted to our compositional verification method.

We propose an extension of RTD-Finder precisely with the goal of offering
uniform verification for a class of parameterized timed systems.

4 Ongoing Extensions

Our ongoing extensions are multifold and focus mainly on the expressive power
of the system properties, and the class of systems itself.

Uniform Verification of Parameterized Timed Systems. In [5], we pro-
posed an extension of (VR) to the verification to parameterized timed systems.
Parameterized systems are those which rely on multiple copies of a given compo-
nent. Illustrative examples are satellite systems, swarm robots, ad-hoc networks,
device drivers, or multi-threaded programming. The main purpose is to establish
system safety independently from the number of components. It turned out that
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typical small model results lend themselves well to the parameterized timed sys-
tems we considered. The main idea is that it is sufficient to apply (VR) for all the
systems with less than n0 identical components in order to conclude correctness
for the systems with any number of copies. The bound n0 is computed statically
from the number of quantifiers in (VR). With n0 at hand, the tool computes the
global invariant for any k ≤ n0 and checks if the property is satisfied. The steps
are precisely those depicted in Fig. 1.

If we consider the TGC system and deadlock-freedom, then following the
small model theorem, it suffices to check the property for all numbers of trains
ranging from 1 to 5. The total RTD-Finder verification time for those small
models is 1.4 s. We applied this method also on a timed version of a token ring
system. We check that at any time, exactly one of the processes possesses the
token (i.e. is in a busy location). The total verification time of the small models,
containing from 1 to 5 processes, is 0.4 s.

The present verification approach for parameterized timed systems states
that if the global invariant implies the property for the small models, then it
is verified for all numbers of the replicated component. We want to complete
it in order to cover the cases where the refinement of the invariant with the
negation of the spurious counter examples is needed. Since the backward reach-
ability computation is in general practical for small models, this extension of our
uniform verification method would drastically reduce the verification time even
when raised false positives are eliminated.

Verification of Timed Systems with Parameters and Data. One inter-
esting extension of RTD-Finder is concerns parametric timed systems which
contain timing constraints defined by use of parameters. These parameters may
range over infinite domains and are in general related by a timing constraints
set. Since the lack of restriction makes emptiness undecidable, the verification of
systems composed of parametric timed automata is even harder. It requires data
structures that handle efficiently and compactly the configurations that are intro-
duced by the plentifulness of parameters. Inspired by existing work [2,15,17], a
feasible approach consists in extending DBMs to parametric DBMs [3] and exis-
tentially quantifying (VR) such that the prover returns concrete values of the
parameters ensuring the desired safety property for the system. As most of the
existing tools are based on exploring the whole state space, they handle a rela-
tively small number (mostly below ten) of automata, the immediate advantage
of our approach is in scalability.

Another possible extension is the consideration of richer classes of models,
handling data variables and urgency types on transitions [6]. This is not a trivial
task since urgency does not lend itself to a compositional definition.

Properties. Currently, RTD-Finder handles only state safety properties but the
extension to check LTL properties by use of Timed Büchi automata is possible.
As for the pacemaker example, history clocks may help to express some LTL
properties without resorting to the monitors.
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RTD-Finder offers high scalability especially when the property to check is
not combinatorial. Checking the absence of deadlock is currently more problem-
atic. If in the untimed case one can provide an exact formalization of deadlock
by means of local characterizations, this is no longer the case for timed sys-
tems. More precisely, the condition which expresses that an interaction is even-
tually enabled in a timed setup cannot be decided by the consideration of the
involved components only, but depends also from the timing constraints of the
non involved components. We are working on some approximation techniques in
order to avoid its full computation.

Acknowledgement. The authors would like to thank Lacramioara Aştefănoaei for
her contribution to the construction of the global invariant and to the verification of
parameterized timed systems.
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Abstract. In this paper we present TCT v3.0, the latest version of our
fully automated complexity analyser. TCT implements our framework for
automated complexity analysis and focuses on extensibility and automa-
tion. TCT is open with respect to the input problem under investigation
and the resource metric in question. It is the most powerful tool in the
realm of automated complexity analysis of term rewrite systems. More-
over it provides an expressive problem-independent strategy language
that facilitates proof search. We give insights about design choices, the
implementation of the framework and report different case studies where
we have applied TCT successfully.

1 Introduction

Automatically checking programs for correctness has attracted the attention of
the computer science research community since the birth of the discipline. Prop-
erties of interest are not necessarily functional, however, and among the non-
functional ones, noticeable cases are bounds on the amount of resources (like
time, memory and power) programs need, when executed. A variety of verifica-
tion techniques have been employed in this context, like abstract interpretations,
model checking, type systems, program logics, or interactive theorem provers;
see [1–3,12–16,21,25,27] for some pointers.

In this paper, we present TCT v3.0, the latest version of our fully automated
complexity analyser. TCT is open source, released under the BSD3 license, and
available at

http://cl-informatik.uibk.ac.at/software/tct/.

TCT features a standard command line interface, an interactive interface, and
a web interface. In the setup of the complexity analyser, TCT provides a trans-
formational approach, depicted in Fig. 1. First, the input program in relation to
the resource of interest is transformed to an abstract representation. We refer to
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the result of applying such a transformation as abstract program. It has to be
guaranteed that the employed transformations are complexity reflecting, that is,
the resource bound on the obtained abstract program reflects upon the resource
usage of the input program. More precisely, the complexity analysis deals with a
general complexity problem that consists of a program together with the resource
metric of interest as input. Second, we employ problem specific techniques to
derive bounds on the given problem and finally, the result of the analysis, i.e.
a complexity bound or a notice of failure, is relayed to the original program.
We emphasise that TCT does not make use of a unique abstract representation,
but is designed to employ a variety of different representations. Moreover, dif-
ferent representations may interact with each other. This improves modularity
of the approach and provides scalability and precision of the overall analysis.
For now we make use of integer transition systems (ITSs for short) or various
forms of term rewrite systems (TRSs for short), not necessarily first-order. Cur-
rently, we are in the process of developing dedicated techniques for the analysis of
higher-order rewrite systems (HRSs for short) that once should become another
abstraction subject to resource analysis (depicted as tct-hrs in the figure). Con-
cretising this abstract setup, TCT currently provides a fully automated runtime
complexity analysis of pure OCaml programs as well as a runtime analysis of
object-oriented bytecode programs. Furthermore the tool provides runtime and
size analysis of ITSs as well as complexity analysis of first-order rewrite systems.
With respect to the latter application, TCT is the most powerful complexity
analyser of its kind.1 The latest version is a complete reimplementation of the
tool that takes full advantage of the abstract complexity framework [6,7] intro-
duced by the first and second author. TCT is open with respect to the complexity
problem under investigation and problem specific techniques for the resource
analysis. Moreover it provides an expressive problem independent strategy lan-
guage that facilitates proof search. In this paper, we give insights about design
choices, the implementation of the framework and report different case studies
where we have applied TCT successfully.
Development Cycle. TCT was envisioned as a dedicated tool for the automated
complexity analysis of first-order term rewrite systems. The first version was
made available in 2008. Since then, TCT has successfully taken part in the com-
plexity categories of TERMCOMP. The competition results have shown that
TCT is the most powerful complexity solver for TRSs. The previous version [5]
conceptually corresponds now to the tct-trs component depicted in Fig. 1. The
reimplementation of TCT was mainly motivated by the following observations:

– automated resource analysis of programming languages is typically done by
establishing complexity reflecting abstractions to formal systems

– the complexity framework is general enough to integrate those abstractions
as transformations of the original program

– modularity and decomposition can be represented independently of the
analysed complexity problem

1 See for example the results of TCT at this year’s TERMCOMP, available from http://
termination-portal.org/wiki/Termination Competition 2015/.

http://termination-portal.org/wiki/Termination_Competition_2015/
http://termination-portal.org/wiki/Termination_Competition_2015/
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We have rewritten the tool from scratch to integrate and extend all the ideas that
were collected and implemented in previous versions in a clean and structured
way. The new tool builds upon a small core (tct-core) that provides an expres-
sive strategy language with a clearly defined semantics, and is, as envisioned,
open with respect to the type of the complexity problem.

Fig. 1. Complexity Analyser TCT.

Structure. The remainder of the paper is
structured as follows. In the next section, we
provide an overview on the design choices
of the resource analysis in TCT, that is, we
inspect the middle part of Fig. 1. In Sect. 3
we revisit our abstract complexity frame-
work, which is the theoretical foundation of
the core of TCT (tct-core). Section 4 pro-
vides details about the implementation of the
complexity framework and Sect. 5 presents
four different use cases that show how the
complexity framework can be instantiated.
Among them the instantiation for higher-
order programs (tct-hoca), as well as the
instantiation to complexity analysis of TRSs
(tct-trs). Finally we conclude in Sect. 6.

2 Architectural Overview

In this section we give an overview of the architecture of our complexity analyser.
All components of TCT are written in the strongly typed, lazy functional program-
ming language Haskell and released open source under BSD3. Our current code
base consists of approximately 12.000 lines of code, excluding external libraries.
The core constitutes roughly 17 % of our code base, 78 % of the code is dedicated
to complexity techniques. The remaining 5 % attribute to interfaces to external
tools, such as CeTA2 and SMT solvers, and common utility functions.

As depicted in Fig. 1, the implementation of TCT is divided into separate com-
ponents for the different program kinds and abstractions thereof supported. These
separate components are no islands however. Rather, they instantiate our abstract
complexity framework for complexity analysis [6], from whichTCT derives its power
and modularity. In short, in this framework complexity techniques are modelled
as complexity processors that give rise to a set of inferences over complexity proofs.
From a completed complexity proof, a complexity bound can be inferred. The the-
oretical foundations of this framework are given in Sect. 3.

The abstract complexity framework is implemented in TCT’s core library,
termed tct-core, which is depicted in Fig. 2 at the bottom layer. Central, it
provides a common notion of a proof state, viz proof trees, and an interface for
specifying processors. Furthermore, tct-core complements the framework with

2 See http://cl-informatik.uibk.ac.at/software/ceta/.

http://cl-informatik.uibk.ac.at/software/ceta/
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Fig. 2. Architectural Overview of TCT.

a simple but powerful strategy language. Strategies play the role of tactics in
interactive theorem provers like Isabelle or Coq. They allow us to turn a set of
processors into a sophisticated complexity analyser. The implementation details
of the core library are provided in Sect. 4.

The complexity framework implemented in our core library leaves the type
of complexity problem, consisting of the analysed program together with the
resource metric of interest, abstract. Rather, concrete complexity problems are
provided by concrete instances, such as the two instances tct-hoca and tct-trs
depicted in Fig. 2. We will look at some particular instances in detail in Sect. 5.
Instances implement complexity techniques on defined problem types in the form
of complexity processors, possibly relying on external libraries and tools such as
e.g. SMT solvers. Optionally, instances may also specify strategies that com-
pose the provided processors. Bridges between instances are easily specified as
processors that implement conversions between problem types defined in differ-
ent instances. For example our instance tct-hoca, which deals with the run-
time analysis of pure OCaml programs, makes use of the instance tct-trs. Thus
our system is open to the seamless integration of alternative problem types
through the specification of new instances. Exemplarily, we mention the envi-
sioned instance tct-hrs (see Fig. 1), which should incorporate dedicated tech-
niques for the analysis of HRSs. We intend to use tct-hrs in future versions for
the analysis of functional programs.

3 A Formal Framework for Complexity Analysis

We now briefly outline the theoretical framework upon which our complexity
analyser TCT is based. As mentioned before, both the input language (e.g. Java,
OCaml, . . . ) as well as the resource under consideration (e.g. execution time,
heap usage, . . . ) is kept abstract in our framework. That is, we assume that we
are dealing with an abstract class of complexity problems, where however, each
complexity problem P from this class is associated with a complexity function
cpP : D → D, for a complexity domain D. Usually, the complexity domain D
will be the set of natural numbers N, however, more sophisticated choices of
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complexity functions, such as e.g. those proposed by Danner et al. [11], fall into
the realm of our framework.

In a concrete setting, the complexity problem P could denote, for instance, a
Java program. If we are interested in heap usage, then D = N and cpP : N → N

denotes the function that describes the maximal heap usage of P in the sizes of
the program inputs. As indicated in the introduction, any transformational solver
converts concrete programs into abstract ones, if not already interfaced with an
abstract program. Based on the possible abstracted complexity problem P the
analysis continues using a set of complexity techniques. In particular, a reasonable
solver will also integrate some form of decomposition techniques, transforming
an intermediate problem into various smaller sub-problems, and analyse these
sub-problems separately, either again by some form of decomposition method,
or eventually by some base technique which infers a suitable resource bound. Of
course, at any stage in this transformation chain, a solver needs to keep track of
computed complexity-bounds, and relay these back to the initial problem.

To support this kind of reasoning, it is convenient to formalise the internals
of a complexity analyser as an inference system over complexity judgements. In
our framework, a complexity judgement has the shape � P : B, where P is
a complexity problem and B is a set of bounding functions f : D → D for a
complexity domain D. Such a judgement is valid if the complexity function of
P lies in B, that is, cpP ∈ B. Complexity techniques are modelled as processors
in our framework. A processor defines a transformation of the input problem P
into a list of sub-problems Q1, . . . ,Qn (if any), and it relates the complexity of
the obtained sub-problems to the complexity of the input problem. Processors
are given as inferences

Pre(P) � Q1 : B1 · · · � Qn : Bn

� P : B
,

where Pre(P) indicates some pre-conditions on P. The processor is sound if
under Pre(P) the validity of judgements is preserved, i.e.

Pre(P) ∧ cpQ1
∈ B1 ∧ · · · ∧ cpQn

∈ Bn =⇒ cpP ∈ B.

Dual, it is called complete if under the assumptions Pre(P), validity of the
judgement � P : B implies validity of the judgements � Qi : Bi.

A proof of a judgement � P : B from the assumptions � Q1 : B1, . . . , � Qn :
Bn is a deduction using sound processors only. The proof is closed if its set of
assumptions is empty. Soundness of processors guarantees that our formal system
is correct. Application of complete processors on a valid judgement ensures that
no invalid assumptions are derived. In this sense, the application of a complete
processor is always safe.

Proposition 1. If there exists a closed complexity proof � P : B, then the
judgement � P : B is valid.
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4 Implementing the Complexity Framework

The formal complexity framework described in the last section is implemented
in the core library, termed tct-core. In the following we outline the two central
components of this library: (i) the generation of complexity proofs, and (ii) com-
mon facilities for instantiating the framework to concrete tools, see Fig. 2.

4.1 Proof Trees, Processors, and Strategies

The library tct-core provides the verification of a valid complexity judgement
� P : B from a given input problem P. More precise, the library provides the
environment to construct a complexity proof witnessing the validity of � P : B.

Since the class B of bounding-functions is a result of the analysis, and not an
input, the complexity proof can only be constructed once the analysis finished
successfully. For this reason, proofs are not directly represented as trees over
complexity judgements. Rather, the library features proof trees. Conceptually, a
proof tree is a tree whose leaves are labelled by open complexity problems, that
is, problems which remain to be analysed, and whose internal nodes represent
successful applications of processors. The complexity analysis of a problem P
then amounts to the expansion of the proof tree whose single node is labelled by
the open problem P. Processors implement a single expansion step. To facilitate
the expansion of proof trees, tct-core features a rich strategy language, similar
to tactics in interactive theorem provers like Isabelle or Coq. Once a proof tree
has been completely expanded, a complexity judgement for P together with the
witnessing complexity proof can be computed from the proof tree.

In the following, we detail the central notions of proof tree, processor and
strategy, and elaborate on important design issues.

Proof Trees: The first design issue we face is the representation of complexity
problems. In earlier versions of TCT, we used a concrete problem type Problem
that captured various notions of complexity problems, but all were based on
term rewriting. With the addition of new kinds of complexity problem, such
as runtime of functional or heap size of imperative programs, this approach
became soon infeasible. In the present reimplementation, we therefore abstract
over problem types, at the cost of slightly complicating central definitions. This
allows concrete instantiations to precisely specify which problem types are sup-
ported. Consequently, proof trees are parameterised in the type of complexity
problems.

The corresponding (generalised) algebraic data-type ProofTree α (from mod-
ule Tct.Core.Data.ProofTree) is depicted in Fig. 3. A constructor Open repre-
sents a leaf labelled by an openproblemof typeα. The ternary constructor Success
represents the successful application of a processor of type β. Its first argument, a
value of type ProofNode β, carries the applied processor, the current complexity
problem under investigation as well as a proof-object of type ProofObject β. This
information is useful for proof analysis, and allows a detailed textual representa-
tion of proof trees. Note that ProofObject is a type-level function, the concrete
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Fig. 3. Data-type declaration of proof trees in tct-core.

representation of a proof-object thus depends on the type of the applied processor.
The second argument to Success is a certificate-function

type CertFn = [Certificate] → Certificate ,

which is used to relate the estimated complexity of generated sub-problems to
the analysed complexity problem. Thus currently, the set of bounding-functions
B occurring in the final complexity proof is fixed to those expressed by the
data-type Certificate (module Tct.Core.Data.Certificate). Certificate
includes various representations of complexity classes, such as the class of polyno-
mials, exponential, primitive and multiple recursive functions, but also the more
fine grained classes of bounding-functions O(nk) for all k ∈ N. The remaining
argument to the constructor Success is a forest of proof trees, each individual
proof tree representing the continuation of the analysis of a corresponding sub-
problem generated by the applied processor. Finally, the constructor Failure
indicates that the analysis failed. It results for example from the application of
a processor to an open problem which does not satisfy the pre-conditions of the
processor. The argument of type Reason allows a textual representation of the
failure-condition. The analysis will always abort on proof trees containing such
a failure node.

Processors. The interface for processors is specified by the type-class Processor,
which is defined in module Tct.Core.Data.Processor and depicted in Fig. 4.
The type of input problem and generated sub-problems are defined for proces-
sors on an individual basis, through the type-level functions In and Out, respec-
tively. This eliminates the need for a global problem type, and facilitates the
seamless combination of different instantiations of the core library. Each proces-
sor instance specifies additionally the type of proof-objects ProofObject α –
the meta information provided in case of a successful application. The proof-
object is constrained to instances of ProofData, which beside others, ensures
that a textual representation can be obtained. Each instance of Processor has to
implement a method execute, which given an input problem of type In α, eval-
uates to a TctM action that produces a value of type Return α. The monad TctM
(defined in module Tct.Core.Data.TctM) extends the IO monad with access to
runtime information, such as command line parameters and execution time. The
data-type Return α specifies the result of the application of a processor to its
given input problem. In case of a successful application, the return value car-
ries the proof-object, a value of type CertFn, which relates complexity-bounds
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Fig. 4. Data-type and class definitions related to processors in tct-core.

on sub-problems to bounds on the input-problem and the list of generated sub-
problems. In fact the type is slightly more liberal and allows for each generated
sub-problem a, possibly open, proof tree. This generalisation is useful in certain
contexts, for example, when the processor makes use of a second processor.

Strategies. To facilitate the expansion of a proof tree, tct-core features a simple
but expressive strategy language. The strategy language is deeply embedded, via
the generalised algebraic data-type Strategy α β defined in Fig. 5. Semantics
over strategies are given by the function

evaluate :: Strategy α β → ProofTree α → TctM ( ProofTree β ) ,

defined in module Tct.Core.Data.Strategy. A strategy of type Strategy α
β thus translates a proof tree with open problems of type α to one with open
problems of type β.

The first four primitives defined in Fig. 5 constitute our tool box for mod-
elling sequential application of processors. he strategy Id is implemented by
the identity function on proof trees. The remaining three primitives traverse
the given proof tree in-order, acting on all the open proof-nodes. The strategy
Apply p replaces the given open proof-node with the proof tree resulting from
an application of p. The strategy Abort signals that the computation should be
aborted, replacing the given proof-node by a failure node. Finally, the strategy
Cond predicate s1 s2 s3 implements a very specific conditional. It sequences
the application of strategies s1 and s2, provided the proof tree computed by
s1 satisfies the predicate predicate. For the case where the predicate is not
satisfied, the conditional acts like the third strategy s3.

In Fig. 6 we showcase the definition of derived sequential strategy combi-
nators. Sequencing s1 ≫ s2 of strategies s1 and s2 as well as a (left-biased)
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Fig. 5. Deep Embedding of our strategy language in tct-core.

Fig. 6. Derived sequential strategy combinators.

choice operator s1 < |> s2 are derived from the conditional primitive Cond. The
strategy try s behaves like s, except when s fails then try s behaves as an
identity. The combinator force complements the combinator try: the strategy
force s enforces that strategy s produces a new proof-node. The combinator
try brings backtracking to our strategy language, i.e. the strategy try s1 ≫
s2 first applies strategy s1, backtracks in case of failure, and applies s2 after-
wards. Finally, the strategies exhaustive s applies s zero or more times, until
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Fig. 7. Some laws obeyed by the derived operators.

strategy s fails. The combinator exhaustive+ behaves similarly, but applies the
given strategy at least once. The obtained combinators satisfy the expected laws,
compare Fig. 7 for an excerpt.

Our strategy language features also three dedicated types for parallel proof
search. The strategy Par s implements a form of data level parallelism, applying
strategy s to all open problems in the given proof tree in parallel. In contrast,
the strategies Race s1 s2 and Better comp s1 s2 apply to each open problem
the strategies s1 and s2 concurrently, and can be seen as parallel version of
our choice operator. Whereas Race s1 s2 simply returns the (non-failing) proof
tree of whichever strategy returns first, Better comp s1 s2 uses the provided
comparison-function comp to decide which proof tree to return.

The final two strategies depicted in Fig. 5 implement timeouts, and the
dynamic creation of strategies depending on the current TctStatus. TctStatus
includes global state, such as command line flags and the execution time, but
also proof relevant state such as the current problem under investigation.

4.2 From the Core to Executables

The framework is instantiated by providing a set of sound processors, together
with their corresponding input and output types. At the end of the day the
complexity framework has to give rise to an executable tool, which, given an
initial problem, possibly provides a complexity certificate.

To ease the generation of such an executable, tct-core provides a default
implementation of the main function, controlled by a TctConfig record (see
module Tct.Core.Main). A minimal definition of TctConfig just requires the
specification of a default strategy, and a parser for the initial complexity problem.
Optionally, one can for example specify additional command line parameters, or
a list of declarations for custom strategies, which allow the user to control the
proof search. Strategy declarations wrap strategies with additional meta infor-
mation, such as a name, a description, and a list of parameters. Firstly, this infor-
mation is used for documentary purposes. If we call the default implementation
with the command line flag --list-strategies it will present a documenta-
tion of the available processors and strategies to the user. Secondly, declarations
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facilitate the parser generation for custom strategies. It is noteworthy to men-
tion that declarations and the generated parsers are type safe and are checked
during compile-time. Declarations, together with usage information, are defined
in module Tct.Core.Data.Declaration. Given a path pointing to the file hold-
ing the initial complexity problem, the generated executable will perform the
following actions in order:

1. Parse the command line options given to the executable, and reflect these in
the aforementioned TctStatus.

2. Parse the given file according to the parser specified in the TctConfig.
3. Select a strategy based on the command line flags, and apply the selected

strategy on the parsed input problem.
4. Should the analysis succeed, a textual representation of the obtained com-

plexity judgement and corresponding proof tree is printed to the console; in
case the analysis fails, the uncompleted proof tree, including the Reason for
failure is printed to the console.

Interactive. The library provides an interactive mode via the GHCi interpreter,
similar to the one provided in TCT v2 [5]. The interactive mode is invoked via
the command line flag --interactive. The implementation keeps track of a
proof state, a list of proof trees that represents the history of the interactive
session. We provide an interface to inspect and manipulate the proof state. Most
noteworthy, the user can select individual sub-problems and apply strategies on
them. The proof state is updated accordingly.

5 Case Studies

In this section we discuss several instantiations of the framework that have been
established up to now. We keep the descriptions of the complexity problems
informal and focus on the big picture. In the discussion we group abstract pro-
grams in contrast to real world programs.

5.1 Abstract Programs

Currently TCT provides first-order term rewrite systems and integer transition
systems as abstract representations. As mentioned above, the system is open to
the seamless integration of alternative abstractions.

Term Rewrite Systems. Term rewriting forms an abstract model of computa-
tion, which underlies much of declarative programming. Our results on pure
OCaml, see below, show how we can make practical use of the clarity of the
model. The tct-trs instance provides automated resource analysis of first-order
term rewrite systems (TRSs for short) [8,26]. Complexity analysis of TRSs has
received significant attention in the last decade, see [19] for details. A TRS con-
sists of a set of rewrite rules, i.e. directed equations that can be applied from
left to right. Computation is performed by normalisation, i.e. by successively
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Fig. 8. Polynomial Interpretation Proof.

applying rewrite rules until no more rules apply. As an example, consider the
following TRS Rsq, which computes the squaring function on natural numbers
in unary notation.

sq(x) → x ∗ x x ∗ 0 → 0 x + 0 → x

s(x) ∗ y → y + (x ∗ y) s(x) + y → s(x + y).

The runtime complexity of a TRS is naturally expressed as a function that mea-
sures the length of the longest reduction, in the sizes of (normalised) starting
terms. Figure 8 depicts the proof output of tct-trs when applying a polyno-
mial interpretation [18] processor with maximum degree 2 on Rsq. The resulting
proof tree consists of a single progress node and returns the (optimal) quadratic
asymptotic upper bound on the runtime complexity of Rsq. The success of TCT
as a complexity analyser, and in particular the strength of tct-trs instance
is apparent from its performance at TERMCOMP.3 It is noteworthy to men-
tion that at this year’s competition TCT not only won the combined ranking,
but also the certified category. Here only those techniques are admissible that
have been machine checked, so that soundness of the obtained resource bound
is almost without doubt, cf. [7]. The tct-trs instance has many advantages
in comparison to its predecessors. Many of them are subtle and are due to the
redesign of the architecture and reimplementation of the framework. However,
the practical consequences are clear: the instance tct-trs is more powerful than
its predecessor, cf. the last year’s TERMCOMP, where both the old and new
version competed against each other. Furthermore, the actual strength of the

3 See http://termination-portal.org/wiki/Termination Competition 2015/.

http://termination-portal.org/wiki/Termination_Competition_2015/
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latest version of TCT shows when combining different modules into bigger ones,
as we are going to show in the sequent case studies.

Integer Transition Systems. The tct-its module deals with the analysis of inte-
ger transition systems (ITSs for short). An ITS can be seen as a TRS over terms
f(x1, . . . , xn) where the variables xi range over integers, and where rules are addi-
tionally equipped with a guard [[·]] that determines if a rule triggers. The notion of
runtime complexity extends straight forward from TRSs to ITSs. ITSs naturally
arise from imperative programs using loops, conditionals and integer operations
only, but can also be obtained from programs with user-defined data structures
using suitable size-abstractions (see e.g. [22]). Consider the following program,
that computes the remainder of a natural number m with respect to n.

int rem(int m,int n){ while (n > 0 && m > n){ m = m - n }; return m; }

This program is represented as the following ITS:

r(m,n) → r(m − n, n) [[n > 0 ∧ m > n]] r(m,n) → e(m,n) [[¬(n > 0 ∧ m > n)]].

It is not difficult to see that the runtime complexity of the ITS, i.e. the maximal
length of a computation starting from r(m,n), is linear in m and n. The linear
asymptotic bound is automatically derived by tct-its, in a fraction of a second.
The complexity analysis of ITSs implemented by tct-its follows closely the
approach by Brockschmidt et al. [10].

5.2 Real World Programs

One major motivation for the complexity analysis of abstract programs is that
these models are well equipped to abstract over real-world programs whilst
remaining conceptually simple.

Pure OCaml. For the case of higher-order functional programs, a successful appli-
cation of this has been demonstrated in recent work by the first and second
author in collaboration with Dal Lago [4]. In [4], we study the runtime complex-
ity of pure OCaml programs. A suitable adaption of Reynold’s defunctionalisa-
tion [24] technique translates the given program into a slight generalisation of
TRSs, an applicative term rewrite system (ATRS for short). In ATRSs closures
are explicitly represented as first-order structures. Evaluation of these closures
is defined via a global apply function (denoted by @).

The structure of the defunctionalised program is necessarily intricate, even for
simple programs. However, in conjunction with a sequence of sophisticated and
in particular complexity reflecting transformations one can bring the defunc-
tionalised program in a form which can be effectively analysed by first-order
complexity provers such as the tct-trs instance; see [4] for the details. An
example run is depicted in Fig. 9. All of this has been implemented in a pro-
totype implementation, termed HoCA.4 We have integrated the functionality
4 See http://cbr.uibk.ac.at/tools/hoca/.

http://cbr.uibk.ac.at/tools/hoca/
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Fig. 9. Example run of the HoCA prototype on a OCaml program.

Fig. 10. HoCA transformation pipeline modelled in tct-hoca.

of HoCA in the instance tct-hoca. The individual transformations underlying
this tool are seamlessly modelled as processors, its transformation pipeline is nat-
urally expressed in our strategy language. The corresponding strategy, termed
hoca, is depicted in Fig. 10. It takes an OCaml source fragment, of type ML,
and turns it into a term rewrite system as follows. First, via mlToAtrs the
source code is parsed and desugared, the resulting abstract syntax tree is turned
into an expression of a typed λ-calculus with constants and fixpoints, akin to
Plotkin’s PCF [23]. All these steps are implemented via the strategy mlToPcf: :
Maybe String → Strategy ML TypedPCF. The given parameter, an optional func-
tion name, can be used to select the analysed function. With defunctionalise
: : Strategy TypedPCF ATRS this program is then turned into an ATRS, which
is simplified via the strategy simplifyAtrs : : Strategy ATRS ATRS modelling
the heuristics implemented in HoCA. Second, the strategy atrsToTrs uses the
control-flow analysis provided by HoCA to instantiate occurrences of higher-order
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Fig. 11. jat transformation pipeline modelled in tct-jbc.

variables [4]. The instantiated ATRS is then translated into a first-order rewrite
system by uncurrying all function calls. Further simplifications, as foreseen by
the HoCA prototype at this stage of the pipeline, are performed via the strategy
simplifyTrs : : Strategy TRS TRS.

Currently, all involved processors are implemented via calls to the library
shipped with the HoCA prototype, and operate on exported data-types. The final
strategy in the pipeline, toTctProblem : : Strategy TRS TrsProblem, converts
HoCA’s representation of a TRS to a complexity problem understood by tct-trs.
Due to the open structure of TCT, the integration of the HoCA prototype worked
like a charm and was finalised in a couple of hours. Furthermore, essentially
by construction the strength of tct-hoca equals the strength of the dedicated
prototype. An extensive experimental assessment can be found in [4].

Object-Oriented Bytecode Programs. The tct-jbc instance provides automated
complexity analysis of object-oriented bytecode programs, in particular Jinja
bytecode (JBC for short) programs [17]. Given a JBC program, we measure
the maximal number of bytecode instructions executed in any evaluation of the
program. We suitably employ techniques from data-flow analysis and abstract
interpretation to obtain a term based abstraction of JBC programs in terms of
constraint term rewrite systems (cTRSs for short) [20]. CTRSs are a generalisa-
tion of TRSs and ITSs. More importantly, given a cTRS obtained from a JBC
program, we can extract a TRS or ITS fragment. All these abstractions are com-
plexity reflecting. We have implemented this transformation in a dedicated tool
termed jat and have integrated its functionality in tct-jbc in a similar way we
have integrated the functionality of HoCA in tct-hoca. The corresponding strat-
egy, termed jbc, is depicted in Fig. 11. We then can use tct-trs and tct-its to
analyse the resulting problems. Our framework is expressive enough to analyse
the thus obtained problems in parallel. Note that Race s1 s2 requires that s1
and s2 have the same output problem type. We can model this with transfor-
mations to a dummy problem (). Nevertheless, as intended any witness that is
obtained by an successful application of its or trs will be relayed back.

6 Conclusion

In this paper we have presented TCT v3.0, the latest version of our fully auto-
mated complexity analyser. TCT is open source, released under the BSD3 license.
All components of TCT are written in Haskell. TCT is open with respect to the
complexity problem under investigation and problem specific techniques. It is
the most powerful tool in the realm of automated complexity analysis of term
rewrite systems, as for example verified at this year’s TERMCOMP. Moreover
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it provides an expressive problem independent strategy language that facilitates
the proof search, extensibility and automation.

Further work will be concerned with the finalisation of the envisioned instance
tct-hrs, as well as the integration of current and future developments in the
resource analysis of ITSs.
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Abstract. A failed attempt to verify a program’s correctness can result
in reports of genuine errors, spurious warnings, and timeouts. The main
challenge in debugging a verification failure is to determine whether the
complaint is genuine or spurious, and to obtain enough information about
the failed verification attempt to debug the error. To help a user with this
task, this paper presents an extension of the Dafny IDE that seamlessly
integrates the Dafny verifier, a dynamic symbolic execution engine, a ver-
ification debugger, and a technique for diagnosing timeouts. The paper
also reports on experiments that measure the utility of the combined use
of these complementary tools.

1 Introduction

Software developers today get more assistance than ever before from analy-
ses running in their integrated development environment (IDE). These analyses
scrutinize the code in shallow or deep ways and then display information, issue
warnings, make suggestions, or rewrite the code. Examples include code format-
ting, intelligent code completion, semantic variable renaming, cyclomatic code
complexity analysis, unit test generation, bounds checking, race detection, worst-
case execution time analysis, termination checking, and functional-correctness
verification. As the level of sophistication of an analysis goes up, so does the
level of understanding required for a programmer to diagnose the output of the
analysis and determine how to take corrective action.

In this paper, we consider the problem of diagnosing the output of a program
verifier of the kind where the underlying reasoning engine, typically an SMT
solver, runs without user interaction. Examples of such verifiers are Spec# [3],
Frama-C [15], SPARK 2014 (for Ada) [20], AutoProof (for Eiffel) [40], and Dafny
[29]. In particular, we consider three kinds of output:

(1) Timeouts: While SMT solvers are generally both useful and fast in prac-
tice, they occasionally time out. When they do, the information available

c© Springer-Verlag Berlin Heidelberg 2016
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may not be the same as in cases where they output counterexamples. More-
over, a timeout can mask other error messages because it abruptly ends the
counterexample search.

(2) Spurious warnings: The logical conditions that a program verifier needs
to resolve are in general undecidable, so it would be too much to expect that
every error message produced by a verifier indicates a real error. However,
in practice, most warnings that are not indicative of errors in the executable
code are not caused by undecidability but by the lack of strong enough
auxiliary specifications (such as loop invariants) in the program.

(3) Genuine errors: Sometimes when the program verifier reports a real error,
the programmer’s response can be one of disbelief. Erroneously—perhaps
by habit—assuming the error is caused by an infelicity in the verifier, the
programmer spends time trying to coax the verifier into giving a different
output, only to miss the blatant error that the verifier detected. Such an error
can occur in either the executable code or in the program’s specifications.

The main challenge in debugging verification errors is to determine which of
these cases applies and to obtain enough information about the failed verification
attempt to debug the error. A single tool may not support the best kind of
diagnosing for each output.

In this paper, we contribute comprehensive tool support in a single verifica-
tion environment. The combination of our tools covers all steps of the typical
diagnosis procedures for verification.

We use as our setting the Dafny programming language, verifier, and IDE.
In addition to standard (sequential) imperative and functional constructs, the
language includes constructs for specifications (aka contracts), auxiliary speci-
fications, and proof authoring. The verifier uses these specifications to perform
modular verification. For example, it reasons about a method call solely in terms
of the callee method’s specification and about a loop solely in terms of the loop
invariant.

Dafny has always had a program verifier. In this paper, we extend the Dafny
IDE with a novel dynamic test generator (Delfy), the Boogie Verification Debug-
ger (BVD) [28], and a new mode for diagnosing timeouts1. Using step-by-step
recipes, we show how our seamless integration of these tools helps diagnose ver-
ification problems. Our paper also gives an experimental evaluation of our tool
integration and its effect on diagnosing verification errors. Both Dafny and the
IDE extension are available at http://dafny.codeplex.com (Delfy is currently not
included).

In Sect. 2, we illustrate the use of the combination of our tools on small rep-
resentative examples. We then describe in more detail the facilities that our inte-
grated diagnosis environment offers: hover text in Sect. 3, Delfy in Sect. 4, BVD
integration in Sect. 5, and timeout diagnosis in Sect. 6. We give our experimen-
tal evaluation in Sect. 7. The final sections of the paper discuss related work and
conclude.
1 A preliminary integration of the verifier and BVD into the Dafny IDE has previously

been described in an informal workshop paper [31]. The full integration of the tools
is new here, as are the test generator and the timeout-diagnosis tool.

http://dafny.codeplex.com
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2 Systematic Diagnosis of Verification Failures

In this section, we present systematic approaches to diagnosing the two forms of
verification failures: (1) verification errors, which may be spurious warnings and
genuine errors, as well as (2) timeouts. For each approach, we describe the tool
support we provide and illustrate the approach on a small example program.
Details are described in the subsequent sections.

2.1 Diagnosis of Verification Errors

The main challenge in debugging a verification error is to determine if the com-
plaint is spurious or genuine, and to obtain enough information about the failed
verification attempt to debug the error. For genuine errors, this includes deter-
mining whether to fix the program or the specification. For spurious errors, it
includes determining if more auxiliary specifications are required or if the error
is caused by an incompleteness of the verifier (which happens in particular when
the SMT solver cannot discharge a verification condition even though it holds).

Fig. 1. A Dafny example that asserts that an integer is never bigger than its square.
The assertion does not hold because method Max returns the minimum of its arguments;
it fails to verify because the postcondition of Max is too weak to prove it. Note that
integers in Dafny are unbounded and that calls are verified modularly, based solely on
the callee’s specification.

Using the example in Fig. 1, we illustrate how we support this debugging
process. The condition stated by the assert-statement in this program does not
hold along all executions of the program, because Max erroneously computes the
minimum of its arguments. But even if Max had been implemented correctly, the
verifier would report a (spurious) error because the postcondition of Max is too
weak to (modularly) prove the assertion.
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Diagnosing verification errors typically proceeds in the following three steps.

Step 1: Fixing simple errors. For certain simple verification errors (such
as omitting a precondition of the method being verified), the error message of
the verifier provides enough information to diagnose and debug the error. To
provide easy, demand-driven access to error messages, the Dafny IDE presents
them in tool tags when hovering over the error location, which is indicated
by red squiggly lines. The hover text also shows inferred specifications (such
as termination metrics) and parts of the counterexample provided by the SMT
solver (as we shall see later in Fig. 5). In our example, the error message is simply
“assertion violation”, which does not point us to the source of the problem.

Step 2: Determining whether errors are spurious. Debugging genuine
verification errors is fundamentally different from debugging spurious errors. For
the former, one needs to determine which aspects of the program or specification
are incorrect and fix them. For the latter, one needs to determine how to convince
the verifier that the program is actually correct.

A common approach to determine if an error is spurious is to create an exe-
cutable test from the counterexample given by the SMT solver [4,16]. However,
this approach has two major limitations. First, the counterexample reflects the
(modular) verification semantics of a method, where calls are encoded via the
callee’s specification, loops are encoded via loop invariants, etc. By the sound-
ness of verification, any error in the execution semantics is also an error in the
verification semantics, but not necessarily vice versa. Therefore, it is possible
that a test case derived from the SMT solver’s counterexample does not reveal
an error even though the program fails for other inputs. A programmer might
then conclude incorrectly that the verification error is spurious. Second, SMT
solvers sometimes produce invalid counterexamples, that is, valuations that do
not actually falsify the verification condition. This may be due to an incomplete-
ness in the SMT solver (e.g., when reasoning about non-linear arithmetic) [33].
Executing such counterexamples does not lead to meaningful conclusions. In fact,
it may not even be possible to generate a test case from such a counterexample.

To avoid these problems, we do not execute counterexamples and instead
apply dynamic symbolic execution (DSE) [8,24] (also called concolic testing [35])
to generate test cases for the method that contains the verification error. We have
equipped the Dafny IDE with Delfy, a DSE tool that instruments the executable
code with runtime checks for assertions and then uses dynamic symbolic execu-
tion to systematically explore all paths through a Dafny method up to a given
bound. DSE mitigates the limitations of counterexample execution as follows.
First, it is based on the (non-modular) execution semantics, not on the verifica-
tion semantics and, thus, attempts to find inputs for which the execution of a
method leads to an assertion violation. Second, when some constraints in a proof
obligation cause the SMT solver to produce an invalid counterexample during
verification, the same problem may occur during DSE. However, DSE has the
option of replacing symbolic inputs by concrete values, thereby simplifying the
formula, which increases the chance of obtaining a valid counterexample.
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Running DSE can have three different outcomes: (1) It produces a test case
that leads to an assertion violation. In this case, we can conclude that the error
is definitely not spurious. One can now use a conventional debugger to explore
the execution of the test case and determine how to fix the error. (2) It is
able to verify the method. This is possible when the method can be tested
without exceeding the bounds of DSE (for instance, the method contains no
input-dependent loops) and when the SMT solver is able to produce concrete
inputs for each constraint [11]. In this case, the error is definitely spurious. It
is now possible to communicate this verification result to the verifier. (3) If
DSE neither verifies nor falsifies the method, our best guess is that the error is
spurious, and we proceed to step 3 below.

Running Delfy on method Main from our example reproduces the error by
generating a test case where a ≤ a ∗ a (necessarily, since this is a mathematical
fact, and thus the then-branch of the conditional in method Max is executed)
and a �= a ∗ a (such that the assertion is violated), for instance, a = 2. Stepping
through this test case in the debugger immediately reveals that method Max
is incorrect. After fixing the error, verification still fails. Running Delfy again
verifies method Main. We could now communicate this result to the verifier or—
as we describe next—we could try to determine what additional facts are needed
by the verifier to prove the method.

Step 3: Finding the cause of spurious errors. When Delfy cannot reproduce
a verification error, it is necessary to explore the verification semantics, which
is reflected in the counterexample provided by the SMT solver. To do so in the
Dafny IDE, a user can select a verification error by clicking on the red button
next to the assertion (see Fig. 5). The IDE now highlights the program points
along the trace leading to the error using blue buttons. By clicking on one of
them, a user can bring up BVD and inspect the state at this program point as
provided by the counterexample.

In our example, once method Max is fixed, the verification debugger shows
for the program point after the call to Max that a is 2, aSq is 4, and r is 2.
Since running Delfy did not reveal any error, we hypothesize that Max correctly
computes the maximum of its arguments, and conclude that the counterexample
values indicate that the verifier has insufficient information about the result of
Max. We can fix this by strengthening its postcondition, and verification succeeds.

2.2 Diagnosis of Timeouts

The use of undecidable theories, especially quantifiers, in verification conditions
can lead to a very large or even infinite search space for the SMTsolver, for instance,
when the verification conditions contain matching loops [19]. Therefore, Dafny and
other automatic verifiers bound the time spent by the SMT solver, and report a
verification failure when a timeout occurs [22]. However, if this happens, it is often
unclear which fragments of a large verification condition cause the SMT solver to
wander off. Moreover, because of the heuristics used in the SMT solver to instan-
tiate quantifiers, timeouts are often caused by the interaction of different, often
seemingly unrelated, terms in the program or its specification.
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Fig. 2. A Dafny example that computes the factorial of the first n natural numbers and
asserts that they are positive. The proof requires generalization and induction, which
Dafny does not perform automatically. Instead, the SMT solver keeps instantiating the
universal quantifier in the postcondition of the call FacUpTo(n), and verification times
out even though, in principle, many other assertions could be proved.

Verification of the example in Fig. 2 fails with a timeout. While trying to
prove the last assertion in method Test, the SMT solver instantiates the uni-
versal quantifier in the postcondition of FacUpTo (and in the axiomatization of
the sequence data type) indefinitely. For the verification to succeed, one needs
to instruct Dafny to prove by induction that all elements of sequence fn are
non-zero, for instance, by adding the following assertion after the final call in
Fig. 2:

assert ∀ i {:induction} • 0 ≤ i < |fn| =⇒ fn[i] �= 0;

Diagnosing such timeouts typically proceeds in the following two steps.

Step 1: Determining whether the program satisfies its specification.
Like for verification errors, it is useful to run the test case generator Delfy on
the method whose verification times out. Note that the common approach of
generating test cases from counterexamples is not applicable here since SMT
solvers usually generate an incomplete counterexample or none at all in case of a
timeout. In contrast, since Delfy relies only on the program and its specification,
it can be used to diagnose timeouts. If Delfy generates a failing test, the pro-
gram or its specification should be fixed before diagnosing the timeout. If Delfy
manages to verify the method, Dafny can be notified such that it is no longer
essential to debug the timeout. Delfy might succeed on examples that time out
in the verifier because it uses a different axiomatization of data types such as
sets and sequences. Moreover, Delfy’s SMT queries are constraints that describe
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a single path through a method, whereas Dafny’s verification conditions reflect
all paths. Therefore, Delfy’s queries might provide fewer terms that are used by
the SMT solver to instantiate quantifiers.

In the example from Fig. 2, Delfy neither generates a failing test nor manages
to verify method Test; this is due to the input-dependent loop in the body (not
shown) of method FacUpTo, which is called. Thus, we proceed to the second step.

Step 2: Narrowing down the cause of the timeout. We have developed a
dedicated diagnostic mode for Dafny, which splits up the verification condition
into smaller fragments and invokes the SMT solver multiple times to narrow
down which assertions may cause the timeout. For each invocation, this algo-
rithm tries to prove some of the fragments, and ignores the rest. If the SMT solver
fails, an error is reported. If it succeeds, the algorithm recurs and attempts to
verify the fragments previously ignored. If no such fragments exist, verification
succeeds. Finally, if the SMT solver still times out, the algorithm recurs on fewer
fragments or, if there is just a single fragment, “blames” that fragment for the
timeout.

In our example, the timeout diagnosis determines that out of the nine asser-
tions in method Test (three for precondition checks, three for bounds checks,
and three for assert-statements), eight verify and only the last one times out.
This clearly indicates that the user should provide more hints to help the verifier
in proving this assertion.

The above recipes allow a programmer to systematically diagnose and debug
all three kinds of verification failures. Our recipes are supported by a novel inte-
gration of the following components into the Dafny IDE: (1) an advanced hover
text mechanism, (2) the Delfy test case generator, (3) the Boogie Verification
Debugger, and (4) a technique for diagnosing timeouts. We describe these com-
ponents in detail in the following sections.

3 Hover Text

Verifiers typically accumulate a lot of information, including error messages,
inferred specifications (such as termination metrics), or verification counterex-
amples. However, most often, the user is interested only in a small fraction of this
information, and specifically, in whatever helps to diagnose verification errors.

The hover text mechanism that we have integrated in the Dafny IDE
addresses this need without overwhelming the user with too much information.
Our mechanism uses the parser, type checker, and verifier to collect warnings,
inferred specifications, and other information, which it attaches to the relevant
parts of the Dafny abstract syntax tree. As a result, the IDE displays only
the most critical information at all times (that is, squiggly lines for verification
errors), and the user may access all other information on demand, by hovering
over the relevant parts of the program text. For instance, a warning emitted by
the verifier is shown when hovering over the corresponding squiggly line, and the
values of the variables in a verification counterexample are shown when hovering
over the variable usages (see Fig. 5).
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4 Delfy, the Test Case Generator

In this section, we present Delfy, a dynamic test generation tool for Dafny. In
addition to handling advanced constructs of the language, Delfy is designed to
exchange information with Dafny about the verification status of all assertions
via annotations in the code [12]. Consequently, Dafny does not need to check
assertions that have already been proven correct by Delfy and vice versa.

4.1 Dynamic Symbolic Execution for Dafny

Delfy implements dynamic symbolic execution, in which the concrete and sym-
bolic executions of a method under test happen simultaneously. Given a Dafny
method under test, Delfy compiles the code into .NET bytecode and runs the
compiled method. The compiled code includes call-backs that trigger the sym-
bolic execution. All constraints are solved with Z3 [18].

Delfy introduces runtime checks for Dafny specifications, including loop
invariants, termination metrics, pre- and postconditions, assumptions, asser-
tions, and frame specifications, which serve as test oracles.

Delfy has support for features of Dafny that are typically not found in main-
stream programming languages, for instance, non-deterministic assignments,
non-deterministic if-statements, and non-deterministic while-statements. For
each non-deterministic value, the symbolic execution in Delfy introduces a fresh
symbolic variable, as if they were inputs to the method under test. Consequently,
the symbolic execution collects constraints on such variables and generates inputs
for them, which guide execution toward all those unexplored paths.

Dafny also supports uninterpreted functions and assign-such-that-
statements, which assign a value to a variable such that a condition holds. Delfy
handles these by introducing a fresh symbolic variable for the return value of an
uninterpreted function or the assigned variable of an assign-such-that-statement.
This symbolic variable is constrained by a condition of the form Assume(c), say-
ing that the variable must satisfy the function specifications or the such-that-
condition in each test case.

When the programmer provides a loop invariant for an input-dependent loop,
Delfy can either impose a bound on the number of explored loop iterations
or treat the invariant as a summary for the loop [10]. In the latter case, the
symbolic execution of the loop body is turned off, and instead, the provided
loop invariant serves as a symbolic description of the loop body. (Note that we
abuse the term “summary” to express that reasoning about many loop iterations
happens in one shot, although we do not refer to a logic formula of loop pre- and
postconditions, as is typically the case in compositional symbolic execution [1,
23].) Summarization of an input-dependent loop might lead to spurious warnings
when the loop invariant is too weak, in which case Delfy resembles the verifier.
However, when the loop invariant is precise, this technique can be very useful in
diagnosing verification errors and timeouts as it helps the exploration in covering
the code after the loop.
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A consequence of this approach for summarizing input-dependent loops is
that the body of such a loop might not be thoroughly exercised since it is only
executed concretely, and not symbolically; therefore, paths and bugs might be
missed. To address this, Delfy supports a mode for thoroughly checking if an
invariant is maintained by all iterations of an input-dependent loop [10].

4.2 Delfy in the Dafny IDE

We now present how we have integrated Delfy in the Dafny IDE. Figure 3 shows
the error emitted by the verifier (denoted by the red button) for the assertion
in method Main from Fig. 1. Delfy is run through a smart tag, shown in Fig. 3.
Figure 4 shows how the test cases generated by Delfy are displayed for method
Main from Fig. 1.

The main characteristics of this IDE integration are as follows.

Color Coding of Assertions. To give users a sense of where they should
focus their manual diagnosis, the IDE uses colors for assertions. A green color
shows that the assertion has been proven, either by Dafny or Delfy. A red color
denotes that an assertion definitely does not hold, that is, Dafny has emitted
a verification error, and Delfy has generated a test case that fails due to this
assertion. An orange color indicates that the assertion requires the attention of
the user because Dafny has emitted a verification error, and Delfy has neither
verified nor falsified it. One could further refine this color scheme by reflecting
how thoroughly Delfy covered an orange assertion [10].

Fig. 3. A smart tag allowing the user to invoke Delfy on a method under test, and a
verification error emitted by the verifier (denoted by the red button in the assertion).

Fig. 4. Delfy displays the generated tests. The user can choose to inspect all generated
tests, or categorize them based on their outcome.
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Selective Test Generation. Delfy allows the user to select an assertion that
has not been verified by Dafny, and explore only those paths that reach this
assertion. If a programmer selects a red button in a method under test and
runs Delfy, then only those test cases that exercise the corresponding unverified
assertion are generated, regardless of whether there are other unverified asser-
tions in the method under test. We determine which test cases to generate using
a technique based on static symbolic execution [10].

Debugging Failing Tests. Delfy also makes it possible to debug the gener-
ated test cases. A smart tag allows users to run a failing test case in the .NET
debugger, such that they can step through the execution and observe the values
of variables.

5 Integration of the Verification Debugger

Counterexamples, which are provided by the verifier and the underlying solver,
often include valuable information for diagnosing verification errors. Since these
counterexamples reflect the verification semantics (for instance, by reasoning
about method calls modularly), this holds in particular for intricate verification
errors that cannot be reproduced by Delfy. (Recall that Delfy is based on the
non-modular execution semantics.) BVD makes the verification counterexamples
accessible through the Dafny IDE, which allows users to inspect the values of
variables (including heap locations), much like in a conventional debugger. How-
ever, unlike in most runtime debuggers, a user can inspect the counterexample
at any relevant point during the execution.

BVD is invoked by clicking on the red button that is associated with each
verification error. Now, several blue buttons appear along the trace that leads to
the error (see Fig. 5). Clicking on any of them shows the counterexample state
at that program point. For instance, a user may diagnose a verification error by
starting at the failing assertion and gradually moving backward in the program
to understand how the failing state was reached.

Fig. 5. Inspecting values from the counterexample for the error in method Main of
Fig. 1. The hover text shows the value of variable r and the BVD window on the right
shows the values of all variables.
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6 Timeout Diagnosis

As discussed in Sect. 2.2, users occasionally encounter timeouts when verifying
non-trivial programs. Timeouts often indicate that the verifier is unable to derive
a certain fact on its own, and requires hints from the user. To detect timeouts
quickly and to ensure a responsive user interaction, the Dafny IDE defaults to
a time limit of ten seconds per method or function.

If this time is not enough, the user can increase the limit or use our technique
for diagnosing timeouts. In the latter case, we instruct the verifier to produce
slightly different verification conditions, which can be decomposed more easily
and on demand. This makes it possible to split up the verification conditions
and, thereby, identify those assertions that are responsible for the timeout.

Conceptually, our alternative verification conditions insert an assumption
Fk =⇒ Ak before every assertion Ak, where a Fk is an undefined boolean func-
tion. Initially nothing is known about these functions. That is, the solver needs
to consider the case that all Fk functions yield false and, thus, this instrumen-
tation does not affect verifiability of the verification condition. However, once
a timeout occurs, we can define some of the Fk functions to yield true, thus,
temporarily disabling assertions and simplifying the verification task.

Figure 6 shows our algorithm for decomposing the verification task once there
has been a timeout. Procedure diagnose takes four arguments: (1) the current
verification condition VC, (2) the set of unverified assertions U (initially contains
all assertions in the verification condition), (3) the integer D (for denominator)
to determine what fraction of these assertions to check next (initially set to 2),
and (4) the set of timed-out assertions T (initially empty).

If set U is empty, we are done. We return Verified if set T of timed-out
assertions is empty, and TimeOut otherwise. If set U is non-empty, we choose

Fig. 6. Algorithm for diagnosing timeouts.
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a subset S of the unverified assertions and check only these assertions for a fixed
time limit TL (set by default to 10 % of the time limit for the entire method
or function). If we find a failing assertion, we terminate immediately. If the
check successfully verifies the assertions in S, we recursively diagnose the timeout
among the remaining assertions. Otherwise, we try to check a smaller set of
assertions by invoking procedure diagnose with 2 * D. If doubling D is not possible
without exceeding the cardinality of U, we have found assertions to blame for the
timeout, collect them in T, and proceed to also check the remaining assertions.
If the algorithm reports any blamed assertions, it is reported that each of them
timed out individually, given time limit TL. This shows exactly which assertions
the user should focus on in order to prevent the timeout.

The procedure check some checks the verification condition after temporarily
disabling some assertions. To do so efficiently, it makes use of scopes in the solver
that push and later pop constraints about the Fk functions for assertions that
are not in set S.

7 Experimental Evaluation

In this section, we evaluate our extensions of the Dafny IDE on diagnosing both
verification errors and timeouts.

7.1 Verification Errors

To demonstrate that even simple programming tasks exhibit different forms
of verification errors, we have evaluated our extensions on Dafny solutions we
developed to three challenges posed in verification competitions and benchmarks.
We used the Dafny IDE to diagnose each verification error we encountered during
the three verification sessions, and report the results in Table 1.

Challenge SumMax is taken from verification competition VSComp-
2010 [27]. It consists in computing the sum and max of the elements in an
array and proving that sum ≤ N ∗ max, where N is the length of the array.
Challenge MaxArray is taken from verification competition COST-2011 [6].
Given a non-empty integer array, MaxArray requires that we verify that the
index returned by a given method points to an element maximal in the array.
Challenge BinarySearch is taken from a set of verification benchmarks [41],
and consists in verifying an implementation of binary search over an array. All
versions of our solutions to these challenges are numbered by a verification-error
identifier, which is shown in the second column of the table, and can be provided
upon request. The third column indicates that roughly half of the verification
errors are spurious, which is not uncommon.

To diagnose the errors, we used hover text information about error messages
and inferred specifications (fourth column), hover text information about veri-
fication counterexamples (fifth column), Delfy (sixth), and BVD (seventh). As
described earlier, each of these extensions may provide complementary insights
to the user about the cause of verification errors. In the table, we indicate helpful
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Table 1. Errors diagnosed while solving three verification challenges.

Challenge Error ID Spurious? Extension
Hover text Hover text Delfy BVD
(w/o CEX) (only CEX)

SumMax 1 no
2 no
3 yes
4 yes

MaxArray 5 no
6 no
7 yes
8 yes
9 yes

10 yes
11 yes

BinarySearch 12 no
13 no
14 yes
15 no
16 no
17 no
18 no
19 no
20 yes

insights (✓) as well as information that did not help in the diagnosis of a veri-
fication error (✗). However, note that such insights are not necessarily sufficient
for diagnosing the error—multiple steps may be needed and the use of more
than one of our extensions; also, different users may find some feedback more
insightful than others. For instance, the counterexample information (through
the hover text or the verification debugger) is perhaps more suitable for experi-
enced users. Consequently, in particular for spurious errors, there is usually no
definite answer about which extension pinpointed the source of an error.

Note that we have created a separate column for the counterexample infor-
mation that is available in the hover text to highlight the difference with BVD.
As shown in the table, the hover text is sufficient to diagnose most verifica-
tion errors. BVD only becomes essential when inspecting values within data
structures, such as arrays, which are not shown in the hover text. Fixing spuri-
ous errors without counterexample information would require significant mental
effort and time from users since they would often need to resort to trial-and-
error to identify which information the verifier is missing. In principle, Delfy
could provide help with such cases. However, since all of our programs contained
input-dependent loops, Delfy was not able to show that an error is definitely
spurious.

In a few cases (indicated by a ‘–’ in the table), Delfy was not applicable.
This was the case when the cause of a verification error was a specification that
Dafny guessed heuristically, such as a termination metric. Even though, at the
moment, Delfy does not support runtime checks for such guessed specifications,
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it automatically and reliably detected all other genuine errors. Without Delfy,
this would have required manual effort from the user, for instance, to inspect
counterexamples. In other words, no extension of the Dafny IDE is absolutely
indispensable, but each extension can significantly reduce the user effort for
diagnosing errors.

We also found situations where the hover text about error messages and
inferred specifications (fourth column of the table) provided limited support. In
particular, there is no indication of how much progress a user makes in fixing
a verification error. For instance, they might add one of two loop invariants
that are necessary for proving a failing assertion, but the error message remains
unchanged. They are, therefore, not confident that the change is a step in the
right direction by only reading the hover text. In contrast, our other extensions
provide better support in such cases; for instance, in this example, the coun-
terexample state after the loop would now be different due to the additional
invariant.

7.2 Timeouts

We have evaluated our technique for diagnosing timeouts by running it on 39 pro-
grams taken from real verification sessions, which were recorded with the Dafny
IDE [32] and can be provided upon request. We compare two configurations
that only differ by parameter TL from Fig. 6: (1) Low (10 % of the time limit per
method/function), and (2) High (20 % of the time limit per method/function).

Table 2 demonstrates the different trade-offs. While configuration Low is sig-
nificantly faster by using a larger number of short solver queries, it results in
timeouts more often and is able to narrow down the set of timed-out assertions
less effectively. For verification conditions that still result in a timeout, config-
uration Low reports on average 0.15 % (at most 10 assertions) of all assertions
in that method/function as responsible. For configuration High, these numbers
are significantly lower (0.11 % on average, at most 4 assertions).

Independently, both configurations are able to prevent a large number of time-
outs by decomposing the verification tasks (as shown by the first three rows
in Table 2). For instance, with configuration High, the algorithm from Fig. 6
returns the resultVerified or Error for 50 % of the timed-out verification conditions.

Table 2. Comparison between two configurations for diagnosing timeouts.

Time limit

Low High

TimeOut (in %) 57.89 50.00

Error (in %) 17.11 20.69

Verified (in %) 25.00 29.31

Average number of solver queries 65.67 51.00

Average time (relative to time limit per method/function) 6.24 9.25

Average number of assertions to blame 2.67 (0.15%) 1.84 (0.11%)
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Therefore, for these verification conditions, none of the assertions required more
time than the limit. This suggests that the user might be able to prevent the time-
out by increasing the time limit for the corresponding method or function.

8 Related Work

Verification IDEs. Several verification tools are integrated into development
environments and show verification errors either continuously or at the touch of
a button, e.g., [3,13–15,20,26]. Our work goes beyond the integration of a single
tool, instead providing in one package a collection of tools with complementary
strengths.

The Isabelle environment for mathematical formulas integrates both interac-
tive proof assistance and automatic counterexample search [5,42].

The Eiffel Verification Environment analyzes programs in two independent
ways [39]. Essentially, one way strives to fully verify the program, whereas the
other cuts corners in order to provide quick turnaround with understandable
error messages. This two-step verification resembles the combination of two of
our tools, the Dafny verifier and Delfy.

Dynamic Symbolic Execution. Dynamic symbolic execution has been imple-
mented in many popular tools over the last decade, e.g., SAGE [25], EXE [9],
jCUTE [34], Pex [38], KLEE [7], BitBlaze [37], and Apollo [2]. In contrast to
these tools, Delfy targets a verification language for proving functional correct-
ness of programs and, therefore, supports specification constructs and operations
that are not found in mainstream programming languages.

Delfy implements dynamic, rather than static, symbolic execution for two
important reasons. First, DSE can alleviate the limitations of an underlying
SMT solver by replacing complex symbolic conditions in SMT queries with their
concrete values [24]. Second, the dynamic aspect has applications beyond the
scope of this paper, in particular for learning specifications [17,21,36].

Exploring Counterexamples. BVD [28] lets one inspect counterexamples to
verification conditions generated by Boogie, VCC [13], and Dafny. Besides inte-
grating BVD into the Dafny IDE, we provide easy access to excerpts from the
counterexample through hover text. OpenJML [14] also provides such hover text,
but not the full BVD experience.

An alternative to a dedicated counterexample debugger is to generate an
executable program that encodes the verification semantics and the counterex-
ample, for instance, by extracting a value for a non-deterministic choice from the
counterexample [33]. This approach allows one to use a conventional debugger
to explore the counterexamples.

Several tools generate executable tests from counterexamples [4,16]. In con-
trast, Delfy lets one explore the program independently of the verification seman-
tics that is reflected in the counterexample.

Timeouts. Unlike Boogie’s existing verification-condition splitting [30], our
technique for diagnosing timeouts is not concerned with parallelizing verification
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tasks. Instead of iteratively creating smaller and smaller program fragments that
are fed to the verifier, our technique generates a single verification condition once
and uses the SMT solver to decompose it in case of a timeout. Besides this, our
technique is able to identify all assertions that time out individually after a given
time limit.

9 Concluding Remarks

In this paper, we have enhanced the IDE of the verification-aware language
Dafny with a comprehensive set of problem-diagnosing tools, including a new
timeout-diagnosis tool and the novel Delfy dynamic test generator. The seamless
integration of these tools, alongside the on-demand information that the IDE
now provides via hover text, lets a user obtain useful feedback when trying to
understand and remedy verification failures. While in this work we have made
the sophisticated diagnostic information easily accessible to users, we hope in
future work to also see automatic suggestions of remedies.

Acknowledgments. We are grateful to Patrick Emmisberger and Patrick Spettel for
their contributions to Delfy.
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Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 380–397.
Springer, Heidelberg (2015)

33. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification
attempts. In: Schulte, W., Butler, M. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87.
Springer, Heidelberg (2011)

34. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

35. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In
ESEC, pp. 263–272. ACM (2005)

36. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013)

37. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: a new approach to computer
security via binary analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

38. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008)

39. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Program checking with less
hassle. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp.
149–169. Springer, Heidelberg (2014)

40. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015)

41. Weide, B.W., Sitaraman, M., Harton, H.K., Adcock, B., Bucci, P., Bronish, D.,
Heym, W.D., Kirschenbaum, J., Frazier, D.: Incremental benchmarks for software
verification tools and techniques. In: Shankar, N., Woodcock, J. (eds.) VSTTE
2008. LNCS, vol. 5295, pp. 84–98. Springer, Heidelberg (2008)

42. Wenzel, M.: Isabelle/jEdit–a prover IDE within the PIDE framework. In: Jeuring,
J., Campbell, J.A., Carette, J., Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.)
CICM 2012. LNCS, vol. 7362, pp. 468–471. Springer, Heidelberg (2012)



JDART: A Dynamic Symbolic Analysis
Framework

Kasper Luckow1(B), Marko Dimjašević2, Dimitra Giannakopoulou3,
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Abstract. We describe JDART, a dynamic symbolic analysis framework
for Java. A distinguishing feature of JDART is its modular architecture:
the main component that performs dynamic exploration communicates
with a component that efficiently constructs constraints and that inter-
faces with constraint solvers. These components can easily be extended
or modified to support multiple constraint solvers or different exploration
strategies. Moreover, JDART has been engineered for robustness, driven
by the need to handle complex NASA software. These characteristics,
together with its recent open sourcing, make JDART an ideal platform
for research and experimentation. In the current release, JDART sup-
ports the CORAL, SMTInterpol, and Z3 solvers, and is able to handle
NASA software with constraints containing bit operations, floating point
arithmetic, and complex arithmetic operations (e.g., trigonometric and
nonlinear). We illustrate how JDART has been used to support other
analysis techniques, such as automated interface generation and testing
of libraries. Finally, we demonstrate the versatility and effectiveness of
JDART, and compare it with state-of-the-art dynamic or pure symbolic
execution engines through an extensive experimental evaluation.

1 Introduction

JDART is a dynamic symbolic analysis framework for Java, under development
at CMU and NASA Ames Research Center since 2010. Our main goal in devel-
oping JDART has been to build a dynamic symbolic analysis tool that can be
applied to industrial scale software, including complex NASA systems. To reach
this goal, we faced challenges that required a significant amount of design and
engineering effort by several researchers over multiple years.

Supported in part by NASA Contr. NNX14AI09G and NSF CCF 1421678/1422705.

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 442–459, 2016.
DOI: 10.1007/978-3-662-49674-9 26



JDART: A Dynamic Symbolic Analysis Framework 443

Our main design guideline has been to strive for a modular and extensible
architecture. As such, our vision has been for JDART to be a platform for exper-
imentation not only in symbolic analysis, but also in other areas of research
that may use symbolic analysis as a component. JDART has now reached a level
of robustness and efficiency that makes it ready for use by a wider community
of researchers and practitioners. With the opportunity of JDart’s recent open
sourcing1, this paper describes the characteristics of the tool that make it unique
in its field. Moreover, it presents an extensive experimental evaluation of JDART,
comparing it with state-of-the-art tools on a variety of benchmarks, in order to
provide interested users with an understanding of its strengths and weaknesses
relative to other similar frameworks.

As mentioned, the key distinguishing feature of JDART is its modular archi-
tecture. The two main components of JDART are the Executor and the Explorer .
The Executor executes the analyzed program and records symbolic constraints
on data values. It is currently realized as an extension to the Java PathFin-
der framework [19,35]. The Explorer determines the exploration strategy to be
applied. It uses the constraints library JConstraints (developed as part of the
JDART project) as an abstraction layer for efficiently encoding symbolic path
constraints and provides an interface for a variety of constraint solvers. JDart’s
current release supports the CORAL [31], SMTInterpol [4] and Z3 [22] solvers.
Furthermore, JDART provides several useful extensions, such as method sum-
marization and jUnit test case generation, that leverage the results of dynamic
symbolic analysis. Note that all these components of JDART can be configured,
extended, or replaced.

In addition to being easily extensible and configurable, JDART can also be
used as a symbolic execution component within other tools. In particular, we
discuss two such uses of JDART: Psyco [13,16] and JPF-Doop [7]. The former
is a tool that uses automata learning and dynamic symbolic execution to auto-
matically generate extended interfaces for Java library components. The latter is
a tool that combines random feedback-directed generation of method sequences
with dynamic symbolic execution for automatic testing of Java libraries.

Among benchmarks that we use to showcase the capabilities of JDART, we
emphasize a NASA case study that has been our main challenge and driver
for its development over the years. JDART has been used to generate tests
for the AutoResolver system — a large and complex air-traffic control tool
that predicts and resolves loss of separation for commercial aircraft [9,12].
Within this context, JDART has demonstrated the capability to handle pro-
grams with more than 20 KLOC containing bit operations, floating point and
non-linear arithmetic operations (e.g., trigonometric), and native methods from
java.lang.Math. For the benchmarks considered in our experimental evalua-
tion, we also demonstrate that, from the set of available and maintained symbolic
execution tools, JDART is the most stable and robust.

Note that a preliminary version of JDART was presented earlier in [6]. Since
then, we have added support for additional constraint solvers and exploration

1 JDART is available on GitHub: https://github.com/psycopaths/jdart.

https://github.com/psycopaths/jdart
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Fig. 1. Simple Java software under test (SUT) example. Method test() compares
parameter i to field x and can lead to an assertion failure.

strategies, which are included in the open source release and discussed in this
paper. We have also conducted a thorough evaluation of JDART on multiple
benchmarks and compared it to state-of-the art tools.

Synopsis. The rest of the paper is organized as follows. Section 2 introduces
dynamic symbolic execution. Section 3 describes the architecture of JDART and
its usage in other analysis techniques. Section 4 discusses features of JDART and
related tools. Section 5 gives an extensive experimental evaluation with bench-
marks that include NASA examples. Our conclusions are discussed in Sect. 6.

2 Dynamic Symbolic Execution

Dynamic symbolic analysis is a program analysis technique that executes pro-
grams with concrete and symbolic inputs at the same time. It maintains a path
constraint, i.e., a conjunction of symbolic expressions over the inputs that is
updated whenever a branch instruction is executed, to encode the constraints
on the inputs that reach that program point. Combined execution paths form a
constraints tree, which is continually augmented by trying to exercise paths to
unexplored branches. Concrete data values for exercising these paths are gen-
erated by a constraint solver. We explain how this works in JDART using the
example shown in Fig. 1.

Dynamic symbolic execution treats some (or all) parameters of an analyzed
method symbolically. This means that their values, as well as all decisions involv-
ing them, are recorded during execution. In the example of Fig. 1, parameter i
is treated as a symbolic value. For the initial concrete execution of the analyzed
method test(), JDART uses the value found on the stack, which is 0. Instance
fields are not treated symbolically in the default configuration of JDART.

Executing the method with a value of 0 for i does not trigger the assertion
failure because i <= 100. Since i is symbolic, we still record this check, and
add it to the constraints tree. The resulting partial constraints tree is shown in
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Fig. 2. Different constraints trees for the example in Fig. 1. Leafs show program states
as well as the pre- and post-conditions of paths.

Fig. 2 (left): the false branch of the condition i > 100 (note that x is not being
treated symbolically) contains the result “OK”, and a valuation of the symbolic
variables that allows exercising the corresponding path (in this case the initial
configuration, i = 0).

However, the constraints tree also contains an unexplored branch, namely the
true branch. Dynamic symbolic execution now attempts to exercise this branch,
by generating a valuation satisfying the path constraint i > 100, usually using an
SMT solver. SMT solvers provide decision procedures for first-order logical for-
mulas of predicates from different theories (e.g., integer numbers, bit vectors or
arrays). Given a set of constraints, the solver will generate a satisfying assign-
ment that makes the constraint satisfiable. In our example it could generate the
assignment i = 101. The program is now rewound to the state where the ana-
lyzed method test() was entered. As parameter i is treated symbolically, the
corresponding stack contents are now changed to the value 101, and the method
is executed again. This time, the assertion failure is triggered. JDART augments
the constraints tree by recording the outcome “Error” along with the correspond-
ing valuation i = 101 (Fig. 2 (middle)). As the constraints tree now no longer
contains any nodes labeled by “?”, dynamic symbolic execution terminates.

By default, JDART treats only parameters symbolically. However, the sym-
bolic treatment can be extended to instance fields (e.g., this.x) and return
values as well. For example, Fig. 2 (right) shows the resulting constraints tree
for symbolic values of i and this.x. The return value r as well as the post-
condition (the state of the instance after execution of the method) are given as
symbolic expressions over i and x.

3 JDART

The development of JDART has been driven by two main goals. The primary goal
has been to build a symbolic analysis framework that is robust enough to handle
industrial scale software. More precisely, it has to be able to execute industrial
software without crashing, deal with long execution paths and complex path
constraints. The second objective has been to build a modular and extensible
platform that can be used for the implementation and evaluation of novel ideas
in dynamic symbolic execution. For example, JDART is designed to allow for



446 K. Luckow et al.

Fig. 3. Configuration of JDART for the example from Fig. 1.

easy replacement of all of its components: it supports different and combined
constraint solvers, and several exploration strategies and termination criteria.

This section presents the modular architecture of JDART, and discusses its
main components and extension points. It subsequently describes existing uses
of JDART as a component within other research tools.

3.1 Architecture

JDART executes Java Bytecode programs and performs a dynamic symbolic
analysis of specific methods in these programs. JDART also implements exten-
sions that build upon the results of a dynamic symbolic analysis:

– The Method Summarizer generates fully abstract method summaries for ana-
lyzed methods [16]. In the generated summaries, class members, input para-
meters, and return values are represented symbolically.

– The Test Suite Generator generates jUnit test suites that exercise all the
program paths found by JDART.

Figure 3 illustrates a basic configuration of JDART (no extensions included) for
the example of Fig. 1. The configuration sets the system under test to class
Example, and specifies method test(i:int) of the same class as the target of
the analysis. The last two lines tell JDART to explore the target method only
for parameter values i >= 0 and to use Z3 for solving constraints.

During dynamic symbolic analysis, JDART uses two main components to iter-
atively execute the target method, to record and explore symbolic constraints,
and to find new concrete data values for new executions: Fig. 4 depicts the mod-
ular architecture of JDART. The basis (at the bottom) is the Executor that exe-
cutes the analyzed program and records symbolic constraints on data values. The
Explorer organizes recorded path constraints into a constraints tree, and decides
which paths to explore next, and when to stop exploration. The Explorer uses
the JConstraints library to integrate different constraint solvers that can be
used in finding concrete data values for symbolic paths constraints.

3.2 Executor

The Executor runs a target program and executes an analyzed method with
different concrete data values for method parameters and class members. It also
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Fig. 4. Architecture of JDART.

records symbolic constraints for program paths. Currently, JDART uses the soft-
ware model checker Java PathFinder (JPF) for the execution of Java Bytecode
programs. JDART uses two extension points of JPF.

Setting Concrete Values. JPF uses “choice generators” to mark points in
an execution to which JPF back tracks during state-space exploration. JDART

implements a choice generator that sets parameter values of methods that are
analyzed symbolically.

Recording Symbolic Constraints. JPF extensions can provide custom
byte-code implementations. JDART adds concolic semantics to the Java Byte-
codes that perform concrete and symbolic operations simultaneously, while also
recording path constraints. Using JPF as an execution platform has several ben-
efits. For example, is easy to integrate other JPF extensions in JDART (e.g., for
dealing with native code, or for recording test coverage). Moreover, JPF pro-
vides easy access to all objects on the heap and stack, as well as to many other
elements and facilities of the JVM such as stack frames and class loading. On
the other hand, using a full-blown custom JVM for execution has an impact
on performance. This is one of the reasons why we are keeping the integration
with JPF as loose as possible. JDART has been built with the possibility of
changing the underlying execution environment from JPF to more light-weight
instrumentation, as is the case with other similar frameworks, such as PEX [34]
or JCute [27].
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3.3 Explorer

The Explorer organizes recorded constraints into a constraints tree, decides
which parts of the program to explore, when to stop, and how to solve con-
straints for new concrete input values.

Exploration. In order to hit interesting paths quickly when analyzing large
systems, JDART needs to be able to limit exploration to certain paths. JDART

provides configuration options for specifying multiple pre-determined vectors
of input values from which the exploration is started. It also allows the user
to specify assumptions on input parameters as symbolic constraints. JDART

will then only explore a method within the limits of those assumptions. Finally,
JDART can be configured to simply skip exploration of certain parts of a program
(e.g., after entering a specific method) — i.e., it supports suspending/resuming
exploration based on method level descriptions. It also allows skipping explo-
ration after a certain depth.

Termination. For industry-scale systems, it is often not possible to run an
analysis to completion. Sometimes one may even be interested in recording
the path constraint of a single program path (cf., e.g., Microsoft’s SAGE [15]).
JDART provides an interface for implementing customized termination strate-
gies. So far, it provides strategies for terminating after a fixed number of paths,
or for terminating after a fixed amount of time.

Constraint Solvers. In real world systems, path constraints can be long and
complex and may contain trigonometric or elementary functions, which may
challenge any state-of-the-art constraint solver. JDART provides several tech-
niques and extension points for optimizing constraints, e.g., by simplifying path
constraints, adding auxiliary definitions and/or interpolation that help solving
complex constraints, and using specialized solvers. These capabilities are based
on the constraints processing features of JConstraints. For example, trigono-
metric constraints can be approximated by interpolation before being submitted
to a solver (e.g., Z3), or they can be delegated directly to a solver that supports
them (e.g., CORAL). Floating-point constraints can also be processed before
submitting them to a solver. For the Z3 integration, floating-point constraints
are approximated using reals. Despite this not being sound (due to the limited-
precision effects), it might frequently yield valuable solutions even when they are
incorrect — in general, JDART always analyzes the solutions and tests whether
they can be used to exercise previously unexplored paths.

Constraints Tree. Finally, it is important to guarantee that progress is made
when only approximating Java semantics in solvers. Sometimes a solution sug-
gested by a solver may not be valid for a Java Bytecode program. JDART tests
all valuations produced by a decision procedure on the constraints tree by evalu-
ating path constraints with Java semantics before re-executing the program with
a new valuation (this is a feature provided by JConstraints, as explained later
in this section).
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Fig. 5. The JConstraints architecture.

Potential Extensions. In extending the explorer, we are considering to imple-
ment concolic heuristics for dealing with complex constraints, and to use coverage
metrics (e.g., branch coverage or MC/DC) to prioritize exploration of decisions
that may increase the selected coverage. Using JPF, in the future it will also be
possible to add support for concurrent programs.

3.4 JConstraints

JConstraints is a constraint solver abstraction layer for Java. It provides
an object representation for logic expressions, unified access to different SMT
and interpolation solvers, and useful tools and algorithms for working with con-
straints. While JConstraints was developed for JDART, it is maintained as a
stand-alone library that can be used independently. The idea has been explored
by others, e.g., PySMT [11], which has recently been developed for Python.

The architecture of JConstraints is shown in Fig. 5: It consists of the basic
library providing the object representation of logic and arithmetic expressions,
the API definitions for solvers (for SMT solving and interpolation, or for incre-
mental solving), and some basic utilities for working with expression objects
(basic simplification, term replacement, and term evaluation). Plugins for con-
necting to different constraint solvers can be added easily by implementing a
solver interface and taking care of translating between a solver-specific API and
the object representation of JConstraints.

Currently, plugins exist for connecting to the SMT solver Z3 [22], the inter-
polation solver SMTInterpol [4], the meta-heuristic based constraint solver
CORAL [31], and a solver that implements the Concolic Walk algorithm [8].
JConstraints uses the native interfaces for these solvers as they are much
faster than file-based integration. It can also parse and export constraints in its
own format and supports a subset of the SMT-LIB format [29] which enables
connection to many constraint solvers that support this format. For example,
through the SMT-LIB format, we were able to experiment with using the dReal
solver [10] for non-linear constraints in JDART.

JConstraints supports both Java and user-defined types for expressions.
This enables it to record path constraints directly in terms of the analyzed pro-
gram types and semantics, as opposed to the types supported by the constraint
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solver to be used. An advantage of this feature is that it is easy to validate solu-
tions returned by constraint solvers by simply evaluating the path constraint
stored by JConstraints with Java semantics.

3.5 Leveraging JDART

JDART is a mature and easy to use framework that has so far been leveraged in
several tools.

Automatic Testing of Libraries. Previous work on Randoop [23] has shown
that software libraries can often be effectively explored using feedback-directed
random testing, which generates test cases in the form of reasonable sequences of
public method invocations. However, while Randoop excels at generating method
sequences, its heuristic for selecting inputs for arguments of primitive data types
is simplistic — these inputs are selected from a small pool of mostly randomly
chosen values. This heuristic is often inadequate for reaching deep into the code
of methods with many conditionals over primitive types such as integers. On the
other hand, JDart’s capabilities are orthogonal: it cannot generate sequences
of method invocations, but it can explore deep code paths by leveraging the
power of SMT solving. Hence, we implemented JPF-Doop to combine the two
approaches [7].

JPF-Doop leverages Randoop to generate a collection of method sequences.
Next, JPF-Doop converts all primitive-type input parameters into symbolic
inputs in every generated method sequence. This in turn enables JDART to
be executed on such method sequences, and its dynamic symbolic execution
algorithm reaches deep paths within each method in a sequence. As a result,
more paths, and consequently branches and lines of code, are often explored by
JPF-Doop than by using the two tools in isolation [7].

Generating Interfaces of Software Components. Performing composi-
tional software verification is key to achieving scalability to large systems. Gener-
ating interfaces for software components is an important sub-task of compositional
software verification. In our previous work [13,16], we introduced an algorithm
(implemented in a tool called Psyco) for automatic generation of precise tem-
poral interfaces of software components that include methods with parameters.
Psyco generates interfaces in the form of finite-state automata, where transitions
are labeled by method names as well as guarded by symbolic constraints over their
parameters. It relies on JDart’s capability for computing method summaries for
the public methods of the analyzed component.

4 JDART and Related Frameworks

Dynamic symbolic execution [14,28] is a well-known technique implemented by
many automatic testing tools (e.g., [3,15,27,34]). For example, SAGE [15] is a
white-box fuzzer based on dynamic symbolic execution. SAGE has been routinely
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Table 1. Comparing the features of JDART to other symbolic analysis tools.

applied to large Microsoft systems, such as media players and image processors,
where it has been successful in finding critical security bugs.

Several symbolic execution tools specifically target Java Bytecode programs.
A number of them implement dynamic symbolic execution via Java Bytecode
instrumentation. JCute [27], the first concolic execution engine for Java, uses
Soot [30] for instrumentation, and uses lp solve as a constraint solver. JCute
is no longer maintained. CATG [33] uses ASM [1] for instrumentation, and
CVC4 [5] as a constraint solver. Another concolic engine, LCT [20], additionally
supports distributed exploration. It uses Boolector and Yices for solving, but
does not currently have support for float and double primitive types.

A drawback of instrumentation-based tools is that instrumentation at the
time of class loading is confined to the SUT. LCT for example does not by
default instrument the standard Java libraries thus limiting concolic execution
to the application classes. However, the instrumentation-based tools discussed
above provide the possibility of using symbolic (and/or simplified) models for
non-instrumented classes or using pre-instrumented core Java classes.

Several dynamic symbolic execution tools for Java are not based on instru-
mentation. For example, the concolic white-box fuzzer jFuzz [18] is based on
Java PathFinder (as is JDART) and can thus explore core Java classes without
any extra prerequisites. Finally, Symbolic PathFinder [25] is a Java PathFinder
extension similar to JDART. In fact, jFuzz reuses some of the core components
of (albeit an older version of) SPF, notably the solver interface, and its imple-
mentations. While at its core SPF implements symbolic execution, it can also
switch to concrete values in the spirit of concolic execution [24]. That enables it
to deal with limitations of constraint solvers (e.g., non-linear constraints).

Table 1 summarizes the main features of the tools discussed in this section.
Note that we only consider the features that are available in the official released
versions of the tools. For example, parallelizing SPF has been done [32] and
recently method summarization has been added too [26]. However, those features
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are not a part of the official release. It can be seen that JDART supports a
large number of features that are desirable in symbolic execution engines to
accommodate analysis of industrial scale systems. On the other hand, JDART

does not currently support programs with concurrency in contrast to SPF and
JCute. Also, JDART does not feature a mechanism for dealing with unbounded
symbolic input data structures such as lists and trees. SPF supports this through
its lazy initialization mechanism [21]. Finally, JDART does not currently support
a parallel exploration of the constraints tree. However, JDart’s architecture
provides a solid basis for future extensions towards supporting such features. In
particular, some of the distinctive features of SPF are relatively easy to port to
JDART given the common foundation of the two tools on JPF. In general, we
expect that open sourcing will expedite extensions of JDART in new directions.

5 Experimental Evaluation

We base our evaluation of JDART on a comparison with SPF, CATG, LCT,
and random testing. For all experiments, we used a laptop with a 2.0 GHz Intel
Core i7 and 8 GB RAM running Ubuntu Linux. Random testing provides a base-
line, while the other tools are representative of the state-of-the-art in symbolic
analysis of Java Bytecode. We were not able to properly set up JCute and
jFuzz. We note that they are no longer actively maintained. Our evaluation is
performed on the following benchmarks:

AutoResolver is a sophisticated automated air-traffic conflict resolution sys-
tem developed at the NASA Ames Research Center. It is envisioned to be
part of the Next Generation Air Transportation System (NextGen). It fea-
tures complex constraints arising, among others, from spherical geometry
and great circle distance computations. We focus JDART on a single con-
flict scenario, using the test driver developed in previous work [12] that
exposes a double-precision floating-point type controlling the heading dif-
ference between two aircraft at a collision point. Note that our coverage
metrics take into account the entire AutoResolver code base consisting
of approximately 20 KLOC of Java code.

MER Arbiter is derived from a flight component for the Mars Explo-
ration Rover developed at NASA JPL. The arbiter module is based on
a Simulink/Stateflow model translated into Java using the Polyglot frame-
work [2].

TSAFE is a flight-critical system that seeks to provide separation assurance for
multiple aircraft. It features complex, nonlinear floating-point arithmetic
and constraints with transcendental functions.

TCAS is a component of a traffic collision avoidance system installed in aircraft;
its operation is controlled by 12 inputs.

Raytracer is a component for rendering shades on surfaces. It performs a num-
ber of calculations on 3D vectors taking into account light and color objects.

WBS has 18 integer and boolean inputs controlling the update operation in a
wheel brake system.
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Minepump is a classic real-time system that performs monitoring and control-
ling of the fluid level and methane concentration in a mine shaft.

We use the following metrics: (i) analysis time; (ii) the quality of the symbolic
exploration of a benchmark in terms of multiple coverage criteria, such as general
coverage metrics (branch, instruction, line, method) and behavioral coverage,
i.e. the absolute number of paths exercised; (iii) the quality of the test suite
produced by the tools, i.e., the ratio of paths exercised while running the suite
to the number of tests. Table 2 gives our experimental results.

Table 2. Experimental results. Numbers in bold font denote the total number of units
(e.g., instructions or branches) for the respective benchmark. “-” represents when values
do not apply, e.g., when an example is not supported by a tool.
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Fig. 6. Analysis time. Fig. 7. Test suite quality.

Evaluation of Symbolic Analysis Tools. With a time cap of 1 h, we monitor
the analysis time and peak memory consumption for each tool to terminate and
return input valuations. For a consistent comparison, we measure coverage of
the valuations, as opposed to using output statistics of the tools. For each tool,
we construct a jUnit test suite based on the valuations, which is then analyzed
by the JaCoCo [17] coverage measuring library. JaCoCo generates a detailed
report containing branch, instruction, line, and method coverage. Behavioral
coverage is not reported by standard code coverage libraries, so we measure
it by replaying valuations with JDART, where JDART is run without a solver.
JDART tracks the number of unique satisfiable paths that are exercised, as well
as whether a path yields normal termination (OK ) or an error state (Error) —
assertion violation or uncaught exception. We chose to use dynamic symbolic
analysis for this purpose, because it additionally checks for validity of the valua-
tions; as seen in the TCAS example results for SPF, 68 valuations are produced,
but only 36 of them are valid and contribute to path coverage.

We also keep track of the number of potentially unexplored subtrees/decisions
(D/K, short for Don’t Know); D/K s represent decisions in the constraints tree
that are not covered by the test suite. For symbolic analysis tools, when they
terminate, it means that the used solver was inconclusive as to the satisfiability of
these decisions. Such situations arise due to, e.g., insufficient solver capabilities,
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constraints that are computationally intractable, or constraints from undecidable
theories (containing non-linear or transcendental functions).

For JDART, we select the solver and configuration that yields the best test
suite defined in terms of the above coverage metrics. Unless we found a better
configuration for SPF, the same configuration is used for SPF. Other tools do
not expose such rich set of configuration parameters or solver options.

Evaluation of Random Testing. For random test case generators, we set time
out to match the analysis time of JDART. Input values are randomly selected
from a uniform distribution from the value range of a particular parameter’s
data type. Note that our implementation of random testing is rather simplistic:
constraining the input ranges according to domain knowledge and picking values
from non-uniform distributions (e.g., from a known “usage profile”) would likely
increase its applicability.

Observation 1: Analysis Time and Path Coverage. JDART outperforms
SPF, CATG, and LCT on all benchmarks in terms of analysis time — often by
an order of magnitude (see Fig. 6). Furthermore, with path coverage being the
primary metric for comparison, JDART provides at least as good results as the
other tools, except for the Raytracer benchmark (where SPF performed slightly
better) and the AutoResolver benchmark (where Random Testing performed
better). Figure 9 summarizes these results. For Raytracer, SPF found three more
OK paths. In this particular case, however, SPF was run with a slightly different
configuration of CORAL that uses the Alternating Variable Method (AVM)
meta-heuristic — JDART uses the Particle Swarm Optimization (PSO) meta-
heuristic. If SPF is run with PSO, it does not terminate within 1 h. On the
other hand, if JDART is run with AVM, it performs worse than with PSO and
covers only 38 distinct paths. As a side note, the longer analysis times of SPF
might be attributed to the significant number of D/K paths.

Observation 2: Random Test Case Generation. Our experimental results
demonstrate that random test case generation performs poorly on the bench-
mark suite. In particular, in WBS it covers only 5 different paths with a test
suite containing 190,715 test cases. For AutoResolver, random testing slightly
outperforms JDART in terms of branch coverage (1 % point difference) at the
expense of having to run 1,969 test cases (taking 80 s). In contrast, the test
suite produced by JDART contains only 3 test cases (taking less than a second
to run). Note that the coverage results for AutoResolver are so low because
large submodules are not reachable from the entry point that only deals with a
single conflict scenario.

Observation 3: Performance of Instrumentation-Based Tools. CATG
obtains similar coverage results as JDART on the benchmarks it supports, but
is several orders of magnitudes slower. This might be attributed to the concolic
execution approach implemented in CATG, which (similar to JCute) allocates
a process for each execution — CATG reruns the instrumented program for
each explored path. JDART, on the other hand, harnesses the JPF infrastructure
and perturbation facility to efficiently restore program states and generate new
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Fig. 8. Branch coverage. Fig. 9. Path coverage. JDART and random testing
on AutoResolver have 6,898 and 214,982 Don’t
Know paths, respectively.

paths. LCT is also comparable to JDART on benchmarks that do not require
symbolic floating-point reasoning, but like CATG it is much slower. Note that
LCT supports parallel exploration that was not used in our experiments, which
is a feature currently not supported in JDART.

All instrumentation-based tools employ a pre-processing step where a bench-
mark (and classes potentially referenced by it) need to be instrumented before
the actual analysis can be performed. Our measured analysis times do not
account for this step, which is often significant. For example, the instrumen-
tation of MER with LCT takes 13 s. JDART avoids this by leveraging the JPF
infrastructure to define a custom interpreter where the standard Java Bytecode
semantics are replaced with concolic semantics.

Observation 4: Test Suite Quality and Branch Coverage. Figure 7
presents the quality metric for the generated test suites. Random testing, due to
a very large number of generated test cases, has very low quality, often almost
0 %. On the other hand, all the dynamic symbolic execution tools typically gener-
ate minimal test suites, i.e., those with 100 % quality. SPF produces sub-optimal
test suites in three cases, with as low as 15 % quality for Raytracer. We were not
able to find the reason for this unexpected behavior.

We give the usual branch coverage metric in Fig. 8. No tool reaches full
branch coverage on the analyzed benchmarks, which is due to infeasible paths,
exemplified by TCAS where JDART achieves full path coverage (i.e., #D/K is 0).
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In other words, JDART explores all possible behaviors of TCAS, and therefore
93 % is the highest possible branch coverage, thus indicating the presence of code
that cannot be reached from the entry point, i.e. dead code.

6 Conclusions

We presented JDART, a dynamic symbolic analysis framework for Java Bytecode
programs. We provided a detailed description of its architecture and features,
as well as an experimental evaluation of the tool in comparison to other similar
frameworks. After several years of development, JDART has reached a level of
efficiency, robustness, and versatility that lead to its recent open sourcing by
the NASA Ames Research Center. This paper is therefore meant as an intro-
duction of the tool to the research community. We hope that the tool’s current
capabilities and its existing use cases within other frameworks will inspire the
community to experiment and extend it in novel ways.
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6. Dimjašević, M., Giannakopoulou, D., Howar, F., Isberner, M., Rakamarić, Z.,
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nent interfaces. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460,
pp. 248–264. Springer, Heidelberg (2012)

14. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the 26th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 213–223 (2005)

15. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40–44 (2012)

16. Howar, F., Giannakopoulou, D., Rakamarić, Z.: Hybrid learning: interface gen-
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constraints for symbolic pathfinder. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 359–374. Springer, Heidelberg
(2011)
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Abstract. A workflow graph is a classical flow graph extended by con-
current fork and join. Workflow graphs can be used to represent the
main control-flow of e.g. business process models modeled in languages
such as BPMN or UML activity diagrams. They can also be seen as
compact representations of free-choice Petri nets with a unique start
and a unique end. A workflow graph is said to be sound if it is free of
deadlocks and exhibits no lack of synchronization, which correspond to
liveness and safeness of a slightly modified version of the corresponding
Petri net. We present a new characterization of unsoundness of work-
flow graphs in terms of three structural, i.e., graphical error patterns.
We also present a polynomial-time algorithm that decides unsoundness
and returns for each unsound workflow graph, one of the three structural
error patterns as diagnostic information. An experimental evaluation on
over 1350 workflow graphs derived from industrial business process mod-
els suggests that our technique performs well in practice.

1 Introduction

Workflow graphs can capture the main control flow of processes modeled in
languages such as BPMN, UML Activity Diagrams, and Event Process Chains
(EPC). That is, the core routing constructs of these languages can be mapped
to the routing constructs of workflow graphs: alternative split and merge, as well
as concurrent fork and join. Thus, a workflow graph is a classical control-flow
graph or flow chart extended by concurrent fork and join. Figure 1(a) shows a
simple example of a workflow graph in BPMN notation where f1 and f2 are
(concurrent) forks, j1 is a (concurrent) join, d1 is a decision (i.e., alternative
split), and m1 and m2 are alternative merges. Note that Fig. 1(a) shows only
the pure control-flow; representations of tasks, commands, data assignments, etc.
are omitted. Those could be added to the edges of the workflow graph.

A workflow graph is equivalent to a corresponding free-choice Petri net [1],
called a free-choice workflow net. The corresponding net for the workflow graph
in Fig. 1(a) is shown in Fig. 1(b) where the (green) dashed part is ignored. In
fact, the corresponding free-choice workflow net is in some sense isomorphic
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 463–479, 2016.
DOI: 10.1007/978-3-662-49674-9 27
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Fig. 1. (a) A workflow graph, (b) its corresponding free-choice workflow net (without
dashed part) and its connected version (with dashed part)

to its workflow graph (see [1] for details) such that the workflow graph can be seen
as a condensed representation of the free-choice workflow net, and all analysis
information obtained on the workflow net can be easily mapped back to the
workflow graph. Because of this close relationship and the rich theory available
for free-choice nets [2], we will henceforth continue the technical development
based on free-choice workflow nets.

A natural correctness condition for free-choice workflow nets, and the dom-
inant one for business process modeling, called soundness, requires the absence
of two types of control-flow errors: deadlocks and lack of synchronization. Lack
of synchronization, called unsafeness in Petri net theory, occurs when there are
two control-flow tokens at the same place, which gives rise to implicit auto-
concurrency, i.e., a task executing concurrently to itself, which is usually consid-
ered a modeling error for this model class. Process languages such as BPMN have
constructs for explicit auto-concurrency, called multiple instance tasks, where the
auto-concurrency is encapsulated in a single-entry-single-exit block.

Figures 2(a) and (d) (ignore the coloring for now) show simple examples
of workflow nets with deadlocks. Figures 2(b) and (c) exhibit lack of synchro-
nization, i.e., unsafeness. In particular, Fig. 2(c) shows a special case of lack of
synchronization, which causes an unbounded production of tokens, which can be
a serious problem for process execution engines if undetected.

A free-choice workflow net is sound if and only if its (strongly) connected
version is safe and live (in the Petri net sense) [3]. The connected version of
the net in Fig. 1(b) is created by adding the dashed part. It can be decided in
polynomial time whether a strongly connected free-choice net is safe and live
using linear-algebraic techniques. However, none of the existing decision proce-
dures [2,4–6] explicitly attempts to produce diagnostic information to support
a modeler in locating, understanding and fixing the error in case the net is not
live or not safe.

In this paper, we present a novel technique to detect control-flow errors and
to produce diagnostic information that helps modelers to locate and fix the cause
of the error. In particular, we make the following contributions:

1. We present a new characterization of unsoundness in terms of three structural
error patterns, i.e., offending subgraphs (see Fig. 2) that are present in a free-
choice workflow net if and only if it is unsound. This diagnostic information
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is designed to be more concise and easier to consume than an error trace,
which is important as many process models are created by business analysts
without a strong technical background.

2. We present an algorithm that decides unsoundness in polynomial time such
that one structural error pattern is returned for each unsound graph. As a
byproduct, we can also generate an error trace in polynomial time to com-
plement the main graphical diagnostic information.

3. We implemented our technique as a research prototype in the IBM WebSphere
Business Modeler. An experimental evaluation on over 1350 workflow graphs
derived from industrial business process models suggests that our technique is
sufficiently fast to run the analysis and provide immediate concise diagnostic
feedback while the process model is being developed.

Some proofs are omitted in this version. They and additional detail can be
found in an extended version of this paper [7] and in a thesis [8].

Related Work. Our structural error patterns are similar to control-flow ‘anti-
patterns’, which are sometimes given to modeling practitioners [9] in terms of
erroneous instructive examples. However, in contrast to those anti-patterns, our
structural error patterns are formally characterized as graph structures and
proved to capture all situations where deadlock or lack of synchronization may
occur.

Our patterns are also strongly related to a graph-theoretic characterization
of live and bounded free-choice nets given by Esparza and Silva [10]. How-
ever, we are not aware of any polynomial-time decision procedure for their
characterization.

An alternative approach to detect control flow errors and to provide diag-
nostic information is to compute an error trace through state-space exploration.
An experimental study [11] has shown that whereas naive state-space explo-
ration is not sufficient to analyze the state spaces of business process models,
with appropriate reduction techniques, state space exploration can check sound-
ness of an industrial process model in less than a second. However, the traces
obtained can be large and contain many transitions that do not contribute to
the actual control-flow error [12], which requires additional techniques to trim
the trace [13,14], whereas our structural error patterns represent control-flow
errors concisely. Moreover, many traces are difficult to visualize in the context
of a process model, for instance, because they include several iterations through
a cycle, whereas our structural error patterns can be displayed and understood
within the process model.

The tool Woflan [15] implements a complex set of (partially exponential-time)
Petri net analysis techniques. Some diagnostic hints, e.g., so-called mismatches,
can be helpful in many cases to understand an error, but they do not imply
unsoundness in general. For other diagnosis results, it remains unclear how they
can pinpoint the cause of an error.
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2 Preliminaries

2.1 Free-Choice Workflow Nets and Soundness

A Petri net N = (P, T, F ) consists of disjoint, finite and non-empty sets P of
places and T of transitions and a relation F ⊆ (P ×T )∪ (T ×P ). An element of
P ∪T is also called an element of N . Note that (P ∪T, F ) is a directed (bipartite)
graph and we apply well-known graph-theoretic concepts such as path and strong
connectedness to it. For an element x of N , we define •x = {y | (y, x) ∈ F} and
x• = {y | (x, y) ∈ F} and for a set X of elements, we set •X =

⋃
x∈X

•x and
X• =

⋃
x∈X x•. N is free-choice if for all transitions t1, t2, •t1 ∩ •t2 �= ∅ implies1

|•t1| = |•t2| = 1. A subnet of N is a Petri net N ′ = (P ′, T ′, F ′) such that P ′ ⊆ P ,
T ′ ⊆ T and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)). The incidence matrix of a Petri
net N is given by the integers ct,p = χF (t, p) − χF (p, t) for t ∈ T, p ∈ P where
χF denotes the characteristic function of F .

A marking of N is a mapping m : P → N, i.e., a bag over P . If m(p) = k,
we say that p has k tokens in m. If m(p) > 0, we say that p is marked in m.
We will sometimes treat a set of places X ⊆ P as a marking by identifying it
with its characteristic function. Addition and containment of markings is defined
pointwise: (m1 + m2)(p) = m1(p) + m2(p) and m1 ≤ m2 if there is a marking
m such that m1 + m = m2. A transition t is enabled in m if •t ≤ m. For two
markings m1,m2 and a transition t, the relationship m1

t−→ m2 holds whenever t

is enabled in m1 and m1 + t• = •t + m2. We write m −→ m′ if m
t−→ m′ for any t

and ∗−→ for the reflexive and transitive closure of −→. We say m′ is reachable from
m if m

∗−→ m′. A transition t (place p) is dead in m if no marking reachable from
m enables t (marks p). A transition or place x is live in m if x is not dead in each
marking reachable from m. A local deadlock is a marking in which a transition t
is dead and a place p ∈ •t is marked. A global deadlock is a marking in which no
transition is enabled. N is live in a marking m0 if every transition is live in m0.

We say N is bounded from a marking m0 if there is a marking m∗ such that
for every marking m reachable from m0, we have m ≤ m∗. A marking is safe if
each place has at most one token. N is safe from a marking m0 if every marking
reachable from m0 is safe.

A workflow net is a Petri net N with a unique source ps and a unique sink
pt �= ps such that ps, pt ∈ P and every element of N is on a path from ps to pt.
The marking ms (resp. mt) of N which has a single token on the source (sink)
and no token elsewhere is called the initial (final) marking of N . An execution
sequence of N is a sequence σ = m0,m1,m2, . . . of markings of N such that
mi −→ mi+1 for each i ≥ 0. If σ = m0, . . . ,mn is finite, we also write m0

σ−→ mn.
An execution trace of N is an execution sequence σ = m0,m1,m2, . . . of N such
that m0 = ms. A marking of N is said to be a reachable marking of N if it is
reachable from the initial marking of N .

1 Often, a more liberal definition is given for free-choice, which is sometimes also called
extended free-choice. However an extended free-choice net can be converted into an
equivalent free-choice net by a simple and well-known construction.
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A workflow net N is said to be sound [3] if the following three conditions are
satisfied: (i) the sink is live in the initial marking, (ii) the final marking is the only
reachable marking of N that marks the sink, and (iii) no transition of N is dead
in the initial marking. Condition (ii) says that a token on the sink signals ‘proper
termination’, i.e., there is no token left in the interior of the net. The example
in Fig. 1(b) is sound. Soundness appears to be an especially natural correctness
condition for free-choice workflow nets as the following theorem suggests. We
define for a workflow net N the (strongly) connected version of N , denoted by N .
N is obtained from N by adding a fresh transition tr, called the return transition
and connect it such that •tr = pt and t•r = ps, i.e., the return transition moves
a token from the sink to the source of N , cf. Figure 1(b) with dashed part. Note
that the underlying graph of N is indeed strongly connected.

Theorem 1 ([3]). Let N be a free-choice workflow net. The following five state-
ments are equivalent: (i) N is sound, (ii) N is safe from the initial marking and
no reachable marking is a local deadlock (iii) N is safe from the initial marking
and no reachable marking is a global deadlock, (iv) N is bounded and live from
the initial marking, and (v) N is safe and live from the initial marking.

It is not necessarily obvious to a modeler whether a reachable marking is a
local deadlock or not. However it is fairly obvious whether a marking is a global
deadlock. We could therefore call a global deadlock an explicit error marking
and a local deadlock an implicit error marking. So far, we have three explicit
error markings that imply unsoundness: a global deadlock, an unsafe marking,
and an improper termination, i.e., a reachable marking that has a token on the
sink and some token elsewhere. An execution trace that ends in an explicit error
marking can be considered as diagnostic information for unsoundness.

2.2 Structural Characterizations for Safeness and Liveness
in Free-Choice Nets

We will use the following concepts from Petri net and graph theory to
build graphical diagnostic information: siphons, circuits, handles and bridges.
A siphon2 is a non-empty set S of places such that •S ⊆ S•; S is minimal if it
does not contain another siphon. The central property of a siphon, which makes
it suitable as diagnostic information, and which is an immediate consequence of
its definition, is that if S is not marked in a marking m, then each transition
t ∈ S• is dead in m. We will also identify a siphon S with the subnet generated
by it, which is the subnet (P ′, T ′, F ′) such that P ′ = S and T ′ = •S.

A path is said to be trivial if it contains only one element. A circuit of N
is a non-trivial path from an element to itself such that all other elements are
pairwise distinct. A handle on a subnet N ′ is a non-trivial path H in N from
some element x of N ′ to some element y of N ′ such that H is disjoint from N ′

apart from x and y. H is a P/T-handle if x ∈ P and y ∈ T and a T/P-handle
if x ∈ T and y ∈ P . A bridge between two subnets N ′ and N ′′ is a non-trivial
2 Unfortunately, a siphon is also often called a deadlock.
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path B from an element x of N ′ to an element y of N ′′ that is disjoint from N ′

apart from x and disjoint from N ′′ apart from y. B is a T/P-bridge if x ∈ T and
y ∈ P .

N is structurally live if there exists a marking from which it is live; it is
structurally bounded if N is bounded from each marking of N . N is SLB if it
is structurally live and structurally bounded. Note that SLB is equivalent with
the notion of well-formedness [2] of a free-choice net, where N is well-formed
if there exists a marking from which N is live and bounded. This is because a
well-formed free-choice net is structurally bounded [2, Theorem 5.8].

The following propositions are directly derived from the literature. Let for
the rest of this paper, N denote a free-choice workflow net and N its connected
version.

Theorem 2 ([2, Theorem6.17],[10, Theorem4.2]). We have: (i) N is safe
and live from the initial marking iff it is SLB and every siphon contains the
source and (ii) N is SLB iff it contains no circuit with a T/P-handle and for
every circuit C with a P/T-handle H, there is a T/P-bridge between C and H.

Imagine the connected versions for the examples in Fig. 2. Then the red part
in Fig. 2(a) shows a siphon that does not contain the source. In Figs. 2(b) and
(c), the red part shows a T/P-handle on a circuit (blue part + imagined return
edge). Figure 2(d) shows a P/T-handle without bridges (red part) on a circuit
(part of the blue plus imagined return edge). We discuss these examples in more
depth in Sect. 3.1.

It can be computed in polynomial time whether every siphon is initially
marked [5]. However, we do not know any way to compute Theorem2(ii) in
polynomial time. Moreover, condition (ii) of Theorem2 has another drawback
to be used directly as diagnostic information. Although a circuit with a handle is
an explicit error condition as it is easily verified by a user, a circuit with a handle
without bridges is less suited because the absence of bridges is not obvious to a
user in a large graph.

3 New Diagnostic Information for Unsoundness

In this section, we present a new characterization of unsoundness in terms of the
presence of three types of graph structures, which are suitable as diagnostic infor-
mation. The new characterization is derived from the Esparza-Silva characteri-
zation (Theorem 2(ii)) with an essential change and some additional adaptations
based on the structure of workflow nets. We present the new characterization in
Sect. 3.1, and we show in Sect. 3.2 that each of the error patterns indeed indicates
unsoundness.

3.1 A New Structural Characterization of Unsoundness

The new characterization is based on the new notion of a DQ-siphon:
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Fig. 2. Examples of the three error patterns: (a) A siphon (red) that does not con-
tain the source, (b) A path to the sink (blue) with a (forward) T/P-handle (red),
(c) A path to the sink (blue) with a (backward) T/P-handle (red), (d) A DQ-siphon
(blue) with a P/T-handle (red).

Definition 1. A decreasing quasi-component siphon, DQ-siphon for short, is a
siphon S such that for each transition t, |t• ∩ S| ≤ 1.

A DQ-siphon has initially at most one token in N and since the number of
tokens in it cannot increase, it has never more than one token. Recall that a
path in a graph is said to be simple if it does not visit any node twice. The new
characterization is:

Theorem 3. N is unsound iff at least one of the following statements holds:

1. N has a siphon that does not contain the source.
2. N has a simple path from some element to the sink that has a T/P-handle.
3. N has a DQ-siphon S with a P/T-handle (more precisely, the subnet gener-

ated by S has a P/T-handle).

The proof of Theorem 3 is deferred to Sect. 3.3. Figure 2 shows examples
for the error patterns. They indicate unsoundness as follows. As stated already
above, all transitions t ∈ S• are dead once the siphon S is unmarked, which for
Theorem 3(i), is the case already in the initial marking, cf. Figure 2(a). For a
simple path with a T/P-handle, we can distinguish two cases, a forward handle,
cf. Fig. 2(b) and a backward handle, cf. Fig. 2(c). The intuition of the forward
handle is that we can execute, unless there is an obstruction by a deadlock, the
path and the handle independently, which generates two tokens at the merging
place p, i.e., an unsafe marking. Likewise, the intuition for the backward handle is
that, if not obstructed by a deadlock, the handle and the path can be executed
concurrently to produce an unbounded number of tokens at p. Finally, for a
DQ-siphon S, we can assume it contains the source (otherwise we resort to
Theorem 3(i)). Since S has always at most one token, it becomes unmarked
when the first transition of the handle occurs, which marks the handle and all
transitions t ∈ S• become dead. The token on the handle can be brought, unless
obstructed by a deadlock, to the last place p ∈ •t′ of the handle, where t′ is the
last transition of the handle, hence t′ ∈ S• and t′ is therefore dead, which is a
local deadlock. These intuitions are substantiated in Sect. 3.2 below.
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3.2 Error Patterns Indicate Unsoundness

In this section, we prove that given that the workflow net exhibits one of the error
patterns in Theorem 3, we can compute an execution trace to an explicit error
marking in polynomial time. The existence of the traces forms the underpinning
for the intuition for the error patterns given above. In particular, this proves the
‘if’ direction of Theorem 3. The execution traces can also be used to complement
the main diagnostic information from Theorem3. We need the following lemma,
which generalizes the central property of a sound free-choice net that every place
can be marked and every transition can be enabled from the initial marking.

Lemma 1. Let π be a path in N from a place p1 to a place p2, and m a marking
of N such that p1 is marked in m. Then, we can compute in O(|P |2) time an
execution sequence from m to a marking m′ such that m′ marks p2 or m′ is
an explicit error marking, i.e., a global deadlock, an improper termination, or
unsafe.

The proof of Lemma 1 is provided in the extended version of this paper [7].
The following observation will help us later: An unsafe marking or an improper
termination marking are two special cases of a more general error marking:

Lemma 2. Let p1, p2 be two distinct places of N such that there exists a simple
path from p1 via p2 to the sink of N . If there exists a reachable marking m that
marks both places p1 and p2, then N is unsound. An execution sequence from m
to an explicit error marking can be computed in O(|P |2) time.

By help of Lemmas 1 and 2, we can show the following:

Theorem 4. If N exhibits any of the three error patterns in Theorem3, then a
trace of N to an explicit error marking can be computed in O(|P |2) time from
the error pattern.

A complete proof of Theorem4 is provided in the extended version of this
paper [7]. We now give a brief account of the proof for each error pattern. For
any siphon that does not contain the source, there is a path from the source
to a place of the siphon. As no place of an unmarked siphon can be marked, it
follows directly from Lemma 1 that we can compute, in quadratic time, a trace
from the initial marking to an error marking.

Consider now the case where N has a simple path π from some element e1 to
the sink that has a T/P-handle H. Applying Lemma 1 to a path from the source
of N to the place p1 that precedes the first transition of H, we obtain either an
error marking or a marking that marks p1. In the latter case, we apply Lemma 1
to the path H. This will result in an error marking or, without going into the
details, a marking m where two places of π are marked. By Lemma 2, we can
obtain from m, an error trace in quadratic time.

Finally consider the case where N has a DQ-siphon S with a P/T-handle H.
By the DQ-siphon property, S has always at most one token. Applying Lemma1
to a path from the source of N to the first place of H, we obtain, in quadratic
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time, an execution leading to an error marking or a marking that marks a single
place in S, viz. the first place of H. In the latter case, we apply Lemma 1 to the
path H and we obtain an execution that leads to either an error marking or a
marking that marks the last place p of H. Because S became unmarked through
the execution of the handle, the last transition t′ of H is dead because t′ ∈ S•,
cf. Fig. 2(d). Hence we obtain an explicit error marking by once again applying
Lemma 1 to a path from p to the sink of N .

3.3 Proof of Theorem3

In Theorem4, we have shown one direction of Theorem 3. To show the other
direction of Theorem 3, suppose N is unsound. Due to Theorem1, N is not safe
or not live from the initial marking. Due to Theorem2, we have either (i) some
siphon of N does not contain the source, (ii) N contains a circuit with a T/P-
handle, or (iii) N contains a circuit with a P/T-handle without T/P-bridges.
In case (i), we conclude that N has a siphon that does not contain the source
because each siphon in N is also a siphon in N . For the cases (ii) and (iii), we
use the following lemmas.

Lemma 3. If N has a circuit with a T/P-handle, then N has a path to the sink
with a T/P-handle, which can be computed in O(|F |) time.

Lemma 4. If N has a circuit with a P/T-handle without T/P-bridge, then N
has a minimal siphon S with a P/T-handle or a siphon that does not contain
the source.

When the minimal siphon S with P/T-handle that Lemma 4 returns is not
a DQ-siphon, then there is a transition t such that |t• ∩ S| > 1. Then, we apply
Lemma 5 below and obtain a path to the sink of N with a T/P-handle, which
concludes the proof of Theorem 3. Lemma 5 will be re-used in Sect. 4.

Lemma 5. If S is a minimal siphon of N such that there is a transition t such
that |t• ∩ S| > 1, then N has a circuit with a T/P-handle, which can be computed
in O(F ) time.

The proofs of the lemmas are provided in the extended version of this
paper [7].

4 Computation of Structural Diagnostic Information

In this section, we show that structural diagnostic information as given by
Theorem 3 can be computed in polynomial time. We employ and extend an
algorithm by Kemper and Bause [5], which in turn is based on the rank equation
for free-choice nets. We need the following definitions. A state machine (also
called S-graph) is a Petri net such that for each transition t, |•t| = |t•| = 1,
i.e., it has no concurrency. A P-component (also called S-component) of N is a
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(a) (b)
tr tr

p1 p2

Fig. 3. Two nets, each decomposed into two overlapping P-components S1 (green part
+ black part) and S2 (orange part + black part) (a) is safe and live (sound), (b) is safe
but not live (unsound)

subnet (P ′, T ′, F ′) of N that is a strongly connected state machine such that
T ′ = •P ′ ∪ P ′•. N is state-machine decomposable (SMD) if each element of N
belongs to some P-component of N . Figure 3 shows two nets that are SMD, each
with a decomposition. SMD is necessary for N to be SLB but not sufficient. The
net in Fig. 3(a) is SLB (sound), the net in Fig. 3(b) is not SLB (unsound). More
precisely, SMD is sufficient for N being safe, but not for being live. Note that
the net in Fig. 3(b) has deadlocks.

The difference between N being SMD and SLB can be captured using the
rank equation. To this end, we need the notion of a cluster. For a transition t of
N , let [t] = {t′ ∈ T | •t ∩ •t′ �= ∅} be the cluster of t. In a free-choice net, each
cluster is an equivalence class, hence clusters provide a partition of T . We have
the following:

Theorem 5. ([16]) N is SLB iff N is SMD and

rank(N) = |{[t] | t ∈ T}| − 1 (1)

where rank(N) is the rank of the incidence matrix of N .

Note that the rank of the incidence matrix can be computed in time cubic
in max(|P |, |T |). For the example net (connected version) in Fig. 3(b), the rank
of the incidence matrix is 6 and the number of clusters is also 6.

We now present an algorithm that decides whether N is safe and live, which
is, as stated earlier, equivalent with N being sound. This algorithm, shown as
Algorithm 1, returns corresponding diagnostic information for the connected net,
viz. either a siphon that does not contain the source of N (line 1), a circuit with
a T/P-handle or a DQ-siphon with a P/T-handle (lines 2 and 10). This can
then be post-processed into the desired diagnostic information for N as stated
in Theorem 3, which we will show below in Theorem 7.

Algorithm 1 proceeds as follows. It first checks whether N has a siphon that
does not contain the source of N using an algorithm by Esparza and Silva [4,
Algorithm 6.6], cf. also [5]. This is denoted as SiphonCheck(N).

Next the algorithm tries to compute a state-machine decomposition of N
using an algorithm by Kemper and Bause [5, Algorithm 17], which is denoted
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Algorithm 1. Decides whether N is safe and live and returns diagnostic infor-
mation.
CheckSafeAndLive(N)

1: SiphonCheck(N): if N has a siphon S that does not include the source of N then
return (false, S) end if

2: SMD-Check(N): if a minimal siphon S of N is found that is not a state machine
then return (false, D) where D is either a circuit with a T/P-handle or a DQ-
siphon with a P/T-handle computed from S end if

3: Rank-Check(N): if the rank Eq. (1) holds for N then return true end if
4: loop
5: Unprocessed := the set of all places of N
6: loop
7: pick p ∈ Unprocessed
8: N ′ := delete(p,N)
9: if N ′ is not empty then

10: SMD-Check(N ′): if a minimal siphon S of N ′ is found that is not a state
machine then return (false, D) where D is either a circuit with a T/P-
handle or a DQ-siphon with a P/T-handle computed from S end if

11: Rank-Check(N ′): if the rank Eq. (1) does not hold for N ′ then N := N ′;
break end if

12: end if
13: Unprocessed := Unprocessed \ {p}
14: end loop
15: end loop

as SMD-Check(N). This algorithm computes a cover of the net with minimal
siphons, i.e., a set of minimal siphons such that each place is in some minimal
siphon. It then checks whether each of the computed minimal siphons is a P-
component. If this is not the case, N is not SLB [5, Theorem 6]. A minimal siphon
S of N is not a P-component iff one of the following two conditions holds: (i)
there is a transition t such that |t• ∩ S| > 1. In this case, we can compute a
circuit with a T/P-handle as proved in Lemma5. In the other case (ii), we have
S• \ •S �= ∅. In this case, we can compute a P/T-handle attached to S as proved
in Lemma 6. Note that condition (i) is checked first, so when condition (ii) is
checked, we know that there is no transition t such that |t• ∩ S| > 1 and hence,
if (ii) holds for S, S must be a DQ-siphon.

Lemma 6. If S is a minimal siphon of N such that S• \ •S �= ∅, then S has a
P/T-handle in N , which can be computed in O(|F |) time.

In case the SMD-Check in line 2 passes, we know that each of the computed
minimal siphons is a P-component and therefore, N is SMD and hence safe.
The algorithm proceeds with computing the rank of the incidence matrix of N
by standard techniques and checks the rank Eq. (1), denoted Rank-Check(N).
If the equation holds, then N is SLB due to Theorem 5 and safe and live due
to Theorem 2. If the rank equation does not hold, we know that N is not live.
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In this case, we iteratively reduce the net as described below until the SMD
check for the reduced net returns diagnostic information.

For the reduction, we define N ′ = delete(p,N) as the largest strongly con-
nected subnet of N that does not contain p. Figure 4 shows in (a) the result of
delete(p1, N) and (b) the result of delete(p2, N) where N is the net shown in
Fig. 3(b). N ′ = delete(p,N) can be computed in linear time. N ′ may be empty
for a particular p, but if N is SMD and not SLB, a place p can be found such
that delete(p,N) is not empty (see Lemma 8). If N ′ is not empty, we perform an
SMD check on it. If the SMD check on the reduced net N ′ (line 10) generates
diagnostic information, this information is returned as diagnostic information of
the original net N . We argue in Lemma 7 below that this is correct.

Lemma 7. Let N ′ = delete(p,N) for some p such that N ′ is nonempty.

(i) If S is a minimal siphon of N ′ such that there is a transition t such that
|t• ∩ S| > 1, then S is also a minimal siphon of N such that there is a
transition t such that |t• ∩ S| > 1.

(ii) If S is a minimal siphon of N ′ such that S• \ •S �= ∅, then S is also a
minimal siphon of N such that S• \ •S �= ∅.
Otherwise, if the SMD check passes for N ′, we check the rank equation for

N ′. If the rank equation for N ′ does not hold, we know that N ′ is not SLB.
Hence we found a smaller net that contains an error, and, in this sense, the
reduction was successful. In this case, we proceed with N ′ as the subject of
further analysis, we break from the inner loop and go into a new iteration of the
outer loop to reduce the net further.

If the rank equation holds for N ′, then N ′ is SLB, i.e., removal of p has
removed the deadlock (i.e., made the net live). In this case, we try to reduce
with another place p.

Lemma 8 below proves that, as long as a strongly connected free-choice work-
flow net is SMD but not SLB, we find a place p such that the reduced net is
not empty and not SLB, so either the SMD check or the rank check fails on the
reduced net. In the former case, we are done and in the latter case, we proceed
with a smaller net that is SMD but not SLB. Since this reduction can be per-
formed at most |P | many times, the SMD check must fail eventually and return
diagnostic information.

(a) (b)
trtr

Fig. 4. The result of (a) delete(p1, N) and (b) delete(p2, N) where N is the net in
Fig. 3(b)
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Lemma 8. Let N ′ be a strongly connected subnet of N such that N ′ is SMD.
If N ′ is not SLB then there exists a place p such that delete(p,N ′) is nonempty
and not SLB.

We can now conclude with the correctness of Algorithm 1.

Theorem 6. Algorithm1 decides whether N is safe and live from the initial
marking. If not, it outputs either a siphon that does not include the source,
a DQ-siphon with a P/T-handle, or a circuit with a T/P-handle. Algorithm1
completes in O(|P |2 ∗ max(|P |, |T |)3).
Proof. We have already shown the correctness of Algorithm 1. For the complex-
ity, note that the time complexity of the Siphon Check is O(|P |2 ∗ |T |) [5]. The
complexity of the SMD Check is O(|P | ∗ (|P |+ |T |+ |F |)) because the worst case
is bounded by the need to identify |P | minimal siphons and finding a minimal
siphon containing a place can be done in time O(|P | + |T | + |F |) [17]. Finally,
checking the rank of the incidence matrix can be done in O(max(|P |, |T |)3).
Thus, the complexity is dominated by the computation of the rank of the matrix.
Algorithm 1 performs, at most, |P |2 computations of the rank. Thus, the worst
case time complexity of Algorithm 1 is O(|P |2 ∗ max(|P |, |T |)3).

As an example, we consider again the net from Fig. 3(b). This net passes
the siphon check but might or might not pass the first SMD check, depending
on the nondeterministic choice of minimal siphons in the SMD check. Suppose
the algorithm finds the state machine decomposition shown in Fig. 3(b). The
subsequent rank check for this net fails. If in the reduction, place p1 is picked, we
obtain the net shown in Fig. 4(a), which is SLB and hence passes the subsequent
SMD and rank check. If however place p2 is picked for reduction, we obtain the
net shown in Fig. 4(b), which is not SMD and hence the SMD check must fail.
Figure 5(a) shows a minimal siphon S (in orange) that covers p3. S is not a state
machine for two reasons: |t•1 ∩ S| > 1 and t2 ∈ S• \ •S. The first violation is
picked up first, and from S and t1, a circuit with a T/P-handle is computed
(Lemma 5), which is shown in Fig. 5(b).

The diagnostic information obtained from Algorithm1 for N can be post-
processed into diagnostic information for N . We obtain:

(a) (b)
tr

t1
t2

p1 p3

tr

t1

Fig. 5. (a) A minimal siphon S (in orange) that is not a state machine witnessed by
t1 (b) A circuit (in blue) with a T/P-handle (in red) computed from S and t1.
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Theorem 7. Soundness of N can be decided in time O(|P |2 ∗ max(|P |, |T |)3)
such that the algorithm returns one of the structural error patterns in Theorem3
in case N is unsound.

Proof. The algorithm creates the connected version of N and applies Algorithm1
to it. A siphon that does not contain the source of N is returned as it is. Note
that each siphon in N is a siphon in N . A DQ-siphon S with a P/T-handle in
N is a DQ-siphon with a P/T-handle in N and is also returned as it is. Note
that in this case, S contains the source (otherwise we would return the first error
pattern) and therefore the sink, because of the siphon property. Therefore, the
return edge belongs to the siphon and cannot belong to the handle, so removal
of the return edge retains the error pattern. A circuit with a T/P-handle in N
is transformed into a path to the sink with a T/P-handle using Lemma3. The
complexity of this algorithm is dominated by the complexity of Algorithm1.

5 Experimental Evaluation

We implemented our technique as a research prototype in the IBM WebSphere
Business Modeler and used this implementation to evaluate the performance of
our technique and demonstrate that our technique provides useful diagnostic
information.

Our implementation translates business process models described in the
IBM WebSphere Business Modeler language into workflow graphs [11] and then
applies a completion technique by Kiepuszewski et al. [18] (cf. also [11]) to obtain
a workflow graph with a unique sink, as required by our technique.

Data Set. We ran our control flow analysis on 1353 business process models
from industrial projects in the insurance and banking domain, which were also
used as a benchmark in other work [11,12]. The 1353 models are organized into
four libraries A, B1, B2, and B3. The libraries B1 and B2 are older releases
of the library B3, where some process models were refined or changed, possibly
removing or adding errors. Counting only libraries A and B3, we have 703 unique
original models. Over the four libraries, the average number of nodes per derived
Petri net ranges between 89 and 107. There are several large nets with up to
627 nodes. For example, 47 nets from library B3 have 200 or more nodes. Some
models have state spaces with more than 1 million states, cf. [11].

We validated the correctness of the results, i.e., the detected soundness or
unsoundness of the processes, by comparing them with the results obtained
during previous experiments applying different analysis techniques to the same
data [11]. The techniques agree on all process models.

Performance Evaluation. We ran our experiments on a notebook with a 2 GHz
processor and 2 GB RAM. The analysis times are computed as an average over
10 runs. They also include the time spent by the tool to generate the error report
for the user. The overhead for loading the process models from disk into memory
during the first run is excluded.
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Table 1. Experimental results.

Library A B1 B2 B3 Total

Processes 282 287 363 421 1,353

Unsound processes 130 180 202 214 726

Siphon without source 0 17 15 13 45

Path with a T/P-handle 47 138 158 174 517

DQ-siphon with a P/T-handle 83 25 29 27 164

Average library analysis time [ms] 752 492 627 928 2799

Table 1 summarizes the results of our experiments for the four libraries. All
three structural error patterns occurred in the data set. The average time to
analyze a process model is 2ms, which is sufficiently fast to run our analysis
and provide immediate feedback while the process model is being developed. In
particular, our control-flow analyzer is roughly 2 to 6 times faster than existing
tools that produce diagnostic information, that is, tools based on state space
exploration [11].

Our implementation highlights structural error patterns inside the process
model. For instance, Fig. 6 shows the error report for a path with a T/P-handle.
Note that the activity ‘Confirm Customer Requirement’ produces a token on
each of its outgoing edges according to the semantics of the used high-level
language. Therefore, this activity creates a concurrent fork (as f1 in Fig. 1(a))
in the corresponding workflow graph. In Fig. 6, the activity ‘Confirm Customer
Requirement’ is on a simple path (blue) to the final place and starts multiple
concurrent paths including a T/P-handle (in red). Both concurrent paths join on
the alternative merge (empty diamond with error flag) without being properly
synchronized, which would need a concurrent join instead (as j1 in Fig. 1(a)). We
provide examples for the other two structural patterns in the extended version
of this paper [7].

Fig. 6. Screenshot of the diagnostic information for a T/P-handle.
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Diagnostic Information. As this example illustrates, our technique provides con-
cise diagnostic information. In particular, the structural patterns have advan-
tages over the traces computed by state space exploration. They can be displayed
and understood directly in the context of the process model (which is difficult
for traces that may be long and may contain iterations). Moreover, they are
concise and do not contain any information that is not immediately relevant
for understanding and fixing the error (in contrast to traces, which typically
describe complete executions including aspects irrelevant for the error).

6 Conclusion

We presented a new characterization of control-flow errors in workflow graphs
in terms of three structural error patterns, as well as an algorithm that decides
whether one of the error patterns is present. To our knowledge, this is the first
algorithm that runs in polynomial time and produces diagnostic information.
It is applicable to a wide range of business process models modeled in lan-
guages such as BPMN or UML activity diagrams; features of these languages
that do not translate to workflow graphs are either used rarely or orthogonal
to soundness checking. Our experiments show that our technique is sufficiently
fast to give instant feedback while the process model is being developed; the
experiments also provide anecdotal evidence that our technique generates useful
diagnostic information. Evaluating the benefit of this information in comparison,
for instance, to error traces, requires a user study and involves various aspects
beyond the scope of this paper, such as error visualizations and user interactions.
We leave such a study for future work.
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Abstract. The coverability problem for Petri nets plays a central role
in the verification of concurrent shared-memory programs. However, its
high EXPSPACE-complete complexity poses a challenge when encoun-
tered in real-world instances. In this paper, we develop a new approach to
this problem which is primarily based on applying forward coverability in
continuous Petri nets as a pruning criterion inside a backward-coverability
framework. A cornerstone of our approach is the efficient encoding of a
recently developed polynomial-time algorithm for reachability in continu-
ous Petri nets into SMT. We demonstrate the effectiveness of our approach
on standard benchmarks from the literature, which shows that our app-
roach decides significantly more instances than any existing tool and is in
addition often much faster, in particular on large instances.

1 Introduction

Counter machines and Petri nets are popular mathematical models for modeling
and reasoning about distributed and concurrent systems. They provide a high
level of abstraction that allows for employing them in a great variety of appli-
cation domains, ranging, for instance, from modeling of biological, chemical and
business processes to the formal verification of concurrent programs.

Many safety properties of real-world systems reduce to the coverability prob-
lem in Petri nets: Given an initial and a target configuration, does there exist a
sequence of transitions leading from the initial configuration to a configuration
larger than the target configuration? For instance, in an approach pioneered by
German and Sistla [19] multi-threaded non-recursive finite-state programs with
shared variables, which naturally occur in predicate-abstraction-based verification
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frameworks, are modeled as Petri nets such that every program location corre-
sponds to a place in a Petri net, and the number of tokens of a place indicates
how many threads are currently at the corresponding program location. Cover-
ability can then, for instance, be used in order to detect whether a mutual exclu-
sion property could be violated when a potentially unbounded number of threads
is executed in parallel. The coverability problem was one of the first decision prob-
lems for Petri nets that was shown decidable and EXPSPACE-complete [4,21,24].
Despite this huge worst-case complexity, over the course of the last twenty years,
a plethora of tools has emerged that have shown to be able to cope with a large
number of real-world instances of coverability problems in a satisfactory manner.

Our Contribution. We present a new approach to the coverability problem
and its implementation. When run on standard benchmarks that we obtained
from the literature, our approach proves more than 91 % of safe instances to be
safe, most of the time much faster when compared to existing tools, and none of
those tools can individually prove more than 84 % of safe instances to be safe.
We additionally demonstrate that our approach is also competitive when run on
unsafe instances. In particular, it decides 142 out of 176 (80 %) instances of our
benchmark suite, while the best competitor only decides 122 (69 %) instances.

Our approach is conceptually extremely simple and exploits recent advances
in the theory of Petri nets as well as the power of modern SMT-solvers inside
a backward-coverability framework. In [14], Fraca and Haddad solved long-
standing open problems about the complexity of decision problems for so-called
continuous Petri nets. This class was introduced by David and Alla [5] and allows
for transitions to be fired a non-negative real number of times—hence places may
contain a non-negative real number of tokens. The contribution of [14] was to
present polynomial-time algorithms that decide all of coverability, reachability
and boundedness in this class. A further benefit of [14] is to show that continuous
Petri nets over the reals are equivalent to continuous Petri nets over the rationals,
and, moreover, to establish a set of simple sufficient and necessary conditions in
order to decide reachability in continuous Petri nets. The first contribution of our
paper is to show that these conditions can efficiently be encoded into a sentence
of linear size in the existential theory of the non-negative rational numbers with
addition and order (FO(Q+,+, >)). This encoding paves the way for deciding
coverability in continuous Petri nets inside SMT-solvers and is particularly useful
in order to efficiently answer multiple coverability queries on the same continuous
Petri net due to caching strategies present in modern SMT-solvers. Moreover,
we show that our encoding in effect strictly subsumes a recently introduced
CEGAR-based approach to coverability described by Esparza et al. in [10]; in
particular we can completely avoid the potentially exponentially long CEGAR-
loop, cf. the related work section below. The benefit of coverability in continu-
ous Petri nets is that it provides a way to over-approximate coverability under
the standard semantics: any configuration that is not coverable in a continu-
ous Petri net is also not coverable under the standard semantics. This obser-
vation can be exploited inside a backward-coverability framework as follows.
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Starting at the target configuration to be covered, the classical backward-
coverability algorithm [1] repeatedly computes the set of all minimal predecessor
configurations that by application of one transition cover the target or some ear-
lier computed configuration until a fixed point is reached, which is guaranteed to
happen due to Petri nets being well-structured transition systems [13]. The crux
to the performance of the algorithm lies in the size of the set of minimal elements
that is computed during each iteration, which may grow exponentially.1 This is
where continuous coverability becomes beneficial. In our approach, if a mini-
mal element is not continuously coverable, it can safely be discarded since none
of its predecessors is going to be coverable either, which substantially shrinks
the predecessor set. In effect, this heuristic yields a powerful pruning technique,
enabling us to achieve the aforementioned advantages when compared to other
approaches on standard benchmarks.

Due to space constraints, we only sketch some of the proofs in this paper.
Full details can be found in [2].

Related Work. Our approach is primarily related to the work by Esparza et
al. [10], by Kaiser, Kroening and Wahl [20], and by Delzanno, Raskin and van
Begin [7]. In [10], Esparza et al. presented an implementation of a semi-decision
procedure for disproving coverability which was originally proposed by Esparza
and Melzer [11]. It is based on the Petri-net state equation and traps as sufficient
criteria in order to witness non-coverability. As shown in [11], those conditions
can be encoded into an equi-satisfiable system of linear inequalities called the
trap inequation in [11]. This approach is, however, prone to numerical impre-
cision that become problematic even for instances of small size [11, Sect. 5.3].
For that reason, the authors of [10] resort to a CEGAR-based variant of the
approach described in [11] which has the drawback that in the worst case, the
CEGAR loop has to be executed an exponential number of times leading to an
exponential number of queries to the underlying SMT-solver. We will show in
Sect. 4.3 that the conditions used in [10] are strictly subsumed by a subset of the
conditions required to witness coverability in continuous Petri nets: whenever
the procedure described in [10] returns uncoverable then coverability does not
hold in the continuous setting either, but not vice versa. Thus, a single satis-
fiability check to our formula in existential FO(Q+,+, >) encoding continuous
coverability that we develop in this paper completely subsumes the CEGAR-
approach presented in [10]. Another difference to [10] is that here we present a
sound and complete decision procedure.

Regarding the relationship of our work to [20], Kaiser et al. develop in their
paper an approach to coverability in richer classes of well-structured transition
systems that is also based on the classical backward-analysis algorithm. They
also employ forward analysis in order to prune the set of minimal elements during
the backward iteration, and in addition a widening heuristic in order to over-
approximate the minimal basis. Our approach differs in that our minimal basis is
always precise yet as small as possible modulo continuous coverability. Thus no
1 This problem is commonly referred to as the symbolic state explosion problem, cf. [8].
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backtracking as in [20] is needed, which is required when the widened basis turns
out to be too inaccurate. Another difference is that for the forward analysis, a
Karp-Miller tree is incrementally built in the approach described in [20], whereas
we use the continuous coverability over-approximation of coverability.

The idea of using an over-approximation of the reachability set of a Petri
net in order to prune minimal basis elements inside a backward coverability
framework was first described by Delzanno et al. [7], who use place invariants
as a pruning criterion. However, computing such invariants and checking if a
minimal basis element can be pruned potentially requires exponential time.

Finally, a number of further techniques and tools for deciding Petri net
coverability or more general well-structured transition systems have been
described in the literature. They are, for instance, based on efficient data struc-
tures [8,12,15,16] and generic algorithmic frameworks such as EEC [17] and
IC3 [22].

2 Preliminaries

We denote by Q, Z and N the set of rationals, integers, and natural numbers,
respectively, and by Q+ the set of non-negative rationals. Throughout the whole
paper, numbers are encoded in binary, and rational numbers as pairs of integers
encoded in binary. Let D ⊆ Q, DE denotes the set of vectors indexed by a finite
set E. A vector u is denoted by u = (ui)i∈E . Given vectors u = (ui)i∈E ,v =
(vi)i∈E ∈ D

E , addition u + v is defined component-wise, and u ≤ v whenever
ui ≤ vi for all i ∈ E. Moreover, u < v whenever u ≤ v and u �= v. Let E′ ⊆ E
and v ∈ D

E , we sometimes write v[E′] as an abbreviation for (vi)i∈E′ . The
support of v is the set �v�

def= {i ∈ E : vi �= 0}.
Given finite sets of indices E and F , and D ⊆ Q, D

E×F denotes the set
of matrices over D with rows and columns indexed by elements from E and
F , respectively. Let M ∈ D

E×F , E′ ⊆ E and F ′ ⊆ F , we denote by ME′×F ′

the D
E′×F ′

sub-matrix obtained from M whose row and columns indices are
restricted respectively to E′ and F ′.

Petri Nets. In what follows, we introduce the syntax and semantics of Petri
nets. While we provide a single syntax for nets, we introduce a discrete (i.e. in N)
and a continuous (i.e. in Q+) semantics.

Definition 1. A Petri net is a tuple N = (P, T,Pre,Post), where P is a finite
set of places; T is a finite set of transitions with P ∩ T = ∅; and Pre,Post ∈
N

P×T are the backward and forward incidence matrices, respectively.

A (discrete) marking of N is a vector of N
P . A Petri net system (PNS) is a

pair S = (N ,m0), where N is a Petri net and m0 ∈ N
P is the initial marking.

The incidence matrix C of N is the P × T integer matrix defined by C def=
Post − Pre. The reverse net of N is N −1 def= (P, T,Post,Pre). Let p ∈ P and
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t ∈ T , the pre-sets of p and t are the sets •p def= {t′ ∈ T : Post(p, t′) > 0}
and •t def= {p′ ∈ P : Pre(p′, t) > 0}, respectively. Likewise, the post-sets of p

and t are p• def= {t′ ∈ T : Pre(p, t′) > 0} and t• = {p′ ∈ P : Post(p′, t) > 0},
respectively. Those definitions can canonically be lifted to subsets of places and
of transitions, e.g., for Q ⊆ P we have •Q =

⋃
p∈Q

•p. We also introduce the
neighbors of a subset of places/transitions by: •Q• = •Q ∪ Q•. Let S ⊆ T , then
NS is the sub-net defined by NS

def= (•S•, S,Pre•S•×S ,Post•S•×S).
We say that a transition t ∈ T is enabled at a marking m whenever m(p) ≥

Pre(p, t) for every p ∈ •t. A transition t that is enabled can be fired, leading to
a new marking m′ such that for all places p ∈ P , m′(p) = m(p) + C(p, t). We
write m

t−→ m′ whenever t is enabled at m leading to m′, and write m −→ m′

if m t−→ m′ for some t ∈ T . By −→∗ we denote the reflexive transitive closure of
−→. A word σ = t1t2 · · · tk ∈ T ∗ is a firing sequence of (N ,m0) whenever there
exist markings m1, . . . ,mk such that

m0
t1−→ m1

t2−→ · · · tk−1−−−→ mk−1
tk−→ mk.

Given a marking m, the reachability problem asks whether m0 −→∗ m. The
reachability problem is decidable, EXPSPACE-hard [4] and in Fω3 [23], a non-
primitive-recursive complexity class. In this paper, however, we are interested in
deciding coverability, an EXPSPACE-complete problem [4,24].

Definition 2. Given a Petri net system S = (P, T,Pre,Post,m0) and a mark-
ing m ∈ N

P , the coverability problem asks whether m0 −→∗ m′ for some
m′ ≥ m.

Continuous Petri nets are Petri nets in which markings may consist of ratio-
nal numbers2, and in which transitions may be fired a fractional number of times.
Formally, a marking of a continuous Petri net is a vector m ∈ Q

P
+. Let t ∈ T ,

the enabling degree of t with respect to m is a function enab(t,m) ∈ Q+ ∪ {∞}
defined by:

enab(t,m) def=

{
min{m(p)/Pre(p, t) : p ∈ •t} if •t �= ∅,

∞ otherwise.

We say that t is Q-enabled at m if enab(t,m) > 0. If t is Q-enabled it may be fired
by any amount q ∈ Q+ such that 0 ≤ q ≤ enab(t,m), leading to a new marking
m′ such that for all places p ∈ P , m(p)′ def= m(p)+q·C(p, t). In this case, we write
m

q·t−−→ m′. The definition of a Q-firing sequence σ = q1t1 · · · qktk ∈ (Q+ × T )∗

is analogous to the standard definition of firing sequence, and so are −→Q, −→∗
Q

and Q-reachability. The Q-Parikh image of the firing sequence σ is the vector
π(σ) ∈ Q

T
+ such that π(σ)(t) def=

∑
ti=t qi. We also adapt the decision problems

for Petri nets.
2 In fact, the original definition allows for real numbers, however for studying decid-

ability and complexity issues, rational numbers are more convenient.
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Definition 3. Given a Petri net system S = (P, T,Pre,Post,m0) and a
marking m ∈ Q

P
+, the Q-reachability (respectively Q-coverability) problem asks

whether m0 −→∗
Q
m (respectively m0 −→∗

Q
m′ for some m′ ≥ m).

Recently Q-reachability and Q-coverability were shown to be decidable in
polynomial time [14]. In Sect. 3.2, we will discuss in detail the approach from [14].
For now, observe that m −→ m′ implies m −→Q m′, and hence m −→∗ m′

implies m −→∗
Q
m′. Consequently, Q-coverability provides an over-approximation

of coverability: this fact is the cornerstone of this paper.

Upward Closed Sets. A set V ⊆ N
P is upward closed if for every v ∈ V and

w ∈ N
P , v ≤ w implies w ∈ V . The upward closure of a vector v ∈ N

P is the
set ↑v def= {w ∈ N

P : v ≤ w}. This definition can be lifted to sets V ⊆ N
P in

the obvious way, i.e., ↑V
def=

⋃
v∈V ↑v. Due to N

P being well-quasi-ordered by ≤,
any upward-closed set V contains a finite set F ⊆ V such that V = ↑F . Such
an F is called a basis of V and allows for a finite representation of an upward-
closed set. In particular, it can be shown that V contains a unique minimal basis
B ⊆ V that is minimal with respect to inclusion for all bases F ⊆ V . We denote
minbase(F ) this minimal basis obtained by deleting vectors v ∈ F such that
there exists w ∈ F with w < v (when F is finite).

3 Deciding Coverability and Q-Reachability

We now introduce and discuss existing algorithms for solving coverability and
Q-reachability which form the basis of our approach. The main reason for doing
so is that it allows us to smoothly introduce some additional notations and
concepts that we require in the next section. For the remainder of this section,
we fix some Petri net system S = (N ,m0) with N = (P, T,Pre,Post), and
some marking m to be covered or Q-reached.

3.1 The Backward Coverability Algorithm

The standard backward coverability algorithm, Algorithm 1, is a simple to state
algorithm.

– It iteratively constructs minimal bases M , where in the k-th iteration, M
is the minimal basis of the (upward closed) set of markings that can cover
m after a firing sequence of length at most k. If m0 ∈ ↑M , the algorithm
returns true, i.e., that m is coverable. Otherwise, in order to update M , for
all m′ ∈ M and t ∈ T it computes m′

t(p) def= max{Pre(p, t), m′(p)−C(p, t)}.
The singleton {m′

t} is the minimal basis of the set of vectors that can cover
m′ after firing t.

– Thus defining pb(M) as pb(M) def=
⋃

m′∈M,t∈T {m′
t}, M ∪ pb(M) is a (not

necessarily minimal) basis of the upward closed set of markings that can cover
m after a firing sequence of length at most k + 1. This basis can be then
minimized in every iteration.
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Algorithm 1. Backward Coverability
Require: PNS S = (N ,m0) and a marking m ∈ N

P

1: M := {m};
2: while m0 �∈ ↑M do
3: B := pb(M) \ ↑M ;
4: if B = ∅ then
5: return false;
6: else
7: M := minbase(M ∪ B);
8: return true;

The termination of the algorithm is guaranteed due to N
P being well-quasi-

ordered, which entails that M must stabilize and return false in this case. It can
be shown that Algorithm 1 runs in 2-EXP [3]. The key point to the (empirical)
performance of the algorithm is the size of the set M during its computation: the
smaller, the better. Even though one can establish a doubly-exponential lower
bound on the cardinality of M during the execution of the algorithm, in general
not every element in M is coverable, even when m is coverable.

3.2 The Q-Reachability Algorithm

We now present the fundamental concepts of the polynomial-time Q-reachability
algorithm of Fraca and Haddad [14]. The key insight underlying their algorithm
is that Q-reachability can be characterized in terms of three simple criteria. The
algorithm relies on the notions of firing set and maximal firing set, denoted
fs(N ,m) and maxfs(N ,m), and defined as follows:

fs(N ,m) def= {�π(σ)� : σ ∈ (Q+ × T )∗, there is m′ ∈ Q
P
+ s.t. m σ−→Q m′}

maxfs(N ,m) def=
⋃

T ′∈fs(N ,m)

T ′.

Thus, fs(N ,m) is the set of supports of firing sequences starting in m. Even
though fs(N ,m) can be of size exponential with respect to |T |, deciding T ′ ∈
fs(N ,m) for some T ′ ⊆ T can be done in polynomial time, and maxfs(N ,m) is
also computable in polynomial time [14]. The following proposition characterizes
the set of Q-reachable markings.

Proposition 4 ([14, Theorem 20]). A marking m is Q-reachable in S =
(N ,m0) if and only if there exists x ∈ Q

T
+ such that

(i) m = m0 + C · x
(ii) �x� ∈ fs(N ,m0)
(iii) �x� ∈ fs(N −1,m)

In this characterization, x is supposed to be the Parikh image of a fir-
ing sequence. The first item expresses the state equation of S with respect to
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Algorithm 2. Q-reachability [14]
Require: PNS S = (N ,m0) with N = (P, T,Pre,Post) and a marking m
1: if m = m0 then
2: return true;
3: T ′ := T ;
4: while T ′ �= ∅ do
5: S := ∅;
6: for all t ∈ T ′ do
7: x := solve(CP×T ′ · x = m − m0 ∧ x(t) > 0 ∧ x ∈ Q

T ′
+ );

8: if x �= undef then
9: S := S ∪ �x�;

10: if S = ∅ then
11: return false;
12: T ′ := maxfs(NS ,m0[

•S•])) ∩ maxfs(N −1
S ,m[•S•]))

13: if T ′ = S then
14: return true;
15: return false;

m0, m and x. The two subsequent items express that the support of the solution
of the state equation has to lie in the firing sets of S and its reverse. As such,
the characterization in Proposition 4 yields an NP algorithm. By employing a
greatest fixed point computation, Algorithm 2, which is a decision variant of the
algorithm presented in [14], turns those criteria into a polynomial-time algorithm
(see [14] for a proof of its correctness). In order to use Algorithm 2 for deciding
coverability, it is sufficient, for each place p, to add a transition to N that can
at any time non-deterministically decrease p by one token. Denote the resulting
Petri net system by S ′, it can easily checked that m is Q-coverable in S if and
only if m is Q-reachable in S ′.

4 Backward Coverability Modulo Q-Reachability

We now present our decision algorithm for the Petri net coverability problem.

4.1 Encoding Q-Reachability into Existential FO(Q+,+, >)

Throughout this section, when used in formulas, w and x are vectors of first-
order variables indexed by P representing markings, and y is a vector of first-
order variables indexed by T representing the Q-Parikh image of a transition
sequence.

Condition (i) of Proposition 4, which expresses the state equation, is readily
expressed as a systemof linear equations and thus directly corresponds to a formula
Φ(w,x,y) which holds whenever a marking x is reached starting at marking w by
firing every transition y(t) times (without any consideration whether such a firing
sequence would actually be admissible):

ΦN
eqn(w,x,y) def= x = C · y + w.
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Next, we show how to encode Conditions (ii) and (iii) into suitable formulas.
To this end, we require an effective characterization of membership in the firing
set fs(N ,w) defined in Sect. 3.2. The following characterization can be derived
from [14, Corollary 19]. First, we define a monotonic increasing function incfsN ,w :
2T → 2T as follows:

incfsN ,w(S) def= S ∪ {t ∈ T (N ) : •t ⊆ �w� ∪ {s• : s ∈ S}} .

From [14, Corollary 19], it follows that T ′ ∈ fs(N ,w) if and only if T ′ =
lfp(incfsNT ′ ,w), where lfp is the least fixed point operator3, i.e.,

T ′ = incfsNT ′ ,w(· · · (incfsNT ′ ,w(∅)) · · · ).
Clearly, the least fixed point is reached after at most |T ′| iterations.

In order to decide whether �y� ∈ fs(N ,w), we simulate this fixed-point
computation in an existential FO(Q+,+, >)-formula ΦN

fs (w,y). Our approach is
inspired by a technique of Verma, Seidl and Schwentick that was used to show
that the reachability relation for communication-free Petri nets is definable by
an existential Presburger arithmetic formula of linear size [28]. The basic idea
is to introduce additional first-order variables z indexed by P ∪ T that, given
a firing set, capture the relative order in which transitions of this set are fired
and the order in which their input places are marked. This order corresponds to
the computation of lfp(incfsN�y�,w) and is encoded via a numerical value z(t)
(respectively z(p)), representing an index that must be strictly greater than
zero for a transition (respectively an input place of a transition) of this set. In
addition, input places have to be marked before the firing of a transition:

ΦN
dt(y,z) def=

∧

t∈T

(

y(t) > 0 →
∧

p∈•t

0 < z(p) ≤ z(t)

)

.

Moreover, a place is either initially marked or after the firing of a transition
of the firing set. So:

ΦN
mk (w,y,z) def=

∧

p∈P

(

z(p) > 0 →
(

w(p) > 0 ∨
∨

t∈•p

y(t) > 0 ∧ z(t) < z(p)

))

.

We can now take the conjunction of the formulas above in order to obtain a
logical characterization of fs(N ,w):

ΦN
fs (w,y) def= ∃z : ΦN

dt(y,z) ∧ ΦN
mk (w,y,z).

Having logically characterized all conditions of Proposition 4, we can define
the global Q-reachability relation for a Petri net system S = (N ,w) as follows:

ΦS(w,x) def= ∃y : ΦN
eqn(w,x,y) ∧ ΦN

fs (w,y) ∧ ΦN −1

fs (x,y).

In summary, we have thus proved the following result in this section.
3 In [14, Corollary 19], an algorithm is presented that basically computes

lfp(incfsNT ′ ,w ).
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Algorithm 3. Backward Coverability Modulo Q-Reachability
Require: PNS S = (N ,m0) and a marking m ∈ N

P

1: M := {m}; Φ(x) := ∃y : ΦS(m0,y) ∧ y ≥ x;
2: if not Q-coverable(S,m) then
3: return false
4: while m0 �∈ ↑M do
5: B := pb(M) \ ↑M ;
6: D := {v ∈ B : unsat(Φ(v))};
7: B := B \ D;
8: if B = ∅ then
9: return false;

10: else
11: M := minbase(M ∪ B);
12: Φ(x) := Φ(x) ∧∧v∈D x �≥ v;
13: return true;

Proposition 5. Let S = (N ,m0) be a Petri net system and m be a marking.
There exists an existential FO(Q+,+, >)-formula ΦS(w,x) computable in linear
time such that m is Q-reachable in S if and only if ΦS(m0,m) is valid.

Checking satisfiability of ΦS is in NP, see e.g. [26]. It is a valid question to ask why
one would prefer an NP-algorithm over a polynomial-time one. We address this
question in the next section. For now, note that in order to obtain an even more
accurate over-approximation, we can additionally restrict y to be interpreted in
the natural numbers while retaining membership of satisfiability in NP, due to
the following variant of Proposition 4: If a marking is reachable in S then there
exists some y ∈ N

T such that Conditions (i), (ii) and (iii) of Proposition 4 hold.

Remark 6. Proposition 5 additionally allows us to improve the best known upper
bound for the inclusion problem of continuous Petri nets, which is EXP [14].
Given two Petri net systems S = (N ,m0) and S ′ = (N ′,m′

0) over the same
set of places, this problem asks whether the set of reachable markings of S is
included in S ′, i.e., whether ∀m.ΦS(m0,m) → ΦS′(m′

0,m) is valid. The latter
is a Π2-sentence of FO(Q+,+, >) and decidable in ΠP

2 [26]. Hence, inclusion
between continuous Petri nets is in ΠP

2 .

4.2 The Coverability Decision Procedure

We now present Algorithm 3 for deciding coverability. This algorithm is an
extension of the classical backward reachability algorithm that incorporates Q-
reachability checks during its execution in order to keep the set of minimal basis
elements small.

First, on Line 1 we derive an open formula Φ(x) from ΦS such that Φ(x)
holds if and only if x is Q-coverable in S. Then, on Line 2, the algorithm checks
whether the marking m is Q-coverable using the polynomial-time algorithm
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from [14] and returns that m is not coverable if this is not the case. Otherwise,
the algorithm enters a loop which iteratively computes a basis M of the backward
coverability set starting at m whose elements are in addition Q-coverable in S.
To this end, on Line 5 the algorithm computes a set B of new basis elements
obtained from one application of pb, and on Line 7 it removes from B the set
D which contains all elements of B which are not Q-coverable. If as a result B
is empty the algorithm concludes that m is not coverable in S. Otherwise, on
Line 11 it adds the elements of B to M . Finally, Line 12 makes sure that in
future iterations of the loop the underlying SMT solver can immediately discard
elements that lie in ↑D. The latter is technically not necessary, but it provides
some guidance to the SMT solver. The proof of the following proposition can be
found in [2].

Proposition 7. Let S = (N ,m0) be a PNS and m be a marking. Then m is
coverable in S if and only if Algorithm 3 returns true.

Remark 8. In our actual implementation, we use a slight variation of Algorithm 3
in which the instruction M := minbase(M ∪ B) in Line 11 is replaced by M :=
minbase(M ∪ minc,kB). Here, c, k ∈ N are parameters to the algorithm, and
minc,kB is the set of the c + |B|/k elements of B with the smallest sum-norm.
In this way, the empirically chosen parameters c and k create a bottleneck that
gives priority to elements with small sum-norms, as they are more likely to allow
for discarding elements with larger sum-norms in future iterations.

This variation of Algorithm 3 has the same correctness properties as the orig-
inal one: It can be shown that using minc,kB instead of B in Line 11 computes
the same set ↑M at the expense of delaying its stabilization.

Before we conclude this section, let us come back to the question why in our
approach we choose using ΦS (whose satisfiability is in NP) over Algorithm 2
which runs in polynomial time. In Algorithm 3, we invoke Algorithm 2 only once
in Line 2 in order to check if S is not Q-coverable, and thereafter only employ ΦS
which gets incrementally updated during each iteration of the loop. The reason is
that in practice as observed in our experimental evaluation below, Algorithm 2
turns out to be often faster for a single Q-coverability query. Otherwise, as
soon ΦS has been checked for satisfiability once, future satisfiability queries
are significantly faster than Algorithm 2, which is a desirable behavior inside a
backward coverability framework. Moreover we can constraint solutions to be in
N instead of Q, leading to a more precise over approximation.

4.3 Relationship to the CEGAR-approach of Esparza Et Al

In [10], Esparza et al. presented a semi-decision procedure for coverability that
is based on [11] and employs the Petri net state equation and traps inside a
CEGAR-framework. A trap in N is a non-empty subset of places Q ⊆ P such
that Q• ⊆ •Q, and Q ⊆ P is a siphon in N whenever •Q ⊆ Q•. Given a marking
m, a trap (respectively siphon) is marked in m if

∑
p∈Q m(p) > 0. An important

property of traps is that if a trap is marked in m, it will remain marked after
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Fig. 1. A Petri net that cannot mark p1.

any firing sequence starting in m. Conversely, when a siphon is unmarked in
m it remains so after any firing sequence starting in m. By definition, Q is a
trap in N if and only if Q is a siphon in N −1. The coverability criteria that [10]
builds upon are derived from [11] and can be summarized as follows.

Proposition 9 ([10]). If m is Q-reachable (respectively reachable) in (N ,m0)
then there exists x ∈ Q

T
+ (respectively x ∈ N

T ) such that:

(i) m = m0 + C · x
(ii) for all traps Q ⊆ P , if Q is marked in m0 then Q is marked in m

As in our approach, in [10] those criteria are checked using an SMT-solver. The
for-all quantifier is replaced in [10] by incrementally enumerating all traps in a
CEGAR-style fashion. It is shown in [14, Proposition 18] that Condition (iii) of
Proposition 4 is equivalent to requiring that N −1

�x� has no unmarked siphon in
m, which appears to be similar to Condition (ii) of Proposition 9. In fact, we
show the following.

Proposition 10. Conditions (i) and (iii) of Proposition 4 strictly imply Con-
ditions (i) and (ii) of Proposition 9 (when interpreted over Q+).

Proof. We only show strictness, the full proof can be found in [2]. To this end,
consider the Petri net (N ,m0) depicted in Fig. 1 with m = (0, 1). Clearly m is
not reachable. There is a single solution to the state equation x = (1, 0). There is
a single trap {p1} which is unmarked in m0. So the conditions of Proposition 9
hold, and hence the algorithm of [10] does not decide this net safe. On the
contrary in N −1

�x�, the reverse net without t2, {p0} is a siphon that is unmarked
in m. So Condition (iii) of Proposition 4 does not hold. ��
This proposition shows that the single formula stated in Proposition 5 strictly
subsumes the approach from [10]. Moreover, it provides a theoretical justification
for why the approach of [10] performs so well in practice: the conditions are a
strict subset of the conditions developed for Q-reachability in [14].

5 Experimental Evaluation

We evaluate the backward coverability modulo Q-reachability algorithm on stan-
dard benchmarks from the literature with two goals in mind. First, we demon-
strate that our approach is competitive with existing approaches. In particular,
we prove significantly more safe instances of our benchmarks safe in less time
when compared to any other approach. Overall our algorithm decides 142 out
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Fig. 2. Number of safe instances (top-left), unsafe instances (top-right) and total
instances (bottom) decided by every tool. Bold numbers indicate the tool(s) which
decide(s) the largest number of instances in the respective category.

of 176 instances, the best competitor decides 122 instances. Second, we demon-
strate that Q-coverability is a powerful pruning criterion by analyzing the relative
number of minimal bases elements that get discarded during the execution of
Algorithm 3.

We implemented Algorithm 3 in a tool called QCover in the programming
language Python.4 The underlying SMT-solver is z3 [6]. For the minc,k heuris-
tic mentioned in Remark 8, we empirically chose c = 10 and k = 5. We observed
that any sane choice of c and k leads to an overall speed-up, though different
values lead to different (even increasing) running times on individual instances.
QCover takes as input coverability instances in the mist file format.5 The basis
of our evaluation is the benchmark suite that was used in order to evaluate the
tool Petrinizer, see [10] and the references therein. This suite consists of five
benchmark categories: mist, consisting of 27 instances from the mist toolkit; bfc,
consisting of 46 instances used for evaluating BFC; medical and bug tracking,
consisting of 12 and 41 instances derived from the provenance analysis of messages
of a medical and a bug-tracking system, respectively; and soter, consisting of 50
instances of verification conditions derived from Erlang programs [9].

We compare QCover with the following tools: Petrinizer [10], mist [15]
and bfc [20] in their latest versions available at the time of writing of this paper.
mist implements a number of algorithms, we use the backward algorithm that
uses places invariant pruning [16].6 All benchmarks were performed on a single
computer equipped with four Intel R© CoreTM 2.00 GHz CPUs, 8 GB of memory
and Ubuntu Linux 14.04 (64 bits). The execution time of the tools was limited
to 2000 s (i.e. 33 min and 20 s) per benchmark instance. The running time of
every tool on an instance was determined using the sum of the user and sys time
reported by the Linux tool time.
4
QCover is available at http://www-etud.iro.umontreal.ca/∼blondimi/qcover/.

5
https://github.com/pierreganty/mist/wiki#input-format-of-mist.

6
https://github.com/pierreganty/mist/wiki#coverability-checkers-included-in-mist.

http://www-etud.iro.umontreal.ca/~blondimi/qcover/
https://github.com/pierreganty/mist/wiki#input-format-of-mist
https://github.com/pierreganty/mist/wiki#coverability-checkers-included-in-mist
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Figure 2 contains three tables which display the number of safe instances
shown safe, unsafe instances shown unsafe, and the total number of instances
of our benchmark suite decided by each individual tool. As expected, our algo-
rithm outperforms all competitors on safe instances, since in this case a proof
of safety (i.e. non-coverability) effectively requires the computation of the whole
backward coverability set, and this is where pruning via Q-coverability becomes
most beneficial. On the other hand, QCover remains competitive on unsafe
instances, though a tool such as BFC handles those instances better since its
heuristics are more suited for proving unsafety (i.e. coverability). Nevertheless,
QCover is the overall winner when comparing the number of safe and unsafe
instances decided, being far ahead at the top of the leader-board deciding 142
out of 176 instances.

Fig. 3. Cumulative number of instances proven safe (left) and total number of instances
decided (right) within a fixed amount of time.

QCover not only decides more instances, it often does so faster than its
competitors. Figure 3 contains two graphs which show the cumulative number of
instances proven safe and the total number of instances decided on all suites by
each tool within a certain amount of time. When it comes to safety, QCover is
always ahead of all other tools. However, when looking at all instances decided,
BFC first has an advantage. We observed that this advantage occurs on instances
of comparably small size. As soon as large instances come into play, QCover

wins the race. Besides different heuristics used, one reason for this might be the
choice of the implementation language (C for BFC vs. Python for QCover).
In particular, BFC can decide a non-negligible number of instances in less than
10ms, which QCover never achieves.

Finally, we consider the effectiveness of using Q-coverability as a pruning
criterion. To this end, consider Fig. 4 in which we plotted the number of times a
certain percentage of basis elements was removed due to not being Q-coverable.
Impressively, in some cases more than 95 % of the basis elements get discarded.
Overall, on average we discard 56 % of the basis elements, which substantiates
the usefulness of using Q-coverability as a pruning criterion.
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Fig. 4. Number of times a certain percentage of basis elements was removed due to
Q-coverability pruning.

Before we conclude, let us mention that already 83 instances are proven
safe by only checking the state equation, and that additionally checking for the
criteria (ii) and (iii) of Proposition 4 increases this number to 101 instances.
If we use Algorithm 2 instead of our FO(Q+,+, >) encoding then we can only
decide 132 instances in total. Finally, in our experiments, interpreting variables
over Q instead of N resulted in no measurable overall performance gain.

In summary, our experimental evaluation shows that the backward cover-
ability modulo Q-reachability approach to the Petri net coverability problem
developed in this paper is highly efficient when run on real-world instances, and
superior to existing tools and approaches when compared on standard bench-
marks from the literature.

6 Conclusion

In this paper, we introduced backward coverability modulo Q-reachability, a
novel approach to the Petri net coverability problem that is based on using
coverability in continuous Petri nets as a pruning criterion inside a backward
coverability framework. A key ingredient for the practicality of this approach is
an existential FO(Q+,+, >)-characterization of continuous reachability, which
we showed to strictly subsume a recently introduced coverability semi-decision
procedure [10]. Finally, we demonstrated that our approach significantly outper-
forms existing ones when compared on standard benchmarks.

There are a number of possible avenues for future work. It seems promising
to combine the forward analysis approach based on incrementally constructing
a Karp-Miller tree that is used in BFC [20] with the Q-coverability approach
introduced in this paper. In particular, recently developed minimization and
acceleration techniques for constructing Karp-Miller trees should prove benefi-
cial, see e.g. [18,25,27]. Another way to improve the empirical performance of
our algorithm is to internally use more efficient data structures such as sharing
trees [8]. It seems within reach that a tool which combines all of the aforemen-
tioned techniques and heuristics could decide all of the benchmark instances we
used in this paper within reasonable resource restrictions.
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Abstract. The inherently nondeterministic semantics of concurrent
programs is the root of many programming errors. Atomicity (more
precisely conflict serializability) has been used to reduce the magni-
tude of this nondeterminism and therefore make it easier to under-
stand the behaviour of the concurrent program. Serializability, however,
has not been studied well for programs executed under memory models
weaker than sequential consistency (SC), where writes are not atomic,
i.e., they may be committed to the main memory later than issued. In
this paper, we define the notion of conflict serializability for the Total
Store Ordering (TSO) memory model, and study the relation between
TSO-serializability and the well-known notions of SC-serializability and
robustness. We investigate the algorithmic problem of monitoring pro-
gram executions for violations of serializability, and provide lower bound
complexity results for the problem, and new algorithms to perform the
monitoring efficiently.

1 Introduction

While writing a concurrent program, a programmer often prefers to have non-
interfered access to shared data that is manipulated by a thread, since this
permits the reasoning about the correctness of the code to be done locally and
therefore simplifies the process. Atomicity is a generic correctness criterion that
is inspired by this view. Informally, an atomic code block has the same behav-
iour under interfering actions of other threads as it does when executed without
interference (serially). Establishing atomicity of code blocks eases the task of
reasoning about the program by substantially reducing the number of interleav-
ings that need to be considered. Moreover, non-atomicity hints at the existence
of potential bugs; a study of concurrency errors [20] shows that a majority of
reported errors in concurrent programs (around 69%) are atomicity violations.

Several notions of atomicity have been introduced in the literature. A widely
recognized notion is conflict serializability [21], introduced as a correctness cri-
terion with a tractable monitoring algorithm that guarantees atomicity. It is
assumed that a program’s code is divided into code blocks (such as procedures,

An extended version of this paper including the missing proofs can be found at [1].
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loop bodies, or even single statements) that are called transactions. An execution
is conflict serializable if it is equivalent to a serial execution, i.e. an execution in
which all transactions are executed in a sequential non-interleaved fashion. The
key element of this definition is the notion of equivalence which allows permuta-
tion of non-conflicting statements to establish an equivalent serial execution.

There has been a huge body of research in the recent years that studies the
problems of static and dynamic checking of atomicity, which is almost entirely
based on the assumption that the programs are executed under a sequentially
consistent (SC) memory model. Weak memory models have been duly getting
a lot of attention in the programming languages and systems research commu-
nities, and yet the question of atomicity under a weak memory model has not
been studied well. Let us start by an example to motivate why weak memory
models require a carefully tailored notion of atomicity.

Fig. 1. Task pool (transactions marked by brackets).

Consider the program
with two methods in Fig. 1.
Array pool implements a
pool of tasks with two point-
ers head and tail pointing
to its beginning and end.
The invariant is head ≤ tail
and the pool is empty if head
= tail. The procedures (a)
and (b) take elements from the pool’s head and tail, respectively. Imagine a
program that is running these two procedures in two threads (transactions are
marked by brackets in the figure). Once a thread atomically modifies head/tail,
interference from the other thread is tolerated. But, when it is about to modify
the pool, it requires mutual exclusion. It is easy to verify that every execution of
this program is conflict serializable (under sequential consistency). Even though
both (a) and (b) potentially write to an element of the array pool, the conditional
ensures that it is never the same element. Now consider the same program exe-
cuted under the Total Store Order (TSO) memory model where writes are first
stored in a thread-local buffer and non-deterministically flushed into the shared
memory at a later time. When head + 1 = tail, the if condition may succeed
in both (a) and (b). A write to head performed by (a) may be propagated to
(b) after the condition is tested in (b), conversely a write to tail performed by
(b) may be propagated to (a) after the condition is tested in (a). This is the
behaviour that is strictly disallowed under SC. In that case, both threads access
the same element of the array pool by first reading it and then writing to it.
This is a classic violation of atomicity. Moreover, assuming that the threads are
grabbing tasks from this task pool to execute, this non-atomic behaviour can
lead to a real program error if a non-idempotent task ends up being executed
twice by two different threads. We need a notion of atomicity that is aware of
such erroneous TSO-executions, and declares them as non-atomic.

In this paper, we propose a new notion of atomicity, called TSO-
serializability, which is inspired by the standard notion of conflict serializability
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under SC, in the sense that is syntactic, efficient to monitor, and helpful for the
programmer to facilitate local reasoning. Yet, it makes special considerations for
(i) non-atomicity of writes to the shared memory under TSO, and (ii) possible
reorderings of shared memory accesses made by the same thread, allowed under
TSO but not under SC. The idea is that TSO-serializability lifts the relaxed-
ness of the orderings of individual statements under TSO to the level of atomic
blocks (viewed as composite statements). For example, since TSO allows for
two statements write(x)read(y) to be reordered to read(y) write(x) (indicat-
ing that the write is committed later), therefore we expect the two-transaction
sequence [write(x1)write(x2)] [read(y1)read(y2)] to be allowed to be reordered
to [read(y1)read(y2)] [write(x1)write(x2)] in an equivalent execution.

We provide a formal justification for the notion of TSO-serializability pre-
sented in this paper by stating its precise relation to SC-serializability and robust-
ness. Robustness [6] is a property of a program stating that the program does
not exhibit non-SC behaviour if executed on a weaker memory model such as
TSO. If a program is robust, and it is SC-serializable, then for any reasonable
notion of TSO-serializability, one should expect it to be serializable under TSO.
That is exactly what we prove for our proposed notion of TSO-serializability.
The converse, however, does not always hold. If a program exhibits strictly more
behaviours under TSO (compared to SC), it is expected that some of these
behaviours may not serializable, while all SC behaviours are.

Since TSO-serializability is formulated based on the concept of a syntactic
conflict relation (similar to standard SC-serializability), a monitoring algorithm
for TSO-serializability can be adapted from the classic algorithm for conflict
serializability effortlessly; a program execution can be monitored for TSO-
serializability violations using a similar algorithm as SC-serializability [21] and in
the same polynomial time complexity. There is, however, a practical impediment
in the way of monitoring programs for TSO-serializability violations, and that
is how to obtain an execution to monitor in the first place. To obtain a detailed
TSO execution (including the information about when writes were committed
to memory), the monitor needs access to inner workings of the cache coherence
protocol. This implies a very complicated monitor design which will likely have
huge performance setbacks. Conceptually, there is a lightly distributed system
that needs to be monitored, and observing global snapshots of which are costly.

We propose the notion of traces, as an abstraction of executions (in the form
of a set of executions) which forgets information about the exact time of write
commits. In a trace, once a write is issued by a thread, it can be committed at any
point in the future, consistently with all the other accesses in the trace. We pose
and solve the problem of monitoring a trace for TSO-serializability violations.
Since a trace represents a set of executions, it is expected that this problem
should be more complex than the monitoring problem of a single execution. We
prove that the problem is in general NP-complete, but fixed-parameter tractable.
We propose an algorithm to solve it in polynomial time if the number of threads
in the program is considered to be a constant.
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2 Multithreaded Programs and Their Executions

Events. A program consists of a number of threads running concurrently and
communicating through shared variables. Each thread runs a sequence of trans-
actions, which are themselves sequences of events. We fix arbitrary sets T, Tr, V,
and D of thread identifiers, transaction identifiers, variable names, and values.

For a given thread identifier t, we fix the sets Rt = {rd t(x, v)i ∶ i ∈ Tr, x ∈ V, v ∈
D} and Wt = {wr t(x, v)i ∶ i ∈ Tr, x ∈ V, v ∈ D} of read and write events. Events
are indexed by thread and transaction identifiers. Fence events (which concern
the internal workings of TSO and which are explained later in this section) are
denoted by fni

t. We omit the transaction identifier i when it is understood from
the context, or it is irrelevant. Let Et = Rt ∪Wt ∪ {fn

i
t ∶ i ∈ Tr} and E = ⋃t Et.

Programs. A sequence of events σ is called serial when every two events of the
same transaction are not separated by an event of another transaction, and well-
formed when each transaction identifier is used at most once and for each thread
t, the projection of σ on events of thread t is serial. A program P is abstractly
represented as a prefix-closed set of well-formed sequences of events (represent-
ing all possible interleavings of events of different threads). The semantics of a
program P for a specific memory model consists only of those sequences that
are feasible under that memory model.

Memory Models. An SC-execution is a sequence of events η ∈ E
∗ where

roughly, each read event reads the value written by the last preceding write.
An SC-execution of a program P is an SC-execution η such that η ∈ P .

Under TSO, a write wr t(x, v)i (called also a write-issue) is first stored
in a thread-local FIFO buffer, called the store buffer, before being non-
deterministically flushed into the shared memory. The written value may become
visible to other threads at a later time. Flushing the store buffers introduces
additional events wr -comt(x, v)i, called write-commit events, for removing a
write wr t(x, v)i from the store buffer of t and execute it on the shared mem-
ory. We say that the write-commit wr -comt(x, v)i corresponds to that write,
and denote it by wr t(x, v)i ∼ wr -comt(x, v)i. Write-commits inherit the transac-
tion identifier of the corresponding write-issue (regardless of when they occur).
A read rd t(x, v) prefetches the value v written by the last write to x in the
buffer of t, and if no such write exists, the value v is retrieved from the shared
memory. A fence event fnt is enabled only when the buffer of t is empty. Let
Wct = {wr -comt(x, v)i ∶ i ∈ Tr, x ∈ V, v ∈ D}, Etso

t = Et ∪Wct, and E
tso
= ⋃t E

tso
t.

For any e ∈ {rd t(x, v)i,wr t(x, v)i,wr -comt(x, v)i}, th(e) = t and var(e) = x. A
sequence of events η ∈ (Etso

)
∗ satisfying this semantics is called a TSO-execution.

A TSO-execution of a program P is a TSO-execution η such that the projection
of η on E belongs to P . Figure 2(a) pictures a TSO-execution of the program in
Fig. 1.
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3 Conflict Serializability

Conflict serializability was introduced in [21] as a syntactic (and tractable to
monitor) notion that ensures atomicity. Instead of considering the data manip-
ulated by transactions, a conservative “conflict relation”, relating the individual
actions of transactions, is defined which guarantees atomicity regardless of the
data values read and written by individual actions. A conflict relation relates
events with their values projected away, that we also call events (and inherit all
the notations from Sect. 2 for sets of events). Conflict serializability is a prop-
erty of a sequence of events (without values), which are also called SC/TSO-
executions. Note that such a sequence represents a set of executions, where
different values can be assigned to individual events (consistently).

Formally, a conflict relation is an irreflexive binary relation ⊚ ⊆ E × E. For
a pair of events e, e′ ∈ E, we write e ⊚ e′ to stand for (e, e′) ∈ ⊚ and e /⊚ e′ to
stand for (e, e′) /∈ ⊚. Intuitively, whenever e ⊚ e′, the effect of executing e after
e′ may differ from that of executing e before e′. The conflict relation depends
on the underlying memory model. For instance, the conflict relation ⊚SC from
[10] assumes sequential consistency: e⊚SC e′ whenever e and e′ are events of the
same thread (i.e., th(e) = th(e′)) or they access the same variable, and one of
them is a write (i.e., (e, e′) ∈ (R ∪W)2 ∖R2 and var(e) = var(e′)).

Given an execution η = η1ee
′η2 (where e and e′ are events and η1 and η2 are

executions), we say an execution η′ = η1e
′eη2 is derived from η by a ⊚-valid swap

if and only if e /⊚ e′. A permutation η′ of an execution η is ⊚-preserving if and
only if η′ can be derived from η through a sequence of ⊚-valid swaps.

An execution η is conflict serializable w.r.t. the conflict relation ⊚ if and only
if there exists an execution η′ that is a ⊚-preserving serial permutation of η. We
call the notion of conflict serializability based on ⊚SC SC-serializabiliy for short.
A program P is SC-serializable iff every SC-execution of P is SC-serializable.

An equivalent characterization of conflict serializability can be established
through conflict graphs [21], where the graph was constructed for a specific
conflict relation. The same definition can be easily adapted for any conflict
relation.

Definition 1 (Event-Graph). The event-graph of an execution η is the
directed graph EGη = ⟨V,E⟩ where there is a node in V for each event in η,
and E contains an edge from u to v iff e(u) ⊚ e(v) and e(u) occurs before e(v)
in η (where e(v) is the event of execution η corresponding to the graph node v).

Intuitively, one can think of the event-graph of an execution η as a structure
that represents the order between all conflicting events in η.

The conflict-graph of an execution η is defined based on the event-graph of η
by grouping all events indexed by the same transaction identifier as a new node,
and considering the directed graph that is induced on these new transaction
nodes. Let tr(v) be the set of events that belong to a transaction node v.

Definition 2 (Conflict-Graph). The conflict-graph of an execution η is the
directed graph CGη = ⟨V

′,E′⟩ where V ′ includes one node for each transaction
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identifier in η, and we have (v, v′) ∈ E′ iff there exists events e ∈ tr(v) and
e′ ∈ tr(v′) such that (e, e′) ∈ E where EGη = (V,E) is the event-graph of η.

Theorem 1 (from [21]). For a conflict relation ⊚, an execution η is conflict-
serializable if and only if CGη is acyclic.

In [21], a polynomial time algorithm is presented that uses the conflict graph
and Theorem 1 to monitor an execution under SC for violations of serializability.

Event-graphs and conflict-graphs of SC-executions are defined as in
Definitions 1 and 2, respectively, using ⊚SC instead of ⊚.

4 Serializability Under TSO

In this section, we propose a conflict relation for TSO and justify the suitability
of the obtained notion of conflict serializability by relating it to the classic SC
serializability.

4.1 TSO Conflict Relation

The TSO conflict relation ⊚TSO is formally defined as follows:

Similar to the SC conflict relation, ⊚TSO declares events accessing the same
shared memory location, where at least one of them is a write-commit conflict-
ing (see (1) above). However, since under TSO, some read events may access
values by reading from a local buffer (instead of the shared memory), there are
exceptions to this general rule involving such reads.

A read rd t1(x) event that occurs between a
wr t1(x) event and the corresponding wr -comt1(x)
event, and where wr t1(x) is the most recent write-
issue event before rd t1(x), fetches its value from
the store buffer that holds the value written by
wr t1(x). In this case, according to the TSO seman-
tics, event rd t1(x) should not be in conflict with a
write-commit wr -comt2(x) of another thread that
happens in parallel with it; that is, when wr -comt2(x) occurs between the pair
of events wr t1(x) and wr -comt1(x) (as illustrated in the figure on the right).
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Such a pair of parallel read and write-commit events, which we denote by
rd t1(x) ∣∣wr -comt2(x), should not be conflicting since one is a read from a local
store buffer and the other a write to the shared memory (accesses to two different
resources).

Similar to the SC conflict relation, ⊚TSO declares events within the same
thread to be in conflict (see (2) above). Again, there are exceptions to this rule.
A write-commit is not in conflict with other read and write events in the same
thread (see (ii) above), except for its corresponding write issue (which must
always precede it). Other exceptions (see (iii) above) are related to the relax-
ations of the program order allowed by the TSO semantics. There is no conflict
between a write and a read event of the same thread on different variables. This
exception is natural since it extrapolates the behaviour of the memory model at
the level of events to the level of transactions, i.e., write-only transactions can be
reordered with respect to later read-only transactions. Finally, TSO semantics
relaxes the program order between a rd t(x) event that fetches its value from the
store buffer and a future rd t(y) event of a different variable y ≠ x (see also [1]).

Buffered Reads. The relative ordering of wr t(x)/wr -comt(x) events corre-
sponding to the read event rd t(x) (of the same thread) determines whether the
read fetches its value from the buffer (or the shared memory). Therefore, every
read event rd t(x), that is preceded by a write wr t(x) of the same thread and
no fence event fnt in between, may or may not be fetching its value from the
local buffer, depending on when the write gets committed to the memory. This
runtime information is unavailable when a programmer is reasoning at the level
of the source code. We choose to call any such read, that may fetch its value
from the buffer, a buffered read and exclude the mutual conflicts between these
reads and later reads to other variables from ⊚TSO (see (iii) above). This way,
we feel that the definition of conflict relation stays true to its main purpose, i.e.
defining a notion atomicity that is helpful to programmers reasoning about their
code.

The following proposition formally states the fact that all order relaxations
introduced in the definition of ⊚TSO are consistent with the TSO semantics:

Proposition 1. Any ⊚TSO -preserving permutation of a TSO-execution η is also
a TSO-execution.

The notion of conflict serializability based on ⊚TSO is called TSO-
serializability. A program P is TSO-serializable iff every TSO-execution of P
is TSO-serializable. Event/conflict-graphs of TSO-executions are defined as in
Definitions 1 and 2, respectively, by replacing ⊚ with ⊚TSO . An equivalent of
Theorem 1 then provides an efficient (poly-time) procedure to monitor an exe-
cution for TSO-serializability violations. Figure 2(a) illustrates the event-graph
of a non TSO-serializable execution of the program in Fig. 1. The conflict-graph
in Fig. 2(c) contains a cycle.
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Fig. 2. (a) A TSO-execution η (events are ordered from top to bottom) and its ⊚TSO

event-graph EGη. (b) Ignoring dashed edges, the write-contraction of EGη. Dashed
edges represent conflicts added by ⊚TSO−po . Ignoring dashed edges and redefining the
highlighted edges to be undirected, the trace event-graph EGτ of τ = trace(η). (c) The
conflict-graph induced by EGη. (d) The conflict-graph induced by EGτ

4.2 Connection to SC-Serializability

Beyond Proposition 1, we substantiate our definition of TSO-serializability by
formally relating it to the widely accepted notion of SC-serializability. We show
that SC-serializability implies TSO-serializability for robust programs. Intu-
itively, a program is robust if it does not exhibit non-SC behaviour; in other
words, each of its TSO-executions is equivalent to another execution of the same
program under SC. Under SC, every write-issue is immediately followed by the
corresponding write-commit (i.e. no delay in propagating the write).

Let ⊚TSO−po be a strengthening of ⊚TSO in which the program order is main-
tained for all pairs of events in E in the same thread. Formally, a TSO-execution
η is SC-equivalent when there exists an execution η′ that is a ⊚TSO−po-preserving
permutation of η and every write-issue of η′ is immediately followed by the cor-
responding write-commit. A program P is robust when every TSO-execution
of P is SC-equivalent. One can check SC-equivalence by letting every pair of
write-issue and corresponding write-commit events to form a transaction, and
checking conflict serializability of the execution consisting of these transactions
and all other events as single transactions (more details in [1]). The conflict graph
defined this way is called a write-contraction. For instance, the TSO-execution
in Fig. 2(a) is not SC-equivalent (since there is a cycle in Fig. 2(b)) which implies
that the program in Fig. 1 is not robust.
Theorem 2. A program P is TSO-serializable if it is robust and SC-serializable.
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The reverse of Theorem 2 doesn’t hold. For instance, both programs above
are TSO-serializable although the program on the left is not robust and the
program on the right is not SC-serializable. The program on the left is TSO-
serializable since every event is a transaction and events in the same thread are
not in conflict, and it is not robust since intuitively, both reads don’t see the
value written by the other thread. The program on the right is TSO-serializable
because the events in thread 1 are not in conflict while it is not SC-serializable
since it admits only one execution where the events of thread 1 take place in
between the two events of thread 2.

A program P is called transaction-fenced when for every σ ∈ P , every trans-
action in σ, i.e., every maximal sub-sequence of events indexed by the same
transaction identifier, ends with a fence1. For transaction-fenced programs, the
converse of Theorem 2 is true:

Theorem 3. A transaction-fenced program P is TSO-serializable iff it is robust
and SC-serializable.

5 Trace TSO-Serializability

There are practical obstacles in the way of implementing a monitor that can
observe a TSO-execution of a program. The monitor is subject to the same
distributed nature of the memory as individual program threads, and tracking
write-commits of threads requires a manipulation of the cache-coherence proto-
cols running in the multi-core chip with potentially high performance overheads.
We introduce a notion of serializability for TSO that does not require to be aware
of the exact timing of write-commits. This notion applies to abstractions of TSO-
executions called traces that forget write-commits, assuming that a write-commit
can happen at any point in time after its corresponding write-issue (consistent
with the TSO semantics). This effectively means that the serializability of a set
of executions (namely those where the forgotten write-commits reappear at any
of the consistent points) is monitored instead of a single execution.

The trace of an execution η, denoted by trace(η), is the projection of η
on E (basically leaving out all write-commits). The set of executions Execs(τ)
represented by a trace τ is the set of all TSO-executions η such that trace(η) = τ .

Definition 3 (Trace TSO-Serializability). A trace τ is TSO-serializable iff
every execution in Execs(τ) is TSO-serializable.

The most important property of τ = trace(η) for some execution η is that τ
can soundly be used to check if η is not TSO-serializable.

1 Transaction-fenced programs are not necessarily robust since statements inside a
transaction may not be followed by a fence.
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Proposition 2. If execution η is not TSO-serializable then the trace trace(η)
is not TSO-serializable.

We introduce a conflict relation �⇀⊚TSO for traces and a characterization of
serializability based on that conflict relation. Intuitively, �⇀⊚TSO stands for the
union of the conflict relations for all the individual executions of that trace,
where a write event represents both the write-issue and the corresponding write-
commit. The relation �⇀⊚TSO over traces is the union of two disjoint relations
�→
⊚TSO and ⊚TSO. Given e, e′ ∈ E,

The conflicts between events of the same thread are included in �→⊚TSO since
the order between such events is fixed in all the executions of the trace. Two
events of different threads are in conflict if they are so under the classic SC
conflict relation, and they are related by �→⊚TSO iff they are separated by a fence
(since the fence ensures they are ordered in the same way in all executions) or if
they are a non-buffered read (reading from the shared memory) together with a
write (since a read cannot see the value of a write that hasn’t been issued yet).
Formally, e and e′ are fence-separated, denoted by fence(e, e′), when e occurs
before e′, e is an action of thread t, and τ contains a fence fnt between e and e′.
In contrast, ⊚TSO relates events that are conflicting under ⊚SC but may appear
in different orders in different executions of a trace, for example two write events
(of the same variable) performed by two different threads. Recall that a write
represents both the write-issue and the corresponding write-commit.

Similar to the case of executions, having a graph theoretic characterization of
serializability for traces is useful for algorithm design. We define the event-graph
of a trace τ that contains a directed edge from event e to event e′ iff e

�→
⊚TSOe′

and an undirected edge between e and e′ iff e⊚TSOe′.

Definition 4 (Trace Event-Graph). The event-graph of a trace τ is the
graph EGτ = ⟨V,E,U⟩ where there is a node in V for each event in τ , E is a set of
directed edges (u, v) such that e(u) occurs before e(v) in τ and e(u)

�→
⊚TSOe(v),

and U is a set of undirected edges {u, v} such that e(u) occurs before e(v) in τ
and e(u)⊚TSOe(v) (where e(v) is the event of τ corresponding to the node v).

Formally, an orientation of a graph G = ⟨V,E,U⟩ with a set E of directed
edges and a set U of undirected edges is a directed graph ⟨V,E ∪E′⟩ such that
for every undirected edge {u, v} ∈ U , E′ contains (u, v) or (v, u). An orientation
of EGτ is valid when the resulting directed graph is acyclic.
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The next result relates valid orientations of the trace event-graph and
write-contractions of the trace’s executions event-graphs. Recall that the write-
contraction of an event-graph EGη is the graph EGc

η where every node represent-
ing a write event wr t(x) is merged with the node representing the corresponding
write-commit event wr -comt(x) (note that a contracted edge disappears and
does not turn into a self-loop).

Theorem 4. For an execution η ∈ Execs(τ), the write-contraction of EGη is
a valid orientation of EGτ . Conversely, every valid orientation of EGτ is the
write-contracted event-graph EGη for some η ∈ Execs(τ).

This leads to an interesting observation: EGτ of a trace τ can be viewed as the
union of the write-contractions EGc

η of all η ∈ Execs(τ), so that when all EGc
ηs

agree on the direction of an edge between two nodes, that edge appears as a
directed edge in EGτ and when at least two EGc

ηs disagree on the direction of
an edge between two nodes, that edge appears as an undirected edge in EGτ .

Also, Theorem 4 leads us to the following characterization of trace TSO-
serializability based on orientations of trace event-graphs.

Theorem 5. A trace τ is TSO-serializable iff every acyclic orientation of EGτ

induces an acyclic conflict-graph.

Alternatively, one can directly define the notion of a conflict graph for traces.
The event graph of a trace EGτ induces a graph over the transactions in the
same sense as the conflict graph of an execution.

Definition 5 (Trace Conflict-Graph). The conflict-graph of a trace τ is the
graph CGτ = ⟨V

′,E′, U ′⟩ where V ′ includes one node for each transaction in τ ,
and we have (v, v′) ∈ E′ iff there exists actions a ∈ tr(v) and a ∈ tr(v′) such
that (a, a′) ∈ E and we have {v, v′} ∈ U ′ iff there exists actions b ∈ tr(v) and
b′ ∈ tr(v′) such that {b, b′} ∈ U where EGτ = (V,E,U) is the event-graph of τ .

For instance, the conflict-graph of the trace of the execution in Fig. 2(a)
is given in Fig. 2(d). Serializability of a trace τ can be stated as a combined
property of its conflict-graph CGτ and its event-graph EGτ .

Corollary 1. Trace τ is not TSO serializable iff there exists a cycle c in CGτ =

⟨V ′,E′, U ′⟩ such that if {u1, . . . um} ⊆ U ′ participate in c and {e1, . . . , em} are the
same set of edges oriented in the direction of the cycle, then there exists a valid
orientation ⟨V,E′′⟩ of the event-graph EGτ = ⟨V,E,U⟩ with {e1, . . . , em} ⊆ E′′.

6 Monitoring TSO-serializability of Traces

In this section, we discuss the algorithmic aspect of monitoring traces for viola-
tions of TSO-serializability. Remember that (Sect. 3) monitoring one execution
for violation of TSO-serializability is poly-time checkable.

Given a trace τ , we want to check whether τ is TSO-serializable. We start by
demonstrating that the general problem is NP-complete, and then propose poly-
nomial time algorithms for approximations of this check. Specifically, we show
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that (i) under the assumption that the number of threads is a constant, there
exists a sound and complete polynomial time algorithm that reports violations
of TSO-serializability in a trace τ , and (ii) if the program is transaction-fenced,
then TSO-serializability can be checked in polynomial time.

6.1 NP-Completeness of Trace TSO-serializability Checking

Theorem 5 provides an equivalent characterization of trace TSO-serializability,
namely that every acyclic orientation of the trace event-graph induces an acyclic
conflict-graph. It turns out that this check is NP-complete. We demonstrate this
by reducing the known NP-complete problem of checking for the existence of a
hamiltonian path in a given graph G to this problem.

Theorem 6. For a trace τ , the problem of checking whether τ is TSO-
serializable is NP-complete.

6.2 Fixed-Parameter Tractability

The good news is that there exists an algorithm for monitoring a trace for TSO-
serializability violations which is polynomial time if one assumes the number of
threads to be a constant. Given a trace of length n with k participating threads,
it is easy to devise an exponential algorithm that finds a TSO-serializability
violation if one exists and operates in O(nk

) time. However, considering that
usually n (the number of events) is very large, it is desirable to have an algorithm
with a running time where the exponent k does not appear over n, but over some
constant instead.

In this section, we propose an algorithm of complexity O(n + ck
), where c is

a constant that depends on the number of shared variables in the program, k is
the number of threads, and n is the length of the trace. The main observation
that gives rise to such an algorithm is that there is a concise witness to violation
of TSO-serializability, and it suffices to search for the existence of such a witness
algorithmically. We start by defining this concise witness, which always exists if
an arbitrary witness exists.

Given the event graph EGτ of a trace τ , checking serializability of τ reduces
to deciding if there is a valid orientation of EGτ that induces a cycle over the
conflict graph CGτ . We will observe that if a valid orientation of EGτ induces
a cycle, then this orientation induces a simple cycle (to be defined) over CGτ .

Naturally, if the directed edges of the conflict graph CGτ already form a cycle
(which can be checked in polynomial time on the size of the graph), then there is
nothing left to be done; we have found our TSO-serializability violation witness.
Therefore, we assume that CGτ is acyclic if it is restricted to its directed edges;
let us call this graph

��→
CGτ . Similarly,

��→
EGτ refers to EGτ restricted to its directed

edges. We use the notation a ≺τ b to denote that
��→
EGτ contains a path from event

a to event b. Similarly, for transactions tr1 and tr2, we use the notation tr1 ≺τ tr2

iff
��→
CGτ contains a path from tr1 to tr2. The relation ≺τ captures the ordering
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constraints between events/transactions that are imposed by the directed conflict
edges. For an event a, we use tr(a) to refer to the transaction that encloses a.

Let us assume that we have a cycle c = tr1tr2 . . . trm over the conflict graph
CGτ . For each pair of consecutive transactions tri and tri+1, let event bi be the
source and event ai+1 be the destination of the conflict edge between tri and
tri+1 that participates in the cycle (rotating back from bm to a1).

We say that cycle c can be simplified if there exist two transactions tr and tr′

on it where tr ≺τ tr′ and the segment of the cycle between tr and tr′ contains at
least one undirected conflict edge. By taking this segment of the cycle between
tr and tr′ and replacing it with the directed path (i.e. a path formed entirely of
directed conflict edges) in the conflict graph from tr to tr′, we simplify the cycle;
we know that such a path exists by the definition of tr ≺τ tr′. Intuitively, during
simplification we get rid of undirected edges and replace them by directed paths;
note that undirected edges are soft constraints in a trace which reflect that the
order between two events is undetermined.

Definition 6. A simple cycle is a cycle that cannot be further simplified.

Below, we state two properties of simple cycles that are very useful for reduc-
ing the search space of our algorithm.

Proposition 3. In every simple cycle c = tr1tr2 . . . trmtr1 over the conflict
graph CGτ of a trace τ (equivalently c = a1b1a2b2 . . . ambma1 if the cycle is
referenced by its conflict edges instead of its nodes) satisfies the following prop-
erties: (i) There exists at least one index k such that ak /≺τ bk. (ii) Every two
transactions tr and tr′ that appear on c with an undirected edge somewhere in
the middle of them (i.e. on the segment between tr to tr′) cannot belong to any
chain (i.e. directed path) of the graph. In other words, we have tr /≺τ tr′.

Property (ii) from the proposition above is straightforward yet significant
because it implies that any simple cycle over the conflict graph can be viewed as
a cycle where undirected edges connect segments of chains (i.e. directed paths)
in the graph together, never visiting the same chain twice. We make use of the
notion of profiles introduced in [11] for this algorithm. The idea is to summarize
all possible entry/exits into each chain of

��→
CGτ (that may participate in a simple

cycle) as a set of pairs (of events), and look for cycles involving those pairs only.
Consider an event a of the event graph EGτ . Let

pair(a) = {b∣ b ∈ tr(a) ∨ tr(a) ≺τ tr(b))}

The idea is that once a witness cycle enters tr(a) through a conflict edge with
destination a, some b ∈ pair(a) is the event from which the cycle can leave
the chain (i.e. directed path) that contains tr(a) and tr(b). In other words,
{a} × pair(a) is the set of all possible path segments that start with a and can
be part of a simple cycle witnessing a violation of TSO-serializability.

Moreover, Proposition 3(i) states that at least for one transaction in the cycle
we have a pair of events (a, b) of the same transaction where a ≺τ b but where a
and b participate in the witness cycle, which is directed from b back to a. The
algorithm presented in Fig. 3 starts by enumerating all such pairs of events that
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Fig. 3. Algorithm for searching for all simple cycle witnesses. The choices of events
for a, b, a′, b′ is over read and write events only. The chains π1, . . . πm are by definition
disjoint.

Fig. 4. Algorithm for computing the set of all profiles of a transaction chain π.

belong to a single transaction (outermost loop). It then proceeds to find the
matching entry/exit events (i.e. a′ and b′) for the witness cycle in the chain con-
taining a and b (the next nested loop). Finally, the innermost loop enumerates
all possible choices of profiles for the remaining chains (other than the one con-
taining a, b, a′ and b′), and then the innermost statement checks if these choices
form a valid witness cycle together.

The algorithm in Fig. 3 uses a function profile that returns the set of all
profiles for a given chain. A profile of a chain is a set of elements of the following
three forms: (i) a single event (a), when the witness conflict cycle enters and
exits a chain at the same single event a, (ii) a pair of events (a, b) of some
transaction tr , where the witness cycle enters/exits a chain at two events of the
same transaction tr , and (iii) a pair of events (a, b), where a witness cycle enters
a transaction in event a, then follows a chain of transactions on a directed path
in the conflict graph and exits the chain through an event b (i.e. tr(a) ≺τ tr(b)).
The set of profiles of a chain can be computed using the algorithm in Fig. 4.

Soundness and Completeness. Here, we formally argue that it suffices for the
algorithm to search for simple cycle witness to violation of TSO-serializability.
The important observation is that:
Proposition 4. If a trace τ is not TSO-serializable, then there exists a simple
cycle witnessing the violation of TSO-serializability.
It remains to argue that the algorithm, through the use of profiles, will definitely
find a simple cycle violation of TSO-serializability if one exists.
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Proposition 5. For every partitioning Π of
��→
CGτ into a set of chains, and every

simple cycle violation of TSO-serializability c, we have that c visits every chain
in Π at most once.
It is important to note that the above statement is independent of the choice of
partitioning of

��→
CGτ into chains. It is straightforward to see that a cycle’s foot-

print in every chain can be captured through one of the three possibilities that
we introduced for profiles. Finally, we conclude the soundness and completeness
of the algorithm in Fig. 3:

Theorem 7. Algorithm in Fig. 3 discovers a violation of TSO serializability in
trace τ iff one exists.

Complexity Analysis. A key observation about
��→
EGτ is that for any trace τ ,

if
��→
CGτ is restricted to a single thread and global read and write events, then

the size of the largest anti-chain of it is at most 2. In other words, in every
thread, there are at most two events a and b such that a /≺τ b and b /≺τ a. This
is a direct implication of the definition of ⊚TSO ; the only events that are not
ordered in each thread are wr (y) and rd (x) when x /= y , and the events appear
in that order in the trace. Any other event that can be independent of wr (y)
will have to be a read event of some other variable, say rd (z) which is in conflict
with rd (x) and therefore ordered with respect to it (similar argument for events
independent of rd (x)). We will make use of the following well-known theorem
about the width of a partial order:

Theorem 8 (Dilworth’s Theorem). For every partial order, there exists an
anti-chain A, and a partition of the order into a family P of chains, such that
∣P ∣ = ∣A∣ (which is referred to as the width of the partial order). Moreover, such
an A is the largest anti-chain in the order.

Since
��→
EGτ is acyclic, by Dilworth’s Theorem, we know that it can be partitioned

into at most p (maximal) chains (i.e. directed paths) where p is the size of the
largest anti-chain of

��→
EGτ . The size of the largest anti-chain of

��→
EGτ restricted

to each thread (and ignoring the buffered reads) is at most 2. If we assume that
there are k threads in the program, this implies that

��→
EGτ (ignoring the buffered

reads) can be partitioned into 2k chains. If we have m shared variables in the
program, then each such chain can be summarized as at most (2m)2 possible
profiles (i.e. all possible combinations of 2m reads and 2m writes).

Now, let us add consideration for the buffered reads. In each thread, all
buffered reads of the same variable are conflicting and form a chain. There-
fore, in the worst case, we can account for all buffered reads of a single thread,
by adding m extra chains, where each consists of all buffered reads of some vari-
able x (there are at most m different variables). There are in total km of such
chains for all k threads. However, every such chain (of buffered reads of x) can
be represented by a single trivial profile (rd (x)).

Our algorithm ends up enumerating all possible profiles for such partitioning
of
��→
EGτ into a family of chains. There are at most ((2m)2)2k different selection
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of profiles to consider. It is easy to see that it takes O(n) time (n is the length
of the trace) to compute the set of all profiles.

We need to argue that given the combination of the fixed km (trivial) profiles
and a choice of 2k profiles (from ((2m)2)2k many choices), a violation can be
found in polynomial time, if one exists. This is equivalent to having a system of
(at most) (m + 2)k components, where each component is a single event, a pair
of events connected by an undirected edge, or a pair of components linked by a
directed edge. The goal is to find a cycle in this system that obeys the direction
of the directed edges. A slightly modified depth-first search algorithm can find
the cycle in time polynomial in mk.

To summarize, the complexity of the algorithm is O(n + ck
) where n is the

length of the trace, c depends only on the number of shared variables in the
program, and k is the number of program threads.

Theorem 9. For a program P with a fixed number of threads, the algorithm in
Fig. 3 discovers a witness to violation of TSO-serializability of any trace of P in
time polynomial on the length of the trace.

6.3 Poly-time Monitor for Transaction-Fenced Programs

An alternative way of avoiding the high complexity of monitoring traces for TSO-
serializability violations, for instance when there is a large number of threads in
the program, is to simplify this check by ensuring that every transaction ends
with a fence event (and hence making all its updates visible to other threads
when it ends). As stated in Theorem 3, TSO-serializability is equivalent to the
conjunction of robustness and SC-serializability for such programs.

A witness to non-robustness of a program can be discovered through a tar-
geted search (for a specific pattern of violations) in the space of SC-executions
of the program [6] using an algorithm that works in polynomial time for a given
execution. The combination of these two monitors, a poly-time monitor for SC-
serializability and a poly-time monitor for robustness, gives rise to an efficient
monitor for TSO-serializability that observes only SC-executions of a program
and looks for robustness or SC-serializability violations. Every violation to TSO-
serializability will manifest as an SC-serializability violation or as a robustness
violation for a transaction-fenced program.

The advantages of this result are twofold: (i) when transactions are naturally
fenced (e.g. a lot of Java library methods are like this), it provides a poly-
time algorithm for monitoring TSO-serializability, and (ii) when transactions
are not naturally fenced, and the program has a large number of threads (which
limits the applicability of the algorithm in Sec. 6.2), it provides the programmer
with a solution: namely, to insert a fence at the end of each transaction that is
not already fenced, and gain an efficient sound and complete monitor for TSO-
serializability. Having a transaction-fenced program has the additional advantage
that it allows to reason about the more familiar notions of SC-serializability and
robustness instead of directly reasoning about TSO-serializability.
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7 Related Work

To the best of our knowledge, this paper provides the first definition of conflict
serializability under TSO. Conflict serializability was introduced in [21] for data-
base transactions. Decision procedures for conflict serializability of finite-state
concurrent models executed under an SC semantics were proposed in [10,11] and
[5]. Both static [13,17,24,26] and dynamic tools [12,14,23,25] have been devel-
oped to check SC serializability, as well as transactional memory techniques
that enforce serializability at run time [9,16,18,22]. The non-atomicity of writes
under TSO poses new algorithmic challenges for monitoring serializability. Since
observing the detailed sequence of write issues and commits is not efficiently pos-
sible (without access to the cache coherence mechanism), any dynamic analysis
needs to monitor executions with missing information, that effectively stand for
sets of executions. We propose a new monitoring algorithm for traces (i.e. sets of
executions) that searches for certain type of cycles in graphs with both directed
and undirected edges, which is more challenging than the classic serializability
monitor that searches for a cycle in a directed graph [21].

Linearizability has been studied for concurrent objects running under TSO [7,
15,19]. This provides a means of establishing a relation between a concrete and
an abstract object, which must hold in the context of every possible client of
the object. The abstract object methods need not be atomic. In contrast, seri-
alizability is a property that is applicable to programs and the atomicity of a
transaction is considered in the context of one specific program (in contrast to
all possible clients).

Notions of robustness for TSO programs have been investigated in [2–4,6,8].
However, we are not aware of any work that establishes a relationship between
robustness and atomicity under different memory models as done in this paper.
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Abstract. When optimizing a thread in a concurrent program (either
done manually or by the compiler), it must be guaranteed that the result-
ing thread is a refinement of the original thread. Most definitions of
refinement are formulated in terms of valid syntactic transformations on
the program code, or in terms of valid transformations on thread exe-
cution traces. We present a new theory formulated instead in terms of
state transitions between synchronization operations. Our new method
shows refinement in more cases and leads to more efficient and simpler
procedures for refinement checking. We develop the theory for the SC-
for-DRF execution model (using locks for synchronization), and show
that its application in compiler testing yields speedups of on average
more than two orders of magnitude compared to a previous approach.

1 Introduction

The refinement problem between threads appears in various contexts, such as
the modular verification of concurrent programs, the validation of compiler opti-
mization passes, or compiler testing. Informally, a thread T ′ is a refinement of
a thread T if for all possible concurrent contexts C = T0 ‖ . . . ‖ Tn−1 (where
‖ denotes parallel composition), the set of final states reachable by T ′ ‖C is a
subset of the set of final states reachable by T ‖C. We consider the problem as
an instance of validating code optimization (either manual or by an optimizing
compiler): the optimized thread must be a refinement of the original thread.

We focus on refinement in the “SC for DRF” execution model [1], i.e., pro-
grams behave sequentially consistent (SC) [6] if their SC executions are free of
data races, and programs containing data races have undefined semantics. A pro-
gram that contains data races could thus end up in any final state. Synchroniza-
tion is provided via lock(l) and unlock(l) operations. The model is similar to,
e.g., pthreads with its variety of lock operations such as pthread mutex lock()
and pthread mutex unlock().

The definition of refinement given in the first paragraph is not directly use-
ful for automated or manual reasoning, as it would require the enumeration of
all possible concurrent contexts C. We thus develop a new theory that is based
on comparing the state transitions of the original thread and the transformed
thread between synchronization operations. We improve over existing work both
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in terms of precision and efficiency. First, our theory allows to show refinement
in cases where others fail. For example, we also allow the reordering of shared
memory accesses out of critical sections (under certain circumstances); a trans-
formation that is unsupported by other theories. Second, we show that applying
our new specification method in a compiler testing setting leads to large per-
formance gains. We can check whether two thread execution traces match on
average 210 X as fast as a previous approach by Morisset et al. [12].

The rest of the paper is organized as follows. Section 2 introduces our
state-based refinement formulation and compares it to previous event-based
approaches on a concrete example. Section 3 formalizes state-based refinement.
Section 4 shows that our formulation is more precise in that it supports more
compiler optimizations than current theories. Section 5 evaluates our theory in
the context of a compiler testing application that involves checking thread exe-
cution traces. Section 6 surveys related work. Section 7 concludes.

2 State-Based vs. Event-Based Refinement

Current theories of refinement for language-level memory models (such as the
Java Memory Model or SC-for-DRF) are phrased in terms of transformations
on thread execution traces (see e.g. [2,11,12,14,15]). We refer to this notion of
refinement as event-based refinement. The trace transformations are then lifted
to transformations on the program code. Thread traces are sequences of memory
events (reads or writes) and synchronization events (lock or unlock). The valid
transformations are given as descriptions of which reorderings, eliminations, and
introductions of memory events on a trace are allowed. Checking whether a
trace t′ is a correctly transformed version of a trace t then amounts to deter-
mining whether there is a sequence of valid transformations that turns trace t
into trace t′. If each trace t′ of T ′ is a transformed version of a trace t of T , it
follows that T ′ is a refinement of T .

We show in the following that instead of describing refinement via a sequence
of valid transformations on traces, switching to a theory based on state tran-
sitions provides several benefits. We refer to our new approach as state-based
refinement. In essence, in the state-based approach, we only require that traces
t′ and t perform the same transformations on the shared state between corre-
sponding synchronization operations, and that t does not allow for more data
races than t. In the next section, we illustrate the difference between the two
approaches on an example.

2.1 Example

Consider Fig. 1, which gives an original thread T , a (correctly) transformed ver-
sion T ′, and a concurrent context C in the form of another thread. The threads
access shared variables x, y, z and local variables a, b. The context C outputs the
value of variable z in the final state. By inspecting T ′ ‖C and T ‖C (assuming
initial state {x �→ 0, y �→ 0, z �→ 0}), we see that both combinations produce the
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1 void thread_orig() {

2 int a, b;

3 lock(l);

4 x = 1;

5 x = 2;

6 unlock(l);

7 a = x;

8 b = y;

9 lock(l);

10 if (b == 0)

11 x = 0;

12 unlock(l);

13 }

(a) Original thread

1 void thread_trans() {

2 int a, b;

3 lock(l);

4 x = 2;

5 unlock(l);

6 b = y;

7 a = x;

8 lock(l);

9 if (b == 0)

10 x = 0;

11 b = y;

12 unlock(l);

13 }

(b) Transformed thread

1 void context() {

2 int a;

3 lock(l);

4 a = x;

5 z = a;

6 unlock(l);

7 join(thread_{orig|

8 trans});

9 printf("%d\n", z);

10 }

(c) Context

Fig. 1. Original thread T , transformed thread T ′, and concurrent context C

same possible outputs (0 or 2). In fact, T ′ and T exhibit the same behavior in
any concurrent context C for which T ‖C is data-race-free.

Now let us look at two traces t′ of T ′ and t of T , and how a conventional
event-based and our state-based theory would establish refinement. We assume
for now that T and T ′ are only composed with contexts that do not write any
shared memory locations accessed by them (as is the case for, e.g., the context
given in Fig. 1c). Figure 2 gives the execution traces of T (left trace) and T ′

(right trace) for initial state {x �→ 0, y �→ 0, z �→ 0}.
A theory based on trace transformations (Fig. 2a) would establish the refine-

ment between the two traces by noting that write x 1 can be removed (“overwrit-
ten write elimination”), read x 2 and read y 0 can be reordered (“non-conflicting
read reordering”), and read y 0 can be introduced (“irrelevant read introduc-
tion”). Showing refinement this way can become significantly more complicated
and costly if longer traces and more optimizations are considered.

We specify trace refinement by requiring that t′, t perform the same state
transitions from lock to subsequent unlock operations, and that t′ does not allow
more data races than t. When assuming that the threads are only composed with
contexts that do not write any shared memory locations, it is sufficient to check
that t′, t are in the same state at corresponding unlock operations. In this case,
given an initial state sinit, we say a trace t is in state s at step i if s is like
sinit, but updated with the values written by t up to step i. Indeed, both traces
in Fig. 2b are in state {x �→ 2, y �→ 0, z �→ 0} at the first unlock(l), and in
state {x �→ 0, y �→ 0, z �→ 0} at the second unlock(l). The key reason for why
trace refinement can be specified this way is that any context C for which T ‖C
is data-race-free can for each shared variable only observe the last write to it
before an unlock operation. If it could observe any intermediate write, there
would necessarily be a data race.

In addition to requiring that t′ and t are in the same state, we also require that
t′ does not allow more data races than t. This requirement is captured by the set



518 D. Poetzl and D. Kroening

lock m

write x 1

write x 2

unlock m

read x 2

read y 0

lock m

write x 0

unlock m

lock m

write x 2

unlock m

read y 0

read x 2

lock m

write x 0

read y 0

unlock m
(+)

(a) Event-based matching

lock m

write x 1

write x 2

unlock m

read x 2

read y 0

lock m

write x 0

unlock m

lock m

write x 2

unlock m

read x 2

read y 0

lock m

write x 0

read y 0

unlock m

{x �→ 2,

y �→ 0,

z �→ 0}

{x �→ 0,

y �→ 0,

z �→ 0}

R′
0 ⊆ (A0 ∪ A1)

W ′
0 ⊆ (W0 ∪ W1)

R′
1 ⊆ A1

W ′
1 ⊆ W1

R′
2 ⊆ (A2 ∪ A1)

W ′
2 ⊆ (W2 ∪ W1)

(b) State-based matching

Fig. 2. Trace matching

constraints in Fig. 2b. The primed sets correspond to t′, and the unprimed sets
to t. The sets R′

i, Ri (W ′
i ,Wi) denote the sets of memory locations read (written)

between subsequent lock operations. For example, R1 denotes the set of memory
locations read by t between the first unlock(l) and the second lock(l). We also use
the abbreviations A′

i = R′
i ∪W ′

i and Ai = Ri ∪Wi. As an example, the condition
W ′

0 ⊆ W0 ∪ W1 says that any memory location written by t′ between the first
lock(l) and the subsequent unlock(l) must also be written by t either between
the first lock(l) and the subsequent unlock(l), or between the first unlock(l) and
the subsequent lock(l). Since for x ∈ W ′

0 we require only that x ∈ W0 or x ∈ W1,
this allows a write to move into the critical section in t′ compared to t. We will
define the set constraints more precisely in Sect. 3.

Contexts that Write. In the case where a thread can be put in an arbitrary
context that can also write to the shared state, when generating the traces we
also need to take into account that a read of a variable x could yield a value
that is both different from the initial value of x, and which the thread has not
itself written (i.e., it was written by the context).

In an event-based theory this is typically handled by assuming that reads can
return arbitrary values (see, e.g., [12]). However, this assumption is unnecessarily
weak. For example, if a thread reads the same variable twice in a row with no
intervening lock operation, and it did not itself write to the variable, then both
reads need to return the same value. Otherwise, this would imply that another
thread has written to the variable and thus there would be a data race.

In fact, when generating the traces of a thread, it is sufficient to assume that
a thread observes the shared state only at its lock(l) operations. The reason for
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this is that lock(l) operations synchronize with preceding unlock(l) operations
of other threads. And those threads in turn make their writes available at their
unlock(l) operations.

3 Formalization

We now formalize the ideas from the previous section. For lack of space, we first
make a few simplifying assumptions. Most notably we assume that threads do
not contain nested locks (this assumption is lifted in the extended version of the
paper [13]). We further assume that lock(l) and unlock(l) operations alternate on
each thread execution, and that lock(l) and unlock(l) operations occur infinitely
often on any infinite thread execution. This implies that a thread cannot get
stuck, e.g., in an infinite loop without reaching a next lock operation. We also
assume that the first operation in a thread is a lock(l), and the last lock operation
is an unlock(l). We assume that the concurrent execution is the only source of
nondeterminism, and that data races are the only source of undefined behavior.

3.1 Basics

A program P = T0 ‖ . . .‖Tn−1 is a parallel composition of threads T0, . . . , Tn−1.
We denote by h = (hT0 , . . . , hTn−1) the vector of program counters of the threads.
A program counter (pc) points at the next operation to be executed. We use the
predicate lock(T, h) (resp. unlock(T, h)) to denote that the next operation to be
executed by thread T is a lock(l) (resp. unlock(l)). We use term(T, h) to denote
that thread T has terminated.

Let M be a finite, fixed-size set of shared memory locations x1, . . . , x|M |.
A state is a total function s : M → V from M to the set of values V . We denote
the set of all states by S. We assume there is a transition relation → between
program configurations (P, h, s). We normally omit P when it is clear from con-
text. The transition relation is generated according to interleaving semantics,
and each transition step corresponds to an execution step of exactly one thread
and accesses exactly one shared memory location or performs a lock operation.
We denote by hs = (hs,T0 , . . . , hs,Tn−1) the initial pc vector with each thread at
its entry point, and by hf = (hf,T0 , . . . , hf,Tn−1) the final pc vector with each
thread having terminated.

We define a program execution fragment e as a (finite or infinite) sequence
of configurations such that successive configurations are related by →. A pro-
gram execution is an execution fragment that starts in a configuration with pc
vector hs, and either has infinite length (i.e., does not terminate) or ends in a
configuration with pc vector hf . A program execution prefix is a finite-length
execution fragment that starts in a configuration with pc vector hs. Given an
execution fragment such as e = (h0, s0)(h1, s1) . . . (hn, sn), we use indices 0 to
n − 1 to refer to the corresponding execution steps. For example, index 0 refers
to the first execution step from (h0, s0) to (h1, s1).
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wr(e, i): step i is a shared write th(e, i): thread that performed step i
rd(e, i): step i is a shared read src(e, i): source configuration of step i
mem(e, i): wr(e, i) ∨ rd(e, i) tgt(e, i): target configuration of step i
lock(e, i): step i is a lock initial(e): initial state
unlock(e, i):
loc(e, i):

step i is an unlock
memory location/lock ac-
cessed by step i

final(e): final state of execution e, or ⊥
if e is infinite

Fig. 3. Notation

We next define several predicates and functions on execution fragments
(Fig. 3). We usually omit the execution e when it is clear from context. The
expression src(e, i) (resp. tgt(e, i)) refers to the configuration to the left (resp.
right) of → of the transition corresponding to step i of e.

We next define the semantics of a program according to interleaving seman-
tics as the set of its initial/final state pairs.

Definition 1 (Program Semantics). M(P ) = {(s, s′) | there exists an exe-
cution e of P such that |e| < ∞ ∧ initial(e) = s ∧ final(e) = s′}.
Only finite executions are relevant for the program semantics as defined above.
Consequently, two programs P ′, P for which M(P ′) = M(P ) might have different
behavior. For example, P ′ might have a nonterminating execution while P might
always terminate. The programs P ′ and P are thus only partially equivalent.

We next define the relations sequenced-before (sb), synchronizes-with (sw),
and happens-before (hb) for a given execution e (with |e| = n). It holds that
(i, j) ∈ sb if 0 ≤ i < j < n and th(i) = th(j). It holds that (i, j) ∈ sw if
0 ≤ i < j < n, unlock(i), lock(j), and loc(i) = loc(j). The happens-before
relation hb is then the transitive closure of sb ∪ sw.

Definition 2 (hb race). We say an execution e (with |e| = n) contains an
hb data race, written hb-race(e), if there are 0 ≤ i < j < n such that th(i) �=
th(j), loc(i) = loc(j), wr(i) or wr(j), and (i, j) /∈ hb.

We write race(P ) to indicate that program P has an execution that contains an
hb data race, and race-free(P ) to indicate that it does not have an execution
that has an hb data race. We are now in a position to define thread refinement.

Definition 3 (Refinement). We say that T ′ is a refinement of T , written
ref(T ′, T ), if the following holds:

∀C : racefree(T ‖C) ⇒ (racefree(T ′ ‖C) ∧ M(T ′ ‖C) ⊆ M(T ‖C))

The above defines that ref(T ′, T ) holds when for all contexts C with which T is
data-race-free, T ′ is also data-race-free, and the set of initial/final state pairs of
T ′ ‖C is a subset of the set of initial/final state pairs of T ‖C.

The above definition is not directly suited for automated refinement checking,
as it would require implementing the ∀ quantifier (and hence enumerating all
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possible contexts C). We thus develop in the following our state-based refinement
condition that implies ref(T ′, T ), and which is more amenable to automated and
manual reasoning about refinement.

3.2 State-Based Refinement

We next define the transition relation →L, which is more coarse-grained than
→. It will form the basis of the definition of our refinement condition.

Definition 4 (→L). (P, h, s)
l,(Ra,Wa),(Rb,Wb)−−−−−−−−−−−−→L (P, h′, s′) if and only if there

exists an execution fragment e = (h0, s0)(h1, s1), . . . , (hk, sk), . . . , (hn, sn) such
that th(0) = th(1) = . . . = th(n − 1) = T for some thread T of P , lock(0),
mem(1), . . . ,mem(k − 1), unlock(k), mem(k + 1), . . . ,mem(n − 1), either lock(T,
hn) or term(T, hn), loc(0) = l, h0 = h and hn = h′. The set Ra (resp. Wa) is
the set of memory locations read (resp. written) by steps 1 to k − 1. The set Rb

(resp. Wb) is the set of locations read (resp. written) by steps k + 1 to n − 1.

We also use the abbreviations Aa = Ra ∪ Wa and Ab = Rb ∪ Wb. The relation
→L embodies uninterrupted execution of a thread T of P from a lock(l) to the
next lock(l) (or the thread terminates). Since we have excluded nested locks,
this means the thread executes exactly one unlock(l) in between. For example,
in Fig. 2b (left trace), the execution from the first lock in Line 1 to immediately
before the second lock in Line 7 corresponds to a transition of →L. If we assume
the thread starts in a state with all variables being 0, we have s = {x �→ 0, y �→
0, z �→ 0} and s′ = {x �→ 2, y �→ 0, z �→ 0}. The corresponding access sets are
Ra = {},Wa = {x}, and Rb = {x, y},Wb = {}.

We now define the semantics of a single thread T as the set of its state traces.
A state trace is a finite sequence of the form (l0, s0, R0,W0)(R1,W1, s1)(l2, s2, R2,
W2)(R3,W3, s3) . . . (ln−1, sn−1, Rn−1,Wn−1)(Rn,Wn, sn). Two items i, i + 1
(with i being even) of a state trace belong together. The item i corresponds to
execution starting in state si at a lock(l) and executing up to the next unlock(l),
with the thread reading the variables in Ri and writing the variables in Wi. The
subsequent item i + 1 corresponds to execution continuing at the unlock(l) and
executing until the next lock(l) reaching state si+1, with the thread reading the
variables in Ri+1 and writing the variables in Wi+1.

The formal definition of the state trace set S(T ) is given in Fig. 4. Intuitively,
the state trace set of a thread T embodies all interactions it could potentially have
with a context C for which race-free(T ‖ C). A thread might observe writes by
the context at a lock(l) operation. This is modeled in S(T ) by the state changing
between transitions. For example, the target state s1 of the first transition is differ-
ent from the source state s2 of the second transition. The last line of the definition
of S(T ) constrains how the state may change between transitions. It defines that
those memory locations that the thread T accesses in an execution portion from
an unlock(l) to the next lock(l) (i.e., those in Ai−1) do not change at this lock(l).
The reason for this is that if those memory locations would be written by the con-
text, then there would be a data race. But since S(T ) only models the potential
interactions with race-free contexts, the last line excludes those state traces.
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Fig. 4. Definition of the state trace set of a thread

Previously we stated that we are interested in the states of a thread at lock
and unlock operations, but S(T ) embodies transitions from a lock(l) to the next
lock(l). However, since we know the state at a lock(l), and we know the set of
memory locations Wi written between the previous unlock(l) and that lock(l),
we know the state of the memory locations M − Wi at the unlock(l). This is
sufficient for phrasing the refinement in the following.

We are now in a position to define the matcha(t′, t) predicate. We will later
extend it to the predicate matchb(t′, t), which indicates whether a state trace
t′ ∈ S(T ′) matches a state trace t ∈ S(T ). The formal definition of matcha(t′, t) is
given in Fig. 5. Primed symbols refer to components of t′, and unprimed symbols
refer to components of t. We denote by evenn (resp. oddn) the set of all even
(resp. odd) indices i such that 0 ≤ i ≤ n. Intuitively, the constraints in Lines 3–6
specify that t′ must not allow more data races than t. The constraints in Lines 3–
4 correspond to an execution portion from a lock(l) to the next unlock(l), and
Lines 5–6 correspond to an execution portion from the unlock(l) to the next
lock(l). Since we have R′

i ⊆ Ai−1 ∪ Ai ∪ Ai+1 and W ′
i ⊆ Wi−1 ∪ Wi ∪ Wi+1, the

specification allows an access in t to move into a critical section in t′ (we further
investigate this in Sect. 4). The constraint in Line 7 specifies that t′ and t receive
the same new values at lock(l) operations (modeling writes by the context). The
constraint at Line 9 specifies that the values written by t′ and t before unlock(l)
operations must be the same. The last constraint specifies that t′ and t perform
the same sequence of lock operations.

We next define the matchb(t′, t) predicate. We denote by t[0 : i] the slice of a
trace from index 0 to index i (exclusive).

Definition 5

matchb(T ′, T ) ⇔ matcha(t′, t)∨
∃i ∈ even+ : matcha(t′[0 : i], t[0 : i])∧

∃x ∈ (Ai−1 − A′
i−1) : s′

i−1(x) �= s′
i(x)
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The above defines that either t′ and t match, or there are same-length prefixes
that match, and at the subsequent lock(l) a memory location in t′ changes that
is accessed by t but not by t′ (x ∈ Ai−1 − A′

i−1). Thus, a context that could
perform the change of the memory location that t′ observes would have a data
race with t. Since when t is involved in a data race we have undefined behavior,
any behavior of t′ is allowed. Thus, t′ and t are considered matched.

Fig. 5. Definition of matching state traces

We can now define our refinement specification check(T ′, T ), which we later
show implies the refinement specification ref(T ′, T ) of Definition 3.

Definition 6 (Check)

check(T ′, T ) ⇔ ∀t′ ∈ S(T ′) : ∃t ∈ S(T ) : matchb(t′, t)

We next state two lemmas that we use in the soundness proof of check(T ′, T ).
We refer to the extended version of the paper for the corresponding proofs [13].

Lemma 1 (Coarse-Grained Interleaving). Let e (with |e| = n) be an exe-
cution prefix of P with ¬hb-race(e) and final(e) = s. Then there is an execution
prefix e′ of P with ¬hb-race(e′) and final(e′) = s, such that execution portions
from a lock(l) to the next lock(l) of a thread are not interleaved with other
threads. Formally:

∀ 0 ≤ i < n : lock(i) ⇒ ∃j > i : (lock(th(i), tgt(j)) ∨ term(th(i), tgt(j))∧
∀i < k < j : th(k) = th(i))



524 D. Poetzl and D. Kroening

Lemma 2 (Race Refinement). Let check(T ′, T ). Then for all contexts C, if
T ′ ‖C has an execution that has a data race, then T ‖C also has an execution
that has a data race. Formally:

check(T ′, T )⇒∀C: (race(T ′ ‖C)⇒ race(T ‖C))

The following theorem establishes the soundness of our refinement condition
check(T ′, T ).

Theorem 1 (Soundness). check(T ′, T ) ⇒ ref(T ′, T )

Proof sketch. Let C be an arbitrary context C such that race-free(T ‖ C). Let
further (s, s′) in M(T ′ ‖C). Thus, there is an execution e of T ′ ‖C that starts in
state s and ends in state s′. By Lemma 2, race-free(T ′ ‖C). Thus, by Lemma 1,
there is an execution e′ for which portions from a lock(l) to the next lock(l) of a
thread are not interleaved with other threads. The sequence of those execution
portions of T ′ corresponds to an element t′ ∈ S(T ′). Then, by the definition of
check(T ′, T ), there is an element t ∈ S(T ) such that either (a) matcha(t′, t), or
(b) ∃i ∈ evenn : matcha(t′[0 : i], t[0 : i]) ∧ ∃x ∈ (Ai−1 − A′

i−1) : s′
i−1(x) �= s′

i(x).
(a) Then t embodies the same state transitions as t′. This is ensured by

constraints 7 and 9 of the definition of matcha(). Constraint 7 specifies that the
starting states of a transition match, and constraint 9 specifies that the resulting
states of a transition match. A closer look at constraints 7 and 9 reveals that
the corresponding states of t′ and t do not need to be completely equal (only
those memory locations in M − Ai−1 resp. M − Wi need to have the same
value). The reason for this is that if a thread would observe those memory
locations it would give rise to a data race. Since we have both race-free(T ′ ‖ C)
and race-free(T ‖ C), it follows that the values of the memory locations Ai−1

resp. Wi can be arbitrary. Therefore, T can perform the same state transitions
as T ′. Thus, we can replace the steps of T ′ in e′ by steps of T , and get a valid
execution e′′ of T ‖C ending in the same state. Therefore, (s, s′) ∈ M(T ‖C).

(b) Since matcha(t′[0 : i], t[0 : i]), the first i state transitions of t are the same
as those of t′. Thus, we can replace the first i execution portions of T ′ in e′

by execution portions of T . The last execution portion of T accesses a memory
location x that was not accessed by the corresponding execution portion of T ′

(since we have ∃x ∈ Ai−1 − A′
i−1). Moreover, by s′

i−1(x) �= s′
i(x) it follows that

this memory location is written by the context C. Thus, we have race(T ‖ C),
which contradicts the premise race-free(T ‖ C). ��

4 Supported Optimizations

We now investigate which optimizations are validated by our theory. By inspect-
ing the definition of matcha() we see that it requires that t′ and t perform the
same state transitions between lock operations, and that the sets of memory loca-
tions accessed between lock operations of t′ must be subsets of the corresponding
sets of memory locations accessed by t. Together with the definitions of matchb()
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1 lock(l);

2 x = 1;

3 y = 1;

4 unlock(l);

5 y = 2;

(a) Original (T )

1 lock(l);

2 x = 1;

3 y = 1;

4 y = 2;

5 unlock(l);

(b) Transformation 1 (T ′)

1 lock(l);

2 x = 1;

3 unlock(l);

4 y = 1;

5 y = 2;

(c) Transformation 2 (T ′′)

Fig. 6. Original, roach motel reordering, inverse roach motel reordering

and check(), this implies that if an optimization only performs transformations
that do not change the state transitions between lock operations, and does not
introduce accesses to new memory locations, then the optimized thread T ′ will
be a refinement of the original thread T . This includes all the transformations
shown to be sound by Boehm [2] and Morisset et al. [12] (considering programs
using lock(l) and unlock(l) for synchronization).

Our theory also allows the reordering of shared memory accesses into and out
of critical sections (under certain circumstances). The former are called roach
motel reorderings and have been studied for example in the context of the Java
memory model (see, e.g., [15]). The latter have not been previously described
in the literature. In analogy to the former we term them inverse roach motel
reorderings. We show on an example that our theory enables the proof of both
optimizations.

Roach Motel Reorderings. Consider Fig. 6. Both x and y are shared vari-
ables. Figure 6a depicts the original thread T , and Fig. 6b a correctly transformed
version T ′. The statement y = 2 has been moved into the critical section. This
is safe as it cannot introduce data races (but might remove data races).

Let t′ be a state trace of T ′ starting in some initial state sinit . Then there
is a state trace t of T starting also in sinit . The state sinit corresponds to the
state at the first lock(l) for both threads. At the unlock(l) they are in states
s′ = {x �→ 1, y �→ 2} resp. s = {x �→ 1, y �→ 1}. The access sets of the two state
traces are R′

0 = R′
1 = R0 = R1 = {} (we ignore the read sets in the following as

they are empty), and W ′
0 = W0 = {x, y},W ′

1 = {},W1 = {y}. At the unlock(l),
according to the definition of matcha(), the constraint ∀x ∈ M−W1 : s′(x) = s(x)
needs to be satisfied. This is the case as the variable y for which s′ and s differ is in
W1. Moreover, for matcha() to be satisfied, the following must hold for the write
sets: W ′

0 ⊆ W0 ∪ W1 and W ′
1 ⊆ W1. This also holds. Hence, matcha(t′, t) holds.

Consequently, we also have matchb(t′, t) and thus check(T ′, T ), which implies
ref(T ′, T ) according to Theorem 1. Thread T ′ is thus a correctly transformed
version of thread T .

Inverse Roach Motel Reorderings. Consider now the example in Fig. 6,
which is a version T ′′ of the thread T . Again, it is correctly optimized. In order to
get defined behavior for T ‖C, the context C must in particular avoid data races
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with y = 2. But this implies that the context cannot observe the write y = 1,
for if it could, there would be a data race with y = 2. Moreover, moving y = 1
downwards out of the critical section cannot introduce data races, as a write to
y already occurs in this section. Consequently, y = 1 can be moved downwards
out of the critical section (or in this particular case removed completely).

We can use a similar argument as in the previous section to show within
our theory that T ′′ is a correctly optimized version of T . Let t′′, t be again two
state traces starting in the same initial state sinit . At the unlock(l) they are in
states s′′ = {x �→ 1, y �→ yinit} resp. s = {x �→ 1, y �→ 1}, with yinit denoting
the value of y in sinit . Again, the constraints ∀x ∈ M − W1 : s′′(x) = s(x),
and W ′′

0 ⊆ W0 ∪ W1 and W ′′
1 ⊆ W1 are satisfied, and we can conclude that

matcha(t′′, t), matchb(t′′, t), check(T ′′, T ), and finally ref(T ′′, T ) hold.

5 Evaluation

Previously we have argued that our specification efficiently captures thread
refinement in the SC-for-DRF execution model, as it abstracts over the way
in which a thread implements the state transitions between lock operations. In
this section, we show that with our approach we can check in linear time whether
two traces match. We also provide experimental data, showing that the appli-
cation of our state-based approach in a compiler testing setting leads to large
performance improvements compared to using an event-based approach.

5.1 Compiler Testing

Eide and Regehr [4] pioneered an approach to test that a compiler correctly
optimizes programs that involves repeatedly (1) generating a random C program,
(2) compiling it both with and without optimizations (e.g., gcc -O0 and gcc
-O3), (3) collecting a trace from both the original and the optimized program,
and (4) checking whether the traces match. If two traces do not match, then a
compiler bug has been found. Morisset et al. [12] extended this approach to a
fragment of C11 and implemented it in their cmmtest tool.

The cmmtest tool consists of the following components: an adapted version
of csmith [17] (we call it “csmith-sync” in the following) to generate random
C threads, a tool to collect execution traces of a thread (“pin-interceptor”),
and a tool to check whether two given traces match (“cmmtest-check”). The
csmith-sync tool generates random C threads with synchronization operations
such as pthread mutex lock(), pthread mutex unlock(), or the C11 primi-
tives release() and acquire(). We only consider programs that contain lock
operations. The pin-interceptor tool is based on the Pin binary instrumentation
framework [10]. It executes a program and instruments the memory accesses and
synchronization operations in order to collect a trace of those operations. The
cmmtest-check tool takes two traces (produced by pin-interceptor) of an opti-
mized and an unoptimized thread, and checks whether the traces match. We
use the existing csmith-sync and pin-interceptor tools, and implemented our own
trace checker tracecheck.
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5.2 Complexity

Our tool tracecheck takes two traces (such as those depicted in Fig. 2b), and first
determines the states of the traces at lock operations, and the sets of memory
locations accessed between lock operations. That is, given a trace it constructs
its corresponding state trace (i.e., an element of S(P )). Then, it checks whether
the two state traces match by evaluating the matchb() predicate. This way of
checking traces is very efficient as it has runtime linear in the trace lengths.

This can be seen as follows. The size of a state is bounded by the number
of writes that have occurred so far. Moreover, it is not necessary to check the
complete states for equality at each lock operation; it suffices to check the mem-
ory locations that have been written to since the last check at the previous lock
operation. Thus, checking the states at lock operations (corresponding to the
“states at lock” and “states at unlock” constraints of the matcha() predicate) is
a linear-time operation.

The race constraints can also be checked in linear time. First, the size of the
sets is bounded by the number of memory locations accessed between the two
corresponding lock operations. Second, subset checking between two sets A and
B can be implemented in linear time.1 In summary, we have a linear procedure
for checking whether two traces match.

By contrast, cmmtest-check attempts to match traces by finding a sequence
of valid transformations that transforms one trace into the other. Different
sequences are explored in a tree-like fashion [12], suggesting exponential run-
time in the worst case.

5.3 Experiments

We compared tracecheck to cmmtest-check on in total 40, 000 randomly generated
C threads. We compiled each with gcc -O0 and gcc -O3 and collected a trace
from each. The length of the traces was in the range of 1 to 4,000 events. We
have chosen this range such that also cmmtest-check could match all the traces
within the available memory limit. On some longer traces, cmmtest-check yields
a stack overflow (it is implemented in the functional language OCaml). Our tool
tracecheck can also handle traces with hundreds of thousands of events. Our tool
outperformed cmmtest-check on all traces and was 210 X faster on average. Both
tracecheck and cmmtest-check agreed on all traces, i.e., they either both classified
a trace as correct or they both classified it as buggy.

Figure 7 shows the average time it took to match two traces of a certain
length, for cmmtest-check (Fig. 7a) and tracecheck (Fig. 7b). Along the x-axis,
we classify the pairs of traces t′, t into bins according to the length of the
unoptimized trace t. Each bin i contains 100 pairs t′, t such that the length of t
is in the range [250 · i, 250 · (i + 1)]. For example, bin 5 contains the pairs with

1 If A and B are represented as hash sets, then A ⊆ B can be checked by iterating over
the elements of A, and for each one performing a lookup in B (which has constant
time). If all elements are found, A is a subset of B.
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Fig. 7. Average checking time over length of traces
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Fig. 8. Average checking time over number of locks in a trace

the length of the unoptimized trace being in the range [1250, 1500]. The y-axis
shows the average time it took to match two traces t′, t in the respective bin.
The dotted lines represent the 20th and 80th percentile to indicate the spread
of the times.

Figure 8 illustrates the effect of the number of lock operations in the two
traces on the time it takes to check if they match. We have evaluated this on
pairs of traces t′, t with the unoptimized trace t having length in the range of
[1900, 2100]. Along the x-axis, we classify the pairs of traces t′, t into bins accord-
ing to the number of lock operations they contain. The y-axis again indicates
the average matching time. As can be seen in Fig. 8a, cmmtest-check is sensi-
tive to the number of locks in a trace. That is, matching traces generally takes
longer the fewer locks they contain. The reason for this is that cmmtest-check
considers lock operations as “barriers” against transformations: it does not try
to reorder events across lock operations. Thus, the more lock operations there
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are in a trace, the fewer potential transformations it tries, and thus the lower
the checking time. By contrast, the performance of our tool tracecheck is largely
insensitive to the number of locks in a trace.

6 Related Work

Refinement approaches can be classified based on whether they handle language-
level memory models (such as SC-for-DRF or C11) [2,11,12,14,15], hardware
memory models (such as TSO) [5,16], or idealized models (typically SC) [3,9].

The approaches for language-level models typically define refinement by giv-
ing valid transformations on thread execution traces. These trace transforma-
tions are then lifted to the program code level. An example is the theory of valid
optimizations of Morisset et al. [12]. They handle the fragment of C11 with
lock/unlock and release/acquire operations. The theory is relatively restrictive
in that they do not allow the reordering of memory accesses across synchroniza-
tion operations (such as the roach motel reorderings described in Sect. 4).

The approaches of Brookes [3] (for SC) and Jagadeesan [5] (for TSO) are
closer to ours in that they also specify refinement in terms of state transitions
rather than transformations on traces. They provide a sound and complete deno-
tational specification of refinement. However, their completeness proofs rely on
the addition of an unrealistic await() statement, which provides strong atomicity.

Liang et al. [7] presented a rely-guarantee-based approach to reason about
thread refinement. Starting from the assumption of arbitrary concurrent con-
texts, they allow to add constraints that capture knowledge about the context
in which the threads run in. They later extended their approach to also allow
reasoning about whether the original and the refined thread exhibit the same
termination behavior [8].

Lochbihler [9] provides a verified non-optimizing compiler for concurrent Java
guaranteeing refinement between the threads in the source program and the byte-
code. It is however based on SC semantics rather than the Java memory model.
Sevcik et al. [16] developed the verified CompCertTSO compiler for compilation
from a C-like language with TSO semantics to x86 assembly.

The compiler testing method based on checking traces of randomly gener-
ated programs on which we evaluated our refinement specification in Sect. 5 was
pioneered by Eide and Regehr [4]. They used this approach to check the cor-
rect compilation of volatile variables. It was extended to a fragment of C11 by
Morisset et al. [12].

7 Conclusions

We have presented a new theory of thread refinement for the SC-for-DRF exe-
cution model. The theory is based on matching the state of the transformed and
the original thread at lock operations, and ensuring that the former does not
introduce data races that were not possible with the latter. Our theory is more
precise than previous ones in that it allows to show refinement in cases where
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others fail. It also boosts the efficiency of reasoning about refinement. Check-
ing whether two traces match can be done in linear time, and consequently our
implementation outperformed that of a previous approach by factor 210 X.
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Abstract. This paper describes the xSAP safety analysis platform.
xSAP provides several model-based safety analysis features for finite-
and infinite-state synchronous transition systems. In particular, it
supports library-based definition of fault modes, an automatic model
extension facility, generation of safety analysis artifacts such as Dynamic
Fault Trees and Failure Mode and Effects Analysis tables. Moreover,
it supports probabilistic evaluation of Fault Trees, failure propagation
analysis using Timed Failure Propagation Graphs, and Common Cause
Analysis. xSAP has been used in several industrial projects as verifica-
tion back-end, and is currently being evaluated in a joint R&D Project
involving FBK and The Boeing Company.

1 Introduction

In recent years, there has been a growing industrial interest in model-based safety
assessment techniques (MBSA) [1–3] and their application. These methods are
based on a single safety model of a system, and analyses are carried out with
a high degree of automation, thus reducing the most tedious and error-prone
activities that today are performed manually. Formal verification tools based on
model checking have been extended to automate the generation of artifacts such
as Fault Trees, which are required for certification of safety critical systems –
see, e.g., [4,5].

xSAP is a platform for MBSA, which provides a variety of features. First,
it enables the definition of fault modes, based on a customizable fault library.
Second, it implements automatic model extension, namely the possibility to
automatically extend a system model with the fault definitions retrieved from the
library. Third, it implements a full range of safety analyses, including Fault Tree
Analysis (FTA), Failure Mode and Effects Analysis (FMEA), failure propagation
analysis using Timed Failure Propagation Graphs (TFPGs), and Common Cause
Analysis (CCA). Finally, xSAP implements a family of effective routines for such
analyses, based on state-of-the-art model checking techniques, including BDD-,
SAT- and SMT-based techniques.

xSAP is currently the core verification engine for many other tools, including
industrial ones. It has been used in several industrial projects funded by the
European Space Agency. Moreover, xSAP is currently being used in a joint
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 533–539, 2016.
DOI: 10.1007/978-3-662-49674-9 31
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research and development project between FBK and The Boeing Company [6].
xSAP is being developed by FBK, and it is currently distributed with a free
license for academic research purposes and non-commercial applications. It can
be downloaded from http://xsap.fbk.eu.

Related Work. xSAP is an evolution and a complete re-implementation of
FSAP [7]. FSAP has been developed within the ESACS, ISAAC, and MISSA
European projects. It pioneered the ideas of model extension and model-based
safety assessment [2], and was applied for safety assessment of avionic systems.
xSAP contains significant improvements, such as handling of infinite-state sys-
tems, more general and customizable libraries to define fault modes and their
dynamics, and failure propagation analysis. Moreover, xSAP implements a fam-
ily of novel routines for safety analysis: the BDD-based Fault Tree generation
routines described in [8] are complemented by (different variants of) SAT-based
and SMT-based routines, and routines based on IC3 [9].

Some of the safety assessment functions of xSAP are used as a back-end for
the COMPASS tool [3,10] and its extensions, see e.g. [11]. There are two key
differences with respect to the COMPASS tools. First, xSAP provides a wider
range of routines for Fault Tree generation; second, xSAP implements a general
model extension mechanism, based on a library defining fault modes and their
dynamics, while in COMPASS the fault models must be modeled manually and
explicitly within the SLIM language.

Other platforms for MBSA are based on Altarica/OCAS [12–14], Scade
[15,16], and Statemate [17]. They support a subset of the features included
in xSAP (FTA, FMEA, or some limited form of model extension), but none of
them is publicly available.

Structure of the Paper. In Sects. 2 and 3 we describe the functionality and the
architecture of xSAP. In Sect. 4 we briefly discuss its most successful applica-
tions. In Sect. 5 we draw conclusions and outline future directions.

2 Functionality

In this section we describe the main features of xSAP. Figure 1 illustrates the
main flow.

2.1 Model Extension

Model extension [2,7] is an automated process that, based on a specification
of the possible faults, returns a model (called extended model) that takes into
account faulty behaviors. The model extension routine takes as input the nominal
model (describing behavior in absence of faults), the fault library (containing
templates for faults and their dynamics) and the fault extension instructions
(specifying directives to instantiate the fault templates). Formal analyses can
be run on the extended model, in order to assess system behavior in presence

http://xsap.fbk.eu
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Fig. 1. The xSAP main flow.

of faults. The fault library of xSAP contains a comprehensive set of predefined
fault modes, including, e.g., several variants of stuck at, random, conditional,
ramp down, and can be further customized for any specific need. Moreover, a
local and global dynamics libraries enable the definition of the dynamics of faults
(e.g., permanent or sporadic). The fault library has been validated and extended
to match the need of a significant case study of industrial size [6].

2.2 Safety Analysis

xSAP supports the automatic generation of artifacts that are typical of safety
analysis, in particular Fault Trees and FMEA tables [4,18]. A Fault Tree (FT)
is a graphical representation of the sets of possible causes of a given (undesired)
event (the root of the tree – called Top Level Event, TLE). The TLE is linked
by means of logical gates (AND, OR) to the basic events (faults). The minimal
combinations of faults explaining the TLE are called Minimal Cut Sets (MCSs).
Finally, xSAP can generate Dynamic Fault Trees (DFTs) [19], where a priority
AND gate is used to identify order of precedence of events. FMEA tables are
a tabular representation of the causality relationships between (sets of) faults
and a list of properties (undesired events). xSAP also supports the generation
of Dynamic FMEA tables, where the order of the events may be imposed.

2.3 Common Cause Analysis

Common Cause Analysis (CCA) is a necessary step of safety assessment, that is
often required by safety standards [4]. It consists in evaluating the consequences
of events that may break the hypothesis of independence of different faults. CCA
aims at investigating possible dependencies, and evaluates the consequences in
terms of system safety/reliability. xSAP enables the definition of events named
common causes, which may trigger the occurrence of a set of (dependent) faults.
Such faults may follow a user-specified pattern, e.g., simultaneous or cascading
(subject to given temporal constraints). For instance, debris caused by an engine
burst (the common cause) may cause multiple components of an aircraft to fail
simultaneously. xSAP enables the evaluation of reliability in presence of common
causes and the generation of FTs including them.
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2.4 Probabilistic Evaluation

xSAP supports probabilistic evaluation of Fault Trees. Given numerical proba-
bilities for the basic events and for the common causes, xSAP computes proba-
bilities for the intermediate nodes and the TLE of a FT. With the exception of
the constituent faults of common causes, all faults are assumed to be indepen-
dent. Moreover, xSAP supports the computation in analytical form, as a Python
or Matlab/Octave program, of the reliability function representing the probabil-
ity of the TLE. Such programs can be used to sample the reliability function for
different values of the probabilities, and to generate plots visualizing the TLE
probability as a function of (a subset of) the parameters.

2.5 Failure Propagation Analysis

xSAP supports the analysis of failure propagation using Timed Failure Propa-
gation Graphs (TFPGs) [20,21]. A TFPG is a graph-like model that accounts
for the temporal progression of failures and for the causality between failure
effects, taking into consideration time delays, system reconfiguration and sen-
sor failures. TFPGs support important run-time activities such as diagnosis and
prognosis [22]. The nodes of a TFPG represent either failures or discrepancies
(representing anomalous behaviors). Edges represent propagation links, labeled
with timing information (minimum and maximum propagation time) and modes
(system modes enabling the propagation). Discrepancies may be given either
AND or OR semantics – in the former case all incoming edges must be active in
order for the failure to propagate, in the latter case any of them suffices.

xSAP supports modeling of TFPGs and the following analyses: validation
of TFPG completeness (i.e., the TFPG contains at least as many behaviors as
the system it represents) and tightness (i.e., parameters of the TFPG cannot
be reduced without breaking its completeness). Moreover, xSAP implements
a procedure for the automated synthesis of tight delay parameters for a given
TFPG, and a procedure for the automated synthesis of the TFPG graph itself
from a model, given a set of failures and discrepancies. Finally, xSAP integrates
the TFPG validation features of [21].

3 Architecture and Implementation

The architecture of xSAP is built around the nuXmv symbolic model checker
(http://nuxmv.fbk.eu). nuXmv is an extension of NuSMV, and supports the
verification of finite- and infinite-state systems, by means of advanced SAT- and
SMT-based model checking techniques. nuXmv provides to xSAP the basic
infrastructure, e.g., the symbol table, model flattening, the Boolean encoding of
scalar variables, the representation of state machines and temporal formulae, and
the basic model checking algorithms. Moreover, xSAP relies on an interaction
shell similar to the one of nuXmv, which increases the flexibility and possibility
of integration within other tools.

http://nuxmv.fbk.eu
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On top of this, xSAP features the following blocks. Model Extension includes
the library of fault modes, a parser for the fault extension instruction language,
and the model extension. Minimal cut sets computation is realized by way of rou-
tines for parameterized model checking [9], using the model checking primitives
of nuXmv as building blocks. Fault Trees can be generated/stored/retrieved
either in XML or in a standard textual (tab-separated) format supported by
commercial tools, such as FaultTree+. The management of FMEA tables is iso-
lated in a separate module. Support for Time Failure Propagation Graphs is
based on XML and textual formats. The textual format enables editing in a
human-readable form – xSAP provides conversion from textual to XML and
vice versa. Syntax Directed Editors (SDEs) are available for editing models, fault
extension instructions, and TFPGs. Finally, the Visualization module contains
the graphical viewers: a trace viewer, an FT Viewer and a TFPG viewer are
available for displaying and analyzing traces, FTs and TFPGs, respectively.

xSAP has been developed in C and in C++ for the internal modules, while
Python is used for model extension and TFPG manipulation. The viewers are
based on the PyGTK, Goocanvas, PyGraphviz and Matplotlib libraries. xSAP

compiles and executes on the most widely used Operating Systems (OSs) and
architectures, namely: Linux, MS Windows, and MacOS X. Porting to other OSs
is also possible.

4 Applications

The xSAP platform has been used in a wide range of applications, both indus-
trial and academic, spanning several domains such as avionics and aerospace,
railway and industrial control. xSAP has been widely used in several industrial
projects with the European Space Agency (ESA), namely COMPASS, AUTO-
GEF, FAME and HASDEL (see http://es.fbk.eu/projects). It is the back-end of
the COMPASS family of tools [3]. Finally, xSAP has also been used in a joint
project with NASA [23].

Currently, xSAP is being used by Boeing [6]. The Boeing Company has
evaluated xSAP in the context of a joint research and development project
in the areas of model-based safety assessment, verification and validation. The
purpose of this project is to demonstrate the usefulness and suitability of model-
based safety assessment techniques for improving the overall process in terms of
robustness and cost-effectiveness, and for certification purposes; xSAP has been
used to model an industrial-size case study [6] and thoroughly evaluated in an
industrial setting.

5 Conclusions and Future Work

In this paper we presented xSAP, a state-of-the-art platform for model-based
safety analysis, providing a full range of functionalities, based on symbolic model
checking techniques. We described the architecture of xSAP and its industrial
applications.

http://es.fbk.eu/projects
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The symbolic technologies implemented in xSAP provide significant
advances also in terms of scalability. We refer to [14] for a comparison with
Altarica/OCAS (carried out using a license courtesy of Dassault Aviation), and
to [9] for an exhaustive evaluation of the novel routines implemented in xSAP.

As future work, we intend to extend xSAP in several directions. First, we
want to incorporate Contract-Based Safety Assessment (CBSA) techniques [24],
enabling the generation of hierarchical FTs following the design structure. More-
over, we wish to incorporate the routines for evaluation of reliability architectures
we developed in [25]. Finally, a significant extension will concern the definition
of observability information in the model and the addition of related function-
alities, such as diagnosability analysis and Fault Detection, Fault Isolation and
Fault Recovery (FDIR) analysis [20].
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Abstract. We introduce FACT, a probabilistic model checker that com-
putes confidence intervals for the evaluated properties of Markov chains
with unknown transition probabilities when observations of these tran-
sitions are available. FACT is unaffected by the unquantified estimation
errors generated by the use of point probability estimates, a common prac-
tice that limits the applicability of quantitative verification.As such,FACT
can prevent invalid decisions in the construction and analysis of systems,
and extends the applicability of quantitative verification to domains in
which unknown estimation errors are unacceptable.

1 Introduction

The development of quantitative verification [8,11] over the past fifteen years
represents one of the most prominent recent advances in system modelling and
analysis. Given a Markov model that captures relevant states of a system and
the probabilities or rates of transition between these states, the technique can
evaluate key reliability and performance properties of the system. This capability
and the emergence of efficient probabilistic model checkers such as PRISM [10]
and MRMC [9] have led to adoption in a wide range of applications [14].

Despite the success of quantitative verification, the usefulness of its results
depends on the accuracy of the analysed models. Obtaining accurate Markov
models is difficult. Although model states and transitions are typically easy to
identify (e.g., through static code analysis for software systems), transition prob-
abilities and rates need to be estimated. The common practice is to obtain these
estimates through model fitting to log data or run-time observations [4,15], or
from domain experts. In either case, the values used in the analysed models
contain estimation errors. These errors are then propagated and may be ampli-
fied by quantitative verification (since Markov models are nonlinear), producing
imprecise results that can lead to invalid design or verification conclusions.

The FACT1 probabilistic model checker introduced in our paper is not
affected by this problem. As described in Sect. 2, FACT can compute confi-
dence intervals for the properties of a common class of parametric (discrete-
time) Markov chains for which observations of the transitions associated with
1 Formal verificAtion with Confidence inTervals.

c© Springer-Verlag Berlin Heidelberg 2016
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the unknown probabilities are available. The operation of FACT (presented in
Sect. 3) is underpinned by recent theoretical results from [2], and the tool inte-
grates the PRISM parametric quantitative verification engine (first introduced
in version 4.2 of PRISM), the MATLAB convex optimisation toolbox YALMIP
[13] and a purpose-built hill climbing optimiser. The modular architecture of the
tool (discussed in Sect. 4) makes it easy to replace these components with func-
tionally equivalent ones and to extend the tool. FACT and the models from the
case studies summarised in Sect. 5 are available on our project website http://
www-users.cs.york.ac.uk/∼cap/FACT.

2 Formal Verification with Confidence Intervals

FACT parametric Markov chains (PMCs) are specified in an extended version
of the PRISM high-level modelling language [10], which models a system as the
parallel composition of a set of modules. The state of a module is encoded by a set
of finite-range local variables, and its state transitions are defined by probabilistic
guarded commands that change these variables, and have the general form:

[action] guard −> e1 : update1 + e2 : update2 + . . . + en : updaten; (1)

In this command, guard is a boolean expression over all model variables. If guard
evaluates to true, the arithmetic expression ei, 1 ≤ i ≤ n, gives the probability
with which the updatei change of the module variables occurs. When action is
present, all modules comprising commands with this action have to synchronise
(i.e., to carry out one of these commands simultaneously). In a FACT PMC, the
expressions e1, e2, . . . , en can be unknown (constant) probabilities x1, x2, . . . , xn.
These model parameters are associated with a declaration:

param double x = t1 t2 . . . tn; (2)

Fig. 1. (a) PMC model of a service whose invocations succeed with probability x1 and
time out with probability x2 = 1 − x1, where timed-out invocations are retried with
probability 0.1; (b) FACT-generated confidence intervals for the property ‘What is the
probability that the service cannot be invoked successfully?’ for an instance of the service
that was observed completing successfully 3747 times and timing out 125 times.

http://www-users.cs.york.ac.uk/~cap/FACT
http://www-users.cs.york.ac.uk/~cap/FACT
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in which ti ∈ N, 1 ≤ i ≤ n, represents the number of transitions associated with
updatei that were observed during a period of time when all outgoing transitions
from states that satisfy guard were monitored and recorded. An example of a
simple PMC analysed using FACT is shown in Fig. 1.

FACT PMCs can have multiple sets of parameters (2). For example, the out-
going transitions from state ‘s = 2’ in Fig. 1a could be associated with unknown
probabilities pRetry1 and pRetry2. The only constraint is that the different sets
of parameters (2) are statistically independent. This constraint is satisfied by a
broad class of PMCs that includes, for instance, all the models used in the case
studies of the PROPhESY tool2 [5] for analysing parametric Markov chains.

FACT can establish confidence intervals for PMC properties expressed in
probabilistic computation tree logic (PCTL) [7] extended with rewards [1]. The
current version of FACT supports non-nested probabilistic PCTL properties of
the form P=?[Ψ ], where the path formula Ψ is defined by the grammar:

Ψ :: = XΦ | Φ U Φ | Φ U≤k Φ
Φ:: = true | a | Φ ∧ Φ | ¬Φ

(3)

with k ∈ N, a an atomic proposition associated with states that satisfy a (e.g.,
timeout and success in Fig. 1a), p ∈ [0, 1], �� ∈ {≥, >,<,≤}, and Φ is a state
formula. FACT also supports all PCTL reward properties, i.e., the instantaneous,
cumulative, reachability and steady-state reward properties defined by:

Φ:: = R=?[I=k] | R=?[C≤k] | R=?[FΦ] | R=?[S]. (4)

Defining the semantics of PCTL is beyond the scope of this paper; details are
available from [1,7,10].

3 Using FACT

As shown in Fig. 2, FACT users provide a PMC, a PCTL property for analysis,
and a range of confidence levels. Given these inputs, the verification manager at
the core of our tool generates a confidence interval for each confidence level α
from the user-specified range in a four-step process. First, parametric quantitative
verification is used to obtain an algebraic expression for the analysed PCTL
property (step 1, executed only once for all confidence levels). This expression,
which is recorded in the FACT log, is a rational function of the PMC parameters,
e.g., 9x2

10x1+9x2
for the PCTL property analysed in Fig. 1b. In step 2, simultaneous

confidence intervals are calculated for each set of parameters (2) containing
elements that appear in the algebraic expression from step 1. If there are m such
parameter sets, then a confidence level of α1/m is used to calculate the parameter
confidence intervals, and these parameter confidence intervals have a “combined
confidence level” of (α1/m)m = α. Hence, step 3 uses them as input for a convex
optimisation problem whose solution represents an α confidence interval for the
analysed property—a formal proof of this result is available in [2].
2 http://moves.rwth-aachen.de/research/tools/prophesy/#benchmarks.

http://moves.rwth-aachen.de/research/tools/prophesy/#benchmarks
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Fig. 2. FACT operation and architecture; the technologies used by the current version
of the tool (shown in square brackets) can be replaced with alternative technologies

When m>1, using α1/m confidence intervals for each parameter set is unlikely
to yield the narrowest possible α confidence interval for the analysed property. For
two reasons, using confidence levels αi<α1/m<αj for the confidence intervals of
parameter sets i and j may produce a narrower α confidence interval:

1. If the number of state-transition observations associated with parameter set j
is larger than that for parameter set i, this choice of confidence levels may pro-
duce much narrower confidence intervals for parameter set i with an insignif-
icant widening of the confidence intervals for parameter set j;

2. If the analysed property is particularly sensitive to variations in the parameter
set i, reducing αi narrows the confidence intervals for parameter set i and may
also narrow the α confidence interval for the analysed property.

Therefore, step 4 uses a confidence interval optimisation heuristic to seek alterna-
tive confidence levels α1, α2, . . . , αm such that

∏m
i=1 αi = α and using αi confi-

dence intervals for the i-th parameter set, 1 ≤ i ≤ m, produces a narrower α con-
fidence interval for the analysed property. This optimisation can reduce the width
of property confidence intervals (e.g., by up to 14 % in the case studies from [2]),
but is time consuming since FACT steps 2 and 3 are repeated for each α1, α2, . . . ,
αm combination suggested by the heuristic. Hence step 4 is by default switched
off in FACT, and the user should switch it on explicitly if needed. There is one
typical scenario in which this need arises. This is when FACT is used to verify
whether the analysed property is above/below a threshold specified in the system
requirements (with some confidence level α), and the threshold falls inside the α
confidence interval without the heuristic search. In this scenario, the FACT user
should switch on the heuristic search by specifying a non-zero number of search
iterations, which may result in a narrower α confidence interval that does not con-
tain the threshold and enables a conclusion to be drawn.
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4 Architecture and Implementation

FACT has a modular architecture in which each step of the verification process
is carried out by a different module (Fig. 2). We implemented these modules in
Java, using the following technologies that can each be easily substituted with
alternative technologies (e.g., to extend FACT or to improve its efficiency):

1. The parametric quantitative verification engine is implemented on top of
PRISM [10], which it invokes in the background. An alternative implementa-
tion based on PARAM [6] is worth exploring.

2. The simultaneous confidence interval calculator implements the (conserva-
tive) solution proposed by Kwong and Iglewicz [12], which achieves a good
trade-off between computational complexity and precision. Several alternative
solutions that deserve investigating are mentioned in [2].

3. The convex optimisation engine uses the MATLAB convex optimisation tool-
box YALMIP [13], which it invokes in the background. An implementation
based on the non-commercial GNU Octave package (https://www.gnu.org/
software/octave/) is worth exploring.

4. The confidence interval optimisation heuristic currently used is hill climbing.
Numerous alternative heuristics can be substituted in this module.

5 Case Studies and Experimental Results

To evaluate FACT, we carried out case studies involving the synthesis of confi-
dence intervals for PCTL-encoded reliability, performance and cost properties of

Table 1. Experimental results for the case studies from Sect. 5

PMC psetsa paramsb PCTL property tcexp tdCI

Web 5 13 P=?[F HttpResponse] 0.75s 3.96s

P=?[¬(Database ∨FileServer)UHttpResponse] 0.84s 3.43s

Rcost
=? [F Done] 0.86s 3.31s

Rtime
=? [F Done] 0.89s 3.29s

TAS 3 6 P=?[F FailedAlarm] 0.24s 4.32s

P=?[¬Done U FailedService] 0.12s 2.82s

P=?[¬Done U FailedAlarm{MedicalAnalysis}] 0.11s 2.78s

LWB 1 2 Rpower
=? [S] 0.24s 3.03s

Renergy
=? [F StartedUp] 0.27s 2.98s

BRP 2 4 P=?[F SenderNoSuccessReport] 0.44s 31.6s

Z 2 4 RnumTests
=? [F DecisionMade] 0.15s 5.41s

aNumber of parameter sets (2) in the PMC
bTotal number of PMC parameters
cTime to compute algebraic expression
dTime to synthesise confidence interval

https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
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parametric Markov chains modelling systems from different application domains.
Table 1 summarises the experimental results obtained for the PMCs of:

– a web application taken from [2] (Web);
– a tele-assistance service-based system adapted from [3,4] (TAS);
– the low-power wireless bus communication protocol taken from [2] (LWB);
– the bounded retransmission protocol from the PROPhESY [5] site (BRP);
– the Zeroconf IP address selection protocol from the PARAM [6] website (Z).

The timing results were obtained on a standard OS X 10.8.5 MacBook computer
with 1.3 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 RAM. The
models, PCTL property files, results and descriptions for all case studies are
available on our FACT website http://www-users.cs.york.ac.uk/∼cap/FACT.

These case studies demonstrated several key benefits of our probabilistic
model checker. First, FACT supports the analysis of systems for which state
transition probabilities are unknown, but observations of these transitions are
available from logs or run-time monitoring. Second, it enables the analysis of
reliability, performance and other non-functional properties of systems at the
required confidence level. This approach is better aligned with the current indus-
trial practice than traditional quantitative verification. Third, it can prevent
invalid design and verification decisions. In many scenarios, the quantitative
analysis of Markov models built using point estimates of the unknown transition
probabilities misleadingly suggested that requirements were met. In contrast,
FACT showed that this was only the case with low confidence levels that are
typically deemed unacceptable in practice. Last but not least, our case studies
showed that FACT can be used to analyse systems from multiple domains.
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Abstract. We present Prdk: a development kit for programming pro-
tocols. Prdk is based on syntactic separation of process code, presum-
ably written in an existing general-purpose language, and protocol code,
written in a domain-specific language with explicit, high-level elements
of syntax for programming protocols. Prdk supports two complementary
syntaxes (one graphical, one textual) with a common automata-theoretic
semantics. As a tool for construction of systems, Prdk consists of syntax
editors, a translator, a parser, an interpreter, and a compiler into Java.
Performance in the Nas Parallel Benchmarks is promising.

1 Introduction

In the early 2000s, hardware manufacturers shifted their attention from man-
ufacturing faster—yet purely sequential—unicore processors to manufacturing
slower—yet increasingly parallel—multicore processors. In the wake of this shift,
concurrent programming became essential for writing scalable programs on com-
modity hardware. Conceptually, concurrent programs consist of processes, which
implement primary modules of sequential computation, and protocols, which
implement the rules of concurrent interaction that processes must abide by.

As programmers have been writing sequential code for decades, implementing
processes poses no new fundamental challenges. What is new—and notoriously
difficult—is programming protocols. One contributing factor to the complexity of
this activity is today’s popular programming languages not providing program-
mers explicit, high-level elements of syntax for programming protocols. Instead,
programmers need to use rather low-level reads/writes to shared memory pro-
tected by mutual exclusion—locks, semaphores, monitors, and the like.

In a long-term project at Cwi, we study an alternative approach to concur-
rent programming, based on syntactic separation of processes from protocols.
In this approach, programmers write their (sequential) processes in a general-
purpose language (gpl), while they write their (concurrency) protocols in a
domain-specific language (dsl). Paraphrasing the definition of dsls by Van
Deursen et al. [3], a dsl for protocols “is a programming language that offers,
through appropriate notations and abstractions, expressive power focused on,
and [..] restricted to, [programming protocols].” The semantics of our dsl is
based on automata; on top of it, we have both a graphical and a textual syntax.
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 547–552, 2016.
DOI: 10.1007/978-3-662-49674-9 33
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Fig. 1. Api for ports (left) and example hand-written processes (right) in Java

In this paper, we present a development kit for our dsl for protocols. In
Sect. 2, we briefly present the dsl. In Sect. 3, we present our development kit,
available at http://www.open.ou.nl/ssj/prdk. Section 4 concludes this paper with
some performance numbers and future work. We invite the reader to consult the
first author’s phd thesis for details and examples [7].

2 The DSL

Processes, implemented in a gpl, primarily perform sequential computations.
To interact with each other, in our programming model, every process also
owns a set of ports. Ports mark the interface between processes: output ports let
processes offer data to other processes, while input ports let processes accept data
from other processes. Processes can perform two blocking operations on ports:
put and get. When a process performs a put (get) on an output port (input port),
this operation becomes pending on that port and the process itself becomes sus-
pended. When a put (get) completes, its previously suspended process resumes
and offers (accepts) a datum. Whenever a process offers (accepts) a datum in
this way, it does not know whereto (wherefrom) this datum goes (comes); only
protocols, programmed as syntactically separate modules from processes through
explicit, high-level elements of syntax in a dsl, control when put/get operations
may complete on which ports and how data flow between ports. As such, proto-
cols effectuate only admissible interactions among (the ports of) the processes
in a program. We stipulate that put/get have value passing semantics (although
programmers are free to pass and interpret references to shared data as values).
Figure 1 shows an Api for ports and two processes in Java, defined as two sta-
tic methods (not directly as Java threads, which programmers do not need to
manually manage, or even know about, in our programming model). The actual
Api also has versions of put/get with timeouts (omitted here to save space).

By effectuating only admissible interactions, protocols essentially constrain
the completion of put/get operations. Formally, we can represent such con-
straints with automata [7], whose every transition models a data-flow between
ports with a pending put/get operation. Figure 2 shows an example. The automa-
ton in this figure models a producers/consumer protocol involving two output
ports A and B (each owned by a different producer, presumably) and an input

http://www.open.ou.nl/ssj/prdk
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Fig. 2. Example automaton for a producers/consumer protocol (left), its graphical
syntax (middle), and its textual syntax (right)

port C (owned by the consumer). Initially, a put by the producer owning A can
complete, causing that producer to offer a datum into internal buffer x (modeled
by expression A = x•). Alternatively, a put by the producer owning B can simi-
larly complete. Subsequently, only a get by the consumer owning C can complete,
causing the consumer to accept the datum previously stored in x (modeled by
expression •x = C). This protocol, thus, admits asynchronous, unordered, reliable,
transactional communication from two producers to a consumer.

Providing programmers syntax for writing protocols directly as automata
has at least one major issue: automata quickly grow prohibitively large. A more
scalable approach for defining automata is one based on their (parallel) com-
position: programmers should construct complex protocols out of simpler ones,
by composing (multiplying) smaller automata into larger ones, starting from a
predefined “core set” of primitive automata. We consider two declarative syn-
taxes for representing such multiplication expressions: Reo [1] and Pr [7]. Given
such a core set, in Reo, programmers draw multiplication expressions as data-
flow graphs; in Pr, programmers write multiplication expressions as automata
signatures. Figure 2 exemplifies both Reo and Pr (for the same protocol). In the
graph, every node/vertex denotes a primitive automaton in the core set; in the
text, the same applies to every signature (and their multiplication is, in turn,
denoted by a new signature LateAsyncMerger2).

3 The Development Kit

Our development kit, called Prdk, consists of tools (Eclipse plugins) for protocol
programming with automata (without ever exposing programmers to automata
directly): editors for Reo and Pr, an animation engine for Reo, a parser/
interpreter for Pr, a Reo-to-Pr translator, and a Pr-to-Java compiler. The Reo
editor and its animation engine have previously been developed as part of the
Ect (http://reo.project.cwi.nl), a collection of Eclipse plugins for Reo.

In Prdk’s basic workflow, programmers start by drawing a protocol as a Reo
graph for a small number of processes, using the drag/drop interface of the Reo
editor. The animation engine enables programmers to visualize the admissible
data-flows through the graph, which is an instructive and helpful aid in protocol
debugging. Subsequently, programmers can import processes, by drag/dropping
Java files onto the same canvas (which appear as boxes alongside the graph,
with distinct markers for their ports), and link (the ports of) those processes
to (the nodes in the graph of) the protocol as desired. The resulting diagram

http://reo.project.cwi.nl
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Fig. 3. Example compiler-generated protocol (partial) and main in Java

comprehensively implements a full program. By invoking the Reo-to-Pr trans-
lator, the Pr parser/interpreter, and the Pr-to-Java compiler on this diagram,
Prdk generates Java code for the protocol and merges this compiler-generated
code with hand-written code for processes according to their links in the dia-
gram (detailed below). A Java compiler, then, can translate everything into an
executable binary. In the basic workflow, the Pr syntax is completely hidden
from programmers (i.e., the Reo-to-Pr translator, the Pr parser/interpreter, and
the Pr-to-Java compiler are transparently chained, giving the programmer the
illusion of a Reo-to-Java compiler).

Often, programmers need different versions of a program with different num-
bers of processes (e.g., depending on the number of cores of the target hardware).
The Reo syntax does not conveniently support this. For instance, Reo requires
programmers to draw a specific diagram for a protocol among two processes,
another specific diagram for the same protocol among three processes, etc.; Reo
does not support drawing a generic diagram for k producers and one consumer.
Pr, in contrast, does support such parametrization. The basic workflow can,
thus, be extended with an extra step in which programmers explicitly use the
Reo-to-Pr translator to translate their Reo diagram into a Pr text, which they
subsequently can modify by parametrizing the protocol in its number of ports.

From a theoretical prespective, the most interesting tools in Prdk are the
Pr parser/interpreter and the Pr-to-Java compiler. The parser consumes a Pr
program as input and produces a syntax tree as output (if the input unam-
biguously satisfies Pr’s concrete syntax); we implemented the parser using the
Antlr parser generator. The interpreter consumes a syntax tree (produced by
the parser) as input and produces a list of automata, which represents a multi-
plication expression of automata, as output (if the input is well-typed). Finally,
the compiler consumes a list of automata for a protocol (produced by the inter-
preter) and a list of method signatures for processes (in the syntax tree produced
by the parser) as input and produces Java code as output.

Roughly, the compiler and its generated code work as follows. First, the
compiler computes the product of the automata in its input list. Second, the
compiler translates the resulting product automaton (which comprehensively
models a protocol) into a singleton Java class (which effectively encapsulates a
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state machine for simulating that automaton). The constructor of such a class
has a number of formal port parameters, to bind its single instance to actual
ports at “construction-time”. After construction-time, then, a thread monitors
these bound ports for new put/get operations performed by processes. When-
ever a put/get occurs, this thread checks if that operation—together with the
already pending put/get operations—enables the firing of a transition out of the
current state. If so, the thread makes that transition and completes the put/get
operations involved. As the constructor of a compiler-generated “protocol class”
(e.g., Fig. 3), hand-written “process methods” (e.g., Fig. 1) have formal port
parameters, to bind thread-wrapped calls of those methods to actual ports at
construction-time. The task of constructing ports and passing them both to the
constructor of a protocol class and to process methods is performed in the main

method. This main method is, as the protocol class, generated by the compiler
(based on linkage information either in a Reo diagram or in its Pr equivalent).

We significantly simplified our description of the workings of the compiler and
its generated code. For instance, we tacitly assumed that a program consists of
only one protocol, but Prdk supports also programs with multiple protocols.
Also, notably, while computing the product of automata, the compiler applies
a number of provably correct (i.e., bisimulation-preserving) optimizations and
automata transformations to improve the performance and scalability of its gen-
erated code. We presented these optimizations in previous work [8–11]; a com-
prehensive overview, including formal definitions and proofs of their correctness,
appears elsewhere [7]. Also, although Prdk currently supports only Java as the
target gpl, we do not use any Java-specific features; our choice for Java is, in
that sense, arbitrary. Our only requirement for a target gpl is that it supports
some form of multithreading. For instance, extending the compiler with support
for C+Pthreads is straightforward, as already worked on by a msc student [12].

4 Conclusion

1
1

1
1

1
1

Fig. 4. Benchmark results

To evaluate the performance of the code generated
by the compiler in Prdk, we compared the Java ref-
erence implementation of the Nas Parallel Bench-
marks [4]—a popular benchmark suite for paral-
lel performance—against an implementation devel-
oped with Prdk, on a machine with 24 cores using
the workflow described in Sect. 3. In seven bench-
marks, we considered six numbers of processes (2,
4, 8, 16, 32, 64) for various problem sizes, yielding
a total of 126 tests. Figure 4 summarizes our results,
where every bar represents the percentage of times
the Prdk-based implementation achieved a certain
speedup relative to the reference implementation. In 37 % of cases (gray bars),
the Prdk-based implementation is at most only 10 % slower than the reference
implementation; in 38 % percent of cases (black bars), the Prdk-based implemen-
tation is faster. Given the high level of abstraction supported by Reo/Pr, and the
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consequent burden carried by the compiler—instead of the programmer—to pro-
duce efficient code, these are promising first results. Details appear elsewhere [7].

Another recent initiative based on syntactic separation of processes from pro-
tocols is Scribble [5,13]. In Scribble, protocols are expressed through multiparty
session types [6]. One fundamental difference between Scribble and our approach
is that in Scribble, all interaction is asynchronous, order-preserving, and reliable,
whereas our automata allow for mixing synchrony and asynchrony (in the same
protocol) and support nondeterminism (both of orderings and reliability).

Our present version of Prdk does not include previous verification tools for
Reo, notably model checking [2]. We are currently investigating how to best inte-
grate those existing tools for a seamless implementation/verification experience.
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Abstract. Formal methods can verify the correctness of a concurrent
system by analyzing its model. However, if the actual implementation is
written by hand, subtle and hard to detect bugs may be unintentionally
introduced, thus ruining the verification effort. In this paper, we present
DLC (Distributed LNT Compiler), a tool that automatically generates
distributed implementation of concurrent systems modeled in the LNT
language, which can be formally verified using the CADP toolbox.

1 Introduction

When designing concurrent systems, the use of formal methods often consists
in verifying a model of a system, and then writing the actual implementation
by hand. The latter is tedious and error-prone, especially in the context of dis-
tributed systems, which are notoriously complex. The automatic generation of
distributed implementations directly from formal models adresses both difficul-
ties, by speeding-up the production of software, and by letting the programmer
operate at the formal model level, with the benefits of formal verification tools.
CADP (Construction and Analysis of Distributed Processes) [7] is a mature ver-
ification toolbox that can analyze concurrent systems modeled in the LNT [3]
formal language. In this paper, we present DLC (Distributed LNT Compiler,
http://hevrard.org/DLC), a tool which enables the automatic generation of dis-
tributed implementations from LNT models. DLC produces several executables
that can be deployed on distinct machines. Moreover, DLC let the end user
optionally define interactions between the implementation and its environment.

2 Formal Design with CADP and LNT

The CADP [7] toolbox gathers more than 25 years of research and development in
formal methods and offers a comprehensive set of tools including a model checker
and a test case generator, among others. The LNT formal language combines a
syntax close to mainstream programming languages with powerful concurrency
primitives inherited from process algebras. We briefly introduce LNT through a
rock-paper-scissors example, illustrated in Fig. 1. For an exhaustive description
of LNT including its formal operational semantics, see its manual [3].
c© Springer-Verlag Berlin Heidelberg 2016
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Fig. 1. A rock-paper-scissors game modeled in LNT.

The weapon type declares the three possible weapons, and requires the equal-
ity operator to be defined on its values. Many other types are available in LNT,
including array and general first-order constructor types which enable the defin-
ition of records, lists, etc. The function wins over uses the case pattern matching
statement to define the weapons’s circular relation. Again, LNT provides many
other statements, such as variable assignment, while and for loops, etc.

The PLAYER process defines a player behavior. Processes are a superset
of functions, they additionally enable communication actions, non-determinism
and parallel composition. The observable events of a process are actions on
gates. An action contains zero or more data offers, whose types form a profile.
A channel lists the profiles supported by a gate. Here, a player, identified by
its self argument, performs actions on gates GAME and WINNER, which are
restricted by channels game and nat, respectively. A player starts by assigning
a random weapon to its mine variable. Then, the select nondeterministic choice
statement introduces several possible behaviors, separated by “[]”: a player is
ready to perform either action on gate GAME—actions differ whether the player’s
weapon is first or second, identifiers are used for distinction. A player subse-
quently calls the wins over function: if it wins, it performs an action on gate
WINNER before looping on a new game; if its opponent wins, then the player
stops. Otherwise, it is a draw, and both players loop on a new game.

In LNT, processes interact by multiway rendezvous with value matching,
reminiscent of process algebras: one, two or more (multiway) processes synchro-
nize on an action, with the same profile. The value of data offers in received mode
(prefixed by “?”) of some process is set by other processes. For instance, players
can exchange values of type nat and weapon by a rendezvous on gate GAME. The
par statement in the MAIN process defines which rendezvous are allowed in a
parallel composition of three players: an action on gate WINNER can be realized
by any player independently, while an action on gate GAME must synchronize
any pair among the player processes (m-among-n synchronization [8]).
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3 Automatic Distributed Code Generation with DLC

DLC takes as input a parallel composition of LNT processes and generates a cor-
responding distributed implementation. Each process, also named task, is com-
piled to a distinct executable. Moreover, DLC produces one executable per gate
to handle task interactions. Finally, the implementation also contains a starter
executable that manages the deployment of other executables. For instance, when
we apply DLC on our example, we obtain an executable per player, plus two exe-
cutables for the gates, and the starter executable.

The starter deploys other executables according to a configuration file which
associates executables to machine names. By default, DLC produces a configu-
ration file which can be used as a template, where all executables are required
to run on the local host. The configuration file adopts a classical UNIX config-
uration syntax, which makes it easy to be either written by hand or generated
by scripts. For instance, here is a configuration file excerpt:

edel-12.grid5000.fr # machine name
directory = /tmp/task0_PLAYER0 # working directory on the remote node
files = dlc_task0_PLAYER0 # name of the executable

edel-36.grid5000.fr
... etc. ...

3.1 Environment Interaction with Hook Functions

More often than not, the end user wants the generated implementation to inter-
act with other existing systems in its environment, such as a local file system
or some web service. DLC enables such interactions through hook functions:
user-defined C functions that are called upon action events.

We want hook functions to enable not only the monitoring of actions, but
also their control. Within the distributed implementation, tasks and gates use
a protocol [4] to handle synchronizations while preserving the mutual exclusion
of conflicting (i.e., targeting the same tasks) rendezvous: when a gate detects a
possible action, it starts a negotiation that either succeeds and enables the action
realization, or fails. Therefore, we distinguish between pre-negotiation hooks that
are triggered before a negotiation is started, and post-negotiation hooks that are
called once the action is achieved. Moreover, each action is both a global event
of the system and a local event for each task involved in it. Accordingly, we also
distinguish between global hooks that are executed by gate processes, and local
hooks that are executed by task processes. From these categories, DLC provides
the three following types of hook functions.

pre-negotiation-global: each gate has a pre-negotiation-global hook that is
called before a negotiation starts for an action on that gate. This hook returns
a boolean to indicate whether a negotiation must be started for this action.

post-negotiation-global: each gate has a post-negotiation-global hook that is
called after a negotiation succeeds for an action on that gate. This hook
returns a boolean to indicate whether the action must be realized.
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Fig. 2. Hook functions enables interactions with the environment

post-negotiation-local: each task has a post-negotiation-local hook that is
called when the task realizes an action. This hook returns nothing.

The action under consideration is passed as an argument to all the three
types of hooks. Note that the pre-negotiation-global hook can decide whether a
negotiation shall be started or not, but a positive response does not guarantee
that the subsequent negotiation is successful. When the negotiation does succeed,
it is up to the post-negotiation-global hook to eventually decide to realize the
action (now that it is certain to be doable) or to abort the negotiation. All hooks
can interact with the environment to make choices or perform side effects.

Hook functions are optional, as DLC can produce a stand-alone implementa-
tion without them. Hook functions for a gate g (resp. a task t) must be defined
in the file named g.gatehook.c (resp. t.taskhook.c). DLC automatically detects
such files and embeds the hook functions into the implementation. Besides, DLC
has an option to generate hook function templates for a particular gate or task.

Figure 2 illustrates hook functions on the rock-paper-scissors example. The
pre-negotiation-global hook of gate GAME let the user decide, at runtime, which
games she allows. The post-negotiation-global hook of gate WINNER is used to
play some particular sound depending on which player wins a game.

3.2 Overview of Compilation Internals

Figure 3 gives an overview of how DLC proceeds to generate a distributed imple-
mentation. DLC relies on the EXEC/CÆSAR [9] tool of CADP to obtain a
sequential implementation (in C) of each task process. However, the implemen-
tation produced by EXEC/CÆSAR is not complete: it can list the currently
possible actions of a process, but does not decide which action shall be realized.
This decision is made by the synchronization protocol, and DLC automatically
interfaces the code generated by EXEC/CÆSAR with the protocol. Both task
and gate protocol logic are implemented once for all in isolated libraries, which
nonetheless require information about the specification, such as the interactions
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Fig. 3. Overview of DLC architecture.

allowed on each gate with respect to the parallel composition. DLC extracts and
gathers this information into the “specinfo” library, which is also used by the
starter to know who is who. Moreover, DLC detects and embeds the optional
hook functions. Finally, DLC invokes a C compiler to produce the executables.

Implementation Correctness. The sequential implementation of each task is
obtained by the existing EXEC/CÆSAR tool of CADP, which has already been
employed in a formal context [9]. Interaction between tasks is achieved by a
synchronization protocol [6] that we verified [4] using a formal approach that
detected possible deadlocks in other protocols of the literature [5]. The actual
implementation of the protocol logic is done by hand, but it is isolated in generic
modules that can be thoroughly tested. The writing of these modules is a one-
time effort, since they are reused in all generated implementations. Therefore,
for a given LNT specification, the specific code produced by DLC comes down to
the task-protocol interface which is glue code, and the “specinfo” library which
only represents information in data structures. Finally, hook functions can avoid
some valid actions to happen, but they cannot lead the system into an invalid
action. All these considerations let us have a decent confidence in the correctness
of implementations generated by DLC.

Current Restrictions. DLC presents two main restrictions. First, values
exchanged during an action must fit into a 64bits integer, thus records, lists,
and arrays must not appear in action data offers. To be removed, this restriction
requires serialization primitives for any LNT types, and we look toward CADP
tools to provide them. Second, an action can be guarded by a boolean function,
i.e., the action is allowed only if its offers let the guard function evaluate to true.
Since the code generated by EXEC/CÆSAR does not give access to guard func-
tions, DLC currently ignores the restrictions on data offers possibly induced by
them. To be removed, this restriction requires to modify EXEC/CÆSAR such
that the generated code gives access to guard functions.

4 Conclusion

In this paper, we presented the DLC tool, which enables the automatic genera-
tion of a distributed implementation from the LNT formal model of a concurrent
system. From an LNT parallel composition of processes, DLC produces several
executables that can be easily deployed on distinct machines. We underline the
fact that DLC does not require any special annotations in the LNT source.
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Process interactions by multiway rendezvous with data exchange are managed
by a formally verified protocol [4]. The end user can also set up interactions with
the environment thanks to the hook functions.

We measured the performance of implementations generated by DLC on sev-
eral examples [4,6]. Our biggest case study so far is the Raft consensus algorithm:
from an LNT specification of about 500 lines, DLC produces more than 9000
lines of C code for a Raft server. Across all examples, results illustrate that
implementations generated by DLC can achieve more than 1000 rendezvous in
sequence per second (and of course much more when rendezvous are realized
concurrently on different gates). Hence, we consider implementations generated
by DLC to qualify at least for rapid prototyping.

As regards related work, BIP [11] and Chor [1] come with deadlock analysis
tools and a distributed compiler. Erlang programs can be verified with McEr-
lang [2], and Dreams [10] generates distributed implementations of Reo models.

Thanks to DLC, a concurrent system can now be modeled in LNT, for-
mally verified with CADP, and automatically compiled to an efficient distrib-
uted implementation which is easily deployable and which can interact with its
environment. In future work, we plan to get rid of the remaining restrictions of
DLC, such that it can handle any LNT specification.

Acknowledgments. The author warmly thanks Frédéric Lang for reviews of this
paper, and all other members of the CONVECS team for their support.
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Abstract. We present a new release of PRISM-games, a tool for veri-
fication and strategy synthesis for stochastic games. PRISM-games 2.0
significantly extends its functionality by supporting, for the first time:
(i) long-run average (mean-payoff) and ratio reward objectives, e.g., to
express energy consumption per time unit; (ii) strategy synthesis and
Pareto set computation for multi-objective properties; and (iii) compo-
sitional strategy synthesis, where strategies for a stochastic game mod-
elled as a composition of subsystems are synthesised from strategies for
individual components using assume-guarantee contracts on component
interfaces. We demonstrate the usefulness of the new tool on four case
studies from autonomous transport and energy management.

1 Introduction

Automatic verification and strategy synthesis are techniques for analysing prob-
abilistic systems. They can be used to produce formal guarantees with respect to
quantitative properties such as safety, reliability and efficiency. For example, they
can be employed to synthesise controllers in applications such as autonomous
vehicles, network protocols and robotic systems. These often operate in uncer-
tain and adverse environments, models of which require both stochasticity, e.g.,
to represent noise, failures or delays, and game-theoretic aspects, to model non-
cooperative agents or uncontrollable events.

PRISM-games is a tool for verification and strategy synthesis for turn-based
stochastic multi-player games. The original version focused on model checking
for the temporal logic rPATL [7], used to express zero-sum properties in which
two opposing sets of players aim to minimise or maximise a single objective:
either the probability of an event or the expected reward accumulated before
it occurs. It has been successfully applied to, for example, autonomous driving,
self-adaptive systems, computer security and user-centric networks [16].

In this paper, we present PRISM-games 2.0, which significantly extends func-
tionality in several directions. First, it supports strategy synthesis for long-run
properties, such as average (mean-payoff) and ratio rewards. This provides the
ability to express properties of systems that run autonomously for long periods
of time, and to specify measures such as energy consumption per time unit.

c© Springer-Verlag Berlin Heidelberg 2016
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Secondly, a key new area of functionality is support for multi-objective prop-
erties, which enables the exploration of trade-offs, such as between performance
and resource requirements. Specifically, we allow Boolean combinations of objec-
tives expressed as expected total rewards (for stopping games), and expected
mean-payoffs or ratios of expected mean-payoffs (in so-called controllable multi-
chain games), as well as conjunctions of almost sure satisfaction for mean-payoffs
and ratio rewards (in general games). The tool also performs computation and
visualisation of the Pareto sets representing the optimal achievable trade-offs.

Thirdly, PRISM-games 2.0 facilitates compositional system development.
This is done through assume-guarantee strategy synthesis, based on contracts
over component interfaces that ensure cooperation between the components to
achieve a common goal. For example, if one component satisfies the goal B under
an assumption A on its environment (i.e. A → B), while the other component
ensures that the assumption A is satisfied, we can compose strategies for the com-
ponents into a strategy for the full system achieving B. Multi-objective strategy
synthesis, e.g., for an implication A → B, can be conveniently employed to
realise such assume-guarantee contracts. Again, Pareto set computation can be
performed to visualise the relationship between properties and across interfaces.

In this paper, we summarise the algorithms and implementation [2,3,8,9,15]
behind the new functionality in PRISM-games 2.0, describe its usage in the tool,
and illustrate the benefits it brings with results from four case studies drawn from
autonomous systems and energy management.

Related Tools. For stochastic games, there is support for qualitative veri-
fication in GIST [6] and partial support in the general purpose game solver
GAVS+ [10], but there are no tools for multi-objective or compositional analysis.
Multi-objective verification for the simpler model of Markov decision processes
is available in PRISM [13] (for LTL and expected total reward objectives) and
MultiGain [4] (for mean-payoff objectives), but not for stochastic games. Analy-
sis of Nash equilibria (which also balance contrasting objectives for different
players) can be performed with EAGLE [14] or PRALINE [5], but only for
non-stochastic games. Lastly, Uppaal Stratego [11] performs strategy synthesis
against quantitative properties, but with a focus on real-time systems.

2 Modelling and Property Specification Languages

Compositional Modelling. PRISM-games supports action-labelled turn-
based stochastic games (henceforth often simply called games), which are spec-
ified in an extension of the native PRISM modelling language [13]. Version 2.0
adds a compositional modelling approach to facilitate assume-guarantee strat-
egy synthesis for 2-player stochastic games. A top-level system consists of several
subsystems (component games), which are combined using the game composi-
tion operator introduced in [3]. This composition synchronises on shared actions,
and actions controlled by Player 1 in subsystems are controlled by Player 1 in the
composition, thus enabling composition of the synthesised Player 1 strategies.



562 M. Kwiatkowska et al.

smg system “S1” || “S2” endsystem

system “S1” G1 endsystem

module G1

s : [0..2] init 1;
[d!] s=0 → (s’=1);
[q1!] s=0 → (s’=1);
[a?] s=1 → (s’=2);
[b?] s=1 → 0.5 : (s’=1)

+ 0.5 : (s’=2);
[] s=2 → (s’=0);
[a?] s=2 → (s’=2);

endmodule

system “S2” G2 endsystem

module G2

t : [0..2] init 1;
[a!] t=0 → 0.5 : (t’=1)

+ 0.5 : (t’=2);
[q1!] t=0 → (t’=1);
[b?] t=1 → (t’=2);
[b?] t=1 → 0.5 : (t’=1)

+ 0.5 : (t’=2);
[] t=2 → (t’=0);

endmodule

rewards “r1”
[a] true : 1;

endrewards

rewards “r2”
[d] true : 1;
[b] true : 1;

endrewards

rewards “r3”
[b] true : 1;

endrewards

rewards “c”
[a] true : 1;
[b] true : 1;

endrewards

Fig. 1. A PRISM-games 2.0 model of a multi-component multi-objective game.

Each subsystem consists of a set of modules, which are combined using the
original parallel composition of PRISM-games (which ignores player identity).
Transitions of modules are specified using guarded commands, optionally labelled
with action names (but omitted for non-synchronising transitions). Transitions
may be assigned to different players in different subsystems. This is done by
tagging an action name a with ! or ?, where [a!] assigns the a-transition to
Player 1 and [a?] to Player 2. No state can have outgoing transitions labelled by
both ! and ? since we work with turn-based games. Figure 1 shows a model for
a system consisting of two subsystems.

PropertySpecifications. PRISM-games focuses on strategy synthesis for stoch-
astic multi-player games, i.e., finding player strategies that satisfy some winning
condition, irrespective of the (finite) strategies of any other players in the game.
PRISM-games 2.0 adds multi-objective queries (MQs): Boolean combinations of
reward-based objectives. Rewards are specified by a reward structure that assigns
real-valued rewards to transitions of a game (see Fig. 1, right-hand side). We can
reason about total reward (indefinitely cumulated rewards), mean payoff (long-
run average reward), or the long-run ratio of two rewards. We also support ratios
of expected mean-payoffs; expected ratios are synthesised soundly, but not neces-
sarily completely using almost-sure satisfaction of ratio rewards. An objective sets
a target v for a reward value to be exceeded (≥) or upper-bounded (≤). Objectives
for the expected mean-payoff of r, expected total reward of r, and ratio of expected
rewards of r and c are expressed, respectively, as R{“r”}≥v[S], R{“r”}≥v[C], and
R{“r”/“c”}≥v[S], where we use S and C to denote long-run and cumulative rewards.
Almost-sure satisfaction objectives for mean-payoff and ratio rewards are written
P≥1[R(path){“r”}≥v[S]] and P≥1[R(path){“r”/“c”}≥v[S]]. Objectives in an MQ
must be of the same type and are combined with the standard Boolean connectives
(∧, ∨, →, ¬), but almost-sure satisfaction objectives are only allowed in conjunc-
tions. In the style of rPATL, we use 〈〈coalition〉〉 to denote synthesis of strategies for
the player(s) in coalition. The following are examples ofMQs synthesising strategies
for player 1 in a game:



PRISM-Games 2.0: A Tool for Multi-objective Strategy Synthesis 563

P 1

0

9/8

1.5

0 1/2 1.0

r1

r2

〈〈1〉〉(R{“r1”/“c”}≤v1 [S]

→ R{“r2”/“c”}≥v2 [S])

G1

P 2

0

1/2

3/4

1.0

0 1/2

r1

r3

〈〈1〉〉(R{“r1”/“c”}≤v1 [S]

∧ R{“r3”/“c”}≤v3 [S])

G2
P ′

0

1/2

3/4

1.0

0 9/8 1.5

r2

r3

〈〈1〉〉(R{“r2”/“c”}≥v2 [S]

∧ R{“r3”/“c”}≤v3 [S])

r1

Fig. 2. Pareto sets for the games in Fig. 1, with property specifications beneath the
respective sets. On the right is the compositional Pareto set P ′. The global target is
(v2, v3) = ( 3

4
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8
), and the local targets can be seen to be consistent with v1 = 1

4
.

– 〈〈1〉〉(R{“packets in”/“time”}≤v1 [S] → R{“served”/“time”}≥v2 [S]) – assum-
ing the expected rate of incoming network packets is at most v1, the expected
rate of serving submitted requests is guaranteed to be at least v2.”

– 〈〈1〉〉(R{“passengers”}≥v1 [C] ∧ R{“fuel”}≤v2 [C]) – “the expected number of
passengers transported is at least v1, while simultaneously ensuring that the
expected fuel consumption is at most v2.”

3 Multi-objective Strategy Synthesis

PRISM-games 2.0 implements the multi-objective strategy synthesis methods
formulated in [2,8,9], at the heart of which is a fixpoint computation of the sets
of achievable targets for multiple reward objectives. For expected total rewards,
games must be stopping, i.e., terminal states with zero reward must be reached
almost surely under all strategies [8]. For expected long-run objectives, games
must be controllable multichain, i.e., the sets of states that can occur in any
maximal end component are almost surely reachable [15].

MQs with objectives of all types are converted into a unified fixpoint computa-
tion. In particular, Boolean combinations of expectation objectives are converted
to conjunctions by selecting appropriate weights for the individual objectives [8].
Then, at each state of the game we iteratively compute polytopic sets of achiev-
able vectors, with each dimension corresponding to one objective. Performance
can be improved by computing successive polytopes using in-place (i.e. Gauss-
Seidel) updates, as well as rounding the corners of the polytopes at every iteration
(which comes at the cost of precision) [9]. We then construct succinct strategies
with stochastic memory updates, that win by maintaining the target below the
expected value of the memory elements, which are the extreme points of the poly-
topes at the respective states.
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Table 1. Performance. The forward slash (/) indicates values for separate components.

Case study Model Objectives Synthesis

Components States # Type Accuracy Time[s]

UAV 1 6251 2 exp. total, Pareto 0.1 652

UAV 1 6251 2 exp. total, Pareto 0.01 871

AD(Charlton) 1 501 3 exp. total 0.001 2603

AD(Islip) 1 1527 3 exp. total 0.001 1968

Power(0) 2 3456/3456 2/2 a.s. ratio 0.001 175/172

Power(1) 2 11400/11400 2/2 a.s. ratio 0.001 2261/2298

Power+(0) 2 7296/7296 3/3 a.s. ratio 0.01 586/484

Power+(1) 2 24744/24744 3/3 a.s. ratio 0.01 3325/2377

Temp(w) 3 1478/1740/1478 3/2/3 exp. ratio 0.05 829/69/734

Temp(w) 3 1478/1740/1478 3/2/3 exp. ratio 0.01 860/92/2480

Temp(v) 3 1478/1740/1478 3/2/3 exp. ratio 0.05 678/27/621

Temp(v) 3 1478/1740/1478 3/2/3 exp. ratio 0.01 3370/34/8605

The implementation uses the Parma Polyhedra Library [1] for symbolic
manipulation of convex sets. Stochastic games are stored in an explicit-state fash-
ion and analysed using an extension of PRISM’s Java-based “explicit” engine.

Pareto Sets. An MQ is achievable for all targets in the achievable set ; its
frontier is the Pareto set, containing the targets that cannot be improved in
any direction without degrading another. The achievable set for Boolean com-
binations is the union of the convex achievable sets obtained for the respective
weights. The Pareto sets can be visualised by the user selecting two-dimensional
slices.

4 Compositional Strategy Synthesis

We leverage assume-guarantee verification rules for probabilistic automata (i.e.,
games with only a single player) for assume-guarantee strategy synthesis in
two-player games [3]. Given a system G composed of subsystems G1, G2, . . .,
a designer supplies respective local property specifications ϕ1, ϕ2, . . . via the
construct comp(ϕ1, ϕ2, ...). By synthesising local strategies πi for Gi satis-
fying ϕi, a global strategy π can be constructed for G. Using assume-guarantee
rules, one can then derive a global property ϕ for G that is satisfied by π. The
rules require fairness conditions, and we write Gπ |=u ϕ if the Player 1 strategy
π satisfies ϕ against all unconditionally fair Player 2 strategies. For example, the
rule:

Gπ1
1 |=u ϕA Gπ2

2 |=u ϕA → ϕG

(G1 ‖ G2)π1‖π2 |=u ϕG
(Asym)

states that Player 1 wins with strategy π1 ‖ π2 for ϕG in the top-level system if
π2 in G2 achieves ϕG under the contract ϕA → ϕG, and π1 in G1 satisfies ϕA.
Reward structures in shared objectives may only involve synchronised actions.
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Compositional Pareto Sets. We compositionally compute a Pareto set for
the property ϕ of the top-level system, which is an under-approximation of the
Pareto set computed directly on the monolithic system. For a target in the
compositional Pareto set, the targets for the local property specifications ϕi can
be derived, so that the local strategies can be synthesised (see Fig. 2).

5 Case Studies and Tool Availability

We illustrate the new functionality in PRISM-games 2.0 with four case studies, as
follows. “UAV”: we compute Pareto sets for a UAV performing reconnaissance of
roads, reacting to inputs from a human operator, under a conjunction of expected
total rewards [12]. “AD(V )”: we synthesise a strategy to steer an autonomous
car through a village V , reacting to its environment such as pedestrians, or traf-
fic jams, under a conjunction of expected total rewards [9]. “Power”: we max-
imise uptime of two components in an aircraft electrical power network, reacting
to generator failures and switch delays d; each component has a conjunction
of almost-sure satisfaction of ratio rewards. We use assume-guarantee strategy
synthesis for two model variants, with (resp. without) modelling an interface,
denoted Power+(d) (resp. Power(d)) [2]. “Temp”: we control the temperature
in three adjacent rooms, reacting to the outside temperature and whether win-
dows are opened; and use Boolean combinations of expected ratios. We use
assume-guarantee strategy synthesis for two model variants, denoted Temp(w)
and Temp(v) [15]. Table 1 summarises the tool’s performance on these case stud-
ies on a 2.8 GHz PC with 32 GB RAM. We observe that scalability mostly
depends on the number of objectives, the state space size and accuracy, but
our compositional approach greatly increases the viable state space sizes.

PRISM-games 2.0 is open source, released under GPL, available from [16].

Acknowledgement. This work has been supported by the ERC Advanced Grant
VERIWARE and EPSRC Mobile Autonomy Programme Grant.

References

1. Bagnara, R., Hill, P., Zaffanella, E.: The parma polyhedra library. Sci. Comput.
Program. 72(1–2), 3–21 (2008)

2. Basset, N., Kwiatkowska, M., Topcu, U., Wiltsche, C.: Strategy synthesis for sto-
chastic games with multiple long-run objectives. In: TACAS 2015, pp. 256–271
(2015)

3. Basset, N., Kwiatkowska, M., Wiltsche, C.: Compositional controller synthesis for
stochastic games. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 173–187. Springer, Heidelberg (2014)

4. Brázdil, T., Chatterjee, K., Forejt, V., Kučera, A.: MultiGain: a controller synthesis
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Abstract. Cerberus is a tool to automatically synthesize run-time
enforcement mechanisms for security-sensitive Business Processes (BPs).
The tool is capable of guaranteeing that the execution constraints EC
on the tasks together with the authorization policy AP and the autho-
rization constraints AC are satisfied while ensuring that the process can
successfully terminate. Cerberus can be easily integrated in many work-
flow management systems, it is transparent to process designers, and does
not require any knowledge beyond usual BP modeling. The tool works in
two phases. At design-time, the enforcement mechanism M , parametric
in the authorization policy AP, is generated from EC and AC; M can
thus be used with any instance of the same BP provided that EC and AC
are left unchanged. At run-time, a specific authorization policy is added
to M , thereby obtaining an enforcement mechanism M∗ dedicated to a
particular instance of the security-sensitive business process. To validate
our approach, we discuss the implementation and usage of Cerberus in
the SAP HANA Operational Intelligence platform.

1 Introduction

A security-sensitive business process (BP) [1] is a structured collection of tasks,
defining a workflow, equipped with an authorization policy (AP) defining which
users are entitled to execute which tasks, and authorization constraints such
as Separation of Duties (SoD) defining that certain tasks must be executed by
different users. The authorization policy and constraints are crucial to comply
with regulations and prevent frauds. It is, however, of utmost importance to
ensure that business continuity is not endangered, i.e. it must be possible to
complete the process while satisfying the authorization policy and constraints.

As an example, consider the Voting process shown in Fig. 1. It is composed
of four tasks (represented by rounded rectangles), Request Voting (t1), Moder-
ate e-mail discussion (t2), Moderate conference call (t3) and Validate Voting (t4),
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(FP7-PEOPLE-2012-ITN).
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and two SoD constraints (dashed lines labeled by �=), which impose that the
user who executes t2 (t3, resp.) cannot also execute t3 (t4, resp.). Examples of
valid execution scenarios, i.e. assignments of users to tasks such that the process
can terminate and constraints are satisfied, are t1(C), t2(A), t3(B), t4(A) and
t1(A), t3(B), t2(C), t4(A). Though in this simple process it is easy to determine
whether there exist valid execution scenarios, for complex BP with more con-
straints and expressive policies this is not the case. Establishing whether all tasks
can be executed while satisfying the authorization policy and without violating
any authorization constraints is known as the Workflow Satisfiability Problem
(WSP), whose solution is NP-hard already in presence of one SoD constraint [9].
The problem becomes even more complex if we consider the run-time version of
WSP that consists in answering user requests to execute a task while ensuring
successful termination together with the satisfaction of authorization constraints.
As an example consider that at run-time t1 has been performed by A, and B is
requesting to execute t2. Although B is entitled to do so by the authorization pol-
icy and t2 is not in SoD with any task B executed in the past, granting this request
would break business continuity. In fact A would be the only user entitled to exe-
cute t3 because of the SoD between t2 and t3, but then no user would be able to
execute t4 without violating the SoD with t3. In [3] a technique was introduced to
automatically synthesize, from security-sensitive BPs, enforcement mechanisms
that solve the run-time WSP.

In this paper we present Cerberus
1, a tool that relies on [3] to automati-

cally synthesize at design-time enforcement mechanisms capable of guaranteeing
at run-time that the workflow can terminate while satisfying the authorization
policy and the authorization constraints. The synthesized mechanisms are para-
metric in the authorization policy so that they can be combined at run-time with
authorization policies dedicated to different instances of the process. Cerberus

can be easily integrated in many workflow management systems, it is trans-
parent to process designers, and does not require any knowledge beyond usual
BP modeling. To demonstrate the tool, we integrated it into the SAP HANA
Operational Intelligence platform2 (OpInt) which offers a BPMN modeling and
enactment environment.

2 Tool Architecture and Implementation

A reference architecture for Workflow Management (WFM) systems [10] is com-
posed of the five blue elements shown in Fig. 2. Workflow Modeling is a graphical
user interface for a Process Designer to create workflow models using a modeling
language such as BPMN or YAWL (see, e.g., [10]). The models are stored in a
Workflow Model Repository, while the Workflow Engine interprets the models

1 Cerberus is a three-headed watchdog in Greek mythology, with the first head asso-
ciated to the past, the second to the present and the third to the future. Cerberus

acts as a monitor that takes into account the history of executions, the current
authorization relation and future executions to grant or deny requests.

2 https://help.sap.com/hana-opint.

https://help.sap.com/hana-opint
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Fig. 1. Voting process Fig. 2. Tool architecture (Color figure
online)

and directs the execution to the Invoked Applications, in the case of system and
script tasks, or to a Graphical User Interface (GUI), in the case of user tasks,
which are performed by Process Participants.

On top of the WFM components, we add the Cerberus components shown
in red in Fig. 2. The Monitor Synthesizer is responsible for interpreting the
workflow model and translating it into a transition system format accepted by a
Symbolic Model Checker capable of computing a reachability graph whose paths
are all possible executions of the workflow. Note that only the workflow model
(representing the execution constraints) extended with authorization constraints
is input to the monitor synthesis. This allows the synthesized monitor to support
different authorization policies at run-time. The reachability graph is translated
into a language such as Datalog or SQL and stored in the Monitor Repository.
The Monitor itself sits between the GUI and the workflow engine and grants or
denies user requests to execute tasks (users only access tasks through the GUI
and automatic tasks are not part of the authorization policy or constraints3).

The main goals in the design of Cerberus are usability, scalability and min-
imal interference with pre-existing functionalities. Usability is achieved because
the tool is fully automated and all the formal details are hidden from the process
designer, who only has to input the workflow model with a set of constraints
that he/she wishes to be enforced (which can be done graphically). Scalability is
ensured by the use of modular monitor synthesis (decomposing workflows into
components, synthesizing monitors for them and combining the results [4]) and
minimal interference is guaranteed by using the tool as a plug-in, so that both
monitor synthesis and enforcement can be easily activated or deactivated.

The Cerberus implementation is built on top of OpInt to synthesize, store,
combine and retrieve run-time monitors for security-sensitive workflows therein
modeled and enacted. HANA Studio is the IDE that acts as the Workflow Mod-
eling component, while the HANA Repository implements both the Workflow
Model Repository and the Monitor Repository. We added the constraint specifi-
cation and monitor synthesis capabilities in the IDE and used MCMT [6] as the
3 This is a limitation of the current implementation. Nonetheless the approach is able
to monitor any task subject to an authorization policy.
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Symbolic Model Checker. The Monitor Synthesizer is written in Python (core
algorithms) and JavaScript (IDE and repository integration). The monitors are
output in SQL as a view that is queried by the execution engine. The Workflow
Engine differs from traditional WFM systems because OpInt does not directly
execute the BPMN models, but instead translates them to executable artifacts
(JavaScript and SQL code) that manage and perform the tasks in the workflows.
The invoked applications are handled by SQL procedure calls and the GUI for
user tasks is integrated in a web task management dashboard.

Since we build on top of a reference architecture, other possible implemen-
tations of Cerberus could use open-source versions of the WFM components.
The advantage of OpInt is to have all the components in the same platform.

3 Using Cerberus

The usage of the tool involves four steps: design-time specification, monitor syn-
thesis, deployment, and run-time enforcement. SAP HANA is an in-memory rela-
tional database, so the BPMN artifacts and the monitors are translated to SQL.
There is a long tradition of works using relational languages, such as Datalog and
SQL, to express role-based access control and other authorization policies [7].
Moreover, we use database tables to store the users (USERS), authorization policy
(AP) and execution history (HST).

At design-time, a process designer uses the HANA Studio IDE to model
the control-flow and authorization constraints of a workflow. Authorization con-
straints are not part of standard BPMN, and there are many proposed extensions
to accommodate them, but we simply use task documentation to input the con-
straints in textual form. This can be changed in the future so that constraints
are specified as graphical elements. Authorization policies are specified by link-
ing each task to an assignment table in the database, which is only populated
at deployment-time. When design is complete, the model is translated to SQL
by pressing a button in the IDE.

To model the example of Fig. 1, a process designer uses the IDE to create a
new BPMN file and graphically drags, drops and connects the required elements:
start and end events (the circles in the figure), user tasks (rounded rectangles),
sequence flows (solid arrows) and parallel gateways (diamonds labeled by +).
The authorization constraints are input in the documentation of the second and
third tasks, the authorization policy is linked to the AP database table (which is
empty at the moment) and the task UIs are linked to web pages.

The monitor synthesis runs in parallel with the BPMN-to-SQL com-
piler and is completely transparent to end users. When the monitor synthesizer
receives a request to generate a monitor, the BPMN model file (in XML) is read
from the repository and translated to a symbolic transition system that is fed to
the SMT-based MCMT model checker. The model checker applies a backward
reachability procedure and returns a reachability graph that represents all pos-
sible executions of the workflow by symbolic users, which are introduced by the
model checker itself to represent placeholders for concrete users that are speci-
fied at deployment time in the USERS table. The reachability graph is composed
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of nodes labeled by first-order formulae representing sets of states and edges
representing the execution of tasks by users, with each path representing a pos-
sible terminating execution of the system. The formulae encode the conditions
that must be met for a user to execute a task and they use an interface to the
authorization policy and history of execution that will be realized at run-time
as the database tables AP and HST, respectively. The monitors are thus para-
metric in the authorization policy, which means that the same monitor needs
to be generated only once for each workflow model, regardless of the run-time
policy that is deployed with it. In [3], a procedure is described which takes a
symbolic transition system and returns a Datalog program whose clauses are a
conjunction of literals built out of the state variables in the transition system
such that user u can execute task t and the workflow can successfully terminate
iff can do(u, t) is a logical consequence of the Datalog program with a specific
authorization policy and history. The Datalog monitors are then further trans-
lated to SQL views that can be queried by the execution engine (aggregation-free
SQL and non-recursive Datalog with negation are equivalent and the transla-
tion is straightforward [8]). The resulting SQL view, using the database tables
representing users, authorization policy and history of execution, is stored in
the repository and queried at run-time by the execution engine. The synthesized
monitors are modular and can be composed to form more complex monitors, as
described in [4]. This allows us to alleviate the state space explosion problem
and handle large workflows by decomposing them into smaller modules.

In the example of Fig. 1, the monitor consists of an SQL view defined by a
procedure containing, among others, the following query for t2 (simplified for
the sake of clarity):
SELECT U2.ID FROM USERS AS U1 , USERS AS U2 WHERE HST.dt1 = 1 AND HST.dt2 = 0

AND HST.dt3 = 1 AND HST.dt4 = 0 AND (U1.ID <> U2.ID) AND NOT HST.t3by =
U1.ID AND NOT HST.t3by = U2.ID AND U2.ID IN (SELECT ID2 FROM AP) AND U1.
ID IN (SELECT ID4 FROM AP)

which encodes the fact that, to execute t2, the system must be in a state where
t1 and t3 have been executed, but neither t2 nor t4 (dt1 = 1 AND dt2 = 0 AND
dt3 = 1 AND dt4 = 0), there must be a user u1 who can execute t2 (SELECT
ID2 FROM AP), and a different user u2 (U1.ID <> U2.ID) who can execute t4
(SELECT ID4 FROM AP) and neither user should have executed t3 because of the
SoDs between t2 and t3 and between t3 and t4 (NOT t3by = U1.ID AND NOT
t3by = U2.ID). Other queries for t2 and all queries for other tasks have been
omitted for the lack of space.

For the deployment of a workflow it is necessary to specify the concrete
authorization policy by populating the linked database tables. End users manage
workflows using a generated API.

At run-time, there is a running job responsible for calling the next tasks
based on tokens stored in the database, whose flow is specified by the control-flow
in the BPMN model. When a human task is executed, the monitor associated
to the workflow is called into action by the automatic invoking of a procedure
from the task UI. To grant or deny a request, the monitor queries the USERS,
AP and HST tables described above to ensure that the requesting user is entitled
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to perform the task, the user has or has not performed another conflicting task,
and the execution of this task will not prevent the satisfaction of the workflow
(as shown in the example query above).

Examples of valid execution scenarios and run-time enforcement for the
process in Fig. 1 are given in the Introduction.

4 Discussion

Cerberus is under development and it has been validated with real-world and
synthetic examples [3,4]. Currently, the tool is not available for public use,
but business units at SAP showed interest in the OpInt integration and dis-
cussion about pilot projects with customers is going on. It is possible to use the
Cerberus architecture with other components, as described in Sect. 2, and we
already have implementations of the Monitor Synthesizer for Prolog, pyDatalog
and MySQL, but there is no integration with other WFM systems. This work is
related to runtime verification [5] and tools that address the WSP. The closest
related work is [2], which presents a workflow monitor that considers policies and
constraints and uses pre-existing IBM components; it does not, however, solve
the WSP. As future work, we intend to encourage and study the use of the tool
in more real-world scenarios and, leveraging the ideas in [4], build a repository of
components with synthesized monitors that can be reused by business designers.
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Abstract. Previously, we have developed a graphical proof strategy lan-
guage, called PSGraph [4], to support the development and maintenance
of large and complex proof tactics for interactive theorem provers. By
using labelled hierarchical graphs this formalisation improves upon tactic
composition, analysis and maintenance compared with traditional tactic
languages. PSGraph has been implemented as the Tinker system, sup-
porting the Isabelle and ProofPower theorem provers [5]. In this paper
we present Tinker2, a new version of Tinker, which provides enhance-
ments in user interaction and experience, together with: novel support for
controlled inspection; debugging using breakpoints and a logging mech-
anism; and advanced recording, exporting and reply.

1 PSGraph and Tinker

Most interactive theorem provers provide users with a tactic language in which
they can encode common proof strategies in order to reduce user interaction.
To encode proof strategies, these languages typically provide: a set of functions,
called tactics, which reduces sub-goals into smaller and simpler sub-goals; and a
set of combinators, called tacticals, which combines tactics in different ways.

Composition in most tacticals either relies on the number and the order of sub-
goals, or is to try all tactics on all sub-goals. The former is brittle as the number
and the order could be changed if any of the sub-tactics changes; and the latter is
hard to debug and maintain, as if a proof fails the actual position is hard to find.
It is also difficult for others to see the intuition behind tactic design.

To overcome these issues we developed PSGraph, a graphical proof strat-
egy language [4], where complex tactics are represented as directed hierarchical
graphs. Here, the nodes contain tactics or nested graphs, and are composed by
labelled wires. The labels are called goal types: predicates describing expected
properties of sub-goals. Each sub-goal becomes a special goal node on the graph,
which “lives” on a wire. Evaluation is handled by applying a tactic to a goal
node that is on one of its input wires. The resulting sub-goals are sent to the
out wires of the tactic node. To add a goal node to a wire, the goal type must
be satisfied. This mechanism is used to control that goals are sent to the right
place, independent of number and order of sub-goals. For more details see [4].
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JSON
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Isabelle

ProofPower

Tinker GUI

ScalaDraw

Tinker core

Poly/ML

Isa_Tinker

PP_Tinker

Fig. 1. Architecture

In [5], we introduced the Tinker tool, which imple-
ments PSGraph with support for the Isabelle and Proof-
Power theorem provers1. Tinker consists of two parts: the
CORE and the GUI, each is shaded in a separated grey
boxes in Fig. 1. The core is implemented in Poly/ML, and
handles the key functionality. The GUI is implemented
in Scala. They communicate over a JSON socket pro-
tocol. In addition to the Tinker GUI, a user will work
with the GUI of the theorem prover; Tinker is only used
for the proof strategies. To achieve theorem prover inde-
pendence, most functionality is implemented using ML
functors. Each theorem prover has a special structure that implements a pro-
vided signature, as indicated by Isa Tinker and PP Tinker in Fig. 1.

The main advantages of PSGraph over more traditional tactic languages (e.g.
as found in Isabelle and ProofPower) are the ability of a step-by-step inspection
of how sub-goals flow through the graph during evaluation, combined with fea-
tures to debug and modify it. Such features are of great aid when debugging
and maintaining proof strategies. It also provides a more intuitive representa-
tion to understand how the proof strategy works, also for non-developers (similar
to graph visualisation of proofs in e.g. [7]). Low-level details can be hidden by
using hierarchies to improve readability. Such features rely on good GUI sup-
port, which was only partially supported by the original Tinker tool [5]. Here,
we introduce Tinker2, a new version of Tinker, which extends Tinker with new

1: Library panel 2: Hierarchy utilities
3: Drawing and evaluation controls

5: Hierarchical node inspector
6: Information panel

4: Graph panel

Fig. 2. The Tinker2 GUI and its layout.

1 A Rodin version is currently under development.
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features, including supports for: library and hierarchical graphs; richer tactic and
debugging options; and recording and replay. Figure 2 shows the Tinker2 GUI
and its layout.

We will use the ProofPower instance of Tinker2 in this paper, albeit we
could just as well have used Isabelle as the features are identical. In Sect. 2
we focus on how to develop proof strategies from scratch; in Sect. 3 we discuss
advanced features of evaluating, debugging, recording and replaying proofs; while
we conclud and briefly discuss related and further work in Sect. 4.

2 Developing Proof Strategies

A user can draw a PSGraph from the Graph panel by selecting the type of node
from the Drawing and evaluation controls panel (see Fig. 2). Nodes are connected
by dragging a line between them. When selecting an entity, the details are dis-
played in the Information panel, and they can be edited by double clicking2.
Figure 3 shows the type of nodes that are supported by the tool.

Atomic GHierarchical

Fig. 3. The node types.

Atomic Tactics. An atomic tactic wraps a tactic of the underlying theorem
prover, which by default has the same as the name of the node. Tinker2 will
automatically use all available tactics from the underlying prover. New tactics
can be defined in the tactic editor of the Tinker2 GUI. To illustrate, the tactic
definition

tactic all ∃ uncurry := fn [] => conv tac all ∃ uncurry conv;

creates a tactic with no argument (fn []). This tactic will be parsed and
stored by the CORE, so that it can be used.

Hierarchical Nodes. Modularity is achieved by hierarchies. This can also help
to reduce the complexity and size of a PSGraph by hiding parts of it. We will
illustrate the new hierarchy features below.

Identity Nodes. Identity nodes are used to fanout and join wires. As the name
suggests, they do not change the sub-goals.

Breakpoints. A novel feature of Tinker2 is the introduction of breakpoint
nodes, which can be added/removed from wires by a simple mouse click.
We return to this is in Sect. 3.

Goal Nodes. A goal node wraps a sub-goal of a proof, and this can not be
modified by the user, i.e. these nodes can only be changed through tactic
applications, and introduced by the CORE when a new proof is started.

2 More details of running the tool is available from the user manual [2].
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For the atomic tactics, a set of atomic goal types needs to be provided for each
theorem prover. Tinker2 provides a Prolog-based language, with a dedicated
editor, to develop these. To illustrate, the atomic goal type top symbol(t,s)
checks if term t has top symbol s. To declutter the graphs, we can define new
goal types in the editor, which can then be used. For example:

is conj() :- top symbol(concl,conj).

checks if the top symbol of the conclusion (concl) is a conjunction ∧ (conj).

(REPEAT (CHANGED

(REPEAT strip ∧) THEN

(TRY (all ∃ uncurry ORELSE

redundant simple ∃ ORELSE

simple ∃ equation ORELSE

simple ∃ ∧)) THEN

(TRY (all ∀ uncurry ORELSE

redundant simple ∀ ORELSE

simple ∀ ∧ ORELSE

simple ∀ tac))))

Fig. 4. simple quantifier tac: ProofPower (left) and PSGraph (right)

As a running example, we will use a simple tactic to eliminate quantifiers in
ProofPower, called simple quantifier tac. This simplifies goals by: (1) elim-
inating top level conjunction (∧) as much as possible; (2) eliminating the top
level existential quantifier (∃) if they are redundant or can be simplified with
the one point rule3; (3) eliminating the top level universal quantifiers ∀. A possi-
ble implementation using ProofPower’s tactic language is shown in Fig. 4 (left),
where strip ∧ eliminates ∧; all ∃ uncurry and all ∀ uncurry change paired
quantifiers to uncurried versions; redundant simple ∃ and redundant simple ∀
remove the quantified variables if they are not used in the body; simple ∃ ∧ and
simple ∀ ∧ distribute quantifiers over ∧; simple ∃ equation simplifies goals
with the one point rule; and simple ∀ tac instantiates each ∀ quantifier with
an arbitrary free variable.

The right hand side of Fig. 4 shows an encoding of the same tactic in
PSGraph, developed using the described GUI4. This can be further simplified, by
“boxing” the sub-graphs that simplifies ∃ and ∀, respectively, using hierarchical
nodes. This simplified version is given in Fig. 6. Tinker2 allows such “boxing”
of sub-graphs into hierarchies, by a simple mouse click. Tinker2 also supports

3 In the one point rule ∃x.P (x) ∧ x = t becomes P [t/x].
4 See [9] for larger view, replay and video of this and other PSGraphs in Tinker2.
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Fig. 5. Hierarchy utilities

a range of features to work with hierarchies. In the Hierarchical node inspector,
users can preview the internal structure of an hierarchical node. In the Hierarchy
utilities panel, the hierarchical path of the current graph under editing is shown,
as well as a tree view of the hierarchical structure of a PSGraph. A screenshot
of a tree is shown in Fig. 5. It is also easy to move between and edit hierarchical
nodes.

Fig. 6. Hierarchical PSGraph of simple quantifier tac tactic.

Reuse of PSGraphs is supported by a library. This feature is provided in the
Library panel (see Fig. 2). The items in the library are PSGraphs. Therefore, the
library can also be customised by simply copying PSGraph files into the library
directory. When importing an item from the library to the current PSGraph,
Tinker2 will copy it to the graph that the user is currently editing and merge all
the required information, such as defined tactics and goal types.

3 Evaluating, Debugging, Exporting and Replaying

A PSGraph in Tinker2 can be applied as a normal tactic/method within an
Isabelle or ProofPower proof script. This is the normal execution. However, if
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it fails, it can instead be run in an ‘interactive mode’ where the GUI is used to
visualise and guide how the proof proceeds and identify where it failed. Com-
pared with the first version of Tinker, users can now: (1) select which goal to
apply; (2) choose between stepping into and stepping over the evaluation of
hierarchical nodes; (3) apply and complete the current hierarchical tactic; (4)
apply and finish the whole proof strategy; (5) insert a breakpoint and evaluate a
graph automatically until the break point is reached by a goal. These options are
illustrated in the Drawing and evaluations controls panel of Fig. 2 (see also [9]),
which also shows a break point in the graph.

To support debugging, an evaluation log, which shows the details of the cur-
rent proof status, can be displayed. The log uses tags that can be used to filter
the log to tags of interests. It also contains a real-time development mode that
allows users to develop proof strategies seamlessly during proof tasks. Here, a
user can freely edit the PSGraph (except for the goal nodes), e.g. change a tactic
node, and then submit the changes to continue the current evaluation with the
updated PSGraph. This is achieved using a new communication protocol, with
details available in the second author’s UG thesis [1], Note that this is currently
not sufficiently constrained as one could edit paths a sub-goal has already passed
thus invalidating the proof status, which we are now working on (see Sect. 4).

Tinker2 provides new features to export PSGraphs and record proofs. A
PSGraph can be exported to the SVG format, e.g. to use in a paper; Fig. 6 illus-
trates this as the SVG diagram has been exported from Tinker2. The recording
feature can be switched on/off to start/pause recording changes made to a graph.
These changes could have been made by the user or by the tool during evalu-
ation. Once completed, such recording can be exported to a light-weight web
application (written in HTML / CSS and JavaScript) via a generated JSON file.
Figure 4 (right) shows a screenshot of this, while [9] shows an example of this
together with several screencasts of the GUI.

4 Conclusion, Related and Future Work

We have introduced a new version of the Tinker tool, called Tinker2, with a
range of novel features to develop, debug, maintain, record and export hierar-
chical proof strategies. With Tinker2, users can easily reuse existing PSGraphs
to develop and debug structured and intuitive hierarchical proof strategies. The
most relevant work is the first version of the Tinker tool [5], which we have com-
pared with throughout. It is also important to note that Tinker/Tinker2 is built
on top of the Quantomatic graph rewriting engine [6], which is used internally
as a library function. The second author has also developed web-based version
of Tinker, which supports a subset of the GUI features discussed here [1]. With
the exception of simple proof visualisation (e.g. [7]), we are not familiar with any
other graphical proof tools to support theorem provers. While there are tactic
languages that support robust tactics (e.g. Ltac [3] for Coq), we believe that the
development and debugging features of Tinker2 are novel.

With D-RisQ (www.drisq.com) we are using Tinker2 to encode their highly
complex Supertac proof strategy in ProofPower [8]. Several enhancements have

www.drisq.com
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been motivated by this work. In the future, we would like to improve static
checking of PSGraph, such as being able to validate a PSGraph before evaluation.
We also plan to improve the layout algorithm, and develop and implement a
better framework for combining evaluation and user edits of PSGraphs.
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Abstract. We present v2c, a tool for translating Verilog to C. The tool
accepts synthesizable Verilog as input and generates a word-level C pro-
gram as an output, which we call the software netlist. The generated
program is cycle-accurate and bit precise. The translation is based on
the synthesis semantics of Verilog. There are several use cases for v2c,
ranging from hardware property verification, co-verification to simula-
tion and equivalence checking. This paper gives details of the translation
and demonstrates the utility of the tool.

1 Introduction

At the bit level, formal property verification for hardware is scalable to circuits
up to the block level but runs out of capacity for SoC-level or full-chip designs.
Verification at the word level promises more efficient reasoning, and thus better
scalability. However, unlike the AIGER format that is used to represent bit-level
netlists, there is no standard format to represent circuits at the word level. In
this paper, we argue that hardware circuits given in Verilog can be represented
at the word level by encoding them as C programs, which we call a software
netlist. To this end, we present a Verilog to C translator which we name v2c.
Given a Verilog RTL design, v2c applies the synthesis semantics to automatically
generate an equivalent C program. The tool is available online at http://www.
cprover.org/hardware/v2c/.

The primary motivation for the transition from bit level to word level is to
gain scalability [5,6]. The exploitation of high-level structures for better reason-
ing is a standard goal in hardware verification. We propose to take one further
step: the automatic translation of hardware circuits to a software netlist model
in C allows us to leverage advanced software verification techniques such as
abstract interpretation and loop acceleration, which have never been applied in
conventional bit-level hardware verification.

Verilog and C share many common operators. However, Verilog offers a num-
ber of additional operators like part-select, bit-select from vectors, concatena-
tion and reduction operators, which are not available in C. Additionally, Verilog
statements like the initial block, the always block, the generate statement, pro-
cedural assignment (blocking, non-blocking) and continuous assignment are not
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supported in C. Further, Verilog offers 4-valued data-types. These non-trivial
constructs, combined with parallelism, make the translation of Verilog to C chal-
lenging.

Although SoC designs are increasingly written at a higher level of abstrac-
tion [3,4], there is still a significant body of existing design IP blocks that
are written in VHDL or Verilog. Our tool v2c allows rapid generation of soft-
ware netlist models from hardware IPs given in Verilog RTL. Other tools like
VTOC [2] or Verilator1 also generate C/C++ code; however, VTOC was not
obtainable; the code generated by Verilator is suitable for simulation only and
is not amenable to formal analysis.

2 v2c – The Verilog RTL to C Translator

Figure 1 illustrates the translation steps of v2c. The front-end phase performs
macro preprocessing, parses Verilog and checks the types. The front-end supports
the 1364-2005 IEEE Standard for Verilog HDL. It generates a type-annotated
parse-tree, which is passed to the translation phase. During the translation phase,
the tool applies the synthesis semantics and performs a rule-based translation
following the Verilog module hierarchy. The rule-based translation produces vec-
tored assignments by mapping bit-operations to equivalent shift and mask oper-
ations and performs a global dependency analysis to determine inter-module
and intra-modular dependencies. The translation phase is followed by the code-
generation phase, where the intermediate vectored expressions and translated
module items are converted into C expressions. Note that we refrain from any
optimizations or abstractions to obtain a correct and trustworthy output.

Fig. 1. Translation stages in v2c

Software Netlist: A software netlist SN is a four-tuple 〈L,A, l0, le〉, where
L is the finite set of locations for modeling the program counter in the cor-
responding sequential code, l0 ∈ L is the initial location, le ∈ L is the error
location and A ⊆ L × M × L is the control flow automation. The edges in
A are labelled with a quantifier-free first-order formula M over program vari-
ables, which encode an assignment or an assume statement. The formula M is
defined by five-tuples 〈In,Out, Seq, Comb,Asgn〉, where In, Out, Seq, Comb
are input, output, sequential/state-holding and combinational/stateless signals,
respectively. Asgn is a finite set of assignments to Out, Seq and Comb where
1 http://www.veripool.org/wiki/verilator.

http://www.veripool.org/wiki/verilator
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– Asgn ::= CAsgn|SAsgn
– CAsgn ::= (Vc = bvExpr)|(Vc = bool), Vc ∈ Comb � Out
– SAsgn ::= (Vs = bvExpr)|(Vs = bool), Vs ∈ Seq
– bvExpr ::= bvconst|bvvar|ITE (cond, bv1 . . . bvn)|bvop(bv1 . . . bvn), cond ∈ bool,

bvi ∈ {bvconst, bvvar}
– bool ::= true|false|¬b|b1 ∧ b2|b1 ∨ b2|bvrel{b1 . . . bn}

2.1 Translating Verilog Module Items

Data Model: The data model in Verilog is significantly different from C. Each
bit of a C integer value can have only two states, namely 0 and 1. Bits in
Verilog HDL can take one of four values, namely 0, 1, X and Z. A value of
0 represents low voltage and value of 1 represents high voltage. Further, the
values X and Z represent an unknown logic state and a high impedance value,
respectively. The simplest synthesis semantics for X is treating it as a “don’t-
care” assignment, which allows the synthesis to choose a 0 or 1 to further improve
logic minimization. v2c treats X and Z values to be non-deterministic.

Registers, Wires, Parameters and Constants: Verilog supports structural
data types called nets, which are wire and reg. The value of wire variables changes
continuously as the input value changes. By contrast, the reg types hold their
values until another value is assigned to them. A structure containing all state
holding elements of a module is declared in C to store the register variables. Wires
are declared as local variables in C. Verilog parameters are constants, which are
frequently used to specify the width of variables. Parameters are declared as
constants in C. Verilog also allows the definition of translation unit constants
using the ‘define construct, e.g., ‘define STATE 2’b00;, which is the same as
the #define preprocessor directives in C.

Variable Declaration: Variables of specific bit-width (register, wire) in Verilog
are translated to the next largest native data type in C such as char, short int,
long, long long, etc.

Always and Initial Blocks: Always blocks are the concurrent statements,
which execute when a variable in the sensitivity list changes. The statements
enclosed inside the always block within begin . . . end constructs are executed in
parallel or sequentially depending on whether it is a non-blocking or blocking
statement, respectively. The behaviour of an initial block is the same as that of an
always block, except that they are executed exactly once, before the execution of
any always block. Figures 2 and 3 demonstrate the translation of Verilog always
blocks. All code snippets are partial due to space limitations.



v2c – A Verilog to C Translator 583

Module Hierarchy with Input/Output Port: The communication between
modules takes place through ports. Ports can be input only, output only and
inout. Figure 2 gives an example of a Verilog module hierarchy on the left and
the translated code block in C on the right. The output ports are passed as
reference to reflect the changes in the parent module. The generated C code
preserves the module hierarchy of the RTL. Structurally identical code often
aids debugging, as identifying corresponding C/RTL operations is easier.

Fig. 2. Handling module hierarchy with I/O ports

Procedural Assignments: Procedural assignments are used within Verilog
always and initial blocks and are of two types: blocking and non-blocking. Block-
ing assignments are executed in sequential order. However, the effect of blocking
assignments is visible immediately, whereas the effect of non-blocking assign-
ments is delayed until all events triggered are processed. This form of paral-
lelism in procedural assignments are modeled in v2c by first storing the value
of register variables in auxiliary variables in the beginning of the clock cycle.
Each read access to the register variables are then replaced by these auxiliary
variables. This ensures that an assignment to a register variable do not influence
subsequent procedural assignments. Figure 3 illustrates the translation of proce-
dural assignments (given at the top) to the equivalent C semantics (given at the
bottom).

Continuous Assignment: The continuous assignment is used to assign a value
to a wire. Continuous assignments are concurrent statements, which are imme-
diately triggered when there is any change in any of the signals used on the
right-hand side. The translation of continuous assignments are discussed next.

2.2 Dependency Analysis

v2c performs intra-modular dependency analysis to correctly model the depen-
dencies between the combinatorial and sequential blocks. Let us consider the
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Fig. 3. Tanslation of non-blocking, blocking and continuous assignments

following three cases for dependency analysis which are demonstrated with an
example in Fig. 3.

1. A variable, say x, appearing in continuous assignment, say A, is updated
directly by the input signal and the same variable is read inside an always
block. The continuous assignment A is placed before the always block to cap-
ture any change to the input signal and subsequently propagate the updated
value of x to the translated always block.

2. A variable, say x, assigned in a continuous assignment statement, say A,
appears in the right-hand side of another continuous assignment statement,
say B. In this case, the variable assignment A is placed before the other
assignment B which reads x.

3. A variable, say x, appearing in the right-hand side of a continuous assign-
ment, say A, is driven by an always block. This gives an ordering where the
continuous assignment is placed after the always block to capture the updated
value of x.

For designs with inter-modular combinatorial paths or combinatorial loops, the
combinatorial signals (wire variables) may settle after several executions before
the next clock cycle. The combinatorial exchanges between modules depends on
the stability condition for the combinatorial signals and thus it is necessary to
execute the combinatorial logic until the stability condition is reached. Deter-
mining such stability condition for large circuits is hard. An alternative way to
handle combinatorial exchanges between modules is by using assumptions over
the signals that encode combinatorial logic in the respective modules following
synthesis semantics. An example using the latter approach is given at http://
www.cprover.org/hardware/v2c/.

Bit-Precise Code Generation: v2c generates a bit-precise software netlist
model in C. The tool automatically handles complex bit-level operators in Ver-
ilog like bit-select or part-select operators from a vector, concatenation operators,

http://www.cprover.org/hardware/v2c/
http://www.cprover.org/hardware/v2c/
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Fig. 4. Handling bit-select, part-select from vectors and concatenation operator

reduction OR and other operators. v2c retains the word-level structure of the
Verilog RTL and generates vectored expressions. Figure 4 shows Verilog code (at
the top) and the generated C expressions (at the bottom), which are combina-
tions of bit-wise and arithmetic operators like bit-wise OR, AND, multiplication,
subtraction, shifts and other C operators.

3 Equivalence of Hardware and Software Netlist

We have applied v2c to a range of Verilog RTL circuits, which were obtained from
different sources. We have observed that the translation produces the correct
output. While we do not have a formal proof of correctness, experiments have
shown that for property verification, valid safety properties are proven to be
k-inductive for the same value of k in the hardware and software netlist models.
Conversely, for unsafe designs, the bug is found in the same cycle for both the
models.

4 Implementation

We have implemented v2c in C++ on top of the CPROVER framework [1]. We
make a pre-compiled static-binary for Linux available at http://www.cprover.
org/hardware/v2c/. We also provide several benchmarks in Verilog and the
corresponding software netlist models in C, which can be used for simulation,
property verification or equivalence checking. Currently, v2c does not support
multi-clock designs, transparent latches and designs with combinatorial loops.

5 Conclusion and Future Work

This paper presents a tool for translating Verilog RTL to C. The generated
software netlist can be used as word-level representation for hardware circuits in
Verilog RTL. This design representation allows us to leverage advanced software
verification techniques for hardware verification. In the future, we plan to handle
combinatorial feedback between modules and also support a richer subset of
SystemVerilog assertions for property specification.

http://www.cprover.org/hardware/v2c/
http://www.cprover.org/hardware/v2c/
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Abstract. The Parameterized Compositional Model Checking Problem
(PCMCP) is to decide, using compositional proofs, whether a property
holds for every instance of a parameterized family of process networks.
Compositional analysis focuses attention on the neighborhood structure
of processes in the network family. For the verification of safety proper-
ties, the PCMCP is shown to be much more tractable than the more gen-
eral Parameterized Model Checking Problem (PMCP). For example, the
PMCP is undecidable for ring networks while the PCMCP is decidable in
polynomial time. This result generalizes to toroidal mesh networks and
related networks for describing parallel architectures. Decidable models
of the PCMCP are also shown for networks of control and user processes.
The results are based on the demonstration of compositional cutoffs; that
is, small instances whose compositional proofs generalize to the entire
parametric family. There are, however, control-user models where the
PCMCP and the PMCP are both undecidable.

1 Introduction

Distributed network protocols and shared-memory concurrent programs are
often parameterized by the number of processes or threads in a configured
instance. State explosion generally limits model checking to protocol instances
that are much smaller than those that arise in practice. It becomes important,
therefore, to consider the question of determining “once and for all” if the entire
unbounded family of instances satisfies a specification. This is referred to as
the parameterized model checking problem (PMCP). The problem is, however,
generally undecidable [5].

Faced with this obstacle, much of the work to date on the PMCP has explored
two avenues. One is to restrict the structure of processes or their communication
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patterns in order to obtain decidability. Such restrictions, however, can limit
applications to real protocols. The second is to analyze each protocol individ-
ually, with manually chosen abstractions applied to the global state space. In
contrast, we explore a new and different form of parameterized verification, which
is based instead on restricting the shape of a correctness proof. The formulation,
which is referred to as the parametric compositional model checking problem
(PCMCP), asks whether a parameterized family has a compositional proof that
the specification is met for all instances.

Compositional analysis focuses the technical problem away from that of rep-
resenting global states to one of representing local, neighborhood states. One
might intuitively expect this to be easier to do. Indeed, our results show that
the PCMCP is much more tractable than the PMCP. The following results are
for the verification of quantified safety properties. To obtain precise statements
of complexity, the internal state space of a process is assumed to be finite, and
independent of the parameter n, the number of processes in an instance.

1. For regular network families, such as the ring, torus, and cube-connected
cycles, the PCMCP is decidable in polynomial time. In contrast, the PMCP
is generally undecidable and decidable only under strong restrictions [9].

2. For the synchronous control-user networks of German and Sistla [13], the
PCMCP is decidable in polynomial time. In contrast, deciding the PMCP
requires exponential time in the size of the processes.

3. For asynchronous shared-memory networks from [11], the PCMCP is decid-
able in polynomial time. The PMCP is decidable but coNP-complete.

4. For distributed memory control-user networks with an index-oblivious con-
trol process (defined later), the PCMCP is decidable in polynomial time.
Decidability of the PMCP is unknown.

The positive results are based on symmetry arguments that establish the exis-
tence of compositional cutoffs: small instances whose compositional verification
induces invariants that hold for the entire family. However, the PCMCP is not
always decidable: we show that for a control-user system with a non-oblivious
controller, both the PMCP and the PCMCP are undecidable.

As this is a new formulation of parameterized verification, we discuss some of
the implications in more depth. First, the notion of modular proof is of intrinsic
interest, practically as well as mathematically. In practice, several protocols have
modular proofs, a recent example is given by a verification of the AODVv2 rout-
ing protocol by the authors [24,25]. Mathematically, modular proofs (e.g., in the
Owicki-Gries or assume-guarantee sense) are interesting as they limit the state
information which is correlated across processes. These limits make it possible
to find neighborhood symmetries which collapse the verification for an entire
family on to a smaller cutoff instance. The topology of neighborhoods is usually
less complicated than that of the entire graph, which simplifies verification.

Secondly, the PCMCP is an approximate form of the PMCP and could be
used as such. That is, if the PCMCP answer is “yes” (there is a modular proof),
then the PMCP answer must also be “yes”. Given the generally lower complex-
ity of the PCMCP, it is advantageous to try to answer that question before
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attempting the PMCP. In this regard, the PCMCP is a new kind of approx-
imation: methods for approximating the PMCP, such as counter abstraction,
abstract the global state space; while the PCMCP, in contrast, restricts the
structure of the proof. (Other restrictions on proof structure, such as bounding
proof depth, might also be worth consideration.)

Finally, the cutoff results and modularity of the PCMCP could form a new
basis for the synthesis of parameterized protocols, analogous to the application
of cutoff theorems for the PMCP for that purpose (cf. [17]).

2 Preliminaries

We base the PCMCP on the formulation of compositional reasoning for
invariance by Owicki-Gries [26] and Lamport [19] (equivalently “Modular” or
“Assume-guarantee” reasoning). A compositional invariant is one where each
process in a process network has its own invariant assertion, which is also guar-
anteed to be preserved under the actions of neighboring processes. This immunity
to neighborhood “interference” (as it is called) ensures that the local per-process
invariants combine to form a global program invariant.

Processes and Inductive Invariants. A process P is defined by a tuple
(V, I, T ), where V is a set of (typed) variables which induce a state space S
that is the set of all possible valuations to V ; I is a subset of S, the initial set of
states, represented in logic by a predicate I(V ); and T is a transition relation,
a subset of S × S, represented by a predicate T (V, V ′), where V ′ is a copy of V
describing a valuation to V in the next state. The transition relation and initial
condition induce a set of reachable states (i.e., states which are obtained from
an initial state through a sequence of transitions). An invariant is a predicate
(i.e., a set of states) which holds of all reachable states.

An inductive invariant is a predicate that includes all initial states and is
closed under the transition relation. That is1, θ is an inductive invariant of
P = (V, I, T ) if (1) θ includes all initial states, i.e., [I(V ) ⇒ θ(V )], and (2) θ is
closed under transitions, i.e., [θ(V ) ∧ T (V, V ′) ⇒ θ(V ′)]. To show invariance
of a predicate f , one determines an inductive invariant θ which is a subset of f ,
i.e., [θ(V ) ⇒ f(V )]. In the sequel, we focus on inductive invariants.

Interleaved Composition of Processes. An asynchronous, interleaved com-
position of processes P1 = (V1, I1, T1) and P2 = (V2, I2, T2), written P =
P1 //P2, is defined as the process P = (V, I, T ), where:

– The set of variables, V , is V1 ∪ V2. The set of shared variables is V1 ∩ V2.
– I, the set of initial states, is a predicate on V such that its projection on V1

is in I1 and the projection on V2 is in I2.
– The transition relation T interleaves transitions of P1 and P2, where transi-

tions of one process leave the internal variables of the other process unchanged.
That is, T (V, V ′) = (T1(V1, V

′
1) ∧ unch(V \V1)) ∨ (T2(V2, V

′
2) ∧ unch(V \V2)).

1 The notation is from Dijkstra-Scholten [8]: [ϕ] means that ϕ is valid.
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The predicate unch(W ) says that the values of all variables in the set W are
unchanged, that is, it is the predicate (

∧
w : w ∈ W : w′ = w).

This definition extends to compositions P1 //P2 . . . // PN in a similar manner.

Compositional Invariants. There are several formulations of compositional
reasoning, but all share the crucial characteristic that the reasoning centers
on a process and its neighborhood. In the formulation we use here, there is a
predicate, θi, for each process Pi; this is a set of local states of Pi. Each local
state can be written in the form (x, y), where x is an internal state of Pi and y is
the state of the neighborhood of Pi. The neighborhood of a process is the set of
variables which are shared between the process and other processes. (E.g., the
neighborhood of a node i in a ring network of size n is defined by the variables
shared between that node and its left neighbor, with index (i−1)modn, and its
right neighbor, with index (i + 1)modn.)

In a network of processes, the neighborhoods of processes overlap (e.g., in
a ring, nodes i and (i + 1)modn share state). Hence, the natural formulation
of the constraints on the θ’s is through mutual induction, often referred to as
(syntactically) “circular reasoning”. The constraints which the {θi} predicates
must satisfy to be called a compositional invariant are as follows.

– (init) θi includes the initial states of Pi. That is, [I(V ) ⇒ θi(Vi)], and
– (step) θi is inductive for Pi. That is, [θi(Vi) ∧ Ti(Vi, V

′
i ) ⇒ θi(V ′

i )], and
– (non-interference) the actions of a neighboring process, Pj , do not falsify θi.

That is, [θi(Vi) ∧ θj(Vj) ∧ Tj(Vj , V
′
j ) ∧ unch(V \Vj) ⇒ θi(V ′

i )].

The following theorem connects compositional to global invariance:

Theorem 1. If the set {θi} is a compositional invariant, then (∀i : θi) is a
global inductive invariant of the program ( // i : Pi).

Compositionality as a Fixed Point. Let Fi be the disjunction of the predicates
I, (θi ∧ Ti), and (θi ∧ θj ∧ Tj ∧ unch(V \Vj)) for all neighbors j of i. The
compositional constraints can be rearranged into the set of validities {[Fi(θ) ⇒
θi]}. Considering θ = (θ1, θ2, . . .) as a vector in the predicate lattice ordered by
implication, Fi is monotone in θ. By the Knaster-Tarski theorem, there is a least
fixpoint solution, which defines the strongest compositional invariant. This is
the limit of the sequence X0 = (false, false, . . .), Xi+1 = (F1(Xi), F2(Xi), . . .).
For finite-state processes, the limit can be computed in polynomial time in the
number of processes and in the size of the state spaces of each process.

Proving Invariance. We focus on quantified assertions of the form (∀i : ξ(i)),
where ξ(i) is a predicate on the local state of process i. To compositionally prove
this assertion to be an invariant, one checks the constraints:

– (adequacy) θ(i) is a subset of ξ(i), for all i, written as [θ(i) ⇒ ξ(i)].

It follows that [(∀i : θ(i)) ⇒ (∀i : ξ(i))]. As (∀i : θ(i)) is a global inductive
invariant of the program (by Theorem 1), (∀i : ξ(i)) is a program invariant.
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Parameterized Compositional Invariants. A compositional invariant for a
parameterized family is defined using an unbounded set of compositional con-
straints. There is a θ-component for each node i in each network N of the fam-
ily; this is denoted as θ(i,N). The components must meet the previously defined
constraints for compositional invariance:

– (init) θ(i,N) includes the initial states of P(i,N),
– (step) θ(i,N) is inductive for P(i,N), and
– (non-interference) the actions of a neighboring process (j,N) in network N

do not falsify θ(i,N).

Although the vector θ is unbounded, there is still a strongest fixpoint solution.
As processes from different instances do not influence one another, this fixpoint is
the collection of strongest fixpoints for each instance. The decidability results in
this paper are obtained by collapsing the unbounded collection of constraints to a
bounded set through the identification of local (i.e., neighborhood) symmetries.
This leads to the concept of a compositional cutoff.

Compositional Cutoff. Several of the network families examined in this paper
have the following property: there is a limit, say K, such that the strongest
compositional invariants in networks of size greater than K are identical
(up to neighborhood isomorphism) to the strongest compositional invariants in
networks of size at most K. We then refer to K as a compositional cutoff.

As a concrete illustration, any pair of nodes in the family of ring networks
are locally symmetric – each has one neighbor to the left and one to the right –
so that the strongest compositional solutions are isomorphic across the family,
and the cutoff instance for the family is the smallest ring instance, of size 2.

3 Rings, Tori and Other Regular Networks

We recall results connecting compositional verification to local symmetry given
in [22] and use those to show that the PCMCP is decidable in polynomial time
for arbitrary protocols on rings, tori and other regular networks.

Networks. A network is formally defined as a pair (N,E) where N is a set of
nodes and E is a set of edges. Processes are placed on nodes, and shared state on
edges. Each edge, e, is associated with a set of input nodes, ins(e) ⊆ N and a set
of output nodes, outs(e) ⊆ N . For a node n, the set In(n) = {e | n ∈ outs(e)}
describes the input edges to n and Out(n) = {e | n ∈ ins(e)} describes the
output edges for n. The notation InOut(n) represents the union of those sets
and it forms the neighborhood of n. We say that node m points to node n
(written m ∈ pt(n)) if there is an output edge of m that is also in InOut(n).

Symmetry Groupoids. Two nodes m and n are locally similar, written m 
IO

n, if there is a bijective function β that maps In(m) to In(n), and maps Out(m)
to Out(n). I.e., the neighborhood of m is isomorphic to the neighborhood of n
through β. Tuples of the form (m,β, n) where β is a witnessing bijection for
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m 
IO n, are called local symmetries. Following [14], we call this the symmetry
groupoid2 of the network and denote it by GIO.

A groupoid induces an orbit relation: nodes m and n are related if there is a
groupoid element (m,β, n). From the groupoid properties, this is an equivalence
relation. The orbit relation for the symmetry groupoid is 
IO.

For a local symmetry (m,β, n), the isomorphism β maps the neighborhood
of m onto the neighborhood of n. We now lift this definition on structure to
include the processes running at m and n. Thus β maps a local state (x, y) of
m to a local state (x, β(y)) of n (recall that x is the internal state and y is the
neighborhood state), and it similarly maps a local transition ((x, y), (x′, y′)) of m
to a local transition ((x, β(y)), (x′, β(y′))) of n. This is lifted to sets of states and
transitions in the standard way. An assignment of processes to nodes is valid for
B ⊆ GIO if it respects the local symmetries in B: that is, for every (m,β, n) ∈ B,
it should hold that [Tn ≡ β(Tm)] and [In ≡ β(Im)].

Balance. Intuitively, as the compositional constraints for a node refer only to
its neighbors, one might expect that nodes that are locally symmetric have iso-
morphic invariants. This is not quite true: it is also necessary for the neighbors
related by the isomorphism to be (recursively) locally symmetric. That is cap-
tured in a bisimulation-like definition of balance.

Definition 1 (Balance) ([14,22]). A balance relation B is a set of local sym-
metries satisfying the following properties. For any (m,β, n) in B:

1. Its inverse, (n, β−1,m), is also in B, and
2. For any j which points to m, there is k which points to n and δ such that (a)

(j, δ, k) is in B and (b) β and δ agree on common edges. I.e., for every edge
f in InOut(j) ∩ InOut(m), δ(f) = β(f).

We say that a vector θ of per-process predicates respects a balance relation
B if for all (m,β, n) in B, [θn ≡ β(θm)]. We can now state the main theorem
connecting balance and local symmetry to compositional reasoning.

Theorem 2 (Symmetry Reduction) [22]. Given a balance relation, B, and a
valid program assignment, the strongest compositional invariant θ∗ respects B.

That is, balanced nodes have isomorphic strongest compositional invariants.
Hence, it suffices to find a balance relation that is a groupoid (there is always one
such, the greatest balance relation), pick one representative in each equivalence
class of its orbit and compute an invariant for that representative. The invariants
for all other nodes in the class will be isomorphic by Theorem 2.

2 A groupoid is roughly a group with a partial composition operation. The network
symmetry groupoid meets the conditions required of a groupoid: (1) (m, ι, m) is a
symmetry for each node m, where ι is the identity map; (2) if (m, β, n) is a symmetry
so is the inverse (n, β−1, m); and (3) the composition of symmetries (m, β, n) and
(n′, γ, o), given by (m, γβ, o) if n = n′, is also a symmetry.
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For example, ring networks have only O(n) global symmetries [6,10] which
limits global state-space reduction. However, any two ring nodes are locally sym-
metric and, in fact, balanced. Thus, it suffices to compute a compositional invari-
ant for a single node, the others will be isomorphic. To generalize this observa-
tion, we recall a result connecting global symmetry with balance.

Theorem 3 ([22]). For a network with global symmetry group G, the set
Local(G) = {(m,β, n) | β ∈ G ∧ β(m) = n} is a balance relation and a
groupoid.

A network with a transitive global symmetry group of automorphisms (i.e.,
one where any pair of nodes is connected by an automorphism) is called vertex-
transitive. We have the following corollary.

Corollary 1. In a vertex-transitive network, any pair of nodes is balanced and
there is a single equivalence class.

Proof: Consider any pair of nodes m,n. As the network has a transitive sym-
metry group G, there is an automorphism β in G such that β(m) = n. In that
case, the triple (m,β, n) is in Local(G) by definition. As Local(G) is a balance
relation, m and n are balanced and, as it is a groupoid, the orbit relation is
an equivalence, so that m and n are in the same equivalence class of Local(G).
Hence, there is a single equivalence class. EndProof.

This corollary implies that for a vertex-transitive network, it suffices to com-
pute a compositional invariant for a single representative node in order to obtain
the compositional invariant for all other nodes. Such networks are common:
rings, tori, toroidal meshes, hypercube and cube-connected-cycles (CCCs) all
have transitive symmetry groups. In order to extend this symmetry reduction to
a whole family of networks, say that a family of process networks, N , is uniform
if (1) each network in the family is vertex-transitive, (2) for every pair (M,N) of
networks, there is a pair of nodes, m ∈ M and n ∈ N , that are locally symmet-
ric, and (3) nodes that are locally symmetric are assigned isomorphic processes,
whose state space is independent of network size. We say that a quantified asser-
tion (∀n,N : n ∈ N : ξ(n,N)) is uniform if its components are locally symmetric.
I.e., for any pair of nodes (m,M) and (n,N) which are locally symmetric through
β, it is the case that [β(ξ(m,M)) ≡ ξ(n,N)].

Theorem 4. For a uniform family of networks, and a uniform quantified asser-
tion (∀n,N : n ∈ N : ξ(n,N)), the PCMCP is decidable in polynomial time.

Proof: By condition (1) of uniformity and Corollary 1, any pair of nodes in a
network N of the family are balanced. From condition (2), any pair of nodes
in the family are locally symmetric. To see this, consider a node n in network
N and m in network M . Then n (resp., m) is locally symmetric to all nodes in
N (resp., M), and condition (2) says that there is a pair of nodes from M and N
that are locally symmetric. Thus, m and n are locally symmetric by transitivity.

That, in turn, implies that all nodes in the family have isomorphic neighbor-
hoods, of a size which is a constant independent of the network size. Moreover,
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for a network M , its compositional invariant can be computed on the neigh-
borhood of a representative node m ∈ M , and similarly for network N and its
representative, n ∈ N . However, as m and n have isomorphic neighborhoods and
identical processes by condition (3), those invariants are isomorphic. Therefore,
it suffices to compute the strongest compositional invariant on a single represen-
tative node from a single network of the family. As the size of the neighborhood
is constant, this computation is in polynomial time in the local state space of the
process on the node. Hence, the strongest per-node compositional invariant can
be computed in polynomial time. As this is the strongest assertion, the adequacy
tests succeed for some invariant if, and only if, it succeeds for the strongest one.

Consider the unbounded number of adequacy tests, each having the form
[θ(n,N) ⇒ ξ(n,N)]. Let (r,R) be a representative node for the family. It suffices
to test whether [θ(r,R) ⇒ ξ(r,R)]. Assuming this holds, consider any node (n,N),
and let β be the local symmetry from (r,R) to (n,N). From the symmetry
properties, it follows that θ(n,N) ≡ β(θ(r,R)) ⇒ β(ξ(r,R)) ≡ ξ(n,N), so
that [θ(n,N) ⇒ ξ(n,N)] is also a validity. As the invariant computation and the
adequacy test can be performed on the representative node in polynomial time,
the PCMCP is decidable in polynomial time. EndProof.

This rather abstract result has a number of practical consequences. It implies
that the PCMCP is polynomial-time decidable for ring, tori, toroidal mesh,
and the hypercube-like cube-connected cycles (CCC) networks. The hypercube
networks are excluded as the degree of a node increases as log(k) with network
size k. We show below that the other networks meet the uniformity condition of
the theorem. Note that for each of these networks, the PMCP is undecidable,
which follows from the basic result on ring networks by Apt and Kozen [5].

Ring Networks. The symmetry group of a ring network is transitive, as any
node can be mapped to any other by an appropriate circular rotation. Fur-
thermore, the nodes with index 0 in ring networks of size m and n are locally
symmetric. Hence, the family of bidirectional (and unidirectional) ring networks
is uniform and its PCMCP is decidable in polynomial time.

Mesh/Toroidal Networks. Our next examples of regular topologies are gen-
eralizations of the mesh structure. For instance, the N (k, 2) meshes are the tori
formed by gluing together two k length cycles and wrapping the rings into a
cycle of length two at every interconnection point.

This parameterized topology can be extended for any k, a ∈ N, where 0 < k
and 0 < a so that N (k, a), is the parameterized set of wrap-around toroidal
meshes with a ring like sections, each section having k nodes, each node con-
nected to 4 neighbors. These mesh networks are examples of torus interconnec-
tion network architectures.

Here we generalize these structures to allow regular, but fixed rectangular
interconnection networks. Our first example is that of a wrap around, right
rectangular toroidal mesh, that contains arbitrary, parameterized numbers of
nodes. For example, in N (k1, k2, k3), the ki range over positive elements of N.
For any fixed k1, k2, and k3, there are k3 toroidal mesh structures with k1k2
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nodes, stacked on top of each other. For all a ∈ [0..k1 − 1], b ∈ [0..k2 − 1],
c ∈ [0..k3 − 1], node (a, b, c) of mesh c is connected to nodes (a, b, c + 1) and
(a, b, c − 1) (where addition and subtraction are modulo k3). Within mesh c,
the nodes are connected in the standard way, node (a, b, c) has neighbors (a +
1, b, c), (a − 1, b, c), (a, b + 1, c), and (a, b − 1, c), where the addition, respectively
subtraction, are modulo k1, respectively k2. As in the tori of early sections we
require that they be wrap-around, so that, for instance, ((k1 − 1, b, c), (0, b, c))
is an edge in (N(k1, k2, k3), E). Note that for any fixed k1, k2 there are an
unbounded number of right rectangular tori (N(k1, k2, k3), E).

Theorem 5. Every wrap-around toroidal mesh network, (N(k1, k2, k3), E), is
vertex transitive.

Proof Sketch: Fix any of the two dimensions. Letting the third dimensional
variable vary, the edge set of (N(k1, k2, k3), E) forms a ring. For each pair of fixed
values of the two chosen dimensions, a ring is formed by the varying third dimen-
sion. Notice that for any two pairs of values the two rings are disjoint. In each of
the different rings, the nodes are related by cyclic permutations. By keeping all
other dimensional relationships constant, the cyclic permutations form automor-
phisms of the rings, and therefore the structure as a whole. Sequential compo-
sition of the ring-like automorphisms from the different dimensions, again form
automorphisms of the wrap-around, right rectangular toroidal mesh structure.
Thus for any (a, b, c) and (a′, b′, c′) in N(k1, k2, k3) there is an automorphism,
π, of (N(k1, k2, k3), E) such that π(a, b, c) = (a′, b′, c′). EndSketch.

From the definition of the mesh, each node in an instance, regardless of the
instance size, has degree 6. Hence, for a uniform family of mesh networks, all
nodes in different instances are locally symmetric. Therefore it follows that the
PCMCP is decidable, in polynomial time, for uniform families of mesh/toroidal
networks of the form N (k1, k2, k3). Similarly, the PCMCP is decidable in poly-
nomial time for uniform families of mesh/toroidal networks of the form N (k1, a)
for any fixed a. These results also generalize to uniform families of polytopes of
the form N (k1, . . . , ka), for fixed a.

Cube-Connected Cycles (CCC). CCC [28] are a parameterized topology
used to describe interconnections of processors in parallel computing networks.

For k ≥ 3 the CCC (k) has k2k nodes. The nodes are indexed by pairs (x, y)
where 0 ≤ x < 2k and 0 ≤ y < k. Each node (x, y) is connected to 3 neighbors:
(x, (y + 1)mod k), (x, (y − 1)mod k), and (x ⊕ 2y, y). Here, ⊕ denotes bitwise
exclusive-or on binary numbers. Nodes (x, (y + 1)mod k) and (x, (y − 1)mod k)
are on the same cycle as node (x, y), while node (x ⊕ 2y, y) is on a neighboring
cycle. Intuitively, a CCC is obtained by taking a hypercube and expanding each
node into a cycle, so that each node has only a constant out degree of 3.
Theorem 6 ([3]). CCC (k) is vertex-transitive for all k.

From the definition of the CCC, each node in an instance, regardless of
the instance size, has degree 3. Hence, nodes in different instances are locally
symmetric. From this, it follows that the CCC is a uniform family of networks
and, therefore, its PCMCP is decidable in polynomial time.
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4 Control-User Networks

There are several decidability results on the PMCP for networks with a sin-
gle distinguished process (the “control” process) and many identical “user”
processes; however, the decision procedures have high complexity. We show that
the PCMCP is decidable efficiently, in polynomial time in the size of these
processes for two such network types. We prove decidability for a new index-
oblivious model. However, we also give an undecidability result for a stronger
control process.

4.1 Synchronized Control-User Networks

We consider the synchronized (CCS-like) control-user formulation analyzed by
German and Sistla in their pioneering paper on parameterized verification [13].
For this formulation, deciding whether the control process satisfies an invariant
can be done in double exponential time in the sizes of the control and user
processes. We show that the PCMCP is decidable in polynomial time in the
sizes of these processes. German and Sistla also define a simpler model without
a control process and show that the PMCP is decidable in polynomial time, it
is interesting that their algorithm3 is identical to the least fixpoint computation
of the compositional invariant, and therefore solves the PCMCP as well.

The control and user processes synchronize with CCS semantics. That is, a
step of the system consists of either an internal step by one of the processes,
or a pairwise synchronization of two processes (i.e., control-user or user-user).
In the simplest compositional formulation, we define two invariants: θC , which
represents local states of the control process, C, and θU , which represents local
states of the user processes, U . A compositional calculation for an instance of
the system with N users would have invariants θUi

, for each of the user processes
with i ranging over 1 . . . N . However, we choose a formulation where the user
processes in each instance, and across instances, are treated alike, and therefore
have a single invariant, θU . This choice is justified by a “compositional cutoff”
result based on local symmetries showing that the user invariants for instances
of size 3 or more are identical.

The states in θC are control states, while those in θU are user states. As
the system is built around pairwise synchronization, the interference rules are
slightly different from those given in Sect. 2.

– (Initial) All initial states of C are in θC , and all initial states of U are in θU ,
– (Step) If c ∈ θC and (c, τ, d) is an internal transition of C, then d ∈ θC .

Similarly, if u ∈ θU and (u, τ, v) is an internal transition of U , then v ∈ θU .
– (Interference) If c ∈ θC and u ∈ θU and (c, a, d) and (u, a, v) are transitions in

C and U respectively, then d ∈ θC and v ∈ θU . This represents control-user
interference. A similar clause applies to user-user interference.

3 The algorithm in [13] considers checking Linear Temporal Logic formulae on
networks of processes, in contrast we restrict attention to checking safety properties.
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Theorem 7. The PCMCP for the synchronous control-user system is decidable
in polynomial time for uniform quantified assertions.

Proof: The strongest (θC , θU ) pair can be calculated by turning the compo-
sitional rules into a simultaneous least fixpoint formulation, as described in
Sect. 2, and iterating until convergence. The computation time is polynomial
in the number of states of C and of U . The target invariant has the form
(∀n,N : n ∈ N : ξ(n,N)), which is uniform by assumption. With the strongest
compositional invariant in hand, it suffices to check adequacy for a representative
user node (r,R), i.e., to check [θU ⇒ ξ(r,R))], which can be done in polyno-
mial time. This suffices as, by the cutoff theorem, all other user nodes have
isomorphic values of θU , and ξ is invariant under isomorphism by the uniformity
requirement. Hence, the PCMCP is decidable in polynomial time. EndProof.

We now consider a different control-user model analyzed in [11]. Here, a system
has a single control process (a “leader” in [11]) and an unbounded number of user
processes (the “contributors”), that communicate only by reading and writing
to a shared memory. There are no locks or atomic test-and-set actions. If the
control and user processes are finite state, the PMCP is decidable and is co-
NP complete [11]. In contrast, using symmetry arguments similar to those used
above, the PCMCP is decidable in polynomial time.

Theorem 8. The PCMCP is decidable in polynomial time for the model of
asynchronous, shared-memory control-user networks and uniform assertions.

4.2 Asynchronous, Distributed Memory Networks

We consider a control-user network more akin to a client-server system. The
control maintains a finite, per-user state. Each user interacts with the control
process through their mutually shared state, but not directly with other users.
The network structure looks like a star, the control at the center and each user
at the end of a spoke, with the shared control-user state along the spoke4.

Within this general structure, many variations are possible based on the
capabilities given to the controller. We show that the PCMCP itself is undecid-
able for a rather reasonable variation. The control process has two capabilities.
First, it can perform a universal (dually, existential) test on its adjacent edges
of the form (∀i : f(ei)) (dually, (∃i : f(ei))). Second, it can carry out a non-
deterministic guarded command on its edges, of the form ([]i : f(ei) → ei := v).
This chooses an edge-state ei for which f(ei) is true, and updates it to hold
a value v. The command blocks if no such edge can be found. Notice that all
guards and actions are fully symmetric. The user processes are finite-state. Still,
both the PMCP and the PCMCP are undecidable.

4 Unlike the other cases, the local state space of the control process is unbounded as
it has the form (c, x) where c is its internal state (which is bounded), and x is the
vector of neighboring edge-values, which can have arbitrary length.
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Theorem 9. Both the PMCP and the PCMCP are undecidable for this asyn-
chronous, distributed memory control-user system.

Proof Sketch: The proof is a reduction from the undecidability of halting for
two-counter machines (2CMs) [21]. We show how to simulate a 2CM using the
control process alone. The user processes do nothing; they have a single internal
state with a skip action. EndSketch.

4.3 A Decidable Asynchronous, Distributed Memory Network

We give a positive result for the PCMCP for a restricted control process, whose
actions are “oblivious” to the user indices, i.e., one cannot target a specific
index. The action either does nothing (skip) or it assigns a value v to all edges,
written as (Ai : ei := v) (or (Av) for short). This structure is inspired by that
of a specific Dining Philosophers protocol over arbitrary graphs, where nodes
are assigned philosophers and edges forks. A philosopher eats if it is hungry and
“owns all neighboring forks” (a universal guard); after eating, it “releases all
neighboring forks” (a universal action). Its compositional analysis [23] focuses
on a generic graph node with an arbitrary number of neighbors. This looks like
a control-user system. We now show that the PCMCP is decidable5.

The pair of invariants θC and θU apply to the entire family, so θC contains
local states for the control process over all instances, and θU contains neighbor-
hood states for all users in all instances. A state in θU is a pair (a, k) where a is
an edge value, and k is a state of the user process. A state in θC is a pair (c, x),
where c is an internal state of the control process, and x is a vector of values
for its adjacent edges. As θC represents local states in all instances, the length
of x is unbounded. We define an abstraction of the system and show that its
compositional invariant is sufficiently precise to solve the PCMCP.

The abstraction is only for the control process, user processes have finite
local state and are unabstracted. The abstraction is a Galois connection (α, γ),
where α(c, x) = (c, s), where s is the set of edge-values which are in x, and
γ(c, s) = {(c, x) | α(c, x) = (c, s)}. In the abstract system, the transitions of the
control process are abstracted to operate on sets in the standard manner: the
abstract version of transition t is given by α ◦ t ◦ γ. This can be simplified as
follows. For a concrete transition from internal state c to c′ with guard g and
action act, the abstract equivalent is the following:

– If g is (∃i : f(ei)), then g applied to (c, s) is (∃a : a ∈ s : f(a)). Similarly, if g
is (∀i : f(ei)), then g applied to (c, s) is (∀a : a ∈ s : f(a)).

– If act is skip, then act is skip. If act is (Ai : ei := v) then act is s := {v}.

5 We do not know the status of the PMCP. The powerful WQO theory of [1] appears
not to apply due to the presence of universal guards. A more general assignment
action, (Ai : ei := h(ei)), also preserves the decidability of PCMCP. Allowing the
dual action of assigning a value to some edge makes the PMCP undecidable (a reduc-
tion from 2CM). We do not know whether it also makes the PCMCP undecidable.
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The abstract interference transitions operate in a similar manner. We refer to
the strongest compositional invariants on the abstract system as ΔC and ΔU .

– (control-to-user) If there is an abstract transition with action (Av) from (c, s)
to (c′, s′), and (a, k) is a state in ΔU and a ∈ s, the interference state is (v, k).

– (user-to-control) If there is an abstract user transition from (a, k) to (a′, k′),
and (c, s) is a state in ΔC , and a ∈ s, the interference successors are (c, s∪{a′})
(i.e., a′ is added to s) and (c, (s\{a}) ∪ {a′}) (i.e., a′ replaces a in s).

The connections between (θC , θU ) and (ΔC ,ΔU ) are laid out in the following
lemmas. The first lemma says that the compositional invariants of the abstract
system over-approximate those of the concrete one. This proof is by induction
on the fixpoint stages of the computation of θ.

Lemma 1. For each state in θC there is an α-related state in ΔC . Every state
in θU is in ΔU .

The next lemma shows that the abstraction is not too abstract. The simpler
statement γ(ΔC) = θC need not hold, as some abstract interference transitions
are matched only by concrete states with sufficiently many components.

Lemma 2. For any k, Δk
U ⊆ θU . For every state (c, s) in Δk

C and any l ≥ 1,
there is a related state (c, x) in θC where for each value a in s, at least l edges
of x have value a.

Proof: By induction on k.

Basis (stage 0): Δ0
C is just the state (c0, {⊥}), while Δ0

U is the state (u0,⊥),
where c0 and u0 are the initial states of the control and user process. So Δ0

U = θ0U .
By definition, θ0C consists of all states of the form (c0, x) where x is a vector of
⊥ entries. Hence, the hypothesis holds for Δ0

C .

Control Step (stage k + 1): Consider an abstract state (c′, s′) of stage k + 1
obtained through a step by C from a state (c, s) at stage k. We consider the
various step transitions separately. We use the notation Σ(x) to represent the
set of values on the edge vector x. First, note that for any (c, x) related by
γ to (c, s), a concrete transition guard is enabled at (c, x) if and only if the
corresponding abstract guard is enabled at (c, s), because Σ(x) = s. Hence, we
can focus on the effect of the actions.

(1) the action is “skip”. Then s′ = s. Consider any l > 0. By inductive
hypothesis, there is a state (c, x) related to (c, s) where x has at least l com-
ponents with value a for all a in s. Construct the state (c′, x). This is a step-
successor of (c, x) by the skip action, so it is in θC by closure under step. As
s′ = s, the vector x in (c′, x) satisfies the condition required of l.

(2) the action is an (Av) action. Then s′ = {v}. Consider any l > 0. By the
inductive hypothesis, there is a state (c, x) related to (c, s) by γ, with at least l
components for x. Let (c′, x′) be its successor with the Av action. Then this state
belongs to θC and x′ is a vector of v-values of length at least l, so it satisfies the
condition required.
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User Step (stage k + 1): Consider an abstract state (a′,m′) of stage k + 1
obtained through a step by U from a state (a,m) at stage k. As (a,m) is in θU
by assumption, the state (a′,m′) is also in θU by closure under step transitions.

User-to-Control Interference (stage k+1): Suppose there is a user transition
from (a,m) to (a′,m′), and (c, s) is a state in Δk

C with a ∈ s. There are two
interference successors: (c, s ∪ {a′}) and (c, (s\{a}) ∪ {a′}).

Consider the first successor. Let l > 0. By the inductive hypothesis, there
is a state (c, x) in γ(c, s) and in θC , where x has at least 2l components with
value w for every w in s. Apply a sequence of l concrete interference steps to x,
each changing one of the components in x with value “a” to “a′”. The end state,
(c, x′), is in θC , by closure under interference. Notice that Σ(x′) = s ∪ {a′} by
construction, and that every value in x′ is replicated at least l times. Hence, the
inductive hypothesis holds for the first successor.

Now consider the second successor, and let l > 0. By the inductive hypothesis,
there is a state (c, x) in γ(c, s) and in θC , where x has at least l components with
value w for every w in S. Apply a sequence of concrete interference steps to x,
each changing one of the a components in x to a′ until all a-values are converted
to a′. The result of this sequence, (c, x′), is in θC , by closure under interference.
Notice that Σ(x′) = s\{a} ∪ {a′} by construction, and that every value in x′ is
replicated at least l times. Hence, the inductive hypothesis holds for the second
successor.

Control-to-User Interference (stage k+1): Consider an (Av) abstract tran-
sition from (c, s) to (c′, s′) in Δk

C , let (a, k) be in Δk
U , with a ∈ s. Let (v, k) be

the interference state. By inductive assumption, there is a state (c, x) in γ(c, s)
which is in θC , and therefore an (Av) successor (c′, x′) that is in γ(c′, s′) and in
θC . Also by the inductive assumption, the state (a, k) is in θU . Hence, there is a
matching interference transition in the concrete system, so that (v, k) must be
in θU , by closure under interference. EndProof.

Theorem 10. The PCMCP is decidable for this control-user system for prop-
erties on the internal state of the control process.

Proof: The decision procedure is to (1) construct ΔU and ΔC through the
standard fixpoint calculation; then (2) to check if all states of ΔC satisfy the
invariant ϕ. (Note that ϕ is a predicate on the internal state of C.)

Soundness: We show that all states of θC also satisfy ϕ. By way of contradic-
tion, suppose there is a state (c, x) in θC for which ϕ(c) is false. By Lemma 1,
there is an α-related state (c, s) in ΔC , so the check in step (2) would not succeed,
a contradiction.

Completeness: If there is a compositional proof of ϕ, then, as θ is the strongest
compositional invariant, all states (c, x) in θC must satisfy ϕ(c). Consider a state
(c, s) in ΔC . By Lemma 2, there is a state (c, x) in θC which is α-related to (c, s).
Hence, (c, s) satisfies ϕ(c) as well, so step (2) succeeds. EndProof.

The complexity of calculating Δ is polynomial in the number of internal states
of the control and user processes, and exponential in the number of edge values.
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5 Related Work and Conclusions

Analysis questions for families of regular networks running locally symmet-
ric progrrams were studied. In particular, the algorithms introduced here are
designed to decide whether all processes in a protocol family satisfy local safety
properties expressed as local invariants. This form of local invariant analysis is
related to the global invariant analysis techniques studied in [20]. The focus on
local reasoning allows for relatively efficient analysis, given that the processes
and neighborhoods are all finite state. For the protocols studied here, the local
symmetry conditions ensure that all processes of the parametrized family are
locally symmetric.

The work in [29] and [30] uses satisfiability modulo theories in the design
of parametrized reasoning techniques for systems of many processes. That work
provides semi-decision procedures and is designed for situations where the many
different process types may not be locally (or globally) symmetric.

We have shown that by restricting attention to modular proofs, parameter-
ized verification problems become simpler and more decidable. There are several
positive results on the PMCP, however they require limits on process structure
or communication patterns. Examples are the requirement of a single token for
a token-ring [9] – two tokens result in undecidability – and the requirement of
a well-quasi-ordered global state set and monotonic transition functions in [1].
Modular proofs create a number of advantages. First, there is less need to con-
strain process structure or communication. Second, compositional analysis nat-
urally splits a global state into a number of local process neighborhoods, which
are considered more or less independently. As neighborhood structure is typically
simpler than global structure, this suggests that the decision problem should be
easier. The results in this paper show that to be the case.

The PCMCP requires a choice of the modular proof system. We have con-
sidered the Owicki-Gries kind of proof system, based on local invariance. This
is known to be incomplete, in that it may be necessary to expose auxiliary
state in order to obtain a correctness proof. A fascinating question for future
work is to consider variants of the PCMCP which search for modular proofs
with limits on auxiliary state (e.g., “at most k bits of auxiliary state”). Alterna-
tive modular proof systems are based on auxiliary automata (which implicitly
include auxiliary state) as in [4,18]. The shape of these proof rules is usually as
follows: in order to show P1||P2 |= ϕ, one finds auxiliary automata A1 and A2

such that P1||A2 � A1, P2||A1 � A2, and A1||A2 |= ϕ, where � is usually the
simulation pre-order, or language inclusion. The PCMCP formulation for this
strategy would be to decide whether there are automata A1, A2, . . . which meet
the conditions of such a rule.

Motivation for introducing the PCMCP as a decision problem also comes
from results on approximate procedures for obtaining parameterized proofs, sev-
eral of which are based on localized analysis. For instance, environment abstrac-
tion methods [7] analyze a process along with an abstraction of its environment;
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the method of invisible invariants [27] and invisible ranking [12] generalizes
invariants and rank functions from small instances to the parameterized fam-
ily; and the work in [2] uses abstract interpretation on views, typically single
processes or pairs of processes, to obtain a parameterized invariant. In our own
work [22–24] we have used compositional methods along with localized symmetry
and abstraction to build parametric proofs of protocols or families. By turning
from such approximate constructions to a decision problem, the PCMCP offers
a different perspective on the parameterized verification question.

Our results on the decidability of the PCMCP in the cases of mesh and
CCC architectures cover two forms of parallel communication architectures. In
the future, we plan to investigate PCMCP approaches for related architectures,
including hypercubes (c.f. [16,31]) and Message Passing Interface designs that
are built on mesh architectures (c.f. [15,32,33]).

There are several promising directions to pursue. One that has already been
mentioned is to strengthen the modular reasoning methods by allowing for auxil-
iary state and extending the decision procedures to liveness properties. Another
is to examine whether abstraction methods, such as those developed in Sect. 4.3,
lead to decision procedures for regular networks such as hypercubes where the
degree of a node depends on the parameter n. A third direction is to explore
other constraints on proof structure, such as depth or context-switch bounds.
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Abstract. We provide a new algorithm to determine stuttering equiv-
alence with time complexity O(m log n), where n is the number of
states and m is the number of transitions of a Kripke structure. This
algorithm can also be used to determine branching bisimulation in
O(m(log |Act | + log n)) time. Theoretically, our algorithm substantially
improves upon existing algorithms which all have time complexity O(mn)
[2,3,9]. Moreover, it has better or equal space complexity. Practical
results confirm these findings showing that our algorithm can outper-
form existing algorithms with orders of magnitude, especially when the
sizes of the Kripke structures are large.

1 Introduction

Stuttering equivalence [4] and branching bisimulation [8] were proposed as alter-
natives to Milner’s weak bisimulation [13]. They are very close to weak bisimula-
tion, with as essential difference that all states in the mimicking sequence τ∗a τ∗

must be related to either the state before or directly after the a from the first
system. This means that branching bisimulation and stuttering equivalence are
slightly stronger notions than weak bisimulation.

In [9] an O(mn) time algorithm was proposed for stuttering equivalence and
branching bisimulation, where m is the number of transitions and n is the number
of states in either a Kripke structure (for stuttering equivalence) or a labelled
transition system (for branching bisimulation). We refer to this algorithm as
GV. It is based upon the O(mn) algorithm for bisimulation equivalence in [11].
Both algorithms require O(m+n) space. They calculate for each state whether
it is bisimilar to another state.

The basic idea of the algorithms of [9,11] is to partition the set of states
into blocks. States that are bisimilar always reside in the same block. Whenever
there are some states in a block B′ from which a transition is possible to some
block B and there are other states in B′ from which such a step is not possible,
B′ is split accordingly. Whenever no splitting is possible anymore, the partition
is called stable, and two states are in the same block iff they are bisimilar.

There have been some attempts to come up with improvements of GV.
The authors of [2] observed that GV only splits a block in two parts at a time.
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They proposed to split a block in as many parts as possible, reducing moving
states and transitions to new blocks. Their worst case time and space complex-
ities are worse than that of GV, especially the space complexity O(mn), but
in practice this algorithm can outperform GV. In [3], the space complexity is
brought back to O(m+n). A technique to be performed on Graphics Process-
ing Units based on both GV and [2,3] is proposed in [19]. This improves the
required runtime considerably by employing parallelism, but it does not imply
any improvement to the single-threaded algorithm.

In [15] an O(m log n) algorithm is proposed for strong bisimulation as an
improvement upon the algorithm of [11]. The core idea for this improvement is
described as “process the smaller half” [1]. Whenever a block is split in two parts
the amount of work must be contributed to the size of the smallest resulting block.
In such a case a state is only involved in the process of splitting if it resides in a
block at most half the size of the block it was previously in when involved in split-
ting. This means that a state can never be involved in more than log2 n splittings.
As the time used in each state is proportional to the number of incoming or out-
going transitions in that state, the total required time is O(m log n).

In this paper we propose the first algorithm for stuttering equivalence and
branching bisimulation in which the “process the smaller half”-technique is used.
By doing so, we can finally confirm the conjecture in [9] that such an improve-
ment of GV is conceivable. Moreover, we achieve an even lower complexity, namely
O(m log n), than conjectured in [9] by applying the technique twice, the second
time for handling the presence of inert transitions. First we establish whether a
block can be split by combining the approach regarding bottom states from GV
with the detection approach in [15]. Subsequently, we use the “process the smaller
half”-technique again to split a block by only traversing transitions in a time pro-
portional to the size of the smallest subblock. As it is not known which of the two
subblocks is smallest, the transitions of the two subblocks are processed alternat-
ingly, such that the total processing time can be contributed to the smallest block.
For checking behavioural equivalences, applying such a technique is entirely new.
We are only aware of a similar approach for an algorithm in which the smallest
bottom strongly connected component of a graph needs to be found [5].

Compared to checking other equivalences the existing algorithms for branch-
ing bisimulation/stuttering equivalence were already known to be practically
very efficient. This is the reason that they are being used in multiple explicit-
state model checkers, such as Cadp [7], the mCRL2 toolset [10] and TVT [18].
In particular they are being used as preprocessing steps for other equivalences
(weak bisimulation, trace based equivalences) that are much harder to compute.
For weak bisimulation recently an O(mn) algorithm has been devised [12,16],
but until that time an expensive transitive closure operation of at best O(n2.373)
was required. The improvements of our new algorithm are not restricted to stut-
tering equivalence and branching bisimulation alone, but they can also impact
the computation time of all other behavioural equivalences.

Although our algorithm theoretically outperforms its predecessors substan-
tially, we wanted to know whether it would also do so in practice. We find that
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for dedicated examples our algorithm lives up to its theoretical improvement
outperforming the existing algorithms in accordance with the theory. For practi-
cal examples we see that our algorithm can always match the best running times
of existing algorithms, but especially when the Kripke structures and transition
systems get large, our algorithm tends to outperform existing algorithms with
orders of magnitude.

2 Preliminaries

We introduce Kripke structures and (divergence-blind) stuttering equivalence.
In Sect. 6 we explain branching bisimulation and its application to labelled tran-
sition systems.

Definition 1. A Kripke structure is a four tuple K = (S,AP , −→ , L), where

1. S is a finite set of states.
2. AP is a finite set of atomic propositions.
3. −→ ⊆ S × S is a total transition relation, i.e., for each s ∈ S there is an

s′ ∈ S s.t. s −→ s′.
4. L : S → 2AP is a state labelling.

We use n=|S| for the number of states and m=| −→ | for the number of transitions.
For a set of states B⊆S, we write s −→B s′ for s −→ s′ and s′ ∈ B.

Definition 2. Let K = (S,AP , −→ , L) be a Kripke structure. A symmetric rela-
tion R ⊆ S × S is a divergence-blind stuttering bisimulation iff for all s, t ∈ S
such that sRt:

1. L(s) = L(t).
2. for all s′ ∈ S if s −→ s′, then there are t0, . . . , tk ∈ S for some k ∈ N such

that t = t0, sRti, ti −→ ti+1, and s′Rtk for all i < k.

We say that two states s, t ∈ S are divergence-blind stuttering equivalent, nota-
tion s↔dbst, iff there is a divergence-blind stuttering equivalence relation R such
that sRt.

An important property of divergence-blind stuttering equivalence is that if states
on a loop all have the same label then all these states are divergence-blind
stuttering equivalent. We define stuttering equivalence in terms of divergence-
blind stuttering equivalence using the following Kripke structure.

Definition 3. Let K = (S,AP , −→ , L) be a Kripke structure. Define the Kripke
structure Kd = (S ∪ {sd},AP ∪ {d}, −→d , Ld) where d is an atomic proposition
not occurring in AP and sd is a fresh state not occurring in S. Furthermore,

1. −→d = −→ ∪ {〈s, sd〉 | s is on a cycle of states all labelled with L(s), or
s = sd}.

2. For all s ∈ S we define Ld(s) = L(s) and Ld(sd) = {d}.
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States s, t ∈ S are stuttering equivalent, notation s↔st iff there is a divergence-
blind stuttering bisimulation relation R on Sd such that sRt.

Note that an algorithm for divergence-blind stuttering equivalence can also
be used to determine stuttering equivalence by employing only a linear time
and space transformation. Therefore, we only concentrate on an algorithm for
divergence-blind stuttering equivalence.

3 Partitions and Splitters: A Simple Algorithm

Our algorithms perform partition refinement of an initial partition containing
the set of states S. A partition π = {Bi ⊆ S | 1 ≤ i ≤ k} is a set of non empty
subsets such that Bi ∩ Bj = ∅ for all 1 ≤ i < j ≤ k and S =

⋃
1≤i≤k Bi. Each

Bi is called a block.
We call a transition s −→ s′ inert w.r.t. π iff s and s′ are in the same block

B ∈ π. We say that a partition π coincides with divergence-blind stuttering
equivalence when s↔dbst iff there is a block B ∈ π such that s, t ∈ B. We
say that a partition respects divergence-blind stuttering equivalence iff for all
s, t ∈ S if s↔dbst then there is some block B ∈ π such that s, t ∈ B. The
goal of the algorithm is to calculate a partition that coincides with divergence-
blind stuttering equivalence. This is done starting with the initial partition π0

consisting of blocks B satisfying that if s, t ∈ B then L(s) = L(t). Note that this
initial partition respects divergence-blind stuttering equivalence.

We say that a partition π is cycle-free iff for each block B ∈ π there is no
state s ∈ B such that s −→B s1 −→B · · · −→B sk −→ s for some k ∈ N. It is easy to
make the initial partition π0 cycle-free by merging all states on a cycle in each
block into a single state. This preserves divergence-blind stuttering equivalence
and can be performed in linear time employing a standard algorithm to find
strongly connected components [1].

The initial partition is refined until it coincides with divergence-blind stut-
tering equivalence. Given a block B′ of the current partition and the union B
of some of the blocks in the partition, we define

split(B′,B) = {s0∈B′ | ∃k∈N, s1, .., sk∈S.si −→ si+1, si∈B′ for all i < k ∧ sk∈B}
cosplit(B′,B) = B′ \ split(B′,B).

Note that if B′ ⊆ B, then split(B′,B) = B′. It is common to split blocks under
single blocks, i.e., B corresponding with a single block B ∈ π [9,11]. However,
as indicated in [15], it is required to split under the union of some of the blocks
in π to obtain an O(m log n) algorithm. We refer to such groups of blocks as
constellations. In Sect. 4, we use constellations consisting of more than one block
when splitting.

We say that a block B′ is unstable under B iff split(B′,B) �= ∅ and
cosplit(B′,B) �= ∅. A partition π is unstable under B iff there is at least one
B′ ∈ π which is unstable under B. If π is not unstable under B then it is called
stable under B. If π is stable under all B, then it is simply called stable.
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A refinement of B′ ∈ π under B consists of two new blocks split(B′,B) and
cosplit(B′,B). A partition π′ is a refinement of π under B iff all unstable blocks
B′ ∈ π have been replaced by new blocks split(B′,B) and cosplit(B′,B).

The following lemma expresses that if a partition is stable then it coincides
with divergence-blind stuttering equivalence. It also says that during refinement,
the encountered partitions respect divergence-blind stuttering equivalence and
remain cycle-free.

Lemma 1. Let K = (S,AP , −→ , L) be a Kripke structure and π a partition of S.

1. For all states s, t ∈ S, if s, t ∈ B with B a block of the partition π, π is stable,
and a refinement of the initial partition π0, then s↔dbst.

2. If π respects divergence-blind stuttering equivalence then any refinement of π
under the union of some of the blocks in π also respects it.

3. If π is a cycle-free partition, then any refinement of π is also cycle-free.

Proof. 1. We show that if π is a stable partition, the relation R = {〈s, t〉 | s, t ∈
B, B ∈ π} is a divergence-blind stuttering equivalence. It is clear that R
is symmetric. Assume sRt. Obviously, L(s) = L(t) because s, t ∈ B and B
refines the initial partition. For the second requirement of divergence-blind
stuttering equivalence, suppose s −→ s′. There is a block B′ such that s′ ∈ B′.
As π is stable, it holds for t that t = t0 −→ t1 −→ · · · −→ tk for some k ∈ N,
t0, . . . , tk−1 ∈ B and tk ∈ B′. This clearly shows that for all i < k sRti,
and s′Rtk. So, R is a divergence-blind stuttering equivalence, and therefore
it holds for all states s, t ∈ S that reside in the same block of π that s↔dbst.

2. The second part can be proven by reasoning towards a contradiction. Let us
assume that a partition π′ that is a refinement of π under B does not respect
divergence-blind stuttering equivalence, although π does. Hence, there are
states s, t ∈ S with s↔dbst and a block B′ ∈ π with s, t ∈ B′ and s and
t are in different blocks in π′. Given that π′ is a refinement of π under B,
s ∈ split(B′,B) and t ∈ cosplit(B′,B) (or vice versa, which can be proven
similarly). By definition of split, there are s1, . . . , sk−1 ∈ B′ (k ∈ N) and sk ∈
B such that s −→ s1 −→ · · · −→ sk. Then, either k = 0 and B′ ⊆ B, but then
t /∈ cosplit(B′,B). Or k > 0, and since s↔dbst, there are t1, . . . , tl−1 ∈ B′

(l ∈ N) and tl ∈ B such that t −→ t1 −→ · · · −→ tl with siRtj for all 1 ≤ i < k,
1 ≤ j < l and skRtl. This means that we have t ∈ split(B′,B), again
contradicting that t ∈ cosplit(B′,B).

3. If π is cycle-free, this property is straightforward, since splitting any block
of π will not introduce cycles. �
This suggests the following simple algorithm which has time complexity

O(mn) and space complexity O(m+n), which was essentially presented in [9].

π := π0, i.e., the initial partition;
while π is unstable under some B ∈ π

π := refinement of π under B;

It is an invariant of this algorithm that π respects divergence-blind stuttering
equivalence and π is cycle-free. In particular, π = π0 satisfies this invariant
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initially. If π is not stable, a refinement under some block B exists, splitting at
least one block. Therefore, this algorithm finishes in at most n−1 steps as during
each iteration of the algorithm the number of blocks increases by one, and the
number of blocks can never exceed the number of states. When the algorithm
terminates, π is stable and therefore, two states are divergence-blind stuttering
equivalent iff they are part of the same block in the final partition. This end
result is independent of the order in which splitting took place.

In order to see that the time complexity of this algorithm is O(mn), we must
show that we can detect that π is unstable and carry out splitting in time O(m).
The crucial observation to efficiently determine whether a partition is stable
stems from [9] where it was shown that it is enough to look at the bottom states
of a block, which always exist for each block because the partition is cycle-free.
The bottom states of a block are those states that do not have an outgoing inert
transition, i.e., a transition to a state in the same block. They are defined by

bottom(B) = {s ∈ B | there is no state s′ ∈ B such that s −→ s′}.

The following lemma presents the crucial observation concerning bottom
states.

Lemma 2. Let K = (S,AP , −→ , L) be a Kripke structure and π be a cycle-free
partition of its states. Partition π is unstable under union B of some of the
blocks in π iff there is a block B′ ∈ π such that

split(B′,B) �= ∅ and bottom(B′) ∩ split(B′,B) ⊂ bottom(B′).

Here ⊂ is meant to be a strict subset.

Proof. ⇒ If π is unstable, then split(B′,B) �= ∅ and split(B′,B) �= B′. The first
conjunct corresponds with the first condition. If split(B′,B) �= B′, there
are states s/∈split(B′,B). As the blocks B′∈π do not have cycles, consider
such an s /∈ split(B′,B) with a smallest distance to a state sk∈bottom(B′),
i.e., s −→ s1 −→ · · · −→ sk with all si ∈ B′. If s itself is an element of
bottom(B′), the second part of the right hand side of the lemma follows.
Assume s/∈bottom(B′), there is some state s′∈B′ closer to bottom(B′) such
that s −→ s′. Clearly, s′ /∈split(B′,B) either, as otherwise s ∈ split(B′,B). But
as s′ is closer to bottom(B′), the state s was not a state with the smallest
distance to a state in bottom(B′), which is a contradiction.

⇐ It follows from the right hand side that split(B′,B) �= ∅, split(B′,B) �= B′.
�

This lemma can be used as follows to find a block to be split. Consider each B∈π.
Traverse its incoming transitions and mark the states that can reach B in zero
or one step. If a block B′ has marked states, but not all of its bottom states are
marked, the condition of the lemma applies, and it needs to be split. It is at most
needed to traverse all transitions to carry this out, so its complexity is O(m).
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If B is equal to B′, no splitting is possible. We implement it by marking
all states in B as each state in B can reach itself in zero steps. In this case
condition bottom(B′) ∩ split(B′,B) ⊂ bottom(B′) is not true. This is different
from [9] where a block is never considered as a splitter of itself, but we require
this in the algorithm in the next sections.

If a block B′ is unstable, and all states from which a state in B can be reached
in one step are marked, then a straightforward recursive procedure is required
to extend the marking to all states in split(B′, B), and those states need to be
moved to a new block. This takes time proportional to the number of transitions
in B′, i.e., O(m).

4 Constellations: An O(m logn) Algorithm

The crucial idea to transform the algorithm from the previous section into an
O(m log n) algorithm stems from [15]. By grouping the blocks in the current par-
tition π into constellations such that π is stable under the union of the blocks in
such a constellation, we can determine whether a block exists under which π is
unstable by only looking at blocks that are at most half the size of the constel-
lation, i.e., |B| ≤ 1

2 |B|, where |B| = ΣB′∈B|B′|, for a block B in a constellation
B. If a block B′ ∈ π is unstable under B, then we use a remarkable technique
consisting of two procedures running alternatingly to identify the smallest block
resulting from the split. The whole operation runs in time proportional to the
smallest block resulting from the split. We involve the blocks in B\B in the split-
ting without explicitly analysing the states contained therein (for convenience,
we write B \ B instead of B \ {B}).

Working with constellations in this way ensures for each state that whenever
it is involved in splitting, i.e., if it is part of a block that is used to split or
that is being split, this block is half the size of the previous block in which the
state resided when it was involved in splitting. That ensures that each state
can at most be log2(n) times involved in splitting. When involving a state, we
only analyse its incoming and outgoing transitions, resulting in an algorithm
with complexity O(m log n). Although we require quite a number of auxiliary
data structures, these are either proportional to the number of states or to the
number of transitions. So, the memory requirement is O(m+n).

In the following, the set of constellations also forms a partition, which we
denote by C. A constellation is a set of one or more blocks from the current
partition π. If a constellation contains only one block, it is called trivial. The
current partition π is stable with respect to each constellation in C.

If a constellation B∈C contains more than one block, we select one block
B∈B which is at most half the size of B, and move it to a new trivial constel-
lation B′. We check whether the current partition is stable under B and B \ B
according to Lemma 2 by traversing the incoming transitions of states in B and
marking the encountered states that can reach B in zero or one step. For all
blocks B′ that are unstable according to Lemma 2, we calculate split(B′, B) and
cosplit(B′, B), as indicated below.
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Fig. 1. After splitting B′ under C, B1 is not stable under B.

As noted in [15], cosplit(B′, B) is stable under B \B. Therefore, only further
splitting of split(B′, B) under B \ B must be investigated. If B′ is stable under
B because all bottom states of B′ are marked, it can be that B′ is not stable
under B \ B, which we do not address here explicitly, as it proceeds along the
same line.

There is a special list data structure to recall for any B′ and B which transi-
tions go from B′ to B. When investigating whether split(B′, B) is stable under
B we adapt this list to determine the transitions from split(B′, B) to B \ B and
we simultaneously tag the states in B′ that have a transition to B\B. Therefore,
we know whether there are transitions from split(B′, B) to B \ B and we can
traverse the bottom states of split(B′, B) to inspect whether there is a bottom
state without a transition to B. Following Lemma 2, this allows us to determine
whether split(B′, B) must be split under B \B in a time proportional to the size
of B. How splitting is carried out is indicated below.

There is one aspect that complicates matters. If blocks are split, the new
partition is not automatically stable under all constellations. This is contrary
to the situation in [15] and was already observed in [9]. Figure 1 indicates the
situation. Block B′ is stable under constellation B. But if B′ is split under block
C into B1 and B2, block B1 is not stable under B. The reason is, as exemplified
by the following lemma, that some states that were non-bottom states in B′

became bottom states in B1.

Lemma 3. Let K = (S,AP , −→ , L) be a Kripke structure with cycle free parti-
tion π with refinement π′. If π is stable under a constellation B, and B′ ∈ π is
refined into B′

1, . . . , B
′
k ∈ π′, then for each B′

i where the bottom states in B′
i are

also bottom states in B′, it holds that B′
i is also stable under B.

Proof. Assume B′
i is not stable under B. This means that B′

i is not an element
of B. Hence, there is a state s ∈ B′

i such that s −→ s′ with s′ ∈ B and there
is a bottom state t ∈ B′

i with no outgoing transition to a state in B. But as
B′ was stable under B, and s has an outgoing transition to a state in B, all
bottom states in B′ must have at least one transition to a state in B. Therefore,
t cannot be a bottom state of B′, and must have become a bottom state after
splitting B′. �

This means that if a block B′ is the result of a refinement, and some of
its states became bottom states, it must be made sure that B′ is stable under
the constellations. Typically, from the new bottom states a smaller number of
blocks in the constellation can be reached. For each block we maintain a list
of constellations that can be reached from states in this block. We match the
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outgoing transitions of the new bottom states with this list, and if there is a
block B′′ reachable from states in the constellation, but not from the bottom
states, B′ must be split by B′′.

The complexity of checking for additional splittings to regain stability when
states become bottom states is only O(m). Each state only becomes a bottom
state once, and when that happens we perform calculations proportional to the
number of outgoing transitions of this state to determine whether a split must
be carried out.

It remains to show that splitting can be performed in a time proportional to
the size of the smallest block resulting from the splitting. Consider splitting B′

under B∈B. While marking B′ four lists of all marked and non marked, bottom
and non bottom states have been constructed. We simultaneously mark states
in B′ either red or blue. Red means that there is a path from a state in B′ to
a state in B. Blue means that there is no such path. Initially, marked states are
red, and non marked bottom states are blue.

This colouring is simultaneously extended to all states in B′, spending equal
time to both. The procedure is stopped when the colouring of one of the colours
cannot be enlarged. We colour states red that can reach other red states via
inert transitions using a simple recursive procedure. We colour states blue for
which it is determined that all outgoing inert transitions go to a blue state (for
this we need to recall for each state the number of outgoing inert transitions)
and there is no direct transition to B. The marking procedure that terminates
first, provided that its number of marked states does not exceed 1

2 |B′|, has the
smallest block that must be split. Now that we know the smallest block we move
its states to a newly created block.

Splitting regarding B \ B only has to be applied to split(B′, B), or, if all
bottom states of B′ were marked, to B′. As noted before cosplit(B′, B) is stable
under B \ B. Define C := split(B′, B) or C := B′ depending on the situation.
We can traverse all bottom states of C and check whether they have outgoing
transitions to B \ B. This provides us with the blue states. The red states are
obtained as we explicitly maintained the list of all transitions from C to B \ B.
By simultaneously extending this colouring the smallest subblock of either red
or blue states is obtained and splitting can commence.

The algorithm is concisely presented in the box below. It is presented in full
detail in Sect. 5 as the bookkeeping details of the algorithm are far from trivial.

π := initial partition; C := {π};
while C contains a non trivial constellation B ∈ C

choose some B ∈ π such that B∈B and |B| ≤ 1
2 |B|;

C :=partition C where B is replaced by B and B \ B;
if π is unstable for B or B \ B

π′ := refinement of π under B and B \ B;
For each block C ∈ π′ with bottom states that were not bottom in π

split C until it is stable for all constellations in C;
π := π′
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5 Detailed Algorithm

This section presents the data structures and the algorithm in more detail.

5.1 Data Structures

As a basic data structure, we use (singly-linked) lists. For a list L of elements,
we assume that for each element e, a reference to the position in L preceding the
position of e is maintained, such that checking membership and removal can be
done in constant time. In some cases we add extra information to the elements
in the list. Moreover, for each list L, we maintain the size |L| and pointers to its
first and last element.

1. The current partition π consists of a list of blocks. Initially, it corresponds to
π0. All blocks are part of a single, initial constellation C0.

2. For each block B, we maintain the following:
(a) A reference to the constellation containing B.
(b) A list B.btm-sts of the bottom states and a list B.non-btm-sts of the

other states.
(c) A list B.to-constlns of structures associated with constellations reach-

able via a transition from some s∈B. Initially, it contains one element
associated with C0. Each element associated with some constellation C
in this list also contains the following:

– A reference trans-list to a list of all transitions from states in B to
states in C \ B (note that transitions between states in B, i.e., inert
transitions, are not in this list).

– When splitting the block B into B and B′ there is a reference in
each list element to the corresponding list element in B′.to-constlns
(which in turn refers back to the element in B.to-constlns).

– In order to check for stability when splitting produces new bottom
states, each element contains a list to keep track of which new bottom
states can reach the associated constellation.

(d) A reference B.inconstln-ref is used to refer to the element in B.to-constlns
associated with the constellation of B. It is used when a non-inert transi-
tion becomes inert and needs to be added to the trans-list of the element
associated with that constellation.

Furthermore, when splitting a block B′ in constellation B′ under a constel-
lation B and block B∈B, the following temporary structures are used, with
C the new constellation to which B is moved:
(a) A list B′.mrkd-btm-sts contains marked states in B′ with a transition to

B.
(b) A list B′.mrkd-non-btm-sts contains states that are marked, but are not

bottom states.
(c) A reference B′.constln-ref refers to the (new) element in B′.to-constlns

associated with constellation C, i.e., the new constellation of B.



An O(m log n) Algorithm for Stuttering Equivalence 617

(d) A reference B′.coconstln-ref is used to refer to the element in B′.
to-constlns associated with constellationB, i.e., the old constellation of B.

(e) A list B′.new-btm-sts to keep track of the states that have become bottom
states when B′ was split. This is required to determine whether B′ is
stable under all constellations after a split.

3. Constellations are stored in two lists trivial-constlns and non-trivial-constlns.
The first contains constellations consisting of exactly one block, while the
latter contains the other constellations. Initially, if π0 consists of one block, C0

is added to trivial-constlns and nothing needs to be done, because the initial
partition is already stable. Otherwise C0 is added to non-trivial-constlns.

4. For each constellation, we maintain its list of blocks and its size (number of
states).

5. Each transition s −→ s′ refers with to-constln-cnt to the number of transitions
from s to the constellation in which s′ resides. For each state and constella-
tion, there is one such variable, provided there is a transition from this state
to this constellation.
Each transition s −→ s′ has a reference to the element associated with
B in the list B.to-constlns where s∈B and s′∈B. This is denoted as
(s −→ s′).to-constln-ref. Initially, it refers to the single element in B.to-constlns,
unless the transition is inert, i.e., both s∈B and s′∈B.
Furthermore, each transition s −→ s′ is stored in the list of transitions
from B to B. Initially, there is such a list for each block in the ini-
tial partition π0. From a transition s −→ s′, the list can be accessed via
(s −→ s′).to-constln-ref.trans-list.

6. For each state s∈B we maintain the following information:
(a) A reference to the block containing s.
(b) A static list s.Ttgt of transitions of the form s −→ s′ containing precisely

all the transitions from s.
(c) A static list s.Tsrc of transitions s′ −→ s containing all the transitions to

s. We write such transitions as s ← s′, to stress that these move into s.
(d) A counter s.inert-cnt containing the number of outgoing transitions

to a state in the same block as s. For any bottom state s, we have
s.inert-cnt = 0.

(e) Furthermore, when splitting a block B′ under B and B∈B, there are
references s.constln-cnt and s.coconstln-cnt to the variables that are used
to count how many transitions there are from s to B and from s to B\B.

Figure 2 illustrates some of the used structures. A block B1 in constellation
B contains bottom states s1, s′

2 and non-bottom state s2. For s1, we have
transitions s1 −→ s′

1, s1 −→ s′′
1 to constellation C. Both have the following ref-

erences:
(a) to-constln-cnt to the number of outgoing transitions from s1 to C.
(b) to-constln-ref to the element (C, •, •) in B1.to-constlns, where the •’s are

the (now uninitialized) references that are used when splitting.
(c) Via (C, •, •), a reference trans-list to the list of transitions from B1 to

C.
Note that for the inert transition s2 −→ s′

2, we only have a reference to the
number of outgoing transitions from s2 to B.
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Fig. 2. An example showing some of the data structures used in the detailed algorithm.

5.2 Finding the Blocks that Must Be Split

While non-trivial-constlns is not empty, we perform the algorithm listed in the
following sections. To determine whether the current partition π is unstable, we
select a constellation B in non-trivial-constlns, and we select a block B from B
such that |B| ≤ 1

2 |B|. We first check which blocks are unstable for B and B \B.

1. Move B to a new trivial constellation C. If |B.blocks|=1, make B trivial.
2. For each state s∈B, do the steps below for each s′∈B′ such that s ← s′ ∈

s.Tsrc , and B �= B′.
(a) If B′ has no marked states, put it in a list splittable-blks, let

B′.coconstln-ref refer to (s ← s′).to-constln-ref, B′.constln-ref to a new
element in B′.to-constlns.

(b) Mark s′.
(c) Let s′.constln-cnt be the number of transitions to B and s′.coconstln-cnt

the number of remaining outgoing transitions. All outgoing transitions
of s′ must refer to the appropriate counter.

(d) Move all visited transitions to B′.constln-ref.trans-list.
3. Next, check whether B itself can be split. Mark all states, add B to

splittable-blks and reset B.constln-ref and B.coconstln-ref. For each state s∈B,
do the steps below for each s′∈B′∈B′ such that s ← s′ ∈ s.Tsrc , and either
B′=B or B′=C.
(a) If B′=B, let B.coconstln-ref refer to (s −→ s′).to-constln-ref and

B.constln-ref and B.inconstln-ref to a new element for C in
B.to-constlns.

(b) Update s.constln-cnt and s.coconstln-cnt as in step 2(c).
4. For each B′∈splittable-blks, if all its bottom states are marked and

either there is no marked bottom state s with s.coconstln-cnt=0 or
B′.coconstln-ref.trans-list is empty, remove B′ from splittable-blks and remove
its temporary markings, i.e. unmark all states, reset the counters and refer-
ences.

5. If splittable-blks is not empty, start splitting (Sect. 5.3). Else, select another
non-trivial constellation B and block B∈B, and continuing with step 1. If
there are no non-trivial constellations left, the algorithm terminates.
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5.3 Splitting the Blocks

Splitting the splittable blocks is performed using the following steps, in which the
procedures used to simultaneously mark states when splitting a block are cru-
cial for the performance. We refer to the whole operation as the lockstep search
and call the two procedures detect1 and detect2. In the lockstep search, these
procedures alternatingly process a transition. The entire operation terminates
when one of the procedures terminates. If one procedure acquires more than
half the number of states in the block it works on, it is stopped and the other is
allowed to terminate. We present detect1 and detect2 below; both get a list of
states, D1 and D2, respectively, and a block K to work on as input. In addition,
detect2 takes a Boolean parameter indicating whether the splitting is a nested
one, i.e., whether it directly follows an earlier split of the same block.

detect1(D1,K ):

– Create empty stack Q, list L;
– While |L| ≤ 1

2 |K| and either Q �= ∅
or end of D1 not reached:

• If Q=∅ add next s∈D1 to Q and
L;

• Pop s from Q. For all s ← s′ ∈
s.Tsrc , if s′∈K ∧s′ �∈L, add s′ to
Q and L.

detect2(D2,K ,nested):

– Create empty priority queue P , list
L′;

– While |L′| ≤ 1
2 |K| and either P

has prio. 0 states or end of D2 not
reached:

• Take a state s from D2 or with
prio. 0 from P and add it to L′;

• For all s ← s′∈s.Tsrc , if
s′∈K \ (P∪L′), and s′ �∈
mrkd-non-btm-sts or if nested,
s′ does not have a transition
to B\B, add s′ with prio.
s′.inert-cnt to P ;

• If s′∈P , decrement priority of s′.

We walk through the blocks B′∈B′ in splittable-blks, which must be split
into two or three blocks under constellation B and block B. If all bottom states
are marked, then we have split(B′, B) = B′, and can start with step 3 below.

1. Launch a lockstep search with D1 the list of marked states in B′, D2 the list
B′.btm-sts, K = B′, and nested = false.

2. Depending on whether detect1 or detect2 terminated in the previous step,
one of the lists L or L′ contains the states to be moved to a new block B′′.
Below we refer to this list as N . For each s∈N , move s to B′′, and do the
following:
(a) For each s −→ s′∈Ttgt , do the following steps.

i. If (s −→ s′).to-constln-ref is initialized, check whether it refers to an
new element in B′′.to-constlns. If not, create it. If appropriate, set ref-
erences B′′.inconstln-ref, B′′.constln-ref and B′′.coconstln-ref. Move
s −→ s′ to the trans-list of the new element. If the related element in
B′.to-constlns no longer holds transitions, remove it.
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ii. Else, if s′∈B′ \ N (a transition becomes non-inert), decrement
s.inert-cnt. If s.inert-cnt=0, make s bottom, add s −→ s′ to
B′′.inconstln-ref.trans-list (if B′′.inconstln-ref does not exist, create
it first).

(b) For each s ← s′∈Tsrc , s′∈B′\N (an inert transition becomes non-inert),
perform steps similar to 2(a).ii.

3. Next, we split split(B′, B) under B\B. Define C=split(B′, B). C is stable
under B\B if C.coconstln-ref is uninitialized or holds an empty trans-list, or
for all s∈C.mrkd-btm-sts it holds that s.coconstln-cnt > 0. If this is not the
case, then we launch a lockstep search with D1 the list of states s occurring
in some s −→ s′ in split(B′, B).coconstln-ref.trans-list, D2 the list of states s
with s.coconstln-cnt = 0 in C.mrkd-btm-sts, K = C, and nested = true.
Finally, we split C by moving the states in either L or L′ to a new block B′′′,
depending on which list is the smallest.

4. Remove the temporary markings of each block C resulting from the splitting
of B′.

5. If the splitting of B′ resulted in new bottom states, check for those states
whether further splitting is required, i.e., whether from some of them, not all
constellations can be reached which can be reached from the block. For all
B̂∈{B′, B′′, B′′′}, new bottom states s, s −→ s′∈s.Ttgt , add s to the states list
of the element associated with B̄ in B̂.to-constlns, where s′∈B̄, and move the
element to the front of the list.

6. Perform the following steps for each block B̂ with new bottom states, as long
as there are such blocks.
(a) Walk through the elements in B̂.to-constlns. If the states list of an ele-

ment associated with a constellation B does not contain all new bottom
states, further splitting is required under B:
i. Launch a lockstep search with D1 the list of states s occurring

in some s −→ s′ with s′∈B in the list trans-list associated with
B∈B̂.to-constlns, D2 the list of states s∈B̂.new-btm-sts minus the
new bottom states that can reach B, K = B̂, and nested = true.

ii. Split B̂ by performing step 2 to produce a new block B̂′. Move all
states in B̂.new-btm-sts that have moved to B̂′ to B̂′.new-btm-sts,
and also move them from the states lists in the elements of
B̂.to-constlns to the corresponding elements of B̂′.to-constlns (those
elements refer to each other). If a states list becomes empty, move
that element to the back of its list.

iii. Perform step 5 for B̂ and B̂′.
(b) If no further splitting was required for B̂, empty B̂.new-btm-sts and clear

the remaining states lists in B̂.to-constlns.
7. If B′∈trivial-constlns, move it to non-trivial-constlns.

6 Application to Branching Bisimulation

We show that the algorithm can also be used to determine branching bisimu-
lation, using the transformation from [14,17], with complexity O(m(log |Act | +
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log n)). Branching bisimulation is typically applied to labelled transition systems
(LTSs). An LTS is a three tuple A = (S,Act , −→ ), with S a finite set of states,
Act a finite set of actions including the internal action τ , and −→ ⊆ S ×Act ×S
a transition relation.

Definition 4. Consider the LTS A = (S,Act , −→ ). We call a symmetric rela-
tion R ⊆ S × S a branching bisimulation relation iff

∀s, t, s′∈S.∀a∈Act .sRt ∧ s
a−→ s′ =⇒

(a=τ ∧ s′Rt) ∨ (∃t′, t′′∈S.t � t′ a−→ t′′ ∧ sRt′ ∧ s′Rt′′),

where � is the transitive, reflexive closure of τ−→ .

States are branching bisimilar iff there is a branching bisimulation relation R
relating them.

Our new algorithm can be applied to an LTS by translating it to a Kripke
structure.

Definition 5. Let A = (S,Act , −→ ) be an LTS. We construct the embedding of
A to be the Kripke structure KA = (SA,AP , −→ , L) as follows:

1. SA = S ∪ {〈a, t〉 | s
a−→ t for some t ∈ S}.

2. AP = Act ∪ {⊥}.
3. → is the least relation satisfying (s, t∈S, a∈Act\τ): s

a−→ t
s −→ 〈a,t〉 , 〈a,t〉 −→ t and

s
τ−→ t

s −→ t .
4. L(s) = {⊥} for s ∈ S and L(〈a, t〉) = {a}.
The following theorem stems from [14].

Theorem 1. Let A be an LTS and KA its embedding. Then two states are
branching bisimilar in A iff they are divergence-blind stuttering equivalent in
KA.

If we start out with an LTS with n states and m transitions then its embed-
ding has at most m + n states and 2m transitions. Hence, the algorithm

Fig. 3. Runtime results for (a·τ)size sequences (left) and trees of depth size (right)
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Table 1. Runtime (in sec.) and memory use (in MB) results for GV, BO, and GW

Model n m min. n min. m time GV me. GV time BO me. BO time GW me. GW

vasy 40 40,006 60,007 20,003 40,004 142.77 65 762.69 62 0.34 93
vasy 65 65,537 2,621,480 65,536 2,621,440 239.67 437 47.88 645 20.07 2,481
vasy 66 66,929 1,302,664 51,128 1,018,692 7.42 208 16.16 356 9.05 853
vasy 69 69,754 520,633 69,753 520,632 3.98 155 12.65 171 4.53 493
vasy 116 116,456 368,569 22,398 87,674 3.84 95 15.73 128 2.68 142
vasy 157 157,604 297,000 3,038 12,095 6.98 97 6.80 110 1.08 129
vasy 164 164,865 1,619,204 992 3,456 3.89 251 20.20 316 5.38 246
vasy 166 166,464 651,168 42,195 197,200 21.60 153 6.20 177 3.89 376
cwi 214 214,202 684,419 478 1,612 0.87 140 29.92 197 2.64 140
cwi 371 371,804 641,565 2,134 5,634 42.70 179 17.37 261 3.12 168
cwi 566 566,640 3,984,157 198 791 1683.28 454 26.24 531 19.94 454
vasy 574 574,057 13,561,040 3,577 16,168 105.10 1,766 487.01 2,192 40.18 1,495
cwi 2165 2,165,446 8,723,465 4,256 20,880 80.56 1,403 387.93 2,409 59.49 1,948
cwi 2416 2,416,632 17,605,592 730 2,899 1,679.55 1,932 59.29 2,660 90.69 1,932
vasy 2581 2,581,374 11,442,382 704,737 3,972,600 2,592.74 1,690 463.52 2,344 76.16 5,098
vasy 4220 4,220,790 13,944,372 1,186,266 6,863,329 3,643.08 2,054 863.74 2,951 119.20 7,287
vasy 4338 4,338,672 15,666,588 704,737 3,972,600 5,290.54 2,258 587.87 3,026 109.21 6,927
vasy 6020 6,020,550 19,353,474 256 510 130.76 2,045 95.76 3,482 45.54 2,045
vasy 6120 6,120,718 11,031,292 2,505 5,358 546.11 1,893 291.30 2,300 81.05 3,392
cwi 7838 7,838,608 59,101,007 62,031 470,230 745.33 6,319 11,667.98 11,027 617.46 14,456
vasy 8082 8,082,905 42,933,110 290 680 288.45 6,098 677.28 7,824 200.72 6,108
vasy 11026 11,026,932 24,660,513 775,618 2,454,834 5,005.61 3,642 2,555.30 5,235 225.20 10,394
vasy 12323 12,323,703 27,667,803 876,944 2,780,022 5,997.26 4,068 2,068.52 5,770 256.70 11,575
cwi 33949 33,949,609 165,318,222 12,463 71,466 1,684.56 21,951 11,635.09 42,162 1,459.92 37,437
dining 14 18,378,370 164,329,284 228,486 2,067,856 1,264.67 20,155 3,010.17 31,201 1,100.91 20,155
1394-fin3 126,713,623 276,426,688 160,258 538,936 229,217.0 26,000 15,319.00 75,000 1,516.00 45,000

requires O(m log(n+m)) time. As m is at most |Act |n2 this is also equal to
O(m(log |Act |+ log n)).

As a final note, the algorithm can also be adapted to determine divergence-
sensitive branching bisimulation [8], by adding a τ -self loop to those states on a
τ -loop.

7 Experiments

The new algorithm has been implemented as part of the mCRL2 toolset [6],
which offers implementations of GV and the algorithm by Blom and Orzan [2]
that distinguishes states by their connection to blocks via their outgoing transi-
tions. We refer to the latter as BO. The performance of GV and BO can be very
different on concrete examples. We have extensively tested the new algorithm by
applying it to thousands of randomly generated LTSs and comparing the results
with those of the other algorithms.

We experimentally compared the performance of GV, BO, and the imple-
mentation of the new algorithm (GW). All experiments involve the analysis of
LTSs, which for GW are first transformed to Kripke structures using the transla-
tion of Sect. 6. The reported runtimes do not include the time to read the input
LTS and write the output, but the time it takes to translate the LTS to a Kripke
structure and to reduce strongly connected components is included.

Practically all experiments have been performed on machines running Cen-
tOS Linux, with an Intel E5-2620 2.0 GHz CPU and 64 GB RAM. Exceptions
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to this are the final two entries in Table 1, which were obtained by using a machine
running Fedora 12, with an Intel Xeon E5520 2.27 GHz CPU and 1 TB RAM.

Figure 3 presents the runtime results for two sets of experiments to demon-
strate that GW has the expected scalability. At the left are the results of
analysing single sequences of the shape (a·τ)n. As the length 2n of such a
sequence is increased, the results show that the runtimes of both BO and GV
increase at least quadratically, while the runtime of GW grows linearly. All algo-
rithms require n iterations, in which BO and GV walk over all the states in the
sequence, but GW only moves two states into a new block. At the right of Fig. 3,
the results are displayed of analysing trees of depth n that up to level n−1 corre-
spond with a binary tree of τ -transitions. Each state at level n−1 has a uniquely
labelled outgoing transition to a state in level n. BO only needs one iteration to
obtain the stable partition. Still GW beats BO by repeatedly splitting off small
blocks of size 2(k − 1) if a state at level k is the splitter.

Table 1 contains results for minimising LTSs from the VLTS benchmark set1

and the mCRL2 toolset2. These experiments demonstrate that also when applied
to actual state spaces of real models, GW generally outperforms the best of the
other algorithms, often with a factor 10 and sometimes with a factor 100. This
difference tends to grow as the LTSs get larger. GW’s memory usage is only
sometimes substantially higher than GV’s and BO’s, which surprised us given
the amount of required bookkeeping.
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Abstract. We develop algorithms for computing Craig interpolants for
first-order formulas over real numbers with a wide range of nonlinear
functions, including transcendental functions and differential equations.
We transform proof traces from δ-complete decision procedures into
interpolants that consist of Boolean combinations of linear constraints.
The algorithms are guaranteed to find the interpolants between two for-
mulas A and B whenever A ∧ B is not δ-satisfiable. At the same time,
by exploiting δ-perturbations one can parameterize the algorithm to find
interpolants with different positions between A and B. We show appli-
cations of the methods in control and robotic design, and hybrid system
verification.

1 Introduction

Verification problems of complex embedded software can be reduced to solving
logic formulas that contain continuous, typically nonlinear, real functions. The
framework of δ-decision procedures [19,21] establishes that, under reasonable
relaxations, nonlinear SMT formulas over the reals are in principle as solvable
as SAT problems. Indeed, using solvers for nonlinear theories as the algorithmic
engines, straightforward bounded model checking has already shown promise
on nonlinear hybrid systems [9,28]. Naturally, for enhancing performance, more
advanced reasoning techniques need to be introduced, extending SMT towards
general quantifier elimination. However, it is well-known that quantifier elimi-
nation is not feasible for nonlinear theories over the reals. The complexity of
quantifier elimination for real arithmetic (i.e., polynomials only) has a double-
exponential lower bound, which is too high for most applications; when transcen-
dental functions are further involved, the problem becomes highly undecidable.

Craig interpolation provides a weak form of quantifier elimination. Given two
formulas A and B, such that A ∧ B is unsatisfiable, an interpolant I is a formula
satisfying: (1) A ⇒ I, (2) B ∧ I ⇒ ⊥, and (3) I contains only variables common
to A and B. It has found many applications in verifications: as an heuristic to
compute inductive invariant [30,33,35], for predicate discovery in abstraction
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refinement loops [32], inter procedural analysis [2,3], shape analysis [1], fault-
localisation [10,17,39], and so on.

In this paper, we present methods for computing Craig interpolants in expres-
sive nonlinear theories over the reals. To do so, we extract interpolants from
proofs of unsatisfiability generated by δ-decision procedures [22] that are based
on Interval Constraint Propagation (ICP) [6]. The proposed algorithms are guar-
anteed to find the interpolants between two formulas A and B, whenever A ∧ B
is not δ-satisfiable.

The framework of δ-decision procedures formulates a relaxed notion of logi-
cal decisions, by allowing one-sided δ-bounded errors [18,19]. Instead of asking
whether a formula has a satisfiable assignment or not, we ask if it is “δ-satisfiable”
or “unsatisfiable”. Here, a formula is δ-satisfiable if it would be satisfiable under
some δ-perturbation on the original formula [18]. On the other hand, when the
algorithm determines that the formula is “unsatisfiable”, it is a definite answer
and no numerical error can be involved. Indeed, we can extract proofs of unsatis-
fiability from such answers, even though the search algorithms themselves involve
numerical errors [22]. This is accomplished by analyzing the execution trace of
the search tree based on the ICP algorithm.

The core ICP algorithm uses a branch-and-prune loop that aims to either
find a small enough box that witnesses δ-satisfiability, or detect that no solution
exists. The loop consists of two main steps:

– (Prune) Use interval arithmetic to maintain overapproximations of the solu-
tion sets, so that one can “prune” out the part of the state space that does
not contain solutions.

– (Branch) When the pruning operation does not make progress, one performs a
depth-first search by “branching” on variables and restart pruning operations
on a subset of the domain.

The loop is continued until either a small enough box that may contain a solution
is found, or any conflict among the constraints is observed.

When a formula is unsatisfiable, the execution trace of the algorithm gener-
ates a (potentially large) proof tree that divides the space into small hypercubes
and associating a constraint to each hypercube [22]. The interpolation algorithm
can essentially traverse this proof tree to construct the interpolant. To each leaf
in the proof, we associate � or ⊥ depending on the source of the contradiction.

Fig. 1. Interval constraint propagation and interpolant construction where A is y ≥ x2

and B is y ≤ − cos(x) + 0.8 over the domain x ∈ [−1, 1], y∈[−1, 1]. The A is shown in
green and B in red. The final interpolant is the green part (Color figure online).
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The inner nodes of the proof tree correspond to case splits and are handled in
a manner reminiscent of Pudlák’s algorithm [37]. Common variables are kept as
branching points and A,B local variables are eliminated. A simple example of
the method is as follows:

Example 1. Let A : y ≥ x2 and B : y ≤ − cos(x) + 0.8 be two constraints
over the domain x ∈ [−1, 1], y∈[−1, 1]. A δ-decision procedure uses A and B to
contract the domains of x and y by removing the parts that be shown empty
using interval arithmetic. Figure 1 shows a sequence of contraction proving the
unsatisfiability of the formula. As the contraction occurs, we color the region
of the space by the color of the opposite formula. When the interval constraint
propagation has finished, the initial domain is associated to either A or B. The
interpolant I is composed of the parts corresponding to A. We will compute that
I is y ≥ 0 ∧ (0.26 ≤ y ∨ (y ≤ 0.26 ∧ − 0.51 ≤ x ≤ 0.51)).

We have implemented the algorithms in the SMT solver dReal [20]. We
show examples of applications from various domains such as control and robotic
design, and hybrid system verification.

Related Work. Our algorithm is very similar to the algorithm for propositional
interpolation studied by Pudlák [37]. Craig interpolation for real or integer arith-
metic has focused on the linear fragment with LA(R) [31,38] and LA(Z) [8,24].
Dai et al. [15] present a method to generate interpolants for polynomial for-
mula. Their method use semi-definite programming to search for a polynomial
interpolant and it is complete under the Archimedean condition. In fact, the
Archimedean condition imposes similar restrictions as δ-decidability, e.g., the
variables over bounded domains and limited support for strict inequalities. Our
method is more general in that it handles nonlinear fragments over R that include
transcendental functions and solution functions of ordinary differention equa-
tions. Existing tools to compute interpolation such as MathSat5 [12], Princess [8],
SmtInterpol [11], and Z3 [34] focus on linear arithmetic. We are the first to pro-
vide interpolation in nonlinear theories.

Outline. In Sect. 2, we review notions related to interpolation, nonlinear arith-
metic over the Reals and δ-decision procedures. In Sect. 3, we introduce our
interpolation algorithm. In Sect. 4, we present and evaluate our implementation.
We conclude and sketch future research direction in Sect. 5.

2 Preliminaries

Craig Interpolation [14]. Craig interpolants were originally defined in proposi-
tional logic, but can be easily extended to first-order logic. Given two quantifier-
free first-order formulas A and B, such that A ∧ B is unsatisfiable, a Craig
interpolant I is a formula satisfying:
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– A ⇒ I;
– B ∧ I ⇒ ⊥;
– fv(I) ⊆ fv(A) ∩ fv(B) where fv(·) returns the free variables in a formula.

Intuitively, I provides an overapproximation of A that is still precise enough to
exhibit its conflict with B. In particular, I involves only variables (geometrically,
dimensions) that are shared by A and B.
Notation 1. We use the meta-level symbol ⇒ as a shorthand for logical impli-
cations in texts. In the proof rules that we will introduce shortly, � is used as
the formal symbol with the standard interpretation as logical derivations.
δ-Complete Decision Procedures. We consider first-order formulas interpreted
over the real numbers. Our special focus is formulas that can contain arbitrary
nonlinear functions that are Type 2 computable [7,40]. Intuitively, Type 2 com-
putability corresponds to numerical computability. For our purpose, it is enough
to note that this set of functions consist of all common elementary functions, as
well as solutions of Lipschitz-continuous ordinary differential equations.

Interval Constraint Propagation (ICP) [6] finds solutions of real constraints
using the branch-and-prune method, combining interval arithmetic and con-
straint propagation. The idea is to use interval extensions of functions to prune
out sets of points that are not in the solution set and branch on intervals when
such pruning can not be done, recursively until a small enough box that may
contain a solution is found or inconsistency is observed. A high-level descrip-
tion of the decision version of ICP is given in Algorithm 1 [6,18]. The boxes, or
interval domains, are written as D and ci denotes the ith constraint.

Proofs from Constraint Propagation. A detailed description of proof extraction
from δ-decision procedure is available in [22]. Here, we use a simplified version.

Algorithm 1. ICP(c1, ..., cm,D = D1 × · · · × Dn, δ)

1: S ← D
2: while S �= ∅ do
3: D ← S.pop()
4: while ∃1 ≤ i ≤ m,D �=δ Prune(D, ci) do
5: D ← Prune(D, ci)
6: end while
7: if D �= ∅ then
8: if ∃1 ≤ i ≤ m, |D| ≥ ε then � ε is some computable factor of δ
9: {D1,D2} ← Branch(D, i)

10: S.push(D1)
11: S.push(D2)
12: else
13: return sat
14: end if
15: end if
16: end while
17: return unsat



Interpolants in Nonlinear Theories Over the Reals 629

Intuitively, the proof of unsatisfiability recursively divides the solution space to
small pieces, until it can prove (mostly using interval arithmetic) that every
small piece of the domain contains no solution of the original system. Note that
in such a proof, the difference between pruning and branching operations become
blurred for the following reason.

Pruning operations show that one part of the domain can be discarded
because no solution can exist there. Branching operations split the domain along
one variable, and generates two sub-problems. From a proof perspective, the dif-
ference between the two kinds of operations is simply whether the emptiness
in one part of domain follows from a simple properties of the functions (theory
lemma), or requires further derivations. Indeed, as is shown in [22], the sim-
ple proof system in Fig. 2 is enough for establishing all theorems that can be
obtained by δ-decision procedures. The rules can be explained as follows.

– The Split rules divides the solution space into two disjoint subspaces.
– The theory lemmas (ThLem) are the leaves of the proof. They are used when

the solver managed to prove the absence of solution in a given subspace.
– The Weakening rule extracts those conjunct out of the main formula.

We see that each step of the proof has a set of variables x with a domain D
and F is a formula. We use vector notations in the formulas, writing x ∈ D
to denote

∧
i xi ∈ Di. The domains are intervals, i.e., each Di has the form

[li, ui] where li,ui are the lower and upper bounds for xi. Since we are looking at
unsatisfiability proofs, each node implies ⊥. The root of the proof is the formula
A ∧ B, and D covers the entire domain. The inner nodes are Split, and the proof’s
leaves are theory lemmas directly followed by weakening. To avoid duplication,
we do not give a separate example here, since the full example in Fig. 5 shows
the structure of some proof trees obtained from such rules.

A proof of unsatisfiability can be extracted from an execution trace of Algo-
rithm 1 when it returns unsat. The algorithm starts at the root of the proof tree
and explores the proof tree depth-first. Branching (line 9) directly corresponds

Fig. 2. Proof rules for the ICP algorithm. We use the standard notations for sequent
calculus. Also, when we write an interval [a, b], we always assume that it is a well-defined
real interval satisfying a ≤ b.
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Fig. 3. Pruning operation and the corresponding proof. The pruning shrinks the
domain of x from [l, u] to [l, u′]. The corresponding proof starts with a Split around u′.
The interval [u′, u] is proved empty using a ThLem and Weakening step. The remaining
[l, u′] interval is shown empty by further operations.

to the Split rule. Pruning (line 5), on the other hand, is a combination of the
three rules. Let us look at D′ = Prune(D, ci). The constraint ci is selected with
the Weakening. For each D′

i = [l′, u′] which is strictly smaller than Di = [l, u],
the Split and ThLem rules are applied. If u′ < u then we split on u′ and a lemma
shows that the interval [u, u′] has no solution. The same is done for the lower
bounds l′,l. Figure 3 shows a pruning step and the corresponding proof.

3 Interpolants in Nonlinear Theories

Intuitively, a proof of unsatisfiability is a partition of the solution space where
each sub-domain is associated with a conjunct c from A ∧ B. c is a witness that
shows the absence of solution in a given domain. The interpolation rules traverse
the rules and selects which parts belong to the interpolant I. We now describe
the algorithm for obtaining such interpolants for formulas A and B from the
proof of unsatisfiability for A ∧ B.

3.1 Core Algorithms

Our method for constructing disjunctive linear interpolants takes two inputs:
a proof tree and a labeling function. The labeling function maps formula and
variables to either a, b, or ab. For each proof rule introduced in Fig. 2, we
associate some partial interpolants, written in square bracket on the right of the
conclusion of the rule. Figure 4 shows these modified versions of the rules.

– At the leaf level (rule ThLem-I), the tile is in I if c is not part of A, i.e.,
the contradiction originates from B. If c is in both A and B then it can be
considered as either part of A or B. Both cases lead to a correct interpolant.

– The Weakening-I rule does not influence the interpolant, it is only required to
pick c from A ∧ B.

– The Split-I is the most interesting rule. Splitting the domain essentially defines
the bounds of the subsequent domains. Let x be the variable whose domain
is split at value p and I1, I2 be the two interpolants for the case when x < p
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Fig. 4. Interpolant producing proof rules

and x ≥ p. If x occurs in A but not B, then x cannot occur in I. Since x is
in A then we know that A implies x < p ⇒ I1 and x ≥ p ⇒ I2. Eliminating
x gives I = I1 ∨ I2. A similar reasoning applies when x occurs in B but not
A and gives I = I1 ∧ I2. When x occurs in both A and B then x is kept
in I and acts as a selector for the values of x smaller than p I1 is selected,
otherwise I2 applies.

The correctness of our method is shown by the following theorem:

Theorem 1. The rules Split-I, ThLem-I, Weakening-I generate a Craig inter-
polant I from the proof of unsatisfiability of A and B.

Proof. We prove correctness of the rules by induction. To express the inductive
invariant, we split the domain D into the domains DA and DB which contains
only the intervals of the variables occurring in A, B respectively.

At any given point in the proof, the partial interpolant I is an interpolant
for the formula A over DA and B over DB . At the root of the proof tree we get
an interpolant for the whole domain D = DA ∧ DB .

At the leaves of the proof, or the ThLem-I rule, one of the constraints has
no solution over the domain. Let’s assume that this constraint comes from
A. Then the partial interpolant I is ⊥. We have that A ∧ DA ⇒ I by
the semantics of the ThLem rule (⊥⇒⊥). Trivially, B ∧ DB ∧ I ⇒ ⊥ and
fv(I) = ∅ ⊆ fv(A) ∩ fv(B). When the contradiction comes from B, a similar
reasoning applies with I = �.

The Weakening-I only serves to select the constraint which causes the con-
tradiction and does not change the invariant.

The Split-I rule is the most complex case. We have to consider whether the
variable x which is split come from A, B, or is shared. For instance, if x ∈ fv(A)
then the induction step has DA1 = DA ∧ x < p and DA2 = DA ∧ x ≥ p and
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DB is unchanged. If x ∈ fv(B) then DB is affected and DA is unchanged. If x
is shared then both DA and DB are affected.

Let consider that x ∈ fv(A) and x �∈ fv(B). We omit the case where x is in
B but not A as it is similar. The induction hypothesis is

A ∧ (DA ∧ x < p) ⇒ I1

A ∧ (DA ∧ x ≥ p) ⇒ I2

B ∧ DB ∧ I1 ⇒ ⊥
B ∧ DB ∧ I2 ⇒ ⊥

which simplifies to
A ∧ DA ⇒ I1 ∨ I2

B ∧ DB ∧ (I1 ∨ I2) ⇒ ⊥
.

Finally, we need to consider x ∈ fv(A) and x ∈ fv(B). The induction hypoth-
esis is

A ∧ (DA ∧ x < p) ⇒ I1

A ∧ (DA ∧ x ≥ p) ⇒ I2

B ∧ (DB ∧ x < p) ∧ I1 ⇒ ⊥
B ∧ (DB ∧ x ≥ p) ∧ I2 ⇒ ⊥

and simplifies to
A ∧ DA ⇒ ite(x < p, I1, I2)

B ∧ DB ∧ ite(x < p, I1, I2) ⇒ ⊥
.

��
Example 2. If we look at proof for the example in Fig. 1, we get the proof anno-
tated with the partial interpolants shown in Fig. 5. The final interpolants I5 is
0≤y ∧ (0.26≤y ∨ (y≤0.26 ∧ − 0.51 ≤ x ≤ 0.51)).

Boolean Structure. The method we presented explain how to compute an inter-
polant for the conjunctive fragment of quantifier-free nonlinear theories over the
reals. However, in many cases formula also contains disjunctions. To handle dis-
junctions, our method can be combined with the method presented by Yorsh
and Musuvathi [41] for building an interpolant from a resolution proof where
some of the proof’s leaves carry theory interpolants.

Handling ODE Constraints. A special focus of δ-complete decision procedures
is on constraints that are defined by ordinary differential equations, which is
important for hybrid system verification. In the logic formulas, the ODEs are
treated simple as a class of constraints, over variables that represent both state
space and time. Here we elaborate on the proofs and interpolants for the ODE
constraints.

Let t0, T ∈ R and g : Rn → R be a Lipschitz-continuous Type 2 computable
function. Let t0, T ∈ R satisfy t0 ≤ T and x0 ∈ R

n. Consider the initial value
problem

dx
dt

= g(x(t)) and x(t0) = x0, where t ∈ [t0, T ].

It has a solution function x : [t0, T ] → R
n, which is itself a Type 2 computable

function [40]. Thus, in the first-order language LRF we can write formulas like

(
||x0|| = 0

)
∧

(
xt = x0 +

∫ t

0

g(x(s))ds
)

∧
(
||xt|| > 1

)
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Fig. 5. Proof of unsatisfiability where A is y ≥ x2, B is y ≤ − cos(x) + 0.8 along with
the corresponding interpolant

which is satisfiable when the system defined by the vector field g can have a
trajectory from some point ||x(0)|| = 0 to ||x(t)|| = 1 after time t. Note that we
use first-order variable vectors x0 and xt to represent the value of the solution
function x at time 0 and t. Also, the combination of equality and integration
in the second conjunct simply denotes a single constraint over the variables
(x0,xt, t).

In the δ-decision framework, we perform interval-based integration for ODE
constraints that satisfies the following. Suppose the time domain for the ODE
constraint in question is in [t0, T ]. Let t0 ≤ t1 ≤ · · · tm ≤ T be a sequence of time
points. An interval-based integration algorithms compute boxes Dt1 , ...,Dtm such
that

∀i ∈ {1, ...,m}, {x(t) : ti ≤ t ≤ ti+1,x0 ∈ Dx0} ⊆ Dt0 .
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Namely, it computes a sequence of boxes such that all possible trajectories are
contained in them over time. Thus, the ODE constraints can be handled in the
same way as non-ODE constraints, whose solution set is covered by a set of
small boxes. Consequently, the proof rules from Fig. 4 apply directly to ODE
constraints.

3.2 Extensions

For any two formulas A,B which conjunction is unsatisfiable, the interpolant I is
not unique. In practice, it is difficult to know a priori what is a good interpolant.
Therefore, it is desirable to have the possibility of generating and testing multiple
interpolants. We now explain how to get interpolants of different logical strength.
An interpolant I1 is stronger than an interpolant I2 iff I1 ⇒ I2. Intuitively, a
stronger interpolant is closer to A and a weaker interpolant closer to B.

Parameterizing Interpolation Strength. The interpolation method that we pro-
pose uses a δ-decision procedure to build a Craig interpolant. I being an inter-
polant means that A ∧ ¬I and B ∧ I are both unsatisfiable. However, these
formulas might still be δ-satisfiable.

To obtain an interpolant such that both A ∧ ¬I and B ∧ I are δ-unsatisfiable,
we can weaken both A and B by a factor δ. However, A and B must be at least
3δ-unsatisfiable to guarantee that the solver finds a proof of unsatisfiability.
Furthermore, we can also introduce perturbations only on one side in other to
make the interpolant stronger of weaker. To introduce a perturbation δ, we apply
the following rewriting to every inequalities in A and/or B:

L = R �→ L ≥ R − δ ∧ L ≤ R + δ
L ≥ R �→ L ≥ R − δ
L > R �→ L > R − δ

Changing the Labelling. Due to the similarity of our method to the interpolation
of propositional formulas we can adapt the labelled interpolation system from
D’Silva et al. [16] to our framework.

In the labelled interpolation system, it is possible to modify the a,b,ab
labelling as long as it preserves locality, see [16] for the details. An additional
restriction in our case is that we cannot use a projection of constraints at the
proof’s leaves. The projection is not computable in nonlinear theories. Therefore,
the labelling must enforce that the leaves maps to the interpolants � or ⊥.

4 Applications and Evaluation

We have implemented the interpolation algorithm in a modified version of the
dReal SMT solver.1 The proofs produced by dReal can be very large, i.e., giga-
bytes. Therefore, the interpolants are built and simplified on-the-fly. The full
1 Currently available in the branch https://github.com/dzufferey/dreal3/.

https://github.com/dzufferey/dreal3/


Interpolants in Nonlinear Theories Over the Reals 635

proof is not kept in memory. We modified the ICP loop and the contractors
which are responsible for the pruning steps. The overhead induced by the inter-
polant generation over the solving time is smaller than 10 %.

The ICP loop (Fig. 1) builds a proof starting from the root of the proof
tree and exploring the tree like a depth-first search. On the other hand, the
interpolation rules build the interpolant starting from the proof’s leaves. Our
implementation modifies the ICP loop to keep a stack P of partial interpolants
alongside the stack of branching points S. When branching (line 9), the value
used to split D1 and D2 is pushed on P . The pruning steps (line 5) are con-
verted to a proof as shown in Fig. 3. When a contradiction is found (line 7, else
branch), P is popped to the branching point where the search resumes and the
corresponding partial interpolant is pushed back on P . When the ICP loop ends,
P contains the final interpolant.

Interpolant Sizes. The ICP algorithm implemented in dReal eagerly prunes the
domain by applying repeatedly all the constraints. Therefore, it usually gener-
ates large proofs often involving all the constraints and all the variables. Inter-
polation can extract more precise information from the proof. Intuitively, an
interpolant which is much smaller than the proof are more likely to be useful in
practice. In this test, we try to compare the size of the proof against the size of
the interpolants using benchmark from the Flyspeck project [25], certificates for
Lyapunov functions in powertrain control systems [27] and the other examples
presented in the rest of this section.

We run dReal with a 20 min timeout and generate 1063 interpolants. Out
of these, 501 are nontrivial. In Fig. 6 we plot the number of inequalities in the
nontrivial interpolants against the size of the proof without the Weakening steps.
For similar proofs, we see that the interpolants can be order of magnitude simpler
than the proofs and other interpolants obtained by different partitions of the

Fig. 6. Interpolants’ size (number of inequalities) compared to the proofs’ size.
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formula. The trivial interpolants still bring information as they mean that the
only one side is part of the unsatisfiable core.

Hybrid System Verification. Our method can compute interpolants for systems
of ODEs. For instance, we can check that two trajectories do not intersect.
Figure 7a shows an interpolant obtained for the following equations:

A : xt = x0 +
∫ t

0

−x + cos(x) dx ∧ x0 = 3 ∧ 0 ≤ t ≤ 2

B : yt = y0 +
∫ t

0

−y + sin(y − 1) dy ∧ y0 = 2 ∧ xt = yt

A large portion, 479 out of 1063, of our examples involves differential equa-
tions. These examples include: airplane control [5], bouncing balls, networked
water tanks, models of cardiac cells [29], verification of the trajectory planning
and tracking stacks of autonomous vehicle (in particular, for lane change maneu-
ver [4]), and example from dReal regression tests. Table 1 shows statistics about
the interpolants for each family of examples.

Robotic Design. Often, hybrid system verification is used in model-based design.
An expert produces a model of the system which is then analysed. However, it
is also possible to extract models directly from the manufacturing designs. As
part of an ongoing project about co-design of both the software and hardware
component of robots [42], we extract equations from robotic designs. In the
extracted models, each structural element is represented by a 3D vector for its
position and a unit quaternion for the orientation. The dimension of the elements
and the joints connecting them corresponds to equations that relate the position
and orientation variables. Active elements, such as motors, also have specific
equations associated to them.

Table 1. Results for the interpolation of ODEs. The [ , ] notation stands for intervals
that cover the values for the whole families of examples. The first column indicates the
family. The next three columns contains the number of tests in the family, the number
of flows and variables in the tests. The last three columns shows the size of the proofs,
interpolants, and the solving time.

Family #tests #flow #var Proof size Interpolant size Time

Airplane control 53 [1,4] [56,61] [4213,24249] [70,10260] [57 s,178 s]

Apex 17 1 44 23 [0,22] [5 s,9 s]

Bouncing ball 165 2 128 857 [0,28] [1.6 s,5.5 s]

Cardiac cells 37 4 71 15 [0,1] [15 m,20 m]

Water tanks 68 [4,8] [18,30] [6530,225099] [331,92594] [7 s,12 m]

Lane change 15 1 44 24 [0,23] [19 s,20 s]

Other tests 142 1 5 2 [0,1] [0.1 s,1 s]
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This approach provides models faithful to the actual robots, but it has the
downside of producing large systems of equations. To verify such systems, we
need to simplify them. Due to the presence of trigonometric functions we cannot
use quantifier elimination for polynomial systems of equations [13]. However, we
use interpolation as an approximation of quantifier elimination.

Let us consider a kinematic model, K(x,y,z) where x is a set of design and
input parameters, y is the variables that represent the state of each component
of the robot, and z is the variables that represent the parts of the state needed to
prove the property of interest. For instance, in the case of a robotic manipulator,
x contain the sizes of each element and the angles of the servo motors and z is
the position of the effector. y is determined by the designed of the manipulator.

Fully controlled systems have the property that once the design and input
parameters are fixed, there is a unique solution for remaining variables in the
model. Therefore, we can create an interpolation query:

A : K(x,y,z) ∧
B : K(x,v,w) ∧ (z − w)2 ≥ ε2 where ε > δ

y,v are two copies of the variables we want to eliminate. Since the kinematic is
a function of x which is the same for the two copies z and w should be equal.
Therefore, the formula we build has no solution and we get an interpolant I(x,z)
which is an ε-approximation of ∃ y.K(x,y,z).

Example 3. Consider the simple robotic manipulator show in Fig. 7b. The
manipulator has one degree of freedom. It is composed of two beams connected
by a revolute joint controlled by a servo motor. The first beam is fixed.

The original system of equations describing this system has 22 variables: 7 for
each beam, 7 for the effector, and 1 for the revolute joint. Using the interpolation

Fig. 7. Application of interpolation to nonlinear systems
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Table 2. Comparison of the original model of a 1 and 2 degrees of freedom manipulator
against approximations obtained using interpolation. For the size of the formulas we
report the number of theory atoms in the formula. The last column shows the time
dReal takes to compute the interpolants.

we obtain a simpler formula with only 4 variables: 3 for the effector’s position and
1 for the joint. Table 2 shows some statistics about the interpolants we obtained
using different ε for a one and a two degrees of freedom manipulators.

5 Conclusion and Future Work

We present an method for computing Craig interpolants for first-order formu-
las over real numbers with a wide range of nonlinear functions. Our method
transform proof traces from δ decision procedures into interpolants consisting of
disjunctive linear constraints. The algorithms are guaranteed to find the inter-
polants between two formulas A and B whenever A ∧ B is not δ-satisfiable.
Furthermore, we show how the framework apply to systems of ordinary dif-
ferential equations. We implemented our interpolation algorithm in the dReal
SMT-solver and apply the method to domains such robotic design, and hybrid
system verification.

In the future, we plan to expand our work to richer proof systems. The ICP
loop produces proof based on interval pruning which results in large, “squarish”
interpolants. Using more general proof systems, e.g. cutting planes and semi-
definite programming [15], we will be able to get smaller, smoother interpolants.
CDCL-style reasoning for richer theories, e.g., LA(R) [36] and polynomial [26], is
a likely basis for such extensions. Furthermore, we are interested in investigating
the link between classical interpolation and Craig interpolation over the reals.
Using methods like spline interpolation and radial basis functions, it maybe
possible to build smoother interpolants. We also to extend the our rules to
compute interpolants mixed proofs with both integer and real variables.
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Abstract. Computing transitive closures of integer relations is the key
to finding precise invariants of integer programs. In this paper, we
study difference bounds and octagonal relations and prove that their
transitive closure is a PTIME-computable formula in the existential
fragment of Presburger arithmetic. This result marks a significant com-
plexity improvement, as the known algorithms have EXPTIME worst
case complexity.

1 Introduction

This paper gives the first polynomial-time algorithm for computing closed forms
of difference bounds and octagonal relations. Difference bounds (DB) relations are
relations defined as conjunctions over atomic propositions of the form x − y ≤ c
where c is an integer and x, y range over unprimed and primed variables x∪ x′.
Octagonal relations generalize difference bounds relation by allowing conjuncts
of the form ±x ± y ≤ c. Both classes of relations are widely used as domains in
verification of software and hardware [11,12].

Given a binary relation R on states (represented as a formula with primed
and unprimed variables) a closed form of R is another formula R̂(k) contain-
ing primed and unprimed variables as well as a parameter variable k, such that
substituting the parameter k with any integer n ≥ 1 gives a precise description
of Rn, the n-th power of R. The main result of this paper is a polynomial-time
algorithm that, given the formula R in the form of octagonal constraints com-
putes a closed form R̂(k) as a formula in the existential fragment of Presburger
arithmetic. This result immediately extends to the computation of an expression
for transitive closure, because R+ ⇔ ∃k ≥ 1 . R̂(k).

Approaches for computing the precise closed form of iterated relation compo-
sitions are referred to as acceleration algorithms. Known acceleration algorithms
for the two classes of relations are based on the notion of periodicity and com-
pute closed forms of the size that is polynomial in the size of the prefix and
the period of a relation. Intuitively, the n-th power of a DB relation R can be
obtained by computing minimal weights of paths between pairs of vertices in
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certain graphs (called unfolded constraint graphs of R and denoted Gn
R). For a

fixed pair of vertices, minimal weights evolve periodically as a function of n.
However, since DB relations whose period increases super-polynomially in the
binary size of the relation ||R||2 can be constructed, it follows that an algorithm
for computing closed forms that runs in polynomial time must necessarily be
based on a method different than explicitly computing periodicity. This paper
presents the first such algorithm.

Overview. First, we study difference bounds relations (Sect. 3 gives a back-
ground). Our main observation is that the problem of computing a closed form
of a DB relation R can be reduced to the computation of closed forms of two
PTIME-computable DB relations Rfw and Rbw such that Rfw (Rbw) belongs to
a fragment called forward (backward) one-directional DB relations which contains
DB relations of the form

∧

ij

xi − x′
j ≤ cij

( ∧

ij

x′
i − xj ≤ cij , respectively

)

We first study these (dual) fragments and give a PTIME algorithm which
computes the closed form in the existential fragment of Presburger arithmetic
(Sect. 4). The main insight of this algorithm is that the closed form can be
defined by encoding polynomially many path schemes which can be thought
of as regular patterns that capture all paths with minimal weight in unfolded
constraint graphs.

Next, we observe that for a fixed pair of vertices (u, v) in an unfolded con-
straint graph, any path ρ from u to v can be normalized, i.e. replaced with
another path ρ′ from u to v such that the weight of ρ′ is not greater than the
weight of ρ and ρ′ is in a normal form (Sect. 5).

Then, we define the relations Rfw and Rbw and show that there exists an
integer B of polynomial size such that every normalized path ρ in G2B+n

R can be
viewed as a concatenation of several paths from Gn

Rfw
, Gn

Rbw
and GB

R (Sect. 6).

Since paths from Gn
Rfw

and Gn
Rbw

are captured by closed forms R̂fw(n) and

R̂bw(n) (both PTIME-computable), and since paths in GB
R are captured by RB

(also PTIME-computable, since B is polynomially large), it follows that R̂fw(n),
R̂bw(n), and RB can be combined to form a closed form R̂(2B + n).

Finally, in Sect. 7, we show that these methods and results can be general-
ized to compute closed forms of octagonal relations in polynomial time as well.
Section 8 concludes.

Related Work. Octagonal constraints [11] are well known in abstract inter-
pretation as an abstract domain for over-approximating sets of reachable states.
Transitive closure algorithms for octagonal relations [2] are the core of reacha-
bility analysis techniques based on computation of procedure summaries [9] or
on accelerated interpolation [8].
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DB and octagonal relations have been shown to have Presburger definable
transitive closures [1,6,7] and to have periodic characterization [2]. An algorithm
from [2] computes a transitive closure whose size is polynomial in the binary size
of the relation ||R||2 and in the size of the prefix and period. The algorithm has
super-polynomial complexity, since relations whose period increases exponen-
tially in

√||R||2 can be constructed.
Recently, [3,5] proves that both prefix and period can also be upper-bounded

by a single exponential and moreover, shows NP-completeness of the reachabil-
ity problem for flat counter systems, a class of integer programs without nested
loops where each loop (non-loop) transition is described by an octagonal rela-
tion (QFPA1 formula). Moreover, [5] presents a non-deterministic reduction to
satisfiability of QFPA formulas (an NP-complete problem), essentially by first
guessing the prefix and period and then guessing one of exponentially many dis-
juncts of the transitive closure, for each loop. Our present result can turn this
reduction into a deterministic one, since we can directly compute the transitive
closure of each loop.

2 Preliminary Definitions

In the rest of this paper, let N ≥ 1 and let x = {x1, x2, ..., xN} be a set of
variables ranging over Z. For each n ∈ Z, we define a fresh copy of variables
x(n) def

= {x
(n)
1 , . . . , x

(n)
N }. Similarly, x′ denotes a fresh copy of primed variables

x′ = {x′
1, . . . , x

′
N}. We assume that the reader is familiar with Presburger arith-

metic (PA). For a PA formula φ, let atoms(φ) denote the set of atomic proposi-
tions in φ, and φ[t/x] denote the formula obtained by substituting the variable
x with the term t. card(S) denotes the cardinality of a set S and abs(c) denotes
the absolute value of c ∈ Z. A valuation of x is a function ν : x −→ Z. The set
of all such valuations is denoted by Z

x. Given a relation R ⊆ Z
x × Z

x, we
denote by Ri, for i > 0, the i-times composition of R with itself. We denote
by R+ =

⋃∞
i=1 Ri the transitive closure of R. If R(x,x′) defines R, we denote

by Rn(x,x′) a formula that defines the n-th power Rn. A closed form of R is a
formula R̂(k,x,x′), where k 
∈ x, such that R̂[n/k] defines Rn, for all n ≥ 1. For
a weighted graph G and a pair of vertices u, v, we denote by min-weight(u, v,G)
the minimal weight over all paths from u to v in G.

3 Difference Bounds Relations

Definition 1. A formula φ(x) is a difference bounds (DB) constraint if it is
a finite conjunction of atomic propositions of the form xi − xj ≤ αij , 1 ≤ i, j ≤
N , where αij ∈ Z. A relation R ⊆ Z

x×Z
x is a difference bounds relation if it

can be defined by a difference bounds constraint φR(x,x′).

1 Quantifier-Free Presburger Arithmetic.
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Fig. 1. The constraint graph GR and its 3-
times unfolding G3

R for a difference bounds
relation R ⇔ x2 −x′

1 ≤ −1 ∧ x3 −x′
2 ≤

0 ∧ x1 −x′
3 ≤ 0 ∧ x′

4 −x4 ≤ 0 ∧ x′
3 −x4 ≤ 0.

Difference bounds constraints are
represented as graphs. If φ(x) is a dif-
ference bounds constraint, then con-
straint graph Gφ = 〈x,→〉 is a weighted
graph, where each vertex corresponds
to a variable, and there is an edge
xi

αij−−→ xj in Gφ if and only if there
exists a constraint xi − xj ≤ αij in φ

(Fig. 1(a)). The following well known
result from [10] gives means to test
consistency of a DB constraint and
to eliminate existential quantifiers, by
analyzing weights of paths in its con-
straint graph:

Proposition 1. Let φ(x0,x) be a DB constraint. Then, φ(x0,x) is consistent if
and only if Gφ contains no cycle with negative weight. If φ(x0,x) is consistent,
then

∃x0 . φ(x0,x) ⇔
∧

x,y∈x

x − y ≤ min-weight(x, y,Gφ)

Moreover, consistency check and computation of ∃x0. φ(x0,x) is in O(||R||2) time.

Consequently, DB relations are closed under relational composition, i.e. Rn(x,x′)
is a DB constraint for all n ≥ 1. The n-th power of R can be seen as a constraint
graph consisting of n copies of GR (see Fig. 1(b)):

Definition 2. Let n ≥ 1 and R(x,x′) be a DB constraint. Then, the n-times

unfolding of GR is defined as Gn
R

def
=

⋃n−1
i=0 GR(x(i),x(i+1)).

The vertices x(0) ∪ x(n) of Gn
R are called extremal. A path in Gn

R is said to be
extremal if its first and last vertex are both extremal. The next lemma gives
means to compute Rn(x,x′) and test its consistency, by analyzing extremal
paths of Gn

R.

Lemma 1. Let n ≥ 1 and R(x,x′) be a DB constraint. Then, Rn(x,x′) is
consistent if and only if Gn

R contains no extremal cycle with negative weight. If
Rn(x,x′) is consistent, then Rn(x,x′) can be computed as

∧
1≤i,j≤N

xi − xj ≤ min-weight(x
(0)
i , x

(0)
j , Gn

R) ∧ x′
i − x′

j ≤ min-weight(x
(n)
i , x

(n)
j , Gn

R) ∧
xi − x′

j ≤ min-weight(x
(0)
i , x

(n)
j , Gn

R) ∧ x′
i − xj ≤ min-weight(x

(n)
i , x

(0)
j , Gn

R)

Moreover, consistency check and computation of Rn(x,x′) is in O(||R||2 · log2 n)
time.
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Fig. 2. Paths in unfolded constraint graphs. Path π1 is repeating and essential, π2 is
repeating, π3 is essential, π4 is neither essential nor elementary, π5 is essential. We have
|π1| = 4, |π2| = 3, ‖ π2 ‖ = 3, ‖ π1 ‖ = ‖ π3 ‖ = ‖ π4 ‖ = 2, ‖ π5 ‖ = ‖ π6 ‖ = ‖ π7 ‖ = 0,

positions(π6) = {3, 4, 5}, vars(π2) = {x4, x5}, vertices(π2) = {x
(0)
4 , x

(1)
5 , x

(2)
5 , x

(3)
4 }.

Paths in Unfoldings of GR. In this paper, when the exact number of iterations
does not matter, we sometimes consider paths in the bi-infinite unfolding ∞GR

∞

of GR, defined as
∞GR

∞ def
=

⋃

i∈Z

GR(x(i),x(i+1))

Note that each edge in ∞GR
∞ is either forward (i.e. of the form x

(p)
i

α−→ x
(p+1)
j

for some 1 ≤ i, j ≤ N and p, α ∈ Z), backward (x(p+1)
i

α−→ x
(p)
j ), or vertical

(x(p)
i

α−→ x
(p)
j ). A path is a sequence of the form (see Fig. 2 for illustrations)

ρ = x
(p0)
i0

α0−→ x
(p1)
i1

α1−→ . . .
αn−1−−−→ x

(pn)
in

for some n ≥ 0 where x
(pk)
ik

αk−→ x
(pk+1)
ik+1

is an edge in ∞GR
∞, for each 0 ≤ k < n.

We say that a variable xik occurs on ρ at position pk, for each 0 ≤ k ≤ n. We say
that ρ is forward (backward, vertical) if p0 < pn (p0 > pn, p0 = pn, respectively).
The length and relative length of ρ is defined as |ρ| = n and ‖ ρ ‖ = abs(pn − p0).
The weight of ρ is defined as ω(ρ) = α0 + · · · + αn−1. We write vars(ρ) for the
set {xi0 , . . . , xin}, positions(ρ) for the set {p0, . . . , pn}, and vertices(ρ) for the set
{x

(p0)
i0

, . . . , x
(pn)
in

}. We say that ρ is repeating if p0 
= pn and i0 = in. We say that
ρ is elementary if all vertices x

(p0)
i0

, . . . , x
(pn)
in

are distinct, with the exception of
x
(p0)
i0

and x
(pn)
in

, which might be equal. We say that ρ is essential if all variables
xi0 , . . . , xin are distinct, with the exception of xi0 and xin , which might be equal.
Clearly, each essential path is also elementary. Note that the length of an essential
path is bounded by N . A subpath of ρ is any path of the form x

(pa)
ia

−→ . . . −→ x
(pb)
ib

where 0 ≤ a ≤ b ≤ n. We denote by −→
ρ (k) : x

(p0+k)
i0

−→ . . . −→ x
(pn+k)
in

the path
obtained by shifting ρ by k, where k ∈ Z. A path ρ is said to be isomorphic
with another path ρ′ if and only if ρ′ = −→

ρ (k), for some k ∈ Z. Consider a path
π = x

(q0)
j0

β0−→ . . .
βm−1−−−→ x

(qm)
jm

. The concatenation ρ .π is defined if x
(pn)
in

= x
(q0)
j0

.

If in = j0, we write ρ .π as a shorthand for ρ .−→π (pn−q0). If ρ is repeating and
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k ≥ 1, we define the k-th power of ρ as the k-times concatenation of ρ with itself,
e.g. ρ3 = ρ . ρ . ρ. We next define the notion of a compatible path.

Definition 3. Let ρ, ρ′ be paths in Gn
R for some n ≥ 1. We say that ρ′ is com-

patible with ρ (denoted ρ′ � ρ) if and only if (i) ω(ρ′) ≤ ω(ρ) and (ii) there
exist integers 1 ≤ i, j ≤ N and 0 ≤ k, � ≤ n such that both ρ and ρ′ are of the
form x

(k)
i −→ . . . −→ x

(�)
j .

Balanced Relations. We say that a difference bounds constraint R(x,x′) is
balanced whenever (x−y ≤ c) ∈ atoms(R) if and only if (x′−y′ ≤ c) ∈ atoms(R).
Note that the relation Rb (called the balanced closure of R) defined below is
balanced:

Rb
def
= R ∧

∧

(x−y≤c)∈atoms(R)

x′ − y′ ≤ c ∧
∧

(x′−y′≤c)∈atoms(R)

x − y ≤ c

We next show that the computation of the closed form for R can be reduced to
the computation of the closed form of its balanced closure (let y and z be fresh
copies of variables in x):

Proposition 2. Let R(x,x′) be a DB constraint, Rb(x,x′) be its balanced clo-
sure, and R̂b(�,x,x′) be the closed form of Rb. Then, R̂(k,x,x′) can be defined
as:

2∨

i=1

(k = i ∧ Ri(x,x′)) ∨ ∃y, z . k ≥ 3 ∧ R(x,y) ∧ R̂b(�,y, z)[k − 2/�] ∧ R(z,x′)

Sections 5 and 6 study balanced DB relations and finally show, as a consequence
of Proposition 2, that the results can be generalized to arbitrary DB relations.

4 Closed Forms for One-Directional Difference Bounds
Relations

We say that a DB constraint R(x,x′) is one-directional if it is either (i) a conjunc-
tion of the form

∧
ij xi − x′

j ≤ cij (forward one-directional) or (ii) a conjunction
of the form

∧
ij x′

i − xj ≤ cij (backward one-directional). Clearly, the two cases
are dual: R is forward one-directional if and only if its inverse R−1 (which can
be defined as R(x,x′)[x′/x,x/x′]) is backward one-directional. Consequently, a
closed form of R can be directly obtained from a closed form of R−1 as:

R̂(k,x,x′) ⇔ R̂−1(k,x,x′)[x/x′,x′/x]

We can thus consider, without loss of generality, only forward one-directional
relations. Let R be such relation. Clearly, Gn

R contains only forwards edges for all
n ≥ 1. Hence, |ρ| = ‖ ρ ‖ for each path ρ in Gn

R and moreover, Gn
R contains no cycle

and Rn is thus consistent, for all n ≥ 1. Then, by Proposition 1, computation
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of Rn(x,x′) amounts to computing, for each 1 ≤ i, j ≤ N , the minimal weight
over all paths in Gn

R of the form x
(0)
i −→ . . . −→ x

(n)
j . We next show that minimal

weight paths have, without loss of generality, regular shape in the sense that
they are instances of cubic path schemes:

Definition 4. If σ, σ′ are paths and λ is an empty or an essential repeating
path such that σ .λ . σ′ is a non-empty path, the expression θ = σ .λ∗ . σ′ is
called a path scheme. A path scheme encodes the infinite set of paths [[ θ ]] =
{σ .λn . σ′ | n ≥ 0}. We say that θ is cubic if |σ . σ′| ≤ N3.

Lemma 2. Let R be a one-directional DB relation, let n ≥ 1, and let ρ be an
extremal path in Gn

R. Then, there exists a compatible path ρ′ and a cubic path
scheme σ .λ∗ . σ′, such that ρ′ ∈ [[ σ .λ∗ . σ′ ]].

By Lemma 2, minimal weight paths can be captured by a set Π of all cubic
path schemes. For each such scheme σ .λ∗ . σ′ ∈ Π, we have |σ . σ′| ≤ N3 (by
Definition 4) and |λ| ≤ N (since the length of essential paths is bounded by
N). In the worst case, each vertex of Gn

R has N successors and hence, there are
up to Nn paths in Gn

R of the form x
(0)
i −→ . . . −→ x

(n)
j , for a fixed 1 ≤ i, j ≤ N .

Consequently, card(Π) is of the order 2O(N). We next show that it is sufficient
to consider only polynomially many representants from Π. We first partition Π
into polynomially many equivalence classes. Each class is determined by (i) first
and last variables of σ, λ, and σ′, and by (ii) the length of λ and σ . σ′. Formally,
the partition is defined as:

Ξ
def
= {Πijkpq | 1 ≤ i, j, k ≤ N, 0 ≤ p ≤ N3, 0 ≤ q ≤ N, p + q > 0}

where each Πijkpq ⊆ Π is defined as follows: σ .λ∗ . σ′ ∈ Πijkpq if and only if
σ,λ, σ′ are paths of the form:

λ = x
(0)
k −→ . . . −→ x

(q)
k (1)

σ = x
(0)
i −→ . . . −→ x

(r)
k ,

′
σ = x

(r)
k −→ . . . −→ x

(p)
j , for some 0 ≤ r ≤ p (2)

Intuitively, q (p) determines the length of λ (σ . σ′, respectively) and k determines
the variable on which λ connects with σ and σ′. Clearly, card(Ξ) is of the order
O(N7).

Let us fix i, j, k, p, q and assume that Πijkpq 
= ∅. It is easy to see that if
there exists a path λ of the form (1), then there exists one with minimal weight.
Similarly, if there exists a path σ . σ′ of the form (2), then there exists one with
minimal weight. We define θijkpq as the path scheme σ .λ∗ . σ′ where λ and
σ . σ′ are the minimal paths. It is easy to see that θijkpq is minimal in Πijkpq

in the following sense: ω(σ .λn . σ′) ≤ ω(ν.μn.ν′) for each ν.μ∗.ν′ ∈ Πijkpq and
each n ≥ 0. Hence, we can use θijkpq as a representant of Πijkpq. The minimal
representants can be computed in polynomial time:

Lemma 3. The set {θijkpq | Πijkpq 
= ∅} can be computed in PTIME.
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Next, we fix 1 ≤ i, j ≤ N and define:

Sij
def
= {(|σ .

′
σ|, |λ|,ω(σ .

′
σ),ω(λ)) | ∃k, p, q . θ ijkpq = σ .

∗
λ .

′
σ}

It follows from the previous arguments that Sij represents all cubic schemes
which capture paths from x

(0)
i to x

(n)
j and moreover, Sij can be computed in

polynomial time and its cardinality is polynomial. A closed form of the sequence
{min-weight(x(0)

i , x
(n)
j ,Gn

R)}n≥1 can be then defined as:

φij(n, xi, x
′
j) ⇔ n ≥ 1 ∧ ∧

(p,q,a,b)∈Sij

∀� . (� ≥ 0 ∧ n = p + q · �) ⇒ (xi − x′
j ≤ a + b · �)

Intuitively, each conjunct encodes a constraint of one scheme σ .λ∗ . σ′: whenever
the scheme captures a path of length n (i.e. n = |σ . σ′| + � · |λ| = p + q · � where
� ≥ 0), the difference xi − x′

j must be upper-bounded by the corresponding
weight ω(σ . σ′) + � · ω(λ) = a + � · b. Equivalently, we can write:

φij(n, xi, x
′
j) ⇔ n ≥ 1 ∧ ∧

(p,q,a,b)∈Sij

(n ≥ p ∧ q | n − p) ⇒ q · (xi − x′
j) ≤ q · a+ b · (n − p)

(3)

Then, we can define the closed form of R as:

R̂(n,x,x′) ⇔ ∧

1≤i,j≤N

φij(n, xi, x
′
j) (4)

Clearly, φij(n, xi, x
′
j) (and hence also R̂(n,x,x′)) is a formula in the existential

fragment of PA and of polynomial size, since card(Sij) is polynomial. Thus, it
follows from Lemma 3 that the whole computation of R̂(n,x,x′) is polynomial.

Theorem 1. Let R(x,x′) be a one-directional DB constraint. Then, its closed
form R̂(n,x,x′) can be computed in PTIME as a formula in the existential frag-
ment of PA.

5 Normalization of Paths in the Unfolded
Constraint Graph

In this section, we consider only balanced DB relations and show that every
extremal path in an unfolded constraint graph can be normalized. Intuitively, a
path ρ from Gn

R is normalized if none of its subpaths that traverses only positions
in the range {N2, . . . , n − N2} is a long corner. Informally, a corner is a vertical
path that stays either on the right or on the left side of the initial position.
A corner is long if the distance between its minimal and maximal position exceeds
the bound N2.

Definition 5 (Corners). Let ρ be a vertical path of the form ρ = x
(k0)
i0

−→
. . . −→ x

(km)
im

for some m ≥ 1 such that k0 = km. If positions(ρ) = {k0, . . . , k0+d}
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for some d ≥ 0, we say that ρ is a right corner of extent d. If positions(ρ) =
{k0 − d, . . . , k0} for some d ≥ 0, we say that ρ is a left corner of extent d.
We say that ρ is a corner if it is either a left corner or a right corner. We
denote the extent of a corner ρ by extent(ρ). We say that a corner ρ is basic if
k0 
∈ {k1, . . . , km−1}. We say that a corner ρ is long if extent(ρ) > N2. We say
that ρ is a lb-corner if it is both long and basic.

For instance, consider vertical paths from Fig. 2(c), where π6 is a right corner,
π7 is a right basic corner, and π5 is not a corner. Both π6 and π7 are short,
e.g. extent(π6) = 2 ≤ 52 = N2. In the following, lb-corners(ρ) (l-corners(ρ),
respectively) denotes the set of subpaths of ρ which are lb-corners (long corners,
respectively). It is easy to show that if a path contains no lb-corner, it also
contains no long corner. We are now ready to formalize the notion of a normalized
path.

Definition 6 (Normalized Paths). Let n ≥ 1 and let ρ be an extremal path in
Gn

R. We say that ρ is normalized if none of its subpaths θ such that positions(θ) ⊆
{N2, . . . , n − N2} is a long corner.

For example, the path in Fig. 3(a) is not normalized, due to the long corner θ.

Normalization. Given an integer n ≥ 1 and an extremal path ρ1 from Gn
R,

we construct a finite sequence {ρk}m
k=1 of paths from Gn

R for some m ≥ 1 such
that ρm is normalized and ρk+1 is compatible with ρk (Definition 3), for each
1 ≤ k < m. By transitivity, we have that ρm is compatible with ρ1. For each
1 ≤ k < m, the path ρk+1 is obtained from ρk by substituting one of its subpaths
with a compatible path.

Definition 7 (Substitution). If γ . θ . γ′ and θ
′ are paths in Gn

R such that θ
′ �

θ, the substitution of θ in γ . θ . γ′ with θ
′ is defined as (γ . θ . γ′)[θ′ / θ]

def
= γ . θ′ . γ′.

The subpaths of ρ1, . . . , ρm−1 that are substituted are certain paths called seg-
ments: Informally, segments of ρ are unique subpaths of ρ that traverse only
positions {p, . . . , q} for some fixed parameters p ≤ q.

Definition 8 (Path Segments). Let n ≥ 1 and let ρ be a path in Gn
R.

Let 0 < p ≤ q < n be integers and let H be the (unique) subgraph of Gn
R

obtained by removing every edge τ such that positions(τ) ⊆ {p, . . . , q}. We define
segments(ρ, p, q) to be the (unique) sequence ξ1, . . . , ξm of non-empty paths, for
some m ≥ 0, such that

– ξi is a subpath of ρ such that positions(ξi) ⊆ {p, . . . , q}, for each 1 ≤ i ≤ m
– there exist non-empty paths σ1, . . . , σm+1 in H such that ρ =

σ1 .ξ1 . . . σm .ξm. σm+1

As an example, consider the path ρ = σ1 . γ . θ . γ′ . σ2 in Fig. 3(a) for which we
have segments(ρ, N2, n−N2) = γ . θ . γ′ (i.e. ρ has one segment for the parameter
choice p = N2 and q = n − N2).
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In the rest of this paper, we write segments(ρ) as a shorthand for
segments(ρ, N2, n − N2). If ξ ∈ segments(ρ), we say that ξ is a segment of ρ. It
is easy to verify that each segment of an extremal path ρ in Gn

R is of the form
ξ = x

(p)
i −→ . . . −→ x

(q)
j for some 1 ≤ i, j ≤ N and p, q ∈ {N2, n − N2}. The next

proposition allows us to use an alternative characterization of normalized paths:

Proposition 3. Let n ≥ 1 and let ρ be an extremal path in Gn
R. Then, ρ is

normalized if and only if l-corners(ξ) = ∅ for each ξ ∈ segments(ρ).

Termination Argument. We next argue that the previously mentioned finite
sequence {ρk}m

k=1 exists for some m ≥ 1, by tracking, for each segment, the
distance of the first lb-corner from the end of the segment:

Proposition 4 (Finding the First lb-corner). Let ρ be a path such that
lb-corners(ρ) 
= ∅. Then, ρ has subpaths ρ1, θ, ρ2 such that ρ = ρ1 . θ . ρ2,
lb-corners(ρ1 . θ) = {θ}, and extent(θ) = N2 + 1. The corner θ is called the
first lb-corner of ρ.

For instance, θ is the first lb-corner of the path σ1 . γ . θ . γ′ . σ2 in Fig. 3(a). We
define lb-segments(ρ) to be the subsequence of segments(ρ) obtained by erasing
every segment ξ such that lb-corners(ξ) = ∅. For each 1 ≤ k < m, we guarantee
that if lb-segments(ρk) = ξ1, . . . , ξa for some a ≥ 1, then either

(1) lb-segments(ρk+1) = ξ2, . . . , ξa, or
(2) lb-segments(ρk+1) = ζ, ξ2, . . . , ξa for some ζ

(5)

and moreover, in case (2), ξ1 and ζ are paths such that

– ξ1 = γ1 . θ1 . γ′
1 for some paths γ1, θ1, γ

′
1 and θ1 is the first lb-corner of ξ1,

– ζ = γ2 . θ2 . γ′
2 for some paths γ2, θ2, γ

′
2 and θ2 is the first lb-corner of ζ, and

– |γ′
2| < |γ′

1|
Intuitively, ρk and ρk+1 have the same segments with long corners, with the
exception of one segment ξ1, which is either eliminated (case 1), or replaced
with another segment ζ (case 2) such that the length of the unique suffix γ′

2 of ζ

after its first lb-corner is strictly smaller than the length of the unique suffix γ′
1 of

ξ1 after its first lb-corner. Hence, the number of consecutive applications of the
case 2 is bounded by |ξ1|. Clearly, if |ξ1| = 0, then only case 1 may happen, which
decreases the number of segments with long corners, and therefore guarantees
termination.

Transforming Segments with Long Corners. Let n ≥ 1, let ρ be an
extremal path in Gn

R, and let ξ ∈ lb-segments(ρ). We show how to construct a
path ρ′ that is compatible with ρ and moreover satisfies the termination proper-
ties from (5). By Proposition 4, there exists a unique corner θ (the first lb-corner
of ξ) such that ξ = γ . θ . γ′, lb-corners(γ . θ) = {θ}, and extent(θ) = N2 + 1,
for some paths γ, γ′. Figure 3(a) depicts such situation. Suppose that ξ starts at
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Fig. 3. Transformation of a segment with long corners

position N2 and ends at position n − N2 (the other three cases are symmetric).
Then, it is not difficult to show that θ is a right corner. The following lemma
states a key result which allows us to either shorten or decompose the corner θ.

Lemma 4 (Corner Shortening/Decomposition). Let ρ be a right (left)
lb-corner such that extent(ρ) = N2+1. Then, there exists a compatible right (left)
basic corner ρ′ such that either (i) extent(ρ′) ≤ N2 or (ii) extent(ρ′) = N2 + 1
and ρ′ has subpaths η, μ, τ, μ′,η′ such that ρ′ = η .μ. τ .μ′.η′, μ is a forward
(backward) repeating path, μ′ is a backward (forward) repeating path, τ is a right
(left) corner, ‖η ‖ = ‖η′ ‖, 1 ≤ ‖μ‖ = ‖μ′‖ ≤ N2, and ω(μ) + ω(μ′) < 0. More-
over, for all k ≥ 0, η .μk. τ .μ′k.η′ is a right (left) corner and lb-corners(η .μk) =
lb-corners(μ′k.η′) = ∅.
Let θ

′ be the corner obtained by applying Lemma 4. Figure 3(b) depicts the case
(i) and Fig. 3(c) the case (ii).

First, suppose that the case (i) of Lemma 4 applies. Then, one can define

ζ
def
= ξ[

′
θ / θ] = (γ . θ .

′
γ)[

′
θ / θ] = γ .

′
θ .

′
γ

(see Fig. 3(d)) and prove that lb-corners(γ . θ′) = ∅, by using the fact from
Lemma 4 that extent(θ′) ≤ N2. If lb-corners(ζ) = ∅, then the case 1 in (5)
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applies. If lb-corners(ζ) 
= ∅, one can infer from lb-corners(γ . θ′) = ∅ that the
first lb-corner of ζ involves at least one edge of γ′ and hence, that the distance
of the first lb-corner in ζ from the end of ζ strictly decreases, i.e. that the case 2
in (5) applies. Hence, the termination property is preserved. We have θ

′ � θ, by

Lemma 4. Consequently, ζ � ξ and we can define ρ′ def
= ρ[ζ /ξ] and see that also

ρ′ � ρ.
Second, suppose that the case (ii) of Lemma4 applies. Let θ

′ = η .μ. τ .μ′.η′

be the decomposition of θ
′ given by Lemma 4. Note that μ, μ′ are repeating and

have the same relative length and opposite directions. Hence, we can define the
following path (� ≥ 1 is a parameter):

θ
def
= η .μ�. τ .μ′�.

′
η

We define ρ′ def
= ρ[θ/ θ

′]. By Lemma 4, ω(μ) + ω(μ′) < 0. Consequently,
ω(θ) ≤ ω(θ′) for any � ≥ 1 and hence, ρ′ is compatible with ρ, i.e. ρ′ � ρ.
By Lemma 4, 1 ≤ ‖μ‖ = ‖μ′‖ ≤ N2 and hence, one can choose � sufficiently
large and make the path θ reach a position in the range {n − N2 + 1, . . . , n},
formally: n−N2+1 ∈ positions(θ). See Fig. 3(e) for an illustration. Thus, the seg-
ment ξ in ρ is replaced by two segments ζ′, ζ in ρ′. Intuitively, ζ′ has the subpath
γ .η .μ�−1 and ζ has the subpath μ′�−1

.η′ . γ′. By Lemma 4, lb-corners(η .μ�) = ∅.
Consequently, ζ′ has no lb-corner and ζ′ thus does not appear in lb-segments(ρ′).
If lb-corners(ζ) = ∅, then the case 1 in (5) applies. If lb-corners(ζ) 
= ∅, one can
infer from lb-corners(μ′�.η′) = ∅ (which is by Lemma 4) that the first lb-corner
of ζ involves at least one edge of γ′ and hence, that the distance of the first lb-
corner in ζ from the end of ζ strictly decreases, i.e. that the case 2 in (5) applies.
Hence, the termination argument holds for all cases.

We can thus conclude that every extremal path can be normalized.

Theorem 2. Let R(x,x′) be a balanced DB constraint, let n ≥ 1 be an inte-
ger, and let ρ be a path between extremal vertices of Gn

R. Then, there exists a
normalized path ρ′ such that ρ′ � ρ.

6 Closed Forms for Difference Bounds Relations

By Lemma 1, relation Rn is consistent if Gn
R contains no extremal cycle with

negative weight and moreover, a consistent relation Rn can be defined as a
conjunction of constraints each of which corresponds to a minimal extremal
path. Hence, proving that a formula φ(x,x′) defines Rn amounts to showing
that φ(x,x′) implies exactly those constraints represented by extremal paths
in Gn

R. Consequently, a closed form R̂(k,x,x′) must satisfy the above for each
k ≥ 1. In this section, we show how to define such formula, in several steps. First,
we strengthen the relation R in a way that enables us to shortcut every short
corner with a single vertical edge (Sect. 6.1). Second, we define a formula that
encodes paths that do not contain long corners (Sect. 6.2). Third, we generalize
this encoding to extremal paths (Sect. 6.3), by exploiting the fact that such paths



PTIME Computation of Transitive Closures of Octagonal Relations 657

can be decomposed into segments according to Definition 8 and that segments
of extremal normalized paths contain no long corners. Finally, we show how
the formula that encodes extremal paths can be used to define a closed form
(Sect. 6.4).

6.1 Encoding Short Corners

Consider the strengthened relation Rs in Fig. 4(a). We prove that for each n ≥ 1,
each short corner in Gn

R has a compatible vertical edge in Gn
Rs

(see Fig. 4(b-c)).

Fig. 4. Shortcutting a short corner by strengthening a relation

Proposition 5 (Encoding of Short Corners). Let R(x,x′) be a balanced
DB constraint, let n ≥ 1 be an integer and let θ be a short corner in Gn

R of the
form x

(k)
i −→ . . . −→ x

(k)
j . Then:

Rs(x,x′) ⇒ Sfw(x) ⇒ xi − xj ≤ ω(θ) (if θ is right)
Rs(x,x′) ⇒ Sbw(x′) ⇒ x′

i − x′
j ≤ ω(θ) (if θ is left)

Consequently, there is a compatible vertical edge x
(k)
i

c−→ x
(k)
j in Gn

Rs
, for some

c ≤ ω(θ).

The intuition is that if we view the above short right corner θ as an extremal path
in GN2

R that starts at position 0, then we have, by Lemma1, that RN2
(x,x′) ⇒

xi − xj ≤ ω(θ), and hence the first implication in Proposition 5 holds, by the
definition of Sfw and Rs.

6.2 Encoding Paths Without Long Corners

The strengthening from Sect. 6.1 can be used to straighten paths which have only
short corners. Informally, a straightened path is either (i) a sequence of forward
edges, or (ii) a sequence of backward edges, or (iii) a single vertical edge. Let ξ
be an extremal path in Gn

R such that l-corners(ξ) = ∅. First, suppose that ξ is
forward. Then, ξ can viewed as a sequence of forward edges and right corners
in Gn

R (Fig. 5(b)). By Proposition 5, each corner can be shortcut by a vertical
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Fig. 5. Path straightening

edge, and hence we obtain an equivalent path ξ′ in Gn
Rs

which is a sequence
of forward and vertical edges in Gn

Rs
(Fig. 5(c)). Then, every subpath of ξ′ of

the form (vertical-edge)∗.fw-edge can be replaced by a (transitively) implied
forward edge in Gn

Rfw
where Rfw is defined in Fig. 5(a). and thus obtaining an

equivalent path ξ′′ in Gn
Rfw

that contains only forward edges (Fig. 5(d)). Then,

ξ′′ is encoded by R̂fw(�,x,x′)[n/�] and hence also in φ(�,x,x′)[n/�] defined as:

φ(�,x,x′) ⇔ R̂fw(�,x,x′) ∧ R̂bw(�,x,x′) ∧ Sfw(x) ∧ Sbw(x′) (6)

If ξ is an extremal right corner, then it is encoded by Sfw(x) (by Proposi-
tion 5) and hence also by φ(�,x,x′) (since Sfw is its conjunct). The other cases
(backward extremal path, extremal left corner) are symmetric. Hence, φ(�,x,x′)
encodes all extremal paths in Gn

R that have no long corners, in the following
sense:

Proposition 6 (Encoding of Paths Without Long Corners). Let R(x,x′)
be a balanced DB constraint, let n ≥ 1, and let ξ be an extremal path in Gn

R, i.e.
of the form x

(p)
i −→ . . . −→ x

(q)
j for some 1 ≤ i, j ≤ N and p, q ∈ {0, n}. If

l-corners(ξ) = ∅, then:

1. φ(�,x,x′)[n/�] ⇒ xi − x′
j ≤ ω(ξ) if p = 0, q = n

2. φ(�,x,x′)[n/�] ⇒ x′
i − xj ≤ ω(ξ) if p = n, q = 0

3. φ(�,x,x′)[n/�] ⇒ xi − xj ≤ ω(ξ) if p = q = 0
4. φ(�,x,x′)[n/�] ⇒ x′

i − x′
j ≤ ω(ξ) if p = q = n

6.3 Encoding Extremal Paths

Consider the following formula (let y and z be fresh copies of variables in x):

ψ(�,x,x′) ⇔ ∃y, z . RN2
(x,y) ∧ φ(�,y, z) ∧ RN2

(z,x′) (7)

We prove that for each n ≥ 1, the formula ψ(�,x,x′) encodes every extremal
path in G2N2+n

R , in the following sense.



PTIME Computation of Transitive Closures of Octagonal Relations 659

Proposition 7. (Encoding of Extremal Paths). Let R(x,x′) be a balanced
DB constraint, let n ≥ 1, and let ρ be an extremal normalized path in G2N2+n

R ,
i.e. of the form x

(p)
i −→ . . . −→ x

(q)
j for some 1 ≤ i, j ≤ N and p, q ∈ {0, 2N2 +n}.

Then:

1. ψ(�,x,x′)[n/�] ⇒ xi − x′
j ≤ ω(ρ) if p = 0, q = 2N2 + n

2. ψ(�,x,x′)[n/�] ⇒ x′
i − xj ≤ ω(ρ) if p = 2N2 + n, q = 0

3. ψ(�,x,x′)[n/�] ⇒ xi − xj ≤ ω(ρ) if p = q = 0
4. ψ(�,x,x′)[n/�] ⇒ x′

i − x′
j ≤ ω(ρ) if p = q = 2N2 + n

The intuition behind the encoding is as follows. Let ρ be an extremal normalized
path and let ρ = σ1 .ξ1 . . . σm .ξm. σm+1 be its decomposition according to Defi-
nition 8. By Proposition 3, l-corners(ξi) = ∅ for each 1 ≤ i ≤ m, and hence, by
Proposition 6, ξi is encoded by φ(�,y, z). For each 1 ≤ i ≤ m+1, we have that σi

is encoded in RN2
(x,y) or in RN2

(z,x′). Then, since ρ = σ1 .ξ1 . . . σm .ξm. σm+1,
one can show, by transitivity, that (7) encodes ρ. For instance, consider the
path ρ = σ1 . γ . θ′ . γ′ . σ2 in Fig. 3(d) and denote ξ1 = γ . θ′ . γ′. Supposing ρ is
normalized, we have:
⎛

⎝
RN2

(x,y) ⇒ xi1 − yi2 ≤ ω(σ1)
φ(�,y, z)[n/�] ⇒ yi2 − zi3 ≤ ω(ξ1)
RN2

(z,x′) ⇒ zi3 − x′
i4

≤ ω(σ2)

⎞

⎠ ⇒
(

ψ(�,x,x′)[n/�] ⇒
xi1 − x′

i4
≤ ω(σ1 .ξ1. σ2) = ω(ρ)

)

6.4 Defining the Closed Form

We finally prove that the formula R̂(k,x,x′) defined below is a closed form of R:

R̂(k,x,x′) ⇔
2N2
∨

i=1

(k = i ∧ Ri(x,x′)) ∨ ∃� ≥ 1 . k = 2N2 + � ∧ ψ(�,x,x′) (8)

Note that Rfw and Rbw are one-directional DB relations (see Sect. 4). Clearly,
Sfw, Sfw, Rs, Rfw, and Rbw are PTIME-computable DB constraints, by
Lemma 1 and Proposition 1. Since R̂fw(�,x,x′) and R̂bw(�,x,x′) are PTIME-
computable formulas in the existential fragment of PA, by Theorem1, so is the
formula φ(�,x,x′) in (6), and hence also R̂(k,x,x′) in (8).

Theorem 3. Let R(x,x′) be a balanced DB constraint. Then, (8) defines a
closed form of R(x,x′). Moreover, R̂(n,x,x′) is a PTIME-computable formula
in the existential fragment of PA.

By Proposition 2, the result of Theorem 3 extends to arbitrary DB relation.

Corollary 1. Let R(x,x′) be a difference bounds constraint. Then, its closed
form is a PTIME-computable formula in the existential fragment of PA.
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7 Octagonal Relations

The class of integer octagonal constraints is defined as follows:

Definition 9. A formula φ(x) is an octagonal constraint if it is a finite con-
junction of terms of the form xi−xj ≤ aij, xi+xj ≤ bij, or −xi−xj ≤ cij, where
aij , bij , cij ∈ Z, for all 1 ≤ i, j ≤ N . A relation R ⊆ Z

x×Z
x is an octagonal

relation if it can be defined by an octagonal constraint φR(x,x′).

We represent octagonal constraints as difference bounds constraints over the dual
set of variables y = {y1, y2, . . . , y2N}, with the convention that y2i−1 stands for
xi and y2i stands for −xi, respectively. For example, the octagonal constraint
x1 + x2 = 3 is represented as y1 − y4 ≤ 3 ∧ y2 − y3 ≤ −3. In order to handle the
y variables in the following, we define ı̄ = i − 1, if i is even, and ı̄ = i + 1 if i is
odd. Obviously, we have ¯̄ı = i, for all i ∈ N. We denote by φ(y) the difference
bounds constraint over y that represents φ(x):

Definition 10. Given an octagonal constraint φ(x), x = {x1, . . . , xN}, its dif-
ference bounds representation φ(y), over y = {y1, . . . , y2N}, is a conjunction of
the following difference bounds constraints, where 1 ≤ i, j ≤ N , c ∈ Z.

(xi − xj ≤ c) ∈ atoms(φ) ⇔ (y2i−1 − y2j−1 ≤ c), (y2j − y2i ≤ c) ∈ atoms(φ)
(−xi + xj ≤ c) ∈ atoms(φ) ⇔ (y2j−1 − y2i−1 ≤ c), (y2i − y2j ≤ c) ∈ atoms(φ)
(−xi − xj ≤ c) ∈ atoms(φ) ⇔ (y2i − y2j−1 ≤ c), (y2j − y2i−1 ≤ c) ∈ atoms(φ)
(xi + xj ≤ c) ∈ atoms(φ) ⇔ (y2i−1 − y2j ≤ c), (y2j−1 − y2i ≤ c) ∈ atoms(φ)

The following result has been proved in [4].

Lemma 5. Let n ≥ 1 and let R(x,x′) be an octagonal relation. Then, if
Rn(x,x′) is consistent, the following equivalence holds:

Rn(x,x′) ⇔ R
n
(y,y′)[σ], where σ = [xi/y2i−1, −xi/y2i, x

′
i/y′

2i−1, x
′
i/y′

2i]
N
i=1

Hence, a consistent n-th power of R(x,x′) can be computed by applying the
above substitution σ on the n-th power of R(y,y′).

Checking ∗-consistency. We say that a relation R is ∗-consistent if Rn is con-
sistent for each n ≥ 1. If R is not ∗-consistent, we define the minimal inconsistent
power of R as:

KR
def
= min{n | n ≥ 1, Rn is inconsistent}

Lemma 6. Checking ∗-consistency of R and computation of KR can be done in
PTIME.

Closed Form. We prove that the closed form of an octagonal relation R(x,x′)
can be defined as:
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R̂(k,x,x′) ⇔
{

R̂(k,y,y′)[σ] if R is ∗-consistent

R̂(k,y,y′)[σ] ∧ k < KR otherwise
(9)

Theorem 4. Let R(x,x′) be an octagonal constraint. Then, (9) defines its closed
form and moreover, it is a PTIME-computable formula in the existential frag-
ment of PA.

8 Conclusions

We have presented a method that computes transitive closures of octagonal
relations in polynomial time. This result also provides a proof of the fact that
transitive closures are expressible in (the existential fragment of) Presburger
arithmetic. Consequently, our result also simplifies the proof of NP-completeness
of reachability checking for flat counter automata from [5], by allowing a deter-
ministic polynomial time reduction to the satisfiability of QFPA.
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3. Bozga, M., Iosif, R., Konečný, F.: The complexity of reachability problems for flat
counter machines with periodic loops. Technical Report (2013). arXiv.5321 (1307)
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5. Bozga, M., Iosif, R., Konečný, F.: Safety problems are NP-complete for flat integer
programs with octagonal loops. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014.
LNCS, vol. 8318, pp. 242–261. Springer, Heidelberg (2014)

6. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundamenta
Informaticae 91(2), 275–303 (2009)

7. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) Proceedings of CAV. LNCS, vol. 1427,
pp. 268–279. Springer, Heidelberg (1998)
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11. Miné, A.: The octagon abstract domain. High.-Ord. Symbolic Comput. 19(1), 31–

100 (2006)
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Abstract. We consider the problem of verifying software implementa-
tions of linear time-invariant controllers against mathematical specifica-
tions. Given a controller specification, multiple correct implementations
may exist, each of which uses a different representation of controller state
(e.g., due to optimizations in a third-party code generator). To accom-
modate this variation, we first extract a controller’s mathematical model
from the implementation via symbolic execution, and then check input-
output equivalence between the extracted model and the specification
by similarity checking. We show how to automatically verify the cor-
rectness of C code controller implementation using the combination of
techniques such as symbolic execution, satisfiability solving and convex
optimization. Through evaluation using randomly generated controller
specifications of realistic size, we demonstrate that the scalability of this
approach has significantly improved compared to our own earlier work
based on the invariant checking method.

1 Introduction

Control systems are at the core of many safety- and life-critical embedded appli-
cations. Ensuring the correctness of these control system implementations is an
important practical problem. Modern techniques for the development of control
systems are model driven. Control design is performed using a mathematical
model of the system, where both the controller and the plant are represented as
sets of equations, using well established tools, such as Simulink and Stateflow.

Verification of the control system and evaluation of the quality of control is
typically performed at the modeling level [3]. Once the control engineer is satis-
fied with the design, a software implementation of the controller is produced from
the model using a generator such as Simulink Coder. To ensure that the gen-
erated implementation of the controller is correct with respect to its model, we
ideally would like to have verified code generators that would guarantee that any
generated controller correctly implements its model. In practice, however, code
generators for control software are complex tools that are not easily amenable
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to formal verification, and are typically offered as black boxes. Subtle bugs have
been found in earlier versions of commercially available code generators [22].

In the absence of verified code generators, it is desirable to verify instances of
generated code against their models. In this paper, we consider an approach to
perform such instance verification. Our approach is based on extracting a model
from the controller code and establishing equivalence between the original and
the extracted models. We limit our attention to linear time-invariant (LTI) con-
trollers, since these are the most commonly used controllers in control systems.
In such controllers, relations between the values of inputs and state variables,
and between state variables and outputs, are linear functions of input and state
variables with constant (i.e., time-invariant) coefficients.

Our technical approach relies on symbolic execution of the generated code.
Symbolic expressions for state and output variables of the control function are
used to reconstruct the model of the controller. The reconstructed model is then
checked for input-output equivalence between the original and reconstructed
model, using the well-known necessary and sufficient condition for the equiva-
lence of two minimal LTI models. Verification is performed using real arithmetic.
We account for some numerical errors by allowing for a bounded discrepancy
between the models. We compare two approaches for checking the equivalence;
one reduces the equivalence problem to an SMT problem, while the other uses a
convex optimization formulation. We compare equivalence checking to an alter-
native verification approach introduced in [23], which converts the original LTI
model into input-output based code annotations for verification at the code level.

The paper is organized as follows. Section 2 provides necessary background
on LTI systems. Section 3 introduces the approach based on code annotations.
Section 4 presents model extraction from code, followed by the equivalence check-
ing in Sect. 5. Section 6 evaluates the performance of the approaches. In Sects. 7
and 8, we provide a brief overview of related work and conclude the paper.

2 Preliminaries

In this section, we present preliminaries on linear controllers and the structure
of linear controller implementations (e.g., step function generated by Embedded
Coder). We also describe a couple of motivating examples and the notations used
in this paper.

The role of feedback controllers is to ensure the desired behavior of the closed-
loop systems by computing inputs to the plants based on previously measured
plant outputs. We consider linear LTI controllers and assume that the speci-
fications (i.e., models) of the controllers are given in the standard state-space
representation form

zk+1 = Azk + Buk

yk = Czk + Duk.
(1)

where uk ∈ R
p denotes the input vector to the controller at time k, yk ∈ R

m

denotes the output vector of the controller at time k, zk ∈ R
n denotes the

state vector of the controller. In addition, the size of the controller state n is
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referred to as the size of the controller and we use a common assumption that the
specified controller has minimal realization [26]; this implies that n is also the
degree of the controller (i.e., the degree of the denominator of its characteristic
polynomial). Note that the matrices A ∈ R

n×n, B ∈ R
n×p, C ∈ R

m×n and
D ∈ R

m×p together with the initial controller state z0 completely specify an
LTI controller. Thus, we will let Σ(A,B,C,D, z0) denote an LTI controller, or
simply write Σ(A,B,C,D) when the initial controller state z0 is zero.

The model of LTI controllers can be implemented in software as a function
that takes as input the current state of the controller and a set of input sensor
values, and computes control output (i.e., inputs applied to the plant) and the
new state of the controller. We refer to this function as the step function. The
step function is called by the control software periodically, or whenever new
sensor measurements arrive. We assume that data is exchanged with the step
function through global variables.1 In other words, the input, output and state
variables are declared in the global scope, and the step function reads both input
and state variables, and updates both output and state variables as the effect of
its execution. However, we note that this assumption does not critically limit our
approach because it can be easily extended to support a different code interface
for the step function.

2.1 Motivating Examples

We start by introducing two motivating examples that illustrate limitations of
the straightforward verification based on the mathematical model from (1). This
is caused by the fact that controller code might be generated by a code generator
whose optimizations may potentially violate the model, while still guaranteeing
the desired control functionality.

A Scalar Linear Integrator. We begin with an example from [23], where
the controller should compute a scalar control input uk as a scaled sum of all
previous measurements yi ∈ R, i = 0, 1, ..., k − 1 – i.e.,

uk =
k−1∑

i=0

αyi, k > 1, and, u0 = 0. (2)

If the Simulink Integrator block with Forward Euler integration is used to imple-
ment this controller, the controller will be in the form of (1) as Σ(1, α, 1, 0), –
i.e., zk+1 = zk + αyk, uk = zk. Note that another realization of this controller
could be Σ̂(1, 1, α, 0) – i.e., zk+1 = zk + yk, uk = αzk, resulting in a lower com-
putational error due to finite precision computations [10]. Thus, for controller
specification (2) two different controller implementations could be produced by
different code generation tools, with the same input-output behavior while main-
taining scaled and unscaled sums, respectively, of the previous values for yk.
1 This convention is used by Embedded Coder, a code generation toolbox for Mat-

lab/Simulink.
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Multiple-Input-Multiple-Output Controllers. The second example we will
consider is a Multiple-Input-Multiple-Output (MIMO) controller, maintaining
four states with two inputs and two outputs

zk+1 =

⎡

⎢⎢⎢⎢⎣

−0.500311 0.16751 0.028029 −0.395599 −0.652079
0.850942 0.181639 −0.29276 0.481277 0.638183

−0.458583 −0.002389 −0.154281 −0.578708 −0.769495
1.01855 0.638926 −0.668256 −0.258506 0.119959
0.100383 −0.432501 0.122727 0.82634 0.892296

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

zk+

+

⎡

⎢⎢⎢⎢⎣

1.1149 0.164423
−1.56592 0.634384
1.04856 −0.196914
1.96066 3.11571

−3.02046 −1.96087

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

uk (3)

yk =

[
0.283441 0.032612 −0.75658 0.085468 0.161088

−0.528786 0.050734 −0.681773 −0.432334 −1.17988

]

︸ ︷︷ ︸
C

zk (4)

This controller requires 25 + 10 = 35 multiplications to update the state z in
each step function. Similarly, in the general case, for any controller with the
model in (1), n2 + np = n(n + p) multiplications are needed to update the
controller’s state. On the other hand, consider the controller below that requires
only 5 + 10 = 15 multiplications to update its state

ẑk+1 =

⎡

⎢⎢⎢⎢⎣

0.87224 0 0 0 0
0 0.366378 0 0 0
0 0 −0.540795 0 0
0 0 0 −0.332664 0
0 0 0 0 −0.204322

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Â

ẑk+

+

⎡

⎢⎢⎢⎢⎣

0.822174 −0.438008
−0.278536 −0.824313
0.874484 0.858857

−0.117628 −0.506362
−0.955459 −0.622498

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B̂

uk, (5)

yk =

[−0.793176 0.154365 −0.377883 −0.360608 −0.142123
0.503767 −0.573538 0.170245 −0.583312 −0.56603

]

︸ ︷︷ ︸
Ĉ

ẑk (6)

In general, when a matrix A in (1) is diagonal, only n + np = n(p + 1) multi-
plications are performed to update zk in each step function.
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In this example, the controllers Σ and Σ̂ are similar,2 meaning that if the
same inputs yk are delivered to both controllers, the outputs of the controllers
will be identical for all k, although the states maintained by the controllers
will most likely be different. As a result, although it does not obey the state
evolution of the initial controller Σ, the ‘diagonalized’ controller Σ̂ provides the
same control functionality as Σ at a significantly reduced computational cost –
making it more suitable for embedded applications.

2.2 Problem Statements

The introduced examples illustrate that code generation tools for embedded sys-
tems could produce more efficient code that deviates from the initial controller
model as specified in (1), while being functionally correct from the input-output
perspective. Consequently, in this work we will focus on verification methods that
facilitate reasoning about the correctness of linear controllers without relying on
the state-space representation of the controller. We will compare our approach
with a verification approach we introduced in [23] which, to enable verification
at the code level, converts the original LTI model into input-output code annota-
tions based on the controllers’ transfer functions. Thus, we start by providing an
overview of the code annotation method for LTI controllers introduced in [23].

3 Overview of Invariant-Based Approach

In [23], we introduced an approach for verification of LTI controllers using the
controllers’ transfer functions to provide input-output based invariants for a
controller defined as Σ = (A,B,C,D). The controller’s transfer function G(z),
defined as G(z) = Y(z)

U(z) = C(zIn − A)−1B + D, where U(z) and Y(z) denote
the z-transforms of the signals uk and yk respectively, is a convenient way to
capture the dependency between the controller’s input and output signals. In
general, G(z) is an m × p matrix with each element Gi,j(z) being a rational
function of the complex variable z. To simplify the notation in this summary,
we consider Single-Input-Single-Output (SISO) controllers, meaning that the
transfer function G(z) takes the form

G(z) =
β0 + β1z

−1 + · · · + βnz−n

1 + α1z−1 + · · · + αnz−n
, (7)

where n is the size of the initial controller model (referred also as the degree
of the transfer function). This allows us to specify the dependency between the
controller’s input and output signals as the following difference equation [26]

yk =
n∑

i=0

βiuk−i −
n∑

i=1

αiyk−i, (8)

2 We formally define the similarity transform in Sect. 5.
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with yk = 0, k < 0, because z0 = 0 and uk = 0, for k < 0. Thus, for any
controller Σ a linear invariant of the form in (8) can be used to specify the
relationship between controller inputs and outputs, which is invariant to any
similarity transformations [26].

4 Model Extraction from Linear Controller
Implementation

In order to verify a linear controller implementation against its specification, we
first extract an LTI model from the implementation (i.e., step function), and
then compare it to the specification (i.e., the initial model). To obtain an LTI
model from the step function, it is first necessary to identify the computation
of the step function based on the program semantics. By the computation of a
program, we mean how the execution of the program affects the global state.3

This is also known as the big-step transition relation of a program, which is the
relation between states before and after the execution of the program. In the
next subsection, we explain how to identify the big-step transition relation of
the step function via symbolic execution.

4.1 Symbolic Execution of Step Function

According to the symbolic execution semantics [6,7,18], we symbolically execute
the step function with symbolic inputs and symbolic controller state. When the
execution is finished, we examine the effect of the step function on the global
state where output and new controller state are produced as symbolic formulas.

Model extraction via symbolic execution may not be applicable to any
arbitrary program (e.g., non-terminating program, file/network IO program).
However, we argue that it is feasible when focusing on the linear controller imple-
mentations which are self-contained (i.e., no dependencies on external functions)
and have simple control flows (e.g., for the sake of deterministic real-time behav-
iors). During symbolic execution, we check if each step of the execution satisfies
certain rules (i.e., restrictions), otherwise it is rejected. The rules are as follows:
first of all, the conditions of conditional branches should be always evaluated to
concrete boolean values. We argue that the step functions of linear controllers
are unlikely necessary to branch over symbolic values such as symbolic inputs
or symbolic controller states. Moreover, in many cases, the upper bound of the
loops of step functions are statically fixed based on the size of the controllers, so
the loop condition can be evaluated to concrete values as well. This rule results
in yielding the finite and deterministic symbolic execution path of the step func-
tion. The second rule is that it is not allowed to use symbolic arguments when
calling the standard mathematical functions (e.g., sin, cos, log, exp) because
the use of such non-linear functions may result in non-linear input-output rela-
tion of the step function. Moreover, it is also not allowed to call external libraries
3 Note that we assume that data is exchanged with the step function via global vari-

ables.
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(e.g., file/network IO APIs, functions without definitions provided). This rule
restricts the step function to be self-contained and to avoid using non-linear
mathematical functions. Lastly, dereferencing a symbolic memory address is not
allowed because the non-deterministic behavior of memory access is undesirable
for controller implementations and may result in unintended information flow.

As the result of the symbolic execution of the step function, the global vari-
ables are updated with symbolic formulas. By collecting the updated variables
and their new values (i.e., symbolic formulas), the big-step transition relation of
the step function can be represented as a system of equations; each equation is
in the following form

v(new) = f(v1, v2, . . . , vt)

where t is the number of variables used in the symbolic formula f , v, vi are
the global variables, v(new) denotes that the variable v is updated with the
symbolic formula on the right-hand side of the equation, the variable without
the superscript “(new)” denotes the initial symbolic value of the variable (i.e.,
from the initial state before symbolic execution of the step function). We call
this equation transition equation.

For example, we consider symbolic execution for the step function in [24],
obtained from the model (5), (6); we illustrate the transition equations of the
step function as follows, replacing the original variable names with new shortened
names for presentation purpose only, such as x for LTIS DW.Internal DSTATE,
u for LTIS U.u, and y for LTIS Y.y:

x[0](new) = ((0.87224 · x[0]) + ((0.822174 · u[0]) + (−0.438008 · u[1])))
x[1](new) = ((0.366377 · x[1]) + ((−0.278536 · u[0]) + (−0.824312 · u[1])))
x[2](new) = ((−0.540795 · x[2]) + ((0.874484 · u[0]) + (0.858857 · u[1])))
x[3](new) = ((−0.332664 · x[3]) + ((−0.117628 · u[0]) + (−0.506362 · u[1])))
x[4](new) = ((−0.204322 · x[4]) + ((−0.955459 · u[0]) + (−0.622498 · u[1])))
y[0](new) = (((((−0.793176 · x[0]) + (0.154365 · x[1])) + (−0.377883 · x[2]))

+(−0.360608 · x[3])) + (−0.142123 · x[4]))
y[1](new) = (((((0.503767 · x[0]) + (−0.573538 ∗ ·x[1])) + (0.170245 · x[2]))

+(−0.583312 · x[3])) + (−0.56603 · x[4])).

(9)

4.2 Linear Time-Invariant System Model Extraction

To extract an LTI model from the obtained transition equations, we first deter-
mine which variables are used to store the controller state. To do this, we examine
the data flow among the variables which appear in the equations. Let Vused be
the set of used variables which appears on the right-hand side of the transition
equations. Let Vupdated be the set of updated variables which appears on the left-
hand side of the transition equations. As the interface of the step function, we
assume that the sets of input and output variables are given, which are denoted
by Vinput and Voutput, respectively. We define the set of state variables Vstate as

Vstate = (Vupdated \ Voutput) ∪ (Vused \ Vinput).
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For example, from the transition Eq. (9), x[0], x[1], x[2], x[3] and x[4] are
identified as controller state variables as given the input variables u[0] and u[1],
and the output variables y[0] and y[1].

The next step is to convert the transition equations into a canonical form.
We fully expand the expressions on the right-hand side of the transition equa-
tions using the distributive law. The resulting expressions are represented in the
form of the sum of products without containing any parentheses. We check if the
expressions equations are linear (i.e., each product term should be the multipli-
cation of a constant and a single variable), and otherwise, it is rejected. Finally,
each transition equation is represented as the following canonical form

v(new) = c1v1 + c2v2 + · · · + ctvt

where t is the number of product terms, v ∈ Vupdated is the updated variable,
vi ∈ Vused are the used variables, and ci ∈ R are the coefficients. When con-
verting the transition equations into canonical form, we regard floating-point
arithmetic expressions as real arithmetic expressions. The analysis of the dis-
crepancy between them is left for future work. Instead, in the next section, the
discrepancy issue between two LTI models due to numerical errors of floating-
point arithmetic is addressed as the first step toward the full treatment of the
problem.

Since the transition equations in canonical form are a system of linear
equations, we finally rewrite the transition equations as matrix equations. In
order to do this, we first define the input variable vector u = vec(Vinput),
the output variable vector y = vec(Voutput) and the state variable vector
x = vec(Vstate) where vec(V ) denotes the vectorization of the set V (e.g.,
vec({v1, v2, v3}) = [v1, v2, v3]T). This allows for rewriting each transition equa-
tion in terms of the state variable vector x and the input variable vector u
as

v(new) = [c1, c2, . . . , cn]x + [d1, d2, . . . , dp]u

where n is the length of the state variable vector, p is the length of the input
variable vector and ci, di ∈ R are constants. Finally, we rewrite the transition
equations as two matrix equations as follows

x(new) = Âx + B̂u

y(new) = Ĉx + D̂u

where Â ∈ R
n×n, B̂ ∈ R

n×p, Ĉ ∈ R
m×n, D̂ ∈ R

m×p, and for any vector
v = [v1, . . . vt]T, we define v(new) = [v(new)

1 , . . . , v
(new)
t ]T.

For example, consider the transition equation about y[0](new) in (9), which is
represented in canonical form, and then rewritten as a vector equation (i.e., equa-
tion in terms of the state and the input variable vectors) as follows

y[0](new) = (((((−0.793176 · x[0]) + (0.154365 · x[1])) + (−0.377883 · x[2]))
+(−0.360608 · x[3])) + (−0.142123 · x[4]))

= −0.793176 · x[0] + 0.154365 · x[1] + −0.377883 · x[2]
+ − 0.360608 · x[3] + −0.142123 · x[4]

= [−0.793176, 0.154365, −0.377883, −0.360608, −0.142123] · x + [0, 0] · u
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where x = [x[0], x[1], x[2], x[3], x[4]]T, and u = [u[0], u[1]]T. Converting each
transition Eq. (9) into the corresponding vector equation, we finally reconstruct
the LTI model (i.e., same as (5), (6)) from the step function of [24].

Remark 1. In general, the size of the extracted model Σ̂ may not be equal to the
size of the initial controller model Σ from (1) (i.e., n). As we assume that Σ is
minimal, if the obtained model has the size less than n it would clearly have to
violate input-output (IO) requirements of the controller. However, if the size of Σ̂
is larger than n, we consider a controllable and observable subsystem computed
via Kalman decomposition [26] from the extracted model, as the Σ̂(Â, B̂, Ĉ, D̂)
model extracted from the code. Note that Σ̂ is minimal in this case, and thus
its size has to be equal to n to provide IO conformance with the initial model.

5 Input-Output Equivalence Checking Between Linear
Controller Models

In order to verify a linear controller implementation against an LTI specifica-
tion, in the previous section we described how to extract an LTI model from the
implementation. This section introduces a method to check input-output (IO)
equivalence between two linear controller models: (1) the original LTI specifica-
tion and (2) the LTI model extracted from the implementation.

To check the IO equivalence between two LTI models, we exploit the fact that
two minimal LTI models with the same size are IO equivalent if and only if they
are similar to each other. Two LTI models Σ(A,B,C,D) and Σ̂(Â, B̂, Ĉ, D̂)
are said to be similar if there exists a non-singular matrix T such that

Â = TAT−1, B̂ = TB, Ĉ = CT−1, and D̂ = D (10)

where T is referred to as the similarity transformation matrix [26]. Thus, given
two minimal LTI models, the problem of equivalence checking between the mod-
els is reduced to the problem of finding a similarity transformation matrix for
the models. The rest of this section explains how to formulate this problem as a
satisfiability problem and a convex optimization problem.

5.1 Satisfiability Problem Formulation

We start by describing an approach to formulate the problem of finding similarity
transformation matrices as the satisfiability problem instance when two LTI
models Σ(A,B,C,D) and Σ̂(Â, B̂, Ĉ, D̂) are given. Since existing SMT solvers
hardly support matrices and linear algebra operations, we encode the similarity
transformation matrix T as a set of scalar variables {Ti,j | 1 ≤ i, j ≤ n} where
Ti,j is the variable to represent the element in the i-th row and j-th column of
the matrix T. The following constraints rephrase the equations of (10) in an
element-wise manner
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∧

1≤i≤n

∧

1≤j≤n

⎛

⎝
∑

1≤k≤n

Âi,kTk,j =
∑

1≤k≤n

Ti,kAk,j

⎞

⎠ ∧
∧

1≤i≤n

∧

1≤j≤n

⎛

⎝B̂i,j =
∑

1≤k≤n

Ti,kBk,j

⎞

⎠

∧

1≤i≤n

∧

1≤j≤n

⎛

⎝
∑

1≤k≤n

Ĉi,kTk,j = Ci,j

⎞

⎠ ∧
∧

1≤i≤n

∧

1≤j≤n

D̂i,j = Di,j

(11)

It is important to highlight that although a similarity transform always
results in an IO equivalent new controller, due to finite-precision computation
of the code generator performing controller optimization, it is expected that
the produced controller will slightly differ from a controller that is similar to
the initial controller. Consequently, there is a need to extend our input-output
invariants for the case with imprecise specification of the similarity transform.
To achieve this, given error bound ε, the following constraints extends (11) to
tolerate errors up to error bound ε

∧

1≤i≤n

∧

1≤j≤n

−ε ≤
⎛

⎝
∑

1≤k≤n

Âi,kTk,j

⎞

⎠−
⎛

⎝
∑

1≤k≤n

Ti,kAk,j

⎞

⎠ ≤ ε

∧

1≤i≤n

∧

1≤j≤n

−ε ≤ B̂i,j −
⎛

⎝
∑

1≤k≤n

Ti,kBk,j

⎞

⎠ ≤ ε

∧

1≤i≤n

∧

1≤j≤n

−ε ≤
⎛

⎝
∑

1≤k≤n

Ĉi,kTk,j

⎞

⎠− Ci,j ≤ ε

∧

1≤i≤n

∧

1≤j≤n

−ε ≤ D̂i,j − Di,j ≤ ε

(12)

For example, suppose that the original LTI model Σ(A,B,C,D) from (3),
(4), the reconstructed model from the implementation Σ̂(Â, B̂, Ĉ, D̂) from (5),
(6) and the error bound ε = 10−6 are given. Having the problem instance for-
mulated as (12), the similarity transformation matrix T for those models can be
found using an SMT solver which supports the quantifier-free linear real arith-
metic, QF LRA for short. Due to the lack of space, only the first row of T is
shown here

T1,1 = −445681907965836469807842159338

818667375305282643804030465563
(≈ −0.544399156750667)

T1,2 = −135442022883031921128620509482

818667375305282643804030465563
(≈ −0.165442059801384)

T1,3 =
198172776374831449251211655628

818667375305282643804030465563
(≈ 0.242067461044165)

T1,4 = −351256050550998919211978953100

818667375305282643804030465563
(≈ −0.429058064513855)

T1,5 = −476345345040634696989970420590

818667375305282643804030465563
(≈ −0.581854284748456)
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Since, for the theory of real numbers, SMT solvers use the arbitrary-precision
arithmetic when calculating answers, each element of T is given as a fractional
number of numerous digits. For instance, although it is not displayed here, T5,4 in
this example is a fraction whose numerator and denominator are numbers with
more than one hundred digits. Thus, due to the infinite precision arithmetic
used by SMT solvers, the scalability of the SMT formulation-based approach is
questionable. This illustrates the need for a more efficient approach for similarity
checking, and in the next subsection we will present a convex optimization-based
approach as an alternative method.

5.2 Convex Optimization Problem Formulation

The idea behind a convex optimization based approach is to use convex optimiza-
tion to minimize the difference between the initial model and the model obtained
via a similarity transformation from the model extracted from the code. Specif-
ically, we formulate the equivalence checking for imprecise specifications as a
convex optimization problem defined as

variables e ∈ R,T ∈ R
n×n

minimize e

subject to ε ≤ e,
∥
∥
∥ÂT − TA

∥
∥
∥

∞
≤ e,

∥
∥
∥B̂ − TB

∥
∥
∥

∞
≤ e,

∥
∥
∥ĈT − C

∥
∥
∥

∞
≤ e,

∥
∥
∥D̂ − D

∥
∥
∥

∞
≤ e

(13)

For example, given two LTI models Σ(A,B,C,D) from (3), (4) and
Σ̂(Â, B̂, Ĉ, D̂) from (5), (6) and the error bound ε = 10−6, by (13), the similar-
ity transformation matrix T can be found using the convex optimization solver
CVX as follows

T =

⎡

⎢⎢⎢⎢⎣

−0.5443990427 −0.1654425774 0.2420672805 −0.4290576934 −0.5818538874
−0.4440654044 −0.7588435418 0.1765807738 0.2799578419 0.5647456751
−0.588433439 −0.2004321431 0.6773771193 0.4815317446 0.1449186163
0.9314576739 −0.0459172638 0.6095691172 0.3808322795 0.8653864392

−0.2372386619 0.5190687755 0.8165534522 −0.1493619803 0.1461696487

⎤

⎥⎥⎥⎥⎦

In addition, the original similarity transformation matrix Tori used in the
actual transformation from Σ to Σ̂ is

Tori =

⎡

⎢⎢⎢⎢⎣

−0.5443991568 −0.1654420598 0.242067461 −0.4290580645 −0.5818542847
−0.4440652236 −0.7588431653 0.1765807449 0.279957637 0.564745456
−0.5884339121 −0.2004321022 0.677376781 0.4815316264 0.144918173
0.9314574825 −0.0459170889 0.6095698017 0.3808324602 0.8653867983

−0.2372380836 0.5190691678 0.816552622 −0.1493625727 0.1461689364

⎤

⎥⎥⎥⎥⎦
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Fig. 1. The verification toolchain for the similarity checking-based approach.

resulting in the difference between two matrices equal to

|T−Tori| =

⎡

⎢⎢⎢⎢⎣

0.000000114 0.0000005176 0.0000001806 0.0000003711 0.0000003973
0.0000001809 0.0000003766 0.000000029 0.0000002049 0.0000002191
0.0000004731 0.0000000408 0.0000003384 0.0000001182 0.0000004433
0.0000001914 0.0000001749 0.0000006844 0.0000001807 0.0000003591
0.0000005783 0.0000003923 0.0000008302 0.0000005924 0.0000007123

⎤

⎥⎥⎥⎥⎦
.

6 Evaluation

To evaluate our verification approach described in Sects. 4 and 5, we compared
it to our earlier work based on invariant checking [23].

6.1 Verification Toolchain

We implemented an automatic verification framework (presented in Fig. 1) based
on the proposed approach described in Sects. 4 and 5. We refer to this approach
as similarity checking (SC)-based approach. Given a step function (i.e., C code),
we employ the off-the-shelf symbolic execution tool PathCrawler [32] to sym-
bolically execute the step function and generate a set of transition equations.
The model extractor which implements the method in Sect. 4.2 extracts an LTI
model from the transition equations. Finally, the equivalence checker based on
the method in Sect. 5 decides the similarity between the extracted LTI model
and the given specification (i.e., LTI model), and produces the verification result.
The equivalence checker uses either the SMT solver CVC4 [4]4 or the convex
optimization solver CVX [14] depending on the formulation employed, which is
described in Sect. 5.

For the invariant checking (IC)-based approach described in Sect. 3, we use
the toolchain Frama-C/Why3/Z3 to verify C code with annotated controller
invariants [23]. The step function is annotated with the invariants as described

4 CVC4 was chosen among other SMT solvers because it showed the best performance
for our QF LRA SMT instances.
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in Sect. 3. Given annotated C code, Frama-C/Why3 [5,9] generates proof oblig-
ations as SMT instances. The SMT solver Z3 [11]5 solves the proof obligations
and produces the verification result (see [23] for more details).

6.2 Scalability Evaluation

To evaluate the SC-based approach compared to the IC-based approach, we
randomly generate stable linear controller specifications (i.e., the elements of
Σ(A,B,C,D)). Since we observed that the controller dimension n dominates
the performance (i.e., running time) of both approaches, we vary n from 2 to
14, and generate three controller specifications for each n. For each controller
specification, we employ the code generator Embedded Coder to generate the
step function in C. Since we use the LTI system block of Simulink for code gener-
ation, the structure of generated C code is not straightforward, having multiple
loops and pointer arithmetic operations as illustrated in the step function [24].
This negatively affects the performance of the IC-based approach for reasons
to be described later in this subsection. For a comparative evaluation, we use
both SC-based and IC-based approaches to verify the generated step function
C code against its specification. For each generated controller, we checked that
IC-based and SC-based approaches give the same verification result, as long as
both complete normally.

To thoroughly compare both approaches, we measure the running time of
the front-end and the back-end of each approach separately. By the front-end,
we refer to the process from parsing C code to generating proof obligations to be
input for constraint solvers. The front-end of the SC-based approach includes the
symbolic execution by PathCrawler and the model extraction, while the front-
end of the IC-based approach is processing annotated code and generating proof
obligations by Frama-C/Why3. On the other hand, by the back-end, we refer to
the process of constraint solving. While the back-end of the SC-based approach
is the IO equivalence checking based on either SMT solving using CVC4 or
convex optimization solving using CVX, the back-end of the IC-based approach
is proving the generated proof obligations using Z3.

We first evaluate the frond-end of both approaches (i.e., the whole verification
process until constraint solving). Figure 2 shows that the average running time
of the front-ends of both approaches, where missing bars indicate no data due
to the lack of scalability of the utilized verification approach (e.g., the tool’s
abnormal termination or no termination for a prolonged time). Here, IB ′

2n+1,
IB ′′

3n+1, IB ′′
3n+1 and IB ′

2n+1 denote the variations of annotating methods as
described in [23]. We observe that the running time of the IC-based approaches
exponentially increase as the controller dimension n increases, while the SC-
based approach remains scalable. The main reason for this is that the IC-based
approach requires the preprocessing of code [23], which is unrolling the execution
of the step function multiple times (e.g., 2n + 1 or 3n + 1 times) as well as

5 Z3 was chosen among other SMT solvers because it showed the best performance
for the generated proof obligations in our experiment.
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Fig. 2. The average running time of the front-ends of both SC-based and IC-based
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Fig. 3. The average running time of the back-ends of both SC-based and IC-based
approaches (with the log-scaled y-axis)

unrolling each loop in the step function (n+1) times. Therefore, in contrast with
the SC-based approach, the IC-based approach needs to handle the significantly
increased lines of code due to unrolling, so it does not scale up.

Next, we evaluate the back-end of both approaches (i.e., constraint solving).
Figure 3 shows the average running time of the back-ends of both approaches,
where missing bars result from the lack of scalability of either the con-
straint solver used at this stage or the front-end tools. “SC-based (CVC4)”
denotes the SMT-based formulation while “SC-based (CVX)” denotes the con-
vex optimization-based formulation. Recall that the SC-based approach using
CVC4 and the IC-based approaches employ the SMT solvers for constraint solv-
ing, which uses the arbitrary-precision arithmetic. We observe that the running
time of the back-ends of those approaches exponentially increase as the controller
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dimension n increases because of the cost of the bignum arithmetic, while the
SC-based approach using CVX remains scalable.

7 Related Work

Recently, there has been much attention to research on high-assurance control
software for cyber physical systems (e.g., [1,10,12,19–21,28]). First of all, there
has been a line of work focused on robust controller software implementations.
For example, in [28], a model-based simulation platform is presented to analyze
controllers’ robustness. In [1,21], the authors present a fixed-point design method
for robust, stable, error-minimized controller implementations. [19] presents a
robustness analysis tool to analyze the uncertainties of measurements and plant
states. In [10,12], the authors address the synthesis of fixed-point controller soft-
ware using SMT solvers. Moreover, there exists work on verifying the control-
related properties of Simulink models using theorem proving [2]. Yet, the verifi-
cation is done at the model level, not at the code level.

However, there has been less attention given to the code-level verification of
controller software. In [20,27], the authors present equivalence checking between
Simulink diagrams and generated code. Yet, they are based on the compliance
of the structures between Simulink models and code, instead of observational
equivalence checking. In addition, there is a closely related work based on the
concept of proof-carrying code for control software [13,15,30,31]. The authors
propose the code annotations for control-related properties based on Lyapunov
functions, and introduce the PVS linear algebra libraries [15] to verify the prop-
erties. However, their focus is limited to only stability and convergence proper-
ties rather than the correctness of controller implementation against its model.
Moreover, their approaches require the control of code generators, which may
introduce intellectual property concerns. Our own earlier work [23] presents a
method to verify the correctness of controller implementations by annotating
the controllers’ invariants. However, the scalability of this method is challenged
for real controller implementations with large state dimensions.

Finally, the model extraction technique has been used in software verifica-
tion [8,16,17,25,29]. The authors in [8,16,17] extract finite state models from
implementations to facilitate software model checking. [29] and [25] apply the
symbolic execution technique to implemented source code to extract mathemat-
ical functional models and high-level state machine models, respectively.

8 Conclusion

We have presented an approach for the verification of linear controller implemen-
tations against mathematical specifications. By this, a higher degree of assurance
for generated control code can be provided without trusting a code generator.
We have proposed to use the symbolic execution technique to reconstruct math-
ematical models from linear time-invariant controller implementations. We have
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presented a method to check input-output equivalence between the specifica-
tion model and the extracted model using the SMT formulation and the con-
vex optimization formulation. Through the evaluation using randomly generated
specification and code by Matlab, we showed that the scalability of our new app-
roach has significantly improved compared to our own eariler work. Future work
includes the analysis of the effect of floating-point calculations in control code.
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Abstract. Event-driven multi-threaded programming is fast becoming
a preferred style of developing efficient and responsive applications. In
this concurrency model, multiple threads execute concurrently, communi-
cating through shared objects as well as by posting asynchronous events.
In this work, we consider partial order reduction (POR) for this concur-
rency model. Existing POR techniques treat event queues associated
with threads as shared objects and reorder every pair of events handled
on the same thread even if reordering them does not lead to different
states. We do not treat event queues as shared objects and propose a
new POR technique based on a backtracking set called the dependence-
covering set. Our POR technique reorders events handled by the same
thread only if necessary. We prove that exploring dependence-covering
sets suffices to detect all deadlock cycles and assertion violations defined
over local variables. To evaluate effectiveness of our POR scheme, we have
implemented a dynamic algorithm to compute dependence-covering sets.
On execution traces of some Android applications, we demonstrate that
our technique explores many fewer transitions —often orders of magni-
tude fewer— compared to exploration based on persistent sets, in which
event queues are considered as shared objects.

1 Introduction

Event-driven multi-threaded programming is fast becoming a preferred style
of concurrent programming in many domains. In this model, multiple threads
execute concurrently, and each thread may be associated with an event queue.
A thread may post events to the event queue of a target thread. For each thread
with an event queue, an event-loop processes the events from its event queue
in the order of their arrival. The event-loop runs the handler of an event only
after the previous handler finishes execution but interleaved with the execution of
all the other threads. Further, threads can communicate through shared objects;
even event handlers executing on the same thread may share objects. This style of
programming is a staple of developing efficient and responsive smartphone appli-
cations [22]. A similar programming model is also used in distributed message-
passing applications, high-performance servers, and many other settings.

Stateless model checking [12] is an approach to explore the reachable state
space of concurrent programs by exploring different interleavings systematically
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 680–697, 2016.
DOI: 10.1007/978-3-662-49674-9 44
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Fig. 1. A partial trace of an
event-driven multi-threaded
program

Fig. 2. The state space reachable through all valid
permutations of operations in the trace in Fig. 1

but without storing visited states. The scalability of stateless model checking
depends crucially on partial order reduction (POR) techniques [8,11,27,32].
Stateless search with POR defines an equivalence class on interleavings, and
explores only a representative interleaving from each equivalence class (called a
Mazurkiewicz trace [21]), while still providing certain formal guarantees w.r.t.
exploration of the complete but possibly much larger state space. Motivated by
the success of model checkers based on various POR strategies [5,6,13,14,26,
28,29,33], in this work, we propose an effective POR strategy for event-driven
multi-threaded programs.

1.1 Motivation

We first show why existing POR techniques may not be very effective in the
combined model of threads and events. Consider a partial execution trace of an
event-driven multi-threaded program in Fig. 1. The operations are labeled r1 to
r5 and execute from top to bottom. Those belonging to the same event handler
are enclosed within a box labeled with the corresponding event ID. An operation
post(t, e, t′) executed by a thread t enqueues an event e to the event queue of
a thread t′. In our trace, threads t2 and t3 respectively post events e1 and e2
to thread t1. The handler of e1 posts an event e3 to t1, whereas, those of e2
and e3 respectively write to shared variables y and x.

Figure 2 shows the state space reachable through all valid permutations of
operations in the trace in Fig. 1. Each node indicates a state of the program. An
edge is labeled with an operation and indicates the state transition due to that
operation. The interleaving corresponding to the trace in Fig. 1 is highlighted
with bold lines and shaded states. For illustration purposes, we explicitly show
the contents of the event queue of thread t1 at some states. Events in a queue
are ordered from left to right and a box containing ⊥ indicates the rear end of
the queue.
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Fig. 3. A partial trace w of a program
involving a multi-threaded dependence

Fig. 4. A transition system for some valid
permutations of operations in the trace in
Fig. 3

Existing POR techniques (e.g., [5,10,11,29,31]) recognize that r2 and r5 (also
r1 and r4) are independent (or non-interfering) and that it is sufficient to explore
any one of them at state s6 (respectively, s10). The dashed edges indicate the
unexplored transitions. However, existing POR-based model checkers will explore
all other states and transitions. Since no two handlers executed on t1 modify
a common object, all the interleavings reach the same state s5. Thus, existing
techniques explore two redundant interleavings because they treat event queues
as shared objects and so, mark any two post operations that enqueue events to
the event queue of the same thread as dependent. Consequently, they explore
both r1 and r2 at state s0, and r2 and r3 at state s1. These result in unnecessary
reorderings of events. More generally, if there are n events posted to an event
queue, these techniques may explore O(n!) permutations among them, even if
exploring only one of them may be sufficient.

1.2 Contributions of This Paper

Based on the observation above, we do not consider event queues as shared
objects. Equivalently, we treat a pair of posts even to the same thread as inde-
pendent. This enables more reductions. For example, for the state space in Fig. 2,
our approach explores only the initial trace (the leftmost interleaving).

Since we shall not reorder every pair of events posted to the same thread
by default, the main question is “How to determine which events to reorder
and how to reorder them selectively?”. Surely, if two handlers executing on the
same thread contain dependent transitions then we must reorder their post
operations, but this is not enough. To see this, consider a partial trace w in
Fig. 3. The transitions r3 and r6 are dependent and belong to different threads.
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Figure 4 shows a transition system depicting a partial state space explored by
different orderings of r3 and r6. The contents of thread t1’s queue are shown
next to each state. As can be seen in the rightmost interleaving, executing r6
before r3 requires posting e2 before e1 even though their handlers do not have
dependent transitions. Thus, operations posting events to the same thread may
have to be reordered even to reorder some multi-threaded dependences! Our
first contribution is to define a relation that captures both single-threaded and
multi-threaded dependences.

We now discuss what the implications of (1) treating posts as independent
and (2) only selectively reordering them are. For multi-threaded programs, or
when posts are considered dependent, reordering a pair of adjacent independent
transitions in a transition sequence does not affect the reachable state. Hence,
the existing dependence relation [11] induces equivalence classes where transition
sequences differing only in the order of executing independent transitions are in
the same Mazurkiewicz trace [21]. However, our new dependence relation (where
posts are considered independent) may not induce Mazurkiewicz traces on an
event-driven multi-threaded program. First, reordering posts to the same thread
affects the order of execution of the corresponding handlers. If the handlers
contain dependent transitions, it affects the reachable state. Second, one cannot
rule out the possibility of new transitions (not present in the given transition
sequence) being pulled in when independent posts are reordered, which is not
admissible in a Mazurkiewicz trace. We elaborate on this in Sect. 2.3.

Our second contribution is to define a notion of dependence-covering sequence
to provide the necessary theoretical foundation to reason about reordering posts
selectively. Intuitively, a transition sequence u is a dependence-covering sequence
of a transition sequence u′ if the relative ordering of all the pairs of dependent
transitions in u′ is preserved in u. While this sounds similar to the property of
any pair of transition sequences in the same Mazurkiewicz trace, the constraints
imposed on a dependence-covering sequence are more relaxed (as will be for-
malized in Definition 4), making it suitable to achieve better reductions. For
instance, u is permitted to have new transitions, that is, transitions that are not
in u′, under certain conditions.

Given a notion of POR, a model checking algorithm such as DPOR [10]
uses persistent sets [11] to explore representative transition sequences from each
Mazurkiewicz trace. As we show now, DPOR based on persistent sets is unsound
when used with the dependence relation in which posts are independent. Let us
revisit Fig. 4. The set {r1} is persistent at state s0 because exploring any other
transition from s0 does not reach a transition dependent with r1. This set is
tagged as PS in the figure. A selective exploration using this set explores only
one ordering between r3 and r6.

Our final contribution is the notion of dependence-covering sets as an alterna-
tive to persistent sets. A set of transitions L at a state s is said to be dependence-
covering if for any sequence u′ executed from s, a dependence-covering sequence
u starting with some transition in L can be explored. We prove that selec-
tive state-space exploration based on dependence-covering sets is sufficient to
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detect all deadlock cycles and violations of assertions over local variables. The
dependence-covering sets at certain states are marked in Fig. 4 as DCS. In con-
trast to PS, DCS at state s0 contains both r1 and r2. Let u′ be the transition
sequence along the rightmost interleaving in Fig. 4. The sequence w (the left-
most interleaving) is not a dependence-covering sequence of u′ since the depen-
dent transitions r3 and r6 appear in a different order. We therefore require r2
to be explored at s0. Note that, {r2} is another dependence-covering set at s0
as both the orderings of r3 and r6 can be explored from a state s10 reached on
exploring r2.

We have implemented a proof-of-concept model checking framework called
EM-Explorer which simulates the non-deterministic behaviour exhibited by
Android applications given individual execution traces. We implemented a
dynamic algorithm to compute dependence-covering sets and a selective state-
space exploration based on these sets in EM-Explorer. For comparison, we also
implemented an exploration based on DPOR, where posts to the same thread
are considered dependent. We performed experiments on traces obtained from
5 Android applications. Our results demonstrate that our POR explores many
fewer transitions —often orders of magnitude fewer— compared to DPOR using
persistent sets.

1.3 Related Work

Mazurkiewicz traces induced by an independence relation form the foundation
for most existing work on POR, and most prior work in the event-driven set-
ting consider operations on event queues to be dependent. For example, Sen
and Agha [29] and Tasharofi et al. [31] describe dynamic POR techniques for
distributed programs with actor semantics where processes (actors) communi-
cate only by asynchronous message passing (and do not have shared variables).
Both techniques explore all possible interleavings of messages sent to the same
process. Basset [17], a framework for state space exploration of actor systems,
uses the DPOR algorithm described in [29], resulting in exploration of all valid
configurations of messages sent to the same actor. In comparison, we explore
only a subset of event orderings at each thread, and doing so requires relaxing
Mazurkiewicz traces to dependence-covering sequences.

Recent algorithms guarantee optimality in POR [5,28], i.e., they explore at
most one transition sequence per Mazurkiewicz trace. For example, POR using
source sets and wakeup trees [5] enables optimal exploration. However, the notion
of source sets and the corresponding algorithm assume total ordering between
transitions executed on the same thread. Hence, integrating our new dependence
relation with source sets will involve significant changes to the definitions and
algorithms presented in [5]. Rodŕıguez et al. [28] describe unfolding semantics
parametrized on the commutativity based classical independence relation [11],
and present an unfolding based optimal POR algorithm. The unfolding semantics
identifies dependent transitions with no ordering relation between them to be in
conflict. Their POR algorithm backtracks and explores a new transition sequence
w from a state s only if every prior transition explored from s is in conflict
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with some transition in w. This is problematic in our setting where posts are
considered independent and hence trivially non-conflicting, causing unfolding
based POR to miss reordering posts when required. Establishing optimality in
our setting is an interesting but non-trivial future direction.

R4 [16] is a stateless model checker for event-driven programs like client-side
web applications. R4 adapts persistent sets and DPOR algorithm to the domain
of single-threaded, event-driven programs with multiset semantics. Each event
handler is atomically executed to completion without interference from other
handlers, and thus an entire event handler is considered a single transition. In
contrast, our work focuses on POR techniques for multi-threaded programs with
event queues, and thus needs to be sensitive to interference from other threads
while reordering dependent transitions.

In many domains, the event-loop works in FIFO order, as is also considered in
this work. For example, Android [15,19], TinyOS [4], Java AWT [3], and Apple’s
Grand Central Dispatch [2], provide a default FIFO semantics. Abstracting FIFO
order by the multiset semantics, as in [9,30], can lead to false positives. There
is a lot of recent work on concurrency analysis for smartphone environments.
For example, [7,15,19] provide algorithms for race detection for Android appli-
cations. Our work continues this line by describing a general POR technique. We
note that the event dispatch semantics can be diverse in general. For example,
Android applications permit posting an event with a timeout or posting a spe-
cific event to the front of the queue. We over-approximate the effect of posting
with timeout by forking a new thread which does the post non-deterministically
but do not address other variants in this work. We leave a more general POR
approach that allows such variants to event dispatch to future work.

2 Formalization

We consider event-driven multi-threaded programs comprising the usual sequen-
tial and multi-threaded operations such as assignments, conditionals, syn-
chronization through locks, and thread creation. In addition, the operation
post(t1, e, t2) posts an asynchronous event e from the source thread t1 to (the
event queue of) a destination thread t2. Each event has a handler, which runs to
completion on its thread but may interleave with operations from other threads.
An operation is visible if it accesses an object shared between at least two threads
or two event handlers (possibly running on the same thread). All other opera-
tions are invisible. We omit the formal syntax and semantics of these operations;
they can be found in [19].

The local state of an event handler is a valuation of the stack and the variables
or heap objects that are modified only within the handler. The local state of a
thread is the local state of the currently executing handler. A global state of the
program A is a valuation to the variables and heap objects that are accessed
by multiple threads or multiple handlers. Even though event queues are shared
objects, we do not consider them in the global state (as defined above). Instead,
we define a queue state of a thread as an ordered sequence of events that have
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been posted to its event queue but are yet to be handled. This separation allows
us to analyze dependence more precisely. Event queues are FIFO queues with
unbounded capacity, that is, a post operation never blocks. For simplicity, we
assume that each thread is associated with an event queue.

2.1 Transition System

Consider an event-driven multi-threaded program A. Let L, G, and Q be the sets
of local, global and queue states respectively. Let T be the set of all threads in A.
A state s of A is a triple (l, g, q) where (1) l is a partial map from T to L, (2) g
is a global state and (3) q is a total map from T to Q. A transition by a thread
t updates the state of A by performing one visible operation followed by a finite
sequence of invisible operations ending just before the next visible operation; all
of which are executed on t. Let R be the set of all transitions in A. A transition
rt,� of a thread t at its local state � is a partial function, rt,� : G×Q �→ L×G×Q.
A transition rt,� ∈ R is enabled at a state s = (l, g, q) if � = l(t) and rt,�(g, q) is
defined. Note that the first transition of the handler of an event e enqueued to
a thread t is enabled at a state s, if e is at the front of t’s queue at s and t is
not executing any other handlers. We may use rt,�(s) to denote application of a
transition rt,�, instead of the more precise use rt,�(g, q).

We formalize the state space of A as a transition system SG = (S, sinit ,Δ),
where S is the set of all states, sinit ∈ S is the initial state, and Δ ⊆ S × S is
the transition relation such that (s, s′) ∈ Δ iff ∃r ∈ R and s′ = r(s). We also
use s ∈ SG instead of s ∈ S. Two transitions r and r′ may be co-enabled if there
may exist some state s ∈ S where they both are enabled. Two events e and e′

handled on the same thread t may be reordered if ∃s, s′ ∈ S reachable from sinit

such that s = (l, g, q), s′ = (l′, g′, q′), q(t) = e ·w · e′ ·w′ and q′(t) = e′ · v · e · v′.
In Fig. 2, events e1 and e2 may be reordered but not e1 and e3.

In our setting, if a transition is defined for a state then it maps the state to a
successor state deterministically. For simplicity, we assume that all threads and
events in A have unique IDs. We also assume that the transition system is finite
and acyclic. This is a standard assumption for stateless model checking [10]. The
transition system SG collapses invisible operations and is thus already reduced
when compared to the transition system in which even invisible operations are
considered as separate transitions. A transition system of this form is sufficient
for detecting deadlocks and assertion violations [12].

Notation. Let next(s, t) give the next transition of a thread t in a state s. Let
thread(r) return the thread executing a transition r. If r executes in the handler
of an event e on thread t then the task of r is task(r) = (t, e). A transition r
on a thread t is blocked at a state s if r = next(s, t) and r is not enabled in s.
We assume that only visible operations may block. Function nextTrans(s) gives
the set of next transitions of all threads at state s. For a transition sequence
w : r1.r2 . . . rn in SG, let dom(w) = {1, . . . , n}. Functions getBegin(w, e) and
getEnd(w, e) respectively return the indices of the first and the last transitions
of an event e’s handler in w, provided they belong to w.
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Deadlock Cycles and Assertion Violations. A pair 〈DC, ρ〉 in a state s ∈ S
is said to form a deadlock cycle if DC ⊆ nextTrans(s) is a set of n transitions
blocked in s, and ρ is a one-to-one map from [1, n] to DC such that each ρ(i) ∈
DC, i ∈ [1, n], is blocked by some transition on a thread ti+1 = thread(ρ(i+1))
and may be enabled only by a transition on ti+1, and the transition ρ(n) ∈
DC is blocked and may be enabled by two different transitions of thread t1 =
thread(ρ(1)). A state s in SG is a deadlock state if all threads are blocked in s
due to a deadlock cycle.

An assertion α is a predicate over local variables of a handler and is considered
visible. A state s violates an assertion α if α is enabled at s and evaluates to false.

2.2 Dependence and Happens-Before Relations

The notion of dependence between transitions is well-understood for multi-
threaded programs. It extends naturally to event-driven programs if event queues
are considered as shared objects, thereby, marking two posts to the same thread
as dependent. To enable more reductions, we define an alternative notion in
which two post operations to the same thread are not considered dependent.
One reason to selectively reorder events posted to a thread is if their handlers
contain dependent transitions. This requires a new notion of dependence between
transitions of event handlers executing on the same thread, which we refer to as
single-threaded dependence.

In order to explicate single-threaded dependences, we first define an event-
parallel transition system which over-approximates the transition system SG. The
event-parallel transition system PG of a program A is a triple (SP , sinit,ΔP ). In
contrast to the transition system SG = (S, sinit,Δ) of Sect. 2.1 where events are
dispatched in their order of arrival and execute till completion, a thread with an
event queue in PG removes any event in its queue and spawns a fresh thread to exe-
cute its handler. This enables concurrent execution of events posted to the same
thread. Rest of the semantics remains the same. Let T and TP be the sets of all
threads in SG and PG respectively. For each state (l, g, q) ∈ S, there exists a state
(l′, g′, q′) ∈ SP such that (1) for each thread t ∈ T , if l(t) is defined then there
exists a thread t′ ∈ TP where l′(t′) = l(t), (2) g = g′, and (3) for each thread t ∈ T ,
q(t) = q′(t). Let RP be the set of transitions in PG and ep : R → RP be a total
function which maps a transition rt,� ∈ R to an equivalent transition r′

t′,�′ ∈ RP

such that � = �′ and either t′ = t or t′ is a fresh thread spawned by t in PG to handle
the event to whose handler rt,� belongs in SG.

We illustrate the event-parallel transition system for the example program in
Fig. 5. Here, x and y are shared variables. The transitions r1 and r2 respectively
run on threads t1 and t2. The last three lines in Fig. 5 give definitions of handlers
of the events e1, e2 and e3 respectively. Figure 6 shows a partial state space of
the program in Fig. 5 according to the event-parallel transition system semantics.
The edges are labeled with the respective transitions. The shaded states and
thick edges indicate part of the state space that is reachable in the transition
system semantics of Sect. 2.1 as well, under the mapping between states and
transitions described above.
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Fig. 6. Partial event-parallel transition
system for the program in Fig. 5.

Fig. 5. Pseudo code of an event-driven
program.

Fig. 7. Dependence graphs of some
sequences in SG of the program in Fig. 5.

Definition 1. Let RP be the set of transitions in the event-parallel transition
system PG of a program A. Let DP ⊆ RP × RP be a binary, reflexive and
symmetric relation. The relation DP is a valid event-parallel dependence
relation iff for all (r1, r2) ∈ RP × RP , (r1, r2) /∈ DP implies that the following
conditions hold for all states s ∈ SP :

1. If r1 is enabled in s and s′ = r1(s) then r2 is enabled in s iff it is enabled in s′.
2. If r1 and r2 are both enabled in s then there exists s′ = (l′, g′, q′) = r1(r2(s))

and s′′ = (l′′, g′′, q′′) = r2(r1(s)) such that l′ = l′′ and g′ = g′′.

This definition is similar to the definition of dependence relation in [12] except
that we do not require equality of the event states q′ and q′′ in the second
condition above. Clearly, any pair of post transitions, even if posting to the
same event queue, are independent according to the event-parallel dependence
relation.

Definition 2. Let R be the set of transitions in the transition system SG of
a program A. Let DP be a valid event-parallel dependence relation for A and
D ⊆ R × R be a binary, reflexive and symmetric relation. The relation D is a
valid dependence relation iff for all (r1, r2) ∈ R ×R, (r1, r2) /∈ D implies that
the following conditions hold:

1. If r1 and r2 are transitions of handlers of two different events e1 and e2
executing on the same thread then the following conditions hold:
(A) Events e1 and e2 may be reordered in SG.
(B) ep(r1) and ep(r2) are independent in DP , i.e., (ep(r1), ep(r2)) 
∈ DP .

2. Otherwise, conditions 1 and 2 in Definition 1 hold for all states s ∈ S.
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Condition 1 above uses DP to define single-threaded dependence between tran-
sitions of two handlers in SG. Condition 2 applies the constraints in Definition 1
to states in SG to define (1) dependence among transitions of the same handler
and (2) multi-threaded dependence. Hence, all posts are considered independent
of each other in SG.

Example 1. The transitions r5 and r6 in Fig. 5 run in two different event handlers
but on the same thread t. Since the handlers execute concurrently in the event-
parallel transition system, we can inspect the effect of reordering r5 and r6
on a state where they are co-enabled. In particular, at state s3 in Fig. 6, the
sequence r6.r5 reaches state s14, whereas, r5.r6 reaches s12 which differs from s14
in the value of x. Therefore, (r5, r6) ∈ DP and by condition 1.B of Definition 2,
(r5, r6) ∈ D.

The condition 1. A of Definition 2 requires that the ordering between e1 and
e2 should not be fixed. Suppose the handler of e1 posts e2 but the two handlers
do not have any pair of transitions that are in DP . Nevertheless, since a post
transition in e1’s handler enables e2, the transitions in the two handlers should
be marked as dependent. This requirement is met through condition 1.A.

If (ri, rj) ∈ D, we simply say that ri and rj are dependent. In practice,
we over-approximate the dependence relation, for example, by considering all
conflicting accesses to shared objects as dependent. We now extend the happens-
before relation defined in [10] with the FIFO rule in [15,19].

Definition 3. The happens-before relation →w for a transition sequence
w : r1.r2 . . . rn in SG is the smallest relation on dom(w) such that the following
conditions hold:

1. If i < j and ri is dependent with rj then i →w j.
2. If ri and rj are transitions posting events e and e′ respectively to the same

thread, such that i →w j and the handler of e has finished and that of e′ has
started in w, then getEnd(w, e) →w getBegin(w, e′). This is the FIFO rule.

3. →w is transitively closed.

The relation →w is defined over transitions in w. We overload →w to also relate
transitions in w with those in the nextTrans set in the last state, say s, reached
by w. For a task (t, e) having a transition in nextTrans(s), i →w (t, e) if either
(a) task(ri) = (t, e) or (b) ∃k ∈ dom(w) such that i →w k and task(rk) = (t, e).

2.3 Dependence-Covering Sets

Mazurkiewicz trace [21] forms the basis of POR for multi-threaded programs and
event-driven programs where posts are considered dependent. Two transition
sequences belong to the same Mazurkiewicz trace if they can be obtained from
each other by reordering adjacent independent transitions. The objective of POR
is to explore a representative sequence from each Mazurkiewicz trace. As pointed
out in the Introduction, the reordering of posts (independent as per Definition 2)
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in a transition sequence w may not yield another sequence belonging to the same
Mazurkiewicz trace (denoted [w]) for two reasons: (1) it may reorder dependent
transitions from the corresponding handlers and (2) some new transitions, not
in w, may be pulled in.

We elaborate on the second point. Suppose in w, a handler h1 executes before
another handler h2, both on the same thread, such that h2 is executed only
partially in w. Let us reorder the post operations for these two and obtain a
transition sequence w′. Since the handlers run to completion, in order to include
all the transitions of h1 (executed in w) in w′, we must complete execution
of h2. However, as h2 is only partially executed in w, this results in including
new —previously unexplored— transitions of h2 in w′. This renders w and w′

inequivalent by the notion of Mazurkiewicz equivalence.
We therefore propose an alternative notion, suitable to correlate two transi-

tion sequences in event-driven multi-threaded programs, called the dependence-
covering sequence. The objective of our reduction is to explore a dependence-
covering sequence u at a state s for any transition sequence w starting at s.

Let w : r1.r2 . . . rn and u : r′
1.r

′
2 . . . r′

m be two transition sequences from the
same state s in SG reaching states sn and s′

m respectively. Let Rw = {r1, . . . , rn}
and Ru = {r′

1, . . . , r
′
m}.

Definition 4. The transition sequence u is called a dependence-covering
sequence of w if (i) Rw ⊆ Ru and (ii) for each pair of dependent transitions
r′
i, r

′
j ∈ Ru such that i < j, any one among the following conditions holds:

1. r′
i and r′

j are executed in w and their relative order in u is consistent with
that in w.

2. r′
i is executed in w and r′

j ∈ nextTrans(sn).
3. r′

i is not executed in w, r′
j ∈ nextTrans(sn) and w can be extended in SG

such that r′
i executes before r′

j .
4. Irrespective of whether r′

i is executed in w or not, r′
j is not in Rw ∪

nextTrans(sn).

The condition (i) above allows new transitions, that are not in w, to be part
of u. The condition (ii) restricts how the new transitions may interfere with
the dependences exhibited in w and also requires all the dependences in w to
be maintained in u. These conditions permit a dependence-covering sequence
of w to be a relaxation of Mazurkiewicz trace [w], making it more suitable for
stateless model checking of event-driven multi-threaded programs where posts
may be reordered selectively.

As an example, let w1, w2 and w3 (listed in Fig. 7) be the three transition
sequences in Fig. 6 which correspond to valid sequences in the transition system
SG of the program in Fig. 5. To illustrate dependence-covering sequences, we
visualize the dependences in these sequences as dependence graphs. The nodes in
the dependence graph of a sequence w represent transitions in w. If a transition ri

executes before another transition rj in w such that ri and rj are dependent then
a directed edge is drawn from ri to rj . Figure 7 depicts the dependence graphs of
w1, w2 and w3. Sequences w1 and w2 are dependence-covering sequences of each
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other, as their dependence graphs are identical (Fig. 7(a)). Consider a sequence
w4 = r2.r5 whose dependence graph is the subgraph G in Fig. 7. A dependence
graph G′ of any dependence-covering sequence u of w4 contains G as a subgraph,
with no incoming edge into G from any node in G′ which is not in G. However,
there are no restrictions on dependences between nodes in G′ which are not in
G. Hence, w1 and w2 (see Fig. 7(a)) are dependence-covering sequences of w4

even though w4 and w1 (or w2) do not belong to the same Mazurkiewicz trace,
whereas w3 is not a dependence-covering sequence of w4 due to the edge r6 to
r5 (see Fig. 7(b)).

Definition 5. A non-empty subset L of transitions enabled at a state s in SG

is a dependence-covering set in s iff, for all non-empty sequences of tran-
sitions w : r1 . . . rn starting at s, there exists a dependence-covering sequence
u : r′

1 . . . r′
m of w starting at s such that r′

1 ∈ L.

Example 2. All the transition sequences connecting state s0 to state s5 in Fig. 2
are dependence-covering sequences of each other. Thus, the dependence-covering
set in s0 can be {r1}, {r2} or {r1, r2}. Even if we take a prefix σ of any of these
sequences, the shaded sequence in Fig. 2 is a dependence-covering sequence of σ.

In Fig. 4, {r2} and {r1, r2} are individually dependence-covering sets in state
s0, whereas, {r1} is not a dependence-covering set at s0.

For efficient stateless model checking of event-driven multi-threaded pro-
grams, we can explore a reduced state space using dependence-covering sets.

Definition 6. A dependence-covering state space of an event-driven multi-
threaded program A is a reduced state space SR ⊆ SG obtained by exploring
only the transitions in a dependence-covering set at each state in SG reached
from sinit.

The objective of a POR approach is to show that even while exploring a
reduced state space, no concurrency bug is missed w.r.t. the complete but pos-
sibly much larger state space. The exploration of a dependence-covering state
space satisfies this objective. The following theorem states the main result of
this paper.

Theorem 1. Let SR be a dependence-covering state space of an event-driven
multi-threaded program A with a finite and acyclic state space SG. Then, all
deadlock cycles in SG are reachable in SR. If there exists a state v in SG which
violates an assertion α defined over local variables then there exists a state v′ in
SR which violates α.

The proof follows from the appropriate restrictions on allowed dependences in
a dependence-covering sequence u compared to the dependences in w where w is
required to reach a deadlock cycle or an assertion violation in the complete state
space. We provide a complete proof of the above theorem in Appendix A in [18].

The set {r1, r2} is both a persistent set and a dependence-covering set in
state s0 in Fig. 2. We observe that in general, a persistent set P at a state
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s ∈ SG is also a dependence-covering set at s. Here, persistent set is defined using
the dependence relation where posts to the same event queue are dependent,
whereas, dependence-covering set is defined using the dependence relation where
they are not (more formally, using Definition 2). We present a proof of this
claim in Appendix B in [18]. Note that a dependence-covering set need not be a
persistent set. As seen in Example 2, {r1} and {r2} are both dependence-covering
sets at s0 in Fig. 2 but they are not persistent sets.

3 Implementation

This section provides a high-level sketch of our algorithm to dynamically compute
dependence-covering sets. Due to lack of space, we do not present the complete
algorithm and its soundness proof. We refer the readers to [18] for these details.

Android applications form a very popular class of event-driven multi-
threaded programs. We further discuss the implementation of EM-Explorer, a
proof-of-concept model checking framework which simulates the Android con-
currency semantics given an execution trace of an Android application. We have
implemented our algorithm in EM-Explorer for experimental evaluation.

3.1 Dynamic Algorithm for Computing Dependence-Covering Sets

DPOR [10] is an effective algorithm to dynamically compute backtracking choices
for selective state-space exploration. It performs DFS traversal of the transition
system of a program, but instead of exploring all the enabled transitions at a
state, it only explores transitions added as backtracking choices by the steps
of the algorithm. DPOR guarantees that it explores a persistent set at each of
the visited states. Our algorithm, called EM-DPOR, extends DPOR to compute
dependence-covering sets for event-driven multi-threaded programs. It differs
from DPOR in the aspects of computing backtracking choices as well as the
states to which the algorithm backtracks.

Let backtrack(s) refer to the backtracking set computed by EM-DPOR for a
state s. We say a task (t, e) is executable at a state s if the first transition of event
e’s handler is enabled in s (see Sect. 2.1) or the task is being executed in state s.
Similar to DPOR, on exploring a sequence w reaching a state s′, our algorithm
identifies the nearest transition r in w executed at a state s which is dependent
with a transition r′ ∈ nextTrans(s′). If r and r′ belong to two different threads
then similar to DPOR, we require that they may be co-enabled. In addition,
if they belong to two different handlers on the same thread then we require that
they may be reordered (see Sect. 2.1). In the latter case, we first identify a pair
of post operations executed on different threads which need to be reordered so
as to reorder r and r′ (see [18] for the details).

We now discuss how to reorder two transitions from two different threads.
Let r and r′ be such transitions where r executes before r′ in w and s be the
state from which r executes. In order to compute backtracking choices to reorder
them, EM-DPOR computes a set of candidate tasks whose respective threads
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are enabled in state s, such that each candidate task contains a transition exe-
cuted after r that has happens-before relation with r′. We select a thread t as
a backtracking choice if (t, e) is a candidate task and t is not already explored
from state s. These steps are similar to the steps of DPOR except that we use
the happens-before relation of Definition 3.

A challenging case arises if the threads corresponding to all the candidate
tasks are already explored from s. As will be illustrated in Example 3, this does
not imply that r and r′ cannot be reordered in future. Unless all candidate
tasks are executable at state s, this also does not imply that they have been
reordered in the already explored state space. Therefore, the algorithm selects
some candidate task (t′, e′) (if any) that is not executable at s and attempts to
reorder e′ with the event, say e′′, enqueued to the same thread t′ and executable
at s. This results in a recursive call to identify backtracking choices as well as
backtracking state. Due to this, in a future run, e′′ and e′ may be reordered.
Suppose r′′ is the transition in (t′, e′) that has happens-before with r′. The
resulting reordering of the handlers of e′′ and e′ subsequently enables exploring
r′′ prior to r which in turn, leads to the desired reordering of r and r′. Example 3
illustrates the essential steps of EM-DPOR.

Example 3. We explain how EM-DPOR computes dependence-covering sets to
explore the state space in Fig. 4 starting with transition sequence w in Fig. 3. On
exploring a prefix of w and reaching state s5, r3 and r6 are identified to be depen-
dent. When attempting to compute backtracking choices at state s2 (the state
where r3 is explored) to reorder r3 and r6, r4 is found to have a happens-before
ordering with r6 and thus r4’s task (t1, e2) is identified as the candidate task.
However, thread t1 is already explored from state s2 and task (t1, e2) is not exe-
cutable (see the event queue shown at s2). Hence, the algorithm tries to reorder
e2 with event e1 whose task is executable at state s2. This is achieved by recur-
sively starting another backward search to identify the backtracking choices that
can reorder e1 and e2. In this case, post operations r1 and r2 can be reordered to
do so. Therefore, r2 is added to the backtracking set at s0, exploring which leads
to s8 where e2 precedes e1 in the event queue as required. Thus, the algorithm
computes {r1, r2} as a dependence-covering set at s0 and eventually reaches state
s10 where r3 and r6 are co-enabled and can be ordered as desired.

Note that even while considering the dependence between transitions r3 and r6,
EM-DPOR is able to identify a seemingly unrelated state s0 (much prior to state
s2 where r3 is explored) as an appropriate state to backtrack to. Also, r3 and r6
are transitions from two different threads. Even then, to reorder them, EM-DPOR
had to reorder the two post transitions r1 and r2 to the same thread t1 at s0.

Similar to DPOR, we have implemented our algorithm using a vector clocks
datastructure [20]. In a multi-threaded setting where all the operations executed
on the same thread are totally ordered, a clock is assigned to each thread and
the components of a vector clock correspond to clock values of the threads of
the program. In an event-driven program, the operations from different handlers
on the same thread need not be totally ordered and hence, we assign a clock to
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each task in the program. In addition to the vector clock computations described
in [10], we establish an order between event handlers executed on the same thread
if their corresponding posts have a happens-before ordering, so as to respect the
FIFO ordering of events.

3.2 EM-Explorer Framework

Building a full-fledged model checker for Android applications is a challenge in
itself but is not the focus of this work. Tools such as JPF-Android [24] and Async-
Droid [25] take promising steps in this direction. However, presently they either
explore only a limited number of sources of non-determinism [25] or require
a lot of framework libraries to be modeled [23,24]. We have therefore imple-
mented a prototype exploration framework called EM-Explorer, which emulates
the semantics of visible operations like post operation, memory read/write, and
lock acquire/release.

EM-Explorer takes an execution trace generated by an automated testing
and race detection tool for Android applications, called DroidRacer [19], as
input. As DroidRacer runs on real-world applications, we can experiment on
real concurrency behaviors seen in Android applications and evaluate different
POR techniques on them. DroidRacer records all concurrency relevant opera-
tions and memory reads and writes. EM-Explorer emulates such a trace based on
their operational semantics and explores all interleavings of the given execution
trace permitted by the semantics. Android permits user and system-generated
events apart from program-generated events. EM-Explorer only explores the non-
determinism between program and system generated events while keeping the
order of user events fixed. This is analogous to model checking w.r.t. a fixed data
input. EM-Explorer does not track variable values and is incapable of evaluating
conditionals on a different interleaving of the trace.

Android supports different types of component classes, e.g., Activity class
for the user interface, and enforces a happens-before ordering between handlers
of lifecycle events of component classes. EM-Explorer seeds the happens-before
relation for such events in each trace before starting the model checking run,
avoiding exploration of invalid interleavings of lifecycle events. We remove han-
dlers with no visible operations from recorded traces before model checking.

Table 1. Statistics on execution traces from Android apps and their model checking
runs using different POR techniques. Android apps: (A) Remind Me, (B) My Tracks,
(C) Music Player, (D) Character Recognition, and (E) Aard Dictionary

Apps Trace Threads/ Memory DPOR EM-DPOR

length Events Locations Traces Transitions Time Traces Transitions Time

A 444 4/9 89 24 1864 0.18 s 3 875 0.05 s

B 453 10/9 108 1610684∗ 113299092∗ 4 h∗ 405013 26745327 101m 30 s

C 465 6/24 68 1508413∗ 93254810∗ 4 h∗ 266 34333 4.15 s

D 485 4/22 40 1284788 67062526 199m 28 s 756 39422 6.58 s

E 600 5/30 30 359961∗ 14397143∗ 4 h∗ 14 4772 1.4 s
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4 Experimental Evaluation

We compare the performance of (1) EM-DPOR which computes dependence-
covering sets with (2) DPOR which computes persistent sets. Both the algorithms
are implemented in the EM-Explorer framework described in Sect. 3 and use vec-
tor clocks. The implementation of DPOR uses the dependence relation in which
posts to the same thread are considered dependent.

We evaluated these POR techniques on execution traces generated by
DroidRacer on 5 Android applications obtained from the Google Play Store [1].
Table 1 presents statistics like trace length (the number of visible operations),
and the number of threads, events and (shared) memory locations in an exe-
cution trace for each of these applications. We only report the threads created
by the application, and the number of events excluding events with no visible
operations in their handlers.

We analyzed each of the traces described in Table 1 using both the POR tech-
niques. Table 1 gives the number of interleavings (listed as Traces) and distinct
transitions explored by DPOR and EM-DPOR. It also gives the time taken for
exploring the reduced state space for each execution trace. If a model checking
run did not terminate within 4 hours, we force-kill it and report the statistics
for 4 hours. The statistics for force-killed runs are marked with ∗ in Table 1.
Since EM-Explorer does not track variable values, it cannot prune executions
that are infeasible due to conditional sequential execution. However, both DPOR
and EM-DPOR are implemented on top of EM-Explorer and therefore operate
on the same set of interleavings. The difference in their performance thus arises
from the different POR strategies.

In our experiments, DPOR’s model checking run terminated only on two
execution traces among the five, whereas, EM-DPOR terminated on all of them.
Except for one case, EM-DPOR finished state space exploration within a few
seconds. As can be seen from Table 1, DPOR explores a much larger number of
interleavings and transitions, often orders of magnitude larger compared to EM-
DPOR. While this is a small evaluation, it does show that significant reduction
can be achieved for real-world event-driven multi-threaded programs by avoiding
unnecessary reordering of events.

Performance.Both the techniques used about the same memory and the maximum
peak memory consumed by EM-DPOR across all traces, as reported by Valgrind,
was less than 50 MB. The experiments were performed on a machine with Intel
Core i5 3.2 GHz CPU with 4 GB RAM, and running Ubuntu 12.04 OS.

5 Conclusions and Future Work

The event-driven multi-threaded style of programming concurrent applications
is becoming increasingly popular. We considered the problem of POR-based
efficient stateless model checking for this concurrency model. The key insight of
our work is that more reduction is achievable by treating operations that post
events to the same thread as independent and only reordering them if necessary.
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We presented POR based on dependence-covering sequences and sets. Explor-
ing only dependence-covering sets suffices to provide certain formal guarantees.
Our experiments provide empirical evidence that our dynamic algorithm for
computing dependence-covering sets explores orders of magnitude fewer transi-
tions compared to DPOR for event-driven multi-threaded programs. While we
evaluate our algorithm on Android applications, the general idea of dependence-
covering sets is more widely applicable. As future work, we aim to achieve better
reductions by defining a notion of sleep sets suitable for this concurrency model
and combining it with dependence-covering sets as well as explore optimality of
POR in this context.
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Abstract. Multipushdown systems (MPDS) are formal models of multi-
threaded recursive programs. They are turing powerful and hence one
considers under-approximation techniques in their analysis. We study the
use of loop accelerations in conjunction with bounded context analysis.

1 Introduction

Sequential recursive programs are usually modeled as pushdown systems (PDSs)
and algorithmic techniques developed for PDSs have been used to solve a num-
ber of problems related to the verification of such programs (e.g. [14,20,23,
26,40,41]). Extending this idea to multi-threaded recursive programs requires
multi-pushdown systems (MPDSs), i.e. automata with multiple pushdown stores.
Unfortunately, MPDSs are turing powerful. The main technique used to circum-
vent this problem is that of under-approximation. The idea is to identify a subset
of behaviours and restrict the verification only to this subset. An underapprox-
imation is interesting only if the verification problem when restricted to this
subset is decidable and in addition the subset covers interesting behaviours.
This idea came to the fore with the bounded context analysis proposed in [39].
A context switch occurs when the automaton switches from accessing one stack
to another (or equivalently, the execution of a multi-threaded program switches
from scheduling one thread to another). Placing an a priori bound on the num-
ber of context switches results in the decidability of reachability and other veri-
fication problems. Subsequently, other classes generalizing the bounded context
assumption have been proposed (see [2–6,15,28,32–35]).

Recall that the configuration of a PDS can be seen as a word (giving the
current state and the contents of the stack). In the global model checking problem
the aim is to compute from (a representation of) the set of initial configurations
(I) (a representation of) the set of configurations reachable from I (denoted
post∗(I)). For PDSs if the initial set of configurations is a regular language then
the set of reachable configurations is a computable regular language ([14,26]).

The configuration of a MPDS can be represented as a tuple of words giving
the current state and the contents of each of the stacks. We can then repre-
sent sets of configurations by recognizable or regular languages [10]. Given a
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recognizable language representing the set of initial configurations, the set of
configurations that may be reached via runs with at most k-context switches is
also a (computable) recognizable language [39]. Thus, the global model checking
problem is decidable and this has many applications, including the obvious one
— reachability can be decided.

Note that our description of global model-checking does not require that the
representations of the initial set I and the reachable set post∗(I) to be the
same. For instance, for PDSs, whether we use finite sets or regular sets for
the initial set of configurations, the final set can be described effectively as a
regular set. However, if both sets use the same description, then we say that
the representation is stable. Stability is an useful property as it permits us to
compose (and hence iterate finitely) the algorithm.

Another well known technique used in the verification of infinite state systems
is that of loop accelerations. It is similar in spirit to global model checking but
with different applications. The idea is to consider a loop of transitions (a finite
sequence of transitions that lead from a control state back to the same control
state). The aim is to determine the effect of iterating the loop. That is, to
effectively construct a representation of the set of configurations that may be
reached by valid iterations of the loop.

Loop accelerations turn out to be very useful in the analysis of a variety of
infinite state systems (e.g., [1,7–9,11–13,16,24,25,29,30,36,37]). In this paper,
we propose to use accelerations in the verification of MPDSs. We take this further
by proposing a technique that composes the iterations of such loops with con-
text bounded runs to obtain a new decidable under-approximation for MPDSs.
Observe that there is no bound on the number of context switches under loop
iterations while a context bounded run permits unrestricted recursive behav-
iours, not permitted by loop iterations, thus complementing each other.

We begin by showing that both regular and rational sets of configurations are
stable w.r.t. bounded context runs. Then, we show that this does not extend to
iterations of loops. We show that under iterations of a loop, the post∗ of a regular
set of transitions is always rational while that of a rational set need not be ratio-
nal. We then address the question of a representation that is stable w.r.t. loop
accelerations. Towards this we propose a new representation for configurations
called n-CSRE inspired by the CQDDs [16] and the class of bounded semilinear
languages [18]. We show that n-CSREs are indeed stable w.r.t iteration of loops.
This result also has the pleasant feature that the construction is in polynomial
time. However, n-CSREs are not stable w.r.t bounded context runs.

As a final step we introduce a joint generalization of both loop iterations
and bounded context executions called bounded context-switch sets. We show
that the class of languages defined by n-dimensional constrained automata
(a n-dimensional version of Parikh automata [17,31]) is stable w.r.t accelera-
tions via bounded context-switch sets. Since membership is decidable for this
class, we obtain a decidability of reachability under this generous class of behav-
iours. Observe that the class of n-dimensional constrained automata is not closed
under intersection and that the inclusion problem is undecidable.
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Related Work. To the best of our knowledge this is the first study of accelerations
in the setting of MPDSs. By using ideas from acceleration we have obtained a
decidable under-approximation that significantly extends the notion of context-
bounding, and which seems incomparable to many other classes considered in
literature. The closest work is the pattern-based (or bounded) verification for
MPDSs [21,22,27]. The pattern-based verification checks the correctness of the
program for the set of the executions described as a bounded language (i.e.,
w∗

1w
∗
2 · · · w∗

n). Our loop acceleration result allow to compute the set of reachable
configurations induced by a bounded language and hence solving the global
reachability problem for pattern-based verification for MPDSs (and providing a
new proof for its decidability).

2 Preliminaries

Let N denote the set of natural numbers. For i, j ∈ N with i ≤ j, we use [i..j] to
denote the set {k ∈ N | i ≤ k ≤ j}. Let A and B two sets. For a partial function
g : A ⇀ B and a ∈ A, we write g(a) = ⊥ if g is undefined on a. Let Σ be
a finite alphabet. As usual Σ∗ denotes the set of all finite words over Σ and ε
denotes the empty word. Let u ∈ Σ∗, we use Parikh(u) to denote the mapping
that associates to each letter a in Σ, the number of occurrences of a in u.

Next we extend these notions to higher dimensions. Let Σ1, . . . , Σn be n
finite alphabets. A n-dim word u over Σ1, . . . , Σn is a tuple (u1, u2, . . . , un)
with ui ∈ Σ∗

i . For every j ∈ [1..n], we use u[j] to denote the word uj .
Let i ∈ [1..n] and w ∈ Σ∗

i , we use u[i ← w] to denote the n-dim word
(u1, u2, . . . , ui−1, w, ui+1, . . . , un). A n-dim language is a set of n-dim words.
Given two n-dim words u = (u1, . . . , un) and v = (v1, . . . , vn), their concate-
nation is defined by uv = (u1v1, . . . , unvn). The concatenation of two n-dim
languages L1, L2 is defined as expected to be L1.L2 = {uv | u ∈ L1 ∧ v ∈ L2}.

A n-tape finite state automaton over Σ1, . . . , Σn is defined as A =
(Q,Σ1, . . . , Σn, δ, q0, F ) where Q is a finite set of states, q0 is the initial state, F
is the set of final states, and δ ⊆ (Q × (Σ1 ∪ {ε}) × · · · × (Σn ∪ {ε}) × Q), is
the transition relation. A run π of A over a n-dim word w over Σ1, . . . , Σn is a
sequence of transitions (q0,u1, q1), (q1,u2, q2), . . . , (qm−1,um, qm) ∈ δ such that
w = u1u2 · · ·um. The run π is accepting if qm ∈ F . The language of A, denoted by
L(A), is the set of n-dim words w for which there is an accepting run of A over w.
A n-dim language is rational if it is the language of some n-tape automaton [10].
Observe that 1-tape automata are the standard finite-state automata.

An interesting subclass of rational languages are what are called recognizable
or regular languages. A n-dim language L is regular if it is a finite union of
products of n rational 1-dim languages (i.e. L =

⋃m
j=1 L(j,1) × · · · × L(j,n) for

some m ∈ N where L(j,i) is an 1-dim rational language over Σi). Observe that if
n = 1 rational and regular languages are the same. The language {(ai, bi) | i ≥ 0}
is an example of a rational language that is not regular.

Let us recall some properties of rational and regular languages (see, e.g., [10]).
First, the class of regular languages, for any dimension n ≥ 1, is closed under
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boolean operations. On the other hand, for every n ≥ 2, the class of n-dim rational
languages is closed under union and concatenation but not under complementa-
tion, nor under intersection. However, the emptiness and membership problems
for rational languages are decidable in all dimensions and further the inclusion
problem is also decidable for regular languages. The inclusion problem is unde-
cidable for rational languages (for n ≥ 2).

We describe some additional closure properties of rational languages that will
prove useful. Rational languages are effectively closed under the permutation of
indices: Let A be a n-tape automaton over Σ1, . . . , Σn. Given a mapping h :
[1..n] → [1..n], it is possible to construct a n-tape automaton h(A), linear in the
size of A, such that (w1, ..., wn) ∈ L(A) iff (wh(1), . . . , wh(n)) ∈ L(h(A)). Rational
languages are also effectively closed under projection: Given a set of indices ι =
{i1 < i2 < . . . im} ⊂ {1, . . . , n}, we can construct an automaton Πι(A), linear in
size of A, such that L(Πι(A)) = {(wi1 , wi2 , . . . , wim) | (w1, w2, . . . , wn) ∈ L(A)}.
Rational languages are also closed under an operation we call composition: Let
A be as before and let A′ be a rational language over Σ′

1, Σ
′
2, . . . , Σ

′
m. Let i ∈

{1, . . . , n} and j ∈ {1, . . . , m} be two indices s.t. Σ′
j = Σi. Then, it is possible

to construct a (n + m − 1)-tape automaton A ◦(i,j) A′, whose size is O(|A|.|A′|),
accepting (w1, . . . , wn, w′

1, . . . , w
′
j−1, w

′
j+1, . . . , w

′
m) iff (w1, . . . , wn) ∈ L(A) and

(w′
1, . . . , w

′
j−1, wi, w

′
j+1, . . . , w

′
m) ∈ L(A′), i.e. the composition corresponding to

the synchronization of the ith tape of A with the jth tape of A′.

3 Multi-PushDown Systems

A Multi-PushDown System (MPDS) is a tuple M = (n,Q, Γ,Δ) where: (1)
n ≥ 1 is the number of stacks, (2) Q is the non-empty finite set of states, (3) Γ
is the finite set of stack symbols, and (4) Δ ⊆ (Q × (∪i∈[1..n]Ω(i)) × Q) is the
transition relation. For every i ∈ [1..n], Ω(i) is the set of operations on the stack
i containing: (i) the push operation pushi(a) (a ∈ Γ ), (ii) the pop operation
popi(a) (a ∈ Γ ), and (iii) the internal operation nopi. A PushDown System
(PDS) can be seen as a MPDS with n = 1. Let Δi = Δ ∩ (Q × Ωi × Q).

A configuration of the MPDS M is a (n + 1)-tuple (q, u1, u2, · · · , un) where
q ∈ Q is the current state of M , and for every i ∈ [1..n], ui ∈ Γ ∗ is the current
content of the i-th stack of M . A configuration can be seen as (n + 1)-word.
The set of configurations of the MPDS M is denoted by Cf (M). Given two
configurations (q, u1, · · · , un) and (q′, v1, · · · , vn) of M and a transition t ∈ Δ, we
define the transition relation t−→M as follows: (q, u1, · · · , un) t−→M (q′, v1, · · · , vn)
iff one of the following holds: (1) t = (q, pushi(a), q′), vi = a.ui and uj = vj

for all j ∈ ([1..n] \ {i}), (2) t = (q, popi(a), q′), ui = a.vi and uj = vj for all
j ∈ ([1..n] \ {i}), or (3) t = (q, nopi, q

′) and uj = vj , for all j ∈ [1..n].
For a sequence of transitions σ = t1t2 . . . tm ∈ Δ∗ and two configurations

c, c′ ∈ Cf (M), we write c
σ−→M c′ to denote that one of the following two cases

holds: (1) σ = ε and c = c′, or (2) there are configurations c0, · · · , cm ∈ Cf (M)
such that c0 = c, c′ = cm, and ci

ti+1−−−→M ci+1 for all i ∈ [0..m − 1]. Given a set
of configurations C ⊆ Cf (M) and a set of sequences of transitions Θ ⊆ Δ∗, the
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acceleration problem for M , with respect to C and Θ, consists in computing the
set PostΘ∗(C) = {c′ | c σ−→M c′ , c ∈ C , σ ∈ Θ∗}.

4 Context-Bounding as an Acceleration Problem

In the following, we show that context-bounded analysis [33,34,38,39] for an
MPDS M = (n,Q, Γ,Δ) can be formulated as an acceleration problem wrt. the
class of rational/regular configurations. Given two configurations c, c′ ∈ Cf (M)
and k ∈ N, the k-context reachability problem consists in checking whether there
is a sequence of transitions σ ∈ Δ∗

i1
Δ∗

i2
· · · Δ∗

ik
, with i1, i2, . . . , ik ∈ [1..n], such

that c
σ−→M c′. The decidability of the k-context reachability problem can be

seen as an immediate corollary of the decidability of the membership problem
for rational languages and the following result:

Theorem 1. Let i ∈ [1..n]. For every regular (rational) set of configurations C,
the set PostΔ∗

i
(C) is regular (rational) and effectively constructible.

The set PostΔ∗
i
(C) has been shown to be regular and effectively constructible

when C is regular in [39]. In the following, we prove Theorem1 for the case when
C is rational. We write Mi for the PDS (1, Q, Γ,Δi) simulating the behavior of
M only on the stack i. First we recall a result established in [19,35].

Lemma 1. It is possible to construct, in polynomial time in the size of Mi, a
4-tape finite state automaton T , over Q,Γ,Q, Γ , such that (q, u, q′, v) ∈ L(T ) iff
(q, u) π−→Mi

(q′, v) for some sequence π ∈ Δ∗
i .

Observe that Lemma 1 relates any possible starting configuration (q, u) with
any configuration (q′, v) reachable from (q, u) in Mi. Let us assume now that
we are given a (n + 1)-tape automaton A = (P,Q, Γ, . . . , Γ, δ, p0, F ) accepting
the set C. In the following, we show how to compute a (n + 1)-tape finite state
automaton A′ accepting the set PostΔ∗

i
(C). To do that, we proceed as follows: We

first compose A with T , synchronizing the second tape of T (containing the stack
contents at the starting configuration) with the (i+1)-th tape of A, to construct
a (n + 4)-tape automaton A1 = A ◦(i+1,2) T . We also need to synchronize the
starting states (i.e. the first tape of A with the first tape of T ). This can be done
by intersecting A1 with the (regular) language

⋃
q∈Q{q}× (Γ ∗)n ×{q}×Q×Γ ∗.

Let A2 be the automaton resulting from the intersection operation. Then, we
project away the starting control state (occurring on tapes 1 and n+2) and the
content of the i + 1-th tape to obtain the (n + 1)-tape automaton A3 = Πι(A2)
where ι = ([1..n] \ {1, i + 1, n + 2}). This is almost what is needed except that
the new content of the stack i occurs at the last position instead of position
i + 1 and the control state occurs at penultimate position instead of the first
position. We rearrange this using the permutation operation. We let A′ = h(A3)
where h is defined as follows: (1) h(1) = n, (2) h(j) = j − 1 for all j ≤ i, (3)
h(i + 1) = n + 1, and (4) h(j) = j − 2 for all j > i + 1.

Observe that the size of A′ is polynomial in |A|· — this follows from Lemma 1
and the bounds on the closure operation on rational languagesmentioned in Sect. 2.
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5 Accelerating Loops: Case of Regular/Rational Sets

In this section, we address the acceleration problem for the iterative execution
of a sequence of transitions in the control graph of a MPDS M = (n,Q, Γ,Δ).
More precisely, given a sequence of transitions θ ∈ Δ∗ and a set of configurations
C ⊆ Cf (M), we are interested in characterizing the set Postθ∗(C).

5.1 Computing the Effect of a Sequence of Transitions

Let M = (n,Q, Γ,Δ) be an MPDS and σ ∈ Δ∗ a sequence of transitions of
the form (q0, op0, q1)(q1, op1, q2) · · · (qm−1, opm−1, qm). Intuitively, we associate
to each stack i a pair (ui, vi) such that the effect of executing the sequence σ on
stack i is popping the word ui and then pushing the word vi on to it (i.e. the
stack content is transformed from uiw to viw for some w). To this end, for every
i ∈ [1..n], we introduce a partial function Effi : ((Γ ∗ × Γ ∗) × Δ∗) ⇀ (Γ ∗ × Γ ∗).
We first define Effi when the third argument is a transition. Roughly speaking,
assuming that we have already computed the effect of a transition sequence σ on
stack i to be (u, v), i.e. to pop u and push v, Effi((u, v), t) computes the effect
of σ.t on stack i. Given u, v ∈ Γ ∗ and t ∈ Δ, we define Effi((u, v), t) as follows:

– if Op(t) = popi(a) for some a ∈ Γ then
• Effi((u, ε), t) = (u · a, ε),
• If v = a · v′ for some v′ ∈ Γ ∗ then Effi((u, v), t) = (u, v′),
• Otherwise Effi((u, v), t) = ⊥.

– if Op(t) = pushi(a) for some a ∈ Γ , then Effi((u, v), t) = (u, a · v)
– If Op(t) = nopi or t ∈ Δ \ Δi, then Effi((u, v), t) = (u, v).

We extend the definition of Effi to sequence of transitions as expected: For
every two words u, v ∈ Γ ∗, we have (1) Effi((u, v), ε) = (u, v), and (2) for
every σ′ ∈ Δ∗ and t ∈ δ, we have Effi((u, v), σ′ · t) = Effi(Effi((u, v), σ′), t) if
Effi((u, v), σ′) �= ⊥ is defined, and Effi((u, v), σ′ · t) = ⊥ otherwise.

Our aim is to compute the complete effect of some sequence σ on stack i
and this is given by Effi((ε, ε), σ). We shall refer to this as Summ(i, σ). The next
lemma formalizes our intuition about Summ and characterizes precisely when a
sequence of transitions σ may be executed and computes its effect on all the
stacks (if it is executable).

Lemma 2. Let c = (q0, w1, . . . , wn) and c′ = (qm, w′
1, . . . , w

′
n) be two configura-

tions of M . c
σ−→ c′ iff for every i ∈ [1..n], we have wi = uiu

′
i and w′

i = viu
′
i for

some ui, vi, u
′
i ∈ Γ ∗ such that Summ(i, σ) = (ui, vi).

Now, we will characterize Summ(i, σj) with j ≥ 1, i.e., the effect of iterating
the sequence σ j-times, in terms of Summ(i, σ) for all i ∈ [1..n]. Observe that if
Summ(i, σ) = ⊥, then Summ(i, σj) = ⊥ for all j ≥ 1. Hence, let us assume that
Summ(i, σ) = (ui, vi) for some words ui, vi ∈ Γ ∗. First, let us consider the case
when the sequence σ can be iterated twice and compute its effect on all the stacks.
Now, using the definition of Summ it is not difficult to conclude that Summ(i, σσ)
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is defined iff either vi is a prefix of ui or ui is a prefix of vi. We can in fact say
more. If the former holds we let xi be the unique word such that ui = vixi and
yi = ε. In case of the latter we let yi be the unique word such that vi = uiyi and
xi = ε. Then, we have Summ(i, σσ) = (u′

i, v
′
i) for all i ∈ [1..n] where u′

i = uixi

and v′
i = viyi. We define a partial function Iter : ([1..n]×Δ∗) ⇀ (Γ ∗ ×Γ ∗) such

that Iter(i, σ) is the pair (xi, yi) as defined above when Summ(i, σσ) is defined,
and Iter(i, σ) = ⊥ otherwise. We can now generalize this computation of Summ
to any number of iterations of σ as shown below.

Lemma 3. Let i ∈ [1..n]. If Summ(i, σσ) is well-defined then Summ(i, σj) is
well-defined for all j ≥ 1. Furthermore, Summ(i, σj) = (uix

j−1
i , viy

j−1
i ) with

Summ(i, σ) = (ui, vi) and Iter(i, σ) = (xi, yi).

5.2 Acceleration of Regular/Rational Sets of Configurations
by Loops

In the following, we first state that the class of regular (resp. rational) sets of
configurations is not closed under Postθ∗ . Then, we show that the image by
Postθ∗ of any regular set of configurations is a rational one.

Theorem 2. There is an MPDS M = (n,Q, Γ,Δ), a regular (resp. rational)
set of its configurations C and a transition sequence θ ∈ Δ∗ such that the set of
configurations Postθ∗(C) is not regular (resp. rational).

However, whenever C is a regular set of configurations the set Postθ∗(C) has
a simple description. In what follows we fix a MPDS M = (n,Q, Γ,Δ).

Theorem 3. For every regular set of configurations C and transition sequence
θ ∈ Δ∗, the set Postθ∗(C) is rational and effectively constructible.

Let θ be a sequence of transitions of the form (q0, op0, q′
0)(q1, op1, q

′
1)

· · · (qm, opm, q′
m). Since Postθ∗(C1 ∪ C2) = Postθ∗(C1) ∪ Postθ∗(C2), we can

assume w.l.o.g that C is of the form {q} × L1 × · · · × Ln where each Lj is an
1-dim rational language over Γ accepted by a finite state automaton Aj for all
j ∈ [1..n]. The proof proceeds by cases.

Case 1: Let us assume q′
i �= qi+1 for some i ∈ [0..m − 1] or q0 �= q. In this case

the sequence of transitions cannot be executed and hence Postθ∗(C) = C.

Case 2: Let us assume q0 �= q′
m, q0 = q and q′

i = qi+1 for all i ∈ [0..m − 1]. In
this case, the sequence of transitions can not be iterated more than once and so
we have Postθ∗(C) = Postθ(C) ∪ C. We now examine the set Postθ(C). First,
let us assume that Summ(i, θ) = ⊥ for some i ∈ [1..n]. Then Postθ(C) = ∅ and
hence Postθ∗(C) = C.

Let us assume now that Summ(i, θ) = (ui, vi) is well-defined for all i ∈ [1..n].
We can apply Lemma 2, to show that Postθ(C) = {q′

m} × L′
1 × · · · × L′

n where
for every i ∈ [1..n], L′

i = {w′
i | ∃wi ∈ Γ ∗. w′

i = vi.wi ∧ uiwi ∈ Li}. It is easy to
see that L′

i is an 1-dim rational language and can be accepted by an automaton
A′

i whose size is polynomial in the size of Ai and the length of θ.
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Case 3: Let us assume q0 = q′
m, q0 = q and q′

i = qi for all i ∈ [0..m − 1]. In this
case, the sequence of transitions forms a loop in the control flow graph of M
and hence the sequence may possibly be iterated. Observe that if the function
Summ(i, θ) = ⊥ for some i ∈ [1..n], then Postθ∗(C) = C. Hence, let us assume that
Summ(i, θ) = (ui, vi) for all i ∈ [1..n] so that it is well-defined for each i. Lemma 3
suggests that we should examine when Summ(i, θθ) is defined for all i. Indeed,
if Summ(i, θθ) is undefined for some i ∈ [1..n], then Postθ∗(C) = Postθ(C) ∪ C
(which can be computed as shown in the previous case). So, let us further assume
that Summ(i, θθ) is well-defined for all i ∈ [1..n]. Hence, the function Iter(i, σ)
is also well-defined. Let us assume that Iter(i, σ) = (xi, yi)

Now, we can combine Lemma 3 with Lemma 2 to give a characterization of
when a sequence θ is iterable and its effect.

Lemma 4. Let j ≥ 1 and c = (q, w1, . . . , wn) and c′ = (q, w′
1, . . . , w

′
n) be two

configurations of M . c θj−−→ c′ iff for every i ∈ [1..n], we have wi = uix
j−1
i w′′

i and
w′

i = viy
j−1
i w′′

i for some w′′
i ∈ Γ ∗ with ui, vi, xi and yis defined as above.

With this lemma in place, let L be the (2n + 1)-dim language defined as the
set containing the exactly the words of the form

(q, u1x
j−1
1 w1, v1y

j−1
1 w1, u2x

j−1
2 w2, v2y

j−1
2 w2, . . . , unxj−1

n wn, vnyj−1
n wn)

with j ≥ 1 and wi ∈ Γ ∗ and where ui, vi, xi and yis are defined as above.
Observe that each element of L relates a pair of configurations such that from
the first we can execute the sequence θ a finite number of times to reach the
second. The starting configuration is given by the first and all the even num-
bered positions, while the ending configuration is given by all the odd numbered
positions (including the first). As a matter of fact elements of L relates exactly
all such pairs in this manner. This language L is rational and we can easily
compute an (2n + 1)-tape automaton A whose size is polynomial in the size of
θ and polynomial in the size of M . To compute an (n + 1)-tape automaton A′

accepting Postθ+(C), we proceed as follows: First, we define the regular language
L′ = {q}×L1×Γ ∗×· · ·×Ln×Γ ∗. Then, we compute an (2n+1)-tape automaton
A′′ accepting precisely the language resulting from the intersection of the regular
language L′ and L. This allows us to restrict the starting configurations to be
precisely those from C. The size A′′ is exponential in the number of stacks and
polynomial in the size of θ, and the finite state automata A1, . . . , An. Finally, we
need to project away the tapes concerning the starting stack configurations. We
let then A′ = Πι(A′′) with ι = {2i + 1 | i ∈ [0..n]}. We note that this step does
not result in any blow up and thus the size of A′ is exponential in the number
of stacks and polynomial in the size of θ and A1, . . . , An.

Since Postθ∗(C) = C∪Postθ+(C) and the class of rational / regular languages
is closed under union, this completes the proof of Theorem3.

6 Constrained Simple Regular Expressions

Wenow introduce the class of (1 dimensional) Constrained Simple Regular Expres-
sions (CSRE). CSRE definable languages form an expressive class equivalent to the
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bounded semi-linear languages defined in [18] and the class of languages accepted
by 1-CQDD introduced in [16]. To deal with configuration sets of MPDS we need n-
dimensional CSREs and so we lift these results to that setting. We then show that
the CSRE definable sets of configurations form a stable collection under acceler-
ation by loops. However, this class is not stable w.r.t. bounded context runs. We
begin by recalling some basics about Presburger arithmetic.

6.1 Presburger Arithmetic

Presburger arithmetic is the first-order theory of natural numbers with addition,
subtraction and order. We recall briefly its definition. Let V be a set of variables.
We use x, y, . . . to denote variables in V. The set of terms in Presburger arith-
metic is defined as follows: t ::= 0 | 1 |x | t − t | t + t. The set of formulae of the
Presburger arithmetic is defined to be ϕ ::= t ≤ t | ¬ϕ |ϕ ∨ ϕ | ∃x. ϕ.

We use the standard abbreviations: ϕ1 ∧ ϕ2 = ¬(ϕ1 ∨ ϕ2), ϕ1 ⇒ ϕ2 =
¬ϕ1 ∧ ϕ2, and ∀x. ϕ = ¬∃x.¬ϕ. The notions of free and bound variables, and
quantifier-free formula are as usual. An existential Presburger formula is one of
the form ∃x1∃x2 . . . ∃xn.ϕ where ϕ is a quantifier-free formula. We shall often
write positive boolean combinations of existential Presburger formulas in place
of an existential Presburger formula. Clearly, by an appropriate renaming of
the quantified variables, any such formula can be converted into an equivalent
existential Presburger formula. We write var(ϕ) ⊆ V to denote the set of free
variables of ϕ. Given a function μ from var(ϕ) to N, the meaning of μ satisfies
ϕ is as usual and we write μ |= ϕ to denote this. We write ϕ(x1, x2, . . . , xk) to
denote a Presburger formula ϕ whose free variables are (contained in) x1, . . . , xk.
Such a formula naturally defines a subset of Nk given by {(i1, i2, . . . , ik) | μ |=
ϕ(x1, x2, . . . , xk) where μ(xj) = ij , 1 ≤ j ≤ k}. We say that a subset S of Nk is
definable in Presburger arithmetic if there is a formula ϕ that defines it.

6.2 Constrained Simple Regular Expression (CSRE)

A Constrained Simple Regular Expression (CSRE) e over an alphabet Σ is
defined as a tuple of the form e = (w1, . . . , wm, ϕ(x1, x2, . . . , xm)) where
w1, . . . , wm is a non-empty sequence of words over Σ, and ϕ is an existential
Presburger formula. The language defined by the CSRE e, denoted by L(e),
is the set of words of the form wi1

1 wi2
2 · · · wim

m such that ϕ holds for the func-
tion μ defined by μ(xj) = ij for all j ∈ [1..m]. The size of e is defined by
|e| = |w1 · · · wm|+ |ϕ|. CSREs define the same class of languages as CQDDs [16]
(see [18]), however they have a much simpler presentation avoiding automata
altogether and as we shall see quite amenable to a number of operations.

Next, we present some closure and decidability results for the class of CSRE
definable languages. These results can be also deduced from [18] since CSREs
define bounded semilinear languages.

Lemma 5. The class of languages defined by CSREs is closed under intersec-
tion, union and concatenation. The emptiness, membership and inclusion prob-
lems for CSREs are decidable.
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From Lemma 4 it is clear that in order to compute the effect of the iteration
of a sequence θ on the content of stack i one has to left-quotient the content of
stack i by the sequence uix

j−1
i and then add the sequence viy

j−1
i (on the left).

With this in mind we now examine left-quotients of languages defined by CSREs
w.r.t. iterations of a given word. First we state a technical lemma.

Lemma 6. Let e be a CSRE over an alphabet Σ and w ∈ Σ∗ be a word.
Then, we can construct, in polynomial time in |w| + |e| , a CSRE e′ =
(w, u1, u2, . . . , uk, ϕ(y, y1, y2, . . . , yk)) such that for every i ∈ N, L(ei) =
{w′ |wiw′ ∈ L(e)} where ei = (ε, u1, u2, . . . , uk, (y = i ∧ ϕ(y, y1, y2, . . . , yk))).

The key point about the above lemma is that the left-quotient of L(e)
w.r.t wi, for some i ∈ N, can be precisely identified as L(ei). Thus, the
CSRE (ε, u1, u2, . . . , uk, ϕ(y, y1, y2, . . . , yk)) defines the left-quotient of L(e) w.r.t
{wi | i ∈ N}, giving us the following corollary.

Corollary 1. Let e be a CSRE over an alphabet Σ and w ∈ Σ∗ be a word.
Then, we can construct, in polynomial time in |w| + |e|, a CSRE e′ such that
L(e′) = {w′ | ∃i ∈ N. wiw′ ∈ L(e)}.

6.3 Multi-dimensional Constrained Simple Regular Expression

Let n ≥ 1. An n-dim CSRE e over an alphabet Σ is a of tuple of
the form ((u1, . . . , uk1), (uk1+1, . . . , uk2), . . . , (ukn−1+1, . . . , ukn

), ϕ(x1, . . . , xkn
))

where: (1) 1 ≤ k1 < k2 < · · · < kn and (2) for every i ∈ [1..kn], ui is a word over
Σ. An n-dim CSRE e accepts the n-dim language, denoted by L(e), consisting of
the n-dim words of the form (ui1

1 · · · uik1
k1

, · · · , u
ikn−1+1

kn−1+1 · · · uikn

kn
) such that ϕ holds

for the function μ defined by μ(xj) = ij for all j ∈ [1..kn]. In order to simply
the notations, we sometimes write e as follows (u1,u2, . . . ,un, ϕ(x1,x2, . . . ,xn))
where ui = (uki−1+1, . . . , uki

) and xi = (xki−1+1, . . . , xki
) for all i ∈ [1..n]. In

the following, we show that the class of languages accepted by n-dim CSREs
enjoys the same properties as the class of CSREs.

Lemma 7. Let n ≥ 1. The class of n-languages defined by n-CSREs is closed
under intersection, union and concatenation. The emptiness problem , member-
ship problem as well as inclusion problem are decidable for n-dim CSREs.

Next, we extend Lemma 6 to n-dim CSREs — n-dim CSREs are closed under
left quotienting by simultaneous iterations of a tuple of words wi, 1 ≤ i ≤ n, one
for each component. Even more, this can be achieved by constructing an n-CSRE
in which the number of iterations may be set parametrically.

Lemma 8. Let n ≥ 1. Let e be a n-dim CSRE over an alphabet Σ and
w = (w1, . . . , wn),wi ∈ Σ∗. Then, we can construct, in polynomial time in |e| +∑

i |wi|, an n-dim CSRE e[w] = (u1, . . . ,un, ϕ(x1, . . . ,xn)) such that ui[1] = wi,
for 1 ≤ i ≤ n and for every j ∈ N, L(e[w, j]) = {v |v[i ← wj

i v[i]] ∈ L(e)}, where
e[w, j] = (u1[1 ← ε], . . . ,un[1 ← ε], (

∧
1≤i≤n xi[1] = j ∧ ϕ(x1,x2, . . . ,xn))).
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We now have all the ingredients necessary to study the stability of sets of
configurations defined by n-dim CSREs. We say that a set C of configurations of
the MPDS M is CSRE representable if there is a function f that maps any state
q ∈ Q of M to an n-dim CSRE s.t. (q, w1, . . . , wn) ∈ C iff (w1, . . . , wn) ∈ L(f(q)).

6.4 Acceleration of CSRE Representable Set of Configurations

Let M = (n,Q, Γ,Δ) be an MPDS. We now examine the sets PostΔ∗
i
(C) and

Postθ∗(C) where Δi is a set of transitions on the i-th stack of M and θ ∈ Δ∗

where C is a CSRE representable set of configurations.

Theorem 4. For every transition sequence θ ∈ Δ∗, the class of CSRE repre-
sentable sets of configurations is effectively closed under Postθ∗ . Further post set
can be computed in time polynomial in the size of θ and |M |.
Proof. Let θ be a sequence of transitions of the form (q0, op0, q′

0)(q1, op1, q
′
1)

· · · (qm, opm, q′
m) and C be a CSRE representable set of configurations. Since

Postθ∗(C1 ∪ C2) = Postθ∗(C1) ∪ Postθ∗(C2), we can assume w.l.o.g that
C consists of configurations of the form (q, w1, . . . , wn) for some fixed q ∈
Q. Let f be a function from Q to n-dim CSREs such that L(f(p)) =
{(w1, . . . , wn) | (q, w1, . . . , wn) ∈ C} if p = q and L(f(p)) = ∅ otherwise. Next,
we assume that f(q) = (u1, . . . ,un, ϕ(x1, . . . ,xn)). The proof proceeds by cases.
Case 1: Let us assume q′

i �= qi for some i ∈ [0..m − 1] or q0 �= q. In this case the
sequence of transitions cannot be executed and hence Postθ∗(C) = C.
Case 2: Let us assume q0 �= q′

m, q0 = q and q′
i = qi for all i ∈ [0..m − 1]. In

this case, the sequence of transitions cannot be iterated more than once and
so we have Postθ∗(C) = Postθ(C) ∪ C. We now examine the set Postθ(C). If
Summ(i, θ) = ⊥ for some i ∈ [1..n], then Postθ(C) = ∅ and hence Postθ∗(C) = C.

Let us assume now that Summ(i, θ) = (ui, vi) is well-defined for all i ∈
[1..n]. We can construct a n-CSRE e′ such that (q′

m, w1, . . . , wn) ∈ Postθ∗(C)
iff (w1, . . . , wn) ∈ L(e′) in two steps: Let e1 = f(q)[(u1, u2, · · · , un), 1].
This left quotients component i by ui as required and the size of e1
is polynomial in the size of θ, M and f(q). Let us assume that e1 is
of the form ((ε, w2, . . . , w�1), . . . , (ε, w�n−1+2, . . . , w�n), ϕ′′(x1, . . . , x�n)). Next,
we simultaneously add the content vi to stack i, 1 ≤ i ≤ n as fol-
lows: Let the n-CSRE e′ be ((v1, ε, w2, . . . , w�1), . . . , (vn, ε, w�n−1+2, . . . , w�n),
ϕ′(y1, x1, . . . , xk1 , . . . , yn, x�n−1+1, . . . , x�n)) where ϕ′ = ϕ′′ ∧ ∧

1≤h≤n yi = 1.
Note that Postθ∗(C) is CSRE representable by the function f ′ s.t. f ′(q) =

f(q), f ′(q′
m) = e′, and L(f ′(p)) = ∅ for all p /∈ {q, q′

m}. Observe that the con-
struction of Postθ∗(C) is done in polynomial time in the sizes of θ, M and f(q).
Case 3: Let us assume q0 = q′

m, q0 = q and q′
i = qi for all i ∈ [0..m − 1]. In this

case, the sequence of transitions forms a loop in the control flow graph of M
and hence the sequence may possibly be iterated. Observe that if the function
Summ(i, θ) = ⊥ for some i ∈ [1..n], then Postθ∗(C) = C. Hence, let us assume
that Summ(i, θ) = (ui, vi) for all i ∈ [1..n] so that it is well-defined for each i.
Lemma 3 suggests that we should examine when Summ(i, θθ) is defined for all i.
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Indeed, if Summ(i, θθ) is undefined for some i ∈ [1..n], then Postθ∗(C) =
Postθ(C) ∪ C (which can be computed as shown in the previous case). So, let
us further assume that Summ(i, θθ) is well-defined for all i ∈ [1..n]. Hence, the
function Iter(i, σ) is also well-defined. Let us assume that Iter(i, σ) = (xi, yi)

We then construct a n-CSRE e′ such that (q′
m, w1, . . . , wn) ∈ Postθ+(C)

iff (w1, . . . , wn) ∈ L(e′) in a sequence of steps: First we construct the n-
CSRE expression e1 = f(p)[(u1, u2, · · · , un), 1]. Let us assume that e1 is of the
form ((ε, w2, . . . , w�1), . . . , (ε, w�n−1+2, . . . , w�n), ϕ1(x1, . . . , x�n)). Observe that
the size of e1 is polynomial in the sizes of θ, M and f(q) and it simultaneously
left quotients component i by ui. Now, we must simultaneously left-quotient
the ith component by xj

i , for a fixed j and then follow this by adding simul-
taneously yj

i to component i (for the same j) and then add simultaneously vi

to component i (1 ≤ i ≤ n). To achieve this we begin by applying Lemma8
to e1 to construct the n-CSRE expression e2 = e1[(x1, . . . , xn)]. Observe that
the size of e2 is also polynomial in the sizes of θ, M and f(q). Let us assume
that e2 is of the form ((ε, w′

2, . . . , w
′
j1

), . . . , (ε, w′
jn−1+2, . . . , w

′
jn

), ϕ2(z1, . . . , zjn)).
We now exploit the parametrized nature of e1[(x1, . . . , xn)] stated in
Lemma 8. We let e′ = ((v1, y1, ε, w′

2, . . . , w
′
j1

), . . . , (vn, yn, ε, w′
jn−1+2, . . . , w

′
jn

),
ϕ′(t1, t′1, z1, . . . , zk1 , . . . , tn, t′n, z�n−1+1, . . . , zjn)) where ϕ′ = ϕ2 ∧ ∧

1≤h≤n ti =
1 ∧ (z1 = zj1+1 =· · · = zzjn−1+1 = t′1 = t′2 = · · · = t′n).

Finally, it is easy to see that Postθ∗(C) is CSRE representable by the function
f ′ such that L(f ′(q)) = L(f(q))∪L(e′), and L(f ′(p)) = ∅ for all p /∈ {q}. Observe
that the size of f ′(q) is still polynomial in the sizes of θ, M and f(q). ��
Unfortunately, CSRE representable sets are not stable w.r.t. bounded context.

Theorem 5. For every i ∈ [1..n], the class of CSRE representable sets of con-
figurations is not closed under PostΔ∗

i
(C).

7 Acceleration of Bounded-Context Sets

In the following, we first introduce the class of constrained rational languages
(as an extension of constrained (or Parikh) automata languages [17,31] to the
settings of multi-dimensional words). Then, we present the class of bounded
context-switches sets as a generalization of loops and contexts. Finally, we show
that the class of constrained rational languages is stable with respect to accel-
eration by bounded context-switches sets.

7.1 Constrained Rational Languages

A constrained automaton is a finite-state automaton augmented with a semi-
linear set to filter (or restrict) the accepting runs. We assume that this semi-linear
set is described by an existential Presburger formula. In the following, we extend
this model to multi-dimensional words. Let n ≥ 1 and Σ1, . . . , Σn be n finite
alphabets. Formally, a n-tape constrained finite-state automaton over Σ1, . . . , Σn
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is defined as C = (A,ϕ) where A = (Q,Σ1, . . . , Σn, δ, q0, F ) is a n-tape finite-
state automaton and ϕ is an existential Presburger formula such that var(ϕ) = δ.
Furthermore, we assume w.l.o.g. that if (q,u, q′) is in δ then |u[1]·u[2] · · ·u[n] | ≤
1. The language of C, denoted by L(C), is the set of n-dim words w for which
there is an accepting run π of A over w such that Parikh(π) |= ϕ. A n-dim
language is constrained rational if it is the language of some n-tape constrained
automaton. Let us state some properties about constrained rational languages.
These properties can be inferred from the properties of rational languages [10]
and Parikh/constrained automata [17,31,42].

Lemma 9. The class of constrained rational languages is closed under union
and concatenation but not under intersection. The emptiness and membership
problems are decidable while the emptiness of intersection problem is undecidable.

We can extend the permutation, projection and composition operations to
the context of constrained rational languages in the straightforward manner. We
also show the same closure properties as in the case of rational languages.

Lemma 10. The class of constrained rational languages is closed under permu-
tation, projection, composition and intersection with regular languages.

The complexity of permutation, projection, composition is at most polyno-
mial in size of input automata whereas the intersection with regular languages
is at most exponential in the size of the description of the regular language and
polynomial in the size of constrained rational automaton.

7.2 Acceleration of Bounded Context-Switches Sets

Let M = (n,Q, Γ,Δ) be an MPDS. A bounded context-switches set over M is
defined by Λ = (τ0, τ1, . . . , τ2m) with m ∈ Nwhere (1) for every i ∈ [0..m], we have
τ2i ⊆ Δji for some ji ∈ [1..n] with j0 = j2m, and (2) for every i ∈ [0..(m − 1)],
|τ2i+1| = 1. The size of Λ is defined as the sum of the sizes of the finite sets τj for all
j ∈ [0..2m]. The set of sequences of transitions recognized by Λ, denoted by L(Λ),
is τ∗

0 τ1τ
∗
2 · · · τ∗

2m. Observe that when m = 0 and τ0 = Δi for some i ∈ [1..n], L(Λ)
corresponds to a context associated to the stack i. And whenever τ2i = ∅ for all
i ∈ [0..m], L(Λ) is a sequence of transitions. Thus, bounded context-switches sets
generalize both loops and contexts. Observe that dropping one of τ2i+1 from the
definition of Λ will allow the simulation of unbounded unrestricted context-switch
sequences and hence leads to the undecidability of the simple reachability problem.
Next, we state our main theorem:

Theorem 6. Let M be an MPDS and Λ = (τ0, τ1, . . . , τ2m) be a bounded
context-switches set over M . For every constrained rational set of configurations
C, PostL(Λ)∗(C) is a constrained rational set and effectively constructible.

The rest of this section is dedicated to the proof of Theorem6. First we prove
an extension of Lemma 1 that shows that in addition to computing pairs of the
form (q, u, q′, u) such that there is a run π from (q, u) to (q′, u′) one may in
addition keep track of the number iterations of L(Λ) seen along π.
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Lemma 11. Let P = (1, P, Γ,R) be an PDS and Λ = (τ0, τ1, . . . , τ2m) be a
bounded context-switches set over P such that τj ⊆ R. Let � be a special symbol
not included in Γ . Then it is possible to construct, in exponential time in the sizes
of P and Λ, an 5-tape finite-state automaton T = (QT , Q, Γ,Q, Γ, {�}, δπ, q0, FT )
such that (q, u, q′, v, �m) ∈ L(T ) iff (q, u) π−→P(q′, v) for some sequence π ∈
(L(Λ))m. Furthermore, the size of T is exponential in the sizes of P and Λ.

The proof of this lemma is based on the combination of the proof of Lemma1
with the fact the Parikh images of context-free languages can be effectively realized
as regular languages.This ability to compute the number of iterations ofL(Λ) along
the run is important. It can be combined with the special structure of L(Λ), which
forces context-switches to occur at identified transitions and in a fixed sequence.
This allows us to prove Lemma 12, leading to the proof of Theorem6.

Now, one can construct a PDS Mi for each stack i, which simulates the
moves of M on the ith stack while guessing, non-deterministically, the effect
of the moves corresponding to the other stacks. Clearly, any run of M can be
decomposed in to a tuple of runs, one per Mi. However, because of the special
structure of L(Λ), a converse of this statement is true for runs of the form L(Λ)∗.
Any tuple of runs, one from each Mi, which agree on the number of iterations
of L(Λ) seen along the run, can be composed together to give a run M .

Let i ∈ [1..n]. For each transition t = (q, op, q′) ∈ Δ, we represent the effect
of the transition t on the stack i by the transition t|i defined as follows: t|i = t
if t ∈ Δi, and t|i = (q, nopi, q

′) otherwise. We extend this operation to sets of
transitions as follows: For a set T ⊆ Δ, T |i = {t|i | t ∈ T}.

Let Mi = (1, Q, Γ,
⋃

j∈[0..2m] τj |i) be a PDS simulating the i-th stack while
taking into account the effect transitions of the other stack operations. We
define also Λ|i to be the bounded context-switches set defined by the tuple
(τ0|i, τ1|i, . . . , τ2m|i). Let Ti be the 5-tape finite state automaton resulting from
the application of Lemma 11 to the PDA Mi and the bounded context-switches
set Λ|i. Then synchronizing the multi-tape automata Ti on the number of occur-
rences of the special symbol � provides a relation between any possible start-
ing configuration (q, u1, . . . , un) with any configuration (q′, v1, . . . , vn) reachable
from (q, u1, . . . , un) of M by firing a sequence of transitions in L(Λ)∗.

Lemma 12. Let m ∈ N. Then, (q, u1, . . . , un) π−→M(q′, v1, . . . , vn) for some
sequence π ∈ (L(Λ))m if and only if for every i ∈ [1..n], (q, ui, q

′, vi, �
m) ∈ L(Ti).

Now,we are ready to proveTheorem 6. Let us assume thatwe are given a (n+1)-
tape constrained automaton C = (A,φ) where A = (P,Q, Γ, . . . , Γ, δ, p0, F ) and
L(C) = C. In the following, we show how to compute a (n + 1)-tape constrained
automaton C′ accepting the set Post (L(Λ))∗(C). To do that, we proceed as follows:
We first compose C with the constrained automaton (T1, true), synchronizing the
second tape of T1 (containing the stack contents at the starting configuration of the
M1) with the second tape of A, to construct a (n+5)-tape constrained automaton
C1 = C ◦(2,2) (T1, true). We then need to synchronize the starting states (i.e., the
first tape of A with the first tape of T1). This can be done by intersecting C1 with the
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(regular) language
⋃

q∈Q{q}×(Γ ∗)n×{q}×Q×Γ ∗×({�})∗. Let C′
1 be the (n+5)-

tapes resulting of this intersection. Then,we project away the starting control state
occurring on the n+2-tape and the content of the second tape to obtain the (n+3)-
tape constrained automaton C′′

1 = Πι(C′
1) where ι = ([1..n + 5] \ {2, n + 2}).

Then, we need to compose C′′
1 with the constrained automaton (T2, true),

synchronizing the second tape of T2 (containing the stack contents at the starting
configuration of the M2) with the second tape of C′′

1 , to construct a (n+ 7)-tape
constrained automaton C2 = C′′

1 ◦(2,2) (T2, true). We then need to synchronize the
starting states (i.e., the first tape of C′′

1 with the first tape of T2). This can be
done by intersecting C2 with the (regular) language

⋃
q∈Q{q} × (Γ ∗)n−1 × Q ×

Γ ∗ × ({�})∗ ×{q}×Q×Γ ∗ × ({�})∗. Let C′
2 be the (n+7)-tapes resulting of this

intersection. Then, we project away the state occurring on the n + 4-tape and
the content of the second tape to obtain the (n+5)-tape constrained automaton
C′′
2 = Πι′(C′

2) where ι′ = ([1..n + 6] \ {2, n + 4}).
This procedure is then repeated for all the constrained automata (Ti, true),with

i ∈ [3..n], to obtain at the end the (3n + 1)-tape constrained automaton C′′
n. We

can also project away the state stored at the first tape from C′′
n since it is no longer

needed. So, let G = Π[2..3n](C′′
n) be the resulting (3n)-tape constrained automaton.

Now, we need to synchronize the automata (Ti, true) on their final states
stored respectively at the tapes 3(i − 1) + 1, with i ∈ [1..n], of G. To do that we
intersect G with the (regular) language

⋃
q∈Q{q}×Γ ∗×({�})∗×{q}×Γ ∗×({�})∗×

· · ·×{q}×Γ ∗ ×({�})∗. Let G′ be the (3n)-tapes resulting of this intersection. We
can then project away the copies of the final control states and only keep its first
occurrence to obtain (2n+1)-tape constrained automaton G′′ defined as follows:
G′′ = Πι′′(G′) where ι′′ = ([1..3n] \ {3i + 1 | i ∈ [1..n − 1]}). Let us assume that
G′′ is of the form (A′, φ′) where A′ = (P ′, Q, Γ, {�}, Γ, {�}, . . . , Γ, {�}, δ′, p′

0, F
′).

For every i ∈ [1..n], let δ′
i be the subset of δ′ containing only transitions of the

form (p,v, p′) ∈ δ′ s.t. v[2i + 1] = � (note that v[j] = ε for all j �= 2i + 1).
From Lemma 12, we need to ensure the same number of the special letters �

in all the tapes {2i + 1|i ∈ [1..n]} by augmenting the formula φ′ with additional
constraints. Let G′′′ = (A′, φ′′) where φ′′ = φ′ ∧ (

∑
t1∈δ′

1
t1 =

∑
t2∈δ′

2
t2 = · · · =

∑
tn∈δ′

n
tn). Finally, the n + 1-tape constrained finite state automaton C′ can be

constructed from G′′′ by projecting away the tapes with symbol � i.e. the tapes
{2i+1|i ∈ [1..n]}. Hence, C′ = Πι′′′(G′′′) where ι′′′ = ([1..n] \ {2i+1|i ∈ [1..n]}).

Using the complexity results for permutation, projection, composition and the
intersection with regular languages for constrained rational languages, we can
show that the size of C′ is at most double-exponential in the sizes of M and Λ.
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Abstract. We present an efficient algorithm to reduce the size of non-
deterministic tree automata, while retaining their language. It is based
on new transition pruning techniques, and quotienting of the state space
w.r.t. suitable equivalences. It uses criteria based on combinations of
downward and upward simulation preorder on trees, and the more general
downward and upward language inclusions. Since tree-language inclusion
is EXPTIME-complete, we describe methods to compute good approxima-
tions in polynomial time.

We implemented our algorithm as a module of the well-known
libvata tree automata library, and tested its performance on a given
collection of tree automata from various applications of libvata in reg-
ular model checking and shape analysis, as well as on various classes of
randomly generated tree automata. Our algorithm yields substantially
smaller and sparser automata than all previously known reduction tech-
niques, and it is still fast enough to handle large instances.

1 Introduction

Background. Tree automata are a generalization of word automata that accept
trees instead of words [14]. They have many applications in model checking
[5,6,12], term rewriting [15], and related areas of formal software verification,
e.g., shape analysis [3,18,20]. Several software packages for manipulating tree
automata have been developed, e.g., MONA [9], Timbuk [16], Autowrite [15]
and libvata [22], on which other verification tools like Forester [23] are based.

For nondeterministic automata, many questions about their languages are
computationally hard. The language universality, equivalence and inclusion prob-
lems are PSPACE-complete for word automata and EXPTIME-complete for tree
automata [14]. However, recently techniques have been developed that can solve
many practical instances fairly efficiently. For word automata there are antichain
techniques [2], congruence-based techniques [10] and techniques based on gener-
alized simulation preorders [13]. The antichain techniques have been generalized
to tree automata in [11,21] and implemented in the libvata library [22]. Per-
formance problems also arise in computing the intersection of several languages,
since the product construction multiplies the numbers of states.
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Automata Reduction. Our goal is to make tree automata more computation-
ally tractable in practice. We present an efficient algorithm for the reduction of
nondeterministic tree automata, in the sense of obtaining a smaller automaton
with the same language, though not necessarily with the absolute minimal pos-
sible number of states. (In general, there is no unique nondeterministic automa-
ton with the minimal possible number of states for a given language, i.e., there
can be several non-isomorphic nondeterministic automata of minimal size. This
holds even for word automata.) The reason to perform reduction is that the
smaller reduced automaton is more efficient to handle in a subsequent computa-
tion. Thus there is an algorithmic tradeoff between the effort for reduction and
the complexity of the problem later considered for this automaton. The main
applications of reduction are the following: (1) Helping to solve hard problems
like language universality/equivalence/inclusion. (2) If automata undergo a long
chain of manipulations/combinations by operations like union, intersection, pro-
jection, etc., then intermediate results can be reduced several times on the way
to keep the automata within a manageable size. (3) There are fixed-parameter
tractable problems (e.g., in model checking where an automaton encodes a logic
formula) where the size of one automaton very strongly influences the overall
complexity, and must be kept as small as possible.

Our Contribution. We present a reduction algorithm for nondeterministic tree
automata. (The tool is available for download [7].) It is based on a combination
of new transition pruning techniques for tree automata, and quotienting of the
state space w.r.t. suitable equivalences. The pruning techniques are related to
those presented for word automata in [13], but significantly more complex due
to the fundamental asymmetry between the upward and downward directions in
trees.

Transition pruning in word automata [13] is based on the observation that
certain transitions can be removed (a.k.a pruned) without changing the lan-
guage, because other ‘better’ transitions remain. One defines some strict partial
order (p.o.) between transitions and removes all transitions that are not maxi-
mal w.r.t. this order. A strict p.o. between transitions is called good for pruning
(GFP) iff pruning w.r.t. it preserves the language of the automaton. Note that
pruning reduces not only the number of transitions, but also, indirectly, the num-
ber of states. By removing transitions, some states may become ‘useless’, in the
sense that they are unreachable from any initial state, or that it is impossible to
reach any accepting state from them. Such useless states can then be removed
from the automaton without changing its language. One can obtain computable
strict p.o. between transitions by comparing the possible backward- and forward
behavior of their source- and target states, respectively. For this, one uses com-
putable relations like backward/forward simulation preorder and approximations
of backward/forward trace inclusion via lookahead- or multipebble simulations.
Some such combinations of backward/forward trace/simulation orders on states
induce strict p.o. between transitions that are GFP, while others do not [13].
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However, there is always a symmetry between backward and forward, since finite
words can equally well be read in either direction.

This symmetry does not hold for tree automata, because the tree branches
as one goes downward, while it might ‘join in’ side branches as one goes
upward. While downward simulation preorder (resp. downward language inclu-
sion) between states in a tree automaton is a direct generalization of forward
simulation preorder (resp. forward language inclusion) on words, the correspond-
ing upward notions do not correspond to backward on words. Comparing upward
behavior of states in tree automata depends also on the branches that ‘join in’
from the sides as one goes upward in the tree. Thus upward simulation/language
inclusion is only defined relative to a given other relation that compares the
downward behavior of states ‘joining in’ from the sides [1]. So one speaks of
“upward simulation of the identity relation” or “upward simulation of downward
simulation”. When one studies strict p.o. between transitions in tree automata
in order to check whether they are GFP, one has combinations of three relations:
the source states are compared by an upward relation X(Y ) of some downward
relation Y , while the target states are compared w.r.t. some downward relation
Z (where Z can be, and often must be, different from Y ). This yields a richer
landscape, and many counter-intuitive effects.

We provide a complete picture of which combinations of upward/downward
simulation/trace inclusions are GFP on tree automata; cf. Fig. 4. Since tree-
(trace)language inclusion is EXPTIME-complete [14], we describe methods to com-
pute good approximations of them in polynomial time. Finally, we also generalize
results on quotienting of tree automata [19] to larger relations, such as approxi-
mations of trace inclusion.

We implemented our algorithm [7] as a module of the well-known libvata
[22] tree automaton library, and tested its performance on a given collection of
tree automata from various applications of libvata in regular model checking
and shape analysis, as well as on various classes of randomly generated tree
automata. Our algorithm yields substantially smaller automata than all pre-
viously known reduction techniques (which are mainly based on quotienting).
Moreover, the thus obtained automata are also much sparser (i.e., use fewer
transitions per state and less nondeterministic branching) than the originals,
which yields additional performance advantages in subsequent computations.

2 Trees and Tree Automata

Trees. A ranked alphabet Σ is a set of symbols together with a function # :
Σ → N0. For a ∈ Σ, #(a) is called the rank of a. For n ≥ 0, we denote by Σn

the set of all symbols of Σ which have rank n.
We define a node as a sequence of elements of N, where ε is the empty

sequence. For a node v ∈ N
∗, any node v′ s.t. v = v′v′′, for some node v′′, is

said to be a prefix of v, and if v′′ �= ε then v′ is a strict prefix of v. For a node
v ∈ N

∗, we define the i-th child of v to be the node vi, for some i ∈ N. Given
a ranked alphabet Σ, a tree over Σ is defined as a partial mapping t : N

∗ → Σ
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such that for all v ∈ N
∗ and i ∈ N, if vi ∈ dom(t) then (1) v ∈ dom(t), and (2)

#(t(v)) ≥ i. In this paper we consider only finite trees.
Note that the number of children of a node v may be smaller than #(t(v)). In

this case we say that the node is open. Nodes which have exactly #(t(v)) children
are called closed. Nodes which do not have any children are called leaves. A tree
is closed if all its nodes are closed, otherwise it is open. By C(Σ) we denote the
set of all closed trees over Σ and by T(Σ) the set of all trees over Σ. A tree t is
linear iff every node in dom(t) has at most one child.

The subtree of a tree t at v is defined as the tree tv such that dom(tv) = {v′ |
vv′ ∈ dom(t)} and tv(v′) = t(vv′) for all v′ ∈ dom(tv). A tree t′ is a prefix of
t iff dom(t′) ⊆ dom(t) and for all v ∈ dom(t′), t′(v) = t(v). For t ∈ C(Σ), the
height of a node v of t is given by the function h: if v is a leaf then h(v) = 1,
otherwise h(v) = 1 + max(h(v1)), . . . , h(v#(t(v)))). We define the height of a
tree t ∈ C(Σ) as h(ε), i.e., as the number of levels of t.

Tree Automata, Top-Down. A (finite, nondeterministic) top-down tree
automaton (TDTA) is a quadruple A = (Σ, Q, δ, I) where Q is a finite set of
states, I ⊆ Q is a set of initial states, Σ is a ranked alphabet, and δ ⊆ Q×Σ×Q+

is the set of transition rules. A TDTA has an unique final state, which we rep-
resent by ψ. The transition rules satisfy that if 〈q, a,ψ〉 ∈ δ then #(a) = 0, and
if 〈q, a, q1 . . . qn〉 ∈ δ (with n > 0) then #(a) = n.

A run of A over a tree t ∈ T(Σ) (or a t-run in A) is a partial mapping
π : N

∗ → Q such that v ∈ dom(π) iff either v ∈ dom(t) or v = v′i where
v′ ∈ dom(t) and i ≤ #(t(v′)). Further, for every v ∈ dom(t), there exists either
(a) a rule 〈q, a,ψ〉 such that q = π(v) and a = t(v), or (b) a rule 〈q, a, q1 . . . qn〉
such that q = π(v), a = t(v), and qi = π(vi) for each i : 1 ≤ i ≤ #(a). A leaf
of a run π on t is a node v ∈ dom(π) such that vi ∈ dom(π) for no i ∈ N. We
call it dangling if v �∈ dom(t). Intuitively, the dangling nodes of a run over t are
all the nodes which are in π but are missing in t due to it being incomplete.
Notice that dangling leaves of π are children of open nodes of t. The prefix of
depth k of a run π is denoted πk. Runs are always finite since the trees we are
considering are finite.

We write t
π=⇒ q to denote that π is a t-run of A such that π(ε) = q. We use

t =⇒ q to denote that such run π exists. A run π is accepting if t π=⇒ q ∈ I. The
downward language of a state q in A is defined by DA(q) = {t ∈ C(Σ) | t =⇒ q},
while the language of A is defined by L(A) =

⋃
q∈I DA(q). The upward language

of a state q in A, denoted UA(q), is then defined as the set of open trees t,
such that there exists an accepting t-run π with exactly one dangling leaf v s.t.
π(v) = q. We omit the A subscript notation when it is implicit which automaton
we are considering.

In the related literature, it is common to define a tree automaton bottom-
up, reading a tree from the leaves to the root [11,14,21]. A bottom-up tree
automaton (BUTA) can be obtained from a TDTA by reversing the direction of
the transition rules and by swapping the roles between the initial states and the
final states. See [8] for an example of a tree automaton presented in both BUTA
and TDTA form.
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3 Simulations and Trace Inclusions

We consider different types of relations on states of a TDTA which under-
approximate language inclusion. Note that words are but a special case of
trees where every node has only one child, i.e., words are linear trees. Down-
ward simulation/trace inclusion on TDTA corresponds to direct forward simula-
tion/trace inclusion in special case of word automata, and upward corresponds to
backward [13].

Forward Simulation on Word Automata. Let A = (Σ, Q, δ, I, F ) be a NFA.
A direct forward simulation D is a binary relation on Q such that if q D r, then

1. q ∈ F =⇒ r ∈ F , and
2. for any 〈q, a, q′〉 ∈ δ, there exists 〈r, a, r′〉 ∈ δ such that q′ D r′.

The set of direct forward simulations on A contains id and is closed under union
and transitive closure. Thus there is a unique maximal direct forward simulation
on A, which is a preorder. We call it the direct forward simulation preorder on
A and write �di.

Forward Trace Inclusion on Word Automata. Let A = (Σ, Q, δ, I, F ) be
a NFA and w = σ1 σ2 . . . σn ∈ Σ∗ a word of length n. A trace of A on w (or a
w-trace) starting at q is a sequence of transitions π = q0

σ1→ q1
σ2→ · · · σn→ qn such

that q0 = q. The direct forward trace inclusion preorder ⊆di is a binary relation
on Q such that q ⊆di r iff

1. (q ∈ F =⇒ r ∈ F ), and
2. for every word w = σ1 σ2 . . . σn ∈ Σ∗ and for every w-trace (starting at q)

πq = q
σ1→ q1

σ2→ · · · σn→ qn, there exists a w-trace (starting at r) πr = r
σ1→

r1
σ2→ · · · σn→ rn such that (qi ∈ F =⇒ ri ∈ F ) for each i : 1 ≤ i ≤ n.

Since πr is required to preserve the acceptance of the states in πq, trace inclusion
is a strictly stronger notion than language inclusion (see [8] for an example).

Downward Simulation on Tree Automata. Let A = (Σ, Q, δ, I) be a TDTA.
A downward simulation D is a binary relation on Q such that if q D r, then

1. (q = ψ =⇒ r = ψ), and
2. for any 〈q, a, q1 . . . qn〉 ∈ δ, there exists 〈r, a, r1 . . . rn〉 ∈ δ s.t. qi D ri for

i : 1 ≤ i ≤ n.

Since the set of all downward simulations on A is closed under union and under
reflexive and transitive closure (cf. Lemma 4.1 in [19]), it follows that there is
one unique maximal downward simulation on A, and that relation is a preorder.
We call it the downward simulation preorder on A and write �dw.
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Downward Trace Inclusion on Tree Automata. Let A = (Σ, Q, δ, I) be a
TDTA. The downward trace inclusion preorder ⊆dw is a binary relation on Q
s.t. q ⊆dw r iff for every tree t ∈ C(Σ) and for every t-run πq with πq(ε) = q
there exists another t-run πr s.t.

1. πr(ε) = r, and
2. (πq(v) = ψ =⇒ πr(v) = ψ) for each leaf node v ∈ dom(t).

Generally, one way of making downward language inclusion on the states of an
automaton coincide with downward trace inclusion is by modifying the automa-
ton to guarantee that (1) there is one unique final state which has no outgoing
transitions, (2) from any other state, there is a path ending in that final state.
Note that in a TDTA these two conditions are automatically satisfied: (1) since
the final state is reached after reading a leaf of the tree, and (2) because only
complete trees are in the language of the automaton. Thus, in a TDTA, down-
ward language inclusion and downward trace inclusion coincide.

Backward Simulation on Word Automata. Let A = (Σ, Q, δ, I, F ) be a
NFA. A backward simulation B is a binary relation on Q s.t. if q B r, then

1. (q ∈ F =⇒ r ∈ F ) and (q ∈ I =⇒ r ∈ I), and
2. for any 〈q′, a, q〉 ∈ δ, there exists 〈r′, a, r〉 ∈ δ s.t. q′ B r′.

Like for forward simulation, there is a unique maximal backward simulation on
A, which is a preorder. We call it the backward simulation preorder on A and
write �bw.

Backward Trace Inclusion on Word Automata. Let A = (Σ, Q, δ, I, F ) be
a NFA and w = σ1 σ2 . . . σn ∈ Σ∗ a word of length n. A w-trace of A ending
at q is a sequence of transitions π = q0

σ1→ q1
σ2→ · · · σn→ qn such that qn = q.

The backward trace inclusion preorder ⊆bw is a binary relation on Q such that
q ⊆bw r iff

1. (q ∈ F =⇒ r ∈ F ) and (q ∈ I =⇒ r ∈ I), and
2. for every word w = σ1 σ2 . . . σn ∈ Σ∗ and for every w-trace (ending at q)

πq = q0
σ1→ q1

σ2→ · · · σn→ q, there exists a w-trace (ending at r) πr = r0
σ1→

r1
σ2→ · · · σn→ r such that (qi ∈ F =⇒ ri ∈ F ∧ qi ∈ I =⇒ ri ∈ I) for each

i : 1 ≤ i ≤ n.

Upward Simulation on Tree Automata. Let A = (Σ, Q, δ, I) be a TDTA.
Given a binary relation R on Q, an upward simulation U(R) induced by R is a
binary relation on Q such that if q U(R) r, then

1. (q = ψ =⇒ r = ψ) and (q ∈ I =⇒ r ∈ I), and
2. for any 〈q′, a, q1 . . . qn〉 ∈ δ with qi = q (for some i : 1 ≤ i ≤ n), there exists

〈r′, a, r1 . . . rn〉 ∈ δ such that ri = r, q′ U(R) r′ and qj R rj for each j : 1 ≤
j �= i ≤ n.
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Similarly to the case of downward simulation, for any given relation R, there is a
unique maximal upward simulation induced by R which is a preorder (cf. Lemma
4.2 in [19]). We call it the upward simulation preorder on A induced by R and
write �up(R).

Upward Trace Inclusion on Tree Automata. Let A = (Σ, Q, δ, I) be a
TDTA. Given a binary relation R on Q, the upward trace inclusion preorder
⊆up (R) induced by R is a binary relation on Q such that q ⊆up (R) r iff (q =
ψ =⇒ r = ψ) and the following holds: for every tree t ∈ T (Σ) and for every
t-run πq with πq(v) = q for some leaf v of t, there exists a t-run πr s.t.

1. πr(v) = r,
2. for all prefixes v′ of v, (πq(v′) ∈ I =⇒ πr(v′) ∈ I), and
3. if v′x ∈ dom(πq), for some strict prefix v′ of v and some x ∈ N s.t. v′x is not

a prefix of v, then πq(v′x) R πr(v′x).

Downward trace inclusion is EXPTIME-complete for TDTA [14], while forward
trace inclusion is PSPACE-complete for word automata. The complexity of upward
trace inclusion depends on the relation R (e.g., it is PSPACE-complete for R = id).
In contrast, downward/upward simulation preorder is computable in polynomial
time [1], but typically yields only small under-approximations of the correspond-
ing trace inclusions.

4 Transition Pruning Techniques

We define pruning relations on a TDTA A = (Σ, Q, δ, I). The intuition is that
certain transitions may be deleted without changing the language, because ‘bet-
ter’ transitions remain. We perform this pruning (i.e., deletion) of transitions
by comparing their endpoints over the same symbol σ ∈ Σ. Given two binary
relations Ru and Rd on Q, we define the following relation to compare transitions.

P (Ru, Rd) = {(〈p, σ, r1 · · · rn〉, 〈p′, σ, r′
1 · · · r′

n〉) | p Ru p′ and (r1 · · · rn) R̂d (r′
1 · · · r′

n)},

where R̂d results from lifting Rd ⊆ Q × Q to R̂d ⊆ Qn × Qn, as defined below.
The function P is monotone in the two arguments. If t P t′ then t may be pruned
because t′ is ‘better’ than t. We want P (Ru, Rd) to be a strict partial order (p.o.),
i.e., irreflexive and transitive (and thus acyclic). There are two cases in which
P (Ru, Rd) is guaranteed to be a strict p.o.: (1) Ru is some strict p.o. <u and R̂d

is the standard lifting ≤̂d of some p.o. ≤d to tuples. I.e., (r1 · · · rn)≤̂d(r′
1 · · · r′

n) iff
∀1≤i≤n. ri ≤d r′

i. The transitions in each pair of P (<u,≤d) depart from different
states and therefore the transitions are necessarily different. (2) Ru is some p.o.
≤u and R̂d is the lifting <̂d of some strict p.o. <d to tuples (defined below).
In this case the transitions in each pair of P (≤u, <d) may have the same origin
but must go to different tuples of states. Since for two tuples (r1 · · · rn) and
(r′

1 · · · r′
n) to be different it suffices that ri �= r′

i for some 1 ≤ i ≤ n, we define
<̂d as a binary relation such that (r1 · · · rn)<̂d(r′

1 · · · r′
n) iff ∀1≤i≤n. ri ≤d r′

i, and
∃1≤i≤n. ri <d r′

i.
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Let A = (Σ, Q, δ, I) be a TDTA and let P ⊆ δ × δ be a strict par-
tial order. The pruned automaton is defined as Prune(A,P ) = (Σ, Q, δ′, I)
where δ

′ = {(p, σ, r) ∈ δ | �(p′, σ, r′) ∈ δ. (p, σ, r)P (p′, σ, r′)}. Note that the
pruned automaton Prune(A,P ) is unique. The transitions are removed with-
out requiring the re-computation of the relation P , which could be expen-
sive. Since removing transitions cannot introduce new trees in the language,
L(Prune(A,P )) ⊆ L(A). If the reverse inclusion holds too (so that the lan-
guage is preserved), we say that P is good for pruning (GFP), i.e., P is GFP iff
L(Prune(A,P )) = L(A).

We now provide a complete picture of which combinations of simulation and
trace inclusion relations are GFP. Recall that simulations are denoted by square
symbols � while trace inclusions are denoted by round symbols ⊆. For every
partial order R, the corresponding strict p.o. is defined as R\R−1.

P (⊂bw,⊂di) is not GFP for word automata (see Fig. 2(a) in [13] for a
counterexample). As mentioned before, words correspond to linear trees. Thus
P (⊂up (R),⊂dw) is not GFP for tree automata (regardless of the relation R).
Figure 1 presents several more counterexamples. For word automata, P (⊂bw,�di)
and P (�bw,⊂di) are not GFP (Fig. 1b and c) even though P (⊆bw,�di) and
P (�bw,⊆di) are (cf. [13]). Thus P (⊂up (R),�dw) and P (�up (R),⊂dw) are not
GFP for tree automata (regardless of the relation R). For tree automata,
P (�up(�dw), id) and P (�up(⊂dw),�dw) are not GFP (Fig. 1a and d). Moreover,
a complex counterexample (see [8]) is needed to show that P (�up(�dw),⊂dw) is
not GFP.

The following theorems and corollaries provide several relations which are
GFP.

Theorem 1. For every strict partial order R ⊂ ⊆dw, it holds that P (id , R)
is GFP.

Corollary 1. By Theorem 1, P (id ,⊂dw) and P (id ,�dw) are GFP.

Theorem 2. For every strict partial order R ⊂ ⊆up(id), it holds that P (R, id)
is GFP.

Corollary 2. By Theorem 2, P (⊂up(id), id) and P (�up(id), id) are GFP.

Definition 1. Given a tree automaton A, a binary relation W on its states is
called a downup-relation iff the following condition holds: If p W q then for
every tree t ∈ T(Σ) and accepting t-run π from p there exists an accepting t-run
π′ from q such that ∀v ∈N∗ π(v) �up(W ) π′(v).

Lemma 1. Any relation V satisfying (1) V is a downward simulation, and (2)
id ⊆ V ⊆ �up(V ) is a downup-relation. In particular, id is a downup-relation,
but �dw and �up(id) are not.

Theorem 3. For every downup-relation W , it holds that P (�up (W ),⊆dw) is
GFP.
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Fig. 1. GFP counterexamples. A transition is drawn in dashed when a different tran-
sition by the same symbol departing from the same state already exists. We draw a
transition in thick red when it is better than another transition (drawn in thin blue).
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Proof. Let A′ = Prune(A,P (�up (W ),⊆dw)). We show L(A) ⊆ L(A′). If t ∈
L(A) then there exists an accepting t-run π̂ in A. We show that there is an
accepting t-run π̂

′ in A′.
For each accepting t-run π in A, let level i(π) be the tuple of states that π

visits at depth i in the tree, read from left to right. Formally, let (x1, . . . , xk)
with xj ∈ N

i be the set of all tree positions of depth i s.t. xj ∈ dom(π), in
lexicographically increasing order. Then level i(π) = (π(x1), . . . ,π(xk)) ∈ Qk.
By lifting partial orders on Q to partial orders on tuples, we can compare such
tuples w.r.t. �up(W ). We say that an accepting t-run π is i-good iff it does not
contain any transition from A − A′ from any position v ∈ N

∗ with |v| < i. I.e.,
no pruned transition is used in the first i levels of the tree.

We now define a strict partial order <i on the set of accepting t-runs in A.
Let π <i π′ iff ∃k ≤ i. levelk(π) �up(W ) levelk(π′) and ∀l < k. level l(π) �up(W )
level l(π′). Note that <i only depends on the first i levels of the run. Given A, t
and i, there are only finitely many different such i-prefixes of accepting t-runs.
By our assumption that π̂ is an accepting t-run in A, the set of accepting t-runs
in A is non-empty. Thus, for any i, there must exist some accepting t-run π in
A that is maximal w.r.t. <i.

We now show that this π is also i-good, by assuming the contrary and deriv-
ing a contradiction. Suppose that π is not i-good. Then it must contain a tran-
sition 〈p, σ, r1 · · · rn〉 from A − A′ used at the root of some subtree t′ of t at
some level j < i. Since A′ = Prune(A,P (�up (W ),⊆dw)), there must exist
another transition 〈p′, σ, r′

1 · · · r′
n〉 in A′ s.t. (1) (r1, . . . , rn) ⊆dw (r′

1, . . . , r
′
n) and

(2) p �up(W ) p′.
First consider the implications of (2). Upward simulation propagates upward

stepwise (though only in non-strict form after the first step). So p′ can imitate the
upward path of p to the root of t, maintaining �up(W ) between the corresponding
states. The states on side branches joining in along the upward path from p can
be matched by W -larger states in joining side branches along the upward path
from p′. From Definition 1 we obtain that these W -larger states in p′s joining
side branches can accept their subtrees of t via computations that are everywhere
�up(W ) larger than corresponding states in computations from ps joining side
branches. So there must be an accepting run π′ on t s.t. (3) π′ is at state
p′ at the root of t′ and uses transition 〈p′, σ, r′

1 · · · r′
n〉 from p′, and (4) for all

v ∈ N
∗ where t(v) /∈ t′ we have π(v) �up(W ) π′(v). Moreover, by conditions (1)

and (3), π′ can be extended from r′
1, . . . , r

′
n to accept also the subtree t′. Thus

π′ is an accepting t-run in A. By conditions (2) and (4) we obtain that ∀l ≤
j. level l(π) �up(W ) level l(π′). By (2) we get even level j(π) �up(W ) level j(π′)
and thus π <j π′. Since j < i we also have π <i π′ and thus π was not maximal
w.r.t. <i. Contradiction. So we have shown that for every t ∈ L(A) there exists
an i-good accepting run for every finite i.

If t ∈ L(A) then there exists an accepting t-run π̂ in A. Then there exists an
accepting t-run π̂

′ that is i-good, where i is the height of t. Thus π̂
′ is a run in

A′ and t ∈ L(A′). ��
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Corollary 3. It follows from Lemma 1 and from the fact that GFP is downward
closed that P (�up(V ),⊆dw), P (�up(V ),⊂dw), P (�up(V ),�dw), P (�up(V ),�dw),
P (�up(V ), id), P (�up(id),⊆dw), P (�up(id),⊂dw), P (�up(id),�dw) and P (�up

(id),�dw) are GFP.

Theorem 4. P (⊆up(�dw),�dw) is GFP.

Proof. Let A′ = Prune(A,P (⊆up (�dw),�dw)). We show L(A) ⊆ L(A′). If t ∈
L(A) then there exists an accepting t-run π̂ in A. We show that there is an
accepting t-run π̂

′ in A′.
For each accepting t-run π in A, let level i(π) be the tuple of states that π

visits at depth i in the tree, read from left to right. Formally, let (x1, . . . , xk)
with xj ∈ N

i be the set of all tree positions of depth i s.t. xj ∈ dom(π), in
lexicographically increasing order. Then level i(π) = (π(x1), . . . ,π(xk)) ∈ Qk.
By lifting partial orders on Q to partial orders on tuples we can compare such
tuples w.r.t. �dw. We say that an accepting t-run π is i-good if it does not
contain any transition from A − A′ from any position v ∈ N

∗ with |v| < i. I.e.,
no pruned transitions are used in the first i levels of the tree.

We now show, by induction on i, the following property (C): For every i and
every accepting t-run π in A there exists an i-good accepting t-run π′ in A s.t.
level i(π) �dw level i(π′).

The base case is i = 0. Every accepting t-run π in A is trivially 0-good itself
and thus satisfies (C).

For the induction step, let S be the set of all (i−1)-good accepting t-runs π′

in A s.t. level i−1(π) �dw level i−1(π′). Since π is an accepting t-run, by induc-
tion hypothesis, S is non-empty. Let S′ ⊆ S be the subset of S containing
exactly those runs π′ ∈ S that additionally satisfy level i(π) �dw level i(π′).
From level i−1(π) �dw level i−1(π′) and the fact that �dw is preserved downward-
stepwise, we obtain that S′ is non-empty. Now we can select some π′ ∈ S′ s.t.
level i(π′) is maximal, w.r.t. �dw, relative to the other runs in S′. We claim that
π′ is i-good and level i(π) �dw level i(π′). The second part of this claim holds
because π′ ∈ S′.

We show that π′ is i-good by contraposition. Suppose that π′ is not i-good.
Then it must contain a transition 〈p, σ, r1 · · · rn〉 from A − A′. Since π′ is (i −
1)-good, this transition must start at depth (i − 1) in the tree. Since A′ =
Prune(A,P (⊆up(�dw),�dw)), there must exist another transition 〈p′, σ, r′

1 · · · r′
n〉

in A′ s.t. p ⊆up(�dw) p′ and (r1, . . . , rn) �dw (r′
1, . . . , r

′
n). From the definition of

⊆up (�dw) we obtain that there exists another accepting t-run π1 in A (that
uses the transition 〈p′, σ, r′

1 · · · r′
n〉) s.t. level i(π′) �dw level i(π1). The run π1

is not necessarily i-good or (i − 1)-good. However, by induction hypothesis,
there exists some accepting t-run π2 in A that is (i − 1)-good and satisfies
level i−1(π1) �dw level i−1(π2). Since �dw is preserved stepwise, there also exists
an accepting t-run π3 in A (that coincides with π2 up-to depth (i − 1)), which
is (i − 1)-good and satisfies level i(π1) �dw level i(π3). In particular, π3 ∈ S′.

From level i(π′) �dw level i(π1) and level i(π1) �dw level i(π3) we obtain
level i(π′) �dw level i(π3). This contradicts our condition above that π′ must
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be level i maximal w.r.t. �dw in S′. This concludes the induction step and the
proof of property (C).

If t ∈ L(A) then there exists an accepting t-run π̂ in A. By property (C),
there exists an accepting t-run π̂

′ that is i-good, where i is the height of t.
Therefore π̂

′ does not use any transition from A − A′ and is thus also a run in
A′. So we obtain t ∈ L(A′). ��
Corollary 4. It follows from Theorem 4 and the fact that GFP is downward
closed that P (⊂up (�dw),�dw), P (�up (�dw),�dw), P (�up (�dw),�dw), P (⊆up

(id),�dw), P (⊂up(id),�dw), P (�up(id),�dw) and P (id ,�dw) are GFP.

5 State Quotienting Techniques

A classic method for reducing the size of automata is state quotienting. Given
a suitable equivalence relation on the set of states, each equivalence class is
collapsed into just one state. From a preorder � one obtains an equivalence
relation ≡ := � ∩ �. We now define quotienting w.r.t. ≡. Let A = (Σ, Q, δ, I)
be a TDTA and let � be a preorder on Q. Given q ∈ Q, we denote by [q] its
equivalence class w.r.t ≡. For P ⊆ Q, [P ] denotes the set of equivalence classes
[P ] = {[p] | p ∈ P}. We define the quotient automaton w.r.t. ≡ as A/ ≡ :=
(Σ, [Q], δA/≡, [I]), where δA/≡ = {〈[q], σ, [q1] . . . [qn]〉 | 〈q, σ, q1 . . . qn〉 ∈ δA}. It
is trivial that L(A) ⊆ L(A/≡) for any ≡. If the reverse inclusion also holds, i.e.,
if L(A) = L(A/≡), we say that ≡ is good for quotienting (GFQ).

It was shown in [19] that �dw∩�dw and �up(id)∩ �up(id) are GFQ. Here we
generalize this result from simulation to trace equivalence. Let ≡dw := ⊆dw∩⊇dw

and ≡up(R) := ⊆up(R)∩ ⊇up(R).

Theorem 5. ≡dw is GFQ.

Theorem 6. ≡up(id) is GFQ.

In [8] we present a counterexample showing that ≡ :=�up(�dw∩�dw)∩ �up(�dw

∩�dw) is not GFQ. This is an adaptation from the Example 5 in [19], where the
inducing relation is referred to as the downward bisimulation equivalence and
the automata are seen bottom-up.

One of the best methods previously known for reducing TA performs state
quotienting based on a combination of downward and upward simulation [4].
However, this method cannot achieve any further reduction on an automaton
which has been previously reduced with the techniques we described above [8].

6 Lookahead Simulations

Simulation preorders are generally not very good under-approximations of trace
inclusion, since they are much smaller on many automata. Thus we consider
better approximations that are still efficiently computable.
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For word automata, more general lookahead simulations were introduced in
[13]. These provide a practically useful tradeoff between the computational effort
and the size of the obtained relations. Lookahead simulations can also be seen as a
particular restriction of the more general (but less practically useful) multipebble
simulations [17]. We generalize lookahead simulations to tree automata in order
to compute good under-approximations of trace inclusions.

Intuition by Simulation Games. Normal simulation preorder on labeled
transition graphs can be characterized by a game between two players, Spoiler
and Duplicator. Given a pair of states (q0, r0), Spoiler wants to show that (q0, r0)
is not contained in the simulation preorder relation, while Duplicator has the
opposite goal. Starting in the initial configuration (q0, r0), Spoiler chooses a tran-
sition q0

σ→ q1 and Duplicator must imitate it stepwise by choosing a transition
with the same symbol r0

σ→ r1. This yields a new configuration (q1, r1) from
which the game continues. If a player cannot move the other wins. Duplicator
wins every infinite game. Simulation holds iff Duplicator wins.

In normal simulation, Duplicator only knows Spoiler’s very next step (see
above), while in k-lookahead simulation Duplicator knows Spoiler’s k next steps
in advance (unless Spoiler’s move ends in a deadlocked state - i.e., a state with no
transitions). As the parameter k increases, the k-lookahead simulation relation
becomes larger and thus approximates the trace inclusion relation better and
better. Trace inclusion can also be characterized by a game. In the trace inclusion
game, Duplicator knows all steps of Spoiler in the entire game in advance.

For every fixed k, k-lookahead simulation is computable in polynomial time,
though the complexity rises quickly in k: it is doubly exponential for downward-
and single exponential for upward lookahead simulation (due to the downward
branching of trees). A crucial trick makes it possible to practically compute it
for nontrivial k: Spoiler’s moves are built incrementally, and Duplicator need not
respond to all of Spoiler’s announced k next steps, but only to a prefix of them,
after which he may request fresh information [13]. Thus Duplicator just uses the
minimal lookahead necessary to win the current step.

Lookahead Downward Simulation. We say that a tree t is k-bounded iff
for all leaves v of t, either (a) |v| = k, or (b) |v| < k and v is closed. Let
A = (Σ, Q, δ, I) be a TDTA. A k-lookahead downward simulation Lk−dw is a
binary relation on Q such that if q Lk−dw r, then (q = ψ =⇒ r = ψ) and
the following holds: Let πk be a run on a k-bounded tree tk with π(ε) = q
s.t. every leaf node of πk is either at depth k or downward-deadlocked (i.e.,
no more downward transitions exist). Then there must exist a run π′

k over a
nonempty prefix t′k of tk s.t. (1) π′

k(ε) = r, and (2) for every leaf v of π′
k,

πk(v) Lk−dw π′
k(v). Since, for given A and k ≥ 1, lookahead downward simula-

tions are closed under union, there exists a unique maximal one that we call the
k-lookahead downward simulation on A, denoted by �k-dw. While �k-dw is triv-
ially reflexive, it is not transitive in general (cf. [13], Appendix B). Since we only
use it as a means to under-approximate the transitive trace inclusion relation ⊆dw
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(and require a preorder to induce an equivalence), we work with its transitive
closure �k-dw:= (�k-dw)+. In particular, �k-dw⊆ ⊆dw.

Lookahead Upward Simulation. Let A = (Σ, Q, δ, I) be a TDTA.
A k-lookahead upward simulation on A induced by a relation R is a binary
relation Lk−up(R) on Q s.t. if q Lk−up(R) r, then (q = ψ =⇒ r = ψ) and the
following holds: Let π be a run over a tree t ∈ T(Σ) with π(v) = q for some
bottom leaf v s.t. either |v| = k or 0 < |v| < k and π(ε) is upward-deadlocked
(i.e., no more upward transitions exist).

Then there must exist v′, v′′ such that v = v′v′′ and |v′′| ≥ 1 and a run π′

over tv′ s.t. the following holds. (1) π′(v′′) = r, (2) π(v′) Lk−up(R) π′(ε), (3)
π(v′x) ∈ I =⇒ π′(x) ∈ I for all prefixes x of v′′, (4) If v′xy ∈ dom(π) for
some strict prefix x of v′′ and some y ∈ N where xy is not a prefix of v′′ then
π(v′xy) R π′(xy).

Since, for given A, k ≥ 1 and R, lookahead upward simulations are closed
under union, there exists a unique maximal one that we call the k-lookahead
upward simulation induced by R on A, denoted by �k-up(R). Since both R and
�k-up(R) are not necessarily transitive, we first compute its transitive closure,
R+, and we then compute �k-up(R) := (�k-up(R+))+, which under-approximates
the upward trace inclusion ⊆up(R+).

7 Experiments

Our tree automata reduction algorithm (tool available [7]) combines transition
pruning techniques (Sect. 4) with quotienting techniques (Sect. 5). Trace inclu-
sions are under-approximated by lookahead simulations (Sect. 6) where higher
lookaheads are harder to compute but yield better approximations. The parame-
ters x, y ≥ 1 describe the lookahead for downward/upward lookahead simulations,
respectively. Downward lookahead simulation is harder to compute than upward
lookahead simulation, since the number of possible moves is doubly exponential
in x (due to the downward branching of the tree) while for upward-simulation it
is only single exponential in y. We use (x, y) as (1, 1), (2, 4) and (3, 7).

Besides pruning and quotienting, we also use the operation RU that removes
useless states, i.e., states that either cannot be reached from any initial state or
from which no tree can be accepted. Let Op(x, y) be the following sequence
of operations on tree automata: RU , quotienting with �x-dw, pruning with
P (id ,≺x-dw), RU , quotienting with �y-up (id), pruning with P (≺y-up (id), id),
pruning with P (�up(id),�x-dw), RU , quotienting with �y-up(id), pruning with
P (�y-up(�dw),�dw), RU . It is language preserving by the Theorems of Sects. 4
and 5. The order of the operations is chosen according to some considerations
of efficiency. (No order is ideal for all instances.)

Our algorithm Heavy(1, 1) just iterates Op(1, 1) until a fixpoint is reached.
For efficiency reasons, the general algorithm Heavy(x, y) does not iterate
Op(x, y), but uses a double loop: it iterates the sequence Heavy(1, 1)Op(x, y)
until a fixpoint is reached.
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We compare the reduction performance of several algorithms.

RU: RU . (Previously present in libvata.)
RUQ: RU and quotienting with �dw. (Previously present in libvata.)
RUQP: RUQ, plus pruning with P (id ,�dw). (Not in libvata, but simple.)
Heavy: Heavy(1, 1), Heavy(2, 4) and Heavy(3, 7). (New.)

We tested these algorithms on three sets of automata from the libvata dis-
tribution. The first set are 27 moderate-sized automata (87 states and 816 tran-
sitions on avg.) derived from regular model checking applications. Heavy(1,1),
on avg., reduced the number of states and transitions to 27 % and 14 % of the
original sizes, resp. (Note the difference between ‘to’ and ‘by’.) In contrast, RU
did not perform any reduction in any case, RUQ, on avg., reduced the number
of states and transitions only to 81 % and 80 % of the original sizes and RUQP
reduced the number of states and transitions to 81 % and 32 % of the original
sizes; cf. Fig. 2. The average computation times of Heavy(1,1), RUQP, RUQ and
RU were, respectively, 0.05 s, 0.03 s, 0.006 s and 0.001 s.

The second set are 62 larger automata (586 states and 8865 transitions, on
avg.) derived from regular model checking applications. Heavy(1,1), on avg.,
reduced the number of states and transitions to 4.2 % and 0.7 % of the original
sizes. In contrast, RU did not perform any reduction in any case, RUQ, on
avg., reduced the number of states and transitions to 75.2 % and 74.8 % of the
original sizes and RUQP reduced the number of states and transitions to 75.2 %
and 15.8 % of the original sizes [8]. The average computation times of Heavy(1,1),
RUQP, RUQ and RU were, respectively, 2.7 s, 2.1 s, 0.2 s and 0.02 s.

The third set are 14,498 automata (57 states and 266 transitions on avg.) from
the shape analysis tool Forester [23]. Heavy(1,1), on avg., reduced the number
of states/transitions to 76.4 % and 67.9 % of the original, resp. RUQ and RUQP
reduced the states and transitions only to 94 % and 88 %, resp. The average
computation times of Heavy(1,1), RUQP, RUQ and RU were, respectively, 0.21 s,
0.014 s, 0.004 s, and 0.0006 s.

Due to the particular structure of the automata in these 3 sample
sets, Heavy(2, 4) and Heavy(3, 7) had hardly any advantage over Heavy(1, 1).
However, in general they can perform significantly better.

We also tested the algorithms on randomly generated tree automata, accord-
ing to a generalization of the Tabakov-Vardi model of random word automata
[24]. Given parameters n, s, td (transition density) and ad (acceptance density),
it generates tree automata with n states, s symbols (each of rank 2), n ∗ td ran-
domly assigned transitions for each symbol, and n ∗ ad randomly assigned leaf
rules. Figure 3 shows the results of reducing automata of varying td with different
methods.

8 Summary and Conclusion

The tables in Figs. 4 and 5 summarize all our results on pruning and quotienting,
respectively. Note that negative results propagate to larger relations and positive
results propagate to smaller relations (i.e., GFP/GFQ is downward closed).
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Fig. 2. Reduction of 27 moderate-sized tree automata by methods RUQ (top row),
RUQP (middle row), and Heavy (bottom row). A bar of height h at an interval [x, x+10[
means that h of the 27 automata were reduced to a size between x% and (x + 10) %
of their original size. The reductions in the numbers of states/transitions are shown
on the left/right, respectively. On this set of automata, the methods Heavy(2,4) and
Heavy(3,7) gave exactly the same results as Heavy(1,1).

Fig. 3. Reduction of Tabakov-Vardi random tree automata with n = 100, s = 2 and
ad = 0.8. The x-axis gives the transition density td , and the y-axis gives the average
number of states after reduction with the various methods (smaller is better). Each
data point is the average of 400 random automata. Note that Heavy(2,4) reduces much
better than Heavy(1,1) for td ≥ 3.5. Computing Heavy(x,y) for even higher x, y is very
slow on (some instances of) random automata.
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Fig. 4. GFP relations P (Ru(Ri), Rd)
for tree automata. Relations which
are GFP are marked with �, those
which are not are marked with × and
− is used to mark relations where
the test does not apply due to them
being reflexive (and therefore not
asymmetric).

Fig. 5. GFQ relations R for tree automata.
Relations which are GFQ are marked with
� and those which are not are marked with
×. The relations marked with − are not
even reflexive in general (unless all transi-
tions are linear; in this case we have a word
automaton and these relations are the same
as �up(id) and ⊆up(id), respectively).

The experiments show that our Heavy(x,y) algorithm can significantly reduce
the size of many classes of nondeterministic tree automata, and that it is suf-
ficiently fast to handle instances with hundreds of states and thousands of
transitions.
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2. Abdulla, P.A., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation
meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 158–174. Springer, Heidelberg (2010)



734 R. Almeida et al.
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Abstract. Timed pattern matching consists in finding all segments of
a dense-time Boolean signal that match a pattern defined by a timed
regular expression. This problem has been formulated and solved in [17]
via an offline algorithm that takes the signal and expression as inputs
and produces the set of all matches, represented as a finite union of
two-dimensional zones. In this work we develop an online version of
this approach where the input signal is presented incrementally and the
matching is computed incrementally as well.

Naturally, the concept of derivatives of regular expressions due to
Brzozowski [6] can play a role in defining what remains to match after
having read a prefix of the signal. However the adaptation of this concept
is not a straightforward for two reasons: the dense infinite-state nature of
timed behaviors and the fact that we are interested in matching, not only
in prefix acceptance. To resolve these issues we develop an alternative
theory of signals and expressions based on absolute time and show how
derivatives are defined and computed in this setting. We then implement
an online timed pattern matching algorithm based on these results.

1 Introduction

Timed regular expressions (tre), introduced in [3,4], constitute a formalism for
expressing patterns in timed behaviors in a compact and natural way. They aug-
ment classical regular expressions with timing constraints and as such they provide
an alternative specification style to real-time temporal logics such as MTL [10]. We
believe that such expressions have numerous applications in many domains such as
runtime verification, robotics, medical monitoring and circuit analysis [7,9].

For a given expression ϕ and input signal w, timed pattern matching means
computing the match set M(ϕ,w) consisting of all pairs (t, t′) of time instants
such that the segment of w between t and t′ satisfies the expression ϕ. In [17] we
showed how to compute M(ϕ,w) offline, assuming the input signal to be com-
pletely available before the matching. In this paper we develop an online matching
algorithm where the input is presented incrementally and matches are computed
on the fly. An online procedure can be used to monitor real systems during their
actual executions (in contrast with monitoring simulations) and alert the user in
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real time. In addition, an online procedure can reduce memory requirements, dis-
carding signals and intermediate matches when those are no longer needed.

The online pattern matching procedure that we develop in this paper is built
upon the notion of derivatives of regular expressions, introduced by Brzozowski
in 1964 [6]. In essence, the derivative of an expression with respect to a letter
or word, tells us what remains to be observed in order to reach acceptance. In
this sense it is very similar to the tableaux construction used to build automata
from temporal logic formulae. Derivatives provide an elegant solution for prob-
lems of language membership [14], pattern matching [13,16] and automaton
construction [1,5,6] and have been observed to be naturally suitable for mon-
itoring behaviors of systems [12,15]. The original notion of the derivative that
we recall in Sect. 2 is based on discrete time and requires a careful adaptation to
dense time. Moreover, as we will explain, matching is more complex than accep-
tance (of the word or its prefixes) and this has some implications on associating
derivatives with rewrite rules.

In Sect. 3 we modify the definition of signals, one of the commonly-used
formalisms to express timed behaviors, so as to lift the theory of derivatives to
the timed setting. Signals (and sequences) are traditionally defined to start at
time zero and when two signals are concatenated as in w = u · v, the second
argument v is shifted forward in time, to start at the end of u. In contrast,
we define signals in absolute time, each having its own fixed starting point. In
this setting concatenation becomes a partial function, defined only when the
domains of definition of the two signals fit. We also introduce a special place
holder symbol � and define extended signals where all letters in some prefix
have been replaced by this symbol.

We then adapt timed regular expressions to represent sets of extended sig-
nals using the absolute time semantics. The regular expressions of [3,4,17] are
obtained as a syntactic sub-class denoting “pure” �-free signals, used for the
initial specification. The more general expressions are used to represent interme-
diate stages during the incremental computation of the match set.

In Sect. 4 we introduce our main technical contribution: the definition and
computation of derivatives of left-reduced timed regular expressions with respect
to a constant signal of arbitrary duration and all its factors. We apply this
result to solve the problem of online timed pattern matching in Sect. 5 where we
observe an input signal consisting of a finite concatenation of constant signals.
We give a complete example of a run of our algorithm and briefly mention our
implementation and its performance.

2 Preliminaries

Let Σ∗ be the set of all finite words over alphabet Σ with ε denoting the empty
word. A language L over Σ is a subset of Σ∗. The syntax of regular expressions
over Σ is given by the following grammar:

r := ∅ | ε | a | r1 · r2 | r1 ∨ r2 | r∗
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where a ∈ Σ. A regular expression r specifies a regular language �r�, inductively
defined as follows:

�∅� = ∅ �r1 · r2� = �r1� · �r2�
�ε� = {ε} �r1 ∨ r2� = �r1� ∪ �r2�
�a� = {a} �r∗� = �r�∗

In some cases it is important to determine whether or not the language of a
regular expression r contains the empty word ε. For this purpose an empty word
extraction function ν (also known as the nullability predicate) is defined such as

ν(r) =

{
ε if ε ∈ �r�

∅ otherwise

This function which extracts ε from r if it exists, is computed inductively by the
following rules:

ν(∅) = ∅ ν(r1 · r2) = ν(r1) · ν(r2)
ν(ε) = ε ν(r1 ∨ r2) = ν(r1) ∨ ν(r2)
ν(a) = ∅ ν(r∗) = ε

Definition 1 (Derivative). The derivative of a language L with respect to a
word u is defined as

Du(L) := { v ∈ Σ∗ | u · v ∈ L}.

In [6] Brzozowski applied the notion of derivatives to regular expressions and
proved that the derivative Da(r) of an expression r with respect to a letter a
can be computed recursively using the following syntactic rewrite rules:

Da(∅) = ∅ Da(r1 · r2) = Da(r1) · r2 ∨ ν(r1) · Da(r2)
Da(ε) = ∅ Da(r1 ∨ r2) = Da(r1) ∨ Da(r2)
Da(a) = ε Da(r∗) = Da(r) · r∗

Da(b) = ∅

These rules are extended for words by letting Da·w(r) = Dw(Da(r)). By defini-
tion, membership w ∈ L is equivalent to ε ∈ Dw(L). Hence to check, for example,
whether abc is in the language of the expression ϕ = a∗ · (b · c)∗ we compute
Dabc(ϕ) = Dc(Db(Da(ϕ)))) = (b · c)∗ as follows:

a∗ · (b · c)∗ −→
Da

a∗ · (b · c)∗ −→
Db

c · (b · c)∗ −→
Dc

(b · c)∗,

and since ν((b · c)∗) = ε, abc ∈ �ϕ�.
It is of course not a coincidence that this procedure resembles the reading of

the word by an automaton where derivatives correspond to states and those that
contain ε correspond to accepting states. Hence we can report membership in
�ϕ� of w as well as the membership of all its prefixes. We can do it incrementally
as new letters arrive.
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Matching is more involved as we are interested in the membership of all
factors of w, starting at arbitrary positions. Thus, having read j letters of w, the
state of a matching algorithm should contain all the derivatives by w[i..j], i ≤ j.
When letter j +1 is read, these derivatives are updated to become derivatives by
w[i..j + 1], new matches are extracted and a new process for matches that start
at j + 1 is spawned. Table 1 illustrates the systematic application of derivatives
to find segments of w = abcbc that match ϕ = a∗ ·(b ·c)∗. The table is indexed by
the start position (rows) and end position (columns) of the segments with respect
to which we derive. Derivatives that contain ε correspond to matches and their
time indices constitute the match set {(1, 1), (1, 3), (1, 5), (2, 3), (2, 5), (4, 5)}. In
a discrete finite-state setting there are finitely many such derivatives but this is
not the case for timed systems.1

Table 1. Pattern matching using derivatives for w = abcbc and ϕ = a∗ · (b · c)∗.
Entry (i, j) represents the derivative with respect to w[i, j]. Derivatives containing
ε are shaded with green. The state of an online matching algorithm after reading j
symbols is represented in column j.

In dense time, the analogue of the arrival of a new letter is the arrival of
a constant segment of the signal w[t1, t2]. When this occurs, the state of the
algorithm should be updated to capture all derivatives by segments of the form
w[t, t2] for t < t2 and all matches ending in some t < t2 should be extracted.
The technique for representing and manipulating such an uncountable number
of derivative together with their corresponding time segments is the main con-
tribution of this paper.

1 To keep the survey within a reasonable size and avoid tedious repetitions, the descrip-
tion here is not fully rigorous, using the same notation for the semantic notion of a
left quotient, which is unique for every language and word, and the syntactic notion
of a derivative of a regular expression. The derivation of the minimal automaton
from a regular expression, for example, requires additional rewrite rules to detect
equivalence between different regular expressions.
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3 Signals, Timed Languages and Expressions

We consider an alphabet Σ = B
m which is the set of valuations of a set of

propositional variables P = {p1 . . . , pm}. We define signals not as free floating
objects but anchor them in absolute time.

Definition 2 (Signals). A signal over an alphabet Σ is a piecewise-constant
function w : [t1, t2) −→ Σ, where t1 ≤ t2 ∈ R≥0 and w admits a finite number of
discontinuities. The time domain of the signal and its beginning and end times
are denoted as

dom(w) = [t1, t2) = [τ1(w), τ2(w)).

The empty signal ε is the unique signal satisfying dom(w) = ∅. The duration of
w is |w| = τ2(w) − τ1(w) and |ε| = 0. We often view the boundary points of a
signal as a pair, τ(w) = (τ1(w), τ2(w)).

We use w[t, t′] to denote the restriction of w to an interval [t, t′) ⊆ dom(w)
and let Sub(w) = {w[t, t′] | τ1(w) ≤ t < t′ ≤ τ2(w)} be the set of sub-signals
(factors, segments) of w. Concatenation is restricted to signals that meet, that
is, one ends where the other starts.

Definition 3 (Meets and Concatenation). Signal w1 meets signal w2 when
w1 = ε or w2 = ε or τ2(w1) = τ1(w2). Concatenation is a partial function such
that w1 · w2 is defined only if w1 meets w2:

w1 · w2(t) =

{
w1(t) if t ∈ dom(w1)
w2(t) if t ∈ dom(w2)

The empty signal ε is the neutral element for concatenation: ε · w = w · ε = w.
The set of signals thus defined can be made a monoid by making concatenation
total by introducing a new element ⊥ and letting w1 ·w2 = ⊥ when the signals do
not meet. The newly introduced element is an absorbing zero satisfying ⊥ · w =
w · ⊥ = ⊥.

The variability (logical length) of a signal w is the minimal n such that
w can be written as w = w1 · w2 · · · wn where each wi is a constant signal.
We use notations Σ(∗), Σ(+) and Σ(n) to denote the set of all signals, non-
empty signals and signals of variability n, respectively. In particular, Σ(1) is the
set of all constant signals. Sets of signals are referred to as signal languages on
which Boolean operations as well as concatenation and star are defined naturally.
Finally we extend the time restriction operation of [4] which constrains the
duration of signals, to apply also to their time domains. The language K

J 〈L〉I

where I, J,K are intervals of non-negative reals, is a subset of L consisting of
signals with duration in I, beginning in t1 ∈ J and ending in t2 ∈ K. We omit
the corresponding interval when there is no restriction on beginning, ending or
duration.

We are interested in representing a family of sub-signals of a n-variability
signal w = w1 . . . wn starting in segment i and ending in segment j, that is,
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Sub[i:j](w) := {w[t, t′] | t ∈ dom(wi) and t′ ∈ dom(wj)}. It can be easily verified
that

Sub[i:j](w) = Sub(wi) · wi+1 · · ·Sub(wj) = Sub(wi) · Sub(wi+1) · · ·Sub(wj).

In the classical discrete setting, the derivative Da is associated with a rewrite
rule a → ε and a word w is accepted if it can be transformed into ε by successive
rewritings. For the purpose of timed matching we need a more length-preserving
view where reading a corresponds to a rule a → � where � is a special place-
holder that indicates that a has been processed. Acceptance then corresponds
to the rewriting of w into a signal w′ : dom(w) �→ �. We let Σ� = Σ ∪ {�} and
define extended signals which are signals over Σ�, as well as some subclasses of
those.

Definition 4 (Extended Signals). An extended signal over alphabet Σ is a
function w : [t, t′) → Σ�. An extended signal w is left-reduced if w ∈ �(∗) ·Σ(∗).
A left-reduced signal w is pure if w ∈ Σ(∗) and reduced if w ∈ �(∗).

We use initial Greek letters to denote reduced signals and hence a left-reduced
signal w will be written as w = α · v where α is a reduced signal and v is a pure
signal.

Definition 5 (Left Reduction). A reduction rule R(u) for a signal u ∈ Σ(∗)

is a pair (u, γ) such that γ ∈ �(∗) and dom(u) = dom(γ). The left reduction of
a left-reduced signal language L with respect to u is:

δu(L) := { αγw | αuw ∈ L, α ∈ �(∗) and w ∈ Σ(∗)}
We use operation δu(L) in a similar way Du(L) is used in the classical setting
but with one important difference. When v = Du(w) the length of the word is
reduced, that is, |v| = |w| − |u|, while when v = δu(w) the domains (and hence
durations) of v and w are the same. Consequently, unlike the classical case where
membership of w in L amounts to ε ∈ Dw(L), here the membership is equivalent
to γ ∈ δw(L) where γ is a reduced signal of the same domain as w. It is not
difficult to check that δu1·u2(L) = δu2(δu1(L)) and sometimes we denote by δS

the left reduction with respect to a set of signals.

Example 1. Consider a signal language L = {w1, w2} such that

w1(t) =

{
a if t ∈ [0, 3)
b if t ∈ [3, 5)

w2(t) =

{
a if t ∈ [0, 2)
b if t ∈ [2, 5)

In Fig. 1 we illustrate a left reduction operation δu3(δu2(δu1(L))) = {w′′′
1 } with

respect to u = u1u2u3 with u1 : [0, 1) �→ a, u2 : [1, 3) �→ a and u3 : [3, 5) �→ b.
Since w′′′

1 is a reduced signal and τ(u) = τ(w′′′
1 ), u ∈ L.

We now introduce timed regular expressions to describe sets of signals and
extended signals using the absolute time semantics. Note that the intersection
operator, which is considered a syntactic sugar in the classical theory, adds
expressiveness in the timed setting [4].
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w1:

w′
1:

w′′
1 :

w′′′
1 :

w2:

w′
2:

0 1 2 3 4 5 0 1 2 3 4 5

a b

↓δu1

� a b

↓δu2

� b

↓δu3

�

a b

↓δu1

� a b

↓δu2

⊥

Fig. 1. A left reduction example.

Definition 6 (Extended Timed Regular Expressions). Extended timed
regular expressions are defined by the following grammar:

ϕ := ∅ | ε | p | � | ϕ1 · ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ∗ | K
J 〈ϕ〉I

where p is a proposional variable in P and I, J,K are intervals of R≥0.

The semantics of the expressions is defined by the following rules (we use
a |= p to denote the fact that p holds at a):

�∅� = ∅
�ε� = {ε}
�p� = {w : [t, t′) → Σ | 0 ≤ t < t′ and ∀t′′ ∈ [t, t′). w(t′′) |= p}
��� = {w : [t, t′) → {�} | 0 ≤ t < t′}

�ϕ · ψ� = �ϕ� · �ψ�
�ϕ ∨ ψ� = �ϕ� ∪ �ψ�
�ϕ ∧ ψ� = �ϕ� ∩ �ψ�

�ϕ∗� =
∞⋃

i=0

�ϕ�i

�K
J 〈ϕ〉I� = {w | w ∈ �ϕ�, |w| ∈ I, w �= ε → (τ1(w) ∈ J ∧ τ2(w) ∈ K)}

A signal language is regular if it can be represented by a timed regular expression.
The syntax in Definition 6 allows to define sets including extended signals

with arbitrary interleavings of letters and �. Below we define three syntactic
classes of expressions. The first class, called pure (or original) timed regular
expressions, corresponds almost the same syntax of expressions seen in [3,4,17].
Pure expressions are �-free and do not place any restriction on the absolute
beginning and ending values over their sub-expressions. The second class is
reduced timed regular expressions which is formed using the � symbol only.
Lastly we have left-reduced timed regular expressions, obtained as compositions
of reduced and pure expressions satisfying some conditions.

Definition 7 (Syntactic Classes). A timed regular expression ϕ belongs to
the classes of reduced, pure or left-reduced timed regular expressions if functions
r?, p? or lr?, respectively, evaluate to true in the following table.
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Reduced Pure Left-reduced
Case r?(ϕ) p?(ϕ) lr?(ϕ)

∅ � � �
ε � � �
p ⊥ � �
� � ⊥ �

ϕ1 · ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2)
lr?(ϕ1) ∧ p?(ϕ2) ∨
r?(ϕ1) ∧ lr?(ϕ2)

ϕ1 ∧ ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2) lr?(ϕ1) ∧ lr?(ϕ2)
ϕ1 ∨ ϕ2 r?(ϕ1) ∧ r?(ϕ2) p?(ϕ1) ∧ p?(ϕ2) lr?(ϕ1) ∧ lr?(ϕ2)

ϕ∗ r?(ϕ) p?(ϕ) r?(ϕ) ∨ p?(ϕ)
K
J 〈ϕ〉I r?(ϕ) p?(ϕ) ∧ J = K = [0,∞) lr?(ϕ)

Trivially any reduced expression ψ and any pure expression ϕ represent reduced
and pure signal languages such that �ψ� ⊆ �(∗) and �ϕ� ⊆ Σ(∗). For left-reduced
expressions we do not allow concatenation and star operations on arbitrary left-
reduced expressions as in Definition 7 because left-reduced languages are not
closed under concatenation. By doing that we have the following result.

Proposition 1. The language �ϕ� of a left-reduced timed regular expression ϕ

is an extended signal language such that �ϕ� ⊆ �(∗) · Σ(∗).

Proof. For the concatenation ϕ1 · ϕ2 we have two possibilities: (1) �ϕ1� ⊂
�(∗) · Σ(∗) and �ϕ2� ⊂ Σ(∗); (2) �ϕ1� ⊂ �(∗) and �ϕ2� ⊂ �(∗) · Σ(∗). For
both possibilities, we have �ϕ1 · ϕ2� = �ϕ1� · �ϕ2� ⊂ �(∗) · Σ(∗). Other cases are
straightforward by following the definitions.

A comprehensive study on regular algebra extended with intersection operation
can be found in [2]. We now mention some algebraic rules relative to the time
restriction operator. It is shown in [17] how the right hand side of following
equations can be computed from the corresponding left hand side.

K1
J1

〈�〉I1 · K2
J2

〈�〉I2 = K3
J3

〈�〉I3 and K1
J1

〈�〉I1 ∧ K2
J2

〈�〉I2 = K3
J3

〈�〉I3

for some intervals I3, J3 and K3, and

(
m∨

i=1

Ki

Ji
〈�〉Ii)

+ =
n∨

i=1

K′
i

J ′
i
〈�〉I′

i
for some m,n ∈ N

Therefore we can simplify timed regular expressions further using these equations
and procedures.
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4 Derivatives of Left-Reduced Timed Regular
Expressions

We now introduce, semantically and syntactically, a derivative operation for left-
reduced signal languages and expressions based on the left reduction operation.
Since our goal is to solve the dense time matching problem, we have to operate
on sets of signals and define derivatives more symbolically. Therefore we define
the derivative Δv to correspond to the left reduction with respect to all factors
of v.

Definition 8 (Dense Derivative). The derivative Δv(L) of a left-reduced lan-
guage L with respect to a constant signal v ∈ Σ(1) is defined as follows:

Δv(L) :=
⋃

u∈Sub(v)

δu(L)

As mentioned previously, reduced signals will provide the output of our matching
procedure. Their existence will be the witness of a match and their time domains
will indicate its position in the signal.

Definition 9 (Extraction). The extraction xt(L) of a left-reduced signal lan-
guage L is

xt(L) := { α | α ∈ �(∗) ∩ L}
The following result shows that xt can be computed syntactically for left-reduced
timed regular expressions.

Theorem 1 (Extraction Computation). For a given left-reduced timed reg-
ular expression ϕ, applying the following rules recursively yields an expression
ψ such that �ψ� = xt(�ϕ�).

xt(∅) = ∅

xt(ε) = ε
xt(p) = ∅

xt(�) = �

xt(ψ1 · ψ2) = xt(ψ1) · xt(ψ2)
xt(ψ1 ∨ ψ2) = xt(ψ1) ∨ xt(ψ2)
xt(ψ1 ∧ ψ2) = xt(ψ1) ∧ xt(ψ2)
xt(K

J 〈ψ〉I) = K
J 〈xt(ψ)〉I

xt(ψ∗) = (xt(ψ))∗

Proof. We proceed by induction and only look at the case of concatenation,
other cases are similar. For any expressions ϕ1, ϕ2 it holds

�xt(ϕ1 · ϕ2)� = {α | α ∈ �(∗) and α ∈ �ϕ1 · ϕ2�}
= {α1α2 | α1, α2 ∈ �(∗), α1 ∈ �ϕ1� and α2 ∈ �ϕ2�}
= {α1 | α1 ∈ �(∗) and α1 ∈ �ϕ1�} · {α2 | α2 ∈ �(∗) and α2 ∈ �ϕ2�}
= �xt(ϕ1)� · �xt(ϕ2)�

Example 2. Consider a left-reduced expression ϕ :=
〈 [0,3]

[0,3]〈�〉[0,3] · p∗〉
[0,2]

.
Applying Theorem 1 we extract from ϕ a reduced expression ψ such that
ψ =

〈 [0,3]
[0,3]〈�〉[0,3]

〉
[0,2]

. Expression ψ can be simplified further to [0,3]
[0,3]〈�〉[0,2].
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We now state our main result concerning derivatives of left-reduced timed regular
expressions.

Theorem 2 (Derivative Computation). Given a left-reduced timed regular
expression ϕ and a constant signal v : [t, t′) �→ a, applying the following rules
yields an expression ψ such that �ψ� = Δv(�ϕ�).

Δv(∅) = ∅

Δv(ε) = ∅

Δv(�) = ∅

Δv(p) =

{
Γ ∨ Γ · p if a |= p where Γ := [t,t′]

[t,t′]〈�〉[0,t′−t]

∅ otherwise

Δv(ψ1 · ψ2) = Δv(ψ1) · ψ2 ∨ xt
(
ψ1 ∨ Δv(ψ1)

) · Δv(ψ2)
Δv(ψ1 ∨ ψ2) = Δv(ψ1) ∨ Δv(ψ2)
Δv(ψ1 ∧ ψ2) = Δv(ψ1) ∧ Δv(ψ2)
Δv(K

J 〈ψ〉I) = K
J 〈Δv(ψ)〉I

Δv(ψ∗) = xt(Δv(ψ))∗ · Δv(ψ) · ψ∗

Proof. By semantic definition Δv(ϕ) = { αγw | αuw ∈ �ϕ� and (u, γ) ∈
RSub(v)} where RSub(v) := { R(u) | u ∈ Sub(v)}. We proceed by induction on
the structure of ϕ. In the following we tend to use languages and expressions
interchangeably, when in the interest of readability. Consider the cases:

• For ϕ = ∅, ϕ = ε and ϕ = � : for all cases αuw /∈ �ϕ� therefore Δv(ϕ) = ∅.
• For ϕ = p : It needs that α = ε and u ∈ �p�. Then, αuw ∈ �p� can be satisfied

if either w = ε or w ∈ �p�. By applying definitions, we get

Δv(p) = { γ | u ∈ �p� and (u, γ) ∈ RSub(v)} ∪
{ γw | u ∈ �p�, w ∈ �p� and (u, γ) ∈ RSub(v)}

= Γ ∨ Γ · {w | w ∈ �p�}
= Γ ∨ Γ · p

where the expression Γ is [t,t′]
[t,t′]〈�〉[0,t′−t]. Hence, we have Δv(p) = Γ ∨ Γ · p if

u ∈ �p�, otherwise Δv(p) = ∅. The condition u ∈ �p� can be easily checked by
testing a |= p.

• For ϕ = ϕ1 · ϕ2 : αuw ∈ �ϕ1 · ϕ2� should be satisfied. There are three possi-
bilities to split αuw in dense time:
� It can be split up into αuw1 ∈ �ϕ1� and w2 ∈ �ϕ2�.

Δv(ϕ) = {αγw1w2 | αuw1 ∈ �ϕ1�, w2 ∈ �ϕ2� and (u, γ) ∈ RSub(v)}
= {αγw1 | αuw1 ∈ �ϕ1� and (u, γ) ∈ RSub(v)} · {w2 | w2 ∈ �ϕ2�}
= Δv(ϕ1) · ϕ2

� It can be split up into α1 ∈ �ϕ1� and α2uw ∈ �ϕ2�.

Δv(ϕ) = {α1α2γw | α1 ∈ �ϕ1�, α2uw ∈ �ϕ2� and (u, γ) ∈ RSub(v)}
= {α1 | α1 ∈ �ϕ1�} · {α2γw | α2uw ∈ �ϕ2� and (u, γ) ∈ RSub(v)}
= xt(ϕ1) · Δv(ϕ2)
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� It can be split up into αu1 ∈ �ϕ1� and u2w ∈ �ϕ2�. For this case, it is
required by definitions that ϕ1 is a left-reduced expression and ϕ2 is a
pure expression. This is the most involved case requiring to split reducing
signals.

Δv(ϕ) = {αγ1γ2w | αu1 ∈ �ϕ1�, u2w ∈ �ϕ2� and (u1u2, γ1γ2) ∈ RSub(v)}
= {αγ1γ2w | αu1 ∈ �ϕ1�, u2w ∈ �ϕ2�, (u1, γ1) ∈ RSub(v),

(u2, γ2) ∈ RSub(v) and (u1, γ1) meets (u2, γ2)}
= {αγ1 | αu1 ∈ �ϕ1� and (u1, γ1) ∈ RSub(v)}·

{γ2w | u2w ∈ �ϕ2� and (u2, γ2) ∈ RSub(v)}
= xt(Δv(ϕ1)) · Δv(ϕ2)

Thus Δv(ϕ1 ·ϕ2) can be found by the disjunction of these three cases. Then, by
rearranging the last two cases, we obtain the equality claimed in the theorem.

• For ϕ = ψ∗: assume without loss of generality ε �∈ ψ. Then

Δv(ψ∗) = Δv(ε) ∨ Δv(ψ · ψ∗)
= Δv(ψ) · ψ∗ ∨ xt(ψ) · Δv(ψ∗) ∨ xt(Δv(ψ)) · Δv(ψ∗)
= Δv(ψ) · ψ∗ ∨ xt(Δv(ψ)) · Δv(ψ∗)
= [ε ∨ X ∨ X2 ∨ · · · ∨ X∞] · Δv(ψ) · ψ∗ where X = xt(Δv(ψ))
= xt(Δv(ψ))∗ · Δv(ψ) · ψ∗

• Time restriction and Boolean operations follow definitions straightforwardly.

Corollary 1. The derivative Δv(ϕ) of a left-reduced timed regular expression ϕ
with respect to a constant signal v is a left-reduced timed regular expression.

Proof. Theorem 2 shows that only finite number of regular operations is required
to find the derivative and these equations satisfy requirements in Definition 7.

We extend derivatives for arbitrary signals by letting Δε(ϕ) = ϕ and

Δv·w(ϕ) = Δw(Δv(ϕ)).

Lemma 1. The derivative Δw(ϕ) of a left-reduced timed regular expression ϕ
with respect to a signal w = w1 . . . wn with n segments is equivalent to the left
reduction of ϕ with respect to the set of sub-signals of w beginning in dom(w1)
and ending in dom(wn).

Δw(ϕ) =
⋃

u∈Sub[1:n](w)

δu(�ϕ�)

Proof. Using definitions we directly have

Δw(ϕ) = Δwn
(Δwn−1(. . . (Δw1(ϕ))))

= δSub(wn)(δSub(wn−1)(. . . (δSub(w1)(�ϕ�)))
= δSub(w1)·Sub(w2)...Sub(wn)(�ϕ�)
= δSub[1:n](�ϕ�)
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5 Application to Online Timed Pattern Matching

In this section we solve the problem of online timed pattern matching by apply-
ing concepts and results introduced in previous sections. Our online matching
procedure assumes the input signal w to be presented incrementally as follows.
Let w = w1w2 . . . wn be an n-variability signal and at each step j we read a new
segment wj : [tj , t′j) �→ aj where aj ∈ Σ. After reading a new segment wj we may
have new matches ending in dom(wj) in addition to previously found matches.
Therefore we define an incremental match set Mj(ϕ,w) consisting of matches
ending in dom(wj) and we say that Mj(ϕ,w) is the output of jth incremental
step.

Mj(ϕ,w) := { τ(s) | s ∈ �ϕ�, s ∈ Sub[i:j](w) and 1 ≤ i ≤ j}
We then define the state of the online timed pattern matching procedure at the
step j as a left-reduced timed regular expression.

Definition 10 (The State of Online Procedure). Given a pure timed reg-
ular expression ϕ the state of the online timed pattern matching procedure after
reading a prefix w1..j of the input signal is:

ψj :=
∨

1≤i≤j

Δwi..j
(ϕ)

Then, starting with ψ0 = ϕ, we update the state upon reading wj+1 by letting

ψj+1 = Δwj+1(ψj) ∨ Δwj+1(ϕ)

Now we show that the extraction of reduced signals from state ψj provides the
match set Mj(ϕ,w). We do not make a distinction here between a reduced signal
α and its time domain τ(α) as they stand for the same thing.

Theorem 3. Given a state ψj of an online matching procedure for expression ϕ
and a signal w, the incremental match set Mj(ϕ,w) is found by the extraction
of the state:

Mj(ϕ,w) = xt(ψj)

Proof. Following Definition 10 and Lemma 1 we know the state ψj represents
a reduced language δS(ϕ) of ϕ with respect to a set of signals S satisfying
s ∈ Sub(w) and τ2(s) ∈ dom(wj). A reduced signal α in δS(ϕ) indicates the
existence of a signal s ∈ S such that τ(s) = τ(α) and s ∈ �ϕ�, thus s is a match.
Then we can find the match set Mj by extracting all reduced signals from the
state ψj .

Theorem 3 allows us to have a complete procedure for online timed pattern
matching for given ϕ and an input signal w = w1 . . . wn summarized below:

1. Extract ϕ to see if the empty word is a match.
2. For 1 ≤ j ≤ n repeat:
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p

q

0 3 8 10

Fig. 2. A signal w := w1w2w3 over variables p and q.

Table 2. Timed pattern matching using derivatives for w = w1w2w3 and ϕ = 〈p · q〉I .
Entries represent the derivative with respect to wi..j . Reduced expressions, indi-

cating matched segments, are shaded with green. (I = [4, 7], Γ1 =
[0,3]

[0,3]〈�〉[0,3],
Γ2 =

[3,8]

[3,8]〈�〉[0,5] and Γ3 =
[8,10]

[8,10]〈�〉[0,2]).

(a) Update the state of the matching ψj by deriving the previous state ψj−1

with respect to wj and adding a new derivation Δwj
(ϕ) to the state for

matches starting in segment j.
(b) Extract ψj to get matches ending in segment j.

We present an example of online pattern matching for the timed regular
expression ϕ := 〈p · q〉[4,7] and input signal w := w1w2w3 with w1 : [0, 3) �→ {p ∧
¬q}, w2 : [3, 8) �→ {p∧q} and w3 : [8, 10) �→ {¬p∧q} over propositional variables
p and q shown in Fig. 2. In Table 2 we depict the step-by-step computation of
the match set M(ϕ,w) after reading the next segment from w. For Step 1 the
state ψ1 is equal to the derivative of ϕ with respect to w1 such that ψ1 =
〈Γ1 · q〉[4,7] ∨ 〈Γ1 · p · q〉[4,7] where Γ1 = [0,3]

[0,3]〈�〉[0,3]. The extraction xt(ψ1) is
empty therefore we do not have any match ending in dom(w1) = [0, 2). For
Step 2 where Γ2 = [3,8]

[3,8]〈�〉[0,5] the extraction of the state is equal to xt(ψ2) =

〈Γ1·Γ2〉[4,7]∨〈Γ2〉[4,7] = [4,8]
[0,3]〈�〉[4,7]∨ [7,8]

[3,4]〈�〉[4,5]. Similarly, for Step 3 where Γ3 =
[8,10]
[8,10]〈�〉[0,2], the extraction of the state is equal to xt(ψ3) = 〈Γ1 · Γ2 · Γ3〉[4,7] ∨
〈Γ2 · Γ3〉[4,7] = [8,9]

[1,3]〈�〉[5,7] ∨ [8,9]
[4,6]〈�〉[4,5]. In Fig. 3 we illustrate corresponding



Online Timed Pattern Matching Using Derivatives 749

Step 2 Step 3

t′

t3 8 10

3

8

10
t′

t3 8 10

3

8

10

Fig. 3. A graphical representation of online timed pattern matching presented in
Table 2 with t and t′ denoting, respectively, the beginning and end of the match.

segments (t, t′) extracted in Steps 2 and 3 where solid regions show the actual
outputs for the corresponding step.

We implemented our procedure using the functional term rewriting language
Pure and C++. Besides derivative and extraction rules we introduced in this
paper, our implementation includes some basic algebraic rewrite rules as well
as simplification rules for reduced expressions given in Sect. 3. We perform our
experiments on a 3.3 GHz machine for a set of test patterns and we depict per-
formance results of the online procedure in comparison with the offline pro-
cedure in [17] in Table 3. For typical cases, experiments suggest a linear time
performance with respect to the number of segments in the input for both algo-
rithms. Although the online procedure runs slower than the offline procedure, it
requires less memory and the memory usage does not depend on the input size
as expected.

Table 3. Execution times/Memory usage (in seconds/megabytes)

Offline Algorithm Online Algorithm

Input Size Input Size

Test Patterns 100 K 500 K 1 M 100 K 500 K 1 M

p 0.06/17 0.27/24 0.51/33 6.74/14 29.16/14 57.87/14

p · q 0.08/21 0.42/46 0.74/77 8.74/14 42.55/14 81.67/14

〈p · q · 〈p · q · p〉I · q · p〉J 0.23/28 1.09/77 2.14/140 28.07/14 130.96/14 270.45/14

(〈p · q〉I · r) ∧ (p · 〈q · r〉J ) 0.13/23 0.50/51 1.00/86 15.09/15 75.19/15 148.18/15

p · (q · r)∗ 0.11/20 0.49/37 0.96/60 11.53/15 52.87/15 110.58/15
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6 Conclusions

The contribution of the paper is both theoretical and practical. From a theoret-
ical standpoint we have tackled the difficult problem of exporting the concept of
derivatives from discrete to timed behaviors, languages and expressions. To this
end we introduced a new approach to handle signals in absolute time, yielding
a new type of monoid with interesting properties that by itself is worth investi-
gating in the future. We have shown that such derivatives can be computed syn-
tactically using left-reduced timed regular expressions and that all the matches
of the expressions in the signal can be extracted from this representation.

We have used these results to implement a novel procedure for online pat-
tern matching for timed behavior that can be used to monitor systems in real
time and detect occurrences of complex patterns. Our procedure consumes a
constant segment from the input signal and reports a set of matches ending in
that segment before processing the next segment. The algorithm can be applied,
of course, to the discrete case where words are viewed as signals that can change
their values only at integer times. Despite the overhead, our algorithm might
be advantageous for words that have long periods of stuttering if a delay in the
detection of matching can be tolerated.

We believe that this procedure has a lot of potential applications in detecting
temporal patterns at different time scales. It can be used, for example to detect
patterns in music as in [8], in cardiac behavior or in speech. To this end the
expression should be extended with predicates over real numbers [7] as in the
passage from MTL to STL (signal temporal logic) [11]. Other potential applica-
tion domains could be the detection of congestions in traffic or in communication
network and the analysis of execution logs of organizations information systems
or web servers, for example to detect internet robots or customers who are about
to abandon our web site.

Acknowledgement. This work was partially supported by the French ANR projects
EQINOCS and CADMIDIA and benefitted from useful comments made by anonymous
referees.
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Abstract. We consider the problem of safety verification for hybrid sys-
tems, whose continuous dynamics in each mode is affine, Ẋ = AX + b,
and invariants and guards are specified using rectangular constraints.
We present a counter-example guided abstraction refinement framework
(CEGAR), which abstract these hybrid automata into simpler ones with
rectangular inclusion dynamics, ẋ ∈ I, where x is a variable and I is an
interval in R. In contrast to existing CEGAR frameworks which consider
discrete abstractions, our method provides highly efficient abstraction
construction, though model-checking the abstract system is more expen-
sive. Our CEGAR algorithm has been implemented in a prototype tool
called HARE (Hybrid Abstraction-Refinement Engine), that makes calls
to SpaceEx to validate abstract counterexamples. We analyze the perfor-
mance of our tool against standard benchmark examples, and show that
its performance is promising when compared to state-of-the-art safety
verification tools, SpaceEx, PHAVer, SpaceEx AGAR, and HSolver.

1 Introduction

The safety verification of cyber-physical systems is a computationally chal-
lenging problem that is in general undecidable [1,3,21,25,33]. Thus, verifying
realistic designs often involves crafting an abstract model with simpler dynam-
ics that is amenable to automated analysis. The success of the abstraction
based method depends on finding the right abstraction, which can be dif-
ficult. One approach that tries to address this issue is the counterexample
guided abstraction refinement (CEGAR) technique [9] that tries to automati-
cally discover the right abstraction through a process of progressive refinement
based on analyzing spurious counterexamples in abstract models. CEGAR has
been found to be useful in a number of contexts [5,12,22,23], including hybrid
systems [2,10,11,14,16,24,31,32].

There are two principal CEGAR approaches in the context of verifying hybrid
system that differ primarily on the space of abstract models considered. The first
approach [2,10,11,29,31,32] tries to abstract hybrid models into finite state,
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 752–769, 2016.
DOI: 10.1007/978-3-662-49674-9 48



Hybridization Based CEGAR for Hybrid Automata with Affine Dynamics 753

discrete transition systems that have no continuous dynamics. The second app-
roach [14,24,27] abstracts a Hybrid Automaton by another Hybrid Automaton
with simpler dynamics. Using Hybrid Automata as abstractions has the advan-
tage that constructing abstract models is computationally easier.

In this paper, we present a CEGAR framework for verifying cyber-physical
systems, where the concrete and abstract models are both Hybrid Automata. We
consider Hybrid Automata with Affine Dynamics and Rectangular Constraints
(Affine Hybrid Automata for short) which are a subclass of Hybrid Automata,
where invariants, guards, and resets are given by rectangular constraints (con-
junctions of constraints comparing variables to constants), but the continuous
flow in control locations is given by linear differential equations of the form
Ẋ = AX + b; here X is the vector of continuous variables, A is a rational
matrix, and b is a vector of rational numbers. The safety verification problem
for such automata is challenging — not only is the problem undecidable, but it
is even unknown whether the problem of checking if the states reachable within
a time bound t (without taking any discrete transitions) intersects a polyhedral
unsafe region is decidable. We abstract such Affine Hybrid Automata by Rec-
tangular Hybrid Automata. Rectangular Hybrid Automata are similar to Affine
Hybrid Automata except that the continuous dynamics is given by rectangular
differential inclusions (i.e., dynamics of each variable is of the form ẋ ∈ [a, b])
as opposed to linear differential equations. Our results extend previous Hybrid
Automata based CEGAR algorithms [14,24,27] to a richer class of hybrid models
(from concrete automata that have rectangular dynamics to automata that have
affine dynamics).

We establish a few basic results about our CEGAR framework. First we show
that any spurious counterexample will be detected during the counterexample
validation step. This result is not obvious because it is unknown whether the
bounded time reachability problem is decidable for Affine Hybrid Automata.
Hence validation cannot be carried out “exactly”. Our proof relies on the obser-
vation that the sets computed during counterexample validation are bounded,
and uses the fact that continuous time bounded posts of Affine Hybrid Automata
can be approximated with arbitrary precision. Next, we show that our refinement
algorithm makes progress. More precisely, we prove that any abstract counterex-
ample, if it appears sufficiently many times, is eventually eliminated. Progress is
proved by observing that, for a bounded time, linear dynamics can be approxi-
mated with arbitrary precision by rectangular dynamics [29].

We have extended our CEGAR-based tool HARE (Hybrid Abstraction Refine-
ment Engine) to verify Affine Hybrid Automata; the previous HARE implemen-
tation only handled Rectangular Hybrid Automata. Furthermore, we found
existing tools for model checking Rectangular Hybrid Automata (HyTech [20],
PHAVer [18], SpaceEx [19], and FLOW∗ [8]) inadequate for our purposes (see Sect. 5
for explanations). So we implemented a new model checker for Rectangular
Hybrid Automata that uses the Parma Polyhedral Library (PPL) [4] and Z3 [13].
Counterexample validation is carried out by making calls to SpaceEx and PPL.
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We have compared the performance of the new version of our tool HARE
against SpaceEx with the Supp and PHAVer scenarios, SpaceEx AGAR [7], and
HSolver [29] on standard benchmark examples. SpaceEx is the state-of-the-art
symbolic state space explorer for Affine Hybrid Automata that over-approximates
the reachable set, and may occasionally converge to a fixpoint in the process.
SpaceEx AGAR is a CEGAR-based tool that merges different locations and over-
approximates their dynamics. HSolver is a another CEGAR-based tool that
abstracts hybrid automata into finite-state, discrete abstractions (as opposed to
other hybrid automata). HSolver failed to terminate within a reasonable time
on almost all of our examples. The running time of HARE was roughly compa-
rable to SpaceEx and SpaceEx AGAR (details in Sect. 5), with each tool beating
the other on different examples. But we found that HARE was more accurate.
On quite a few examples, SpaceEx (and SpaceEx AGAR) fails to prove safety either
because it does not converge to a fixpoint or because it over-approximates the
reach set too much. Due to space constrains many details have been omitted, but
can be found in [30].

2 Related Work

Doyen et al. consider rectangular abstractions for safety verification of affine
hybrid systems in [15]. However, their refinement is not guided by counter-
example analysis. Instead, a reachable unsafe location in the abstract system is
determined, and the invariant of the corresponding concrete location is split to
ensure certain optimality criteria on the resulting rectangular dynamics. This,
in general, may not lead to abstract counter-example elimination, as in our
CEGAR algorithm. We belive that the refinement algorithms of the two papers
are incomparable — one may perform better than the other on certain exam-
ples. Empirical evaluations could provide some insights into the merits of the
approaches, however, the implementation of the algorithm in [15] was not avail-
able for comparison at the time of writing the paper.

Bogomolov et al. consider polyhedral inclusion dynamics as abstract models
of affine hybrid systems for CEGAR in [7]. Their abstraction merges the loca-
tions, and refinement corresponds to splitting the locations. Hence, the CEGAR
loop ends with the original automaton in a finite number of steps, if safety is not
proved by then. Our algorithm splits the invariants of the locations, and hence,
explores finer abstractions. Our method is orthogonal to that of [7], and can be
used in conjunction with [7] to further refine the abstractions.

Nellen et al. use CEGAR in [26] to model check chemical plants controlled by
programmable logic controllers. They assume that the dynamics of the system
in each location is given by conditional ODEs, and their abstraction consists of
choosing a subset of these conditional ODEs. The refinement consists of adding
some of these conditional ODEs based on a unsafe location in a counter-example.
The methods does not ensure counter-example elimination in successive itera-
tions. Their prototype tool does not automate the refinement step, in that the
inputs to the refinements need to be provided manually. Hence, we did not
experimentally compare with this tool.
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Zutshi et al. propose a CEGAR-based search in [34] to find violations of safety
properties. Here they consider the problem of finding a concrete counter-example
and use CEGAR to guide the search of the same. We instead use CEGAR to
prove safety — the absence of such concrete counter-examples.

3 Preliminaries

Numbers. Let N, Q, and R denote the set of natural, rational, and real num-
bers, respectively. Similarly, N+, Q+, and R+ are respectively the set of pos-
itive natural, rational, and real numbers, and Q≥0 and R≥0 are respectively
the set of non-negative rational and real numbers. For any n ∈ N we define
[n] = {0, 1, . . . , n − 1}.

Sets and Functions. For any sets A and B, |A| is the size of A (the number
of elements in A), P(A) is the power set of A, A × B is the Cartesian product
of A and B, and [A → B] is the set of all (total) functions from A to B. AB

is a vector of elements in A indexed by elements in B (we treat an element of
AB as a function from B to A). In order to make the notations simpler, for any
n,m ∈ N, by An and An×m, we mean A[n] and A[n]×[m]. The latter represents
matrices of dimension n×m with elements from A. For any f ∈ [A → B] and set
C ⊆ A, f(C) = {f(c) | c ∈ C}. Similarly, for any π = a1, a2, . . . , an, a sequence
of elements in A, we define f(π) to be f(a1), f(a2), . . . , f(an).

Distance and Intervals. When A and B are non-empty subsets of a normed
space with norm �.�, we define their Hausdorff distance distH(A,B) by

max{sup
a∈A

inf
b∈B

�a − b�, sup
b∈B

inf
a∈A

�a − b�}

An interval is any subset of real numbers of the form [a, b], (a, b], [a, b), or (a, b).
We denote the set of all Intervals by I and the set of all Closed-Bounded Intervals
by I◦.

3.1 Hybrid Automata

In this section, we present a hybrid automaton model for representing hybrid
systems.

Definition 1. A Hybrid Automaton H is a tuple (Q, X, I, F, E, Qinit, Qbad), where

– Q is a finite non-empty set of (discrete) locations.
– X is a finite set of variables. A valuation ν ∈ R

X assigns a value to each
variable in X. We denote the set of all valuations by V.

– I ∈ [Q → IX
◦ ] maps each location q to a closed bounded rectangular region as

its invariant. We denote I(q)(x) by I(q, x).
– F ∈ [Q × V → P(V)] maps each location q and valuation ν to a set of possible

derivatives of the trajectories in that location and valuation.
– E is a finite set of edges e of the form (s, d, g, j, r) where:
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• s, d ∈ Q are source and destination locations, respectively.
• g ∈ IX

◦ is guard of e and specifies the set of possible values for each
variable in order to traverse e.

• j ∈ P(X) is the set of variables whose values change after traversing e.
• r ∈ Ij

◦ is reset of e and specifies the set of possible values for each variable
in j after traversing e.

We write Se, De, Ge, Je, and Re to denote different elements of an edge e,
respectively. Also we denote (Ge)(x) and (Re)(x) respectively by G(e, x) and
R(e, x).

– Qinit, Qbad ⊆ Q are respectively the set of initial and unsafe locations.

For all Hybrid Automata H, we display elements of H by QH , XH , IH , FH , EH ,
SH , DH , GH , JH , RH , Qinit

H , QbadH , and VH . We may omit the subscript when it is
clear from the context.

We define the semantics of a hybrid automaton by a transition system it
represents. Hence, we first define transition systems.

Definition 2. A Transition System T is a tuple (S, Σ,→, Sinit, Sbad) in which

1. S is a (possibly infinite) set of states,
2. Σ is a (possibly infinite) set of labels,
3. →⊆ S × Σ × S is a transition relation,
4. Sinit ⊆ S is the set of initial states, and
5. Sbad ⊆ S is the set of unsafe states.

We write s
α→ s′ instead of (s, α, s′) ∈→. Also, we write s → s′ as a shorthand

for ∃α ∈ Σ • s
α→ s′, and →∗ denotes the reflexive transitive closure of →. Finally,

for any s ∈ S we define reachT (s) to be the set {s′ ∈ S|s →∗ s′}, and reach(T )
to be

⋃
s∈Sinit reachT (s).

For all Transition Systems T , we denote the elements of T by ST , ΣT , →T ,
Sinit

T , Sbad
T . In addition, whenever it is clear, we drop the subscript T to make the

notation simpler.

The semantics of a Hybrid Automaton H = (Q, X, I, F, E, Qinit, Qbad) can be
defined as a Transition System �H� = (S, Σ,→, Sinit, Sbad) in which
– S = Q × V,
– Σ = E ∪ R≥0,

– Sinit = {(q, ν) ∈ S | q ∈ Qinit},
– Sbad = {(q, ν) ∈ S | q ∈ Qbad},

– →=→1 ∪ →2 where
• →1 is the set of time transitions and for all t ∈ R≥0 (q, ν) t→1 (q′, ν′)

iff q = q′ and there exists a differentiable function f ∈ [[0, t] → V]
such that 1. f(0) = ν, 2. f(t) = ν′, 3. ∀t′ ∈ [0, t] • f(t′) ∈ I(q), and
4. ḟ(t′) ∈ F(q, f(t′)).

• →2 is the set of jump transitions and (q, ν) e→2 (q′, ν′) iff 1. q = Se,
2. q′ = De, 3. ν ∈ I(q) ∩ Ge, 4. ν′ ∈ I(q′), and 5. ∀x ∈ X • x ∈ Je ⇒
ν′(x) ∈ R(e, x) and x /∈ Je ⇒ ν(x) = ν′(x).

In this paper, we deal with two subclasses of Hybrid Automata:
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1. An Affine Hybrid Automaton is a Hybrid Automaton in which for every
location q ∈ Q there exists a matrix M ∈ Q

X2 and a vector b ∈ Q
X such that

for every valuation ν ∈ V we have F(q, ν) = {Mν + b}. This is the class of
Hybrid Automata we intend to analyse for safety.

2. A Rectangular Automaton is a Hybrid Automaton in which for every location
q ∈ Q there exists a rectangular region f ∈ IX such that for every valuation
ν ∈ V we have F(q, ν) = f . We may write F(q, x) to denote the set of possible
flows for variable x at location q. We use this class to represent abstract
Hybrid Automata in our CEGAR algorithm.

For a Hybrid Automaton H, a path is defined to be a finite sequence e1, e2,
. . . , en of edges in E such that Dei = Sei+1 for all 0 < i < n. A timed path π is
a finite sequence of the form (t1, e1), (t2, e2), . . . , (tn, en) such that e1, . . . , en is
a path in H and ti ∈ R≥0 for all 0 < i ≤ n. A run ρ from s0 to sn is a finite
sequence s0, (t1, e1), s1, (t2, e2), . . . , (tn, en), sn such that 1. (t1, e1), . . . , (tn, en)
is a timed path in H, 2. for all 0 ≤ i ≤ n we have si ∈ S�H�, and 3. for all

0 < i ≤ n there exists a state s′
i ∈ S�H� for which si−1

ti−→ s′
i

ei−→ si. We will
denote the first and last elements of ρ respectively by ρ0 and ρlst.

For any Hybrid Automaton H, the reachability problem asks whether or not
H has a run ρ such that ρ0 ∈ Sinit

�H� and ρlst ∈ Sbad
�H�. If the answer is positive, we

say the H is unsafe. Otherwise, we say the H is safe.
For any Hybrid Automaton H, set of states S ⊆ S�H�, and edge e ∈ EH we

define the following functions:

– dposteH(S) = {s′ | ∃s ∈ S • s
e−→ s′}. Discrete post of S in H with respect to e

is the set of states reachable from S after taking e.
– dpree

H(S) = {s | ∃s′ ∈ S • s
e−→ s′}. Discrete pre of S in H with respect to e is

the set of states that can reach a state in S after taking e.
– cpostH(S) = {s′ | ∃s ∈ S, t ∈ R≥0 • s

t−→ s′}. Continuous post of S in H is the
set of states reachable from S in an arbitrary amount of time using dynamics
specified for the source states.

– cpreH(S) = {s | ∃s′ ∈ S, t ∈ R≥0 • s
t−→ s′}. Continuous pre of S in H is the

set of states that can reach a state in S in an arbitrary amount of time using
dynamics specified for the source states.

4 CEGAR Algorithm for Safety Verification of Affine
Hybrid Automata

Every CEGAR-based algorithm has four main parts [9]: 1. abstracting the con-
crete system, 2. model checking the abstract system, 3. validating the abstract
counterexample, and 4. refining the abstract system. We explain parts of our
algorithm regarding each of these parts in this section. Before that, Algorithm 1
shows at a very high level what the steps of our algorithm are.
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Algorithm 1. High level steps of our CEGAR algorithm
Input: C an Affine Hybrid Automaton � C is called concrete Hybrid Automaton. Def 1
Output: Whether or not C is safe � this is the reachability problem. Sec 3
1. Add a trivial self loop to every location of C � Sec 4.2
2. P ← the initial partition of invariants in C � Sec 4.2
3. A ← α(C, P ) � A is called abstract Hybrid Automaton. Def 4
4. ρ = ORHA(A) � ORHA model checks Rectangular Automata. Sec 4.3
5. � ρ is an annotated counterexample. Sec 4.3
6. while ρ �= ∅ do � while abstract system is unsafe
7. if ρ is valid in C then return ‘unsafe’ � Sec 4.4
8. (q, p) ← abstract location that should be split � Sec 4.5
9. p1, p2 ← sets that should be separated in (q, p) � Sec 4.5

10. refine P (q) such that p1 and p2 gets separated � Sec 4.5
11. A ← α(C, P ) � Sec 4.2
12. ρ = ORHA(A) � Sec 4.3
13. end while
14. return ‘safe’

4.1 Time-Bounded Transitions

A step of every CEGAR algorithm is to validate a counterexample of an abstract
system returned by the model-checking phase (Sect. 4.4). We do validation by
running the counterexample of the abstract model checker against the concrete
Hybrid Automaton. In our discussion, we will assume that for Affine Hybrid
Automata one can compute the continuous post of a set of states for an arbitrary
amount of time. But this is not completely true. What we can do is to only
compute approximations of the continuous post of a set of states. In addition,
bounded error approximations can be computed only for a finite amount of
time. Hence, we convert a Hybrid Automaton H to another Hybrid Automaton
H ′ with the same reachability information and with the additional property
that in H ′, there is no time transition with a label larger than t, for some
parameter t ∈ R+. With this transformation, we can compute bounded error
approximations of the unbounded time post, since it is actually a continuous
post over a bounded time t.

4.2 Abstraction

Input to our algorithm is an Affine Hybrid Automaton C which we call the
concrete Hybrid Automaton. The first step is to construct an abstract Hybrid
Automaton A which is a Rectangular Automaton. The abstract Hybrid Automa-
ton A is obtained from the concrete Hybrid Automaton C, by splitting the invari-
ant of any location q ∈ QC into a finite number of cells of type IX

◦ and defining
an abstract location for each of these cells which over-approximates the linear
dynamics in the cell by a rectangular dynamics. Definitions 3 and 4 formalizes
the way an abstraction A is constructed from C.

Definition 3 (Invariant Partitions). For any Hybrid Automaton C and func-
tion P ∈ [Q → P(IX

◦)] we say P partitions invariants of C iff the following
conditions hold for any location q ∈ Q:

–
⋃

P (q) = I(q), which means union of cells in P (q) covers invariant of q.
– ∀p1, p2 ∈ P (q), x ∈ X at least one of the following conditions are true:
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• |p1(x) ∩ p2(x)| = 0 • |p1(x) ∩ p2(x)| = 1 • p1(x) = p2(x)

Definition 4 (Abstraction Using Invariant Partitioning). For any Affine
Hybrid Automaton C and invariant partition P ∈ [Q → P(IX

◦)], α(C,P ) returns
Rectangular Automaton A which is defined below:

– QA = {(q, p) | q ∈ QC ∧ p ∈ P (q)},
– Qinit

A = {(q, p) ∈ QA | q ∈ Qinit
C },

– QbadA = {(q, p) ∈ QA | q ∈ QbadC },

– XA = XC ,
– IA((q, p)) = p,

– EA = {((s, p1), (d, p2), g, j, r) | (s, d, g, j, r) ∈ EC ∧ (s, p1), (d, p2) ∈ QA}, and
– FA((q, p), ν) = recthull(

⋃
ν∈p FC(q, ν)), where for any set S ⊂ R

X, recthull(S)
is the smallest possible element of IX

◦ such that ∀ν ∈ S • ν ∈ recthull(S).

In addition, we define function γA to map 1. every state in �A� to a state in
�C�, and 2. every edge in EA to an edge in EC . Formally, for any s = ((q, p), ν) ∈
S�A� and e = ((q1, p1), (q2, p2), g, j, r) ∈ EA, we define γA(s) to be (q, ν) and γA(e)
to be (q1, q2, g, j, r).

For each concrete location we will have one or more abstract locations. By
making invariants of abstract locations small (and thus increasing the number
of abstract locations) we want to be able to make behavior of A as close as
required to the behavior of C. This requires trajectories to be always able to
jump between two abstract locations when they correspond to a single concrete
location. But we did not add any such edge to A in Definition 4. Although
defining abstract system in this way just imposes an additional initial step to our
algorithm, we find it very convenient not to introduce any edge in the abstract
Hybrid Automata that corresponds to no edge in the concrete Hybrid Automata.
Nonetheless, it is easy to see that if for every location q ∈ QC , EC contains a
trivial edge (i.e. an edge with no guard and no reset) from q to itself, abstracting
C using Definition 4 will produce a trivial edge between all abstract locations
corresponding to a single concrete location. One can easily add these edges to C
in an initial step, so in the rest of this paper, WLOG. we assume every location
of C has a trivial self loop. Finally, it is easy to see that these trivial self loops
along with Definitions 3 and 4 introduce Zeno behavior in the abstract system
(i.e. the abstract system can make an infinite number of discrete transitions in a
finite amount of time), but our model checker can easily handle it. In fact since
we check for a fixed-point, we believe our tool is not considerably affected by
this type of behavior.

Proposition 5 (Over-Approximation). For any Affine Hybrid Automaton
C and invariant partition P , A = α(C,P ) is a Rectangular Automaton which
over-approximates C, that is, reach(C) ⊆ γA(reach(A)).

It is clear that if A is safe then C is also safe. Also, one can easily see that if P
is defined as P (q) = {IC(q)} (for all q ∈ QC), it is a valid invariant partition of C.
It is actually what our algorithm always uses as the initial invariant partitioning
(initially we do not partition any invariant).
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4.3 Counterexample and Model Checking Rectangular Automata

After an abstract Hybrid Automaton is constructed (initially and after any
refinement), we have to model check it. In this section we define the notion
of a counterexample and annotation of a counterexample, which we assume is
returned by the abstract model checker ORHA when it finds that the input Hybrid
Automaton is unsafe.

Definition 6. For any Hybrid Automaton H, a counterexample is a path e1,
. . . , en such that Se1 ∈ Qinit and Den ∈ Qbad.

Definition 7. A counterexample π is called valid in H iff H has a run ρ and ρ
has the same path as π. A counterexample that is not valid is called spurious.

Definition 8. An annotation for a counterexample π = e1, . . . , en of Hybrid
Automaton H is a sequence ρ = S0 −→ S′

0
e1−→ S1 −→ S′

1
e2−→ · · · en−→ Sn −→ S′

n

such that the following conditions hold:

1. ∀0 ≤ i ≤ n • ∅ �= Si, S
′
i ⊆ S�H�,

2. ∀0 ≤ i ≤ n • Si = cpreH(S′
i),

3. ∀0 ≤ i < n • S′
i = dpre

ei+1
H (Si+1),

4. S′
n = Sbad

�H� ∩ ({Den} × VH).

Condition 1 means that each Si and S′
i in ρ are a non-empty set of states.

Conditions 2 and 3 mean that sets of states in ρ are computed using backward
reachability. Finally, Condition 4 means that S′

n is the set of unsafe states in
destination of en. Note that these conditions completely specify S0, . . . , Sn and
S′
0, . . . , S

′
n from e1, . . . , en and H. Also, every Si and S′

i is a subset of states
corresponding to exactly one location.

In this paper, we assume to have access to an oracle ORHA that can correctly
answer reachability problems when the Hybrid Automata are restricted to be
Rectangular Automata. If no unsafe location of A is reachable from an initial
location of it, ORHA(A) returns ‘safe’. Otherwise, it returns an annotated coun-
terexample of A.

4.4 Validating Abstract Counterexamples

For any invariant partition P and Affine Hybrid Automaton C, if ORHA(A) (for
A = α(C,P )) returns ‘safe’, we know C is safe. So the algorithm returns C is
‘safe’ and terminates. On the other hand, if ORHA finds A to be unsafe it returns
an annotated counterexample ρ of A. Since A is an over-approximation of C, we
cannot be certain at this point that C is also unsafe. More precisely, if π is the
path in ρ, we do not know whether γA(π) is a valid counterexample in C or it is
spurious. Therefore, we need to validate ρ in order to determine if it corresponds
to any actual run from an initial location to an unsafe location in C.

To validate ρ, an annotated counterexample of A = α(C,P ), we run ρ on C.

More precisely, we create a sequence ρ′ = R0 −→ R′
0

e′
1−→ R1 −→ · · · e′

n−→ Rn −→ R′
n

where



Hybridization Based CEGAR for Hybrid Automata with Affine Dynamics 761

Fig. 1. Validation and refinement. There are three locations: i − 1, i, and i + 1. Si+1

and S′
i are elements of annotated counterexample ρ. R′

i−1, Ri, and cpostC(Ri) are
computed when ρ is validated. i is the smallest index for which cpostC(Ri) and γA(S′

i)
are separated. Hence we need to refine A in location i. Refinement should be done in
such a way that for the result of refinement A′ we have cpostA′(γ−1

A′ (Ri))∩γA′(S′
i) = ∅.

1. e′
i = γA(ei),

2. R0 = γA(S0),
3. R′

i = cpostC(Ri) ∩ γA(S′
i),

4. Ri = dpost
e′
i

C (R′
i−1) ∩ γA(Si).

Condition 1 states that edges in ρ′ correspond to the edges in ρ as defined by
the function γA in Definition 4. Condition 2 states that R0 is just concrete states
corresponding to S0. Note that R0 is never empty. Condition 3 states that each
R′

i is the intersection of two sets: 1. concrete states corresponding to abstract
states in S′

i, and 2. continuous post of Ri. Condition 4 states that each Ri is
the intersection of two sets: 1. concrete states corresponding to abstract states
in Si, and 2. discrete post of R′

i−1 using e′
i. It is easy to see that for any i if Ri

or R′
i becomes empty then for all j > i both Rj and R′

j will be empty. Also,
if Ri is empty then R′

i is empty too. Figure 1 depicts the situation when the
counterexample is spurious and R′

i is the first empty set we reach during our
validation. Proposition 9 proves that the first empty set (if any) is always R′

i for
some i and not Ri.

Proposition 9. R′
n = ∅ in ρ′ implies there exists i such that 1. R′

i = ∅, 2.
Ri �= ∅, 3. ∀j < i • Rj , R

′
j �= ∅, and 4. cpostC(Ri) and γA(S′

i) are nonempty
disjoint sets.

Lemma 10. The counterexample π′ = e′
1, . . . , e

′
n of C is valid iff R′

n �= ∅.
Proposition 9 tells us that two sets cpostC(Ri) and γA(S′

i) are disjoint.
Lemma 11 states a stronger result that there is a minimum distance ε > 0
between those two sets, by exploiting the compactness of the two sets.

Lemma 11. There exists ε ∈ R+ such that distH(cpostC(Ri), γA(S′
i)) > ε.

4.5 Refinement

Let us fix a concrete automaton C, an invariant partition P , and an abstract
automaton A = α(C,P ). Suppose model checking A reveals a counterexample
π and its annotation ρ. If ρ is found to be spurious by the validation algorithm
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(in Sect. 4.4), then we need to refine the model A by refining the invariant par-
tition P . We will do this by refining the invariant of only a single location of A.
In this section we describe how to do this.

Since ρ is spurious, there is a smallest index i such that R′
i = ∅ (where the

sets Ri, R
′
i are as defined in Sect. 4.4); we will call this the point of refinement

and denote it as porC,A(ρ). We will refine the location (q, p) = Dei of A by
refining its invariant p. We know from Proposition 9, cpostC(Ri) ∩ γA(S′

i) = ∅.
However, the corresponding sets in the abstract system A are not disjoint, that
is, cpostA(γ−1

A (Ri)) ∩ S′
i �= ∅. Our refinement strategy is to find a partition for

the location (q, p) such that in the refined model R = α(C,P ′) (for some P ′), S′
i

is not reachable from Ri. In order to define the actual refinement, and to make
this condition precise, we need to introduce some definitions.

Let C, A, Ri, S′
i, and (q, p) be as above. Let us denote by Cq,p the restriction

of C to the single location q with invariant p, i.e., Cq,p has only one location
q whose flow and invariant is the same as that of (q, p) in A, and only tran-
sitions whose source and destination is q. We will say that an invariant par-
tition Pr of Cq,p separates Ri from S′

i iff in the automaton A1 = α(Cq,p, Pr),
reachA1(γ

−1
A1

(Ri)) ∩ γ−1
A1

(γA(S′
i)) = ∅. In other words, the states corresponding

to S′
i in A1 are not reachable from γ−1

A1
(Ri) in A1.

Refinement Strategy. Let Pr be an invariant partition of Cq,p that separates
Ri from S′

i. Define the invariant partition P ′ of C as follows: P ′(q′) = P (q′) if
q′ �= q, and P ′(q) = (P (q) \ {p}) ∪ Pr(q). The new abstract automaton will be
R = α(C,P ′). Observe that R is a refinement of A (since the invariant partition
is refined), and the relationship between the locations and edges of the two
automata is characterized by a function αR,A(·) defined as follows. For a location
(q′, p′), αR,A(q′, p′) = (q′, p′) if either q′ �= q, or p′ �⊆ p, and αR,A(q′, p′) = (q, p)
otherwise. Having defined the mapping between locations, the mapping between
edges is its natural extension:

αR,A((q1, p1), (q2, p2), g, j, r) =
(αR,A(q1, p1), αR,A(q2, p2), g, j, r).

The goal of the refinement strategy outlined above is to ensure that a given
counterexample π is eventually eliminated, if the abstract model checker gener-
ates it sufficiently many times. To make this statement precise and to articulate
the nature of progress we need to first identify when a counterexample of R cor-
responds to a counterexample of A. Observe that a path π of A can “correspond”
to a longer path π′ in R, where previous sojourn in location (q, p) in π, now corre-
sponds to a path in π′ that traverses the newly created locations by partitioning
p. Recall that we are assuming that porC,A(ρ) = i, where ρ is the annotation
corresponding to π. We will say that a counterexample π′ = e′

1, e
′
2, . . . e

′
m cor-

responds to counterexample π = e1, e2, . . . en, if there exists k, 0 ≤ k ≤ m − i,
such that 1. for all j ≤ i, αR,A(e′

j) = ej , 2. for all j > i + k, αR,A(e′
j) = ej−k,

and 3. for all i < j ≤ i + k, source and destination of αR,A(e′
j) is (q, p). If π′

corresponds to π, we will call k its witness. Using this notion of correspondence,
we are ready to state what our refinement achieves.
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Proposition 12. Let π be a counterexample of A and ρ its annotation. Let R
be the refinement constructed by our strategy after ρ is found to be spurious. Let
π′ be a counterexample of R that corresponds to π, and let ρ′ be its annotation.
Then, porC,R(ρ′) < porC,A(ρ).

The above proposition implies that a counterexample π can appear only
finitely many times in the CEGAR loop. This is because the point of refinement
of any π′ in R corresponding to π in A is strictly smaller.

Next, we claim that a partition satisfying the refinement strategy always
exists. It relies on the following observation from [28] which states that the
reach set of a linear dynamical system can be approximated to within any ε by
a rectangular hybridization over a bounded time interval.

Theorem 13 ([28]). Let H be a linear hybrid automaton with a single location
such that there is a bound T on the time for which the system can evolve in the
location. Then, for any ε > 0, there exists an invariant partition P of H such
that distH(reach(H), reach(α(H,P ))) < ε.

Corollary 14 (Existence of Refinement). There always exists a partition
P ′ that separates Ri and S′

i.

4.6 Validation Approximation

In order to validate a counterexample, we assumed to be able to exactly compute
continuous post of a set of states in the Affine Hybrid Automaton for a finite
amount of time. But the best one can actually hope for is computing over and
under approximation of this set. In this section we show that being able to
approximate the continuous post is enough for our algorithm. For any Hybrid
Automaton H, set of states S ⊆ S�H�, edge e ∈ EH , and parameter ε ∈ R+ we
define the following functions:

– cpostεover(S) is an over-approximation of cpost(S). Formally, if cpostεover(S)
returns S′ then we know cpost(S) ⊆ S′ and distH(S′, cpost(S)) < ε.

– cpostεunder(S) is an under-approximation of cpost(S). Formally, if cpostεunder(S)
returns S′ then we know cpost(S) ⊇ S′ and distH(S′, cpost(S)) < ε.

During the validation procedure, instead of computing ρ′ we compute ρo and
ρu. They are computed exactly as ρ′, except that in ρo and ρu, instead of cpost,
we respectively use cpostεover and cpostεunder. Let us denote the last elements of ρo

and ρu respectively by R′
n and U ′

n. If U ′
n is non-empty, we know ρ represents at

least one valid counterexample. Therefore, the algorithm outputs ‘unsafe’ and
terminates. If U ′

n is empty but R′
n is non-empty, it means ε is too big. Therefore,

the algorithm repeats itself using ε
2 . If R′

n is empty, it means all counterexamples
in ρ are spurious. Therefore, too much over-approximation is deployed in A and
it needs to be refined as stated in Sect. 4.5.

Lemma 15. Given a counterexample π of A, if γA(π) is spurious, then there
exists an ε > 0 for which R′

n is empty.



764 N. Roohi et al.

The above lemma states that if the abstract counterexample is spurious,
then the same will be detected by our algorithm. This is a direct consequence of
Lemma 11.

5 Experimental Results

Our tool (Hybrid Abstraction Refinement Engine or HARE, for short) is imple-
mented in Scala. The CEGAR framework relies on a model checker that
analyzes an abstract model and produce a counterexample if the abstract model
violates the safety requirement. In our case this is a model checker for Rectangu-
lar Hybrid Automata that produces counterexamples. The only model checkers
for Rectangular Automata that produce counterexample that we are aware of
are HyTech [20] and the old version of HARE [27]1. Unfortunately, because HyTech
is not being actively maintained, it does not have support for numbers of arbi-
trary size, and so in our experiments we frequently ran into overflow problems.
Also, we decided not to use the old version of HARE to model check Rectangular
Automata for two reasons: 1. we wanted to only study the effects of the abstrac-
tion techniques introduced in this paper, and not have our results compromised
by other simplification steps introduced in [27] like merging control locations
and transitions, and ignoring variables. 2. The old version of HARE internally
calls HyTech, hence, the overflow error happens when the size of the automa-
ton becomes large as a result of refinements. Therefore, we implemented a new
model checker for Rectangular Hybrid Automata. Our implementation uses the
Parma Polyhedral Library (PPL) [4] to compute the discrete and continuous pre
in Rectangular Hybrid Automata2, and Z3 [13] to check for fixpoints or intersec-
tion with initial states. Starting from the unsafe states, we iteratively compute
pre until either a fixed point is found or we reach an initial state. Both of these
libraries can handle numbers of arbitrary size. Validation of counterexamples
requires computing posts in the concrete Affine Hybrid Automata. For discrete
post we use the PPL library, and for the continuous post we call SpaceEx [19]
with either Supp or PHAVer [18] scenario. Note that SpaceEx only computes an
over-approximation of the continuous post and does not have support for com-
puting under-approximations. Therefore, currently in our tool, we stop when an
abstract counterexample is validated using the over-approximation implemented
by SpaceEx. Finally, in the current implementation, in order to refine a location
we simply halve its invariant along some variable at the point of refinement.

We evaluate our tool against four suites of examples that have been proposed
by the community [2,6,17] as benchmarks for model checkers of hybrid systems.
Each of these suites is qualitatively different and tests different aspects of the
performance of a model checker. They are Tank, Satellite, Heater, and Navigation
benchmarks.
1 Note that FLOW∗ produces counterexamples and can even handle non-linear ODEs.

But it does not support differential inclusions and therefore it is incapable of handling
Rectangular Automata.

2 Technically, we first convert the problem of computing pre to an equivalent problem
of computing post, and then use PPL to find the solution.
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Table 1. Experimental results. Columns Dim., Locs., and Trns. specify number of
respectively variables (dimension), locations, and transitions in each benchmark. Five
different Time columns specify amount of time each tool took to solve a problem.
Times are all in seconds. ‘< 1’ means less than a second and ‘> 600’ means time out
(more than 10 min). Also, ‘- - -’ means one of the following: (1) it could not be run
on HSolver because of specific features the model has, (2) it could not be run on
SpaceEx AGAR because we could not find any set of locations that can be merged with-
out causing the tool to terminate unexpectedly, (3) we do not have the data because
of SpaceEx AGAR’s time out. Four different Safe columns specify the output of each
tool. Note that all tools perform some kind of over-approximation. Three FP. columns
mean whether or not the corresponding tool reached a fixed-point in its reachabil-
ity computation. No* in the FP. column of SpaceEx means that the tool reached a
fixed-point, but it also generates the following warning which invalidates the reliability
of its “safe” answer: WARNING (incomplete output) Reached time horizon
without exhausting all states, result is incomplete.

We ran different instances of the above examples on 4 different tools, in
addition to HARE — SpaceEx, PHAVer (i.e. SpaceEx using PHAVer scenario),
SpaceEx AGAR [7], and HSolver [29]. We do not compare with the older ver-
sion of HARE, since it implements a CEGAR algorithm for Rectangular Hybrid
Automata and not for Affine Hybrid Automata.

Table 1 shows the results on some of the instances we ran the tools on. All
examples were run on a laptop with Intel i5 2.50 GHz CPU, 6 GB of RAM, and
Ubuntu 14.10. The salient observations, based on the experiments reported in
Table 1, are summarized below.

1. The Satellite benchmark shows that HARE scales up to automata with a large
control structure.

2. HARE often beats the SpaceEx scenario in terms of proving safety or running
time. For 4 problems, HARE performed faster. For 3 problems both tools have
the same time, but in one of them only HARE proved safety. For 5 out of the
remaining 7 problems in which SpaceEx performed faster, only HARE proved
safety.

3. The PHAVer scenario is often faster but there are cases where HARE beats
PHAVer. There are only 4 instances in which HARE performed faster, but in 7
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examples PHAVer performed faster. Also there are 3 cases (including one in
which PHAVer performed faster) where only HARE proved safety.

4. HARE often beats SpaceEx AGAR in terms of proving safety or running time. In
2 problems, we could not find any two locations such that merging them does
not cause SpaceEx AGAR to encounter internal error. In 7 problems, HARE per-
formed faster. In the remaining 5 problems SpaceEx AGAR performed faster,
but there is one problem among them for which only HARE proved safety.

5. In some instances, SpaceEx, PHAVer, and SpaceEx AGAR failed to prove safety
while HARE did not. There are two reasons for it. Sometimes those three tools
fail to reach a fixpoint in the reachability computation. Examples of this are
Tank 16-17, Satellite 4,11,15, and Nav 8,9,13,20 for SpaceEx, and Tank 16-
17 for both PHAVer and SpaceEx AGAR. The other reason is that sometimes
those three tools over-approximate too much. Examples of this is Nav 9 for
PHAVer and SpaceEx AGAR. Furthermore, it seems merging locations is a very
expensive task in SpaceEx AGAR, which we believe is the main reason for the
time outs of this tool.

6. On all our examples, HSolver either timed out or the specific constraints in
the model made them unamenable to analysis by HSolver. HSolver is an
abstraction based tool that abstracts hybrid automata into finite state, dis-
crete transition systems. It can handle models with non-linear dynamics, and
so applies to automata more general than what HARE, SpaceEx, and PHAVer
analyze. This suggests that HSolver’s algorithm makes certain decisions that
are not effective for Affine Hybrid Automata.

6 Conclusion

We presented a new algorithm for model checking safety problems of Hybrid
Automata with Affine Dynamics and Rectangular Constraints in a counterex-
ample guided abstraction refinement framework. We show that our algorithm is
sound and have implemented it in a tool named HARE. We also compared the
performance of our tool with a few state-of-the-art tools. Results show that per-
formance of our tool is promising compared to the other tools (SpaceEx, PHAVer,
and HSolver).

In the future, we intend to incorporate certain improvements to our imple-
mentation. In particular, we would like to integrate an algorithm for computing
an under-approximation of the continuous post. The will allow us to definitively
validate abstract counterexamples. Theoretically, we would like to explore the
completeness of our algorithm, in terms of finding a concrete counterexample
when the concrete system is unsafe. This may require a novel notion of coun-
terexample in the abstract system, which is shortest in terms of the number of
edges in the concrete system which do not correspond to self-loops. Our broad
future goal is to extend the hybrid abstraction refinement method for non-linear
hybrid systems.

Acknowledgement. The authors would like to thank Sergiy Bogolomov for help with
using the SpaceEx AGAR. We gratefully acknowledge the support of the following



Hybridization Based CEGAR for Hybrid Automata with Affine Dynamics 767

grants — Nima Roohi was partially supported by NSF CNS 1329991; Pavithra Prab-
hakar was partially supported by EU FP7 Marie Curie Career Integration Grant no.
631622 and NSF CAREER 1552668; and Mahesh Viswanathan was partially supported
by NSF CCF 1422798 and AFOSR FA9950-15-1-0059.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
TCS 138(1), 3–34 (1995)
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Abstract. We introduce an efficient complementation technique for
semi-deterministic Büchi automata, which are Büchi automata that are
deterministic in the limit: from every accepting state onward, their
behaviour is deterministic. It is interesting to study semi-deterministic
automata, because they play a role in practical applications of automata
theory, such as the analysis of Markov decision processes. Our motiva-
tion to study their complementation comes from the termination analy-
sis implemented in Ultimate Büchi Automizer, where these automata
represent checked runs and have to be complemented to identify runs to
be checked. We show that semi-determinism leads to a simpler comple-
mentation procedure: an extended breakpoint construction that allows
for symbolic implementation. It also leads to significantly improved
bounds as the complement of a semi-deterministic automaton with n
states has less than 4n states. Moreover, the resulting automaton is
unambiguous, which again offers new applications, like the analysis of
Markov chains. We have evaluated our construction against the semi-
deterministic automata produced by the Ultimate Büchi Automizer.
The evaluation confirms that our algorithm outperforms the known com-
plementation techniques for general nondeterministic Büchi automata.

1 Introduction

The complementation of Büchi automata [6] is a classic problem that has been
extensively studied [6,11–13,17,19,20,22,23,25–27,31–33,37] for more than half
a century; see [35] for a survey. The traditional line of research has started with
a proof on the existence of complementation algorithms [19,22] and continued to
home in on the complexity of Büchi complementation, finally leading to matching
upper [27] and lower [37] bounds for complementing Büchi automata. This line of
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research has been extended to more general classes of automata, notably parity
[30] and generalised Büchi [29] automata.

The complementation of Büchi automata is a valuable tool in formal verifica-
tion (cf. [18]), in particular when a property that all runs of a model shall have
is provided as a Büchi automaton,1 and when studying language inclusion prob-
lems of ω-regular languages. With the growing understanding of the worst case
complexity, the practical cost of complementing Büchi automata has become a
second line of research. In particular the GOAL tool suite [33] provides a plat-
form for comparing the behaviour of different complementation techniques on
various benchmarks [32].

While these benchmarks use general Büchi automata, practical applications
can produce or require subclasses of Büchi automata in specific forms. Our
research is motivated by the observation that the program termination analy-
sis in Ultimate Büchi Automizer [15] and the LTL software model checker
Ultimate LTL Automizer [9] produce semi-deterministic Büchi automata
(SDBA) [34,36] during their run. Semi-deterministic Büchi automata are a spe-
cial class of Büchi automata that behave deterministically after traversing the
first accepting state. For this reason, they are sometimes referred to as limit
deterministic or deterministic-in-the-limit Büchi automata.

Program termination analysis is a model checking problem, where the aim is
to prove that a given program terminates on all inputs. In other words, it tries to
establish (or disprove) that all infinite execution paths in the program flowgraph
are infeasible. The Ultimate Büchi Automizer uses an SDBA to represent
infinite paths that are already known to be infeasible. It needs to complement
the SDBA and make the product with the program flowgraph to identify the
set of infinite execution paths whose infeasibility still needs to be proven. One
can use off-the-shelf complementation algorithms like rank based [12,13,17,27]
or determinisation based [24,25,28,29] ones, but they make no use of the special
structure of SDBAs.

We show that exploiting this structure helps: while the complementation of
Büchi automata with n states leads to a (cn)n blow-up for a constant c ≈ 0.76
(cf. [27] for the upper and [37] for the lower bound), an SDBA with n states can
be complemented to an automaton with less than 4n states. More precisely, if
the deterministic part (the states reachable from the accepting states) contains
d states, including a accepting states, the complement automaton has at most
2n−d3a4d−a states. The 2Θ(n) blow-up is tight as an Ω(2n) lower bound is inher-
ited from the complementation of nondeterministic finite automata. Another
advantage of our construction is that it is suitable for the simplest class of Büchi
automata: deterministic Büchi automata with a accepting and n non-accepting
states are translated to 2n − a states, which meets Kurshan’s construction for
the complementation of deterministic Büchi automata [18].

1 In model checking, one tests for emptiness the intersection of the automaton that
recognises the runs of a system with the automaton that recognises the complement
of the property language.



772 F. Blahoudek et al.

Moreover, the resulting automata have further useful properties. For example,
their structure is very simple: they are merely an extended breakpoint construc-
tion [21]. Like ordinary breakpoint constructions, this provides a structure that is
well suited for symbolic implementation. This is quite different from techniques
based on Safra style determinisation [24,25,28,29]. In addition to this, they are
unambiguous, i.e. there is exactly one accepting run for each word accepted by
such an automaton. This is notable, because disambiguation is another automata
transformation that seems to be more involved than complementation, but sim-
pler than determinisation [16], and it has proven to be useful for the quantitative
analysis of Markov chains [3,7]. For our motivating application, this is particular
good news, as the connection to Markov chains implies direct applicability to
model checking stochastic models as well as nondeterministic ones. The connec-
tion to stochastic models closes a cycle of applications, as they form a second
source for applying semi-deterministic automata: they appear in the classic algo-
rithm for the qualitative analysis of Markov decision processes [8] and in current
model checking tools for their quantitative analysis [14] alike.

With all of these favourable properties in mind, it would be easy to think that
the complementation mechanism we develop forms a class of its own. But this is
not the case: when comparing it with classic rank based complementation [17] and
its improvements [12,13,27], semi-deterministic automata prove to be automata,
where all states in all runs can be assigned just three ranks, ranks 1 through 3
in the terminology of [17]. Consequently, there are only states with a single even
rank, and a rank based algorithm that has to guess the rank correctly for states
that are reachable from an accepting state has very similar properties. From this
perspective, one could say that complementation and disambiguation are easy to
obtain, as very little needs to be guessed (only the point where the rank of a state
goes down to 1) and very little has to be checked.

We also motivate and present an on-the-fly modification of our complemen-
tation, which does not need to know the whole automaton before the comple-
mentation starts. The price for the on-the-fly approach is a slightly worse upper
bound on the size of the produced automaton for the complement: it has less
than 5n states.

We have implemented our construction in the GOAL tool and the Ultimate
Automata Library and evaluated it on semi-deterministic Büchi automata
that were produced by Ultimate Büchi Automizer applied to programs of
the Termination category of the software verification competition SV-COMP
2015 [4]. The evaluation confirms that the specific complementation algorithm
realises its theoretical advantage and outperforms the traditional algorithms and
produces smaller complement automata.

The remainder of the paper is organised as follows. After recalling some
definitions and introducing our notation in Sect. 2, we present the complementa-
tion construction in Sect. 3 together with its complexity analysis and on-the-fly
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modification. In Sect. 4, we show a connection between our construction and
rank-based constructions, followed by a correctness proof for our construction.
The experimental evaluation is presented in Sect. 5.

2 Preliminaries

A (nondeterministic) Büchi automaton (NBA) is a tuple A = (Q,Σ, δ, I, F ),
where

– Q is a finite set of states,
– Σ is a finite alphabet,
– δ : Q × Σ → 2Q is a transition function,
– I ⊆ Q is a set of initial states, and
– F ⊆ Q is a set of accepting states.

A run of an automaton A over an infinite word w = w0w1 . . . ∈ Σω is a
finite or infinite sequence of states ρ = q0q1q2 . . . ∈ Q+ ∪ Qω such that q0 ∈ I
and qj+1 ∈ δ(qj , wj) for each pair of adjacent states qjqj+1 in ρ. For a finite
run ρ = q0q1q2 . . . qn ∈ Qn+1 we require that there is no transition for its last
state, i.e. δ(qn, wn) = ∅, and we say that the run blocks. A run is accepting if
qj ∈ F holds for infinitely many j. A word w is accepted by A if there exists an
accepting run of A over w. The language of an automaton A is the set L(A) of
all words accepted by A.

A complement of a Büchi automaton A is a Büchi automaton C over the
same alphabet Σ that accepts the complement language, L(C) = Σω

� L(A), of
the language of A.

A Büchi automaton A = (Q,Σ, δ, I, F ) is called complete if, for each state
q ∈ Q and for each letter a ∈ Σ, there exists at least one successor, i.e. |δ(q, a)| ≥
1. A Büchi automaton A is unambiguous if, for each w ∈ L(A), there exists only
one accepting run over w.

A state of a Büchi automaton A = (Q,Σ, δ, I, F ) is called reachable if it
occurs in some run for some word w ∈ Σω. A = (Q,Σ, δ, I, F ) is called deter-
ministic if it has only one initial state, i.e. if |I| = 1, and if, for each reachable
state q ∈ Q and for each letter a ∈ Σ, there exists at most one successor, i.e.
|δ(q, a)| ≤ 1.

We are particularly interested in semi-deterministic automata. A Büchi
automaton is semi-deterministic if it behaves deterministically from the first visit
of an accepting state onward. Formally, a Büchi automaton A = (Q,Σ, δ, I, F ) is
a semi-deterministic Büchi automaton (SDBA) (also known as deterministic-in-
the-limit) if, for each qf ∈ F , the automaton (Q,Σ, δ, {qf}, F ) is deterministic.

Each semi-deterministic automaton can be divided into two parts: the part
reachable from accepting states—which is completely deterministic—and the
rest. Hence, one can alternatively define a semi-deterministic automaton such
that the set of states Q = Q1∪Q2 consists of two disjoint sets Q1 and Q2, where
F ⊆ Q2, and the transition relation δ = δ1 ∪ δt ∪ δ2 consists of three disjoint
transition functions, namely
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δ1 : Q1 × Σ → 2Q1 , δt : Q1 × Σ → 2Q2 , and δ2 : Q2 × Σ → 2Q2 ,

where the relation δ2 is deterministic: for each q ∈ Q2 and each a ∈ Σ, |δ2(q, a)| ≤
1. δ can then be defined as δ(q, a) = δ1(q, a) ∪ δt(q, a) if q ∈ Q1 and δ(q, a) =
δ2(q, a) if q ∈ Q2. The elements of δt are called transit edges. This alternative
definition is captured in Fig. 1 and used in the following section.

Q1, δ1

Q2, δ2

deterministic

δt

Fig. 1. A semi-deterministic Büchi automaton: δ2 is deterministic, accepting states are
only in Q2, and transit edges (δt) lead from Q1 to Q2.

3 Semi-deterministic Büchi Automata Complementation

First of all, we explain our complementation construction intuitively. Then we
formulate it precisely and discuss the size of the resulting automata when
the complementation is applied to semi-deterministic and deterministic Büchi
automata. At the end, we briefly introduce the modification of our comple-
mentation construction for on-the-fly approach. The correctness is addressed in
Sect. 4 after introducing the concept of level rankings and run graphs.

3.1 Relation of Runs to the Complement

Let A = (Q,Σ, δ, I, F ) be an SDBA, Q1, δ1, Q2, δ2, δt be the notation introduced
in Fig. 1, and w = w0w1 . . . ∈ Σω be an infinite word. Each run ρ of A over w
has one of the following properties:

1. ρ blocks,
2. ρ stays forever in Q1,
3. ρ enters Q2 and stops visiting F at some point, or
4. ρ is an accepting run.

Clearly, w /∈ L(A) if and only if every run of A over w has one of the first three
properties. In the third case, we say that ρ is safe after visiting F for the last
time (or since the moment it enters Q2 if it does not visit any accepting state
at all).

In order to check whether w ∈ L(A) or not, one has to track all possible runs
of A. After reading a finite prefix of w, the states reached by the corresponding
prefixes of runs can be divided into three sets.
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1. The set N ⊆ Q1 represents the runs that kept out of the deterministic part
(N stands for nondeterministic) so far.

2. The set C ⊆ Q2 represents the runs that have entered the deterministic
part and that are not safe. One has to check (hence the name C) if some of
them will be prolonged into accepting runs in the future, or if all of the runs
eventually block or become safe.

3. The set S ⊆ Q2 � F represents the safe runs.

Clearly, every accepting run of A stays in C after leaving N . On the other
hand, if w /∈ L(A), every infinite run either stays in N or eventually leaves C to
S and thus does not stay in C forever.

3.2 NCSB Complementation Construction

In this section, we describe an efficient construction that produces, for a given
SDBA A, a complement automaton C. The automaton C has typically a low
degree of non-determinism when compared to results of other complementation
algorithms, and is always unambiguous. The complementation construction pro-
posed here tracks the runs of A using the well known powerset construction and
guesses the right classification of runs into sets N,C, and S. Moreover, in order
to check that no run stays forever in C, it uses one more set B ⊆ C. The set
B mimics the behaviour of C with one exception: it does not adopt the runs
freshly coming to C via δt. The size of B never increases until it becomes empty;
then we say that a breakpoint is reached. After each breakpoint, B is set to
track exactly the runs currently in C. To sum up, states of C are quadruples
(N,C, S,B)—hence the name NCSB complementation construction.

After reading only a finite prefix of the input word w, the automaton cannot
know whether or not some run is already safe, as this depends on the suffix of w.
The automaton C uses the guess-and-check strategy. Whenever a run ρ in C may
freshly become safe (it is leaving an accepting state or it is entering Q2 via a
transit edge), then the automaton C makes a nondeterministic decision to move
ρ to S or to leave it in C. The construction punishes every wrong decision:

– in order to preserve correctness, a run of C is blocked if ρ is moved to S too
early (runs in S are not allowed to visit accepting states any more), and

– in order to maintain unambiguity, ρ is allowed to move from C to S only when
leaving an accepting state. Hence, if ρ misses the moment when it leaves an
accepting state for the last time, it will stay in C forever and this particular
run of C cannot be accepting.

Before we formally describe the NCSB construction, we first naturally extend
δ1, δ2, and δt to sets. For any δ̄ ∈ {δ1, δ2, δt}, any a ∈ Σ, and any set X ⊆ Q1 or
X ⊆ Q2, we set δ̄(X, a) =

⋃
q∈X δ̄(q, a).

With the provided intuition in mind, we define the complement automaton
NBA C = (P,Σ, δ′, IC , FC) as follows.
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– P ⊆ 2Q1 × 2Q2 × 2Q2�F × 2Q2 .
– IC = {(Q1 ∩ I, C, S,C) | S ∪ C = I ∩ Q2, S ∩ C = ∅}.
– FC = {(N,C, S,B) ∈ P | B = ∅}.
– δ′ is the transition function δ′ : P × Σ → 2P , such that (N ′, C ′, S′, B′) ∈

δ′((N,C, S,B), a
)

iff
• N ′ = δ1(N, a), C ′ ∪ S′ = δt(N, a) ∪ δ2(C ∪ S, a) (intuition: tracing the

reachable states correctly),
• C ′ ∩ S′ = ∅ (intuition: a run in Q2 is either safe, or not),
• S′ ⊇ δ2(S, a) (intuition: safe runs must stay safe),
• C ′ ⊇ δ2(C � F, a) (intuition: only runs leaving an accepting state can

become safe),
• for all q ∈ C � F , δ2(q, a) �= ∅ (intuition: otherwise the corresponding run

was safe already and should have been moved to S earlier), and
• if B = ∅ then B′ = C ′, and else B′ = δ2(B, a) ∩ C ′ (intuition: breakpoint

construction to check that no run stays in C forever).

Note that the only source of nondeterminism of δ′ is when C has to guess
correctly whether or not a run ρ of A is safe. Such situations arise in two cases,
namely when the current state q of the run ρ satisfies

– q ∈ δt(N, a) � (δ2(S, a) ∪ F )—ρ is freshly entering Q2, and when
– q ∈ δ2(C ∩ F, a) � (δ2(S, a) ∪ F )—ρ is leaving an accepting state.

All other situations are determined, including runs that are currently in δ2(S, a)
(which belong to S) and runs that are currently in F (which belong to C).

3.3 Complexity

Let p = (N,C, S,B) ∈ P of C. Then

– for a state q1 ∈ Q1 of A, q1 is either present or absent in N ;
– for q2 ∈ F , one of the following three options holds: q2 is only in C, q2 is both

in C and B, or q2 is not present in p at all; and
– for q3 ∈ Q2 � F , one of the following four options holds: q3 is only in S, q3 is

only in C, q3 is both in C and B, or q3 is not present in p at all.

The size of P is thus bounded by |P | ≤ 2|Q1| · 3|F | · 4|Q2�F |.
Let us note that, for deterministic automata (here we assume A is complete

and Q1 is empty), the NCSB construction leads to an automaton similar to an
automaton with 2|Q| − |F | states produced by Kurshan’s construction [18]. To
see the size of the automaton produced by our construction for a DBA, recall
that a state (N,C, S,B) of the complement automaton encodes that exactly the
states in N ∪C∪S are reachable. For a DBA, N ∪C∪S thus contains exactly one
state q of Q. Moreover, N is empty and thus B coincides with C since B becomes
empty together with C. If q ∈ F , then it is in both B and C. If q ∈ Q2 � F ,
then it is either only in S, or in both B and C, leading to a size ≤ 2|Q2| − |F |.
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3.4 Modification Suitable for On-the-fly Implementation

Some algorithms do not need to construct the whole complement automaton.
For example, in order to verify that w /∈ L(A) one only needs to built the accept-
ing lasso in C for w. Or when building a product with some other automaton
(or Markov chain), it is unnecessary to build the part of C which is not used in
the product. Further, some tools work with implicitly encoded automata and/or
query an SMT solver to check the presence of a transition in the automaton,
which is expensive. Ultimate Büchi Automizer has both properties: it stores
automata in an implicit form and builds a product of the complement with a
program flowgraph. Such tools can greatly benefit from an on-the-fly comple-
mentation that does not rely on the knowledge of the whole input automaton.

Our complementation can be easily adapted for an on-the-fly implementation.
Because we have no knowledge about Q1, Q2, and δt in this variation, the runs
are held in N until they reach an accepting state, only then they are moved
to C.

Technically, the “N ′ = δ1(N, a)” from the definition of δ′ would be replaced
by “N ′ = δ(N, a) � F” and for C ′ now holds C ′ ⊆ δ(C, a) ∪ (δ(N, a) ∩ F ). The
on-the-fly construction can therefore have up to 2|Q1| · 3|F | · 5|Q2�F | states.

Note that the on-the-fly construction does not add any further nondetermin-
ism to the construction. To the contrary, there is an injection of runs from the
construction discussed in Sect. 3.2 to this on-the-fly construction. The correct-
ness argument and the uniqueness argument for the accepting run which are
given in Sect. 4 therefore need only very minor adjustments.

4 Level Rankings in Complementation and Correctness

We open this section by introduction of run graphs and level rankings. We then
look at our construction through the level ranking lense and use the insights this
provides for proving its correctness and unambiguity.

4.1 Complementation and Level Rankings

In [17], Kupferman and Vardi introduce level rankings as a witness for the
absence of accepting runs of Büchi automata. They form the foundation of sev-
eral complementation algorithms [12,13,17,27,29].

The set of all runs of a nondeterministic Büchi automaton A = (Σ,Q, I, δ, F )
over a word w can be represented by a directed acyclic graph Gw = (V,E), called
the run graph of A on w, with

– vertices V ⊆ Q × ω such that (q, i) ∈ V iff there is a run ρ = q0q1q2 . . . over
A on w with qi = q, and

– edges E ⊆ (Q × ω) × (Q × ω) such that
(
(q, i), (q′, i′)

) ∈ E iff i′ = i + 1 and
there is a run ρ = q0q1q2 . . . of A over w with qi = q and qi+1 = q′.
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The run graph Gw is called rejecting if no path in Gw satisfies the Büchi
condition. That is, Gw is rejecting iff w does not have any accepting run, and thus
iff w is not in the language of A. A can be complemented to a nondeterministic
Büchi automaton C that checks if Gw is rejecting.

The property that Gw is rejecting can be expressed in terms of ranks [17]. We
call a vertex (q, i) ∈ V of a graph G = (V,E) safe, if no vertex reachable from
(q, i) is accepting (that is, in F × ω), and finite, if the set of vertices reachable
from (q, i) in G is finite.

Based on these definitions, ranks can be assigned to the vertices of a rejecting
run graph. We set Gw

0 = Gw, and repeat the following procedure until a fixed
point is reached, starting with i = 1:

– Assign all safe vertices of Gw
i−1 the rank i, and set Gw

i to Gw
i−1 minus the

vertices with rank i (that is, minus the safe vertices in Gw
i−1).

– Assign all finite vertices of Gw
i the rank i+1, and set Gw

i+1 to Gw
i minus the

vertices with rank i + 1 (that is, minus the finite vertices in Gw
i).

– Increase i by 2.

A fixed point is reached in n + 2 steps2, and the ranks can be used to char-
acterise the complement language of a nondeterministic Büchi automaton:

Proposition 1. [17] A nondeterministic Büchi automaton A with n states
rejects a word w iff Gw

2n+2 is empty. �

4.2 Ranks and Complementation of SDBAs

When considering the run graph for SBDAs, we only need to consider three
ranks: 1, 2, and 3. What is more, the vertices Q2 × ω reachable from accepting
vertices can only have rank 1 or rank 2 in a rejecting run graph.

Proposition 2. A semi-deterministic Büchi automaton A rejects a word w iff
Gw

3 is empty. This is the case iff Gw
2 contains no vertex in Q2 × ω.

Proof. Let w be a word rejected by S. By construction, Gw
1 contains no safe

vertices. (Note that removing safe vertices does not introduce new safe vertices.)
Let us assume for contradiction that Gw

1 contains a vertex (qi, i) ∈ Q2 × ω,
which is not finite. As (qi, i) is not finite, there is an infinite run ρ =
q0q1q2 . . . qi−1qiqi+1 . . . of A over w such that, for all j ≥ i, (qj , j) is a ver-
tex in Gw

1. This is because qi ∈ Q2, the deterministic part of the SBDA, and
{(qj , j) | j ≥ i} is therefore (1) determined by w and (qi, i), and (2) fully in Gw

1,
because otherwise (qi, i) would be finite.

But if all vertices in {(qj , j) | j ≥ i} are in Gw
1, then none of them is

safe in Gw. Using again that the tail qiqi+1qi+2 . . . is unique and well defined
2 It is common to use 0 as the minimal rank (i.e. to start with the finite vertices), but

the correctness of the complementation does not rely on this. The proof in [17] refers
to this case, and requires n + 1 steps. For our purpose, the minimal rank needs to
be odd, i.e. we need to start with safe vertices.
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(as qi ∈ Q2, the deterministic part of the SDBA), it follows that, for all j ≥ i, there
is a k ≥ j such that qk is accepting. Consequently, ρ is accepting (contradiction).

We have thus shown that, if S rejects a word w, then Gw
2 contains no state in

Q2 ×ω. This also implies that Gw
2 contains no accepting vertices. Consequently,

all vertices in Gw
2 are safe. Consequently, Gw

3 is empty. �
We now consider the NCSB construction from a level ranking per-

spective. We start with an intuition for the rational run ρ =
(N0, C0, S0, B0)(N1, C1, S1, B1)(N2, C2, S2, B2) . . . of C over a word w rejected
by A, where (V,E) = Gw. A rational run is the unique accepting run of C over
w and it guesses the ranks precisely, that is:

– Ni = {q | (q, i) ∈ V, q ∈ Q1},
– Ci = {q | (q, i) ∈ V, q ∈ Q2 and the rank of (q, i) is 2} (we need to check that

these states are finite in Gw
2),

– Si = {q | (q, i) ∈ V, q ∈ Q2 and the rank of (q, i) is 1},
– Bi ⊆ Ci.

All runs of C that differ on some i from the rational run will either block or
will keep the wrongly guessed vertices with rank 1 in C and thus will be not
accepting.

Note that the C does not need to guess much. The development of the Ni is
deterministic. The development of Ci∪Si is deterministic, Si and Ci are disjoint,
and states in F cannot be in Si. The Bi serve as a breakpoint construction, and
the development of Bi is determined by the development of the Ci. All that
needs to be guessed is the point when a vertex becomes safe, and there is only
a single correct guess.

4.3 Correctness

After reading only a finite prefix of an input word w, the automaton has to use
its nondeterministic power to guess which reached state in Q2 should be added
to S. We now establish that the automaton C is an unambiguous automaton
that recognises the complement language of A by showing

1. C does not accept a word that is accepted by A,
2. for words that are not accepted by A, the run inferred from the level ranking

discussed in Sect. 4.2 defines an accepting run, and
3. for words w that are not accepted by A, this is the only accepting run of C

over w.

Lemma 1. Let A be an SDBA, C be constructed by the NCSB complementation
of A, and w ∈ L(A) be a word in the language of A. Then C does not accept w.

Proof. Let ρ = q0q1 . . . be an accepting run of A over w, and let i ∈ ω
be an index such that qi ∈ F . Let us assume for contradiction that ρ′ =
(N0, C0, S0, B0)(N1, C1, S1, B1) . . . (Nn, Cn, Sn, Bn) . . . is an accepting run of C
over w. Clearly, qi ∈ Ci. It therefore holds, for all j ≥ i, that qj ∈ Cj ∪ Sj .

We look at the following case distinction.
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1. For all j ≥ i, qj ∈ Cj . As ρ′ is accepting, there is a breakpoint (Bj = ∅)
for some j ≥ i. For such a j we have that qj+1 ∈ Bj+1 and, moreover, that
qk ∈ Bk for all k ≥ j + 1. Thus, Bk �= ∅ for all k ≥ j + 1 and ρ′ visits only
finitely many accepting states (contradiction).

2. There is a j ≥ i such that qj ∈ Sj . But then qk ∈ Sk holds for all k ≥ j by
construction. However, as ρ is accepting, there is an l ≥ j such that ql ∈ F ,
which contradicts ql ∈ Sl (contradiction). �

Lemma 2. Let A be an SDBA, C be the automaton constructed by the
NCSB complementation of A, w /∈ L(A), and (V,E) = Gw be the run
graph of A on w. Then there is exactly one rational run of the form ρ =
(N0, C0, S0, B0)(N1, C1, S1, B1)(N2, C2, S2, B2) . . .. This run is accepting.

Proof. It is easy to check that this defines exactly one infinite run: the updates of
the N , C, and S components follow the rules for transitions from the definition
of C, and the update of the B component is fully determined by the update of
C and the previous value of B.

What remains is to show that the run is accepting. Let us assume for con-
tradiction that there are only finitely many breakpoints reached, i.e. there is an
index i ∈ ω, for which there is no j ≥ i, such that Bj = ∅.

Now we have ∅ �= Bi ⊆ Ci = {q | (q, i) ∈ V s.t. q ∈ Q2 and the rank of
(q, i) is 2}. The construction provides that, if there is no breakpoint on or after
position i, then Bj is the set of states that correspond to vertices from Q × {j}
reachable in Gw

1 from the vertices Bi × {i}. As there is no future breakpoint,
there are infinitely many such vertices, and Königs lemma implies that there is
an infinite path in Gw

1 from at least one of the vertices in Bi ×{i}. This provides
a contradiction to the assumption that the rank of these vertices is 2, i.e. that
they are finite in Gw

1. �
Lemma 3. Let A be an SDBA, C be the automaton constructed by the NCSB
complementation of A, w /∈ L(A), and (V,E) = Gw be the run graph of A
on w. Let ρ = (N0, C0, S0, B0)(N1, C1, S1, B1)(N2, C2, S2, B2) . . . be an infinite,
non-rational run of C over w that is, it does not satisfy

– Ni = {q | (q, i) ∈ V s.t. q ∈ Q1},
– Ci = {q | (q, i) ∈ V s.t. q ∈ Q2 and the rank of (q, i) is 2},
– Si = {q | (q, i) ∈ V s.t. q ∈ Q2 and the rank of (q, i) is 1},

for some i. Then ρ is rejecting.

Proof. As the N part always tracks the reachable states in Q1 correctly by con-
struction, and the C∪S part always tracks the reachable states in Q2 correctly by
construction, we have one of the following two cases according to Proposition 2.

The first case is that there is a safe vertex (q, i) ∈ V such that q ∈ Ci. By
construction, a unique maximal path (qi, i)(qi+1, i+1)(qi+2, i+2)(qi+3, i+3) . . .
for qi = q exists in Gw, and this path does not contain any accepting state. By
an inductive argument, for all vertices (qj , j) on this path, qj ∈ Cj . If the path
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is finite, ρ blocks at the end (due to the definition of the transition function of
C), which contradicts the assumption that the run ρ is infinite. Similarly, if the
path is infinite, qk ∈ Bk for some k ≥ i. Then qj ∈ Bj for all j > k with (qj , j)
on this path. Therefore, ρ cannot be accepting.

The second case is that there is a non-safe vertex in (q, i) ∈ V such that
q ∈ Si. (Note that this implies q /∈ F .) By construction, we get, for qi = q, a
unique maximal path (qi, i)(qi+1, i+1)(qi+2, i+2)(qi+3, i+3) . . . in Gw, and this
path contains an accepting state qk. By an inductive argument, for all vertices
(qj , j) on this path, qj ∈ Sj . But this implies qk ∈ Sk (contradiction). �

The first two lemmas provide the correctness of our complementation algo-
rithm. Considering that no finite run is accepting, the third lemma establishes
that C is unambiguous.

Theorem 1. Let A be an SDBA and C be the automaton constructed by the
NCSB complementation of A. Then C is an unambiguous Büchi automaton that
recognises the complement of the language of A.

5 Experimental Evaulation

This section compares the results of the NCSB complementation with these pro-
duced by well-known complementations for nondeterministic Büchi automata.
All the automata, tools, scripts and commands used in the evaluation, and
some further comparisons can be found at https://github.com/xblahoud/
NCSB-Complementation.

5.1 Implementations of the NCSB Complementation

We implemented the NCSB complementation in two tools. One implementation
is available in the Goal tool3 [33]. Goal is a graphical interactive tool for omega
automata, temporal logics, and games. It provides several Büchi complementa-
tion algorithms and was used in an extensive evaluation of these algorithms [32].
In the commandline version, the parameter for our construction is complement
-m sdbw -a. The partition of the set Q into Q1 and Q2 is not a parameter,
instead the implementation uses the set of all states that are reachable from
some accepting state as Q2.

Our second implementation is available in the Ultimate Automata
Library. This library is used by the termination analyser Ultimate Büchi
Automizer and other tools of the Ultimate program analysis framework4.
The implementation uses the on-the-fly construction discussed in Sect. 3.4. The
library provides a language that allows users to define automata and a sequence
of commands that should be executed by the library. This language is called

3 http://goal.im.ntu.edu.tw/.
4 http://ultimate.informatik.uni-freiburg.de/.

https://github.com/xblahoud/NCSB-Complementation
https://github.com/xblahoud/NCSB-Complementation
http://goal.im.ntu.edu.tw/
http://ultimate.informatik.uni-freiburg.de/
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automata script and an interpreter for this language is available via a web inter-
face5. The operation that implements the NCSB construction has the name
buchiComplementNCSB.

5.2 Example Automata

For our evaluation, we took automata whose complementation was a subtask
while the tool Ultimate Büchi Automizer was analysing the programs from
the Termination category of the software verification competition SV-COMP
2015 [4]. We wrote each Büchi automaton that was semi-deterministic but not
deterministic to a file in the Hanoi omega-automata format [2]. We obtained 106
semi-deterministic Büchi automata. Using the command autfilt --unique -H
from the Spot library [10], we identified isomorphic automata and kept only the
remaining 97 pairwise non-isomorphic ones.

By construction, all these automata behave deterministically only after the
first visit of an accepting state. Hence the partition of the states Q into Q1 and
Q2 is unique and the results of the construction presented in Sect. 3.2 and the
results of the on-the-fly modification presented in Sect. 3.4 coincide.

5.3 Other Complementation Constructions

The known constructions for the complementation of nondeterministic Büchi
automata can be classified into the following four categories.

Ramsey-based. Historically the first complementation construction introduced
by Büchi [6] and later improved by Sistla, Vardi, and Wolper [31] in which a
Ramsey-based combinatorial argument is involved.

Determinisation-based. A construction proposed by Safra [25] and later
enhanced by Piterman [24] in which a state of a complement is represented
by a Safra tree.

Rank-based. A construction introduced by Kupferman and Vardi [17] for which
several optimisations [12,13,17,27] have been proposed.

Slice-based. A construction [16] proposed by Kähler and Wilke that constructs
complements accepting reduced split trees rather than run graphs.

For each of these categories, GOAL provides implementations that can be
adjusted by various parameters. In our evaluation, we included one construc-
tion from each category. For the latter three categories, we took the arguments
that were most successful in an extensive evaluation [32]. For the first category,
we used additionally an optimisation that minimises the finite automata that
are constructed during the complementation [5]. The commands that we used
are listed in Table 1.

5 http://ultimate.informatik.uni-freiburg.de/automata script interpreter.

http://ultimate.informatik.uni-freiburg.de/automata_script_interpreter
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5.4 Evaluation

We applied the NCSB complementation and the four complementations of
Table 1 to the 97 pairwise non-isomorphic SDBAs. All complementations were
run on a laptop with an Intel Core i5 2.70 GHz CPU. We restricted the maximal
heap space of the JVM to 8 GB (all complementations are implemented in Java)
and used a timeout of 300 s. The results are depicted in Table 2 and Fig. 2.

For 91 out of 97 SDBAs, all implementations were able to compute a result.
We refer to these 91 SDBAs as easy SDBAs, while the remaining six are ref-
erenced as difficult in the Table 2. For each complementation, we provide the
cumulative numbers of states and transitions of all 91 easy complements. For
each of the easy SDBAs, NCSB construction produces the complement with the
smallest number of states. In Fig. 2, a size of the complement produced by the
NCSB construction is compared to the size of the smallest complement produced
by the constructions of Table 1 for each of the easy automata.

For the difficult SDBAs, at least one construction was not able to provide
the result within the given time and memory limits. We provide the number of
states of the computed complements for each of them. While there are two cases
where the determinisation-based construction produced an automaton with less
states than the NCSB construction, the number of transition was always smaller
for the NCSB construction.

A common approach to mitigate the problem of large complementation
results is to apply generic size reduction algorithm. Does our NCSB construction
also outperform the other constructions if we apply size reduction techniques
afterwards? In order to address this question, we applied the “simplification

Table 1. Complementation constructions of NBAs used in our evaluation

Construction GOAL command

Ramsey-based complement -m ramsey -macc -min

Determinisation-based complement -m piterman -macc -sim -eq

Rank-based complement -m rank -macc -tr -ro -cp

Slice-based complement -m slice -macc -eg -madj -ro

Table 2. Results of complementation constructions without posteriori simplifications

Construction 91 easy SDBAs 6 difficult SDBAs

States Transitions 1 2 3 4 5 6

Ramsey-based 16909 848969 – – – – – –

Rank-based 2703 21095 – – 1022 7460 8245 –

Det.-based 1841 24964 – – 172 346 385 3527

Slice-based 1392 14783 66368 – 184 421 475 9596

NCSB 950 8003 20711 84567 108 343 401 5449
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Fig. 2. Comparison of the NCSB construction and other complementations

routines” of the Spot library [1] (in version 1.99.4a) to the complements. We
run the command autfilt --small --high -B -H with a timeout of 300 s and
obtained the results depicted in Table 3. For 75 SDBAs, all complements could
be simplified within the timeout. For these we again provide the cumulative num-
bers of states and transitions before and after the simplifications. The column
min shows how often each construction followed by simplification produced a
complement with the minimal number of states. The column failure shows how
often a timeout prevented a successful complementation or simplification. It is
interesting to see that the simplifications were not able to reduce the number of
transitions much for the NCSB construction, while they were able to reduce it
by more than 20 % in case of the other complementations.

Table 3. Complementations and simplifications

Construction No simplifications With simplifications Failure

States Transitions States Transitions min compl. simp.

Ramsey-based 6386 172351 5223 90548 0 6 22

Rank-based 1437 11677 899 7657 4 3 14

Det.-based 1300 15491 1083 9589 0 2 11

Slice-based 892 8921 785 6789 4 1 13

NCSB 598 4922 514 4460 73 0 10

6 Conclusion

We have introduced an efficient complementation construction for semi-
deterministic Büchi automata (SDBA). The results of our construction have
two appealing properties: they are unambiguous and have less than 4n states.
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We have presented a modification of our construction suitable for implementa-
tion on-the-fly and showed that our construction can be seen as a specialised
version of the rank-based construction for nondeterministic Büchi automata.
We have implemented our construction in two tools and did an experimental
evaluation on semi-deterministic Büchi automata produced by the termination
analyser Ultimate Büchi Automizer. We have compared our construction to
four known complementation constructions for (general) nondeterministic Büchi
automata. The evaluation showed that our construction outperforms the existing
constructions in the number of states and transitions.

References

1. Babiak, T., Badie, T., Duret-Lutz, A., Křet́ınský, M., Strejček, J.: Compositional
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Logical Methods Comput. Sci. 10(4:13) (2014)

33. Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for Games, omega-automata, and
logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889.
Springer, Heidelberg (2013)

34. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS 1985, pp. 327–338. IEEE Computer Society (1985)



Complementing Semi-deterministic Büchi Automata 787
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Abstract. Assurance of information flow security by formal methods is
mandated in security certification of separation kernels. As an industrial
standard for separation kernels, ARINC 653 has been complied with
by mainstream separation kernels. Security of functionalities defined in
ARINC 653 is thus very important for the development and certification
of separation kernels. This paper presents the first effort to formally
specify and verify separation kernels with ARINC 653 channel-based
communication. We provide a reusable formal specification and security
proofs for separation kernels in Isabelle/HOL. During reasoning about
information flow security, we find some security flaws in the ARINC
653 standard, which can cause information leakage, and fix them in our
specification. We also validate the existence of the security flaws in two
open-source ARINC 653 compliant separation kernels.

1 Introduction

Separation kernels [26] create a secure environment by providing temporal and
spatial separation of applications and ensure that there are no unintended chan-
nels for information flows between partitions other than those explicitly pro-
vided. Separation kernels decouple the verification of applications in partitions
from the verification of the kernels themselves. They are often sufficiently small
and straightforward to allow formal verification of their correctness. Assurance
of information flow security [28] by formal methods is mandated in Separation
Kernel Protection Profile (SKPP) [21] and certifying separation kernels to high-
est Common Criteria evaluation levels (EAL 6 or 7) is always accomplished by
formally verifying information flow security.

Traditionally, security and safety of critical systems are assured and certi-
fied by using two kinds of separation kernels respectively, such as VxWorks 653
[3] for safety-critical systems and VxWorks MILS [4] for security-critical sys-
tems. A trend in this field is to integrate safe and secure functionalities into
one separation kernel. For instance, PikeOS [2], LynxSecure [1] and open-source
XtratuM [16] are designed to support both safety critical and security critical
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solutions. As an industrial standard for safety-critical separation kernels, ARINC
653 [5] aims at improving safety and certification process of safety-critical sys-
tems, which has been complied with by the mainstream separation kernels such
as PikeOS, VxWorks 653 and XtratuM. Therefore, in order to develop ARINC
653 compliant secure separation kernels, it is necessary to assure security of the
functionalities defined in ARINC 653. A security verified specification and its
mechanically checked proofs of ARINC 653 are significant for the development
and certification of separation kernels.

In separation kernels, Inter-Partition Communication (IPC) is a major mech-
anism to implement controlled information flows, but if the mechanism is not
well designed, IPC can also contain covert channels [18] to leak information
between applications. ARINC 653 defines the functionalities and services of a
channel-based communication mechanism for IPC. Although formal specification
[8,30–32] and verification [9,12,13,19,25,29,33] of information flow security on
separation kernels have been widely studied in academia and industry, informa-
tion flow security of separation kernels with ARINC 653 channel-based commu-
nication has not been studied to date. To the best of our knowledge, this paper
is the first effort on this topic.

In this paper, we present a formal specification and its security proofs1 of sep-
aration kernels with ARINC 653 channel-based communication in Isabelle/HOL
[22]. In detail, the technical contributions of this work are as follows.

1. We provide a mechanically checked formal specification which comprises a
generic execution model for separation kernels and an event specification for
ARINC 653. We introduce two security domains: a scheduler and a mes-
sage transmitter, and their security policies according to the characteristics
of scheduling and IPC of separation kernels. The event specification models
all IPC services defined in ARINC 653 (Sect. 3).

2. We define a set of information flow security properties and an inference frame-
work to sketch out the implications between security properties. We provide
the security proofs to indicate information flow security of the specification
(Sect. 4).

3. We find some security flaws, i.e., covert channels to leak information, in the
ARINC 653 standard when proving our original specification that is com-
pletely compliant with ARINC 653, and fix them by a redesign of the specifi-
cation. We also validate the existence of the security flaws in two open-source
ARINC 653 compliant separation kernels, i.e., XtratuM and POK [10]. The
cost of this work is in total 8 person-months (Sect. 5).

2 Challenges and Approach Overview

This section introduces the challenges in this work and the overview of our
approach.
1 The specification and proofs are available at “http://securify.sce.ntu.edu.sg/

skspecv1/”.

http://securify.sce.ntu.edu.sg/skspecv1/
http://securify.sce.ntu.edu.sg/skspecv1/
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Fig. 1. Architecture of the Target System

Challenges. The challenges of this work are as follows.

1. High complexity of the ARINC 653 standard : The standard specifies the sys-
tem functionality of separation kernels using more than 40 pages of informal
descriptions and standardized services using more than 60 pages. As the core
part for channel-based communication, the IPC takes more than 20 pages
and defines a complicated communication mechanism including queuing and
sampling modes, channel buffers and port control.

2. Enormous efforts needed by formal verification of information flow security :
As a sort of hyperproperties [6], it is difficult to automatically verify informa-
tion flow security on separation kernels so far and formal verification needs
an exhausting effort. There exist different sorts of information flow security
(e.g., in [20,23,27,28]) and relationship of them on ARINC 653 separation
kernels has to be clarified for security assurance and certification to reduce
the verification effort.

Analysis of the Target System. In order to address Challenge 1, we are more
concerned on basic functionalities of separation kernels and reduce components
not related to information flow security, such as hardware interface in ARINC
653. ARINC 653 uses the inter-partition flow policy [15] in which communication
ports and channels are associated with partitions, and all processes in a partition
can access the ports configured for this partition. Moreover, some hypervisor
based separation kernels, such as XtratuM, manage partitions, but processes in
a partition are invisible to the kernel. Thus, we omit the concept of “process” and
intra-partition communication between processes in ARINC 653 in the formal
specification. The target system to be formally specified and verified is illustrated
in Fig. 1.

Since the latest version of ARINC 653 [5] is targeted at single-core process-
ing environments, our work considers single-core separation kernels and assumes
there is no in-kernel concurrency as the same as in [19]. Many separation kernel
implementations only allow blocking partitions by means of invoking a “parti-
tion management” hypercall, we prohibit blocking partitions in communication
events.
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Analysis of Information Flow Security. Traditionally, language-based infor-
mation flow security [28] handles only two-level domain: High and Low. The data
of programs are assigned either High or Low labels. Security hereby means that
variations of High-level data should not cause a variation of Low -level data.
When verifying information flow security of separation kernels, the only avail-
able information is the set of configured partitions, local configurations of par-
titions, and the set of possible events (hypercalls) partitions can invoke. There
is not any concrete information about private data of partitions. Thus, it is not
possible to classify the data as High or Low. Moreover, the inter-partition flow
policy of ARINC 653 is an intransitive policy [27], which cannot be addressed
by traditional language-based information flow security. This problem is solved
in [27], where noninterference is defined following a state-event based approach
that considers intransitivity. In order to clarify different definitions on separation
kernels, we formalize language-based information flow security in a state-event
style and reason about the relationship of them.

Traditional formulations in the state-event based approach for information
flow security assume a static mapping from actions to domains, such that the
domain of an action can be determined solely from the action itself [27]. However,
in separation kernels that mapping is dynamic. When a hypercall occurs, the ker-
nel must consult the kernel scheduler to determine which partition is currently
running, and the currently running partition is the domain of the hypercall. In
our specification, we define the scheduler security domain for kernel scheduling,
which cannot be interfered by any other domain to ensure that the scheduler
security domain does not leak information via its scheduling decisions. Since
ARINC 653 only defines the channel-based communication services using ports
and leaves the implementation of message transmission on channels to underly-
ing separation kernels, we define the message transmitter security domain, for
message transmission. The transmitter also decouples message transmission from
the scheduler to ensure that the scheduler is not interfered by partitions.

Analysis of the Specification and Verification Approach. Since separa-
tion kernels usually support the deployment of partitions which are unknown in
advance, it is well suited to use logical reasoning by induction for formal verifi-
cation. By following the successful experiences of applying Isabelle/HOL in seL4
[19] and PikeOS [31,32], we use Isabelle/HOL in this work.

Fig. 2. Verification Overview

The verification overview of our work is
briefly shown in Fig. 2. In order to simplify
the verification, we decompose the specifica-
tion into two parts: an execution model for
separation kernels with channel-based com-
munication and an event specification for
ARINC 653. The execution model defines
basic components and a state machine of sep-
aration kernels. The event specification uses
Isabelle/HOL functions to define the state
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changes when an event occurs. These concrete functions are invoked by the
execution model. This decomposition leads to two-step proofs of information
flow security. We first define a set of information flow security properties and
provide an inference framework for them on the execution model. In the second
step, we define a set of concrete unwinding conditions on the concrete func-
tions. Satisfaction of the concrete unwinding conditions implies that the events
satisfy the classical unwinding conditions, and thus shows information flow secu-
rity of our specification. The decomposition of the specification and its proofs
improves their reusability for subsequent specification refinement and develop-
ment of implementations, and thus reduces the verification effort.

3 Formal Specification

In this section, we first introduce the kernel execution model including basic
components and state-based kernel execution. Then, we present the event spec-
ification. Finally, we discuss the correctness of the formal specification.

3.1 Basic Components

According to Fig. 1, basic components include security domains, security policies
and communication components. All these components are statically configured
in ARINC 653 compliant separation kernels.

Security Domains and Policies. As illustrated in bold and underlined in
Fig. 1, the security domains are the scheduler, the transmitter, and the defined
partitions. In order to discuss information flow policy, we assume a reflexive
relation � that specifies the allowable information flows between domains. If
there is a channel from a partition a to a partition b, then a � transmitter
and transmitter � b since we use the transmitter as the message intermediator.
Since the scheduler can possibly schedule any domain, we define in the security
policy that scheduler � d for any domain d. The noninterference relation \�

is the complement relation of � that asserts no information flow outside of �.

Communication Components. As illustrated in Fig. 1, IPC is conducted via
messages on channels, which are defined by an abstract type Message. Partitions
have access to channels via ports which are the endpoints of channels. A channel
links partitions and is a logical link between one source port and one or more
destination ports. It also specifies the mode of transferring messages, which can
be queuing or sampling mode. The datatype Channel_Type and Port_Type
define these two components.

System Configuration. A significant characteristic of ARINC 653 compli-
ant separation kernels is that partitions, policies and communication com-
ponents are statically configured at built-time. In our specification, we use
record Sys Config to define the system configuration and fixes sysconf ::
"Sys Config" as a constant in the specification.
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3.2 State-Based Kernel Execution

Event and State. We consider four types of events: hypercalls, system events,
exceptions, and actions in partitions. Hypercalls cover all IPC services in ARINC
653. System events are the actions of the kernel itself and include kernel initial-
ization, scheduling and message transmission. The other two types are abstract
events that can be refined in a concrete specification. Events are illustrated in
Fig. 1 as dotted line arrows and italics. Since there is no in-kernel concurrency,
all these events execute atomically.

It is not that all events are enabled in a state. We use a function event
enabled to indicate whether an event can execute in a state. The function
exec event executes an event in a state and changes the state when it is enabled.
In the event specification, we define functions to implement concrete commu-
nication, scheduling and message transmission. The exec event function here
invokes the concrete functions.

The state is defined as record State, which consists of information about
the current running partition, partition states, communication states, created
ports and current value of local variables in domains. For a state s::State
and a sequence of events as, execute as s denotes the final state reached by
executing as from s.

Domain of Events. Events have their own execution domains. The domain of
the system events is static: the domain of the event scheduling is the scheduler;
the domain of message transmission is the transmitter. On the other hand, the
domain of hypercalls is dynamic and dependent on the current state of the ker-
nel, defined as domain_of_event s (hyperc h) = current s, where current
s returns the currently running partition in the state s.

State Reachability. Since not all events are enabled in a state, some states in
the type State are not reachable from the initial state s0. Let reachable s ≡
∃ as. s = execute as s0 denote that the state s is reachable from the initial state
s0. According to the definition of reachable and execute, we have reachable
s0 and Lemma 1.

Lemma 1. ∀ s as. reachable s ∧ s’ = execute as s −→ reachable s’

State Equivalence. A key concept for information flow security is that states
are identical for a security domain. We define an equivalence relation ∼ d ∼ on
states for each domain d such that s ∼ d ∼ t if and only if states s and t are iden-
tical for domain d, that is to say states s and t are indistinguishable for domain d.
For a set of domains D, we define s ≈ D ≈ t ≡ ∀d ∈ D. s ∼ d ∼ t.

For a partition d, s ∼ d ∼ t if and only if vpeq part s d t, where

vpeq_part s d t ≡ vpeq_vars s (the ((domv sysconf) d)) t

∧ (partitions s) d = (partitions t) d ∧ vpeq_part_comm s d t

It means that states s and t are equivalent for a partition d, when values
of local variables, partition state, and communication abilities of d on these
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two states are the same. An example of the communication ability is that if a
destination queuing port p is not empty in two states s and t, a partition d has
the same ability on p in s as in t, because d has the ability to receive a message
from p in these two states. The equivalence of communication abilities defines
that partition d has the same set of ports, and that the number of messages is
the same for all destination ports on states s and t.

Two states s and t are equivalent for the scheduler when the values of local
variables of the scheduler and the current running partition on the two states
are the same. The equivalence of states for the transmitter requires that all
ports, states of the ports and values of local variable are the same.

3.3 Event Specification

The event specification defines the concrete functions to implement the execution
of events. The functionalities of separation kernels in this paper include kernel
initialization, scheduling, message transmission and hypercalls. The kernel ini-
tialization considers initialization of the kernel state. Since our specification does
not define processes, we only consider the partition scheduling rather than the
two-level scheduling on partition and process levels in ARINC 653. Because the
execution of message transmission is also under the control of scheduling, we
define an abstract partition scheduling that non-deterministically chooses one
partition or the transmitter as the currently executing domain.

This subsection mainly discusses channel-based communication services in
ARINC 653 and the message transmission. All events and their descriptions in
the event specification are shown in Table 1.

Channel-Based Communication Services. ARINC 653 specifies the behav-
ior of ports and the communication services via ports in detail. Programs in a
partition could use IPC by invoking these services. ARINC 653 defines eleven
services for sampling and queuing ports (No. 1 ∼ 11 in Table 1). The communi-
cation architecture is illustrated in Fig. 3.

In the first stage of this work, we design the event specification com-
pletely based on the service behavior specified in ARINC 653. When proving
the unwinding conditions on these events, we find covert channels (Sect. 5 in
detail) and change the service specification defined in ARINC 653 to avoid these
covert channels. McCullough [17] provides three ways to avoid covert channels:
unbounded buffer, process blocking and message loss. According to the discus-
sion in Sect. 2, we do not allow partition blocking in communication services.
Because unbounded buffer would lead to a bigger problem of denial of service
(DoS), the feasible way for our specification is to allow message loss. In order
to avoid covert channels, we allow message loss when sending a message to a
queuing port and transmitting a message in a queuing channel.

We use a set of functions to implement one service. For instance, the Send
Queuing Message service is implemented by function send queuing message
maylost as follows and a set of related functions invoked by this function.
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Table 1. Events in Our Specification

No Name Description of Event Specification

Hypercalls

(1) Create Sampling Port Create a sampling port. An identifier is assigned
by the kernel and returned

(2) Write Sampling Message Write a message in the specified sampling port.
The message overwrites the previous one

(3) Read Sampling Message Read a message from the specified sampling port

(4) Get Sampling Portid Return the sampling port identifier that
corresponds to a sampling port name

(5) Get Sampling Portstatus Return the current status of the specified
sampling port

(6) Create Queuing Port Create a queuing port. An identifier is assigned by
the kernel and returned

(7) Send Queuing Message Send a message in the specified queuing port. If
there is sufficient space in the queuing port to
accept the message, the message is inserted
into the port buffer. If there is insufficient
space, the message is lost

(8) Receive Queuing Message Receive a message from the specified queuing port.
If the queuing port is not empty, a message in
the port buffer is removed and returned. If the
queuing port is empty, None is returned

(9) Get Queuing Portid Return the queuing port identifier that
corresponds to a queuing port name

(10) Get Queuing Portstatus Return the current status of the specified queuing
port

(11) Clear Queuing Port Discard any messages in the message buffer of the
specified destination port

System events

(12) Schedule Set one partition or the transmitter as the
currently running domain

(13) Transfer Sampling Message Copy the message in the source sampling port to
all destination sampling ports of a sampling
channel, if all ports of this channel have been
created

(14) Transfer Queuing Message Copy a message in the source queuing port to the
destination queuing port of a queuing channel
and remove the message from the source port,
if the two ports of this channel have been
created and the source port is not empty. If the
destination port is full, the message is lost

(15) Init Initialize the kernel state using the system
configuration
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Fig. 3. Channel-based Communication in ARINC 653

definition send_queuing_message_maylost :: "Sys_Config ⇒ State ⇒ port_id

⇒ Message ⇒ (State × bool)" where
"send_queuing_message_maylost sc s p m ≡

(if(¬ is_a_queuingport s p ∨ ¬ is_source_port s p

∨ ¬ is_a_port_of_partition s p ) then (s, False)

else if is_full_portqueuing sc s p then (s, True)

else (insert_msg2queuing_port s p m, True))"

As specified in the Send Queuing Message service in ARINC 653, when send-
ing a message via a queuing port, it fails if either the specified port does not
exist, or it is not a source port, or it is not in current partition. When the port is
full, the calling process is blocked. Since blocking is not considered in this paper,
we just discard the message.

Message Transmission on Channels. ARINC 653 does not define the func-
tionalities of message transmission and leaves its implementation to underlying
separation kernels. We design a basic specification of the message transmission
in this paper.

The message transmission on channels is shown in Fig. 3. ARINC 653 has two
modes of channel-based communication: sampling and queuing mode. The mul-
ticast message that is sent from a single source to more than one destination is
supported in sampling mode. The queuing mode only supports the unicast mes-
sage. In sampling mode, a message transmission on a channel copies the message
in the source sampling port of the channel to the buffers of all destination sam-
pling ports of the channel. Whilst in queuing mode, a message transmission on
a channel copies a message in the buffer of the source queuing port, removes it
from this buffer and stores the message into the buffer of the destination queuing
port of the channel. When the buffer of the destination queuing port is full, the
message is discarded.

For instance, the message transmission in queuing mode is defined as follows.
If the source and destination port have been created and there are messages in
the buffer of the source port, a message in the buffer is removed and inserted
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into the buffer of the destination port. When the buffer of the destination port
is full, the message is discarded.

primrec transf_queuing_msg_maylost :: "Sys_Config ⇒ State ⇒
Channel_Type

⇒ State" where
"transf_queuing_msg_maylost sc s (Channel_Queuing _ sn dn) =

(let sp = get_portid_by_name s sn; dp = get_portid_by_name s dn in

if sp �= None ∧ dp �= None ∧ has_msg_inportqueuing s (the sp) then

let sm = remove_msg_from_queuingport s (the sp) in

if is_full_portqueuing sc (fst sm) (the dp) then s

else

insert_msg2queuing_port (fst sm) (the dp) (the (snd sm))

else s )" |

"transf_queuing_msg_maylost sc s (Channel_Sampling _ _ _) = s"

3.4 Correctness of Formal Specification

To assure the correctness of our specification, beside the manual validation by
inspecting the Isabelle/HOL specification, we prove that functionalities of the
specified services are correct w.r.t. the ARINC 653 informal description [5] by
means of 33 lemmas for events and invariants. Due to the atomicity of event
execution, the correctness of an event can be specified and proved by pre- and
post-conditions of the event in Hoare logic [14], i.e., {P} C {Q}, where C is
the Isabelle function implementing the event, P and Q are the pre- and post-
conditions respectively. Since the execution of events always terminate, our spec-
ification is a total correctness specification. Termination is ensured by using the
primrec and definition in Isabelle/HOL to define the functions in our specifi-
cation and proved automatically in Isabelle/HOL. For instance, the correctness
lemma for the event Create Sampling Port is as follows. The pre-condition
is that the port named p is configured, has not been created and is a port
of the currently running partition. Under the pre-condition, the execution of
create_sampling _port returns a pair of the new state and the assigned iden-
tifier of the created port. The post-condition ensures that the identifier (the
(snd r)) is stored in the ports in the new state (ports (comm (fst r))).

Lemma 2 (Correctness of Create Sampling Port).
{ get_samplingport_conf sysconf p �= None ∧ get_portid_by_name s p = None

∧ p ∈ get_partition_cfg_ports_byid sysconf (current s) }
r = create_sampling_port sysconf s p

{ (ports (comm (fst r))) (the (snd r)) �= None }

Functional correctness requires to prove invariants on the data struc-
tures defining the state. An invariant is a safety property and defined on
states as a predicate ψ s. It is preserved in all reachable states by prov-
ing the invariant theorem: reachable s =⇒ ψ s. A typical invariant is
the predicate port consistent s. We use a set to store created ports.
The port state (e.g., the messages currently in the port) is defined as
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Ports = "port_id ⇀ Port_Type". Ports belong to different partitions that is
defined as part_ports :: "port_id ⇀ partition_id". The port consistent s
requires that the created port set and the domains of these two partial func-
tions are the same in any reachable states. The invariant theorem is proved by
Lemma 1 and other two lemmas: (1) ψ s0 and (2) ∀ s as. ψ s ∧ s’ = execute
as s −→ ψ s’.

4 Information Flow Security and Proofs

This section first presents a set of information flow security properties defined
on the execution model, which includes the original definitions of noninterfer-
ence [27], nonleakage [23] and noninfluence [23], and their variants. Nonleakage
is language-based information flow security and noninfluence is the combina-
tion of noninterference and nonleakage. Then, we present an overview of our
proof structure and the proofs which include an inference framework of these
properties and the security proofs of our event specification.

4.1 Formalizing Noninterference

Since intransitive policies could be used to specify channel control policies [27],
we consider intransitive noninterference in this paper. The essence of noninterfer-
ence on separation kernels is that a partition d cannot distinguish the final states
between executing a sequence of events as and executing its purged sequence
from the initial state. In the purged sequence, the events of partitions that are
not allowed to pass information to d directly or indirectly are removed.

In order to express the allowed information flow for intransitive policies,
we employ the function sources [27], which takes a sequence of events as
and a target domain d and yields the set of domains that are allowed to pass
information to d when as occurs. Due to the dependency of event domains on
states, the sources function in our specification depends on the current state s.
The sources function is used to define the classical purge function, ipurge, in
terms of which security properties are formulated. The ipurge as s d yields the
sequence of events as, where all events that are not allowed to pass information
to d directly or indirectly when as is executed from s are removed.

We use the abbreviation s � as ∼= t � bs @ d for the observational equiv-
alence. It denotes that d is identical in the two final states after executing as
from s (by execute as s) and executing bs from t. Traditionally, this equiva-
lence is defined using a projection function output which returns the observed
results on a state by a domain. In this paper, we have combined the output
in the state equivalence presented in Subsect. 3.2. This allows us to avoid the
unwinding condition of output consistent. We define the classical nontransitive
noninterference [27] on our execution model as follows.

noninterference ≡ ∀ d as. (s0 � as ∼= s0 � (ipurge as s0 d) @ d)

In the definition of noninterference, the ipurge function only deletes
all unsuitable events. A strong version of noninterference is introduced in
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[23] to handle arbitrary insertion and deletion of secret events. Oheimb [23]
says that the strong noninterference and the original one are equivalent in
deterministic cases. We define this strong version of noninterference on the
execution model as weak_noninterference, since noninterference implies
weak noninterference on our execution model.

The above definitions of noninterference are based on the initial state s0,
but separation kernels usually support warm or cold start and they may start
to execute from a non-initial state. Therefore, we define a more general version
of noninterference as follows based on the reachable function. This general
noninterference requires that the system starting from any reachable state is
secure. It is obvious that this noninterference implies the classical noninterference
due to the lemma: reachable s0.

noninterference_r ≡ ∀ d as s. reachable s −→
(s � as ∼= s � (ipurge as s d) @ d)

4.2 Formalizing Nonleakage and Noninfluence

Language-based information flow security is generalized to arbitrary multi-
domain policies in [23] as a new notion nonleakage. Nonleakage and noninterfer-
ence are also combined in [23] as a new notion noninfluence. Murray et al. [20]
have extended the original definition of nonleakage and noninfluence and defined
the general forms of them for operating systems based on the scheduler. We use
Murray’s definitions and define them on our execution model as follows.

nonleakage ≡ ∀ d as s t. reachable s ∧ reachable t −→
(s ∼ (scheduler sysconf) ∼ t) −→ (s ≈ (sources as s d) ≈ t)

−→ (s � as ∼= t � as @ d)

noninfluence ≡ ∀ d as bs s t . reachable s ∧ reachable t −→
(s ≈ (sources as s d) ≈ t) −→ (s ∼ (scheduler sysconf) ∼ t) −→
ipurge as s d = ipurge bs s d −→ (s � as ∼= t � bs @ d)

The intuitive meaning of nonleakage is that if the secret data is not leaked
initially, the secret data should not be leaked during executing a sequence of
events. Separation kernels are said to preserve nonleakage when for any pair of
reachable states s and t and observing domain d, if (1) s and t are equivalent for
all domains that may (directly or indirectly) interfere with d during the run of as,
i.e., s ≈ (sources as s d) ≈ t, and (2) the same domain is currently running in
both states, i.e., s ∼ (scheduler sysconf) ∼ t, then s and t are observationally
equivalent for d when executing as. Murray’s definition of noninfluence is a
weak one, we propose a strong one according to the Oheimb’s noninfluence by
extending the scheduler and state reachability as follows.

strong_noninfluence ≡ ∀ d as s t . reachable s ∧ reachable t −→
(s ≈ (sources as s d) ≈ t) −→ (s ∼ (scheduler sysconf) ∼ t)

−→ (s � as ∼= t � (ipurge as t d) @ d)

4.3 Proof Structure

As discussed in Sect. 2, proofs of information flow security on our specifica-
tion comprise two parts: an inference framework of information flow security
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Fig. 4. Proof Structure

properties on the execution model and security proofs of the event specification.
The proof structure of this work is shown in Fig. 4, where an arrow means the
implication between properties. In the next two subsections, we discuss the two
parts of proofs in turn.

4.4 Inference Framework of Information Flow Security

In order to clarify different properties of information flow security on our
specification, we provide an inference framework on the execution model as
shown in the lower part of Fig. 4. We have proven all implication relations
between these properties on the execution model. We could see that the property
strong noninfluence is the strongest one and if this property is satisfied, so
are all other properties.

The standard proof of information flow security properties is discharged
by proving a set of unwinding conditions [27] that examine individual exe-
cution steps of the system. Our work follows this approach. In order to
prove strong noninfluence, we define two general unwinding conditions,
weak step consistent and local respect, as follows. As there is no output
function in our specification, we do not define the classical unwinding condition
of output consistent.

weak_step_consistent ≡ ∀ d a s t . reachable s ∧ reachable t −→
(s ∼ d ∼ t) ∧ (s ∼ (scheduler sysconf) ∼ t) ∧
((domain_of_event s a) � d) ∧ (s ∼ (domain_of_event s a) ∼ t)

−→ ((exec_event s a) ∼ d ∼ (exec_event t a))

local_respect ≡ ∀ a d s s’. reachable s −→
((domain_of_event s a) \� d) ∧ (s’ = exec_event s a) −→ (s ∼ d ∼ s’)

The weak step consistent means that for any pair of reachable states s and
t, and any observing domain d, the next states after executing any event a on s and
t are indistinguishable for d, i.e., (exec_event s a) ∼ d ∼ (exec_event t a), if
s and t are indistinguishable for d, the same domain is currently running in s
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and t, the domain of event a in state s can interference with d, and s and t are
indistinguishable for the domain of event a. The weak step consistent is the
same as confidentiality-u proposed in [20]. The local respect is the same as
integrity-u in [20], which means that an event a that executes in some state s
can affect only those domains to which the domain executing event a is allowed to
send information.

4.5 Security Proofs of Event Specification

The second step of proofs is to show security of the event specification. From
definitions of the two general unwinding conditions, we could see that in order to
prove the satisfaction of the two conditions on our specification, we can induct
on each type of events in separation kernels and prove that each concrete event
satisfies the two conditions. Therefore, we define a set of concrete unwinding
conditions for all events. Satisfaction of the concrete unwinding conditions of
one event implies that the event satisfies the general unwinding conditions.
For instance, Lemma 3 and 4 show the concrete unwinding conditions for event
Create Queuing Port.

Lemma 3 (Local respect of creating queuing port).
reachable s ∧ is_a_partition sysconf (current s) ∧ (current s) \� d ∧
s’ = fst (create_queuing_port sysconf s pname) =⇒ s ∼ d ∼ s’

Lemma 4 (Weak step consistent of creating queuing port).
is_a_partition sysconf (current s) ∧ reachable s ∧ reachable t ∧
s ∼ d ∼ t ∧ s ∼ (scheduler sysconf) ∼ t ∧ (current s) � d ∧
s ∼ (current s) ∼ t ∧ s’ = fst (create_queuing_port sysconf s pname) ∧
t’ = fst (create_queuing_port sysconf t pname) =⇒ s’ ∼ d ∼ t’

Finally, we conclude the satisfaction of strong noninfluence on our speci-
fication and all other information flow security properties according to the infer-
ence framework.

Table 2. Specification and Proofs Statistics

Specification Proofs

Item # of function/ LOC PM Item # of lemma/ LOP PM

definition theorem

Execution 32 ∼ 200 2 Inference 61 ∼ 1000 6

model Framework

Event 68 ∼ 800 Correctness 33 ∼ 6000

Specification Security 123

Total 100 ∼ 1000 2 Total 217 ∼ 7000 6
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5 Results and Discussion

Evaluation. We use Isabelle/HOL as the specification and verification system
for separation kernels. The proofs of information flow security in our specification
are conducted in the structured proof language Isar in Isabelle, allowing for proof
text naturally understandable for both humans and computers. All derivations
of our proofs have passed through the Isabelle proof kernel.

The statistics for the effort and size of the specification and proofs are shown
in Table 2. We use 100 functions/definitions and ∼ 1000 lines of code (LOC)
of Isabelle/HOL to specify the execution model and event specification. 217
lemmas/theorems in Isabelle/HOL are proved using ∼ 7000 lines of proof (LOP)
of Isar to ensure the information flow security of our specification. The work is
carried out by a total effort of roughly 8 person-months (PM).

Validating and Fixing Covert Channels in ARINC 653. When proving
the satisfaction of unwinding conditions on the events, we find some security
flaws, i.e., covert channels to leak information, in ARINC 653.

CovertChannel 1: queuingmodechannel-based communication. If there is aqueuing
mode channel frompartitiona tob andno other channels exist, then it is secure that
a � transmitter, transmitter � b,transmitter \� aand b \� transmitter.
In fact, these security policies are violated in ARINC 653. Firstly, when a sends
a message by invoking Send Queuing Message service of ARINC 653, the service
returns NOT AVAILABLE or TIMED OUTwhen the buffer is full, and returns NO ERROR
when the buffer is not full. However, the full/empty status of the buffer in the port
can be changed by message transmission executed by the transmitter. Thus, the
local respect property is not preserved on Send Queuing Message service, and
transmitter \� a is violated.Secondly,due tonomessage loss requiredbyARINC
653, the transmitter cannot transmit a message on a channel when the destina-
tion queuing port is full. However, the full status of the destination port can be
changed by Receive Queuing Message service executed by partition b. Thus, the
local respectproperty is notpreservedon the event ofmessage transmission, and
b \� transmitter is violated. To avoid this covert channel, we allow message loss
when sending messages to a queuing port or transmitting message on a queuing
mode channel.

Covert Channel 2: Create Sampling Port and Create Queuing Port services.
This is a potential covert channel. It is dependent on the concrete implemen-
tation of ARINC 653 and can be avoided by careful designs. In ARINC 653,
the service Create Sampling Port and Create Queuing Port create a port and
return a new unique identifier assigned by the kernel to the new port. In the ini-
tial specification, we use a natural number to maintain this new identifier. This
number is initially assigned to one and increased by one after each port cre-
ation. We find in this design that the number becomes a covert channel that can
flow information from any partition to another, and the two events do not pre-
serve the weak step consistent property. This covert channel can be avoided
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by assigning the port identifier to each port during system initialization or in
the system configuration.

Validating and Fixing Covert Channels in Open-Source Implementa-
tions. We have manually validated the found covert channels in two open-source
separation kernels, i.e., XtratuM and POK. Covert channels are found when we
validate these two implementations.

The version of XtratuM we validate is v3.7.3 for SPARC v8 architecture.
Unlike that there is one buffer for each queuing port in ARINC 653, XtratuM uses
one shared buffer between the source port and the destination port of a queuing
mode channel as a transmitter. If the buffer is not full, the hypercall SendQueu-
ingPort inserts the message into the buffer and notifies the receiver; whilst if the
buffer is full, SendQueuingPort immediately returns XM OP NOT ALLOWED.
The hypercall ReceiveQueuingPort has a similar design. Thus, the found covert
channel 1 exists in XtratuM. The way to avoid this security flaw is to redesign
the hypercall SendQueuingPort to lose the message and return XM OK when
the buffer is full.

The version of POK we validate is the latest one released in 2014. Different
from XtratuM, POK has a transmitter to transfer messages from a source port
to a destination port of a channel. POK blocks processes to wait for resources. If
the buffer is not full, the syscall pok port queueing send inserts the message into
the buffer; whilst if the buffer is full and timeout = 0, it immediately returns
POK ERRNO FULL. pok port transfer responds for transmitting messages from
a source port to a destination one and returns POK ERRNO SIZE when the
destination port has no available space to store messages. Thus, the found covert
channel 1 exists in POK. The way to avoid this security flaw is to allow message
loss or block the calling process until the port buffer is not full in the syscall
pok port queueing send.

When creating a port, XtratuM and POK use the index of the port in the
port array as the new identifier. Thus, they do not have the covert channel 2.

Discussion. The reusability of formal specification and proofs can largely alle-
viate the enormous efforts needed when others enforce information flow security
on separation kernels. Our formal specification can be refined to the concrete
specification of separation kernels. In the concrete specification, new variables
and events may be introduced and some events in this paper may be refined. The
state equivalence in our specification is sufficient for the abstract and concrete
specification of the channel-based communication. Therefore, the new variables
in the concrete specification do not change the definition of state equivalence,
and thus the new variables and new events manipulating these variables do not
break the information flow security of the concrete specification. Information
flow security properties in this paper can be preserved on refinement of events of
the channel-based communication according to the conclusion in [20]. Due to the
reusability of the formal specification, the inference framework and the security
proofs in this work are also reusable for the concrete specification.
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6 Related Work and Conclusions

Information Flow Security. Information flow security [28] has attracted
many research efforts in recent years. State-event based noninterference [27] is
usually chosen for verifying general purpose operating systems and separation
kernels [20]. Language-based information flow security was generalized to arbi-
trary multi-domain policies in [23] as a new state-event based notion nonleakage.
Oheimb [23] also combined the classical noninterference and nonleakage as the
notion noninfluence. These properties have been instantiated for operating sys-
tems in [20] and formally verified on seL4 [19]. In our work, all of these properties
and their variants are defined in our specification. We also propose an inference
framework to clarify the implications between these properties.

Formal Specification and Verification of Separation Kernels. For-
mal methods have been widely applied on separation kernels in recent years
[8,9,12,13,19,25,29–33]. An overview is available in [34]. An Isabelle/HOL spec-
ification for a generic separation kernel was published by EURO-MILS project
[31]. They provided an abstraction specification for Controlled Interruptible Sep-
aration Kernels (CISK), instantiated it to a separation kernel model, and then
applied them on the PikeOS separation kernel [32]. The Isabelle/HOL specifi-
cation of seL4 was extended to a separation kernel specification in [19]. Formal
specification in our work provides a detailed model for ARINC 653 channel-
based communication, which is not covered in related work. In particular, there
is no concrete communication actions in specification of [31]. The IPC syscalls
in seL4 [19] and PikeOS [32] are very different from ARINC 653 channel-based
communication.

Formalization and Verification of ARINC 653. Formalization and ver-
ification of ARINC 653 have been considered in recent years, such as formal
specification of ARINC 653 architecture [24], modeling ARINC 653 for model
driven development of IMA applications [11], and verification of application soft-
ware on top of ARINC 653 [7]. In [35], the system functionalities and all service
requirements in ARINC 653 have been formalized in Event-B, and some inconsis-
tencies have been found in the standard. These works aim at safety of separation
kernels or applications. Our work is the first to conduct a formal security analysis
of the ARINC 653 standard.

Conclusions and Future Work. In this paper, we applied Isabelle/HOL to
formally specify and verify separation kernels with ARINC 653 channel-based
communication. We provided a formal specification with mechanically checked
proofs that is totally free of covert channels and therefore provided informa-
tion flow security for high assurance systems. We revealed covert channels in
ARINC 653 and validated their existence in XtratuM and POK. Our specifi-
cation is reusable for subsequent specification refinement and development of
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implementations. The proofs in this work can alleviate the verification efforts
on information flow security. In the next step, we will develop a formal specifi-
cation of separation kernels supporting multi-core and the specification in this
paper will be revised. Due to the kernel concurrency between cores, we will find
a feasible way to verify multi-core separation kernels. The long-term goal of our
project is to construct a compositional approach of building security verified
system, which includes verification of the functional and noninterference cor-
rectness for a separation/partitioning microkernel for a multi-core architecture,
and verification of the functional correctness of the underlying hardware.
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Abstract. In modern networks, forwarding of packets often depends
on the history of previously transmitted traffic. Such networks contain
stateful middleboxes, whose forwarding behavior depends on a mutable
internal state. Firewalls and load balancers are typical examples of state-
ful middleboxes.

This paper addresses the complexity of verifying safety properties,
such as isolation, in networks with finite-state middleboxes. Unfortu-
nately, we show that even in the absence of forwarding loops, reason-
ing about such networks is undecidable due to interactions between
middleboxes connected by unbounded ordered channels. We therefore
abstract away channel ordering. This abstraction is sound for safety, and
makes the problem decidable. Specifically, we show that safety checking
is EXPSPACE-complete in the number of hosts and middleboxes in the
network. We further identify two useful subclasses of finite-state mid-
dleboxes which admit better complexities. The simplest class includes,
e.g., firewalls and permits polynomial-time verification. The second class
includes, e.g., cache servers and learning switches, and makes the safety
problem coNP-complete.

Finally, we implement a tool for verifying the correctness of stateful
networks.

1 Introduction

Modern computer networks are extremely complex, leading to many bugs and
vulnerabilities which affect our daily life. Therefore, network verification is an
increasingly important topic addressed by the programming languages and net-
working communities (e.g., see [9,14–18,21,30]). Previous network verification
tools leverage a simple network forwarding model which renders the datapath
immutable; i.e., normal packets going through the network do not change its for-
warding behavior, and the control plane explicitly alters the forwarding state at
relatively slow time scales. Thus, invariants can be verified before each control-
plane initiated change and these invariants will be enforced until the next such
change. While the notion of an immutable datapath supported by an assemblage
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of routers makes verification tractable, it does not reflect reality. Modern enter-
prise networks are comprised of roughly 2/3 routers and 1/3 middleboxes [31].
A simple example of a middlebox is a stateful firewall which permits traffic
from untrusted hosts only after they have received a message from a trusted
host. Middleboxes — such as firewalls, WAN optimizers, transcoders, proxies,
load-balancers, intrusion detection systems (IDS) and the like — are the most
common way to insert new functionality in the network datapath, and are com-
monly used to improve network performance and security. While useful, mid-
dleboxes are a common source of errors in the network [25], with middleboxes
being responsible for over 40 % of all major incidents in networks.

This paper addresses the problem of verifying safety of networks with mid-
dleboxes, referred to as stateful networks. From a verification perspective, it is
possible to view a middlebox as a procedure with local mutable state which is
atomically changed every time a packet is transmitted. The local state determines
the forwarding behavior.1 Thus, the problem of network verification amounts to
verifying the correctness of a specialized distributed system where each of the mid-
dleboxes operates atomically and the order of packet arrivals is arbitrary.

We model such a network as a finite undirected graph with two types of
nodes: (i) hosts which can send packets, (ii) middleboxes which react to packet
arrivals and forward modified packets. Each node in the network has a fixed
number of ports, connected by network edges (links).

Real middleboxes are generally complex software programs implemented in
several 100 s of thousands of lines of code. We follow [23,24] in assuming that we
are provided with middlebox models in the form of finite-state transducers. In
our experience one can naturally model the behavior of most middleboxes this
way. For every incoming packet, the transducer uses the packet header and the
local state to compute the forwarding behavior (output) and to update state for
future packets. The transducer can be non-deterministic to allow modelling of
middleboxes like load-balancers whose behavior depends not just on state, but
also on a random number source. We symbolically represent the local state of
each middlebox by a fixed set of relations on finite elements, each with a fixed
arity.

The Verification Problem. We define network safety by means of avoiding “bad”
middlebox states (e.g., states from which a middlebox forwards a packet in a
way that violates a network policy). Given a set of bad middlebox states, we
are interested in showing that for all packet scenarios the bad states cannot be
reached. This problem is hard since the number of packets is unbounded and the
states of one middlebox can affect another via transmitted packets.

1.1 What Is Decidable About Middlebox Verification

In Sec. 3, we prove that for general stateful networks the verification problem
is undecidable. This result relies on the observation that packet histories can
1 Switches are a degenerate case of middleboxes, whose state is constant and hence their

forwarding behavior does not change over time.
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be used to count, similarly to results in model checking of infinite ordered com-
munication channels [8]. One may believe that undecidability arises from the
presence of forwarding loops in the network which are usually avoided in real
networks. However, we show that the verification problem is undecidable even
for networks without forwarding loops.

In order to obtain decidability, we introduce an abstract semantics of net-
works where the order of packet processing on each channel (connecting two
middleboxes or a middlebox and a host) is arbitrary, rather than FIFO. Thus,
middlebox inputs are multisets of packets which can be processed in any order.
This abstraction is conservative, i.e., whenever we verify that the network does
not reach a bad state, it is indeed the case. However, the verification may fail even
in correct networks. Since packets are atomically processed, we note that network
designers can impose ordering even in this abstract model by sending acknowl-
edgments for received packets. This is useful when enforcing authentication.

In fact, this abstraction closely corresponds to assumptions made by net-
work engineers: since packets in modern networks can traverse multiple paths,
be buffered, or be chosen for more complex analysis, network software cannot
assume that packets sent from a source to a server are received by a server in
order. Network protocols therefore commonly build on TCP, a protocol which
uses acknowledgments and other mechanisms to ensure that servers receive pack-
ets in order. Since packet ordering is enforced by causality (by sending acknowl-
edgments) and by software on the receiving end, rather than by the network
semantics, correctness of such networks typically does not rely on the order of
packet processing. Therefore we can successfully verify a majority of network
applications despite our abstraction.

1.2 Complexity of Stateful Verification

In Sec. 6, we show that the problem of network verification when assuming a
nondeterministic order of packet processing is complete for exponential space,
i.e., it is decidable, and in the worst case, the decision procedure can take expo-
nential space in terms of hosts and middleboxes. This is proved by showing that
the network safety problem is equivalent to the coverability problem of Petri
nets, which is known to be EXPSPACE-complete [26].

Fig. 1. Middlebox hierarchy.

Since the problem is complete, it is impos-
sible to improve this upper-bound without
further assumptions. Therefore, we also con-
sider limited cases of middleboxes permit-
ting more efficient verification procedures,
as shown in Fig. 1. We identify four classes
of middleboxes with increasing expressive
power and verification complexity: (i) state-
less middleboxes whose forwarding behavior
is constant over time, (ii) increasing middleboxes whose forwarding behavior
increases over time, (iii) progressing middleboxes whose forwarding behavior
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stabilizes after some fixed time, alternatively, the transition relation of the
transducer does not include cycles besides self-cycles, and (iv) arbitrary middle-
boxes without any restriction. For example, NATs, Switches and simple ACL-
based firewalls are stateless; hole-punching stateful firewalls are increasing; and
learning-switches and cache-proxies are progressing and not increasing.

For stateless and increasing middleboxes, we prove that any packet which
arrives once can arrive any number of times, leading to a polynomial-time ver-
ification algorithm, using dynamic programming. We note that efficient near
linear-time algorithms for stateless verification are known (e.g., see [17]). Our
result generalizes these results to increasing networks and is in line with the
recent work in [13,19].

For progressing middleboxes, we show that verification is coNP-complete.
The main insight is that if a bad state is reachable then there exists a small
(polynomial) input scenario leading to a bad state. This means that tools like
SAT solvers which are frequently used for verification can be used to verify large
networks in many cases but it also means that we cannot hope for a general
efficient solution unless P=NP.

Finally, we note that unlike the known results in stateless networks, the
absence of forwarding loops does not improve the upper bound, i.e., we show
that our lower bounds also hold for networks without forwarding loops.

Packet Space Assumption. Previous works in stateless verification [14,16] assume
that packet headers have n-bits, simulating realistic packet headers which can be
large in practice. This makes the complexity of checking safety of stateless net-
works PSPACE-hard. Our model avoids packet space explosion by only support-
ing three fields: source, destination, and packet tags. We make this simplification
since our work primarily focuses on middlebox policies (rather than routing). As
demonstrated in Sec. 5.1, middlebox policies are commonly specified in terms
of the source and destination hosts of a packet and the network port (service)
being accessed. For example, at the application level, firewalls may decide how
to handle a packet according to a small set of application types (e.g., skype, ssh,
etc.). Source, destination and packet tag are thus sufficient for reasoning about
safety with respect to these policies. This simplification is also supported by
recent works (e.g. [17]) which suggest that in practice the forwarding behavior
depends only on a small set of bits.

Lossless Channels. Previous works on infinite ordered communication channels
have introduced lossy channel systems [2] as an abstraction of ordered communi-
cation that recovers decidability. Lossy channel systems allow messages to be lost
in transit, making the reachability problem decidable, but with a non-elementary
lower bound on time complexity. In our model, packets cannot be lost. On the
other hand, the order of packets arrival becomes nondeterministic. With this
abstraction, we manage to obtain elementary time complexity for verification.
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Initial Experience. We implemented a tool which accepts symbolic representa-
tions of middleboxes and a network configuration and verifies safety. For increas-
ing (and stateless) networks, the tool generates a Datalog program and a query
which holds iff a bad state is reachable. Then, the query is evaluated using
existing Datalog engines [22].

For arbitrary networks (and for progressing networks), the tool generates a
petri-net and a coverability property which holds iff the network reaches a bad
state. To verify the coverability property we use LOLA [1,28] — a Petri-Net
model checker.

Main Results. The main contributions of the paper are: (i) We define a conser-
vative abstraction of networks in which packets can be processed out of order,
and show that the safety problem of stateful networks becomes decidable, but
EXPSPACE-complete. (ii) We identify classes of networks, characterized by the
forwarding behaviors of their middleboxes, which admit better complexity results
(PTIME and coNP). We demonstrate that these classes capture real-world mid-
dleboxes. The upper bounds are made more realistic by stating them in terms
of a symbolic representation of middleboxes. (iii) We present initial empirical
results using Petri nets and Datalog engines to verify safety of networks. Due to
space constraints, all proofs are omitted. More details and examples are provided
in a technical report [34].

2 A Formal Model for Stateful Networks

In this section, we present a formal model of networks with stateful middleboxes.
A network N is a finite undirected graph of hosts and middleboxes, equipped

with a packet domain. Formally, N = (H ∪ M,E,P ), where H is a finite set of
hosts, M is a finite set of middleboxes, E ⊆ {{u, v} | u, v ∈ H ∪ M} is the set of
(undirected) edges and P is a set of packets. A host h ∈ H consists of a unique
id and a set of packets hP ⊆ P that it can send.

Packets. In real networks, a packet consists of a packet header and a payload.
The packet header contains a source and destination host ids and additional
arbitrary stream of control bits. The payload is the content of the packet and
may consist of any arbitrary sequence of bits. In particular, the set of packets
need not be finite. In this work, P is a set of abstract packets. An abstract packet
p ∈ P consists of a header only in the form of a triple (s, d, t), where s, d ∈ H are
the source and destination hosts (respectively) and t is a packet tag that ranges
over a finite domain T . Intuitively, T stands for an abstract set of services or
security policies. Therefore, P = H × H × T , making it a finite set. Middlebox
behavior in our model is defined with respect to abstract packets and is oblivious
of the underlying concrete packets.
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2.1 Stateful Middleboxes

A middlebox m ∈ M in a network N has a set of ports Pr, which consists of all
the adjacent edges of m in the network N, and a forwarding transducer F .

The forwarding transducer of a middlebox is a tuple F = (Σ,Γ,Qm, q0m, δm)
where Σ = P × Pr is the input alphabet in which each input letter consists of
a packet and an input port, Γ = 2Σ is the output alphabet describing (possibly
empty) sets of packets over the different ports, Qm is a possibly infinite set
of states, q0m ∈ Qm is the initial state, and δm : Qm × Σ → 2Γ×Qm is the
transition relation. Note that the alphabet Σ is finite (since abstract packets
are considered). We extend δm to sequences h ∈ (P × Pr)∗ in the natural way:
δm(q, ε) = {(ε, q)} and δm(q, h · (p, pr)) = {(γi · o′, q′) | ∃qi ∈ Qm. (γi, qi) ∈
δm(q, h) ∧ (o′, q′) ∈ δm(qi, (p, pr))}. The language of a state q ∈ Qm is L(q) =
{(h, γ) ∈ (P ×Pr)∗ × (P ×Pr)∗ | (γ, q′) ∈ δm(q, h)}. The language of F , denoted
L(F ), is the language of q0m. We also define the set of histories leading to q ∈ Qm

as h(q) = {h ∈ (P × Pr)∗ | (γ, q) ∈ δm(q0m, h)}.
If F is deterministic, i.e., |δm(q, (p, pr))| ≤ 1, then every history leads to at

most one state and output, in which case F defines a possibly partial forwarding
function f : (P ×Pr)∗ ×(P ×Pr) → 2P×Pr where f(h, (p, pr)) = o for the (unique)
output o such that (h · (p, pr), γ · o) ∈ L(F ). f defines the (possibly empty) set
of output packets (paired with output ports) that m will send to its neighbors
following every history h of packets that m received in the past and input packet
p arriving on input port pr. If F is nondeterministic, a forwarding relation is
defined in a similar way.

Note that every forwarding function f can be defined by an infinite-state
deterministic transducer: Qm will include a state for every possible history, with
ε as the initial state. δm will map a state and an input packet to the set of output
packets as defined by f, and will change the state by appending the packet to
the history.

Finite-state Middleboxes. Arbitrary middlebox functionality, defined via infinite-
state transducers, makes middleboxes Turing-complete, and hence impossible to
analyze. To make the analysis tractable, we focus on abstract middleboxes, whose
forwarding behavior is defined by finite-state transducers. Nondeterminsm can
then be used to overapproximate the behavior of a concrete, possibly infinite-
state, middlebox via a finite-state abstract middlebox, allowing a sound abstrac-
tion w.r.t. safety. Note that when nondeterministic transducers are considered,
the correspondence between packet histories and transducer states no longer
holds, as a single history might lead to multiple states.

In the sequel, unless explicitly stated otherwise, we consider abstract middle-
boxes. We identify a middlebox with its forwarding relation and the transducer
that implements it, and use m to denote each of them.

Symbolic Representation of Middleboxes. We use a symbolic representation of
finite-state middleboxes, where a state of m is described by the valuation of
a finite set of relations R1, . . . , Rk defined over finite elements (e.g., packet
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Fig. 2. Symbolic representation of middleboxes.

header fields). The transition relation δm is also described symbolically using
(nondeterministic) update operations of the relations and output. Technically,
we use guarded commands, where guards are Boolean expressions over relation
membership predicates of the form e in R and element equalities e1 = e2. Each
ei is either a constant or a variable that refers to packet fields. Commands are
of the form: (i) insert tuple e to relation R, (ii) remove tuple e from relation R,
and (iii) output set of tuples.

Example 1. Figure 2a contains a symbolic representation of a hole-punching
Firewall which uses a unary relation trusted. It assumes that port 1 connects
hosts inside a private organization to the firewall and that port 2 connects public
hosts. By default, messages from public hosts are considered untrusted and are
dropped. trusted stores public hosts that become trusted once they receive a
packet from private hosts.

Figure 2b contains a simplified, nondeterminitic, version of a Proxy server
(or cache server). A proxy stores copies of documents (packet payloads) that
passed through it. Subsequent requests for those documents are provided by the
proxy, rather than being forwarded. Our modelling abstracts away the packet
payloads and keeps only their types. Consequently we use nondeterminism to
also account for different requests with the same type. The internal relation
cache stores responses for packet types.

2.2 Concrete (FIFO) Network Semantics

The semantics of a network is given by a transition system defined over a set of
configurations. In order to define the semantics we first need to define the notion
of channels which capture the transmission of packets in the network. Formally,
each (undirected) edge {u, v} ∈ E in the network induces two directed channels:
(u, v) and (v, u). The channel (v, u) is the ingress channel of u, as well as the
egress channel of v. It consists of the sequence of packets that were sent from
v to u and were not yet received by u (and similarly for the channel (u, v)).
The capacity of channels is unbounded, that is, the sequence of packets may be
arbitrarily long.
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Configurations and Runs. A configuration of a network consists of the con-
tent of each channel and the state of every middlebox. The initial configuration
of a network consists of empty channels and initial states for all middleboxes.
A configuration c2 is a successor of configuration c1 if it can be obtained by
either: (i) some host h sending a sequence of packets p1, . . . , p� ∈ hP to a neigh-
bor, thus appending these packets to the corresponding channel; or (ii) some
middlebox m processing a packet p from the head of one of its ingress chan-
nels, changing its state to q′ and appending output o to its egress channels if
(o, q′) ∈ δm(q, (p, pr)) (where q is the current state of m and pr is the port
associated with the ingress channel). This model corresponds to asynchronous
networks with non-deterministic event order.

A run of a network from configuration c0 is a sequence of configurations
c0, c1, c2, . . . such that ci+1 is a successor configuration of ci. A run is a run from
the initial configuration. The set of reachable configurations from a configuration
ci is the set of all configurations that reside on a run from ci. The set of reachable
configurations of a network is the set of reachable configurations from the initial
configuration.

3 Verification of Safety Properties in Stateful Networks

In this section we define the safety verification problem in stateful networks,
as well as the special case of isolation. We prove their undecidability w.r.t. the
FIFO semantics.

To describe safety properties, we augment middleboxes with a special abort
state that is reached whenever δm(q, (p, pr)) = ∅, i.e., the forwarding behavior is
undefined (not to be confused with the case where (∅, q′) ∈ δm(q, (p, pr)) for some
q′ ∈ Qm). This lets middleboxes function as “monitors” for safety properties. If
δm(q, (p, pr)) = ∅, and h ∈ h(q), we say that m aborts on h · (p, pr) (and every
extension thereof). Similarly, we augment the symbolic representation with an
abort command.

We define abort configurations as network configurations where at least one
middlebox is in an abort state.

Safety. The input to the safety problem consists of a network N (that possibly
contains property middleboxes). The output is True if no abort configuration is
reachable in N, and False otherwise.

Isolation. An important example of a safety property is isolation. In the isolation
problem, the input is a network N, a set of hosts Hi ⊆ H and a forbidden set of
packets Pi ⊆ P . The output is True if there is no run of N in which a host from
Hi receives a packet from Pi, and False otherwise. The isolation problem can be
formulated as a safety problem by introducing an isolation middlebox mhi

for
every host hi ∈ Hi. The role of mhi

is to monitor all traffic to hi, and abort if a
forbidden packet p ∈ Pi arrives. All other packets are forwarded to hi. Clearly,
isolation holds if and only if the resulting network is safe.
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Fig. 3. Interesting network topologies for verification.

Example 2. Figure 3 shows several examples of interesting middlebox topologies
for verification. In all of the topologies shown we want to verify a variant of the
isolation property. In Fig. 3a we want to verify that A, a host, cannot send more
than a fixed number of packets to B. Here r1 and r2 are rate limiters, i.e., they
count the number of packets they have seen going from one host to the other,
and lb is a load balancer that evenly spreads packets from A along both paths
(to minimize the load on any one path). In Fig. 3b we want to ensure that host
A cannot access data that originates in S1, but should be allowed to access data
from S2, where f is a firewall and c is a proxy (cache) server. Finally in Fig. 3c we
show a multi-tenant datacenter (e.g., Amazon EC2), where many independent
tenants insert rules into firewalls (f1 and f2) and we want to ensure that the
overall behavior of these rules is correct. For example, we would like to ensure
that pri11 cannot communicate with pri12, and pub12 communicates with pri11 only
if pri11 initiates the connection.

Undecidability of Safety w.r.t. the FIFO Semantics. We prove undecidability
even in networks with no forwarding loops. We show that undecidability holds
for a network with a DAG topology (i.e., a network with uni-directional links
and no directed cycles).

Theorem 1. The safety problem w.r.t. the FIFO network semantics is unde-
cidable even for networks with finite-state middleboxes and without forwarding
loops.

The proof of the theorem uses a reduction from the (undecidable) halting
problem of a two-counter machine to the complement of the isolation problem.
Interestingly, the reduction constructs a network with only three middleboxes,
that do not change the packet header (namely, they just forward packets).

4 Abstract Network Semantics

In this section we define an abstract network semantics, called the unordered
semantics, which recovers decidability of the safety problem.

In the concrete (FIFO) network semantics channels are ordered. In an ordered
channel, if a packet p1 precedes a packet p2 in an ingress channel of some mid-
dlebox, then the middlebox will receive packet p1 before it receives packet p2.
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We abstract this semantics by an unordered network semantics, where the chan-
nels are unordered, i.e., there is no restriction on the order in which a middlebox
receives packets from its ingress channel. In this case, the sequence of pending
packets in a channel can be abstracted by a multiset of packets. Namely, the only
relevant information is how many occurrences each packet has in the channel.
The definitions of configurations and runs w.r.t. the unordered semantics are
adapted accordingly.

Remark 1. Every run w.r.t. the FIFO network semantics is also a run w.r.t. the
unordered semantics. Therefore, if safety holds w.r.t. the unordered semantics,
then it also holds for the FIFO semantics, making the unordered semantics
a sound abstraction of the FIFO semantics w.r.t. safety. The abstraction can
introduce false alarms, where a violation exists w.r.t. the unordered semantics
but not w.r.t. the concrete semantics. Still, in many cases, the abstraction is
precise enough to enable verification. In particular, in Lemma 4 we show that
for an important class of networks, the two semantics coincide w.r.t. safety.

Decidability of Safety w.r.t. the Unordered Semantics. In the unordered seman-
tics, the network forms a special case of monotone transition systems: We define
a partial order ≤ between network configurations such that c1 ≤ c2 if the mid-
dlebox states in c1 and c2 are the same and c2 has at least the same packets
(for every packet type) in every channel. The network is monotone in the sense
that for every run from c1 there is a corresponding run from any bigger c2, since
more packets over a channel can only add possible scenarios. The partial order
is trivially a well-quasi-order (as the number of packets cannot be negative), and
the predecessor relation is obviously computable. The classical results in [3,12]
prove that in monotone transition systems a backward reachability algorithm
always terminates and thus, the safety problem is decidable. Formal arguments
and complexity bounds are provided by Theorem 4.

5 Classification of Stateful Middleboxes

Encouraged by the decidability of safety w.r.t. the unordered semantics, we are
now interested in investigating its complexity. As a first step, in this section,
we identify three special classes of forwarding behaviors of middleboxes within
the class of arbitrary middleboxes. Namely, stateless, increasing, and progress-
ing middleboxes. We show that these classes capture the behaviors of real world
middleboxes. The classes naturally extend to classes of networks: a network is
stateless (respectively, increasing, progressing or arbitrary) if all of its middle-
boxes are. As we show in Sec. 6, each of these classes results in a different
complexity of the safety problem.

Stateless Middlebox. A middlebox m is stateless if it can be implemented as a
transducer with a single state (in addition to the abort state), i.e., its forwarding
behavior does not depend on its history.
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Increasing Middlebox. A middlebox m is increasing if its forwarding relation is
monotonically increasing w.r.t. its history, where histories are ordered by the
subsequence relation2, denoted by 
. Formally, a middlebox m is increasing if
for every two histories h1, h2 ∈ (P ×Pr)∗: if h1 
 h2, then for every packet p and
port pr , if (h1 · (p, pr), γ1 · o1) ∈ Lm then either m aborts on h2 · (p, pr) or there
is γ2 · o2 s.t. (h2 · (p, pr), γ2 · o2) ∈ Lm and o1 ⊆ o2, where Lm is the language of
m’s transducer.

Progressing Middlebox. In order to define progressing middleboxes, we define an
equivalence relation between middlebox states based on their forwarding behav-
ior. States q, q′ are equivalent, denoted q1 ≈ q2, if L(q1) = L(q2). A middlebox
m is progressing if it can be implemented by a transducer in which whenever the
state is changed into a non-equivalent state, it will never return to an equivalent
state. Formally, if (o′, q′) ∈ δm(q, (p, pr)) and q′ �≈ q (where q, q′ are reachable
states of m) then for any history h ∈ (P × Pr)∗, if (γ′′, q′′) ∈ δm(q′, h) then
q′′ �≈ q.

The next lemma summarizes the hierarchy of the classes (as illustrated by
Fig. 1).

Lemma 1. – Any stateless middlebox is also increasing.
– Any increasing middlebox is also progressing.

Syntactic Characterization of Middlebox Classes. The classes of middleboxes
defined above can be characterized via syntactic restrictions on their symbolic
representation.

A middlebox representation is syntactically stateless if its representation does
not use any insert or remove command on any relation. A middlebox represen-
tation is syntactically increasing if its representation does not use the remove
command on any relation, and does not include any insert command under
guards that include negated membership predicates. A middlebox representa-
tion is syntactically progressing if its representation does not use the remove
command on any relation.

Lemma 2. A middlebox is stateless (respectively increasing, progressing) if and
only if it has a stateless (respectively increasing, progressing) representation.

5.1 Examples

In this subsection, we introduce several middleboxes, each of which resides in
one of the classes of the hierarchy presented above.

2 A subsequence is a sequence that can be derived from another sequence by deleting
some elements without changing the order of the remaining elements.
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ACL Switches. An ACL switch has a fixed access control list (ACL) that indi-
cates which packets it should forward and which packets it should discard. Typi-
cally the rules in the list refer to the port number or to hosts that are allowed to
use a certain service. As such, the forwarding policy of an ACL switch is based
only on the source host and/or ingress port of the current packet, and does not
depend on previous packets. Hence, an ACL switch can be implemented by a
stateless middlebox.

Hole-punching Firewalls. A hole-punching firewall is described in Example 1. As
the set of trusted hosts depends on the history of the middlebox, a hole punching
firewall cannot be captured by a stateless middlebox. (Formally, the same packet
is handled differently when it follows different histories.) On the other hand, it is
increasing. If for a certain history a host is trusted, then any additional packets
(in the past or in the future) will not make it untrusted.

Learning Switch. A learning switch dynamically learns the topology of the net-
work and constructs a routing table accordingly. Initially, the routing table of
the switch is empty. For every host h the switch remembers the first port from
which a packet with source h has arrived. When a packet arrives, if the port of the
destination host is known, then the packet is forwarded to that port; otherwise,
the packet is forwarded to all connected ports excluding the input-port.

A learning switch is a progressing middlebox. Intuitively, after the middle-
box’s forwarding function has changed to incorporate the destination port for a
certain host h, it will never revert to a state in which it has to flood a packet
destined for h. A learning switch is however, not an increasing middlebox, as
packets destined for a host whose location is not known are initially flooded, but
after location of the host is learned, a single copy of all subsequent packets are
sent.

Proxy Server. The Proxy server as described in Example 1 is an increasing mid-
dlebox. After it has stored a response, it nondeterministically replies with the
stored response, or sends the request to the server again. However, in a con-
crete network model that does not abstract away the packet payload, a proxy
is a progressing middlebox. Once a new request is responded by a proxy the
forwarding behavior changes as it takes into account the new response, and
it never returns to the previous forwarding behavior (as it does not “forget”
the response). However, such a proxy is not an increasing middlebox: while it
behaves in a monotonically increasing manner over its request port, it behaves
in a monotonically decreasing manner over the response port.

Round-Robin Load Balancer. A load balancer is a device that distributes network
traffic across a number of servers. In its simplest implementation, a round-robin
balancer with n out-ports (each connected to a server) forwards the i-th packet it
receives to out-port i (mod n). Round-robin load balancers are not progressing
middleboxes, as the same forwarding function repeats after every cycle of n
packets.
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Remark 2. In practice, middlebox behavior can also be affected by timeouts
and session termination. For example, in a firewall, a trusted host may become
untrusted when a session terminates (which makes the firewall behavior no longer
increasing). In this work, we do not model timeouts and session termination. In
many practical cases, such as firewalls, resets can only prevent packets from being
forwarded and therefore restrict reachability, thus not causing safety violations.

6 Complexity of Safety W.r.t. the Unordered Semantics

When considering the unordered network semantics, the safety problem becomes
decidable for networks with finite-state middleboxes. In this section, we analyze
its complexity. We provide tight bounds, as well as algorithms with matching
complexity. The complexity bounds are w.r.t the input size, namely, (i) the num-
ber of hosts; (ii) number of middleboxes; and (iii) the encoding size of the mid-
dleboxes functionality, i.e., the size of the explicit state machine (if the encoding
is explicit) or the number of characters in the symbolic representation (if the
encoding is symbolic).

The following lemma summarizes the obtained lower bounds:

Lemma 3. The safety problem w.r.t. the unordered network semantics is coNP-
hard for progressing networks, and EXPSPACE-hard for arbitrary stateful net-
works.

The coNP-hardness result is proved by a reduction from the complement of
the Hamiltonian Path problem. The constructed network contains only state-
less middleboxes and learning switches, making the coNP-hardness result apply
already to such networks, which are used in practice. The second part of the
lemma is proved by a reduction from the control state reachability problem of
vector addition systems with states (VASS) which is known to be EXPSPACE-
complete [10].

Upper Bounds. The rest of this section provides complexity upper bounds
for the safety problem of stateful networks w.r.t. the unordered semantics of
networks. Our complexity analysis considers symbolic representations of mid-
dleboxes (which might be exponentially more succinct than explicit-state repre-
sentations). The obtained upper bounds match the lower bounds from Lemma 3
(hence, the bounds are tight).

Remark 3. The complexity upper bounds we present are under the assumption
that all relations used to define middlebox states may have at most polynomial
number of elements (polynomial in the size of the network and the size of the
middlebox representation). To enforce this limitation we assume that the arity
of relations is constant.



824 Y. Velner et al.

Fig. 4. Safety checking of increasing networks.

6.1 Unordered Safety of Increasing Networks is in PTIME

In this section, we show that safety of syntactically increasing networks is
in PTIME. Further, we show that for increasing networks, safety w.r.t. the
unordered semantics and the FIFO semantics coincide. As such, the polynomial
upper bound applies to both.

Figure 4 presents a polynomial algorithm for determining safety of a syntac-
tically increasing network. The algorithm performs a fixed-point computation of
the set of all tuples present in middlebox relations in reachable middlebox states,
as well as the set of all different packets transmitted in the network. For every
middlebox m ∈ M , the algorithm maintains the following sets:

– StateData(m): a set of pairs of the form (R, d) where R is a relation of m, and
d is a tuple in the domain of R, indicating that there is a run in which d ∈ R.

– PacketData(m): a set of pairs of the form (p, pr), where p is a packet and pr
is a port of m, indicating that p can reach m from port pr .

StateData(m) is initialized to reflect the initial values of all middlebox rela-
tions. PacketData(m) is initialized to include the packets that can be sent from
neighbor hosts. As long as a fixed-point is not reached, the algorithm iter-
ates over all middleboxes and their packet data. For each middlebox m and
(p, pr) ∈ PacketData(m), m is run over (p, pr) from the state q in which every
relation R contains all the tuples d such that (R, d) ∈ StateData(m). The sets
StateData(m) and PacketData(m′) for every neighbor m′ of m, are updated to
reflect the discovery of more elements in the relations (more reachable states),
and more packets that can be transmitted.

As the algorithm only adds reachable states and packets, its running time is
polynomial and bounded by |M |(|P ||Pr|∑ |Ri|)2.

The correctness of the algorithm relies on the property of increasing networks
that if a packet is sent in some run from a reachable configuration, then a run
where it is sent exists from every reachable configuration. The same goes for ele-
ments that are added to relations. Intuitively, this ensures that even though the
algorithm considers “accumulative” middlebox states (by accumulating relation
values) rather than exploring all possible reachable states, it does not miss any
violation of safety. We conclude:
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Theorem 2. The safety problem of syntactically increasing networks w.r.t. the
unordered semantics is in PTIME.

Remark 4. If n-tag packet headers are allowed, i.e. P = H × H × T1 . . . × Tn,
then |P | is no longer polynomial in the network representation, damaging the
complexity analysis of the algorithm. In fact, in this case the safety problem w.r.t.
the unordered semantics becomes PSPACE-hard even for stateless middleboxes
(this is proved by reduction from the emptiness problem of the intersection of n
automata).

Recall that in general, safety w.r.t. the FIFO semantics and the unordered
semantics do not coincide. However, the following lemma shows that for increas-
ing networks they do, making the same algorithm and complexity analysis
applicable. The proof utilizes the property that in increasing networks if a
packet p reaches a middlebox m once (in either semantics), then it can reach
m again, thus enabling the simulation of unordered channels with ordered ones.
The lemma applies also to infinite-state middleboxes.

Lemma 4. Let N be an increasing network. Then the output of the safety
problem in N w.r.t. the FIFO semantics and w.r.t. the unordered semantics is
identical.

6.2 Unordered Safety of Progressing Networks is in CoNP

We prove coNP-membership of the safety problem in syntactically progressing
networks by proving that there exists a witness run for safety violation if and
only if there exists a “short” witness run, where a witness run for safety violation
is a run from the initial configuration in which at least one middlebox reaches
an abort state. The key observation is formalized by the following lemma:

Lemma 5. Let N be a syntactically progressing network whose middleboxes
are defined via relations R1, . . . , Rn (in total). Then there is a run ending
in an abort state if and only if there is such a run whose length is at most
(
∑n

i=1 |Ri|)3|P ||M |.
The proof of the lemma considers the network states that arise in a run. A

network state consists of the values of (R1, . . . , Rn), i.e., it captures the states
of all middleboxes (not to be confused with a network configuration, which also
includes the content of every channel). In order to construct a shorter run, we
bound both the number of different network states in a run and the number of
steps in which a run stays in the same state. The former is bounded by

∑n
i=1 |Ri|

due to the progress of the network. To provide a bound for the latter, we analyze
the packets that “affect” the run, utilizing the property that steps that process
packets that do not affect the run can be omitted.

Since the size of each relation is polynomial in the size of the network, and
combined with the hardness result from Lemma 3, we conclude:

Theorem 3. The safety problem of syntactically progressing networks w.r.t. the
unordered semantics is coNP-complete.
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6.3 Unordered Safety of Arbitrary Networks is in EXPSPACE

In this section we show how to solve the non-safety problem of symbolic networks
by a reduction to the coverability problem of vector addition systems (VAS),
a.k.a. petri-nets, which is EXPSPACE-complete [26].

A VAS is a pair (x0 ∈ N
k,X ⊂ Z

k), where x0 is the initial value vector and
X is a set of transition vectors, each with k dimensions. A finite run in the VAS
is a sequence of transitions x1, x2, . . . , x�, such that for every i ∈ {1, . . . , �} the
sum x0+x1+ · · ·+xi is non-negative in all dimensions. The coverability problem
asks whether a VAS has a run x1, x2, . . . , x� with

∑�
i=0 xi ≥ y, where y is an

input vector.

VAS Construction. We sketch a polynomial encoding of a network as a VAS.
Roughly speaking, the transitions of the VAS are used to simulate the processing
of packets in the network. Their non-deterministic nature captures the non-
deterministic order of network events. We first introduce the VAS dimensions
and their roles in the simulation.

Channel Simulation: To keep track of the packets over the unbounded channels,
we assign a packet dimension to every packet p ∈ P and every channel. The
initial value of each packet dimension is 0, it is incremented whenever a packet
is added to a channel, and decremented whenever a packet is processed.

Relation Simulation: To keep track of relation values, we assign two dimensions,
active and inactive, to every relation R and every tuple d in the domain of R.
The active dimension indicates whether d ∈ R and the inactive one indicates
whether d �∈ R. Both dimensions will have only values of 0 or 1. We need two
dimensions since the VAS semantics does not allow to encode negative (e.g.,
non-membership) conditions.

Single Step Simulation: To make sure that no two packets are simultaneously
processed, we introduce a scheduler dimension. The scheduler dimension has
initial value 1, it is decremented whenever a packet processing starts, and incre-
mented when it ends. In addition, to keep track of which command needs to
be executed, we assign a command dimension to every guard and command,
including an abort dimension (if an abort command exists). The guard/command
dimension has value 1 when the command needs to be executed. Finally, to keep
track of values of variables (e.g., src, dst, tag, prt), we assign a dimension for
every possible value d of variable ei. The dimension of (ei, d) has value 1 if and
only if ei has value d.

The VAS transitions increment and decrement these dimensions to simulate
the start of a packet processing event, as well as the execution of each guarded
command. In particular, decrements are used to enforce the execution of transi-
tions only when the dimension has value 1 (and not 0).

Non-safety of the network then amounts to a run in the VAS where an abort
dimension gets a positive value. The reduction, combined with the lower bound
implies:
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Theorem 4. The safety problem of arbitrary stateful networks w.r.t. the
unordered semantics is EXPSPACE-complete.

7 Implementation and Case Studies

In this section, we describe a prototype implementation of a tool for verification
of stateful networks, and describe our initial experience while running the tool
on the networks listed in Example 2 and illustrated in Fig. 3. For the experiments
we used quad core Intel Core i7-4790 CPU with 32 GB memory.

Increasing Middleboxes. Increasing networks are verified using LogicBlox, a Dat-
alog based database system [5]. The Multi-Tenant Datacenter example is an
increasing network. Our tool produced a datalog program with 35 predicates,
153 rules and 29 facts. LogicBlox successfully reached a fixed point in 3s, and
proved all required properties.

Arbitrary Middleboxes. Progressing and Arbitrary networks are verified using
LOLA, a Petri-Net model checker [1,28]. In the Load Balancer and Rate Limiter
example our tool created a P/T net with 243 places and 663 transitions; it
was successfully verified in 30ms. In the Firewall and Proxy example our tool
produced a P/T net with 530 places and 4447 transitions. LOLA successfully
verified the resulting petri-net in 0.2s.

8 Conclusion and Related Work

In this paper, we investigated the complexity of reasoning about stateful net-
works. We developed three algorithms and several lower bounds. In the future
we hope to develop practical verification methods utilizing the results in this
paper. Below we survey some of the most closely related work.

Topology-independent Verification. The earliest use of formal verification in net-
working focused on proving correctness and checking security properties for pro-
tocols [11,27]. Recent works such FlowLog [21] and VeriCon [6] also aim to verify
the correctness of a given middlebox implementation w.r.t any possible network
topology and configuration, e.g., flow table entries only contain forwarding rules
from trusted hosts.

Immutable Topology-dependent Verification. Recent efforts in network verifica-
tion [4,9,14,16,17,20,30,32] have focused on verifying network properties by
analyzing forwarding tables. Some of these tools including HSA [15], Libra [35]
and VeriFlow [17]. These tools perform near real-time verification of simple prop-
erties, but they cannot handle dynamic (mutable) datapaths.
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Mutable Topology-dependent Verification. SymNet [33] has suggested the need to
extend these mechanisms to handle mutable datapath elements. In their mech-
anism the mutable middlebox states are encoded in the packet header. This
technique is only applicable when state is not shared across a flow (i.e., the
middlebox can punch holes, but do no more), and will not work for cache servers
or learning switches.

The work in [24] is the most similar to our model. Their work considers
Python-like syntax enriched with uninterpreted functions that model compli-
cated functionality. However [24] do not define formal network semantic (e.g.,
FIFO vs ordered channels) and do not give any formal claim on the complexity
of the solution.

Channel Systems. Channel systems, also called Finite State Communicating
Machines, are systems of finite state automata that communicate via asynchro-
nous unbounded FIFO channels [7,8]. They are a natural model for asynchronous
communication protocols. Verification of such systems in undecidable. Abdulla
and Jonsson [2] introduced lossy channel systems where messages can be lost
in transit. In their model the reachability problem is decidable but has a non-
primitive lower bound [29].

In this work we use unordered (non-lossy) channels as a different relax-
ation for channel systems. The unordered semantics over-approximates the lossy
semantics w.r.t. safety, as any violating run w.r.t. the lossy semantics can be sim-
ulated by a run w.r.t. the unordered semantics where “lost” packets are starved
until the violation occurs. The unordered semantics admits verification proce-
dures with elementary complexity, and turns out to be sufficiently precise for
many network protocols.
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Abstract. Subtyping is a crucial ingredient of session type theory and
its applications, notably to programming language implementations. In
this paper, we study effective ways to check whether a session type is
a subtype of another by applying a characteristic formulae approach to
the problem. Our core contribution is an algorithm to generate a modal
µ-calculus formula that characterises all the supertypes (or subtypes) of
a given type. Subtyping checks can then be off-loaded to model checkers,
thus incidentally yielding an efficient algorithm to check safety of session
types, soundly and completely. We have implemented our theory and
compared its cost with other classical subtyping algorithms.

1 Introduction

Motivations. Session types [25,26,41] have emerged as a fundamental theory
to reason about concurrent programs, whereby not only the data aspects of pro-
grams are typed, but also their behaviours wrt. communication. Recent applica-
tions of session types to the reverse-engineering of large and complex distributed
systems [13,30] have led to the need of handling potentially large and complex
session types. Analogously to the current trend of modern compilers to rely on
external tools such as SMT-solvers to solve complex constraints and offer strong
guarantees [17,24,32,33], state-of-the-art model checkers can be used to off-load
expensive tasks from session type tools such as [30,38,43].

A typical use case for session types in software (reverse-) engineering is to
compare the type of an existing program with a candidate replacement, so to
ensure that both are “compatible”. In this context, a crucial ingredient of ses-
sion type theory is the notion of subtyping [10,15,20] which plays a key role
to guarantee safety of concurrent programs while allowing for the refinement of
specifications and implementations. Subtyping for session types relates to many
classical theories such as simulations and pre-orders in automata and process
algebra theories; but also to subtyping for recursive types in the λ-calculus [5].
The characteristic formulae approach [1–3,12,22,39,40], which has been stud-
ied since the late eighties as a method to compute simulation-like relations in
process algebra and automata, appears then as an evident link between subtyp-
ing in session type theory and model checking theories. In this paper, we make
the first formal connection between session type and model checking theories,
to the best of our knowledge. We introduce a novel approach to session types
subtyping based on characteristic formulae; and thus establish that subtyping
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 833–850, 2016.
DOI: 10.1007/978-3-662-49674-9 52
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for session types can be decided in quadratic time wrt. the size of the types.
This improves significantly on the classical algorithm [21]. Subtyping can then
be reduced to a model checking problem and thus be discharged to powerful
model checkers. Consequently, any advance in model checking technology has an
impact on subtyping.

Example. Let us illustrate what session types are and what subtyping covers.
Consider a simple protocol between a server and a client, from the point of view
of the server. The client sends a message of type request to the server who decides
whether or not the request can be processed by replying ok or ko, respectively.
If the request is rejected, the client is offered another chance to send another
request, and so on. This may be described by the session type below

U1 = recx. ?request .{!ok .end⊕ !ko.x} (1)

where recx binds variable x in the rest of the type, ?msg (resp. !msg) specifies
the reception (resp. emission) of a message msg , ⊕ indicates an internal choice
between two behaviours, and end signifies the termination of the conversation.
An implementation of a server can then be type-checked against U1.

The client’s perspective of the protocol may be specified by the dual of U1:

U1 = U2 = recx. !request .{?ok .end & ?ko.x } (2)

where & indicates an external choice, i.e., the client expects two possible behav-
iours from the server. A classical result in session type theory essentially says
that if the types of two programs are dual of each other, then their parallel
composition is free of errors (e.g., deadlock).

Generally, when we say that integer is a subtype of float, we mean that
one can safely use an integer when a float is required. Similarly, in session
type theory, if T is a subtype of a type U (written T � U), then T can be used
whenever U is required. Intuitively, a type T is a subtype of a type U if T is
ready to receive no fewer messages than U , and T may not send more messages
than U [10,15]. For instance, we have

T1 = ?request . !ok .end � U1

T2 = recx. !request .{?ok .end & ?ko.x & ?error .end } � U2
(3)

A server of type T1 can be used whenever a server of type U1 (1) is required (T1

is a more refined version of U1, which always accepts the request). A client of
type T2 can be used whenever a client of type U2 (2) is required since T2 is a
type that can deal with (strictly) more messages than U2.

In Sect. 3.2, we will see that a session type can be naturally transformed
into a μ-calculus formula that characterises all its subtypes. The transformation
notably relies on the diamond modality to make some branches mandatory, and
the box modality to allow some branches to be made optional; see Example 2.

Contribution and Synopsis. In Sect. 2 we recall session types and give a
new abstract presentation of subtyping. In Sect. 3 we present a fragment of the
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modal μ-calculus and, following [39], we give a simple algorithm to generate a
μ-calculus formula from a session type that characterises either all its subtypes
or all its supertypes. In Sect. 4, building on results from [10], we give a sound and
complete model-checking characterisation of safety for session types. In Sect. 5,
we present two other subtyping algorithms for session types: Gay and Hole’s
classical algorithm [21] based on inference rules that unfold types explicitly; and
an adaptation of Kozen et al.’s automata-theoretic Algorithm [28]. In Sect. 6,
we evaluate the cost of our approach by comparing its performances against the
two algorithms from Sect. 5. Our performance analysis is notably based on a
tool that generates arbitrary well-formed session types. We conclude and discuss
related works in Sect. 7. Due to lack of space, full proofs are relegated to an online
appendix [31]. Our tool and detailed benchmark results are available online [29].

2 Session Types and Subtyping

Session types are abstractions of the behaviour of a program wrt. the commu-
nication of this program on a given session (or conversation), through which it
interacts with another program (or component).

2.1 Session Types

We use a two-party version of the multiparty session types in [16]. For the sake
of simplicity, we focus on first order session types (that is, types that carry only
simple types (sorts) or values and not other session types). We discuss how to
lift this restriction in Sect. 7. Let V be a countable set of variables (ranged over
by x,y, etc.); let A be a (finite) alphabet, ranged over by a, b, etc.; and A be
the set defined as {!a | a ∈ A} ∪ {?a | a ∈ A}. We let † range over elements of
{!, ?}, so that †a ranges over A. The syntax of session types is given by

T := end |
⊕

i∈I

!ai. Ti |
¯
i∈I

?ai. Ti | recx.T | x

where I �= ∅ is finite, ai ∈ A for all i ∈ I, ai �= aj for i �= j, and x ∈ V.
Type end indicates the end of a session. Type

⊕
i∈I !ai. Ti specifies an internal

choice, indicating that the program chooses to send one of the ai messages, then
behaves as Ti. Type

˘
i∈I ?ai. Ti specifies an external choice, saying that the

program waits to receive one of the ai messages, then behaves as Ti. Types
recx.T and x are used to specify recursive behaviours. We often write, e.g.,
{!a1.T1 ⊕ . . . ⊕ !ak.Tk} for

⊕
1≤i≤k !ai.Ti, write !a1 .T1 when k = 1, similarly for˘

i∈I ?ai. Ti, and omit trailing occurrences of end.
The sets of free and bound variables of a type T are defined as usual (the

unique binder is the recursion operator recx.T ). For each type T , we assume that
two distinct occurrences of a recursion operator bind different variables, and that
no variable has both free and bound occurrences. In coinductive definitions, we
take an equi-recursive view of types, not distinguishing between a type recx.T
and its unfolding T [recx.T/x]. We assume that each type T is contractive [35],
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Fig. 1. LTS for session types in Tc

e.g., recx.x is not a type. Let T be the set of all (contractive) session types
and Tc ⊆ T the set of all closed session types (i.e., which do not contain free
variables).

A session type T ∈ Tc induces a (finite) labelled transition system (LTS)

according to the rules in Fig. 1. We write T
†a−→ if there is T ′ ∈ T such that

T
†a−→ T ′ and write T� if ∀†a ∈ A : ¬(T

†a−→).

2.2 Subtyping for Session Types

Subtyping for session types was first studied in [20] and further studied in [10,15].
It is a crucial notion for practical applications of session types, as it allows for
programs to be refined while preserving safety.

We give a definition of subtyping which is parameterised wrt. operators ⊕
and &, so to allow us to give a common characteristic formula construction for
both the subtype and the supertype relations, cf. Sect. 3.2. Below, we let � range
over {⊕,&}. When writing �i∈I †ai. Ti, we take the convention that † refers to
! iff � refers to ⊕ (and vice-versa for ? and &). We define the (idempotent)
duality operator as follows: ⊕ def= &, & def= ⊕, ! def=?, and ? def=!.

Definition 1 (Subtyping). Fix � ∈ {⊕,&}, �� ⊆ Tc × Tc is the largest
relation that contains the rules:

I ⊆ J∀i ∈ I : Ti �� Ui

�i∈I †ai. Ti �� �j∈J †aj . Uj

[S-�]

end�� end
[S-end]

J ⊆ I ∀j ∈ J : Tj �� Uj

�i∈I †ai. Ti �� �j∈J †aj . Uj

[S-�]

The double line in the rules indicates that the rules should be interpreted coin-
ductively. Recall that we are assuming an equi-recursive view of types. 	

We comment Definition 1 assuming that � is set to ⊕. Rule [S-�] says that a
type

⊕
j∈J !aj . Uj can be replaced by a type that offers no more messages, e.g.,

!a �⊕ !a ⊕ !b. Rule [S-�] says that a type
˘

j∈J ?aj . Uj can be replaced by a type
that is ready to receive at least the same messages, e.g., ?a & ?b �⊕ ?a. Rule
[S-end] is trivial. It is easy to see that �⊕ = (�&)−1. In fact, we can recover the
subtyping of [10,15] (resp. [20,21]) from �� , by instantiating � to ⊕ (resp. &).

Example 1. Consider the session types from (3), we have T1 �⊕ U1, U1 �& T1,
T2 �⊕ U2, and U2 �& T2.

Hereafter, we will write � (resp. �) for the pre-order �⊕ (resp. �&).
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3 Characteristic Formulae for Subtyping

We give the core construction of this paper: a function that given a (closed)
session type T returns a modal μ-calculus formula [27] that characterises either
all the supertypes of T or all its subtypes. Technically, we “translate” a session
type T into a modal μ-calculus formula φ, so that φ characterises all the super-
types of T (resp. all its subtypes). Doing so, checking whether T is a subtype
(resp. supertype) of U can be reduced to checking whether U is a model of φ,
i.e., whether U |= φ holds.

The constructions presented here follow the theory first established in [39];
which gives a characteristic formulae approach for (bi-)simulation-like relations
over finite-state processes, notably for CCS processes.

3.1 Modal µ-calculus

In order to encode subtyping for session types as a model checking problem it is
enough to consider the fragment of the modal μ calculus below:

φ := 
 | ⊥ | φ ∧ φ | φ ∨ φ | [†a]φ | 〈†a〉φ | νx. φ | x

Modal operators [†a] and 〈†a〉 have precedence over Boolean binary operators ∧
and ∨; the greatest fixpoint point operator νx has the lowest precedence (and its
scope extends as far to the right as possible). Let F be the set of all (contractive)
modal μ-calculus formulae and Fc ⊆ F be the set of all closed formulae. Given
a set of actions A ⊆ A, we write ¬A for A \ A, and [A]φ for

∧
†a∈A[†a]φ.

The nth approximation of a fixpoint formula is defined as follows:

(νx. φ)0 def= 
 (νx. φ)n def= φ[(νx. φ)n−1
/x] if n > 0

A closed formula φ is interpreted on the labelled transition system induced by a
session type T . The satisfaction relation |= between session types and formulae
is inductively defined as follows:

T |= 

T |= φ1∧φ2 iff T |= φ1 and T |= φ2

T |= φ1∨φ2 iff T |= φ1 or T |= φ2

T |= [†a]φ iff ∀T ′ ∈ Tc : if T
†a−→ T ′ then T ′ |= φ

T |= 〈†a〉φ iff ∃T ′ ∈ Tc : T
†a−→ T ′ and T ′ |= φ

T |= νx. φ iff ∀n ≥ 0 : T |= (νx. φ)n

Intuitively, 
 holds for every T (while ⊥ never holds). Formula φ1 ∧ φ2 (resp.
φ1 ∨φ2) holds if both components (resp. at least one component) of the formula
hold in T . The construct [†a]φ is a modal operator that is satisfied if for each †a-
derivative T ′ of T , the formula φ holds in T ′. The dual modality is 〈†a〉φ which
holds if there is an †a-derivative T ′ of T such that φ holds in T ′. Construct νx. φ
is the greatest fixpoint operator (binding x in φ).



838 J. Lange and N. Yoshida

3.2 Characteristic Formulae

We now construct a μ-calculus formula from a (closed) session types, parame-
terised wrt. a constructor �. This construction is somewhat reminiscent of the
characteristic functional of [39].

Definition 2 (Characteristic formulae). The characteristic formulae of T ∈
Tc on � is given by function F : Tc × {⊕,&} → Fc , defined as:

F (T,�) def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∧
i∈I 〈† ai〉F (Ti,�) if T = �i∈I †ai. Ti∧
i∈I [† ai]F (Ti,�) if T = �i∈I †ai. Ti

∧
∨

i∈I 〈† ai〉
 ∧ [¬{† ai | i ∈ I}]⊥
[A]⊥ if T = end

νx. F (T ′,�) if T = recx.T ′

x if T = x

	

Given T ∈ Tc , F (T,⊕) is a μ-calculus formula that characterises all the
supertypes of T ; while F (T,&) characterises all its subtypes. For the sake of
clarity, we comment on Definition 2 assuming that � is set to ⊕. The first case
of the definition makes every branch mandatory. If T =

⊕
i∈I !ai. Ti, then every

internal choice branch that T can select must also be offered by a supertype, and
the relation must hold after each selection. The second case makes every branch
optional but requires at least one branch to be implemented. If T =

˘
i∈I ?ai. Ti,

then (i) for each of the ?ai -branch offered by a supertype, the relation must hold
in its ?ai -derivative, (ii) a supertype must offer at least one of the ?ai branches,
and (iii) a supertype cannot offer anything else but the ?ai branches. If T = end,
then a supertype cannot offer any behaviour (recall that ⊥ does not hold for any
type). Recursive types are mapped to greatest fixpoint constructions.

Lemma 1 below states the compositionality of the construction, while Theo-
rem 1, our main result, reduces subtyping checking to a model checking problem.
A consequence of Theorem 1 is that the characteristic formula of a session type
precisely specifies the set of its subtypes or supertypes.

Lemma 1. F(T [U/x],�) = F(T,�)[F(U,�)/x]

The proof is by structural induction, see appendix [31].

Theorem 1. ∀T,U ∈ Tc : T �� U ⇐⇒ U |= F(T,�)

The proof essentially follows the techniques of [39], see appendix [31].

Corollary 1. The following holds:

(a) T � U ⇐⇒ U |= F(T,⊕)
(b) U � T ⇐⇒ T |= F(U,&) (c) U |= F(T,⊕) ⇐⇒ T |= F(U,&)

The proof is by Theorem1 and � = �⊕, � = �&, � = �−1, and �⊕ = (�&)−1.
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Proposition 1. For all T,U ∈ Tc, deciding whether or not U |= F(T,�) holds
can be done in time complexity of O(|T | × |U |), in the worst case; where |T |
stands for the number of states in the LTS induced by T .

This follows from [12], since the size of F (T,�) increases linearly with |T |.

Example 2. Consider session types T1 and U1 from (1) and (3) and fix A =
{?request , !ok , !ko}. Following Definition 2, we obtain:

F (T1,⊕) = [?request ]〈!ok〉[A]⊥ ∧ 〈?request〉
 ∧ [¬{?request}]⊥
F (U1,&) = νx. 〈?request〉

(
([!ok ][A]⊥ ∧ [!ko]x)
∧ (〈!ok〉
 ∨ 〈!ko〉
) ∧ [¬{!ok , !ok}]⊥

)

We have U1 |= F (T1,⊕) and T1 |= F (U1,&), as expected (recall tat T1 �U1).

4 Safety and Duality in Session Types

A key ingredient of session type theory is the notion of duality between types. In
this section, we study the relation between duality of session types, character-
istic formulae, and safety (i.e., error freedom). In particular, building on recent
work [10] which studies the preciseness of subtyping for session types, we show
how characteristic formulae can be used to guarantee safety. A system (of ses-
sion types) is a pair of session types T and U that interact with each other by
synchronising over messages. We write T | U for a system consisting of T and
U and let S range over systems of session types.

Definition 3 (Synchronous semantics). The synchronous semantics of a
system of session types T | U is given by the rule below, in conjunction with
the rules of Fig. 1.

T
† a−−→ T ′ U

†a−→ U ′

T | U −→ T ′ | U ′ [s-com]

We write −→∗ for the reflexive transitive closure of −→. 	

Definition 3 says that two types interact whenever they fire dual operations.

Example 3. Consider the following execution of system T1 | U2, from (3):

T1 | U2 = ?request . !ok .end | recx. !request .{. . .}
−→ !ok .end | {?ok .end & ?ok .recx. ?request{. . .}} −→ end | end

Definition 4 (Error [10] and safety). A system T1 | T2 is an error if, either:

(a) T1 = �i∈I †ai. Ti and T2 = �j∈J †aj . Uj , with � fixed;
(b) Th =

⊕
i∈I !ai. Ti and Tg =

˘
j∈J ?aj . Uj ; and ∃i ∈ I : ∀j ∈ J : ai �= aj ,

with h �= g ∈ {1, 2}; or
(c) Th = end and Tg = �i∈I †ai. Ti, with h �= g ∈ {1, 2}.
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We say that S = T | U is safe if for all S′ : S −→∗ S′, S′ is not an error. 	

A system of the form (a) is an error since both types are either attempting to
send (resp. receive) messages. An error of type (b) indicates that some of the
messages cannot be received by one of the types. An error of type (c) indicates
a system where one of the types has terminated while the other still expects to
send or receive messages.

Definition 5 (Duality). The dual of a formula φ ∈ F , written φ (resp. of a
session type T ∈ T , written T ), is defined recursively as follows:

φ
def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1 ∧ φ2 if φ = φ1 ∧ φ2

φ1 ∨ φ2 if φ = φ1 ∨ φ2

[†a]φ′ if φ = [†a]φ′

〈†a〉φ′ if φ = 〈†a〉φ′

νx. φ′ if φ = νx. φ′

φ if φ = 
,⊥, or x

T
def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�i∈I †ai. Ti if T = �i∈I †ai. Ti

recx.T ′ if T = recx.T ′

x if T = x
end if T = end

	

In Definition 5, notice that the dual of a formula only rename labels.

Lemma 2. For all T ∈ Tc and φ ∈ Fc, T |= φ ⇐⇒ T |= φ.

The proof is direct using the definitions of T and φ.

Theorem 2 For all T ∈ T : F(T,�) = F(T ,�).

The proof of Theorem2 is by structural induction on T , see appendix [31]. The-
orem 3 follows straightforwardly from [10] and allows us to obtain a sound and
complete model-checking based condition for safety, cf. Theorem 4.

Theorem 3 (Safety). T | U is safe ⇐⇒ (T �U ∨ U � T ).

The proof for (=⇒) follows from [10, Table 7], while the direction (⇐=) is by
coinduction on the derivations of T �U and U �T . See [31] for details.
Theorem 4, below, is a consequence of Corollary 1 and Theorems 2 and 3.

Theorem 4. The following statements are equivalent: (a) T | U is safe

(b) U |= F(T,⊕) ∨ T |= F(U,⊕) (d) U |= F(T ,&) ∨ T |= F(U,&)
(c) T |= F(U,&) ∨ U |= F(T ,&) (e) T |= F(U,⊕) ∨ U |= F(T,⊕)

5 Alternative Algorithms for Subtyping

In order to compare the cost of checking the subtyping relation via characteristic
formulae to other approaches, we present two other algorithms: the original
algorithm as given by Gay and Hole in [21] and an adaptation of Kozen, Palsberg,
and Schwartzbach’s algorithm [28] for recursive subtyping for the λ-calculus.
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Fig. 2. Algorithmic subtyping rules [21]

5.1 Gay and Hole’s Algorithm

The inference rules of Gay and Hole’s algorithm are given in Fig. 2 (adapted to
our setting). The rules essentially follow those of Definition 1 but deal explicitly
with recursion. They use judgments Γ � T �c U in which T and U are (closed)
session types and Γ is a sequence of assumed instances of the subtyping relation,
i.e., Γ = T1 �c U1, ..., Tk �c Uk, saying that each pair Ti �c Ui has been visited.
To guarantee termination, rule [Assump] should always be used if it is applicable.

Theorem 5 (Correspondence [21, Corollary 2]). T �U if and only if ∅ �
T �c U is derivable from the rules in Fig. 2.

Proposition 2, a contribution of this paper, states the algorithm’s complexity.

Proposition 2. For all T,U ∈ Tc, the problem of deciding whether or not ∅ �
T �c U is derivable has an O(n2n) time complexity, in the worst case; where n
is the number of nodes in the parsing tree of the T or U (whichever is bigger).

Proof. Assume the bigger session type is T and its size is n (the number of
nodes in its parsing tree). Observe that the algorithm in Fig. 2 needs to visit
every node of T and relies on explicit unfolding of recursive types. Given a type
of size n, its unfolding is of size O(n2), in the worst case. Hence, we have a
chain O(n)+O(n2)+O(n4)+ . . ., or O(

∑
1≤i≤k n2i), where k is a bound on the

number of derivations needed for the algorithm to terminate. According to [21,
Lemma 10], the number of derivations is bounded by the number of sub-terms
of T , which is O(n). Thus, we obtain a worst case time complexity of O(n2n). ��

5.2 Kozen, Palsberg, and Schwartzbach’s Algorithm

Considering that the results of [28] “generalise to an arbitrary signature of type
constructors (. . . )”, we adapt Kozen et al.’s algorithm, originally designed for
subtyping recursive types in the λ-calculus. Intuitively, the algorithm reduces
the problem of subtyping to checking the language emptiness of an automaton
given by the product of two (session) types. The intuition of the theory behind
the algorithm is that “two types are ordered if no common path detects a coun-
terexample”. We give the details of our instantiation below.

The set of type constructors over A, written CA, is defined as follows:

CA
def= {end} ∪ {⊕A | ∅ ⊂ A ⊆ A} ∪ {&A | ∅ ⊂ A ⊆ A}
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Definition 6 (Term automata). A term automaton over A is a tuple M =
(Q, CA, q0, δ, �) where

– Q is a (finite) set of states,
– q0 ∈ Q is the initial state,
– δ : Q ×A → Q is a (partial) function (the transition function), and
– � : Q → CA is a (total) labelling function

such that for any q ∈ Q, if �(q) ∈ {⊕A,&A}, then δ(q, †a) is defined for all
†a ∈ A; and for any q ∈ Q such that �(q) = end, δ(q, †a) is undefined for all
†a ∈ A. We decorate Q, δ, etc. with a superscript, e.g., M, where necessary. 	

We assume that session types have been “translated” to term automata, the
transformation is straightforward (see, [16] for a similar transformation). Given
a session type T ∈ Tc , we write M(T ) for its corresponding term automaton.

Definition 7 (Subtyping). � is the smallest binary relation on CA such that:

end � end ⊕A � ⊕B ⇐⇒ A ⊆ B &A � &B ⇐⇒ B ⊆ A 	

Definition 7 essentially maps the rules of Definition 1 to type constructors.
The order � is used in the product automaton to identify final states, see below.

Definition 8 (Product automaton). Given two term automata M and N
over A, their product automaton M � N = (P, p0, Δ, F ) is such that

– P = QM × QN are the states of M � N ,
– p0 = (qM

0 , qN
0 ) is the initial state,

– Δ : P ×A → P is the partial function which for q1 ∈ QM and q2 ∈ QN gives

Δ((q1, q2), †a) = (δM(q1, †a), δN (q2, †a))

– F ⊆ P is the set of accepting states:

Note that Δ((q1, q2), †a) is defined iff δM(q1, †a) and δN (q2, †a) are defined. 	

Following [28], we obtain Theorem 6.

Theorem 6. Let T,U ∈ Tc, T � U iff the language of M(T ) � M(U) is empty.

Theorem 6 essentially says that T �U iff one cannot find a “common path” in
T and U that leads to nodes whose labels are not related by �, i.e., one cannot
find a counterexample for them not being in the subtyping relation.

Example 4. Below we show the constructions for T1 (1) and U1 (3).
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Where initial states are shaded and accepting states are denoted by a double
line. Note that the language of M(T1) � M(U1) is empty (no accepting states).

Fig. 3. Benchmarks (1)

Proposition 3. For all T,U ∈ Tc, the problem of deciding whether or not the
language of M(T ) � M(U) is empty has a worst case complexity of O(|T |×|U |);
where |T | stands for the number of states in the term automaton M(T ).

Proof. Follows from the fact that the algorithm in [28] has a complexity of O(n2),
see [28, Theorem 18]. This complexity result applies also to our instantiation,
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assuming that checking membership of � is relatively inexpensive, i.e., |A| �
|QM| for each q such that �M(q) ∈ {⊕A,&A}. ��

6 Experimental Evaluation

Proposition 2 states that Gay and Hole’s classical algorithm has an exponential
complexity; while the other approaches have a quadratic complexity (Proposi-
tions 1 and 3). The rest of this section presents several experiments that give a
better perspective of the practical cost of these approaches.

6.1 Implementation Overview and Metrics

We have implemented three different approaches to checking whether two given
session types are in the subtyping relation given in Definition 1. The tool [29],
written in Haskell, consists of three main parts: (i) A module that translates
session types to the mCRL2 specification language [23] and generates a charac-
teristic formula (cf. Definition 2), respectively; (ii) A module implementing the
algorithm of [21], which relies on the Haskell bound library to make session types
unfolding as efficient as possible. (iii) A module implementing our adaptation of
Kozen et al.’s algorithm [28]. Additionally, we have developed an accessory tool
which generates arbitrary session types using Haskell’s QuickCheck library [11].

The tool invokes the mCRL2 toolset [14] (release version 201409.1) to check
the validity of a μ-calculus formula on a given model. We experimented invoking
mCRL2 with several parameters and concluded that the default parameters gave
us the best performance overall. Following discussions with mCRL2 developers,
we observed that the addition of “dummy fixpoints” while generating the char-
acteristic formulae gave us the best results overall. The tool is thus based on a
slight modification of Definition 2 where a modal operator [†a]φ becomes [†a]νt. φ
(with t fresh and unused) and similarly for 〈†a〉φ. Note that this modification
does not change the semantics of the generated formulae.

We use the following functions to measure the size of a session type.

num(T ) def= unf (T ) def=⎧
⎨

⎩

0 if T = end or T = x
num(T ′) if T = recx.T ′

|I|+
∑

i∈I num(Ti) if T = �i∈I †ai. Ti

⎧
⎨

⎩

0 if T = end or T = x
(1+|T ′|x)×unf (T ′) if T = recx.T ′

|I|+
∑

i∈I unf (Ti) if T = �i∈I †ai. Ti

Function num(T ) returns the number of messages in T . Letting |T |x be the
number of times variable x appears free in session type T , function unf (T )
returns the number of messages in the unfolding of T . Function unf (T ) takes into
account the structure of a type wrt. recursive definitions and calls (by unfolding
once every recursion variable).

6.2 Benchmark Results

The first set of benchmarks compares the performances of the three approaches
when the pair of types given are identical, i.e., we measure the time it takes
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Fig. 4. Benchmarks (2)

for an algorithm to check whether T �T holds. The second set of benchmarks
considers types that are “unfolded”, so that types have different sizes. Note that
checking whether two equal types are in the subtyping relation is one of the most
costly cases of subtyping since every branch of a choice must be visited.

Our results below show the performances of four algorithms: (i) our Haskell
implementation of Gay and Hole’s algorithm (GH), (ii) our implementation of
Kozen, Palsberg, and Schwartzbach’s algorithm (KPS), (iii) an invocation to
mCRL2 to check whether U |= F (T,⊕) holds, and (iv) an invocation to mCRL2
to check whether T |= F (U,&) holds.

All the benchmarks were conducted on a 3.40 GHz Intel i7 computer with
16 GB of RAM. Unless specified otherwise, the tests have been executed with a
timeout set to 2 h (7200 s). A gap appears in the plots whenever an algorithm
reached the timeout. Times (y-axis) are plotted on a logarithmic scale, the scale
used for the size of types (x-axis) is specified below each plot.

Arbitrary Session Types. Plots (a) and (b) in Fig. 3 shows how the algorithms
perform with randomly generated session types. Plot (a) shows clearly that the
execution time of KPS, T |= F (T,&), and T |= F (T,⊕) mostly depends on
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num(T ); while plot (b) shows that GH is mostly affected by the number of
messages in the unfolding of a type (unf (T )).

Unsurprisingly, GH performs better for smaller session types, but starts
reaching the timeout when num(T ) ≈ 700. The other three algorithms have
roughly similar performances, with the model checking based ones perform-
ing slightly better for large session types. Note that both T |= F (T,&) and
T |= F (T,⊕) have roughly the same execution time.

Non-recursive Arbitrary Session Types. Plot (c) in Fig. 3 shows how the
algorithms perform with arbitrary types that do not feature any recursive defi-
nition (randomly generated by our tool), i.e., the types are of the form:

T := end |
⊕

i∈I !ai. Ti |
˘

i∈I ?ai. Ti

The plot shows that GH performs much better than the other three algorithms
(terminating under 1s for each invocation), indeed there is no recursion hence no
need to unfold types. Observe that the model checking based algorithms perform
better than KPS for large session types. Again, T |= F (T,&) and T |= F (T,⊕)
behave similarly.

Handcrafted Session Types. Plots (d) and (e) in Fig. 4 shows how the algo-
rithms deal with “super-recursive” types, i.e., types of the form:

T := recx1.†a1. . . . recxk.†ak

{
�1≤i≤k †ai.{�1≤j≤k †aj .xj}

}

where num(T ) = k(k + 2) for each T . Plot (d) shows the results of experiments
with � set to ⊕ and † to !; while � is set to & and † to ? in plot (e).

The exponential time complexity of GH appears clearly in both plots: GH
starts reaching the timeout when num(T ) = 80 (k = 8). However, the other three
algorithms deal well with larger session types of this form. Interestingly, due to
the nature of these session types (consisting of either only internal choices or
only external choices), the two model checking based algorithms perform slightly
differently. This is explained by Definition 2 where the formula generated with
F (T,&) for an internal choice is larger than for an external choice, and vice-
versa for F (T,⊕). Observe that, T |= F (T,⊕) (resp. T |= F (T,&)) performs
better than KPS for large session types in plot (d) (resp. plot (e)).

Unfolded Types. The last set of benchmarks evaluates the performances of
the four algorithms to check whether T = recx.V � recx. (V [V/x]) = U holds,
where x is fixed and V (randomly generated) is of the form:

V :=
⊕

i∈I !ai. Vi |
˘

i∈I ?ai. Vi | x

Plots (f) in Fig. 4 shows the results of our experiments (with a timeout set to 6
hours). Observe that U |= F (T,⊕) starts reaching the timeout quickly. In this
case, the model (i.e., U) is generally much larger than the formula (i.e., F (T,⊕)).
After discussing with the mCRL2 team, this discrepancy seems to originate
from internal optimisations of the model checker that can be diminished (or
exacerbated) by tweaking the parameters of the tool-set. The good performance
of GH in this case can be explained by the fact that there is only one recursion
variable in these types; hence the size of their unfolding does not grow very fast.
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7 Related Work and Conclusions

Related Work. Subtyping for recursive types has been studied for many years.
Amadio and Cardelli [5] introduced the first subtyping algorithm for recursive
types for the λ-calculus. Kozen et al. gave a quadratic subtyping algorithm
in [28], which we have adapted for session types, cf. Sect. 5.2. A good introduction
to the theory and history of the field is in [19]. Pierce and Sangiori [36] introduced
subtyping for IO types in the π-calculus, which later became a foundation for
the algorithm of Gay and Hole who first introduced subtyping for session types
in the π-calculus in [21]. The paper [15] studied an abstract encoding between
linear types and session types, with a focus on subtyping. Chen et al. [10] studied
the notion of preciseness of subtyping relations for session types. The present
work is the first to study the algorithmic aspect of the problem.

Characteristic formulae for finite processes were first studied in [22], then
in [39] for finite-state processes. Since then the theory has been studied exten-
sively [1–3,12,18,34,40] for most of the van Glabbeek’s spectrum [42] and in
different settings (e.g., time [4] and probabilistic [37]). See [2,3] for a detailed
historical account of the field. This is the first time characteristic formulae are
applied to the field of session types. A recent work [3] proposes a general frame-
work to obtain characteristic formula constructions for simulation-like relation
“for free”. We chose to follow [39] as it was a better fit for session types as they
allow for a straightforward inductive construction of a characteristic formula.

Chaki et al. [9] propose a framework consisting of a behavioural type-and-
effect system for the π-calculus and an assume-guarantee principle that allows
(LTL) properties of π-calculus processes to be checked via a model checker.

Conclusions. In this paper, we gave a first connection between session types
and model checking, through a characteristic formulae approach based on the
μ-calculus. We gave three new algorithms for subtyping: two are based on model
checking and one is an instantiation of an algorithm for the λ-calculus [28]. All of
which have a quadratic complexity in the worst case and behave well in practice.

Our approach can be easily: (i) adapted to types for the λ-calculus (see
appendix [31]) and (ii) extended to session types that carry other (closed) session
types, e.g., see [10,21], by simply applying the algorithm recursively on the
carried types. For instance, to check !a〈?c & ?d〉 � !a〈?c〉 ⊕ !b〈end〉 one can
check the subtyping for the outer-most types, while building constraints, i.e.,
{?c & ?d � ?c}, to be checked later on, by re-applying the algorithm.

The present work paves the way for new connections between session types
and modal fixpoint logic or model checking theories. It is a basis for upcom-
ing connections between model checking and classical problems of session types,
such as the asynchronous subtyping of [10] and multiparty compatibility check-
ing [16,30]. We are also considering applying model checking approaches to ses-
sion types with probabilistic, logical [6], or time [7,8] annotations. Finally, we
remark that [10] also establishes that subtyping (cf. Definition 1) is sound (but
not complete) wrt. the asynchronous semantics of session types, which models
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programs that communicate through FIFO buffers. Thus, our new conditions
(items (b)-(e) of Theorem4) also imply safety (a) in the asynchronous setting.
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4. Aceto, L., Ingólfsdóttir, A., Pedersen, M.L., Poulsen, J.: Characteristic formulae
for timed automata. ITA 34(6), 565–584 (2000)

5. Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Trans. Program.
Lang. Syst. 15(4), 575–631 (1993)

6. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

7. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR 2015,
pp. 283–296 (2015)

8. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan,
P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer,
Heidelberg (2014)

9. Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-
passing programs. In: POPL 2002, pp. 45–57 (2002)

10. Chen, T.-C., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping
in session types. In: PPDP 2014, pp. 146–135. ACM Press (2014)

11. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: ICFP 2000, pp. 268–279 (2000)

12. Cleaveland, R., Steffen, B.: Computing behavioural relations, logically. In: Leach
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Abstract. A variety of applications of Satisfiability Modulo Theories
(SMT) require finding a satisfying assignment which optimizes some
user-given function. Optimization in the context of SMT is referred to as
Optimization Modulo Theories (OMT). Current OMT research is mostly
dedicated to optimization in arithmetic domains. This paper is about
Optimization modulo Bit-Vectors (OBV). We introduce two OBV algo-
rithms which can easily be implemented in an eager bit-vector solver.
We show that an industrial problem of fixing cell placement during the
physical design stage of the CAD process can be reduced to optimization
modulo either Bit-Vectors (BV) or Linear Integer Arithmetic (LIA). We
demonstrate that our resulting OBV tool can solve industrial instances
which are out of reach of existing BV and LIA OMT solvers.

1 Introduction

Nowadays, Satisfiability Modulo Theories (SMT) solving is widely applied. Tra-
ditionally, SMT solvers are expected to return any model (satisfying assign-
ment), given a satisfiable formula, but many applications require a model which
optimizes some user-given function [12,13,23,24,32,38]. The problem of finding
the optimal model in SMT is called Optimization Modulo Theories (OMT) [35].

OMT was first addressed in [32], which presented a general OMT frame-
work, in which the minimization/maximization cost function is restricted to
Boolean variables. The restriction of the cost function to Boolean variables was
lifted in [35]. In that work, a solution for optimization modulo linear arithmetic
over the rationals was proposed, where the cost function can be an arbitrary
arithmetic term. The two basic approaches to optimization, given a satisfiability
solver, applied in [35], are binary and linear search, respectively, for the optimal
assignment. In [35], both approaches are customized and tuned to arithmetic
reasoning in the context of the DPLL(T) approach to SMT [18].

Bit-vector (BV) SMT theory [5] is a highly expressive theory, where the vari-
ables are fixed-size bit-vectors and the set of operators includes arithmetic, com-
parison, bit-wise, and bit-propagating (e.g., extraction, concatenation, shifts)
operators. BV solvers are widely applied [15,20,25,26,34,42]. Given a BV for-
mula F , we define the problem of Optimization modulo Bit-Vectors (OBV) to
be the problem of finding a satisfying assignment to F which maximizes some
user-given target bit-vector term t in the formula, where the term is interpreted
as an unsigned number. (Minimization can be modeled as maximization of the
target’s negation.)
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 851–867, 2016.
DOI: 10.1007/978-3-662-49674-9 53
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Our definition lets the cost function be as generic as possible (similarly to the
approach of [35] to arithmetic optimization) as the target term can be an arbi-
trary function over the formula’s input variables. Let our maximization target
be t = [vn−1, vn−2, . . . , v0], where vi’s are bits and v0 is the Least Significant Bit
(LSB). Note that our semantics induces a strict priority for satisfying the bits of
t in the following sense. The solver will prefer satisfying bit i while leaving the
lower bits i−1, . . . , 0 unsatisfied, to satisfying bits i−1, . . . , 0 while leaving bit i
unsatisfied (since, e.g., the value [1000] = 8 is higher than the value [0111] = 7).

Surprisingly, OBV research is scarce. We are not aware of any paper dedicated
to OBV. The only existing solver supporting OBV is an extension to the Z3
SMT solver, called νZ [8,9]. νZ solves OBV by applying the following reduction
to weighted MAX-SAT, proposed in [7] (where, given a set of hard Boolean
clauses and a set of soft weighted Boolean clauses, weighted MAX-SAT finds a
satisfying assignment to the hard clauses maximizing the weight of the satisfied
soft clauses). First, the input BV formula is translated to hard Boolean clauses.
Second, for each i ∈ {0, 1, . . . , n}, a soft weighted unit clause (vi) of the weight
2i is added to the formula. The reduction guarantees that the solver will give a
strictly higher priority to satisfying bit number i than to bits i − 1, . . . , 0, thus
ensuring that t’s value is maximized. Note that applying a similar reduction with
equal weights given to the bits of t would result in maximizing the number of
satisfied bits in t, rather than t’s value.

This paper proposes two new algorithms for OBV solving by leveraging
binary and linear search to eager BV solving [17,21]. Both algorithms are easy
to implement. Both are incremental. Both take advantage of the SAT solver’s
conflict analysis capabilities to prune the search space on-the-fly.

The application which triggered our OBV research emerged during the place-
ment sub-stage of the physical design stage of the Computer-Aided Design
(CAD) [39] flow at Intel. Assume that after a placement of standard cells has
already been generated, a new set of design constraints of different priority,
introduced late in the process, has to be taken into account by the placement
flow. Re-running the placer from scratch with the new set of constraints would
not satisfy backward compatibility, stability, and run-time requirements, hence
a new post-processing fixer tool is required. The goal of the fixer is to fix as
many as possible of the violations resulting from applying the additional design
constraints, with preference being given to fixing high-priority violations. We
will demonstrate that this problem can be reduced to optimization modulo
either bit-vectors or linear integer arithmetic (LIA). Section 6 of this work shows
that our algorithms have substantially better capacity on real-world and crafted
placement fixer benchmarks than νZ in both LIA and BV mode and OptiMath-
SAT [36,37] in LIA mode (the crafted benchmarks are publicly available at [29]).

In what follows, Sect. 2 contains preliminaries. Section 3 introduces our reduc-
tion of the placement fixer problem to optimization modulo BV and LIA. Sec-
tions 4 and 5 present our OBV algorithms. Section 6 presents the experimental
results, and Sect. 7 concludes our work.
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2 Preliminaries

We start off with some basic notions. A bit is a Boolean variable which can be
interpreted as 0 or 1. A bit-vector of width n, v[n] = [vn−1, vn−2, . . . , v0], is a
sequence of n bits, where bit v0 is the Least Significant Bit (LSB) and vn−1 is
the Most Significant Bit (MSB). We consider Boolean variables and bit-vector
variables of width 1 to be interchangeable. A constant is a bit-vector each one of
whose bits is substituted by 0 or 1. A bit-vector operation receives one or more
bit-vectors and returns a bit-vector. A Term DAG is a Directed Acyclic Graph
(DAG), each of whose input nodes (that is, nodes with in-degree 0) comprises a
bit-vector or a constant and each of whose internal nodes (that is, nodes with
in-degree > 0) is an application of a bit-vector operation over previous nodes. A
BV formula F is a term DAG, where some of its Boolean terms are asserted to
1 (that is, they must be assigned 1 in every assignment which satisfies F ).

The only assumption this paper makes about the input BV formula is that
it can be translated to Conjunctive Normal Form (CNF) in propositional logic
(a CNF formula is a conjunction of clauses, where each clause is a disjunction of
Boolean literals, and a Boolean literal is a Boolean variable or its negation). This
assumption holds for the BV language as defined in the SMT-LIB standard [5].
See [19] for a further overview of BV syntax and semantics.

Let μ be a full assignment to the variables of a BV formula F and v be a
term in F . We denote by μ(v) the value assigned to v in μ, interpreted as an
unsigned number.

A BV formula F is satisfiable iff it has a model (where a model is a satisfying
assignment). A model μ to F is t-maximal iff μ(t) ≥ ν(t) for every model ν to F .

Given a BV formula F and a term t in F , where t is called the optimization
target, let the problem of Bit-Vector Optimization (OBV) be the problem of
finding a t-maximal model to F .

A SAT solver [6,27,40] receives a CNF formula F and returns a model, if
one exists. In incremental SAT solving under assumptions [14,30,31], the user
may invoke the SAT solver multiple times, each time with a different set of
assumption literals and, possibly, additional clauses. The solver then checks the
satisfiability of all the clauses provided so far, while enforcing the values of
the current assumptions only. In the widely used Minisat’s approach [14] to
incremental SAT solving under assumptions, the same SAT solver instance solves
the entire sequence internally. The assumptions are modeled as first decision
literals in the user-given order. Each assignment to an assumption is followed by
Boolean Constraint Propagation (BCP). If the solver discovers that the negation
of one of the assumptions is implied by other assumptions during BCP, it halts
and returns that the problem is unsatisfiable. Whenever the solver unassigns one
or more of the assumptions following a backtracking or a restart, it reassigns
the unassigned assumptions in the user-given order (where each assignment is
followed by BCP) before picking any other decisions.

An eager BV solver [11,17] works by preprocessing the given BV formula [11,
17,28], bit-blasting it to CNF and solving with SAT.
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3 Modeling the Placement Fixer Problem

This section details the placement fixing problem, mentioned in Sect. 1, and
shows how to reduce it to an optimization problem modulo either BV or LIA.

3.1 Problem Formulation

We start with the problem formulation. We will be using the example in Fig. 1
for illustration.

Initial Set Up. We are given a grid of size (X,Y ) and a set of n non-overlapping
(but possibly touching) rectangles r1, . . . , rn placed on the grid. Each rectangle
ri’s initial placement is given as the coordinates of its bottom-left corner (xi,yi),
height hi and width wi. The example in Fig. 1 has five rectangles.

A placement of rectangles in the grid might have violations between pairs of
touching rectangles. A violation v(b, t, δ) between the bottom rectangle rb and
the top rectangle rt, where 1 ≤ b, t ≤ n and −wb < δ < wt, occurs when rb’s
top side touches rt’s bottom side (that is, when yb + hb = yt) and the relative
horizontal position of the rectangles is δ = xb − xt. Each violation v(b, t, δ) has
a problem-induced unique priority p(b, t, δ) ∈ N. In other words, the problem
causes all the violations to be ranked according to their priority.

In our example shown in Fig. 1, there exist three violations of priority:
p(1, 4,−2), p(4, 3, 2), and p(5, 2, 0).

Fixer Goal. Given the initial placement, the fixer may shift the rectangles
horizontally or vertically (that is, move each rectangle horizontally or vertically),
so as to reduce the number of violations according to their priority. Shifting the
same rectangle both horizontally and vertically is allowed. The priority is strictly
followed in the sense that fixing one violation of priority p should be preferred
to fixing any number of violations of priorities lower than p. Note that shifting
existing rectangles might create new violations.

The input problem induces additional constraints on the allowed shifts:

1. Shift constraints: some of the rectangles are non-shiftable (that is, they
must not be shifted), while the greatest allowed horizontal and vertical shift
for any shiftable rectangle is α and β, respectively.

2. Parity preservation: for each rectangle the y-coordinate at the new location
must be even iff the original y-coordinate is even.

Consider our example in Fig. 1. Assume that all the rectangles are shiftable
and that α = 2 and β = 2. Violation 3 can be eliminated altogether by shifting
r5 down to (6, 0) (shifting it down to (6, 1) is disallowed by parity preservation).
The other two violations v1 and v2 can be resolved by shifting r4 to the right
to (4, 3). Note that if r4 had been non-shiftable, violations v1 and v2 could have
been resolved only at the expense of creating new violations, in which case the
optimal solution to the problem would have depended on the actual priorities of
the violations (unspecified in our example).
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Fig. 1. Fixer placement problem modeling example.

3.2 Problem Encoding

The encoding is shown in Fig. 2. It can be applied to encode our problem into
optimization modulo either BV or LIA.

First, the algorithm goes over all the shiftable rectangles. For each rectangle
ri, it creates two new variables x′

i, y
′
i to represent ri’s location after the fix (the

bit-width of the BV variables is chosen to accommodate the size of the grid). In
addition, the algorithm ensures that the parity is preserved. For BV, the parity
preservation constraint can be modeled by asserting yi&1 == y′

i&1 (where &
stands for bit-wise AND). For LIA, it can be modeled in either one of the two
following ways: (a) using an auxiliary variable t to assert that yi − y′

i == 2t, or
(b) using LIA’s native mod operator to assert that yi mod 2 == y′

j mod 2.
Second, the algorithm ensures that the rectangles will not overlap after the

fix. This can easily be done for both BV and LIA by adding inequalities for
each pair of rectangles over the new variables x′

i, y
′
i, x

′
j , y

′
j to ensure there is no

overlap.
Third, the algorithm creates the target term to be used for BV maximization

(adjusting our construction to LIA reasoning is explained in the next paragraph).
It starts by creating an empty bit-vector u. It then goes over all the potential
violations in a loop, in order of priority, starting with the violation of the lowest
priority. It formulates a condition c which holds iff the violation occurs after the
fix. Then the negation of c is inserted into u as the MSB (using concatenation).
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Fig. 2. Placement fixer: encoding

Our construction guarantees that the fixer accomplishes the task of generat-
ing a placement having as few violations as possible while strictly following the
priority, iff u is given the maximal value. Hence, the solver is asked to maximize
the value of u in the case where BV reasoning is applied. To achieve the same
effect for LIA, the algorithm maximizes the bits of u lexicographically starting
from the MSB and going towards the LSB (lexicographical maximization for
LIA is available in both νZ and OptiMathSAT).

Note that one cannot use integer linear programming (ILP) to encode our
problem efficiently, since our problem requires using disjunctive constraints to
prevent overlaps between pairs of rectangles. Specifically, given any two rectan-
gles r1 and r2, it is either that x′

1 > x′
2 + w2 or x′

2 > x′
1 + w1 (similar equations

must be generated for y coordinates). One could, though, use Linear Disjunctive
Programming (LDP) [2,3] to encode our problem. We have left the non-trivial
work of reducing our problem to LDP to the future.

4 Optimization with Weak Assumptions

Our first OBV algorithm is based on a modification to Minisat’s approach to
SAT solving under assumptions, called SAT solver under weak assumptions. We
call our algorithm OBV-WA (standing for Optimization modulo Bit-Vectors with
Weak Assumptions). It can also be understood as a linear search for the t-
maximal model starting with the highest possible value of t and going towards
0, where the algorithm stops at the first satisfying assignment. Section 6 will
demonstrate that OBV-WA is substantially more efficient than the Näıve Linear
Search (NLS) algorithm, depicted below (given a satisfiable formula F and the
optimization target t):
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1: Solve F with an SMT solver
2: while Solve returns SAT do
3: Assert t is greater than t’s value in the last model returned by Solve
4: Solve F with an SMT solver
5: return last model returned by Solve

4.1 OBV-WA Algorithm

Assume an eager BV solver is provided with a satisfiable BV formula F and
an optimization target t[n] and is requested to find a t-maximal model to F
(one can verify that F is satisfiable by invoking a BV solver before applying our
algorithm). First, OBV-WA translates F to CNF (following an optional invoca-
tion of word-level preprocessing). Then it applies a SAT solver, where literals
corresponding to the bits tn−1, tn−2, . . . , t0 are provided to the solver as weak
assumptions which are processed as follows. The SAT solver assigns the weak
assumptions as the first decision variables in the specified order (from the MSB
tn−1 towards the LSB t0), where BCP follows each assignment. If the solver dis-
covers that the negation of one of the assumptions is implied by other assump-
tions during BCP, it continues to the next assumption (in contrast to returning
that the problem is unsatisfiable, as in Minisat’s approach to SAT solving under
assumptions).

This simple adjustment of Minisat’s algorithm guarantees that the solver
returns a t-maximal model. Indeed, OBV-WA checks the satisfiability of F under
every t value starting from t = 2n − 1 towards t = 0 in decreasing order. t is
decreased by δ > 1 only once the solver proves that there is no model in the
range [t, t − δ + 1]. Indeed, the bit ti is flipped by the solver to 0 only if there is
no model to F with ti = 1.

The algorithm in Algorithm1 is an implementation of OBV-WA. It contains
the following three functions:

1. Solve: the main function invoked by the user: given a BV formula F and an
optimization target t[n], it returns a t-maximal model. The function initializes
an index i, which points to the next unassigned assumption, with n−1. It also
initializes dl wa to 0, where dl wa is the highest decision level where a weak
assumption is assigned as a decision literal. It then invokes a SAT solver with
decision and backtrack strategies modified as specified below. The algorithm
returns the model found by the SAT solver (we assume an implicit conversion
from the Boolean model returned by the SAT solver to the corresponding BV
model to the original formula).

2. OnDecision: invoked by the underlying SAT solver to get a decision literal
when it has to take a decision. It receives the next decision level. OnDecision
returns the next unassigned assumption, if any, and decreases the index i by
1. Assigned assumptions are skipped. If an unassigned assumption is found,
the function stores the assumption’s index in a decision level indexed array
SavedI and updates dl wa. This is required for proper backtracking. If all the
assumptions are assigned, a standard SAT decision heuristic is applied.
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3. OnBacktrack: invoked by the SAT solver whenever it backtracks. It
receives the decision level to backtrack to. If the decision level is higher
than dl wa, nothing is done. Otherwise, the function updates the assump-
tion index i so as to point to the next unassigned assumption. It also updates
dl wa accordingly.

Note that the decision level of an assigned weak assumption i might be
different from n − i, since any assumption could entail other assumptions at the
same decision level. For this reason, the algorithm must maintain the mapping
SavedI from the decision level dl of each assigned weak assumption to its index i.

An approach similar to SAT solving under unordered weak assumptions has
recently been used in [10] to reduce the number of faults in model-based safety
analysis. The contribution of our work is in reducing OBV to SAT solving under
weak assumptions, where the assumptions must correspond to the target variable
bits, ordered from the MSB towards the LSB.

4.2 Incrementality

OBV-WA is incremental in the same sense as Minisat’s algorithm: it can be invoked
multiple times with different optimization targets, where the formula can be
extended between the invocations. This type of incrementality is now supported
in the new SMT-LIB format SMT-LIB 2.5 [4]. To support incremental push/pop,
another type of incrementality inherited by SMT-LIB 2.5 from SMT-LIB 2.0,
one can use selector literals as follows: following each push, add a fresh selec-
tor literal s to every clause in the bit-blasted formula and then add ¬s as a
(strong) assumption. To pop, add the unit clause ¬s. To use both strong and
weak assumptions in one invocation, simply assign first the strong assumptions
and then the weak ones.

5 Optimization with Inline Binary Search

In this section we present our second OBV algorithm, called OBV-BS (standing
for Bit-Vector Optimization with Binary Search). We will see in Sect. 6 that
OBV-BS’s is considerably more efficient than the Näıve Binary Search (NBS)
algorithm performing a binary search for the maximal t value using the SMT
solver as an oracle.

5.1 OBV-BS Algorithm

Like OBV-WA, this algorithm first translates the formula to CNF. It then applies a
binary search-style algorithm implemented on top of an incremental SAT solver.

We need to extend our definitions for the subsequent discussion in the context
of OBV solving given a formula F and the optimization target t. Let the value
of an assignment α to F be α(t) (that is, the value assigned to the target t in α).

For a partial assignment α, we define its value α(t) to be equal to α0(t), where
α0 extends α by assigning 0 to all the unassigned bits of t. Values of assignments



Bit-Vector Optimization 859

Algorithm 1. OBV-WA – OBV with Weak Assumptions

1: function Solve(BV Formula F , Optimization Target t[n])
Require: F is satisfiable
Ensure: A t-maximal model to F is returned
2: Pre-process and bit-blast F to CNF
3: i := n − 1 � n − 1 is the MSB
4: dl wa := 0
5: μ := SAT()
6: return μ

7: function OnDecision(Decision level dl)
8: while i ≥ 0 and ti is assigned do
9: i := i − 1

10: if i < 0 then
11: return StandardSATHeuristic(dl)
12: SavedI (dl) := i
13: dl wa := dl
14: return ti

15: function OnBacktrack(Decision level dl)
16: if dl ≤ dl wa then
17: i := SavedI (dl)
18: dl wa := dl − 1

induce an order between them. In particular, an assignment α is higher, lower,
or equal to β, if α(t) > β(t), α(t) < β(t), or α(t) = β(t), respectively. We
sometimes interpret assignments to F as Boolean assignments, assigning values
to the bits of BV variables individually. Alternatively, we sometimes interpret
assignments to F as sets of Boolean literals, where each assigned bit b of a BV
variable appears as either b or ¬b.

Consider Algorithm 2 implementing OBV-BS. The algorithm maintains the
current model μ, initialized with an arbitrary model to F at line 3, and a partial
assignment α, which is empty in the beginning. The main loop of the algorithm
(starting at line 5) goes over all the bits of the optimization target t starting from
the MSB tn−1 down to t0. Each iteration extends α with either ti or ¬ti, where
ti is preferred over ¬ti iff there exists a model where ti is assigned 1 while bits
higher than i have already been assigned in previous iterations. In other words,
ti is preferred whenever there exists a model whose value is greater than or equal
to α(t) + 2i. Essentially, the algorithm implements a binary search over all the
possible values of the optimization target t, where the search is automatically
pruned based on the conclusions of the SAT solver’s conflict analysis.

The algorithm is incremental in the same sense as OBV-WA, that is, it fully
supports Minisat-style incremental solving under assumptions, while push/pop
can be supported through selector variables.



860 A. Nadel and V. Ryvchin

5.2 Correctness Proof

Three invariants, which hold throughout the algorithm at the beginning of the
algorithm’s loop, are shown in Fig. 3. According to Inv. 1, μ must be a model.
According to Inv. 2 and 3, α is always a subset of μ and any t-maximal model,
respectively (where the assignments are interpreted as sets of Boolean literals).
Note that if the invariants hold, then at the end of the algorithm μ is a t-maximal
model, since: (a) by the end α will have assigned values to every bit of t, (b)
Inv. 2 ensures that μ agrees with α on all bits of t and (c) Inv. 3 guarantees that
α agrees on all bits of t with t-maximal models.

The invariants clearly hold just before the first loop iteration. Consider an
arbitrary iteration of the loop. We assume that the invariants hold at its begin-
ning.

First, the algorithm checks whether the current bit ti is 1 in μ (at line 6).
If it is, α is simply extended with ti and the algorithm goes on to the next
iteration. Let us verify that the invariants hold at the end of an iteration in this
case. First, μ is not changed, hence Inv. 1 still holds. Second, α is extended with
a μ literal, thus Inv. 2 is preserved. Inv. 3 and 2 hold in the beginning of the
iteration, hence any t-maximal model ν agrees with α and μ on the values of
the Boolean variables tn−1, . . . , ti+1. Any such ν must also contain ti positively,
since otherwise μ’s value would have been higher than that of ν. Thus, Inv. 3 is
preserved.

Assume now that ti = 0 in μ, that is ¬ti ∈ μ. In this case (the treatment
of which starts at line 9), the algorithm checks whether there exists a model
(different from μ) that extends α with ti. It does this by invoking a SAT solver
and providing it α and ti as (strong) assumptions.

If the problem is satisfiable and a model τ is found, we update μ to τ and
continue to the next iteration of the loop. Let us verify the invariants at the end
of the loop for this case. μ is still a model after the update, so Inv. 1 holds. α
still agrees with μ on all α values, since the α values have been provided to the
SAT solver as assumptions, so the updated μ must contain them. Thus, Inv. 2
is preserved. Inv. 3 still holds, since α has not been changed.

In the only remaining case, if the SAT solver returns UNSAT, we extend α
with ¬ti. Let us verify the invariants. Inv. 1 is preserved, since μ is not changed.
Inv. 2 is preserved, since μ must contain ¬ti according to our algorithm’s flow
(otherwise, the condition at line 6 would hold). Finally, any t-maximal model
must still agree with α, preserving Inv. 3 for the following reasons. The only
potential disagreement could be regarding the value of ti, since Inv. 3 holds
at the beginning of the loop. But the outcome of our SAT query guarantees
that there is no model containing α and ti, hence any t-maximal model must
contain ¬ti.

5.3 Performance Optimizations

We have implemented two important performance optimizations for Algorithm2:
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1. μ is a model.
2. α ⊆ μ.
3. α ⊆ ν for every t-maximal model ν.

Fig. 3. OBV-BS invariants

Algorithm 2. OBV-BS – OBV with Inline Binary Search

1: function Solve(BV Formula F , Optimization Target t[n])
Require: F is satisfiable
Ensure: A t-maximal model to F is returned
2: Pre-process and bit-blast F to CNF
3: μ := SAT()
4: α := {}
5: for i ← n − 1 downto 0 step 1 do
6: if ti ∈ μ then � ti ∈ μ ≡ ti = 1 in μ
7: α := α ∪ {ti}
8: else
9: τ := SatUnderAssumptions(α ∪ {ti})

10: if SAT solver returned SAT then
11: μ := τ
12: else
13: α := α ∪ {¬ti}
14: return μ

1. In non-incremental mode, one can add unit clauses instead of the assumptions
at lines 7 and 13. This is expected to boost the performance, since it has been
shown that using unit clauses instead of assumptions results in a substantial
performance improvement in the context of incremental SAT solving under
assumptions [28,30].

2. Modern SAT solvers apply phase saving [16,33,41] as their polarity selection
heuristic. In phase saving, once a variable is picked by the variable decision
heuristic, the literal is chosen according to its latest value, where the values
are normally initialized with 0. In our implementation of OBV-BS we initialize
the phase saving values of all the bits of the optimization target t to 1 in
each invocation, encouraging the solver to prefer a higher value for t’s bits by
default. This optimization allows the algorithm to converge faster.

5.4 Comparing OBV-WA and OBV-BS

Let us compare OBV-WA and OBV-BS at a high-level. OBV-WA should work bet-
ter when the t-optimal model’s value has many 1’s in it, since OBV-WA tries to
assign 1’s to all the bits of t whenever possible. Otherwise, OBV-BS is expected
to perform better. In addition, OBV-BS has the advantage that it always has
an approximation of the maximal model that can be returned to the user if
optimality can be traded for performance. OBV-WA does not have intermediate
non-optimal solutions.
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6 Experimental Results

We have implemented our algorithms OBV-WA and OBV-BS in Intel’s eager BV
solver Hazel. This section studies the performance of OBV-WA and OBV-BS on
industrial placement fixer benchmarks as well as publicly available placement
fixer benchmarks crafted by us [29].

The crafted benchmarks consist of diversified instances of the generic prob-
lem of placing rectangles on a grid, described in Sect. 3. First, we created
a number of families, where a family is defined per grid size g × g, where
g ∈ {10, 25, 50, 75, 100}. Each family consists of 40 benchmarks. Let the density
of a benchmark d ∈ {0.2, 0.5, 0.7, 0.9} be the fraction of occupied grid cells. Each
family has 10 benchmarks for each of the four possible density values. The size
and coordinates of the rectangles for each benchmark are drawn randomly, where
the size of rectangles’ sides is drawn from the set {1, 2, . . . , �g/10�}. Second, we
crafted another family of high-density instances, called HD (High-Density), for
grid size 50 × 50. Each benchmark in the HD family was created by placing
rectangles on the grid until all the room was exhausted.

For the comparison we used two publicly available OMT solvers: νZ [8,9]
(version 4.3.3) in BV and LIA modes, and OptiMathSAT [36,37] (version 1.3.5)
in LIA mode. νZ and OptiMathSAT are extensions of the leading SMT solvers
Z3 and MathSAT, respectively, for OMT. Note that νZ is the only available
solver that supports OBV.

Recall from Sect. 3.2 that we presented two ways of encoding the parity
preservation constraint yi mod 2 == y′

j mod 2: (a) using an auxiliary variable t
to assert that yi − y′

i == 2t, or (b) using LIA’s native mod operator. We exper-
imented with νZ in LIA mode on benchmarks generated with both encodings.
νZ-BV, νZ-LIA, and νZ-LIA-m below stand for, respectively, νZ in BV mode,
νZ in LIA mode using auxiliary variables to encode parity constraints, and νZ
in LIA mode using the LIA’s native mod operator to encode parity constraints.
We used OptiMathSAT with only the auxiliary variable-based encoding, since
OptiMathSAT does not support the mod operator.

We have also implemented the Näıve Linear Search (NLS) and Näıve Binary
Search (NBS) algorithms (recall the beginning of Sects. 4 and 5, respectively) on
top of Hazel.

We used machines with 32 GB of memory running Intel� Xeon� processors
with 3 GHz CPU frequency. The time-out was set to 1800 s. Detailed experimen-
tal results are available in [29].

Consider Table 1. It presents the number of instances solved within the time-
out per family, where a family is defined per grid size for all crafted instances,
except for the HD family. In addition, we considered a family of 50 industrial
instances. The family name is shown in column 1. Column 2 shows the average
number of unsatisfied bits in the optimization target t (in the optimal solution),
while column 3 provides the number of SAT calls within OBV-BS on average. The
number of instances per family is shown in column 4. (Statistics are not avail-
able for the industrial instances because of IP considerations.) The subsequent
columns present the number of instances solved for a particular solver.
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Table 1. Comparing OBV algorithms

Grid size UNSAT

bits in t

#SAT

calls in

OBV-BS

# OBV-

WA

OBV-

BS

Opti-

MathSAT

νZ-

BV

νZ-

LIA

νZ-

LIA-m

NLS NBS

10 × 10 7 11 40 40 40 40 40 40 40 39 40

25 × 25 6 38 40 40 40 12 40 40 40 9 7

50 × 50 50 77 40 40 40 0 7 23 20 0 0

75 × 75 75 110 40 40 40 0 0 0 1 0 0

100 × 100 0.025 182 40 40 40 0 0 0 0 0 0

Industrial 50 50 50 0 0 0 0 0 0

HD 1324 889 54 1 54 0 0 0 0 0 0

0 250 500 750 1,000 1,250 1,500
0

250

500

750

1,000

1,250

1,500

OBV-WA (time in seconds)

O
B
V
-
B
S

(t
im

e
in

se
co

n
d
s)

Fig. 4. Comparing OBV-WA to OBV-BS on 100 × 100 grids.

Consider the non-HD crafted instances and the industrial instances. Our algo-
rithms clearly outperform the current state-of-the-art. Both OBV-WA and OBV-BS
solve all the non-HD crafted instances and all the industrial instances. None of
the other solvers can solve a single industrial instance. νZ, in each one of the
three modes, solves only a portion of the crafted 50 × 50 instances, and can
solve none of the crafted 100× 100 instances. OptiMathSAT is outperformed by
the other solvers on the crafted instances. The näıve binary and linear search
algorithms (NBS and NLS) are not competitive.

Figures 4 and 5 compare OBV-WA to OBV-BS head-to-head on 100 × 100 grids
and industrial instances, respectively. One can see that OBV-WA consistently out-
performs OBV-BS on both the crafted and the industrial instances. In light of
these results, OBV-WA is now applied for the placement fixing problem at Intel.
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Fig. 5. Comparing OBV-WA to OBV-BS on industrial instances.

Strikingly, the apparent advantage of OBV-WA does not extend to the HD
family. OBV-BS solves all the HD instances, while OBV-WA only solves a single HD
instance (the other solvers solve none of the HD instances). This phenomenon
is explained by the fact the number of unsatisfied bits in the maximal solu-
tion is significantly higher for the HD family. Our conclusion is that OBV-BS is
more robust than OBV-WA, but in practice OBV-WA might still be preferred, if the
instances are not too difficult.

7 Conclusion

This paper is the first full-blown work dedicated to the problem of Optimiza-
tion modulo Bit-Vectors (OBV). We have presented two incremental OBV algo-
rithms, which can easily be implemented in an eager Bit-Vector (BV) solver.

We have implemented our algorithms and studied their performance on real-
world instances emerging in the industrial problem of fixing cell placement dur-
ing the physical design stage of CAD process. The problem can be encoded as
either optimization modulo BV or Linear Integer Arithmetic (LIA). We have also
experimented with crafted, publicly-available instances that mimick the place-
ment fixing problem.

Our algorithms have shown substantially better capacity than the state-of-
the-art Optimization Modulo Theories (OMT) solvers νZ and OptiMathSAT,
where OptiMathSAT has been applied in LIA mode and νZ in both BV and
LIA modes.

As a future work we intend to study the integration of our algorithms with
more recent approaches to incremental SAT solving under assumptions [31]. In
addition, we are planning to apply our OBV algorithms to other problems.
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25. Marić, F., Janičić, P.: URBiVA: uniform reduction to bit-vector arithmetic. In:
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Abstract. This paper is concerned with runtime verification of object-
oriented software system. We propose a novel algorithm for monitoring
the individual behaviour and interaction of an unbounded number of
runtime objects. This allows for evaluating complex correctness proper-
ties that take runtime data in terms of object identities into account. In
particular, the underlying formal model can express hierarchical interde-
pendencies of individual objects. Currently, the most efficient monitor-
ing approaches for such properties are based on lookup tables. In con-
trast, the proposed algorithm uses union-find data structures to manage
individual instances and thereby accomplishes a significant performance
improvement. The time complexity bounds of the very efficient opera-
tions on union-find structures transfer to our monitoring algorithm: the
execution time of a single monitoring step is guaranteed logarithmic in
the number of observed objects. The amortised time is bound by an
inverse of Ackermann’s function. We have implemented the algorithm in
our monitoring tool Mufin. Benchmarks show that the targeted class of
properties can be monitored extremely efficient and runtime overhead is
reduced substantially compared to other tools.

1 Introduction

In practice, exhaustive verification of a system is often not an option because of
economical or practical reasons, when third-party libraries are used or code is
loaded dynamically at runtime from uncontrolled sources. In these cases, Run-
time Verification (RV) can provide a reasonable lightweight alternative. Instead
of analysing the whole behaviour of a system, RV focuses on techniques to
observe a program’s execution and evaluate correctness properties regarding
this specific run. They allow for balancing the verification effort regarding the
targeted correctness guarantees. For example, verification efforts can focus on
specific, feasible parts such as low-level primitives or protocol implementations
while the remaining parts are being monitored at runtime. Moreover, RV can
be applied during software testing and debugging to obtain concise and specific
information.
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In software systems, a monitoring process is typically executed in parallel to a
program under scrutiny. While this can provide a very detailed observation of the
system’s behaviour, it necessarily imposes runtime overhead for the whole system
in terms of memory and computing resources. It is one of the main concerns in
RV to keep this overhead as small as possible. This is particularly challenging for
object-oriented systems. They require to track an unbounded number of runtime
objects and evaluate their individual behaviour and interaction. Consider, for
example, a Java collection object and iterator objects created for it. The number
of iterators can become arbitrarily large. Once the collection is modified none
of them is supposed to be used again, while iterators created for a different
collection or after the modification have still a valid state. Thus, for each object
some information, e.g. whether it is still valid to be used, may have to be stored
and updated upon some program event.

The currently most efficient tools for monitoring object-oriented systems are
JavaMOP [17] and MarQ [18]. They use data structures based on lookup tables,
implemented as hash maps, to store this mapping of objects to their individual
state. Unfortunately, this approach can quickly become infeasible since the num-
ber of table entries increases linearly with the number of maintained objects. A
program event may affect all of them and thus require an update of the corre-
sponding entries. Hence the cost of a single monitoring step can increase linearly
with the length of the observed execution trace. Considering the example above,
using many iterators quickly increases the lookup table. Every modification of
the collection requires iterating through the table to update the entries of all
derived iterator objects.

Contribution. We address this problem and propose a novel monitoring algo-
rithm that uses union-find data structures to store the state of program objects.
The essential idea is to store a mapping c : Δ → Q from object (identifiers)
Δ to monitoring information (states) Q in terms of sets Δq ⊆ Δ of objects for
each state q ∈ Q. Then, changing the state of all objects in some state q to
some state q′ can be done by merging Δq into Δq′ . On union-find structures this
is a constant-time operation, independent of the size of the sets. Further, our
data structure allows for selecting and updating more specific subsets of program
objects. The user can provide a tree-like hierarchy for the program objects and
refer to it in the specification. For example, every iterator object can be filed as
a direct child of its corresponding collection. The data structure then provides
efficient access to the set of, e.g., all children or ancestors of a particular object.
Hence, upon the modification of a collection, all corresponding valid iterator
objects can be marked invalid at once. Tree-like object relations are ubiquitous
in programming and employed in many algorithms, data structures and archi-
tectures. For correctness properties expressed with respect to such a hierarchy,
our algorithm provides extremely efficient runtime evaluation.

Outline. In the following Sect. 2 we define an operational model that allows
for expressing the behaviour and hierarchical dependencies between individual
objects. This model provides the conceptual basis for our monitoring approach
and thus characterises formally the addressed type of correctness properties.
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To provide a better understanding of the properties, we also identify a corre-
sponding fragment of first-order temporal logic. Based on the operational model,
we describe our data structure in Sect. 3. Our algorithm for efficiently process-
ing runtime events and updating the data structure is presented in Sect. 4. We
discuss the performance of our approach first by providing bounds for the time
complexity of a monitoring step. Then, Sect. 5 is concerned with our implemen-
tation. We present benchmarks for a collection of properties providing evidence
that our approach performs well in practice and in particular in comparison with
the state-of-the-art tools JavaMOP and MarQ.

Related Work. A monitoring approach for object-oriented systems, where the
instrumentation framework AspectJ is extended by a simple expression language,
was already considered in [1]. It allows for matching observed events against pat-
terns with free variables that are bound to values provided by the observation.
Data in general, of which object IDs form a special case, was intensively studied
for runtime verification leading to various approaches based on different specifica-
tion formalisms and execution schemes [4–7,12,13,15,19,20]. Regarding efficient
monitoring for object-oriented systems the influencial work by Chen and Rosu
[19] on the parametric trace slicing technique is tailored specifically towards han-
dling events carrying data in terms of object identifiers. It is implemented in the
system JavaMOP [17] which is considered one of the best performing runtime
verification tools. The trace slicing approach has been generalised to the concept
of quantified event automata (QEA) [4] in order to increase expressiveness while
still allowing for efficient evaluation. The tool MarQ [18] is based on QEA and
can compete performance-wise even with JavaMOP. The essential idea of these
frameworks is to evaluate a symbolic property on a set of projections of an input
trace. Trace slicing specifically considers sequences of events which are para-
meterised by identifiers. A sequence is divided into sub-sequences, called slices,
where all positions share common parameter values. The slices are then moni-
tored independently. In contrast to our approach, only limited interdependencies
between the different slices can be checked.

2 Projection Automata

The essential characteristics of an object are its state and identity. We therefore
use a model that reflects both but provides a reasonable abstraction. Finite word
automata are an established concept that is well suited for runtime verification
because it naturally operates on sequences of inputs. Regarding identity, we
employ the framework of data words to model observations that relate to a
particular object. In this setting, an object is reduced to its mere identity and
represented in terms of a so-called data value. Formally, we consider an infinite set
Δ of such values in order to represent an arbitrary number of different objects.
A finite set Σ of symbols represents the type of observations, e.g., a call to
a particular method or the access to a variable. A data word is now a finite
sequence w = (a1, d1)(a2, d2). . . (an, dn) ∈ (Σ × Δ)∗ of letters consisting of a
symbol a ∈ Σ and a value d ∈ Δ.
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For representing the hierarchical relation between objects we impose addi-
tional structure on Δ in terms of a tree-ordering relation ≤. It models the relation
between all possibly occurring objects as a forest. A tree-ordering is a partial
ordering where every strictly descending chain d1 > d2 > . . . is finite and such
that for every non-minimal element d ∈ Δ the largest element d′ < d is unique.
We call d′ the parent of d, written par(d). The level of a value d ∈ Δ is defined as
lvl(d) = 1 if d is minimal and otherwise lvl(d) = lvl(par(d))+1. We call (Δ,≤) of
depth � if there are longest strictly descending chains of length �. Additionally,
we assume that (Δ,≤) contains infinitely many minimal elements and that every
non-minimal element d ∈ Δ has an infinite number of siblings d �= d′ ∈ Δ with
par(d′) = par(d).

Definition 1 (Projection Automata). A projection automaton (PA) is a
tuple A = (Q,Σ, δ, q0, λ) where Q is a finite set of states, Σ is a finite alphabet,
δ : Q × Σ × {<,=, >, ‖} → Q is the transition function, q0 ∈ Q is the initial
state and λ : Q → S is the output labelling for some semi-lattice (S,�).

The operational semantics of PA is given in terms of configurations c :
Δ → Q that map data values to states. The run of A on a data word w =
(a1, d1). . . (an, dn) is a sequence of configurations ρw = c0. . . cn such that the
initial configuration is the constant function c0 : Δ → {q0} and for all positions
0 ≤ i < n and all data values d ∈ Δ we have ci+1(d) = δ(ci(d), (ai+1, �))
where � ∈ {<,=, >, ‖} and di+1 � d. The output of A for the data word w is
A(w) :=

�
d∈Δ λ(cn(d)).

Syntactically, a PA is a finite automaton with output (i.e., a Moore machine)
over the input alphabet Σ ×{<,=, >, ‖} and the output alphabet S. Intuitively,
to every data value d ∈ Δ, an instance of the automaton is associated that
reads, instead of an input letter (a, d′) ∈ Σ × Δ, the symbol a ∈ Σ and the
information how the observed value d′ relates to itself, in terms of one of the
symbols from {<,=, >, ‖}. The output of all instances is then aggregated to a
single verdict, hence the semi-lattice. Note that the restriction to a deterministic
transition function is not essential since non-determinism (even alternation) can
be eliminated by standard constructions.

Example. Recall the property that modifying a collection invalidates iterators
previously created for it. The data values Δ can model these two types of objects
by choosing an ordering ≤ with two levels: collection IDs are minimal (roots)
and the iterator IDs dI ∈ Δ created for a collection with ID dC ∈ Δ are direct
children of dC < dI . Given this structure on Δ, the PA in Fig. 1 (Iterator)
expresses the property. Initially, all objects remain in state q0. Upon the creation
(c) of an iterator with ID dI ∈ Δ, this new iterator receives the letter (c,=) and
changes its state to q1. The corresponding collection receives (c, >) and all others
receive (c, ‖), thus staying in q0. Upon the modification of some collection (m),
all iterators for it receive (m, <) (the observed ID is strictly smaller) and if they
happen to be in state q1 move to state q2. Finally, when next() is called on some
iterator, this one reads the letter (n,=) and only if it happens to be in state q2
it moves to the failure state. Figure 1 shows further examples to be discussed in
Sect. 5.
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Fig. 1. Example properties formulated as PA with outputs � (white states) and ⊥
(grey states). Missing edges are self-loops.

Projection automata are closely related to class automata [11] that feature
an additional transducer but use only equality on the data domain. It can easily
be shown that PA (like class automata) can simulate Minsky machines.

A Logical Perspective. Projection automata characterise precisely the prop-
erties that our monitoring algorithm can verify since it is based on their opera-
tional semantics. On the other hand, first-order extensions of temporal logics, in
particular linear-time temporal logic (LTL), received much attention in RV [8–
10,13] because they provide a very generic framework for specifying properties
in a declarative fashion. In the following, we therefore discuss briefly how PA
relate to temporal logic with first-order constraints. We identify a fragment of
first-order logic that can be translated to PA and thus allows for using the very
efficient algorithm presented in Sects. 3 and 4 instead of generic techniques.

The fragment consists of a logical language that uses a single variable x and
a single constant d as well as zero-ary predicates (propositions) Pa, for a ∈ Σ,
and a binary predicate ≤. Formulae of that language have the form ∀xϕ where
ϕ is defined by the grammar ϕ :: = Pa | ϕ ∧ ϕ | ¬ϕ | X ϕ | ϕU ϕ | t ≤ t where
a ∈ Σ and t ∈ {x, d} is either the variable or the constant.

Each letter (a, d) ∈ Σ × Δ in a data word can be considered as a structure
s over the signature above with universe Δ. Such a structure s interprets the
constant d as the value d ∈ Δ, the proposition Pa as true, the propositions Pb,
for b �= a, as false and the binary predicate ≤ as the tree-order relation on Δ.
For simplicity, however, let us define the semantics directly over data words as
follows. The semantics of the terms d and x is given for an interpretation d ∈ Δ
and a valuation dx ∈ Δ as �d�(d, dx) = d and �x�(d, dx) = dx. For data words
w ∈ (Σ × Δ)∗, letters (a, d) ∈ Σ × Δ and values dx we let

(w, dx) |= ∀xϕ iff (w, d′
x) |= ϕ for all d′

x ∈ Δ
((a, d)w, dx) |= Pa

((a, d)w, dx) |= t1 ≤ t2 iff �t1�(d, dx) ≤ �t2�(d, dx)
((a, d)w, dx) |= X ϕ iff (w, dx) |= ϕ

(w, dx) |= ϕ1 U ϕ2 iff (w, dx) |= ϕ2 ∨ (ϕ1 ∧ X(ϕ1 U ϕ2))
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The semantics of Boolean operators is defined as usual. To stay close to PA we
include the empty word ε, e.g., (ε, dx) �|= Pa and (ε, dx) |= ϕ1 U(¬Pa).

From formulae ϕ as defined in Eq. 2 we can now construct a PA Aϕ =
(Q,Σ, δ, q0, λ) with outputs from the Boolean lattice B = {⊥,} such that
Aϕ(w) =  if and only if (w, dx) |= ∀xϕ for some (hence every) dx ∈ Δ.
Interpreting subformulae of the form Pa and t1 ≤ t2 as atomic propositions we
can apply standard automata construction techniques (see, e.g., [21]) and obtain
a finite automaton B over the alphabet Γ = 2AP for AP = {Pa, t1 ≤ t2 | a ∈
Σ, t1, t2 ∈ {x, d}}. Due to the subset construction, the automaton B reads letters
that cannot occur in our setting. For example, there is no letter (a, d) ∈ Σ × Δ
that induces a structure where Pa and Pb holds for a �= b or where t ≤ t does
not hold for t ∈ {x, d}. We remove these letters and corresponding edges in B,
keeping thus only letters of the form ga

M = {Pa, x ≤ x, d ≤ d} ∪ M ∈ Γ where
M ⊆ {x ≤ d, d ≤ x} and a ∈ Σ. These have a unique correspondence to the
symbols from Σ × {<,=, >, ‖} and we thus obtain Aϕ by renaming each such
ga

M to (a,=) if M = {x ≤ d, d ≤ x}, to (a,<) if M = {d ≤ x}, to (a,>) if
M = {x ≤ d} and to (a, ‖) if M = ∅.

Note that this is essentially the generic construction presented in [13] instan-
tiated for the temporal logic LTL defined accordingly and the theory of letters
from (Σ × Δ). Technically, removing edges with inconsistent labels can be con-
sidered as an optimisation step that is possible given the simple structure of the
letters in a data word. We use LTL here due to its popularity in RV but can
replace it by other logics that translate to finite automata.

3 Data Structure

Our monitoring algorithm is based on simulating the operational semantics of
a given PA A = (Q,Σ, δ, q0, λ). It therefore operates on a data structure to
represent configurations c of A that we describe in this section. The essential
idea underlying our data structure is to store such a mapping c : Δ → Q by
partitioning Δ into subsets of data values with the same state assigned. At the
same time, this partition should also reflect the ordering relation between values.
Then, updating a configuration amounts only to a few operations on subsets of Δ
and we organise our data structure such that these can be performed efficiently.

When processing a letter (a, d) ∈ Σ ×Δ the successive configuration c′ maps
every value e ∈ Δ to a state δ(c(e), (a, �)), i.e., depending on the previous state
c(e) and the relation � between d and e. Our data structure therefore provides
efficient access to the subsets Δq = {d ∈ Δ | c(d) = q}, Δd� = {e ∈ Δ | d � e}
and Δd�,q = Δq ∩ Δd� for � ∈ {<,=, >, ‖}. Then, (Δd�,q)q∈Q,�∈{<,=,>,‖} is a
partition of Δ that reflects the ordering and represents the mapping c. It allows
for characterising the partition (Δ′

d�,q)q∈Q,�∈{<,=,>,‖} representing c′ by

Δ′
d�,q =

⋃

q′|q=δ(q′,(a,�))

Δd�,q′ .
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Fig. 2. Example for the shape of the data structure to represent PA configurations.
Part objects are linked to the representative of their associated object collection (black
and grey arrows). Non-representative elements of a collection have an uplink pointer
(blue arrows) to the representative or another element. The data structure is divided
into levels (indicated by colour saturation) that are only connected by the pointers
between representatives and Part instances. Note, there is no directed connection from
the global table to any of the objects within the left-hand segment of the object graph
(Color figure online).

Intuitively, the input letter (a, d) can be dispatched as symbol (a, �) to every part
Δd�, for each � ∈ {<,=, >, ‖} and then, within Δd�, the subsets Δd�,q ⊆ Δd�
for q ∈ Q are relabelled and merged according to how the letter (a, �) changes
the states q in A. This is the abstract view of how our algorithm processes events.

Based on the ordering on Δ and the subsets Δd<,q and Δd=,q we can already
describe the sets Δd>,q and Δd‖,q as

Δd>,q =
lvl(d)−1⋃

i=1

Δpari(d)=,q and Δd‖,q = Δq \ (Δd>,q ∪ Δd<,q ∪ Δd=,q).

Therefore it suffices to store only Δq, Δd<,q and Δd=,q for every d ∈ Δ in our data
structure. We next describe a concise representation of this (infinite) collection
of subsets that allows for performing the necessary operations efficiently.

Components. We identify data values d ∈ Δ with program objects and hence
use the latter directly in our data structure to represent data values. The only
assumption that we need to make is that we can attach additional information
to every object, if needed. We represent this information in terms of a class
PObject that provides the three fields part, uplink and table to store reference
pointers to other objects. Technically, we assume every program object in the
system to extend this class. In practice, this can be accomplished, e.g., by means
of program instrumentation. In the following we therefore regard any program
object simply as instance of PObject. Additionally, our data structure for storing
a PA configuration uses the classes Part and Table. An instance of Table will
be used to represent a partition (Δd<,q)q∈Q of Δd< for some particular value
d ∈ Δ. These partitions can be thought of as a (one-dimensional) table indexed
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by Q where each cell contains a part Δd<,q of the partition. An instance of Part
will in turn represent such a part.

Based on these components we store the subsets of Δ in a hierarchical fashion
as depicted in Fig. 2. To every PObject corresponding to some data value d we
associate a Table instance that holds a Part object representing the subset Δd<,q

for every state q ∈ Q. A Part object now maintains a collection of objects that
represent subsets of Δd<,q. The collection can contain both instances of Part
and of PObject representing subsets Δd′<,q and Δd′=,q, respectively, for direct
children d′ of d. While the former in turn represent a possibly empty collection
of objects, the latter indicate that the set Δd′=,q is non-empty, i.e. c(d′) = q.
Every PObject in the collection again carries a table pointing to subsets one
level deeper in the data structure and every Part object is associated with a
possibly empty collection of objects.

At the top of the data structure there is one designated Table instance that
we refer to as globalTable. It represents the partition (Δq)q∈Q and hence maps
every state q ∈ Q to a Part object representing the part Δq. The collection of
these Part objects now contain the program objects with minimal IDs d and
corresponding sup-parts Δd<,q.

Unobserved Values. A configuration assigns a state to all (infinitely many) data
values whereas only finitely many objects are actually observed during execu-
tion. We consider an object (ID) observed if it is associated to some event that
occurred or it has a smaller ID (wrt. (Δ,≤)) than an observed object. The map-
ping of unobserved values to states is stored symbolically: every Table object
holds a default field storing a state q ∈ Q. An unobserved ID is mapped to the
default state of the table attached to its larges ancestor. Note that all unobserved
values with the same largest observed ancestor cannot be distinguished because
they always fell into the same projection class along a run.

Union-Find. The object collections attached to Part instances are maintained
using a nesting of union-find data structures. This is the most crucial aspect
regarding the performance of the monitoring algorithm. It allows for efficiently
performing all operations that are necessary to update a configuration: comput-
ing the union of two parts, to insert and delete elements and to identify (find)
the Part object that holds a given element.

Recall that a union-find structure represents disjoint sets of objects organised
as a tree. One element (if any) of each set is appointed representative and used as
root while all others carry a reference to one other member of the same set. For
convenience we consider objects that can be inserted into a union-find structure
as Findable. We assume that Part as well as PObject extend this class providing
the references uplink and part. The former links an element to its parent in the
union-find tree but we use the term uplink to avoid confusion. The part field is
only used by the representative to point to the Part object that holds the set.

Classically, the operations find and insert operate on representatives of a
set but since we are mostly interested in the associated Part object we assume
operations with signatures
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fun find(obj: Findable): Part

proc insert(target: Part, obj: Findable)

where find returns the content of the part field of the representative and insert
adds an object to the collection attached to a Part object. For the same reason
we use the operation

proc moveAll(target: Part, source: Part)

that is derived from the basic operation union and moves all elements from the
collection attached to source to the collection attached to target. Moreover,
we assume the union-find structure provides an operation

proc delete(obj: Findable)

which can be implemented in different ways while maintaining the worst-case
complexity of the other operations [3,16].

Helper Functions. To facilitate the presentation of the algorithm we employ
the helper functions

fun part(table: Table, state: Q): Part

fun state(table: Table, part: Part): Q
fun createTable(parentTable: Table, default: Q): Table

that can easily be implemented based on the information present in the data
structure. The function part returns the Part object that the given state is
mapped to by the given table. Conversely, state returns the state that the
given table maps to the given Part object. It is assumed that the latter is indeed
referenced by the table and that the state is unique. The function createTable
creates a new Table object with the given default state. For every table index
q ∈ Q a new Part object is created and moreover inserted into the part for q
in parentTable. The object collection attached to itself is initially empty. Our
algorithm accesses the ordering on Δ by means of par and the functions

fun hasParent(obj: PObject): Boolean

fun parentTable(obj: PObject): Table

where hasParent(obj) is true if the ID of obj is not minimal. For every pro-
gram object parentTable returns the Table object associated with its parent
or globalTable if it is minimal. It is assumed that the object and, if existent,
its parent object have already been registered in the data structure as described
below in Sect. 4. Note that the ordering is not represented in the data structure
as described above. In Sect. 5 we discuss how the ordering information can be
made available in our setting.

Output. Considering the output v of the PA A in configuration c we observe
that v =

�
d∈Δ λ(c(d)) =

�
q|c−1(q)�=∅ λ(q) where c−1(q) = {d ∈ Δ | c(d) = q} is

the inverse of c. It hence suffices to evaluate which of the sets Δq are non-empty.
Since evaluating every Part object in the data structure is not an option—in
fact, Part objects are not necessarily reachable—we track the number of objects
in a field counter attached to every Part object. When performing a specific
operation, the local counters can easily be updated. By propagating local counter
changes upwards the tree structure the counters for the parts Δq can invariantly
provide the number of program objects mapped to a specific state.
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Recall that the part corresponding to the default state q in a table virtually
contains unobserved objects. These cannot be distinguished and we therefore
treat them as a single one and add one to the counter value of that part.

4 Monitor Execution Algorithm

Based on the data structure described in the previous section we now present an
algorithm that simulates one step of the operational semantics of some PA A =
(Q,Σ, δ, q0, λ). The main procedure step of the algorithm is shown in Listing 2.
It takes an event name a ∈ Σ and a PObject instance and updates the data
structure such that it represents the successor configuration of A after reading
a letter (a, d) ∈ Σ × Δ where d represents the object’s ID. In the following,
we identify PObject instances with data values from Δ representing their ID.
Moreover, we identify Part objects with the subset of Δ they represent. The
procedure step essentially dispatches the input letter (a, d) to the parts Δd<,
Δd=, Δd> and Δd‖ as symbols (a,<), (a,=), (a,>) and (a, ‖), respectively.
Assume the data structure encodes a configuration c of A.

Updating Δd=. Updating the part Δd= requires only to change the state q =
c(d) of the object d to another state q′ = δ(q, (a,=)). This is implemented by
the procedure changeState depicted in Listing 1. It removes the object d from
its current part Δpar(d)<,q and inserts it into the part Δpar(d)<,q′ . Removing d
amounts to deleting d from the union-find structure associated with the Part
object Δpar(d)<,q and consequently decrementing its counter. Subsequently, the
procedure setState inserts d into the (collection associated with the) target
part Δpar(d)<,q′ and increments its counter to update the size information. As
our data structure maintains nested parts, changing the size of a part requires
to propagate this change to all enclosing parts. The procedure updateCounter
realises this functionality. It calls find recursively to determine all enclosing
parts until a top most part Δq is reached and updated.

Updating Δd<. All elements from the part Δd< need to be updated according
to the symbol (a,<) upon reading (a, d). How this symbol changes the states
of these can simply be described by the mapping map : Q → Q with map(q) =
δ(q, (a,<)). As we aim to be efficient we must not explicitly handle every element
below the Part object Δd< in the data structure. Instead, we rearrange only the
Table object associated to d: depending on map, the parts Δd<,q are joined or
moved, i.e., new Part objects Δ′

d<,q :=
⋃

q′|map(q′)=q Δq′ are created for every
state q ∈. The function applyMap creates these new parts and computes their
counters based on the counters of the original parts. After applying the mapping,
it only remains to propagate the counter changes upwards in the data structure
to all enclosing parts.

Notice that this way, the data structure becomes inconsistent since the
changes are not automatically propagated downward the data structure to all
larger objects. In a consistent state (cf. Fig. 2) every part object Δe<,q is con-
tained in the collection of the part object Δpar(e)<,q for the same state q. Apply-
ing the map may, e.g., effectively relabel some Δpar(e)<,q to Δpar(e)<,q′ and then
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Listing 1. Procedures operating on the data structure
1 proc changeState(obj: PObject, q: Q) {

2 updateCounter(find(obj), -1)

3 delete(obj)

4 setState(obj, q) }

6 proc setState(obj: PObject, target: Q) {

7 val targetP =

8 part(parentTable(obj), target)

9 insert(targetP, obj)

10 updateCounter(targetP, 1) }

12 proc updateCounter(startP: Part,

13 delta: Int) {

14 if (startP == null) return
15 startP.counter += delta

16 updateCounter(find(startP), delta) }

18 proc changeStatesIncomp(obj: PObject,

19 anchor: PObject, map: Q → Q) {

20 val state = state(parentTable(obj),

21 find(obj))

22 if (hasParent(obj)) {

23 changeStatesIncomp(

24 par(obj), anchor, map)

25 } else {

26 globalTable =

27 applyMap(globalTable, map)

28 if (hasParent(anchor)) {

29 pullUpdates(par(anchor)) } }

30 changeState(obj, state) }

32 proc pullUpdates(obj: PObject) {

33 if (hasParent(obj)) pullUpdates(par(obj))
34 fun map(q: Q): Q = state(

35 parentTable(obj),

36 find(part(obj.table, q)))

37 obj.table = applyMap(obj.table, map) }

38 proc changeStates(obj: PObject, map: Q → Q) {

39 val oldTab = obj.table

40 obj.table = applyMap(oldTab, map)

41 foreach q in Q {

42 updateCounter(part(parentTable(obj), q),

43 part(obj.table, q).counter

44 - part(oldTab, q).counter) } }

46 fun applyMap(tab: Table, map: Q → Q): Table = {

47 val newTab = createTable(tab, map(tab.default))

48 foreach q in Q {

49 val source = part(tab, q)

50 val target = part(newTab, map(q))

51 moveAll(target, source)

52 target.counter += source.counter }

53 return newTab }

55 proc register(obj: PObject) {

56 if (obj.table != null) return
57 if (hasParent(obj)) register(par(obj))
58 val default = parentTable(obj).default

59 obj.table =

60 createTable(parentTable(obj), default)

61 updateCounter(part(obj.table, default), 1)

62 setState(obj, default) }

64 proc dismissUpdates(obj: PObject) {

65 foreach q in Q {

66 val displaced = part(obj.table,q)

67 delete(displaced)

68 insert(part(parentTable(obj), q),

69 displaced)

70 }}

Δe<,q is enclosed by the part Δpar(e)<,q′ , although not being a subset. How-
ever, this inconsistency only means that the parts Δe<,q did not yet receive the
transition from q to q′. We can recover the correct state by determining the out-
most enclosing part and consulting the global table for its state. The procedure
pullUpdates in Listing 1 implements this functionality. We will, however, only
use it if necessary, meaning propagation of such changes is lazy. Note that, in
contrast to setStates no counter updates must be propagated.

Updating Δd‖. The essential idea for updating Δd‖ is to save the state of d and all
the ancestors e < d of d, apply the update for (a, ‖) to the global table, i.e., to all
objects, and then restore the saved states of the ancestors and d. That way pre-
cisely all incomparable objects are affected. Most of this process is implemented
by the recursive procedure changeStatesIncomp shown in Listing 1. Notice, that
before restoring the states of d and its ancestors, the changes made to the global
table need to be propagated to d. Otherwise restoring would not have an effect
and upon the next update the unintended modifications would still be applied.
It remains to restore the state of the larger elements in the part Δd< afterwards.
This is implemented independently in the procedure dismissUpdates. This pro-
cedure deletes for every q the part associated with q in the table of d from its
current enclosing part and inserts it into the part associated with q in the parent
table. Thus it corrects the inconsistency based on the information in the local
table instead of the information in the global table, as done by pullUpdates.
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Listing 2. Main procedure
1 proc step(obj: PObject, event: Σ) {

2 register(obj)

3 pullUpdates(obj)

5 fun mapGT(q: Q): Q = δ(q, (event, <))
6 changeStates(obj, mapGT)

8 changeState(obj,

9 δ(state(parentTable(obj), find(obj)),

10 (event, =)))

11 var obj2 = obj

12 while (hasParent(obj2)) {

13 obj2 = par(obj2)
14 changeState(obj2,

15 δ(state(parentTable(obj2), find(obj2)),

16 (event, >))) }

17 fun mapIC(q: Q): Q = δ(q,(event, ‖))
18 changeStatesIncomp(obj, obj, mapIC)

19 dismissUpdates(obj)

20 }

Procedure step. Consider the main procedure step in Listing 2 called for an
event a ∈ Σ and object d ∈ Δ. It first calls register to ensure d has been prop-
erly registered with our data structure. Notice that when creating a new table
for the object, all parts are, technically, empty. However, the part corresponding
to the default state in the table above virtually contains unobserved objects. We
therefore increment its counter by one. Then, pullUpdates is used to ensure
that the table associated with the observed object d is consistent with respect
to the global table. In lines 5–6 and 8–10 of Listing 2 the parts Δd< and Δd=

are updated, respectively, as described above. The lines 11–16 update the part
Δd> of smaller objects according to the symbol (a,>). This case can be han-
dled by determining all affected objects explicitly using function par. Then the
corresponding target state is computed and assigned similarly as in the case of
Δd=. Finally, lines 17–19 handle Δd‖. As before a function mapIC is defined map-
ping source to target states for transitions labelled by (a, ‖) and the procedure
changeStatesIncomp is called, followed by the restore operation as described
above.

Complexity. It is crucial to know how the performance of a monitoring algo-
rithm depends on the behaviour of the monitored program. For the following
analysis, we fix a PA A with s control states and assume that the data domain
(Δ,≤) is of bounded depth �. Let Ak(i) be Ackermann’s function defined as
A0(i) := i + 1 and Ak+1(i) := Ai+1

k (i) where f j(x) is the function f iterated
j times on x. Following [2], we define the inverse of Ackermann’s function as
α(i, j) := min{k ≥ 2 | Ak(i) > j} and α(i) := α(i, i). We observe that the exe-
cution time of step is dominated by the calls to operations on union-find data
structures and that it causes O(s ·�+�2) calls to find and O(s ·�) calls to union-
and delete-operations. If our data structure contains n program objects, the size
of every union-find structure in it is bound by s · n. Then, the find-operations
can be realised in O(log(s · n)) worst-case time and O(α(s · n)) amortised time;
all other operations can be realised in constant time [2]. Hence, for fixed s and
�, the worst-case and amortiseed execution time of step on a data structure
containing n program objects is in O(log(n)) and in O(α(n)), respectively.

Note, that our data structure only requires space linear in the number of
observed objects. Furthermore, the factor �2 for the number of find-calls arises
only from the update of the set Δd> in lines 11–16 and Δd‖ in lines 17–19 of
Listing 2. There, setState is called at most � times which causes in turn up to
� find-calls to adjust the counters. Updating the counters for � consecutive
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setState-calls could be implemented accumulatively with only � find-calls
instead. An optimised implementation of step therefore provides a worst-case
and amortised time complexity in O(s · � · log(n)) and O(s · � ·α(n)), respectively.

5 Implementation and Evaluation

We have implemented our approach in Java as the tool Mufin. Properties are
specified in Java by defining automata using a simple Java API. In addition
the required tree-ordering on data values and the mapping of program events
to unary logical events has to be provided. We use AspectJ intercept program
events, such as method invokations, and dispatch them to Mufin.

In the presentation of the algorithm in Sect. 4 we assumed direct access to
the tree-ordering on data values and used the function par to obtain the parent
of a program object. An implemented of such a function depends on the setting
as the order used for the specification may not be directly represented in the
monitored program or might be hard to access. Mufin uses special events from
which this order can be observed. Consider again the example from Sect. 1.
When a new iterator is created the implementation can access both, the iterator
and the corresponding collection. As the collection has to be the parent of the
iterator the implementation can store this information, e.g. using a pointer from
the iterator to the collection. Since our monitoring algorithm requires that all
smaller objects are known when an event occurs, we also require these special
events to occur on an object before any other events. The implementation detects
when an event occurs on an object where the parent object is not yet known or
when a special event occurs that conflicts with a previously observed event.

While we assumed to use program objects directly in the conceptual presen-
tation, our implementation adds only one additional field to program objects
that points to auxiliary objects actually contained in the data-structure. As
program objects are not referenced from inside the union-find structure, they
can be garbage collected as soon as they are no longer referenced by the orig-
inal program. Also, the delete operation simply marks these auxiliary objects
as deleted and they are only cleaned up during find-operations. The obvious
consequence is that unnecessary auxiliary objects might pile up within a union-
find structure. However, this does not happen as long as events occur regularly
involving every observed program object. The assumption that almost all pro-
gram objects, that are not ready for garbage collection, will always occur in some
future event seems to be reasonable for many applications. The advantage of this
approach is that garbage collection does not require any additional considera-
tion. Classical union-find structures only require upward references in direction
of the representative element of a part. Efficient implementations of the delete-
operation also require further references in the reverse direction. Assuming that
find-operations are performed regularly on most elements, most elements will
not be referenced by any other element. Once they are no longer reference by
a program object they will thus be garbage collected. Using an implementation
with efficient deletes would require to use the API of the Java garbage collec-
tor in order to trace when some observed program object is garbage collected
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which would come with some performance overhead on its own. While this is an
option when requiring strict guarantees, our benchmarks show that our simpler
approach works well.

Instrumenting the elementary object class requires to modify the Java Virtual
Machine (JVM). To avoid this, Mufin can also use a hash table to map program
objects to auxiliary objects instead of a reference. This variation, called Mufin
Light, has a notable impact on runtime and memory overhead, however, the
advantage of our algorithm remains as our benchmarks show.

Evaluation. Mufin took part in the Java track of the recent 2nd Competition
on Runtime Verification [14]. We selected the seven benchmarks with properties
expressible in our formalism of the 14 submitted to the competition. All bench-
marks comprise a property and a small program generating a sequence of events.
Monitoring the given property involves keeping track of nearly all the objects
of the program. Therefore, the benchmarks are very well suited to compare the
performance of different tools. For real-world applications a far smaller overhead
can be expected as usually only a fraction of objects and events will be observed.
Projection automata for the benchmarks are depicted in Fig. 1.

Benchmarks. The first group of benchmarks comprises Iterator, already
described in Sect. 1, and three variations: SafeIterator uses the same property
but instantiates far more objects (several millions instead of about ten). MapIt-
erator enforces a similar property where iterators are created for key sets of a
map and modifications occur on the map, thereby requiring three instead of only
two levels of objects. It also creates several millions of objects. DelayedIterator
is a variation of Iterator where the next-method may be called one time after a
modification of the collection without failing. These benchmarks are very com-
mon for the evaluation of online monitoring tools, e.g. in [19] only properties
of this kind are considered. Multiplexer aims to show the effect of a property
requiring more control states. It models a multiplexer with four channels where
an arbitrary number of clients is connected to each channel. New clients can
be attached to the active channel (c), removed (r) and used (u) and the active
channel can be switched (n). Using a client attached to an inactive channel vio-
lates the property. Toggle is designed to demonstrate the effect of a global action
affecting a large number of objects. Objects can be created (c) and the state of
all existing objects can be toggled (t). Objects may only be processed (p) if they
are in one of their two internal states. Tree provides a scenario were the maximal
level of observed objects is not known in advance. Objects are created as inner
nodes (ci) or leafs (cl) of a tree. Messages sent (s) on any node are dispatched
to corresponding leafs with an input buffer of size one and processed (p) there.
Conversely, a reset (r) clears the buffer of corresponding leafs. A critical send
operation (sc) requires the buffer of all receiving leafs to be empty. Finally, any
node can be invalidated (i) effectively removing it from the tree.

Results. We executed the benchmarks with Mufin, Mufin Light, JavaMOP and
MarQ and measured execution time and memory consumption of the complete
JVM process. Figure 3 shows relative time and memory overhead, i.e. additional



882 N. Decker et al.

Fig. 3. Relative time and memory overhead of the tools Mufin, JavaMOP and MarQ
while monitoring the given properties on the benchmark programs. A relative time
overhead of 1 means that the absolute monitoring overhead is equal to the execution
time of the non-instrumented program. (The difference between the instrumented and
non-instrumented benchmark is the absolute overhead.)

time and memory consumption divided by that of the unmonitored program.
Mufin (in both variants) is always multiple, often more than ten, times faster
than JavaMOP and MarQ while consuming far less memory. Comparing Mufin
with Mufin Light shows a notable impact of the global hash table but the perfor-
mance benefit of our approach clearly persists. Comparing Iterator, DelayedIter-
ator and Multiplexer shows that the number of states in a specification has only
a small effect on the overhead of Mufin. Comparing SafeIterator and MapIt-
erator shows that the impact of an addition level is small as well. The mea-
surements for SafeIterator and MapIterator also show that Mufin handles large
numbers of instantiated objects far better than the other tools. The results for
Toogle demonstrate the massive impact of actions affecting many objects at
once. In this benchmark almost every step affects around 10 000 objects render-
ing the previous approaches practically infeasible. The benchmark Tree can not
be specified using the formalisms of the other tools. It shows that the overhead
of Mufin grows for a greater depth of the ordering and thus of the data structure
(in this case up to 7) but remains acceptable. The memory overhead of Mufin
Light is significantly larger than that of Mufin, the latter remaining very small
(below 1) in all cases. This is most likely due to hash tables that can only be
filled up to a certain degree without becoming extremely inefficient. Some varia-
tions in memory consumption may be due to the allocation strategy of the JVM
and the memory measurements therefore only show a general tendency. Mufin
is available for download1.

1 http://www.isp.uni-luebeck.de/mufin.

http://www.isp.uni-luebeck.de/mufin
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6 Conclusion

Our investigations on monitoring temporal properties of object-oriented systems
show that complex constraints, including hierarchical dependencies between indi-
vidual objects, can be evaluated efficiently at runtime. We demonstrated that
union-find data structures are a valuable algorithmic tool for runtime analysis.
In the proposed monitoring algorithm they provide strict guarantees on the exe-
cution time of a monitoring step. This ensures that the accumulated runtime
overhead grows effectively only linear with the execution time of the monitored
program. Our benchmarks show that the conceptual benefits actually apply in
practice and can outperform the currently most efficient monitoring tools Java-
MOP and MarQ. Our formal model and logical characterisation provide a good
understanding of the class of properties our approach can be applied to. Since
we exploit their inherent hierarchical structure we clearly pay performance by
expressiveness. However, since hierarchical structures are ubiquitous in comput-
ing they still cover a wide range of relevant specifications. The class of properties
monitorable with our approach can be further extended. For example, some iter-
ator implementations provide a remove method that deletes the current object
from the underlying collection. It invalidates all other iterators of the same col-
lection. To handle such constraints, further predicates are needed to address
more types of subsets of objects, in this case the set of all siblings of an object.
Given our data structure, the algorithm can be extended accordingly. Exploiting
the ability to measure the number of objects assigned to some state provides fur-
ther a basis for evaluating quantitative properties. The underlying model could
easily be extended, e.g., by constraints on the number of children of an object
in a certain state.
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Abstract. The 5th Competition on Software Verification (SV-COMP
2016) continues the tradition of a thorough comparative evaluation of
fully-automatic software verifiers. This report presents the results of the
competition and includes a special section that describes how SV-COMP
ensures that the experiments are reliably executed, precisely measured,
and organized such that the results can be reproduced later. SV-COMP
uses BenchExec for controlling and measuring the verification runs,
and requires violation witnesses in an exchangeable format, whenever a
verifier reports that a property is violated. Each witness was validated
by two independent and publicly-available witness validators. The tables
report the state of the art in software verification in terms of effectiveness
and efficiency. The competition used 6 661 verification tasks that each
consisted of a C program and a property (reachability, memory safety,
termination). SV-COMP 2016 had 35 participating verification systems
(22 in 2015) from 16 countries.

1 Introduction

The annual Competition on Software Verification (SV-COMP)1 is a continuous
effort by the software-verification community. The effort consists of the follow-
ing two parts: (1) The SV-COMP community defines and collects verification
tasks that the researchers and developers of software verifiers find interesting and
challenging; these verification problems should be used to evaluate the effectivity
(soundness and completeness) and efficiency (performance) of modern verifica-
tion tools. (2) The organizer of SV-COMP performs a systematic comparative
evaluation of the relevant state-of-the-art tool implementations for automatic
software verification with respect to effectiveness and efficiency; part of this is
to define and explore standards for a reliable and reproducible execution of such
a competition. This paper describes the rules, definitions, results, and other
interesting facts about the execution of the competition experiments, in par-
ticular how to make the experiments reproducible. The main objectives that
the community aims at by running yearly competitions are the following (taken
from [5]):
1 http://sv-comp.sosy-lab.org
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1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools including a property language and formats for the results, and

4. accelerate the transfer of new verification technology to industrial practice.

There is consensus that (1) and (2) are already achieved, but need continuous
improvement: the community of research groups and verifiers that participate
in SV-COMP is increasing, and the set of verification tasks needs even more
diversity, growing, and quality assurance. The repository and the issue tracker
show that there was considerable effort spent on consolidating the verification
tasks, in terms of consistency and quality. Regarding (3), the simple syntax of the
property language works well for SV-COMP, while it would be great to increase
the supported fragment of LTL. The standard witness language as a common,
exchangeable format was a big step forward in terms of standardization. The
requirement in SV-COMP that bug reports are counted only if the bug is repro-
ducible, i.e., the witness can be re-played on a different machine with a different
validation tool, makes it easier to understand problems. We received positive
feedback in terms of Objective (4), but we cannot evaluate this here.

Related Competitions. SV-COMP is complemented by two other competitions in
the field of software verification: RERS2 and VerifyThis3. While SV-COMP per-
forms reproducible experiments in a controlled environment (dedicated resources,
resource limits), the RERS Challenges gives more room for exploring combina-
tions of interactive with automatic approaches without limits on the resources,
and the VerifyThis Competition focuses on evaluating approaches and ideas
rather than on fully-automatic verification. The report on SV-COMP 2014 pro-
vides a more comprehensive list of other competitions [4].

2 Procedure

The procedure for the competition organization did not change in comparison
to the past SV-COMP editions [2–5]. SV-COMP was again an open competition
where all verification tasks were known before the submission of the participating
verifiers, such that there were no surprises and developers were able to train the
verifiers. In the benchmark submission phase, we collected and classified new
verification tasks, in the training phase, the teams inspected verification tasks
and trained their verifiers, and in the evaluation phase, verification runs were
preformed with all competition candidates and the system descriptions were
reviewed by the competition jury. As in the last years, the participants received
the preliminary results of their verifier per e-mail for inspection, after which the
results were publicly announced.
2 http://rers-challenge.org
3 http://etaps2015.verifythis.org

http://rers-challenge.org
http://etaps2015.verifythis.org
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3 Definitions, Formats, and Rules

Verification Task. The definition of verification task was not changed (taken
from [4]). A verification task consists of a C program and a property. A verifi-
cation run is a non-interactive execution of a competition candidate on a single
verification task, in order to check whether the following statement is correct:
“The program satisfies the property.” The result of a verification run is a triple
(answer, witness, time). answer is one of the following outcomes:

True: The property is satisfied (i.e., no path that violates the property exists).
False: The property is violated (i.e., there exists a path that violates the prop-

erty) and a counterexample path is produced and reported as witness.
Unknown: The tool cannot decide the problem, or terminates abnormally, or

exhausts the computing resources time or memory (i.e., the competition
candidate does not succeed in computing an answer True or False).

Fig. 1. Categories (generated by GraphViz)

The component witness [6]
was this year mandatory only
for False answers; in the future,
witnesses are also required for
True answers. SV-COMP was sup-
ported by the two witness validators
CPAchecker and UAutomizer.
time is measured as consumed CPU
time until the verifier terminates,
including the consumed CPU time
of all processes that the verifier
started [8]. If the wall time was
larger than the CPU time, then the
time is set to the wall time. If
time is equal to or larger than the
time limit (15 min), then the veri-
fier is terminated and the answer
is set to ‘timeout’ (and interpreted
as Unknown).

Categories. The collection of ver-
ification tasks, which represents
the current interest and abili-
ties of tools for software verifica-
tion, is arranged into categories,
according to the characteristics of
the programs and the properties
to be verified. The assignment
was proposed and implemented
by the competition chair, and
approved by the competition jury.



890 D. Beyer

Table 1. Properties used in the competition (cf. [5] for more details)

Formula Interpretation / Syntax of property

G ! call(foo()) A call to function foo is not reachable on any finite execution.
CHECK( init(main()), LTL(G ! call( VERIFIER error())) )

G valid-free All memory deallocations are valid (counterexample: invalid free).
More precisely: There exists no finite execution of the program
on which an invalid memory deallocation occurs.
CHECK( init(main()), LTL(G valid-free) )

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program on which an invalid pointer dereference occurs.
CHECK( init(main()), LTL(G valid-deref) )

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
counterexample: memory leak). More precisely: There exists no
finite execution of the program on which the program lost track
of some previously allocated memory.
CHECK( init(main()), LTL(G valid-memtrack) )

F end All program executions are finite and end on proposition end, which
marks all program exits (counterexample: infinite loop). More
precisely: There exists no execution of the program on which the
program never terminates. CHECK( init(main()), LTL(F end) )

Table 2. Scoring schema for SV-COMP 2016

Reported result Points Description

Unknown 0 Failure to compute verification result

False correct +1 Violation of property in program was correctly found

False incorrect −16 Violation reported but property holds (false alarm)

True correct +2 Correct program reported to satisfy property

True incorrect −32 Incorrect program reported as correct (wrong proof)

For the 2016 edition of SV-COMP, a total of 10 categories were defined. The
structure of categories is illustrated in Fig. 1 and described in more detail on
the competition web site4. As a new feature of the competition, a new (meta)
category Falsification was defined, which was meant to explore bug hunting
capabilities of verifiers that are not able to construct correctness proofs. The
new category consisted of all verification tasks with safety properties, and any
answers True were ignored. The categories, their defining category-set files, and
the contained programs are explained in more detail under Verification Tasks
on the competition web site.

Properties and Their Format. For the definition of the properties and the
property format we refer to the previous competition report [5]. All specifications

4 http://sv-comp.sosy-lab.org/2016/benchmarks.php

http://sv-comp.sosy-lab.org/2015/benchmarks.php
http://sv-comp.sosy-lab.org/2016/benchmarks.php
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Fig. 2. Setup: components that support reproducibility are highlighted in green

are available as .prp files in the respective directories of the benchmark cate-
gories in the repository. Table 1 lists the properties and their syntax as overview.

Evaluation by Scores and Run Time. In order to reflect the steady progress
towards completeness and soundness of verification tools, the scoring schema was
again adjusted in order to increase the penalty for wrong results. Table 2 provides
the overview. The ranking is decided based on the sum of points (normalized for
meta categories) and for equal sum of points according to success run time, which
is the total CPU time over all verification tasks for which the verifier reported
a correct verification result. Opt-out from Categories and Score Normalization
for Meta Categories was done as described previously [3] (page 597). The Com-
petition Jury consists again of the chair and one member of each participating
team. Team representatives of the jury are listed in Table 3.

4 Reproducibility

One of the main goals of SV-COMP is to make the competition as transparent
and reproducible as possible. To achieve this goal, it is necessary to control as
many as possible of the variables that might influence the results. Figure 2 gives
an overview over the components that contribute to the reproducible setup of
SV-COMP.

BenchExec: Precise Controlling and Measurement of Resources (e).
For scientifically valid experiments, we require for each verification run a reliable
assignment and controlling of computing resources (cores, memory, CPU time),
and a precise measurement. There are several requirements that experiments of a
competition such as SV-COMP have to fulfill [8]: (i) accurate measurement and
reliable enforcement of limits for CPU time and memory, (ii) reliable termination
of processes (including all child processes), and (iii) correct assignment of local
memory (for NUMA architectures). We use BenchExec5 to perform all SV-
COMP experiments, because this benchmarking framework lets us conveniently
benefit from the modern resource control and measurement mechanisms that the
Linux kernel offers.
5 https://github.com/sosy-lab/benchexec

https://github.com/sosy-lab/benchexec
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Repository of Verification Tasks (a). The verification tasks are organized in
a public repository6. The repository was moved to GitHub in order to support
an issue tracker and to efficiently handle contributions from the community via
pull requests. The more appropriate logging of change history and issues gives
credit to people that contribute. Furthermore, the continuous-integration system
TravisCI is used to ensure that the verification tasks are compilable by Gcc
and Clang. The move to GitHub also had a positive effect on the activity on
the benchmark suite: more people are involved, and more fixes to verification
tasks were contributed. For reproducing the results of SV-COMP, the exact
versions of the verification tasks as used for SV-COMP 2016 are available via
the PGP-signed tag ‘svcomp16’ in the git repository.

Benchmark Definitions (b). For executing verification runs, we need to know
for each verifier, (i) which verification tasks need to be given to the verifier
(derived from participation declaration) and (ii) which parameters need to be
passed to the verifier (there are global parameters that are specified for all cate-
gories, and there are specific parameters such as the bit architecture and memory
model). The benchmark definitions are XML files in the format that BenchExec
expects; they are collected in a specific repository for SV-COMP7, in which the
PGP-signed tag ‘svcomp16’ points to the exact versions that were used in SV-
COMP 2016.

Tool-Specific Information (c). In order to successfully execute a verifier
and correctly interpret its results, a tool-info module needs to be provided to
BenchExec. First, the command-line to properly invoke the verifier (includ-
ing source and property file as well as the options) is assembled from the parts
specified in the benchmark definition (b). Second, the (tool-specific) information
that the verifier produces needs to be interpreted and translated into the uni-
form SV-COMP result (True, False(p), Unknown). The tool-info modules
that were used in SV-COMP 2016 are available in BenchExec release 1.7.

Verifier Archive (d). The verifiers are provided in an archive containing a
license (that permits academic use, use in SV-COMP, and reproducing the
results) and all parts that are needed to execute the verifier (statically-linked
executables, all components that are required in a certain version, or for which
no standard Ubuntu package is available, are included). The verifiers and the
above-mentioned components are provided on the systems-description page of
the SV-COMP web site8, together with the SHA1 hashes for verification of con-
sistency.

Violation Witnesses (f). SV-COMP counts answers False only if a valid
witness according to an exchangeable, machine-readable format is part of the
result triple as witness. This means that each verification run must be followed
by a validation run that checks if the witness adheres to the exchange format

6 https://github.com/sosy-lab/sv-benchmarks
7 https://github.com/sosy-lab/sv-comp
8 http://sv-comp.sosy-lab.org/2016/systems.php

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-comp
http://sv-comp.sosy-lab.org/2016/systems.php
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and can be reproduced. The time limit for a validation run was set to 10 % of
the CPU time for a verification run, i.e., the witness validation was limited to
90 s. The purpose of the tighter resource limit is to avoid delegating verification
work to the validator. This ensures a high quality of assignment of scores: if a
verifier claims a found bug but is not able to provide a witness, then no score is
assigned. The witness format and the validation process is explained on the web
page9. More details on witness validation is given in a related research article [6].

Correctness Witnesses (g). Although SV-COMP requires since its second
edition (2013) that each result must be accompanied by a witness, this require-
ment was not enforced for the answer True, mainly due to the lack of validators
for correctness witnesses. This year, there was a demonstration category on val-
idation of correctness witnesses, with the purpose to get prepared for witness
validation for correctness results in the future.

5 Results and Discussion

For the fifth time, the competition experiments represent the state of the art
in fully-automatic and publicly-available software-verification tools. The report
shows the improvements of the last year, in terms of effectiveness (number of
verification tasks that can be solved, correctness of the results, as accumulated
in the score) and efficiency (resource consumption in terms of CPU time). The
results that are presented in this article were approved by the participating
teams.

Participating Verifiers. Table 3 provides an overview of the participating com-
petition candidates and Table 4 lists the features and technologies that are used
in the verification tools.

Computing Resources. The resource limits were the same as last year [5]:
Each verification run was limited to 8 processing units (cores), 15 GB of memory,
and 15 min of CPU time. The witness validation was limited to 2 processing units,
7 GB of memory, and 1.5 min of CPU time. The machines for running the exper-
iments were different from last year, because we had to use 24 machines instead
of eight. Each machine had two Intel Xeon E5-2650 v2 CPUs, with 16 processing
units each, a frequency of 3.4 GHz, 135 GB of RAM, and a GNU/Linux operating
system (x86 64-linux, Ubuntu 14.04 with Linux kernel 4.2). All verification runs
were executed on a dedicated CPU, i.e., 8 processing units were assigned to the
verification run, while the other 8 processing units were reserved and left idle.

One complete verification execution of the competition consisted of 313
benchmarks (each verifier on each selected category according to the opt-outs),
summing up to 115 761 verification runs. Witness validation required 524 bench-
marks (combinations of verifier, category with witness validation, and two val-
idators) summing up to 50 249 validation runs. The consumed total CPU time
for one competition run for verification only required a total of 319 days of CPU

9 http://sv-comp.sosy-lab.org/2016/witnesses/

http://sv-comp.sosy-lab.org/2016/witnesses/
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Table 3. Competition candidates with their system-description references and repre-
senting jury members

Participant Ref. Jury member Affiliation

2LS [31] Peter Schrammel U Oxford, UK

AProVE [33] Jera Hensel RWTH Aachen, Germany

Blast [32] Vadim Mutilin ISPRAS, Russia

Cascade [35] Wei Wang New York U, USA

CBMC [22] Michael Tautschnig Queen Mary U London, UK

Ceagle Dexi Wang Tsinghua U, China

Ceagle-Absref Guang Chen Tsinghua U, China

CIVL [36] Stephen Siegel U Delaware, USA

CPA-BAM [14] Karlheinz Friedberger U Passau, Germany

CPA-kInd [7] Matthias Dangl U Passau, Germany

CPA-RefSel [9] Stefan Löwe U Passau, Germany

CPA-Seq [12] — U Passau, Germany

DIVINE [37] Vladimı́r Štill Masaryk U, Czech Republic

ESBMC [24] Mikhail Ramalho U Southampton, UK

ESBMC+DepthK [28] Lucas Cordeiro Federal U Amazonas, Brazil

Forest [13] Pablo Sanchez U Cantabria, Spain

Forester [18] Ondřej Lengál Brno UT, Czech Republic

HIPrec [23] Quang Loc Le National U, Singapore

Impara Björn Wachter U Oxford, UK

Lazy-CSeq [19] Omar Inverso Gran Sasso Sc. Inst., Italy

LCTD [30] Keijo Heljanko Aalto U, Finland

LPI [20] George Karpenkov VERIMAG, France

Map2Check [29] Herbert Rocha Federal U Roraima, Brazil

MU-CSeq [34] Gennaro Parlato U Southampton, UK

PAC-MAN [11] Ming-Hsien Tsai Academia Sinica, Taiwan

PredatorHP [21] Tomas Vojnar Brno UT, Czech Republic

SeaHorn [15] Jorge Navas NASA Ames, USA

Skink Franck Cassez Macquarie U, Australia

SMACK+Corral [27] Zvonimir Rakamaric U Utah, USA

Symbiotic [10] Jan Strejček Masaryk U, Czech Republic

SymDIVINE [1] Jǐŕı Barnat Masaryk U, Czech Republic

UAutomizer [17] Matthias Heizmann U Freiburg, Germany

UKojak [26] Daniel Dietsch U Freiburg, Germany

UL-CSeq [25] Bernd Fischer Stellenbosch U, ZA

VVT [16] Alfons Laarman TU Vienna, Austria
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Table 4. Technologies and features that the verification tools offer



896 D. Beyer

Table 5. Quantitative overview over all results
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Table 6. Overview of the top-three verifiers for each category (CPU time in h,
rounded to two significant digits)

Rank Verifier Score CPU Time Solved Tasks False Alarms Wrong

Proofs

Arrays

1 ESBMC 190 3.2 131 2

2 SMACK+Corral 146 2.5 111

3 Symbiotic 101 .61 77

Bit Vectors

1 CPA-Seq 87 1.1 55

2 ESBMC 84 .61 51

3 CPA-kInd 77 .67 47

Heap

1 PredatorHP 298 .31 211 2

2 CPA-Seq 234 1.1 188 4

3 Cascade 197 2.7 140 2

Floats

1 2LS 136 .98 79

2 Ceagle 136 1.0 77

3 CBMC 134 5.0 78

Integers Control Flow

1 CPA-Seq 2652 35 1625 1

2 CPA-kInd 2095 35 1278

3 SMACK+Corral 2013 97 978 4

Termination

1 AProVE 909 4.8 500

2 UAutomizer 895 3.2 503

3 SeaHorn 504 .97 323 2

Concurrency

1 MU-CSeq 1240 .93 1016

2 Lazy-CSeq 1240 2.7 1016

3 CIVL 1240 7.8 1016

Device Drivers Linux64

1 CPA-RefSel 3177 24 1646 2

2 CPA-Seq 2801 23 1458 4

3 Blast 2704 5.9 1547 13 5

Falsification Overall

1 UAutomizer 823 7.0 381 1

2 SMACK+Corral 800 17 1140 26

3 CPA-kInd 707 14 479 2

Overall

1 UAutomizer 4843 44 3138 1 5

2 CPA-Seq 4794 65 3535 16

3 SMACK+Corral 4223 160 3464 26 9
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time. Each tool was executed several times, in order to make sure no installation
issues occur during the execution.

Quantitative Results. Table 5 presents the quantitative overview over all
tools and all categories (HIPrec participated only in subcategory Recursive and
LCTD only in subcategory BitVectorsReach). The format of the table is similar
to those of previous SV-COMP editions [5], with the exception that due to the
volume we now omit the CPU times. The tools are listed in alphabetical order;
every table row lists the scores of one verifier for each category. We indicate the
top-three candidates by formatting their scores in bold face and in larger font
size. An empty table cell means that the verifier opted-out from the respective
category. For the calculation of the score and for the ranking, the scoring schema
in Table 2 was applied, the scores for the meta categories were computed using
normalized scores as defined in the report for SV-COMP’13 [3]. There were two
categories for which the winner was decided based on the run time: in category
Concurrency, all top-three verifiers achieved the maximum score of 1240 points,
but the run time differed considerably; in category Floats the first and second
both achieved a score of 136 points. More information (including formatted inter-
active tables, quantile plots for every category, and also the raw data in XML
format) is available on the competition web-site.10

Table 6 reports the top-three verifiers for each category. The run time (col-
umn ‘CPU Time’) refers to successfully solved verification tasks (column ‘Solved
Tasks’). The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number
of verification tasks for which the tool reported wrong results: reporting an
error path but the property holds (incorrect False) and claiming that the pro-
gram fulfills the property although it actually contains a bug (incorrect True),
respectively.

Discussion of Scoring Schema and Normalization. The SV-COMP
community considers it more difficult to compute correctness proofs com-
pared to computing error paths (cf. Table 2: True yields 2 points, False
yields 1 point) [2]. This has consequences on the final ranking: For example,
AProVE won the category Termination although UAutomizer solved more
verification tasks: AProVE solved 500, UAutomizer solved 503 verification
tasks. Both verifiers did not report any wrong results in this category. So the
higher score of AProVE (score: 909) is due to its ability to compute more
proofs than UAutomizer (score: 895), while UAutomizer found more viola-
tions. AProVE computed 409 proofs and found 91 property violations, while
UAutomizer computed 392 proofs and found 111 property violations. So in
this case, the scoring schema provides a good mapping from the community’s
intuition to the ranking.

A similar observation can be made on the score normalization. The com-
munity considers the value of solving a verification task in a large cate-
gory (many verification tasks) less than the value of solving a verification
task in a small category (only a few verification tasks) [3]. The values for

10 http://sv-comp.sosy-lab.org/2016/results/

http://sv-comp.sosy-lab.org/2016/results/
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category Overall in Table 6 illustrate the purpose of the score normalization:
CPA-Seq solved 3 535 tasks, which is about 400 solved tasks more than the
winner UAutomizer could solve (3 138). So why did CPA-Seq not win the
category? Because UAutomizer is better in the intuitive sense of ‘overall’:
UAutomizer solved tasks more diversely, the ‘overall’ value of the verification
work is higher. Most prominently, UAutomizer solved many tasks in category
Termination which is not supported by CPA-Seq. Similarly, in category Falsi-
ficationOverall, SMACK+Corral solved more tasks than UAutomizer, but
produced also a lot of false alarms and the tasks that SMACK+Corral solved
were considered of less value (i.e., from large categories with many tasks). In
these cases, the score normalization correctly maps the community’s intuition.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [3] because these visualizations make it easier to under-
stand the results of the comparative evaluation. The competition web-site10

includes such a plot for each category; as example, we illustrate the category
Overall (all verification tasks) in Fig. 3 and discuss the results below. A total of
13 verifiers participated in category Overall (only 6 the year before), for which
the quantile plot shows the overall performance over all categories (scores for
meta categories are normalized [3]).

Fig. 3. Quantile functions for category Overall. Each quantile function illustrates the
quantile (x-coordinate) of the scores obtained by correct verification runs below a
certain run time (y-coordinate). More details are given in a previous report [3]. A log-
arithmic scale is used for the time range from 1 s to 1000 s, and a linear scale is used
for the time range between 0 s and 1 s.

Overall Quality Measured in Scores (Right End of Graph). UAutomizer is the
winner of this category: the x-coordinate of the right-most data point represents
the highest total score (and thus, the total value) of the completed verification
work (cf. Table 6; right-most x-coordinates match the score values in the table).
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Amount of Incorrect Verification Work (Left End of Graph). The left-most data
points of the quantile functions represent the total negative score of a verifier
(x-coordinate), i.e., the amount of incorrect and misleading verification work.
Verifiers should start with a score close to zero; the winner UAutomizer is
very good in this aspect, together with the second place CPA-kInd (the two
right-most columns of category Overall in Table 6 report the concrete numbers:
only 1 and 16 false alarms, respectively, and 5 and 0 wrong proofs, for a total of
6 661 verification tasks).
Characteristics of the Verification Tools. Quantile plots also give hints on how
a verification strategy works. For example, the horizontal lines show that some
verifiers ‘solve’ a large quantity of verification tasks in the same run time, sug-
gesting that an answer is given without the result being actually computed.
A quick look at the wrapping execution scripts reveals that indeed a pre-mature
answer is returned after 850s or 880s, respectively. This insight is one of the
arguments for the community’s goal to have each result supported by evidence,
e.g., in the form of a verification witness.

Robustness, Soundness, and Completeness. Table 6 shows in the last two
columns that the best verifiers of each category report a low number of wrong
verification results (compared to the large number of verification tasks), indicat-
ing the advancement of the state-of-the-art verification technology. In the three
categories BitVectors, Floats, and Concurrency, the top-three verifiers did not
report any wrong results.

Verifiable Witnesses. SV-COMP counts answers False (bug reports) only if
the result contains a violation witness, which represents directions through the
state space to easily recover an error path. All verifiers in categories that required
witness validation supported the common exchange format for error witnesses,
and produced error paths in that format. For SV-COMP 2016, we used two
completely different witness validators: CPAchecker and UAutomizer.

Table 7. Validation of Correctness Witnesses

Verification Validation
CPAchecker

Validation
UAutomizer

Total tasks 3171 1574 1574

Results True 1574 1295 956

Confirmed witnesses 82 % 61 %

Demonstration on Correctness Witnesses. The validation of the results for
answers True was not yet considered, but is identified as the next open problem
that the community should solve. As part of SV-COMP 2016, a demonstration
category (i.e., without ranking and scores) was announced to explore the pos-
sibilities of validating correctness witnesses. Two teams participated, and the
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results are reported in Table 7. The table lists the results of a verification with
CPAchecker (k-induction-based configuration) and the validation results of
the correctness witnesses using the validators CPAchecker and UAutomizer.
The first row reports the total number of verification tasks that were given as
input. The verification was performed on an SV-COMP subset of 3 171 verifica-
tion tasks from the categories IntegersControlFlow and DeviceDriversLinux64.
The second row reports that for 1 574 verification tasks the expected and com-
puted verification result was True. Those 1 574 verification tasks were given
as input to the two validators, together with the correctness witness that the
verification produced. CPAchecker was able to validate (i.e., re-verify with
the given invariants from the witness) 1 295 verification tasks (82 %) and UAu-
tomizer was able to validate 956 verification tasks (61 %). More information is
given on the detailed table on the web page.11

6 Conclusion

SV-COMP 2016, the 5th edition of the Competition on Software Verification,
attracted 35 participating teams from 16 countries, which is so far the largest
number of participants (2012: 10, 2013: 11, 2014: 15, 2015: 22). The repository
of verification tasks was consolidated and the number of verification tasks was
increased (from 5 803) to 6 661 verification tasks. We used verifiable witnesses
again to validate the bug reports, and the results False were counted towards
the score only if the witness was confirmed. The number of witness validators
was increased from one to two, which contributed to the trust and neutrality of
SV-COMP’s evaluation. SV-COMP 2016 is the so-far broadest overview of the
state of the art in software verification. The large jury and the organizer made
sure that the competition follows the high quality standards of the TACAS
conference, in particular with respect to the important principles of fairness,
community support, and transparency. Technical accuracy was ensured by using
the benchmarking framework BenchExec.
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Abstract. 2LS is a program analysis tool for C programs built upon
the CPROVER infrastructure. 2LS is bit-precise and it can verify and
refute program assertions. 2LS implements invariant generation tech-
niques, incremental bounded model checking and incremental k-induction.
The competition submission uses an algorithm combining all three tech-
niques, called kIkI (k-invariants and k-induction). As a back end, the
competition submission of 2LS uses Glucose 4.0.

1 Overview

2LS is a static analysis and verification tool for C programs that can perform
interprocedural abstract interpretation, verification and refutation of assertions
and termination analysis [3]. The competition version is configured for mono-
lithic verification and refutation of assertions using an algorithm called kIkI
(k-invariants and k-induction) [2], which elegantly combines bounded model
checking, k-induction and invariant generation. The algorithm discharges these
analyses to a sequence of incremental calls to a SAT or an SMT solver.

2 Architecture

2LS performs the following main steps, which are outlined in Fig. 1, and are
explained below.

Front end. The command-line front end first configures 2LS according to user-
supplied parameters, such as the bit-width. The C parser utilises an off-the-shelf
C preprocessor (such as gcc -E) and builds a parse tree from the preprocessed
source. Source file and line information is maintained in annotations. Being built
upon the CPROVER infrastructure [4], 2LS uses GOTO programs as an inter-
mediate representation. In this language, all non-linear control flow, such as if
or switch-statements, loops and jumps, is translated to equivalent guarded goto
statements. Similar to CBMC, 2LS performs a light-weight static analysis to
resolve function pointers to a case split over all candidate functions, resulting
in a static call graph. Furthermore, assertions guarding against invalid pointer
operations or memory leaks are inserted.
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 905–907, 2016.
DOI: 10.1007/978-3-662-49674-9 56
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Fig. 1. 2LS architecture (using kIkI)

Middle end. 2LS performs a static analysis to derive the data flow equations
for each function of the GOTO program. The result is a static single assign-
ment (SSA) form in which loops have been cut at the back edges to the loop
head. The effect of these cuts is a havocking of the variables modified in the
loop at the loop head. This SSA is hence an over-approximation of the GOTO
program. Subsequently, 2LS refines this over-approximation by computing invari-
ants. 2LS performs local constant propagation and expression simplification to
increase efficiency.

Back end. 2LS requires incremental back end solvers. Since support for incre-
mental solving in SMT solvers is still lagging behind in comparison to SAT
solvers, we use Glucose 4.01. Consequently, as in CBMC, the SSA equation is
translated into a CNF formula by bit-precise modelling of all expressions plus
the Boolean guards. This formula is incrementally extended to perform invari-
ant generation using template-based synthesis (see [2]; the competition version
simply uses interval templates over numerical variables), to add further loop
unwindings, and to the assertions for property checks. All this happens using
a single solver instance so that information learned by the solver is never dis-
carded. If a property check is satisfiable and model computed by the SAT solver
does not take a path through an invariant (where over-approximation is used),
then it corresponds to a path violating at least one of the assertions in the pro-
gram under scrutiny. Subsequently, the model is translated back to a sequence
of assignments to provide a human-readable counterexample. Conversely, if the
property check is unsatisfiable, we have proven the assertions.

3 Strengths and Weaknesses

kIkI can provide both proofs as well as refutations using bit-precise algorithms.
Refutations are essentially obtained via loop unwinding, whereas proofs are
achieved by invariant generation as well as k-induction. This combination is
quite powerful – 2LS won the gold medal in the Floats category, and is ranked
1 http://www.labri.fr/perso/lsimon/glucose/#glucose-4.0.

http://www.labri.fr/perso/lsimon/glucose/#glucose-4.0
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2nd for the Loops benchmarks [1]. However, some benchmarks, e.g. those requir-
ing reasoning about arrays contents or linked data structures, demand stronger
invariants than we are currently able to infer. The monolithic analysis of the com-
petition version does not support recursion, and there are limitations regarding
irreducible control flow. Moreover, we observed issues with the counterexample
witness GraphML output.

4 Tool Setup

The competition submission is based on 2LS version 0.3.2 The full source code
of the competition version is available at

http://www.cprover.org/svn/deltacheck/releases/2ls-0.3-sv-comp-2016.
Installation instructions are given in the file COMPILING. The executable 2ls

is in the directory src/summarizer. The competition version must be given
the options --k-induction and --competition-mode. For all categories with
a 32-bit memory model, use --32; for those with a 64-bit memory, use --64.
There is no distinction between simple and precise memory model. In order to
write the counterexample to file CEX.graphml add the option --graphml-cex
CEX.graphml.3

Participation / Opt Out. 2LS competes in the following categories: Bit Vectors -
BitVectorsReach, Floats, Integers and Control Flow, Overall, and Falsification.

5 Software Project

2LS is maintained by Peter Schrammel with patches supplied by the community.
It is publicly available under a BSD-style license. The source code is available
at http://www.cprover.org/2LS.
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Abstract. CIVL is a framework for the analysis and verification of con-
current programs. The front-end translates C programs that use (subsets
of) Pthreads, MPI, OpenMP, or CUDA—alone or in combination—to an
intermediate verification language CIVL-C. The back-end uses symbolic
execution and model checking techniques to verify a number of safety
properties of a CIVL-C program, such as absence of assertion viola-
tions, deadlocks, or out-of-bound indexes. We submit CIVL for verifying
Pthreads programs in the concurrency category.

1 Verification Approach

CIVL [8] is a framework for verifying parallel programs written using various
concurrency libraries or language extensions such as MPI [3], POSIX threads
(“Pthreads”) [2], OpenMP [6], and CUDA [5]. (Significant subsets of each of
these concurrency “dialects” is supported; CUDA support excludes C++ fea-
tures.) CIVL compiles programs to the CIVL-C modeling language, which extends
sequential C11 with concurrency and verification primitives and linguistic fea-
tures, such as nested functions and scoped memory. For each dialect, an AST
“transformer” and libraries are used to express the original program as an equiv-
alent CIVL-C program. Different transformers can work together to convert pro-
grams using multiple dialects into CIVL-C. 1

CIVL uses a combination of explicit model checking and symbolic execution
for verification. Model checking is used to explore the thread and process inter-
leavings introduced by a concurrency model. CIVL uses state-of-the-art partial
order reduction to mitigate the state space explosion problem. Symbolic execu-
tion further reduces the state space by collapsing sets of equivalent values along
1 Funding for the CIVL project is provided by the U.S. National Science Foundation

under awards CCF-1319571, CCF-1346769 and CCF-0953210.
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program executions. CIVL makes use of the Symbolic Analysis and Reasoning
Library (SARL) [7] which is a package for normalizing, caching, and determining
validity queries over logical formulae. SARL can leverage multiple Satisfiability
Modulo Theories (SMT) solvers, but in general more than 99.5 % of the queries
generated in a verification run are solved within SARL and do not require invo-
cation of an SMT solver [8].

2 Software Architecture

The CIVL framework (Fig. 1) is distributed as open source software under the
GNU General Public License and consists of several components. ABC is a C11
front-end which generates Abstract Syntax Trees (AST) from CIVL-C programs.
The CIVL back-end builds a state-transition model based on the AST, then uses
GMC (Generic Model Checker) and SARL to perform model checking and to
manipulate symbolic state encodings to compute next states. For the competi-
tion, two theorem provers are used: CVC4 [1] and Z3 [4].

CIVL
Model Result

Yes/No
+trace

source

C or CIVL-C
with
MPI,

CUDA,
OpenMP, 
Pthreads

ABC
Abstract Syntax Tree

ABC 
parser

ABC 
pretty- 
printer

CIVL
model-
builder

MPI CIVL-C

CUDA CIVL-C

OpenMP CIVL-C

Pthreads CIVL-C

SARL

CVC4
Z3

CIVL

GMC

Fig. 1. The CIVL project architecture

CIVL is implemented in Java 7. It comes equipped with pre-built libraries to
model system functions and concurrent data structures to support a variety of
process and thread-level concurrency models. These libraries allow new concur-
rency dialects to be supported directly in the CIVL-C language, which reduces
the cost of extending CIVL.

3 Strengths and Weaknesses

The most significant strength of CIVL is its ability to verify programs that use
a variety of concurrency dialects, including “hybrid” programs that use multiple
dialects, such as MPI+Pthreads. CIVL also checks a large number of generic
properties, including absence of divisions by zero, reads of uninitialized vari-
ables, and out-of-bound array indexing. In fact CIVL found defects of each of
these kinds in the SV-COMP suite; these defects were subsequently corrected.
Additional properties include absence of memory leaks and illegal pointer deref-
erences, and dialect-specific properties, such as absence of “potential deadlocks”
in MPI programs. In addition, CIVL can verify the functional equivalence of two
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versions of a C program with one or multiple of the four concurrency dialects,
such as a trusted sequential version and a more complicated parallel one.

The CIVL back-end (verifier) suffers from the state explosion problem, and
scalability can become an issue for programs that access shared variables fre-
quently or have many nondeterministic choices. For the competition, small bounds
were placed on the number of live threads (6). A “downscaling” transformation
is performed that replaces array lengths above a certain threshold (11) with a
small number (3); a similar transformation is applied to the upper bounds in
for loops. These are unsound transformations, but nevertheless allowed CIVL
to obtain the expected result for all of the examples in the concurrency category.

4 Setup and Configuration

CIVL v1.5 (available at http://vsl.cis.udel.edu/civl/svcomp16) is used for SVCOMP
2016. CIVL is distributed as a single jar file, which can be placed in any readable
directory. Then an executable file named civl should be created and placed in
the PATH; this file has the form

#!/bin/sh

java -Xmx15000M -Duser.home=$HOME -Djava.io.tmpdir=$TMPDIR \

-jar /path/to/civl.jar $@

The executables java (a Java ≥7 VM), cvc4 (version 1.4), and z3 (ver-
sion ≥4.3.2) must also be in the PATH. Finally, the command “civl config”
should be executed once. This will search for appropriate theorem provers in
the PATH and create a file named .sarl in the user’s home directory containing
information about each. The entries for CVC4 and Z3 should appear in that file.

CIVL is submitted for the concurrency category of the competition. The
option -svcomp16 is used, which bundles the type and process bounds described
above. The command for the competition is civl verify -svcomp16 source.i,
where source.i is the file name of a target program. The wrapper script civl.py
can be used to interpret verification results.
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Abstract. The software verification framework CPAchecker is built
on basic approaches like CPA and CEGAR. The configuration for the
SV-COMP’16 uses the concept of block-abstraction memoization and
combines it with the parallel execution of value analysis and predicate
analysis. The CEGAR loop uses a refinement strategy that prefers to
refine the precision of the lightweight value analysis, such that the pre-
cision of the predicate analysis remains abstract and concise as long as
possible. The usage of mature analyses like value analysis and predicate
analysis allows us to bring together the potential of lazy abstraction and
interpolation and the benefits of block-abstraction memoization.

1 Software Architecture

CPAchecker is a software verification framework that is build on Config-
urable Program Analysis (CPA) [1] and allows developers to easily inte-
grate new analyses in a predefined way. CPAs are available for distinct tasks like
tracking program locations, call stacks, function pointers, and assignments to
variables. Also well-known approaches like value analysis and predicate analy-
sis are integrated in CPAchecker in this manner. CPAs can be combined to
form a more complex program analysis. The framework can execute a (con-
figurable) algorithm like the CEGAR algorithm or a sequence of algorithms to
verify reachability properties. There are analyses that support checking memory-
safety properties and overflow detection, but this contribution does not use them.

CPAchecker is written in Java and uses the C-parser of the Eclipse CDT
project (https://eclipse.org/cdt/). There are bindings for external libraries that
allow to use BDDs, octagons, and SMT formulas. The predicate analysis in our
configuration uses the SMT solver MathSAT5 (http://mathsat.fbk.eu/), because
it supports bit-precise reasoning and interpolation for SMT formulae.

2 Verification Approach

Our configuration uses block-abstraction memoization (BAM) [4] to speedup the
analysis. BAM divides the program into blocks and analyzes them separately.
c© Springer-Verlag Berlin Heidelberg 2016
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We choose functions as block size, such that a function call corresponds with a
block entry and a function exit refers to a block exit, respectively. BAM aims
for a modular analysis, i.e. if a block has been already analyzed, the re-analysis
of this block uses the stored result from a cache.

In SV-COMP’12, BAM was used with predicate analysis [3], and in
SVCOMP’15, value analysis and predicate analysis were combined in a sequential
way [2]. With several improvements and extensions done in the last year, we are
now able to combine BAM not only with predicate analysis, but also with value
analysis, interval analysis, and combinations thereof. We have defined and imple-
mented the operators of BAM for the corresponding domains. For this year’s SV-
COMP, value analysis and predicate analysis are executed in a parallel manner
to leverage the advantages of both approaches within the analysis with BAM.

BAM itself does not track any assignments or predicates over variables, but
delegates this task to other more precise analyses. In our submission, the value
analysis tracks assignments of variables and the predicate analysis uses predi-
cates to analyze the program. Each of these two analyses is implemented as a
CPA and uses a precision that determines which facts (assignments or predicates)
are important for reasoning over the program, for example, for the reachability
of a property violation. Figure 1 shows the CEGAR loop that updates the pre-
cisions during the refinements of the corresponding analysis. In CPAchecker,
a reachability analysis uses the configured CPAs to examine the program until
either a counterexample is reached or the program is analyzed completely. The
second case refers to a program without any property violation. In the first case
however, if the reachability analysis finds a counterexample, we check it for fea-
sibility with both analyses in sequence. For a spurious counterexample one of
the analyses should find the cause and perform the refinement, i.e. updating the
corresponding precision. As the value analysis is more efficient in tracking many
assignments, the counterexample is first checked with this analysis. As soon as
one of the analyses cannot confirm the counterexample, the precision of this
analysis is refined in order to exclude the spurious counterexample in the next
iteration of the CEGAR loop. If both analyses confirm the counterexample, we
report an error witness.

Fig. 1. Refinement for value analysis and predicate analysis in the CEGAR loop
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Recursive tasks are analyzed by an extension of BAM that was already used in
SV-COMP’15. However, last year’s contribution is improved by using the parallel
combination of value analysis and predicate analysis in the way described above.
Additionally, if no cached block abstraction can be reused before unrolling the
recursive function up to a depth of 30, we abort the analysis of any deeper
recursion. This bound is sufficient for the currently available recursive tasks.

3 Strengths and Weaknesses

The contributed configuration of BAM is most effective for solving large pro-
grams consisting of many functions, such that the benefit of using a cache justifies
the overhead of BAM itself, i.e. the reuse of block abstractions outperforms the
application of special operators in BAM. We report only a few wrong results for
all tasks and none of them is a wrong proof. As our approach in CPAchecker
uses its available analyses, some weaknesses are inherited. For example, value
analysis and predicate analysis do not support large arrays or complex data
structures. Our configuration does not check for memory-safety properties, ter-
mination or overflows, but simply ignores those cases and reports UNKNOWN.

4 Setup and Configuration

The CPAchecker project is available at http://cpachecker.sosy-lab.org and needs
a Java 7 runtime environment. We submit version 1.4-svcomp16c for participa-
tion in all categories. The tool can be downloaded from http://cpachecker.sosy-lab.

org/CPAchecker-1.4-svcomp16c-unix.tar.bz2.
CPAchecker has to be executed with the following command line:
scripts/cpa.sh -sv-comp16-bam -disable-java-assertions -heap 10000m -spec prop.prp program.i

The parameter -64 should be added for C programs in categories assuming
a 64-bit environment. CPAchecker will report the result of the verification
to the console, including the violated property and the name of the output
directory. In case of finding a property violation, the witness is written to the
file witness.graphml within the output directory. CPAchecker can be exe-
cuted using the tool-info module cpachecker.py and the benchmark definition
cpa-bam.xml available at http://sv-comp.sosy-lab.org/2016/systems.php.

5 Project and Contributors

CPAchecker is licensed as an open-source project, headed by Dirk Beyer,
and developed by members of the Software Systems Lab at the University of
Passau. The framework is utilized and extended by an international group of
developers. Our thanks go to all contributors for their work on CPAchecker,
especially the members of the Institute for System Programming of the Russian
Academy of Sciences for reporting several bugs in our implementation of block-
abstraction memoization. More information about CPAchecker is provided at
http://cpachecker.sosy-lab.org, where also a list of all contributors is available.
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Abstract. Our submission to SV-COMP’16 is based on the software
verification framework CPAchecker. We suggest to combine the value
and predicate analysis of the framework, both performing CEGAR based
on interpolation. The novelty of our approach is that both analyses per-
form intra-analysis refinement selection, with a top-level refinement com-
ponent additionally employing inter-analysis refinement selection. All
in all, this allows for an efficient verification process, as intra-analysis
refinement selection selects a suitable refinement for an analysis and
inter-analysis refinement selection selects the analysis that is best to be
refined.

1 Verification Approach

We built our verifier using the software verification framework CPAchecker.
As framework, CPAchecker offers a wide range of analyses, and our approach
combines the value analysis (VA) and the predicate analysis (PA) in a par-
allel composition. This compositional approach resides inside an extension of
the counterexample-guided abstraction refinement (CEGAR) approach, which
in both analyses is driven by interpolation [1]. Our extension of the CEGAR
algorithm is depicted in Fig. 1 (taken from [2]), and a brief outline follows.

After a short pre-analysis, which already verifies a few programs success-
fully, our extended CEGAR algorithm is initiated, which first closely resembles
the classic CEGAR approach. The composition of the value and the predicate
analysis is started with empty precisions, πVA = ∅, πPA = ∅, i.e., during the
initial state-space exploration no assignments (for VA) and no predicates (for
PA) are tracked. If the resulting over-approximation of the state space is free of
errors, then the CEGAR loop terminates with the verdict true, if a real coun-
terexample is found, then the CEGAR loop terminates with the verdict false. If
an inconclusive error path σ is found, here represented as sequence of pairs of
an operation op and a program location l, then the standard CEGAR algorithm
would compute a single refinement, e.g., by inferring interpolants from the single
infeasible error path to exclude this infeasible error path in future state-space
explorations.

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 916–919, 2016.
DOI: 10.1007/978-3-662-49674-9 59
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Fig. 1. Refinement selection for combining a value and a predicate analysis [2]

Exactly here we deviate from the standard CEGAR approach, and instead,
we perform intra-analysis refinement selection by first calling procedure
ExtractPaths to extract a set Σ of infeasible sliced paths from the original infea-
sible error path [3], and then, by calling procedure Refine, to compute a set τ of
individual refinements, one for each of the available infeasible sliced paths [3].

Each of the refinements makes the precision of the analysis strong enough to
exclude the original infeasible error path [3]. This allows the analysis to heuris-
tically select from a pool of available refinements, and it may pick a refinement
that seems like a good fit for the further course of the analysis, while at the same
time, it can avoid unsuitable ones, e.g., those that might lead to loop unrollings.

The procedures ExtractPaths and Refine are available for both the value analy-
sis and the predicate analysis, making intra-analysis refinement selection pos-
sible for both analyses [2]. Furthermore, we can leverage refinement selection
to a higher level — with intra-analysis refinement selection we have multiple
refinements to select from, and we have means available to distinguish between
unsuited and well-suited refinements. So we can utilize these mechanisms to
enable inter-analysis refinement selection, i.e., we do not only select the refine-
ment that is best for a component analysis, but we also decide whether the
composite analysis should perform its refinement for the value or the predicate
analysis [2].

Specifically for the SV-COMP, we made refinement selection applicable
together with adjustable-block encoding. Mind that with large blocks, e.g., with
abstractions computed only at loops, the number of available refinements to
select from tends to be lower compared to when having small blocks, e.g. with
single-block encoding. Now, we compute abstraction whenever control flow joins,
as the analysis performs best with medium-sized blocks, proving that selecting
suitable refinements is as important as an appropriate block-encoding strategy.
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2 Software Architecture

The CPAchecker framework is written in java. For parsing C code we employ
the C parser from the Eclipse CDT project. CPAchecker offers interfaces to a
wide range of decision procedures, and for our submission we rely on MathSAT to
solve SMT and interpolation queries issued by the bit-precise predicate analysis.

3 Strengths and Weaknesses

A combination of a value and a predicate analysis demonstrated its potential
already in an earlier edition of SV-COMP [4], winning silver in the category
Overall and in several sub-categories. However, the intent of this year’s sub-
mission is to showcase the power of refinement selection in the, from our point
of view, highly important category DeviceDriversLinux64, where refinement
selection works particularly well, allowing us to win the gold medal. Still, we
seek for a better understanding of heuristics for inter- and intra-analysis refine-
ment selection. Despite the fact that the CPAchecker framework supports
checking memory safety and overflows, our submission is not competitive there,
while also lacking support for concurrency, termination, large arrays and explicit
recursion.

4 Setup and Configuration

Our verifier is built from revision 18373 from the official CPAchecker repos-
itory, branch refinementSelectionForABE. It is also archived at http://
sv-comp.sosy-lab.org/2016/systems.php. To run our tool please enter this com-
mand:

scripts/cpa.sh -sv-comp16--refsel -disable-java-assertions -heap 12500m -spec prop.prp task.i

For C programs that assume a 64-bit environment add the parameter -64.
The tool prints to the console the verdict, the violated property, and the name of
the output directory, the latter holding the witness file witness.graphml in case
a property violation is found. To reproduce the results, use Java 7, the bench-
mark definition cpa-refsel.xml and the tool-info module cpachecker.py, both
officially archived online at http://sv-comp.sosy-lab.org/2016/systems.php.

5 Project and Contributors

CPAchecker is a verification framework maintained by the Software Systems
Lab at the University of Passau, made available under the Apache 2.0 license.
It proofed successful in every edition of the SV-COMP, and it is used by prac-
titioners and researchers at the Russian Academy of Science, the Universities of
Darmstadt, Hamburg, Paderborn and Vienna, as well as at Verimag in Grenoble.
We would like to thank all contributors for their efforts spent on CPAchecker.

http://sv-comp.sosy-lab.org/2016/systems.php
http://sv-comp.sosy-lab.org/2016/systems.php
http://sv-comp.sosy-lab.org/2016/systems.php
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Abstract. DIVINE is an LLVM-based LTL model checker that follows
the standard automata-based approach to explicit-state model checking.
It aims at verification of unmodified parallel C & C++ programs with-
out inputs. To achieve this DIVINE employs several reduction techniques
combined with high-performance parallel and distributed computing.

1 Verification Approach and Software Architecture

As an explicit-state model checker, DIVINE is meant primarily to help detect
bugs in multithreaded code [1]. As a matter of fact, the development of multi-
threaded code suffers from the lack of deterministic testing procedure. Therefore,
concurrency related bugs, such as data races, often tend to survive in the code
even beyond the release date. DIVINE provides the user with the tool to check
all possible relevant executions of multithreaded code. In this way DIVINE may
be used to prove the presence or absence of a bug. With this approach DIVINE
requires that programs to be verified are closed, i.e. perform no input/output
actions.

DIVINE is written in C++. It uses LLVM bitcode as the input formalism.
Therefore, it employs Clang to translate input multithreaded C and C++ pro-
grams to LLVM bitcode prior verification. See Fig. 1. Thus the core part of
DIVINE is a purpose specific LLVM bitcode interpreter. The interpreter allows
to completely store and load a state of the program, and is capable of execution
of LLVM instructions in order to generate new states. The program is analyzed
including all the code that is executed within software libraries which has to be
compiled together with the program for verification. In the standard distribution
DIVINE provides bitcode with implementations of C and C++ standard libraries
and pthread threading library.

2 Strengths and Weaknesses

The main strength of DIVINE is its ability to perform a full deterministic verifi-
cation of closed piece of code. DIVINE can detect a number of issues in the code

This work has been partially supported by the Czech Science Foundation grant No.
15-08772S.
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LTL or safety property

C++ Clang LLVM IR LART LLVM IR DIVINE

ValidCounterexample

Fig. 1. Verification work-flow. Boxes with rounded corners represent executables.

such as invalid memory access, assertion violation, unhandled exceptions, etc. In
addition, DIVINE can verify properties expressed as LTL formulas. Moreover, all
the issues discovered can be witnessed with a counterexample.

The LLVM interpreter in DIVINE supports complete instruction set of LLVM
bitcode including instructions for exception handling. DIVINE runtime provides
almost complete implementation of C and C++ standard libraries and pthread
threading library. The LLVM approach has the advantage that the behaviors
that are analyzed by DIVINE are quite close to the behaviors that are actually
exhibited by the program binary, for example they include most of compiler
optimizations. Futhermore, with a proper runtime, DIVINE can handle other
languages with LLVM-based compiler.

The ease with which LLVM-bitcode can be transformed allowed us to adapt
to specifics of SV-COMP (such as atomic sections) without the need to modify
DIVINE at all. For LLVM-to-LLVM transformations DIVINE employs LART— an
LLVM transformation platform distributed with DIVINE.

To address the state space explosion problem in terms of both the time
and memory, DIVINE offers strong τ -reduction [2], efficient state-compression
techniques [3] and also the ability of parallel and distributed-memory processing.

DIVINE requires the program to have finitely many states, however the pro-
gram need not terminate — there is no need for loop, recursion, or context switch
bounding. On the other hand, there are numerous limits of the approach. First
of all, DIVINE is purely explicit-state tool, which means that simulating even a
single unrestricted 32bit-wide input leads to the 232 wide branching in the state
space, making verification of open programs nearly impossible. However, since
the nondeterminism in the concurrency category of SV-COMP is fairly limited,
DIVINE can tackle most of the benchmarks of this category.

When preparing for SV-COMP, we also run into problems with under-
specification of benchmarks — in many benchmarks there is undefined behavior
with respect to reads and writes to global variables, which leads to an optimized
LLVM bitcode with unexpected behavior. This is, however, not a limitation of
DIVINE’s approach — it is rather a bug in the benchmarks. To tackle this prob-
lem and get expected results we employ LLVM-to-LLVM transformation which
adds volatile qualifier to any global variable defined in the benchmark.
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3 Tool Setup and Configuration

The web presentation of DIVINE can be found at divine.fi.muni.cz, however, for
the purpose of this competition we use not yet released version of DIVINE which
can be downloaded from www.fi.muni.cz/∼xstill/divine-next, the version used
is DIVINE 3.4.1pre. DIVINE can be built on Linux, but it requires the following
packages: gcc and g++ at least version 4.9, LLVM and Clang 3.7, and perl 5.

The complete prebuild package can be downloaded from www.fi.muni.cz/
∼xstill/divine-next/bin/divine-3.4-svcomp.tar.gz. The archive contains DIVINE
and LART binaries together with all the necessary dependencies as well as Clang
and LLVM otp for convenience, therefore, there is no need to install LLVM 3.7 to
run DIVINE on Ubuntu 14.04.

Since the build process of C/C++ program for DIVINE has multiple steps,
there is a helper script rundivine which handles compilation and verifica-
tion automatically. The usage for SV-COMP is rundivine <divine-bin-dir>
--svcomp --csdr --opt=-Oz <benchmark>. The meaning of used options is the
following: --svcomp to run all required LART passes and setup compiler to han-
dle input properly and DIVINE to verify assertions, use only one thread, and
use compression; --csdr to use the Context-Switch-Directed Reachability algo-
rithm [4]; and --opt=-Oz to enable optimizations using LLVM opt.

DIVINE will participate in concurrency category, with aforementioned options
to the rundivine wrapper. The wrapper script for BenchExec is divine.py1.

4 Software Project and Contributors

DIVINE project resides at http://divine.fi.muni.cz. The project was contributed
primarily by Petr Ročkai and Vladimı́r Štill, with a number of other people as
contributors. DIVINE is licenced under the 2-clause BSD license.
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Abstract. This paper briefly describes the Forester tree automata-
based shape analyser and its participation in the SV-COMP’16 competi-
tion on software verification. In particular, it summarizes the verification
approach used by Forester, its architecture and setup for the competi-
tion, as well as its strengths and weaknesses observed in the competition
run. The paper highlights the newly added counterexample validation
and use of refinable predicate language abstraction.

1 Verification Approach

Forest Automata. Forester implements a fully automated and sound shape
analysis based on the notion of forest automata (FAs) [1]. FAs can represent
sets of reachable configurations of programs with complex dynamic linked data
structures (such as various kinds of lists, trees, skip lists, as well as combina-
tions of such data structures). They have a form of tuples of tree automata
(TAs). These tuples of TAs encode sets of heap graphs decomposed into tuples
of tree components, whose leaves may refer back to the roots of the components
(including roots of other components). The decomposition is based on cutting a
heap graph at each cut-point, i.e., a node which is either pointed by some pointer
variable or which has multiple incoming pointer edges.

In order to encode complex heap graphs, FAs may be hierarchically structured
in such a way that a higher-level FA may use other, lower-level FAs as alphabet
symbols. These nested automata, called boxes, encode repetitive graph patterns
and can be automatically learned using the approach proposed in [2].

In order to be as efficient as possible, Forester never determinises the TAs
it works with. All needed operations, including inclusion checking and size
reduction, are therefore implemented on non-deterministic TAs. For that, tech-
niques such as antichain-based inclusion checking and simulation-based reduction
are used.

Counterexample Analysis and Refinement. In Forester, FAs are used
within the framework of abstract regular tree model checking (ARTMC) [3].
c© Springer-Verlag Berlin Heidelberg 2016
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ARTMC accelerates the computation of sets of reachable program configura-
tions, represented by FAs, by abstracting their component TAs, which is done
by collapsing some of their states.

For deciding which TA states should be collapsed when performing ARTMC,
multiple approaches have been proposed in the literature [3]. When Forester first
participated in SV-COMP in 2015, it supported the simplest of these approaches
based on collapsing states accepting the same languages of trees up to some height
only. No checking of validity of counterexamples and no abstraction refinement
was implemented then.

In the version of Forester participating in SV-COMP’16, an approach for
checking validity of counterexamples was added. It is based on a backward exe-
cution of the program being verified along the suspected counterexample. For
that, it was needed to add a support for reverse execution of all program state-
ments over FAs. Moreover, a support for intersection of FAs, not needed before,
had to be added. Intersection of FAs is a feature needed to either derive a con-
crete program trace from the forward and backward symbolic executions, or
determine that no such a trace exists since the intersection gets empty at some
point in the traces. It turns out that intersecting FAs is a quite complex task,
which has to, e.g., deal with the fact that the two FAs being intersected may use
a different decomposition of the heap graphs they represent.

Moreover, Forester has also been extended with the most advanced abstrac-
tion mechanism known in the context of ARTMC, namely predicate language
abstraction. In its case, one collapses those TA states whose languages intersect
the same predicate languages (represented also by TAs). The predicate languages
to be used are learned in a counterexample guided refinement (CEGAR) loop
from the TAs that are generated within backward executions of the program
along spurious counterexample traces. Currently, the first execution of Forester
uses the finite height abstraction, which is then refined in the further runs by
combining it with the predicate language abstraction.

More details on the mentioned checking of validity of counterexamples and
the refinable predicate language abstraction used in the context of FAs are still
to be published, but a preliminary description can be found in [6].

2 Tool Architecture

Forester is implemented as a GCC plugin using the interface over GCC provided
by the Code Listener infrastructure [4]. GIMPLE instructions used in the inter-
mediate GCC code are translated to instructions of a specialised register machine
that Forester uses to symbolically execute programs in the abstract domain of
FAs. Forester uses the VATA [5] library to handle non-deterministic TAs from
which FAs are built. Both Forester and VATA are implemented in C++.

3 Strengths and Weaknesses

The strengths of Forester are the following: (1) Forester is based on a sound ver-
ification approach, (2) its abstract domain allows one to analyse a large variety
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of classes of shape graphs, ranging from various kinds of (nested) lists, trees,
to skip lists, and their combinations, (3) it can provide the user with error wit-
nesses, (4) it newly analyses the counterexamples and refines the abstraction
based one them, and (5) its internals (e.g., entailment checking) are built upon
a well-understood automata theory and technology, which is constantly being
developed by a wide community of researchers. Compared to the previous par-
ticipation of Forester in SV-COMP in 2015, due to our enhancements, we were
able to correctly mark 4 new bug-free benchmarks and 12 new erroneous bench-
marks from the challenging Heap Data Structures category.

Among the main weaknesses of Forester is its weak support of handling non-
pointer data such as integers or arrays. Therefore it participates in the Heap Data
Structures category only, but even in this category it still loses some points due
to not handling non-pointer features properly. Another weakness of Forester is
that it does not support some advanced C language constructions. In particular,
Forester currently loses the most points in the Heap Data Structures category
by not implementing any support for pointers to functions. Due to this, Forester
cannot analyse nearly 80 test cases. Another feature of C not fully supported
by Forester are pointers to unstructured memory. Although a basic support for
handling them is in place, Forester still has problems in tracking the size of an
allocated unstructured memory block.

4 Tool Setup and Configuration

An archive with the SV-COMP’16 version of Forester is available at the
web page of Forester1. The archive contains the source code of Forester
and VATA. Instructions for compiling and running Forester are in the file
README-FORESTER-SVCOMP-2016 in the root directory of the archive. After com-
pilation, the directory fa build with scripts for running Forester is created.
The script for running Forester in SV-COMP is named sv comp run.py. It is
also used in the BenchExec wrapper script of Forester.

The parameters of sv comp run.py are the following. The mandatory para-
meter of the script is the path to the file with the program under verification.
The file for storing the witness leading to a counterexample is specified by the
parameter --trace. The path to the property file is defined by the parameter
--properties.

When Forester is run within the BenchExec framework, most of the parame-
ters are set automatically by its wrapper script. The only exception is the para-
meter --trace, which must be defined manually in the forester.xml file used as
the input of BenchExec. The wrapper script of Forester for BenchExec is called
forester.py. Both files are available from the official page for SV-COMP’16
results reproduction (http://sv-comp.sosy-lab.org/2016/systems.php).

The output of Forester printed to the standard output has a similar format
to the specification given by the rules of SV-COMP’16, specified in detail in the
mentioned README file. Forester participates only in the Heap Data Structures
category.
1 http://www.fit.vutbr.cz/research/groups/verifit/tools/forester.

http://sv-comp.sosy-lab.org/2016/systems.php
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester
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5 Software Project and Contributors

Forester has been developed at Brno University of Technology since 2010. The
authors of this paper are currently the only people involved to development of
Forester. Forester and the VATA library are both licensed under GPL.
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Scholarship, funded by the Brno City Municipality.
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Abstract. LCTD is an open source verification tool for C programs.
It uses the LLVM compiler framework to instrument programs for ver-
ification with the DASH algorithm. LCTD has been submitted to the
BitVectorsReach category of SV-COMP 2016.

1 Verification Approach

The DASH algorithm by Beckman et al. [1] combines dynamic symbolic execu-
tion (DSE) [2] with CEGAR. DASH attempts to generate tests based on coun-
terexamples found in the abstraction. When test generation fails the abstraction
is refined via a splitting operation on the abstract regions to remove the coun-
terexample. The tests can be seen as an underapproximation of the reachable
states of the program under test, which DASH tries to expand to include an
error. The abstraction on the other hand is an overapproximation which, if error
free, also proves the program under test to be so.

The flowchart in Fig. 1 provides a high-level overview of the DASH algorithm.
DASH implements a modified CEGAR loop, where instead of directly checking
whether a counterexample is spurious, DSE is used to generate a test that follows
the path to the error in the abstraction at least one step more than in previously
executed tests. When test generation fails abstraction refinement is performed
to eliminate the path from the abstraction.

We have implemented the DASH algorithm as a modification to the Lime
Concolic Tester (LCT) [3], which is an open source dynamic symbolic execution
tool for C and Java programs. Our tool LCTD extends the LLVM based C
support in LCT. For a detailed description of LCTD see [4].

2 Software Architecture

LCTD consists of two main parts:

– An instrumented version of the program to verify, which implements test exe-
cution and tracking, and constraint solving.

– A server component which maintains and refines the abstraction.
c© Springer-Verlag Berlin Heidelberg 2016
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Fig. 1. Flowchart for the DASH algorithm

The target program is instrumented with a transformation pass in the LLVM
compiler framework, which adds for all LLVM IR instructions calls to counter-
parts in a runtime library. These calls allow the runtime to track the execution
and provide concrete values for calls to the VERIFIER nondet * functions.

At startup the instrumented program connects to the server component for
instructions. For test executions it receives a set of concrete inputs, which are
used to execute the program. During execution tracking information will be
sent to the server, which follows the execution’s progress in the abstraction.
For solving new input values the server sends a set of concrete inputs and a
constraint to be solved at a specific point in the execution, which corresponds
to generating a test that visits a desired abstract region. Constraints are solved
using the Z3 4.3.2 SMT solver.

The server component initializes the abstraction to the control flow graph of
the target program. It waits for the instrumented program to connect, which it
then uses for executing tests and solving constraints.

3 Strengths and Weaknesses of the Approach

LCTD implements a bit-precise translation from LLVM IR instructions into
bitvector logic making the tool very precise. The usage of a modern SMT solver
allows LCTD to perform well on programs with complex bitwise logic.

LCTD leverages LLVM’s optimization passes as a preprocessing step. This
allows it to produce a simpler version of the program which often omits lots
of inessential code and thus verify an optimized LLVM representation of the
program.

One of the current challenges is that programs that rely heavily on control
flow or complex loops can result in LCTD splitting the abstraction along increas-
ingly deep paths, which results in very large region predicates that are slow to
solve. Other weaknesses are limited support for floating point operations, pointer
arithmetic and recursive functions.

4 Tool Setup and Configuration

LCTD and its benchmark definition XML can be downloaded from:
http://users.cse.aalto.fi/osaariki/lctd-svcomp/

http://users.cse.aalto.fi/osaariki/lctd-svcomp/
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The BenchExec script is available at:
https://github.com/OlliSaarikivi/benchexec/blob/master/benchexec/tools/
lctd.py

The version to use is “lctd-1.1.1-svcomp”. To install the tool:

– Install a Java VM version 1.7.0 79 or newer. LCTD has been tested with Java
1.7.0 79 OpenJDK (IcedTea 2.5.6).

– Add the “bin/” folder inside the root directory of the tool archive to PATH.

Invoking the command “lctdsvcomp <path-to-target.c>” instruments the
program and starts the verification process. Once finished it will report TRUE,
FALSE or UNKNOWN and in the case of FALSE provides a path to and printout
of the verification witness file. LCTD does not require any parameters apart from
a path to the source code of the program to verify.

Participation Statement: LCTD participates in the BitVectorsReach sub-
category and opts out of all other categories.

We do not participate in Overflows, the other bit vector sub-category, as
LCTD currently only supports code reachability properties. Other categories
were excluded mainly due to a variety of language support issues.

5 Software Project and Contributors

The main developer of LCTD is Olli Saarikivi. The tool was developed by Olli
Saarikivi for a Master’s Thesis under the supervision of Keijo Heljanko. LCTD
is based on the LCT-C tool developed in the Lime project (http://www.tcs.hut.
fi/Software/lime/).

LCTD is licensed under the MIT license.
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Abstract. LPI is a module for invariant generation embedded inside
the CPAchecker framework. It uses a local policy iteration approach,
which allows it to obtain precise numerical invariants. The approach per-
forms computations in the template constraints domain using maximiza-
tion modulo SMT, and terminates with a potentially over-approximating
inductive invariant.

Local policy iteration is a sound, but incomplete technique which
obtains numerical, conjunctive inductive invariants for the analyzed pro-
grams. It can prove programs to be safe by finding a separating induc-
tive invariant, but can not find counterexamples to safety. We supply
the generated inductive invariant to the k-induction procedure, which
terminates with either a counterexample or a proof of safety.

1 Verification Approach

LPI is a module for obtaining numeric inductive invariants on programs, which
is based on the local policy iteration [6] approach. Local policy iteration finds an
inductive invariant in the template constraints domain for each of the abstraction
points (loop-heads for reducible programs) of the analyzed program. In this
abstract domain, a set of templates (linear expressions over program variables)
is fixed in advance, and the inductive invariant is a vector of upper bounds on
the chosen templates. For example, if the selected templates are x and x + y, a
possible inductive invariant is x ≤ 5 ∧ x + y ≤ 6.

The tool includes a strategy for template synthesis. Templates are extracted
from program expressions, and additionally from synthesizing simple linear
expressions of a given size (e.g. ±x± y for all program variables x, y alive at the
given location). Furthermore, the set of templates is refined : the analysis starts
with a very coarse domain (upper and lower bound on each variable, emulat-
ing the interval domain), and if a separating inductive invariant is not found
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(an invariant which separates the starting point from the error property), a
domain is continuously refined to include more templates by increasing the size
of synthesized linear expressions. However, the refinement is unguided and is not
based on a target property.

Additionally, the analysis is augmented with a simple congruence module,
which tracks parity (even or odd) of all variables and simple linear expressions
(e.g. x + y).

The result of an LPI run is an inductive invariant, which might be an over-
approximation of the reachable state space of the program. Thus pure LPI can
only be used for verification, and not for finding counterexamples to the safety
property. To address this, and to raise the number of programs which can be
verified, an invariant produced by LPI is fed to the k-induction [1] procedure.
For a given value of k, k-induction performs two checks: whether the error state
is reachable from the initial one in k steps (forward reachability), and whether
the negation of the error property is k-inductive, subject to the strengthening by
the invariant produced by LPI. LPI invariant generation (including continuous
refinement) runs asynchronously to the k-induction procedure, and they are both
continuously refined (number of templates is increasing, and so is the value of
k). Counterexamples produced by k-induction are cross-checked with CBMC [5],
which either verifies a counterexample or refutes it.

We have used k-induction as it is a natural fit to our invariant generation
procedure due to support for continuously refined invariants. LPI improves
the precision of pure k-induction, as the inductiveness check may fail due to
counterexamples-to-induction which are not reachable in the selected abstract
domain.

2 Software Architecture

The verification module is embedded inside CPAchecker [3], an open-source
framework for program analysis. CPAchecker implements the Configurable Pro-
gramming Analysis [2] (CPA) concept: it runs a simple parametrized fixpoint
iteration loop, and each analysis is a CPA which parametrizes this iteration.
Consequently, LPI is implemented as a single CPA.

The CPA implementation of LPI relies on other CPAs to perform the split-
ting of the state space, namely Location, Callstack and FunctionPointer.

LPI analysis makes heavy use of optimization modulo SMT, which is done
using νZ solver [4]. CPAchecker is written in Java and uses the Eclipse CDT

parser for dealing with C code.

3 Strengths and Weaknesses

As LPI is expressed in the CPA framework, it benefits from it general strength:
the ability to cooperate with other analyses.

The main strength of LPI is finding complex numerical invariants, which
can not be found using standard abstract interpretation methods. In the current
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version of SV-COMP, we have found that many programs can be efficiently
analyzed using explicit case enumeration, and complex numerical invariants are
usually not required. Thus it limits the applicability of LPI to the SV-COMP
dataset. However, on the categories we participate in we have found that LPI

obtains reasonable results.
The additional limitation is that the inductive invariant produced by LPI is

only sound with respect to mathematical integers and rationals. At the moment,
LPI provides no bit-precise analysis, and unsound answers result mainly from
integer overflow.

4 Tool Setup and Configuration

LPI code is available for download at http://lpi.metaworld.me/svcomp16.tar.
bz2. The only external dependency of LPI is Java 7, all others are either shipped
with or downloaded automatically by ant. The tool can be run from the main
directory using the command ./scripts/cpa.sh -lpi-svcomp16 -disable-
java-assertions -heap 10000m -spec property.prp target program.i.
The parameter -64 should be inserted before the last argument for 64-bit
environment, and -setprop cpa.predicate.handlePointerAliasing=false
is inserted in case of simple memory model. If a counterexample witness is found,
it is written to the file output/witness.graphml. LPI can use the same wrap-
ping script for benchexec as CPAchecker does. This tool participates in the
“Integers and Control Flow” and “Software Systems” categories and opts out
from all the others.

5 Software Project and Contributors

The LPI code was written by George Karpenkov. The k-induction module was
developed by Matthias Dangl. CPAchecker [3] is mainly developed by the Soft-
ware Systems Lab at the University of Passau. The code for both is distributed
under the Apache 2.0 license.
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Abstract. Map2Check is a tool for automatically generating and check-
ing unit tests for C programs. The generation of unit tests is based on
assertions extracted from (memory) safety properties, which are gen-
erated by the ESBMC tool. In particular, Map2Check checks for SV-
COMP invalid-free, invalid-dereference, and memory-leak properties in
C programs.

1 Overview

Map2Check automatically generates and checks unit tests for C pro-
grams [1]. The unit test generation is based on assertions, which are
extracted from the memory safety properties generated by ESBMC tool [2]. In
particular, Map2Check checks for SV-COMP properties “invalid-free”, “invalid-
dereference”, and “memory-leak”. Map2Check adopts source code instrumenta-
tion to create test cases from those properties, and monitors data from program’s
executions, in order to detect failures originating from the execution of those
(generated) test cases. Map2Check supports full C99, according to the standard
ISO/IEC 9899:1990, and checks programs that make use of arrays, pointers,
structs, unions, and dynamic memory allocation. ESBMC is adopted as a veri-
fication condition (VC) generator, which translates a program fragment and its
correctness property into a logical formula that is automatically translated into
a unit test. Map2Check does not require the user to annotate C programs with
pre/post-conditions to generate that VCs.

2 Verification Approach

Map2Check executes seven steps to generate and check test cases related to
memory safety in C programs as shown in Fig. 1. In step 1, Map2Check uses
ESBMC to identify memory safety properties via the option --show-claims,
which shows all safety properties that ESBMC automatically generates from the
original C program. In ESBMC, a claim represents a safety property; examples
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 934–937, 2016.
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Fig. 1. Example of the Map2Check steps.

of claims include invalid-free, invalid-dereference, and memory-leaks; a particular
claim can be violated by Map2Check if there is an execution that leads to the
assertion failure.

In step 2, Map2Check analyzes the results produced in step 1 to collect
several important pieces of information needed in the following steps, e.g., iden-
tification of the claim, comments about the claim, line number of the code where
the claim occurred, and the property identified by that claim. For example, the
particular claim !(IS DYNAMIC OBJECT(B)) || VALID OBJECT(B) states a
potential invalid dynamic object of “B”, where an object can be represented by
a pointer to a scalar variable or to a (more complex) data structure [2]. In par-
ticular, IS DYNAMIC OBJECT function checks whether the argument to any
dereferencing operation is a dynamic object; and VALID OBJECT(B) checks if
the argument for any free or dereferencing operation is still a valid object. In
Map2Check, we adopt regular expressions to find all claims information related
to invalid-free, invalid-dereference, and memory-leak.

In step 3, Map2Check translates the claims provided by ESBMC into asser-
tions written in C code, which are supported by a C library of Map2Check; this
strategy is similar to that performed by Delahaye et al. [3], whose pre/post-
conditions based on formal program specification are translated into C code via
assertions.

In step 4, Map2Check performs a memory tracking, which consists of two
phases:

1. Track program variable operations and assignments in the analyzed source
code. Map2Check performs this tracking by means of the abstract syntax tree
(AST), which is generated from the analyzed C program;

2. Instrument the source code with functions that monitor the memory addresses
and the addresses pointed by these variables (identified in step 1) according to
the program execution. The assertions generated in step 3 are checked over
the data, which are generated by the functions that monitor the memory
addresses.
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In step 5, test cases are inserted into the program by adding assertions (gener-
ated from step 3) into the new copy of the source code (of the analyzed program),
with their respective properties related to memory safety. In step 6, Map2Check
applies a template over the analyzed program to allow the validation of the
test cases and to insert directives of the Map2Check library into the new copy
of the analyzed program. Map2Check also provides a template for the CUnit
framework [5].

Finally, in step 7, Map2Check executes that new copy of the analyzed C
program, together with the functions to monitor the memory addresses (added
from step 4) and the test cases, in order to check each assertion. Instead of calling
a theorem-prover, Map2Check executes the code to check whether the assertions
fail. Map2Check provides a program execution trace log in case of the assertion
violation (i.e., if the test case fails), with data such as: the line number, memory
addresses, pointer actions (e.g., allocation and deadlocation) already executed
at the current point of the program.

3 Strengths and Weaknesses of the Approach

Map2Check participates in the Heap Data Structures category only. The strength
of the tool lies in the precision of its answers based on the concrete execution
of the analyzed program over the VCs generated by ESBMC, i.e., ESBMC is
adopted only as a VC generator and it is not used to formally verify the proper-
ties. In preliminary experiments, Map2Check outperforms ESBMC due to time-
outs or memory model limitations. Map2Check is in the initial development and
there are still restrictions on the structure of the programs (e.g., the C alloca
function is not supported) that can be analyzed by our memory tracking. Most
incorrect answers produced by our tool are due to bugs in the implementation.
Additionally, our strategy based on random data to unwind loops and their
respective loop exit condition do not allow the correct execution of the program.
In particular, we implement a specific function to simulate the non-deterministic
values, which are generated from the function call nondet int().

4 Architecture, Implementation and Availability

Architecture. Map2Check is implemented as a source-to-source transformation
tool in Python (V2.7). It uses the pycparser1 to parse a C program into an AST,
and then identifies variables for tracking memory. The pyparsing2 is used to
create a parse of the ESBMC claims. It adopts uncrustify3 as a source code
beautifier. Map2Check also uses networkx4 to generate the witness format5 in
GraphML format, and GCC compiler.
1 https://github.com/eliben/pycparser.
2 https://pyparsing.wikispaces.com.
3 http://uncrustify.sourceforge.net.
4 https://networkx.github.io.
5 http://www.sosy-lab.org/∼dbeyer/cpa-witnesses.
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Availability and Installation. Map2Check source code version 6 for 64-bit
Linux environment for the competition is available to freely download at https://
github.com/hbgit/Map2Check under GPL license. It must be installed as a
Python script and it also requires installation of pycparser, pyparsing, networkx,
uncrustify, and GCC.

User Interface. Map2Check is invoked via a command-line interface
to SV-COMP as follows: ./map2check-wrapper.sh -c propertyFile.prpfile.i.

Map2Check accepts the property file and the verification task and provides as
verification result: FALSE + Witness or UNKNOWN. For each error-path, a file
that contains the violation path is generated in Map2Check root-path graphml
folder; this file has the same name of the verification task with the extension
graphml.
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Abstract. We present the MU-CSeq tool for the verification of multi-
threaded C programs with dynamic thread creation, dynamic memory
allocation, and pointer arithmetic. It is based on sequentializing the
programs over the new notion of individual memory location unwind-
ing (IMU). IMU is derived from the notion of memory unwinding that
has been implemented in the previous versions of MU-CSeq. The main
concepts of IMU are: (1) the use of multiple write sequences, one for each
individual shared memory location that is effectively used in the execu-
tions and (2) the use of memory addresses rather than variable names
in the operations on the shared memory, which requires a separate table
to map write sequences but supports pointer arithmetic.

1 Verification Approach

MU-CSeq 0.4 follows the sequentialization approach to verification. Its idea is to
translate, using a code-to-code translation that preserves the verification prop-
erty of interest, a concurrent program into a sequential one, which is then ana-
lyzed using a symbolic sequential verification tool.

In MU-CSeq 0.4 we have implemented a sequentialization based on the novel
notion of individual memory location unwindings (IMU). IMU is derived from
the concept of memory unwinding that has been implemented in the previous
versions of MU-CSeq [2,3]. A memory unwinding (MU) is an explicit represen-
tation of the sequence of write operations into the shared memory performed
by the threads. Each element of the sequence represents a write operation char-
acterized by the identifier of the writing thread, the variable identifier, and the
written value. The sequentialized program first guesses the values in the MU
using non-determinism–supported by symbolic verification tools–and then sim-
ulates each thread against the MU. If each thread matches its memory writes in
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the MU then their sequential simulation corresponds to a valid execution of the
original concurrent program (see [2] for more details).

IMU improves on MU by providing a separate memory unwinding for each
individual shared memory location corresponding to a scalar type or a pointer.
To recreate a global total order over the shared memory writes we associate a
timestamp (i.e., a distinct natural number) with each write in each individual
MU. This is crucial for the correctness of the simulation since it is used to
synchronize the simulation of the individual threads (otherwise the distinct MUs
can give rise to many total orders).

Another important feature of the new encoding is to associate each memory
location with its physical memory address. When a read or write operation is
performed using a memory address, e.g., *p=3 for a pointer variable p, we first
search for the location corresponding to the value of p and then simulate the
read/write operation as we would do for scalar variables (for which the locations
are statically known).

This new representation of the writes has several good features when used in
combination with sequential BMC verification tools. In particular, the use of the
individual MU simplifies the simulation of read and write operations resulting
in much smaller verification conditions and verification time. In fact, for each
memory access, the formula now only contains an encoding of the corresponding
individual sequence and not the whole sequence of writes. Although the high
level idea is simple, we observe that the underlying reasoning for IMU is more
involved than MU.

Another advantage of IMU is that it gives a simple and effective way to sup-
port dynamic memory allocation and pointer arithmetics. This feature was not
implemented in previous versions of MU-CSeq as it requires convoluted simu-
lation functions resulting in a blowup of the verification time of the sequential
BMC backend analysis.

IMU not only improves MU as we have mentioned above but also simplifies
the development of new sequentialization schemes for other interesting properties
of concurrent programs such as data-race and deadlock detection as well as weak
memory models including TSO and PSO.

2 Software Architecture

The sequentializations in MU-CSeq 0.4 are implemented as source-to-source
transformations in Python (v2.7.9), within the re-factored CSeq framework [4].
This uses the pycparser (v2.14, http://github.com/eliben/pycparser) to parse
a C program into an abstract syntax tree (AST), and then traverses the AST
to construct a sequentialized version, as outlined above. The resulting program
can be processed independently by any verification tool for C, but we have only
tested MU-CSeq 0.4 with CBMC (v5.2, www.cprover.org/cbmc/). For the com-
petition we use a wrapper script that bundles up the translation, calls CBMC
for verification, and returns its output.

Our tool takes the following options: w is the bound on the number of write
operations for each location, f is the unwind bound for for -loops, u is the unwind
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bound for the remaining loops, b is the number of bits used for shared variables
and memory addresses, p is the number of tracked locations that are stored on
the heap, m is the maximal number of malloc invocations, v is the bound on the
number of lock/unlock operations on single locations, ml is the bound on the
number of lock/unlock operations on the whole memory, and thl is the bound
on the number of threads that are spawned in any while-loop.

We use a simple syntactic analysis of the program to determine which
schema and parameters we use in the competition. If the program contains more
than 30 assignments but no loops, or a pthread create inside a constant
bounded for -loop, we use the inter-thread coarse-grained MU with parameters
-w2 -f52 -u1 -b7 (for the MU scheme, w actually denotes the length of the
overall sequence of writes). Otherwise we use the IMU scheme with the following
parameters:

-w7 -u1 -f2 -b12 -p5 -v6 -ml7 -m3 -thl3, for programs with
arrays;
-w7 -u2 -f2 -b12 -p2 -v6 -ml7 -m3 -thl3, if the program con-
tains thread-local variables;
-w<c1> -u1 -f<c1> -b17 -p2 -v6 -ml7 -m3 -thl3, if the program’s
for -loops are upper bounded by a constant <c1> and do not contain
pthread create;
-w6 -u1 -f2 -b7 -p2 -v6 -ml7 -m3 -thl3, otherwise.

All parameter values were empirically determined. We use a timeout of 70 s, and
interpret the cases where this timeout applies as true.

3 Tool Setup and Configuration

Availability and Installation. MU-CSeq 0.4 is available at http://users.
ecs.soton.ac.uk/gp4/cseq/mu-cseq-0.4.zip; it also requires installation of the
pycparser. CBMC must be installed in the same directory as MU-CSeq. The
wrapper script for the tool on the BenchExec repository is mu-cseq.py.

Call. MU-CSeq should be called in the installation directory as mu-cseq.py -i
file --spec specfile.

Fig. 1. Comparison of MU-CSeq v0.3 and v0.4.

Strengths and Weaknesses.
Since MU-CSeq 0.4 is not a full
verification tool but only a con-
currency preprocessor, we only
competed in the Concurrency
category. Here we achieved a full
score, with an overall runtime of
circa 45 min for all benchmarks in
the category. Compared to MU-
CSeq 0.3 [2], the new version
achieved a substantial speedup
over most of the benchmarks, as
shown by the scatter plot in Fig. 1.
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Abstract. This paper describes shortly the PredatorHP (Predator
Hunting Party) analyzer and its participation in the SV-COMP’16 soft-
ware verification competition. The paper starts by a brief sketch of the
Predator shape analyzer on which PredatorHP is built, using multi-
ple, concurrently running, specialised instances of Predator. The paper
explains why the concrete mix of the different Predators was used, based
on some characteristics of the SV-COMP benchmark.

1 Verification Approach

Predator Hunting Party (PredatorHP) uses the Predator shape analyzer, and so
we first give a brief overview of Predator. Next, we discuss how Predator is used
in the concurrent setting of PredatorHP, stressing changes from PredatorHP used
in SV-COMP’15 together with a short analysis of the SV-COMP benchmark that
motivated these changes.

1.1 The Predator Shape Analyzer

Predator aims at sound shape analysis of sequential, non-recursive C programs
that use various kinds of lists implemented using low-level C pointer statements.
Predator can soundly deal with various forms of pointer arithmetics, address
alignment, block operations, memory contents reinterpretation, etc.

The shape analysis implemented in Predator is a form of abstract interpreta-
tion which uses a domain of the so-called symbolic memory graphs (SMGs) [1].
SMGs are oriented graphs with two main kinds of nodes and two main kinds of
edges. Nodes can be divided into objects and values. Objects are further divided
into regions (representing concrete blocks of memory allocated on the stack, on
the heap, or statically) and singly- or doubly-linked list segments, which rep-
resent in an abstract way uninterrupted sequences of singly- or doubly-linked
regions. Edges can be divided into has-value and points-to edges. The former
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represent values stored in allocated memory (which are either pointers or other
kinds of data), the latter represent targets of pointer values.

Both nodes and edges are annotated by a number of labels that carry infor-
mation such as the size of objects, offsets at which values are stored in objects,
offsets with which pointers point to target objects, the type of values, offsets at
which linking fields of lists are stored, the nesting level of objects (to be able
to represent nested lists), or a constraint on the number of linked regions that
a list segment represents. In particular, a list segment can either represent n
or more regions for n ≥ 0, or 0 or 1 regions. Further, SMGs can also contain
optional regions where a pointer to such a region either points to some allocated
memory or to NULL. Sizes of blocks and offsets can have the form of intervals
with constant bounds which allows Predator to deal with operations such as
address alignment. A special kind of edges are then disequality edges allowing
one to express that two values are for sure different (while equality of objects is
expressed by representing these objects by a single node of an SMG).

Symbolic execution of C statements on SMGs uses a concept of reinterpre-
tation that is able to synthesize values of previously not explicitly written fields
from the known values of other fields. Currently, this concept is instantiated
for dealing with blocks of nullified memory, which is quite needed for analyzing
low-level programs. Another key operation on SMGs is the join operation that is
implemented via a synchronous graph traversal of the two SMGs to be joint. The
join operation is used not only to reduce the number of SMGs to deal with but
also as a basis of abstraction and entailment checking. Predator uses function
summaries to facilitate inter-procedural analysis. The support of arithmetic in
Predator is such that Predator deals with integers exactly up to some bound (32
in SV-COMP’16) and then replaces them by an unknown value.

Compared with SV-COMP’15, not many changes were done in the Predator
analyzer itself. We have just resolved several minor issues by, e.g., correcting
arithmetic in the 32-bit mode or replacing error messages produced when per-
forming so-far unsupported operations over interval-based values by producing
the “unknown” verdict.

1.2 Predator Hunting Party

In SV-COMP’15, we started to run several variants of Predator in parallel.
Among them there was one Predator verifier implementing the above sketched
sound shape analysis. Due to its use of abstraction, the verifier could produce
false alarms, and so its result was accepted only when it proved a program cor-
rect. In parallel with the verifier, three Predator DFS hunters without any list
abstraction (though still with limited precision of the arithmetic) and with dif-
ferent bounds on the depth of the state space search (in particular, 400, 700,
and 1000 GIMPLE instructions) were used. The verdict of these hunters was
considered only when they reported an error. If neither the verifier nor the DFS
hunters produced an acceptable answer, a BFS hunter was started to perform
a breadth first search without any list abstraction and with no bound on the
length of its run (other than the timeout used by SV-COMP). The BFS hunter
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was allowed to report errors as well as to prove a program correct in case it
exhausted its state space.

For SV-COMP’16, we have decided to preserve the above concept but to
revisit suitability of the concrete numbers of hunters used, their limits on the
state space search, as well as the order in which they are run. First, the number of
concurrently running Predators stayed at four given by the four available cores.
We have, however, decided to use only two DFS hunters, with the depth of the
state space search limited to 200 and 900 GIMPLE instructions, respectively. In
general, this move is motivated by having one hunter that quickly searches for
bugs with very short witnesses and one than searches for longer but still not very
long witnesses. Moreover, we have decided to start the BFS hunter right away
in place of one of the cancelled DFS hunters. Its role is to either prove correct
finite-state programs (not proved correct by the verifier due to the abstraction
used) or to find bugs that are not quickly found by the DFS hunters.

The above mentioned concrete DFS bounds are based on an analysis of those
SV-COMP’16 programs in the heap data structures category that contain an
error. In particular, it appears that: (1) In over 80 % of the cases, the error
can be found in the limit of 200 instructions. (2) In about 96 % of the cases
(meaning all but four of the considered programs with errors), the error can be
found within 900 instructions. (3) In the remaining cases, the witness may be
much longer (going up to over 50,000 instructions), which is too much for being
used over all programs. Fortunately, in some of the cases, the witness may be
quite long, but the search space is relatively narrow, so an error can still be
found by the BFS hunter. In the end, we have programs proved correct by the
verifier (but not the BFS hunter), programs proved correct by the BFS hunter
(but not the verifier), programs with errors found by the DFS hunters (but not
the BFS hunter), as well as programs with errors found by the BFS hunter (but
not the DFS hunters).

The above change alone allowed us to prove one more program correct in the
given time limit while at the same time saving around 38 % of the wall time.
While the concrete numbers and bounds of hunters are tuned for the SV-COMP
benchmark, the general set up of the prover and the hunters is applicable more
broadly. The concrete numbers may be adjusted in a similar way for other sets
of programs to be verified as common, e.g., in the world of search-based testing.

2 Strengths and Weaknesses

The main strength of PredatorHP is that—unlike various bounded model
checkers—it treats unbounded heap manipulation in a sound way. At the same
time, it is also quite efficient, and the use of various concurrently running Preda-
tor hunters greatly decreases chances of producing false alarms (there do not
arise any due to heap manipulation, the remaining ones are due to imprecise
treatment of other data types).

The main weakness of PredatorHP and also of Predator itself is its weak
treatment of non-pointer data. Due to this, Predator participates in the heap
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data structures category only. Within this category, a weakness of Predator is
that it is specialized in dealing with lists, and hence it does not handle structures
such as trees or skip-lists (that is, it handles them very well in a bounded way,
but our aim is to stick with sound verification).

3 Tool Setup and Configuration

The source code of PredatorHP used in SV-COMP’16 is freely available on the
Internet1. The file README-SVCOMP-2016 shipped with the source code describes
how to build the tool. To run it, the script predatorHP.py can be invoked. The
script takes a verification task file as a single positional argument. Paths to both
the property file and the desired witness file are accepted via long options. The ver-
ification outcome is printed to the standard output. The script does not impose
any resource limits other than terminating its child processes when they are no
longer needed. More information about the setting of PredatorHP used in the com-
petition can be found here: http://sv-comp.sosy-lab.org/2016/systems.php.

4 Software Architecture, Project, and Contributors

Predator is implemented in C++ with a use of Boost libraries as a GCC plug-
in based on the Code Listener framework [2]. PredatorHP is implemented as a
Python script. Predator is an open source software project distributed under the
GNU General Public License version 3. The main author of Predator is Kamil
Dudka. Besides him and the PredatorHP team, Petr Muller and numerous other
people contributed to Predator.
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Abstract. Symbiotic 3 is a new generation of a bug-detection tool for
C programs. The tool sticks to the combination of program instrumenta-
tion, slicing, and symbolic execution. Large parts of the tool are rewrit-
ten, in particular the managing and instrumentation scripts and slicer
(including points-to analysis). Further, the symbolic executor Klee has
been modified to produce error-witnesses. The changes are commented
in the description of the tool workflow.

1 Verification Approach and Software Architecture

As the previous versions of Symbiotic [7,9], the new version also follows the
approach suggested in [8]: an analyzed program is (i) instrumented with code
that tracks a finite-state machine describing erroneous behaviors, (ii) reduced
by slicing [10] that removes code not influencing the state machine moves, and
(iii) symbolically executed [6] to find erroneous runs in the program.

The workflow of Symbiotic 3 (together with indication of chosen program-
ming languages and employed external tools with their respective versions) is
provided in Fig. 1. Our tool currently focuses on the Error Function Unreacha-
bility property (however, the approach can handle the other properties as well
and we plan to support them in near future). The code cleanup modifies the
C source (e.g. to bypass the known bug in clang where inlined functions are
omitted). The program is then translated to llvm, checked for unsupported func-
tionality (e.g. creation of new threads), and instrumented. As we support only
the unreachability property, the instrumentation is trivial. This step makes also
another small modifications of the program, e.g. each allocated variable is initial-
ized to a nondeterministic value (to solve problems with uninitialized variables
appearing in some benchmarks). After linking with lib.bc (which contains our
definitions of __VERIFIER_* functions) and some optimization passes, namely
control flow graph optimization and constant propagation, we slice the program.

The slicer in Symbiotic 3 is written from scratch. While the previous slicer
followed the slicing algorithm of [10], the current one implements slicing based
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Fig. 1. Workflow of Symbiotic 3. Dashed lines represent C programs, solid lines llvm
bytecode, and dotted lines text data.

on dependence graphs [3,5]. The slicer relies on field-sensitive, flow-insensitive
points-to analysis (extended with an “unknown offset” value), which has been
also reimplemented. The new slicer is substantially faster than the previous one.

The sliced program is optimized again (with passes similar to -O2 optimiza-
tion level) and symbolically executed with our fork of Klee [1]. We modified it
to stop the computation when assertion violation is detected and to produce the
corresponding error witness. The exact versions of Klee and the solvers stp [4]
and MiniSat [2] called by Klee can be found in the Symbiotic 3 distribution.
Finally, the Klee output is translated into the required form. In particular, a
witness is translated to the GraphML format by a Perl script.

2 Strengths and Weaknesses

The main strengths of the approach are its soundness and universality; the app-
roach can be applied also to the Concurrency benchmarks and these with more
complex properties, which are currently not supported by our implementation
(and thus skipped). Another advantage is the modularity of the tool architecture.

The main disadvantage is the high computational cost of symbolic execu-
tion. Especially programs with loops, recursion, or intensive branching cannot be
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analyzed within reasonable time unless an erroneous execution is detected soon.
The fundamental problem are programs with infinite paths as these cannot be
fully symbolically executed in finite time.

3 Tool Setup and Configuration

– Download: https://github.com/staticafi/symbiotic/releases/tag/3.0.1
– Installation: Unpack the archive. Further, gcc 4.9 or higher, GNU utils (sed),
python 2.7, and perl with the XML::Writer module are required.

– Participation Statement: Symbiotic 3 participates in all categories.
– Execution: Run ./symbiotic OPTS <source>, where available OPTS include:

• – –64 sets environment for 64-bit benchmarks
• – –prp=file sets the specification file to use
• – –help shows the full list of possible options

Precise SV-COMP settings and the translation of the output to the competition
results can be found at: http://sv-comp.sosy-lab.org/2016/systems.php

4 Software Project and Contributors

Symbiotic 3 has been developed by M. Chalupa, J. Slaby, M. Vitovská, and
M. Jonáš under supervision of J. Strejček. The tool is available under the GNU
GPLv2 License. The project is hosted by the Faculty of Informatics, Masaryk
University. llvm, Klee, stp, and MiniSat are also available under open-source
licenses. The project web page is: https://github.com/staticafi/symbiotic
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Abstract. Ultimate Automizer is a software verification tool that
implements an automata-based approach for the analysis of safety and
liveness problems. The version that participates in this year’s competi-
tion is able to analyze non-reachability, memory safety, termination, and
overflow problems. In this paper we present the new features of our tool
as well as the instructions how to install and use it.

1 Verification Approach

Ultimate Automizer implements an automata-based approach to software
verification that we call trace abstraction [4]. The key concept in this approach
is the notion of a trace which is a sequence of program statements. We consider
a program as a set of traces, namely the set of all traces that are labellings of
paths in the control flow graph. For the verification of a property, we start with
all traces that potentially violate the property, e.g., for checking non-reachability
of an error location we start with all traces that lead from the initial location to
the error location. Then, we iteratively prove that all these traces are infeasible,
i.e., we prove that none of these traces corresponds to a concrete program exe-
cution. In each iteration we take a sample trace π that potentially violates the
property and analyze its feasibility. If the trace π is feasible, we found a concrete
counterexample to the validity of the property. Otherwise, we construct a proof
for the infeasibility of π. Next, we generalize the trace π to a set of traces that
are infeasible and whose infeasibility can be shown using the proof that was
constructed for π.

We use automata to represent sets of traces. The underlying alphabet is
the set of all program statements. The traces that potentially violate the non-
reachability property are the words that are accepted by the automaton that
resembles the control flow graph of the program and whose final state is the
node that corresponds to the error location of the program. The procedure for
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obtaining sample traces is implemented as an emptiness check and in each iter-
ation we use a difference operation on automata to ensure that we exclude all
traces whose infeasibility was already shown.

In the following we present new features of this year’s competition candidate.

Two-track Proofs. In former versions of our tool, the above mentioned infea-
sibility proof for a trace was an inductive sequence of state predicates. Such
a sequence was obtained via Craig interpolation or via a technique that com-
bines unsatisfiable cores, live variables and the post predicate transformer. In this
year’s competition contribution, we use this technique to compute two sequences
of predicates. One sequence is obtained by the post predicate transformer, the
other sequence is obtained by the wp predicates transformer. A second sequence
of predicate is redundant to prove the infeasibility of the trace π but it improves
the generalization from one infeasible trace π to a set of infeasible traces.

Semi-deterministic Büchi Automata. In our termination analysis we consider
infinite traces and use Büchi automata to represent sets of traces [5]. The sub-
traction of traces whose infeasibility was already proven involves the complemen-
tation of Büchi automata which is known to be expensive. In order to overcome
this bottleneck, we adjusted our algorithm such that the input of complementa-
tion operations is always a semi-deterministic Büchi automaton. This allows us
to use a specialized complementation whose result has at most 4n states [2].

Bitprecise Analysis. We use SMT-LIB to represent sets of program states and
the transition relation of program statements. First, we try to verify a program
by using the theory of (mathematical) integers. In order to soundly capture the
semantics of machine integers we use modulo operations and we overapproximate
bitwise operations, e.g., bitshifts, by a havoc operation. Whenever this analysis
returns a counterexample that contains an overapproximated bitwise operation,
we redo the analysis and use the SMT-LIB theory of bitvectors.

2 Software Project

Ultimate Automizer is one toolchain of the Ultimate program analysis
framework. Our competition candidate uses several libraries provided by Ulti-
mate, e.g., an automata library, the LassoRanker library which is used for the
termination analysis of lasso-shaped infinite traces [6], the SMT solver SMTIn-
terpol [3], and an interface that allows us to communicate with any SMT-LIBv2
compatible SMT solver, The source code is available on Github1 and several
toolchains of Ultimate are available via a web interface.

3 Tool Setup and Configuration

A zip archive that contains the competition candidate is available at the web-
site of Ultimate Automizer2. The archive contains a binary of Z33 and the
1 https://github.com/ultimate-pa.
2 https://ultimate.informatik.uni-freiburg.de/automizer/.
3 https://github.com/Z3Prover.
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installation of external tools is not required. Furthermore, the archive contains
the Python script Ultimate.py, which maps the input given in the competi-
tion to the arguments that are required by the actual binary of Ultimate. At
the SV-COMP the input to a tool is a C program inputfile, a property file
prop.prp, an architecture which is either 32bit or 64bit, and a memory model
which is either simple or precise. Given these arguments, the script should be
invoked by the following command.

./Ultimate.py prop.prp inputfile 32bit|64bit simple|precise

The output of Ultimate Automizer is written to the file Ultimate.log and
the result is written to stdout. When using BenchExec the output can be
translated by the ultimateautomizer.py tool-info module4.

If the checked property does not hold, a human readable counterexample is
written to UltimateCounterExample.errorpath and an error witness is written
to witness.graphml.

4 Witness Validator

Verifiers that participate in the SV-COMP output an error witness [1] if they
find a violation of the given property. An error witness is a machine readable
counterexample to the validity of the property. An error witness may not rep-
resent a single program execution that violates the property, it may represent a
set of program executions. The idea is that it narrows down the space in which
verifiers have to search for possible violations of the property.

Ultimate Automizer can be used to validate error witnesses. For validat-
ing an error witness wtns.graphml we invoke the command mentioned in the
preceding section and append wtns.graphml as a fifth argument.

./Ultimate.py prop.prp inputfile 32bit|64bit simple|precise wtns.graphml

The witness is confirmed if and only if Ultimate Automizer reports a violation
of the property. I.e., the witness is confirmed if and only if a counterexample was
found in the search space restricted by the witness.
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Abstract. Recently proposed extensions of the IC3 model checking
algorithm offer a powerful new way to symbolically verify software. The
Vienna Verification Tool (VVT) implements these techniques with the
aim to tackle the problem of parallel software verification. Its SMT-based
abstraction mechanisms allow VVT to deal with infinite state systems.
In addition, VVT utilizes a coarse-grained large-block encoding and a
variant of Lipton’s reduction to reduce the number of interleavings. This
paper introduces VVT, its underlying architecture and use.

1 Verification Approach

VVT is an implementation of the CTIGAR approach [2], an SMT-based IC3
algorithm [3] incorporating Counterexample-Guided Abstraction Refinement
(CEGAR) [5], thus enabling the verification of infinite-state systems. The under-
lying abstraction-refinement scheme follows the IC3 paradigm; it does not require
an unwinding of the transition relation. To handle parallel programs, VVT uses
a large-block encoding [8] that preserves all relevant partial interleavings by
applying a novel dynamic variant of Lipton’s reduction [12].

2 Software Architecture

VVT uses a modular approach to verification: a collection of separate tools
instrument and translate the input, communicating via standard data formats
such as LLVM bitcode [4] and the SMTlib format [1]. Figure 1 provides an
overview.

The verification process begins by compiling the C file into LLVM bitcode
using CLang. The LLVM IR has a precise semantics and comprises only a small
number of instructions, thus reducing the complexity of the verifier. The increase
in size resulting from the translation into bitcode is mitigated by subsequent

This work is supported by the Austrian National Research Network S11403-N23
(RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and
Technology Fund (WWTF) through grant VRG11-005.
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Fig. 1. Architecture

reduction steps. A separate tool implementing a variant of Lipton’s reduction [12]
identifies large blocks that can be executed atomically. These blocks are delimited
by instrumenting the code with ‘yield’ function calls, indicating the relevant
context switches. Our novel dynamic reduction method avoids static analysis1

by expressing reduction conditions as branches. At each intermediate step the
LLVM tool chain is used to optimize the bitcode (not shown in the figure).

Next, the vvt-enc tool translates the instrumented bitcode into an SMTlib-
based format, encoding the transition relation of the program. It uses (linear)
integer arithmetic to encode bit vectors to facilitate interpolation and employs
alias-analysis techniques in order to keep the transition relation as small as possi-
ble. To finalize the encoding, the vvt-opt tool deploys a number of optimization
techniques including program slicing (removing irrelevant parts of the transition
relation), expression simplification and a value-set analysis (to identify constant
expressions).

The last step is the actual verification with the vvt-verify tool. It uses
Z3 [6] for IC3 consecution calls [3] and MathSAT [7] for interpolation-based
refinement. To rapidly find counterexamples, VVT runs a small portfolio with
the BMC tool vvt-bmc [11] on the same encoding (not shown in the figure),
taking advantage of the modularity of the tool chain.

3 Strengths and Weaknesses

VVT primarily targets the verification of infinite parallel programs. Unlike BMC
tools, the approach is complete and does not depend on a complete unrolling of
the transition relation thanks to the underlying IC3 algorithm. The SMT-based
abstraction-refinement scheme further extends the capabilities of the tool to
infinite-state systems. Finally, parallelism is supported by the reductions applied
to the transition relation.

Our experiments show that VVT yields good results on almost all instances of
the concurrency category of the Software Verification Competition (SVCOMP)
2016. The verification results for integer/control-flow programs demonstrate that
the abstraction-refinement mechanisms work well in practice.

1 A lack of good static analysis is a bottleneck for obtaining powerful reductions in
software model checking [9].
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VVT currently does not implement rely-guarantee reasoning, and is therefore
unable to handle an infinite number of threads. Furthermore, the lack of an
interpolating decision procedure for arrays limits the applicability of the tool
for programs with arrays to those cases where the size of the arrays can be
determined statically.

VVT generates concrete counterexample traces, but does not yet map the
LLVM instructions to locations in the original source code.

4 Tool Setup and Configuration

The Vienna Verification Tool is open source and distributed under the GPL
license. Both the source code and the packaged version 0.1 submitted to
SVCOMP 2016 can be found at the VVT website [10].

Installation. VVT v0.1 [10] requires packages LLVM 3.5 and CLang 3.5, which
are available via standard package managers (APT, RPM, etc.) on many systems.

The command vvt-svcomp-bench.sh <FILE> starts the entire verifier tool
chain (see Fig. 1), where <FILE> is the C or C++ file to be verified.

Participation Statement. For the SVCOMP 2016, we enlist VVT for participa-
tion in the categories Integers and Control Flow and Concurrency. In the former,
we opt out of the sub-categories: recursive, loops, product lines, and sequential-
ized. We also opt out VVT of the other (unmentioned) categories.

5 Software Project and Contributors

VVT is developed by the Formal Methods in Systems Engineering (FORSYTE)
group of the Vienna University of Technology. For more information, contact
Henning Günther. Bug reports and feature requests can be submitted via the
VVT website [10].
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