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Preface

This festschrift celebrates the 60th anniversary of Professor Frank S. de Boer. Frank is a
prominent member of the research community in formal methods and theoretical
computer science. A brief look through his lengthy publication list reveals a broad area
of interest and a versatile modus operandi compared with many of his colleagues: logic
and constraint programming; deductive proof systems, soundness, and completeness;
semantics, compositionality, and full abstraction; process algebra and decidability;
multithreading and actor-based concurrency; agent programming, ontologies, and
modal logic; real-time systems, timed automata, and schedulability; enterprise archi-
tectures, choreography, and coordination; testing and runtime monitoring; and cloud
computing and service-level agreements. For a while, he also liked failures, especially in
semantics, and optimistically concluded with the failure of failures. In fact, Frank has an
opportunistic approach to research. Rather than seeing obstacles, he finds opportunities.

In the shadow of Frank’s research achievements, there is the “deboerian myth.” In
this short preface, we will not dwell further on his scientific accomplishments. Instead,
we seek to cement this myth. Not the man behind the myth, but the myth behind the
man. It has been said that when Frank started his PhD in computer science, the world
lost a skilled classical guitarist. Rumor has it that he was even playing professionally
for a while. From his former hippie life as a guitar player, Frank has retained a relaxed
attitude to life and a certain joie de vivre which he effectively combines with his
research. Marjan Sirjani explains: “Frank is a philosopher, a logician, and a computer
scientist. He has novel ideas in many diverse fields, from Hoare logic to timed actors to
Java threads. Frank is fun and frustration! He may not be always politically correct, but
he rarely offends people, as he is just who he is, he is just Frank. He is full of energy
and he loves sunny days, for him it’s a sin to work on a sunny day.” Ernst-Rüdiger
Olderog remembers working with Frank and Krzysztof Apt after Frank’s paragliding
accident in Malaysia: “While Frank was well on his way of recovery, but still in need of
crutches, we three authors met in December 2008 and January 2009 in the spacy
kitchen of his home in Amsterdam to work on our book. This ‘kitchen informatics’
created a nice and intense working atmosphere despite Frank’s hardship.” Alexandra
Silva recounts meeting Frank after his first experience preparing meat on his newly
acquired, high-tech grill at his summer house: “I will never forget the passion with
which he described this and all the adjectives he used. In life, as in research, passion is
the key to happiness and a great steak and wine are one step towards perfection! A
lesson learned from Frank de Boer!” Lara Astefanoaei recalls Frank’s good humor and
witty remark: “I remember one of my first Dutch storms, I was… impressed :). Frank,
not quite: cows and trees weren’t flying yet, he observed, calmly. And with a laughter.”

Several stories touch on Frank’s ability to improvise. Davide Ancona observes that
Frank is a very relaxed traveler: “Some years ago Frank and I happened to attend a
conference at Riva del Garda (a nice Italian town on the Garda lake); we both agreed
that the venue was very pleasant, but Frank was a bit disappointed since Verona was



not so close as he had expected; he knew that Verona was not so far away from the
Garda lake (about 30 km) therefore he had decided to fly to Verona to get to the
conference venue. After he arrived at Verona airport he got on a taxi to reach Riva del
Garda; Frank did not mention anything about the reaction of the taxi driver, but told me
placidly: Actually, the drive was longer than expected”. In fact, Riva del Garda is more
than 80 km from Verona (and more than 1 hour away by car). Reiner Hähnle points out
that this ability to improvise also carries over to Frank’s scientific abilities: “I’ve
always been immensely impressed by Frank’s capability to come up with a really good
impromptu presentation without any preparation time whatsoever. This is how it goes:
assume you had agreed with Frank that he gives a presentation at your project gathering
a few weeks ago and that he actually made it to the meeting (but that’s another story
…). Now you ask him whether this or that time slot is ok. The reply, almost inevitably,
is an incredulous ‘Indeed? I really agreed to give a talk – now?’. Your heart sinks, but
you don’t worry, because: ‘All right, I’ll improvise something on the topic.’ And he
proceeds to give a really convincing talk, not necessarily about what you had originally
agreed upon, but nevertheless the audience/reviewers/students are impressed and
happy!”

One of the editors of this volume can confirm Frank’s ability to improvise. After we
had planned the EU project CREDO while driving around Beijing in a taxi looking for
whisky, and had written the project proposal while escaping polar bears in Spitsbergen
some months later, we were invited for contract negotiations in Brussels. Owing to
certain misunderstandings, we were sent back and forth between the buildings of the
European Commission for a while and arrived 20 minutes late for the negotiation
meeting. The project officers clearly expressed their lack of appreciation for this delay
and then asked Frank as coordinator to give his presentation of the project. “What, am I
expected to present something? Sure, … I hope it is ok that I don’t use slides?” Frank,
of course, gave an excellent 20-minute presentation; the project officers completely
forgot how annoyed they were and we got the funding.

This volume collects a number of papers by Frank’s collaborators over the years.
Their broad range of topics reflects Frank’s versatility. On behalf of all your friends in
science: Happy birthday, Frank!

January 2016 Erika Ábrahám
Marcello Bonsangue
Einar Broch Johnsen

VIII Preface
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Program Verification: To Err is Human

Krzysztof R. Apt(B)

CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
apt@cwi.nl

Frank de Boer devoted a large part of his scientific career to program verification.
As a result our scientific roads crossed a number of times, occasionally in an
unexpected way.

One would expect that researchers studying program verification are careful
in checking their arguments and don’t publish papers with erroneous arguments.
Unfortunately, it is easier said than done. In what follows I shall present some
evidence for it in the form of four small stories. In two of them Frank has played
a crucial role.

Error Number 1. I got interested in program verification in 1975, soon
after joining Mathematisch Centrum (now Centrum Wiskunde en Informatica).
Thanks to Jaco de Bakker I stumbled upon the influential paper [7] of Stephen
Cook. Cook introduced the important notion, now called Cook’s completeness,
and proved that a certain Hoare-like proof system for programs without recur-
sion is complete in his sense. After having studied this paper for some time I
came to an astonishing conclusion that its main result is false. I checked my
argument several times but found no flaw in my reasoning. Here it is.

Cook allowed in his mini programming language local variables introduced
by means of a block statement. In particular, the program

begin new x; z := x end;begin new y; v := y end

that introduced two local variables, x and y, was a legal one, no matter that
both assignments in it referred to uninitialized variables.

Now, according to Cook’s semantics local variables were implicitly initialized
to the value present at the top of the stack after the push instruction. As a
result in the above program both x and y got initialized to the same value.
Consequently, after the execution of this program the assertion z = v was true,
but there was no way to prove it!

I wrote a letter to Cook pointing out this error and suggested how it could
be avoided. Cook agreed with my observations and published an erratum as [8]
in which he presented my observations.

Error Number 2. My interest in program verification eventually led to a publi-
cation of a survey paper, [2], that appeared in 1981. One of the topics I discussed
was termination of recursive procedures. In the paper I presented a completeness
proof of an appropriate Hoare-like proof system for total correctness.

Now it was Frank’s turn. A couple of years later he made me aware that
a subtle interaction between various proof rules present in the system made it
is possible to deduce incorrect conclusions in it. In other words, the system I
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 3–5, 2016.
DOI: 10.1007/978-3-319-30734-3 1



4 K.R. Apt

presented was unsound. Frank and myself tried to publish in the ACM Toplas,
the journal in which [2] appeared, a letter clarifying the error. Unfortunately,
we never got any reply from the Editor-in-Chief for the reasons that remained
obscure for us.

Sometime later Frank, jointly with Pierre America, analyzed in detail in
[1] the source of my error and proposed a correction in the form of additional
restrictions on the proof rules used. This restriction was so devised that the
proposed system remained complete.

Error Number 3. During the late eighties I embarked with Ernst-Rüdiger
Olderog upon a project of writing a book on program verification. One of the top-
ics we planned to cover was verification of parallel programs. The most influential
paper in this area was the seminal [9] that introduced the so-called Owicki-Gries
method. Owicki and Gries considered both partial correctness and termination,
though the main emphasis of their paper was on partial correctness.

When studying their paper we came to a conclusion that their argument
showing soundness of their method of proving termination of parallel programs
was incorrect. This did not yet mean that the method itself was incorrect, though
we were convinced that in fact it was. It remained to find a counterexample,
so a program that did not terminate but the termination of which could be
established using Owicki and Gries method. After some time we involved Frank.
Soon he found a counterexample. This led to [3], my first joint publication with
Frank. (A curious meta-feature of this paper was that it started on page 0. The
reason was that it was the first paper in a book dedicated to Edsger Wybe
Dijkstra.) In the paper we presented the counterexample and proposed a way
to repair the method. The results were incorporated in the book Ernst-Rüdiger
and myself published as [6].

Small Errors. The second edition of the book appeared in 1997. In 2007
Springer approached Ernst-Rüdiger and me suggesting to publish the third edi-
tion. After some deliberation we approached Frank, who —much to our delight—
agreed to get involved. The idea was to extend the book by incorporating his
work on verification of object-oriented programs into it. This would call for an
addition of some new preparatory material on recursive procedures and a revision
of one or two earlier chapters.

Our joint work on the book took an unexpected turn when Frank had a
serious parasailing accident during his stay in Malaysia. He misunderstood the
instructions and fell from the height of some 10 m to the beach, crushing three
vertebra and breaking a couple of bones in both feet. After a repatriation to the
Netherlands he was immobilized for several months at home.

One would think that Frank’s accident had an adverse effect on our work.
Nothing could be farther from truth. Thanks to his stay at home Frank could
focus on research, leaving administrative tasks to others. During this period I
worked with Frank often at his apartment, once with Ernst-Rüdiger who came
to visit us from Oldenburg. As a result our work on the third edition proceeded
smoothly.
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After a huge effort we succeeded to deliver the files to Springer on time in
May 2009. I still remember processing the final overfulls during the Queen’s Day,
listening to a deafening music from a boat moored close to our house at a canal
in the center of Amsterdam.

This rush to meet Springer’s deadline was hardly appreciated by Springer. It
took them another five months (sic!) to publish the book as [4]. Regrettably, we
did not appreciate the quality of print and after tedious discussions convinced
Springer that they should produce a higher quality printout.

Additionally, because of this (in retrospect totally unneeded) rush, some
small errors slipped into the chapter on object-oriented programming. Nothing
serious, but still. A corrected version of the book appeared early in 2011.

My (so far) last publication with Frank is an expanded account of the above
chapter that appeared as [5], with Stijn de Gouw as the fourth author.

The conclusion one can draw from the above small accounts is that not
only program verification but also reasoning about program verification can be
tricky. Interaction between variables used in assertions and in the programs can
be extremely subtle and even if one is aware of it, one can still occasionally err.
Fortunately, in research, in contrast to chess, errors can often be corrected.

Frank, many happy returns on your 60th birthday!
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Fond (and Frank) Memories of Frank

Prakash Panangaden(B)

School of Computer Science, McGill University, 3480 Rue University, Room 318,
Montréal, QC H3A 0E9, Canada

prakash@cs.mcgill.ca

How can Frank be 60? I’m only, oh yeah wait, it all comes back to me
now! Frank is so youthful and vigorous that it seems hard to believe that he is
approaching 60; the new 40 as the popular saying goes. I met Frank long ago
at some now forgotten conference. However, it was in 1990 that I spent a week
in Amsterdam visiting the CWI and again in 1992, when I spent a month at
CWI that I really got to know him well. We were friendly rivals over concurrent
constraint programming and friends on all topics in semantics of concurrency.
Of course, we were bitter enemies on the squash court where I consistently
thrashed him, but perhaps he remembers it differently! Sadly in the late 1990s
our interests diverged when I pursued probabilistic systems and Frank continued
with different directions in concurrency theory.

Let me describe our work in concurrent constraint programming. In the
late 1980’s there was much excitement about the “Japanese Fifth Generation
Project” which aimed to build massively parallel machines that were geared
towards symbolic computing rather than numerical computation. The language
of choice was concurrent logic programming of which there were several vari-
ations. Some order was brought to this world by Vijay Saraswat with his pio-
neering thesis on Concurrent Constraint Programming [Sar87,Sar90]. This was
quickly followed by denotational semantics for this family of languages developed
in [SRP91] and independently in [dBP90]. The work in [SRP91] built on ideas
from [JPP89] whereas the ideas in [dBP90] were a remarkable precursor to the
later proliferation of game semantics.

What was striking about concurrent constraint programming was that it
allowed “side effects” but in a graceful way. One could update data structures by
adding information, but one could not take away information as with the brutal
assignment statement of imperative programming languages. The conceptual
model was as follows. There is a repository of “information” called the store.
The store is just a first-order formula in some logical language. This logic is
equipped with a notion of entailment; how entailment queries are answered is
abstracted away. Several processes are allowed to run concurrently and interact
with the store by either adding information to the store, a so-called tell operation
or they can ask whether a formula is entailed by the store. Syntactically one can
write tell(f) and ask(f) ---> P. The former just adds the formula f to the
store and the latter asks whether the store entails the formula f . If it does the
process continues by executing P , otherwise it suspends. Note that this is not an
if-then-else; an ask never returns false. A suspended process may wake up later
on if and when some other process adds information to the store which makes
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 6–8, 2016.
DOI: 10.1007/978-3-319-30734-3 2



Fond (and Frank) Memories of Frank 7

it strong enough to imply the guard. Thus the “ask” is really a synchronization
mechanism.

The insight of de Boer and Palamidessi was to model this as a dialogue
between processes. Each process was viewed as a sequence alternately posing
questions and answering other questions. They imposed clever closure condi-
tions on these interaction sequences and came up with a fully abstract model
for concurrent constraint programming. Essentially the same ideas appear in
the Saraswat et al. paper but with the added twist that the interactions were
modelled with closure operators so the way that the closure conditions were
expressed were different. Later it was realized that this kind of model has
exactly the same algebra as the existential fragment of first-order logic [MPSS95]:
ask was a weak form of implication, parallel composition was “and” and block
structuring was existential quantification. Concurrent constraint programming
evolved many interesting variations later involving time [SJG94,SJG96], contin-
uous change [GJS98] probability [GJS97,GJP99] and so forth. Indeed there has
been recent work on adding epistemic modalities to the logic [CKP09].

It was an exciting time for concurrency and I am happy to say concurrency
theory continues as vibrant as ever and Frank continues to do pioneering work
in the area. So here’s to you Frank, many happy returns of the day.
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Dear Frank,
Corinne and I congratulate you warmly with the many successful and fulfilled years

you have behind you, and wish you and Hilda dearly a lot of more of such happy years
to come!

In this contribution, I would like to focus on my gratitude to you for our long and
close professional collaboration and for our friendship.

My immediately very high opinion of you as a researcher was, amongst others, based
upon your revolutionary work on Hoare logics for process creation, constituting the main
part of your dissertation, extending the techniques which Krzysztof Apt, Nissim Francez
and I had developed for obtaining a Hoare logic for Hoare’s language CSP (Communi‐
cating Sequential Processes). This has been one of the main themes in your research,
e.g., judging by your many publications on object orientation in various settings. You
started this work in the context of ESPRIT Project 415 at the CWI under Jaco de Bakker,
your thesis advisor, from 1985 to 1989. Doing research at the CWI remained one of the
passions throughout your working life! Jaco had been also my thesis adviser and was a
close colleague, who launched the NFI-funded REX project (1983–1993) together with
Grzegorz Rozenberg and me. This project became our main basis to further the academic
study of Concurrency in Computer Science in the Netherlands. On a position financed
by REX and allotted to my chair, you worked in 1989–1993 at the Eindhoven University
of Technology.

In the first half of the 90 s, it became evident to you that it would not be easy to fulfill
your hopeful expectations about your professional life. For ideally, you would love to
do and lead research at the CWI, combined with a professorate.

I remember a meal the two of us had in an Asiatic restaurant in the Oosterpark
buurt, in Amsterdam, in that period, during which you expressed your insecurity
about your future career. Since I had been in a very similar situation, before, and had
shared my professional doubts with some of my trusted professors, I in fact told you
little more than the advice they had given to me. Namely, that you should establish
your name as a brilliant researcher in an international setting, and, that, once you
were recognized as such internationally, you would be able to realize your profes‐
sional goals in the Netherlands because of sheer peer pressure; e.g., a position at the
CWI might become a possibility! Note that this is far easier said than done, because
it touches upon the very essence of one’s professional life, but at least it sketches the
way ahead! And I told you also that I would do my best to support you in this
respect, since in the meantime I had found out myself how this could be done in my
own situation by creating a trusted international circle of friends and colleagues
whose support and help I could enlist when doing research and, later, when
composing international (EU/ESPRIT, at that time) projects, the latter being one of
the passions in my own professional career!

And indeed, when consulting your professional history, I see this support confirmed.
From 1990 onwards, you participated in most of my ESPRIT/EU projects (SPEC,
REACT, OMEGA and CREDO), first as a participant, then as a partner, and finally, as
a Coordinator! The term “support” is here rather blurred, because, as you will realize
immediately, very soon we supported each other.

10 W.-P. de Roever



Certainly, you, as coordinator of the EU-project CREDO, and as supervisor of my
last “Kieler” Ph.D. students Ulrich Hannemann, who obtained his degree at the Univer‐
sity of Utrecht, and Erika Ábrahám, Marcel Kyas, Immo Grabe and Andreas Grüner, in
your position as Professor at the University of Leiden, are without any doubt the one
who helped me scientifically in the later years of my professional life. For to a consid‐
erable degree due to your participation and supervision, my Ph.D. students were able to
do research at the cutting edge of the frontier of research in our field of Semantics,
Specification and Verification of Concurrent Programs!

I would like to express here my gratitude to the CWI and the LIACS-institute of the
University of Leiden, for their generous support of these students from Kiel! Erika
Ábrahám (now Associate Professor at the RWTH, Aachen) was supported in the two
phases of the Moby-J project, a bilateral NWO/DFG research project between the Neth‐
erlands and Germany, which Marcello Bonsangue and you initiated at the University of
Leiden and I at the University of Kiel. Moby-J led in 2003 to the well-known FMCO
Symposia (FMCO stands for Formal Methods for Components and Objects), lastly
organized in 2012, with 10 corresponding proceedings in Springer’s LNCS series.

I count 24 publications in which both our names occur in the list of co-authors. And,
indeed, in scientific respect I consider you as my direct successor. This is one of the
reasons why I didn’t feel any remorse when I was succeeded, when pensioned in 2008
at the University of Kiel, by a professor in Software-Engineering–for that position my
Institute at the University of Kiel needed first of all, especially to obtain accreditation
for its Bachelor and Master Degree programs! But research is international, and in that
context I am glad that I had passed my torch on to you!

Here, I want mention in particular your semantic insights in the foundations of Floyd’s
Inductive Assertion method which you have shared with me when we started to write our
book on Concurrency Verification (together with Ulrich Hannemann, Jozef Hooman,
Yassine Lakhnech, Mannes Poel and Job Zwiers). I am quite sure, that, without your
crystal-clear insights, I would not have succeeded to unify the various approaches discussed
in that book successfully; what’s more, without your insights it wouldn’t have been written!

But, what is far more important to me now, what a massive amount of fun we have
had through all these years! I remember all those dinner parties Marcello Bonsangue
and you have organized in Leiden, and you in Amsterdam (here, I remember in particular
some Italian restaurants) and abroad, and how our pleasure and enjoyment still increased
when Einar Broch Johnsen (from the University of Oslo) joined our innermost project
circle! Especially last time, at August 2nd, comes to my mind, when Einar just popped
up as a surprise guest out of thin air at your weekend home in Voorthuizen, where Hilda
and you staged a party for us! That is the stuff happy memories are made out of!

When discussing this contribution to your Festschrift with Corinne, she recalled with
pleasure how through the years we have felt truly at home in each other’s company.
Sometimes, this concerned the three of us, and, when Hilda had no professional obli‐
gations, the four of us. So, from the bottom of our hearts, we thank you for our year-
long friendship and collaboration, Frank! Hopefully, in future some more occasions may
arise where we can enjoy each other’s company!

Your friends,
Corinne and Willem-Paul de Roever.

Warmest Congratulations, Frank! 11
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Abstract. We compare conformance checking based on symbolic execu-
tion to conformance checking via bounded model checking. The applica-
tion context is fault-based test case generation, focusing on real-time
faults. The existing bounded model checking approach is performed
on timed automata. It supports time-relevant mutation operators and
a preprocessing functionality for removing silent transitions and non-
determinism. The new symbolic execution approach is performed on
timed action systems, which are a novel variant of Back’s action sys-
tems augmented by clock variables and real-time semantics. It supports
the same set of mutation operators, silent transitions, non-determinism
and data variables. We show how to encode timed automata as timed
action systems and perform experiments on three variants of a car alarm
system, to investigate the influence of silent transitions, non-determinism
and data variables. Both approaches rely on the SMT solver Z3.

1 Introduction

Time-critical systems can often be far more complex than their untimed coun-
terparts. Due to this raised complexity, they require an especially thorough ver-
ification and validation. For example, in the automotive domain, companies rely
heavily on testing to ensure the quality of their systems. Manual test generation
is a tedious and error-prone process, without guarantee of capturing all relevant
parts of the system. Model-based test-case generation deals with these prob-
lems by automatically generating test cases on the basis of a test model. The
tests are usually generated based on coverage criteria, like e.g., state or transi-
tion coverage of the test model. Model-based mutation testing is a fault-based
approach: we define a set of fault models, so called mutation operators, that
are systematically applied to the test model, creating a set of faulty models,
called mutants. The main part of the test-case generation consists of performing
a conformance check between the original test model and its mutants. In case
of non-conformance, we build a test case covering the shortest path from the
initial state to the conformance violation. Thus, we gain a test suite covering all
non-equivalent mutants, able to detect every faulty implementation that imple-
ments any of the specified fault models. In this paper we present two methods
for this conformance check, based on two types of timed models: the first app-
roach is done via bounded model checking and performed on timed automata.
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 15–32, 2016.
DOI: 10.1007/978-3-319-30734-3 4
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Fig. 1. Car alarm system: correct specification (left) and a mutant (right).

This approach was already published [5]. The second new one is based on sym-
bolic execution and works on timed action systems. We define a novel variant
of timed action systems closely related to timed automata, giving them a trace
based semantics. We compare both approaches in terms of runtime, applied to
different models of a car alarm system. Given that the mutation operators might
yield hundreds of mutants, the performance of the conformance check is crucial.

The present paper, written for the Festschrift in honour of Frank S. de Boer,
touches upon three of his active research topics: symbolic execution [1,30], real-
time behaviour [8,12,18], and testing [23,24,30]. Our study indicates that sym-
bolic execution is a promising candidate for automatically analysing real-time
behaviour. As it has been pointed out [7], this is especially relevant to expressive
modelling languages, like e.g. Real-Time ABS [8,12].

Running Example. We will illustrate the different approaches on a car alarm
system, that was provided by Ford as a use case for the past EU FP7 project
MOGENTES (http://www.mogentes.eu), and was since used as an internal
benchmark for various publications [3,5]. The car alarm system is illustrated
as a timed automata in Fig. 1: it provides the user with the options to open,
close, lock and unlock the doors. If the doors stay locked and closed for 20 s,
the system is armed. Forcing the doors open, without unlocking them first, will
cause the activation of the sound and flash alarm. The alarms will deactivate
either if the doors are unlocked, or after 30 and 300 s, respectively.

The remainder of the paper is structured as follows: first, in Sect. 2 we will
give some preliminaries, covering timed automata, model-based mutation test-
ing and bounded model checking. Then, in Sect. 3 we will introduce timed action

http://www.mogentes.eu
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systems, giving them symbolic trace semantics and explaining how to apply a
symbolic conformance check based on the Symbolic Timed Input Output Con-
formance (stioco) relation. In Sect. 4 we will present our experimental results,
comparing symbolic execution to the bounded model checking approach. Finally,
in Sect. 5 we discuss related work and conclude the paper in Sect. 6.

2 Preliminaries

2.1 Timed Automata

Timed Automata (TA) [9] are a widely used formalism for specifying time criti-
cal systems. They are used in several areas, as for instance schedulability analy-
sis [18]. Basic TA are finite state machines, augmented by clocks to measure the
passage of time. Time is considered to only pass in states, and may be restricted
by invariants, enforcing that the states are left before the invariants are broken.
Transitions are considered to take zero time. They can be restricted by clock
constraints in their guard, and each transition may be linked to a set of clocks
that are reset upon passage of the transition. The automaton in Fig. 1 (left) con-
tains 5 clocks. The transition from q1 to q2 resets the clock c. In q2 the passage
of time is restricted by the invariant c ≤ 20 and the transition from q2 to q3 is
restricted by the time guard c == 20.

The experiments conducted for this work were applied on three classes of
Timed Automata with Inputs and Outputs, meaning that the set of observable
actions is spilt into two disjoint sets of inputs (denoted by a question mark) and
outputs (denoted by an exclamation mark):

1. Deterministic Timed Automata. We consider a TA to be deterministic, if
it does not contain silent transitions and for all transitions with same source
state and same action label, their guards cannot be satisfied simultaneously.

2. Non-Deterministic Timed Automata with Silent Transitions. Silent
transitions are considered internal actions, that are not observable to the
user. Both, non-determinism and silent transitions cannot be removed in
general [11]. Recently, we presented a bounded approach for silent transition
removal and determinization [22]: it unfolds the automaton up to a certain
depth and determinizes it, creating a deterministic tree-shaped TA.

3. Timed Automata with Data Variables. Another extension to timed
automata is the support for data variables. These are integer variables, that
can be used both in guards and assignments of transitions. They can also be
used as parameters for transitions, where the parameters for input transitions
are chosen by the user, and all other parameters are chosen by the system.

2.2 Model-Based Mutation Testing

As already stated by Dijkstra [14], one of the main downsides of testing is the
fact that it can never prove the complete absence of bugs in a system under



18 B.K. Aichernig et al.

conformance 

SUT 
(black box) 

test case generator 

verdicts test case executor 

mutation 
operators 

mutated 
models conformance 

model 

requirements 

Fig. 2. Model-based mutation testing [4]

test (SUT). Model-based mutation testing addresses this problem, by generating
tests able to prove the absence of certain kinds of bugs in deterministic SUTs.

The workflow of model-based mutation testing is illustrated in Fig. 2. It starts
from the requirements to produce a test model (top left corner), that is processed
by the mutation tool (according to a set of mutation operators), to create a set
of mutated models (top right corner). For a mutant example see Fig. 1. Next,
each of the model mutants is checked for conformance to the test model. If no
conformance violation is detected, the mutant is considered equivalent, indicat-
ing that the concrete mutation did not propagate to any visible failure. However,
if non-conformance is detected, the mutation introduced a fault with observable
consequences. In that case, we produce an abstract test case, covering the short-
est path to the observed conformance violation. The test suite consisting of all
produced abstract test cases is then passed on to the test case executer. There,
the test cases are concretized and executed on the SUT. If a deterministic SUT
shows the same faulty behaviour as any of the mutants, the corresponding test
case is guaranteed to detect the fault and returns the verdict fail. If the SUT
conforms to the test model, a pass verdict is issued.

The conformance relation may vary: in untimed systems, the Input Output
Conformance (ioco) by Tretmans [25] is widely used. The intuition behind ioco
is that for all traces of the specification, the outputs of the implementation (in
our case, the mutants) must be a subset of the outputs of the specification.
Several extensions of ioco to real-time exist. For our bounded-model checking
of TAs, we use the Timed Input Output Conformance (tioco) introduced by
Krichen & Tripakis [19]. Here, time is seen as output. For the theory and first
experimental results on model-based mutation testing with TA we refer to [5].

For the symbolic execution approach on timed action systems, we rely on a
symbolic conformance relation. The first Symbolic Input Output Conformance
(sioco) relation was introduced by Frantzen et al. [16]. Von Styp et al. [26]
expanded the relation by adding support for time, defining the sioco relation for
Symbolic Timed Automata (STA). We use a very similar conformance relation
to stioco, based on timed action systems. Additionally we also support silent
transitions, which are not handled by Von Styp. et al. The symbolic conformance
check for untimed action systems was recently published [6].

Together with the Austrian Institute of Technology, we developed a model-
based mutation testing tool-chain working on UML-models, Action Systems and
TA (www.momut.org). Timed action systems are not yet officially supported.

www.momut.org
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2.3 Bounded Model Checking

In our first work on model-based mutation testing for TA [5], we proposed a con-
formance check via bounded model checking. We used tioco as a conformance
relation and showed how to encode the conformance-check as a language inclu-
sion problem. Via bounded model checking, we searched for a state where the
mutant can perform an output (since we check tioco conformance, this includes
the passage of time) that is not allowed by the specification.

We bounded the language inclusion by a bound k, and encoded it as an SMT-
formula. This formula is split into two parts: the first part is the reachability
check, which contains the correct step relation for k steps, of both the specifica-
tion and the mutants. It calculates all states that are reachable within k steps.
The second part performs the conformance check for all states that are found
by the reachability. The conformance formula is a conjunction of a valid step in
the mutant (taking only the outputs into account) and the negation of all valid
steps of the specification. Thus, the formula is satisfiable, if the mutant is at
some point able to generate an output that is not allowed by the specification. If
that happens, the SMT solver returns a concrete model that serves as a counter
example for the conformance.

This counter example can then be transformed into a real test case by adding
verdicts and symbolic time constraints. We use the SMT solver Z3 and its feature
for incremental solving.

2.4 Conventions

Generally, we assume the usage of two-sorted logic, where one sort d is defined
for discrete data and the other sort t for time-related formulas and terms. We
further require that the constant 0t of sort t and the binary addition +t for pairs
of sort t must be defined. In addition, the relations ≤, <,=, >≥ must be defined
for all pairs of sorts d and t, i.e. any comparison between time and data must
be possible. Note that in practise, we allow for more sorts in our models, such
as user-defined enumeration sorts, but we use a type checker to ensure that only
meaningful comparisons are performed.

We will denote the set of terms containing variables from a set X by Te(X)
and first-order formulas containing free variables from the same set by Fr(X).
The function free(ϕ) maps a formula ϕ to the set of all free variables in ϕ.

The set CC(X,Y ) denotes the set of clock constraints, with clock variables
in X and constraint operands in Y ∪ Te(∅). A clock constraint is of the form
x ⊗ y, with x ∈ X, y ∈ Y ∪ Te(∅) and ⊗ ∈ {≤, <,=, >≥}, i.e. it is comparison
between a clock variable and a variable or a constant term.

The set of all total functions from A to B shall be denoted by BA. The
substitution of variables shall be denoted by g[σ], where σ is a function from
variables to terms and g is some formula or term. Hence, the signature of [σ] is
given by [σ] : Te(X) ∪ Fr(X) → Te(X) ∪ Fr(X), where X is a set of variables.
The term fX denotes the domain restriction of a function f to the set X.

Sequences containing e1, e2, . . . , en will be denoted by 〈e1 · e2 · · · en〉 and the
concatenation of two sequences σ1 and σ2 will be denoted by σ1ˆσ2.
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3 Timed Action Systems

Action Systems (ASs) were introduced by Back and Kurkio-Suonio [10] for mod-
elling distributed systems. In more recent work, ASs have been used as a mod-
elling formalism for mutation-based test-case generation for reactive systems
[2,4]. An event-centred view of ASs has been taken in this context, for deriving
test cases and for checking of ioco conformance between ASs. More concretely,
for model-based mutation testing each action is assigned a label and an action
type, which identifies the action as being an output, input or internal action.

For the definition of Timed Action Systems (TASs), we also follow this app-
roach. However, the modelling formalism discussed in the following is more
restricted with respect to discrete actions than other variants of the AS for-
malism. Nevertheless, we also extend traditional ASs by explicitly accounting
for time, which is inspired by TA.

In our approach, an AS defines a set of actions and corresponding guarded
commands, a set of state variables and an initialisation for these variables. An
action defines a set of parameters and has an action type. For each action, the
corresponding guarded command defines the conditions in which the action may
be executed and the effect of the action execution. The guarded commands may
access state variables and the parameters of the corresponding action. There
may be several actions with the same label and if multiple action share the same
label, they must also have the same parameters and action type.

During the execution of an AS, at each step an enabled action is chosen non-
deterministically and executed. Through this the state is continuously updated
until the execution terminates, when none of the actions is enabled. An action
is enabled if the guard of its corresponding guarded command is satisfiable.

In order to allow for the modelling of time, we extend ASs by adding clock
variables as in TA. In between the execution of two discrete actions, the system
may wait for certain amounts of time, which increases the values of the clock
variables. This act of waiting will also be referred to as delay in the following.
To be able to define the conditions for the actual waiting time, we add time
invariants to ASs. The time invariant of an AS must hold in all states and
consists of several clauses. A clause defines a time constraint which must hold if
the state variables satisfy the condition defined by the clause. Finally, guarded
commands may define conditions using clocks and may reset clocks.

In the following, we define the syntax and a trace-based semantics for TASs.
Both are inspired by the work of Frantzen et al. [16] and von Styp et al. [26],
who use STA. Since STA are similar to TA, our version of stioco can be seen
as an extension of the original definition [26], as we also allow internal actions.

3.1 Syntax

Figure 3 illustrates the structure of the concrete syntax of TASs and models
a part of the CAS. It specifies 5 real-valued clocks, that the initial state of the
system shall be OpenAndUnlocked, that the system must not wait longer than 20 time
units in state ClosedAndLocked and defines the actions. The actions are labelled with
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clocks [ Real ]{ c;d;e;f;g }
init {

location := OpenAndUnlocked ;}
invariant {

if location == ClosedAndLocked then c <= 20;
.. . }

actions {
! armedOn ( ) if location == ClosedAndLocked and c == 20 then {

location := Armed ; };

? open ( ) resets e if location == Armed then {
location := BeforeAlarm ; };

.. . }

Fig. 3. A snippet of the TAS model of the CAS.

armedOn and open. These two events are fully defined through two and three actions
respectively. In the following, we present the abstract syntax of TASs.

Definition 1 (Abstract Syntax of Timed Action Systems). A timed
action system is a tuple TAS = 〈V, I, C, ΛI , ΛU , ι, Inv,A〉, where V is the set of
state variables, I is the set of parameter variables and C is the set of clock vari-
ables , with V, I, C being mutually disjoint. Λ = ΛI∪ΛU is the set of action labels,
with ΛI being the set of input action labels and ΛU being the set of output action
labels. The constant τ /∈ Λ denotes an internal action and we set Λτ = Λ ∪ {τ}.
The initialisation of the action system is ι ∈ Te(∅)V . Inv is the time invariant
of TAS, which is of the form

∧
i dci → cci, with dci ∈ Fr(V) and cci ∈ CC(C,V)

for all i. The set A ⊆ Λτ × Fr(V ∪ I) × CC(C,V) × Te(V ∪ I)V × P(C) is the
set of all actions. For a = (λ, g, gc, up, r) ∈ A, λ is called label, g is called guard,
gc is the clock guard, up is the update mapping, defined by assignments in the
guarded command and r is a set of clocks, which are reset by executing a.

Before we define semantics for TASs, we introduce two requirements and two
auxiliary functions. These are similar to the requirements defined for Symbolic
Transition Systems (STSs) by Frantzen et al. [16]. The functions arity and para
associate each action with its number of parameters and a tuple containing its
parameters respectively.

1. For all actions λ, para maps λ to a tuple of distinct parameter variables
and for (λ, g, gc, up, r) ∈ A it holds that free(g) ⊆ V ∪ para(λ) and up ∈
Te(V ∪ para(λ))V .

2. As for τ -edges of STSs, we disallow the definition of parameter variables for
internal actions of TASs, i.e. for all τ -actions, it must hold that arity(τ) = 0.

Example 1 (Abstract Syntactical Representation of the CAS). The CAS defined
in Fig. 3 is a TAS 〈V, I, C, ΛI , ΛU , ι, Inv,A〉, where V = {location}, I = {},
C = {c, d, e, f, g}, ΛI = {open, . . .}, ΛU = {armedOn, . . .}, ι = {location �→
OpenAndUnlocked}, Inv = (location = ClosedAndLocked) → c ≤ 20 ∧ . . .
and A = {o, a, . . .}. With actions o = (open, location = Armed,�, {location �→
BeforeAlarm}, {e}) and a = (armedOn, location = ClosedAndLocked, c =
20, {location �→ Armed}, {}). Parts omitted in Fig. 3 are represented by dots.
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3.2 Semantics and Stioco

In this subsection, we give a symbolic trace semantics for TASs and discuss
stioco checking. A symbolic trace represents one (sequential) run of the sym-
bolic execution of a TAS. This symbolic trace semantics forms the basis for our
implementation of the symbolic executor and the stioco conformance checker.

The trace-based semantics must fulfil four requirements: a trace must
(1) start with a delay, (2) consist of alternating sequences of discrete actions
and delays, and (3) end in a delay. The first two requirements are placed on the
semantics in correspondence to the definition of traces by von Styp et al. [26].
Conversely, the third requirement serves to simplify conformance checking while
it does not limit generality as zero delays are possible. Additionally, (4) a trace
should handle internal actions appropriately: consider the concrete timed trace
ct = 〈1·!a · 2 · τ · 3·?b · 0〉. For checking tioco conformance one is only interested
in observable traces of the specification [19]. Thus, we would project ct to the
set of observable input and output actions, erasing the τ -action and summing
up the two consecutive delays: ct′ = 〈1·!a · 5·?b · 0〉.

In the symbolic setting, we use symbolic traces where constant time delays are
replaced by symbolic delay variables. As common in symbolic execution, these
symbolic delays are defined via constraints. We distinguish between two kinds
of delay variables: observable delays ti, which are part of the observable trace
and unobservable delays di,j that appear only in constraints. Observable delays
are always defined in terms of unobservable delays. For example, the symbolic
trace st = 〈d1·!a · d2,1 · τ · d2,2·?b · d3〉 including an unobservable τ -action would
be projected to an observable trace st′ = 〈t1·!a · t2·?b · t3〉 with the constraints
t1 = d1, t2 = d2,1 + d2,2 and t3 = d3. Note that while observing the delay t2, it
is not possible to distinguish between the internal delays d2,1 and d2,2.

So far, we only considered delays. For the trace-based semantics we need to
update the state of variables and clocks along a trace and collect the constraints:
discrete and time guards of actions, time invariants and constraints which express
that consecutive unobservable delays sum up to observable delays. In addition, it
is necessary to keep track of the set of unobservable delays along a trace, because
we will hide these via existential quantification for the conformance check.

In order to define the formal semantics, we introduce concepts similar to
those used for the original definition of stioco [26]. For elegant clock update
definitions, we introduce the singleton sets D = {d} and T = {t} containing an
unobservable and an observable delay, respectively. Since we need to distinguish
between different occurrences of variables in a trace we introduce the disjoint
indexed sets for observable delays Ti, unobservable delays Di,j and parameters
Ii with i, j ∈ N. The index i corresponds to the position in the trace and j
corresponds to the number of delays since the last observable action.

Furthermore we assume that there exists a bijective variable-renaming ri :
I ∪T → Ii ∪Ti, which adds an index i to non-indexed variables and there exists
a bijective variable-renaming dri,j : D → Di,j , which adds indexes i and j to
unobservable delay variables. We set T̂ =

⋃
i Ti, Î =

⋃
i Ii and D̂ =

⋃
i

⋃
j Di,j .
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We model symbolic clock updates with a function � ∈ Te(C ∪ D)C , with
�(c) = c + d for all c ∈ C and d ∈ D. With this machinery we can now elegantly
define clock updates in step i, j as a composed substitution function [dri,j ] ◦ �,
first replacing the clocks with the term c + d and then indexing d appropriately.

For clock resets of all clocks in a set r, we define a term-mapping FO(r),
such that FO(r)(c) = 0t for c ∈ r and FO(r)(c) = c otherwise, i.e. it sets clocks
in r to zero. Finally, we define the set of all variables as V̂ ar = V ∪Î ∪D̂∪ T̂ ∪C.

Symbolic Trace Semantics. The symbolic trace semantics of a TAS representing
its symbolic execution is then given by the generalised transition relation ⇒ ⊆
((T̂ · Λ)∗ · T̂ ) × Fr(V̂ ar) × Te(V ∪ Î)V × Te(C ∪ D̂)C × P(D̂), which is defined
below. It is a set of 5-tuples (σ, pc, q, qc,D), where σ is an alternating sequence
of delays and actions; pc is the path condition, i.e. the conditions which need
to be satisfied for σ to be executable; q is the discrete symbolic state of the
variables V, i.e. a mapping from state variables to terms over state variables and
parameters Î; qc is the symbolic state of the clocks C, i.e. a mapping from clocks
to sums of unobservable delays, and D contains the set of unobservable delays
di,j collected along the observable symbolic trace σ.

Definition 2 (Generalized Transition Relation). Given a timed action sys-
tem TAS = 〈V, I, C, ΛI , ΛU , ι, Inv,A〉, its generalised transition relation ⇒ is
defined to be the smallest set, which satisfies the following three rules:

(〈t1〉, Inv ∧ Inv[[dr1,1] ◦ �] ∧ t1 = d1,1, id, ([dr1,1] ◦ �)C , {d1,1}) ∈ ⇒
(Tε)

(σˆ〈ti〉, pc, q, qc,D) ∈ ⇒ (λ, g, gc, up, r) ∈ A λ �= τ

(σˆ〈ti · λ · ti+1〉, pc ∧ ti+1 = di+1,1 ∧ dc ∧ tc, q′, q′
c,D ∪ {di+1,1}) ∈ ⇒

(Tλ)

where
q′ = ([q] ◦ ([ri+1] ◦ up))V ,
q′
c = ([qc] ◦ ([FO(r)] ◦ ([dri+1,1] ◦ �)))C,

dc = (g[ri+1])[q] ∧ (gc[q])[qc] ∧ (Inv[q′])[[qc] ◦ FO(r)] and
tc = (Inv[q′])[q′

c]

(σˆ〈ti〉, pc ∧ ti =
∑k

j=1 di,j , q, qc,D) ∈ ⇒ (τ, g, gc, up, r) ∈ A

(σˆ〈ti〉, pc ∧ ti =
∑k+1

j=1 di,j ∧ dc ∧ tc, q′, q′
c,D ∪ {di,k+1}) ∈ ⇒

(Tτ)

where
q′ = [q] ◦ up,
q′
c = ([qc] ◦ ([FO(r)] ◦ ([dri,k+1] ◦ �)))C,

dc = g[q] ∧ (gc[q])[qc] ∧ (Inv[q′])[[qc] ◦ FO(r)] and
tc = (Inv[q′])[q′

c]
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Rule Tε is the base case expressing the initial delay t1 before the first action, if
any. It states that the time invariant must hold before and after this delay. The
identity function id expresses the unchanging of the discrete state. The clocks C
are updated accordingly.

Rule Tλ expresses that the symbolic execution of an observable action
extends the observable trace by a sequence 〈λ · ti+1〉, where λ is the correspond-
ing action label and ti+1 is an observable delay. A new unobservable delay in
step i+1, 1 is added to the set of unobservable delays and set to be equal to the
observable delay in the path condition. Additionally, the discrete (dc) and time
constraints (tc) are added to the path condition as well. Furthermore, the dis-
crete state q is updated to q′ according to the update function up of the action.
This discrete state update takes also care of the proper variable renaming (or
variable indexing) via function ri+1. The clocks are partially reset according to
the reset set r and then delayed.

Rule Tτ expresses that the symbolic execution of an internal action (with
a τ label) does not change the observable trace σˆ〈ti〉, but adds a new delay
di,k+1 to the set of unobservable delays D. The new delay in step i, k +1 is
added to the path condition, together with the discrete (dc) and time constraints
(tc). Furthermore, the discrete state q is updated to q′ according to the update
function up of the action. The clocks are partially reset according to r and then
delayed according to di,k+1.

The discrete constraint dc mentioned in both rules Tλ and Tτ contains not
only discrete conditions but constrains the execution of discrete actions. For a
discrete action to be executable, the guard g and the clock guard gc must be
satisfied in the pre state and the time invariant must be satisfied after updating
the discrete state and resetting the clocks. The time constraint tc analogously
constrains the length of the delay, by specifying that the time invariant must
hold after executing the discrete action, resetting and updating clocks.

Example 2 (Generalized Transition Relation of the CAS). In this example, we
list two elements of the generalised transition relation of the CAS. It contains
by definition through rule Tε the element (〈t1〉, I ∧ I ′ ∧ t1 = d1,1, {location �→
location},

⋃
x∈C{x �→ x + d1,1}, {d1,1}), where I = (location = ClosedAnd-

Locked) → c ≤ 20 ∧ . . . and I ′ = (location = ClosedAndLocked) →
c + d1,1 ≤ 20 ∧ . . .. A trace consisting of only the open-action, which exe-
cutes the open-action as defined in Fig. 3 corresponds to the tuple (〈t1·?open ·
t2〉, pc, q, qc, {d1,1, d2,1}), where q = {location �→ BeforeAlarm}, qc = {e �→
d2,1}∪

⋃
x∈C\{e}{x �→ x+d1,1+d2,1} pc = I∧I ′∧t1 = d1,1∧t2 = d2,1∧dc∧tc, with

dc = (location = Armed) ∧ (BeforeAlarm = ClosedAndLocked) → c + d1,1 ≤
20∧. . . and tc = (BeforeAlarm = ClosedAndLocked) → c+d1,1+d2,1 ≤ 20∧. . .

Conformance Checking. Since the stiocos conformance relation for TASs is
very similar to the definition of stioco of von Styp et al. [26], we will not give
the full definition, but rather list the three most important differences:

– We use the semantics discussed above. As unobservable delays along a trace
are relevant for conformance, symbolic states and symbolic observations
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consider these as well. Hence, states and observations are tuples, where
one tuple element contains the unobservable delays which have been col-
lected before reaching a symbolic state or before observing some symbolic
observation.

– The symbolic observation of delays needs to be adapted as well, i.e. a symbolic
counterpart of the elapse(s)-function [19] must be defined, which maps a state
s to the set of delays, which can be executed without executing an observable
action. Hence, a symbolic elapse(s)-function could be defined as a trace, which
consists of only one delay, executed in state s. More concretely, it could be
defined as (t1, pc, q, qc,D) ∈⇒, but with shifted indexes and a substitution of
the actual state into pc, q and qc.

– The original stioco definition uses a function Φ, which gives a condition for
observing some observation after a given trace σ. To account for internal
actions, this function needs to existentially quantify over the sets of unob-
servable delays collected along σ.

The conformance check is implemented in the same fashion as the sioco con-
formance check for untimed action systems [6], which is itself inspired by the
ioco conformance checker used in [2,3]. More concretely, it performs a bounded
depth-first search for unsafe states, which are states in which non-conformance
may be observed. For this purpose, both mutant and specification are symboli-
cally executed in parallel, such that they synchronise on observable actions, but
execute internal actions independently from each other. In order to ensure input-
enabledness of the mutant, which is a requirement for stioco, we perform an
angelic completion for the mutant. Hence, we implicitly add self-loops to states
for all non-specified inputs. At each step, a conformance check is performed and
if non-conformance is detected, the trace leading to the current state and the
satisfiable non-conformance condition are returned.

However, a naive implementation of this procedure would suffer from prob-
lems such as path explosion [13] and thus be far too slow to be useful. Con-
sequently, several optimisations have been implemented, which can roughly be
grouped into three categories:

Pruning of search tree. If during the search for unsafe states, we reach a
symbolic state which has already been visited, we prune the search tree.
For this purpose, we implemented symbolic checks for equivalence of states,
which are based on the state inclusion condition defined by Gaston et al. [17].
These checks deem two symbolic states to be equivalent, if they correspond
to the same sets of concrete states.

Precomputation. We precompute symbolic execution graphs, which encode
all executable traces for the specification. This information can be reused
during the conformance check and results in a performance gain, as we check
conformance for hundreds of different mutants with the same specification.

Syntactic mutation analysis. As long as the mutation has not been executed,
the number of satisfiability checks can be reduced drastically, e.g. by using
the precomputed execution graph for the mutant as well.
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3.3 Encoding Timed Automata Using Timed Action Systems

In order to encode a Timed Automaton (TA) as a TAS, we essentially create
a TAS having the same set of state variables plus one additional state variable
representing the current location and having the same set of transitions. The
procedure for translating TA into TASs can be structured as follows:

1. Create a TAS with the same set of state variables, clocks and action labels.
2. Create a set of constants Loc, where each constant represents a location in the

TA. Define a function rep, which maps locations to their respective constants.
3. Add an additional state variable called location, which takes values in Loc,

and rename an existing variable with the same name, if such a variable exists.
Initialise location with rep(l0), where l0 is the initial location of the TA.

4. For each transition of the TA with source location l and target location l′:
4.1 Create an action with same guards, clock resets, state updates and label.
4.2 Add location = rep(l) to the guard and add location �→ rep(l′) to the

state update.
5. Initialise the time invariant to �, then for each invariant i of a location l:

Conjunct the clause rep(l) = location → i to the time invariant of the TAS.

Any TAS that was built according to this structure, can also be encoded as
a TA, by reverting the steps above.

4 Experimental Results

To give a first comparison of the two approaches we use the car alarm system
that was introduced in Sect. 1. We defined different variants, containing model
elements such as silent transitions and data variables, that can be challenging for
the conformance checks. In all the experiments we use the following settings: we
translated from timed automata to timed action systems as closely as possible:
The different models contain the same number of states and transitions and the
same sets of clocks and variables. We used eight different mutation operators
(similar to those in [5], excluding the changing of action labels, that would have
been problematic to implement for the TAs), that were implemented equally
for both types of models. However, due to the different modelling styles, the
amount of mutants did vary slightly in some cases. All experiments were run on
a MacBook Pro with a 2.8 GHz Intel Core i7 and 8 GB RAM.

Table 1. Computation time for the different conformance checks on the deterministic
version of the car alarm system.

Depth Bounded model checking Symbolic execution

Mean Median Max Min Mean Median Max Min

12 1.4 s 1.1 s 33 s 0.07 s 1.7 s 0.02 s 38.83 s ∼ 0 s
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Fig. 4. Partial models of the car alarm system with silent transitions.

4.1 Deterministic Car Alarm System

We first investigate the model in Fig. 1. It is deterministic and has 5 clocks, 16
locations and 25 transitions. The results of applying both approaches are dis-
played in Table 1. The bounded model checking performed slightly faster and
at a very constant rate, without many statistical outliers. The symbolic execu-
tion, with the median far below the mean value, was very fast for most of the
mutants, however there were some that took significantly longer than the rest,
and increased the average processing time. The overall runtime of the bounded
model checking was 30.0 min for 1, 320 mutants, compared to 27.5 min for 968
mutants in the symbolic execution.

4.2 Non-deterministic Car Alarm System

The next model contains a silent transition that non-deterministically delays
the 20 s timer responsible for arming the system by up to two seconds. This
changes the time constraints for the arming of the system and adds non-
determinism for the unlock and open transitions leaving the locations. We used
this model previously [22]. Besides the non-determinism, it differs from the
original car alarm system, by underspecifying whether the sound alarm or the
flash alarm is activated first. The bounded model checking approach can nei-
ther deal with non-determinism, as it might lead to spurious counterexamples,
nor with silent transitions. As already described in Sect. 2, this can be tackled,
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Table 2. Computation time for the different conformance checks on the partial models
of the non-deterministic version of the car alarm system.

Model Depth Bounded model checking Symbolic execution

Mean Median Max Min Mean Median Max Min

Partial 1 8 9.7 s 8.0 s 85.1 s 0.3 s 0.28 s 0.04 s 16.78 s ∼ 0 s

Partial 2 12 1.6 s 1.63 s 37.3 s 0.08 s 0.08 s 0.03 s 2.28 s ∼ 0 s

Complete 12 x x x x 0.79 s 0.06 s 360.84 s ∼ 0 s

by a bounded determination of the automaton in a preprocessing step. How-
ever, this preprocessing leads to a severe state space explosion. If applied to the
non-deterministic car alarm system, with a maximum depth of 12, the deter-
ministic automaton contains 13, 545 locations, and can not be processed by the
test case generation tool anymore. We thus split the original model into two
tioco-conform partial models, where the first one captures the different variants
of locking, unlocking, closing and opening the doors, up to the first arming tran-
sition. The second one only contains one direct path to the armed state, but
covers the rest of the system. Both partial models are illustrated in Fig. 4. This
keeps most of the branching in the first smaller system, and the main function-
ality in the second and larger system. The results of applying the approaches to
these models are illustrated in Table 2. The overall runtime for the first partial
model was 32.8 min for 220 mutants for applying the bounded model checking
and 48.1 s for 168 mutants for the symbolic execution. For the second partial
model, the bounded model checking took 34.1 min for 1, 263 mutants and the
symbolic execution only needed 68.1 s for 832 mutants.

The ability of the symbolic approach, to process the models without unfolding
them first, clearly gives it an advantage here. Not only is it a lot faster on the
partial models, it was also able to process the complete model. Additionally, it
has on average even been faster than in the deterministic case. There are two
main reasons for this behaviour. Firstly, three mutants have not been checked for
conformance automatically, because they ran into a timeout (ten minutes), and
were excluded from the experiments. However, manual inspection revealed that
these mutants conform to the specification. Secondly, the introduction of a silent
transition led to a much larger portion of nonequivalent mutants. Aichernig et al.
showed that ioco checking of equivalent mutants takes significantly longer than
ioco checking of non-equivalent mutants [3], thus a lower number of equivalent
mutants can explain the reduction in average runtime from 1.7 s to 0.79 s.

4.3 Car Alarm System with PIN Code

This final model treats the ability of processing data variables. The unlock and
lock transitions of the car alarm system are augmented by a PIN code. If the
code is entered correctly, the system acknowledges it with a new ack-output,
and continues as before. If it was entered incorrectly, the system will start the
alarms, after a nack- output. This model only uses one clock, whereas five clocks
were used in the original car alarm system.
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Table 3. Computation time for the different conformance checks on the deterministic
version of the car alarm system, augmented by a PIN code.

Depth Bounded model checking Symbolic execution

Mean Median Max Min Mean Median Max Min

8 1.46 s 0.28 s 59.41 s 0.12 s 0.07 s 0.05 s 0.82 s ∼ 0s

12 4.12 s 0.35 s 35.41 s 0.13 s 0.24 s 0.05 s 3.67 s ∼ 0 s

The PIN code did not have any negative influence on both approaches, as
illustrated in Table 3. For the symbolic execution, the mean conformance check
time was even reduced. This was most likely caused by the fact that only one
clock was used in this model. Furthermore, there were several more mutants,
most of which were non-equivalent.

Altogether, the bounded model checking was applied to 1, 702 mutants and
needed 41.4 min on depth 8 and 116.8 min on depth 12. The symbolic execu-
tion was again faster, needing 143.0 (depth 8) and 460.8 (depth 12) s for 1, 918
mutants. For the reported numbers, we restricted the PIN code to three dig-
its. However, we also applied the experiments with higher values (four and five
digits), without any negative consequences.

4.4 Lessons Learned

During the experiments, we found several model elements that influence the
presented approaches in different ways:

1. The number of clocks has a big influence on the runtime of the symbolic
execution approach. Adding clock variables slows the check down, whereas
merging two independent clocks reduces the runtime noticeably. In contrast,
for the bounded model checking, the number of clocks does not have a signif-
icant influence on the runtime.

2. Non-determinism is an obstacle for conformance checking. For the bounded
model checking, where determination has to be done beforehand, this leads to
a state-space explosion and the complete model even became infeasible. The
symbolic execution, however, only experienced a reduction in performance
for some problematic mutants such as the two mutants which had to be
excluded from the experiments. Nevertheless, it was still able to process the
remaining mutants in reasonable time, though it should be noted that the
maximum runtime increased from about 40 s in the deterministic case to
about six minutes. This can be attributed to the fact that multiple symbolic
states can be reached by executing observable traces if non-determinism is
involved, which in turn increases the complexity for satisfiability checking of
the non-conformance condition.

3. Statistical outliers with respect to runtime are more frequent and more
extreme in symbolic execution, than on bounded model checking. In bounded
model checking, the processing time of different equivalent mutants is usually
the same. For symbolic execution, some mutants are harder to check than oth-
ers. Usually, these are equivalent mutants, which contain mutations that are
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executed early during the search for conformance violations, while mutations
that are executed at higher depths generally cause a much lower performance
penalty. This is due to the fact, that in the latter situation, optimisations
based on syntactic mutation analysis have a larger impact.

5 Related Work

Several time extensions for action systems have already been proposed: Fidge and
Wellings [15] proposed timed action systems, assuming time-consuming actions
and discrete time. Westerlund and Plosila [29] proposed action systems based
on continuous time, where each action system contains a clock to measure the
time since start of the system. Again, time is considered to be consumed by
actions, and may not pass between them. Wabenhorst [27] proposes a formalism
combining time-consuming actions and an additional wait action executed if
none of the other actions are enabled. In contrast to these proposals, we consider
actions that take zero time, followed by delays. This keeps our definition of timed
action systems very close to timed automata.

Kurki-Suonio [20] proposed a time extension to action systems, using, equal
to our approach, zero time actions, but using only one global variable to track
time. Each action has a parameter specifying its time of execution. They can
only be executed if the global time is smaller or equal to their time of execution.
If an action is chosen, it raises the global time to its time of execution. Contrary
to this approach, we use invariants instead of deadlines for limiting time progress
and we support multiple clocks, allowing for more complex time constraints.

We also encoded the language inclusion problem within UPPAAL [21], by
adding a trap-property to the product of the specification and a mutant. First
experiments showed that UPPAAL is very fast in detecting non-conformance in
the deterministic case. In the non-deterministic case, the encoding we used suf-
fered from the same problem as the bounded-model checking: it lead to spurious
counter examples. Adding a PIN code with a range of 0−500 to the determinis-
tic model already slowed the conformance check down and expanding it to 5000
made the whole approach infeasible.

Wang et al. [28] presented a zone-based language inclusion check for timed
automata. It seems to be faster then ours, however it does not support silent
transitions, and only terminates for determinizable classes of timed automata.

6 Conclusion

We have introduced timed action systems in a fashion as close to timed automata
as possible. We showed how to translate timed automata into timed action sys-
tems and defined a symbolic trace semantics for them. Using this semantics, we
applied a symbolic conformance check based on the stioco conformance rela-
tion. We then compared bounded model checking and symbolic execution in
the context of test-case generation, applied to different models of a car alarm
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system. The results showed that symbolic execution was able to handle non-
determinism very well, and that data variables did have no negative influence
on both approaches.
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Abstract. Distributed systems are composed of nodes that
communicate and coordinate their actions by passing messages. The
nodes interact with each other in order to achieve a common goal.
Resource analysis of distributed systems needs to consider the distri-
bution, communication and interaction aspects of the systems as well.
We sketch the basic framework proposed for the resource analysis of dis-
tributed systems, together with the new notions of cost that arise in
such distributed context. In particular, we will discuss the notions of:
peak cost that captures the maximum amount of resources that each dis-
tributed node might require along the whole execution; and parallel cost
which corresponds to the maximum cost of the execution by taking into
account that, when distributed tasks run in parallel, we need to account
only for the cost of the most expensive one. The framework is developed
for a concurrent objects language with futures, a formalism that is based
on Frank’s work.

1 Introduction

Static resource analysis [18] aims at inferring an upper bound on the amount of
resources required along any execution of a software system by only inspecting
its code and without executing it [3,11,12,19]. We rely on a generic resource
analysis framework [2,3] that is parametric w.r.t. the type of resource that one
wants to measure. Traditional resources include the number of steps executed,
the amount of memory allocated, or the number of calls to a specific method.

Distributed systems pose new challenges to resource analysis [17]. The fact
that they are composed of a number of distributed nodes that communicate
by exchanging messages needs to be considered by the analysis. We consider a
simple class-based programming language with four instructions to define the
distributed execution model: (1) new C creates a new distributed component,
referred to as a location, that executes methods of class C, (2) f=a.m(x) spawns
an asynchronous task m(x) on the location a, and f is a future variable that
allows us to check whether the asynchronous task has been completed, (3) the
instruction await f? allows us to synchronize with the termination of the task
associated to the future variable f, and (4) the instruction f.get returns the value
computed by the task associated to the future variable f (or blocks if the task
has not terminated yet). We omit class definitions when they are not relevant
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E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 33–46, 2016.
DOI: 10.1007/978-3-319-30734-3 5



34 E. Albert et al.

for the examples. This language is the core of ABS [14], a concurrent objects
language with futures. A formal semantics for such language can be found in
Frank’s work [10].

The notion of cost center [1] is fundamental to define the framework of
resource analysis for distributed systems. The main idea is that it allows split-
ting the cost of executing the whole system at the granularity of interest. For
instance, one can observe the cost associated to each distributed component.
And it allows observing the cost associated to executing a certain task within
a distributed component. Using cost centers, we can define new performance
indicators for distributed systems [6]. Consider the distributed system depicted
in Fig. 1 which is composed of four distributed components. Our interest is in
inferring performance indicators that allow us to estimate the overall perfor-
mance of the distributed system. One of the main indicators will be the one that
determines whether the load is well balanced among the distributed nodes. For
this purpose, we infer the resource usage for each of the distributed nodes (in
the figure it appears in blue over the node). Note that since the computation
depends on input variables n and m, the resource usage is given by means of
cost expressions that can be evaluated for concrete input values for n and m. By
comparing such cost expressions, we can identify whether there is a bottle neck in
the system (for instance the resource usage of the upper component is exponen-
tial and this might be too expensive). Another essential performance indicator
is the one that estimates the sizes of the communication among the distributed
components. This is depicted in the figure by arrows whose labels indicate the
amount of data sent from one component to another. Again, since this might
depend on the input data, it is expressed by means of cost expressions in terms
of the input values. This way we are able to approximate communication costs.

Besides defining new performance indicators, there are new notions of cost
that arise in the context of distributed systems. In particular, we pursue the
notion of peak cost [7] which corresponds to the maximum amount of resources
that the location might require along any execution. Inferring the peak cost is
not trivial, since we need to infer: (1) the amount of tasks posted to its queue,
(2) their respective costs, and (3) knowledge on whether the tasks may be posted
in parallel and thus be pending to execute simultaneously.

The other notion of cost that we are able to infer is the parallel cost [4],
which differs from the standard notion of serial cost because when tasks execute
in parallel it only considers the cost of the most expensive one. Thus, it is dif-
ferent from the standard notion of cost because it exploits the truly concurrent
execution model of distributed processing to capture the cost of synchronized
tasks executing in parallel. It is also different to the peak cost since the peak
cost is serial, i.e., it accumulates the resource consumption in each component
and does not exploit the overall parallelism as it is required for inferring the
parallel cost. The main challenge to infer the parallel cost is to infer the par-
allelism between tasks while accounting for waiting and idle processor times at
the different locations.
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Fig. 1. Performance indicators in a distributed system

The contribution of this paper is putting within the same setting different
analyses that have been published in the following venues: the analysis that
underlie performance indicators is developed in [5,6], the peak cost analysis puts
together work published at [7,8], and the parallel cost analysis was introduced
at [4]. The rest of the paper is structured as follows: Sect. 2 describes the basics
of the resource analysis framework. Section 3 introduces the indicators that can
be considered to estimate the performance of a distributed system. In Sect. 4 we
overview the main ideas of the peak cost analysis. Section 5 intuitively explains
the notion of parallel cost and an analysis that overapproximates it. Finally,
Sect. 6 concludes and points out some directions for future work.

2 Resource Analysis with Cost Centers

The notion of cost center is an artifact used to define the granularity of a cost
analyzer. In [1], the proposal is to define a cost center for each distributed com-
ponent; i.e., cost centers are of the form c(o) where o is a location identifier
and c( ) is the artifact used in the cost expressions to attribute the cost to the
different components. Every time the analyzer accounts for the cost of execut-
ing an instruction inst at program point pp, it also checks at which location
the instruction is executing, since the instruction might be reached from exe-
cutions on different distributed components. This information can be approxi-
mated by an analysis that is called points-to, and different levels of precision can
be achieved (see e.g. [15,16]). In particular, given a program point pp and the
current distributed location this, points-to analysis returns the set of locations
Opp = pt(pp, this) which along the execution this can be instantiated to. The
cost of the instruction is accumulated in the cost centers of all elements in Opp as

∑

∀o∈Opp

c(o) ∗ cost(inst),

where cost(inst) expresses in an abstract way the cost of executing the instruc-
tion. If we are counting steps, then cost(inst) = 1. If we measure time, cost(inst)
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refers to the time to execute inst. Then, given a method m(x̄), the cost ana-
lyzer will compute an upper bound for the serial cost of executing m of the form
m+(x̄) =

∑n
i=1 c(oi)∗Ci, where oi refers to a location and Ci is a cost expres-

sion that bounds the cost of the computation carried out by location oi when
executing m. Thus, cost centers allow computing costs at the granularity level
of the distributed components. If one is interested in studying the computation
performed by one particular component oj , we simply replace all c(oi) with i �= j
by 0 and c(oj) by 1.

1 void m (int n) {
2 . . .
3 x. p();
4 . . .
5 y. q();
6 . . .
7 }

8 void p () {
9 . . .

10 y. s() ;
11 . . .
12 }

13 void q () {
14 . . .
15 }
16 void s () {
17 . . .
18 }

Fig. 2. Example of resource analysis with cost centers

Example 1. For the code excerpt in Fig. 2, we have three cost centers for the
three locations that accumulate the costs of the code they execute: the cost center
for the location executing m, namely o, and the cost centers for the locations
referenced by x and y, that we suppose already created. Therefore, we have that
the cost of executing m is m+(n) = c(o)∗m̂ + c(x)∗p̂ + c(y)∗ŝ + c(y)∗q̂, where we
represent with ẑ the cost of the instructions in method z. �

Other Types of Granularity. But, besides the original idea of using the cost
centers to represent the distributed components, they can be used to achieve
other kinds of granularity in the analysis. In particular, in the peak cost analysis
(Sect. 4), they will allow us to achieve task-level granularity; and in the parallel
cost analysis (Sect. 5), to achieve block-level granularity, as explained below.

As for task-level granularity, one wants to obtain the cost associated to the
execution of each task m when executed on each distributed component o. To
this purpose, we define cost centers of the form c(o:m) which contain the location
identifier o and the task m running on it. Then, every time the analyzer accounts
for the cost of executing an instruction inst, it checks at which location inst is
executing (e.g., o) and to which method it belongs (e.g., m), and accumulates
c(o:m) ∗ cost(inst). As for the block-level granularity, we define block-level cost
centers c(o:b) which contain the location identifier o and the block b running
on it.

Let M be a set that contains all method names combined with all location
identifiers where they can be executed. Given a method m(x̄), the cost analyzer
now computes a task-level upper bound for the cost of executing m. This upper
bound is of the form m+(x̄) =

∑n
i=1 c(oi:mi)∗Ci, where oi:mi ∈ M, and Ci is a



Resource Analysis of Distributed Systems 37

cost expression that bounds the cost of the computation carried out by location
oi while executing block mi. Let B be a set that contains all blocks combined with
all location identifiers where they can be executed. Given a method m(x̄), the
cost analyzer now computes a block-level upper bound for the cost of executing
m. This upper bound is of the form m+(x̄) =

∑n
i=1 c(oi:bi)∗Ci, where oi:bi ∈ B,

and Ci is a cost expression that bounds the cost of the computation carried out
by location oi while executing block bi. Observe that bi need not be a block of
m because we can have transitive calls from m to other methods; the cost of
executing these calls accumulates in m+(x̄).

As we have seen, resource analysis allows different levels of granularity, thus
we can have different types of cost center artifacts. For any kind of granularity,
the notation m+(x̄)|cc is used to express the cost associated to the cost center
c(cc) within the cost expression m+(x̄), i.e., the cost obtained by setting all
c(cci) to 1 when cc′ = cc and to 0 otherwise. Given a set of cost centers N =
{cc1, . . . , ccn}, we let m+(x̄)|N refer to the cost obtained by setting to one the
cost centers c(cci) such that cci ∈ N .

3 Performance Indicators

In this section we define indicators that can be considered to estimate the perfor-
mance of a distributed system [6]. In particular, we are interested in predicting
the load balance of the distributed locations, the number of communications
between nodes and the amount of data transferred among them.

3.1 Load Balance

Using the cost centers described in Sect. 2, we define an indicator to assess
how balanced the load of the distributed nodes that compose the system is.
By attributing the cost of each instruction to the location responsible of exe-
cuting it, upper bounds can help during the development process to take better
design decisions for obtaining an optimal load balancing.

Example 2. In the source code shown in Fig. 3(left and center), method m creates
a new location using new at L2, pointed by variable a, and then a while loop
spawns n tasks executing method p (L4). Besides, method p contains another
loop that calls q n times (L10). Observe that the second argument of the call
to p at L4 causes method q to be executed at location a. If we replace the
second argument by this at L4, that is a.p(n,this), method q will be executed
at the location executing m. We refer to this location as o. The upper bound
expressions for the number of steps are the same for both cases, but such decision
is crucial for properly balancing the system. By using the resource analysis of
Sect. 2, for a.p(n,a) at L4, the cost attributed to o is m+(n)|o = 9+7∗n and the
cost attributed to a is m+(n)|a = 1 + n ∗ (6 + 14 ∗ n). It can be seen that the
program is not properly balanced, since m+(n)|o is a linear expression w.r.t.
the value of n, while m+(n)|a is a quadratic expression. On the other hand,
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1 void m (int n) {
2 loc a = new Obj();
3 while (n > 0) {
4 a. p(n,a);
5 n = n − 1;
6 }
7 }

8 void p (int n, loc x) {
9 while (n > 0) {

10 x. q();
11 n = n − 1;
12 }
13 }
14 q () { 10 instr }

15 void m2 (int n) {
16 while (n > 0) {
17 loc a = new Obj();
18 a. p(n,a);
19 n = n − 1;
20 }
21 }

Fig. 3. Example of performance indicators

by using a.p(n,this) at L4, we have that m+(n)|a = 1 + n ∗ (6 + 7 ∗ n) and
m+(n)|o = 9 + n ∗ (7 + 7 ∗ n). In this case we can see that the program is more
evenly balanced, as both expressions are quadratic w.r.t. n.

When reasoning about distributed systems, it is essential to have information
about their configuration, i.e., the sorts and quantities of nodes that compose
the system. As we have seen in the previous example, configurations may be
straightforward in simple applications, but the tendency is to have rather com-
plex and dynamically changing configurations (cloud computing is an example of
this). To this end, in addition to the upper bound on the number of instructions
executed by each location, it is required to have information about how many
instances of each location might exist. Resource analysis described at Sect. 2 can
also be extended to provide such information.

Example 3. As we have seen in Example 2, method m only uses two locations,
o and a. In contrast, method m2 shown in Fig. 3(right) creates locations within
a loop and, by means of the resource analysis, we can infer that the number of
locations created at m2 is bounded by the value of n.

If we consider that a system is optimally balanced when all its components
execute the same number of instructions, we can use the upper bounds on the
number of instructions and the upper bounds on the number of distributed com-
ponents to reason about how balanced the load of the distributed nodes that
compose the system is. As regards the number of instructions executed by each
location in the system, we have to take into account that an abstract location
might represent multiple concrete locations. This means that the number of
instructions executed by an abstract location actually accounts for the instruc-
tions executed by all locations it represents.

Example 4. The analysis of m2 returns that m2+(n)|o = 6 + 10 ∗ n and that
the number of instructions executed by all locations created within the loop
is m2+(n)|a = n ∗ (7 + 14 ∗ n). As we have seen in Example 3, the number of
locations created within the loop is bounded by the value of the input argument
n. Therefore, we have n locations that execute n ∗ (7 + 14 ∗ n) instructions, and
another location o that executes 6 + 10 ∗ n steps, which implies that the system
is properly balanced.
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3.2 Number of Transmissions and Transmission Data Sizes

Knowledge of the number of communications and the transmission data sizes is
essential, among other things, to predict the bandwidth required to achieve a
certain response time, or conversely, to estimate the response time for a given
bandwidth. The different locations of a distributed system communicate and
coordinate their actions by posting tasks among them. A task is posted by
building a message with the task name and the data on which such task has
to be executed. When the task completes, the result can be retrieved by means
of another message from which the result of the computation can be obtained.
Thus, the transmission data size of a distributed system mainly depends on the
amount of messages posted among the locations of the system, and the sizes of
the data transferred in the messages. In order to estimate the transmission data
sizes, we need to keep track of the amount of data transmitted in two ways:

1. By posting asynchronous tasks among the locations. This requires building a
message in which the name of the task to execute and the data on which it
executes are included.

2. By retrieving the results of executing the tasks. In our setting, future variables
are used to synchronize with the completion of a task and retrieve the result.

Our analysis infers a safe over-approximation of the transmission data sizes
required by both sources of communications in a distributed system. Our method
infers two different pieces of information: the number of tasks spawned at a given
location, and the data sizes transmitted as a result of the task spawned.

Since we are considering an abstract representation of data by means of
functional types, we will focus on units of data transmitted instead of bits,
which depends on the actual implementation and is highly platform-dependent.
Concretely, we assume that the cost of transmitting a basic value or a data type
constructor is one unit of data. This size measure is known as term size. However,
our static analysis would work also with any other mapping from data types to
corresponding sizes (given by means of a function α).

Example 5. The example program showed in Fig. 4 creates locations s and m
at L6 and L7, respectively, to perform some processing on a list. The list l has
an initial content set at L5 (not relevant for the example) that is passed as
a parameter of the call to method work at location m, and thus there is data
transmission at this point. Method work extends the list with n values, and
calls method process at location s (L23) after adding each element to the list,
passing the list as argument. Method process does some processing to the list
passed as argument. There are two program points in method work where data
is transmitted between locations m and s: L23 and L24, that correspond to the
call to process and the retrieval of the returned value, respectively.

Data structures are defined by means of data constructs, as it is showed in
L1 with the data type definition for representing lists of integers. We consider
the term size of data structures as the size measure. For example, a list defined
as l = Cons(1, Cons(2, Cons(3,Nil))) has size α(l) = 7, as it counts 2 for each
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1 data List = Nil | Cons(Int, List );
2 // main method
3 Unit main (Int n) {
4 Slave s; Master m; List l ;
5 l = . . .;
6 s = new Slave();
7 m = new Master(s);
8 m.work(l,n);
9 }

10 class Slave {
11 Int process (List le ) {
12 . . .
13 return h;
14 }}// end class

15 class Master {
16 Slave s;
17 work(List l , Int n) {
18 Int x;
19 Int n;
20 fut<Int> y;
21 while (n>0){
22 l = Cons(n,l);
23 y = s.process (l );
24 x = y.get;
25 n−−;
26 }
27 }
28 }// end class

Fig. 4. Example of transmission data sizes

element in the list (the Cons constructor and the element itself), plus 1 for the
Nil constructor.

For inferring an upper bound on the number of tasks spawned between all
pairs of distributed locations, we use the cost analysis framework described in
Sect. 2. In particular, we need to use a symbolic cost center that allows us to
annotate the caller and callee locations when a task is spawned in the program.
In essence, if we find an instruction a.m(x) which spawns a task m at location
a, the cost model symbolically counts c(this, a,m) ∗ 1, i.e., it counts that 1 task
executing m is spawned from the current location this at a. If the task is spawned
within a loop that performs n iterations, the analysis will infer c(this, a,m) ∗ n.

Example 6. For the code in Fig. 4, cost analysis infers that the number of itera-
tions of the loop in work (at L21) is bounded by the expression nat(n). Function
nat(x) = max(x, 0) is used to avoid negative evaluations of the cost expressions.
Then, by applying the number of tasks cost model we obtain the following expres-
sion that bounds the number of tasks spawned at L23: c(m, s, process) ∗ nat(n).

The second piece of information obtained by our analysis is the data sizes
transmitted as a result of spawning a task. To this end, we need to infer the
sizes of the arguments in the task invocations. Typically, size analysis [9] infers
upper bounds on the data sizes at the end of the program execution. Here, we
are interested in inferring the sizes at the points in which tasks are spawned. In
particular, given an instruction a.m(x), we aim at over-approximating the size
of x when the program reaches the above instruction. If the above instruction
can be executed several times, we aim at inferring the largest size of x, denoted
α(x), in all executions of the instruction. Altogether, c(this, a,m)∗α(x) is a safe
over-approximation of the data size transmission contributed by this instruction.
The analysis will infer such information for each pair of locations in the system
that communicate, annotating also the task that was spawned.
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Example 7. Since in method work the size of l is increased within the loop at
L22, the maximum size of l is produced in the last call to process. Recall that the
term size of the list l counts 2 units for each element in the list. Therefore, each
iteration of the loop at L21 increments the term size of the list in 2 units and,
consequently, the last call to process is done with a list of size l0 +2∗n, where l0
is the term size of the initial list, created at L5. In addition, the value returned
by the call to process is retrieved at L24. Since the data retrieved is of type Int,
its size is 1. Then, the data transmitted between locations m and s is bounded
by the following expression, where the constant I is the size of establishing the
communication:

c(m, s, process) ∗ nat(n) ∗ (I + nat(l + n ∗ 2)) + c(s,m, process) ∗ nat(n) ∗ (I + 1).

4 Peak Cost Analysis

The framework presented so far allows us to infer the total number of instruc-
tions that it needs to execute, the total amount of memory that it will need
to allocate, or the total number of tasks that will be added to its queue. This
is a too pessimistic estimation of the amount of resources actually required in
the real execution. The amount of work that each location has to perform can
greatly vary along the execution depending on: (1) the amount of tasks posted
to its queue, (2) their respective costs, and (3) the fact that they may be posted
in parallel and thus be pending to execute simultaneously. In order to obtain a
more accurate measure of the resources required by a location, the peak of the
resource consumption can be inferred instead [7], which captures the maximum
amount of resources that the location might require along any execution. In addi-
tion to its application to verification, this information is crucial to dimensioning
the distributed system: it will allow us to determine the size of each location
task queue; the required size of the location’s memory; and the processor exe-
cution speed required to execute the peak of instructions and provide a certain
response time. It is also of great relevance in the context of software virtualiza-
tion as used in cloud computing, as the peak cost allows estimating how much
processing/storage capacity one needs to buy in the host machine, and thus can
greatly reduce costs.

Inferring the peak cost is challenging because it increases and decreases along
the execution, unlike the standard notion of total cost which is cumulative. To
this end, it is very relevant to infer, for each distributed component, its abstract
queue configuration, which captures all possible configurations that its queue
can take along the execution. A particular queue configuration is given as the
sets of tasks that the location may have pending to execute at a moment of
time. For instance, let us see the following example program, which has as entry
method ex1:



42 E. Albert et al.

1 void ex1() {
2 ff = this. m1();
3 await ff ?;
4 this . m2();
5 }

6 void m1() {
7 fa = x.a();
8 await fa?;
9 fb = x.b();

10 await fb?;
11 }

12 void m2() {
13 x. d();
14 x. e() ;
15 }

It first invokes method m1, which spawns tasks a and b at location x. Method
m1 guarantees that a and b are completed when it finishes. Besides, we know
that the await instruction in L8 ensures that a and b cannot happen in parallel.
Method m2 spawns tasks d and e and does not await for their termination. We
can observe that the await instructions in m1 guarantee that the queue is empty
before launching m2. We can represent the tasks in the queue of location x by
the tasks queue graph by means of the following queue configurations: {{a},
{b}, {d, e}}.

In order to quantify queue configurations and obtain the peak cost, we need
to over-approximate: (1) the number of instances that we might have running
simultaneously for each task and (2) the worst-case cost of such instances. The
main extension has been to define cost centers of the form c(o:m) which contain
the location identifier o and the task m running on it, as explained in Sect. 2.
Now, using the upper bounds on the total cost we already gather both types of
information. This is because the cost attached to the cost center c(o:m) accounts
for the accumulation of the resource consumption of all tasks running method
m at location o. We therefore can safely use the total cost of the entry method
ex1(x̄) restricted to o:m, denoted ex1+(x̄)|{o:m}, as the upper bound of the cost
associated with the execution of method m at location o which sets up to 0
the cost centers different from c(o:m). The key idea to infer the quantified queue
configuration, or simply peak cost, of each location is to compute the total cost for
each element in the set of abstract configurations and stay with the maximum
of all of them. In the previous example, the peak cost of location x in ex1 is
max{ex1+(n)|c1 , ex1+(n)|c2 , ex1+(n)|c3}, where c1 = {x:a}, c2 = {x:b} and
c3 = {x:d, x:e}.

5 Parallel Cost Analysis

Parallel cost differs from the standard notion of serial cost by exploiting the
truly concurrent execution model of distributed processing to capture the cost
of synchronized tasks executing in parallel. It is also different to the peak cost
since this one is still serial; i.e., it accumulates the resource consumption in
each component and does not exploit the overall parallelism as it is required for
inferring the parallel cost [13]. It is challenging to infer parallel cost because one
needs to soundly infer the parallelism between tasks while accounting for waiting
and idle processor times at the different locations. Let us see an example.
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1 void m (int n) {
2 . . . // m1

3 x. p();
4 . . . // m2

5 y. q();
6 . . . // m3

7 }
8 void p () {
9 . . . // p1

10 y. s() ;
11 . . . // p2
12 }

Trace 1©
o x y

m1

m2

m3

p1

p2
s

q

P1

Trace 2©
o x y

m1

m2

m3

p1

p2
s

q

P2

Trace 3©
o x y

m1

m2

m3

p1

p2

q

s

P3

P1 = m̂1+m̂2+m̂3 P2 = m̂1+p̂1+ŝ+q̂ P3 = m̂1+m̂2+q̂+ŝ

Fig. 5. Example of parallel cost

Example 8. Figure 5(left) shows a simple method m that spawns two tasks by
calling p and q at locations x and y, resp. In turn, p spawns a task by calling
s at location y. This program only features distributed execution, concurrent
behaviours within the locations are ignored for now. In the sequel we denote by
m̂ the cost of block m. m̂1, m̂2 and m̂3 denote, resp., the cost from the beginning
of m to the call x.p(), the cost between x.p() and y.q(), and the remaining cost
of m. p̂1 and p̂2 are analogous. The resource analysis described in Sect. 2 can be
used for obtaining an upper bound of the cost of each block.

The notion of parallel cost P corresponds to the cost consumed between
the first instruction executed by the program at the initial location and the last
instruction executed at any location by taking into account the parallel execution
of instructions and idle times at the different locations.

Example 9. Figure 5(right) shows three possible traces of the execution of this
example (more traces are feasible). Below the traces, the expressions P1, P2 and
P3 show the parallel cost for each trace. The main observation here is that the
parallel cost varies depending on the duration of the tasks. It will be the worst
(maximum) value of such expressions, that is, P=max(P1, P2, P3, . . . ). In 2©
p1 is shorter than m2, and s executes before q. In 3©, q is scheduled before s,
resulting in different parallel cost expressions. In 1©, the processor of location y
becomes idle after executing s and must wait for task q to arrive.

In the general case, the inference of parallel cost is complicated because:
(1) It is unknown if the processor is available when we spawn a task, as this
depends on the duration of the tasks that were already in the queue; e.g., when
task q is spawned we do not know if the processor is idle (trace 1©) or if it
is taken (trace 2©). Thus, all scenarios must be considered; (2) Locations can
be dynamically created, and tasks can be dynamically spawned among the dif-
ferent locations (e.g., from location o we spawn tasks at two other locations).
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Besides, tasks can be spawned in a circular way; e.g., task s could make a call
back to location x; (3) Tasks can be spawned inside loops, we might even have
non-terminating loops that create an unbounded number of tasks. We use a dis-
tributed flow graph (DFG) to capture the different flows of execution that the
distributed system can perform. We use the standard partitioning of methods
into blocks used to build the control flow graph of the program. The nodes in
the DFG are the blocks of the CFG combined with the location’s identity and
are used as cost centers when obtaining the upper bound as in Sect. 2. The
edges represent the control flow in the sequential execution (drawn with normal
arrows) and all possible orderings of tasks in the location’s queues (drawn with
dashed arrows) since, when the processor is released, any pending task of the
same location could start executing.

Example 10. Figure 6 shows the DFG for the program in Fig. 5. Nodes in gray
are the exit nodes of the methods, and it implies that the execution can terminate
executing o:m3, x:p2, y:s or y:q. Solid edges include those existing in the CFG
of the sequential program but combined with the location’s identity and those
derived from calls. The dashed edges model that the execution order of s and q
at location y is unknown.

o:m1

o:m2

o:m3

x:p1

x:p2

y:s

y:q

Fig. 6. DFG for Fig. 5

Our analysis consists of obtaining the maxi-
mal parallel cost from all possible executions of
the program, based on the DFG. The execution
paths in the DFG start in the initial node that
corresponds to the entry method of the program,
and finish in any exit node of a method. The key
idea to obtain the parallel cost from paths in the
graph is that the cost of each block contains not
only the cost of the block itself but this cost is
multiplied by the number of times the block is
visited. As the order in which blocks are exe-
cuted is not relevant for the resource analysis,
we use sets instead of sequences. The parallel cost of the distributed system
can be over-approximated by the maximum cost for all paths to nodes that
correspond to method exit blocks.

Example 11. Given the DFG in Example 10, we have the following sets:

{{o:m1, o:m2, o:m3}
︸ ︷︷ ︸

N1

, {o:m1, x:p1, x:p2}
︸ ︷︷ ︸

N2

, {o:m1, x:p1, y:s, y:q}
︸ ︷︷ ︸

N3

, {o:m1, o:m2, y:s, y:q}
︸ ︷︷ ︸

N4

}

Observe that these sets represent traces of the program. The execution captured
by N1 corresponds to trace 1© of Fig. 5. In this trace, the code executed at
location o leads to the maximal cost. Similarly, the set N3 corresponds to trace 2©
and N4 corresponds to trace 3©. The set N2 corresponds to a trace where x:p2
leads to the maximal cost (not shown in Fig. 5). The cost is obtained by using the
block-level costs for all nodes that compose the sets above. The overall parallel
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cost is computed as: ̂P(m(n)) = max(m+(n)|N1 ,m
+(n)|N2 ,m

+(n)|N3 ,m
+(n)|N4).

Importantly, P̂ is more precise than the serial cost because all paths have at
least one missing node. For instance, N1 does not contain the cost of x:p1, x:p2,
y:s, y:q and N3 does not contain the cost of o:m2, o:m3, x:p2.

6 Conclusions and Future Work

We have presented the basic concepts underlying the resource analysis of dis-
tributed systems. The overall framework is based on the idea of having cost
centers which allow defining the required level of granularity. We have seen how,
using cost centers, performance indicators can be defined to assess the overall
performance of the distributed system, e.g., whether the load is well-balanced
among the nodes, the communication costs, etc. Also, new notions of cost can
be defined to estimate the peak cost required by each distributed node, and the
parallel cost which exploits the parallelism in the execution.

In future work, we are investigating the new challenges that arise in the
resource analysis of concurrent systems. In particular, new technique are required
to infer the cost when each distributed component allows interleaving among the
tasks that it has to execute. Also, we are improving the precision of the may-
happen-in-parallel analysis which is used to infer the cost of the tasks running
concurrently.
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Abstract. Trace expressions are a compact and expressive formalism,
initially devised for runtime verification of agent interactions in mul-
tiagent systems, which has been successfully employed to model real
protocols, and to generate monitors for mainstream multiagent system
platforms, and generalized to support runtime verification of different
kinds of properties and systems.

In this paper we formally compare the expressive power of trace
expressions with the Linear Temporal Logic (LTL), a formalism widely
adopted in runtime verification. We show that any LTL formula can be
translated into a trace expression which is equivalent from the point of
view of runtime verification. Since trace expressions are able to express
and verify sets of traces that are not context-free, we can derive that in
the context of runtime verification trace expressions are more expressive
than LTL.

1 Introduction

Runtime verification (RV) is a software verification technique that complements
formal static verification (as model checking), and testing. In RV dynamic check-
ing of the correct behavior of a system is performed by a monitor which is gen-
erated from a formal specification of the properties to be verified.

As happens for formal static verification, RV relies on a high level speci-
fication formalism to specify the expected properties of a system; similarly to
testing, RV is a lightweight, effective but non exhaustive technique to verify
complex properties of a system at runtime.

In contrast to formal static verification and testing, RV offers opportunities
for error recovery which make this approach more attractive for the development
of reliable software: not only a system can be constantly monitored for its whole
lifetime to detect possible misbehavior, but also appropriate handlers can be
executed for error recovery.

There are several specification formalisms employed by RV; some of them
are well-known formalisms that have been originally introduced for other aims,
as regular expressions, context free grammars, and LTL, while others have been
expressly devised for RV.
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E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 47–64, 2016.
DOI: 10.1007/978-3-319-30734-3 6



48 D. Ancona et al.

Trace expressions belong to this latter group; they are an evolution of global
types [2], which have been initially proposed for RV of agent interactions in
multiagent systems. Trace expressions are an expressive formalism based on a set
of operators (including prefixing, concatenation, shuffle, union, and intersection)
to denote finite and infinite traces of events. Their semantics is based on a labeled
transition system defined by a simple set of rewriting rules which directly drive
the behavior of monitors generated from trace expressions.

In this paper we formally compare trace expressions with LTL, a formalism
to specify infinite traces of events that is widely used for RV, even though it was
initially introduced for model checking.

When used for RV, the expressive power of LTL is reduced, because at run-
time only finite traces can be checked. For instance, the formula Fp (finally p)
which states that an event satisfying the predicate p will eventually occur after
a finite trace of other occurred events, can only be partially verified at runtime,
because no monitor is able to reject an infinite trace of events that do not satisfy
p, which, of course, is not a model for Fp.

To provide a formal account for this limitation, a three-valued semantics for
LTL, called LTL3 has been proposed [3]. A third truth value “?” is introduced to
specify that after a finite trace of events has occurred, the outcome of a monitor
can be inconclusive. For instance, if we consider the formula Fp, and the event
e which does not satisfy p, then no monitor generated from Fp is able to decide
whether Fp is satisfied or not after the trace eee.

In trace expressions this limitation of RV is naturally modeled by the stan-
dard semantics: if the semantics of a trace expression τ contains all finite traces
e, ee, eee, . . . , then it must also contain the infinite trace e . . . e . . . because no
monitor generated from τ will be able to reject it. This corresponds to the more
formal claim stating that the semantics of any trace expression is a complete
metric space of traces, when the standard distance between traces is considered.

As a consequence, when the standard semantics is considered, one can
conclude that LTL and trace expressions are not comparable: neither is more
expressive than the other. However, since the two formalisms are considered in
the context of RV, if the more appropriate three-valued semantics is considered,
then trace expressions are strictly more expressive than LTL: every LTL formula
can be encoded into a trace expression with an equivalent three-valued seman-
tics, whereas the opposite property does not hold, since trace expressions are
also able to specify context-free and non context-free languages.

The paper is organized in the following way: Sect. 2 introduces trace expres-
sions, whereas Sect. 3 is concerned with their expressive power; examples show
that trace expressions can specify context-free and non context-free languages.
Section 4 introduces LTL and the corresponding three-valued semantics, and for-
mally compares this logic with trace expressions, while Sect. 5 provides a brief
survey of related work. Conclusions are drawn in Sect. 6.
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2 Trace Expressions

Trace expressions are a specification formalism expressly designed for RV; they
are an evolution of global types, which have been initially proposed by Ancona,
Drossopoulou and Mascardi [2] for RV of agent interactions in multiagent sys-
tems.

Trace expressions introduce three novelties:

– while global types are strongly based on the notion of agent interaction,
because they have been expressly conceived for RV of protocol compliance
in multiagent systems, trace expressions support a general notion of event,
and can be exploited for RV in more general scenarios; for instance, besides
agent interactions, trace expressions can be used for monitoring events as
method invocations, or resource acquisition and release by threads;

– as a further generalization, trace expressions support the notion of event type:
sets of events can be simply represented by predicates;

– besides the union (a.k.a. choice), concatenation, and shuffle (a.k.a. fork) oper-
ators, trace expressions support intersection as well. Intersection replaces the
constrained shuffle operator [1,9], an extension of the shuffle operator intro-
duced for making global types more expressive. Constrained shuffle imposes
synchronization constraints on the events inside a shuffle, thus making global
types and their semantics more complex; furthermore, constrained shuffle is
not compositional: it cannot be expressed as an operation between sets of
event traces (that is, the mathematical entities denoted by trace expressions).
In contrast, the intersection operator has a simple, intuitive, and composi-
tional semantics (as suggested by the name itself) and yet is very expressive;
for instance, as shown in Sect. 3, it can be used for specifying non context-free
sets of event traces.

Events. In the following we denote by E a fixed universe of events. An event
trace over E is a possibly infinite sequence of events in E. In the rest of the paper
the meta-variables e, w, σ and u will range over the sets E, Eω, E∗, and Eω ∪E∗,
respectively; juxtaposition e u denotes the trace where e is the first event, and u
is the rest of the trace. A trace expression over E denotes a set of event traces
over E.

As a possible example, we might have

E = {o.m | o object identity, m method name}

where the event o.m corresponds to an invocation of method named1 m on the
target object o. This is a typical example of set of events arising when monitoring
object-oriented systems (we will show an example later on).

1 Here, for simplicity, an event does not include the signature of the method as it
should be the case for those languages supporting static overloading.
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Event Types. To be more general, trace expressions are built on top of event
types (chosen from a set ET), rather than of single events; an event type denotes
a subset of E, and corresponds to a predicate of arity k ≥ 1, where the first
implicit argument corresponds to the event e under consideration; referring to the
example where events are method invocations, we may introduce the type safe(o)
of all safe method invocations for a given object o, defined by the predicate safe
of arity 2 s.t. safe(e, o) holds iff e = o.isEmpty .

The first argument of the predicate is left implicit in the event type, and
we write e ∈ safe(o) to mean that safe(e, o) holds. Similarly, the set of events
specified by an event type ϑ is denoted by [[ϑ]]; for instance, [[safe(o)]] = {e | e ∈
safe(o)}.

For generality, we leave unspecified the formalism used for defining event
types; however, in practice we do not expect that much expressive power is
required. For instance, for all examples presented in this paper a formalism less
powerful than regular expressions is sufficient.

Trace Expressions. A trace expression τ represents a set of possibly infinite event
traces, and is defined on top of the following operators:2

– ε (empty trace), denoting the singleton set {ε} containing the empty event
trace ε.

– ϑ:τ (prefix ), denoting the set of all traces whose first event e matches the
event type ϑ (e ∈ ϑ), and the remaining part is a trace of τ .

– τ1·τ2 (concatenation), denoting the set of all traces obtained by concatenating
the traces of τ1 with those of τ2.

– τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2.
– τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2.
– τ1|τ2 (shuffle), denoting the set obtained by shuffling the traces of τ1 with the

traces of τ2.

To support recursion without introducing an explicit construct, trace expressions
are regular (a.k.a. rational or cyclic) terms: they correspond to trees where nodes
are either the leaf ε, or the node (corresponding to the prefix operator) ϑ with
one child, or the nodes ·, ∧, ∨, and | all having two children. According to the
standard definition of rational trees, their depth is allowed to be infinite, but the
number of their subtrees must be finite. As originally proposed by Courcelle [8],
such regular trees can be modeled as partial functions from {0, 1}∗ to the set of
nodes (in our case {ε, ·,∧,∨, |} ∪ ET) satisfying certain conditions.

A regular term can be represented by a finite set of syntactic equations, as
happens, for instance, in most modern Prolog implementations where unification
supports cyclic terms.

As an example of non recursive trace expression, let E be the set {e1, . . . , e7},
and ϑi, i = 1, . . . , 7, be the event types such that e ∈ ϑi iff e = ei (that is,

2 Binary operators associate from left, and are listed in decreasing order of precedence,
that is, the first operator has the highest precedence.
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[[ϑi]] = {ei}); then the trace expression

TE1 = ((ϑ1 : ε|ϑ2 : ε)∨(ϑ3 : ε|ϑ4 : ε))·(ϑ5 : ϑ6 : ε|ϑ7 : ε)

denotes the following set of event traces:
{

e1e2e5e6e7, e1e2e5e7e6, e1e2e7e5e6, e2e1e5e6e7, e2e1e5e7e6, e2e1e7e5e6,
e3e4e5e6e7, e3e4e5e7e6, e3e4e7e5e6, e4e3e5e6e7, e4e3e5e7e6, e4e3e7e5e6

}

As an example of recursive trace expression, if ϑi denotes the same event type
defined above for i = 1, . . . , 7, and [[ϑ]] = {e4, e5, e6, e7}, [[ϑ′]] = {e1, e2, e6, e7},
and [[ϑ′′]] = {e1, e2, e3, e4}, then the trace expression

TE2 = (E|ϑ1:ϑ2:ϑ3:ε)∧(E′|ϑ3:ϑ4:ϑ5:ε)∧(E′′|ϑ5:ϑ6:ϑ7:ε)
E = ε∨ϑ:E E′ = ε∨ϑ′:E′ E′′ = ε∨ϑ′′:E′′

denotes the set {e1e2e3e4e5e6e7}.
Finally, the recursive trace expressions T1 = (ε∨ϑ1:T1)·T2, T2 = (ε∨ϑ2:T2)

represent the infinite but regular terms (ε∨ϑ1:(ε∨ϑ1: . . .))·(ε∨ϑ2:(ε∨ϑ2: . . .)) and
(ε∨(ϑ2:(ε∨(ϑ2: . . .)))), respectively.

In the rest of the paper we will limit our investigation to contractive (a.k.a.
guarded) trace expressions.

Definition 1. A trace expression τ is contractive if all its infinite paths contain
the prefix operator.

In contractive trace expressions all recursive subexpressions must be guarded
by the prefix operator; for instance, the trace expression defined by T1 =
(ε∨(ϑ:T1)) is contractive: its infinite path contains infinite occurrences of ∨,
but also of the : operator; conversely, the trace expression T2 = (ϑ:T2)|T2 is not
contractive.

Trivially, every trace expression corresponding to a finite tree (that is, a non
cyclic term) is contractive.

For all contractive trace expressions, any path from their root must always
reach either a ε or a : node in a finite number of steps. Since in this paper all
definitions over trace expressions treat ϑ:τ as a base case (that is, the definition
is not propagated to the subexpression τ), restricting trace expressions to con-
tractive ones has the advantage that most of the definitions and proofs requires
induction, rather than coinduction, despite trace expressions can be cyclic. As a
consequence, the implementation of trace expressions becomes considerably sim-
pler. For this reason, in the rest of the paper we will only consider contractive
trace expressions.

The semantics of trace expressions is specified by the transition relation δ ⊆
T × E × T, where T and E denote the set of trace expressions and of events,
respectively. As it is customary, we write τ1

e→ τ2 to mean (τ1, e, τ2) ∈ δ. If the
trace expression τ1 specifies the current valid state of the system, then an event
e is considered valid iff there exists a transition τ1

e→ τ2; in such a case, τ2 will
specify the next valid state of the system after event e. Otherwise, the event e is
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(prefix)

ϑ:τ
e→ τ

e∈ϑ (or-l)
τ1

e→ τ ′
1

τ1∨τ2
e→ τ ′

1

(or-r)
τ2

e→ τ ′
2

τ1∨τ2
e→ τ ′

2

(and)
τ1

e→ τ ′
1 τ2

e→ τ ′
2

τ1∧τ2
e→ τ ′

1∧τ ′
2

(shuffle-l)
τ1

e→ τ ′
1

τ1|τ2
e→ τ ′

1|τ2

(shuffle-r)
τ2

e→ τ ′
2

τ1|τ2
e→ τ1|τ ′

2

(cat-l)
τ1

e→ τ ′
1

τ1·τ2
e→ τ ′

1·τ2

(cat-r)
τ2

e→ τ ′
2

τ1·τ2
e→ τ ′

2

ε(τ1)

Fig. 1. Operational semantics of trace expressions

(ε-empty)
ε(ε)

(ε-or-l)
ε(τ1)

ε(τ1∨τ2)
(ε-or-r)

ε(τ2)

ε(τ1∨τ2)
(ε-shuffle)

ε(τ1) ε(τ2)

ε(τ1|τ2)

(ε-cat)
ε(τ1) ε(τ2)

ε(τ1·τ2)
(ε-and)

ε(τ1) ε(τ2)

ε(τ1∧τ2)

Fig. 2. Empty trace containment

not considered to be valid in the current state represented by τ1. Figure 1 defines
the inductive rules for the transition function.

While the transition relation δ with its corresponding rules in Fig. 1 defines
the non empty traces of a trace expression, the predicate ε( ), inductively defined
by the rules in Fig. 2, defines the trace expressions that contain the empty trace
ε. If ε(τ) holds, then the empty trace is a valid trace for τ .

Rule (prefix) states that valid traces of ϑ:τ can only start with an event e of
type ϑ (side condition e ∈ ϑ), and continue with traces in τ .

Rules (or-l) and (or-r) state that the only valid traces of τ1∨τ2 have shape
e u, where either e u is valid for τ1 (rule (or-l)), or e u is valid for τ2 (rule (or-r)).

Rule (and) states that the only valid traces of τ1∧τ2 have shape e u, where
e u is valid for both τ1 and τ2.

Rules (shuffle-l) and (shuffle-r) state that the only valid traces of τ1|τ2 have
shape e u, where either e u′

1 and u2 are valid traces for τ1 and τ2, respectively,
and u can be obtained as the shuffle of u′

1 with u2 (rule (shuffle-l)), or u1 and
e u′

2 are valid traces for τ1 and τ2, respectively, and u can be obtained as the
shuffle of u1 with u′

2 (rule (shuffle-r)).
Rules (cat-l) and (cat-r) state that the only valid traces of τ1·τ2 have shape

e u, where either e u′
1 and u2 are valid traces for τ1 and τ2, respectively, and u

can be obtained as the concatenation of u′
1 to u2 (rule (cat-l)), or ε is a valid

trace for τ1 (side condition ε(τ1)) and e u is a valid trace for τ2 (rule (cat-r)).
For what concerns Fig. 2, rules (ε-shuffle), (ε-cat) and (ε-and) require the

empty trace to be contained in both subexpressions τ1 and τ2, whereas for the
union operator it suffices that the empty trace is contained in either τ1 (rule
(ε-or-l)) or τ2 (rule (ε-or-r)). Trace expressions built with the prefix operator
can never contain the empty trace, whereas ε contains just the empty trace (rule
(ε-empty)).
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The set of traces [[τ ]] denoted by a trace expression τ is defined in terms of
the transition relation δ, and the predicate ε( ). Since [[τ ]] may contain infinite
traces, the definition of [[τ ]] is coinductive.

Definition 2. For all possibly infinite event traces u and trace expressions τ ,
u ∈ [[τ ]] is coinductively defined as follows:

– either u = ε and ε(τ) holds,
– or u = e u′, and there exists τ ′ s.t. τ

e→ τ ′ and u′ ∈ [[τ ′]] hold.

In the following we will need to consider the reflexive and transitive closure
of the transition relation: if σ is a finite (possibly empty) event trace, then the
relation τ

σ→ τ ′ is inductively defined as follows: τ
σ→ τ ′ holds iff

– σ = ε, and τ ′ = τ ;
– or σ = e σ′, and there exists τ ′′ s.t. τ

e→ τ ′′, and τ ′′ σ′
→ τ ′.

Let us consider again the previous examples of trace expressions:

TE1 = ((ϑ1:ε|ϑ2:ε)∨(ϑ3:ε|ϑ4:ε))·(ϑ5:ϑ6:ε|ϑ7:ε)
TE2 = (E|ϑ1:ϑ2:ϑ3:ε)∧(E′|ϑ3:ϑ4:ϑ5:ε)∧(E′′|ϑ5:ϑ6:ϑ7:ε)
E = ε∨ϑ:E E′ = ε∨ϑ′:E′ E′′ = ε∨ϑ′′:E′′

∀ i ∈ {1..7} [[ϑi]] = {ei} [[ϑ]] = {e4, e5, e6, e7}
[[ϑ′]] = {e1, e2, e6, e7} [[ϑ′′]] = {e1, e2, e3, e4}

We show that there exist τ1, τ2 s.t. TE 1
σ1→ τ1, with σ1 = e1e2e5e6e7, ε(τ1),

TE 2
σ2→ τ2, with σ2 = e1e2e3e4e5e6e7, and ε(τ2).

For TE 1
σ1→ τ1 we have ϑ1:ε|ϑ2:ε

e1→ ε|ϑ2:ε
e2→ ε|ε, (ϑ1:ε|ϑ2:ε)∨(ϑ3:ε|ϑ4:ε)

e1e2→
ε|ε, and TE 1

e1e2→ (ε|ε)·(ϑ5:ϑ6:ε|ϑ7:ε). Furthermore, ϑ5:ϑ6:ε|ϑ7:ε
e5→ ϑ6:ε|ϑ7:ε

e6→
ε|ϑ7:ε

e7→ ε|ε, hence ϑ5:ϑ6:ε|ϑ7:ε
e5e6e7→ ε|ε, and, because ε(ε|ε), we can conclude

(ε|ε)·(ϑ5:ϑ6:ε|ϑ7:ε)
e5e6e7→ ε|ε, hence, TE 1

e1e2e5e6e7→ ε|ε.
For TE 2

σ2→ τ2 we have E|ϑ1:ϑ2:ϑ3:ε
e1e2e3→ E|ε e4e5e6e7→ E|ε, E′|ϑ3:ϑ4:ϑ5:ε

e1e2→
E′|ϑ3:ϑ4:ϑ5:ε

e3e4e5→ E′|ε e6e7→ E′|ε, E′′|ϑ5:ϑ6:ϑ7:ε
e1e2e3e4→ E′′|ϑ5:ϑ6:ϑ7:ε

e5e6e7→
E′′|ε. Therefore TE 2

e1e2e3e4e5e6e7→ (E|ε)∧(E′|ε)∧(E′′|ε) and ε(E|ε), ε(E′|ε), and
ε(E′′|ε), hence ε((E|ε)∧(E′|ε)∧(E′′|ε)).

Since the semantics of trace expressions is coinductive, they can specify non
terminating behavior; for instance, the trace expression defined by T = ϑ1:T
denotes the set with just the infinite trace e1 e1 . . . e1 . . . containing infinite
occurrences of e1; had we considered an inductive semantics, T would have
denoted the empty set. For the very same reason, the trace expression defined
by T ′ = ε∨ϑ1:T ′ denotes the set containing all finite traces of the event e1, but
also the infinite trace e1 e1 . . . e1 . . .. From the point of view of RV, the only
difference between the two types is that for T ′ the monitored system is allowed
to halt at any time, whereas for T the system can never stop.

Since at runtime it is not possible to check that a given monitored sys-
tem will always eventually stop, trace expressions cannot denote sets of traces



54 D. Ancona et al.

which are not complete metric spaces, with the standard distance between traces:
d(u1, u2) = 2−n, where n denotes the smallest index (starting from 0) at which
the two traces are different; by convention, if the two traces are equal, than
n = ∞, and 2−n = 0. For instance, if the semantics of a trace expression τ
contains traces of arbitrarily large length of the event e1, then it also contains
the infinite trace e1 e1 . . . e1 . . .; indeed, the monitor associated with τ will not
be able to reject it.

Such a limitation is independent of the used formalism, but it is intimately
related to RV; as pointed out in Sect. 4, similar issues arise when LTL is used
for RV: its semantics has to be revisited to take into account the fact that at
runtime only finite traces can be monitored and checked.

Deterministic Trace Expressions. There are trace expressions τ for which the
problem of word recognition is less efficient because of non determinism. Non
determinism originates from the union, shuffle, and concatenation operators,
because for each of them two possibly overlapping transition rules are defined.

Let us consider the trace expression τ = (ϑ1:ϑ2:ε)∨(ϑ1:ϑ3:ε), where [[ϑi]] =
{ei} for i = 1, . . . , 3. Both transitions τ

e1→ ϑ2:ε and τ
e1→ ϑ3:ε are valid, but

[[ϑ2:ε]] �= [[ϑ3:ε]]; therefore, to correctly accept the trace e1e3, both rules have to
be applied simultaneously, and the set of trace expressions {ϑ2:ε, ϑ3:ε} has to be
considered, as it is done for non deterministic automata.

Similarly, for the trace expression τ ′ = (ϑ1:ϑ2:ε)|(ϑ1:ϑ3:ε), both transitions
τ ′ e1→ (ϑ2:ε)|(ϑ1:ϑ3:ε) and τ ′ e1→ (ϑ1:ϑ2:ε)|(ϑ3:ε) are valid, but [[(ϑ2:ε)|(ϑ1:ϑ3:ε)]] �=
[[(ϑ1:ϑ2:ε)|(ϑ3:ε)]].

Finally, for the trace expression τ ′′ = (ε∨ϑ1:ϑ2:ε)·(ϑ1:ε) both transitions
τ ′′ e1→ (ϑ2:ε)·(ϑ1:ε) and τ ′′ e1→ ε are valid, but [[(ϑ2:ε)·(ϑ1:ε)]] �= [[ε]].

In the rest of this paper we will focus on deterministic trace expressions:
indeed, the problem of word recognition is simpler and more efficient in the
deterministic case.

Deterministic trace expressions are defined as follows.

Definition 3. Let τ be a trace expression; τ is deterministic if for all finite
event traces σ, if τ

σ→ τ ′ and τ
σ→ τ ′′ are valid, then [[τ ′]] = [[τ ′′]].

The trace expressions τ , τ ′, and τ ′′, as defined above, are not deterministic,
while the respectively equivalent trace expressions ϑ1:(ϑ2:ε∨ϑ3:ε), ϑ1:
(((ϑ2:ε)|(ϑ1:ϑ3:ε))∨((ϑ1:ϑ2:ε)|(ϑ3:ε))), and ϑ1:(ε∨ϑ2:ϑ1:ε) are deterministic.

3 Examples of Specifications with Trace Expressions

In this section we provide some examples to show the expressive power of trace
expressions. Unless specified otherwise, for simplicity in the rest of the paper
we will consider singleton event types, that is, event types representing a single
event; with abuse of notation, we will abbreviate events with their corresponding
singleton event types.
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3.1 Derived Operators

We first introduce some useful operators that will be used in the rest of the
paper.

Constants. The constants 1 and 0 denote the set of all possible traces over
E and the empty set, respectively. Constant 1 is equivalent to the expression
T = ε∨any :T , where any is the event type s.t. [[any ]] = E; constant 0 is equivalent
to the expression none:ε, where none is the event type s.t. [[none]] = ∅.

Filter Operator. The filter operator is useful for making trace expressions more
compact and readable. The expression ϑ
τ denotes the set of all traces con-
tained in τ , when deprived of all events that do not match ϑ. Assuming that
event types are closed by complementation, the expression above is a convenient
syntactic shortcut for T |τ , where T = ε∨ϑ:T , and ϑ is the complement event
type of ϑ, that is, [[ϑ]] = E \ [[ϑ]].

The corresponding rules for the transition relation and the auxiliary function
ε( ) can be easily derived:

(cond-t)
τ

e→ τ ′

ϑ
τ
e→ ϑ
τ ′ e∈ϑ (cond-f)

ϑ
τ
e→ ϑ
τ

e�∈ϑ (ε-cond)
ε(τ)

ε(ϑ
τ)

Stack Objects. We expand the example where events correspond to method
invocations on objects; besides the already introduced event type safe(o) s.t.
e ∈ safe(o) iff e = o.isEmpty , we define the following other event types:

[[pop(o)]] = {o.pop}, [[top(o)]] = {o.top}, [[push(o)]] = {o.push},
[[stack(o)]] = {o.pop, o.top, o.push, o.isEmpty},
[[unsafe(o)]] = {o.pop, o.top, o.push}.

Our purpose is to specify through a trace expression Stack all safe traces of
method invocations on a stack object o which we assume to be initially empty.
Safety requires that methods top and pop can never be invoked on o when o
represents the empty stack.

More in details, a trace of method invocations on a given object having
identity o is correct iff any finite prefix does not contain more pop(o) event types
than push(o), and the event type top(o) can appear only if the number of pop(o)
event types is strictly less than the number of push(o) event types occurring
before top(o).

The trace expression Stack is defined as follows:

Stack = Any∧unsafe(o)
Unsafe Any = ε∨stack(o):Any
Unsafe = ε∨(push(o):(Unsafe|(Tops · (pop(o):ε∨ε)))) Tops = ε∨top(o):Tops

A correct stack trace is specified by Stack which is the intersection of Any
and unsafe(o)
Unsafe; Any specifies any possible trace of method invocations
on stack objects, whereas if an event has type unsafe(o), then it has to verify
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the trace expression Unsafe, which requires that a push event must precede a
possible empty trace of top events, which, in turn, must precede an optional
event pop; the expression is recursively shuffled with itself, since any push event
can be safely shuffled with a top or a pop event.

The specification is deterministic. To make an example, we can consider
Stack σ→ τ with σ = push(o) push(o), and

τ = Any∧unsafe(o)
(Unsafe|Tops·((pop(o):ε)∨ε)|Tops·((pop(o):ε)∨ε)).

We may observe that τ
e→ τ1 and τ

e→ τ2, with3 e = pop(o), and

τ1 = Any∧unsafe(o)
(Unsafe|ε|Tops·((pop(o):ε)∨ε))
τ2 = Any∧unsafe(o)
(Unsafe|Tops·((pop(o):ε)∨ε)|ε),

but [[τ1]] = [[τ2]].

3.2 Alternating Bit Protocol

A more complex example concerning interactions is the alternating bit protocol
(ABP), as defined by Deniélou and Yoshida [11], where two parties, Alice and
Bob, are involved, and four different types of events can occur: Alice sends a first
kind of message to Bob (event type msg1 ), Alice sends a second kind of message
to Bob (event type msg2 ), Bob replies to Alice with an acknowledge to the first
kind of message (event type ack1 ), Bob replies to Alice with an acknowledge to
the second kind of message (event type ack2 ). The protocol has to satisfy the
following constraints for all event occurrences:

– The n-th occurrence of the event of type msg1 must precede the n-th occur-
rence of the event of type msg2 , which, in turn, must precede the (n + 1)-th
occurrence of the event of type msg1 .

– The n-th occurrence of the event of type msg1 must precede the n-th occur-
rence of the event of type ack1 , which, in turn, must precede the (n + 1)-th
occurrence of the event of type msg1 .

– The n-th occurrence of the event of type msg2 must precede the n-th occur-
rence of the event of type ack2 , which, in turn, must precede the (n + 1)-th
occurrence of the event of type msg2 .

The protocol can be specified by the following trace expression (starting from
variable AltBit1 ):

AltBit1 = msg1 :M2 AltBit2 = msg2 : M1

M1 = msg1 :A2∨ack2 :AltBit1 M2 = msg2 :A1∨ack1 :AltBit2
A1 = ack1 :M1∨ack2 :ack1 :AltBit1 A2 = ack2 :M2∨ack1 :ack2 :AltBit2

3 For efficiency reasons, our implementation exploits simplification opportunities after
each transition step, therefore in practice for this example the two transitions would
lead to the same expression.
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In this case the prefix and union operators are sufficient for specifying the correct
behavior of the system, however, the corresponding trace expression is not very
readable. More importantly, if only the prefix and union operators are employed,
the size of the expressions grows exponentially with the number of different
involved event types.

This problem can be avoided by the use of the intersection and filter opera-
tors.

Let msg ack(i), i = 1, 2, and msg denote the event types s.t. [[msg ack(i)]] =
[[msg i]] ∪ [[ack i]], i = 1, 2, and [[msg ]] = [[msg1 ]] ∪ [[msg2 ]]. Then the ABP can be
specified by the following deterministic trace expression:

AltBit = (msg
MM )∧(msg ack(1)
MA1)∧(msg ack(2)
MA2)
MM = msg1 :msg2 :MM MA1 = msg1 :ack1 :MA1 MA2 = msg2 :ack2 :MA2

The three trace expressions defined by MM , MA1, and MA2 correspond to
the three constraints informally stated above. The main trace expression AltBit
can be easily read as follows: if an event has type msg1 or msg2 , then it must
verify MM , and if an event has type msg1 or ack1 , then it must verify MA1,
and if an event has type msg2 or ack2 , then it must verify MA2.

The trace expression can be easily generalized to k different kinds of messages
(with k ≥ 2), with the size of the expression growing linearly with the number
of different involved event types. For instance, for k = 3 we have the following
trace expression:

AltBit =
(msg
MM )∧(msg ack(1)
MA1)∧(msg ack(2)
MA2)∧(msg ack(3)
MA3)
MM = msg1 :msg2 :msg3 :MM MA1 = msg1 :ack1 :MA1

MA2 = msg2 :ack2 :MA2 MA3 = msg3 :ack3 :MA2.

3.3 Non Context Free Languages

Trace expressions allow the specification of non context free languages; let us
consider for instance the typical example of non context free language {anbncn |
n ≥ 0}. This language can be specified by the following trace expression (defined
by T )

T = (a or b
AB)∧(b or c
BC ) AB = ε∨(a:(AB ·(b:ε)))
BC = ε∨(b:(BC ·(c:ε)))

where [[a]] = {a}, [[b]] = {b}, [[c]] = {c}, [[a or b]] = {a, b}, and [[b or c]] = {b, c}.
Assuming the universe of events E = {a, b, c}, the expression a or b
AB

denotes all traces of events over E that, when restricted to finite length4 and to
events a or b, correspond to the sequence anbn for some n ∈ N; similarly, the

4 Recall that for a comparison with context-free languages we need to disregard infinite
traces; for instance, a or b�AB and b or c�BC contain also the infinite traces aω

and bω, respectively.
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expression b or c
BC denotes all traces of events over E that, when restricted
to finite length and to events b or c, correspond to the sequence bncn for some
n ∈ N. Hence the finite traces of T , which is the intersection of a or b
AB and
b or c
BC , are the non-context free language {anbncn | n ≥ 0}.

Although T is deterministic, it has the drawback that non correct traces can
be detected with a certain latency. For instance the transition T

aabc→ T ′ holds,
with T ′ = (a or b
(b:ε))∧(b or c >> ε), and clearly aabc is not a valid prefix
for the language; however, [[T ′]] = ∅, and T ′ is not able to accept any further
event, that is, recognition fails, independently from the next event.

To avoid this problem, the following equivalent (assuming that E = {a, b, c})
deterministic trace expression can be employed:

T2 = (AB ·C)∧(b or c
BC ) AB = ε∨(a:(AB ·(b:ε)))
BC = ε∨(b:(BC ·(c:ε))) C = ε∨c:C

In this case, AB ·C forces events of type c to occur only after all required events
of type b have been already occurred. In this case there is no T ′′

2 s.t. T2
aabc→ T ′′

2

holds; indeed, T2
aab→ T ′

2 with T ′
2 = ((b:ε)·(ε∨(c:C)))∧(b or c
(BC ·(c:ε))), and

there exists no T ′′
2 s.t. T ′

2
c→ T ′′

2 , since the only possible transition from T ′
2 is

T ′
2

b→ T ′′
2 , with T ′′

2 = (ε∨(c:C))∧(b or c
((ε∨(b:BC ·(c:ε)))·((c:ε)·(c:ε)))), and
[[T ′′

2 ]] = {cc}.

4 Comparison with LTL

In this section we formally prove that trace expressions are more expressive than
LTL, when both formalisms are used for RV. To this purpose we consider the
LTL3 semantics [3], an adaptation of the standard semantics of LTL formulas
expressly introduced to take into account the limitations of RV due to its inability
to check infinite traces. Despite there are LTL formulas which do not have an
equivalent trace expression according to the standard LTL semantics, when LTL3

is considered such a difference is no longer exhibited: for any LTL formula ϕ it
is possible to build a contractive and deterministic trace expression τ such that
the monitors generated by ϕ and τ , respectively, are behaviorally equivalent.

4.1 Background

LTL is a modal logic which has been introduced for specifying temporal proper-
ties of systems; despite its original main application is static verification through
model checking, more recently it has been adopted as a specification formalism
for RV, and some RV tools support it [6,12].

LTL Syntax and Semantics. Given a finite set of atomic propositions AP , the
set of LTL formulas over AP is inductively defined as follows:

– true is an LTL formula;
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– if p ∈ AP then p is an LTL formula;
– if ϕ and ψ are LTL formulas then ¬ψ, ϕ∨ψ, Xψ, and ϕ Uψ are LTL formulas.

Additional operators can be derived in the standard way: ϕ∧ψ = ¬(¬ϕ∨¬ψ),
ϕ ⇒ ψ = ¬ϕ∨ψ, Fϕ (or ♦ϕ) = true Uϕ, and Gϕ (or �ϕ) = ¬(true U¬ϕ).

Let Σ = 2AP be the set of all possible subsets of AP ; if p ∈ AP and a ∈ Σ,
then p holds in a iff p ∈ a. An LTL model is an infinite trace w ∈ Σω; w(i)
denotes the element a ∈ Σ at position i in trace w; more formally, if w = aw′,
then w(0) = a, and w(i) = w′(i − 1) if i > 0.

The semantics of a formula ϕ depends on the satisfaction relation w, i � ϕ
(w satisfies ϕ in i) defined as follows:

– w, i � p iff p ∈ w(i);
– w, i � ¬φ iff w, i � φ;
– w, i � ϕ ∨ ψ iff w, i � ϕ or w, i � ψ;
– w, i � Xϕ iff w, i + 1 � ϕ (next operator);
– w, i � ϕ Uψ iff ∃j ≥ 0 w, j � ψ and ∀0 ≤ k < j w, k � ϕ (until operator).

Finally, w � ϕ (w satisfies ϕ) holds iff w, 0 � ϕ holds.
We recall that the set of all models of LTL formulas is the language of star-

free ω-regular languages over Σ [7].
In order to encode an LTL formula into an equivalent trace expression we

exploit the result stating that an LTL formula can be translated into an equiv-
alent non deterministic Büchi automaton [3,14].

Non Deterministic Büchi Automata. A Büchi automaton is a type of ω-
automaton which extends a finite automaton to infinite inputs. It accepts an
infinite input sequence if there exists a run of the automaton that visits (at
least) one of the final states infinitely often.

A (non deterministic) Büchi automaton (NBA) is a tuple (Σ,Q,Q0, δ, F ),
where

– Σ is a finite alphabet;
– Q is a finite non-empty set of states;
– Q0 ⊆ Q is a set of initial states;
– δ:Q × Σ → 2Q is a transition function;
– F ⊆ Q is a set of accepting states.

A run of an automaton (Σ,Q,Q0, δ, F ) on a word w ∈ Σω is an infinite trace
ρ = q0w(0)q1w(1)q2 . . ., s.t. q0 ∈ Q0, and for all i ≥ 0 qi+1 ∈ δ(qi, w(i)). A run
ρ is called accepting iff Inf (ρ) ∩ F �= ∅, where Inf (ρ) denotes the states visited
infinitely often.

LTL3. LTL3 is a three-valued semantics [3] for LTL formulas, devised to adapt
the standard semantics to RV, to correctly consider the limitation that at run-
time only finite traces can be checked.

Given a finite trace σ ∈ Σ∗ of length |σ| = n, a continuation of σ is an infinite
trace w ∈ Σω s.t. for all 0 ≤ i < n w(i) = σ(i).
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Given a finite trace σ ∈ Σ∗, and an LTL formula ϕ, the LTL3 semantics of
ϕ, denoted by σ �3 ϕ, is defined as follows:

σ �3 ϕ =

⎧
⎨

⎩

� iff w � ϕ for all continuations w of σ
⊥ iff w � ϕ for all continuations w of σ
? iff neither of the two conditions above holds

As an example, let us consider the formula ϕ = p Uq, where p, q ∈ AP ; according
to the definition above, {p}{p}{q} �3 ϕ = �, that is, ϕ is satisfied by the finite
trace {p}{p}{q}, and monitoring succeeds; {p}{p}∅ �3 ϕ = ⊥, that is, ϕ is not
satisfied by the finite trace {p}{p}∅, and monitoring fails; finally, {p}{p}{p} �3

ϕ =?, that is, at this stage monitoring is inconclusive, and the monitor has to
keep monitoring the property expressed by ϕ. Assuming that AP = {p, q}, the
LTL3 semantics of p Uq corresponds to the finite state machine (FSM) defined
in Fig. 3, which fully determines the expected behavior of a monitor for the RV
of p Uq.

More in general, for all LTL formulas ϕ, it is possible to build an FSM which
is a deterministic finite automaton (DFA) where the alphabet is Σ (that is, 2AP ),
all states are final, each state returns either � (successful), or ⊥ (failure), or ?
(inconclusive), and the behavior of the FSM respects the LTL3 semantics of ϕ:
for all finite traces σ ∈ Σ∗, the FSM accepts σ with final state that returns
v ∈ {�,⊥, ?} iff σ �3 ϕ = v.

The sequence of steps required to generate from an LTL formula ϕ an FSM
that respects the LTL3 semantics of ϕ [3] is summarized in Fig. 4.

For each LTL formula ϕ and ¬ϕ (1), the equivalent NBAs Aϕ, and A¬ϕ are
built (2), all states that generate a non empty language are identified (3) and
made final and the NBAs are transformed into the corresponding NFAs Âϕ,
and Â¬ϕ (4), and, then, into the equivalent DFAs Ãϕ and Ã¬ϕ (5). Finally, the
product of Ãϕ and Ã¬ϕ is computed, and from it the final FSM Mϕ is derived by
minimization, and by classifying the states in the following way: (q, q′) returns

?start

�⊥

{p}

∅

{p, q}

{q}

∅

{p} {p, q}

{q}

∅

{p} {p, q}

{q}

Fig. 3. FSM of the monitor for p Uq, with AP = {p, q}
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Fig. 4. Steps required to generate an FSM from an LTL formula ϕ

� iff q′ is not final in Ã¬ϕ, ⊥ iff q is not final in Ãϕ, and ? if both q and q′ are
final in Ãϕ, and Ã¬ϕ, respectively.

4.2 Comparing Trace Expressions with LTL

We have shown that LTL formulas as p Uq cannot be fully verified at runtime,
therefore a three-valued semantics LTL3 has been introduced. To be able to
compare LTL formulas with trace expressions, the same three-valued semantics
is considered for trace expressions as well.

Given a finite trace σ ∈ Σ∗ of length |σ| = n, a continuation of σ is an finite
or infinite trace u ∈ Σ∗ ∪ Σω s.t. for all 0 ≤ i < n u(i) = σ(i).

The three-valued semantics of a trace expression τ is defined as follows:

σ ∈ [[τ ]]3 =

⎧
⎨

⎩

� iff u ∈ [[τ ]] for all continuations u of σ
⊥ iff u �∈ [[τ ]] for all continuations u of σ
? iff neither of the two conditions above holds

Let us consider again the formula ϕ = p Uq; if we assume that each atomic
predicate in AP has a corresponding event type denoted in the same way, then
the closest trace expression τ into which ϕ can be translated is defined by T =
p:T∨q:1, where 1 is the derivable constant introduced in Sect. 3 denoting all
possible traces. If we consider the standard semantics we have that, since {p} is
an event that satisfies p, {p}ω ∈ [[τ ]], but {p}ω

� ϕ. However, when considering
the three-valued semantics we have that for all v ∈ {�,⊥, ?} and σ ∈ Σ∗,
σ � ϕ = v iff σ ∈ [[τ ]]3 = v. In particular, for all n ≥ 0, {p}n � ϕ =? and
{p}n ∈ [[τ ]]3 =?.

To translate an LTL formula ϕ into a trace expression τ s.t. the three-valued
semantics is preserved, we exploit the result presented in Sect. 4.1. First, ϕ is
translated into an equivalent FSM Mϕ, then Mϕ is translated into an equiva-
lent contractive and deterministic trace expression τϕ. The latter translation is
defined as follows:

– if the initial state returns �, then ϕ is a tautology, and the corresponding
trace expression is the constant 1;

– if the initial state returns ⊥, then ϕ is a unsatisfiable, and the corresponding
trace expression is the constant 0;

– if the initial state returns ?, then the corresponding trace expression is defined
by a finite set of equations X1 = τ1, . . . , Xn = τn, where n is the number of
states in Mϕ that return ?, each of such states is associated with a distinct
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variable Xi, X1 is the variable associated with the initial state which corre-
sponds to the whole trace expression τϕ.

The expressions τi are defined as follows: let k be the number of states
q1, . . . , qk that do not return ⊥ for which there exists an incoming edge,
labeled with the element ai ∈ 2AP , from the node associated with Xi; we
know that k > 0, because the node associated with Xi returns ?. Then
τi = a1:f(q1)∨ . . . ∨ak:f(qk), where f(q) is defined as follows: if q returns
�, then f(q) = 1, otherwise (that is, q returns ?), f(q) = Xq (that is, the
variable uniquely associated with q is returned).

Since all variables in the expressions τ1, . . . , τn are guarded by the prefix
operator, τϕ is contractive; furthermore, it is deterministic because Mϕ is deter-
ministic.

Theorem 1. Let Mϕ be the FSM equivalent to ϕ generated by the procedure
described in Sect. 4.1. Then, the trace expression τϕ generated from Mϕ as spec-
ified in Sect. 4.2 preserves the semantics of Mϕ: for all σ ∈ Σ∗ Mϕ accepts σ
with output v ∈ {�,⊥, ?} iff σ ∈ [[τϕ]]3 = v.

Proof Sketch: the proof proceeds by induction on the length of σ. The cases
where the initial state of the FSM returns � or ⊥ are immediate to be proved.
The proof when the initial state returns ? is based on the fact that, in this case,
by construction [[τϕ]] �= ∅ and there always exists a trace u s.t. u �∈ [[τϕ]], therefore
ε ∈ [[τϕ]]3 =?. �

In Sect. 3.3 we have shown a trace expression τ that specifies a non context
free language of traces (when only finite traces are considered). More formally,
σ ∈ [[τ ·1]]3 = � iff σ ∈ {anbncn | n ≥ 0}.

This means that for RV (that is, when the three-values semantics is consid-
ered) trace expressions are strictly more expressive than LTL logic, since the
LTL logic is less expressive than ω-regular languages.

5 Related Work

In this section we briefly survey work related to runtime verification, and to
formalisms, other than LTL, for specifying event traces.

Global Types and Multi-party Sessions. Though trace expressions and global
types [5] are rather similar (indeed, global types correspond to trace expres-
sions without the concatenation and the intersection operators), the aim of
trace expressions diverges from that of Castagna et al.’s behavioral types for
many reasons:

– trace expressions are not intended to be used for annotating and statically
checking programs, but rather, for specifying properties that have to be veri-
fied at runtime;
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– while Castagna et al.’s types are expressly designed for describing multiparty
interactions between distributed components, trace expressions are meant as a
more general formalism which can be used for runtime verification of different
kinds of properties and systems;

– finally, trace expressions have a coinductive, rather than inductive, semantics,
hence they can denote sets containing infinite traces; this is important for
being able to verify systems that must not terminate.

Object-Oriented Languages. In the context of runtime verification of object-
oriented languages, there exist several formalisms for specifying valid or invalid
traces of method invocations, as done in the stack objects example in Sect. 3.1.

Program Query Language (PQL) [13] allows developers to express a large
class of application specific code patterns. PQL is more expressive than context-
free languages, since its class of languages is that of the closure of context-
free languages combined with intersection, hence, the formalism seems to be as
expressive as trace expressions. However, no formal semantics is defined for PQL,
and it is not clear whether PQL queries can denote infinite traces.

The jassda [4] framework and tool enable runtime checking of Java programs
against a CSP-like specification. Like in trace expressions, the trace semantics
of a process is defined by collecting all event sequences that are possible with
respect to the operational semantics. Processes are built with operators similar
to those of trace expressions, except for concatenation and intersection, which
are not supported by jassda.

SAGA [10] is a tool for runtime verification of properties of Java programs
specified with attribute grammars. The implementation is based on four differ-
ent components: a state-based assertion checker, a parser generator, a debugger
and a general tool for meta-programming. The tool is extremely powerful and
has been successfully applied to an industrial case from the e-commerce with
multi-threaded Java. The main difference w.r.t. our approach is that SAGA has
been developed for runtime checking of a combination of protocol- and data-
oriented properties of object-oriented programs, whereas, at the moment, trace
expressions have been successfully employed for runtime verification of multia-
gent systems.

6 Conclusion

Trace expressions are a compact and expressive formalism that has been used
for RV of interaction protocols in multiagent systems.

In this paper we have formally compared trace expressions with LTL, a for-
malism widely adopted in RV. To this aim we have employed the three-valued
semantics [3] proposed for LTL in the context of RV, and we have proved that
for the purpose of RV, trace expressions are strictly more expressive than LTL:
every LTL formula can be encoded into a trace expression which preserves its
three-valued semantics, but the opposite property does not hold, since trace
expressions are able to specify context-free and non context-free languages.
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Anyway, the benefits of trace expressions over LTL in the context of runtime
verification needs to be studied on the basis of an implementation and case
studies.

Another interesting subject for further investigation would consists in the
study of the class of language that is covered by trace expressions, and by con-
tractive and/or deterministic trace expressions.
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Abstract. Treating interaction as an explicit first-class concept, com-
plete with its own composition operators, leads to a model of concurrency
that allows direct specification and manipulation of protocols as proper
mathematical objects. Reo [2,5,6,8] serves as a premier example of such
an interaction-centric model of concurrency.

In this paper, we peruse Reo and explain how its model of protocols
as encapsulated, reusable constructs facilitates their fulfilling of the more
prominent role slated for them in engineering of modular, verifiable, scal-
able concurrent software. We also explore clues enlaced with some recent
results of our ongoing work on compiling Reo protocol specifications into
efficient executable code, which sketch a promising perspective for future
work on high-level protocol specification languages.

1 Preamble

For the bulk of the time that Frank de Boer and I have been colleagues at
CWI and Leiden, my work has focused on concurrency, coordination, and Reo,
and Frank has been working on concurrency, object orientation, formal verifica-
tion, and many other topics. Nevertheless, Frank’s impact on Reo goes beyond
his direct contributions through formal collaborations on projects and his coau-
thorship of papers. Through discussions and by his interest and his questions,
Frank has helped me—as well as many of our colleagues—to focus and refine
our understanding, and even chart our course into new projects.

2 Introduction

Today’s low-cost multicore commodity hardware has made scalable parallel com-
puting platforms affordable. Offering many processor cores on the same chip,
cheap threading with fast communication and shared memory, these platforms
can potentially accommodate applications that requires massively concurrent
computing. Nevertheless, full utilization of the enormous potential offered by
such platforms in real-life applications seems to lag dramatically behind. The
striking gap between the potential massive concurrency offered by these plat-
forms and their practical uptake raises a perhaps heretical question: do we even

c© Springer International Publishing Switzerland 2016
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need such massively concurrent platforms? More specifically, what types of appli-
cations can actually benefit from such massively concurrent platforms, and by
how much?

A most emphatically positive answer to the first question may provide an
answer to the second by identifying an auspiciously significant class of important
applications that can benefit by a substantial factor. However, such a propitious
outcome of this inquiry, in turn, raises another question: if massively concurrent
systems have important practical applications and computing platforms do exist
to provide them, then what has hindered extensive uptake of these platforms to
accommodate those applications?

We argue that an emphatically positive answer to the first question is indeed
justified. A vast number of important problems can indeed use large-scale coarse
grain concurrency, at least in principle. However, conspicuously missing are
effective techniques for developing scalable concurrent software that turns the
raw computing power of massively concurrent multicore platforms into effective
applications that solve those problems.

The growing importance of applications that involve huge volumes of data
and peta-scale graphs of their inter-relations, make the need for programming
techniques to harness the massive concurrency offered by multicore platforms
ever more vivid. To find what has hindered extensive development of massively
concurrent applications we must look into the inadequacies of contemporary
programming constructs and models for concurrency. These inadequacies stem
from the fact that, ironically, concurrency protocols have not received the proper
attention that they deserve in the classical work on concurrency.

In spite of the fact that interaction constitutes the most challenging aspect of
concurrency, traditional models of concurrency predominantly treat interaction
as a secondary or derived concept. Shared memory, message passing, calculi such
as CSP [30], CCS [49], the π-calculus [50,53], further process algebras [11,16,23],
and the actor model [3] represent popular approaches to tackle the complexities
of constructing concurrent systems. Beneath their significant differences, all these
models share one common characteristic, inherited from the world of sequential
programming: they all constitute action-centric models of concurrency. All these
models provide constructs for the direct specification of things that interact,
rather than a direct specification of interaction (protocols). Consequently, in
these formalisms (a protocol that specifies an intended) interaction becomes a
derived or secondary concept whose properties can be studied only indirectly,
as the side-effects of the (intended or coincidental) couplings or clashes of the
actions whose compositions comprise a model.

Our work on Reo shows that one can formally treat interaction as an
explicit first-class concept, complete with its own composition operators. Several
significant advantages ensue from such an interaction-centric model of concur-
rency. Treating protocols as proper mathematical objects expressed as encapsu-
lated syntactic constructs, explicitly separates them from computation code of
applications, which simplifies software development by adhering to the princi-
ple of separation of concerns. Separation of protocols from computation allows
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formal verification and analysis of protocols in isolation from any application
code. As concrete encapsulated formal constructs, one can reuse such formally
verified protocols, verbatim—perhaps out of a library—in different applications.
Moreover, one can directly compose simpler (verified) protocols into arbitrarily
more complex protocols, which allows compositional verification of the resulting
more complex protocols. Finally, although it may superficially seem counter-
intuitive, an interaction-centric model of concurrency, such as Reo, opens up a
vast field of opportunities to refine information-rich, high-level models of pro-
tocols into efficient executable code whose performance can compete with and
even beat that of carefully hand-crafted code.

3 The Bounty of Concurrency

The extent to which a solution to a problem can benefit from concurrency
depends on the amount of concurrency inherent in that problem. The famous
computer architect Gene Amdahl1, had quantified this message in what has
become known as Amdahl’s law [4].

Amdahl’s Law. An application consists of an inherently sequential part and a
potentially concurrent part. Let a designate the time that it takes to execute the
sequential part on a single processor, and b the time that it takes to execute the
potentially concurrent part on a single processor. Thus the total execution time
of this application on a single processor is T (1) = a + b. Generously ignoring
all overhead, throwing n processors at this application can speed up only its
potentially concurrent part by a factor of n. Thus, the total execution time of this
application on an n-processor machine is T (n) = a+b/n. Therefore, the speedup
that we can expect from running this application on an n-processor machine
compared to running it on a single processor is bound by SAmdahl(n) = T (1)

T (n) .
Define α = a/(a+b) and we obtain Amdahl’s law expressing the upper-bound for
the speedup of an application running on n processors compared to its execution
time on a single processor, in terms of its inherently sequential fraction, α:

SAmdahl(n, α) =
1

α + 1−α
n

(1)

Figure 1(a) shows the graph of speedup (on logarithmic scale) according to
Amdahl’s law as a function of number of processors, for a range of α values
from 0.01 to 0.9. This graph puts a discouraging damper on the enthusiasm
about the speedup of applications on parallel machines. If 50 % of an application
is inherently sequential, its execution on a 2-processor machine speeds up by a
factor of 1.33 and this “linear” speedup tapers off quickly to 1.66 on a 5-processor
machine, improving to nearly 2 only on a 100-processor machine. If only 10 % of
an application is inherently sequential, its execution improves almost linearly by
1 While this paper was under review, Gene Amdahl [16 November 1922 – 10 November

2015] passed away.
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Fig. 1. Amdahl’s and Gustafson’s laws

adding up to 5 processors, but this improvement tapers off to a speedup of only
5.26 with 10 processors, 6.89 with 20, and 9.17 with 100 processors. Even with
an infinite number of processors, this application speeds up by only a depressing
factor of 10! For an application 99 % of which is inherently concurrent, nearly-
linear speed up lasts only up to about a dozen processors; 20 processors yield a
16.80 speedup, which tapers off to only 50.25 with 100 processors.

Amdahl’s law is in fact not as depressing as it may seem, because it simply
states an obvious fact: that there is just so much juice that you can extract out
of an orange, no matter how long and hard you press it (even if we ignore the
overhead of the juice that gets trapped and goes to waste in the pulp). An appli-
cation that spends only 10 % of its time executing its inherently sequential part
has no more than a ten-fold juice of speedup to extract, even if you press it by the
computational force of an infinite number of processors. In practice, you may be
happy with a 9-fold speedup of this application on a 100-processor machine, or
settle for a 5-fold speedup with only 10 processors, and let the remaining speedup
juice go to waste with the pulp, because obtaining this remaining speedup is sim-
ply not worth the cost of its extraction.

Is this the best we can hope to reap from the bounty bestowed by massively
concurrent hardware?

Gustafson’s Law. Amdahl’s law gives a bound for how much juice we can extract
from a specific individual orange, i.e., how much faster we can run an application
that solves a fixed-size problem on a multiprocessor machine. Amdahl’s law,
however, does not limit our ability to quench our thirst for more orange juice:
we can simply juice bigger (amounts of) oranges!

A very important class of applications in concurrency involves solving prob-
lems whose sizes can increase arbitrarily. What matters in these applications
is not so much speeding up the solution of a specific instance of such a prob-
lem (e.g., mining graphs of a given size) on a multiprocessor machine. We may
already be content (if not happy) with the execution speed of this solution on a
k-processor machine. The purpose of employing more than k processors in such
applications is to solve larger-sized instances of the same problem (e.g., mining
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proportionally larger graphs) in still reasonable time. Bigger-size problems, thus,
provide arbitrarily bigger (amounts of) oranges to juice!

Gustafson revisited Amdahl’s law to accommodate precisely this class of
applications [26], which we call scalable. Let Tk(n) denote the execution time of
a scalable problem of size n on a k processor machine. A scalable application
also contains an inherently sequential part, whose execution on a single processor
takes a time units. The potentially concurrent part of such an application has
a repetitive structure that scales directly with the size of the problem. Let b be
the sequential execution time of the potentially concurrent part of this applica-
tion, solving the size-1 instance of the problem. The total execution time of the
application for the size-1 instance of the problem on a single processor, then, is
T1(1) = a + b, and the execution time of a size-n instance of the problem on a
single processor machine is T1(n) = a + n × b.

With more processors, we can parallelize the potentially concurrent part
of solving a larger instance of the problem. Thus, ignoring all overhead, the
execution time of a size-n instance of the problem on an n-processor machine is
Tn(n) = a + b, which means Tn(n) = T1(1). Defining α = a/(a + b), as before,
we get Gustafson’s law for speedup:

SGustafson(n, α) = n − α × (n − 1) (2)

Figure 1(b) shows the graph of speedup for scalable problems according to
Gustafson’s law as a function of number of processors, for a range of α values
from 0.01 to 0.9. It seems that at least for scalable problems, Gustafson’s law
rescues usefulness of concurrency from the grim grip of Amdahl’s law.

Superficially, the two graphs in Fig. 1 seem to contradict each other: for every
value of α, Fig. 1(a) establishes a strict asymptotic limit less than n for speedup,
whereas Fig. 1(b) shows that speedup increases linearly in n, without bounds, at
an α-dependent slope. In fact, far from contradicting Amdahl’s law, Gustafson’s
law complements it. For scalable applications, as we increase n, we change the
application by increasing the size of the problem that it solves and thereby
increase the amount of concurrent juice that it contains. As a result, the ratio of
the inherently sequential part of the application to its total execution time on a
single processor shrinks, and the application moves up the rungs of the ladder
of α curves in Fig. 1(a).

Let δ(n) = a/(a + n × b) designate the fraction of the inherently sequential
part of a scalable application of size n. Rewriting δ(n) in terms of α, we get:

δ(n) =
α

α + (1 − α) × n
(3)

Equation 3 shows that for a fixed α, as n grows, δ(n) diminishes, endowing more
concurrency juice to the application, which moves the application up the ladder
of the curves in the graph of Amdah’s law in Fig. 1(a). In fact, substituting δ(n)
for α in Eq. 1, Amdahl’s law yields SAmdahl(n, δ(n)) = 1, which shows that for
scalable problems, as we increase the number of processors from n to n + k
to match the increase of the problem size from n to n + k, the quantity δ(n)
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diminishes exactly such that we obtain no “real speedup” gain by Amdahl’s law:
all extra concurrency provided by the additional k processors goes to solving the
k-size larger problem. This observation suggests that perhaps more usefully, we
can think of Gustafson’s law not so much as a measure of speedup, but rather a
measure of scalability of a scalable application.

Communication Overhead. Both Amdahl’s and Gustafson’s laws mean to express
upper bounds, and thus they ignore all overhead. Obviously, the interaction pro-
tocol that enables communications among concurrent chunks of the application
greatly influences this overhead. To account for protocol overhead, we revise
Gustafson’s equation for the execution time of a size-n scalable problem on an
n-processor machine as Tn(n) = a + b + c where c is the extra time that the
application takes to complete because of protocol overhead.

For n > 1, every parallel computation fragment executes a number of com-
munication operations. The extra delays required to complete these operations
collectively comprise c = f(n), which means speedup of a scalable application is:

S(n, α) =
n − α × (n − 1)

1 + f(n)
T1(1)

(4)

For any application, α and T1(1) are constants. The nominator in Eq. 4 is linear
in n. The effectiveness of the speedup (or, scalability) of an application, then
crucially depends on the nature of its protocol overhead function f(n). A good
linear protocol yields only a constant speedup (i.e., no scalability), and even a
quadratic f(n) quickly dampens scalability by 1/n as n increases.

So, where exactly in a concurrent application can we find its communication
protocol that has such a significant impact on its performance and scalability?

4 Where’s Waldo?

In a modern well-structured program, we can easily locate a segment of code
that implements some computation function, e.g., FourierTransform, or a com-
putation construct such as the abstract data type stack. These implementa-
tions, of course, use concrete algorithms and data structures. For instance, the
implementation of stack may use a linked list data structure. Because they
are so easy to locate, if desired, we can readily replace the implementation
code for FourierTransform or stack with the piece of code for some alternative
implementation of these computation constructs. For instance, we can easily
replace the linked-list implementation of stack with an array implementation of
stack to improve the performance of an application. If the application software
is indeed well-structured (e.g., stack is implemented as a class in an object-
oriented language), this implementation code swapping will be completely invis-
ible to the rest of the software, regardless of how often or intensively it uses
various incarnations of stack. A more efficient implementation of an abstract
data type or a computation function simply improves the overall performance of
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the application, without requiring any modification to the rest of the software.
Moreover, to scale up a well-structured program using a stack of size k to one
that needs a stack of size 2k, all we need to do is change the value assigned to
some identifier from k to 2k.

Programming language constructs and abstractions, along with techniques
for their efficient compilation, have dramatically advanced in the last half-
century, to the extent that we can now program at the level of (parametric)
types, classes, objects, mathematical functions, monads, or Horn clauses, when
appropriate, and obtain executable code whose performance competes with—
indeed often beats—that of code written by even better-than-average program-
mers in some low-level language. It is precisely these advances that, among other
things, make it easy to carry out the above mentioned software modifications so
painlessly.

Protocols constitute no less significant a concept in concurrent applications
than functions, types, and other computational constructs, and variants of con-
crete implementations of protocols have an least equally significant impact on the
performance of a concurrent application. Moreover, as we saw in Sect. 3, protocol
(overhead) plays a crucial role in the scale-up of scalable problems. Given the
significance of protocols and the long history of concurrency, one would expect—
rather naively—to find in modern software high-level protocol constructs (as
counterparts to constructs for types, classes, etc.), that make, e.g., scaling up a
two-producer-one-consumer protocol to a k-producer-one-consumer protocol as
easy as changing the value assigned to some identifier in its implementation code
from 2 to k. Or—even more naively—that to change one implementation of a
two-producer-one-consumer protocol with another, all that should be necessary
is to swap the two pieces of code for their respective implementations, without
any change to the rest of the software. Perplexingly, neither of these software
modifications is so painless today!

Programming constructs and models for concurrency have essentially stag-
nated in the past half-century. Algorithmic skeletons [25] represent an attempt
to facilitate development of better structured concurrent programs by offer-
ing encapsulated protocol skeletons that programmers can flesh out to suit the
specifics of their applications. Several skeleton libraries exist. However, although
useful in practice when a problem readily fits the design patterns of available
skeletons, algorithmic skeletons have not given rise to a formal model of encap-
sulated, composable protocols analogous to types, objects, and classes. Trans-
actional memory [29,47,54] represents another attempt to simplify concurrent
programming by providing transaction as a syntactic construct for high-level
mutual exclusion. Although a transaction can qualify as a protocol, transactions
often necessarily contain application specific computation code, which makes
them impure (non-reusable). Moreover, treating every protocol as a transaction
can lead to over-sequentialization, and this model does not provide adequate
means to derive more complex (than single transaction) protocols through struc-
tural composition of other protocols (transactions). In contrast to advances in
abstractions and constructs for sequential programming, no real abstract proto-
col constructs have evolved. Processes, threads, locks, semaphores, contrivances
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for mutual exclusion, monitors, rendezvous, etc., of roughly 50 years ago com-
prise all programming constructs we have to express protocols in our modern
software.

The pervasive integration of computing and interaction in so many aspects
of our lives today has vastly expanded the number of applications that require
scalable complex protocols. Meanwhile, advances in processor, memory, and com-
munication hardware have made leaps and bounds in the past 50 years to provide
suitable hardware to accommodate these applications. Software technology must
develop code that transforms the raw power of available hardware into concurrent
applications that embody those required scalable complex protocols. Stagnation
of programming constructs and models for concurrency has created a stifling
bottleneck in development of these applications. Between the two expanding
domains of necessity and possibility, software engineers are left stranded to fend
for themselves, armed with nothing more than the same 50-year-old cumber-
some concurrency constructs, and their own wits. In this sense, our arsenal of
50-year-old concurrency programming constructs is dramatically less adequate
for our software engineering needs of today than it was 50 years ago.

Finding what constituted a stack (just as an example) in a typical “well-
structured” Fortran IV or PL/I code of early 1970’s required as much time and
mental effort as finding Waldo2—and it was far less entertaining. The mere act
of locating what constitutes a protocol in a typical well-structured concurrent
application of today often requires substantially more time, effort, and expertise
than was required to find a stack in a Frotran IV or PL/I application of the
1970’s; and replacing the implementation of this protocol or scaling it up often
cascades numerous prohibitively intrusive intricate changes throughout the entire
software.

5 Interaction-Centric Concurrency

Traditional action-centric models for concurrent programming embed within the
sequential programming paradigm a befitting selection of primitives such as
locks, semaphores, monitors, send/receive, message passing, rendezvous, etc., for
programmers to manifest an interaction protocol contingent on the control flows
of disparate sequential threads, that run under an implied nondeterminism on the
order of their execution. This dispersion of interaction-inducing actions makes
protocols nebulous, intangible, and ephemeral, which explains why even identi-
fying the constructs that constitute a protocol in an application programmed in
such models often becomes a non-trivial challenge.

The dataflow paradigm provides an alternative perspective on concurrent
programming. It liberates the manifestation of interaction protocols from the
control flows of sequential threads, expressing them instead as concrete graphs
that make the nondeterminism of their execution explicitly evident. The clas-
sical works on dataflow programming pioneered by Kahn [45,46], Dennis [22],
2 In Martin Handford’s 1980’s popular books of double-page illustrations, that chal-

lenged readers to locate a certain Waldo character “hidden” in plain sight in a crowd.
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and Arvind [9] serve as inspiring early examples of interaction-centric models
of concurrency: abstracting away the semantic content of computation nodes
in such a dataflow graph leaves a structure behind that explicitly represents a
concrete interaction protocol. One can easily compose protocols by splicing their
graphs together. Because the edges in these specific dataflow graphs represent
FIFO communication links, these protocols cannot directly express synchrony.
The need for synchrony in concurrency, especially in real-time and embedded
systems, led to the development of synchronous languages [15,17,21,24], where
edges represent synchronous communication. Ptolemy [19,48] allows hierarchical
composition of graphs each representing a synchronous or asynchronous interac-
tion among actors, to model heterogeneous systems.

In the world of sequential programs, with the formal semantics of a function
as a black-box that transforms its input to its output, the semantic equivalence of
two functions is a congruence, i.e., given two equivalent functions, one can always
replace the other. In the world of concurrent programs, such semantic equivalence
is not a congruence, i.e., given two concurrent computation units whose func-
tions are equivalent, one cannot always replace the other [18]. This observation,
known as the Brock-Ackerman anomaly, shows that interaction requires a more
expressive formal semantics enriched by a notion of time, to discern differences
between otherwise equivalent units of computation that arise out of alternative
orders of their execution. Some dataflow models suffer from this anomaly, and
some avoid it by imposing restrictions.

Such earlier work as above has inspired our notion of interaction-centric con-
currency, and our work on Reo builds upon and extends this work. More recent
work on BIP [10,14], multiparty session types [20,32], Scribble [31,55], and
Pabble [51,52] represent other examples of interaction-centric models that to
various degrees of expressiveness and generality make protocols concrete central
objects of discourse.

Treating interaction as a full-fledged first-class concept requires a model that
offers (1) an explicit, direct, concrete representation of interaction among actors,
independent of their (communication) actions; (2) a set of primitive interactions;
and (3) composition operators to combine (primitive) interactions into more
complex interactions. A most primitive interaction specifies a relation between
two communication actions, e.g., a send and a receive. For instance, such a
relation may state that the two actions must happen synchronously, or that
one (e.g., the read) must necessarily happen strictly some time after the other
has completed. This specification is oblivious to the actor entities that perform
such communication operations; all that matters is that the specified relation
holds on the timing and the contents of the data exchanged by those operations.
Such specifications quite naturally accede a formal representation as constraints,
which come equipped with relational composition that allows constructing more
complex constraints out of simpler ones.

Protocols as Connectors. Concretely, we regard a protocol simply as a constraint,
which declaratively specifies what must hold in terms of a relation, disregard-
ing how it can hold. Expressed as constraints, pure protocols become first-class,
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tangible, reusable encapsulated constructs in their own right. As concrete soft-
ware constructs, such protocols can manifest as architecturally meaningful con-
nectors that portrayed graphically, resemble a generalization of dataflow graphs
where nodes have fixed semantics but each edge represents an arbitrary interac-
tion relation.

Components. In an interaction-centric model of concurrency, a computational
process (or thread), or component is written in any conventional programming
language, such as C, C++, Java, etc. The only means of communication of a
component with its outside world is through blocking I/O operations that it may
perform exclusively on its own ports. Inter-component communication is possible
only by mediation of connectors, which implement interaction protocols, outside
of the components.

If i is an input port of a component, C, there are only two operations
that C can perform on i: (1) blocking input get(i, v) waits indefinitely or
until it succeeds to obtain a value through i and assigns it to variable v; or
(2) input with time-out get(i, v, t) behaves similarly, except that it unblocks
and returns false if the specified time-out t expires before it obtains a value to
assign to v. Analogously, if o is an output port of a component, there are only two
operations that the component can perform on o: (1) blocking output put(o, v)
waits indefinitely or until it succeeds to dispense the value in variable v through
o; or (2) output with time-out put(o, v, t) behaves similarly, except that it
unblocks and returns false if the specified time-out t expires before it dispenses
the value in v.

6 Overview of Reo

We have used the interaction-as-constraint perspective described above to for-
malize an interaction-centric model of concurrency wherein every interaction
protocol is a constraint obtained as a (relational) composition of a small set
of simple binary constraints. This model serves as the formal foundation of a
domain-specific language (DSL), called Reo [2,5–8], for programming concur-
rency protocols that manifest as connectors. Complex connectors in Reo are
constructed as a network of primitive binary connectors, called channels.

We summarize only the main concepts in Reo here. Further details about Reo
and its semantics can be found in cited references. Tool support for Reo consists
of a set of Eclipse plug-ins that together comprise the Extensible Coordination
Tools (ECT) visual programming environment [1].

Channels. A channel is a medium of communication that consists of two ends
and a constraint on the dataflows observed at those ends. There are two types of
channel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. Every channel (type)
specifies its own particular behavior as constraints on the flow of data through
its ends. These constraints relate, for example, the content, the conditions for
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Fig. 2. A typical set of Reo channels

loss, and/or creation of data that pass through the ends of a channel, as well
as the atomicity, exclusion, order, and/or timing of their passage. Reo places no
restriction on the behavior of a channel and thus allows an open-ended set of
different channel types to be used simultaneously together.

A very small set of channels, each with very simple behavior, suffices to
construct useful Reo connectors with significantly complex behavior. Figure 2
shows a common set of primitive channels often used to build Reo connectors.
Readers can find intuitive and formal definitions of the behavior of these channels
in various Reo literature, e.g. [7].

Nodes. Complex connectors are constructed by composing simpler ones by join-
ing channel ends together in nodes. A Reo node is a logical place where channel
ends coincide and coordinate their dataflows as prescribed by the type of the
node. Figure 3 shows the three possible node types in Reo. A node is either
source, sink, or mixed, depending on whether all its coincident channel ends
consist of source ends, sink ends, or a combination of the two. Unlike channels,
Reo defines a fixed semantics for (i.e., the constraints on the dataflow through)
its nodes.

Fig. 3. Reo nodes

The source and sink nodes of a con-
nector are collectively called its boundary
nodes. Boundary nodes define the interface
of a connector. Components attach to the
boundary nodes of a connector and inter-

act anonymously via the get and put operations mentioned in Sect. 5 with each
other through this interface.

Semantics. Reo allows arbitrary user-defined channels as primitives; arbitrary
mix of synchrony and asynchrony; and relational constraints between input and
output. This makes Reo more expressive than, e.g., dataflow models, Kahn net-
works, synchronous languages, stream processing languages, workflow models,
and Petri nets. On the other hand, it makes the semantics of Reo quite non-
trivial. Various models for the formal semantics of Reo have been developed
(most, variants that fall within a small number of main families), each to serve
some specific purpose, e.g., animation, verification, and code generation; a com-
prehensive overview of these semantic models appears elsewhere [34].

7 Examples

Consider a simple concurrent application with two producers, which we desig-
nate as Green and Red, and one consumer. We want the consumer to repeatedly
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obtain and display the data made available by the Green and the Red produc-
ers, alternately. In spite of its apparent conciseness, the last sentence does not
precisely specify a single concrete protocol. In this section, we present a num-
ber of protocols to implement different versions of the alternating producers
and consumer example. These examples illustrate that using Reo it is trivial to
(1) change the protocol of an application, without altering any of its processes,
or (2) scale the specification of a protocol to accommodate k > 2 producers.

Fig. 4. Alternators

The connector in Fig. 4(a) is an alternator that
imposes an ordering on the flow of the data from its
input nodes A and B to its output node C. Subsequent
take operations at C obtain the data items written to
A,B,A,B, ... The connector in Fig. 4(b) is obtained by
replicating the one in Fig. 4(a). It delivers the data items
obtained from A1, A2, and A3, through C, in that order.

We can compose a version of our alternating produc-
ers and consumer example by attaching the output ports of the Green and Red
producers to nodes A and B of the connector in Fig. 4(a), respectively, and the
input port of the consumer to its node C. The protocols of the connectors in
Fig. 4 synchronize their producers in each round. Whether or not this is a desir-
able property, of course, depends on the application. Our original specification
of this example allows this protocol, as well as many other alternatives.

Fig. 5. Variants of alternating producers protocol

We can obtain new versions of our alternating producers and consumer exam-
ple by attaching the ports of our producers and consumer to nodes A, B, and C
of every connector in Fig. 5. All connectors in this figure share the same skele-
ton structure, based on a two-node version of a sequencer connector. Detailed
description of the sequencer and these connectors is beyond the scope of this
paper. What matters for our discussion is that there are at least these other 8
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different concrete protocols each of which with its own properties, that can serve
as a suitable solution for an alternating producers and consumer application. We
can easily parameterize any of these connectors to scale up the number of their
producers.

Fig. 6. Mix and match

Applications with many producers may
indeed require somewhat different treatment
of the output of some of their producers.
It is trivial to mix-and-match the neces-
sary interaction (sub-)protocols in Fig. 5, to
tailor-make such a protocol, e.g., as in the
example in Fig. 6. Such mix-and-match is
generally unthinkable when protocols are
expressed in terms of action-centric constructs
of traditional models of concurrency.

8 Compilation

The examples in Sect. 7 exhibit the advantages of an interaction-centric model
of concurrency that regards protocols as constraints. A high-level language like
Reo that supports this form of protocol specification offers clear software engi-
neering advantages (e.g., programmability, maintainability, verbatim-reusability,
verifiability, etc.). However, as in constraint programming, it seems far less obvi-
ous that protocol specifications expressed in such a high-level language can be
compiled into efficient and scalable executable code.

Recent results of our on-going work suggest that in time, sufficiently smart
compilers for high-level protocol languages can generate executable code with
better performance than hand-crafted code produced by programmers written in
contemporary general-purpose languages with constructs of traditional models
of concurrency. Superficially, our promising results may seem surprising and this
claim, outlandish. Most of our results have already appeared in the literature [33,
35–43] and comprise the bulk of the work by Jongmans in his recently submitted
PhD thesis [44]. Without getting into the technical details of how we obtained
these results or the challenges that remain ahead, in this section, we summarize
some of our results, and in the next section, describe a perspective on concurrent
programming that “anticipates” our promising results and justifies the optimism
of our claim.

Our compiler uses the constraint automata semantics of Reo [12]. It maps
every node and every channel in a Reo connector to its corresponding constraint
automaton. This yields a set of “small” automata that collectively represent the
connector’s semantics. The compiler then translates this set of small automata
into Java/C and merges the code so generated with the Java/C code that invoke
the components. An external compiler for Java/C subsequently translates the full
code base into a binary. Our Reo compiler currently applies a set of high-level
optimization techniques on the intermediate constraint automata it produces.
Some basic optimization methods identify groups of loosely- and tightly-coupled
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small automata in order to improve scalability and strike a balance between
low latency (sequentiality) and high throughput (parallelism) in the resulting
executable code.

Fig. 7. Performance (Color
figure online)

For some protocols, these optimizations already
allow our compiler to generate code that can com-
pete with code written by a competent program-
mer [39]. Figure 7 shows one of our most promis-
ing results. It shows the performance of three
implementations of a k-producers-single-consumer
protocol, for k ∈

{
2i | 2 ≤ i ≤ 9

}
: one naive

hand-written implementation in C (blue, solid
line), one hand-crafted optimized implementation
in C (yellow, dashed line), and one implementation
expressed in Reo and compiled into C (red, dotted
line). In every round of this protocol, every producer
sends one datum to the consumer. Once the con-
sumer has received a datum from every producer,
in any order, it sends an acknowledgment to the
producers, thereby signaling that the consumer is
ready for the next round. To measure just the performance of the protocol, we
did not give the producers and the consumers real computational tasks (i.e., the
producers sent only dummy data).

Fig. 8. Comparing hand-crafted (dashed) and Reo compiler generated (solid) protocol
code: (a) thousands of CPU-cycles per protocol iteration vs. number of producers;
(b) relative performance vs. number of producers.

In fact, this version of our compiler generates code that runs on the Proto
Runtime Toolkit (PRT) [27,28]. PRT offers a run-time system for C code and
a set of APIs. On its start-up, the PRT run-time system seizes control of the
available cores from the operating system, thereby gaining full responsibility
for scheduling instructions onto those cores. Software engineers use these cores
through an API for managing PRT threads and a separate API for imposing cus-
tom scheduling policies. PRT-aware C code invokes the former API to instantiate
units of parallelism, which the PRT run-time system subsequently schedules onto
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cores, without interference by the operating system. Bypassing the operating
system (and its rather heavy-weight scheduler) in this way, contributes to bet-
ter performance. However, programming efficiently, directly at the level of PRT
requires special skills. The PRT back-end of our Reo compiler shields program-
mers from PRT and its details, but reaps the benefits of improved performance
that it provides, through a PRT API custom-made for Reo.

Figure 8 shows at a finer scale the performance and speedup of our Reo
compiler generated code with that of a carefully optimized hand-written code
using p-threads in C, for the above mentioned k-producers-single-consumer pro-
tocol. Figure 8(a) shows performance (in thousands of CPU-cycles per iteration
of protocol, averaged over 10 runs) of the compiler generated (solid line) and the
hand-crafted (dashed line) code as a function of the number of producers in this
application. Figure 8(b) shows speedup of the compiler generated relative to the
hand-crafted code as a function of number of producers.

These results show that already our current compilation technology is capable
of generating code that can compete with—and in this case even outperform—
carefully hand-crafted code. Surely, our technology is not yet mature enough
to always achieve such positive results. The PhD thesis of Jongmans [44] dis-
cusses a number of formally sound high-level automata optimization techniques
and contains extensive comparisons of our Reo compiler technology using the
NAS Parallel Benchmarks [13]. His results demonstrate practical utility of ver-
batim reuse of protocols. They also show that in 37 % of cases our Reo compiler
generated code is no worse than 10 % slower than the reference hand-crafted
code of these benchmarks. In another 38 % of cases, our Reo compiler gener-
ated code is faster than their reference hand-crafted code. In the remaining
25 % of the cases, our Reo compiler generated code is between 10 % and 40 %
slower. Some of these cases may improve by one or more of the many other high-
level optimization techniques that we have not investigated yet. Nevertheless,
these results offer preliminary evidence that programming concurrency proto-
cols using high-level, interaction-centric constructs and abstractions can result in
equally good—or better—performance as compared to hand-crafted code using
conventional action-centric models of concurrency. Superficially, these results
seem counter-intuitive. In the next section, we explain why, in fact, they are not.

Fig. 9. Action-centric vs. interaction-centric protocol programming
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9 Mind the Gap

Figure 9(a) shows three levels of abstraction of the protocol of a concurrent
program. At the application level a protocol primarily expresses what it needs
to accomplish, which essentially has a declarative nature. As an implementation
in a conventional action-centric model of concurrency in a modern programming
language, this protocol, for instance, turns into imperatives that control the
scheduling of threads. Obviously, these imperatives must be refined into finer-
grained imperatives of machine instructions before the application can actually
execute on some hardware.

Figure 9(a), thus, shows that two transformations must take place before a
specification of what a protocol needs to accomplish can actually run on some
hardware: (1) translation by the programmer from the specification of what
into the imperatives of how, e.g., expressed using the API of some threading
library, and (2) translation by the compiler (of a conventional language) from
the resulting threading API calls into executable machine instructions.

The distance between a pair of levels of abstraction in this figure suggests the
complexity of abstraction/refinement transformation between them. One can, for
instance, use the ratio of the number of lines of “code” that it takes to specify
a protocol at each level of abstraction, and the mutual interdependence of these
lines as a crude measure for this complexity. For example, the translation of an
API call by the compiler of a conventional programming language into executable
code may produce many lines of low-level code, but each such translation is quite
straight-forward and the lines of code that result from two API calls essentially
do not depend on each other (any more than the original two API calls did). As
such, for instance, a C compiler contributes relatively little to the refinement into
executable code of the protocol part of an application that is already expressed
in terms of some threading API calls, as compared with the complexity of the
refinement that the programmer performs, in order to transform the application-
level specification of the protocol into precisely those specific threading API calls.

Programming of concurrency protocols is notoriously difficult precisely
because the gap between the two levels of abstraction that specify what a proto-
col must accomplish and the imperatives that state how, represents a chasm of
complexity. Programmers must navigate through this chasm essentially on their
own, to produce correct imperative code. Additionally, programmers must also
strive to manually make their correct code efficient too. And to reap the benefits
of Gustafson’s law, increasingly, programmers must also ensure that their correct,
efficient code is scalable as well. These requirements make the manual transla-
tion of what a protocol must accomplish into how to do so imperatively, a very
tall order that often frazzles even expert programmers. Because this translation
substantially takes place in the mind of a programmer, even when it succeeds,
it leaves no formal trace of its steps in the resulting code, from which a tool can
subsequently reconstruct this translation or its inverse. Thus, the intention con-
tained in what a protocol must achieve and the information about its translation
into how its implementation does so are irrecoverably lost.
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Imagine for a moment that instead of concurrency protocols we deal with
our more familiar sequential programs, and consider an example of sorting an
array of integers. A programmer may take this requirement (sort an array of
integers) and produce a correct piece of code, written in a sequential language
X. Assume that this code in fact implements a bubble-sort algorithm, perhaps
because the programmer does not know any better sort algorithms. A compiler
for X can do its best to generate optimized code for this program. However, can
such a compiler look at all assignment, if-then-else, and for-loop constructs in
its input, to divine from this jumble of source code that its programmer really
intended to sort this array, and thus “compile” the bubble-sort algorithm that it
finds in its input into the machine code for a quick-sort algorithm? Even if this
transformation were theoretically possible, would it be desirable for a compiler
to do so? After all, perhaps our programmer did actually know better and had a
very good reason—unknowable to the compiler—to want a bubble-sort algorithm
in this application.

Back to our concurrency protocol in Fig. 9(a), the fact that the program-
mer manually endeavors to translate what a protocol must accomplish into how
to do so utilizing the low-level imperatives of an action-centric model, leaves
relatively little wiggle room for the compiler to do significantly meaningful opti-
mization of the protocol : following our sort analogy, above, it can optimize the
implementation of each imperative, but it cannot compile its input imperatives
of a “bubble-sort protocol” into the machine code for a “quick-sort” alternative
protocol. Doing so requires a compiler to trace back the irrecoverable mental
translation steps that the programmer took to produce its source code in the
opposite direction, to divine the application level intention of the protocol; some-
thing of questionable desirability, even if theoretically possible.

Figure 9(b) shows the three levels of abstraction of the protocol of a concur-
rent program using an interaction-centric model of concurrency, such as Reo.
The declarative, compositional constraint-programming style of protocol speci-
fication in Reo shrinks the gap between what a protocol must accomplish and
its formal specification. As our examples demonstrate, this smaller gap makes it
easier for a programmer to construct modular, verifiable, reusable, and scalable
protocol specifications by composition. The programmer can now merely specify
what (i.e., “sort”) formally, instead of over-specifying how (i.e., “bubble-sort”),
imperatively.3 Shrinking the first gap also leaves much larger room in the sec-
ond gap for a compiler to perform meaningful protocol optimization. In spite of
its infancy, our compiler technology for Reo already demonstrates the practical
feasibility of such meaningful optimization in our current results.

The specific version of the Reo compiler used in the benchmarks depicted in
Figs. 7 and 8, generates C code that uses the API provided by the PRT system
mentioned in Sect. 8. Thus, although this version of our Reo compiler does not
generate object code that directly runs on the bare hardware, it indirectly does
so assisted by the C compiler and the PRT run-time. We ignore this technical

3 Of course, by adding extra “redundant” constraints, a programmer can also “specify”
a bubble-sort, when and if desired.
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detail in Fig. 9(b), because whether “compiler” in this figure designates a single
Reo compiler or consists of a chain of automated tools does not change the
point of our current discussion. However, for clarity, the dashed line in Fig. 9(b)
shows the actual target level of abstraction of the concurrency constructs used
in the C code generated by the version of our Reo compiler used in the above
benchmarks: the PRT API. With respect to the other main levels of abstraction
in this figure, PRT sits below the operating system, closer to the hardware,
and offers concurrency constructs at a lower level of abstraction than that of
operating system supported threading and scheduling facilities.

Fair Gain. A superficial reading of the “performance comparison” depicted in
Figs. 7 and 8 may seem to reveal as much about the effectiveness of our opti-
mization techniques, as it does about the competency of the C programmer
who produced the hand-crafted version of the protocol code of this application.
However, below this surface, lies a more crucial fundamental point that is inde-
pendent of the competency of any individual programmer, or the precise factor
by which our optimization techniques potentially can or currently do outperform
hand-crafted code that a programmer can (even hypothetically) produce.

Crucial to this benchmark is the fact that the task assigned to the pro-
grammer restricted him to use concurrency constructs available in contempo-
rary programming languages, such as Java or C (in this case p-threads). On
the other hand, our Reo compiler in this case bypasses this level of abstrac-
tion (and the coarser-grained, OS-level scheduling inefficiencies that it entails)
and generates code using finer-grained constructs below the OS-level and the
concurrency constructs that it supports. From this perspective, comparing the
performance of the two versions of the code is even unfair, because the state-
ment of the task assignment prevents the programmer from using lower-level
constructs to directly hand-craft code similar to (or perhaps better than) what
our Reo compiler produces. But precisely this unfairness constitutes the crux of
our argument in this section.

There are two conceivable ways to make such a comparison fair, i.e., pro-
duce code using constructs that are “fairly comparable” to the constructs
that our Reo compiler uses to produces its code: (1) develop tools that take
p-threads level code written by a programmer and produce more optimized code;
or (2) allow the programmer to directly code below the level of p-threads and OS.

Option 1 requires developing tools that can reconstruct the intentions behind
the p-threads constructs used to encode a protocol (fragment); i.e., divine
programmer’s intention of “sort” from an imperative “bubble-sort” implemen-
tation code. Generally, this is impossible because the information about the
mental transformation of what a protocol does into how it does it is irrecover-
ably lost. For instance, consider the piece of C code on the left. If its program-
mer intended just to assign the output of some function to every a[i], for
random inputs x, a compiler can parallelize the loop. However, if the program-
mer additionally intended the resulting array to have the same content, with
the same random seed, in different executions (e.g., to reproduce bugs), a com-
piler cannot parallelize the loop: in that case, the order of generating random
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numbers matters. Observe that from this code alone, neither a compiler nor a
human can judiciously decide about loop parallelization; making such a decision
requires intention information irrecoverable from this code.

int x;

for (int i = 0; i < 10; i++) {

x = rand();

a[i] = some_function(x);

// without side effects

}

Option 2, i.e., removing the artificial
barrier of programming at the level of
p-threads, is certainly possible. However,
manually programming below p-threads
and OS-level sharply raises the level of

expertise required by a programmer to code directly at such a low level, and
dramatically increases the size and the complexity of the resulting code. Higher
competency requirements and increased size and complexity of the resulting
code, in turn, sharply reduce the number of individuals who qualify to perform
such programming assignments, and dramatically lower the likelihood of success
of those who undertake such daunting tasks. Besides, applications that directly
use constructs below p-threads or OS abstractions become highly brittle and
non-portable, as they rely on constructs that most likely do not exist verbatim
on other platforms, or even on a future upgrade of their original platforms. Of
course, the above drawbacks of producing programs at a level below p-threads
and OS abstractions become moot if instead of a human programmer, a compiler
performs this programming, starting with some high-level protocol specification.

While option 1, in principle, involves divining lost information, option 2 does
not involve theoretical impossibilities; the difficulties in option 2 are “merely”
technical and pragmatic. Our Reo compiler automates some of the technicali-
ties involved in bypassing conventional concurrency constructs, making it more
pragmatic to go from a high-level declarative specification of a what to a very
efficient how -implementation below the level of p-threads or OS.

10 Concluding Remarks

Protocols constitute the most challenging aspect of concurrent applications.
Specification of a protocol in action-centric models of concurrency invariably
obscures what the protocol must achieve, because they lack mechanisms to forbid
or even discourage dispersing constituent constructs of a protocol throughout an
application software. Such dispersion intertwines protocol constructs with other
data- and control-flow constructs of the application, which obfuscates the proto-
col, making it only an intangible by-product, implied by some sets of nebulous,
logically-related-but-physically-scattered communication actions.

An increasingly important class of concurrent applications demand analysis,
verification, reuse, composition, and scaling of protocols. Meeting the software
engineering challenges of these applications requires definition and manipulation
of protocols as proper mathematical objects, with composition and other oper-
ators to work with them. As a prime example of an interaction-centric model of
concurrency, Reo can meet these challenges. Specification of protocols as declar-
ative constraints in Reo makes them easier to manipulate and analyze directly,
and makes it possible to compose protocols, scale, and reuse them verbatim.
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The results of our ongoing work on compiling Reo suggest that, in addition
to software engineering advantages, a high-level protocol language, such as Reo,
can have advantages with respect to performance as well. Superficially, obtaining
executable code that outperforms hand-crafted code, from the compiler of such a
high-level protocol language seems counter-intuitive: one expects to pay the price
of easier specification at a higher-level of abstraction, plus the software engineer-
ing benefits that it entails, by accepting a heavy penalty in performance. The
perspective we described in this paper explains why avoiding such a performance
penalty seems possible: compilers for such high-level languages can use formal
information about what a protocol must achieve, to perform optimizations that
compilers for lower-level languages cannot apply, simply because manual trans-
formation by programmers irrecoverably loses such intention information.
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Abstract. The increase of complexity in modelling systems and the
chances of success when model-checking them tend to be inversely pro-
portional. This mere observation justifies plainly the need to investigate
alternative ways for verification. In this paper we present such an alter-
native which uses a compositional verification rule. The basic idea is
to automatically compute local properties and combine them such that
together they are strong enough to prove global safety properties of sys-
tems. In [2] we showed how such a rule works in the framework of timed
systems with a fixed number of components and in [3] how the whole
approach can be extended to the parameterised case. The application
of the compositional verification rule can be pushed even further with
respect to two directions: (1) hybrid and (2) parametric systems. This is
the subject of the present paper.

1 Introduction

This paper spiraled from three concepts: compositionality, safety and hybrid
systems. On compositionality, we would like to recall a short text from Dijkstra’s
“On Understanding Programs”:

On a number of occasions I have stated the requirement that if we ever
want to be able to compose really large programs reliably, we need a dis-
cipline such that the intellectual effort E (measured in some loose sense)
needed to understand a program does not grow more rapidly than propor-
tional to the program length L (measured in an equally loose sense) and
that if the best we can attain is a growth of E proportional to, say L2, we
had better admit defeat. As an aside I used to express my fear that many
programs were written in such a fashion that the functional dependence
was more like an exponential growth.

Despite being frequently used over the years, we feel that the fragment in par-
ticular and Dijkstra’s remarks in general have not lost their savoury and charm.

Compositionality and safety, together with time, have already been the main
characters in our previous work [2,3] where we orchestrated a compositional
method for verifying timed automata. Timed automata is an expressive formal-
ism for modelling timing constraints. It would be not an easy task to ignore
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 88–103, 2016.
DOI: 10.1007/978-3-319-30734-3 8
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“time” as a less important concept. Deadlines, delays... are everywhere. Correct
scheduling, to name but one time related application, is crucial for critical sys-
tems. In this paper we propose to go a bit further, to the “realm of hybridity”
and show how our method scales to the verification of state safety properties in
the context of (parametric) hybrid systems interacting by means of multi-party
interactions. This is just but a first step in a more ambitious project on veri-
fying programable controller programs (PLCs) in the context of cyber-physical
systems in the domain of industrial automation. “Cyber-physical systems” is all
about interconnecting devices, sensors, actuators, all of these being distributed.
Such dynamic systems with both discrete and continuous components fit well
the class of hybrid systems: PLCs play the role of discrete components while the
external environment sensed or impacted by devices such as valves, sensors, or
activators exhibits a continuous behaviour. Lately, results on the application of
hybrid systems are documented in projects such as COMPASS1, Veriware2, or
in CPS-VO groups such as ARCH3 and UncoVerCPS4 to name but a few. These
recent successes suggest that the use of the formalism in industry is growing
and this brings opportunities for verification to be put into practice especially in
domains where safety is a most critical aspect. We note that, in academia, the
verification of hybrid systems has been studied since the early nineties. Central
to verification, the reachability problem has been shown to be undecidable for
hybrid automata except for few cases such as variations on timed automata and
we refer to [23] as a classical reference. Nevertheless, this is not a reason to dis-
courage as by means of abstraction, the fixpoint computation behind reachability
converges and in fact there is quite a variety of approaches and tools for model-
checking [8–10,12,15–17,19,21,30–32,37,41,42], to cite the most recent results.
Compositional approaches are fewer. The relevant references we are aware of are
[6,14,18,24,26,29,39] and they are either based on assume guarantee or rely on
user interaction as it is the case with the interactive prover KeYmaera [29,39].
Consequently, we find that it is worth-while investigating automatic composi-
tional approaches and this offers us enough justification to motivate our work.
Our methodology follows the one introduced in [2]. The building blocks can be
summed up as the following steps:

– generate local invariants for individual components as over approximations
of their symbolic state space (possibly in a property-driven manner à la IC3
[40])

– generate interaction invariants to express relations between the different com-
ponents and/or auxiliary variables

– assemble all invariants into one formula (possibly quantify it existentially on
unknown parameters), and feed it to the SMT-solver Z3 [35].

We emphasise that all the computations are completely automatic. We note that
these basic building blocks are not new. The novelty is more in bringing them
1 compass.informatik.rwth-aachen.de.
2 veriware.org.
3 cps-vo.org/group/ARCH.
4 cps-vo.org/group/UnCoVerCPS.
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together in a coherent methodology. Its simplicity should encourage its use as
especially a preliminary step in verification. Behind “preliminary” is the fact
that our method is sound, but not complete. Consequently, if Z3, when given
as input the formula corresponding to our verification rule, yields “no solution”,
or in other words, that the “bad” states are not reachable, then we are done.
Otherwise, auxiliary techniques, as for instance, counterexample refinement, are
needed to prove the system safe.
Organisation of the Paper. Section 2 recalls the classical definitions used in our
framework. Section 3 presents how to effectively verify linear hybrid systems
compositionally. Section 4 discusses extensions and Sect. 5 concludes.

2 Model

In our setup, components are linear hybrid automata and systems are compo-
sitions of components with respect to multi-party interactions. The definitions
for hybrid automata are adopted from [1,21]. Before recalling them, we first fix
some notation.

We use X to denote real-valued variables. A valuation v is a function that
assigns a real-value v(x) ∈ R to each variable x ∈ X . It is useful to note that a
valuation v can be identified with the point (v(x1), . . . ,v(xn)) ∈ R

n. We denote
by V the set of valuations. Given a set of variables X , a linear inequality has

the form
n∑

i=1

αixi#βi with xi ∈ X , αi, β ∈ Z, # ∈ {<,≤,=,≥, >}. A convex

linear constraint is a finite conjunction of linear inequalities. The set of convex
linear constraints over X is denoted by L(X ). The geometrical interpretation of
a convex linear constraint is that of as a convex polyhedron.

Definition 1. A component is a hybrid automaton (L, l0,X , A, T, tpc,D) where:

– L is a finite set of locations and l0 is an initial location;
– X is a finite set of real-valued variables;
– A a finite set of actions;
– T is a set of transitions: each transition τ = (l, a, g, μ, l′) consists of a source

location l ∈ L, a target location l′ ∈ L, an action a ∈ A, g is a guard condition
in L(X ), and a jump relation μ ∈ L(X ∪ X ′) with X ′ denoting the variables
at l′;

– tpc : L → L(X ) assigns a convex linear time progress condition to each loca-
tion;

– D : L → (Rn → R
n) assigns activities to each location. The activities Dl

describe how the continuous variables evolve within each location l.

The class of hybrid automata with linear dynamics is called linear hybrid
automata (LHA). By linear dynamics it is meant that the activities are given
by convex linear constraints over the time derivatives of the variables, that is,
Dl is in L(Ẋ ) for each l in L.
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We restrict to linear dynamics for two reasons. The first one is to simplify the
presentation: technically, it makes little difference had the dynamics been more
complicated. Our second reason is of a more pragmatic type: after investigating
the existing tools, the ones answering best our needs handle only LHAs. As a
side remark, we note also that though there has been a considerable amount
of work and advancement on SMT solvers for nonlinear arithmetics (Z3, SMT-
RAT, CVC3, miniSMT, RAHD, hydlogic, dReal, iSAT to name a few cited in
[10]), their current performance is still not satisfactory and their scalability is
problematic [36].

The semantics of a component B modelled as an LHA (L, l0,X , A, T, tpc,D)
is given as a labelled transition system (Q,A,→) where Q ⊆ {(l,v) ∈ L × V |
v ∈ tpc(l)} denotes the states of B and → ⊆ Q × (A ∪ R≥0) × Q denotes the
transitions according to the rules:

– (l,v) δ→ (l,v′) if ∃k ∈ D(l).v′ = v + δk (time progress);
– (l,v) a→ (l′,v′) if

(
l, (a, g, μ), l′

)
∈ T , v ∈ g and (v,v′) ∈ μ (action step).

Since this semantics yields an infinite state space, to effectively compute the
states of a component, symbolic representations are used instead. A symbolic
state is a pair (l, ζ) of a location l and a constraint ζ over variables. It has been
shown that the reachable states of an LHA can be effectively represented by con-
vex polyhedra [1]. Consequently, the operations corresponding to the delay and
action transitions are performed on convex polyhedra rather than on concrete
valuations. As discussed in [18], what is crucial is implementing them efficiently.
Here, we only recall their definitions from [27] however adapted slightly as in
[21]. The operation time succ for letting time progress within a symbolic state
is defined as time succ((l, ζ)) = (l, ζ ↑q) where ↑q is the time-elapse operator
defined in turn as follows:

v′ ∈ ζ ↑q iff ∃v ∈ ζ, δ ∈ R≥0, k ∈ D(l).v′ = v + δk ∧ v′ ∈ tpc(l).

The successor with respect to a discrete transition t =
(
l, ( , g, μ), l′

)
is defined

as disc succ(t, (l, ζ)) = (l′, ζ ′) where

v′ ∈ ζ ′ iff ∃v ∈ ζ ∩ tpc(l) ∩ g.(v,v′) ∈ μ ∧ v′ ∈ tpc(l′).

With these two operations, the successor operator, succ, is defined simply as
succ(t, (l, ζ)) = time succ(disc succ(t, (l, ζ))).

A symbolic execution of a component starting from a symbolic state s0 is a
sequence of symbolic states s0, s1, . . . , sn, . . . such that for any i > 0 there exists
a transition t for which si is succ(t, si−1).

Given a component B with initial symbolic state s0 and transitions T , the
set of reachable symbolic states Reach(B) is Reach(s0) where Reach is defined
recursively for an arbitrary s as {s} ∪

⋃

t∈T

Reach(succ(t, s)).

In our framework, components communicate by means of interactions, which
are synchronisations between their actions. Given n components Bi, 1 ≤ i ≤ n,
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with disjoint sets of actions Ai, an interaction is a subset of actions α ⊆ ∪iAi

containing at most one action per component, that is, of the form α = {ai}i∈I ,
with ai ∈ Ai for all i ∈ I ⊆ {1, . . . , n}. Given a set of interactions γ ⊆ 2∪iAi ,
we denote by Act(γ) the set of actions involved in γ, that is, Act(γ) = ∪α∈γα.
A hybrid system is the composition of components Bi for a set of interactions
γ such that Act(γ) = ∪iAi. For n components Bi = (Li, l

i
0,Xi, Ai, Ti, tpci,Di)

with Ai ∩ Aj = ∅, Xi ∩ Xj = ∅, for any i 
= j, the composition ‖γBi with respect
to a set of interactions γ is defined by an LHA (L, l̄0,X , γ, Tγ , tpc,D) where
l̄0 = (l10, . . . , l

n
0 ), X = ∪iXi, L = ×iLi, tpc(l̄) = ∩itpci(li), D(l) = ∩iDi(li)

and Tγ is such that for any interaction α = {ai}i∈I we have that l̄
α,g,μ−−−→ l̄′

where l̄ = (l1, . . . , ln), g = ∩i∈Igi, μ = ∩i∈Iμi, and l̄′(i) = if (i 
∈ I) li else l′i for
li

ai,gi,ri−−−−−→ l′i. In a system ‖γBi a component Bi can execute action ai only as part
of an interaction α containing it, that is, along with the execution of all other
actions from α. This corresponds to the usual notion of multi-party interaction.

Remark 1. Our method being compositional, allowing shared variables is error-
prone. Consequently, we require that the sets of local variables are disjoint.
However, we note that, in principle, we could deal with a certain “amount”
of sharing by adopting a strategy as follows: components share variables in a
read-only fashion, while updates can take place in the “owner” component.

Example 1. As a working example we take a classic one, that of a temperature
control system which was described first in [28]. We, however, use the model
from [1]. The system maintains the coolant temperature inside a reactor tank
within given bounds 3 and 15 by moving two rods. When the temperature reaches
15, the controller uses a rod to refrigerate the tank. The temperature rises and
decreases at the rate of 6, respectively 2. A rod can be reused only after 6 time
units. If the temperature cannot decrease because no rod is available the system
is shutdown. Figure 1 shows the corresponding hybrid system with t measuring
the temperature and x0, x1 the clocks counting the time elapsed since the last
use of rod 0 and 1. The set of interactions γ is {heat | resti, cool | cooli} with
i ∈ {0, 1}. For clarity, the activities and the time progress conditions associated
with the locations of the controller are depicted in blue. We denote the trigger
for shutdown as shutdown := (t = 15 ∧i xi < 6). We say that the system is safe
when it is not shutdown and, for the ease of reference, we denote this property
by Ψ , i.e., Ψ := ¬shutdown.

Remark 2. We note that in [1] the system is presented as one component (rep-
resenting the composition of the controller and the two rods) while we manually
decomposed it into three components. At what extent can such decompositions
be automated is a research topic on its own.

The separate executions of the controller and of the rods respectively are as
follows:
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Fig. 1. Temperature controller system (Color figure online)

The executions of the system are longer. For illustration, we show the first
three steps as obtained with the tool Hymitator [21]:

We note that within these steps the system is safe, and, in fact, it is never the
case that the temperature reaches the value 15 with both xi being less than 6.

3 Compositional Verification

At the heart of our method is the verification rule (VR) from [5]. Its beauty is
in its simplicity and genericity. Assume that a system consists of n components
Bi interacting by means of an interaction set γ, and that the property that the
system should satisfy is Ψ . If components Bi and interactions γ can be locally
characterised by means of invariants (here denoted CI (Bi), resp. II (γ)), and
if Ψ can be proved to be a logical consequence of the conjunction of the local
invariants, then Ψ is a global invariant. In Fig. 2, the symbol � is used to underline
that the logical implication can be effectively proved (for instance with an SMT
solver) and the notation “B |= � Ψ” is to be read as “Ψ holds in every reachable
state of B”.

Fig. 2. Compositional verification

Thanks to its genericity, (VR) can be
instantiated with respect to different mod-
elling frameworks. In [2] we took timed
systems as a case of study. Next, we make
the move towards (parametric) hybrid
systems.

3.1 Component Invariants

Component invariants characterise the reachable states of components when con-
sidered alone. More precisely, given that the set of the reachable symbolic states
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(lj , ζj) of an arbitrary component B is finite, its invariant is defined by the dis-
junction ∨j(lj ∧ζj), where by abuse of notation lj is used to denote the predicate
that holds whenever B is at location lj .

Example 2. As an illustration, after simplifications, the component invariants
for the controller and for the rods from our running example are as follows:

CI (Controller) = (lc0 ∧ 15 ≥ t ≥ 0) ∨ (lc1 ∧ 15 ≥ t ≥ 3)
CI (Rod i) = (l0i ∧ xi ≥ 0) ∨ (l1i ∧ xi ≥ 6) (1)

We note the correspondence between these formulae and the local executions as
shown in Sect. 2.

3.2 Interaction Invariants

Interaction invariants are over-approximations of the global state space allowing
us to disregard certain tuples of local states as unreachable. Interaction invariants
II (γ) are induced by the synchronisations and have the form of global conditions
involving control locations of components. Previous work considered boolean
conditions [5] as well as linear constraints [33] as methods for generating II (γ).

Example 3. For simplicity, we show the interaction invariant corresponding to
the set of interactions between the controller and rod0:

II ({heat | rest0, cool | cool0}) = (l00 ∨ lc1) ∧ (l10 ∨ lc0). (2)

The invariant is given in conjunctive normal form to stick to the formal-
ism in [5]. The disjunctions represent the so called “initially marked traps” in a
Petri net which corresponds to the synchronisation skeleton of our model. Intu-
itively, a trap can be seen as a set of places which always contains tokens if
they have tokens initially. To better “see” Formula (2), the reader can trans-
form it in disjunctive normal form, and after eliminating conjunctions such as
l00 ∧ l10 (a component cannot be at two locations simultaneously), what remains
is the disjunction (l00 ∧ lc0) ∨ (l10 ∧ lc1). In this particular case, the invariant is
an exact characterisation of the global state space of the untimed (sub)system
Controller‖Rod0.

3.3 History Clocks and Auxiliary Constraints

As argued in [2], a direct application of the rule (VR) may be too weak in
the sense that the component and the interaction invariants derived from the
traps are usually not enough to prove global properties, especially when such
properties involve relations between clocks in different components. For instance,
in the temperature controller scenario, we cannot show that shutdown does not
hold by only having at hand the invariants for components and interactions: any
valuation such that t = 15 and xi < 6 satisfies CI (Controller) ∧i CI (Rod i) ∧ ∧
II (γ) ∧ shutdown. History clocks allow to decouple the analysis for components
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and for their composition. They make it possible to derive new global constraints
from the simultaneity of interactions and the synchrony of time progress.

Adding History Clocks. History clocks are associated with actions and inter-
actions. For a component B we use Bh to denote its extension with history clocks.
The extension of the system is obtained from the extensions of the components
alone together with the history clocks for interactions. As an illustration, Fig. 3
shows the extension of the system in Fig. 1.

Fig. 3. Illustrating components with history clocks for (Inter)actions

The mechanism of history clocks can be understood as follows. When an
interaction α takes place, the history clocks hα and ha associated to α and to
any action a ∈ α are reset. Thus they measure the time passed from the last
occurrence of α, respectively of a. We note that, since there is no timing con-
straint involving history clocks, the behaviour of the components is not changed
by the addition of history clocks.

Generating Interaction Equalities from History Clocks. The starting
point is the following basic fact: a history clock ha for an action a from a last
executed interaction α is necessarily less than any hβ with β another interaction
containing a. This is because the clocks of the actions in α are the last ones
being reset. Consequently, given a common action a of α1, α2, . . . , αp, ha is the
minimum of hαi

, ha = min
i∈[p]

hαi
. The resulting invariant for a given interaction

set γ is denoted as E(γ) and defined as follows:

E(γ) =
∧

a∈Act(γ)

ha = min
α∈γ,a∈α

hα.

Example 4. For our running example, E(γ) is given by the conjunction:

hheat = min
i∈{0,1}

hresti ∧ hcool = min
i∈{0,1}

hcooli . (3)
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Generating Inequalities from Conflicting Interactions.The (in)equality
constraints shown previously allow to relate local constraints obtained separately
from the component invariants. Without conflicts, that is, when interactions do
not share any action, the generated invariants are quite tight in the sense that
E(γ) is essentially a conjunction of equalities. However, E(γ) is weaker in the
presence of conflicts because any action in conflict can be used in different inter-
actions. The disjunctions (implicit in the definition of min) in E(γ) reflect pre-
cisely this uncertainty. History clocks on interactions are introduced to capture
the time lapses between conflicting interactions. The basic information we can
exploit is that when two conflicting interactions compete for the same action a,
no matter which one is first, the other one must wait until the component which
owns a is again able to execute a. This is referred to as a “separation constraint”
for conflicting interactions and is defined as the following invariant:

S(γ) =
∧

a∈Act(γ)

∧

α�=β∈γ
a∈α∩β

| hα − hβ |≥ ka

where | x | denotes the absolute value of x and ka is a constant computed
locally on the component executing a, and representing the minimum elapsed
time between two consecutive executions of a.

Remark 3. If in the case of timed automata exact methods to compute ka exist5,
in the case of hybrid systems, we are not aware of such approaches. However, a
simple but incomplete heuristics to determine a correct value for ka is to guess
and do a local model-check.

Example 5. For our running example, we have that S(γ) is given by:

| hheat|rest0 − hheat|rest1 |≥ kheat ∧ | hcool|cool0 − hcool|cool1 |≥ kcool. (4)

By inspecting the model, one can note that the constants kcool and kheat are
both equal to the sum of the time lapses at lc0 and lc1 which reduces to 8.

3.4 Revisiting (VR)

With the new the clock constraints E and S, the generalisation of the rule (VR)
from Sect. 2 boils down to checking the validity of the following formula:

∧iCI (Bh
i ) ∧ II (γ) ∧ E(γ) ∧ S(γ)

︸ ︷︷ ︸
GI

→ Ψ (5)

or equally the unsatisfiability of GI ∧ ¬Ψ .
The soundness of (VR) follows from the basic fact that the conjunction of

invariants is in turn an invariant and from the observation that each of the
constituting elements of GI is an invariant.
5 We refer to [13] for an approach which reduces the computation to finding a shortest

path in a weighted graph built from the zone graph associated of a timed automaton.
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Example 6. As an illustration, we work through our running example from head
to tail. We recall that we take, as a safety state property, Ψ := ¬shutdown with
shutdown being t = 15 ∧i xi < 6. We first reproduce the component invariants
for the rods and the controller extended with history clocks as provided by
Hymitator.

CI (Rodh
i ) =(l0i ∧ xi ≥ 6)

∨ (l1i ∧ xi ≥ 6 + hcooli)
∨ (l0i ∧ hcooli ≥ hresti ∧ hresti ≥ 0 ∧ xi = hresti)
∨ (l1i ∧ xi = hresti ≥ hcooli ∧ hresti ≥ 6 + hcooli)

CI (Controllerh) =15 ≥ t∧
∨

(
(lc0 ∧ t ≥ 0)

∨ (lc1 ∧ t ≥ 3 ∧ 15 = t + 2hcool)
∨ (lc0 ∧ t ≥ 3 ∧ 12 + 6hcool = 45 + t ∧ 3 + 6hheat = t)

∨ (lc1 ∧ t ≥ 3 ∧ 15 = t + 2hcool ∧ 3t + 6hheat = 57)
)

These local invariants together with the interaction invariant, the (in)equality
and the separation constraints represented by Formulae (3), (4) are an instan-
tiation of GI . We feed this instantiation together with shutdown to Z3 and ask
for a solution. The result “no solution” allows us to conclude that the system is
safe. To give an intuition why this is indeed the case, we take a closer look at
the formulae at hand. The only problematic case is when both rods are at the
initial locations (at the other location we already knew from Formula (1) that
xi ≥ 6). The relevant equations are xi = hresti . Let us assume that the controller
is at lc0 (the other location is dismissed by the interaction invariant). To have
a shutdown, t is 15. Consequently, hcool is 8 and hheat is 2. Assume that the
minimum between hresti is hrest0 , that is, x0 = 2. By the separation constraint,
hrest1 is at least 10 and implicitly x1 can be used for cooling, consequently, the
system is so far safe.

4 Bringing Parameters into Play

In this section we present some ongoing research about parameters and their
roles within our framework. We distinguish two levels where parameters can
enter the scene: (1) at component level, and this leads to systems of parametric
LHAs, and (2) at system level, and this leads to parameterised hybrid systems.

4.1 Parametric LHAs

At component level, parameters may represent for instance physical constants
dependent of the environment or values that the designer should set such as
timing constraints which are to be known only at deployment. Working with
parameters in early stages of development has the direct benefit that it makes
it possible to explore different design choices and evaluate their robustness.
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To handle parameters at the level of components, it suffices to split X into
2 disjoint sets V and P, where V plays the role of X as in Definition 1 while
P stores parameters. Parameters can be seen as a particular type of variables
whose values do not change over time.

Returning to the temperature controller example, we recall that the constants
used in the system are values for minimum and maximum bounds, recovering
times for rods, temperature increase and decrease rates. If we see all these as
parameters, the corresponding system is the one illustrated in Fig. 4.

Fig. 4. Parametric temperature controller system

To apply (VR) on systems with components as parametric LHAs, all the
methods for computing local invariants, as described in Sect. 3, except one,
remain unchanged. The computation of interaction invariants and equality con-
straints only depends on the set of interactions. Neither does the computation
of component invariants, however the output reflects parameters instead of con-
stants. As an illustration, the component invariant for the controller computed
with Hymitator is as follows:

CI (Controllerh) =M ≥ t ∧ M ≥ 0

∧
(
(lc0 ∧ t ≥ 0)

∨ (lc1 ∧ t ≥ m ∧ M = t + 2hcool )
∨ (lc0 ∧ t ≥ m ∧ 4m + 6hcool = 3M + t ∧ m + 6hheat = t)

∨ (lc1 ∧ t ≥ m ∧ M = t + 2hcool ∧ m + 3t + 6hheat = 4M)
)

The exception is the computation of separation constraints. The exact paramet-
ric value could be manually computed. In the case of the running example, one
can show that kcool and kheat are both equal to (M − m)(1/vc + 1/vh). Gener-
alising such computations may seem hopeless. We note that not being able to
compute separation constraints does not mean that (VR) is no longer applica-
ble, but that it is less stronger. Also, in the case when the component where
one needs to compute separation constraints does not have parameters, then
(VR) preserves its strength. In our running example, this boils down to T being
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the only parameter. For the sake of reaching a conclusion, let us continue our
thought experiment irrespective of being able to automatically compute sepa-
ration constraints. We do so by asking the question: “knowing that by default
variables are understood as universally quantified, does it make sense to input
(VR) as is to Z3?” If we look at our running example, it is apparent that the
system would not be safe for any value of T . In fact, by a closer analysis, for the
system to be safe it is sufficient that the sum of the time lapse for the controller
to raise the temperature and twice the time lapse for the two rods to refrigerate,
i.e., (M −m)(1/vh +2/vr), is greater than T . From this, we reach a more general
remark that verification of parametric (hybrid) systems boils down to a synthe-
sis problem. Basically, what we would like to ask (VR) is to synthesise concrete
values such that the constraints we have just derived manually are satisfied.

As a side remark and as a justification of our thought experiment, we note
that parameter synthesis for hybrid systems has already been addressed first in
[25] and later refined in [11,20,21]. However, doing it compositionally is new.

To effectively tackle the new synthesis problem, a first approach is to quantify
the parameters in (VR) existentially. However, as argued in [11], this would give
us just one set of “good” parameters. In this sense, it would be of interest to
follow the approach from [11] which basically computes all the good parameters
by finding the bad ones: the good parameters are simply the domains from which
the bad parameters are eliminated. Regarding this direction, our experiments
with tactics for eliminating quantifiers and simplifying formulae in Z3 did not
lead to concrete results. Experimenting along the first direction is more on the
positive side. For instance, if we ask Z3 to solve ∃T.GI [M ← 15,m ← 3] ∧ Ψ it
yields a solution where T is 1. This is, indeed, a valid value but we would be
interested in finding the maximal T for which a rod is allowed to recover without
leading to a shutdown. We could find such a value in an iteratively manner, by
means of a binary search, for instance, to advance at a faster pace. How useful
would recent max-SMT techniques [7] be for finding optimal solutions and at
what extent this approach can be automated and generalised to handle multiple
parameters needs still to be investigated.

4.2 Parameterised Hybrid Systems

Taking parameters at system level is more inline with our previous work in [3].
There, we have made use of a small model result to verify parameterised timed
systems, that is, timed systems with arbitrary many replicated components. The
verification of parameterised systems is usually refered to as “uniform verifica-
tion”. As an illustration, we use our running example: the controller together
with an arbitrary number of rods forms a parameterised hybrid system.

Concretely, in [3], we have shown how (VR) can be extended to tackle uni-
form verification of a restricted6 class of ∀∗∃∗ properties for parameterised timed
systems. The underlying technicality was to “massage” the formula correspond-
ing to (VR), that is, GI → Ψ into a restricted ∀∗∃∗ property. Thanks to this,

6 The restriction consists in only allowing linear constraints on variables and compar-
isons between indices while disallowing comparisons between variables and indices.
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we were able to apply a small model result which allowed us to reduce uniform
verification to the verification of a small number of replicas. The bound is mostly
related to the number of universal quantifiers behind (VR). The methodology in
[3] naturally extends to parameterised hybrid systems. The only difference is in
computing local invariants, as shown in Sect. 3.

Remark 4. So far, the setup from [3] only allows replicas as identical copies.
Consequently, as is, the framework cannot handle parametric components. This
would be a wanted feature as it is not infrequent that guards in components
are parametric in the number of components. It is even the case of our running
example: the parameterised temperature controller system cannot be safe for an
arbitrary number n of rods unless the guard in the replicated rod depends on n.
However, technically, such a guard does not fit our ∀∗∃∗ properties. It would be
of interest to see if we could borrow ideas from [22] to relax our restrictions.

5 Conclusions

We presented a compositional approach to the verification of hybrid systems.
On the positive side, thanks to compositionality itself and to the speed of SMT
solvers such as Z3, the approach scales quite well. On the negative side, while
working with abstractions we run into false positives. In principle, false positives
could be eliminated by means of a CEGAR approach but further experiments
are needed to evaluate the real strength of the method.

Besides clarifying the points raised in Sect. 4, we would be interested in a few
more experiments. One is about using tools such as Hycomp [12] or flow∗ [8].
Hycomp has the advantage that it uses IC3 [40] for a property driven compu-
tation of the set of reachable states. In principle, this would allow us to have
smaller component invariants. flow∗ handles non-linear hybrid automata, thus
it would make it possible to effectively experiment with (VR) and non-linear
hybrid systems. Ideally, we would like to have a (VR)-based platform where dif-
ferent tools for computing sets of reachable states of hybrid automata could be
plugged in. Some effort in this direction is already visible [4] at the level of input
formats. It would be helpful to have a similar result at the level of output.

Another direction we intend to look into is moving towards hybrid I/O
automata [34] as a more suitable model for PLCs.

Regarding modelling aspects, we also note that many of the hybrid systems
we came across in the literature have global variables and in general they are
described in a “monolithic” manner. This latter observation brings us to the
issue of decomposing hybrid systems into components. As we have mentioned,
in the temperature controller example, we did the decomposition by hand. To
automate such a decomposition, a possible approach we could look into is the
one from [38] which is based on strongly connected components. In a different
direction, it would be of interest at what extent would results from algebraic
geometry be useful.
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102 L. Aştefănoaei et al.

17. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE
for hybrid systems analysis by combining different enclosure methods. In: Barthe,
G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187.
Springer, Heidelberg (2011)

18. Frehse, G.: Compositional Verification of Hybrid Systems using Simulation Rela-
tions. Ph.D. thesis, Radboud Universiteit Nijmegen (2005)
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26. Hermanns, H., Krčál, J., Křet́ınský, J.: Compositional verification and optimization
of interactive markov chains. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR
2013 – Concurrency Theory. LNCS, vol. 8052, pp. 364–379. Springer, Heidelberg
(2013)

27. Ho, P.-H.: Automatic Analysis of Hybrid Systems. Ph.D. thesis, Cornell University
(1995)

28. Jaffe, M.S., Leveson, N.G., Heimdahl, M.P.E., Melhart, B.E.: Software require-
ments analysis for real-time process-control systems. IEEE Trans. Softw. Eng. 17,
241–258 (1991)

29. Jeannin, J., Platzer, A.: dtl2: Differential temporal dynamic logic with nested tem-
poralities for hybrid systems. In: IJCAR (2014)

30. Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata
networks. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS,
vol. 7273, pp. 18–34. Springer, Heidelberg (2012)

31. Johnson, T.T., Mitra, S.: Anonymized reachability of hybrid automata networks.
In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 130–145.
Springer, Heidelberg (2014)

32. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015)

33. Legay, A., Bensalem, S., Boyer, B., Bozga, M.: Incremental generation of linear
invariants for component-based systems. In: ACSD (2013)

34. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput.
185, 105–157 (2003)



A Compositional Approach to the Verification of Hybrid Systems 103

35. de Moura, L., Bjørner, N.S.: Efficient e-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

36. Mover, S.: Verification of Hybrid Systems using Satisfiability Modulo Theories.
Ph.D. thesis, FBK-IRST/DIT (2014)

37. Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions
for hybrid systems. In: EMSOFT (2013)

38. Oehlerking, J.: Decomposition of Stability Proofs for Hybrid Systems. Ph.D. thesis,
Carl von Ossietzky Universität, Oldenburg (2011)

39. Quesel, J.-D., Platzer, A.: Playing hybrid games with KeYmaera. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 439–453. Springer,
Heidelberg (2012)

40. Somenzi, F., Bradley, A.R.: IC3: where monolithic and incremental meet. In:
FMCAD (2011)

41. Testylier, R., Dang, T.: NLTOOLBOX: A library for reachability computation of
nonlinear dynamical systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013.
LNCS, vol. 8172, pp. 469–473. Springer, Heidelberg (2013)

42. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification
for probabilistic hybrid systems. Eur. J. Control 18, 588–590 (2012)



Array Abstraction with Symbolic Pivots
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Abstract. We present a novel approach to automatically generate
invariants for loops manipulating arrays. The intention is to achieve
formal verification of programs over arrays without the need for user-
specified loop invariants. Many loops iterate and manipulate collections.
Finding useful, i.e., sufficiently precise invariants for those loops is a chal-
lenging task, in particular, if the iteration order is complex. Our approach
partitions an array and provides an abstraction for each of these parti-
tions. Symbolic pivot elements are used to compute the partitions. In
addition we integrate a faithful and precise program logic for sequential
(Java) programs with abstract interpretation using an extensible multi-
layered framework to compute array invariants. The presented approach
has been implemented. Results of experiments are reported.
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Deductive program analysis and verification must determine a trade-off
between the complexity of the properties they ascertain, the precision of the analy-
sis, i.e., the percentage of issued false warnings, and the degree of automation.

Improving automation for medium to complex properties by maintaining an
acceptable degree of precision requires addressing one of the sources for inter-
action (or otherwise loss of precision). One kind of interaction derives from the
elimination of quantifiers, another one is the provision of program annotations
such as method contracts, loop invariants or assertions that serve as hints for
the underlying theorem prover. Providing useful annotations, in particular, loop
invariants is a time-consuming and difficult task, which requires experience in
writing formal specifications on the part of the user. This hinders wide-spread
adoption of formal verification in industry.

Here we focus on the automatic generation of loop invariants. We improve
upon previous work [1] of some of the co-authors in which a theoretical framework
was developed that integrates deductive reasoning and abstract interpretation.
We extend this by a novel approach for automatic generation of invariants for
loops that manipulate arrays. This loop invariant generation works by parti-
tioning arrays automatically using a new concept to which we refer as symbolic
pivots. A symbolic pivot expresses the symbolic value of a term (in particular
an array index) at the end of every loop iteration. When these symbolic pivots
have certain properties we can generate highly precise partitions. The content of
array partitions is represented as an abstract value which describes the value of
the partition’s elements. An important feature is that the degree of abstraction,
that is, the precision is adaptive.

Further, we integrate a faithful and precise program logic for sequential (Java)
programs with abstract interpretation using an extensible multi-layered frame-
work to compute array invariants. The presented approach has also been imple-
mented as a proof of concept based on the KeY verification system [2].

2 Background

2.1 Program Logic

We introduce our program logic and calculus, and explain our integration of
value-based abstraction based on previous work [1] by some of the authors.

We stress that our implementation works for nearly full sequential Java [2],
but for readability we restrict ourselves here to a fragment with integer arrays
as the only kind of objects. The program logic presented below extends the logic
in [1] by an explicit heap model and array types.

Syntax. We work with a first order dynamic logic which is closely related to
Java Card DL [2]. Its signature is a collection of the symbols that can be used
to construct formulas:

Definition 1 (Signature). A signature Σ is a tuple ((T ,�),P,F ,PV ,V) con-
sisting of a set of types T together with a type hierarchy �, predicates P, func-
tions F , program variables PV and logical variables V. Types contain at least �,
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Heap, LocSet, int and int[] with � being the top element and the other types
ordered directly below �.

Our logic consists of terms Trm (write TrmT for terms of type T ), formu-
las For , programs Prog and updates Upd . Besides some extensions we elaborate
on below, terms and formulas are defined as in standard first-order logic. Impor-
tantly, there is a difference between logical variables and program variables: both
are terms, but logical variables must not occur in programs and can be bound by
a quantifier. On the other hand, program variables can occur in programs, but
cannot be bound by a quantifier. Syntactically, program variables are flexible
function constants, whose value can be changed by executing a program.

Updates are discussed in [2] and can be viewed as generalized explicit substi-
tutions. The grammar of updates is: U :: = (U ‖U) | x := t where x ∈ PV and
t is a term of the same type or subtype as x. Updates can be applied to terms
and formulas: given a term t then {U}t is also a term (analogous for formulas).
The only other non-standard operator for terms and formulas in our logic is the
conditional term: let ϕ be a formula and ξ1, ξ2 are both terms of compatible type
or are both formulas, then if (ϕ) then (ξ1) else (ξ2) is also a term or formula.

There is a modality called box [·]· which takes a program as first parame-
ter and a formula as second parameter. Intuitively the meaning of [p]φ is that
if program p terminates without throwing an exception then in its final state
the formula φ holds (our programs are deterministic). Thus the box modality
expresses partial correctness. The formula φ → [p]ψ has the exact same meaning
as the Hoare triple {φ} p {ψ}. In contrast to Hoare logic, dynamic logic allows
nested modalities. The grammar for programs is:

p :: = x = t | x[t] = t | p; p | skip | if (φ) {p} else {p} | while (φ) {p}

where x ∈ PV, t, ϕ are terms/formulas. Syntactically valid programs are well-
typed and do not contain logic variables, quantifiers or modalities.

The program skip should have no effect. We write if (ϕ) {p} as an abbre-
viation for if (ϕ) {p} else { skip }.

Semantics. Terms, formulas and programs are evaluated with respect to a first
order structure.

Definition 2 (First Order Structure, Variable Assignment). Let D be a
non-empty domain of elements. A first order structure M = (D, I, s) consists of

1. an interpretation I which assigns each
– T ∈ T a non-empty domain DT ⊆ D s.t. ∀S ∈ T . S � T → DS ⊆ DT

– f : T1 × . . . × Tn → T ∈ F a function I(f) : DT1 × . . . × DTn → DT

– p : T1 × . . . × Tn ∈ P a relation I(p) ⊆ DT1 × . . . × DTn

2. a state s : PV → D assigning each program variable v ∈ PV of type T a value
s(v) ∈ DT . We denote the set of all states by States.
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We fix the interpretation of some types and symbols: I(int) = Z, I(�) = D and
the arithmetic operations +,−, /,%, . . . as well as the comparators <,>,≤,≥,

.=
are interpreted according to their standard semantics.

In addition we need the notion of a variable assignment β : V → D which
assigns each logical variable to an element of its domain.

Definition 3 (Evaluation). Given a first order structure (D, I, s) and a vari-
able assignment β, we evaluate terms t (of type T ) to a value valD,I,s,β(t) ∈ DT ,
formulas ϕ to a truth value valD,I,s,β(ϕ) ∈ {tt ,ff }, updates U to a function
valD,I,s,β(U) : S → S, and programs p to a set of states valD,I,s,β(p) ∈ 2S with
valD,I,s,β(p) being either empty or a singleton set.

A formula ϕ is called valid iff valD,I,s,β(ϕ) = tt for all non-empty domains
D, all interpretations I, all states s and all variable assignments β.

The evaluation of terms and formulas without programs and updates is
almost identical to standard first-order logic and omitted for brevity. The eval-
uation of an elementary update with respect to a first order structure (D, I, s)
and variable assignment β is defined as follows:

valD,I,s,β(x := t)(s′) =
{

s′(y), y �= x
valD,I,s,β(t), otherwise

The evaluation of a parallel update valD,I,s,β(x1 := t1 ‖ x2 := t2) maps a state
s′ to a state s′′ such that s′′ coincides with s′ except for the program variables
x1, x2 which are assigned the values of the terms ti in parallel. In case of a clash
between two sub-updates (i.e., when xi = xj for i �= j), the rightmost update
“wins” and overwrites the effect of the other. The meaning of a term {U}t and
of a formula {U}ϕ is that the result state of the update U should be used for
evaluating t and ϕ, respectively.

A program is evaluated to the set of states that it may terminate in when
started in s. We only consider deterministic programs, so this set is always either
empty (if the program does not terminate) or it consists of exactly one state.1

The semantics of a program formula [p]ϕ is that ϕ should hold in all result states
of the program p, which corresponds to partial correctness of p relative to ϕ.

Heap Model. The only heap objects we support in our programs (for this paper—
implemented are all Java reference types) are integer typed arrays. We use an
explicit heap model similar to [3]. Heaps are modelled as elements of type Heap,
with two functions store : Heap × int[] × int × int → Heap to store values on
the heap and select : Heap× int[]× int → int to retrieve values from the heap.

For instance, store(h, a, i, 3) returns a new heap which is identical to heap h
except for the i-th element of array a which is assigned the value 3. To retrieve
the value of an array element b[j] we write select(h, b, j). There is a special

1 While programs themselves are deterministic, we can introduce at least some non-
determinism through the symbolic input values, which while having a single value
in each model leave open which model is under consideration.
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program variable heap which refers to the heap accessed by programs. We abbre-
viate select(heap, a, i) with a[i]. To ease quantification over array indices, we use
∀x ∈ [l..r).φ as abbreviation for ∀x.((l ≤ x ∧ x < r) → φ)). Further, we write
∀x ∈ arr.φ for ∀x ∈ [0..arr .length).φ, where arr .length denotes how many
elements the array arr contains.

Closely related to heaps are location sets which are defined as terms of type
LocSet. Semantically, an element of LocSet describes a set of program locations.
A program location is a pair (a, i) with valD,I,s,β(a) ∈ Dint[], valD,I,s,β(i) ∈ Z

which represents the memory location of the array element a[i]. Syntactically,
location sets can be constructed by functions over the usual set operations. We
use some convenience functions and write a[l..r] to represent syntactically the
locations of the array elements a[l] (inclusive) to a[r] (exclusive). Further, we
write a[∗] for a[0..a.length].

Calculus. We use a sequent calculus to prove that a formula is valid. Sequents
are tuples Γ ⇒ Δ with Γ (the antecedent) and Δ (the succedent) being finite
sets of formulas. The meaning valD,I,s,β(Γ ⇒ Δ) of a sequent is the same as
that of the formula valD,I,s,β(

∧
Γ −>

∨
Δ). A sequent calculus rule is given by

the rule schema,
seq1 . . . seqn

seq

where seq1, . . . , seqn (the premisses of the rule) and seq (the conclusion of the
rule) are sequents. A rule is sound iff the conclusion’s validity follows from the
validity of all premisses.

A sequent proof is a tree where each node is annotated with a sequent. The
root node is annotated with the sequent to be proven valid. A rule is applied by
matching its conclusion with a sequent of a leaf node and attaching the premisses
as its children. If a branch of the tree ends in a leaf that is trivially true, the
branch is called closed. A proof is closed if all its leaves are closed.

All first-order calculus rules are standard, so we explain only selected sequent
calculus rules which deal with formulas involving programs. Given a suitable
strategy for rule selection, the sequent calculus implements a symbolic inter-
preter. For example, the assignment rule for a program variable is as follows:

assignment
Γ ⇒ {U}{x := t}[r]ϕ,Δ

Γ ⇒ {U}[x = t; r]ϕ,Δ

The assignment rule for an array location adds constraints to the value the
index can have, as if this value were not within the valid range for the array,
an ArrayIndexOutOfBoundsException would be thrown, in which case we have
nothing more to prove, as ϕ need only be shown for programs terminating with-
out throwing exceptions.

assignmentarray
Γ, i ≥ 0, i < a.length ⇒ {U}{heap := store(heap, a, i, t)}[r]ϕ,Δ

Γ ⇒ {U}[a[i] = t; r]ϕ,Δ
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The assignment rules move an assignment into an update. Updates accumulate in
front of modalities during symbolic execution of the program. Once the program
has been symbolically executed, the update is applied to the formula behind
the modality, thereby computing its weakest precondition. Symbolic execution
of conditional statements split the proof into two branches:

ifElse
Γ, {U}g ⇒ {U}[p1; r]ϕ,Δ Γ, {U} ! g ⇒ {U}[p2; r]ϕ,Δ

Γ ⇒ {U}[if (g) {p1} else {p2}; r]ϕ,Δ

For a loop, the simplest approach is to unwind it. However, loop unwinding works
only if the number of loop iterations has a concrete bound.

loopUnwind
Γ, {U}g ⇒ {U}[p; while (g) {p}; r]ϕ,Δ Γ, {U} ! g ⇒ {U}[r]ϕ,Δ

Γ ⇒ {U}[while (g) {p}; r]ϕ,Δ

For unbounded loops we can use, for example, a loop invariant rule. To apply the
loop invariant rule a loop specification consisting of a formula (the loop invariant)
Inv and an assignable (modifies) clause mod is needed. The first premiss (initial
case) ensures that the loop invariant Inv is valid before entering the loop. The
second premiss (preserves case) ensures that Inv is preserved by an arbitrary
loop iteration, while for the third premiss (use case), we have to show that after
executing the remaining program, the desired postcondition ϕ holds.

loopInvariant

Γ ⇒ {U}Inv ,Δ initial
Γ, {U}{Vmod}(g ∧ Inv) ⇒ {U}{Vmod}[p]Inv ,Δ preserves
Γ, {U}{Vmod}(¬g ∧ Inv) ⇒ {U}{Vmod}[r]ϕ,Δ use case

Γ ⇒ {U}[while (g) {p}; r]ϕ,Δ

In contrast to standard loop invariants, we keep the context (Γ,Δ) in the second
and third premiss, following [2]. This is sound, because we use an anonymizing
update Vmod = (Vvars

mod ‖ Vheap
mod ) which is constructed as follows: Let x1, . . . , xm

be the program variables and a1[t1], . . . , an[tn] be the array locations occurring
on the left-hand sides of assignments in the loop body p. For each i ∈ {1..n}
let li, ri : int be chosen such that valD,I,s,β(ti) at the program point ai[ti] = t;
is always between valD,I,s,β(li) (inclusive) and valD,I,s,β(ri) (exclusive). Then
ai[li..ri] are terms of type LocSet describing all array locations of ai which might
be changed by the loop. The anonymizing updates are:

Vvars
mod := {x1 := c1 ‖ . . . ‖ xm := cm}

Vheap
mod := {heap := anon(. . . anon(heap, a1[l1..r1], anonH1 ), . . . , an[ln..rn], anonHn)}

where the ci are fresh constants of the same type as xi and anonH i are fresh
constants of type Heap. The function anon(h1, locset, h2) takes two heaps h1, h2
and a location set locset and returns a heap that is equal to h1 except for the
locations mentioned in locset whose values are set to the values of these locations
in h2. Informally, the anonymizing updates assign all program variables that
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might be changed by p and all locations enumerated in mod an unknown value
about which only the information provided by the invariant Inv is available.

Updates can be simplified and applied to terms and formulas using the set
of (schematic) rewrite rules given in [2,4].

2.2 Integrating Abstraction

We summarize from [1] how to integrate abstraction into our program logic. This
integration provides the technical foundation for generating loop invariants.

Definition 4 (Abstract Domain). Let D be a concrete domain (e.g., of a
first-order structure). An abstract domain A is a countable lattice with partial
order � and join operator � and without infinite ascending chains.2 It is con-
nected to D with an abstraction function α : 2D → A and a concretization
function γ : A → 2D which form a Galois connection [5].

Instead of extending our program logic by abstract elements, we use a differ-
ent approach to refer to the element of an abstract domain:

Definition 5 (γα,N-symbols). Given an abstract domain A = {α1, α2, . . .}.
For each abstract element αi ∈ A there are infinitely many constant symbols
γαi,j ∈ F , j ∈ N with I(γαi,j) ∈ γ(αi), as well as a unary predicate χαi

where
I(χαi

) is the characteristic predicate of set γ(αi).

In the definition above the interpretation I of a symbol γαi,j is restricted
to one of the concrete domain elements represented by αi, but it is not fixed.
This is important for the following notion of weakening: with respect to the
symbols occurring in a given (partial) proof P and a set of formulas C, we
call an update U ′ (P,C)-weaker than an update U if U ′ describes at least all
state transitions that are also allowed by U . Formally, given a fixed D, then U
is weaker than U ′ iff for any first order structure M = (D, I, s, β) there is a
first order structure M ′ = (D, I ′, s, β) with I and I ′ being two interpretations
coinciding on all symbols used so far in P and in C and if for both structures
valM (C) = tt and valM ′(C) = tt holds, then for all program variables v the
equation valM ({U}v) = valM ′({U ′}v) must hold.

Example 1. Consider the abstract sign domain for integers:

�

∅

≤ ≥

0neg pos

γ(�) = ZZ γ(≤) = {i ∈ ZZ | i ≤ 0}
γ(≥) = {i ∈ ZZ | i ≥ 0} γ(neg) = {i ∈ ZZ | i < 0}

γ(pos) = {i ∈ ZZ | i > 0} γ(0) = {0}
γ(∅) = {}

2 The limitation to only finite ascending chains ensures termination of our approach
without the need to introduce widening operators. An extension to infinite chains
with widening would be easily realizable, but so far was unnecessary.
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Let P be a partial sequent proof with γ≤,3 not occurring in P . Then update
i := γ≤,3 is (P, ∅)-weaker than update i := −5 or update i := c with a constant
c (occurring in P ) provided χ≤(c) holds.

The weakenUpdate rule from [1] integrates abstraction into our calculus:

weakenUpdate
Γ, {U}(x̄ .= c̄) ⇒ ∃γ̄.{U ′}(x̄ .= c̄),Δ Γ ⇒ {U ′}ϕ,Δ

Γ ⇒ {U}ϕ,Δ

where x̄ are all program variables occurring as left-hand sides in U and c̄ are fresh
skolem constants. The formula ∃γ̄.ψ is a shortcut for ∃ȳ.(χā(ȳ)∧ψ[γ̄/ȳ]), where
ȳ = (y1, . . . , ym) is a list of fresh first order variables of the same length as γ̄, and
where ψ[γ̄/ȳ] stands for the formula obtained from ψ by replacing all occurrences
of a symbol in γ̄ with its counterpart in ȳ. Performing value-based abstraction
thus becomes replacement of an update by a weaker update. In particular, we
do not perform abstraction on the program, but on the symbolic state.

3 Loop Invariant Generation for Arrays

We refine the value-based abstraction approach from the previous section for
dealing with arrays. Rather than introducing a dedicated abstract domain for
arrays (e.g., abstracting an array to its length), we extend the abstract domain
of the array elements to a range within the array. Given an index set (range) R,
an abstract domain A for array elements can be extended to an abstract domain
AR for arrays by copying the structure of A and renaming each αi to αR,i. The
αR,i are such that γαR,i,j ∈ {arr ∈ Dint[] | ∀k ∈ R.χαi

(arr[k])}.

Example 2. Extending the sign domain for integers gives for each range R ⊆ IN:

�R

∅R

≤R ≥R

0RnegR posR

γ(�R) = Dint[]

γ(≤R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] ≤ 0}
γ(≥R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] ≥ 0}

γ(negR) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] < 0}
γ(posR) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] > 0}

γ(0R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] .= 0}
γ(∅R) = {}

Fixing R = {0, 2}, we have γ(≥{0,2}) = {arr ∈ Dint[] | arr[0] ≥ 0 ∧ arr[2] ≥ 0}.
Importantly, the array length itself is irrelevant, provided arr[0] and arr[2] have
the required values. Therefore the arrays (we deviate from Java’s array literal
syntax for clarity) [0, 3, 6, 9] and [5,−5, 0] are both elements of γ(≥{0,2}).

Of particular interest are the ranges containing (at least) all elements modi-
fied within a loop. One such range is [0..arr.length). This range can always be
taken as a fallback option if no more precise range can be found.
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3.1 Loop Invariant Rule with Value and Array Abstraction

We present the rule invariantUpdate, which splits the loop invariant of the rule
loopInvariant into an abstract update U ′ and an invariant Inv . While U ′ abstracts
only the non-heap values, Inv can contain invariants about arrays on the heap.

invariantUpdate
Γ, {U}(x̄

.
= c̄) ⇒ ∃γ̄.{U ′}(x̄

.
= c̄), Δ

Γ, old
.
= {U}heap ⇒ {U}Inv , Δ

Γ, old
.
= {U}heap, {U ′

mod}(g ∧ Inv), {U ′
mod}[p](x̄

.
= c̄) ⇒ ∃γ̄.{U ′

mod}(x̄
.
= c̄), Δ

Γ, old
.
= {U}heap, {U ′

mod}(g ∧ Inv) ⇒ {U ′
mod}[p]Inv , Δ

Γ, old
.
= {U}heap, {U ′

mod}(¬g ∧ Inv) ⇒ {U ′
mod}[r]ϕ, Δ

Γ ⇒ {U}[while (g) {p}; r]ϕ, Δ

The first premiss is identical to the left premiss of weakenUpdate, introducing
a suitable abstraction U ′ of U . The symbols x̄, c̄, γ̄ and ∃γ̄ϕ are also defined as in
the weakenUpdate rule. From U ′ we obtain U ′

mod := (U ′ ‖ Vheap
mod ) by anonymizing

the heap locations that might be changed in the loop body as explained in
Sect. 2.1. Anonymization of local variables Vvars

mod is not required, as it is already
part of U ′. More precisely, U ′ can contain updates x := γαi,j which combine the
anonymization of Vvars

mod with an invariant based on the abstract domain.
The identifier old is a fresh constant and used in the invariant Inv to refer

to the heap before loop execution. Inv contains invariants related to the heap.
Intuitively U ′

mod and Inv together express all states in which the program could
be before or after any iteration of the loop. The first two premisses together
ensure that the abstract update U ′

mod and the invariant Inv are a valid weakening
of the original update U . The following two premisses ensure that U ′

mod and
Inv actually constitute a loop invariant: for any given interpretation of U ′

mod

satisfying Inv executing the loop body results in an abstract state no weaker
than U ′

mod in which Inv remains valid. The last premiss is the use case, where
the desired postcondition ϕ must be established based on the state after exiting
the loop and after execution of the remaining program.

Listing 1.1. Example

i = 0; j = 0;

while(i < a.length) {

if (a[j] > 0) j++;

b[i] = j;

c[2*i] = 0;

i++;

}

Given the program p in Listing 1.1, we can apply
the assignment rule twice to Γ ⇒ {U}[p]ϕ,Δ which
leads to Γ ⇒ {U ‖ i := 0 ‖ j := 0}[while...]ϕ,Δ.
Now invariantUpdate can be applied with the values in
Fig. 1: the update U ′ is equal to the original update U
except for the values of i and j which can both be any
non-negative number. The arrays b and c have (par-
tial) ranges anonymized, while a is not anonymized as
it is not changed by the loop. The invariants in Inv express that (a) a contains
positive values at all positions prior to the current value of j, (b) the anonymized
values3 in b are all non-negative, and (c) the anonymized values in c are equal
to 0 or to their original values, if the loop has not (yet) modified them.

3 Note choosing the range [0..i) for the array b is sound even when i ≥ b.length, as
an uncaught ArrayIndexOutOfBoundsException is treated as non-termination.
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Fig. 1. Values for invariantUpdate

Algorithm 1. Generating an abstract update and invariant fixpoint
input : the sequent seq
output: the fixpoint U ′ with valid Vheap

mod and Inv , as (U ′
m, Inv)

1 U ′
m ← U ;

2 while true do
3 /* seq is of the form: Γ ⇒ {U ′

m}[while (g) {p}; r]ϕ, Δ */

4 U∗ ← U ′
m; Inv ← Γ∪!Δ;

5 seq ← (Γ, {U ′
m}g ⇒ {U ′

m}[p;while(g){p};r]ϕ, Δ);
6 perform symbolic execution on seq;
7 /* all branches either closed or loop entry reached again */

8 foreach open branch with Γi ⇒ {Ui}[while (g) {p}; r]ϕ, Δi do
9 (Inv , U∗) ← (Inv , U∗) �̇ (Γi∪!Δi, Ui); // see Definition 6 for �̇

10 end
11 if U ′

m is (P,Inv)-weaker than U∗ then
12 return (U ′

m, Inv);
13 end
14 U ′

m ← U∗; Γ ← Γ ∪ {U ′
m}Inv ;

15 seq ← (Γ ⇒ {U ′
m}[while (g) {p}; r]ϕ, Δ);

16 end

3.2 Computation of the Abstract Update and Invariants

We generate the values of U ′, Vheap
mod and Inv as required by invariantUpdate

automatically in a side proof, by symbolic execution of single loop iterations until
a fixpoint is found. For each value change of a variable during the execution of a
loop iteration the abstract update U ′ will set this variable to a value at least as
weak as its value both before and after loop execution. We generate Vheap

mod and Inv
by examining each array modification4 and anonymizing the entire range within
the array (expressed in Vheap

mod ) while adding a partial invariant to the set Inv .
Once a fixpoint for U ′ is reached, we can refine Vheap

mod and Inv by performing in
essence a second fixpoint iteration, this time anonymizing possibly smaller ranges
and potentially adding more invariants. We explain this now step by step.

4 Later we also examine each array access (read or write) in if-conditions to gain
invariants such as ∀k ∈ [0..j). χ>(select(heap, a, k)) in the example above.
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Algorithm 2. Concrete update join �̇upd

input : ((C1, U1), (C2, U2))
output: the weaker constraint/update pair (Cres , Ures)

1 (Ures ‖ heap := h′) ← (C1, U1) �abs (C2, U2) ; // heap update h′ ignored

2 (Cres , h) ← (C1, {U1}heap) �̂ (C2, {U2}heap) ; // see Definition 7 for �̂
3 Ures ← (Ures ‖ heap := h);
4 return (Cres , Ures)

The first step is to generate U ′ (with valid but imprecise Vheap
mod and Inv). For

this we use Algorithm 1 with input seq = (Γ ⇒ {U}[while (g) {p}; r]ϕ,Δ),
the conclusion of invariantUpdate.

The algorithm requires to compute the join �̇ of pairs of invariants and updates.
In [1] a concrete implementation for joining updates (C1,U1) �abs (C2,U2) with

�abs : (2For × Upd) × (2For × Upd) → Upd

was computed as follows: For each update x := v in U1 or U2 the generated
update is x := v, if {U1}x

.= {U2}x under C1, C2 respectively. Otherwise it is
x := γαi,j for some αi where C1 ⇒ χαi

({U1}x) and C2 ⇒ χαi
({U2}x) are valid.

For a simple heap abstraction this returns (for some n ∈ IN) heap := γ�,n for
any non-identical heaps. As we wish to join the heaps meaningfully, which leads
to the generation of constraints, our update join operation has the signature

�̇ : (2For × Upd) × (2For × Upd) → (2For × Upd).

Definition 6 (Joining Updates). Any operation �̇ satisfying the following
properties is an update join operation: Let U1, U2 be arbitrary updates in a
proof P and let C1, C2 be formula sets representing constraints on the update
values. Then for (C,U) = (C1,U1) �̇ (C2,U2) the following holds for i ∈ {1, 2}:
(a) U is (P, Ci)-weaker than Ui, (b) Ci ⇒ {Ui}

∧
C, and (c) �̇ is associative

and commutative up to first-order reasoning.

Let C1,U1 and C2,U2 be constraint/update pairs. (C1,U1) �̇upd (C2,U2)
computes the update Ures and the set of heap restrictions Cres as shown in
Algorithm 2. Intuitively, if all the restrictions in Cres are satisfied by the heap
under update Ures then Ures is the lattice join of U1 and U2.

Lemma 1. �̇upd is an update join operator.
The proof is in the appendix of the extended technical report [6].

Definition 7 (Joining Heaps). Any operator with the signature

�̂ : (2For × TrmHeap) × (2For × TrmHeap) → (2For × TrmHeap)

is a heap join operator if it satisfies the properties: Let h1, h2 be arbitrary
heaps in a proof P, C1, C2 be formula sets representing constraints on the heaps
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(and possibly also on other update values) and let U be an arbitrary update.
Then for (C, h) = (C1, h1) �̂ (C2, h2) the following holds for i ∈ {1, 2}: (a)
(U ‖ heap := h) is (P, Ci)-weaker than (U ‖ heap := hi), (b) Ci ⇒ {U ‖ heap :=
hi}

∧
C, and (c) �̂ is associative and commutative up to first-order reasoning.

We define the set of normal form heaps HNF ⊂ TrmHeap to be those heap terms
that extend heap with an arbitrary number of preceding stores or anonymiza-
tions. For a heap term h ∈ HNF we define

writes(h) :=

{

∅ if h = heap

{h} ∪ writes(h′) if h = store(h′, a, idx, v) or h = anon(h′, a[l..r], h′′)

A concrete implementation �̂heap of �̂ is given as follows: We reduce the sig-
nature to �̂heap : (2For × HNF ) × (2For × HNF ) → (2For × HNF ). This ensures
that all heaps we examine are based on heap and is a valid assumption when
taking the program rules into account, as these maintain this normal form.
As both heaps are in normal form, they must share a common subheap (at
least heap). The largest common subheap of h1, h2 is defined as lcs(h1, h2)
and all writes performed on this subheap can be given as writes lcs(h1, h2) :=
writes(h1) ∪ writes(h2) \ (writes(h1) ∩ writes(h2)). Algorithm 3 shows how the
join of heaps (C1, h1) �̂heap (C2, h2) is calculated.

Lemma 2. The concrete implementation �̂heap is a heap join operator on the
reduced signature (2For × HNF ) × (2For × HNF ) → (2For × HNF ).

The proof is in the appendix of the extended technical report [6].

Example 3. With the precondition P = ∀n ∈ b. select(heap, b, n) .= −1 and
the program in Listing 1.1, we demonstrate the first steps of Algorithm 1 with
seq = P ⇒ {i := 0 ‖ j := 0}[while...]ϕ: After initialization Inv = {P} and
U∗ = (i := 0 ‖ j := 0). At line 8 of Algorithm 1 we have two open branches:

P, {U∗}g,¬(select(heap, a, 0) > 0) ⇒
{i := 1 ‖ j := 0 ‖ heap := store(store(heap, b, 0, 0), c, 0, 0)}[while...]ϕ (1)

P, {U∗}g, select(heap, a, 0) > 0 ⇒
{i := 1 ‖ j := 1 ‖ heap := store(store(heap, b, 0, 1), c, 0, 0)}[while...]ϕ (2)

Algorithm 3. Concrete heap join �̂heap

input : ((C1, h1), (C2, h2))
output: the weaker constraint/heap pair (Cres, hres)

1 hres ← lcs(h1, h2); Cres ← ∅; W ← writes lcs(h1, h2);
2 foreach anon(h, a[l..r], anonHeap) or store(h, a, idx, v) ∈ W do
3 hres ← anon(hres, a[∗], anonHeap′);
4 i1, i2 ← the indices of the smallest αij such that

Cj ⇒ ∀k ∈ a. χαij
(select(hj , a, k));

5 Cres ← Cres ∪ {∀k ∈ a. χαi1�αi2
(select(heap, a, k))}

6 end
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We can use Algorithm 2 to compute the update join of the original ({P},U∗)
with ({P, {U∗}g,¬(select(heap, a, 0) > 0)}, i := 1 ‖ j := 0 ‖ heap := h1)
provided by (1), where h1 = store(store(heap, b, 0, 0), c, 0, 0). This produces
(Cres, i := γ≥,1 ‖ j := 0 ‖ heap := hres), where (Cres, hres) is a heap join
of ({P}, heap) and ({P, {U∗}g,¬(select(heap, a, 0) > 0)}, h1). Algorithm 3 can
compute the latter as follows: the largest common subheap is h′ = heap, so we
have W = {store(store(heap, b, 0, 0), c, 0, 0), store(heap, b, 0, 0)}, therefore:

Cres = {∀m ∈ b. χ≤(select(heap, b,m)), ∀n ∈ c. χ�(select(heap, c, n))}
hres = anon(anon(heap, b[∗], anonH1), c[∗], anonH2)

At line 9 of Algorithm 1 we have U∗ = (i := γ≥,1 ‖ j := 0 ‖ heap := hres)
and Inv = Cres. Now the algorithm joins updates with the second open branch,
checks if a fixpoint has been found (it has not) and enters the next iteration.

4 Symbolic Pivots

Algorithm 1 computes an abstract update U ′ expressing the state of all non-
heap program variables before and after each loop iteration and, in particular,
before entering the loop. It also computes Vheap

mod and Inv , which give information
about the state of the heap before and after each loop iteration. However, as a
consequence of the definition of heap joins in Algorithm 3, this information is
rather weak as it assumes any update to an array element could cause a change
at any index. To remedy this situation we refine U ′. The main idea is to keep
track of the ranges within a given array where a modification has been made
and where it has not been modified. The boundary indices of such ranges are
often called pivot in array algorithms. To obtain invariants that are valid in any
state before and after a loop iteration, obviously, these pivots must be symbolic.

Listing 1.2. Inferring
Modified Array Elements

int i = 0;

int j = 5;

while (j < a.length) {

i = j + 1;

d[i] = j;

j = i + 1;

i = 0;

}

We start with an example that illustrates the
difficulties of computing symbolic pivots. Consider
Listing 1.2. A näıve approach to recording pivots
would be to consider just the array modification state-
ment, here “d[i] = j;”, and infer that the modifica-
tions to d occur at the index given by the value of i.
But this is completely wrong here. Variable i has the
constant value 0 at the beginning of each iteration,
while the array modifications occur at indices based
on the value of j. This is problematic to detect for
analyses based on control flow graphs, but easy for our value-sensitive approach.
The reason is that the update created during a loop iteration of the example
immediately shows that the value of i is unchanged.

The problem remains that while we know, for example, that in the first iter-
ation of the loop the array element d[6] is set to 5, we cannot infer why that
particular index was chosen. But we need to know this to generate valid invari-
ants. McMillan [7] points out this problem while analyzing multiple, successive
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iterations of a loop and then attempts to infer why array elements at specific
indices were modified. Our approach allows a more uniform analysis: first we cal-
culate an over-approximation of the modified ranges, resulting in γ-terms which
are integer abstractions that constitute correct boundaries of array ranges. Based
on these γ-terms we then execute symbolically one iteration of the loop whereby
we keep track of modifications to array elements.

Example 4. Running Algorithm 1 on the loop in Listing 1.2 results in the follow-
ing updates for non-heap variables: (i := 0 ‖ j := γ>,1) Symbolic execution of a
loop iteration started with γ>,1 as the value of j leads to the following update:

i := 0 ‖ j := γ>,1 + 2 ‖ heap := store(heap, d, γ>,1 + 1, γ>,1)

Value γ>,1 was the initial value of j, so we can conclude that the array elements
are modified at the value of j + 1 in each iteration.

Now we describe how this can be made to work in the general case. Consider
the sequent Γ ⇒ {U}[while(g){p}; r]ϕ,Δ and the update U ′ computed by
Algorithm 1. Then an update U ′′ which maps all variables but heap just as
U ′ does and maps heap as the original U did remains weaker than U , as U ′ is
weaker than U . Applying Algorithm 1 to sequent Γ ⇒ U ′′[while(g){p}; r]ϕ,Δ
we obtain open subgoals of the form Γi ⇒ {Ui}[while (g) {p}; r]ϕ,Δi. Aside
from the values for heap, U ′ is weaker than Ui, as U ′ is a fixpoint. We therefore do
not have to join any non-heap variables when computing (U∗, Inv), as fixpoints
for those are already calculated and will not change.

When joining constraint/heap pairs we distinguish between three types of
writes (see Sect. 3.2): (a) anonymizations, which are kept, as well as any invari-
ants generated for them occurring in the constraints, (b) stores to concrete
indices, for which we create a store to the index either of the explicit value
(if equal in both heaps) or of a fresh γi,j of appropriate type, and (c) stores to
variable indices, which we turn into symbolic pivots (and, hence, stronger invari-
ants) as follows. Given a store(h, a, idx, v) to a variable index, idx is expressible
as a function index(γi0,j0 , . . . , γin,jn). These γix,jx can be linked to program vari-
ables in the update U ′, which contains updates pvx := γix,jx . We can therefore
represent idx as a function sp(. . . pvx . . .) and call it a symbolic pivot.

Example 5. Continuing Example 4, d is modified at index index(γ>,1) = γ>,1+1.
As γ>,1 was the value of j, the symbolic pivot is sp(j) = j + 1.

The final step is to exploit the shape of symbolic pivots to derive certain kinds
of inductive invariants. For this we need two abbreviations. Formula P (W) is
defined for a fixed update U , array a, and symbolic pivot sp as: P (W) := ∀k ∈
[{U}sp..{W}sp). {W}χαj

(select(heap, a, k)). Then P (U) is trivially valid, as we
are quantifying over an empty set. Likewise, it is easy to show that the instance
Q(U) of the following formula Q(W) is valid:

∀k �∈ [{U}sp..{W}sp). select({W}heap, {W}a, k) .= select({U}heap, {W}a, k)
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Therefore, anonymizing an array a with anon(h, a[∗], anonHeap) and adding
invariants P (U∗) and Q(U∗) for the contiguous range [{U}sp..{U∗}sp) is induc-
tively sound if P (U ′) ⇒ P (Ui) and Q(U ′) ⇒ Q(Ui) hold. The same is true for
the range [{U∗}sp..{U}sp), hence w.l.o.g. in the sequel {U∗}sp ≥ {U}sp.

Definition 8 (Iteration Affine). Given a sequent Γ ⇒ {U}[p]ϕ,Δ where p

starts with while, a term t is called iteration affine, if there exists step ∈ ZZ
such that for any n ∈ IN, if we unwind and symbolically execute the loop n
times, for each subgoal with sequent Γi ⇒ {Ui}[p]ϕ,Δi there is some v, such
that Γi∪!Δi ⇒ {Ui}t

.= v and Γ∪!Δ ⇒ {U}t + n ∗ step
.= v.

From iteration affine symbolic pivots we can directly construct inductive
invariants over array ranges as follows. First, after unwinding a loop body once
we posit a symbolic pivot sp as iteration affine using step := ({U ′}sp)−({U}sp),
where U ′ is the program state after executing the loop body. Then simply add
the constraint n ≥ 0 ∧ ({U}sp) + n ∗ step

.= v for a fresh n in further fixpoint
iterations and ensure that ({U ′}sp) .= v + step holds. If this is not the case, then
sp is not iteration affine and we remove the constraint in following fixpoint itera-
tions. Otherwise, once a fixpoint is found we know the exact array elements that
may be modified, as sp is iteration affine. To express an affine range as a location
set is difficult. To avoid it, we anonymize the entire array and create the follow-
ing invariants for the modified and unmodified partitions (using the symbols of
Definition 8) where M := (k ≥ {U}sp ∧ k < sp ∧ (k − {U}sp)%step

.= 0):

∀k ∈ arr . M → χ(arr [k]) (3)
∀k ∈ arr . ¬M → arr [k] .= select({U}heap, arr , k) (4)

Example 6. This symbolic pivot j+1 from Example 5 is iteration affine, express-
ible as 6 + it ∗ 2 for the it-th iteration, based on the initial value of j + 1 being
6 and each successive value for j + 1 being two more than the last value. We
therefore store in variable old the value of heap before the loop, anonymize all
elements of d and add the invariants:

∀k ∈ d. (k ≥ 6 ∧ k < j + 1 ∧ (k − 6)%2 .= 0) → χ>(d[k])
∀k ∈ d. (k < 6 ∨ k ≥ j + 1 ∨ (k − 6)%2 �= 0) → d[k] .= select(old, d, k)

Besides array modifications, our approach can also add invariants based on
read-only array accesses that influence control flow. The steps involved are simi-
lar: (i) calculate the symbolic pivot, (ii) determine whether it is iteration affine,
and (iii) generate an invariant with a contiguous or affine range. However, as no
anonymization takes place for an unmodified array, no invariant of the form (4)
is generated.

Our approach automatically produces all invariants in Fig. 1: affine invariants
for array c and contiguous invariants for array b and the unmodified array a.

5 Implementation

The presented approach has been implemented as a proof-of-concept (available
at http://www.key-project.org/symbolic-pivots/) and integrated into a variant

http://www.key-project.org/symbolic-pivots/


Array Abstraction with Symbolic Pivots 119

Table 1. Experimental results.

Method LocSets modified Automatically generated array invariants

arrayInit a[0..i] ∀j1 ∈ [0..i). a[j1]
.
= 0)

arrayMax - ∀j7 ∈ [0..i). a[j7] ≤ maxa

arraySplit b[0..j] , c[0..k] ∀j5 ∈ [0..j). b[j5] > 0), ∀j6 ∈ [0..k). c[j6] ≤ 0)

firstNotNull - ∀j0 ∈ [0..i). a[j0]
.
= 0

sentinel - ∀j11 ∈ [0..i). a[j11] �= x
a Relational abstract domains are not directly possible in our approach, but
we can generate invariants containing terms such as χ≤(a[j7] − max), which is
equivalent to the relational invariant a[j7] ≤ max.

of the KeY verification system for Java, which focuses on checking programs
for secure information flow. In this context less strong invariants than for func-
tional verification are sufficient and the precision of the automatically generated
invariants is, therefore, good enough in many cases.

In addition to the array example in Listing 1.1 we created a small test suite
based on benchmarks given in related work [8,9] and display the resulting array
invariants produced by our approach in Table 1. The generation time is still quite
high, ranging from a few seconds to ten minutes. The relatively long runtime is
due to the current status of the implementation, which does not perform any
caching and is instrumented with debug statements. In addition, the implemen-
tation currently uses solely the internal proof producing theorem prover for the
invariant computation. Switching to an SMT solver for pure first-order steps
should increase speed significantly. One additional reason for long runtimes is
that in addition to the invariants generated for the array elements themselves,
we also generate some useful invariants only semi-related to the array elements,
such as the following for the arraySplit example (using Java notation for con-
ditional terms):

i ≤ a.length ∧ j =
i−1∑

q=0

(a[q] > 0 ? 1 : 0) ∧ k =
i−1∑

q=0

(a[q] > 0 ? 0 : 1).

6 Related Work

To find a fixpoint for non-heap variables we perform something akin to array
smashing [10] for any array modification in a loop. Our refinements based on
symbolic pivots later remedy much of the lost precision. In [11] invariants based
on linear loop-dependent scalars (i.e. variables which can be modified by a loop)
are computed. In [12] variables within a loop are specified according to a num-
ber of properties: increasing, dense, etc. There are similarities between iteration
affine variables and linear loop-dependent scalars as well as the variables deter-
mined in [12]. Our approach uses symbolic execution to determine iteration affine
terms, in particular in array indices, which do not have to coincide with iteration
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affine variables. Range predicates are used in [13] to express knowledge about
all elements of an array within a given range. These could be used to express
our affine range invariants about modified elements, however they are not strong
enough to express the affine range invariants about unmodified elements. In [14]
abstract domains need to be explicitly supplied for the array indices, offering
more possibilities than our approach. However, our notion of iteration affine
indices offers the equivalent of an infinite number of abstract domains for array
indices which do not need to be explicitly supplied. Their approach also does
not allow for additional information to be added about array elements without
overwriting old information. In contrast to CEGAR [15] which starts abstract
and refines the abstraction stepwise, we start with a fully precise modeling and
perform abstraction only on demand and confined to a part of the state. In [16]
arrays are modeled as (many) contiguous partitions, while we allow both con-
tiguous partitions as well as affine ranges. In [8] templates are used to introduce
quantified formulas from quantifier-free elements, while we allow the underly-
ing abstract domain to function as a “template.” In [9] modification of array
elements is modeled by abstracting the program: the array is replaced by mul-
tiple array slices containing abstract values. The text of the program is used
to influence which slices are generated. By abstracting only program states, we
can keep much higher precision. Further, our use of symbolic execution lets us
view the result of the loop body, rather than just the text, allowing two equiv-
alent loop bodies to be treated the same with our approach. In [17] foot-prints
are introduced which track what part of the program state can be changed by
a statement. Using these they can reason about recursive programs containing
unbounded arrays (modelled as total functions).

7 Conclusion and Future Work

We presented a novel approach to generate loop invariants for loops that perform
operations on arrays. It integrates smoothly into a framework which combines
deduction and abstract interpretation. As future work we intend to improve the
flexibility of the partitioning by supporting more shapes than affine ranges and
on improvements needed for the treatment of nested loops. We will also extend
our approach to the diamond modality 〈·〉·, which expresses total correctness. We
investigate several speed ups including avoidance of repeated symbolic execution
by reusing the symbolic execution tree of one general run, cache strategies for
joins and use of an SMT solver for pure first-order reasoning steps. We intend to
integrate our approach into the framework presented in [18] to avoid their need
for user specified loop invariants.
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Abstract. The concept of roles is a promising approach to cope with
context dependency and adaptivity of modern software systems. While
roles have been investigated in conceptual modeling, programming lan-
guages and multi-agent systems, they have been given little consideration
within component-based systems.

In this paper, we propose a hierarchical role-based approach for mod-
eling relationships and collaborations between components. In particu-
lar, we consider the channel-based, exogenous coordination language Reo
and discuss possible realizations of roles and related concepts. The static
requirements on the binding of roles are modeled by rule sets expressed
in many-sorted second-order logic and annotations on the Reo networks
for role binding, context and collaborations, while Reo connectors are
used to model the coordination of runtime role playing. The ideas pre-
sented in this paper may serve as a basis for the formalization and formal
analysis of role-based software systems.

1 Introduction

Separation of concerns [19] is a well-established and accepted principle which
appears in many modeling languages for computer systems. For instance, exoge-
nous coordination languages such as Reo [2] aim at a clear separation of com-
putational aspects and coordination (for a survey on coordination languages,
cf. [38]). Within Reo, components encapsulate the operational behavior at the
interface level and capture the computational aspects. For coordinating the com-
ponents exogenously, a network of channels is used, which allows for any kind of
synchronous and asynchronous communication. A further prominent example for
separation of concerns is the distinction between entities and their relationships
that is used, e.g., within the entity-relationship model for modeling relational
databases. Entities and relationships are naturally complemented by the con-
cept of roles [43]. Roles are often considered as placeholders in relationships and
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collaborations that are filled, i.e., played, by entities [41]. In this sense, roles are
an abstraction of the expected behavior of the role player. They can be dynam-
ically acquired and dropped by the role player, depending on the context and
the relationships between their respective role players. Consider the example
of a soccer player who participates in a local team and has the fortune to be
also a player of the national team. In one team, he may play as a defender,
while in the other team he plays as a midfielder. The respective role he acquires
thus depends on the team he currently plays in, i.e., its local or national con-
text. The team describes a collaboration by the roles of the team’s players and
additionally defines the relationships between the players through their roles as
well. This justifies viewing roles as intermediaries between entities and relation-
ships. Moreover, it promotes a further separation of concerns: roles encapsulate
the varying aspects and behaviors of role players in different contexts. Therefore,
roles improve the maintainability and extensibility of context-dependent systems
with dynamically emerging collaborations between entities.

Although roles are intuitive and commonly understood, there is no generally
accepted definition of roles [45]. Guarino and Welty stated in [23] that roles
are such entities for which the ontological characterizations of anti-rigidity and
dependence hold. Rigidity denotes that a property holds for an entity at all times
and independently from the context, e.g., the property of being a person is rigid
as it holds until the entity ceases to exist. The dual term anti-rigidity denotes
properties that can cease to hold. For instance, a person can be a customer,
but can also stop being a customer without ceasing to be a person. The second
ontological notion of dependence describes entities whose existence depends on
another entity, e.g., a customer is dependent on a vendor. Additionally, both cus-
tomer and vendor depend on context, i.e., the exchange of money and goods. In
the area of multi-agent systems and agent coordination, roles are widely regarded
as an abstraction of behavior and are associated with a set of requirements,
capabilities and obligations [13]. An agent must satisfy requirements in order to
play a certain role and engages in collaborations with other agents according
to its obligations. In object-oriented modeling and programming languages, the
only commonly accepted trait of roles is that they can be played by unrelated
objects [36,43]. For surveys about how roles can be further characterized, we
refer to [36,43,45].

Towards modeling and designing role-based systems, several approaches have
been proposed in the literature. In the Agent-Group-Role (AGR) meta-model for
organizations in multi-agent systems [21,22], related agents play roles in groups.
The group manager, which is a special role, coordinates role acquisition and
removal of other actors. The role-oriented programming environment ROPE [11]
uses a coordination language derived from Petri nets. The BRAIN proposal sup-
ports the analysis, design and implementation of role-based agent systems [14].
Within this approach, the notion of agent evolution as a central concept is intro-
duced [12]. In the Actor-Role-Coordinator (ARC) approach, an agent system is
divided in three distinct layers consisting of agents, roles and coordinators [42].
Roles are used as an abstraction of agent behavior and coordinate a group of
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agents by means of message manipulation. Fasli presented a multi-modal logic
framework based on the BDI paradigm (beliefs, desires, intentions) [20]. For a
survey of role-based agent interaction models, see [13]. An operational model
for role-based systems following the so-called Helena approach was presented
in [24], where components play roles in groups to collaborate towards a goal.
Their formal model combines relational and context-dependent roles and allows
the application of model-checking techniques to reason about, e.g., reachability
of the collaboration goal.

In this paper, we adopt the notion of roles that is commonly found in concep-
tual modeling (cf., e.g., [43]). Particularly, we rely on the meta-model for roles by
Kühn et al. [35]. There, the concept of compartments is introduced, which cap-
tures both the collaborative and context-dependent nature of roles. Many role-
based approaches consider either the collaborative or context-dependent aspect
of roles, but not their combination [36,43]. As roles constitute intermediaries
between entities and their relationships, and can be played by their assigned
role players depending on their contexts, the coordination of roles is a central
point when modeling role-based systems. Thus, it is rather natural to employ
specialized coordination languages to describe role playing. However, coordina-
tion languages with roles and contexts have been given little consideration in
the literature. For instance, [44] compared Reo with the ARC model and the
Russian Reflective Dolls (RRD) approaches but focuses mainly on the expres-
sivity of coordination languages, rather than on role-based systems.

The major goal of this paper is to provide first steps towards a theory of
role-based exogenous coordination principles. For this, we rely on the channel-
based coordination language Reo and show how to embed role-specific concepts.
While previous work on role-based coordination mainly deals with monolithic
approaches annotating role-playing agents, our framework is compositional and
introduces roles components that might have their own behavior and are linked
to their players via networks of channels that orchestrate the role-playing mech-
anisms. Role components can be bound to atomic components and compart-
ments. Atomic components are standing for basic objects without incorporating
role-based behaviors. Compartments are formalized by sets of role components,
capable to formalize relationships or collaborations. By a set of rules expressed
with logical formulas, we define static constraints on possible role bindings. We
show that (as compartments describe sets of roles) many-sorted second-order
logic provides an appropriate formalism with useful applications. Based on the
logical characterization of role binding, the actual binding is modeled using coor-
dination glue code in the form of Reo connectors to connect role players with
role components and perform exogenous coordination to guarantee correct role
playing. By annotating the modeled Reo network with compartments and role
bindings, an organizational view of the system is induced.

The embedding of our formalism in Reo allows the application of the full
machinery that has been developed for Reo also in the scope of role-based sys-
tems. In particular, the formal semantics for Reo [4,10,15,26] facilitate formal
analysis and verification. Izadi et al. [25] introduced model checking techniques
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for Reo networks using compositional reduction and abstraction techniques.
In [16], Clarke presented a temporal logic and model-checking techniques for
Reo networks with dynamic reconfigurations. The tool Vereofy [7,8] enables the
verification of Reo connectors by means of model checking. Pourvatan et al. [39]
provided an analysis technique based on symbolic executions of Reo networks.
Kokash et al. [32,33] developed mappings from semantic formalisms for Reo to
the process algebraic specification language of mCRL2 to enable data flow analy-
sis in Reo networks. Proença and Clarke [40] presented data abstraction tech-
niques for Reo networks. To reason about quantitative properties, Reo networks
have been extended with timing constraints [5] and stochastic annotations [6,37].
These existing formalisms and tools for formal analysis and verification provide
a well-grounded foundation that allow reasoning about role-based properties.

Outline: After a short primer on the exogenous coordination language Reo in
Sects. 2 and 3 presents our framework for modeling role-based systems in Reo.
There, we start with the building blocks to model roles, then illustrate role play-
ing of atomic components and compartments and end with the formal framework
on role binding. In Sect. 4, we discuss the application of formal analysis tech-
niques and further research raised by our new framework.

2 A Short Primer on Reo Networks

We provide here a brief, high-level overview of the main concepts of Reo as
well as the graphical representations we use in this paper for depicting Reo net-
works. For further details we refer to [2,10]. A Reo network, also called Reo
circuit, is built from components, channels and nodes. In general, components
serve to encapsulate operational behavior and can interact with the rest of the
network via one or more interface ports (depicted as ◦). Keeping to the spirit
of exogenous coordination, with the coordination glue code between the com-
ponents being formed by the Reo network, components generally do not know
and need not be concerned about the environment in which they are used. Var-
ious semantics for Reo networks have been considered in the literature (see,
e.g., [4,10,15,26]). On an intuitive level, it makes sense to think in terms of
tokens that can be created, propagated, duplicated and consumed by the vari-
ous parts of the network and that might optionally carry additional information
(data). Channels in Reo have two channel ends and provide a rich variety of
ways in which the activity at their incoming and outgoing ends can be related.
Numerous channel types are predefined and the user may additionally provide
customized channel semantics as needed. One of the most basic channels is the
synchronous channel , which atomically propagates a token from its incom-
ing end to its outgoing end. In contrast, the FIFO1 channel can consume
a token at its incoming end, store it in a single buffer cell, and can then prop-
agate the token (and its data) later on via its outgoing end. Channels do not
have to be unidirectional. For example, the synchronous drain channel has
two incoming ends and may only consume tokens at both ends simultaneously.
In contrast, the asynchronous drain can only consume a token at exactly
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one of its ends at the same time. Another important channel is, e.g., the filter
channel, whose behavior depends on the concrete data attached to a token. In
case that the data matches the corresponding filter condition, the filter channel
behaves as a synchronous channel and blocks otherwise. All these channels can
serve as the basic building blocks for ensuring synchronicity and asynchronicity
between different parts of the Reo network. The channel ends can connect to the
interface ports of components as well as to Reo nodes, which serve to coordi-
nate the flow of tokens between the connected channel ends. The standard Reo
node (depicted as •) exhibits a merger-replicator semantics for passing tokens
from the connected channel ends: Simultaneously, on the input side, it will non-
deterministically choose exactly one of the available tokens (merge semantics).
On the output side, it will propagate the token to all connected channel ends
(replication semantics), duplicating as necessary. Crucially, a token can only be
passed on if all the channel ends connected on the output side of the node are
willing to consume the token simultaneously. This behavior allows for the elegant
synchronization of an arbitrary number of connected channel ends. A variant of
the standard node is the router node (depicted as ⊗), which retains the merger
semantics on the input side but, in each step, propagates the token to exactly
one of the connected channel ends on the output side.

From these basic ingredients, Reo networks representing a wide variety of
interaction and coordination patterns can be built. A Reo network that provides
such coordination is called a connector. This clear separation of computation
inside components and coordination between components allows the construc-
tion of systems from reusable and easily exchangeable components and connec-
tors. However, as the number of components of the system grows, Reo networks
become increasingly complex. The ability to hierarchically encapsulate Reo net-
works into new components that can be used as building blocks on higher levels
enables convenient separation of concerns and eases the design process of Reo
networks. For this, the internal behavior of the Reo network is hidden from a
higher-level Reo network perspective and interface ports are defined to allow for
coordination of the new constructed component using a hiding mechanism.

Constraint automata [10] provide a compositional operational semantics for
Reo, which enables standard verification techniques developed for labeled tran-
sition systems (see, e.g., [7,8,30,31,33]). This includes verification both of the
coordination patterns in a network and – whenever automata-based specifica-
tions of the components’ behavior are available – of the whole system.

3 Modeling Roles and Relationships in Reo

We introduce the concept of roles in the exogenous coordination language Reo
to provide a methodology for constructing component-based systems. The Reo
components we consider can be arbitrary Reo networks with interface ports aris-
ing, e.g., from hiding internal behaviors. On top of the Reo components used in
the Reo network to model the system, also the role-based view on the network
is organized in a hierarchical fashion. However, in contrast to the hiding opera-
tor applied to Reo networks to constitute components, we annotate role-specific
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information to the components itself, providing a role-based modeling hierarchy
orthogonal to the component-based modeling hierarchy of the Reo coordination
language. The basic building blocks of this hierarchy are atomic components,
role components and compartments. Atomic components stand for basic enti-
ties or agents which do not contain any role-specific behaviors, e.g., a person, a
computer participating in a network, or a daemon run by an operating system.
Role components encapsulate role-specific behaviors which enhance capabilities
of entities, e.g., a soccer player role which can be played by a person, a server
role which can be played by a computer within a network, or a scheduling role
enhancing a daemon functionality. Compartments are built by collections of
roles, i.e., by annotating sets of role components. They model relationships, col-
laborations and contexts of entities playing certain roles. For instance, following
the examples mentioned above for atomic components and role components, a
soccer team defines the context some soccer players are playing in, a file transfer
compartment models the protocol to exchange data between servers and clients,
or a desktop compartment coordinates the execution of daemons on desktop
computers (which differs from the daemon coordination on server platforms).
Compartments itself may serve as entities which also can play roles. Thus, the
annotation of Reo components as atomic or the annotation of sets of role com-
ponents as compartments, which both can be bound to roles, forms a role-based
hierarchy of the Reo network. Obviously, the binding process of roles goes along
with the modeling of the role-based system and should follow certain rules. For
instance, a male person would in general not be bound to a daughter or mother
role. We express such constraints within logical formulas in many-sorted second-
order logic over possible annotations to the role-based Reo network.

In the following, we describe our approach for modeling role-based Reo net-
works in detail. For this, we follow the steps usually undertaken while modeling a
role-based system within our framework. First, we introduce the building blocks
of role components and how they are bound to (atomic) components. Then, we
describe the role hierarchy established through compartments and their roles.
Although the logical formulas for the rules of role binding on atomic components
and compartments are usually fixed at the beginning of the modeling process
(and possibly refined slightly during the construction of the Reo network), we
introduce the formal framework for these rules at the end of this section. The
reason for choosing this order is twofold. On the one hand, we would like to
stepwise introduce the ingredients required to model role-based Reo networks
in the order which forms the modeling hierarchy. For the formal framework of
constraints on role bindings, however, all these ingredients have to be assumed
as given. On the other hand, the formal framework for role-binding constraints
does not require a Reo network with role-based annotations and can be used for
more general purposes, not relying on Reo as coordination language. Thus, we
describe the role-binding constraints separately from the Reo network modeling.

3.1 Representation of Roles

Components differ conceptually from both agents and objects. We con-
sider the notion of components as an abstraction of behavior with a well
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defined interface [1]. Indeed, a component can represent both an agent or an
object or even sets thereof. Adopting the notion of roles as sets of requirements
and obligations, roles could be modeled directly in the component-based frame-
work of Reo by incorporating all role behaviors in Reo components. However, this
approach leads to monolithic components that combine both their own and their
roles’ behavior. Hence, following this approach, there is no direct separation of
concerns between behaviors of agents and objects and their capabilities enacted
by the specific roles they play. Thus, modeling agents requires the knowledge
of all roles and their behavior beforehand, which is in contrast to a composi-
tional modeling approach. We thus propose a different approach where roles are
considered as first-class entities that are represented and implemented by com-
ponents. This approach has several important implications. Since a role instance
is effectively a component, it can have its own state and behavior. Therefore,
the role-specific behavior is encapsulated and not distributed over numerous
components. Furthermore, this means a role can be played by several unrelated
components. In our framework, a role adapts a component to a specific context,
enabling the component to collaborate with other components in the same con-
text. For example, a role component can implement a special communication
protocol. The idea of adapting components by role-playing fits into the exoge-
nous coordination model of Reo, because a component does not need to “know”
the roles it plays. Furthermore, this approach eases reasoning about role-based
systems as basic behaviors from agents and behaviors arising by role playing are
separated and can be distinguished already during the modeling process.

3.2 Role Binding and Role Playing

To describe the concept of role binding and role playing incorporated into our
framework, we first consider the basic case where both the role player and the
role itself are modeled by Reo components. Before an atomic component can play
certain roles, the roles must be bound to the component. The binding is real-
ized by creating a Reo connector between the role components and the atomic
component. This binding connector serves two tasks: It enables the atomic com-
ponent to play the bound roles, and it realizes the coordination between the role
components and the atomic component.

Every role comes with a set of capabilities and requirements. The capabil-
ities gained by playing a role are encapsulated in the role component. A role
component may provide additional ports, which equips the atomic component
with additional means for communication. Obviously, a role component can only
be bound to certain atomic components. These requirements are reflected in the
set of ports the atomic component must provide and the set of rules specified in
second-order logic over role names which we define in the last part of this section.

For the construction of the role binding connector, the full Reo framework can
be employed. Thus, the binding connector may be arbitrarily complex and can
implement various means of interaction and coordination between the atomic
component and its role components. In the following illustrations, we depict
atomic components as standard Reo components and role components with
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rounded corners. Role binding is indicated by a dotted area around one atomic
component and its bound roles.

Depending on how a role adapts an atomic component, different connectors
may be appropriate. If a role component only adds additional behaviors, a con-
nection realized by a standard Reo node is sufficient, as shown in Fig. 1 (a).
Here, the output of the component C and role component R is merged, but R
can neither modify nor block the output of C (assuming fairness). In the oppo-
site case, the role binding removes or suppresses certain behavior of the atomic
component. Here, the role component acts as a filter that only lets pass certain
output data. This functionality can be realized by the connector shown in (b).
The synchronous drain channel forces the synchronization between C and R for
every outgoing message. Thus, if R refuses to synchronize, C cannot complete its
send operation. Since the synchronous drain consumes both incoming messages,
R the role component cannot add behavior by forging additional output data.
In the most general case, a bound role component may suppress or modify any
output of the atomic component and can create output data on its own as well.
This is realized by the connector shown in (c), where all output data of C flows
through R.

Obviously, the binding pattern shown in (c) subsumes both (a) and (b),
making them to seem redundant. However, the fact that the role component
in (a) cannot modify or suppress output data is apparent in the binding con-
nector, while in (c) one would have to examine the implementation of the role
component to establish the same guarantee. Thus, by using behavior-restricting
binding connectors, certain guarantees can be established without taking the
components’ concrete implementations into account. This also illustrates the
compositional modeling approach for role-based systems where the coordination
between roles is visible from the glue code between the role components and the
playing atomic component.

While in Fig. 1(a) to (c) only one role is bound, a binding connector may also
bind more than one role component to an atomic component, as exemplified in
Fig. 1(d). Furthermore, the binding can introduce additional interface ports. The
Reo networks N1 and N2 between the atomic component and the role components
coordinate the role playing. Depending on the desired behavior, different connec-
tors may be used in place of N1 and N2. For example, placing a router node (⊗)
between C and R1,R2, · · · ,Rn ensures that only exactly one role can be played
at any given time. Contrarily, by using a standard Reo node (•) for N1 all bound
roles must be played at the same time. The network N2 determines the output
behavior. For instance, if a standard Reo node is used, the output of exactly one
role component is selected nondeterministically and sent to all output ports. Cer-
tainly, more complex connectors may be used for N2, such as a connector that
merges the output data of the role components by creating tuples.

To illustrate the binding of role components to an atomic component in more
detail, we turn to our first running example that shows a concrete implementa-
tion of the pattern presented in Fig. 1(d).
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Fig. 1. Patterns for binding role components to an atomic component

Example 1. Figure 2 depicts a wine vending machine. The role components
“white” and “red” add the capability to serve white wine and red wine, respec-
tively. This is modeled by a pattern similar to Fig. 1(d) with two roles. For a for-
mal semantics of the depicted Reo network, a compatible formalism to describe
its components is required. In Fig. 3 we show two constraint automata [10], one
capturing the operational behavior of the vending machine (without wine serving
capabilities) and one for each wine role component. These constraint automata
combined with the depicted Reo network directly yield the formal semantics for
the vending machine, i.e., a constraint automaton modeling the whole behavior of
the wine vending machine. Without any role playing, the wine vending machine
dispenses drinks directly when it received the payment. After binding the white
and red-wine role, the respective wine is only dispensed after the selection port
is activated through exogenous coordination.

Until now, we only considered role binding which is a prerequisite for role
playing. In our approach, a role is actively played if the behavior of its role
component is observable, i.e., whenever one or more of its ports are active.
Clearly, not all possible combinations of active roles are useful or valid. In our
example of a wine vending machine, which is able to serve both red and white
wine, it should not occur that both roles are played at the same time, i.e.,
eventually serving ros? wine. Thus, a binding connector not only connects an
atomic components and its role components, but also coordinates role playing.
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Fig. 2. Role binding connector of a wine vending machine

Fig. 3. Constraint automata for the vending machine and one wine role

In our wine vending machine, the merger semantics of the Reo node (on the
right) ensures that only one role component can be active at the same time.

3.3 Role Relationships and Compartments

Roles often depend on one or more counter-roles [23]. Consider again Example 1
of a wine vending machine. Surely, a vending machine is only useful if there are
customers that buy the goods it offers. Thus, both the white and red roles are
dependent on a white wine customer and a red wine customer, respectively. While
the previous section dealt with the relationship of role components and their role
player, this section focuses on the relationships between role components.

Similar to role binding, role relationships are realized by Reo connectors
between role components. The purpose of a role relationship connector is the
coordination of role components, i.e., it influences and controls role playing. For
instance, the connector depicted in Fig. 4 ensures that the vending machine plays
the white role whenever the person plays the white wine customer role. As for
role binding connectors, the coordination realized by the relationship connector
can be arbitrarily complex. In our example, the connector has two purposes.
First, it serves as a sequencer that allows for selecting wine only after money
has been paid, modeled by the upper FIFO1 channels ( depicts a filled
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Fig. 4. Relationship connector in the wine transaction compartment

FIFO1 channel). Second, it disallows simultaneous selection of white and red
wine, ensured by the router node in the center (depicted as ⊗).

Roles not only depend on relationships with other roles, but also on a con-
text. Clearly, a person playing the white wine customer role cannot buy wine
from a soda vending machine. Only in connection with a white wine role in a
wine transaction context the white wine customer role can be played. We adopt
the notion of compartments [36] as a representation of context and the collab-
oration of its roles. Compartments contain sets of role components and their
role relationship connectors, depicted by a dashed rectangle surrounding their
contained role components (see Fig. 4).

An important aspect of the wine transaction compartment is the payment.
The customer may choose to pay using a credit card or paying cash. But then,
the transaction itself plays the role of a money transfer in a bank compartment.
Thus, not only atomic components, but also compartments themselves can play
roles. Since compartments are sub-networks that may have external ports, the
role binding approach presented in Sect. 3.2 can be applied to compartments
as well.

As every role component is part of a compartment and every compartment
can play roles itself, our modeling approach is hierarchical. Starting from atomic
components as basic building blocks, role binding can be nested arbitrarily deep.
Returning to our running example, the bank compartment itself may play the
role of a borrower of another bank. Again, this bank can also play the role of a
borrower of yet another bank, and so on.
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3.4 Role-Based Reo Networks and Role-Binding Constraints

To formalize Reo networks modeling role-based systems, we use the concept
of types. Types abstract away actual operational behavior and coordination to
encapsulate the role-based view on parts of the Reo network. Every role com-
ponent, atomic component or compartment as they appear during the modeling
process illustrated in the last sections will be assigned a type. For what follows,
let A be the set of atomic component types, R the set of role component types,
and C the set of compartment types. During the modeling process of role-based
Reo networks, the types are usually known beforehand.

Definition 1. A role-based Reo network is a tuple (N , Catom, Crole,Δ, β,
typeatom, typerole, typecprt) where

– N is a Reo network over a set C of components,
– the set Catom of atomic components and the set Crole of role components are

disjoint subsets of C,
– Δ ⊆ 2Crole is the set of compartments,
– β : Crole → Catom ∪ Δ is a total function binding roles to atomic components

or compartments,
– typeatom : Catom → A, typerole : Crole → R and typecprt : Δ → C anno-

tate atomic components, role components and compartments with their type,
respectively.

In Example 1 we did not distinguish between types and their instances resulting
in the role-based Reo network. Thus, the types can be assumed to agree with
the instance names in this case. To illustrate how types are incorporated in role-
based Reo networks, we chose an example from the soccer domain, which will
serve as the running example for the rest of this section.

Example 2. Let A = {person}, R = {keeper, defender,midfielder, attacker}, and
C = {SoccerTeam,Tournament} be types. Figure 5 depicts a part of a role-based
Reo network, where the type assignment to some instance is done by captions
of the form “instance : type”. Frank as a person is capable of playing the role
of a defender in both, his local and the national team. Whereas in the local
team he plays with number 16 (as an instance of a player in the team), he
has the role of number 7 in the national team. Edwin, as the second person we
consider, can play the role of the keeper in the national team. Besides other
players not depicted in Fig. 5, Frank and Edwin can take part in a world cup
competition within the national team, modeled by a competitor role of the team
instantiated as the second team in group B. We omitted the actual coordination
networks as they concern only the role playing and do not appear within the
annotations for role-based Reo networks. For instance, it can be assumed that
the coordination network between Frank and its two defender roles models that
he cannot play both roles simultaneously. Furthermore, the cloud in the national
team compartment depicted in Fig. 5 stands for a coordination network and could
also include state, e.g., that the color of the national team is orange.
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Fig. 5. Role-based Reo network of a soccer tournament

It is clear that a role-based Reo network should follow rules which guarantee
consistency of the model according to the domain described. In the soccer domain
for instance, it is nonsensical that a team attempts to play the role “keeper” in a
competition. We express such rules which have to be obeyed for role-based Reo
networks with formulas in many-sorted second-order logics (SOL). The sorts
we distinguish here are the ones of role players (denoted RolePlayer) and role
instances (denoted RoleInst). Atomic components and compartments are of sort
RolePlayer , whereas role components are of the sort RoleInst . Role instances
are assigned to role players by β of sort RoleInst → RolePlayer . First-order
variables range over atomic components and role components. For each atomic
component type and role component type we identify its name with a predicate
of arity one, evaluating to true if it is interpreted over an instance of that type.
Similarly, a predicate for each compartment type is true if interpreted over a
second-order variable containing all the role components of a compartment of
that type. Set predicates (such as ∈ and ⊆) evaluate to false when applied on
atomic components as role player instance. We call a set of sentences F over the
described SOL a role rule set and say that a role-based Reo network is valid if
the network is a model for all sentences in F.

A common restriction on role binding (see, e.g., [24,35]) is the requirement
that every role instance is part of at most one compartment. We do not enforce
this restriction in our framework, e.g., to allow for modeling a father-son relation
as a compartment contained in a family-relation compartment. However, this rule
can be included into our role rule set as an SOL sentence

∀RoleInst x,RolePlayer Y,Z. x ∈ Y ∩Z ⇒ Y =Z

Turning to our running example from the soccer domain, the rule that at least
one keeper has to play in every soccer team can be expressed by the SOL sentence

∀RolePlayer T. SoccerTeam(T ) ⇒ ∃RoleInst k. keeper(k) ∧ k ∈ T
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The restriction that every keeper role has to be played by a person is also useful:

∀RoleInst k. keeper(k) ⇒ person(β(k))

It is easy to see that the role-based Reo network depicted in Fig. 5 is valid when
the role rule set contains exactly the rules above. Usually, one fixes a role rule set
according to the chosen domain and then models a valid role-based Reo network
as described in the last two sections.

4 Conclusions and Future Work

We presented an approach on how the exogenous coordination language Reo can
be used to model role-based systems. For this, we introduced a formal frame-
work to express static requirements on the binding of roles to their role play-
ers, based on atomic component types, role component types and compartment
types over which rules in many-sorted SOL are stated. In role-based Reo net-
works, instances of atomic component types and role component types corre-
spond to concrete Reo components, whereas instances of compartment types
include role components and a coordination network between them. Within our
approach, the purpose of Reo is to model the coordination between roles and
their players (e.g., to guarantee operational requirements on role playing) and
between the roles in compartments. The latter also allows the coordination of
the collaboration of roles taking place in compartments, an important feature of
compartments not apparent within the “contexts” a role appears in. Obviously,
modeling the coordination of roles remains a highly sophisticated task within
our framework, where several conformance requirements are only given implic-
itly. For instance, although a soccer player can have a role in the local as well as
the national team, he should not play both roles simultaneously. Thus, formal
analysis of the operational behavior and the role playing over time is desirable
to guarantee correctness of the role-base system model.

Formal Semantics and Analysis for Role-Based Reo Networks. There has been
extensive research on formal semantics for Reo [26]. When the components as
the building blocks of role-based Reo networks (e.g., atomic components or role
components) are modeled using Reo compatible formalisms, we directly obtain
a formal operational semantics, e.g., in terms of a constraint automaton. Such
operational semantics captures all the modeled role-based behaviors and fulfills
the static constraints on role binding provided by our framework. By introducing,
e.g., additional port labels for ports which define whether a role is active or
not, we can rely on standard analysis techniques to check conformance of role
playing requirements. For instance, model-checking tools such as Vereofy [8] or
mCRL2 [32,33] can then be used to check run-time requirements on role-based
Reo networks. Such tools would allow for checking invariants on simultaneous
role playing, e.g., whether roles are only played together with their counter-roles
or whether in a soccer team at least seven but at most eleven players are acting.
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Future Work. Several directions on how our approach can be extended are left
for further work. On the modeling side, our framework currently supports only
static role models without dynamic binding and unbinding. For this, research
on rewriting operations already applied to Reo networks in [34] could be used
in combination with methods ensuring that the role-based Reo network remains
valid according to role rule sets. Concerning constraints on temporal aspects,
the notion of role rule sets could be extended with temporal logic formulas, for
which, however, a semantics on an operational model of Reo networks has to be
developed in more detail. Also, an extension of role rule sets containing (contex-
tualized) description logics [27] could be imagined. On the formal analysis side,
algorithms to check many-sorted SOL requirements on role binding for role-based
Reo networks could be investigated. Reasoning about the role rule sets itself, e.g.,
checking whether some rules are contradictory, requires specialized algorithms,
possibly only applicable onto fragments of the logics we presented. An open field
is also to incorporate annotations into the operational semantics of role-based
Reo networks to reason about compatibility [17,18], e.g., whether the behavior
of a player matches the roles’ requirements and vice versa. In this spirit, also
the formalization of collaboration goals [24] expressed for each compartment and
their reachability during runtime could be investigated. Another aspect within
our framework is controller synthesis [28–31] with respect to temporal require-
ments, e.g., as stated above. As usual, the coordination between components in
component-based system modeling is the most difficult part. Thus, the model-
ing process of role-based Reo networks could heavily benefit from synthesized
controllers serving as coordinating connectors between players and their bound
roles, e.g., by synthesizing the Reo glue code [3,9].
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Abstract. The rise of multicore computers has hastened the advent of
multifarious abstractions to facilitate the construction of parallel pro-
grams. This paper presents another: the vat. A vat is like a variable,
but it has various actions attached to it that can block, transform and
react to changes to the vat. Vats can be combined together in various
ways, linking the behaviours of the vats together, resulting in various
synchronisation mechanisms. Vats are powerful enough to encode (part
of) many existing mechanisms including promises, condition variables,
LVars and reactive programming.

1 Introduction

Parallel processors, and the problems they pose, have found their way onto
our desktops and into our pockets — virtually every modern computer has a
parallel processor. Due to the inefficiency of increasing single processor speeds,
the future (and indeed the last decade), is increasingly parallel. Programming
increasingly parallel computers to effectively utilise the available resources is
an open problem. In particular, implementations of algorithms that cannot be
trivially partitioned into essentially unrelated computations suffer the pain of
coordinating operations that share data. As efficient parallel programs lack a
notion of global time, novel programming abstractions are needed to express and
enforce invariants over multiple values and dependencies between computations
without unnecessary serialisation of computation.

In this paper we explore one such abstraction, a programming language con-
struct called the vat. Vats share a lot in common with futures, promises, atomic
sets, and event-based and reactive programming. Vats are single or multi-valued
records with actions that fire under certain conditions. These actions allow con-
sistency checking, notification and decoration of vat contents to be triggered
transparently. Vats can be configured with different access and action seman-
tics. Several configurations correspond to complicated patterns of concurrent
programming, such as multi-object atomicity. Vats are accessed using safe asyn-
chronous reads and writes returning futures. This allows non-blocking reads in
the presence of contention, such as reads that overlap with consistency checks,
or reads that are issued prior to proper initialisation.
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Vats naturally support event-based programming where actions fire as side-
effects of writes. Combined with multi-valued or linked vats, this extends natu-
rally to (albeit crude) reactive programming, for example, allowing the definition
of a certain field to be the sum of two other fields.

The contributions of the paper are as follows: the notion of vat (Sects. 2
and 3), which is essentially a memory cell with triggerable actions that modify
its behaviour; a formal static and dynamics semantics of a core calculus of vats
(Sect. 4); extensions to the vat concept (Sect. 5); and the application of vats to
some programming problems (Sect. 6). The paper concludes with a discussion of
related work (Sect. 7) and conclusion (Sect. 8).

2 Introduction by Example: Monotonic Integer Variable

The code below describes a vat containing a single integer. Writes to the vat can
only increase the contents of the field, and the value stored in the vat is rounded
to the nearest multiple of 10. Non-increasing writes are rejected.

vat int {
pre (Undefined, new) = Quo True
pre ((Defined old, new) = Quo (new >= old)
trans (_, new) = Quo (((new + 5) / 10) * 10)
post (_, new) = if new > threshold

then Deregister (do_action ())
else Quo ()

fail _ = Quo (notify "Number was not large enough")
} x;

The pre action prevents assignments of values less than the stored value. The
transform action rounds the new value to the nearest multiple of 10. The post
action waits for the first value assigned value over a certain threshold before
firing the corresponding action. If the pre action results in false, the fail action
is triggered, which notifies that the number is not large enough. In all cases, the
return value is wrapped with either Deregister or Quo to indicate whether the
function should be deregistered after being triggered or not, allowing one-shot
call-backs in a simple manner.

3 Vanilla Vats

A vat can be thought of as a single field which can be asynchronously read and
written. The field is initially uninitialised. A number of actions of different kinds
can be attached to the field to adapt and react to attempted writes to the field:

Pre Actions (1). Actions that trigger on writing to the vat, before the write
is published, i.e., available to those reading the vat. Pre actions block an
assignment whenever they are false.

Transformation Actions (2.a). Actions that trigger as part of an assignment
to a vat, whenever the pre action evaluates to true. Transformation actions
operate on the value to be assigned and the old value and produce a new
value to be assigned. This value can be published.
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Post Actions (3). Actions that are triggered after the assignment has been
published. These run asynchronously and possibly in parallel.

Fail Actions (2.b). Actions that are triggered if the pre action fails. These run
asynchronously and possibly in parallel.

Actions are triggered by writing to a vat’s field. The order in which actions
proceed is indicated by the numbers above, where (2.a) and (2.b) depend on the
result of (1). An actual state change is not published (observable outside the
vat) until after the transformation has been performed.

Through pre actions, vats support consistency checking. Through transfor-
mation actions, vats support decoration [10], for example, allowing the interface
type to differ from the storage type, or even replacing bad values with default
values in the spirit of defensive programming. Through post actions, vats nat-
urally support event-based programming where actions fire as side-effects of
writes. This is conceptually similar to the observer pattern [10] and Java listen-
ers. Finally, through fail actions, vats support safe clean up.

3.1 Reading and Writing Vats

Vats can be read and written, just like variables, but unlike reads and writes on
variables, these operations on vats are asynchronous. Asynchronous reads and
writes are always safe—these serialise writes against all other accesses.

Asynchronous reads and writes of a vat have the following types:

– read :: Vat τ → Fut τ
– write :: Vat τ → τ → Fut Bool

These return immediately, and the respective results becomes available via
the future when the read/write succeeds. A read will not produce a result
until the vat is initialised. The Boolean returned by write indicates whether or
not the write succeeded.1

3.2 Action Types

Pre, post, transformation and fail actions are given to the vat. These functions
can depend on the initial value (which may be undefined) in the vat and the to-
be-assigned value, and actions may also deregister themselves from the vat after
running, for instance, to allow run-once actions. To capture this information, the
following data types are used (borrowing Haskell’s notation).

1 For performance, non-blocking synchronous reads and write can be allowed. If used in
a multi-threaded setting, these are subject to data races and may observe inconsistent
or uninitialised states of vats. Synchronous reads and writes have the following types:

– sread :: Vat τ → τ
– swrite :: Vat τ → τ → Bool — result indicates whether write succeeded.
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The first data type captures whether a value is defined or not, and the second
captures the old and new values involved in a transformation:

data Partial τ = Undefined | Defined τ

type Update τ = (Partial τ, τ)

The third datatype supplements the return value of an action with a status
that indicates whether or not the action should remain registered:

data Status τ = Quo τ | Deregister τ

Quo v indicates that the action should remain registered, and Deregister
v indicates that it should be deregistered. In both cases, the return value is v.

For a vat of type Vat τ , the actions that are given to the vat are as follows.
In each case, the action gets the old and new values via the Update datatype,
and the detachment status is indicated using the Status datatype.

– A pre action has type Update τ → Status Bool — for the given input and
old value, the pre action indicates whether the input is an acceptable value to
store in the vat — true indicates that it is.

– A transformer has type Update τ → Status τ — for the given input and
old value, the transformer returns a new value to store in the vat.

– A post action has type Update τ → Status Void — for the given input
and old value, a post action asynchronously performs some action.

– A fail action has type Update τ → Status Void — for the given input and
previous value, a fail action asynchronously performs some action.

These core actions can be used to define more specialised actions. The fol-
lowing classes of actions are envisioned: permanent actions will be triggered
on all subsequent writes to a vat, and return the Quo element of the Status
datatype to indicate their permanence; ephemeral actions will fire only once, at
the next write of a field, and will return the Deregister element of the Status
datatype to indicate their impermanence; and fugacious actions may deregister
themselves after firing and are in this sense conditionally permanent, and will
return the appropriate element of the Status datatype.

Ephemeral actions are useful for notifications of state changes that are irre-
versible, for example, when a value is first initialised, or when a client is inter-
ested in just the next update. Fugacious actions are useful for example to monitor
monotonic changes, such as when a counter hits a certain threshold (to avoid
triggering the alarm repeatedly as the counter continues to rise), or simply to
get the next n updates.

3.3 Action Composition: Chains

A single vat may have multiple actions of every kind. These can conceptually be
combined into a single action of each kind. Multiple pre actions can be combined
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by taking the conjunction of their results. The order in which they are run is
undefined, so shared mutable state should be avoided.

Multiple transformation actions are combined by chaining them so that the
least recently added transformation is applied first and the most recent is applied
last. The composition operation is

(oo) :: (Update τ → τ) → (Update τ → τ) → (Update τ → τ)
f oo g = λ(old ,new) → f (Defined new , g (old ,new))

Function g is applied first then f . The old value for function f is original
new value, and new value is the result of applying function g. Multiple post
actions are combined by firing them all asynchronously. Multiple fail actions are
combined like post actions.

3.4 Varieties of Vats

Vats themselves are a very generic data structure, but they can be used in
many different ways. Asynchronous reads and writes are the default, but direct
synchronous reads and writes may also be possible. Vats may be uninitialised
or initialised, write-once or write-many. The interface of a vat, which consists
essentially of a read and write operation, can be split into two, allowing vats that
cannot be written by whosoever does not have access to the write operations.
Such vats can be used purely as observers, perhaps of actions performed on other
vats. The pre, post, transformation and fail actions of a vat may be specified at
construction time, or may be specified subsequently.

3.5 Extending the Vat Interface

On top of the core actions of a vat, more convenient functions can be built, using
futures and streams to carry the values written to the vat:

– all :: Vat τ → Stream τ — converts a vat into a stream, starting from the
element available at the point which all is applied.

– allST :: Vat τ → (τ → Bool) → Stream τ — converts a vat into a stream,
keeping only the elements satisfying a predicate passed in, starting from the
element at the point which allST is applied.

– next :: Vat τ → Fut τ — returns a future which will contain the next value
written to the vat.

– nextST :: Vat τ → (τ → Bool) → Fut τ — returns a future which will
contain the next value written to the vat satisfying a predicate.

– feed ::Stream τ → Vat τ → Void — takes a stream and a vat and writes
each element from the stream into the vat.

– chain :: Vat τ → (τ → τ ′) → Vat τ ′ — takes a vat and a function and returns
a new vat into which all of the values of the first vat are written, after first
being pumped through the function.2

2 A better result type for this function would be ReadVat τ , corresponding to just the
read interface of a vat.
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These functions can readily be implemented on top of vats, assuming suffi-
ciently expressive future and stream libraries.

4 Semantics

This section gives the semantics of a vanilla variety vat. A number of simpli-
fications are made to keep the semantics tractable. Each vat has a single pre,
transformation and post action, which cannot be changed, and no fail action.
Furthermore, these actions depend only on the new value. Consequently, the
types of the actions are simplified also. This core semantics can be readily built
upon to model the extensions described in this paper.

The core vat language includes the lambda calculus extended with constructs
for spawning tasks (async), working on futures (get and �), for reading, writ-
ing and creating vats, and locks. Expressions highlighted with a grey box are
used only under-the-hood. The language is concurrent, and different tasks com-
municate via vats.
v ::= vt | f | F v⊥ ::= v | ⊥
e ::= v | x | λx.e | e e | if e then e else e | async e | get e | e � e | read e | read! e |

write e e | write! e e | new Vat(e, e, e) | lock(e){e} | unlock(e){e}

v denotes values, v⊥ denotes possibly undefined values, e are expressions. f
ranges over future ids. F ranges over vat ids.3 Expressions such as let letx =
ein e and sequencing e; e can be encoded in the standard fashion.

async e spawns a new task. The get operation has type Fut τ → τ . It
blocks until the value in the future becomes available (aka fulfilled) and returns
that value. Future chaining � sets up a function to be run as a new task when
a future is fulfilled. read reads a vat safely and asynchronously, returning a
future that will contain the vat’s current value. read! reads a vat synchronously,
subverting the lock. write writes a vat safely and asynchronously, triggering
the actions associated with the vat. Its result is a future containing a Boolean
which eventually indicates whether or not the write was successful. write!
performs a synchronous write on a vat, subverting the lock, without triggering
any of the actions. new Vat(e1, e2, e3) creates a new vat: e1 is the pre action, e2
is the transformation, and e3 is the post action. For simplicity, only one of each
function is given and these functions cannot be changed after the creation of vat.
lock(e){e} and unlock(e){e} are terms introduced during expressing evaluation
to lock and unlock vats.

4.1 Dynamic Semantics

The dynamics semantics is based on an evolving configuration consisting of run-
time representations of vats, futures, tasks, and chains:
config : := ε | (vatπ

F v⊥ pr tr po) | (futg v) | (taskg e) | (chaing h λx.e) | config config

π : := u | l
3 Vats were originally called Franks.
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ε is an empty configuration and complex configurations are formed by con-
catenation of configurations config config. Configurations concatenation is
associative and commutative with ε as its unit. The other configuration types
are as follows:

– (vatπ
F v⊥ pr tr po) — a vat with id F , lock status π, current value v (or

undefined), pre action pr, transformation tr and post action po.
– (taskg e) — task running expression e whose result will be stored in future g.
– (futg v) — a fulfilled future with id g holding value v.
– (chaing h λx.e) — a function λx.e chained on future h, whose result will be

stored in future g.

The dynamic semantics is presented in a style combining elements of rewrit-
ing logic [15] and evaluation context-based reduction semantics [8]. Evaluation
contexts are expressions with a single hole that indicates where evaluation will
occur next:

E : := [] | E e | v E | if E then e else e | getE | E �e | v�E | readE | read!E |
writeE e | write v E | write!E e | write! v E | new Vat(E, e, e) |
new Vat(v, E, e) | new Vat(v, v, E) | lock(E){e} | unlock(E){e} | unlock(v){E}

The reduction rules are grouped together in Fig. 1. The first three rules
demonstrate basic operations on futures. The fourth rule shows async spawning
a new task. The fifth rule shows a completed task converted into a fulfilled future.
The sixth rule shows an asynchronous read converted into a task performing a
synchronous read, after first grabbing a lock. The seventh rule shows the actual
read. The next two rules give the same story for writes. The asynchronous write
involves a lock, testing the pre action, performing the transformation action, and
firing post actions, where appropriate. The third last rule shows vat creation and
the last two deal with locking and unlocking vats.

4.2 Static Semantics

We assume that some basic set of types T are provided and a collection of values
V, which for convenience may be annotated with their type vτ , where τ ∈ T .
We have, for instance, ()Void, trueBool, falseBool ∈ V.

Types have the syntax τ : := t | Bool | Void | τ → τ | Vat τ | Fut τ , where
t ∈ T . Typing environments have the syntax Γ : := ε | Γ, f : τ | Γ, F : τ | Γ, x :
τ . The typing judgements are:

– Γ � ok — environment Γ is a-okay
– Γ � e : τ — expression e has type τ in environment Γ
– Γ � config ok — configuration config is a-okay in environment Γ

The rules for expression (Fig. 2) and configuration typing (Fig. 3) are mostly
unsurprising. The function defs(config) extracts the set of future and vat
names defined in configuration config.
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Fig. 1. Reduction rules (obvious ones omitted)

Fig. 2. Type rules
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Fig. 3. Configuration typing

5 Chocolate Vats

A number of extensions to the vanilla vat concept are now considered: multi-
value vats, which contain two or more fields, linked vats, which connects two
independent vats together, nested vats, which are vats within vats, and type-
changing vats, which permit type-changing transformations to the values written
to a vat.

5.1 Multi-value Vats

Multi-value vats contain two or more fields. The fields may be updated sep-
arately or together. Multi-value vats may have and - or or -trigger semantics,
which control when actions trigger:

or-vat. Actions are triggered on every field assignment. Assignments to individ-
ual fields are published as in vanilla vats.

and-vat. Actions are triggered only after all fields in the vat have been assigned.
Assignments to individual fields are not published until an assignment to
each field has been made and after the pre action succeeds and the transfor-
mation has been performed. Writes to individual fields are blocked until all
fields are written. Subsequent writes to fields written but not published are
also blocked.

For multi-value vats, pre actions and transformations work together to pro-
tect and preserve multi-object invariants, because these operate at the vat level,
not on the level of the fields in the vat.

The informal semantics of multi-value and- and or-vats and their actions are
now given in terms of a multi-vat containing two fields of types τ and τ ′.

And-Vats. And-vats are synchronisers. Pairs of writes to the two fields are syn-
chronised together. Unmatched write attempts to one field are blocked until a
matching write attempt to the other field is made.

– Pre actions, type Update (τ, τ ′) → Status Bool, run when attempts have
been made to assign both fields.
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– Transformer, type Update (τ, τ ′) → Status (τ, τ ′), fires when both argu-
ments are available.

– Post actions, type Update (τ, τ ′) → Status Void, fire when the pre actions
succeed.

– Fail actions, Update (τ, τ ′) → Status Void fire when the pre actions fail.

The types of these functions are the same as for a vat containing a pair,
namely Vat (τ, τ ′), but the semantics differ. In the multi-value vat case, both
fields of the vat can be updated independently, but they are synchronised,
whereas in the vat containing a pair case, the pair would be updated atomi-
cally.

Example 1. Consider a vat with fields f , g and h, keeping track of a number of
tasks to process, how many are currently being processed, and the number of
tasks processed, respectively. The sum f + g + h should be invariant. An and-
vat naturally allows this by requiring that f , g and h all be updated before the
updates can be read. One can imagine transform actions trigger updates of f and
h on writes to g, and similar, or pre actions checking the internal consistency.

Or-vats. Or-vats are a bit like mergers in that the (successful) writes to either of
the fields triggers the actions. The information that only one of the two fields is
updated with each call to the vat’s actions is encoded in the datatype wrapped
values passed to the actions. The following Update type is used to indicate
which of the two values was updated, along with the status of the field:

data Presence τ = Absent | Present τ

type Update τ = (Defined τ, Present τ)

The types of the actions are as follows, using the new type:

– Pre action: Update τ → Update τ ′ → Status Bool.
– Transformer: Update τ → Update τ ′ → Status (Partial τ,Partial τ ′).
– Post action: Update τ → Update τ ′ → Status Void
– Fail action: Update τ → Update τ ′ → Status Void

The pre action, transformer, post action and fail fire for each update to the
two fields, according to their usual semantics. The transformer action has a
more complicated type to account for the fact that it may apply to fields that
are undefined and may therefore need to preserve the undefined state.

Example 2. Consider a vat with two linked fields f and g, such that when one
field is updated, the value stored in the other field is 100 minus the value stored
in the first field.

or-vat (f : int, g : int) {
trans (_, newf) (_, Absent) = Quo (Defined newf, Defined (100 - newf))
trans (_, Absent) (_, newg) = Quo (Defined (100 - newg), newg)

} x;
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5.2 Linked Vats

Links connect two or more vats and synchronise the publishing of values to those
vats. That means that publishing a write to one vat will be delayed until all other
writes are ready to be published. In this sense, vats are like Ada’s rendezvous
mechanism [6].

Example 3. Consider bidirectional relationships. These are often tricky to
encode, especially in a concurrent program if the values that must be
kept in sync are not co-located. A vat with a field spouse could require
spouse.spouse == this, which would be satisfied by two writes performed
in separate steps, after which triggers fire.

Links do not offer any way of checking or amending the values written. Nested
vats offer this functionality.

5.3 Nested Vats

Vats are nested when the inner fields of a multi-vat are also vats. Nested vats
extend the notion of links by empowering the link with the capabilities of a
vat. In this situation the actions on the inner vats and outer vats interact to
produce more complex behaviours. Again, two main semantics are possible: and-
semantics on the outer vat synchronises writes to the inner vats; or-semantics
on the outer vat results in the outer vat’s actions being run for every successful
write to some inner vat. In both cases, the inner vat actions are run first, then
the outer vats. Publication of a write attempt requires that both inner and outer
vat pre actions succeed.

The semantics are as follows: when a field of an inner vat is assigned, the
inner vat pre action is tested. If it fails, the fail action is run and we are done.
If it succeeds, the transformation is run, producing a candidate value for the
inner vat—this value is not published. (If or-semantics is used, the result of the
transformation plus the current value of the other field is used in the next step.
If and-semantics is used, the result of separately transforming both fields is used
in the next step.) After the transformation, candidate values for the one or more
inner vats have been produced, the outer vat’s pre action is run. If that fails, no
value is published and the outer fail actions are triggered. (Inner fail actions do
not fire.) If the pre action succeeds, the outer transformation is run, the result
is assigned into the fields. Then the post actions, both inner and outer, can be
run on the final published values.

Note the transactional nature of this description—no result is published
unless all pre actions succeed and after both inner and outer transformations
are applied.

Example 4. Consider the or-vat example in Sect. 5.1. Instead of using integer
fields f and g, the following vats containing integers are used. This vat performs
validation on the integer to ensure that it is within 0 and 100.
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vat int {
pre (_, new) = Quo (new >= 0 && new <= 100)

};

Here we assume that the default transform action is essentially the identity
function, it results in the written value being published.

When used in the context of the or-vat, this means that whenever a field is
written, the inner vat validates the value written before the outer vat can do
its work. Collectively, this will ensure that the values assigned to the fields both
remain between 0 and 100.

5.4 Type-Changing Vats

A type-changing vat is a vat where the type written, the type stored, and the
type read possibly differ.

The most general type-changing vat, type TCVat τ τ ′ τ ′′, accepts elements
of some type τ but stores them as another type τ ′ after performing some trans-
formation, effectively of type τ → τ ′, and producing values of type τ ′′ for reads.
One can think of τ as an input type, and τ ′ as a kind of state type, and the
transformation as a state transformer, and τ ′′ as some kind of observation type.

The types of the component functions of a type-changing vat are a little
different; the type to encode the input to various actions is now:

type Update σ τ = (Partial τ, σ)

Reads and writes of type changing vats have the following types:

– read :: TCVat τ τ ′ τ ′′ → Fut τ ′′
– write :: TCVat τ τ ′ τ ′′ → τ → Fut Bool

The types of the pre, post and fail actions are more or less the same as
before, except they now take as input an element of the Update datatype. For
instance, a transformation on a vat of type TCVat τ τ ′ τ ′′ has type Update τ τ ′ →
Status τ ′.

Two variations of the idea are as follows. By letting τ ′′ = τ ′, one writes a value
of a given type, which is transformed into another type, the type that is read.
Alternatively, if τ ′′ = τ , the types of read and write become TCVat τ τ ′ τ →
Fut τ ′ and TCVat τ τ ′ τ → τ → Fut Bool, respectively, which correspond
approximately, after unravelling the details, to the types of the get and put
operations of a bidirectional lens [9].

Example 5. A simple example of a type-changing vat is one which takes as input
a pair of number, and produces as output a single number—their sum.

6 Applied Vats

Example 6 (Condition Variable). A vat can model a condition variable. To do
so, a post action is set up that tests the condition on each value published in
the field. If the condition holds, the corresponding action associated with the
condition variable is executed and the post action is deregistered.
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post (_, new) = if cond new then Deregister (do_action ()) else Quo ()

Example 7 (Promise). A promise [13] is similar to a future, but makes the ful-
filment responsibility explicitly available to the programmer. A promise can be
modelled as follows. Create an uninitialised vat and perform a read on it to get a
future that will be fulfilled when the vat is assigned. Pass the future to whoever
wants the result, pass the vat to whoever will produce a result. Writing to the
vat fulfils the future.

Example 8 (Reactive Program). A simple example reactive program stores the
continual sum of two vats into another vat. Create two vats which will contain
the integers being assigned. Nest these two vats within a type-changing vat that
has and-semantics to synchronise and converts the pair of values into a single
value (Example 5). An alternative is to use three vats and the post action of the
link (of the first two vats) writes the sum into a third vat.

Example 9 (LVars). LVars [12], or lattice-values variables, can be modelled by
combining monotonicity, a transform action implementing a lattice-valued vat
(combining the old and new values appropriately) and post actions that fire after
a threshold is reached, as in the example in Sect. 2.

Example 10 (Preferential Attachment). A more involved example is the preferen-
tial attachment algorithm for computing random, scale-free graphs [3]. Without
going into too much detail, the graph is constructed by adding each new node
to the graph by connecting it to k distinct, randomly-chosen, existing nodes.
The data structure used in the algorithm is an array a containing the nodes of
each edge in consecutive elements. Adding a new edge for node j involves ran-
domly selecting an index i in the array for the nodes left of j, and writing the
values j and a[i] in the next two positions in the array, that is, a[2j] = j and
a[2j + 1] = a[i] (after checking that a[i] is unique for j). The indices, i0,...n−1

can all be computed in parallel, but a[2j + 1] cannot be computed until a[i] is
known, which again may depend upon some earlier part of the array. Where a[i]
is not computed, a fire-once post trigger can be installed that forwards its result
to a[2j + 1].

Rather than storing an integer in the array a, a’s elements can be vats. Each
vat contains the array for the connections of a single node. Each assignment
a[2j + 1] = a[i] becomes a read of an element in the array in the vat whose
result is written to the target location (the equivalent of a[2j + 1]). Before the
write can succeed, disjointness is tested in the pre action; the fail action can
retry with a different index value. After the write succeeds, vats depending on
a[2j + 1] will fire.

7 Related Work

Vats share commonalities with various other programming constructs. We review
some here—others were covered in Sect. 6.
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Futures [2,5] and promises [13] act as placeholders for asynchronously com-
puted values, allowing asynchronous programs to avoid blocking until the values
are actually needed and be expressed in a direct style instead of continuation
passing style. Future chaining and promise pipelining allow callbacks to be reg-
istered that trigger when a value is computed, similar to vats’ post actions.

Multi-value and-vats are reminiscent of atomic sets in AJ [7,14]. In AJ, pro-
grammers declare atomic sets and map variables (and their containing objects)
into these sets. Variables inside a set must be updated atomically, and synchro-
nisation is inserted automatically by the compiler. Atomic sets may span several
objects. Multi-value and-vats group variables that must all be updated before the
updates become visible through reads. This allows the preservation of invariants
that span multiple locations without requiring updates to come from a single
modifying thread. The downside of this design is the possibility of concurrent,
conflicting updates of a vat, preventing it from reaching a consistent state.

The post actions of a vat are essentially observers (listeners in Java’s par-
lance) [10]. In Java, observers are tied to a specific protocol, whereas post actions
can be any closure expression, and registration, de-registration and notification
is handled manually. Vats’ actions were inspired by before, around and after
advice of aspects [11]. Before advice are typically able to block the progression
to the following join point (in our case, always an assignment), e.g., by throwing
an exception. Aspects are more general by nature.

The fact that a vat is read asynchronously and that the read will succeed
only after the vat is initialised makes that aspect of vats similar to IVars [1].

8 Conclusion

This paper presented the vat, a data structure for parallel programming. The
vat is like an asynchronous container with various actions attached to it to block
or modify its behaviour. Clients can attach actions that respond to changes in a
vat, enabling the creation of reactive programming structures. Work is underway
to incorporate vats into the Encore programming language [4]. Future work will
include gaining experience programming with vats and refining their interface
and semantics.
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Abstract. The notion of subtyping has gained an important role both in
theoretical and applicative domains: in lambda and concurrent calculi as
well as in object-oriented programming languages. The soundness and
the completeness, together referred to as the preciseness of subtyping,
can be considered from two different points of view: denotational and
operational. The former preciseness is based on the denotation of a type,
which is a mathematical object describing the meaning of the type in
accordance with the denotations of other expressions from the language.
The latter preciseness has been recently developed with respect to type
safety, i.e. the safe replacement of a term of a smaller type when a term
of a bigger type is expected.

The present paper shows that standard proofs of operational pre-
ciseness imply denotational preciseness and gives an overview on this
subject.

1 Introduction

A subtyping relation is a pre-order (reflexive and transitive relation) on types
that validates the principle: if σ is a subtype of τ (notation σ ≤ τ), then a term
of type σ may be provided whenever a term of type τ is needed; see Pierce [35]
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In this paper we will discuss key properties of subtyping, i.e. denotational
and operational preciseness. We will introduce these notions in the next two
paragraphs.

Denotational Preciseness. A usual approach to preciseness of subtyping for
a calculus is to consider the interpretation of a type σ (notation [[σ]]) to be a
set that describes the meaning of the type in accordance with the denotations
of the terms of the calculus, in general a subset of the domain of a model of the
calculus.

A subtyping relation is denotationally sound when σ ≤ τ implies [[σ]] ⊆ [[τ ]]
and denotationally complete when [[σ]] ⊆ [[τ ]] implies σ ≤ τ .
A subtyping relation is denotationally precise if it is both denotationally
sound and denotationally complete.

This well-established powerful technique is applied to the pure λ-calculus with
arrow and intersection types by Barendregt et al. [4], to a call-by-value λ-calculus
with arrow, intersection and union types by van Bakel et al. [2] and by Ishihara
and Kurata [25], to a wide class of calculi with arrow, union and pair types
by Vouillon [38], and to a concurrent λ-calculus by Dezani and Ghilezan [15].
More recently denotational preciseness was studied for binary sessions [11] and
synchronous multiparty sessions [16].

Operational Preciseness. Operational soundness is just the key principle men-
tioned at the beginning of this section: if σ ≤ τ , then a term of type σ may be
provided whenever a term of type τ is needed. As a simple example nat ≤ real
and a natural number can always play the role of a real number. Operational
completeness requires that, if σ �≤ τ , then there are

– a context expecting a term of type τ and
– a term of type σ

such that this context filled with this term behaves badly. As a simple example
nat �≤ bool, the negation ¬ requires a boolean argument and the term ¬5 is
stuck.

To define formally operational soundness and completeness we need a boolean
predicate bad on terms, standard typing judgements Γ � M : σ (where Γ is a
mapping from variables to types and M is a term) and evaluation contexts C.

A subtyping relation is operationally sound when σ ≤ τ implies that if (for
some ρ) x : τ � C[x] : ρ and � M : σ, then bad(C[M ]) is false, for all
C and M .
A subtyping relation is operationally complete when σ �≤ τ implies that
x : τ � C[x] : ρ and � M : σ and bad(C[M ]), for some ρ, C and M .
A subtyping relation is operationally precise if it is both operationally sound
and operationally complete.

Operational soundness immediately follows from the subject reduction theo-
rem, when the subtyping is used in a subsumption rule. A general methodology
to prove operational completeness is the following one:



Denotational and Operational Preciseness of Subtyping: A Roadmap 157

– [Step 1] Characterise the negation of the subtyping relation by inductive
rules.

– [Step 2] For each type σ define a characteristic context Cσ, which behaves
well when filled with terms of type σ.

– [Step 3] For each type σ define a characteristic term Mσ, which has only
the types greater than or equal to σ.

– [Step 4] Show that if σ �≤ τ , then bad(Cτ [Mσ]).

These four steps are the guideline of the proofs in the literature, as we will
illustrate in this paper.

Background and Related Work. Ligatti et al. [27] first define operational
preciseness of subtyping and apply it to subtyping iso-recursive types. They con-
sider a typed λ-calculus enriched with naturals, reals, pair and case construc-
tors/destructors, and roll/unroll. The predicate bad(M) holds when M reduces
to a stuck term, i.e. to an irreducible term which is not a value. They propose
new algorithmic rules for subtyping iso-recursive types and show that they are
operationally precise.

Dezani and Ghilezan [15] adapt the ideas of Ligatti et al. [27] to the setting of
the concurrent λ-calculus with intersection and union types of [14]. For the oper-
ational preciseness they take the view that evaluation of well-typed terms always
terminates. This means that the predicate bad coincides with non termination.
In this calculus applicative contexts are enough. Notably, soundness and com-
pleteness are made more operational by asking that some applications converge
instead of being typable. To sum up, the definition of operational preciseness
becomes:

A subtyping ≤ is operationally precise when σ ≤ τ if and only if there are no
closed terms M,N such that ML converges for all closed terms L of type τ
and N has type σ and MN diverges.

The main result of this paper is the operational preciseness of the subtyping
induced by the standard set theoretic interpretation of arrow, intersection and
union types.

Chen et al. [11] first give a general formulation of preciseness for session
calculi, where processes are typed by sets of pairs (channels, session types) [22].
The session types prescribe how the channels can be used for communications.
The calculus of processes includes an error process and bad(P ) holds when process
P reduces to error. The typing judgements for closed processes are of the form
� P �{a : T}, assuring that the process P has a single free channel a whose type
is T . The judgement � C[a : T ] � ∅ means that filling the hole of C with any
process P typed by a : T produces a well-typed closed process. We get:
A subtyping ≤ is precise when, for all session types T and S:

T � S ⇐⇒
(

there do not exist C and P such that:
� C[a : S] � ∅ and � P � {a : T} and C[P ] −→∗ error

)
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When the only-if direction (⇒) of this formula holds, we say that the subtyp-
ing is sound; when the if direction (⇐) holds, we say that the subtyping is
complete. The first result of [11] is that the well-known session subtyping, the
branching-selection subtyping [13], is sound and complete for the synchronous
dyadic calculus. Next, the authors show that in the asynchronous calculus, this
subtyping is incomplete for type-safety: that is, there exist session types T and
S such that T can safely be considered as a subtype of S, but T ≤ S is not
derivable by the subtyping. They propose an asynchronous subtyping system
(inspired by [32]) which is sound and complete for the asynchronous dyadic cal-
culus. The method gives a general guidance to design rigorous channel-based
subtypings respecting desired safety properties.

Dezani et al. [16] consider the synchronous version [26] of the multiparty
session calculus in [12,23]. For the operational preciseness they take the view
that well-typed sessions never get stuck. Therefore the predicate bad is true for
processes which cannot reduce, but contain pending communications. The pre-
ciseness of the branching-selection subtyping [13] is shown using a novel notion
of characteristic global type.

A framework which is closely related to the above described works is semantic
subtyping. In semantic subtyping, each type is interpreted as the set of values
having that type and subtyping is subset inclusion between type interpreta-
tions [10]. This gives a precise subtyping as soon as the calculus allows to dis-
tinguish operationally values of different types.

Semantic subtyping was first proposed by Castagna and Benzaken through
the development of the CDuce project [17]. CDuce is a modern XML-oriented
functional language. Distinctive features of CDuce are a powerful pattern match-
ing, first class functions, over-loaded functions, a very rich type system (with
arrow, sequence, pair, record, intersection, union, difference type constructs),
precise type inference for patterns and error localisation, and a natural inter-
pretation of types as sets of values. It is enriched also with some important
implementation aspects: in particular, a dispatch algorithm that demonstrates
how static type information can be used to obtain very efficient compilation
schemas.

Semantic subtyping has been also studied in [8] for a π-calculus with a pat-
terned input and in [9] for a session calculus with internal and external choices
and typed input. Types are built using a rich set of type constructors including
union, intersection and negation: they extend IO-types in [8] and session types
in [9]. Semantic subtyping is precise for the calculi of [8,9,17], thanks to the
type case constructor in [17], and to the blocking of inputs for values of “wrong”
types in [8,9].

Bonsangue et al. [6] recently have developed an elegant coalgebraic founda-
tion for coinductive types, which gives a sound and complete characterisation of
semantic subtyping in terms of inclusion of maximal traces.

Outline. Sections 2 and 3 deal with typed extensions of λ-calculus, and dis-
cuss preciseness of iso-recursive and intersection/union types, respectively. Ses-
sion calculi are considered in Sects. 4 and 5. Section 4 is devoted to synchronous
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and asynchronous binary types, Sect. 5 instead to synchronous multiparty types.
Section 6 shows how the existence of characteristic terms as defined in [Step 3]
implies denotational preciseness. Section 7 concludes with some directions for
further work.

2 Iso-Recursive Types

In [27] the authors consider a typed λ-calculus enriched with naturals, reals, pair
and case constructors/destructors, and roll/unroll. The syntax of types, terms
and values of this calculus (dubbed L→μ

+×) is given in Fig. 1.

σ ::= nat | real |σ → τ |σ ×τ |σ +τ | μ t.σ | t
M ::= n | r | succ(M) | neg(M) | fun f (x :σ ) : τ = M | MM | x | (M,M) | M.fst | M.snd |

inlσ (M) | inrσ (M) | caseM of inl x ⇒ M1 else inr y ⇒ M2 | roll(M) | unroll(M)

V ::= n | r | fun f (x :σ ) : τ = M | (V,V ) | inlσ (V ) | inrσ (V ) | roll(V )

Fig. 1. Types, terms and values of L→μ
+× .

The operational semantics of L→μ
+× is call-by-value. The operator succ reduces

only when the argument is a natural and unroll is the left inverse of roll. The
remaining reduction rules are standard.

The most interesting subtyping rule tells that μt.σ is a subtype of μt.τ if
we can derive from μt.σ ≤ μt.τ that their unfolded versions are in the subtype
relation. More precisely:

Σ,μt.σ ≤ μt.τ � σ[μt.σ/t] ≤ τ [μt.τ/t]
Σ � μt.σ ≤ μt.τ

where Σ is a set of subtyping judgments. The type system is as expected, in
particular roll and unroll correspond to fold and unfold of recursive types.

The core of the completeness proof is the construction of characteristic con-
texts and terms for closed types, as discussed in the Introduction. This construc-
tion is delicate since some types (for example μt.t) are not inhabited. The type
inhabitation is decidable and every non inhabited type is subtype of all types.
Figure 2 shows some of the characteristic contexts and terms for the types of [27].
Notice that in that paper they are used in the proof without grouping them in
a unique definition. We omit the case of the sum type being similar to that of
the product type. Also, the characteristic contexts and terms for recursive types
are missing, since they are quite tricky depending on the external constructor
obtained by unfolding the types.

For example nat → nat �≤ real → nat. The characteristic context of real → nat
is Cnat[[ ]Mreal] = succ([ ]2.5). The characteristic term of nat → nat is

fun f(x : nat) : nat = (fun g(y : nat) : nat = Mnat)(Cnat[x]),
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typeσ characteristic contextCσ characteristic term Mσ

succnat [ ] 5

negreal [ ] 2.5

τ1 → τ2 Cτ2 [[ ]Mτ1 ] fun f (x : τ1) : τ2 = M

τ1 ×τ2 (Cτ1 [[ ].fst],Cτ2 [[ ].snd]) (Mτ1 ,Mτ2)

Fig. 2. Characteristic contexts and terms, where M = (fun g(y : τ) : τ2 = Mτ2)(Cτ1 [x])
and τ is the type of Cτ1 [x] when x has type τ1.

i.e.
fun f(x : nat) : nat = (fun g(y : nat) : nat = 5)(succ x).

The term Creal→nat[Mnat→nat] is then

succ((fun f(x : nat) : nat = (fun g(y : nat) : nat = 5)(succ x))2.5).

This term reduces to

succ((fun g(y : nat) : nat = 5)(succ 2.5))

which is stuck, since succ 2.5 is stuck.
The main result of [27] is:

Theorem 1. The subtyping of L→μ
+× is operationally precise.

3 Intersection and Union Types

In this section, we present and discuss the results from [15] on denotational and
operational preciseness of the subtyping relation in the setting of the concurrent
λ-calculus with intersection and union types (dubbed λ⊕‖) introduced in [14].
The syntax of types, terms, values, and total values of this calculus is given in
Fig. 3. The only atomic type is the universal type ω. There are both call-by-
name variables (ranged over by x) and call-by-value variables (ranged over by
v). The constructor ⊕ is the non-deterministic choice and the constructor ‖ is
the parallel operator.

σ ::=ω |σ →σ |σ ∧σ |σ ∨σ
M ::= x | v | (λ x.M) | (λ v.M) | (MM) | (M⊕M) | (M‖M)

V ::= v |λ x.M |λ v.M |V‖M | M‖V
W ::= v |λ x.M |λ v.M |W‖W

Fig. 3. Types, terms, values, and total values of λ⊕‖.
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The reduction relation formalises the behaviour of a machine which evaluates
in a synchronous way parallel compositions, until a value is produced. Partial val-
ues, i.e. values which are not total, can be further evaluated, and this is essential
for applications of a call-by-value abstraction (rule (βv‖)). The reduction rules
which enable this behaviour are the following

(μv)
N −→ N ′ N �∈ Val

(λv.M)N −→ (λv.M)N ′ (βv‖)
V −→ V ′ V ∈ Val

(λv.M)V −→ M [V/v]‖(λv.M)V ′

According to [14] a term is convergent if all reduction paths reach values.
The type system with intersection and union types is dually reflecting the

conjunctive and disjunctive operational semantics of ‖ and ⊕. The subtyping
relation on Type, the set of all types, is the smallest pre-order such that

1. 〈Type,≤〉 is a distributive lattice, where ∧ is the meet, ∨ is the join, ω
is the top;

2. the arrow satisfies
(a) σ → ω ≤ ω → ω;
(b) (σ → ρ) ∧ (σ → τ) ≤ σ → ρ ∧ τ ;
(c) σ ≥ σ′, τ ≤ τ ′ ⇒ σ → τ ≤ σ′ → τ ′.

Notice that the standard axiom (σ → ρ) ∧ (τ → ρ) ≤ σ ∨ τ → ρ [2,25] is
unsound for λ⊕‖, as proven in [14].

Regarding operational preciseness, divergent terms are the ones that are not
convergent and the predicate bad coincides with divergence. Closed convergent
and divergent terms are completely characterised by the types ω → ω and ω,
respectively [14].

As said in the Introduction, it is enough to consider applicative context, that
we call test tems. Figure 4 gives test and characteristic terms, where I = λx.x
and Ω = (λx.xx)(λx.xx). For example Mω→ω = λx.Ω and Nω→ω = λv.I.
More interestingly M(ω→ω)→ω→ω = λx.((λv.I)x)(λy.Ω) applied to a term
returns λy.Ω only if the term reduces to a value. Similarly N(ω→ω)→ω→ω =
λv.(λv′.I)(v(λx.Ω)) applied to a term which reduces to a value, first applies this
term to λx.Ω, and then reduces to I only if the result of this application reduces
to a value too.

The key property of test terms is:

if M is a closed term, then NσM converges if and only if M has type σ.

As a consequence σ �≤ τ implies the divergence of NτMσ, i.e. bad(NτMσ).
The denotational preciseness of this subtyping is obtained for the standard

set-theoretic interpretation of arrow, intersection and union types. The key tool
is the existence of characteristic terms, as shown in Sect. 6.

To sum up, the main result in [15] is:

Theorem 2 (Denotational and Operational Preciseness).

1. The subtyping of the λ⊕‖-calculus is operationally precise.
2. The subtyping of the λ⊕‖-calculus is denotationally precise.
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typeσ test term Nσ characteristic term Mσ

ω λ x.I Ω

τ1 → τ2 λ v.Nτ2(vMτ1) λ x.(Nτ1x)Mτ2

τ1 ∧τ2 λ x.(Nτ1 x⊕Nτ2 x) Mτ1‖Mτ2

τ1 ∨τ2 λ v.(Nτ1 v‖Nτ2 v) where τ1 ∨τ2 �= ω Mτ1 ⊕Mτ2

Fig. 4. Test and characteristic terms.

4 Binary Session Types

This section presents results from [11] stating that the well-known branching-
selection subtyping (defined in Fig. 7) is precise for the synchronous session cal-
culus. As it happens that this subtyping is incomplete for type-safety for the
asynchronous session calculus, the authors propose an asynchronous subtyping
relation and prove that it is precise for the asynchronous session calculus.

4.1 Synchronous Session Calculus

A binary session is a series of interactions between two parties, possibly with
branching and recursion, and serves as a unit of abstraction for describing com-
munication protocols. The syntax of the synchronous session calculus is given
in Fig. 5. The input process

∑

i∈I

u?li(xi).Pi waits on channel u for a label li and

a channel to replace xi inside Pi (i ∈ I). The output process sends on chan-
nel u the label l and the channel u′. The process def D in P is a recursive
agent and X〈ũ〉 is a recursive variable. The process (νab)P is a restriction which
binds two channels, a and b in P, making them co-channels, i.e. allowing them
to communicate.

P ::= 0 || X〈u〉 || ∑
i∈I

u?li(xi).Pi || u!l〈u′〉.P || P⊕P || P |P || def D in P || (ν ab)P || error

u ::= a || x D ::= X(x) = P

Fig. 5. Syntax of synchronous processes.

Operational semantics is given by a reduction relation between the synchro-
nous processes. The main rule is

[r-com-sync]

k ∈ I

(νab)(a!lk〈c〉.P |
∑

i∈I

b?li(xi).Qi) −→ (νab)(P | Qk{c/xk})
.
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sessiontype T characteristic process P(u,T )

end 0
t Xt〈u〉

&i∈I?li(Si).Ti ∑i∈I u?li(x).(P(u,Ti) |P(x,Si))⊕
i∈I !li〈Si〉.Ti

⊕
i∈I(ν ab)(u!li〈a〉.P(u,Ti) |P(b,Si))

μ t.S def Xt(x) = P(x,S) in Xt〈u〉

Fig. 6. Types and characteristic synchronous processes.

[SUB-END]
end � end

[SUB-BRA]
∀i ∈ I : Si � S′

i Ti � T ′
i

&i∈I∪J?li(Si).Ti � &i∈I?li(S′
i).T

′
i

=============================

[SUB-SEL]
∀i ∈ I : S′

i � Si Ti � T ′
i

⊕

i∈I
!li〈Si〉.Ti �

⊕

i∈I∪J
!li〈S′

i〉.T ′
i

==========================

Fig. 7. Synchronous subtyping.

It describes the communication between an output (a!lk〈c〉.P ) and an input
(
∑

i∈I b?li(xi).Qi) at two co-channels a and b, where the label lk is selected and
channel c replaces xk into the k-th input branch (Qk). Other rules are standard.

The synchronous session calculus includes an error process and bad(P ) holds
when process P reduces to error. There are four kinds of processes which generate
error: a session with mismatch between corresponding output and input labels, a
session where one of two co-channels is missing, a session where two co-channels
are both subjects of outputs, and a session where two co-channels are both
subjects of inputs.

The syntax of synchronous session types is given in Fig. 6. As usual session
duality [22] plays an important rôle for session types. The function T , defined
below, yields the dual of the session type T .

&i∈I?li(Si).Ti =
⊕

i∈I !li〈Si〉.Ti

⊕
i∈I !li〈Si〉.Ti = &i∈I?li(Si).Ti

t = t μt.T = μt.T end = end

The type system is the standard one for session calculi, see e.g. [13]. The
subtyping relation is given in Fig. 7, where the double line in rules indicates that
the rules are interpreted coinductively [35] (Chap. 21). The type system enjoys
the property of subject reduction, which implies operational soundness of the
synchronous subtyping.

It can be verified that the relation ��, presented in Fig. 8, is the negation of
the synchronous subtyping.

The characteristic process offering communication T on identifier u for the
synchronous calculus, denoted by P(u, T ), is given in Fig. 6.

For type S and channel b, the characteristic context is defined as

CS,b = [ ] | P(b, S).
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[N-END R]
T �= end

end �� T

[N-END L]
T �= end

T �� end

[N-BRASEL]
&
i∈I

?li(Si).Ti ��
⊕

j∈J
!l′j〈S′

j〉.T ′
j

[N-SELBRA-SYNC]
⊕

j∈J
!l′j〈S′

j〉.T ′
j �� &

i∈I
?li(Si).Ti

[N-LABEL BRA]
∃ j ∈ J ∀i ∈ I : li �= l′j

&
i∈I

?li(Si).Ti �� &
j∈J

?l′j(S
′
j).T

′
j

[N-LABEL SEL]
∃i ∈ I ∀ j ∈ J : li �= l′j

⊕

i∈I
!li〈Si〉.Ti ��

⊕

j∈J
!l′j〈S′

j〉.T ′
j

[N-EXCH BRA]
∃i ∈ I ∃ j ∈ J : li = l′j Si �� S′

j

&
i∈I

?li(Si).Ti �� &
j∈J

?l′j(S
′
j).T

′
j

[N-EXCH SEL]
∃i ∈ I ∃ j ∈ J : li = l′j S′

j �� Si
⊕

i∈I
!li〈Si〉.Ti ��

⊕

j∈J
!l′j〈S′

j〉.T ′
j

[N-CONT BRA]
∃i ∈ I ∃ j ∈ J : li = l′j Ti �� T ′

j

&
i∈I

?li(Si).Ti �� &
j∈J

?l′j(S
′
j).T

′
j

[N-CONT SEL]
∃i ∈ I ∃ j ∈ J : li = l′j Ti �� T ′

j
⊕

i∈I
!li〈Si〉.Ti ��

⊕

j∈J
!l′j〈S′

j〉.T ′
j

Fig. 8. Negation of synchronous subtyping.

Finally, it can be proven that T �� S implies

bad((νab)CS,b[P(a, T )]) = bad((νab)(P(a, T ) | P(b, S))).

For example (omitting 0 and final end) let T =!l1(end).?l2(end) and S =
?l2(end).!l1(end), then T �≤ S. By definition

P(a, T ) = (νc1d1)(a!l1〈c1〉.P(a, ?l2(end)) | P(d1, end))
= (νc1d1)(a!l1〈c1〉.a?l2(x).(P(a, end) | P(x, end)))
= (νc1d1)(a!l1〈c1〉.a?l2(x))

We get S =!l2(end).?l1(end) and

P(b, S) = (νc2d2)(b!l2〈c2〉.P(b, ?l1(end)) | P(d2, end))
= (νc2d2)(b!l2〈c2〉.b?l1(y).(P(b, end) | P(y, end)))
= (νc2d2)(b!l2〈c2〉.b?l1(y))

Then

(νab)CS,b[P(a, T )] = (νab)(P(a, T ) | P(b, S))
= (νab)((νc1d1)(a!l1〈c1〉.a?l2(x)) | (νc2d2)(b!l2〈c2〉.b?l1(y)))

and this last process reduces to error, since the two co-channels are both subjects
of outputs.

In [11], the main result for synchronous subtyping is:

Theorem 3 (Preciseness for Synchronous Session Calculus). The syn-
chronous subtyping relation is operationally precise for the synchronous session
calculus.

4.2 Asynchronous Session Calculus

The asynchronous session calculus is obtained from the rules for the synchronous
ones by extending the synchronous calculus of Fig. 5 with queues:
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[N-LABEL-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∀ j ∈ Jn0 : l

n0
j �= li0

⊕
i∈I !li〈Si〉.Ti �� A [

⊕
j∈Jn !l

n
j 〈Snj 〉.Tn

j ]n∈N

[N-EXCH-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∃ j0 ∈ Jn0 : l

n0
j0

= li0 Sn0j0 �� Si0
⊕

i∈I !li〈Si〉.Ti �� A [
⊕

j∈Jn !l
n
j 〈Snj 〉.Tn

j ]n∈N

[N-CONT-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∃ j0 ∈ Jn0 : l

n0
j0

= li0 Ti0 �� A [Tn
j0 ]

n∈N
⊕

i∈I !li〈Si〉.Ti �� A [
⊕

j∈Jn !l
n
j 〈Snj 〉.Tn

j ]n∈N

[N-BRA-ASYNC]
& �∈ T

T �� &i∈I?li(Si).Ti

[N-SEL-ASYNC]
⊕ �∈ T

⊕
i∈I !li〈Si〉.Ti

Fig. 9. Negation of asynchronous subtyping.

P :: = . . . | ab� h h:: = ∅ | l〈a〉 | h · h.

A queue ab� h is used by channel a to enqueue messages in h and by channel b
to dequeue messages from h.

Reduction rules for asynchronous processes are obtained from the rules for the
synchronous processes by replacing [r-com-sync] with the following two rules:

[r-send-async]
ab�h | a!l〈c〉.P −→ ab�h · l〈c〉 | P

[r-receive-async]
k ∈ I

ab� lk〈c〉 · h |∑i∈I b?li(xi).Pi −→ ab�h | Pk{c/xk}

In presence of queues, reduction to error includes deadlocks, that are sessions
with inputs waiting to dequeue messages from queues that will stay empty, and
orphan messages, that are messages in queues that will never be received.

To define asynchronous subtyping, the notion of asynchronous context is
introduced, that is a sequence of branchings containing indexed holes:

A :: = [ ]n | &i∈I?li(Si).Ai.

The asynchronous subtyping relation is obtained by extending synchronous sub-
typing relation by the rule:

[sub-perm-async]

∀i ∈ I ∀n ∈ N : Sn
i � Si Ti � A [Tn

i ]n∈N & ∈ A & ∈ Ti

⊕
i∈I !li〈Si〉.Ti � A [

⊕
i∈I∪Jn

!li〈Sn
i 〉.Tn

i ]n∈N
=============================================================.

Using this rule we get for example !l1(end).?l2(end) ≤?l2(end).!l1(end), which
does not hold in the synchronous subtyping, as shown in previous subsection.

The negation rules of asynchronous subtyping are the rules of Fig. 8 excluding
rule [n-selbra-sync], extended by the rules of Fig. 9.

The characteristic process offering communication T on identifier u for the
asynchronous calculus, denoted by P(u, T ), is defined as in Fig. 6, but for the
case of T being

⊕
i∈I !li〈Si〉.Ti, which becomes:

⊕

i∈I

(νab)(u!li〈a〉.P(u, Ti) | P(b, Si) | ba� ∅ | ab� ∅).
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For type S and channel b, the characteristic context is defined as

CS,b = [ ] | P(b, S) | ba� ∅ | ab� ∅.

For T �� S, we can prove that there are T ′ � T and S′ ≥ S such that

bad((νab)(CS′,b[P(a, T ′]) = bad((νab)(P(a, T ′) | P(b, S′) | ba� ∅ | ab� ∅)).

Notice that S′ ≥ S if and only if S′ � S.
For example let T =!l1(end)⊕!l2(end) and S =!l1(end), then T �≤ S. By

definition

P(a, T ) = (νc1d1)(a!l1〈c1〉.P(a, end) | P(d1, end) | d1c1 � ∅ | c1d1 � ∅)⊕
(νc2d2)(a!l2〈c2〉.P(a, end) | P(d2, end) | d2c2 � ∅ | c2d2 � ∅)

= (νc1d1)(a!l1〈c1〉 | d1c1 � ∅ | c1d1 � ∅)⊕
(νc2d2)(a!l2〈c2〉 | d2c2 � ∅ | c2d2 � ∅).

We also get S =?l1(end) and

P(b, S) = b?l1(y).(P(b, end) | P(y, end)) = b?l1(y).

Then

(νab)CS,b[P(a, T )] = (νab)(P(a, T ) | P(b, S) | ba� ∅ | ab� ∅)
= (νab)((νc1d1)(a!l1〈c1〉 | d1c1 � ∅ | c1d1 � ∅)⊕

(νc2d2)(a!l2〈c2〉 | d2c2 � ∅ | c2d2 � ∅) |
b?l1(y) | ba� ∅ | ab� ∅)

−→ (νab)((νc2d2)(a!l2〈c2〉 | d2c2 � ∅ | c2d2 � ∅) |
b?l1(y) | ba� ∅ | ab� ∅)

−→ (νab)(νc2d2)(d2c2 � ∅ | c2d2 � ∅ |
b?l1(y) | ba� ∅ | ab� l2〈c2〉)

−→ error

where the reduction to error is due to the mismatch between the input label l1
and the label l2 of the message.

In [11], the main result for asynchronous subtyping is:

Theorem 4 (Preciseness for Asynchronous Subtyping). The asynchro-
nous subtyping relation is operationally precise for the asynchronous session
calculus.

5 Multiparty Session Types

In [16] the authors show operational and denotational preciseness of the subtyp-
ing introduced in [13] for a simplification of the synchronous multiparty session
calculus in [26]. The calculus is obtained by eliminating both shared channels
for session initiations and session channels for communications inside sessions.
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P ::= 0 || X || p?�(x).P || p!�(e).P || P+P || if e then P else P || μX .P

::= p�P || |

Fig. 10. Processes and multiparty sessions.

S ::= nat || int || bool

G ::= p → q : {�i(Si).Gi}i∈I || μ t.G || t || end

T ::=
∧
i∈I p?�i(Si).Ti || ∨

i∈I q!�i(Si).Ti || μ t.T || t || end

Fig. 11. Sorts, global types and multiparty session types.

A multiparty session is a series of interactions between a fixed number of
participants, possibly with branching and recursion, and serves as a unit of
abstraction for describing communication protocols. The syntax of processes and
multiparty sessions is given in Fig. 10. The values are natural numbers n, integers
i, and boolean values true and false. The expressions e are variables or values or
expressions built from expressions by applying the operators succ, neg,¬,⊕, or
the relation > . The input process p?�(x).P waits for an expression with label �
from participant p and the output process q!�(e).Q sends the value of expression
e with label � to participant q. The external choice P +Q offers to choose either
P or Q. The process μX.P is a recursive process. An equi-recursive view is taken,
not distinguishing between a process μX.P and its unfolding P{μX.P/X}. If
p � P is well typed (see typing rules in [16]), then participant p does not occur
in process P , since we do not allow self-communications.

The computational rules of multiparty sessions are closed with respect to the
structural congruence (defined as expected) and reduction contexts (empty and
parallel composition). Here we recall only the main rule [r-comm] which states
that participant q sends the value v choosing label �j to participant p which
offers inputs on all labels �i with i ∈ I.

[r-comm]

j ∈ I e ↓ v

p �
∑

i∈I

q?�i(x).Pi | q � p!�j(e).Q −→ p � Pj{v/x} | q � Q

The value v of expression e (notation e ↓ v) is as expected, see [16]. The successor
operation succ is defined only on natural numbers, the negation neg is defined
on integers (and then also on natural numbers), and ¬ is defined only on boolean
values. The internal choice e1 ⊕ e2 evaluates either to the value of e1 or to the
value of e2.

In order to define the operational preciseness of subtyping it is crucial to
formalise when a multiparty session contains communications that will never be
executed.
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[SUB-END]
end � end

[SUB-IN]
∀i ∈ I : S′

i ≤: Si Ti � T′
i

∧

i∈I∪J
p?�i(Si).Ti �

∧

i∈I
p?�i(S′

i).T
′
i

==============================

[SUB-OUT]
∀i ∈ I : Si ≤: S′

i Ti � T′
i

∨

i∈I
p!�i(Si).Ti �

∨

i∈I∪J
p!�i(S′

i).T
′
i

=============================

Fig. 12. Subtyping of multiparty session types.

[NSUB-ENDL]
T �= end

T �� end

[NSUB-ENDR]
T �= end

end �� T

[NSUB-DIFF-PART]
p �= q †,‡ ∈ {?, !}

p† �1(S1).T1 �� q‡ �2(S2).T2

[NSUB-OUT-IN]
p!�1(S1).T1 �� p?�2(S2).T2

[NSUB-IN-OUT]
p?�1(S1).T1 �� p!�2(S2).T2

[NSUB-IN-IN]
�1 �= �2 or S2 �≤: S1 or T1 �� T2

p?�1(S1).T1 �� p?�2(S2).T2

[NSUB-OUT-OUT]
�1 �= �2 or S1 �≤: S2 or T1 �� T2

p!�1(S1).T1 �� p!�2(S2).T2

[NSUB-INTR]
T �� T1 or T �� T2

T �� T1 ∧T2

[NSUB-UNIL]
T1 �� T or T2 �� T

T1 ∨T2 �� T

[NSUB-INTL-UNIR]
∀i ∈ I ∀ j ∈ J Ti �� T′

j
∧

i∈I
Ti ��

∨

j∈J
T′

j

Fig. 13. Negation of subtyping of multiparty session types.

Definition 1. A multiparty session M is stuck if M �≡ p � 0 and there is no
multiparty session M ′ such that M −→ M ′. A multiparty session M gets stuck,
notation stuck(M ), if it reduces to a stuck multiparty session.

A stuck multiparty session is a bad multiparty session, i.e. bad(M ) = stuck(M ).
The type system is the simplification of that in [26] due to the new formula-

tion of the calculus. Figure 11 contains syntax of sorts, global types and session
types.

Global types describe the whole conversation scenarios of multiparty ses-
sions. Session types correspond to projections of global types on the individual
participants.

Subsorting ≤: on sorts is the minimal reflexive and transitive closure of the
relation induced by the rule: nat ≤: int. Subtyping � on session types takes into
account the contra-variance of inputs, the covariance of outputs, and the stan-
dard rules for intersection and union. Figure 12 gives the coinductive subtyping
rules.

The proof of operational soundness of subtyping follows from the subsump-
tion rule and the safety theorem of the type system.

The proof of operational completeness comes in four steps as stated in Intro-
duction.
The characterisation of the negation of the subtyping is given in Fig. 13.



Denotational and Operational Preciseness of Subtyping: A Roadmap 169

session type T characteristic process P(T)

end 0

t Xt

p?�(nat).T′ p?�(x).if succ(x) > 0 thenP(T′) elseP(T′)

p?�(int).T′ p?�(x).if neg(x) > 0 then P(T′) elseP(T′)

p?�(bool).T′ p?�(x).if ¬x thenP(T′) elseP(T′)

p!�(nat). pT !�(5).P(T′)

p!�(int).T′ p!�(−5).P(T′)

p!�(bool).T′ p!�(true).P(T′)

T1 ∧T2 P(T1)+P(T2)

T1 ∨T2 if true⊕ false thenP(T1) elseP(T2)

μ t.T′ μXt.P(T′)

Fig. 14. Characteristic processes.

The characteristic process P(T) of type T is defined in Fig. 14 by using the
operators succ, neg, and ¬ to check if the received values are of the right sort
and exploiting the correspondence between external choices and intersections,
conditionals and unions.

The authors define the characteristic global type G (T, p) of type T for partic-
ipant p, that describes the communications between p and all participants which
occur inT (notation pt{T}). Moreover, after each communication involving p and
some q ∈ pt{T}, participant q starts a cyclic communication involving all par-
ticipants in pt{T} both as receivers and senders. The characteristic context for
p �P(T) is built using the characteristic global type of type T for participant p.

We do not give here the definitions of characteristic global types and charac-
teristic contexts, we only show an example. Let T = p1!�1(nat).p2!�2(nat) and
T′ = p2!�2(nat).p1!�1(nat). Clearly T �≤ T′ and P(T) = p1!�1(5).p2!�2(5). The
characteristic context for p �P(T) is [ ] | p1 � p2?�2(x)... | p2 � p?�2(x)... and the
process

p � p1!�1(5).p2!�2(5) | p1 � p2?�2(x)... | p2 � p?�2(x)...

is stuck, since participant pwants to send a message to participant p1, who instead
is ready to receive a message from participant p2, who in turn expects a message
from participant p.

The main result of [16] is:

Theorem 5. The synchronous multiparty session subtyping is operationally
precise.

6 Characteristic Terms for Denotational Preciseness

It is standard [11,15,16,21] to interpret a type σ as the set of closed terms typed
by σ, i.e.

[[σ]] = {M | � M : σ}
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In this case denotational soundness immediately follows from the subsump-
tion rule. Moreover, the existence of characteristic terms as defined in [Step 3]
at page 3 implies denotational completeness. By definition characteristic terms
enjoy the following key property:

� Mσ : τ implies σ � τ.

We get denotational completeness, since if σ �� τ , then Mσ ∈ [[σ]], but Mσ �∈ [[τ ]].

Theorem 6 (Denotational Preciseness). The existence of characteristic
terms for a subtyping relation implies its denotational preciseness.

This theorem implies the denotational preciseness of the subtypings which
are shown to be operationally precise in previous sections. In particular the
denotational preciseness of L→μ

+× is new, since Ligatti et al. [27] only consider
operational preciseness.

7 Conclusion

The present paper discusses some recent results of preciseness for subtyping of
typed functional and concurrent calculi.

Operational completeness requires that all empty (i.e. not inhabited) types
are less than all inhabited types. This makes unfeasible an operationally com-
plete subtyping for the pure λ-calculus, both in the case of polymorphic types
[28] and of intersection and union types. In fact inhabitation is undecidable for
polymorphic types being equivalent to derivability in second order logic, while
[37] shows undecidability of inhabitation for intersection types, which implies
undecidability of inhabitation for intersection and union types.

An interesting open problem we plan to study is an extension of λ-calculus
enjoying operational preciseness for the decidable subtypings between polymor-
phic types discussed in [28,36].

The formulation of preciseness along with the proof methods and techniques
described in this paper could be useful to examine other subtypings and cal-
culi. Our future work includes the applications to higher-order processes [29–31],
polymorphic types [7,18,19], fair subtypings [33,34] and contract subtyping [3].
We plan to use the characteristic processes in typecheckers for session types.
More precisely, the error messages can show processes of given types when type
checking fails. One interesting problem is to find the necessary and sufficient
conditions to obtain completeness of the generic subtyping [24]. Such a charac-
terisation would give preciseness for the many type systems which are instances
of [24]. The notion of subtyping for session types is clearly connected with that
of type duality. Various definitions of dualities are compared in [5], and we plan
to investigate if completeness of subtyping can be used in finding the largest safe
duality.

A last question we plan to investigate is whether preciseness of subtyping is
meaningful for object-oriented calculi [1].
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Abstract. A simple dynamically-typed, (purely) object-oriented
language is defined. A structural operational semantics as well as a
Hoare-style program logic for reasoning about programs in the language
in multiple notions of correctness are given. The Hoare logic is proved to
be both sound and (relative) complete and is – to the best of our knowl-
edge – the first such logic presented for a dynamically-typed language.
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1 Introduction and Related Work

While dynamic typing itself was introduced with the advent of LISP decades
ago and more and more dynamically-typed programs are written as languages
like JavaScript, Ruby and Python are gaining popularity, to the current day, no
sound and complete program logic has been published for any such language.

In an attempt to bridge this Gap between static- and dynamically-typed
languages, we focus our inquiry on completeness (for closed programs) and on
studying the proof-theoretic implications of dynamic typing. This differentiates
our work from other axiomatic semantics published mainly for JavaScript [9,15]
as their focus lies more on soundness and direct applicability to real-world pro-
gramming languages.

Hence, to avoid getting tangled in the details of any real-world program-
ming language, we introduce a small dynamically-typed object-oriented (OO)
language called dyn1.

This work is supported by the German Research Foundation through the Research
Training Group (DFG GRK 1765) SCARE (www.scare.uni-oldenburg.de).

1 One may ask whether it is at all possible to obtain a sound and relatively complete
Hoare logic for dyn in light of Clarke’s incompleteness result [5]. However, Clarke’s
argument is not applicable to dyn for various reasons elaborated in [7, Appendix C].
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Additionally, in previous work [8] the authors developed a technique for
reducing the effort of verifying a dynamically-typed program to the level of
verifying an equivalent statically-typed one. This technique, however, assumed
the existence of a sound and complete program logic for the dynamically-typed
language. The current work hence substantiates this assumption.

Besides presenting the Hoare logic, there are further technical contributions:

(1) Tagged Hoare Logic, a novel notation for Hoare triples making the notion of
correctness explicit and thereby allowing the (previously separated) Hoare
logics for partial correctness, strong (= failsafe) partial correctness, typesafe
partial correctness and total correctness to be merged into a single proof
system and to concisely express the rules of this system.

(2) A novel technique to specify loop variants circumventing a common incom-
pleteness issue in Hoare logics for total correctness (see proof of Theorem 5).

As detailed in [7, Sect. 7], we consider our results as a stepping stone towards
similar proof systems for real-world languages.

Our paper is organized as follows. In Sect. 2, we introduce the language dyn.
In Sect. 3, its operational semantics is defined. In Sect. 4, its axiomatic seman-
tics (Hoare logic) is introduced. In Sect. 5, we briefly touch upon soundness of
this Hoare logic, and in Sect. 6, we prove its (relative) completeness for closed
programs.

Notation: N
n
m ≡ {n, ...,m}, Nm ≡ N

0
m, S1S2 denotes concatenation of the

sequences S1 and S2, {S} is the set of all elements of the sequence S.

2 Dynamically-Typed Programs

We will study a language called dyn, whose syntax is depicted in Fig. 1. Like its
popular real-world siblings JavaScript, Ruby and Python, dyn is a dynamically-
typed purely OO-programming language. However, to focus our inquiry on
dynamic typing, we chose not to model other features commonly found in these
languages like method update, closures or eval().

As customary in such languages, dyn desugars operations to method calls.
Consequently, the only built-in operation in dyn is object equality. Everything
else is defined in dyn itself. However, a syntactic distinction between built-in
operations and method calls is necessary for the convenient distinction between
(side-effect-free) expressions and (side-effecting) statements. In order to make
dyn programs resemble their real-world counterparts, we had to allow method
calls as well as assignments in expressions. For example, a := b := 5 is a valid
dyn expression with the side-effect of assigning 5 to both a and b.

Since types in dyn are a property of values rather than variables, there is no
need to declare the latter. Following its real-world counterparts, both local- and
instance variables in dyn are created upon their first assignment. Accessing a
variable that has not been assigned before results in a (runtime) type error.

Other reasons for type errors are non-boolean conditions in conditionals or
while-loops and method call receivers whose class does not support a method
matching name and arity of the call (MethodNotFound).
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3 Operational Semantics

In Fig. 2, we define an operational semantics of dyn in the style of Hennessy
and Plotkin [11,14]. It is based on a set Conf of configurations, which are pairs
C = 〈s, σ〉 consisting of a statement s of dyn and a state σ, assigning values
to variables. By syntax-directed rules, the operational semantics defines which
transitions 〈s, σ〉 → 〈s′, σ′〉 are possible between configurations.

As dyn is a purely OO-language, the value domain is the set O of objects,
including the special objects null (the usual OO-null value) and � (marking
non-existing variables). The definition of states and state updates is standard
and therefor omitted (see e.g. [2]).

For a given program, we denote the set of all variables as V = VL �VI �VS

where VL is the set of local variables, VI the set of instance variables and VS = {self, r}
the set of special variables. self is special because it cannot be assigned to in
programs and r will be explained below. We also use the set of all classes C with
each class C ∈ C having a set of methods MC and M =

⋃
C∈C MC .

Usually, in a structural operational semantics, expressions are assumed to be
side-effect-free and the effect of assignments can hence be expressed as an axiom
〈v := e, σ〉 → 〈∅, σ[v := σ(e)]〉. In dyn, however, expressions are side-effecting.
We hence need to evaluate the assignment v := e in two steps: first evaluating the
expression e and then assigning its resulting value to the variable v. Furthermore,
we need an interface between these two steps: A way by which the assignment can
determine the result of the previously evaluated expression e. For this purpose,
we introduce a special variable r of type O as well as the convention that every
expression or statement will store its result in r. Note that this construction
works only due to dynamic typing: In a statically-typed programming language,
expressions would evaluate to values of different types which could not well be
assigned to a single variable. The choice of object as the unifying supertype of all
values is common in pure OO-languages: When everything is an object, clearly
every expression will evaluate to one. Furthermore, as r is the only statement
that does not change anything (not even r), we define the empty program as r,
stipulate (r; s) ≡ (s; r) ≡ s for all statements s and call the configurations 〈r, σ〉
for some state σ final.

For dyn, we use class-based OO and model object creation as activation2.
We introduce a “representative” object θC for each class C as well as a special
instance variable @c not allowed to occur in programs for maintaining both the
instance-class relation and the activation state of each object.

We call an object o with o.@c = null inactive, meaning it is “not yet created”.
Initially, all objects (except null and the representatives θC for each class C)
are inactive. We suppose an infinite enumeration of objects o1, o2, ... containing
every object (both active and inactive) exactly once and introduce a function
γ : Σ 	→ O mapping every state σ ∈ Σ to the object ok with the least index k
that is inactive in σ.

2 Assuming an infinite sequence of already existing, but deactivated objects, object
creation boils down to picking the next one and marking it as “activated”.
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Upon its creation, an object o is assigned a class C and is henceforth regarded
an instance of C. Technically, this is achieved by resetting the value of o.@c to θC

(see the rule for object creation). We use initC to denote the initial (internal)
state of an object of class C: initC .@c = θC and initC .@v = � for all @v ∈
VI \ {@c}.

We can then formally define the predicates bool(o) and bool(o, b) used in
Fig. 2 to check for boolean values as

bool(o) ≡ o.@c = θbool for all o ∈ O and
bool(o, b) ≡ bool(o) ∧ b ↔ o.@to ref �= null3 for all o ∈ O, b ∈ B.
Note how the rule for assignment uses the two-step idea to handle side-

effecting expressions. The rules for conditionals and while loops also use it to
evaluate the condition first and then branch on its result. Since no type system
guarantees this result to be boolean, further distinguished behaviors for failures
and type errors are necessary. The same holds for receivers of method calls.

Additionally, the rules for method call (or better: begin local-blocks) and
object creation instantiate all local- and instance variables to �, which marks
them as “not yet created” and causes typeerror in the rule of variable access.

Note also the handling of special variables in method calls: on entry, self
is set to the receiver of the method call while on exit r intentionally remains
unmodified to pass the return value back to the caller.

4 Axiomatic Semantics

4.1 Tagged Hoare Logic

The original paper of Hoare [12] considers partial correctness. Other “notions
of correctness” like strong partial correctness and total correctness were added
later as separate proof systems. While termination as a liveness property might
justify this special handling, there seem to be little reason to grant this special
place also to properties like failsafety and typesafety. They do, however, affect
the proof rules (mostly by adding additional preconditions) and hence triggered
the creation of new proof systems for new “notions of correctness”. Addition-
ally, the term “total correctness” was interpreted as “the absence of any kind of
fault” and hence strongly depends on what other faults the authors are consid-
ering. Furthermore, in this abundance of available proof systems, tool designers
are forced to choose which one to implement, depriving their users of the choice
which properties they actually want to verify. From a tool-design perspective,
it would be much better to make all properties part of the specification, have a
single proof system dealing with them and allowing the users to choose which
guarantees to derive for which part of the program. We hence propose the formal-
ism of tagged Hoare logic, a uniform framework for all these properties featuring
a single proof system to treat them.

A (big step) program semantics maps programs and initial states to sets of final
states. Traditionally, each notion of correctness needs its own program semantics

3 Other methods to distinguish the values true and false are conceivable.
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Fig. 1. Syntax of dyn

Fig. 2. dyn’s structural operational semantics.
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as they differ in what characteristics of a computation they guarantee. We define
the (infinite) set of (finite or infinite) computations as Comp = Conf ∗ ∪ Conf ω

and those of a program s starting in an initial state σ as

Comp(s, σ) = {C0, C1, ... | C0 = 〈s, σ〉 ∧ ∀i • Ci → Ci+1} ⊂ Comp .

Let the symbol ρ denote a typical element of Comp. We now introduce the
following tags along with their respective error states:

T ags = {terminates, typesafe, failsafe}.

Each tag stands for a notion of correctness that in addition to partial correctness
avoids one type of error: terminates avoids divergence (infinite computations),
typesafe avoids type errors (e.g., non-boolean expressions as loop conditions),
and failsafe avoids runtime failures (e.g.; method not found). The tagged pro-
gram semantics Mtags defined below will record any occurring error by a special
error state of the set Σ⊥ = {⊥, typeerror, fail}. The mapping from tags to error
states is �: T ags 	→ Σ⊥ with � (terminates) = ⊥, � (typesafe) = typeerror,
and � (failsafe) = fail.

Let Σ+ = Σ � Σ⊥, where Σ is the set of proper states. To define the tagged
program semantics Mtags, we need appropriate selectors:

S : T ags ∪ {∅} 	→ Comp 	→ P(Σ+)

with

S∅(ρ) =

{
{τ} if ρ = C0, ..., Cn ∧ Cn = 〈r, τ〉 ∧ τ ∈ Σ

{} otherwise

Sterminates(ρ) =

{
{⊥} if ρ is infinite
{} otherwise

Stag(ρ) =

{
{� (tag)} if ρ = C0, ..., Cn ∧ Cn = 〈r,� (tag)〉
{} otherwise

for all other tags. Finally, we are able to define tagged program semantics

M : P(T ags) 	→ Prog 	→ Σ 	→ P(Σ+)

allowing arbitrary combinations of correctness notions. Let tags ⊆ T ags, then

Mtags�s�(σ) =
⋃

{Stag(ρ) | ρ ∈ Comp(s, σ), tag ∈ tags ∪ {∅}}

which is certainly the most central ingredient of a Tagged Hoare Logic. However,
we first need to extend the semantics of our assertions (see Fig. 3) to also include
tags

�p�tags = {σ | σ ∈ Σ ∧ σ, tags |= p}
before we can properly define the meaning of our Tagged Triples:

Definition 1 (Tagged Hoare Triples). |= {p}s{tags ∧ q} iff Mtags�s�(�p�tags) ⊆
�q�tags where |= denotes semantic truth of Tagged Hoare Triples.
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Note that the semantics Mtags�s� of a program s can produce error states,
but the semantics �p�tags and �q�tags of the assertions p and q do not tolerate
any error states. Thus |= {p}s{tags ∧ q} formalizes program correctness in the
sense of the tags tags as desired.

4.2 Assertion Language

Before going into details of the program logic, we introduce the assertion lan-
guage AL. Its syntax is depicted in Fig. 3. Essentially, it is predicate logic with
quantification over finite sequences of typed elements – weak second order logic.
We extend the logic with constants cε and operations op(

−→
l ) corresponding to

dyn’s syntactic sugar for boolean values, natural numbers, strings and lists
(which includes the usual arithmetic operations on both booleans and natural
numbers). Also, cε contains constants θC denoting the representative objects of
all classes C ∈ C. Note that our assertion language is statically typed, as usual.
Its type system however is simplistic: basic types T = {N,O,B,S} form a flat
lattice with � and ⊥ and a type constructor τ∗ for finite sequences of elements
of type τ .

Assertions contain typed logical expressions (l). Such expressions consist of
accesses to logical variables (of some type t ∈ T), local program variables (of
type O) including the self-reference self, instance variables (l.@x where both
l and the result are of type O), typed constants and typed operations. Note
that contrary to programming expressions, logical expressions are able to access
instance variables of objects other than self.

Assertions are then constructed from equations between logical expressions
of identical type, boolean connectives and quantification over finite sequences.

Following [4], undefined operations like dereferencing a null value or accessing
a sequence with an index that is out of bounds (l[n] with n ≥ |l|) yield a null
value and equality is non-strict with respect to such values (null = null is true)
in order to keep assertions two-valued. Also, for logical expressions l ∈ LExp,
we extend the state-access to σ(l) in the canonical way.

To link programming language-objects with assertion-values, we define

Definition 2 (Mapping Predicates).4,5 (∀o : O, n : N, b : B)
N(o) ≡ o �= null ∧ o.@c = θnum

N(o, n) ≡ N(o) ∧ n = 0 → o.@pred = null ∧ n > 0 → N(o.@pred, n − 1)
B(o) ≡ o �= null ∧ o.@c = θbool B(o, b) ≡ B(o) ∧ b ↔ o.@to ref �= null

To see that mapping predicates are necessary for completeness, consider the
intermediate assertion p in the following program

P ≡if b thenx := 5 elsex := true end{p};
if x is a? bool then if x thenx := 10 endelsex := x ∗ 2 end

4 The predicate N(o, n) is recursive. However, the technique used for proving the case
for primitive recursion in [7, Lemma 5], allows expressing it in AL.

5 @pred and @to ref are instance variables of the classes num and bool, respectively.
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Fig. 3. Syntax of the assertion language AL

Since AL is statically typed, we must also give a type to the program variable
x. Now, giving it the type N would allow us to express x = 5, but not x = true
while giving it the type B raises the converse problem. However, using mapping
predicates, it is possible to accurately describe the set of intermediate states as
N(x, 5)∨B(x, true). From this observation it is not hard to see that {true}P{x =
10} (or {true}P{N(x, 10)}) is not derivable without mapping predicates.

In assertions, tags may appear, e.g., typesafe → v �= �. We use the notation
σ, tags |= a to denote the fact that the assertion a is true in the state σ under
the tags tags. The definition of |= is standard except for the case

σ, tags |= tag iff tag ∈ tags.

4.3 (Tagged) Hoare Logic for Dynamically Typed Programs

Our exposition of the proof rules of H will use three substitutions on assertions.
Proper definitions for all three can be found in [7, Appendix B].

The special variable r may appear in both pre- and postconditions. In pre-
conditions it references some initial value, in postconditions the return value of
the last executed expression. Note that it is important that r can appear in
preconditions. Otherwise the weakest precondition WP (r, r = null) would not
be expressible which would induce incompleteness.

For a dyn statement s let var(s) (change(s)) denote the set of variables
accessed in s (appearing on the left of an assignment in s). For an assertion
p let free(p) denote the set of free variables of p and p[v := t] the result of
substituting t for v in p.

AXIOM: VAR VAR-TAG

{p[r := v]}v{p} {typesafe → v �= �}v{tags}

Note: includes the case of v ≡ self.

AXIOM: IVAR IVAR-TAG

{p[r := self.@v]}@v{p} {typesafe → self.@v �= �}@v{tags}
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RULE: ASGN (both normal and instance variables) AXIOM: CONST

{p}e{tags ∧ q[v := r]}
where v ∈ V{p}v := e{tags ∧ q}

{p[r := null ]}null{tags ∧ p}

RULE: SEQ

{p}s1{tags ∧ r} {r}s2{tags ∧ q}
{p}s1; s2{tags ∧ q}

RULE: COND

{p}e{tags ∧ r ∧ failsafe → r �= null ∧ typesafe → (r �= null → B(r))}
{r ∧ B(r, true)}s1{tags ∧ q}
{r ∧ B(r, false)}s2{tags ∧ q}

{p} if e then s1 else s2 end {tags ∧ q}

RULE: LOOP

{p}e{tags ∧ p′ ∧ failsafe → r �= null ∧ typesafe → (r �= null → B(r))}
{p′ ∧ B(r, true)}s{tags ∧ p}

{p′ ∧ B(r, true) ∧ r(z)}s; e{p′ ∧ terminates → ∀z′ : N • r(z′) → z′ < z}
{p} while e do s done {tags ∧ p′[r := b] ∧ B(b, false) ∧ r = null}

where b is a logical variable of type B, z is a logical variable of type N that does not

appear in p, p′, e or s, r(z) is a predicate with z among its free variables such that

∀σ • σ |= p′ → ∃z′ : N • r(z′) and r(z′) is the result of substituting z′ for z in r(z).

RULE: CONS

p → p1, {p1}s{tags′ ∧ q1}, q1 → q, tags′ ⊇ tags
{p}s{tags ∧ q}

RULE: BLCK AXIOM: PASGN

{p}−→u −→
u :=

−→
t

−→� ; s{tags ∧ q}
{p} begin local −→u :=

−→
t ; s end{tags ∧ q}

{p[−→u :=
−→
t ]}−→u :=

−→
t {tags ∧ p}

where VL ∩ free(q) = ∅, {−→u } ⊆ VL and {−→
t } ⊆ VL ∪ {null}, {−→

u } = VL \ {−→u } and
−→�

is a fitting sequence of � constants.

RULE: METH

{pi}ei{tags ∧ pi+1[vi := r]} for i ∈ Nn

{pn+1}v0.m(v1, ..., vn){tags ∧ q}
{p0}e0.m(e1, ..., en){tags ∧ q}

where the vi are fresh local variables that do not occur in any ej for all i, j ∈ Nn.

RULE: REC
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A � {p}s{tags ∧ q},
A′ � {pi ∧ ri(z)}begin local self,−→ui := li,

−→vi ; si end{tagsi ∧ qi}, i ∈ N
1
n

pi → (failsafe → li �= null ∧ typesafe → li �= null → li.@c = θCi
), i ∈ N

1
n

{p}s{tags ∧ q}

where method mi(
−→ui){si} ∈ MCi , A = {{pi}li.mi(

−→vi ){tagsi ∧ qi} | i ∈ N
1
n}, A′ =

{{pi ∧ (terminates → ∀z′ : N • ri(z
′) → z′ < z)}li.mi(

−→vi ){tagsi ∧ qi} | i ∈ N
1
n}, z is a

logical variable of type N that does not occur in pi, qi and si for i ∈ N
1
n and is treated

in the proofs as a constant, ri(z) for i ∈ N
1
n are predicates with z among their free

variables such that ∀σ • σ |= pi → ∃z′ : N • ri(z
′) for all i ∈ N

1
n and ri(z

′) denotes the

result of substituting z′ for z in ri(z).

AXIOM: EQUAL AXIOM: IS A
{true}u0 == u1{tags ∧ B(r,u0 = u1)}

{true}u0 is a? C{tags∧B(r, �u0� ∈ {C})}
RULE: CNST AXIOM: NEW

{p}newC .init(−→e ){tags ∧ q}
{p}new C(−→e ){tags ∧ q}

{p[r := newC ]}newC{tags ∧ p}

The auxiliary rules as well as some others are mostly standard and hence
omitted. Their tagged versions are given in [7], however.

The fact that dyn-expressions have side effects is mirrored in several rules:
Like their corresponding rules in the operational semantics, the usual axiom for
assignment is turned into a rule and the COND and LOOP rules both evaluate
the condition before branching on its result in an intermediate state.

The rules PASGN, BLCK, METH and REC are needed to handle method
calls. After handling side effecting expressions in arguments beforehand (METH)
and ensuring that methods are only called on receivers supporting them (last
premise of REC), method calls are assumed to satisfy the same properties as
a block executing the body of the called method in an environment with local
variables suitably initialized by parallel assignment (BLCK,PASGN).

The rules CNST and NEW handle object creation using the respective sub-
stitution defined in [7, Appendix B].

The LOOP and REC rules feature a novel form of loop variants / recursion
bound. The basic idea is to use a predicate r(z) instead of the usual integer
expression t in order to allow quantification within loop variants / recursion
bounds. While this was primarily introduced to circumvent a common incom-
pleteness issue in Hoare logics for total correctness (see proof of Theorem 5
for details), note that it also allows using mapping predicates directly in loop
variants / recursion bounds, i.e. proving

{N(i)} while i > 0 do i := i − 1 done {terminates}

with r(z) ≡ N(i, z).
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5 Soundness

Soundness follows from a standard inductive argument. The extended version [7]
further elaborates the case of the LOOP rule.

6 Completeness

In this Section, we will prove the axiomatic semantics of dyn (relative) com-
plete [6] with respect to its operational semantics following the seminal complete-
ness proof of Cook and Gorelick [6,10] as well as its extension to OO-programs
due to de Boer and Pierik [4]. That is, given a closed program π with a finite set
of class definitions, we prove that � {p}π{q} implies �H,T {p}π{q} assuming a
complete proof system T for the assertion language AL.

Traditionally, completeness proofs are structured into 3 steps. First, the asser-
tion language is shown to be expressive, then the system is proven complete
for all statements of the programming language and finally, it is shown to be
complete for recursive methods using the concept of most general correctness
formulas. Since both the first and the last step rely on techniques for “freezing”
program states and for evaluating assertions on such frozen states, we follow [4]
in prepending a step for developing adequate freezing techniques for dyn.

Completeness proofs for Hoare Logics have been extended and refined for
several decades now. Unfortunately, due to space restrictions we will not be able
to give a proper account to the numerous ideas and intriguing details in the works
of our predecessors, but must assume a certain familiarity with such proofs on
the side of the reader. For the same reason, we will not be able to present the
proof as a whole, but will concentrate on those parts we had to adapt.

6.1 Freezing the Initial State

As noticed by Gorelick [10], achieving completeness requires that the assertion
language is able to capture every aspect of a program state in logical variables,
in order to “freeze” this information during program execution and allow the
postcondition to compare the initial- to the final state. Pierik and de Boer [4]
pointed out that in OO-contexts this additionally requires freezing the internal
states of all objects existing in the state, necessitating a more sophisticated
freezing-strategy.

While their approach stores objects and the values of their instance variables
class-wise, which is difficult in a dynamically-typed language like dyn, the basic
idea is fortunately still applicable. We use a logical variable obj of type O

∗ to
store a (finite) sequence of all existing objects:

all(obj) ≡ ∀o : O • ∃i : N • i < |obj| ∧ obj[i] = o
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Since obj establishes a bijection from natural numbers to objects, its allows
encoding states as sequences of natural numbers. For convenience, we introduce
a polymorphic6 pos function satisfying ∀τ : T • ∀e : τ, s : τ∗ • s[pos(s, e)] = e

We introduce an enumeration ivar : V∗
I of all instance variables and define

the following predicate for freezing states:

code(x, obj,ς) ≡ |ς| = |ivar| + 1 ∧ |ς[0]| = |x| ∧ obj[0] = �∧
∀i : N • i < |x| → ς[0][i] = pos(obj, xi)∧
∀i, j : N • (i < |ivar| ∧ j < |obj|) → ivar[i] = @v ∧ obj[j] = o → ς[i + 1][j] = pos(obj, o.@v)

where x = x1, ..., xn is a sequence of local variables. The predicate code(x, obj, ς)

uses the sequence obj to capture the state of all local variables in x as well as all
objects in obj in the frozen state ς of type (N∗)∗. Note that ς can capture the
internal states of all existing objects without referencing any of them.

Also note that this is indeed satisfiable for all states as � ∈ O and � ∈ obj.
Furthermore, we say that ς encodes σ and write

σ ∼ ς iff σ |= ∃obj : O∗ • all(obj) ∧ code(x, obj, ς)

with {x} = VL ∪ VS .

Lemma 1 (Left-Totality of ∼). ∀σ : Σ • ∃ς : (N∗)∗ • σ ∼ ς.

Finally, we are ready to define a predicate transformer Θ (called the “freez-
ing function” in [4]). However, while in their work, Θ also bounds all quantifi-
cation and replaces instance variable dereferencing by lookups in sequences, we
additionally translate all object expressions into expressions of type N to allow
simulating computations directly on the frozen states.

We hence have the following main cases for our predicate transformer Θx
obj(ς):

– (l.@v)Θx
obj(ς) ≡ ς[pos(ivar,@v) + 1][lΘx

obj(ς)]
– uΘx

obj(ς) ≡ ς[0][pos(x,u)] where u is a program variable in x

– uΘx
obj(ς) ≡ u′ where u is a logical variable of type O and u′ is a fresh logical variable

of type N

– (l1 = l2)Θx
obj(ς) ≡ l1Θ

x
obj(ς) = l2Θ

x
obj(ς) where l1 and l2 are of type O.

– (∃o : O • p)Θx
obj(ς) ≡ (∃o′ : N • 0 ≤ o′ < |obj| → pΘx

obj(ς))

Θx
obj(ς) transforms any assertion p in such a way that it operates on the frozen

state ς instead of the real program variables. Like the Θ in [4], our Θx
obj(ς) hence

satisfies the following property

Theorem 1 (Invariance). � {pΘx
obj(ς)}s{pΘx

obj(ς)} for all statements s and
assertions p as long as x contains all program variables used and obj contains
all objects accessed in p.
6 We use the polymorphic version for the sake of readability although the type sys-

tem of AL does not allow polymorphism. However, polymorphic functions can be
emulated using one version for each element type.
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It can hence replace Θ in the remaining argument. Note that pΘx
obj(ς) is a

property of ς as its truth value is independent of any particular state. We hence
write |= pΘx

obj(ς) if its truth value is true. Also observe

Lemma 2 (Freezing). σ |= q iff σ ∼ ς∧ |= qΘx
obj(ς)

6.2 Expressivity

Cook [6] first discussed the importance of an expressive assertion language for
the completeness of a Hoare logic. In essence, the assertion language must be
able to express the strongest postcondition SP (s, p) for all statements s and
preconditions p.

In the last Section, we already established that it is possible to capture all
information about a state in a structure consisting of finite sequences of natural
numbers. Using Gödelization, one can take this a step further and encode these
sequences themselves as a single natural number. Then, we consider a predicate
comps of type N × N 	→ N simulating dyn computations on such frozen states
and note that, since such computations are by definition computable, it can be
defined as a μ-recursive function.

By [7, Theorem 6], it is hence expressible in our assertion language and we
can use it within our assertions without any loss of generality. For convenience,
we will omit the Gödelization step and instead use a version of comps operating
on frozen states as defined above. To formalize the idea that comps simulates
dyn computations on frozen states, we stipulate

Lemma 3. comps = {(ς, ς ′) | ∀σ, σ′ • (σ ∼ ς ∧ σ′ ∼ ς ′) → σ′ ∈ M�s�(σ)}

Using comps we can show the following:

Theorem 2 (Definability of Weakest Preconditions). For all postcondi-
tions q and statements s, the precondition

p ≡ ∀ς, ς ′ • (all(obj) ∧ code(x, obj, ς ′) ∧ comps(ς ′, ς)) → qΘx
obj(ς)

satisfies �p� = {σ | M�s�(σ) ⊆ �q�}.

The proof can be found in [7]. Since definability of weakest preconditions is
equivalent to the definability of strongest postconditions [13], we have

Theorem 3 (Expressiveness). The assertion language AL is expressive with
respect to its standard interpretation and the programming language dyn.

6.3 Completeness for Statements

As usual [6,10], the core of our completeness proof consists of an induction over
the structure of a statement s. Since several of our rules deviate from theirs,
we need to exchange these cases in argument. We will concentrate on the most
interesting cases.

Induction Basis:
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– s ≡ u: Assume |= {p}u{q}. Then, by the operational semantics, p → q[r := u]
must also be true. It is hence derivable in T and the desired result follows from
the VAR axiom followed by applying the rule of consequence (CONS). Type-
safety: Assume |= {p}u{typesafe ∧ q}. Then {p}u{q} and {p}u{typesafe}
must also be true. The former can thus be derived using above argumentation
and the latter implies p → u �= �, which is hence derivable in T and the axiom
VAR-TAG followed by an applying the rule of consequence (CONS) derives
{p}u{typesafe}. Now the rule of conjunction (CONJ) followed by the rule of
consequence (CONS) derives the desired result. failsafe and terminates can
be derived using the axiom VAR-TAG without any preconditions.

– s ≡ @v: Just like the case for u, applying IVAR instead of VAR and IVAR-
TAG instead of VAR-TAG.

Induction Hypothesis: |= {p}s{q} →�H,T {p}s{q} for all assertions p, q and
all statements s of a program π containing no recursive method calls.

Induction Step:

– u := e: Assume |= {p}u := e{tags ∧ q}. Then according to the operational
semantics, {p}e{tags ∧ q[u := r]} must also be. By the induction hypothesis,
it is hence derivable. An application of the rule ASGN derives the desired
result.

– s ≡ if e then s1 else s2 end: Assume {p} if e then s1 else s2 end {tags∧q}
is true. Then, by the expressiveness of the assertion language and the opera-
tional semantics, there is an intermediate assertion r such that {p}e{tags∧r},
{r ∧ B(r, true)}s1{tags ∧ q} and {r ∧ B(r, false)}s2{tags ∧ q} are also true
and hence derivable by the induction hypothesis. Now an application of the
rule COND derives the desired result. Failsafety: Since above argumentation
already ensured that e, s1 and s2 are all failsafe, the only additional require-
ment is {p}e{r �= null}. However, since the case r = null leads to failure in
the operational semantics, this must hold for any execution of s in order to
be failsafe and hence must be derivable by the induction hypothesis.

Typesafety: The same argumentation as for failsafety applies here, only the
additional requirement is {p}e{r �= null → B(r)}. Note that the case of r =
null can be deliberately allowed, since it leads to a failure in the operational
semantics and thus does not affect typesafety.

– s ≡ while e do s1 done: Assume {p} while e do s1 done {tags∧ q} is true.
Then, by the standard argument for while loops due to Cook [6] (and explained
particularly well by Apt [1]), the expressiveness of the assertion language and
the operational semantics, there are two assertions i and i′ such that p → i,
{i}e{tags ∧ i′}, {i′ ∧ B(r, true)}s1{tags ∧ i} and i′[b/r] ∧ B(b, false) ∧ r =
null → q are true and hence derivable by the induction hypothesis and the
completeness of T . While i is the loop invariant of s, i′ is an intermediate state
neccessary because in dyn, e could have side-effects. Now, an application of
the LOOP rule followed by the rule of consequence derives the desired result.
Termination: see [7]
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Failsafety & Typesafety: the exact same argument as for conditionals applies
here as well.

6.4 Completeness for Recursive Methods

The methodology for proving a Hoare logic complete for recursive procedures by
using most general correctness formulas is due to Gorelick [10]. It was extended
to OO-programs by De Boer and Pierik [4].

A curious implication of dynamic dispatch under dynamic typing is that the
lack of type information prohibits pinpointing the exact target of a method call.
For instance, the weakest precondition of the call x.size() with respect to the
postcondition N(r, 5) must include all possibilities like the case of the variable x
referring to a string of length 5 as well as x referring to a list of size 5. In general,
the weakest precondition of a method call l.m(v1, ..., vn) is the disjunction of all
weakest preconditions derivable as described in the proof of Theorem 4 from the
most general correctness formulas of all methods C.m of arity n of all classes
C ∈ C, each conjoined with the corresponding type assumption �l� ∈ {C}. Note
that this methodology introduces an implicit closed world assumption as it fails
when using a method with a different set of classes. However, we regard this
problem as one of modularity rather than completeness and thus out of scope.

As our tagged Hoare logic incorporates different notions of correctness, we
generalize Gorelick’s idea to a set of most general correctness formulas. The most
general correctness formulas for a statement s are
MGF (s) = {{WP (s, init)}s{init}} ∪ {{WPtag(s, true)}s{tag} | tag ∈ T ags}

with init ≡ all(obj) ∧ code(x, obj, ς). The reason for this is obvious: From
MGF (s), we can deduce {WPtags(s, q)}s{tags ∧ q} with tags ⊆ T ags using
the conjunction rule. The converse is not in all cases possible.

The results from Sect. 6.3 imply that above set can be derived for any dyn
statement s given that they are true. Should, e.g., s raise a type error on all
inputs then WPtypesafe(s, true) ≡ false and {false}s{typesafe} is derivable.

Theorem 4 (MGFs). |= {p}s{tags ∧ q} → MGF (s) �H,T {p}s{tags ∧ q}

Proof. Assume |= {p}s{tags ∧ q}. Then {p}s{q} and {p}s{tag} for all tag ∈
tags are also all true.

(1) � {p}s{q}: For technical convenience only we assume that p and q do not
contain free occurrences of the logical variables used to freeze states. If they
do, these need to be renamed using the substitution rule. By Theorem 1 we
have {qΘx

obj}s{qΘx
obj}. An application of the conjunction rule yields

{qΘx
obj ∧ WP (s, init)}s{qΘx

obj ∧ init}

Next, we have to prove p → qΘx
obj ∧ WP (s, init). Assume σ |= p. Then by

|= {p}s{q}, for all σ′ ∈ M�s�(σ), we have σ′ |= q. By Lemma 2, we have
σ′ |= qΘx

obj ∧ init. Now, by Theorem 1, we have � {qΘx
obj}s{qΘx

obj}, and
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by soundness of our proof system |= {qΘx
obj}s{qΘx

obj}. Hence, σ |= qΘx
obj

and by the definition of WP , σ |= WP (s, init). Therefore, p → qΘx
obj ∧

WP (s, init) holds and since qΘx
obj ∧ init → q follows directly from Lemma 2,

an application of the rule of consequence derives {p}s{q}.
(2) � {p}s{tag}: if true, then p → WPtag(s, true) must also be and is

hence derivable by the completeness of T . Since {WPtag(s, true)}s{tag} ∈
MGF (s), an application of the consequence rule derives the desired result.

(3) � {p}s{tags ∧ q}: One application of the conjunction rule per tag in tags
completes the proof. ��

Finally, since our recursion rule is identical to the one devised by Gorelick
[10] for this purpose, we are now able to apply the same inductive argument
used by Gorelick for proving our Hoare logic complete for recursive methods.

Lemma 4. Let Mi ≡ li.mi(−→vi ) denote the ith (possibly recursive) method call
occurring in a closed program π and let A =

⋃n
i=1 MGF (Mi) be the set of most

general correctness formulas about these method calls then for all statements s
of π and all assertions p and q: |= {p}s{q} → A �H,T {p}s{q}

Proof. By induction over the structure of s. Most cases are as in the proof
for the non-recursive case. Most interesting is the new case for method calls:
s ≡ li.mi(−→vi ): Assuming |= {p}s{q} and s is the ith method call Mi in our
program, then MGF (s) ⊆ A and hence A � {p}s{q} by Theorem 4. As Gorelick
[10] pointed out, this also holds for recursive method calls.

Theorem 5 (Completeness for Recursive Methods)
|= {p}s{tags ∧ q} → �H,T {p}s{tags ∧ q}

for any statement s of a closed program π containing possibly recursive method
calls and all assertions p and q.

Proof. Expressiveness of AL guarantees the expressibility of WPtags(s, q) for
any statement s and postcondition q. Hence by setting q ≡ init and s ≡ Mi for
any i ∈ N

1
n we can see that the set A of most general correctness formulas of

all method calls is expressible in our logic. Now, since by definition of WPtags,
these formulas are true, we have by Lemma 4

A �H,T {pi}begin local self ,−→ui := li,
−→vi ; si end{qi} as well as

A �H,T {ptag,i}begin local self, −→ui := li,
−→vi ; si end{tag}for all tag ∈ T ags

with pi ≡ WP (Mi, init), qi ≡ init, ptag,i ≡ WPtag(Mi, true) and si denoting
the method body of the method called in Mi for all i ∈ N

1
n. Note that above

statements establish the assumptions in the set A and together allow deriving
the assumptions for the REC rule of the form

A �H,T {pi ∧ ri(z)}begin local self ,−→ui := li,
−→vi ; si end{tagsi ∧ qi}

for all i ∈ N
1
n. As for the case not concerned with termination, we can simply

set ri(z) ≡ z = z. Furthermore, assuming |= {p}s{q}, by Lemma 4 we have
A � {p}s{tags ∧ q}
Now these are just the premises of the REC rule. Note that in the case not

concerned with termination, the set of assumptions A is derivable from A′ by
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applying the consequence rule to each element. Hence, an application of the REC
rule derives the desired result and completes the proof.

Termination: for proving termination of dyn programs, the rules LOOP and
REC must be altered to support so-called loop-variants or recursion bounds.
Usually, these take the form of an integer expression t whose value a) must be
> 0 whenever the loop / recursive method is entered (thus forcing termination
when reaching zero) and b) must decrease on every iteration / recursive call.
Note that this methodology syntactically restricts the loop variant / recursion
bound to be an integer expression of the assertion language. Now, as observed by
Apt, De Boer and Olderog in [2], this method introduces incompleteness in the
case of total correctness, since it assumes the integer expressions of the assertion
language to be able to express any necessary loop-variant / recursion bound.
However, while-loops and recursive methods allow dyn-programs to calculate
any μ-recursive function and hence obviously also to bound the number of loop
iterations by any μ-recursive function, while the set of integer operations avail-
able in the assertion language might be quite limited (e.g. in our case lacking
exponentiation). We circumvent this problem by introducing a new form of loop-
variants and recursion bounds, which allow the use of quantifiers. The old form
used a logical variable z of type N to store the value of t before a loop iteration
(t = z in the precondition) and compare it to the new value in the postcondition
(t < z). Our new form uses a predicate r(z) with z among its free variables
instead of t = z and the logical expression ∀z′ : N • r(z′) → z′ < z where
r(z′) denotes the result of substituting z′ for z in r instead of t < z. Firstly,
observe that this is a conservative extension as one may set r ≡ t = z for some
integer expression t. Secondly, note that by [7, Lemma 5], r may compute any
μ-recursive function and is thus contrary to integer expressions able to express
any function computable by dyn-programs including exponentiation. ��

7 Example

Since we already proved the Hoare Logic relative complete, the program depicted
in Fig. 4 was chosen to be a simple but instructive example of how the rules for
assignments and method calls are applied rather than a demonstration of the
Logic’s expressive power. While the program’s type safety problem boils down
to path sensitivity and could thus be solved also by advanced type inference
algorithms, most statically-typed languages do not use a path sensitive algorithm
for reasons of scalability. Hence it can be considered typical for dynamically-
typed languages.

Although it does not look like it, there are plenty of method calls hidden in
this example. Remember that the operations + on lines 11 and 14 is desugared to
a call to a method m+ on their first operand (x in both cases) and that constants
like 5 are desugared to quite a few constructor- and method calls (see Fig. 1).
To make type safety non-obvious, we give the following assumptions about our
environment:

{N(v0, n0) ∧ N(v1, n1)}v0.m+(v1){typesafe ∧ N(r, n0 + n1)}
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Fig. 4. A simple dynamically-typed program

{S(v0, s0) ∧ S(v1, s1)}v0.m+(v1){typesafe ∧ S(r, s0s1)}
So + is a typesafe operation when applied to numerics (where is denotes

addition) and strings (where is denotes concatenation), but we do not know
anything about applications to mixed operands (adding a string to a numeric or
the other way around). Also note that the variable z only exists in the case that
b is true. If that is not the case, accessing it in line 11 would result in a type
error.

In order to reason about the desugared constants, we also need to assume
{�v0� ∈ {num} ∧ v1 = null}v0.init(v1){typesafe ∧ N(r, 0)}
{N(v0, n)}v0.succ(){typesafe ∧ N(r, n + 1)}
{�v0� ∈ {string} ∧ v1 = null}v0.init(v1){typesafe ∧ S(r, ””)}
{S(v0, s) ∧N(v1, n)}v0.addchar(v1){typesafe∧ ∃c : S • ascii(c, n) ∧ S(r, sc)}
where ascii(c, n) iff c is a single-character string and the ASCII-code of this

character is n.
Using these assumptions, it is possible to derive
{true}
newnum(null).succ().succ().succ().succ().succ()
{typesafe ∧ N(r, 0 + 1 + 1 + 1 + 1 + 1)}
which, by syntactic sugaring and an application of the CONS rule turns into

{true}5{typesafe ∧ N(r, 5)} as well as
{true}2{typesafe ∧ N(r, 2)},
{true}“foo”{typesafe ∧ S(r, “foo”)} and {true} “bar” {typesafe ∧ S(r, “bar”)}
which we will not show in desugared form.
Now, using the ASGN rule, we can derive the following statements about the

assignments in line 7 and 9:

{true}z := 2{typesafe ∧ N(z, 2)}
{true}x := y := 5{typesafe ∧ N(x, 5) ∧ N(y, 5)}
{true}x := “foo”{typesafe ∧ S(x, “foo”)}
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{true}y := “bar”{typesafe ∧ S(y, “bar”)}
Note how the two applications of the ASGN rule neccessary to derive the

case for x := y := 5 interact by passing the result of y := 5 in the variable r.
Using the rules INV and SEQ, these can be combined into

{true}x := y := 5; z := 2{typesafe ∧ N(x, 5) ∧ N(y, 5) ∧ N(z, 2)}
{true}x := “foo”; y := “bar”{typesafe ∧ S(x, “foo”) ∧ S(y, “bar”)}

using the INV rule, we can thus derive
{B(b, true)}x := y := 5; z := 2
{typesafe ∧ B(b, true) ∧ N(x, 5) ∧ N(y, 5) ∧ N(z, 2)}
{B(b, false)}x := “foo”; y := “bar”
{typesafe ∧ B(b, false) ∧ S(x, “foo”) ∧ S(y, “bar”)}

an application of the CONS rule yields
{B(b, true)}x := y := 5; z := 2{typesafe ∧ q}
{B(b, false)}x := “foo”; y := “bar”{typesafe ∧ q}
where q ≡ (B(b, true) ∧ N(x, 5) ∧ N(y, 5) ∧ N(z, 2)∨

B(b, false) ∧ S(x, “foo”) ∧ S(y, “bar”))
Since the postconditions are identical, we can then apply the COND rule with

{B(b)}b{typesafe ∧ (∃b′ : B • B(r, b′) ∧ B(b, b′)) ∧ r �= null → B(r)}
which can be derived using the VAR and CONS rules to yield

{B(b)}
06 if b then
07 x := y := 5; z := 2
08 else
09 x := ‘‘foo’’; y := ‘‘bar’’
10 end;
{typesafe ∧ q} (1)

Now we use the specification of the method m+ (for numerics) and the VAR,
VAR-TAG and CONS rules to derive

{N(x, n0) ∧ N(z, n1)}x + z{typesafe ∧ N(r, n0 + n1)}
and then apply the ASGN rule to yield

{N(x, n0) ∧ N(z, n1)}x := x + z{typesafe ∧ N(x, n0 + n1)}
after using the IS A axiom and the CONS rule to derive

{true}x is a? num{typesafe ∧ B(r, �x� ∈ {num}) ∧ r �= null → B(r)}
we can apply the COND, INV and CONS rules to yield

{q} if x is a? num then x := x + z end; {q1} (2)
with q1 ≡ (B(b, true) ∧ N(x, 7) ∧ N(y, 5)∨

B(b, false) ∧ S(x, “foo”) ∧ S(y, “bar”))
Note that q1 is just what was asserted in line 12 and 13. Finally, we employ

the specification of the method m+ both for numerics and strings and rules DISJ
and CONS to derive

{q1}x + y{typesafe ∧ (B(b, true) ∧ N(r, 12)∨ (3)
B(b, false) ∧ S(r, ”foobar”))}
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which is just the postcondition of our method num or bool. Combining
(1), (2) and (3) with the SEQ rule, we reach

{B(b)}snum or bool{q1}
where snum or bool is the body of the method num or bool which hence sat-

isfies its specification. ��
Note that the proof system ensures that all variables are properly initialized

before access. Would some variable u be accessed without prior assignment, we
would get an additional u �= � literal in the precondition.

8 Conclusions and Outlook

We presented a sound and (relative) complete Hoare logic for dyn. Open are the
issues of modularity (applicability to open programs) and allowing tags carrying
additional information (to incorporate extensions like De Boer’s footprints [3]).

Acknowledgements. We thank Dennis Kregel for noticing that restricting r causes
incompleteness and him, Nils-Erik Flick and the anonymous referees for many useful
comments on prior versions of this paper.
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Abstract. Microservices is an emerging paradigm for the development
of distributed systems that, originating from Service-Oriented Architec-
ture, focuses on the small dimension, the loose coupling, and the dynamic
topology of services. Microservices are particularly appropriate for the
development of distributed systems in the Cloud. However, their dynamic
nature calls for suitable techniques for their automatic deployment. In
this paper we address this problem and we propose JRO (Jolie Redeploy-
ment Optimiser), a tool for the automatic and optimised deployment of
microservices written in the Jolie language. The tool uses Zephyrus, a
state of the art tool that automatically generates a fully detailed Service-
Oriented Architecture configuration starting from a partial and abstract
description of the target application.

Keywords: Microservices · Service-Oriented Architecture · Automatic
deployment · Optimal component allocation

1 Introduction

Microservices [16] is an emerging paradigm for the development of distributed
systems that evolved from Service-Oriented Architecture [18] (SOA). The key
aspect of microservices is that the idea of using services as components is
pervasive.

In typical SOAs, services are used as an overlay meant to integrate and coor-
dinate autonomous information systems. This coordination is obtained via com-
munications, which operate using standard protocols. Such information systems
can be built following different methodologies; in practice, many of them are
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legacy systems. Microservices explore a different direction, i.e., that of using ser-
vices as the inner components of an information system. This allows to apply to
microservices the same principles that apply to component-based software engi-
neering. For example, since microservices should be small (or, better, “micro”)
it should be natural to follow principles towards cohesion, such as the Single
Responsibility Principle1.

Moreover, in this paradigm even the components of a single software applica-
tion are all autonomous services that can interact only through message passing.
This has the important benefit of obtaining a loosely-coupled implementation
of the internals of an application, thus facilitating modularity and scalability.
Due to the fact that microservices are already loosely-coupled, operate via mes-
sage passing, and offer APIs to be invoked by external software it is easier to
coordinate information systems based on microservices.

To understand how microservices support scalability, suppose that a service
in a system is under heavy load. Since all the other components can interact
with this service only through its message interface, we can replace it with a
load balancer that offers the same API and forwards requests to a new subsys-
tem running a set of replicated instances of the original service. From the loose
coupling property of microservices we obtain that the rest of the system remains
unchanged, independently from its implementation details. This feature makes
the topology of a microservices architecture (i.e., the number of its components
and their interactions) very dynamic.

Due to their properties, one of the main application contexts of microservices
is the deployment of distributed systems in the Cloud [36]. Indeed, in the Cloud
it is easy to scale the infrastructure of a system by adding or removing instances
of virtual machines. However, allocating and deploying services on that machines
while the system is running is a complex task. Usually the deployment of services
is done either manually or it is handled programmatically with pre-configured
deployment schemas that tools like Puppet [43] and Chef [40] automate. In either
cases, the developers and DevOps2 must carefully define where — in which
virtual machine — services must be deployed and specify their connections.
The planning of the deployment of a system must balance between the cost of
its resources and its performances. Even in systems composed of few types of
services, devising such a deployment plan quickly becomes a cumbersome and
complex task due to dependencies between services and availability of different
kinds of virtual machines, with different range of resources and costs. When
looking for an optimal plan the task becomes extremely difficult, also from a
theoretical perspective, since very easily one encounter NP-hard [26] and even
undecidable problems [8].

In this paper, we address the problem of automatic optimal deployment plan-
ning of microservices. We assume the use of reconfigurable microservices, thus

1 This is a well know example from the object oriented world, stating that there should
never be more than one reason for a class to change.

2 DevOps are professionals that collaborate in the development of programs by report-
ing their experiences with tests and deployments scenarios to developers [11].
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abstracting from the preservation, partition, and consistency of their state and
data between successive re-deployments. We present Jolie Redeployment Opti-
miser (JRO), a tool for the automatic and optimised deployment of microservices
written in the Jolie language [21,30–32]. Jolie is an open-source programming
language for developing distributed applications based on microservices which
combines computation and composition primitives in an intuitive and concise
syntax. In Jolie each component is a (micro)service that can communicate with
other components by sending and receiving messages over a network. The behav-
iour and deployment of a Jolie service are orthogonal: they can be independently
defined and recombined as long as they have compatible typing. In order to sup-
port concurrency, a service can run multiple instances of its behaviour, called
processes. Processes can direct messages to each other by using arbitrary sets
of data, a mechanism commonly called message correlation [38] and borrowed
from Service-Oriented Architectures. The semantics of processes and correlation
in Jolie is formally defined [29] and used in studies aiming at providing formal
properties on service systems, such as those based on choreography languages
[4,33]. Jolie also includes useful features for the programming of dynamic service
systems such as embedding that allows the supervised execution of sub-services
inside of other services [28]. Embedding can be used at runtime to enable service
mobility and the runtime adaptation of parts of a running process [23].

The Jolie Redeployment Optimiser tool is based on the following three main
components:

Zephyrus. [7] A tool that automatically generates, starting from a partial and
abstract description of the target application, a fully detailed architecture,
indicating which and how many components are needed to realize such appli-
cation, how to distribute them on virtual machines, and how to bind them
together. Zephyrus is also capable of producing optimal architectures, mini-
mizing the amount of needed virtual machines while still guaranteeing that
each service has its needed share of computing resources (CPU power, mem-
ory, bandwidth, etc.) on the machine where it gets deployed.

Jolie Enterprise (JE). A distributed framework for deploying and managing
microservices written in the Jolie language. Jolie Enterprise exposes Applica-
tion Program Interfaces (APIs) (i) to access all the data related to the plat-
forms and services running in the managed system, (ii) to deploy, start, stop,
and remove services, and (iii) to monitor their performances and resource
consumption.

Jolie Reconfiguration Coordinator (JRC). A tool that, given a desired
configuration and a context for the deployment (provided by Jolie Enterprise)
interacts with Zephyrus to produce the optimised deployment planning.

We depict in Fig. 1 how JRC, JE, and Zephyrus interact in JRO, starting from
a desired configuration and its actual deployment. The sequence of interactions
in Fig. 1 can be described as follows.

1. The User defines the requirements of the deployment, e.g., how many
instances of a service must be deployed or that some type of services can-
not run in the same machine with others.
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Fig. 1. JRO workflow

2. JRO retrieves from JE the context of the deployment, i.e., the available virtual
machines in the system (in the figure DC#1, DC#2, and DC#3).

3. JRO uses JRC which uses Zephyrus to find the optimal solution.
4. If the User agrees with the solution, JRO proceeds with the orchestration of

the deployment, instructing JE on how services should be deployed, linked or
removed.

To the best of our knowledge JRO is the first tool allowing to optimally
deploy a microservice based application.

Structure of the Paper. Section 2 presents a comprehensive, real-world use-case
to illustrate how JRO works from the user perspective. In Sect. 3 we describe the
details of JRO and its features. Section 4 contains a discussion on related work
and our closing remarks.

2 Example

In this section, we show how JRO can be used to deploy a realistic SOA using as
a running example a blog microservices architecture [27]. As depicted in Fig. 2,
the blog comprises 5 types of microservices for post publication and commenting:

– Auth enables the users of the blog to authenticate themselves;
– Posts allows an author to edit a post. Posts needs an instance of Auth to

authenticate authors;
– Comments Balancer dispatches the submission of comments from the readers

to an instance of the Comments service;
– Comments receives the submission of a comment and publishes it. Comments

needs an instance of Comments Balancer to receive incoming submissions and
an instance of Auth to authenticate the reader who sent the comment;

– Publication Gateway is the service accessed by clients to read the blog.
Publication Gateway needs and instance of Auth to let readers access the
contents of the blog.
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CommentsCommentsComments

PostsPostsPosts

AuthAuthAuth
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Fig. 2. Blog microservices architecture.

All these services come with some information related to the resources that they
require to be installed. In particular, every service specifies how much RAM and
processing power it needs, to how many services it can provide its functionalities
(Provision) and the number and the type of services it requires to work (Depen-
dencies)3. In the table below we summarize this information for the services of
the blog.

Service Mem CPU Dependencies Provision

Auth 50 2 - 5

Posts 20 1 Auth: 1 1

Comments Balancer 50 4 - ∞
Comments 30 1 Auth: 1, Comments Balancer: 1 1

Gateway 50 4 Auth: 1 ∞

Observe that the profiling of Comments Balancer and Gateway marks a the-
oretical infinite provision. This is because these services do no intensive compu-
tation and they just dispatch requests towards other services. The Auth instead
can be used by 5 other services instances, whether they may be Post, Comment,
or Gateway services.

The usual way of setting up an instance of the blog to satisfy some expected
traffic load requires to reserve some virtual machines and deploy a certain number
of Post, Comment, Comment Balancer, and Gateway services, which in turn need
the deployment of several Auth services. Besides the deployment, it would be also
necessary to connect all the deployed services — e.g., all Post services to their
correspondent Auth services — in such a way that they can sustain the expected
load and do not generate bottlenecks.
3 We assume that this information, usually obtained through some profiling of the
services, has to be initially entered by the service developer.
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With JRO all these concerns are handled automatically and it is guaranteed
that the obtained deployment respects the initial desiderata.

For example, let us consider that a DevOps wants to deploy two Posts ser-
vices, two Comments services, and a Gateway. In JRO she does that by specifying
the following string.

Post = 2 and Comments = 2 and Gateway = 1

These services are usually deployed on a cloud or some (private) cluster of
machines. In the context of this work, we use the term of Deployment Containers
(DC) to capture the notion of the basic unit where services can be deployed,
whether they may be virtual machines, physical machines, or containers a la
Docker [13]. A DC is characterised by a cost and some resources that it can
provide. For this running example, let us consider the two DCs reported below
and characterised by their Cost, expressed in dollar/month, Memory expressed
in MB, and processing power, expressed in processor units (CPU).

DC Cost Memory CPU

Small 4 60 2

Big 6 100 4

When the DevOps enters her desiderata, JRO automatically computes the
optimal (i.e., the least expensive) configuration that satisfies her request. In our
case, the computed configuration is the one reported in Fig. 3, where a Gateway
service and a Comments Balancer service are deployed in two separated Big DC,
two Comments services are in a Small DC and the remaining services (one Auth
and two Post) are on another Big DC.

The DevOps obtained a correct configuration but she realises that it is not
right for fault tolerance and load balancing reasons. Indeed, deploying on the

Mem: 50/100    CPU: 0/4
Comments Balacer: 0/2

big_DC#3

Mem: 50/100    CPU: 0/4
Publication Gateway: 1

big_DC#2

Publication
Gateway

Mem: 10/100                                      CPU: 0/4
Auth: 0/5

big_DC#3

Posts1

Mem: 0/60                                        CPU: 0/2
Comments: 2

small_DC#3

Comments2

Auth

Comments1

Comments
Balancer

Posts2

Fig. 3. First configuration.
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Fig. 4. Fault tolerant configuration.
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Fig. 5. Configuration with additional 2 Comment service.

same DC respectively two Post services and two Comments services can lead to
outages in case of high load or crash of one of the DCs. Hence, the DevOps
wants to specify that services of the same kind should be deployed on different
machines. With JRO it is also possible to express constraints on the co-location
and distribution of services. Let us suppose that DevOps requires that every DC
contains at most one Post, one Comments, and one Auth service and that the
Auth service cannot be co-located with a Post or Comments service. In this case,
the configuration computed by JRO is the one depicted in Fig. 4. The DevOps
finally accepts the solution and deploys the obtained configuration.

Let us now make the case that, after some usage, the DevOps notices that
many users comment the same post, which overloads the Comments services
and slows down the responsiveness of the blog. To cope with the high load on
comments, the DevOps wants to re-deploy the architecture of the blog with a
total of four Comments services.

JRO makes very easy to specify the re-deployment of an architecture.
It is sufficient to modify the previous specification by requiring 4, instead
of 2, Comments services. JRO produces the configuration depicted in Fig. 5.
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Observe that the increase of 2 Comments requires the addition of an additional
Auth service to handle the increase in authentication requests generated by all
the Comments services. This is done automatically and the DevOps does not need
to handle any dependency between services.

As a final example, let us consider that the profiling of the blog changes. This
can be due to a wrong initial profiling or to the introduction of a new version
of the services of the blog. In this case, some service of the blog can require
more or less resources to work correctly. JRO covers also this case: the DevOps
just needs to update the previous profiling and rerun the tool to redistribute the
component in the optimal way.

3 JRO

In this section, we detail how JRO works. As previously mentioned, the execution
phases of JRO are summarized in Fig. 1. The deployment of a new configuration
or the reconfiguration of an existing one is triggered by the user that enters
her desiderata. JRO queries the deployment platform (in our case it is JE) to
retrieve the current deployed configuration and the list of the services that could
be deployed with their resource needs and dependencies. These data are then
encoded and submitted to Zephyrus to obtain a tentative final configuration.
This configuration is presented to the user, which may accept it or refuse it by
entering a different specification. If a configuration is accepted, it is deployed
on the target deployment platform by issuing the commands to install and run
the services. The user has only to enter her goals and, if desired, perform the
optional step of deciding if accepting or not a given configuration.

JRO can be used in an interactive way to refine the configuration until an
acceptable one is obtained. To make this process automatic, JRO requires the
services to be annotated with their profiling, i.e., that each service is annotated
with its resource consumption, its dependencies, and its capabilities. In JRO
annotations are written in a JSON file that, by convention, has the same name
and is stored on the same location of the Jolie service. For example, the JSON
annotation associated to the Post service is the following:

1 {"cost":

2 { "Memory": 20, "CPU": 1 } ,

3 "dependencies":

4 { "Auth" : 1 }

5 }

At Line 2, we specify that the service requires the use of a 1 CPU and 20
MB of memory4. At Line 4, we specify that Post depends on the functionali-
ties provided by the Auth service. Hence, to be properly installed, it needs the
location of an existing Auth to invoke.

4 This number is given just for illustrative purposes. The real service consumes indeed
more resources.
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In the annotation, it is also possible to quantify the number of other services
that can exploit the functionalities provided be the annotated services. This can
be done by means of the provide property. For example, the Auth service is
annotated with {"provide" : 5}, which indicates that every instance of Auth
can receive invocation from at most 5 different services.

JRO automatically retrieves the information related to the running SOA by
exploiting the JE APIs. In particular, it finds what are the Deployment Com-
ponents (DC) that are running, their resources (e.g., the number of CPUs and
the RAM), and the services deployed on of them. Since the available DCs may
not be enough to deploy the desired system, it is possible to specify additional
resources to use that may be acquired from a cloud provider and their monetary
cost.

The list of deployment components is given as a JSON object with two prop-
erties: DC description, which describes the different types of deployment com-
ponents, and DC availability, which specifies the number of available instances
for each of these types. A deployment component type is identified by a name,
the list of the resources it provides, and a cost that the user has to pay in order to
use it. For instance, the following JSON object defines the possibility of using 5
c3.large and 3 c3.xlarge Amazon AWS instances as deployment components.

1 { "DC_description" : [
2 { "name" : "c3.large" , "cost" : 105 ,
3 "provide_resources" : {"CPU" : 2 , "Memory" : 375} } ,
4 { "name" : "c3.xlarge" , "cost" : 210
5 "provide_resources" : {"CPU" : 4 , "Memory" : 750} } ] ,
6 "DC_availability" : {
7 "c3.large" : 5 , "c3.xlarge" : 3 } }

The c3.large AWS machine is identified as a deployment component type
that provides 2 CPUs and 3.75 GB of RAM. When used, this type of deployment
component costs 105 dollars per month.

As previously mentioned, the DevOps triggers the execution of JRO by enter-
ing the specification of the target configuration. The DevOps does not need to
design the final configuration and she rather declares some constraints (e.g.,
number of services she wants to deploy, co-installation or distribution require-
ments) of the final configuration. All these goals and desiderata are expressed
in a domain specific language called Service Desiderata Language (SDA). In the
remainder of this section, we first detail this language and then describe the
integration of Zephyrus via JRC and how the final configuration, if accepted, is
actually deployed in JE.

3.1 Service Desiderata Language (SDA)

The Service Desiderata Language (SDA) is an ad-hoc language created to suc-
cinctly state the constraints that the final configuration should entail. As shown
in Fig. 6, which reports the SDA grammar defined using the ANTLR tool5, a
5 ANTLR (ANother Tool for Language Recognition) - http://www.antlr.org/.

http://www.antlr.org/
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1 spec

2 : expr comparisonOP expr | spec boolOP spec | ’true’

3 | ’not’ spec | ’(’ spec ’)’ ;

4 expr

5 : ’DC[’ resourceFilter ’|’ simpleExpr ’]’

6 | ’DC[’ simpleExpr ’]’

7 | expr arithmeticOP expr | simpleExpr ;

8 resourceFilter

9 : STRING comparisonOP INT

10 | resourceFilter ’;’ resourceFilter ;

11 simpleExpr

12 : exprNoDC comparisonOP exprNoDC

13 | simpleExpr boolOP simpleExpr |

14 | ’true’ | ’not’ spec | ’(’ spec ’)’ ;

15 exprNoDC :

16 INT | STRING

17 | exprNoDC arithmeticOP exprNoDC ;

18 comparisonOP : ’<=’ | ’<’ | ’=’ | ’>=’ | ’>’ ;

19 arithmeticOP : ’+’ | ’-’ | ’*’ ;

20 boolOP : ’and’ | ’or’ | ’impl’ | ’iff’ ;

Fig. 6. SDA grammar.

constraint is a specification spec of basic constraints expr comparisonOP expr
(Line 2) combined using the usual logical connectives. These basic constraints
specify how many services the user desires to create. An expression expr could
identify either an integer value or the number of services.

With this expressiveness, it is possible to add constraints that abstract away
from the DC. For instance, one might require, as in the running example, the
deployment of at least 2 Post and 2 Comments services as follows.

Post >= 2 and Comments >= 2

More complex constraints can be stated to restrict the applications installed
on the DC. These constraints are expressed (Line 5) with the notation
DC[ resourceFilter | simpleExpr ] where resourceFilter is an optional
sequence of constraints on the resources provided by the DC and simpleExpr
is an expression. DC[ resourceFilter | simpleExpr ] denotes the number of
deployment components that satisfy the resource constraints of resourceFilter
and that contain objects satisfying the expression simpleExpr. For instance, we
can specify that no deployment component having less than 8 CPUs should
contain more than one Post service as follows.

DC[ CPU <= 8 | Post > 1 ] = 0

It is also possible to express constraints on co-location or distribution. This is
an important feature when dealing with performances — e.g., by co-locating
services that frequently interact —, or with security or fault handling — e.g.,
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by keeping some kinds of services separated. As an example, consider the case
in Sect. 2 in which we forbid to co-locate the Post and the Comments services on
the same DC. Such requirement is easily stated with the following constraint.

DC[ Post > 0 and Comments > 0 ] = 0

3.2 JRC

When the specification and the information on the running configuration are
retrieved, they must be transformed and encoded in order to exploit the engine
of the Zephyrus configurator. This task is performed by JRC, which processes
the available information to generate the universe file of components required by
Zephyrus [7]. Services have to be encoded into Aeolus components since Zephyrus
requires as input a representation of the components following the Aeolus model
specification [8]. In Aeolus, a component is a grey-box showing relevant internal
states and the actions that can be acted on the component to change its state
during the deployment process. Each state activates “provide” and “require”
ports that represent functionalities that the component offers and needs,
respectively.

In this context, a service S for JRO can be simply seen as an Aeolus com-
ponent with two states: an initial state Init representing the fact that S is not
yet deployed, and an On state meaning that the service has been deployed. If the
service has some initialization parameters (e.g., Post requires a service Auth)
these are seen as require ports.

In Aeolus, it is possible to associate numbers to ports to deal with capaci-
ty/replication constraints. The number associated to a require port indicates the
minimal number of distinct components that should provide resources to satisfy
the requirement. The number associated to the provide port stands instead for
the maximal amount of distinct components that can use the provided function-
ality. In our setting, the number of service dependencies is therefore the number
associated to the require port. Dually, the number of services that can use the
functionalities of a given service is the number associated to the provide of its
Aeolus representation.

Zephyrus requires as additional input also the specification file containing
the encoding of the constraints that should be satisfied in the final configura-
tion following an ad-hoc specification language, and the location file containing
the list of the containers to be used to deploy the components. The generation
of these files from the available information is quite straightforward since the
Zephyrus specification language is more expressive than SDA because, thanks to
the chosen encoding, the notion of component and ports in the Aeolus model
collapses into the notion of services (i.e., components and ports share the same
domain).

When all the input of Zephyrus is generated, JRC runs the configurator. This
is the most computational intensive task of the entire process6. We use Zephyrus
to compute the cheapest solution satisfying the user desiderata.
6 As formalized in [6], the problem solved by Zephyrus is NP-hard.
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3.3 Deployment of the Final Configuration

When the configuration is returned and it is accepted by the DevOps, JRO
removes the services that are deployed but not present in the final configuration
and then starts to deploy the new services on the virtual machines defined in
the configuration computed by using Zephyrus.

In the final configuration the dependencies between the components are the
connection between the services. Since the services are developed in Jolie, sat-
isfying a dependency can be performed simply by changing the configuration of
the output port of the dependent service with the appropriate location and the
setting of the protocol needed to reach the required service. Services that do not
have dependencies are deployed before those requiring these services. In case of
a circular dependency (e.g., service A requires service B that requires A), first
JRO deploys the services, then it retrieves their inbound connection data, and
finally it dynamically rebinds their output ports.

It is important to notice here that, while in principle any suitable platform
could be used for the deployment of service, the use of the Jolie Enterprise
framework simplify considerably this task.

Jolie Enterprise is structured on two main nodes: the control panel and the
cloud node. The Jolie microservices are deployed and run within cloud nodes,
while the control panel offers a set of Web APIs for interacting with the cloud
nodes by using operations such as setService, startService, stopService
and getServiceList. Operation setService registers a service in the cloud
node, startService executes it, stopService stops its current execution, and
getServiceList returns the list of all the available services along with its exe-
cution status (running, disabled). In our implementation of JRO we have created
a service, called ResourceManager, which can call Jolie Enterprise APIs in order
to get the current configuration of the system, consisting of active services and
inactive services. Such a configuration is then passed to JRC to obtain an out-
put containing the new desired configuration for the system. At this stage, the
ResourceManager calls again the Jolie Enterprise APIs in order to deploy and
execute the new configuration.

The Jolie Enterprise is a proprietary solution and therefore is not freely avail-
able. Nevertheless, JRC, the core part of the JRO, is open-source and available
at https://github.com/jolie/jrc. This tool can be used to support other deploy-
ment platforms providing the same functionalities of JE. JRC is provided along
with the input and configurations for all the outputs of the running scenario in
Sect. 2.

4 Related Work and Conclusion

Nowadays, developing applications for the cloud is usually accomplished by rely-
ing on the Infrastructure as a Service (IaaS) or the Platform as a Service (PaaS)
levels. The IaaS level provides a set of low-level resources forming a “bare”
computing environment. Developers pack the whole software stack into virtual

https://github.com/jolie/jrc
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machines containing the application and its dependencies and run them on phys-
ical machines of the provider’s cloud. Exploiting the IaaS directly allows a great
flexibility but requires also a great expertise and knowledge of both the cloud
infrastructure and the application components involved in the process. The most
common solutions for the deployment of a cloud application is still to rely on
pre-configured virtual machines (e.g., Bento Boxes [15], Cloud Blueprints [5], and
AWS CloudFormation [1]) or to exploit configuration management tools such as
Puppet [43] or Chef [40] to better customize the application.

At the PaaS level (e.g., [3,19]) a full development environment is provided.
Applications are directly written in a programming language supported by the
framework offered by the provider, and then automatically deployed to the cloud.
The high-level of automation comes however at the price of flexibility: the choice
of the programming language to use is restricted to the ones supported by the
PaaS provider, and the application code must conform to specific APIs. Appli-
cation in PaaSes are usually scalable and can exploit the elasticity of the cloud
to accommodate more requests. However, we are not aware of PaaSes that can
guarantee the optimal automatic allocation of services allowing the minimization
of the cost of the entire application.

In this work, we combine the flexibility typical of the IaaS level with the high-
level automation typical of the PaaS level by allowing the DevOps to specify their
SOAs and then automatically deploying the specified SOAs, optimising its costs,
its performances, and its resource consumption.

The most similar approach to ours is Aeolus Blender [12] from which we
draw inspiration. Blender is a software product for the automatic deployment
and configuration of complex distributed software systems in the “cloud”. It
relies on a configuration optimiser (i.e., Zephyrus as also in our case) and an
ad-hoc deployment planner [24] to deploy real-life applications on an OpenStack
cloud. However, differently from our tool, Blender requires every service life-
cycle to be described with the Armonic formalism [25] which essentially uses
state machines to represent the different steps that need to be performed to
deploy a service. Due to the fact that Jolie services can be easily deployed and
do not need complex iteration patterns to be installed, we were able to simplify
the entire deployment process requiring to the user to specify just the resource
consumption of the services and thus avoiding the use of a planner to compute the
sequence of deployment action to perform. Moreover, differently from Blender,
JRO can also deal with configurations where services depend on each other.

Another related work is [10] that relies on Zephyrus to allocate objects to
deployment containers starting from a program in modelling language ABS
(Abstract Behavioural Specification) where classes are annotated to indicate
the resource consumption of their objects.

JRO can be easily extended to handle other services or applications written
in different languages. Indeed, we only require that the installation of such com-
ponents does not involve an interaction with other components and that their
dependencies could be configured after their installation. In particular, we can
capture and deploy SOA relying on stateless services or application following
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the best practice of the “immutable server” approach [34,35]. In any case, our
interest lies in how we can suitably change the configuration of a system. This
depends on the property that the system supports reconfiguration, which can
be achieved in different ways. In this work, we have used Jolie to support the
writing and execution of services. As mentioned in Sect. 1, Jolie services support
concurrency by running multiple instances of their behaviour, called processes.
Processes in Jolie can be stateful or stateless. In the former case, a popular app-
roach for supporting reconfiguration is using distributed agreement algorithms
among the replicated processes [14,22,39]. There are other technologies that we
could have combined with JRO, e.g., Erlang [2] or other frameworks based upon
the actor model [20]. Both Jolie processes and actors are meant as executable
instances of a behaviour, to be run inside of a service. The main differences
between the two approaches are in what kind of behaviours can be written and
in the primitives for communications, e.g., Jolie processes explicitly specify the
data used to identify other processes, whereas actors usually leave this duty
to another layer and assume that the other actors can be explicitly found via
direct references. These differences are orthogonal w.r.t. our work, which focuses
on how to change reconfigurations rather than the details of how processes (or
actors) are implemented in services.

Apart from this immediate generalization, we see several other directions for
future developments in order to obtain a more inclusive and enhanced tool for
the automatic and optimised deployment of micro services. First, the human
interface part did not receive the due attention so far. We are therefore planning
to construct a suitable GUI which allows one to graphically define the desired
specification and its modifications, as in the case of the Blender GUI7.

On a different level, we plan to integrate in our system an existing monitoring
functionality of Jolie Enterprise in order to be able to determine the current load
of the system and therefore to be able to automatically balance the load, pos-
sibly modifying the configuration, in order to maintain some given service level
agreements for the deployed services. Suitable extensions of such a monitoring
tool could also be used to combine run time checking with static analysis (e.g.,
based on types) in order to ensure the correctness of the system, and more gen-
erally to verify service level agreements along the lines described in [9,37]. The
same techniques can be also exploited to automatize the deployment of system
developed by means of choreographic languages [17,41,42].

We would also like to address some of the current limitations of JRO due
to the use of the Zephyrus configurator. In particular, we would like to extend
Zephyrus in order to be able to find the best deployment configuration given
a user-specified maximal cost and a maximal resource consumption. We also
intend to add support for annotations with parametric costs that depend on ser-
vice parameters. Finally, we would also like to tackle the computational aspects
involved in the process of finding the optimal configuration allowing the users
to exploit heuristics – such as local search techniques – in order to quickly get
good but possibly sub-optimal solutions.

7 For some example of GUIs we can adopt within JRO we invite the interested reader
to see the screen cast at http://www.aeolus-project.org/.

http://www.aeolus-project.org/


208 M. Gabbrielli et al.

4.1 A Note on Columbus’ Egg

The idea of integrating Zephyrus with Jolie Enterprise to obtain a tool for the
automatic and optimised deployment of microservices is a very simple one, yet
it can be the basis of a very effective tool which can have a significant impact
on real applications.

In this sense, this idea is in line with one of the most distinguishing features
of Frank as a researcher: the strive for simplicity, also when working on very
complicate subjects. Indeed Frank has often been looking for “Columbus’ eggs”,
sometime he has found them, and once he actually made public this attitude in
front of a distinguished audience. Before the anecdote, a note on these “eggs”:
“A Columbus egg refers to a brilliant idea or discovery that seems simple or easy
after the fact. The expression refers to an apocryphal story in which Christopher
Columbus, having been told that discovering the Americas was inevitable and
no great accomplishment, challenges his critics to make an egg stand on its tip.
After his challengers give up, Columbus does it himself by tapping the egg on
the table to flatten its tip” (Wikipedia).

So here is the story. In 1997, at the Thirteenth Annual Conference on Math-
ematical Foundations of Programming Semantics, Frank was presenting a paper
co-authored with one of the authors of this paper. That conference was celebrat-
ing also the 65th birthday of Dana Scott, so most of the experts on semantics
of programming languages were there. While presenting his paper, Frank men-
tioned the fact that one of the adopted technical solutions was a kind of Colum-
bus’ egg. Having seen that some people in the audience had a strange reaction,
Frank asked plainly whether they knew the story. Since many people answered
“no”, Frank spent almost the rest of his time telling the story of Columbus and
his famous egg, rather than presenting the paper.

Thank you Frank, and our best wishes for finding many more Columbus’
eggs.
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Abstract. There is a gap between run-time service behaviours and the
contracted quality expectations with the customers that is due to the
informal nature of service level agreements. We explain how to bridge
the gap by formalizing service level agreements with metric functions.
We therefore discuss an end-to-end analysis flow that can either statically
verify if a service code complies with a metric function or use run-time
monitoring systems to report possible misbehaviours. In both cases, our
approach provides a feedback loop to fix and improve the metrics and
eventually the resource configurations of the service itself.

1 Introduction

In Cloud Services and in Web Services, in general, resource provisioning is defined
by means of legal contracts agreed upon by service providers and customers,
called service level agreements – SLA. Legal contracts usually include measure-
ment methods and scales that are used to set the boundaries and margins of
errors that apply to the behaviour of the service, as well as the legal require-
ments under different jurisdictions. The SLA documents have no standardized
format nor terminology, and do not abide by any precise definition, notwithstand-
ing some recent attempts towards standardization – see [2] and the references
therein.

Because of this informal nature, there is a significant gap between SLAs
and the corresponding services whose quality levels they constrain. As a conse-
quence, SLAs are currently not integrated in the software artefacts, and assessing
whether a service complies with an SLA or not is always a point of concern. As a
consequence, providers, in order to avoid legal disputes, very often over-provide
resources to services with the result of wasting resources and making services
more expensive.

This paper presents the approach taken in the EU Project Envisage [2] where
the gap between (parts of) SLAs and services is bridged by (i) using simple
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formal descriptions of SLAs in terms of metric functions and by (ii) defining
a mathematical framework that is able either to derive the SLA quality levels
from the service programs and to verify possible violations or to monitor service
behaviours and document SLA quality levels mismatches.

Among the properties whose qualities are constrained by SLA docu-
ments [11], we focus in Sect. 2 on performance by analyzing the objectives that
set the boundaries and margins of errors of service’s behaviours. In Sect. 3, these
objectives are formalized in terms of metric functions. Having at hand these func-
tions, we address the problem to verify whether a given service complies with
them or not. Two techniques are discussed in this paper for verifying perfor-
mance properties of services: the static-time techniques and the run-time ones.

In static-time techniques, the compliance of a service with respect to a metric
function is shown by means of analysis tools that either directly verify the code
(static analysis), or an underlying mathematical model (model checking, simula-
tion, etc.). Whenever the service does not comply with the metric function, the
designer triggers a sequence of code refinements that lead to compliance. As an
example, consider resource capacity that measures how much a critical resource is
used by a service. Section 4 reports a static analysis technique that uses so-called
behavioural types. These behavioural types are abstract descriptions of programs
that support compositional reasoning and that retain the necessary information
to derive resource usage. By means of behavioral types, we use either a cost
equation evaluator – the solver systems [1,7] – or a theorem prover – the KeY
system [3] – to prove compliance with the SLA. For instance, we demonstrate
that the response time of a given method does not exceed a certain user-defined
threshold.

In run-time techniques, the enforcement of properties is accomplished by
using code that is external to the service and that continuously monitors it. In
facts, there are (performance) metric functions that cannot be (even in principle)
fully verified statically, due to factors under external control, such as the requests
per minute by end users and failing machines in the underlying infrastructure. As
an example, consider the percentage of successful requests, namely the number
of requests processed by the service without a failure due to its infrastructure
over the total number of received requests. In Sect. 5, we report a technique that
uses an external monitoring system filtering service’s replies, counts them, and
records the erroneous ones. The correctness of the composite system consisting of
the service and monitoring code is established by means of either static analysis
techniques or model checking.

Figure 1 describes the flow of analysis techniques used in our approach.
A feedback loop ensures corrections and improvements to the system. In particu-
lar, if the static analysis reports that a service does not match an SLA constraint,
then, during the negotiation phase that constraint can be either relaxed or the
resource configuration can be extended accordingly (with a possible charge for
the client). Similarly, if a monitoring system verifies a run-time violation of an
SLA constraint then, in order to avoid expensive penalties, the service providers
trigger the resource configuration system to increase service’s resources.
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Fig. 1. Analysis Flow: Resource Configuration refers to the configuration of resource
types that are used for the service; Service Metrics denotes the set of metrics that
define the quality of the service. The dashed lines present a feedback loop to a previous
phase of analysis.

In Sect. 6 we discuss the issue of SLA metrics that have conflicting require-
ments. In this case, it is necessary to determine an upper bound in time for
reaching a stable resource configuration. We also discuss complex metrics that
actually are compositions of basic metrics discussed in Sect. 3. We report our
analysis of related works and conclude in Sect. 7.

2 SLAs and Performance Properties

In the “Cloud Service Level Agreement Standardisation Guidelines” docu-
ment [11], the qualities of services are assessed with SLAs according to the
properties they have, which range from performance to security and to data
management. In this paper, we will focus on performance. We discuss how it can
be formalized and evaluated on source code of services.

The article [11] distinguishes three kinds of performance properties:
availability, response time, and capacity. Availability is the property of a service
to be accessible and usable on demand. By detailing the notion of “usability”,
one gets different instances of availability and corresponding service metrics. For
instance (i) level of uptime, is the time in a defined period the service is up,
over the total possible available time; (ii) percentage of successful requests, is
the number of requests processed without an error over the total number of sub-
mitted requests; (iii) percentage of timely service provisioning requests, is the
number of service provisioning requests completed within a defined time period
over the total number of service provisioning requests. Response time is the time
period between a client request event and a service response event. The service
metrics that are used to constrain response time may return either an average
time or a maximum time, given a particular form of request. Capacity is the
maximum amount of some resource used by a service. It also includes the ser-
vice throughput metric, namely the minimum number of requests that can be
processed by a service in a stated time period.

The example below discusses an industrial e-commerce use case and its cor-
responding SLA constraints about performance. The next section formalises the
involved metrics and we show how to verify/enforce them in the rest of the paper.
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Example 1. A Cloud Service company offers search and targeting facilities on
large product databases over cloud computing architectures to e-commerce com-
panies. The offered services are exposed at endpoints and are typically imple-
mented to accept connections over HTTP. For example, a query API allows users
to query over a product catalog. Assume that the query API is implemented by
means of a number of resources (virtual machines) that are managed in a mutual
exclusive way by a load balancer (each resource is launched to serve exactly one
instance of the query API). When an e-commerce company signs the SLA con-
tract with the Cloud Service company, the performance properties of the query
API are constrained by the following metrics:

– 95% of requests is completed within 1min, 2% within 3min and 1% within
5min. This is the “percentage of timely service provisioning requests” metric
and it is used by the operations team of the Cloud Service company to set
up an environment for the customer that includes the necessary resources
to match the constraints. It is additionally used by the support team of the
Cloud Service company to manage communications with the customer during
the lifetime of the service for the customer.

– the service completes 8 queries per minute from 9:00 to 18:00 and 4 queries
per minute otherwise. This is a service throughput metric and forms the basis
of many decisions (technical or legal) thereafter, such as the definition of the
necessary resources for the e-commerce company.

– the service replies to a query request (with the result or with a failure) within
7min. This is a response time metric and may be determined by the size of
database as well as by the size of the data managed by the query service
(whenever the service accepts queries that are unbounded).

3 Metrics’ Formalization

To determine the precise level of a metric, and verify whether the service matches
the agreed levels, an indisputable formalisation is needed, rather than the infor-
mal descriptions in the previous section. There have been several attempts to
formalize SLAs, using techniques ranging from semantic annotations [17], to
rewriting logics [19] and to constraint programming [5]. In this paper, follow-
ing [18], we use a very simple formalization based on service metric functions.

Service metric functions aggregate a set of basic measurements into a single
number that indicates the quality of a certain service characteristic. For instance
μ(τ) and ν(τ, δ) are two functions that respectively take one and two inputs,
where

– τ is an interval of the form [d.t, d′.t′], where d, d′ are days (d, d′ ∈
{1, · · · , 366}) and t, t′ are seconds in the day (t, t′ ∈ {0, · · · , 86399});

– δ can be an upper bound to the size in bytes of client’s requests, a time bound
for getting a reply, or an upper bound to the number of resources used by the
service.
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To illustrate how performance metrics that are informally defined in SLA
documents can be formalized, we further elaborate Example 1. In particular,

– the percentage of timely service provisioning requests of a service s can be
formalized by the following function PTSs:

PTSs([1.0, 366.86399], x) =

⎧
⎨

⎩

0, 95 if x = 60s
0, 97 if x = 180s
0, 98 if x = 300s

– the service throughput of a service s can be formalized by the function STs as
follows:

STs([1.t, 366.t′], 60) =

⎧
⎨

⎩

4 if t = 0 and t′ = 32399
8 if t = 32400 and t′ = 64800
4 if t = 64801 and t′ = 86399

– the response time of a service s can be defined by the following function RTs:

RTs([1.0, 366.86399]) = 420s

4 Static-Time Analysis

Several static-time analysis techniques are possible to verify service properties
and, in particular, service metrics like response time. In this section we discuss
two approaches we use in the Envisage Project and we apply them to the response
time metric of Example 1. We refer to [8,10] for further details on the technique
described in Sect. 4.1. We refer to [3,6] for details on the technique discussed in
Sect. 4.3.

4.1 Behavioural Types

Behavioural types are abstract descriptions of programs that highlight the rele-
vant informations to derive a particular property. This derivation usually consists
of three steps:

1. an inference system parses the service program and returns a behavioural
type;

2. the behavioural types are translated into low-level descriptions that are ade-
quate for a solver;

3. the low-level descriptions are fed to a solver which produces the output.

It turns out that behavioural types support compositional reasoning and are
therefore adequate for SLA compliance, while low-level descriptions are not com-
positional (and too intensional).

In the case of response time analysis, the behavioural types carry informa-
tions about costs of operations that are extracted directly from the source pro-
gram. This means that the source program retains either resource-consumption
annotations or resource-aware commands. The following code snippets use
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String searchDB(String s) {
String u, v ;
u = DB.query(s) ;
job(h) ;
v = this.add_info(u) ;
return v; }

class DataBase {
String query(String s) {
String z = this.elaborate(s);
String value = this.search(z);
job(k) ;
return value; }

... }

Fig. 2. The service searchDB performing a query on a database.

explicit primitives for expressing the consumption of resources; in particular,
the statement job(e) specifies a requirement of e CPU resources and is instru-
mental for modeling the time: depending on the available resources its execution
might take an observable amount of time proportional to its cost. For instance,
the execution of job(6) when only 3 CPU resources are available will be exe-
cuted within 6/3=2 units of time.

We illustrate our technique with two examples derived from Example 1. We
assume a simple setting where every instance runs in the same machine with a
fixed capacity of c CPU resources.

Consider the service that performs a query on a database, in Fig. 2. The
method searchDB sends a given query to the database and, when the result of
the query is returned, it enhances the result with some information before return-
ing it to the client. The job(h) statement specifies that the local operations of
searchDB require h CPU resources. The query method, which is implemented
in a different class DataBase, receives a query, evaluates it, searches the cor-
responding item in the database, and returns the result. The overall cost for
these operations is k CPU resources, as specified by job(k). In this example
we assume the methods elaborate and search contain no job statements, thus
they do not require any resources. Their resource requirements are part of the k
resources declared for the query method.

An informal argument gives (k+h)/c as the total time required by searchDB
to reply to a query, where c are the available CPU resources. This means that
if we have a ResponseTime requirement of completing this method within a
specific number of time units, then we are able to establish the minimum CPU
resources of a configuration that complies with the SLA.

To formalise the above argument, we extract the program features that are
relevant for the time analysis. The resulting descriptions are called behavioral
types and primarily highlight cost annotations and method invocations. For
example, the behavioural types of the above methods are

Service.searchDB(a[x], b[y]) { DataBase.query(b[y]) � h/x
} : _

Service.addinfo(a[x]) {0} : _

DataBase.query(a[x]) {
DataBase.elaborate(a[x]) � DataBase.search(a[x])
� k/x } : _

DataBase.elaborate(a[x]) {0} : _

DataBase.search(a[x]) {0} : _
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where

– the parameter a[x] binds the this object identity to a and the available
capacity to x; similarly, b[y] binds the object identity of the receiver of the
query invocation to b and its allocated capacity to y;

– the cost h/x is due to the amount of CPU requested by job(h) and the
available CPU resources x (similarly for k/x);

– the term is the time information corresponding to the returned value, which
is in this case empty;

– the term 0 is the empty behaviour, meaning that no time units are consumed.

With the behavioural type specifications at hand, we use two techniques for
deriving services’ properties: one is completely automatic and uses solvers of cost
equations, and another is semi-automatic (but more precise) and uses theorem
provers. We discuss them in detail in the following two subsections.

4.2 The Cost Equation Solver

To evaluate behavioural types specifications, we translate them into so-called
cost equations, which are suitable for solvers available in the literature [1,7].
These cost equations are terms

m(x) = exp [se]

where m is a (cost) function symbol, exp is an expression that may contain (cost)
function symbols applications. In some cases, more than one equation may be
defined for the same function symbol: for instance the if-then-else statement has
one equation for each branch. In this case, se is an expression representing the
conditions under which the corresponding cost must be taken into account.

Basically, we translate behavioural types of methods into cost equations,
where (i) method invocations are translated into function applications, and (ii)
cost expressions occurring in the types are left unmodified. For example, the
translations of the foregoing methods are:

searchDB(x,y) = query(y) + h/x + addinfo(x)
query(x) = elaborate(x) + search(x) + k/x
addinfo(x) = elaborate(x) = search(x ) = 0

It is worth to observe that, in this case, being x = y =c, the solver returns
(h+k)/c, as we anticipated previously.

Let us consider a variation of this example, where the service and the data-
base run on different machines. In this case the configuration will include at
least two different machines, let us call them ms and md with respectively cs and
cd allocated CPU resources. At the time of the creation of the service instance
we can specify on which machine it will be deployed, by using a statement of
the form:

Service service = new Service in ms;

Analogously, for the database we have
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Database database = new Database in md;

In this setting, all invocations on external machines are to be considered
asynchronous, where the caller and the callee execute simultaneously, and the
synchronization occurs when the caller attempt to access the result of the invoca-
tion. The snippet of the method searchDB is therefore refined into the following
code where the asynchronous invocation is noted with “!” instead of “.” and
Fut<String> is the type of a future String value.

String searchDB(String s) {
String u, v ; Fut<String> w ;
w = DB!query(s) ;
job(h) ;
u = w.get ;
v = this.add_info(u) ;
return(v);

}

The operation w.get explicitly synchronizes the caller with the callee. In this
case, the cost equations of the above methods are

searchDB(x,y) = max(query(y) , h/x) + addinfo(x)
query(x) = elaborate(x) + search(x) + k/x
addinfo(x) = elaborate(x) = search(x ) = 0

Being x =cs and y =cd, the solver returns the total cost of max(h/cs,k/cd).

4.3 The KeY System

There are cases where the cost equations solver either fails to deliver a result or
the result is so over-approximated that it becomes unusable. In particular, the
cost equations m(x) = exp [se] that the solver takes as inputs are constrained
by the fact that se is a boolean expression in a decidable fragment of Peano
arithmetic – presburger arithmetic which admits only addition and multiplication
by integer constants. Therefore, whenever behavioural types use expressions that
are not written in presburger arithmetics, we extend them by manually adding
preconditions and in the postconditions specifying costs and metrics.

We use a semi-interactive theorem prover called KeY [6], which uses symbolic
execution to analyze programs. Properties are specified in KeY using dynamic
logic [20] and are demonstrated using the sequent calculus [9]. It turns out that
most proof steps (usually more than 99%) are automatically applied by the
proof search strategies. Behavioral types plus KeY verification support a com-
positional analysis: each type can be analyzed in isolation, on the basis of its
own definition and only the contracts of the other methods – without knowledge
of the underlying definition of the other behavioral types. This is not the case
of cost equations that, once produced, are a monolithic, global specification.

KeY can be leveraged by following the steps below:

1. replace the cost expression c in method bodies by an assignment time =
time+c;;

2. add method contracts, specifying in the postcondition of each method the
expected response time using the variable time and the capacities of machines;
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3. prove the resulting instrumented program with KeY.

Applying these steps yields the following annotated behavioral types:
//@ ensures time == \old(time) + k/y + h/x;
Service.searchDB(a[x], b[y]) {

DataBase.query(b[y]) � time = time + h/x
} : _

//@ ensures time == \old(time);
Service.addinfo(a[x]) {0} : _

//@ ensures time == \old(time) + k/x;
DataBase.query(a[x]) {

DataBase.elaborate(a[x]);
DataBase.search(a[x]) � time = time + k/x

} : _

//@ ensures time == \old(time);
DataBase.elaborate(a[x]) {0} : _

//@ ensures time == \old(time);
DataBase.search(a[x]) {0} : _

For parallel programs with asynchronously executing threads, the above
instrumentation might overestimate the actual time and cost consumed: it always
sums the cost of tasks. In these cases, the behavioural type is x.m() ||| y.n(),
rather than x.m(); y.n() (the operation “|||” represents parallel composi-
tion). KeY derives the cost of x.m() ||| y.n() by taking the maximum of the
costs of x.m() and of y.n().

A useful task that KeY supports is the formal proof that response times of
a method are under a defined threshold. This is achieved by the same instru-
mentation discussed above. The only change needed is in the behavioural types
of methods: one can adjust the postcondition with an assertion of the form
time < d, where d is a symbolic threshold. This is shown in the contract below.

//@ ensures time time < d;
Service.searchDB(a[x], b[y]) {
...

}

5 Run-Time Analysis

In order to enforce service metrics that cannot be verified statically (because
of factors under external control, such as the underlying infrastructure) we use
code external to the service that continuously monitors it. We discuss this tech-
nique using two service metrics of Example 1: the percentage of timely service
provisioning requests and the service throughput.

A simple implementation of the function PTSs defined in Sect. 3 uses a mon-
itoring method that intercepts all the HTTP invocations to a service and their
corresponding replies. This allows the monitor to record the time taken by every
request to be completed. Consider the following pseudo-code for this method
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void monitor_service_time() {
(service,method,msg,client,m_id) = HttpRequest.intercept();
time_start = time();
reply = service.method(msg);
time_end = time();
HttpResponse.send(client,reply,m_id);
log(m_id,time_start,time_end);

}

The method percentage takes as input a time window and returns true if the
percentage of requests complies with the definition of PTSs, is implemented by
the monitor:

boolean percentage(Time t_begin, Time t_end){
boolean v = true ;

/∗ retrieve from the log the total number of messages
served in the time window ∗/

nmb_msg = get_total_messages(t_begin, t_end) ;

/∗ check whether the SLA percentages of served requests
correspond to the observed ones ∗/

nmb_msg_completed = find(t_begin, t_end, 60) ;
v = v && (nmb_msg_completed/nmb_msg <= 0.95) ; //95% in 1 min
nmb_msg_completed = find(t_begin, t_end, 180) ;
v = v && (nmb_msg_completed/nmb_msg <= 0.97) ; //97% in 3 mins
nmb_msg_completed = find(t_begin, t_end, 300) ;
v = v && (nmb_msg_completed/nmb_msg <= 0.98) ; //98% in 5 mins

return v;
}

Similarly, the monitor implementing the service metric STs in Sect. 3 is the
method:

boolean throughput(Log_file d, Time t_begin, Time t_end){
int daily = 0;
int nightly = 0;

/∗ collects the number of the served requests during the two
specified time−frames ∗/

for each (m_id, time_init, time_end) in d {
if ((time_init >= 32400) && (time_init <= 64800)) // 9:00−18:00

daily = daily + 1 ;
else nightly = nightly + 1 ;

}
/∗ return true if 8 queries per minute are completed in 9:00−18:00

and 4 queries per minute in the remaining time ∗/

return ( ((daily/60*9)>8) && ((nightly/60*15)>4) );
}

The above straightforward development of monitoring systems allows service
providers to report violations of the agreed SLA. However, the ultimate goal
for a provider is to maintain the resource configuration in such a way that
SLA violations remain under a given threshold while minimizing the cost of the
system. The first objective can be achieved by adding resources to the service
(for instance, adding more CPUs).

To this aim, the monitoring platform works in two cyclic phases: observa-
tion and reaction. The observation phase takes measurements on services – the
foregoing methods percentage and throughput. Subsequently, if an SLA mis-
match is observed, in the reaction phase, the number of allocated resources are
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increased. The monitoring platform developed in the Envisage Project also allows
to decrease the number of resources if it is too costly/high [18]. The following
reaction method verifies every 300 s whether the percentage of timely service
provisioning requests is reached and, in case of failures, adds one more CPU:

void reaction(Service s) {
Time t ; Bool v ;
t = time() ;
idle(300) ;
v = percentage(d,t, t+300) ;
if (!v) MonitoringPlatform ! allocate(s) ;

}

Correctness of the monitoring framework (i.e. that the monitors converge
within a user-given time towards the service level objectives specified in an
SLA) was investigated in [18]. The idea is to translate the code for the program
including the monitoring code into timed automata for use with UPPAAL [4].
The service level constraints from SLAs are translated into deadlines for the
automata. The translation can be done automatically, along the lines of [12]. It
is then possible to prove that, if all timed automata are schedulable (no missed
deadline), then the SLA of the service is satisfied in the given timeframe.

6 Further Aspects of Metrics’ Definition and Verification

In the previous sections we have discussed basic service metrics used in SLA
documents. In this section we address two additional issues: (i) metrics may be
conflicting: one metric requires an increase of resources allocated to a service,
while another one requires a decrease of the same resources, and (ii) particular
services may require complex service metrics.

Conflicting Metrics. Consider the following SLA constraints for the first example
of Sect. 4.1:

STsearchDB([1.t, 366.t′], 60) =

⎧
⎨

⎩

4 if t = 0 and t′ = 32399
8 if t = 32400 and t′ = 64800
4 if t = 64801 and t′ = 86399

RTsearchDB([1.0, 366.86399]) = 420s

The analysis of Sect. 4.2 gave an upper bound for searchDB response time of
(k+h)/c time units. Letting the available amount of CPU resources be 2 and
k=5 and h=15, then we have a response time of 10 s. This satisfies the RTs metrics,
since it is well below the maximum response time imposed by the SLA. Therefore
the initial configuration of 2 CPU resources is found to be well suited for assuring
the required QoS. Notice that, considering the time for executing a single request
of searchDB, we can deduce that the STsearchDB value is indeed reasonable. In
addition, assume that monitor service time, which observes the execution of
the service, has not logged any entry where time end-time begin is greater
then 420 s – i.e. the response time is still matched.
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However, the launch of the throughput monitor reports that only 4 requests
are served per minute, which violates the SLA (requiring to serve 8 requests per
minute during the day) because of latency problems for scheduling the requests
or for connecting to the database. Henceforth, the reaction method requests to
the monitoring platform and obtains a machine with 2 additional CPU resources.
The service is moved on the new machine and the throughput monitor doesn’t
find any violation anymore. However, during the night, half of the resources
would have been sufficient for meeting the SLA requirement (which is only 4
requests per minute during the night). The customer is paying for unnecessary
resources.

To overcome such issues, we consider an additional metric defining the budget
for the service with respect to particular time windows:

BudgetsearchDB([1.t, 366.t′]) =

⎧
⎨

⎩

40 if t = 0 and t′ = 32399
80 if t = 32400 and t′ = 64800
40 if t = 64801 and t′ = 86399

Namely, BudgetsearchDB specifies that, during the day, the customer is willing to
pay up to 80, while only half for the night.

The techniques discussed in Sect. 4 may verify whether a service complies
with BudgetsearchDB or not. In particular, an adequate budget is the cost of the
minimum number of resources the program needs to execute, which is the cost
of an upper bound of resources needed by the program. Taking CPUs as relevant
resources and assuming that each CPU resource costs 10, then the analysis will
approve BudgetsearchDB, since the allocated money is enough to pay for 8 resources
during the day and 4 during the night. However, a run-time CPU reallocation
has been triggered by the throughput monitor. It turns out that the budget
compliance is not met anymore because the expenses for the resource usage
double the nightly budget. In this case, the budget monitor reacts by requiring
a deallocation of half of the CPU units during the night.

It is worth to notice that the allocations and deallocations required by a
monitoring system may lead to a cyclic behaviour that does not reach any stable
point. Therefore, in order to enforce stability, we also consider the notion of
service guarantee time, namely the total amount of time from the start of the
monitoring platform that a service is expected to meet its expectations of the
SLA. In facts, we use the following refined version of reaction method of Sect. 5:

void reaction(Service s) {
Time t ; Bool v ;
t = time() ; idle(300) ;
v = percentage(d, t, t+300) ;
if (!v) {

if (t > global_time_start + t_G) { // SLA is violated
notify(s, ‘‘SLA violation’’) ;

} else MonitoringPlatform.allocate(s) ;
}

}

Composite Metrics. SLA documents may contain (performance) metrics that
are not directly defined in terms of those in Sect. 3 but are a composition of
them. We discuss an example.
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Example 2. A mobile search app provides mobile offline search by means of on-
device search indices that are built and distributed by a cloud service. A primary
motivations for mobile offline search, besides increasing search availability and
strengthen user privacy, is to reduce search latency by using consistently fast
on-device storage rather than accessing mobile and Wi-Fi network with highly
variable latency. As a consequence, the most relevant aspect for evaluating the
quality of the provided service is the freshness of index data on the mobile device.
This property specifies time-related guarantees about the interval between the
publication of a document in the cloud and its indexing and availability on the
mobile device.

The metric freshness of index data on the mobile device, noted FID, actually
is the sum of the response time RTs and the delivery time DTs, namely the time to
transfer the data to the devices. This last metric DTs depends on the data size of
the response and the available bandwidth. While the data size δ is a parameter,
the bandwidth metric B(τ) is another basic capacity metric (which has not been
discussed in Sect. 3). B(τ) is expressed in Mb/s and defines the minimum amount
of bandwidth required by the service in a particular time frame. It turns out that
DTs(τ, δ) = δ/B(τ) and, therefore, we may define

FID(τ, δ) = DTs(τ, δ) + RTs(τ, δ).

7 Conclusions and Related Works

The methodology we have presented in this paper is being devised in the context
of the EU Project Envisage [2]. The aim of the project is to develop a semantic
foundation for virtualization and SLA that makes it possible to efficiently develop
SLA-aware and scalable services, supported by highly automated analysis tools
using formal methods. SLA-aware services are able to control their own resource
management and renegotiate SLA across the heterogeneous virtualized comput-
ing landscape. The two examples we analyze in this contribution are taken from
industrial case studies in the aforementioned project: the service described in
Example 1 is an actual service provided by Fredhopper Cloud Services1. The
mobile app presented in Example 2 is the Memkite app by Atbrox2.

In the Envisage Project we also use other techniques for analyzing services,
such as simulations and test generation covering critical scenarios. We intend to
investigate if these additional techniques can be used for SLA compliance (and
to what extent). For example, if they can provide augmented precision or more
detailed descriptions of misbehaviours.

Related Work. Several proposals define a language or a framework to formalize
SLAs. However, there is no study how such SLAs can be used to verify or monitor
the service and upgrade it as necessary. In this respect, up-to our knowledge, our
technique that uses both static time analysis and run-time analysis is original.
1 http://www.sdl.com/products/fredhopper/.
2 http://atbrox.com/.

http://www.sdl.com/products/fredhopper/
http://atbrox.com/
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As regards SLA formalizations, we recall few recent efforts. WSLA [14] intro-
duces a framework that defines SLAs in a technical way and breaks down cus-
tomer agreements in terms to be monitored. SLAng [15] introduces a language for
defining metrics that deal with the problems of networks and studies a technique
to ensure the corresponding service qualities. SLA� [13] introduces a generic lan-
guage to specify SLAs with a fine-grained level of detail. In [16], a method is
proposed to translate the SLA specification into an operational monitoring spec-
ification. This technique is being used by the EU Project SLA@SOI.
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3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems, pp.
200–236. Springer, Heidelberg (2004)

5. Maria Grazia Buscemi and Ugo Montanari: Qos negotiation in service composition.
J. Log. Algebr. Program. 80(1), 13–24 (2011)
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Abstract. Auxiliary variables are used in the intermediate steps of a
correctness proof to store additional information about the computation.
We investigate for which classes of programs auxiliary variables can be
avoided in the associated proof system, and give effective translations of
proofs whenever this is the case.

1 Introduction

Auxiliary variables aid verification by storing additional information about the
computation. Widely used instances include the recording of computation his-
tories and the explicit access to control points via program counters. Auxil-
iary variables were first used by Clint [7] to prove properties about coroutines.
Owicki [19] and Howard [13] used auxiliaries for reasoning about concurrent pro-
grams. Apt [1,3] used auxiliaries to obtain intermediate assertions that denote
decidable sets, which is useful for runtime checking. Recent applications of aux-
iliary variables are found in the Java Modeling Language [5], where they are
called ghost variables. The power of auxiliaries is further illustrated by the fact
that Frank de Boer himself advocated their use [8].

Auxiliaries are used temporarily, in the intermediate steps of a correctness
proof, by instrumenting the program with assignments. A rule by Owicki and
Gries [20] removes auxiliaries in a later proof step. As argued by Clarke [6], this
use of auxiliary variables breaks compositionality, since the program fragments
in the premise of the rule are not strict subprograms of that in the conclusion.
Compositionality is crucial for a modular, syntax-directed proof construction.

Naturally the question arises: can auxiliary variables be avoided? This is
the case for while programs and for recursive programs, since they have rela-
tive complete proof systems that do not contain Owicki and Gries’ rule. Clarke
showed that auxiliaries can be avoided in correctness proofs of programs with
so-called simple coroutines, and raised the question whether history variables are
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necessary for concurrent programs with shared variables. Lamport [16] showed
that the full power of histories is not needed, but that using auxiliary variables
as program counters suffices. To the best of our knowledge, it remained open
whether auxiliary variables can be eliminated entirely.

In this paper we investigate for which classes of programs auxiliary variables
can be avoided, and aim to give effective translations of proofs whenever this is
possible. Hoffmann and Pavlova [12] gave such a translation for while programs,
and we previously announced (without proof) a similar result for recursive pro-
grams [9], where it was applied to a practical example. Here we give the full
translation, relying on so-called adaptation rules.

We introduce a translation from proofs of disjoint parallel programs using
auxiliary variables, to proofs that do not. Our proof system uses adaptation rules
instead of Owicki/Gries’ rule for auxiliary variables, and technically relies on
existentially quantifying auxiliary variables in specifications. Thereby, we show
that, contrary to what is suggested in [4], auxiliary variables are not needed for
disjoint parallel programs in the presence of suitable adaptation rules.

For programs with shared variable concurrency, we show that auxiliary vari-
ables are essential, in the sense that the associated rule cannot be replaced by any
set of adaptation rules. This answers the open question by Clarke [6] “whether
there is a proof system similar to the one originally described by Owicki which
does not require the use of history variables” and confirms Kleymann’s intuition
that this is not case [15].

2 Preliminaries

We first fix some notation. Throughout this paper, we consider the usual inter-
pretation of Hoare triples {p} S {q} with respect to partial correctness. We use
a first-order assertion language. Given an assertion p, we denote its free variables
by free(p), substitution of a term t for a variable x in p by p[x := t] and in a term
t′ by t′[x := t]. The variables in a term t are denoted by var(t). For a statement
S (statements will be defined in subsequent sections) we denote by var(S) the
variables occurring in S, and by change(S) the variables that occur on the left-
hand side of an assignment in S. Given a list of variables z̄, the statement (S)z̄
is obtained from S by removing all assignments to variables in z̄ (using skip if S
becomes empty), and z̄|S is the sublist of variables in z̄ that occur in change(S),
i.e., z̄|S = z̄ ∩ change(S). We abuse notation by using set-theoretic operations
on lists, as in the previous line.

2.1 Auxiliary Variables

Auxiliary variables store information about the computation. Formally, they are
defined as follows.

Definition 1. A closed list of auxiliary variables z̄ for a given program is a
sequence of program variables that appear only in assignments of the form u := x,
where u is a variable in z̄.
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The following rule, introduced by Owicki and Gries [20], allows to eliminate
auxiliary variables in order to obtain the intended correctness triple:

{p} S {q}
{p} (S)ū {q} (OG)

where ū is a closed list of auxiliary variables for S, and ū ∩ free(q) = ∅.

2.2 Adaptation Rules

Support for modular reasoning in Hoare logic requires adaptation rules to adapt
the specifications of Hoare triples to a specific context. The simplest example of
an adaptation rule is the usual consequence rule. Adaptation rules are further-
more essential for proof systems about recursive procedures [2]. We briefly recall
several adaptation rules taken from [4] (Fig. 1) and [18] (Rule OLD).

{p} S {q}
{p ∧ r} S {q ∧ r} (INV)

{p} S {q}
{∃l.p} S {q} (∃-IN)

where free(r) ∩ change(S) = ∅ where l �∈ free(q) and l �∈ var(S)

{p} S {q}
{p[l := t]} S {l := t} (SUBST)

p0→p1,{p1} S {q1},q1→q0

{p0} S {q0} (CONS)

where l �∈ var(S) and var(t) ∩ change(S) = ∅

Fig. 1. Adaptation rules

Rule INV provides a basic way to reason about assertions whose truth remains
invariant under execution of S. Rule SUBST instantiates a logical variable. Rule
∃-IN allows weakening preconditions under certain conditions. Figure 2 shows an
example derivation using some of these rules.

{p} S {q} q → ∃z.q
{p} S {∃z.q} (CONS)

{∃z.p} S {∃z.q} (∃-IN)

Fig. 2. Adding existential quantifiers

Definition 2 (Adaptation Completeness). A proof system for a class of
programs (ranged over by S) is adaptation complete if for all p, q, p′, q′: if

∀S. |= {p} S {q} implies |= {p′} S {q′}

then any derivation of {p} S {q} can be extended to a derivation of {p′} S {q′}
(by only adding rule applications to the derivation).

Remark 1. In the definition of adaptation completeness, one usually restricts
to satisfiable correctness triples. Partial correctness avoids this extra condition,
since all correctness triples are satisfiable.
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To obtain an adaptation complete proof system, we use an approach due to
Olderog [18]. Given assertions p, q, r and a sequence of variables x̄, consider the
following assertion:

∀ȳ(∀z̄(p → q[x̄ := ȳ]) → r[x̄ := ȳ]) (1)

where ȳ is a sequence of fresh variables (not occurring in p, q or r) of the same
length as x̄, and z̄ = free(p, q)\{x̄}. The crucial property of the assertion (1) is:

Lemma 1 (Olderog Adaptation Completeness). The assertion (1) is the
weakest assertion w such that |= {w} S {r} for all finitely based state transform-
ers1 S with var(S) = x̄ and |= {p} S {q}.

Proof. See the text above Proposition 4.1 in [18]. ��

We use assertion (1) to define an adaptation rule:

p′ → (∀ȳ(∀z̄(p → q[x̄ := ȳ]) → q′[x̄ := ȳ])) {p} S {q}
{p′} S {q′} (OLD)

with z̄ and ȳ defined as in (1), and x̄ = var(S) the list of program variables.
By Lemma 1 it is straightforward to show that adding Rule OLD yields a

proof system that is adaptation complete. In particular, Rule OLD satisfies the
following two properties (not unexpectedly, given its adaptation completeness).

Lemma 2 (Other Adaptation Rules Redundant). The adaptation rules
given in Fig. 1 are derivable with Rule OLD.

Lemma 3 (Collapsing Consecutive Applications of Rule OLD). Multiple
consecutive applications of Rule OLD can be replaced by a single application.

3 While Programs

While programs form the basic building blocks for all the other classes of pro-
grams defined in the next sections. The syntax of while programs is as follows.

S ::= skip | u := t | S1;S2 | if b then S1 else S2 fi | while b do S od

Figure 3 shows the standard proof system introduced by Hoare [10].
The next theorem shows that we can translate proofs of while-programs that

use auxiliary variables to proofs without. Every rule application in the original
proof is substituted, without having to consider the context of the enclosing
proof, by at most three rule applications in the new proof. The translation is
syntactic (no new loop invariants have to be invented) and fully automatic.

1 Intuitively, a state transformer is finitely based if it reads and writes finitely many
variables. See [18] for a precise definition.
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{p} skip {p} (SKIP)
{p ∧ ¬B} S1 {q},{p ∧ B} S2 {q}
{p} if B then S1 else S2 fi {q} (COND)

{p[u := t]} u := t {p} (ASGN)
{p ∧ B} S {p}

{p} while B do S od {p ∧ ¬B} (LOOP)

{p} S1 {r},{r} S2 {q}
{p} S1;S2 {q} (SEQ)

p0→p1,{p1} S {q1},q1→q0

{p0} S {q0} (CONS)

Fig. 3. Proof system PW

Theorem 1 (Auxiliary Variables Redundant for While Programs). Let
z be a closed list of auxiliary variables for a statement S. There is an effec-
tive translation from any proof in PW + Rule OG of {p} S {q} into a proof of
{∃z̄.p} (S)z̄ {∃z̄.q} in PW.

Proof. The translation is defined by induction on the derivation. We proceed by
a case distinction on the last proof rule applied in the derivation of {p} S {q}.

– Rule SKIP. The desired {∃z.p} skip {∃z.p} follows by Rule SKIP.
– Rule ASGN. Then {p} S {q} has the form {p[u := t]} u := t {p}. First note

that for any assertion p and term t:

(∃u.p[u := t]) → (∃u.p). (2)

Next, we distinguish two cases:
1. u is an auxiliary variable, which implies u ∈ z. Since (u := t)u is skip,

we must find a derivation of {∃z.p[u := t]} skip {∃z.p}. By Rule SKIP we
have {∃z.p[u := t]} skip {∃z.p[u := t]}. Thus the desired result follows
from (2) by an application of Rule CONS.

2. u is a program variable, which entails u 
∈ z and var(t) ∩ z = ∅. Then
{(∃z.p)[u := t]} u := t {∃z.p}, by Rule ASGN, and since u does not occur
in z, by Rule CONS: {∃z̄.p[u := t]} u := t {∃z̄.p}.

– Rule SEQ. Then {p} S1 {r} and {r} S2 {q} are derivable (for some interme-
diate assertion r). The induction hypothesis gives {∃z̄.p} (S1)z̄ {∃z̄.r} and
{∃z̄.r} (S2)z̄ {∃z̄.q}. If (S1)z̄ = skip and (S1;S2)z̄ = (S2)z̄ (when S1 consists
of assignments to auxiliary variables) then the triple {∃z̄.p} (S1;S2)z̄ {∃z̄.q}
follows by Rule CONS (similarly for the case (S2)z̄ = skip and (S1;S2)z̄ =
(S1)z̄). Otherwise {∃z̄.p} (S1;S2)z̄ {∃z̄.q} follows by Rule SEQ.

– Rule COND. Then {p ∧ B} S1 {q} and {p ∧ ¬B} S2 {q} are derivable, and
var(B) ∩ z̄ = ∅ (since auxiliaries do not occur in guards). By the induc-
tion hypothesis: {∃z̄.(p ∧ B)} (S1)z̄ {∃z̄.q} and {∃z̄.(p ∧ ¬B)} (S2)z̄ {∃z̄.q}.
Because var(B)∩z̄ = ∅, applying Rule CONS yields {(∃z̄.p) ∧ B} (S1)z̄ {∃z̄.q}
and {(∃z̄.p) ∧ ¬B} (S2)z̄ {∃z̄.q}. Finally, by applying Rule COND we obtain
{∃z̄.p} (if B then S1 else S2 fi)z̄ {∃z̄.q}.

– Rule LOOP. Then {p ∧ B} S {p} is derivable and var(B) ∩ z̄ = ∅. By the
induction hypothesis: {∃z̄.(p ∧ B)} (S)z̄ {∃z̄.p}. Because var(B) ∩ z̄ = ∅,
applying Rule CONS yields {(∃z̄.p) ∧ B} (S)z̄ {∃z̄.p}. Rule LOOP yields
{∃z̄.p} (while B do S od)z̄ {(∃z̄.p) ∧ ¬B}.
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– Rule CONS. Then p0 → p1 and q1 → q0 are valid, and {p1} S {q1} is deriv-
able. By the induction hypothesis: {∃z̄.p1} (S)z̄ {∃z̄.q1}. Observe that for any
assertion p and q, if p → q is valid, then so is (∃z̄.p) → (∃z̄.p). Hence from
p0 → p1 and q1 → q0 we may deduce (∃z̄.p0) → (∃z̄.p1) and (∃z̄.q1) → (∃z̄.q0).
Applying Rule CONS we obtain the desired {∃z̄.p0} (S)z̄ {∃z̄.q0}

– Rule OG. Then {p} S {q} is derivable, ū is the list of auxiliaries used in the
application of the rule, and q does not contain any variables from ū. Our goal
is to prove {∃z̄.p} ((S)ū)z̄ {∃z̄.q}. Applying the induction hypothesis with ū, z̄
as the auxiliaries yields {∃ūz̄.p} (S)ūz̄ {∃ūz̄.q}. Clearly (∃z̄.p) → (∃ūz̄.p), and
since q does not contain ū we also have (∃ūz̄.q) → (∃z̄.q), thus our goal follows
from Rule CONS. ��

By instantiating Theorem1 to the empty sequence of auxiliaries, we obtain:

Corollary 1 (Auxiliary Variables Redundant for While Programs).
There is an effective translation from any proof in PW + Rule OG of {p} S {q}
into a proof of {p} S {q} in PW.

4 Recursive Programs

Programs with recursive procedures consist of a set of procedure declarations
D = {Pi :: Si | 1 ≤ i ≤ n} and a main-statement S, where Pi is a procedure
name and Si and S are statements extending while-programs (Sect. 3) with:

S ::= Pi

which denotes a call to procedure Pi. The corresponding proof system requires a
new ingredient: recursive procedures are proven correct under a set of assump-
tions about procedures. The assumptions are later discharged in a proof rule for
procedure calls. Consequently, the statements that we derive with the proof sys-
tem are not Hoare triples, but quadruples of the form A 
 {p} D|S {q} where
A is a set of assumptions about the procedures P1, . . . , Pn (i.e. Hoare triples
{pi} Pi {qi}), and D|S is a statement that can use the procedures declared in D
(we omit D if it is clear from the context). Formally this requires adding sets of
assumptions to all proof rules for while-programs given in Fig. 3, but since these
changes are obvious (the rules are independent of the assumptions and do not
manipulate them), we omit them. Two rules are introduced for reasoning about
calls (Fig. 4). Rule ASMP shows how we can use the assumptions. Rule CALL
discharges the assumptions, provided that we can prove the procedure body Si

and the main-statement S using them. Besides these two new rules, to obtain
a complete proof system, it turns out that the adaptation rules introduced in
Sect. 2 (with additionally a set of assumptions) are also needed [2]. This leads
us to the following formal definition of the proof system.

Definition 3 (Proof System for Recursion). Proof system PR consists of

– The rules in Fig. 4,
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A 	 {p} D|S {q} (ASMP)
if ({p} D|S {q}) ∈ A

A�{pi} D|Si {qi} for i=1,...,n A�{p} D|S {q}
�{p} D|S {q} (CALL)

where D = {Pi :: Si | 1 ≤ i ≤ n}

Fig. 4. New proof rules in proof system PR

– The rules from PW (Fig. 3) under a set of assumptions,
– The adaptation rules (Fig. 1) under a set of assumptions.

For recursive programs, the definition of change(. . .) is extended in the obvi-
ous way: change(D|S) is the set of variables changed in S or any of the procedures
called by S (declared in D). Along the same lines, z̄|(D|S) is the sublist of vari-
ables from z̄ changed by S or the procedures called by S. Furthermore, (D|S)z̄
is the program obtained from the statement S and procedure declarations D by
removing all assignments to variables in z̄ from S and the procedure bodies in
D. The next definition uses these concepts to translate specifications.

Definition 4 (Translating Specifications).Given a set of nHoare triplesA =
{{pi} Si {qi} | i = 1, . . . , n} and a closed list of auxiliary variables z̄, we define
the translation TRANS(A, z̄) by A = {{∃z̄|(D|Si).pi} (D|Si)z̄ {∃z̄|(D|Si).qi} | i =

1, . . . , n}.

The above translation requires no creativity to find appropriate procedure
specifications; it can be performed fully mechanically. Using the new specifica-
tions, the below theorem shows that auxiliary variables can be avoided in proofs,
deleting the auxiliaries from the main statement and all procedure bodies.

Theorem 2 (Removing Auxiliaries). Let z̄ be a closed list of auxiliary vari-
ables for a recursive program D|S. There is an effective translation from any
proof in PR + Rule OG of A 
 {p} D|S {q} into a proof of TRANS(A, z̄) 

{∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q} in PR.

Proof. The translation is defined by induction on the derivation, with a case
analysis on the last proof rule applied in the derivation of A 
 {p} D|S {q}. For
readability we omit D if it is clear from the context.

– Rule SKIP. We need to prove {∃z̄|skip.p} skip {∃z̄|skip.p} which is trivial,
since z̄|skip is empty.

– Rule ASGN. Then {p} S {q} has the form {p[u := t]} u := t {p}, and we need
to give a proof of {∃z̄|u:=t.[u := t]} u := t {∃z̄|u:=t.p}. If u ∈ z̄ then z̄|u:=t = u
and {∃u.p[u := t]} skip {∃u.p} is derived as in the proof of Theorem 1. If u 
∈ z̄
then z̄|u:=t is empty, so no translation is necessary.

– Rule SEQ. Then {p} S1 {r} and {r} S2 {q} are derivable. By the induction
hypothesis, we get {∃z̄|S1 .p} (S1)z̄ {∃z̄|S1 .r} and {∃z̄|S2 .r} (S2)z̄ {∃z̄|S2 .q}.
Now since change(Si) ⊆ change(S1;S2) and z̄ ∩ (S1;S2)z̄ = ∅, by Fig. 2
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we get {∃z̄|S1;S2 .p} (S1)z̄ {∃z̄|S1;S2 .r} and {∃z̄|S1;S2 .r} (S2)z̄ {∃z̄|S1;S2 .q}. If
(S1)z̄ = skip and (S1;S2)z̄ = (S2)z̄ (when S1 consists of assignments to
auxiliary variables) then {∃z̄|S1;S2 .p} (S1;S2)z̄ {∃z̄|S1;S2 .q} follows by Rule
CONS (similarly for the case (S2)z̄ = skip and (S1;S2)z̄ = (S1)z̄). Otherwise,
{∃z̄|S1;S2 .p} (S1;S2)z̄ {∃z̄|S1;S2 .q} follows by Rule SEQ.

– Rule COND, LOOP and CONS are treated similarly to the proof of Theorem1.
For COND we use Fig. 2 in the same way as in the above treatment of SEQ
to extend the proofs of {∃z̄|Si

.pi} (Si)z̄ {∃z̄|Si
.qi} for i ∈ {1, 2} that come

from the induction hypothesis to proofs of {∃z̄|S .pi} (S)z̄ {∃z̄|S .pi} where
S = if B then S1 else S2 fi.

– Rule INV. Then {p} S {q} is derivable, and r is an assertion with free(r) ∩
change(S) = ∅. By the induction hypothesis we infer {∃z̄|S .p} (S)z̄ {∃z̄|S .q}.
Applying the invariance rule gives {(∃z̄|S .p) ∧ r} (S)z̄ {(∃z̄|S .q) ∧ r}. Since
z̄|S and free(r) are disjoint, we have for any assertion p: (∃z̄|S .p ∧ r) ↔
((∃z̄|S .p) ∧ r), thus Rule CONS yields {∃z̄|S .p ∧ r} (S)z̄ {∃z̄|S .q ∧ r}.

– Rule ∃-IN. Then {p} D|S {q} is derivable and l does not occur in S, D and
q. The induction hypothesis gives us {∃z̄|S .p} (D|S)z̄ {∃z̄|S .q}. Since l also
does not occur in (D|S)z̄ we apply Rule ∃-IN: {∃l.∃z̄|S .p} (D|S)z̄ {∃z̄|S .q}.
Finally, the consequence rule gives {∃z̄|S .∃l.p} (D|S)z̄ {∃z̄|S .q}.

– Rule SUBST. Then {p} D|S {q} is derivable, l does not occur in D or S and
var(t) ∩ change(S) = ∅. By the ind. hypothesis: {∃z̄|S .p} (D|S)z̄ {∃z̄|S .q}.
From Rule SUBST: {(∃z̄|(D|S).p)[l := t]} (D|S)z̄ {(∃z̄|(D|S).q)[l := t]}. Since
z̄|(D|S) only contains variables that are changed, it is disjoint from l and
var(t), thus for any formula p we have the equivalence (∃z̄|(D|S).p)[l := t] ↔
(∃z̄|(D|S).p[l := t]). Hence, Rule CONS gives the desired correctness formula
{∃z̄|(D|S).p[l := t]} (D|S)z̄ {∃z̄|(D|S).q[l := t]}.

– Rule ASMP. Then ({p} D|S {q}) ∈ A. The definition of TRANS(A, z̄)
implies that ({∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q}) ∈ TRANS(A, z̄). Therefore
TRANS(A, z̄) 
 {∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q} follows from Rule ASMP.

– Rule CALL. Then A 
 {pi} D|Si {qi} for i = 1, . . . , n and A 
 {p} D|S {q}
are derivable. The induction hypothesis gives us TRANS(A, z̄) 

{∃z̄|(D|S).pi} (D|Si)z̄ {∃z̄|(D|S).qi} for i = 1, . . . , n, and TRANS(A, z̄) 

{∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q}. Thus we can apply Rule CALL to obtain
the desired 
 {∃z̄|(D|S).p} (D|S)z̄ {∃z̄|(D|S).q}.

– Rule OG. Then {p} S {q} is derivable, ū is the list of auxiliaries used in the
application of the rule, and q does not contain ū. Our goal is to prove

{∃z̄|(S)ū .p} ((S)ū)z̄ {∃z̄|(S)ū .q}.

An application of the induction hypothesis with ū, z̄ as the auxiliaries gives
us {∃ūz̄|S .p} (S)ūz̄ {∃ūz̄|S .q}. Since change((S)ū) ⊆ change(S) we have
(∃z̄|(S)ū .p) → (∃ūz̄|S .p). Since q does not contain ū we also have (∃ūz̄|S .q) →
(∃z̄|(S)ū .q), thus our goal follows from Rule CONS. ��

Example 1. In [9], we proved the correctness of two sorting algorithms: Counting
sort and Radix sort. Radix sort relies on an external sorting algorithm (Counting
sort, for instance), and for its correctness it is crucial that the external sorting
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algorithm is stable, which means that equal elements in the input array appear
in the same order in the output array. We formalized stability using an auxiliary
array variable idx that keeps track of the original index in the input array of
each element in the output array. This proves correctness with respect to an
external (stable) sorting algorithm that updates idx appropriately. We would like
to apply Theorem 2 (which appeared in a slightly different form in [9], without
proof) to eliminate idx from the program, showing that Radix sort is correct
whenever the external sorting algorithm is stable (without having to update idx ).
This is almost possible; the only small technical issue is that we assumed our
assertion language to be first-order, while the translation of Theorem 2 relies on
existentially quantifying the auxiliary (array) variable idx , thus we need second-
order quantification. We leave a careful treatment of eliminating auxiliary array
variables for future work.

From Theorem 2, we obtain an analogue of Corollary 1 for recursion.

Corollary 2 (Auxiliary Variables Redundant for Recursive Pro-
grams). There is an effective translation from any proof in PR + Rule OG
of A 
 {p} D|S {q} into a proof of A 
 {p} D|S {q} in PR.

5 Disjoint Parallel Programs

The syntax of disjoint parallel programs extends the syntax of while programs
with a parallel operator:

[S1|| . . . ||Sn]

for any n ≥ 2, syntactically restricted to statements S1, . . . , Sn that are disjoint,
which means that change(Si) ∩ var(Sj) = ∅ for all i, j ∈ {1, . . . , n} with i 
= j.

The semantics of the parallel operator is modeled as usual by interleaving.
The main proof rule for dealing with the parallel operator is as follows [4,11]:

{pi} Si {qi} for i = 1 . . . n
{
∧n

i=1 pi} [S1|| . . . ||Sn] {
∧n

i=1 qi}
(PDJ)

where for all i, j with i 
= j: free(pi, qi) ∩ change(Sj)) = ∅.
Adding the above Rule PDJ to PW does not yield a satisfactory proof system,

as shown by the next result (Exercise 7.9 in [4]).

Theorem 3 (Incompleteness of PW + Rule PDJ). The triple

{x = y} [x := x + 1||y := y + 1] {x = y}

is not provable in PW + Rule PDJ.

Proof. Suppose for a contradiction that {x = y} [x := x + 1||y := y + 1] {x = y}
has a proof. This proof must include an application of Rule PDJ:

{p1} x := x + 1 {q1} {p2} y := y + 1 {q2}
{p1 ∧ p2} [x := x + 1||y := y + 1] {q1 ∧ q2}

(3)
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The only possible way that the proof can continue is by an application of
Rule CONS, so the formulas below must be valid:

x = y → p1 ∧ p2 , (4)
q1 ∧ q2 → x = y . (5)

By the premise of the rule application (3), we have

pi → qi[x := x + 1] for i ∈ {1, 2} . (6)

In particular, we have p1[x := y] → q1[x := y + 1]. But p1[x := y] is valid by (4),
and thus

q1[x := y + 1]

is valid. Instantiating y to x − 1 then yields the validity of q1.
In a similar way, we derive the validity of q2. But this means that q1 ∧ q2 is

equivalent to true, which contradicts (5). ��

The incompleteness result of Theorem 3 was introduced in [4] as a motivation
for auxiliary variables.

Example 2. To see the use of auxiliary variables for disjoint parallel programs,
we recall from [4] a proof of the triple {x = y} [x := x + 1||y := y + 1] {x = y}
that uses an auxiliary variable together with Rule OG. Given a fresh variable z
(i.e., x 
= z and y 
= z), the correctness triples

{x = z} x := x + 1 {x = z + 1} and {y = z} y := y + 1 {y = z + 1}

are proved by Rule ASGN. Using Rule PDJ we get

{x = z ∧ y = z} [x := x + 1||y := y + 1] {x = z + 1 ∧ y = z + 1}.

Now, consider the assignment z := x. Using Rule ASGN (and a simple application
of Rule CONS) we get {x = y} z := x {x = z ∧ y = z} and, using Rule SEQ:

{x = y} z := x; [x := x + 1||y := y + 1] {x = z + 1 ∧ y = z + 1}

from which we derive

{x = y} z := x; [x := x + 1||y := y + 1] {x = y}

by Rule CONS. Since z does not appear in the postcondition x = y, we may use
Rule OG to obtain {x = y} [x := x + 1||y := y + 1] {x = y}.

It turns out that auxiliary variables are not necessary in the presence of
suitable adaptation rules. This is shown by the next result, which generalizes
the translation given in Theorem1 to disjoint parallel programs.

Theorem 4 (Auxiliary Variables Redundant for Disjoint Parallelism).
Let z̄ be a closed list of auxiliary variables occurring in a disjoint parallel program
S. There is an effective translation from any proof in PW + Rules PDJ and OG
of {p} S {q} into a proof of {∃z̄|S .p} (S)z̄ {∃z̄|S .q} in PW + Rules PDJ, ∃-IN.
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Proof. The proof is by induction on the derivation, similar to that of Theorem2.
The only remaining case (not treated in the proof of Theorem2) is Rule PDJ.

– Rule PDJ. Then {pi} Si {qi} is derivable for i ∈ {1, . . . , n}, and Rule PDJ is
applied to get {

∧n
i=1 pi} [S1|| . . . ||Sn] {

∧n
i=1 qi}. By the induction hypoth-

esis we have proofs of {∃z̄|Si
.pi} (Si)z̄ {∃z̄|Si

.qi} for i ∈ {1, . . . , n}. Let
S = [S1|| . . . ||Sn]; by Fig. 2 we obtain proofs of {∃z̄|S .pi} (Si)z̄ {∃z̄|S .qi} for
i ∈ {1, . . . , n}. Now applying Rule PDJ yields

{
∧n

i=1
(∃z̄|S .pi)} (S)z̄ {

∧n

i=1
(∃z̄|S .qi)} . (7)

For any z ∈ z̄|S , we have that z appears in exactly one of the Si’s, since
the component programs are disjoint; say, in Si. By the side-condition of the
application of Rule PDJ in the original proof, we know that this means that
z does not appear in any qj with j 
= i. Therefore, we have the implication

(
n∧

i=1

∃z̄|S .qi) → ∃z̄|S .
n∧

i=1

qi.

Moreover, there is the easy implication (∃z̄|S .
∧n

i=1 pi) →
∧n

i=1(∃z̄|S .pi).
By (7), these two implications and Rule CONS, we conclude

{∃z̄|S .
∧n

i=1
pi} (S)z̄ {∃z̄|S .

∧n

i=1
qi}

as desired. ��

Similar to the case of while and recursive programs, we obtain:

Corollary 3 (Auxiliary Variables Redundant for Disjoint Parallelism).
There is an effective translation from any proof in PW + Rules PDJ, OG of
{p} S {q} into a proof of {p} S {q} in PW + Rules PDJ, ∃-IN.

Example 3. We apply the translation of Theorem4 to the proof of Example 2,
choosing the empty sequence of auxiliaries (since there is no auxiliary to remove
from the correctness triple we want to prove). The last rule application in that
proof is Rule OG, which is translated to an application of Rule CONS:

{∃z(x = y)} [x := x + 1||y := y + 1] {∃z(x = y)}
{x = y} [x := x + 1||y := y + 1] {x = y} (CONS)

The proof of the correctness triple in the premise is a translation of the original
proof of {x = y} z := x; [x := x + 1||y := y + 1] {x = y} where the single vari-
able z is chosen as the sequence of auxiliaries that are to be eliminated. It thus
concludes with the translation of Rule CONS, with the premise (in the translated
proof):

{∃z(x = y)} [x := x + 1||y := y + 1] {∃z(x = z + 1 ∧ y = z + 1)} .
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This, in turn, arises from the translation of Rule SEQ, which concludes with
an application of Rule CONS (since the assignment z := x is eliminated), with
premises:

∃z(x = y) → ∃z(x = z ∧ y = z) and (8)

{∃z(x = z ∧ y = z)} [x := x + 1||y := y + 1] {∃z(x = z + 1 ∧ y = z + 1)} (9)

where (9) is derived from

{x = z ∧ y = z} [x := x + 1||y := y + 1] {x = z + 1 ∧ y = z + 1}

using Fig. 2 (in the translation of Rule SEQ). The translated proof of the latter
triple is the same as that of the original (see Example 2) since z does not appear
in the statement.

6 Parallel Programs with Shared Variables

Parallel programs extend while-programs with a parallel operator [S1|| . . . ||Sn]
for every n > 1 and an atomic region operator 〈S〉. Contrary to disjoint parallel
programs considered in the previous section, here we make no assumptions on the
statements appearing in [S1|| . . . ||Sn]; in particular, this allows shared variables
between different Si’s. For instance, in the current setting, we allow the program

[x := x + 2||x := 0] (10)

but the arguments of the parallel operator are not disjoint.
For the atomic region, we have the following rule:

{p} S {q}
{p} 〈S〉 {q} (AT)

To reason about parallel composition, we use the notion of non-interference.
Intuitively it expresses when an assertion is preserved by a given proof.

Definition 5 (Non-interfering Proofs). A proof of {p} S {q} does not inter-
fere with a proof of {p′} S′ {q′} if for all assertions r occurring outside of an
atomic region in {p′} S′ {q′} and any sub statement T of S occurring outside an
atomic region, we have {pre(T ) ∧ r} T {r}, for any assertion pre(T ) occurring
as a precondition of T in the proof of {p} S {q}.

The proof rule for the parallel operator is:

Non-interfering proofs of {pi} Si {qi} for i = 1 . . . n
{
∧n

i=1 pi} [S1|| . . . ||Sn] {
∧n

i=1 qi}
(PSV)

In [4] the premise of Rule PSV is formulated in terms of proof outlines. We refer
to [4] for soundness and more details of these rules.
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The proof system PW together with the above Rules PSV, AT is incomplete
for the validity of correctness triples involving parallel programs with shared
variables. Indeed, in [4, Lemma 8.6] it is shown that the triple

{true} [x := x + 2||x := 0] {x = 0 ∨ x = 2}

is not provable using only PW + Rules PSV, AT. It is then shown that the above
triple is provable using auxiliary variables together with Rule OG. In fact, the
proof system PW + Rules PSV, AT, OG is complete [19].

One might expect that, similar to the treatment of disjoint parallelism in
the previous section, we can again replace the rule for elimination of auxiliary
variables by adaptation rules, while preserving completeness. However, as we
show below in Theorem 5, that approach does not work: the proof system PW +
Rules PSV, AT remains incomplete even with the addition of arbitrary adap-
tation rules. As explained in Sect. 2, the notion of “arbitrary adaptation rules”
is captured precisely by adaptation completeness. Therefore, we use Rule OLD,
which is adaptation complete for finitely based state transformers. (Whether it is
adaptation complete for our parallel programs is open. Finitely based state trans-
formers may be a larger class of programs than our parallel programs. Hence,
for disjoint parallel programs there may be an adaptation rule which is stronger
than Rule OLD.)

Theorem 5 (Auxiliaries Needed for Shared Variable Parallelism). The
triple

{true} [x := x + 2||x := 0] {x = 0 ∨ x = 2}
is not provable in PW + Rules AT, PSV, OLD.

Proof. Assume that {true} [x := x + 2||x := 0] {x = 0 ∨ x = 2} has a proof in
PW + Rules AT, PSV, OLD. We show that this leads to a contradiction. The
proof must include an application of Rule PSV:

{p1} x := x + 2 {q1} {p2} x := 0 {q2}
{p1 ∧ p2} [x := x + 2||x := 0] {q1 ∧ q2}

(PSV)
(11)

where the proofs of {p1} x := x + 2 {q1} and {p2} x := 0 {q2} are interference
free. By Lemmas 2 and 3 we can assume without loss of generality that the proof
then concludes immediately, with a single application of Rule OLD:

true → ∀y(∀z̄(p1 ∧ p2 → (q1 ∧ q2)[x := y]) → y = 0 ∨ y = 2)
{p1 ∧ p2} [x := x + 2||x := 0] {q1 ∧ q2}

{true} [x := x + 2||x := 0] {x = 0 ∨ x = 2} (OLD)

with z̄ = free(p1, p2, q1, q2)\{x}. Instantiating the first premise with x = 2, y = 4
implies ∀z((p1 ∧ p2)[x := 2] → (q1 ∧ q2)[x := 4]) → false, which is equivalent to

∃z̄(p1[x := 2] ∧ p2[x := 2] ∧ ¬(q1 ∧ q2)[x := 4]). (12)

As we will see below, this leads to a contradiction with the side conditions and
premises of the application (11), which we list first. Validity of the premises
implies
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1. p1 → q1[x := x + 2] and
2. p2 → q2[x := 0].

and the interference freedom conditions amount to the validity of

3. p1 ∧ p2 → p1[x := 0],
4. p1 ∧ p2 → p2[x := x + 2],
5. q1 ∧ p2 → q1[x := 0] and
6. q2 ∧ p1 → q2[x := x + 2].

(Note that z̄ may occur in p1, p2, q1 or q2 and is implicitly universally quantified.)
By (12) we may choose a valuation for z̄ under which the following formulas hold:

7. p1[x := 2],
8. p2[x := 2] and
9. ¬(q1 ∧ q2)[x := 4].

Together with the above validities, we derive (under the same valuation):

10. q1[x := 4] (by 1, 7),
11. q2[x := 0] (by 2, 8),
12. p1[x := 0] (by 3, 7, 8),
13. q2[x := 2] (by 6, 11, 12),
14. q2[x := 4] (by 6, 7, 13) and
15. (q1 ∧ q2)[x := 4] (by 10, 14).

But 9 is in contradiction with 15 (note that we do not use 4 and 5). ��

Remark 2. Theorem 5 strengthens [4, Lemma 8.6]: the latter is an incomplete-
ness result for PW + Rules AT, PSV, CONS, but Rule CONS is subsumed by
Rule OLD (see Sect. 2.2). For the proof system that includes OLD, the proof of
[4, Lemma 8.6] immediately breaks, since it relies on the assumption that, in the
proof assumed for a contradiction, the last applied rule is Rule CONS. In the
presence of Rule OLD this assumption no longer holds, requiring a new proof.

Remark 3. Kleymann considers adaptation-complete proof systems for partial
and total correctness of parallel programs in [14,15]. In fact, the technical
report [14] contains a proof of the program in Theorem5, directly contradict-
ing the theorem; however, the proof in [14] is invalid, neglecting crucial non-
interference conditions in the application of Rule PSV. It does not appear in [15].

Table 1. Main results

Class of programs Proof system with auxiliaries Proof system without auxiliaries

While PW + Rule OG PW

Recursion PR + Rule OG PR

Disjoint parallel PW + Rules PDJ, OG PW + Rules PDJ, ∃-IN
Parallel (shared var.) PW + Rules AT, PSV, OG auxiliaries needed
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7 Conclusion and Future Work

We have shown that for while programs, recursive programs and disjoint parallel
programs, auxiliary variables are not needed and can be avoided using adaptation
rules. We presented concrete translations of proofs, which means that no new
method contracts and invariants need to be invented. The size of the produced
proofs is linear in terms of the original proofs. For parallel programs with shared
variables, auxiliary variables are essential. Table 1 summarizes the main results.

It would be interesting to investigate the rôle of auxiliary variables for other
classes of programs. One such class is programs that combine disjoint parallelism
with recursion (cf. [17]). Of particular interest are object-oriented programs. A
technical challenge there is that a naive translation of proofs that use fields as
auxiliary variables introduces second-order quantification (over functions).

As Frank de Boer has experienced, separation logic [21] has emerged as the
prime formalism for program correctness. We invite Frank to join us in our effort
to extend our results to separation logic.
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Abstract. The paper describes two perspectives on a verification app-
roach for Paradigm, a coordination modeling language specifying an archi-
tecture in terms of components and their collaborations. One perspective
concentrates on a single collaboration: per collaboration, properties can
be derived through a small set of proof rules. The other perspective con-
centrates on dynamic dependencies between collaborations: guided by the
architecture and driven by shared components behavioral properties of
the complete model can be established. Two Paradigm models, a paral-
lel assignment and a linear pipeline of workers and buffers, illustrate the
approach.

1 Introduction

Investigation of all kinds of parallel phenomena, such as communication, interac-
tion, concurrency, collaboration and cooperation, arising inside as well as around
ICT, has led to the development of the coordination language Paradigm. Most
characteristic for Paradigm are its two notions of phase and trap: phase for
a dynamic temporary constraint on currently possible process behavior; trap,
within a phase, for a further dynamic constraint on the behavior for as long as
the phase constraint remains imposed.

Phases and traps are the key ingredients to specify the coordination of com-
ponents. Paradigm is organized such that consistency between group behavior of
elaborating components described at their coordination level and separate com-
ponent behavior decribed at the lower level is guaranteed. Based on phases and
traps, mutual behaviour can be understood, specified and organized and their
coordination can be designed and analyzed, see e.g. [3].

In the 90’s Paradigm has been used for modeling software processes resulting
in a combination of object-orientation and Paradigm, see e.g. [7,11]. Later Par-
adigm was gradually tuned to model self-adaptation as well, see e.g. [4,6]. The
way we do this is by treating self-adaptation as a special form of normal on-the-
fly coordination, be it originally unforeseen, which comes down to just-in-time
foreseen coordination.

So far, formal analysis of Paradigm models has been done via model check-
ing, in particular using mCRL2 and Prism, see [1–4]. But we have the strong
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 242–260, 2016.
DOI: 10.1007/978-3-319-30734-3 17
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impression, that it is possible to take advantage of Paradigm’s modeling focus
on collaboration of components rather more substantially. Here we put first steps
into this direction and investigate a verification approach to Paradigm which on
the one hand considers ‘correctness formulas’ capturing the interaction of a small
group of components, and on the other hand distills behavioral properties of the
total architecture from such formulas, thus exploiting the way the overall system
is actually composed.

Compositional proof systems reduce the verification of a system to simpler,
independent verification of its constituents. There are many choices of what con-
stitutes a system: parallel components are an obvious one [12], but also concepts
from object-orientation like class or subclass qualify [10]. We consider paral-
lelism. As described in [13], a compositional proof system can be devised by
including interference information in the specification of the components. The
next step is then to split specifications in two parts, pertaining to the envi-
ronment respectively to the component, conform rely-guarantee approaches as
initiated in [9]. For Paradigm, the rules that govern a collaboration join the ‘rely’
and ‘guarantee’: a component engaged guarantees to restrict to the behavior that
is committed to while relying on other components to behave accordingly.

In this paper we present a formalism to express properties of components
and also of subsystems in a compositional manner. Moreover, the approach uses
Rely/Guarantee ideas. In Paradigm a component consists of an STD, with its
possible collaborations denoted at the level of and in terms of phases and traps:
collaboration intentions. A system is constructed out of components and consis-
tency rules. Consistency rules are specified in terms of the collaboration inten-
tions denoting the allowed collaborations. Note, composition in Paradigm is not
provided in a fixed manner, by combinators like sequential of parallel composi-
tion, but more flexibly: it is determined by the consistency rules. An execution
trace then starts in a certain configuration and, by applying a sequence of con-
sistency rules, it leads to another configuration. Our formalism exploits this
by expressing properties as triples of a description of starting configurations, a
sequence of consistency rules, and a description of end configurations.

We firstly consider properties of one component that may be involved in
several collaborations simultaneously. For this case we provide compositional
derivation rules to compose properties, enabling to combine properties for sep-
arate components as well as for shuffling sequences. Secondly, we extend the
description to combinations of subsystems, each consisting of several compo-
nents. The format to express properties remains essentially the same, but is
used in a more general manner: both the configurations and the consistency
rules may now pertain to different subsystems. We do not yet have proof rules
to formally derive that such a combination of subsystems satisfies a specifica-
tion, but we do propose a method to argue the satisfaction of a specification of
a complete system by the combination of properties of the constituting compo-
nent groups. The approach can, in the component case, be viewed as being of
Rely/Guarantee nature in the sense that the consistency rules both determine
what the component will rely on and what it will provide, but also what the
environment will rely on and what it will provide. In the case of the subsystems,
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a Rely/Guarantee relation between components (now from different subsystems)
can additionally be expressed in the description of the configurations.

In order to highlight the mainstay underlying our approach, on the one hand
a formalism and proof rules to express and derive properties of the collaboration
within a subsystem, and on the other hand the combination of such properties
to prove global system properties, the paper is structured as follows: Sect. 2 pro-
vides an introduction to Paradigm and discusses a small model for the parallel
assignment example. Section 3 introduces triples ϕ [Ω ]ψ to express collabora-
tion properties and gives basic proof rules to fuse triples concerning a group of
components. A larger Paradigm model, concerning a linear pipeline of workers
and buffers, is described in Sect. 4. Finally, in Sect. 5, we prove a property for
the complete pipeline based on the analysis of smaller collaborations.

Acknowledgment. The authors, all present and former colleagues of Frank
de Boer at TU/e, VU Amsterdam, Leiden University, and CWI, acknowledge
inspiring discussions with Frank on semantics, proof theory, object-orientation,
and many other topics in computer science and beyond.

2 A Paradigm Primer

The coordination modeling language Paradigm addresses coordination of inter-
acting components. At the component level, detailed state transition diagrams
specify the local, independent behavior of each individual component. At the
coordination level, global roles specify the potential activity of a single compo-
nent within a collaboration, while consistency rules describe the synchronization
of the actual interaction of a group of collaborating components as a whole. In
more detail, component interaction in Paradigm is specified through eight coher-
ent definitions, see also [4]. Interaction is between sequentially defined component
behaviour specified through state transition diagrams.

1. An STD Z (state-transition diagram) is a triple Z = 〈ST, AC, TR〉 with ST the
set of states, AC the set of actions and TR ⊆ ST×AC×ST the set of transitions
of Z; notation x

a−→ x′ is used for a transition (x, a, x′) ∈ TR.

To keep track of an STD’s actual running, we define

2. A computation κ of an STD Z = 〈ST, AC, TR〉 is a finite or infinite string
κ = x0

a1−−→ x1
a2−−→ x2

a3−−→ . . . with xi−1
ai−−→ xi ∈ TR for all indices i � 1

from κ. State x0 is called the starting state of computation κ. In case of a
finite computation κ, the string ends with a state: x0

a1−−→ x1
a2−−→ . . .

an−−→ xn

and such a state xn is called the final state of κ.

Although time will remain implicit, it is assumed any transition is zero-time
consuming. In addition we call a state xi occurring in a computation κ the
current state at the moment transition xi−1

ai−−→ xi occurs as well as at all later
moments until (but not including) the next transition xi

ai+1−−−→ xi+1 occurs.
Built on the notion of STDs, Paradigm has four key notions: (i) phase,

(ii) trap, (iii) role, and (iv) consistency rule. See items 3, 4, 6, and 7 below.
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During collaboration a component gets influenced through a temporary con-
straint imposed on it from “elsewhere”: a phase, which restricts a component
to a sub-STD of the ongoing STD for a while. Similarly, during collaboration
an ongoing STD contributes information towards the same “elsewhere” about
progress within the phase: a trap, being a non-empty subset of the states of a
phase which, as a subset, cannot be left as long as the phase remains imposed.
As will get clear below, the “elsewhere” is the protocol regulating phase transfers
on the basis of traps entered. Formally we have

3. A phase S of an STD Z = 〈ST, AC, TR〉 is an STD S = 〈st, ac, tr〉 such that
st ⊆ ST, ac ⊆ AC and tr ⊆ {(x, a, x′) ∈ TR | x, x′ ∈ st, a ∈ ac}.

4. A trap t of a phase S = 〈st, ac, tr〉 of STD Z is a non-empty set of states
t ⊆ st such that x ∈ t and x

a−→ x′ ∈ tr imply x′ ∈ t. If t = st, the trap
is called trivial. A trap t of phase S of STD Z connects phase S to a phase
S′ = 〈st′, ac′, tr′〉 of Z if t ⊆ st′. Such trap-based connectivity between two
phases of Z is called a phase transfer and is denoted as S

t−→ S′.

Thus a trap (of a phase) entered can be seen as a further constraint, where
the STD commits to stay within that phase, allowing ‘synchronization’ at the
coordination level to occur safely. Here ‘committing’ actually results from the
behaviour-restricting effect of that phase: within the context of the phase, enter-
ing this trap of it means that a certain amount of progress has been established
within the phase, a kind of final stage within the phase. Quite specifically, as
long as the phase continues to be imposed, that progress cannot be undone since
within the phase it is a trap of, the trap cannot be left.

Figure 1 visualizes three STDs, to be discussed in more detail later. Please
note, starting and final states are indicated in UML 2.0 style: parts (a,b) have
their starting states at the top and they have their final states at the bottom;
part (c) has “x = 0” as its starting state and doesn’t have a final state indicated.

Figure 2 parts (a,c,e) visualize three sets (so-called partitions) of phases and
traps, one such set per STD from Fig. 1. One should observe, each phase from
part (a) is a (carefully) shrunken fragment from STD P1; per phase, one trap
is indicated by a red rectangle (a red polygon in general); part (c) has phase
PhX0 containing many disjoint traps; it also has phase PhX1 with one trap ξ1
containing all states, so trap ξ1 is trivial. In this figure every smallest possible
trap, containing one state, corresponds to maximal progress; in general, a trivial
trap corresponds to no particular progress yet, but within concrete phase PhX1

this doesn’t mean anything special, as there cannot be any progress at all. Con-
trarily (and this is common for most Paradigm models), Fig. 4 to be discussed
in Sect. 4 presents examples of nontrivial traps which are relatively large and
expressing progress in between “no progress yet” and “maximal progress”: traps
doneT, doneG, notFull, nonEmpty, readyC and readyP. It is the intuitive idea of
measuring “sufficient progress” within a phase through keeping track of entering
a particular trap, that paves the way to connecting traps, to phase transfers and
from there to role dynamics as global STDs.

If a trap of a phase is moreover connecting to another phase, meaning that all
states of the trap are states of the other phase too (but not necessarily a trap of
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it), the other phase is a possible candidate for being imposed next. This applies
only after sufficient progress within the previous phase has occurred, i.e. after
that connecting trap has indeed been entered. The trap being connecting, such a
phase transfer from the old phase to the new phase will be sufficiently ‘smooth’:
The restrictions of the old phase are being withdrawn, the restrictions of the
new phase are being imposed, without an immediate need to change the current
state. Thus, when changing the old phase to the new, the current state doesn’t
have to change before a transition (in accordance with the new phase imposed)
can occur: Whatever that current state may be, it must as yet belong to the
particular connecting trap used for the phase transfer. So from then on, steps
are being taken according to the new phase imposed. In particular this means
that any two subsequent phases of the same STD, must have a non-empty set
of states in common, because a connecting trap is non-empty by definition.

A role, yet another STD, specifies the dynamics of phases and of connecting
traps which can be used for a phase transfer. Thus, a role STD of an ordinary
STD has phases of the ordinary STD as states and has connecting traps between
these phases as transition labels. A partition is the set of phases and their traps
underlying a role.

5. A partition π = {(Si, Ti) | i ∈ I} of an STD Z = 〈ST, AC, TR〉, I a non-empty
index set, is a set of pairs (Si, Ti) consisting of a phase Si of Z and of a set Ti

of traps of Si.
6. A role Z(π) at the level of a partition π = {(Si, Ti) | i ∈ I} of an STD

Z = 〈ST, AC, TR〉 is an STD Z(π) = 〈ŜT, ÂC, T̂R〉 with ŜT ⊆ {Si | i ∈ I},
ÂC ⊆

⋃
i∈I Ti and T̂R ⊆ {Si

t→ Sj | i, j ∈ I, t ∈ ÂC} a set of phase transfers.
Z is called the detailed STD underlying global STD Z(π), being role Z(π).

Loosely speaking, coordination of component activity takes place at the level
of the global or role STDs, while component computation takes place in the
component’s detailed STD itself. Such coordination exerts a combined and vary-
ing constraining effect on ongoing component computations, but always on the
basis of relevant progress information provided by these components. A local
computation step is allowed only if permitted by all current phases imposed; a
‘coordination’ step is enabled only if all collaborators have entered the relevant
trap. By requiring traps to be connecting between phases, Paradigm syntacti-
cally guarantees vertical dynamic consistency between an ongoing STD and any
of its likewise ongoing roles, see [3].

With respect to the three roles in parts (b,d,f) of Fig. 2, it is relevant to note
that traps labeling a phase transfer are indeed connecting “from the previous
phase to the next phase”, i.e. from the old constraint imposed to the new con-
straint imposed via the connecting trap, thus guaranteeing smoothness of phase
transfer in case of specific progress within the old phase.

Finally, a consistency rule synchronizes role steps from different roles in the
collaboration. Such a rule can be seen as a protocol step, a coordination step
belonging to the collaboration. All such protocol steps together then constitute
the full protocol for the collaboration, and the dynamics of such a protocol
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consist of its subsequent protocol steps taken, i.e. of consistency rules being
applied. More precisely: a group of consistency rules constitutes a protocol if
all roles mentioned in the consistency rules from that group are not mentioned
in consistency rules not from that group. In this way we can structurally and
behaviorally separate collaborations from each other, as each collaboration has
its own protocol, i.e. refers to a specific set of roles and of consistency rules.

7. A consistency rule � for an ensemble of roles Z1(π1), . . . , Zk(πk) is a syn-
chronization of one or more phase transfers from roles in the ensemble. A
consistency rule � is denoted as a nonempty ‘‖’-separated list of phase trans-
fers taken from different roles from the ensemble.

8. A Paradigm model is an ensemble of STDs, roles thereof and consistency rules
for these. A protocol P of a Paradigm model M is a subset of the set R of
consistency rules belonging to M such that for any role Zi(πi) occurring in a
rule � ∈ P role Zi(πi) does not occur in whatever consistency rule �′ ∈ (R\P ).
Any consistency rule � belonging to a protocol P is called a protocol step of P .

Within the scope of this paper, we omit other types of consistency rules than
described above. In [3] we distinghuish between consistency rules modelling
orchestration and choreography.

Somewhat below Fig. 2, two groups of consistency rules are given:
CRi

1(j), CRi
2(j, k), CRi

3(k) for i = 1 and CRi
1(j), CRi

2(j, k), CRi
3(k) for i = 2,

actually together constituting one protocol as they all have role X(FS) in com-
mon. Even without going into the specific details of phases and traps mentioned,
one can understand such rules as follows; e.g. take rule CR1

1(j) for a fixed j

P1(Asg) : Ph1
0

θ0−−→ Ph1
1(j) ‖ X(FS) : PhX0

ξ0(j)−−−−→ PhX1

After sufficient progress both within (1) phase Ph1
0 of role Asg of STD P1, which

means trap θ0 has been entered, and within (2) phase PhX0 of role FS of STD
X, which means trap ξ0(j) has been entered, the two phase transfers

Ph1
0

θ0−−→ Ph1
1(j) and PhX0

ξ0(j)−−−−→ PhX1

occur simultaneously. This immediately leads to new behavioral freedom for the
two detailed STDs mentioned: As no other constraining effects from other roles
can be taken into account (there are none), P1 now is to proceed in accordance
with phase Ph1

1(j), and X now is to proceed in accordance with phase PhX1.
Next, we illustrate Paradigm for a relatively small and simple problem sit-

uation: the parallel program (x := x + 1) ‖ (x := x + 2), consisting of two
parallel assignments concerning a shared variable x. For the presentation below
we distinguish sequential components P1 and P2, where P1 � x := x + 1 and
P2 � x := x+2. In view of modeling program P1 ‖ P2 as a Paradigm model we
describe P1 and P2 by a separate STD. Figure 1(a), (b) visualizes these.

Because Paradigm does not address shared data and their usage in its models,
we cannot so easily incorporate variable x, being shared by P1 and P2, into a
Paradigm model. But in this case we must, as using variable x by one sequential
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(c)(a) (b)

freeX

addressX

freeX

compute(x + 1) compute(x + 1)

s10

s11

s12(min) s12(max)

s13

s14(min) s14(max)

s15

freeX

addressX

freeX

compute(x + 2) compute(x + 2)

s20

s21

s22(min) s22(max)

s23

s24(min) s24(max)

s25

P1 P2

store(min)

store(max)

X

store(1) store(0)

store(min)

store(max)

store(max)

store(0)
store(1)

store(0)

store(1)

store(min)

x = min

x = 0

x = max

x = 1

putIntoXmin putIntoXmin

getValueX getValueXgetValueX

putIntoXmax putIntoXmax

getValueX

Fig. 1. STDs of (a) P1, (b) P2 and (c) X.

program, P1 say, might influence the usage of variable x by the other. In view
thereof we model variable x, and its particular usage by P1 and P2, by means of
a separate STD, referred to as X in Fig. 1c.

As one can see from Fig. 1(a), (b), for one assignment both Pi execute a
sequence of five steps: (1) addressing STD X by asking for its current value
(fetch request), (2) getting X’s current value through fetching (any value between
min, . . . ,max is possible), (3) computing a certain expression depending on that
value (for simplicity we assume a single-valued outcome, without errors occur-
ring), (4) informing STD X about the computation result as the new value to
be stored (store request), (5) releasing STD X.

Contrarily, STD X lacks such step sequencing, as it is a complete graph: each
state of it is reachable from any other state in one step. A state of X reflects
the current value of variable x modeled by X. In each of its states x = p where
p = min, . . . ,max it can either answer a fetch request or a store request. In case
of a fetch it just stays in state x = p. In case of a store it goes directly to another
state x = r where r = min, . . . ,max by taking the transition from x = p to x = r
labelled by action store(r), or it just stays in state x = p in case r equals p. As
specified, X starts from having value 0. At its detailed level X executes no steps
at all (6) whenever it is to send its current value: instead, fetching and sending
a value is done by a role step (one out of many from PhX0 to PhX1 in Fig. 2f).
In addition, X executes one step (7) whenever it receives a value to be stored:
storing that value by overwriting the previous value through changing its current
state – but only if needed.

Given the result of computing x+1 by P1 in state s13 (right after its third step
labelled compute(x+1)), P1 should select action putIntoXj+1 (whose index j+1
corresponds to the value computed) dependent on which of its second steps
getValueX it has taken. This in turn fully depends on the current state of X at
the moment step getValueX has been selected. (For P2 similar observations can
be made.) As can be seen below, the latter dependence is assured by consistency
rule CR1

1(j), whereas the former dependence follows from phase Ph1
1(j) and its

trap θ1(j + 1) as defined in Fig. 2a.
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Fig. 2. Asg partition and role of P1 (a,b) and P2 (c,d), FS partition and role of X (e,f).

The coordination we want to model, i.e. the mutual interaction between the
three STDs, assumes an atomic fetch-store cycle for variable x. Thus we model
the details concerning both fetching and storing via one role of each STD of P1

and P2 for both requests as well as via one role of STD X for handling such
requests, always in pairs. Roles are called Pi(Asg), for i = 1, 2, and X(FS),
respectively, and visualized in the right part of Fig. 2. The partitions of the
phases and traps comprising the roles Asg and FS are displayed on the left.

For Pi, index j of phase Phi
1(j) is meant to reflect the state of X at the time

of fetching. By our assumption errors do not occur, phase Phi
1(max) of P1 and

the two phases Phi
1(max−1),Phi

1(max) of P2 are not present. During any phase
Phi

1(j) the actual computation is being carried out. Within such a phase Phi
1(j)

of Pi the value resulting from computing j + i, for i = 1, 2, is indicated via the
parameter of trap θ1(j+i), which will be entered certainly.

The consistency rules based on these roles, are as follows:

Pi(Asg) : Phi
0

θ0−−→ Phi
1(j) ‖ X(FS) : PhX0

ξ0(j)−−−−→ PhX1 (CRi
1(j))

Pi(Asg) : Phi
1(j)

θ1(k)−−−−→ Phi
2 ‖ X(FS) : PhX1

ξ1−−→ PhX2(k) (CRi
2(j,k))

Pi(Asg) : Phi
2

θ2−−→ Phi
2 ‖ X(FS) : PhX2(k)

ξ2−−→ PhX0 (CRi
3(k))

where rule CRi
1(j) is for fetching value j, rule CRi

2(j, k) for initiating storing
value k and rule CRi

3(k) for finishing storing value k. This completes the specifi-
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cation of the Paradigm model of the parallel assignment example. We next turn
to its behavior.

Via consistency rule CRi
1(j), imposing phase Phi

1(j) on Pi (and thereby later
entering trap θ1(j+i), as we have seen), is coupled to the old value of x, thus
starting a new role cycle of X(FS). Via rule CRi

2(j, k), this is coupled to the new
value of x. Rule CRi

3(k) then couples termination of Pi to X’s finishing its full
cycle. Only after having finished such a cycle, X can get involved in a new cycle,
which assures the atomicity of the fetch-store cycle. Hence a full fetch-store cycle
of X at the level of its FS role is

PhX0
ξ0(j)−−−−→ PhX1

ξ1−−→ PhX2(k)
ξ2−−→ PhX0

Examining the consistency rules we see that in this particular example they will
be applied in a sequential order. Starting from a configuration with process X in
phase PhX0 only the rules CRi

1 applies, for i = 1, 2. After execution of rule CRi
1,

based on the phases, rule CRi
2 is the only one that can be applied next. Only

after application of rule CRi
2, rule CRi

3 becomes enabled.
In the above, we assumed appropriate settings of the rule parameters j

and k. If we consider them more closely, we see that if CRi
2(j

′, k′) is exe-
cuted after CRi

1(j), we must have j′ = j. For CRi
1(j) leaves process Pi in

phase Phi
1(j), while CRi

2(j
′, k′) assumes Pi to be in phase Phi

1(j
′). Applica-

tion of rule CRi
2(j

′, k′) requires θ1(k′) to be a trap of phase Phi
1(j

′). From Fig. 2
we see that Phi

1(j
′) only has one trap, viz. trap θi(j′ + i), for i = 1, 2. Thus,

we must have k′ = j′ + i. Finally, similar as for parameters j and j′ in CRi
1(j)

and CRi
2(j

′, k′), we have that application of rule CRi
3(k

′′) following an applica-
tion of rule CRi

2(j
′, k′) is only possible when k′′ = k′: regarding the process X,

the target phase Phi
2(k

′) of CRi
2(j

′, k′) must be the same as the source phase
Phi

2(k
′′) of CRi

3(k
′′).

Taking the range of the parameters into account, we conclude that in the
respective collaborations, i.e. between P1 and X, and between P2 and X, the only
complete sequences of rule actions are of the form CR1

1(j)CR
1
2(j, j+1)CR1

3(j+1),
for min � j � max−1, and CR2

1(k)CR2
2(k, k+2)CR2

3(k+2), for min � k �
max−2. For brevity we will use CR1

∗(j) and CR2
∗(k) for these sequences below.

So far we have relied on ad hoc reasoning in the context of the semantics
of the Paradigm model for the two parallel assignments. In the next section we
describe how sequences of rule actions are verified more systematically.

3 Proving Collaboration Properties

Let us refer by PA to the Paradigm model of the parallel assignments. We will
explain the operational semantics of Paradigm for the model PA. As usual,
the operational semantics is based on configurations and transitions between
them [5,8]. Configurations for PA are of the form 〈s,Ph; s′,Ph′; x=h,PhX〉 were
s, s′ and x=h are states of Ph, Ph′ and PhX, which are in turn phases of P1,
P2 and X, respectively. A transition for PA can be
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(i) a local transition based on a transition of one of the STDs, or
(ii) a global transfer based on one of the consistency rules.

A local transition only changes state for one of the components, i.e. P1, P2 or X.
Reflecting the constraints put by the phases, a transition is allowed if present in
all current phase(s) of the component. For example, because s10 → s11 for action
addressX is in Ph1

0 we have

〈s10,Ph1
0; s

2
0,Ph

2
0; x=0,PhX0〉 −−→ 〈s11,Ph1

0; s
2
0,Ph

2
0; x=0,PhX0〉

but, since s11 → s12(0) is not in Ph1
0,

〈s11,Ph1
0; s

2
0,Ph

2
0; x=0,PhX0〉 �−−→ 〈s12(0),Ph1

0; s
2
0,Ph

2
0; x=0,PhX0〉

Note, for a local transition, the state may change but not the phases.
A global transfer effects the phases of one or more components of a configura-

tion. The transfer is determined by the selected consistency rule. The consistency
rule can be applied if the components involved are in the phase as required by
the rule and have moreover reached the specified traps within the phases. If
multiple consistency rules are enabled, one is selected non-deterministically. It is
a design obligation to see to it that the collaboration and coordination proceeds
as desired, in particular that deadlock is avoided. As an example of a global
transfer, the transfer

〈s11,Ph1
0; s

2
5,Ph

2
2; x=2,PhX0〉 CR1

1(2)−−−−−→ 〈s11,Ph1
1(2); s25,Ph

2
2; x=2,PhX0〉

is driven by consistency rule CR1
1(2), which requires P1 to be in phase Ph1

0 and
in trap θ0 = {s11}, and requires X to be in phase PhX0 in trap ξ0(2) = {x=2}.
The rule CR1

1(2) labels the transfer and is in such a situation referred to as
a rule action. For the Paradigm model PA, the sets of tags or rule actions in
{CR1

1(j),CR
1
2(j, k),CR1

3(k) | min � j � max−1} and {CR2
1(j),CR

2
2(j, k),CR2

3(k) |
min � j � max−2} are called the collaboration alphabets Σ1 and Σ2 of PA,
respectively. We put Σ = Σ1 ∪ Σ2.

Let L be a logic in which one can express properties of configurations. In par-
ticular, L includes characteristic formulas for sets of configurations. For example,
in the context of the previous section, the formula ϕ〈x=0,PhX0〉 is satisfied pre-
cisely by all configurations 〈s,Ph; s′,Ph′; x=0,PhX0〉 with s a state of Ph, Ph a
phase of P1, s′ a state of Ph′, Ph′ a phase of P2. We write γ |= ϕ, for a config-
uration γ and a formula ϕ, if γ satisfies ϕ. Thus 〈s10,Ph1

0; s
2
0,Ph

2
0; x=0,PhX0〉 |=

ϕ〈x=0,PhX0〉. For clarity we often write 〈x=0,PhX0〉 in place of ϕ〈x=0,PhX0〉.

Definition 1. A triple ϕ [Ω ]ψ with ϕ,ψ ∈ L, Ω ⊆ Σ∗ is valid, if for every
configuration γ of a Paradigm model such that γ |= ϕ, and every computation
γ

w−−→∗ γ′ such that w ∈ Ω it holds that γ′ |= ψ.

The set Ω is a set of sequences of rule actions, reflecting the behaviour at
the coordination level. We provide non-trivial examples of valid triples below.
However, in general, we have
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– ϕ [Ω ] true always holds
– ϕ [Ω ] false holds if for no configuration γ such that γ |= ϕ there is a com-

putation γ
w−−→∗ γ′ with w ∈ Ω

Typically, we obtain a triple of the form 〈s,Ph1, . . . ,Phn〉 [σ ]ψ for a component
having n roles and a sequence σ from one or two collaboration alphabets, by
inspection of the changes of the component when executing the transfers based
on the rules mentioned in σ, possibly interspersed with local transitions. Recall,
a local transition between two configurations does not carry a label, while a
global transfer between to configurations is labelled by a rule action.

By application of the compositional rules discussed next, we obtain more
complicated triples.

Conjunctive Rule. If ϕ1 [Ω ]ψ1 and ϕ2 [Ω ]ψ2, then also (ϕ1 ∧ ϕ2) [ Ω ] (ψ1 ∧ ψ2).
The soundness of the conjunctive rule is direct from the definition. If

γ |= ϕ1 ∧ ϕ2 and γ
w−−→∗ γ′ for a string of rule actions w ∈ Ω, then γ′ |= ψ1

because γ |= ϕ1, and γ′ |= ψ2 because γ |= ϕ2. The rule is typically
used to combine triples for separate components. We shall see below that the
triple 〈s10,Ph1

0〉 [CR1
1(0)CR1

2(0, 1)CR1
3(1) ] 〈s15,Ph1

2〉 for process P1, and the triple
〈x=0,PhX0〉 [CR1

1(0)CR1
2(0, 1)CR1

3(1) ] 〈x=1,PhX0〉 for process X can be combined
into the triple

〈s10,Ph1
0; x=0,PhX0〉 [CR1

1(0)CR1
2(0, 1)CR1

3(1) ] 〈s15,Ph1
2; x=1,PhX0〉

for the two processes together.

Sequential Rule. Let σ, � be two arbitrary rule sequences and ϕ and ψ two
formulas. If ϕ [σ ]χ and χ [ � ]ψ hold for some formula χ then ϕ [σ� ]ψ also holds.

Regarding the soundness, if γ |= ϕ and γ
σ�−−→∗ γ′′, we can split the com-

putation into γ
σ−→∗ γ′ �−→∗ γ′′. From ϕ [σ ]χ we obtain γ′ |= χ, and from

χ [ � ]ψ we obtain γ′′ |= ψ. The reverse of the rule only applies if we are able
to characterize in the logic the set of configurations that can be reached from
any γ such that γ |= ϕ by a computation labeled σ. This can then serve as the
intermediate formula χ. In the elaborated example below we will have that the
triple

〈x=0,PhX0〉 [CR1
1(0)CR1

2(0, 1)CR1
3(1) ] 〈x=1,PhX0〉

and the triple

〈x=1,PhX0〉 [CR2
1(1)CR2

2(1, 3)CR2
3(3) ] 〈x=3,PhX0〉

yield the triple

〈x=0,PhX0〉 [CR1
1(0)CR1

2(0, 1)CR1
3(1)CR2

1(1)CR2
2(1, 3)CR2

3(3) ] 〈x=3,PhX0〉

by the sequential rule.

Interleaving Rule. There exist formulas ψw for all w ∈ Ω such that ϕ [w ] ψw

iff ϕ [Ω ]ψ holds for ψ =
∨

{ψw | w ∈ Ω}.
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The rule is referred to as the interleaving rule, since when applied the set of
sequences of rule actions Ω is typically a set of the form σ1‖· · ·‖σn, a shuffle
of sequences σ1, . . . , σn stemming from different collaborations. The implication
from left to right is direct from the definition. If γ |= ϕ and γ

w−−→∗ γ′ for w ∈Ω
then γ′ |= ψw, and, by the form of ψ, γ′ |= ψ. For the implication from right to
left, we can take ψw = ψ for all w. In the example below we will encounter an
enumeration of all the interleavings of two sequences σ and � in a situation where
we know that strict interleavings of σ and � are not possible, thus ψw = false,
in that case. For the combinations σ� and �σ we will have ψσ� = ψ�σ = ψ in the
example. Since false vanishes in the disjunction we obtain from the interleaving
rule a triple for ψ.

As a further illustration of the use of the above proof rules we consider the
example of the two parallel assignments of the previous section. We claim that
the Paradigm model PA satisfies

〈s10,Ph1
0; s

2
0,Ph

2
0; x=0,PhX0〉 [CR1

∗(j)‖CR2
∗(k) ] 〈s15,Ph1

2; s
2
5,Ph

2
2; x=3,PhX0〉

for suitable parameters j and k and with CR1
∗(j) = CR1

1(j)CR
1
2(j, j+1)CR1

3(j+1)

and CR2
∗(k) = CR2

1(k)CR2
2(k, k+2)CR2

3(k+2). Thus, any computation started
in configuration 〈s10,Ph1

0; s
2
0,Ph

2
0; x=0,PhX0〉 that executes the rules CR1

1(j),
CR1

2(j, j+1), and CR1
3(j+1) consecutively in the collaboration of P1 and X,

and the rules CR2
1(k), CR2

2(k, k+2), and CR2
3(k+2), in that order, in the col-

laboration of P2 and X, for suitable values of j and k, end in configuration
〈s15,Ph1

2; s
2
5,Ph

2
2; x=3,PhX0〉.

Computations starting from configuration 〈s10,Ph1
0; s

2
0,Ph

2
0; x=0,PhX0〉 do not

exhibit arbitrary interleavings of sequences CR1
∗(j) and CR2

∗(k). Once CRi
1 has

been executed by Pi, the other process P3−i remains in its phase Ph3−i
0 and has

to wait till X has returned in phase PhX0 before any of the rules it is involved in
can be executed. Therefore, there are no computations showing a sequence w ∈
CR1

∗(j)‖CR2
∗(k) of a shape different from CR1

∗(j)CR
2
∗(k) or CR2

∗(k)CR1
∗(j). Thus,

it holds that

〈s10,Ph1
0; s

2
0,Ph

1
0; x=0,PhX0〉 [ w ] false

for w �= CR1
∗(j)CR

2
∗(k),CR2

∗(k)CR1
∗(j).

Next, we determine the possible values for j and k. In configurations where
x=h and j �=h we have that X isn’t in trap ξ0(j) and cannot reach it either.
Also, no local transition is possible from state x=h in phase PhX0. Thus, it
holds that 〈x=h,PhX0〉[CRi

1(j) ] false. However, if j=h, relying on cooperation
from process Pi such that the sequence CRi

∗(h) is executed, we obtain that x has
been increased by i and has obtained value h + i. Therefore, on the one hand,

〈x=h,PhX0〉[CRi
∗(j) ] false (1)

for j �=h, while on the other hand

〈x=h,PhX0〉[CRi
∗(h) ]〈x=h+i,PhX0〉 (2)
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From triple (1) we obtain 〈x=0,PhX0〉 [CR1
∗(j)CR

2
∗(k) ] false for j �= 0. Since

by triple (2) 〈x=0,PhX0〉 [CR1
∗(0) ] 〈x=1,PhX0〉, and 〈x=1,PhX0〉 [CR2

∗(k) ] false
by (1) for k �= 1, we get 〈x=0,PhX0〉 [CR1

∗(0)CR2
∗(k) ] false, for k �= 1, by the

sequential rule. This combines into 〈x=0,PhX0〉 [CR1
∗(j)CR

2
∗(k) ] false for j �= 0

or k �= 1. Using 〈s10,Ph1
0; s

2
0,Ph

2
0〉 [CR1

∗(j)CR
2
∗(k) ] true and the conjunctive rule,

we arrive at

〈s10,Ph1
0; s

2
0,Ph

2
0; x=0,PhX0〉 [CR1

∗(j)CR
2
∗(k) ] false (3)

for j �= 0 or k �= 1. Similarly, interchanging CR1
∗(j) and CR2

∗(k), we have

〈s10,Ph1
0; s

2
0,Ph

2
0; x=0,PhX0〉 [CR2

∗(k)CR1
∗(j) ] false (4)

for k �= 0 or j �= 2.
We next aim to derive a triple for the sequence CR1

∗(0)CR2
∗(1). Analysis of

the behavior of P1 and X with respect to the rules in CR1
∗(0) yields, respectively,

the triples 〈s10,Ph1
0〉 [CR1

∗(0) ] 〈s15,Ph1
2〉 and 〈x=0,PhX0〉 [CR1

∗(0) ] 〈x=1,PhX0〉.
Thus, 〈s10,Ph1

0; x=0,PhX0〉 [CR1
∗(0) ] 〈s15,Ph1

2; x=1,PhX0〉 by the conjunctive rule.
Since P2 is not involved in any of the rules of CR1

∗(0), it holds that
〈s20,Ph1

0〉 [CR1
∗(0) ] 〈s20,Ph2

0〉, which can be used with the above for the conjunctive
rule to deduce

〈s10,Ph1
0; s

2
0,Ph

1
0; x=0,PhX0〉[CR1

∗(0) ]〈s15,Ph1
2; s

2
0,Ph

1
0; x=1,PhX0〉 (5)

Likewise we can derive

〈s15,Ph1
2; s

2
0,Ph

1
0; x=1,PhX0〉[CR2

∗(1) ]〈s15,Ph1
2; s

2
5,Ph

1
2; x=3,PhX0〉 (6)

Therefore, by the sequential rule, we obtain from (5) and (6) that

〈s10,Ph1
0; s

2
0,Ph

1
0; x=0,PhX0〉[CR1

∗(0)CR2
∗(1) ]〈s15,Ph1

2; s
2
5,Ph

1
2; x=3,PhX0〉 (7)

By symmetry, we conclude the formula

〈s10,Ph1
0; s

2
0,Ph

1
0; x=0,PhX0〉[CR2

∗(0)CR1
∗(2) ]〈s15,Ph1

2; s
2
5,Ph

1
0; x=3,PhX0〉 (8)

to hold as well, settling the case for the sequence CR2
∗(0)CR1

∗(2).
Finally, we combine the cases gathered so far using the interleaving rule. Put

ψw = false for w �= CR1
∗(0)CR2

∗(1),CR2
∗(0)CR1

∗(2)
ψw = 〈s15,Ph1

2; s
2
5,Ph

1
0; x=3,PhX0〉 for w = CR1

∗(0)CR2
∗(1),CR2

∗(0)CR1
∗(2)

Then we have from (3), (4), (5), and (8) that

〈s10,Ph1
0; s

2
0,Ph

1
0; x=0,PhX0〉 [w ] ψw

for all w ∈ CR1
∗(j) ‖ CR2

∗(k) and suitable parameters j and k. Hence, by the
interleaving rule

〈s10,Ph1
0; s

2
0,Ph

1
0; x=0,PhX0〉 [CR1

∗(j) ‖ CR2
∗(k) ] 〈s15,Ph1

2; s
2
5,Ph

1
0; x=3,PhX0〉 (9)

since
∨

{ψw | w ∈ CR1
∗(j) ‖ CR2

∗(k)} = 〈s15,Ph1
2; s

2
5,Ph

1
0; x=3,PhX0〉. The triple of

Eq. (9) captures the property that we aimed to prove.
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4 A Paradigm Model of a Pipeline

As a larger Paradigm model we consider a linear pipeline with three workers
Wrk1, Wrk2, Wrk3, two buffers Buf1, Buf2, an input Buf0, and an output Buf3.
They cooperate as follows, Wrki consuming one item from Bufi−1 (from input,
if i = 1), working on it and producing it towards Bufi (to output, if i = 3). All
buffers have a fixed capacity, n say. When empty, no item can be taken from a
buffer; when full, no item can be put into it. Contrarily, input and output are
never restrictive. See Figs. 3 and 6(a,c) for STDs of workers and buffers.

21 n − 1 n0

Buf1,Buf2 0+ 1+ (n − 2)+ (n − 1)+

3− (n − 1)− n−1− 2−

2+

pop pop pop pop

store store store store
planStore planStore planStore planStore

planPop planPop planPop planPop

take produce give

resume

Wanting Transforming Finished Ready
(a)

(b)

Wrk1,Wrk2,Wrk3

Fig. 3. (a) Three STDs Wrk1, Wrk2, Wrk3, (b) two STDs Buf1, Buf2.

A worker visits four states sequentially, starting from state Wanting. A buffer
precedes an actual store action or pop action by a preparatory step, planStore
and planPop, respectively. Initially the buffers are empty.

The Cons and Prod partitions of the workers and the Src and Snk partitions
of the buffers are drawn in Fig. 4. Roles at the level of theses partitions are given

0

)c( )d(

1

0

0

0

0

(a) (b)

n − 1

toColl

PreColl

NoTake

reqT
Give doneG

n

n

nonEmpty

PreProv toProv

Stable

n

Prov
readyP

n

notFull
Stable

n

readyCColl

Take doneT

NoGive

reqG

Fig. 4. Partitions (a) Prod (b) Cons for workers, (c) Snk and (d) Src for buffers.
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(c) (d)(a) (b)

notFull readyC

toColl toColl
PreColl

Coll

Stable
NoTake

Take

reqT reqT
doneT

Wrki(Cons),
i = 1, 2, 3

NoGive

Give

reqG reqG
doneG

Wrki(Prod),
i = 1, 2, 3

nonEmpty

PreProv

toProv

Prov

readyP
Stable

Bufi(Snk),
i = 1, 2, 3

Bufi−1(Src),
i = 1, 2, 3

Fig. 5. Roles (a) Cons, (c) Prod for workers, (b) Src and (d) Snk for buffers.

in Fig. 5; parts (a,b) group the roles from the protocol given by rules CRi
1–CR

i
4,

fixed i, below; similarly, parts (c,d) group the roles from the protocol given by
rules PRi

1–PRi
4 , fixed i.

In its Cons role worker Wrki alternates between phase Take and phase
NoTake. In phase Take the local action take is possible but no resume action. In
phase NoTake this is the other way around. Reaching of the trap reqT triggers
the collaboration with the providing buffer Bufi−1, the interaction of Wrki(Cons)
and Bufi−1(Src) as captured by rules CRi

1 to CRi
4. Clearly, Bufi−1 can only pro-

vide an item if non-empty, explaining the trap nonEmpty of phase Stable. Phase
PreProv characterizes that the buffer is able to provide the item, but is actually
doing so in phase Prov. Once trap readyP is reached in phase Prov the buffer
can return –in its Cons role– to the stable situation.

A buffer also has a Snk partition and role, like a worker also has a Prod
partition and role. These partitions and roles are very similar to the Src and
Cons ones, although we treat the collaboration of Wrki(Prod) and Bufi(Sink)
slightly differently, see rules PRi

1 to PRi
4 below.

Two additional components Buf0 and Buf3 represent input and output
located at beginning and end of the pipeline. Both have no counting behav-
iour specified. Their respective roles, Buf0(Src) and Buf3(Snk), are the same as
the earlier Src and Snk roles of Buf1 and Buf2, see Fig. 6 for the STDs’ partitions.

We have two sets of consistency rules, representing two protocols for each
i = 1, 2, 3 separately, together constituting six protocols. Consistency rules CRi

1–
CRi

4 specify the collaboration of Wrki and Bufi−1, for i = 1, 2, 3, in their roles
Cons and Src.

(a)

(d)

(b)

(c)

pop

toProv readyP
In In−

input Buf0

planPop

ProvPreProv

output Buf3

Out Out+

planStore

store PreColl Coll

toColl readyC

nonEmpty

Stable

In

Out

notFull

Stable

Fig. 6. STDs for (a) Buf0 and (c) Buf3, partitions for roles Buf0(Src) and Buf3(Snk).
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Wrki(Cons) : NoTake
reqT−−−−→ NoTake ‖ Bufi−1(Src) : Stable

nonEmp−−−−−−→ PreProv (CRi
1)

Bufi−1(Src) : PreProv
toProv−−−−−→ Prov (CRi

2)

Wrki(Cons) : NoTake
reqT−−−−→ Take ‖ Bufi−1(Src) : Prov

readyP−−−−−→ Stable (CRi
3)

Wrki(Cons) : Take
doneT−−−−−→ NoTake (CRi

4)

When the worker, in need of an item, is in state Wanting that coincides with
trap reqT of phase NoTake, and the providing buffer is stable and non-empty,
i.e. is in the corresponding phase and trap, the buffer proceeds the provisioning
(CRi

1). Once this has been accomplished, via phase PreProv and subsequently
via phase Prov (CRi

2), then by reaching trap readyP of the buffer’s phase Prov,
the worker is allowed to take it, while the buffer returns to its stable phase (CRi

3).
Once the worker has actually taken the item, being in trap doneT of phase Take,
it returns to phase NoTake again (CRi

4).
Consistency rules PRi

1–PRi
4 specify the collaboration of worker Wrki and

Bufi, for i = 1, 2, 3, in their roles Prod and Snk.

Wrki(Prod) : NoGive
reqG−−−−→ NoGive ‖ Bufi(Snk) : Stable

notFull−−−−−→ PreColl (PRi
1 )

Wrki(Prod) : NoGive
reqG−−−−→ Give ‖ Bufi(Snk) : PreColl

toColl−−−−→ PreColl (PRi
2 )

Wrki(Prod) : Give
doneG−−−−−→ NoGive ‖ Bufi(Snk) : PreColl

toColl−−−−→ Coll (PRi
3)

‖Bufi(Snk) : Coll
readyColl−−−−−−−→ Stable (PRi

4)

The worker can dispense an item when in phase NoGive trap reqG has been
reached, while the collecting buffer or output is stable, but not full, i.e. in phase
Stable and trap notFull (PRi

1). The worker proceeds to delivering the item by
moving to phase Give, while the buffer remains stand-by in phase PreColl (PRi

2).
The worker signals that the item has been dispensed off, via trap doneG, for the
buffer to collect it in phase Coll (PRi

3). Once the item is collected by the buffer,
witnessed by trap readyC, the buffer returns to its Stable phase (PRi

4).

5 Proving Model Properties

In this section we show how triples for specific collaborations can be glued
together to verify a property for the complete system. Initially we focus on small
subsystems, and we combine the local properties obtained to yield a property of
the system as a whole. In this paper, we will consider a data flow property of
the pipeline example.

For the Paradigm model of the pipeline, we shall verify that the number of
store actions by the output Buf3 doesn’t exceed the number of pop actions by
the input Buf0. More precisely, we will show

#pop0 − b1 − b2 − 4 � #store3 � #pop0 − b1 − b2 (10)
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where the pops and stores are executed by Buf0 and Buf3, respectively, and
b1, b2 are the number of items in Buf1 and Buf2 at the moment of inspection.
For simplicity, we assume the buffers Buf1 and Buf2 to be of capacity 3 rather
than of arbitrary capacity n. Verification of this property by means of model
checking, e.g. with the mCRL2 toolset, may be a chancy undertaking. However,
application of the collaboration-driven approach as sketched in the previous
section shows to be quite feasible.

The general idea is to first consider the situation for a worker, examining
its simultaneous interaction with a providing buffer and a collecting buffer, to
conclude a causality among the two rule sets involved. Next, we consider the
situation for a buffer, establishing a relationship among the rule sets of the
collaboration in which it has a role. Since store and pop actions correspond to
specific phases, and phases correspond to specific rules, we are able to relate
pops of the input all the way through the pipeline to stores of the output.

To be able to use patterns in observed behavior of consistency rules to prove
a property in terms of local actions, we need to couple the actions to the rules:
A pop of Buf0 is only possible in its phase Prov. However, in this phase the
action can only be executed once. Therefore, every pop implies that consistency
rule CR0

1 has again taken place. Similarly, action store by Buf3 is only allowed
in phase Coll. Only when trap readyC of this phase has been reached we are
sure that the action has indeed been executed. Such is confirmed by consistency
rule PR3

4 . So, for the analysis of the property we need to relate occurrences
of CR0

1 to those of PR3
4 .

When looking closer at the collaborations of Bufi−1, Wrki, and Bufi, for i =
1, 2, 3, these are governed by the groups of rules CRi

1, . . . ,CR
i
4 vs. PRi

1 , . . . ,PRi
4 .

Inspection of the operational semantics reveals that one can find characteristic
formula ϕX and ϕY , representing finite sets of configurations, such that

ϕX [ {CRi
1CR

i
2CR

i
3} ∪ (CRi

1CR
i
2CR

i
3 ‖ PRi

4) ] ϕY and

ϕY [ {PRi
1PR

i
2PR

i
3} ∪ (PRi

1PR
i
2PR

i
3 ‖ CRi

4) ] ϕX (11)

It follows that for the subsystem of Bufi−1, Wrki, and Bufi, for given index i,
application of rules CRi

1CR
i
2CR

i
3 precedes application of rules PRi

1PR
i
2PR

i
3.

Reversely, all but the first occurrence of the subsequence CRi
1CR

i
2CR

i
3, and pos-

sibly the last, are enclosed by two subsequences PRi
1PR

i
2PR

i
3. Moreover, consid-

ering the phases we readily see that the two rule sets are applied cyclically. Rules
CRi

1 to CRi
4 can only be applied in that order. The same holds for PRi

1 to PRi
4 .

Next we shift to subsystems involving Wrki, Bufi, and Wrki+1, for i = 1, 2.
Because of the assumed buffer capacity of 3, we distinguish characteristic for-
mula ψi

j , j = 0, 1, 2, 3, for which it holds that

ψi
j−1 [CRi+1

2 ‖(ε+PRi
4) ] ψi

j and

ψi
j [PRi

2PR
i
3 ‖ (ε+CRi+1

3 +CRi+1
3 CRi+1

4 ) ] ψi
j−1 (12)

for i = 1, 2, j = 1, 2, 3 and were ε denotes the empty sequence of rule actions. For
configurations satisfying formula ψi

j we have that Bufi holds j elements. Thus,
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the buffer moves up from j−1 to j elements when rule CRi
2 is executed. Reversely,

the buffer moves down from j to j−1 elements when rules PRi
2 and PRi

3 are
executed.

Now let γ0
w−−→∗ γ′ be any computation of the full pipeline system run-

ning from its start configuration γ0, where all buffers are in state In, 0, or Out
and in stable phases for each partition, and where all workers are in state
Wanting and in phases NoTake and NoGive. Suppose the number of pops
performed by Buf0, denoted by #pop0, equals p. Then, as argued above, we
have #CR0

2 = p, with #CR0
2 denoting the number of occurrences of rule

action CR0
2 in w. Since CR0

2 is part of a subsequence CR0
1CR

0
2CR

0
3, and the

subsequences CR0
1CR

0
2CR

0
3 and PR1

1PR
1
2PR

1
3 of w alternate, as concluded from

property (11), it follows that p−1 � #PR1
2 � p. Because of the relation-

ship of PR1
2 , CR2

2 and the content b1 of Buf1 of property (12), we obtain
p−b1−1 � #CR2

2 � p−b1. Continuing along the pipeline we similarly obtain
p−b1−2 � #PR2

2 � p−b1, and p−b1−b2−3 � #PR3
2 � p−b1−b2. Therefore,

p−b1−b2−4 � #PR3
4 � p−b1−b2. Thus, for #store3, the number of stores per-

formed by Buf3, we have p−4−b1−b2 � #store3 � p−b1−b2. Substituting #pop0

for p we obtain Eq. (10), as was to be shown.
Although only a sketch of a proof for the pipeline property has been given, the

presentation aims to stress the component-driven nature of the approach guided
by the form of the underlying architecture of the system. The split required by
Paradigm, distinguishing local behaviour vs. global interaction, is rather useful
for the modularity. Vertical reasoning focuses on the consequences of local transi-
tions for consistency rules to become enabled, at least partially, when a transition
makes the component to enter a trap of a phase, as well as on the restriction
of the locus of control by phases and traps, being in a phase or trap implies
being in a specific subset of states. Horizontal reasoning concerns the order in
which consistency rules can be applied, thus it considers the synchronicity among
phases and traps of multiple collaborating components. Clearly, more examples
need to be examined and more case studies need to be performed to underpin
the proposed method of (i) deriving triples for interacting component groups,
and (ii) combining theses triples to verify the complete architecture. However,
we argued that by reasoning about specific collaborations and by combining the
emerging patterns we are able to deal with properties of larger systems mod-
eled than a straightforward model checking approach of a Paradigm model, that
is deemed to face state space explosion, would allow. The separation of global
collaboration and local computation underlying Paradigm is expected to be help-
ful in pursuing this approach.
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Abstract. Time-travel is a popular topic not only in science fiction, but
in physics as well, especially when it concerns the notion of “changing
the past”. It turns out that if time-travel exists, it will follow certain
logical rules. In this paper we apply the tools of discrete mathemat-
ics to two such sets of rules from theoretical physics: the Novikov Self
Consistency Principle and the Many Worlds Interpretation of quantum
mechanics. Using temporal logic, we can encode the dynamics of a time-
travel story or game, and model-check them for adherence to the rules.
We also present the first ever game-engine following these rules, allowing
the development of technically accurate time-travel games.

1 Introduction

Time travel has long been a popular topic in science fiction and fantasy. Stories
about backward time travel were written at least as far back as the 1700s [9,10].
Even though we do not know whether time travel is possible in the real world,
general consensus among philosophers and theoretical physicists is that if it is
possible, it will follow certain logical rules. This is especially relevant when it
comes to the prospect of “changing the past”. Many works of fiction play it
rather fast and loose with these rules, if they follow a consistent set of rules at
all. This is not to say that those stories are necessarily bad. However, we do feel
that logical consistency is a worthy goal to strive for.

Take, for example, the movie “Back to the Future” [13]. While it is an excel-
lent movie, it is also a good example of a story that heavily features time travel,
but does not follow the rules. It takes place in California, 1985, and the only
aberration is a car that can travel into the past. Marty McFly travels back
30 years and accidentally prevents his parents from getting together. We claim
that even with a time-traveling DeLorean, there is still no mechanism by which
Marty could then ‘slowly fade out of existence’. As it turns out, there is no
mechanism by which he could ‘stop existing’ at all. After all, if Marty was never
born, he could not go back in time to prevent his parents from getting together
in the first place. Generally, this situation is known as a temporal paradox. This
specific version is a variation on the grandfather paradox [13, 285–294].
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 261–276, 2016.
DOI: 10.1007/978-3-319-30734-3 18



262 M. Helvensteijn and F. Arbab

In this paper, we look at time travel from a discrete mathematics point
of view. We describe a way to model space-time as a Kripke structure, and a
way to specify and model-check specific stories within that framework using
temporal logic. We are not concerned about the physical mechanism through
which time travel may be achieved (e.g., whether it is by magic, wormholes or
flux capacitors). We just allow for models in which effect precedes cause, and
explore the implications. We also present a JavaScript implementation of a game
with time-travel mechanics following the rules described in this paper.

There are two main theories regarding temporal paradox that are generally
accepted as sensible. These are the Novikov Self-consistency Principle and the
Many-Worlds Interpretation of quantum mechanics. Both principles have one
rule in common: “one cannot change recorded history”. But they differ in how
they handle attempts to do so.

Under Novikov Self-consistency Principle (NSP), there is one fixed timeline,
and any actions taken by a time traveler were ‘part of history all along’ [2]. Any
space-time which would lead to paradox cannot exist, in the same way that a
proposition which is simultaneously true and not true cannot exist. So under
this principle, Marty McFly could never travel back in time and act the way he
did in the movie. That time-line is impossible. Circular causation is still allowed,
however, i.e., an event that (indirectly) causes itself. NSP can be captured with
a linear graph, and described with the temporal logic LTLp.

The Many-Worlds Interpretation (MWI) is more permissive than NSP. It
does not restrict the occurrence of paradoxes, but rather provides a mechanism
to channel them. Under this interpretation, time is not a line, but a tree, and
where a paradox would otherwise occur, a branch exists to accommodate the
contradictory state. With this theory, Marty McFly could prevent his parents
from getting together and be none the worse for wear. From that moment, he
would exist in an alternate branch of the timeline, merely having separated
his ‘alternate parents’, and prevented ‘alternate Marty’ from being born. All
models under NSP are also possible under MWI. The remaining models have to
be directed trees, and described with the temporal logic CTL∗

lp.
In Sect. 2, we examine both theories in relation to non-interactive storytelling,

e.g., books and movies. Then, in Sect. 3, we look at how the situation changes
when dealing with time-travel mechanics in video games. A human player com-
plicates matters, because a developer has only limited control over their actions
in the game. We describe a number of ways in which single-player games could
nonetheless be developed. We then show why multiplayer games are a differ-
ent story, not feasible under either theory, unless the rules of the game are
prohibitively limited. Section 4 describes our implementation of a single player
game engine that can work with both theories. To our knowledge, this is the first
attempt to develop a game following these rules of time-travel. Finally, Sect. 5
concludes the paper and discusses future work.

Where relevant, we relate the concepts described in this paper to related
concepts in quantum mechanics.1

1 The authors are fairly confident in drawing these parallels, but it has to be noted
that neither has a background in theoretical physics.
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2 Time Travel in Non-interactive Storytelling

This section introduces a formal framework for talking about causation and
time travel under the Novikov Self-consistency Principle (NSP) and the Many-
Worlds Interpretation of quantum mechanics (MWI). It lays out the rules of
these theories using Kripke structures and temporal logic, in such a way that a
time travel story may be model-checked, assuming the relevant states and events
of that story can be encoded into a formal structure.

We do not really expect science fiction writers to go through this process, but
the rigor of a formal model does give valuable insight into what can and cannot
happen when it comes to time travel. And the foundation provided in this section
will be invaluable when we talk about game development in Sects. 3 and 4.

2.1 Modeling Space-Time

First, we represent models of space-time to encompass both NSP and MWI.

Definition 1. Let S represent the set of all possible spatial configurations or
states for a given type of story. A space-time model is a tuple m = (S,→), where
S ⊆ S is a set of states and → ⊆ S × S is an injective relation representing a
time-step.2 We write M to denote the set of all such models. We write ML ⊂ M
for the set of all such models where → is a partial function.3

This allows possibly branching timelines with shapes like these:

•→•→•→• →• →• →· · ·
• →• →•→•→•→•→•→· · ·

↘
•→•→•→ · · ·

To encode states for a typical time-travel scenario, we will often need some
kind of spatial coordinate system which can be occupied by different types of
interacting entities, especially when talking about games:

Definition 2. In cases where we need to work with a spatial coordinate system,
we can define S as 2-dimensional D space, describing two dimensions of discrete
cells in space, occupied by elements of some set D:

S = Z
2 → D

The definition of the set D heavily depends on what types of entities and
behaviors should play a role in our stories. It may contain any number of config-
urations for characters, accomodating for their inventory and equipment, even
the memories of their past observations. There would also be configurations for
relevant landscape features and artifacts that these characters can interact with.

Note that both space and time are divided into discrete steps, and constitute
independent dimensions in this model. This means we cannot model special or
general relativity. Indeed, we do not intend to.
2 injective: each state has at most one predecessor, i.e., timelines do not merge.
3 (partial) function: each state has at most one successor, i.e., timelines do not branch.
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2.2 Immutable Timelines

To discuss NSP, which speaks of immutable timelines, we restrict our models to
the set ML of non-branching timelines, or linear sequences of states (Definition 1).

We can see space-time models as Kripke structures [1]. As such, to encode
the rules and events of a story under NSP, we can use the temporal logic LTLp:

Definition 3. The syntax of LTLp is specified with the following grammar:

φ ::= p(s) | � | ⊥ | ¬φ | φ ∧ φ | φ ∨ φ | propositional operators

Xφ | Gφ | Fφ | φUφ | φRφ | forward temporal modalities

Yφ | Hφ | Oφ | φSφ | φTφ backward temporal modalities

where φ is an LTLp formula, and p(s) is a truth statement about the ‘current’
space configuration s ∈ S. The formula Xφ indicates that φ holds in the next
state, Gφ indicates that φ holds in all future states, Fφ indicates that φ holds
in some future state, φ1Uφ2 indicates that φ2 holds in some future state and φ1

holds in all future states until then, and φ1Rφ2 indicates that φ2 holds in all
future states until one where φ1 holds. Their counterparts Y, H, O, S and T have
the same meanings, only taking the → operator backward instead of forward.

Semantics for m, s |= φ, with m ∈ ML and s ∈ m are defined in the expected
way [4,7,8]. We also write m |= φ and say that φ is globally true in m iff for
all states s ∈ S, we have m, s |= φ.

Chains of X or Y modalities will be common in the examples to follow, so we
introduce the following shorthand notation:

Notation 4. Given an integer i ∈ Z and LTLp formula φ, define the following
notation:

Xiφ =

|i|

|i|

{
X . . . Xφ if i ≥ 0
Y . . . Yφ if i < 0

LTLp is an extension of the better known temporal logic LTL, and adds back-
ward modalities to it [7]. The two are equivalent with regard to expressiveness [4],
but it has been proved that LTLp is exponentially more succinct [8]. And clearly,
LTLp formulas will also be more intuitive than their pure LTL counterparts for
specifying the behavior of time-travel.

2.3 Causality and the Observer Effect

A set of LTLp formulas Φ can be used to describe a set of models M ⊂ ML by
requiring that for all formulas φ ∈ Φ and all models m ∈ M we have m |= φ.
If M is the empty set, the specified behavior is paradoxical or otherwise logically
inconsistent. If not, Φ satisfies NSP.

It is not always easy to intuit the meaning of arbitrary LTLp formulas, so we
will impose some structure on them and group them into sets that we will call
causality chains or observers, depending on the situation:
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Definition 5. In the setting of NSP, define a causality chain or observer as a
set of LTLp formulas, each of one of two shapes. One shape represents causality,
or observation triggering action. It is the following shape:

〈cause〉 =⇒ Xi 〈effect〉 causality (NSP )

〈cause〉 and 〈effect〉 may not contain any temporal modalities. For specifying the
‘mundane’ type of causality, where cause directly precedes effect, we take i = 1.
To have an effect precede or coincide with a cause, we can have i < 1, indicating
‘backward time-travel’ by |i| steps.

Initial conditions may be specified as follows:

OF 〈conditions〉 initial conditions

This indicates that there exists some state in the model that satisfies 〈conditions〉
(which, again, should contain no modalities).

A causality chain may or may not satisfy NSP, but it is easier to reason about
than an arbitrary set of LTLp formulas. It opens up a new type of visualization
to help make sense of the dynamics of a set of models. The causality diagram
in Fig. 1 shows a single causality chain following the normal flow of time in
a linear space-time model. It starts with one or more initial condition rules,
and propagates through space-time with one or more causality rules. Figure 2
(page 7) illustrates a causality chain going back in time.

...initial conditions causality causality causality

Fig. 1. A causality diagram. The large gray circles connected in the background rep-
resent the model (S, →), with time flowing from left to right. The smaller circles con-
nected by arrows overlaid on top represent a single causality chain which, in this case,
follows the normal flow of time.

Coupling the concepts of observation and causality chains corresponds to cer-
tain notions in quantum mechanics. Causality can be non-deterministic because
of underspecification in the rules (with or without backward causality). We would
expect to see multiple models satisfying such rules. But equivalently, we could
say that the model, or certain states of the model, are in a quantum superposi-
tion. Narrowing the set of models through the application of a rule would then
correspond to a wavefunction collapse. In essence, reality is formed by the act of
observation. This is called the observer effect. The famous thought experiment
known as Schrödinger’s cat is a great example of this [11].

2.4 An Example: The Hero of Time

We now look at a concrete example that involves time-travel, and see how
Novikov’s principle might be violated in a concrete setting.
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Example 1. We look at a 2-dimensional D space so that we can model an ‘over-
head view’ video-game (though we postpone discussion of interactivity until
Sect. 3). Define the set D of possible cell-occupants as follows, with 〈data〉 being
some arbitrary data associated with the hero:

D � d ::= nothing no occupant
| hero( 〈data〉 ) a hero (with data)

In the set of causality rules to follow, we use 〈data〉 to track the history of
our hero as a sequence of triples (t, x, y) unambiguously specifying space-time
coordinates. This allows us to distinguish multiple versions of him coexisting at
the same time (as a consequence of time-travel) and to trace their lineage.

We’ll present two sets of causality rules: CL, in which the hero walks left, and
CR, in which he walks right. In both cases, he travels back in time by 2 steps if
his age is divisible by 3. However, before taking any action, he looks at all the
cells to his right. If he observes an older version of himself, he freezes in place.

We start with the rules that both sets have in common. Because these rules
can be lengthy, we use a proof rule notation that can be straightforwardly trans-
lated to the corresponding LTLp formula. For all histories h, h′ ∈ (N × Z × Z)∗

and coordinates x, y ∈ Z, the set C contains:

initial state
OF s(0, 0) = hero( (0, 0, 0) )

s(x, y) = hero(h ) h = h′�(t, x, y) #h | 3 ¬�→(s, h, x, y)
time-travel

X−2 s(x, y) = hero(h � (t−2, x, y) )

s(x, y) = hero(h ) h = h′ � (t, x, y) �→(s, h, x, y)
surprise

X s(x, y) = hero(h � (t+1, x, y) )

s(x, y) = hero(h ) h = h′ � (t−1, x, y) � (t, x, y)
frozen

X s(x, y) = hero(h � (t+1, x, y) )

where h � x is the concatenation of sequence h and element x, #h | 3 indicates
that the length of h is divisible by 3 and �→(s, h, x, y) indicates that an older
version of the hero is present somewhere to the right of the given coordinates:

�→(s, h, x, y) = ∃x′ > x : ∃h′ ∈ (N × Z × Z)∗ :
s(x′, y) = hero(h�h′ ) ∧ valid(h�h′)

and valid(h) indicates that the history h has a valid lineage traceable through
the available rules. Finally, define rulesets CL and CR as supersets of C, the
former having the hero walking left (when his age is indivisible by 3 and he is
not exhibiting surprised inaction), and the latter having him walking right. Here
are the respective causality rules:

s(x, y) = hero(h ) h = h′�(t, x, y) #h � 3 ¬�→(s, h, x, y)
walking (CL)

X s(x−1, y) = hero(h � (t+1, x−1, y) )



Toward a Formal Foundation for Time Travel in Stories and Games 267

s(x, y) = hero(h ) h = h′�(t, x, y) #h � 3 ¬�→(s, h, x, y)
walking (CR)

X s(x+1, y) = hero(h � (t+1, x+1, y) )

...

initial conditions walking walking

time-travel

walking
walking

time-travel

walking walking

Fig. 2. Causality diagram for the ‘walking left’ observer CL (Example 1). It goes back
in time twice without causing any contradiction.

→

−4 −3 −2 −1 0 1

→

−4 −3 −2 −1 0 1

→

−4 −3 −2 −1 0 1

→

Fig. 3. Graphical representation of the ‘walking left’ observer CL (Example 1). For
each state, only a 3 × 6 area is shown. The instances of the hero also display their age
(i.e., the length of their history). A black background indicates that a cell’s content is
unknown (cells on y �= 0 are not specified by the causality rules). The cells observed by
the hero (�→) at age 1, 2 and 3 are specially marked. This scenario corresponds with
the causality diagram from Fig. 2. The graphical tiles come from our proof-of-concept
implementation described in Sect. 4.

Lemma 1. Walking left satisfies Novikov’s self-consistency principle.
Walking right leads to contradiction.

Proof. To prove the former, we need only provide a model that satisfies the
rules in CL. Figure 3 shows a graphical representation of such a model, which
corresponds with the causality chain of Fig. 2. Interpreting such a visualization
may take some getting used to. The time-step relation → represents ‘absolute’
time. From the hero’s reference point, he jumps back and forth between these
states, so his history will be longer than the history of the world he inhabits.

To prove the second claim of the lemma, we take the rules of CR and prove
logical contradiction by natural deduction. We start with the state s0 in the
timeline s0 → s1 → s2 → · · · and with h0, h1 and h2 defined as:

h0 = (0, 0, 0) h1 = h0�(1, 1, 0) h2 = h1�(2, 2, 0).
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The proof follows:

1 s0(0, 0) = hero(h0 ) initial state

2 �→(s0, h0, 0, 0) assumption

3 s1(0, 0) = hero(h0�(1, 0, 0) ) surprise, 1, 2

4 ∀x′: s0(x
′, 0) = hero(h0� . . . �(0, x′, 0) ) ⇒ x′ = 0 frozen�, 3

5 ∃x′ > 0: s0(x
′, 0) = hero(h0� . . . �(0, x′, 0) ) �→, 2

6 ⊥ ⊥I, 4, 5

7 ¬ �→(s0, h0, 0, 0) ¬I, 2–6
8 s1(1, 0) = hero(h1 ) walking, 1, 7

9 �→(s1, h1, 1, 0) assumption
... analogous to steps 3–5 . . . �

13 ⊥ ⊥I, 11, 12

14 ¬ �→(s1, h1, 1, 0) ¬I, 9–13
15 s2(2, 0) = hero(h2 ) walking, 8, 14

16 �→(s2, h2, 2, 0) assumption
... analogous to steps 3–5 . . . �

20 ⊥ ⊥I, 18, 19

21 ¬ �→(s2, h2, 2, 0) ¬I, 16–20
22 s0(2, 0) = hero(h2�(0, 2, 0) ) time-travel, 15, 21

23 ¬∃x′ > 0: s0(x
′, 0) = hero(h0� . . . �(0, x′, 0) ) �→, 7

24 ⊥ ⊥I, 22, 23

The steps marked � are by continuous application of the ‘frozen’ rule, and the
fact that no other rule is applicable under the given conditions. The second and
third analogous blocks of the proof are left out for brevity.

To put this proof in simpler terms: If the hero were to walk to the right twice,
then travel back in time, he would make himself visible to his younger self, who
is observing all the cells to his right. That means his younger self would be
frozen, and could never travel back in time in the first place. This situation is
comparable to the grandfather paradox in “Back to the Future”. Figures 4 and 5
show the causality diagram and corresponding graphical illustration of this.

The causality rules of this example did not fully specify space-time. Although
CR could not be satisfied by any model, CL could actually be satisfied by an
infinite number of models, since the cells that were left black in the illustrations
above were never fixed to any value. This allowed the time-travel steps in CL.
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×initial conditions walking walking

time-travelparadox

Fig. 4. Causality diagram for the ‘walking right’ observer CR (Example 1). It goes
back in time, causing a paradox. This diagram illustrates why there is no linear model
satisfying the ruleset CR.

→

−1 0 1 2 3 4

→

−1 0 1 2 3 4

→

−1 0 1 2 3 4

→

Fig. 5. A graphical representation of the ‘walking right’ observer CR (Example 1). This
scenario corresponds with the causality diagram from Fig. 4.

Because it was never observed that s1(−2, 0), s1(−4, 0), etc. actually contain
nothing, they were still free to contain the hero.

This is why it makes sense to associate a set of causality rules to a specific
observer of the system (Definition 5), be it an outside omniscient observer or a
limited observer that is actually part of the system (as in Example 1). This also
allows us to model multiple observers.

2.5 The Bootstrap Paradox

One last scenario of interest under NSP is the (possibly misnamed) bootstrap
paradox. Imagine that the �→conditions for ‘walking’, ‘time-travel’ and ‘surprise’
in CR were negated, i.e., that the hero would only act if he did see his older self
in front of him, and would freeze in surprise otherwise. The word ‘paradox’ may
be a misnomer, because far from causing contradiction, those rules are satisfied
by two distinctly different types of model.

...

initial conditions walking walking

time-travel

walking walking

Fig. 6. One possible causality diagram for the ‘walking right’ observer CR (Example 1),
but with the �→ conditions negated. Note the three points where causality loops back
on itself. The other possible causality diagram for this observer resembles Fig. 1 and
has the hero frozen from the outset, never to thaw.

In the first type, the hero simply stands still in his initial spot, frozen in
surprise from the outset. In the second type, the hero does see his older self in
front of him, which allows him to walk, then travel back in time to become that



270 M. Helvensteijn and F. Arbab

older self. This second type of model is illustrated in Fig. 6. The phenomenon is
also known as circular causation, or as a causal loop, but we find the ‘bootstrap’
metaphor quite apt. This term was popularized by the science fiction short story
“By His Bootstraps”, by Robert A. Heinlein [5].

2.6 Branching Timelines

The Novikov Self-consistency Principle is a fascinating approach because of the
many interesting ways in which self-consistency might be enforced. But depend-
ing on the kind of story we want to tell, it may turn out to be too restrictive.
A more forgiving approach is to allow seemingly paradoxical behavior, and to
resolve it by introducing a new branch in the timeline. This is what the Many
Worlds Interpretation proposes. There is plenty of fiction that does this, and
examining it can also bring better insight into NSP.

To discuss MWI, we now expand our models to the full set M, which includes
branching timelines (Definition 1). To encode rules on this sort of model, we need
a more expressive language. The computational tree logic CTL∗

lp is a superset of
LTLp and introduces modalities for quantifying over paths:

Definition 6. The syntax of CTL∗
lp is specified with the following grammar,

which references the LTLp grammar of Definition 3 and adds one rule to it:

ψ ::= ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Eφ | Aφ
φ ::= ψ | 〈φ from definition 3 〉

where ψ is a CTL∗
lp formula, and φ is a formula in LTLp with the added rule.

The formula Eφ indicates that there exists a path inside the model that starts
at the reference state and satisfies φ. The formula Aφ indicates that all paths
inside the model that start at the reference state satisfy φ.

Semantics for m, s |= ψ, with m ∈ M and s ∈ m are defined in the expected
way [6]. We also write m |= φ and say that ψ is globally true in m iff for all
states s ∈ S, we have m, s |= ψ.

We alter the forms of our causality rules (Definition 5) correspondingly:

Definition 7. In the setting of MWI, define a causality chain or observer as a
set of CTL∗

lp formulas. The causality rule should take the following shape, and
quantify over all LTLp formulas φ:

〈cause〉 =⇒ AXi

︸︷︷︸
a

(
φ ⇒
︸︷︷︸
b

X−1EX φ ∧ 〈effect〉
︸ ︷︷ ︸

c

)
causality (MWI)

This one is a bit more complicated than the one in Definition 5. Here is how the
formula works: For having an effect i steps in the future (where i may be non-
positive), we (a) go to all states that are at the specified depth, (b) remember the
conditions that hold there as φ, and then (c) require that there exists some state at
the same depth where the remembered conditions φ, as well as the specified effects,
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hold. This state may turn out to be the original one where we remembered φ, or
we may require the model to have a separate branch to accommodate the effect.

Initial conditions may be specified as follows:

AOF 〈conditions〉 initial conditions

Compared to Definition 5, we only added the A modality here.

This new causality rule is more complex so that it allows branching at para-
doxical backward causality, as well as propagate forward causality in the proper
way. When restricting ourselves to forward causality, we can simplify:

Lemma 2. When i ≥ 1, then for all LTLp formulas φ we have:
(

〈cause〉 ⇒ AXi
(
φ ⇒ X−1EX φ ∧ 〈effect〉

) )
⇐⇒

(
〈cause〉 ⇒ AXi〈effect〉

)

Figure 7 shows a causality diagram for the ‘walking right’ scenario of Exam-
ple 1, assuming the causality rules are encoded as per Definition 7, graphically
depicted in Fig. 8. Besides the main timeline, the causality chain branches too,
resulting in a quantum clone, i.e., a duplicate of the hero that can perpetually
exist alongside the original.

... ...

initial conditions walking walking

time-tra
vel

walking walking

initial conditions
surprise frozen frozen

Fig. 7. Causality diagram for the ‘walking right’ observer CR (Example 1) with causal-
ity rules encoded as per Definition 7. Under MWI, contradicting observed history causes
a branch in the timeline. Note the hero’s quantum clone, diverted from its intended
path by the arrival of the original hero.

2.7 Temporal and Spatial Collision Detection

It should be noted that not all contradictions can be solved simply by branch-
ing the timeline. For instance: if, rather than twice walking right before time-
traveling, the hero walks right once, then left once. Call this causality chain CRL.
After time-travel, he would materialize right onto his initial position (0, 0), when
a younger version of him is already standing there. In other words, the effect of
the ‘time-travel’ rule would directly contradict the effect of the ‘initial condi-
tions’ rule. The way we model 2D space, the two versions of the hero cannot
simultaneously occupy the same cell. So there are no models satisfying CRL,
even under MWI.
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→

−1 0 1 2 3 4

→

−1 0 1 2 3 4

→

−1 0 1 2 3 4

→

↘
→ → →

Fig. 8. A graphical representation of the ‘walking right’ observer CR (Example 1) with
causality rules encoded as per Definition 7. This scenario corresponds with the causality
diagram from Fig. 7, the quantum clone now explicitly visible, frozen in place.

But this kind of contradiction is not inherently a temporal paradox. We
would be in the same situation if two heroes were to simultaneously walk onto
the same spot. Someone familiar with game development would tell us we have
to implement collision detection, and build it into our rules to avoid the contra-
diction. The same can be said of the CRL example. The designer of those rules
would have to decide what should happen upon ‘temporal collision’ (e.g., block
the time-travel attempt, push back the younger hero to make room, trigger an
explosion, . . . ), integrate it into the rules and prevent contradiction that way.

3 Interactive Gameplay

It is clear that with non-interactive storytelling, any possible self-consistent time-
line can be constructed by the writer if they just model-check properly. However,
things change when a human player is introduced. You can see a human player
as an observer, but he is also an actor, and can decide to manipulate the world
based on his observations. This creates some limitations in the real world, where
actual time-travel (seemingly) does not exist.

3.1 Difficulties for Single-Player Games

The actions and memories of characters in a book are completely controlled by
the author of the book. A game-designer can exert no such control over the real-
world players of their game. Because the developer of a game has only limited
control over the player’s actions, unless the rules of the game are extremely
restrictive, a player could choose to purposely cause paradox, violating Novikov’s
principle.

However, the authors feel that there is still a lot potential to a game like that
if paradox is incorporated as a lose condition to be avoided. For example, he must
resist the temptation to raid a treasure chest in the past that he has already
raided in the present. It can also serve as a mechanism for in-game puzzles and
a novel source of balance in gameplay. If the player avoids excessive observation
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during first playthrough of an area, he then gains more freedom to travel back
to that time and place without causing paradox. He may on occasion be forced
to literally ‘look the other way’ to allow his future self to pass by without being
observed. Such a game could also employ the bootstrap paradox (Sect. 2.5) to
great effect: put the player face-to-face with his future self, and then require him
to reenact the scene later in order to maintain consistency.

×
Game Over

Fig. 9. One human player taking the role of an observer. Under NSP, if he contradicts
recorded history, it causes a paradox with no opportunity to branch: Game Over

The alternative of going by the Many Worlds Interpretation, allowing the
player to continue in another branch, fixes the paradox problem, but introduces
another. In the new branch, there will essentially be two versions of the player
character: the older one who came from the previous branch, and the younger one
native to the new branch. For the purpose of continuity, the player would natu-
rally control the former, but how should the latter behave? Figure 10 illustrates
this problem. Ideally, it should behave exactly how the human player would
have done when faced with these alternate observations. Since we do seem to
live in a world without actual time-travel, and it is not yet feasible to perform
a brain-scan of the player in order to simulate his/her decision making process,
the quantum clone will have to be controlled by a (relatively simplistic) AI.

...

...
human player
quantum clone

Fig. 10. One human player taking the role of an observer, starting out the same as the
player in Fig. 9. Under MWI, if he contradicts recorded history, it causes a branch in
the timeline. The question is: what should be the behavior of his quantum clone?

To our best knowledge, no game exists that properly follows either of the two
time-travel principles discussed here. For example, in the game “The Legend of
Zelda: Oracle of Ages” [3], the player can travel between two eras of the game
world. In the past, he can move a boulder back and forth to control the flow of a
small stream in the mountains, thereby choosing the course it will take when it
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becomes a mighty river in the present. The hero can go back and forth as often
as he wishes to ‘toggle’ the direction of this river, and experience both versions
of the present without experiencing paradox or quantum cloning. This is just an
example; many other games use similar mechanics.

...

...

...

...

Fig. 11. Two players in the same game. One of them travels back in time, not vio-
lating his own recorded history, but violating that of the other player. Both players
may individually satisfy Novikov’s Self-consistency Principle, but the combined set of
causality rules does not. This forces the two players into separate branches, devolving
a two-player game into two single-player games. As an aside, note that there is not
necessarily a need for quantum cloning in this scenario. So long as the player does not
interfere, his past self can be programmed to perform the exact same actions the player
did, and travel back in time also.

3.2 Additional Difficulties for Multi-player Games

While there are difficulties to overcome in designing a single-player time-travel
game, the ones posed by the prospect of a multiplayer game are much harder to
overcome. The problem stems from the fact that player 1 may travel back in time
and (indirectly) change the recorded history of player 2 without having enough
information to avoid this. Maintaining self-consistency for an observer should
rely on a first person viewpoint. In a single-player game, tinkering with the
history of another character should simply result in that history being written
accordingly, with the intended meaning that it was written that way all along.
But when the other character is a human player in the real world, that history
was by necessity already written.

Taking such interaction to its logical conclusion in our framework would lead
to an inexplicable Game Over for both players in the case of NSP, or to the
players being forced into separate time-branches in the case of MWI. In the
latter case, a two-player game would soon devolve into two single-player games
(Fig. 11). To prevent this would be to either isolate the two players in space,
which is not much better, or to severely restrict their freedom to time-travel.
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Fig. 12. A screenshot of the rudimentary time-travel game set up as a proof of concept.
The graphical tiles used come from the open source game Nethack [12].

4 Implementation

We set out to implement a gameplay engine in JavaScript that supports both
NSP and MWI. It is available as an open-source project on GitHub4 and a
rudimentary game is playable online as a proof of concept5. Figure 12 shows two
screenshots of this game. We now briefly discuss our development techniques.

The Observer class takes front and center. It stores what is essentially a
4-dimensional array of recorded history, where the dimensions are ‘time’, ‘x’, ‘y’
and ‘aspect’. The game has a top-down view on 2-dimensional space, and ‘aspect’
basically serves as the third spatial dimension. It can store the different types of
knowledge that are to be had from each cell in space-time, such as terrain and
occupant, where the former can (currently) indicate either a wall or a floor,
and the latter can indicate either nothing or a hero, as in Example 1. Any
aspect can also be unknown, indicating that it has not yet been observed. The
division of aspects determines the granularity of what can be observed. The time
dimension is not actually an array, but a tree, allowing the timeline to branch.

When observing a specific aspect of a specific cell, the observer appeals to
an instance of the Reality class. This class generates parts of reality on-the-
fly, not making any preassumptions about the occupation of cells until asked.
The Player (which is also an Observer) can inject itself into specific points of
reality by waiting, walking, or time-traveling. This is known as an incursion.
If he ever injects himself in a place and time already known to be empty (or
containing something else), this indicates a temporal paradox. Depending on
the active game-mode, the game will either end, or the player will enter a new
time-branch, and any quantum clones will be controlled by a randomizer.

Because multiple instances of the hero can be on-screen at the same time,
there is not just a single Player object. Rather, each time the player ‘moves
around’, he actually injects a copy of himself into the appropriate coordinates of
space-time, and keyboard control is then transferred to the copy. The player will
not notice the difference, but this makes it easier to keep the model complete.
4 http://www.github.com/mhelvens/time-traveler.
5 http://mhelvens.github.io/time-traveler.

http://www.github.com/mhelvens/time-traveler
http://mhelvens.github.io/time-traveler
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5 Conclusion

In this paper we showed how to specify the dynamics of certain stories or uni-
verses with temporal logic, so that they can be model-checked for adherence to
the rules of time-travel determined in the field of theoretical physics. Specifi-
cally, we looked at the rules under the Novikov Self-consistency Principle, and
the rules under the Many World Interpretation of quantum mechanics. We did
this both for non-interactive stories and for games.

Moreover, we have implemented a game engine in JavaScript following these
rules, to allow the development of technically accurate time-travel games, some-
thing we have not seen anywhere else.

We learned a lot in working on this paper, and have identified a number of
areas worth exploring further, and some choices we may want to reexamine in
future work. For example, in this paper we specify time-travel dynamics directly
in a temporal logic, and then create causality diagrams as a more or less informal
visualization technique built on top of that. We now believe there may be much
potential to causality diagrams as a primary notation.

Furthermore, it has been suggested that quantum clones might be controlled
more realistically if we employ machine learning to approximate the decision
making process of the human player. This certainly seems like an exciting idea.
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Abstract. Domain Specific Languages (DSLs) provide a lightweight
approach to incorporate formal techniques into the industrial workflow.
From DSL instances, formal models and other artefacts can be gener-
ated, such as simulation models and code. Having a single source for all
artefacts improves maintenance and offers a high return on investment of
the initial modelling effort. Since DSLs can be used to capture essential
domain information at a high level of abstraction, this supports formal
verification early in the development process. We discuss our experiences
with this approach in a number of real industrial development projects.

1 Introduction

Many companies suffer from a long test and integration phase. The main reason
is that a large number of problems are detected in this phase. Repairing these
problems is often not easy and corrections might lead to new problems. Hence,
it is difficult to manage this phase and to predict when it can be completed.

Our approach aims at detecting problems much earlier in the development
process by means of various modelling techniques. Although it is well-known that
it is very cost-effective to detect problems as early as possible (see, e.g., [31]), the
main challenge is to realize this in an existing industrial development process
with continuous pressure to meet deadlines. Therefore our approach tries to
reduce the modelling effort by reusing models for multiple purposes, such as
performance analysis and the generation of configuration files, tests or code.

In this paper we concentrate on the use of formal techniques to increase
the confidence in the correctness of the models. In the industrial context, the
use of lightweight formal methods has been advocated frequently [13,17]. These
methods hide a lot of the mathematical details from the user and do not aim at
generic modelling and analysis techniques. By specializing on a particular type
of design pattern and a particular set of properties, more efficient and effective
approaches can be developed.

As a starting point, we analyse the industrial use of the Analytical Software
Design (ASD) approach [24] which is supported by commercial tooling. This app-
roach combines a restricted tabular notation for component behaviour, formal
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verification of a limited number of properties, and code generation. The evalua-
tion is based on a number of industrial development projects and a comparison
with Uppaal [9].

Based on these experiences, we experiment with the use of Domain Specific
Languages (DSLs). Recent DSL technology allows a fast definition of a dedicated
language, the automatic generation of a powerful editor for this language, and
a convenient mechanism to generate text (e.g., analysis models or code) from
language instances. We report about experiences with DSLs in combination with
various formal methods in a number of real industrial development projects.

Related Work. Related to ASD are commercial tools that combine formal
methods and code generation. VDMTools1 supports code generation from mod-
els specified using the VDM++ language [11]. The tool Atelier B2 has been
used to develop a number of safety-critical systems using the B-method [1].
The SCADE Suite3 provides formal techniques for specification, verification and
code generation. These techniques are quite generic and the correctness proofs
for VDM and B models may require interactive theorem proving. ASD is much
more restricted than the approaches mentioned above to achieve a high level of
automation and to support compositional verification.

The use of DSLs has been proposed for more than a decade, see e.g. the
overview in [30]. An early experiment to combine DSLs and formal methods has
been described in [4]. In that paper, the correctness of instances of a DSL for
process scheduling is verified using the B method. To increase the use of formal
methods in industry, [10] proposes the encapsulation of formal methods within
domain specific languages. A DSL of the railway domain is formalized by means
of the algebraic specification language CASL [16]. Recent developments of the
DSL technology make it feasible to apply this on a much larger industrial scale.

Industrial Context. Most of the work reported here was done at Philips
Healthcare, with a focus on interventional X-Ray (iXR) systems, see Fig. 1.
These systems are used for minimally invasive surgery, for instance, improv-
ing the throughput of a blood vessel by placing a stent via a catheter where the
surgeon is guided by X-ray images. These techniques avoid, for instance, open
heart surgery.

Overview. This paper is structured as follows. The ASD approach is evaluated
in Sect. 2, which also includes a comparison to Uppaal. Based on our observa-
tions, Sect. 3 describes our approach to combine formal methods and DSLs in
industry. Section 4 contains three industrial applications at Philips on compo-
nents of iXR systems. Concluding remarks can be found in Sect. 5.

1 http://www.vdmtools.jp/en/.
2 http://www.atelierb.eu/en/.
3 http://www.esterel-technologies.com/products/scade-suite/.

http://www.vdmtools.jp/en/
http://www.atelierb.eu/en/
http://www.esterel-technologies.com/products/scade-suite/


Industrial Application of Formal Models 279

Fig. 1. Interventional X-ray system

2 Experiences with ASD

Section 2.1 contains a brief overview of the ASD method. More explanation,
examples, and applications at Philips can be found in [15,21]. A summary of the
experiences at Philips with ASD is given in Sect. 2.2. Section 2.3 compares ASD
with Uppaal.

2.1 ASD Background

The Analytical Software Design (ASD) method [23,24] is a component-based
technology that aims at enabling the application of formal methods into indus-
trial practice. The approach has been supported by the commercial development
tool ASD:Suite which embeds ASD into a software design environment. This tool
was developed by the company Verum. After a re-start of this company, the app-
roach was recently renamed to Dezyne, but our experiences concern the use of
the original ASD method.

ASD Models. Models are represented in ASD by state-transition tables. The
ASD approach distinguishes two types of models:

– An interface model specifies the external behaviour of a component without
referring to any internal behaviour. This forms the formal contract of the
interaction between the component and its clients.

– A design model implements a certain interface model and typically uses ser-
vices of other components, the so-called used components, by referring to their
interface models.

An example of ASD models is depicted in Fig. 2. It shows a part of a
design model of a component (DComponent) with fragments of its interface
model (IComponent) and two used interfaces (IUsedComp1 and IUsedComp2).
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Fig. 2. Example of ASD models

Each model is a state machine, represented by a table. In every state the response
to all possible input events has to be specified. It is possible to specify that an
event is illegal in a certain state, i.e., that it should not occur in that state.

Design models should be deterministic; non-determinism is allowed in inter-
face models. In ASD, communication between client and server components is
asymmetric, using synchronous calls and asynchronous callbacks.

– Clients issue synchronous calls to server components, where the client is
blocked until the server accepts the call and eventually returns it to the client.

– Servers can communicate with their clients by asynchronous callbacks. Call-
backs are stored in a so-called callback queue (FIFO).

Another restriction is that an ASD component cannot make decisions based on
the values of parameters in a received call. Only the names of calls or callbacks
can influence the flow of control. Hence, ASD only supports data-independent
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control components. Other components have to be implemented in another way,
e.g., by manual coding.

Formal Verification. The ASD:Suite automatically translates the ASD tabular
specifications into CSP models and verifies them using the formal refinement
checker FDR2 [26]. (FDR is an abbreviation of Failures-Divergence Refinement.)
All CSP and FDR2 details are hidden from end-users. When a property does
not hold, an error trace is represented as a sequence diagram.

Only a fixed set of properties can be verified. The main checks performed by
the ASD:Suite are:

– Consistency checks: verify whether a design model is deterministic and cor-
rectly uses the interfaces of its used components.

– Refinement checks : verify whether the interface model of a component is cor-
rectly refined by the design model in combination with the interface models
of the used components.

Observe that the ASD approach is compositional [8,14], since the refinement
checks only use the interface models of the used components. This compositional
way of verification avoids the well-known state space explosion problem and
enables industrial scalability, because components can be checked in isolation.
It requires, however, a careful design of the system such that the design pattern
of ASD is used and the components themselves are kept small (to avoid state
explosion at the component level).

Code Generation. ASD:Suite supports the generation of code from design
models for a number of programming languages (C, C++, C#, Java), which is
important for industrial acceptance. This avoids an error prone manual transla-
tion from models to code and is expected to improve productivity. Observe that
the formal model and the code are both based on the same source, see Fig. 3.

Fig. 3. The ASD approach

2.2 Industrial Application of ASD

The ASD approach has been used at Philips Healthcare in a number of dif-
ferent development projects. We summarize an extensive evaluation published
before [22] concerning software quality and productivity:



282 J. Hooman

– Since ASD only checks a limited set of properties, it may not always lead to
defect-free software. However, compared to the industry standards, very few
defects were found in the code generated by ASD. In general, most defects
were easy to find and to fix.

– The data of the projects in which ASD was used indicate an improved pro-
ductivity compared to industrial standards. This was partly due to the fact
that after the modelling phase, verified code is generated automatically. It was
also observed that less time was spent integrating and manually testing the
generated code. Clearly, ASD prevented problems earlier in the development
process. As an example, most developers were impressed by the fast detection
of race conditions, because their experience is that these problems are difficult
to detect by testing and usually show up very late in the development process
with the conventional approach.

The limitations of the ASD method, however, might prevent large-scale intro-
duction into the industrial workflow:

– The approach is limited to event-based control components. It is not suitable
for low-level real-time controllers and data-intensive components. Designers
find it difficult to decide what to do in ASD and what not.

– ASD assumes a hierarchical control architecture with synchronous method
calls from top to bottom and asynchronous callbacks in the other direction.
Although this gives a clear structure, it is not always easy to construct such a
hierarchy, especially because the size of components and the number of call-
backs should be small to allow fast model checking. Moreover, when software
engineers are used to object-oriented designs this might require a paradigm
shift.

– After a few changes, the state-transition tables might become large and diffi-
cult to maintain; there are hardly any structuring mechanisms, e.g., to indicate
that a certain transition is common to a set of states.

– There is no systematic means to evaluate and to analyse the complexity of
ASD models, e.g., to detect early that model checking might take too long or
to decide that refactoring is needed after changes.

– Verification is limited; there is no possibility to express the desired
input/output behaviour of a component. For instance, one would like to
express that certain input calls lead to specific calls to the used components.

– There is no possibility to simulate a component or the combination of a num-
ber of components to validate that the desired behaviour has been modelled.

2.3 Comparison with Uppaal

Based on experiences with ASD, industrial users asked for other formal verifi-
cation methods without the limitations of ASD. At FEI Company, where ASD
is used to develop control software for electron microscopes, we experimented
with additional support using Uppaal [9]. Uppaal is an integrated environment
for modelling, validation and verification of systems modelled as networks of
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timed automata. The Uppaal tool was chosen because of its nice and under-
standable user interface and the simulation possibilities, which appeared to be
attractive for industrial users. The most important reason was the possibility to
verify other properties than the ASD checks, which increases the range of faults
that can be detected early. The timing aspects of Uppaal have not been used,
but might be relevant in later studies.

Uppaal Models. Uppaal uses timed automata with synchronous communica-
tion along channels, extended with data types (bounded integers, arrays, etc.).
For more details about Uppaal we refer to [2].

Uppaal has been applied to a camera safety system. This system should
guarantee that an expensive and very sensitive camera is protected against a
too high dose of electrons. An important part of this system is the software that
keeps track of the location of the camera, the blocking of the electron beam
by other components and the intensity of the electron beam. This part of the
software was generated using the ASD approach.

We translated the ASD models to Uppaal. Translating the tabular repre-
sentation to the automata of Uppaal is rather straightforward. The main issue
was that simulation and verification in Uppaal requires a closed set of models
which includes the environment of the component(s) under study. We obtained a
closed system by using the interface model of an ASD design model. This inter-
face model was translated into an Uppaal model of a client of the component by
reversing the direction of sending and receiving.

Formal Verification. Most important difference with ASD is that Uppaal
allows the verification of user-defined properties which have to be expressed
in a version of temporal logic. In general, we concentrated on properties that
had not yet been verified by the standard checks of ASD:Suite. The properties
to be verified have been defined in cooperation with the software architect and
the system architect. By means of this verification, two major issues were found.
These issues could not be found in the ASD approach since it does not allow
this type of verification.

A disadvantage of above approach is that the temporal logic expressions are
not easy to read by industrial users. As an alternative, we experimented with the
use of observers, similar to [5]. An observer is an additional parallel automaton
which observes the communication between the other automata and enters an
error location when an incorrect trace is observed. This approach was more
convenient for our industrial users.

Comparison from Industrial Perspective. We observed that ASD and
Uppaal are complementary in many respects. The industrial engineers appre-
ciate the possibilities to simulate the Uppaal models. This especially concerns
the joint simulation of a number of components, which was clearly missing in
ASD:Suite. A disadvantage, compared to the compositional approach of ASD,
is that one more easily encounters the state explosion problem, so scalability of
Uppaal is limited.
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The larger range of verification possibilities of Uppaal is a clear advantage,
although expressing properties in temporal logic is not very convenient for indus-
trial users. The timing properties of Uppaal have not been used in our experi-
ment, but the possibility to express timing is seen as a valuable asset. A strong
point of ASD is the generation of code from a verified model. The fact that dif-
ferent programming languages are supported provides a kind of platform inde-
pendence which is important to enable future technology changes.

3 Domain Specific Languages and Formal Methods

The experiences with ASD and Uppaal indicate that one would like to com-
bine the strong points of different techniques. Making transformations between
models of different formalisms, such as ASD and Uppaal, would be very time
consuming. Typically, subtle semantic differences make it very hard to define a
correct generic transformation. Given our experiences with the use of Domain
Specific Languages (DSLs) to define the behaviour of frequently changing com-
ponents at a high level of abstraction [19], we have combined this with the
generation of formal models.

Our approach is based on Xtext4, an Eclipse plugin on top of the Eclipse
Modelling Framework. Based on the definition of a grammar, the Xtext plugin
generates a meta-model, a parser and an Eclipse-based editor for the language
defined by the grammar. Moreover, it generates convenient starting points to
implement validation, scoping, and the generation of text (such as code and
models) using the Xtend language5 [3].

In addition to formal verifications tools, we also use simulations based on
POOSL (Parallel Object Oriented Specification Language) [27]. POOSL is a
formal modelling language for systems that include both software and digital
hardware. The formal semantics of POOSL has been defined in [28] by means of
a probabilistic structural operational semantics for the process layer and a prob-
abilistic denotational semantics for the data layer. The operational semantics of
POOSL has been implemented in a high-speed simulation engine called Rotalu-
mis. Recently, by means of Xtext, a modern Eclipse IDE has been developed on
top of an improved Rotalumis simulation engine6.

For the (re)design of a component we proceed along the following steps:

1 Define a grammar in Xtext to capture the essential domain concepts.
2 Define an instances of the language defined in the previous step. Discuss this

instance with domain experts to obtain a first definition of the required behav-
iour. When needed, the grammar is adapted.

3 Implement validation rules to check well-formedness properties of language
instances.

4 http://eclipse.org/Xtext/.
5 http://eclipse.org/xtend/.
6 http://poosl.esi.nl.

http://eclipse.org/Xtext/
http://eclipse.org/xtend/
http://poosl.esi.nl
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4 Implement a generator which yields a POOSL model that can be used to sim-
ulate the intended behaviour. Often we connect the simulated POOSL model
by means of a socket to a visualization (e.g. in Java) of the externally visible
behaviour. Adapt language instances after feedback of industrial stakeholders.

5 Implement a generator which yields a formal model that enables formal verifi-
cation. We have used various formal techniques for this step. Clearly, language
instances are adapted when errors are found.

6 Implement a generator which yields code, configuration files, or tests, depend-
ing on the industrial needs.

4 Applications of Combining DSLs with Formal Methods

The approach described in the previous section has been applied to three com-
ponents of the iXR system introduced in Sect. 1. We have developed a DSL for
collision prevention in combination with an SMT solver (Sect. 4.1), a DSL for
power control, supported by SAL (Sect. 4.2) and a DSL for pedal handling with
formal verification by means of mCRL2 (Sect. 4.3).

4.1 DSL Collision Prevention and SMT Solver

The first project is related to the moving parts of an iXR system. Such a system
consists of one or two so-called C-arms, each carrying an X-ray generator and a
detector. During the treatment of a patient, the C-arms, the detectors, and the
patient table can be moved to obtain optimal projections for the images. Safety of
an iXR system includes the avoidance of collisions between these heavy physical
objects and with humans, such as patient and medical staff.

The goal of the project was to re-develop the collision prevention components
in order to facilitate systematic reuse of safety-critical software across product
configurations and medical applications. An overview is given in [20], details
about the formal approach can be found in [18].

To stay close to the requirements formulation, we have developed a DSL
which is targeted at the type of rules we want to express. These rules basically
specify restrictions on the speed of the moving parts when the distances between
these parts are below certain thresholds or when distance sensors detect an object
(e.g., patient or medical staff). A part of a DSL instance is depicted in Fig. 4.

Basic validation checks have been implemented by means of the validation
mechanism of Xtext. This includes, for instance, type checking and consistency
checks on the hardware configuration. Clearly such checks are limited and there is
a need for more analysis before generating code and performing time-consuming
system tests. For the collision prevention component, the focus was on two types
of analysis: performance evaluation of the required execution times and formal
verification of correctness properties. This has been achieved by defining trans-
formations to analysis models. Additionally, code has been generated, as shown
in Fig. 5. We briefly discuss these three ingredients.
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Fig. 4. Part of a DSL instance for collision prevention

Fig. 5. DSL for collision prevention and transformations

Performance. The collision prevention component is part of a real-time con-
trol loop that executes with a certain frequency. Hence it is important that the
collision prevention component can execute within the period of the real-time
loop. The performance analysis of collision prevention concentrates on the com-
putations needed to compute distances between objects [29]. It uses a generated
POOSL model to perform simulations and to obtain statistics about expected
execution times. The model uses performance profiles of the basic computation
steps. Moreover, it has been calibrated using performance measurements on an
existing component.

Formal Verification. To obtain fully automated and fast formal analysis, a
generator has been written in Xtend which generates for every DSL instance
an SMT (Satisfiability Modulo Theories) model. This model is analysed using
the SMT-solver Z3 [7]. If the property does not hold, delta debugging is used to
identify the rules in the DSL instance that contribute to the failure. This leads
to warnings in the Eclipse-based editor for the DSL at appropriate places.
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Formal verification addresses four types of correctness properties:

– Well-definedness of expressions; for instance, absence of division by zero.
– Speed limits are within the specified range.
– Safety of movement control; for instance, if two objects are close to each other

and still approaching, then their speeds are restricted.
– Absence of deadlock; there is no position of the objects such that no further

movements are possible.

To make formal verification feasible, several abstractions have been applied,
e.g., concerning the acceleration characteristics of the physical objects and timing
aspects. Using these abstractions, the experiments described in [18] show that
fast analysis and user feedback is feasible for realistic instances of the DSL. For
the correctness properties mentioned above, the applied abstractions may result
in false positives. Moreover, for the deadlock check it may also result in false
negatives. Nevertheless, also the deadlock check is useful as it can detect certain
typical mistakes in the collision prevention rules.

Code Generation. For the generation of source code, a code generator has
been developed that transforms the high-level concepts from our DSL into exe-
cutable code. By means of some glue code, we have integrated the generated
code within the existing system software. The result has been evaluated on the
physical system, including all hardware components. This has been used to test
whether a specific set of rules has been modelled correctly. Note that the analy-
sis techniques help to find errors earlier, but they cannot detect everything.
For instance, movement profiles might have some inaccuracy and heavy physical
parts cannot be stopped immediately. After sufficient testing, the code gener-
ation can be used for generating production code and then it adds immediate
value to the modelling efforts.

4.2 DSL Power Control and SAL

The second application concerns the power control component of an iXR system.
This component is responsible for executing power control scenarios, such as
start-up, shut down and power failure. During such a scenario the power control
component is the master of the system and all other components follow the
instructions of the power control component.

The power control component contains a generic part that needs to be config-
ured for every release and every different hardware configuration. In the existing
situation, the configuration files are difficult to maintain and to extend. Given
the increasing system complexity of the product family, this will likely create
problems in future releases. The business goal of the development project is to
improve the maintainability and extendibility of the power control component.
Additionally, there is a need to improve the existing test set which is very time
consuming without having a large coverage.

As before, we define a DSL to express the essential information needed to
generate the configuration files automatically from DSL instances. To increase
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the confidence in the correctness of DSL instances, we also generate a few analysis
models such as a POOSL model, see Fig. 6. Formal verification has been done
by means of SAL [12,25], because it also includes convenient support for test
generation from a formal model. Instead of generating tests directly, we generate
instances of a separate DSL to express test traces. This makes it possible to
generate test for various test frameworks, but also test for the POOSL simulation
and checks for the SAL models. This can be used to cross check the models and
increase the confidence in the generators.

Fig. 6. DSL for power control and transformations

Simulation with POOSL. We implemented a generator which delivers a
POOSL model for every DSL instance. By means of a socket, the simulation
of a POOSL model is connected to a Java program which provides a Graphical
User interface (GUI). This GUI contains buttons to simulate external input and
to inject errors. It also shows the resulting power states of the connected devices.
This simulation is very useful for a first validation of the model and to align with
many parties (architects, designers, suppliers, service engineers, etc.) about the
required system behaviour. In this way we detected a number of modelling mis-
takes and clarified a few issues concerning error handling in the power control
component.

Checking Properties with SAL. To obtain exhaustive checks on DSL
instances, a generator for SAL models has been implemented. A number of prop-
erties has been verified, e.g., expressing that certain groups of devices are in the
same power state and that the preconditions for hardware components are ful-
filled. By means of SAL, we detected a few additional errors, such as a situation
where a device is not powered due to an error in the hardware precondition.

Generating Configuration Files and Tests. From the DSL we generated the
configuration files. In addition we used SAL to generated a large number of test
scripts. Note that these tests concern the overall system behaviour, including
the generic software part, the configuration files and the hardware,

With the generated test cases, approximately twice as much transitions are
covered compared to the manually written tests. These manually written tests
were also were very time-dependent with many long waiting times. They could
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still fail due to a slow response of hardware, which typically resulted in a further
increase of the waiting times. By having all concepts described in a clear and con-
cise way using DSLs, we could make the test cases much more efficient. Instead
of waiting all the time, the test tool now synchronizes with the power control
component and immediately resumes the test case once the control component
has reached the desired state.

4.3 DSL Pedal Handling and mCRL2

Our approach has also been applied to the pedal handling component of an iXR
system. This component deals with the selection of types of X-ray (high dose or
low dose, one or two X-ray sources) and starting and stopping X-ray by means
of pedals. Since the current implementation is difficult to maintain, the aim is to
refactor the component and partly re-implement it. Also an improvement of the
user-perceived behaviour is foreseen. The work described here concentrates on
obtaining an unambiguous description of the required behaviour and a good test
environment which can be used to test whether new implementations conform
to the required behaviour.

In this case, we have defined a DSL to capture the requirements concerning
the externally visible behaviour of the component, including the error behaviour.
The component has 25 possible input events (including 9 error events) and more
than 50 possible output commands. The DSL describes for each input event
the resulting output, i.e., the type of X-ray and the status of the user display
(e.g., whether a live image is shown, a previously captured image, or a blank
screen). A fragment of a DSL instance (changed and simplified for reasons of
confidentiality) is shown in Fig. 7.

For each DSL instance we automatically generate a POOSL model to simulate
the requirements, an mCRL2 model to verify properties of the model, and a test
model suitable for model-based testing. Figure 8(a) contains an overview.

Simulation with POOSL. Similar to the previous section, the generated
POOSL model has been coupled by means of a socket to a Java GUI which
allows a simulation of pedal presses and the injection of errors. It shows the
resulting X-ray and the display of images, as shown in Fig. 8(b). This visualiza-
tion was very helpful to discuss unclear scenarios, especially in case of errors. It
has been used extensively to discuss new behaviour with system architects and
designers, resulting in significant changes of error handling behaviour. The sim-
ulation will be used as a reference for the implementation of the new behaviour.

Formal Verification with mCRL2. To obtain exhaustive checks on the
requirements specification, we generate mCRL2 models. mCRL2 is a process
algebra with extensions for data and time. The supporting toolset [6] includes
the formal verification of processes with respect to properties expressed in a
modal µ-calculus. To avoid that industrial users have to use this logic, we have
extended the DSL with a simple language to express safety properties. This
is sufficient to express important properties such as “no X-ray is generated if
no pedal is pressed”. A few errors in the requirements have been detected in
this way.
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Fig. 7. Fragment of a DSL instance for pedal handling

(a) DSL for Pedal Handling and Trans-
formations

(b) Simulation with POOSL

Fig. 8. Pedal handling

Observe that the translation to mCRL2 defines a formal semantics of our
DSL. Discussions on the mCRL2 generator clarified a few points about the pre-
cise meaning of our DSL, e.g., concerning the level of atomicity. To increase our
confidence in the generators we have used an existing translator for a subset of
POOSL (covering the generated POOSL models) to mCRL2. We showed that,
for a number of DSL instances, the mCRL2 model of the direct DSL to mCRL2
translation is bisimulation equivalent to the result of the combined DSL to
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POOSL and POOSL to mCRL2 translations. These three transformations have
been implemented by three different persons.

Model-Based Testing. Finally, we have defined a generator which translates
DSL instances into a state machine represented in the Axini Modelling Language.
The TestManager of the company Axini uses this model to perform model-
based testing on an implementation. We have used this technique to validate our
requirements model for the existing implementation. It led to a few adaptations
of our DSL instance. When the new requirements model for the enhanced pedal
handling behaviour has been fixed, we automatically obtain a test environment
for the new implementation.

5 Concluding Remarks

Our experience in real industrial development projects indicates that the current
DSL technology allows a fast and convenient introduction of formal methods. We
observe two main categories of DSLs: (1) a DSL which expresses requirements
and finally leads to tests; (2) a DSL which expresses the behaviour of a design,
finally leading to code. In both cases, the generation of simulation models in com-
bination with a visualization of externally visible behaviour is very important
to align with many stakeholders such as users, marketing, system architects,
and engineers. Next, the generation of formal models and exhaustive verifica-
tion is useful to check consistency and important domain properties. Often it is
convenient to include an easy-readable definition of properties in the DSL. An
advantage of the DSL approach is that it leads to models that are already at a
high level of abstraction. If needed, additional abstractions can be made in the
generator.

Another advantage is that a DSL instance is the source of all generated arte-
facts. Any change in the DSL instance automatically leads to an update of all
these artefacts. This avoids the usual maintenance problem to keep formal mod-
els consistent with the frequent changes in an industrial context. In this context it
is important that there are a number of industrial benefits independent of formal
techniques, such as easy changeable domain knowledge, platform independence,
early simulation and validation of behaviour, and automatic generation of code
or tests. Then the use of formal techniques is a small investment which fits easily
in the overall approach and has additional benefits.
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Abstract. In this paper we concern ourselves with normative multi-
agent systems, which are multi-agent systems governed by a set of norms.
In these systems, the internals and architecture of the participating
agents may be unknown to us, which disables us to make any strong
assumption on the possible behaviour that these agents may exhibit.
Thus, we cannot simply assume that the agents are aware of the norms,
or that they are compliant with respect to the norms. In other words,
a crucial problem that needs to be solved is how we can verify these
systems if we have no idea whether the agents will be norm-obedient.
This paper investigates two distinct formal frameworks which allow us
to tackle this problem, namely in the first part of this paper we pro-
pose a logic-based framework which uses compliance types, and in the
second part we propose a framework which tackles the problem from a
mechanism-design perspective.

1 Introduction

A lot of work has contributed to the on-going field of (run-time and offline)
verification of programs and systems, such as the verification of object-oriented
programs [2] or the verification of agent programming with declarative goals
[6]. The field we are interested in are normative multi-agent systems, which are
multi-agent systems governed by a set of norms. In the spirit of this work, we
are going to explore frameworks for the verification of normative multi-agent
systems.

A multi-agent system is a computerized system that is composed of multiple
interacting agents within an environment [16]. These systems are generally com-
posed or designed with a specific goal in mind, and depending on the behaviour
of the participating agents these goals may, or may not, be achieved. In order to
regulate, coordinate and control these systems, norms have been proposed, lead-
ing to the field of research called normative multi-agent systems [5]. However,
since the internals and architecture of the participating agents may be unknown
to us, we cannot simply assume that the agents are aware of the norms, or that
they are compliant with respect to the norms. In other words, a crucial problem
that needs to be solved is how we can verify these systems if we have no idea
whether the agents will be norm-obedient. This paper investigates two distinct
c© Springer International Publishing Switzerland 2016
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formal frameworks which allow us to verify these systems. Formal verification is
the act of rigorously proving (or disproving) that the system works as intended.
Formal verification is of crucial importance if we are looking for a guarantee that
the system is correct. Whenever the cost of defection is high, it is of importance
that we know that a system is correct without actually having to run it.

In Sect. 2 we briefly introduce the model we use for normative multi-agent
systems. In Sect. 3 we consider our first framework that uses compliance types.
However, this framework does not take into account why the agents would behave
norm-compliant, we just assume it is the case. In Sect. 4 we consider our second
framework that does take these motives into account. Particularly, we assume
the agents have some preferences (which are possibly unknown to us), and use
solution concepts to predict what the agents will play. This approach tackles
the problem from a mechanism design perspective. For a general overview of
mechanism design we direct the reader to [13]. In Sect. 5 we discuss the paper.

2 Preliminaries

In this section we briefly introduce the model of execution we consider for multi-
agent systems. We consider simple transition systems, consisting of states of the
world, and a complete labelling of joint-actions over the transitions connecting
these states. Moreover, we assume a set of atomic (negative or positive) sanctions,
which represent certain fines and rewards we can give to the agents. They will
play a role later, when we will introduce the notion of state-based norms.

Definition 1 (Multi-agent System). A multi-agent system M is a tuple (Q,
q0, S, Ags, act, δ) such that:

– Q is a finite set of states.
– q0 ∈ Q the initial state.
– S is a finite set of atomic sanction propositions.
– Ags = {1, ..., n} is a finite non-empty set of agents.
– act : Ags × Q �→ N>0 is a function that assigns to each agent and each state

the number of available actions. We identify the actions of agent i ∈ Ags
in state q ∈ Q with the numbers 1 . . . act(i, q). For each state q ∈ Q, a
joint action is a vector α = (α1, . . . , α|Ags|) such that 1 ≤ αi ≤ act(i, q)
for every agent i ∈ Ags. Given a state q ∈ Q, we write Act(q) for the set
{1, . . . , act(1, q)} × · · · × {1, . . . , act(|Ags|, q)} of all possible joint actions.

– δ is a transition function which maps a state q ∈ Q and joint action α =
(α1, . . . , α|Ags|) ∈ Act(q) to the resulting next state δ(q,α) ∈ Q.

This model is thus concurrent, synchronous, decentralized, discrete and deter-
ministic, and is similar to the notion of concurrent game structures found in [1].
Note that for the sake of simplicity, we only consider sanction propositions; in a
more elaborate model states contain facts of the environment, which are assigned
by a valuation function. A state-based norm can be modelled as a function that
assigns sanctions to states. Note that a sanction can be a fine (e.g. pay x amount
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of money), but it can also be a reward. A state can then be considered ‘desired’
if the norm merely assigns positive sanctions (rewards) to this state and can be
considered ‘undesired’ if the norm merely assigns negative sanctions (fines) to
this state, but in general a norm can assign both positive and negative sanc-
tions. Note This approach is closely related to the approach of [15], who defines
‘red’ and ‘green’ states as the desired/undesired states of a system. Formally, we
define them as follows.

Definition 2 (State-Based Norm, Normative Multi-agent System).
Given a multi-agent system M = (Q, q0, S, Ags, act, δ), a state-based norm γ
is a function γ : Q �→ P(S) that maps a state of the multi-agent system to a set
of sanction propositions. We write (M,γ) for the multi-agent system in which
state-based norm γ is implemented and refer to such a tuple as a normative
multi-agent system, and we write ΓM for the set of all possible norms given M .

As usual, a multi-agent system gives rise to a set of possible runs (alterna-
tively computations) that can occur. A run, together with a state-based norm,
gives rise to an infinite sequence of sanction-sets that occurs along such a run.
We call such a sequence an outcome of a normative multi-agent system.

Definition 3 (Runs, Outcomes). Given a multi-agent system M = (Q, q0, S,
Ags, act, δ), a run is defined as an infinite sequence r = q0q1q2 · · · ∈ Qω starting
from initial state q0 such that ∀j ∈ N0 there exists a joint action α ∈ Act(qj)
such that δ(qj ,α) = qj+1. The set of all possible runs over M is denoted by RM .
A run r = q0q1q2 . . . and a state-based norm γ gives rise to an outcome γ(r) =
γ(q0)γ(q1)γ(q2) · · · ∈ P(S)ω. We write OM = {γ(r) | r ∈ RM and γ ∈ ΓM} for
the set of all possible outcomes given multi-agent system M .

Thus, a run r and norm γ give rise to an outcome γ(r). In this system agents
can adopt strategies, which are mappings from finite sequences of states to an
action of the respective agent. A strategy for each agent, referred to as a strategy
profile, gives rise to a unique outcome of the normative multi-agent system.

Definition 4 (Strategies). Given a multi-agent system M = (Q, q0, S, Ags,
act, δ), a strategy for an agent i ∈ Ags is a mapping σi, mapping a finite
sequence of states q0, ..., qk ∈ Q+ to an element of act(i, qk). A strategy profile
σ = (σ1, . . . , σ|Ags|) is a tuple containing a strategy for each agent. A strategy
profile σ, when executed in M , gives rise to a unique run from RM , and we write
run(σ) to denote this run.

Thus, a multi-agent system M , a norm γ and a strategy profile σ give rise to
a unique outcome γ(run(σ)) ∈ OM . Using these concepts, in the next section we
provide a verification framework that allows us to verify normative multi-agent
system using compliance types.

3 Verification Framework Using Compliance Types

Traditional offline verification of a multi-agent system typically takes on the
following form. We are given a normative multi-agent system (M,γ) together
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with a set of desired outcomes Odesired ⊆ OM , the latter depicting the set of
outcomes that are desired by the designer of the system. The objective now is to
verify whether the Odesired is guaranteed, i.e., whether it is the case that for all
runs r ∈ RM we have that γ(r) ∈ Odesired. Such a set Odesired usually is specified
by some temporal property of the system, for example “�¬bad” stating that
always nothing bad happens, or “♦good” stating that somewhere in the future
something good will happen. Linear Temporal Logic (LTL) as proposed in [14]
is a logic that allows assertions of this form. An LTL formula ϕ can be evaluated
along an outcome o ∈ OM (remember that an outcome is an infinite sequence
of sanction-sets). We will write o |= ϕ whenever an outcome o satisfies an LTL
formula ϕ, and assume the reader is familiar with the basics of LTL without
explicitly defining the semantics. Verification then asks whether an LTL formula
ϕ is valid in a normative multi-agent system (M,γ), i.e. whether for all runs
r ∈ RM we have that γ(r) |= ϕ.

Several refinements of LTL have been proposed to extend the possible veri-
fication questions one might ask. For example, Computation Tree Logic (CTL),
as shown in [8], is a logic that allows explicit (universal and existential) quan-
tification over the set of runs within a logical formula. Later, Alternating-time
Temporal Logic (ATL), as introduced in [1], was introduced as an extension of
CTL to reason about the possible runs that agents can enforce. This language
allows even more refined assertions of the form 〈〈i〉〉ϕ, where i ∈ Ags is an agent
and ϕ is a temporal formula (in actuality the language allows to reason about
what coalitions of agents can enforce, but we do not need to go into such detail).
Such a formula can be read as “agent i can enforce ϕ to be true”, and such a
formula can be evaluated along a normative multi-agent system. We say that
M,γ |= 〈〈i〉〉ϕ is true if and only if there exists a strategy σi for agent i such
that for all strategies σ−i it is the case that γ(run((σi, σ−i))) |= ϕ. Observe
that we use notation σ−i to denote the strategies of all the other agents apart
from i, which together with σi gives rise to the strategy profile (σi, σ−i).

Although these logics allow us to express complex temporal properties, in
order to verify normative multi-agent systems an even more refined approach
should arguably be taken. In this work, we do not assume that implementing a
system of norms enforces every agent to be perfectly norm-obedient. However, a
lot of strategy profiles the agents can adopt would be very implausible to occur.
For example, in a smart road multi-agent system, it would be very implausible to
consider a situation where all the agents would neglect all the norms (i.e. drive on
the wrong side of the road). However, it might be plausible to consider that some
of the agents are neglectful with respect to the norms, while the other agents
are obedient. In other words, in order to verify these systems, it is important to
consider more refined quantifications over the possible strategies that can occur.
For example, is it the case that we are guaranteed that an outcome from Odesired

is reached if all of the agents adopt a norm-obedient strategy? And, is this still
the case if one of the agents adopts a strategy which breaks some of the norms?
Related to the approach we have taken in [9], in order to express these kinds of
properties, we introduce the notion of a compliance type.
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Definition 5 (Compliance Types, Compliance Profile). Given a multi-
agent system M giving rise to a set of possible outcomes OM , we define a com-
pliance type as a function τ : OM �→ {0, 1} mapping outcomes to either 0 or
1. We say that an outcome o ∈ OM is τ -compliant if and only if τ(o) = 1. A
compliance profile τ̂ = (τ1, . . . , τ|Ags|) is a tuple containing a compliance type τi

for each agent i.

In other words, different notions of compliance can be constructed, and a
verifier of the system can choose these freely. A compliance type thus relates
state-based norms with compliant behaviour. As an example, suppose we have
a sanction atom v denoting some violation in the system. Then, we could define
a compliance type τ”never v” stating that v should never occur along an outcome
as follows:

τ”never v”(o) =

{
1 if o |= �¬v

0 otherwise.

Depending on our verification needs, more elaborate compliance types can also
be defined, for example “sometimes v”, or “at most n times v”. We can lift the
notion of compliant runs to compliant strategies as follows.

Definition 6 (Compliant Strategies). Given a normative multi-agent sys-
tem (M,γ) and compliance type τ , we say that a strategy σi for agent i is τ -
compliant if and only if for all strategies σ−i it is the case that γ(run((σi, σ−i)))
is τ -compliant.

Intuitively, a strategy σi for agent i is τ -compliant if and only if all the
outcomes that can occur if agent i would play this strategy are τ -compliant.
Since we do not know what the actual compliance behaviour of the agents will
be, we verify the system with respect to a set of possible compliance profiles.
Using these concepts, we can state a version of the verification problem as follows.

Verification Problem 1. The verification problem asks, given a normative
system (M,γ) and a set of compliance profiles T , whether it is the case that
for all τ̂ = (τi, τ−i) ∈ T and for all agents i ∈ Ags there exists a τi-compliant
strategy σifor agent i such that for all τ−i-compliant strategies σ−i it is the case
that:

γ(run((σi, σ−i))) ∈ Odesired

In words, this verification problem asks to verify whether for each compli-
ance type, each agent individually has a strategy aligned with this compliance
type such that for all strategies of the other agents that are aligned with this
compliance type, if the agents would adopt these strategies a desired outcome
is reached. We can extend the language of ATL even further to give a logical
characterization of the verification questions. Let ϕ be a formula characterizing
Odesired and let τ̂ = (τi, τ−i) be a compliance profile. We say that

M,γ |= 〈〈i | τ̂〉〉ϕ

is valid if and only if there exists a τi-compliant strategy σi for agent i such that
for all τ−i-compliant strategies σ−i it is the case that γ(run((σi, σ−i))) |= ϕ
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(again, we do not concern ourselves with a formal definition of the underlying
semantics). Such a logical language allows us to specify whether certain tempo-
ral properties (specified by ϕ) are true if the agents would behave according to
certain compliant strategies (specified by τ̂). We can then logically characterize
our verification task as follows. Given a normative system (M,γ), a set of com-
pliance profiles T and a temporal formula ϕ representing the desired outcomes,
verify whether:

∀i ∈ Ags,∀τ̂ ∈ T : M,γ |= 〈〈i | τ̂〉〉ϕ
This is related to the approach we take in [9]. In the next section we will look
at an example to get some more intuition on how we can use these assertions to
solve the verification problem.

3.1 Example

We consider the multi-agent system M and norm γ depicted in Fig. 1.

∅
q0

{fine} q3{∅}q1

{fine} q2{goal}q4

(go, go)(wait, go)

(go,wait)(go,wait)

(wait, go)

(wait,wait)

(∗, ∗)

(∗, ∗)

Fig. 1. Multi-agent system and norm consisting of two agents each controlling a train
at opposite ends of a tunnel. The agents need to coordinate their actions to not perform
action ‘go’ at the same time.

This system consists of two agents who, starting from initial state q0 (middle
bottom), can either perform a ‘wait’ or ‘go’ action. If they both wait, nothing
happens, and if they both go, a dangerous situation occurs. If one of them goes
and one of them waits, no dangerous situation occurs. The scenario corresponds
to two agents controlling a train at opposite ends of the tunnels, and they must
coordinate their actions to not end up in the tunnel at the same time. We have
the state-based norm γ that assigns a positive sanction goal to state q4, i.e.
γ(q4) = {goal}, a negative sanction fine to state q2 and q3, i.e. γ(q2) = γ(q3) =
{fine}, and does not assign any (positive or negative) sanction to the remaining
states. Note that these sanctions in some way reflect that we want the agents to
choose the computation q0q1(q4)ω, since this is the only computation for which
positive sanction goal holds, while containing no negative sanction fine. It is our
job to predict whether the agents will indeed, under reasonable assumptions,
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choose this computation, using our framework of compliance types. We define
the following compliance types, τobedient and τneglectful using temporal logic:

τobedient(o) =

{
1 if o |= �¬fine
0 otherwise.

And:
τneglectful(o) = 1

Thus, every possible outcome o ∈ OM is τneglectful-compliant, and this compli-
ance type corresponds to a run in which the agents do not care about the norms.
Moreover, given an outcome o ∈ OM , we have that o is τobedient-compliant if and
only if o |= �¬fine. In words, an outcome o is τobedient-compliant if it is never
the case that sanction fine holds somewhere along o. For example, the outcome
γ(q0(q3)ω) is not τobedient-compliant, because:

γ(q0(q3)ω) 
|= �¬fine

As another example, the outcome γ((q0)ω) is τobedient-compliant, because:

γ((q0)ω) |= �¬fine

We have for agent 1 that the strategy that always adopts action w at state q0 is
τobedient-compliant, while all the remaining strategies are not τobedient-compliant.
To see why this is the case, observe that if agent 1 would adopt go at state q0,
then agent 2 could for example play action go to end up in state q3, at which
fine is the case. For agent 2, none of the strategies are τobedient-compliant. To see
why this is the case, observe that for every strategy σ2 agent 2 can select, there
exists a strategy σ1 for agent 1 such that γ(run((σ1, σ2))) |= ♦fine. Particularly,
whatever agent 2 plays at initial state q0, whenever agent 1 play go at this state,
we either go to state q2 or state q3, both at which sanction fine is the case.

Now consider the following set T = {(τobedient, τneglectful)} containing a single
compliance profile (τobedient, τneglectful). Let ϕ = ♦goal be an LTL-formula that
characterizes the set of desired runs of the system. Our verification problem now
asks whether the following is the case:

∀i ∈ {1, 2} : M,γ |= 〈〈i | (τobedient, τneglectful)〉〉♦goal

In order to show whether this is the case, observe that there exists a τneglectful-
strategy σ2 for agent 2, particularly the strategy that plays action go at state
q0, such that for all τobedient-strategies σ1 for agent 1, particularly the strategy
mentioned earlier that always plays w at state q0, such that ♦goal is the case.
In formula:

M,γ |= 〈〈2 | (τobedient, τneglectful)〉〉♦goal

However, we do not have that there exists a τobedient-strategy σ1 for agent 1 such
for all τneglectful-strategies σ2 for agent 2 it is the case that ♦goal. To see this, the
only strategy for agent 1 we have to consider is again the one that always plays
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w at state q0. However, agent 2 can also play w forever in state q0, resulting in
outcome γ((q0)ω), for which we have that γ((q0)ω) 
|= ♦goal. Thus, in formula,
we have:

M,γ 
|= 〈〈1 | (τobedient, τneglectful)〉〉♦goal

In other words, the norm γ does not pass our verification test. In particular, this
example highlights that the strategic capabilities for the agents may differ given
a particular compliance profile.

3.2 Framework Discussion

In this section we have given a basic logic-based framework in which normative
multi-agent systems can be verified. The logic we briefly described allowed us
to assert the verification question, but we have not yet discussed the complexity
of such a logic (or the existence of a proof system). However, in [9] we used a
similar approach of verifying normative systems by introducing an extension of
ATL called an-ATL (abstract normative ATL), but instead of state-based norms
we considered transition-based norms, and the compliance types we considered
were related to the violation of such norms. We showed that verifying an-ATL
formulas remains close to the complexity of ATL, and is thus a suitable candidate
logic not only to express, but also to perform the verification task.

4 Verification Framework Using Mechanism Design

In the previous section, the verification problem we were concerned with was
whether certain (compliant or non-compliant) behaviours of the agents can lead
to desired outcomes of the normative multi-agent system. However, this approach
does not take into account why the agents would behave in such a manner. The
agents might have personal preferences that decide how they will behave, and
our approach in the previous section does not take these motives into account.
Moreover, these preferences might not be known to the designer of the system.
Once we make the assumption that the agents have some preference, and we
are interested in how the agents will behave, we enter the field of game theory.
Game theory, in the broad sense, is the study of strategic decision making in
the presence of (one or more) rational agents, which has its roots in [11]. For an
elaborate introduction to the field of game theory, we direct the reader to [13].

Since we have state-based norms that, once implemented, can change the
environment of the system, these norms can act as a mechanism that can change
the underlying game. If we are interested in whether we can design a norm such
that the predicted outcomes (using game theory) coincides with the desired out-
comes, we enter the field of mechanism design. In mechanism design, a mech-
anism is, in the general sense, an institution, procedure, protocol or game for
generating outcomes. For a general overview of mechanism design we direct the
reader to [13], or for an overview that relates mechanism design to computer
science, we direct the reader to [12]. In this paper, we consider that the state-
based norms are the indirect mechanisms that can change the environment, and
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can thus lead to different outcomes. In order to predict the outcomes that will
occur, we need to have some notion of what the agents know and what the
agents value, which is referred to as an agent type. Note however, that a mecha-
nism designer might not know the true types of the agents. In this paper we are
not concerned with knowledge of the agents, i.e., we will just assume the agents
have complete and perfect knowledge of the system and participating agents.
Thus, an agent type is simply a preference over outcomes of the system, which
we define as follows.

Definition 7 (Preference). Given a multi-agent system M , a preference of an
agent i ∈ Ags, denoted by �i, is a complete reflexive transitive binary relation
over outcomes OM . If for two outcomes o, o′ ∈ OM it holds that o �i o′ and
o′ �i o, we write o ∼i o′, and when o �i o′ and o′ 
�i o, we write o �i o′. A
preference profile �= (�1, . . . ,�|Ags|) consists of a preference of each agent.

The reading of o �i o′ should be that agent i prefers outcome o at least as
much as outcome o′. Thus, given a norm γ and two runs r and r′ of the system,
agent i prefers r at least as much as r′ whenever γ(r) �i γ(r′). It is thus already
apparent that norms can influence the runs that can occur by making some runs
more attractive than other runs for an agent. We can use the preferences to
predict the outcomes that will occur, and we can derive these by using concepts
from game theory. Whenever we consider a certain type, in order to make a final
prediction of the outcomes that will be achieved, we need certain rules that tell
us which outcomes will be rationally optimal. In game theory, these formal rules
are called the solution concepts that can be used for making these predictions. A
multitude of these solution concepts exist, but the one we consider in this paper
is that of a Nash Equilibrium, see e.g. [13].

Definition 8 (Nash Equilibrium). Given a multi-agent system M , a norm
γ, a preference profile � and a strategy profile σ = (σ1, . . . , σ|Ags|), we say
that σ constitutes a Nash Equilibrium in M if and only if for all i ∈ Ags and
strategies σ′

i, it holds that γ(run((σi, σ−i))) �i γ(run((σ′
i, σ−i))). We define

NEγ(�) = {γ(run(σ)) | σconstitutes a Nash Equilibrium in M} ⊆ OM as the
set of all NE outcomes given M , γ and �.

In words, a strategy profile constitutes a Nash Equilibrium if and only if no
agent individually can gain something from deviating from their own respective
strategy. Again, for a more detailed introduction to this concept, we refer the
reader to [13]. The desired outcomes are the outcomes we want to have occur.
In the context of normative systems, the desired outcomes are the ones that
maintain order in society. For example, a typical criterion one may adopt in
an utilitarian society is that wrong-doers should be punished. Because we do
not know the true incentives of the agents (remember, the preferences of the
agents might be unknown to us), we consider a set of possible preference profiles
Θ. A social choice rule takes a possible preference profile, and combines these
individual preference of the agents to give a set of desired outcomes of the system.
In this paper, we assume that such a function is already specified to us, and are
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not concerned with whether such a rule can be specified given the criteria that
we set on such a function (see for example Arrow’s impossibility theorem [3]).
This is the domain of social choice theory, which concerns itself with combining
individual preference in order to reach social welfare [4].

Definition 9 (Social Choice Rule). Given a multi-agent system M and a
set of possible preference profiles Θ, a social choice rule f : Θ �→ P(OM ) is a
function that maps a preference profile � ∈ Θ to a set of outcomes f(�) ⊆ OM .

Thus, given a social-choice rule f and preference profile �, we say that f(�)
are the set of social optimal outcome, which are the outcomes we want to have
occur. Because mechanism designers do not know which outcomes are optimal
beforehand (the preferences are initially unknown to us), a more cautious app-
roach has to be employed. This information must slowly be generated as the
system is executed. The problem here is the fact that the agents in the system
may have their own objectives, and may try to behave in a way that hides the
truth. A typical goal of a mechanism designer is thus to develop mechanisms that
are incentive compatible, meaning that the optimal strategy of the participants is
to reveal the truth. An example of such a truth-revealing mechanism is Solomon’s
dilemma, which we will discuss in the next section. Formally, using such a social
choice rule, mechanism design defines the following implementability relation.

Definition 10 (Nash Implementability). Given a multi-agent system M
and set of possible preference profiles Θ, we say that a norm γ NE-implements
social choice rule f if and only if for all � ∈ Θ it holds that NEγ(�) ⊆ f(�).

Note that in actuality, the above relation defines that of weak implementation.
Weak implementation demands that all the predicted outcomes NEγ(�) are
desired, i.e. are in the set f(�). In full implementation, we additionally demand
that all desired outcomes are predicted, i.e. NEγ(�) = f(�) for all � ∈ Θ.
However, when considering state-based norms, demanding full implementation
might be too strong, since usually a single state-based norm can only generate a
small subset of the possible outcomes. The verification problem we consider in
this section can now be stated as follows.

Verification Problem 2. The verification problem asks, given a normative
system (M,γ), a set of possible preference profiles Θ and a social choice rule f ,
whether it is the case that γ NE-implements social choice rule f .

Let us again look at an example to get some more intuition for the various
complex notions introduced in this section.

4.1 Example

Solomon’s dilemma is often used in literature to describe the idea of implemen-
tation theory and mechanism design. In this dilemma two women come before
him, both claiming to be the mother of a child, and Solomon has to find out who
is lying. In this paper we consider the version discussed in [10] where Solomon is
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able to give the mothers a fine. Let us first informally explain the problem and
its relation to mechanism design. Solomon (the mechanism designer) initially
does not know who the real mother is. Based on this he considers two preference
profiles, one preference profile that represents the case in which mother 1 would
be the real mother, and one preference profile that represents the case in which
mother 2 is the real mother (how he constructs these possible preference profiles
will be discussed below). But, as we already mentioned, Solomon does not know
which of these preference profiles is the true one. Through a state-based norm,
he can give the mothers fines in some states, and he can assign the child to one
of the mothers in a state. It is clear that if mother 1 is the true mother, then the
optimal outcome would be that mother 1 eventually gets the child forever, and
that both mothers never receive any fine. If mother 2 is the true mother, then
the optimal outcome would be that mother 2 eventually gets the child forever,
and again that both mothers never receive any fine. This example makes it clear
why a social choice rule is dependent on the preference profile: since we do not
know who the real mother is, we cannot simply say that there exists one unique
optimal outcome. It is Solomon’s job to construct a norm such that the child is
eventually given to the true mother forever without any fines given. We assume
that Solomon can give a small fine to mother 1 (represented by sanction propo-
sition fine1) and a big fine to mother 2 (represented by sanction proposition
fine2). Note that fine2 is tweaked precisely by Solomon such that this sanction
is low enough that if mother 2 would be the real mother, she would care more
about the child, while if mother 2 would not be the real mother, she would care
more about the sanction. Of course this requires some accurate and knowledge-
able estimations by Solomon, but we assume that he is wise enough to do this.
Moreover, since the situation is symmetric, Solomon could have chosen fine1 and
fine2 the other way around, but this is beyond the point of example. If childi

represents that the child is given to mother i, and if � represents the preference
profile in which mother 1 is the true mother and �′ the preference profile in
which mother 2 is the real mother, then it is Solomon’s job to implement the
following social choice rule f :

f(�) = {o ∈ OM | o |= ♦�(child1 ∧ ¬child2) ∧ ¬♦(fine1) ∧ ¬♦(fine2)}
f(�′) = {o ∈ OM | o |= ♦�(¬child1 ∧ child2) ∧ ¬♦(fine1) ∧ ¬♦(fine2)}

Solomon assumes that mother 1 always prefers any outcome over any other
outcome if in that outcome she receives the child forever. However, if she does not
receive the child forever, Solomon assumes that mother 1 prefers any outcome
over any other outcome if this outcome does not contain fine fine1. In order
to represent such a preference, we can use the idea presented in [7] of using
a preference order over LTL formulas. This preference can then formally be
described as follows:

(♦�child1) �1 (�¬fine1) �1 �

Such a list gives rise to a preference over outcomes in multi-agent system as
follows. Given two arbitrary outcomes o, o′ ∈ OM , we determine from left to
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right the first LTL formula that satisfies the outcome. Let us assume that for
o this is the formula �¬fine1 (thus we have that o 
|= ♦�child1) and o′ this is
the formula � (thus we have that o′ 
|= ♦�child1 and o′ 
|= �¬fine1). Then,
since (�¬fine1) �1 �, this would imply that o �1 o′. If two outcomes o and o′

satisfy the same formula, we say that o ∼1 o′. If the last formula in such a list is
�, we know that such a list gives rise to a complete preference over all possible
outcomes since this implies that for every possible outcome we can find at least
one formula that is satisfied. This particular preference exactly states what we
mentioned earlier: mother 1 always prefers any outcome over any other outcome
if in that outcome she receives the child forever. However, if this is not the case,
mother 1 prefers any outcome over any other outcome if this outcome does not
contain fine fine1.

For mother 2, king Solomon is in doubt about the following two preferences:

(♦�(child2 ∧ ¬fine2)) �2 (�¬fine2) �2 �
(♦�child2) �′

2 (�¬fine2) �′
2 �

The first preference �2 states that mother 2 prefers an outcome over any other
outcome if she is assigned the child without a fine given. If this is not the case, she
would rather not receive a fine. Moreover, she does not care about the remaining
outcomes. The second preference �′

2 states that mother 2 prefers an outcome in
which she is assigned the child, regardless of whether this outcome contains a fine
or not, while the rest remains the same. In other words, he either considers that
mother 2 cares more about the fine than the child, or more about the child than the
fine; the first case represents the case in which mother 1 is the real mother, while
the second case represents the case in which mother 2 is the real mother. Thus
preference profile �= (�1,�2) represents the profile in which mother 1 is the
real mother, and preference profile �′ = (�1,�′

2) represents the profile in which
mother 2 is the real mother.

Now we are ready to give the solution to the problem, which is drawn in Fig. 2.
Consider the multi-agent system M and norm γ depicted here. This system
consists of two agents who, starting from initial state q0 (below left), can claim to

{child2, fine1, fine2}
q4

∅
q0

∅
q1

{child1} q3{child2}q2

(mine, ∗)

(hers, ∗) (∗, agree)

(∗, disagree)

(∗, ∗) (∗, ∗)

(∗, ∗)

Fig. 2. Multi-agent system and norm consisting of two agents claiming whether they
are the real mother.
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be the real mother or not. Mother 1 can claim in q0 that the child either belongs
to her (action ‘mine’), or that it belongs to the other mother (action ‘hers’). If
she performs action ‘hers’, mother 2 can either agree with this (action ‘agree’)
or disagree with this (action ‘disagree’). As can be seen in the figure, Solomon
has implemented the state-based norm γ that assigns the child to mother 2
in q2, i.e. γ(q2) = {child2}, assigns the child to mother 1 in q3, i.e. γ(q3) =
{child1}, and assigns the child to mother 2 while giving a small fine to mother
1 (sanction fine1) and a big fine to mother 2 (sanction fine2) in state q4, i.e.
γ(q4) = {child2,fine1,fine2}. But, is it indeed true that for Θ = {�,�′} we have
that γ NE-implements social choice rule f? We will show that this is indeed the
case in the remainder of this section.

Observe that in the normative multi-agent system, there exists only two
possible strategies for each agent, which we refer to as σhers and σmine for mother
1, and σagree and σdisagree for mother 2. The corresponding outcomes are the
following:

γ σagree σdisagree

σhers γ(q0(q2)
ω) γ(q0(q2)

ω)

σmine γ(q0q1(q3)
ω) γ(q0q1(q4)

ω)

Consider preference profile (�1,�2). We have that (σmine, σagree) consti-
tutes a Nash Equilibrium. To see why, observe that γ(run((σmine, σagree))) �1

γ(run((σhers, σagree))) because:

γ(run((σmine, σagree))) |= ♦�child1,and,
γ(run((σhers, σagree))) |= ¬♦�child1

Moreover, observe that γ(run((σmine, σagree))) �2 γ(run((σmine, σdisagree)))
because:

γ(run((σmine, σagree))) |= ¬♦�(child2 ∧ ¬fine2) ∧ �¬fine2,and,
γ(run((σmine, σdisagree))) |= ¬♦�(child2 ∧ ¬fine2) ∧ ¬�¬fine2

It is also not hard to verify that (σmine, σagree) is the only NE strategy profile,
implying that NEγ((�1,�2)) = {γ(run((σmine, σagree)))}. Now consider strategy
profile (�1,�′

2). We have that (σhers, σdisagree) constitutes a Nash Equilibrium.
To see why, observe that γ(run((σhers, σdisagree))) �1 γ(run((σmine, σdisagree)))
because:

γ(run((σhers, σdisagree))) |= ¬♦�child1 ∧ �¬fine1,and,
γ(run((σmine, σdisagree))) |= ¬♦�child1 ∧ ¬�¬fine1

Moreover, observe that γ(run((σhers, σdisagree))) ∼′
2 γ(run((σhers, σagree)))

because:
γ(run((σhers, σdisagree))) |= ♦�(child2 ∧ ¬fine2),and,

γ(run((σhers, σagree))) |= ♦�(child2 ∧ ¬fine2)



Formal Frameworks for Verifying Normative Multi-agent Systems 307

It is again also not hard to verify that (σhers, σdisagree) is the only NE strat-
egy profile, implying that NEγ((�1,�′

2)) = {γ(run((σhers, σdisagree)))}. Since we
have that:

γ(run((σmine, σagree))) |= ♦�(child1 ∧ ¬child2) ∧ ¬♦(fine1) ∧ ¬♦(fine2),and,
γ(run((σhers, σdisagree))) |= ♦�(¬child1 ∧ child2) ∧ ¬♦(fine1) ∧ ¬♦(fine2)

We can conclude that NEγ(�) ⊆ f(�′) and NEγ(�′) ⊆ f(�′) as needed. In other
words, we have verified that it is indeed the case that, given possible preference
profiles Θ = {�,�′},we have that γ NE-implements social choice rule f : the
normative multi-agent system ensures that the child is eventually given to the
real mother forever without any fines given.

4.2 Framework Discussion

In this section, we discussed how we can frame the verification problem of an
multi-agent system using concepts from mechanism design. This idea is related to
the work in [7], in which they call this “normative mechanism design”. We believe
that this field of research is an exciting new way in which normative systems
can be studied: norms are viewed as a mechanism constituting a game, allowing
us to state the verification problems (in the context of formal verification) as
implementation problems (in the context of mechanism design).

5 Discussion

In this paper we have presented two distinct verification frameworks in which
the correctness of normative multi-agent systems can be (dis)proven. In the first
part we used compliance types, and showed how properties of a system can be
expressed (and to marginal extent proven) using these types. In the second part
we used mechanism design, and showed how implementability questions can be
expressed (and to a marginal extend proven). Although both these approaches
use norms as a mechanism to steer agents away (or towards) certain outcomes
of the system, the main difference is the following:

– With compliance types, we assume certain compliance behaviour of the
agents with respect to the norm. We do not know what the actual com-
pliance behaviour of the agents will be, so we verify the system with respect
to a set of possible compliance profiles.

– With mechanism design, we assume a certain preference relation over out-
comes of the system. We do not know what the true preference of the agents
are, so we verify the system with respect to a social choice rule, a solution
concept and set of possible preference profiles.

These different approaches offer a generic starting point for which the verifi-
cation task of normative multi-agent systems can be tackled. As we already
mentioned in the introduction, normative systems are making their way into our
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everyday life. Formal verification is of crucial importance if we are looking for
a guarantee that the system is correct. Whenever the cost of defection is high,
it is of importance that we know that a system is correct without actually hav-
ing to run it. Verification gives us this guarantee. Development of such methods
and tools play an important role in the advancement of normative multi-agent
systems and Artificial Intelligence in general.
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Abstract. Moessner’s Theorem describes a construction of the sequence
of powers (1n, 2n, 3n, . . .), by repeatedly dropping and summing elements
from the sequence of positive natural numbers. The theorem was pre-
sented by Moessner in 1951 without a proof and later proved and gen-
eralized in several directions. More recently, a coinductive proof of the
original theorem was given by Niqui and Rutten. We present a formaliza-
tion of their proof in the Coq proof assistant. This formalization serves
as a non-trivial illustration of the use of coinduction in Coq. During the
formalization, we discovered that Long and Salié’s generalizations could
also be proved using (almost) the same bisimulation.

1 Introduction

Coinduction has grown in the last years as the prime principle to prove properties
about dynamical and concurrent systems or, in general, structures that exhibit
circularity. Formalizations of coinduction are becoming common in most proof
assistants but the use thereof is not yet widespread, often due to the lack of good
examples balancing expressivity and simplicity to be suitable tutorials for new
users. This paper sets itself to provide such an example tutorial of formalized
coinduction. Formal methods, concurrency, and verification have been central
topics in Frank’s research and in the last decade he was exposed (though not
intentionally!) to coinduction frequently. We dedicate to Frank this paper on
formalizing a result about Frank’s favorite coinductive object – streams.

Streams constitute the most basic example of infinite objects and are often
used to illustrate the use of coinduction to prove equivalence of algorithms pro-
ducing infinite objects. A more elaborate example of the use of coinduction to
prove the correctness of an algorithm that produces infinite objects is provided
by Niqui and Rutten’s proof of Moessner’s Theorem [13].

Moessner’s Theorem describes a procedure for constructing the stream of suc-
cessive exponents (1n, 2n, 3n, . . .), for every n ≥ 1, with several steps of dropping
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and summing elements of the stream of positive natural numbers. This procedure
is quite simple: let us show the result for n = 3. Starting with the sequence of
positive naturals (1, 2, 3, 4, 5, 6, 7, 8, . . .), one drops every third element to obtain
the stream (1, 2, 4, 5, 7, 8, . . .). Then one computes the stream of the partial sums
by adding to every element all the previous ones:

(1, 1 + 2, 1 + 2 + 4, 1 + 2 + 4 + 5, 1 + 2 + 4 + 5 + 7, . . .) = (1, 3, 7, 12, 19, . . .)

Then, one drops every second element of the latter sequence, giving rise
to (1, 7, 19, . . .), and finally by taking partial sums, one gets: (1, 8, 27, . . .). The
resulting stream contains indeed the expected elements: (13, 23, 33, . . .).

This result holds for any n: drop every n-th element of the sequence of positive
naturals, then form partial sums, and then start again dropping every (n−1)-th
element and summing, and proceed recursively. This process creates the stream
of all positive naturals to the power of n: (1n, 2n, 3n, 4n, 5n, . . .).

The above algorithm/procedure can easily be described as a functional pro-
gram that takes n as a parameter. Moessner’s Theorem now corresponds to
the question of whether this program yields the stream (1n, 2n, 3n, 4n, 5n . . .) for
each n ≥ 1. Since the stream (1n, 2n, 3n, 4n, 5n . . .) is a functional program in
itself, Moessner’s Theorem can be proven by showing equivalence of these pro-
grams. Because these programs produce streams, the obvious technique to prove
equivalence is to use coinduction. This was observed by Niqui and Rutten who
provided a bisimulation witnessing the equivalence of these programs [13].

Related Work. Moessner’s construction has attracted much attention over the
years. The theorem was only conjectured by its discoverer [12]. The first proof
was given shortly thereafter by Perron [17] (who, curiously, was the editor of the
journal where the conjecture was submitted). The theorem was then the subject
of several popular accounts and generalizations [4,8,11,14–16,20].

Paasche [14–16] generalized it by allowing the dropping intervals to increase
at each step. This led to the construction of the stream containing the factori-
als and super-factorials. Long [10,11] and Salié [20] also generalized Moessner’s
result to apply to the situation in which the initial sequence is not the sequence of
successive integers (1, 2, 3, . . .) but the arithmetic progression (a, d+a, 2d+a, . . .).
They showed that the final sequence obtained by the Moessner construction is
(a · 1n−1, (d + a) · 2n−1, (2d + a) · 3n−1, . . .).

Very recently, Hinze [7] and Niqui and Rutten [13] have given proofs involving
concepts from functional programming, respectively calculational scans and the
coalgebra of streams. The proof of Hinze covers Moessner’s and Paasche’s results
whereas Niqui and Rutten’s proof only covers the original Moessner’s Theorem.

Kozen and the third author [9] have provided an algebraic proof that has the
advantage of covering all the results mentioned above and opened the door to
new generalizations of Moessner’s original result. The foundations of this proof
were formalized in Nuprl by Bickford et al. [2].

Clausen et al. [3] have also provided a formalization of Moessner’s theorem in
Coq, but their approach is very different from ours. Our result is more general
and applies to (1n, 2n, 3n, . . .) for any n ≥ 1, whereas they provide a Coq tactic
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that generates a theorem for any given n by macro expansion. We furthermore
also provide a proof of Long and Salié’s generalization, that is both more general,
and follows as a mere consequence of the original Moessner’s Theorem.

Urbak [23] extended the results of Clausen et al. in his MSc thesis by explor-
ing Moessner’s theorem in a very general setting. Long and Salié’s generalization
is also a consequence of his work.

Contrary to the aforementioned Coq formalizations, we have setup our Coq
development in such a way that it matches common mathematical practice in
coinduction, as for example being used by Rutten [18]. We have abstracted
from Coq’s implementation of coinduction as much as possible by providing
an abstraction on top of it to avoid for example guardedness issues in proofs.
Also, we have made heavy use of Coq’s notations machinery to obtain notations
close to those on paper, and have automated parts of the proof that one would
omit on paper too. As a result, we were able to formalize the proof of Niqui and
Rutten in a very compact and concise way that is close to its original presenta-
tion. Our Coq development is 20 times shorter, in terms of lines of code, than
Urbak’s.

Contribution. We set ourselves to the quest of formalizing Niqui and Rutten’s
proof in the Coq proof assistant [5]. The interest in doing so is four-fold.

– On the one hand, as with every formalization, one is forced to go through all
details of the pen-and-paper proof and potentially uncover flaws or omissions.

– On the other hand, and of more interest to us, coinduction in Coq is not
widely used and good (tutorial) examples are lacking. Bisimulation proofs are
very mechanical and particularly suited for automation/formalization in proof
assistants. Hence, we hope that the present example can serve as non-trivial
teaching/illustration material of a proof by coinduction in Coq.

– There is often just a shallow correspondence between formalizations and their
original mathematical texts. We show that this is not necessarily the case by
defining suitable abstractions. In particular, we abstract from Coq’s internals
for coinduction as much as possible. As a result, our formalization corresponds
well to the paper by Niqui and Rutten, and is very compact.

– Lastly, in the process of formalizing Niqui and Rutten’s proof, we uncovered
a simple proof of Long [10,11] and Salié’s [20] generalization. Though (once
done) the generalization is not at all complicated, it was surprising to us that
the extended version is just a corollary of the original Moessner’s Theorem,
and that the bisimulation did not have to be modified. The Coq formalization
was achieved with a simple extra lemma.

Our Coq code is available at https://github.com/robbertkrebbers/moessner.

2 Streams and Coinduction

In the construction of Moessner’s Theorem, streams and operations on them
(in particular, drop and sum) play a central role. The set of streams Aω with
elements in A can be formally defined as Aω = {s | s : N → A}.

https://github.com/robbertkrebbers/moessner
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We denote the n-th element of the stream s by s(n). Given a stream s =
(a0, a1, a2, a3, . . .), we call s(0) = a0 the head of the stream, and (a1, a2, a3, . . .)
the tail of the stream, which we denote by s′. The operations of head and tail
define the following structure on the set of streams:

c : Aω −→ A × Aω c(s) = (s(0), s′). (1)

The functor F corresponding to the above structure is F (X) = A × X. The
set of streams Aω is the greatest fixpoint of this functor. That is in essence why
streams are coinductive type, in contrast with lists, which are the least fixpoint
of the functor G(X) = 1 + A × X.

In Coq we define streams using the latter view as a coinductive type instead
of the functional view {s | s : N → A}. The coinductive view on streams allows for
a simple and elegant definition of operations, as well as for proofs of properties on
them. The coinductive approach to infinite datatypes enables a uniform extension
to more complex types, such as infinite trees, λ-terms, automata, etc. [19].

Streams are the simplest examples of coalgebras and proofs of stream equal-
ity are prime illustrations of the power of the coinduction proof principle. Since
in this paper we will only deal with streams, we will be introducing all gen-
eral concepts concretely in this context. The proof of Moessner’s Theorem is a
beautiful example of concrete coalgebra.

Definition 1. A relation R ⊆ Aω × Aω is a bisimulation if for every (s, t) ∈ R
it holds that s(0) = t(0) and (s′, t′) ∈ R.

The following theorem states the coinduction proof principle for streams,
which enables one to prove equality of streams just by exhibiting a bisimulation
relation containing the pair consisting of these two streams.

Theorem 1 (Coinduction Principle). Let R ⊆ Aω × Aω be a bisimulation.
For all s, t ∈ Aω we have that (s, t) ∈ R implies s = t.

3 Basic Operations and Theorems on Streams in Coq

In this section we describe the Coq definitions of operations on streams that are
needed to formalize Moessner’s Theorem. Also, we describe the basic theorems
and Coq infrastructure that we use for the formalization. In order to get started,
we first define the type Stream A of streams Aω with elements of type A.

CoInductive Stream (A : Type) : Type :=

SCons : A → Stream A → Stream A.

Arguments SCons {_} _ _. (* Setup implicit arguments so Coq infers the

type [A] of [SCons : ∀ A : Type, A → Stream A → Stream A]. *)

Infix ":::" := SCons.

This definition resembles the well-known inductive definition of lists, but
instead of the keyword Inductive we use the keyword CoInductive. Furthermore,
note that ::: is the inverse map of the structure map on the set of streams given
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by head and tail, cf. (1) on page 4, and the keyword CoInductive is taking the
greatest fixpoint of the functor F (X) = A × X, as described in Sect. 2.

The CoFixpoint command is used to create corecursive definitions:

CoFixpoint repeat {A} (x : A) : Stream A := x ::: #x

where "# x" := (repeat x).

The stream #x represents the constant stream (x, x, x, . . .) that Niqui and
Rutten denote by x. Whereas recursive definitions in Coq should be terminating,
corecursive definitions should be productive. Intuitively this means that given a
term of coinductive type (and in particular a CoFixpoint), it will always produce
a constructor. The following is rejected by Coq because this is not the case.

Fail CoFixpoint bad : Stream False := bad.

Since productivity is undecidable, corecursive definitions in Coq should sat-
isfy a decidable syntactical criterion (so as to enable decidable type checking)
that guarantees productivity. This criterion is called the guard condition. Over
simplified, this means that a CoFixpoint should have the following shape:

CoFixpoint f �p : Stream A := x0 ::: x1 ::: ... ::: xn ::: f �q.

with 0 < n. The definition of #x satisfies this condition, but bad does not.
Although the guard condition ensures that terms of coinductive type always

produce a constructor, Coq’s computation rules do not allow CoFixpoint defini-
tions to reduce. For example, # 10 does not reduce to 10 ::: #x. If it would, this
process could be repeated infinitely many times, and would destroy the property
that all computations in Coq terminate. Instead, computation of coinductive
types is performed lazily, and a CoFixpoint definition is only allowed to reduce
whenever it is the operand of a pattern match construct.

Pattern matching can be used to decompose coinductive types. For streams,
this mechanism allows us to define the common destructors head and tail.

Definition head {A} (s : Stream A) : A := match s with x ::: _ ⇒ x end.

Definition tail {A} (s : Stream A) : Stream A :=

match s with _ ::: s ⇒ s end.

Notation "s ‘" := (tail s).

We use the notation s‘ for tail s so as to resemble the presentation of Niqui
and Rutten. Of course, Coq allows us to write expressions like s‘‘ to denote the
second tail of s. Notice that the term head (#10) indeed reduces to 10 because
the CoFixpoint definition now becomes the operand of a pattern match construct.

We will not be using explicit pattern matching on streams anymore, and
define everything in terms of head and tail. For example, see below the functions
map and zip with which lift functions on individual elements to whole streams.

CoFixpoint map {A B} (f : A → B) (s : Stream A) : Stream B :=

f (head s) ::: map f (s‘).

CoFixpoint zip_with {A B C} (f : A → B → C)

(s : Stream A) (t : Stream B) : Stream C :=

f (head s) (head t) ::: zip_with f (s‘) (t‘).
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3.1 Stream Equality, Bisimulation, and Coinduction

In order to support algebraic reasoning about streams, we need a notion that
expresses that streams are element-wise equal. Since no finite expansion of the
streams #f x and map f (#x) lead to equal terms, Coq’s notion of Leibniz
equality = is too strong to accurately capture stream equality [1,6]. Therefore,
we use the following coinductively defined relation of bisimilarity1:

CoInductive equal {A} (s t : Stream A) : Prop :=

make_equal : head s = head t → s‘≡ t‘→ s ≡ t

where "s ≡ t" := (@equal _ s t).

Since bisimilarity is defined as a coinductive type, proving that two streams
are bisimilar corresponds to constructing a corecursive definition by the Curry-
Howard correspondence (programs as proofs). For example, we can construct a
proof of #f x ≡ map f (#x) by providing an explicit proof term as follows:

CoFixpoint repeat_map {A B} (f : A → B) x : #f x ≡ map f (#x) :=

make_equal (#f x) (map f (#x)) eq_refl (repeat_map f x).

Here, eq refl is a proof of f x = f x, and thus a proof of head (#f x) =
head (map f (#x)) by convertibility. Clearly, proving such properties by pro-
viding an explicit proof term is inconvenient, and should be avoided in practice.

Coq’s native support for coinductive proofs is not as good as its support for
inductive proofs. There is just the primitive cofix tactic, which does not protect
one from creating proofs that do not satisfy the guard condition. If a proof does
not satisfy the guard condition, the proof will only be rejected when one closes
the proof using Qed (that is when the proof is being checked by the kernel). This
is different from the induction tactic, which cannot be used wrongly. Let us
give a demonstration of the cofix tactic.

Lemma repeat_map x : #f x ≡ map f (#x).

Proof.

cofix CH.

(* We get a hypothesis [CH : #f x ≡ map f (#x)]. We should use it in

such a way that the generated proof term is guarded. *)

apply make_equal.

* (* Prove that the heads are equal: [head (#f x) = head (map f (#x))]

This holds by computation, so [reflexivity] will succeed. *)

reflexivity.

* (* Prove that the tails are equal: [(#f x)‘ ≡ (map f (#x))‘] *)

(* Unfold the definitions to obtain [#f x ≡ map f (#x)] *)

(* NB: the exclamation mark ! performs a rewrite as many times as

possible (but at least once) *)

rewrite map_tail, !repeat_tail.

(* Use the corecursive assumption [CH]. *)

exact CH.

Qed.

1 We use Leibniz equality for the heads because we only deal with streams of integers.
In general, for example to consider streams of streams, this is still too restrictive.
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In the above proof, it would be appealing to use the hypothesis CH straight-
away. Of course, the generated proof term would not be guarded, and will
therefore be rejected whenever we type Qed. Since we have to be extremely
careful when to use the hypothesis generated by the cofix tactic, many tac-
tics for automation cannot be used for coinductive proofs because they will use
hypotheses eagerly and thus likely break the guard condition. Therefore we will
look at two alternative approaches to proving stream equality.

The first approach is to define a stream bisimulation relation (see Defini-
tion 1), and then prove the coinduction proof principle (see Theorem 1). This is
the core of the coinductive proof of Moessner’s Theorem by Niqui and Rutten.

Definition bisimulation {A} (R : relation (Stream A)) : Prop :=

∀ s t, R s t → head s = head t ∧ R (s‘) (t‘).

Lemma bisimulation_equal {A} (R : relation (Stream A)) s t :

bisimulation R → R s t → s ≡ t.

Instead of having to produce a proof-term that satisfies the guard condition,
one has to define a suitable bisimulation relation, and the problem of guardedness
has moved once and for all to the proof of bisimulation equal.

Another approach is to view streams Stream A as functions nat → A (as
we have initially introduced streams in Sect. 2). The function s !! i gives the
ith element s(i) of the stream s. It is straightforward to prove that streams are
bisimilar if and only if they are element-wise equal using the !! function.

Fixpoint elt {A} (s : Stream A) (i : nat) : A :=

match i with O ⇒ head s | S i ⇒ s‘ !! i end

where "s !! i" := (elt s i).

Lemma equal_elt {A} (s t : stream A) : s ≡ t ↔ ∀ i, s !! i = t !! i.

For many streams !! enjoys nice properties. The lemma equal elt is thus
often useful to prove stream equality. For example, using the lemmas:

Lemma repeat_elt {A} (x : A) i : #x !! i = x.

Lemma map_elt {A B} (f : A → B) s i : map f s !! i = f (s !! i).

we can give yet another proof of #f x ≡ map f (#x).

Lemma repeat_map x : #f x ≡ map f (#x).

Proof.

apply equal_elt. intros i. rewrite map_elt, !repeat_elt. reflexivity.

Qed.

By using equal elt, we have to prove that #f x !! i = map f (#x) !! i
for any i. This trivially follows from the lemmas above.

3.2 Setoids

In order to enable algebraic reasoning about streams, we should be able to rewrite
using bisimilarity. We thus prove that equal is an equivalence relation.

Instance equal_equivalence {A} : Equivalence (@equal A).
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We use the Instance keyword instead of the Lemma keyword to register this
fact with Coq’s setoid machinery [21]. The setoid machinery uses Coq’s type
classes [22] under water, but we will not detail that here.

Of course, rewriting with bisimilarity gives rise to side-conditions: rewriting
a subterm is allowed only if the subterm is an argument of a function that has
been proven to respect bisimilarity. For the case of ::: this means that s ≡ t
implies x ::: s ≡ x ::: t. In Coq this property can be expressed compactly
by the following notation:

Instance SCons_proper {A} (x : A) : Proper (equal =⇒ equal) (SCons x).

This notation should be read as: if the arguments of SCons x are bisimilar,
then so are the results. The arrow =⇒ should not be confused with the arrow →
for function types. A property like the above must be proved for each function
in whose arguments we wish to rewrite. For example:

Instance head_proper {A} : Proper (equal =⇒ eq) (@head A).

Instance tail_proper {A} : Proper (equal =⇒ equal) (@tail A).

Instance elt_proper {A} : Proper (equal =⇒ eq =⇒ eq) (@elt A).

3.3 Ring Structure

We define the operations for element-wise addition, multiplication, and subtrac-
tion, by lifting the operations on integers using zip with and map.

Infix "⊕ " := (zip_with Z.add). (* addition *)

Infix "	 " := (zip_with Z.sub). (* subtraction *)

Infix "
 " := (zip_with Z.mul). (* multiplication *)

Notation "	 s":= (map Z.opp s). (* additive inverse *)

Together with the constant streams #0 and #1, these operations introduce
a ring structure on streams. To prove this result, we use the lemma equal elt
that relates bisimilarity to element-wise equality.

Lemma stream_ring_theory :

ring_theory (#0) (#1) (zip_with Z.add) (zip_with Z.mul)

(zip_with Z.sub) (map Z.opp) equal.

Add Ring stream : stream_ring_theory.

The command Add Ring stream : stream ring theory registers this fact,
so that ring equations over streams can be solved automatically using the ring
tactic. Automation for solving ring equations will be used heavily in Sect. 4.

Lemma Smult_plus_distr_r s t u : (t ⊕ u) 
 s ≡ (t 
 s) ⊕ (u 
 s).

Proof. ring. Qed.

The repeated multiplication defines the stream power, written s〈n〉:

Fixpoint Spow (s : Stream Z) (n : nat) : Stream Z :=

match n with O ⇒ #1 | S n ⇒ s 
 s ^^ n end

where "s ^^ n" := (Spow s n).
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3.4 Specific Stream Operations

In the last part of this section we define stream operations that are specifically
used for Moessner’s Theorem.

The stream of positive natural numbers nats is defined as the unique solution
of the equations: nats(0) = 1 and nats′ = 1⊕nats. In order to define this stream
in Coq, we define a more general notion that makes use of an accumulator. The
definition Sfrom i represents the stream (i, 1 + i, 2 + i, . . .).

CoFixpoint Sfrom (i : Z) : Stream Z := i ::: Sfrom (1 + i).

Notation nats := (Sfrom 1).

The equation of nats without an accumulator as given by Niqui and Rutten
is not accepted by Coq because the co-recursive call to nats is hidden behind
the ⊕ operation. This is not allowed by the guard condition.

Fail CoFixpoint nats : Stream Z := 1 ::: #1 ⊕ nats. (* Not allowed *)

Although this definition is rejected by Coq, we can still prove that the heads
and tails of our definition satisfy the desired equations with respect to head and
tail. This allows reasoning in the same way as on paper.

Lemma Sfrom_tail n : (Sfrom n)‘ ≡ #1 ⊕ Sfrom n.

Another operation that arises in the Moessner construction as described
in the introduction is partial sums of a stream. This operation is informally
defined by:

Σ (s0, s1, s2, . . .) = (s0, s0 + s1, s0 + s1 + s2, . . .)

and formally by the equations (Σ s) (0) = s(0) and (Σ s)′ = s⊕Σ s′. In order to
define the partial sums in Coq we again need to make use of an accumulator,
and prove that the definition satisfies the desired equation.

CoFixpoint Ssum (i : Z) (s : Stream Z) : Stream Z :=

head s + i ::: Ssum (head s + i) (s‘).

Notation "’Σ ’ s" := (Ssum 0 s).

Lemma Ssum_tail s : (Σ s)‘ ≡ #head s ⊕ Σ s‘.

The last operation we need to define the Moessner construction is dropping.
We define a family of drop operators Di

k : Aω → Aω as the solution of:

(Di+1
k s)(0) = s(0) (Di+1

k s)′ = Di
k s′ (D0

k s)(0) = s(1) (D0
k s)′ = Dk−2

k s′′.

The drop operator Di
k s repeatedly drops the i-th element of every block of k

elements of s. For example, D1
3 s = (s(0), s(2), s(3), s(5), s(6), s(8), . . .). We use

the notation D@{i,k} s to denote this operation in Coq.

CoFixpoint Sdrop {A} (i k : nat) (s : Stream A) : Stream A :=

match i with

| O ⇒ head (s‘) ::: D@{k-2,k} s‘‘

| S i ⇒ head s ::: D@{i,k} s‘

end

where"D@{ i , k } s" := (Sdrop i k s).
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This definition is identical to the definition of Niqui and Rutten, but whereas
they require 2 ≤ k and 0 ≤ i < k, we allow any k and i (subtraction of naturals
i − j is a total Coq function that yields 0 in case i < j).

4 A Formalized Proof of Moessner’s Theorem

We are now ready to formulate Moessner’s Theorem using the stream operations
that we have defined. For the case n = 3, as presented in the introduction, the
theorem boils down to the stream equation Σ D1

2 Σ D2
3 nats = nats〈3〉.

The general case is slightly more involved (mainly due to the amount of
indices), but still mirrors very well the informal construction:

Σ D1
2 Σ D2

3 · · · Σ Dn−1
n nats = nats〈n〉.

Niqui and Rutten start from the stream of ones, 1, and define an operator
combining summing and dropping, namely Σk

n = Σ Dk
n , which leads to a shorter

formulation of the theorem: Σ1
2 Σ2

3 · · · Σn
n+1 1 = nats〈n〉. The simplification by

Niqui and Rutten of not starting from the stream nats of positive natural num-
bers but from the stream 1 of ones is justified by the equation nats = Σ 1.

In order to state Moessner’s Theorem formally we introduce the Coq defin-
ition Σ @{i,k,n} s that recursively defines the sequence Σi

k · · · Σn+i
n+k s.

Definition Ssigma (i k : nat) (s : Stream Z) : Stream Z := Σ D@{i,k} s.

Notation "Σ @{ i , k } s" := (Ssigma i k s).

Fixpoint Ssigmas (i k n : nat) (s : Stream Z) : Stream Z :=

match n with

| O ⇒ Σ @{i,k} s

| S n ⇒ Σ @{i,k} Σ @{S i,S k,n} s

end

where "Σ @{ i , k , n } s" := (Ssigmas i k n s).

Moessner’s Theorem is then stated in Coq as:

Theorem Moessner n : Σ @{1,2,n} #1 ≡ nats ^^ S n.

4.1 The Bisimulation Relation

In order to prove Moessner’s Theorem by coinduction, we define the bisimulation
relation of Niqui and Rutten using an inductively defined relation.
Inductive Rn : relation (Stream Z) :=

| Rn_sig1 n : Rn (Σ @{1,2,n} #1) (nats ^^ S n)

| Rn_sig2 n : Rn (Σ @{0,2,n} #1) (nats � (#1 ⊕ nats) ^^ n)

| Rn_refl s : Rn s s

| Rn_plus s1 s2 t1 t2 : Rn s1 t1 → Rn s2 t2 → Rn (s1 ⊕ s2)(t1 ⊕ t2)

| Rn_mult n s t : Rn s t → Rn (#n � s) (#n � t)

| Rn_eq s1 s2 t1 t2 : s1 ≡ s2 → t1 ≡ t2 → Rn s1 t1 → Rn s2 t2.

The relation Rn is nearly a literate Coq translation of the bisimulation rela-
tion given by Niqui and Rutten. There are three small differences:
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– Niqui and Rutten use indexes that count from 1 instead of 0. When working
in a formal system, this is inconvenient, as it leads to many side-conditions.

– Since we consider streams of integers instead of streams of naturals (to make
the generalizations in Sect. 5 possible), we had to explicitly close the bisimu-
lation relation under scalar multiplication (using the constructor Rn mult).

– Because we use bisimilarity to express stream equality, we had to close the
bisimulation relation under it (using the constructor Rn eq).

4.2 Proof Outline

In what follows we show that Rn is a bisimulation relation, from which Moessner’s
Theorem is a direct consequence.

Lemma bisimulation_Rn : bisimulation Rn.

Theorem Moessner n : Σ @{1,2,n} #1 ≡ nats ^^ S n.

Proof.

eapply bisimulation_equal, Rn_sig1.

apply bisimulation_Rn.

Qed.

In order to prove the lemma bisimulation Rn, we have to prove that Rn s
t implies head s = head t and Rn (s‘)(t‘). This is proven by induction on
the derivation of Rn. There are two interesting cases:

1. The case corresponding to the constructor Rn sig1 for which we have to show
that Rn (Σ @{1,2,n} #1) (nats ^^ S n) implies:

head (Σ @{1,2,n} #1) = (nats ^^ S n)

and
Rn ((Σ @{1,2,n} #1)‘) ((nats ^^ S n)‘).

This case is covered by [13, Propositions 5.1–5.2] and formalized in Sect. 4.3.
2. The case corresponding to Rn sig2 involving (Σ @0,2,n #1) (nats 
 (#1 ⊕

nats) ‘n). This case is covered by [13, Propositions 5.3–5.4] and formalized in
Sect. 4.4.

The other cases follow from simple equational reasoning.

4.3 Case Rn (Σ@{1,2,n} #1)(nats ^^ S n)

In order to formalize the first case, we need to relate the heads and tails of the
streams Σ @{1,2,n} #1 and nats ^^ S n. This case involves proving the equations
below [13, Propositions 5.1–5.2]:

head (Σ@{1,2,n} #1) = 1 = head (nats ^^ S n)

(Σ@{1,2,n} #1)‘ ≡ sig_seq 0 2 n

Rn nat_seq n ≡ (nats ^^ S n)‘

The auxiliary streams sig seq and nat seq are defined as:
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Fixpoint sig_seq (i k n : nat) : Stream Z :=

match n with

| O ⇒ #1 ⊕ Σ @{i,k} #1

| S n ⇒ Σ @{i,k,S n} #1 ⊕ sig_seq i k n

end.

Fixpoint nat_seq (n : nat) : Stream Z :=

match n with

| O ⇒ #1 ⊕ nats

| S n ⇒ nats 
 (#1 ⊕ nats) ^^ S n ⊕ nat_seq n

end.

The lemmas involving the above equalities are proven by induction. Equa-
tional reasoning is supported by Coq’s ring tactic for solving ring equations.

Lemma Ssigmas_head_S i k n : head (Σ @{S i,k,n} #1) = 1.

Lemma Ssigmas_S_tail i k n : (Σ @{S i,k,n} #1)‘ ≡ sig_seq i k n.

Lemma nats_pow_head n : head (nats ^^ n) = 1.

Lemma nats_pow_tail n : (nats ^^ S n)‘ ≡ nat_seq n.

Lemma Rn_sig_seq_nat_seq n : Rn (sig_seq 0 2 n) (nat_seq n).

4.4 Case Rn (Σ @{0,2,n} #1) (nats� (#1⊕ nats) ^^ n)

In order to formalize the second case, we need to relate the heads and tails of Σ
@{0,2,n} #1 and nats 
 (#1 ⊕ nats)^^ n. This involves proving the equations
below [13, Proposition 5.3-5.4]:

head (Σ @{0,2,n} #1) = 2 ^ n = head (nats
 (#1⊕ nats) ^^ n)

(Σ @{0,2,n} #1)‘ ≡ bins_sig_seq n 2 n

Rn bins_seq n n ≡ (nats
 (#1⊕ nats) ^^ n)‘

The auxiliary streams bins sig seq and bins seq are defined as:
Fixpoint bins_seq (n j : nat) : Stream Z :=

match j with

| O ⇒ #bins n n � (#1 ⊕ nats)

| S j ⇒ #bins n (n - S j) � nats � (#1 ⊕ nats) ^^ S j ⊕ bins_seq n j

end.

Fixpoint bins_sig_seq (n k j : nat) : Stream Z :=

match j with

| O ⇒ #bins n n � (#1 ⊕ Σ @{k - 2,k} #1)

| S j ⇒ #bins n (n - S j) � Σ @{k - 2,k,S j} #1 ⊕ bins_sig_seq n k j

end.

Fixpoint bins (n i : nat) : Z :=

match i with O ⇒ 1 | S i ⇒ bin n (S i) + bins n i end.

In this code, bin n i denotes the binomial coefficient
(
n
i

)
. The series bins n

i of binomial coefficients, denoted an
i by Niqui and Rutten, looks like:

an
i =

(
n

i

)

+ · · · +
(

n

1

)

+
(

n

0

)

=
(

n

i

)

+ · · · +
(

n

1

)

+ 1.
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The formal proofs in this section are surprisingly tricky and involve intricate
generalizations of the induction hypothesis. These results thus form a nice exam-
ple that informal proofs often hide too many details under the carpet; Niqui and
Rutten just write that the results are “straightforward” or “proven by induc-
tion”. Let us take a look at an example [13, Proposition 5.3]:
Lemma nats_nats_pow_head n : head (nats � (#1 ⊕ nats) ^^ n) = 2 ^ n.

Lemma nats_nats_pow_tail n : (nats � (#1 ⊕ nats) ^^ n)‘ ≡ bins_seq n n.

The proof of the lemma nats nats pow head is a trivial induction proof. We
use basic properties about the heads of the operations for element-wise addition,
multiplication and repeated multiplication. The lemma nats nats pow tail can-
not be proven by a mere induction on n. For the inductive step we were in need
of the following auxiliary result:
Lemma bins_seq_SS n : bins_seq (S n) (S n) ≡ (#2 ⊕ nats) � bins_seq n n.

The formal proof of this auxiliary result is tricky, and requires a subtle gen-
eralization of the induction hypothesis. The subtlety arises from the fact that
the lemma concerns bins seq with the same value (namely S n) shared by both
arguments. However, bins seq is defined recursively on its second argument,
whereas the first argument remains constant throughout the recursion. There-
fore, we had to generalize the lemma bins seq SS such that both arguments are
independent. The Coq statement of the generalized lemma is as follows.
Lemma bins_seq_SS_help n j :

(j < n)%nat →
bins_seq (S n) (S j) ≡ (nats ⊕ #2) � bins_seq n j ⊕

#bins n (n - S j) � nats � (#1 ⊕ nats) ^^ S j.

The above lemma is proven by induction on j. The main lemma bins seq SS
is then proven by case analysis on n using the generalized lemma.

The other results from Niqui and Rutten, in particular [13, Proposition 5.4],
also require a variety of helping lemmas whose proofs involve intricate general-
izations of the induction hypothesis.

5 Long and Salié’s Generalization

Long [10,11] and Salié [20] generalized Moessner’s result to apply to the situation
in which the initial sequence is not the sequence of successive integers (1, 2, 3, . . .)
but the arithmetic progression (a, d + a, 2d + a, . . .). They showed that the final
sequence obtained by the Moessner construction is (a·1n−1, (d+a)·2n−1, (2d+a)·
3n−1, . . .). We show that these results are a corollary of the version of Moessner’s
Theorem proven in Section 4. This is a new proof: Niqui and Rutten did not
have it in their paper.

Similar to Section 4, where we started with the constant stream (1, 1, 1, . . .)
instead of (1, 2, 3, . . .), we will here start with (a, d, d, . . .) instead of (a, d +
a, 2d + 2, . . .). Clearly we have Σ (a, d, d, . . .) ≡ (a, a + d, a + 2d, . . .), and hence
Σn

n+1 (a, d, d, . . .) ≡ (a, a + d, a + 2d, . . .) for any n ≥ 1. We can formulate Long
and Salié’s generalization of Moessner’s Theorem thus as follows.
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Corollary Moessner_ext a d n :

Σ @{1,2,n} (a ::: #d) ≡ Σ (a ::: #d) 
 nats ^^ n.

The key observation to prove this generalization is the following lemma.

Lemma Moessner_ext_help a d : Σ (a ::: #d) ≡ #d 
 nats ⊕ #(a - d).

This lemma is straightforward to prove by showing that the heads and tails of
both sides are equal. This involves just basic equational reasoning. It is essential
that we consider streams of integers instead of naturals, since we want to allow
the subtraction operation on the right hand side.

In order to prove the actual theorem, namely Moessner ext, we perform case
analysis on n. For the case 0, the result trivially holds, and for the case 1 + m
we use the following derivation:

Σ1
2 · · · Σ(1+m)+1

(1+m)+2 (a ::: d) ≡ Σ1
2 · · · Σm+1

m+2 Σ (a ::: d)

≡ Σ1
2 · · · Σm+1

m+2 (d 
 nats ⊕ a − d) (2)

≡ d 
 Σ1
2 · · · Σm+1

m+2 nats ⊕ a − d 
 Σ1
2 · · · Σm+1

m+2 1 (3)

≡ d 
 nats
〈2+m〉 ⊕ a − d 
 nats

〈1+m〉 (4)

≡ (d 
 nats ⊕ a − d) 
 nats
〈1+m〉

≡ Σ (a ::: d) 
 nats
〈1+m〉 (5)

Step 2 and 5 use the Lemma Moessner ext help, step 3 uses the fact that
addition and scalar multiplication distribute through the partial sum and drop
operations, and step 4 uses Moessner’s Theorem twice.

6 Conclusions

We have presented a Coq formalization of Niqui and Rutten’s proof of Moess-
ner’s Theorem [13], as well as a new proof for the generalization of Moessner’s
Theorem by Long and Salié. We will summarize the lessons learned from doing
coinductive proofs in Coq.

Although Coq’s syntactic guard condition for corecursive definitions is often
believed to be too weak, it was strong enough to formalize this non-trivial coin-
ductive proof without many complications. Most definitions of stream opera-
tions as given by Niqui and Rutten had a straightforward translation into a
corresponding Coq definition. For some operations (e.g. nats and Σ), we had
to modify the definition slightly, but we could easily prove that our alternative
definition indeed satisfies the equations as given by Niqui and Rutten.

The guard condition was also hardly of any concern for proving proper-
ties. We only proved basic properties by guarded corecursion, and thereafter we
typically proved stream equalities using the coinduction principle, element-wise
equality, or equational reasoning using previously proved algebraic properties.
Hence, in more involved proofs, there was never the issue of proofs being rejected
because of Coq’s guard condition.
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A source of inconvenience is that Coq’s Leibniz equality is not extensional,
and we thus had to resort to bisimilarity to capture stream equality. However,
using the setoid machinery we could easily circumvent this source of inconve-
nience without noticeable overhead. We still had to prove that all stream opera-
tions respect bisimilarity, but those proofs were trivial. Hence, it would be useful
if there was automation to do such proofs.

The proof of Moessner’s Theorem involved some reasoning about ring equa-
tions over streams. Coq’s ring tactic turned out to be extremely valuable,
because it could solve these equations fully automatically.

One thing worth remarking is that Coq’s notation system with unicode char-
acters made it possible to type the proofs in a close notation to the one used
by Niqui and Rutten. While formalizing their proof, we did not find any factual
errors in the results. The challenge was that despite the good presentation of
all definitions and auxiliary results, most proofs were hidden under the carpet.
The proofs of the main propositions [13, Propositions 5.1–5.4] were claimed to
be trivialities whereas they turned out to be more involved than expected.

In this paper we have moreover given a concise and original proof of Long and
Salié’s generalization. Although formalization did not directly help us discovering
this proof, it was definitely of indirect use. Namely, formalization makes it very
attractable to make as much parts of the proof development reusable. This was
indeed the key to discovering our proof of this generalization.

We conclude that formalizing coinductive proofs as Moessner’s Theorem in
Coq is feasible, and worth doing. Our Coq formalization constitutes of a small
library on general operations and theory on streams (348 lines), a proof of Moess-
ner’s Theorem for the case n = 1 (34 lines), for the case n = 2 (57 lines), and
the general case (319 lines, including Long and Salié’s generalization). This total
of 758 lines of Coq code (including white space), corresponds to approximately
7 and half pages of informal mathematical text, with many proofs omitted, and
without Long and Salié’s generalization.
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Abstract. The K framework was successfully used for defining formal
semantics for several practical languages, e.g. C, Java, Java Script, but no
language with distributed concurrent objects was defined in K up to now.
In this paper we investigate how the model of asynchronous method calls,
using the so-called futures for handling the return values, can be added
to an existing K definition using the ideas from the Complete Guide to
the Future paper. As the running example we use the K definition of
KOOL, a pedagogical and research language that captures the essence
of the object-oriented programming paradigm. This is a first step toward
a generic methodology for modularly adding future-based mechanisms to
allow asynchronous method calls.

1 Introduction

K (www.kframework.org) is a framework for formally defining the semantics of
programming languages. The K definitions of the programming languages are
executable, i.e. they can be used to execute programs written in the defined
language, and can be used for program analysis and verification. The K Frame-
work is scalable: several realistic languages, e.g. Java [4], C [9], Java Script [15],
PHP [10], have already been defined in K. The main ingredients of a K definition
are configurations, computations and rules. Configurations organise the state in
units called cells, which are labeled and can be nested. Computations are special
nested list structures sequentialising computational tasks, such as fragments of
program. K (rewrite) rules make it explicit which parts of the term they read-
only, write-only, read-write, or do not care about. This makes K suitable for
defining truly concurrent languages even in the presence of sharing. The only
concurrency model described in some languages defined in K is that described
by threads. No language including distributed concurrent objects is defined in
K up to now.

Futures [14,25] are language constructs meant to represent awaited results
for asynchronous calls. Roughly speaking, a future is a place holder for a result
of an asynchronous concurrent computation. Once this computation is complete
the computed result, called future value, fills the place holder. An access to an
unresolved feature is a blocking operation.

The futures can be transparent or explicit. For the explicit case, the language
includes specific constructs for creating futures and getting the results. On the
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 325–343, 2016.
DOI: 10.1007/978-3-319-30734-3 22
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other hand the implicit futures are handled by underlying middleware and the
syntax of the language remains unchanged. Some languages allow futures to
be passed as parameters to other processes; these are called first class futures.
First class futures are useful for both object-oriented and procedural paradigms
since they improve the concurrency patterns and offer more flexibility in design.
Futures can be defined directly inside of a language [1,3,5,8,13] or as middleware
using a component-based model [6,12,23].

In theComplete Guide to the Future [3], Frank de Boer et al. provide the seman-
tics for an object-oriented language including explicit first class futures, defined as
an extension of the Creol language [13]. The main features defined there include
active multi-threaded objects, asynchronous method calls, and futures. A proof
system for proving properties specific to concurrency is provided.

Inspired by [3], in this paper we investigate how the semantics of first class
futures can be added, in a generic way, to languages that already have a formal
semantics. We consider an object oriented language formally defined in the K

Framework, namely KOOL, and we identify how the configuration is changed,
which semantic rules have to be modified, in order to implement implicit futures,
and which rules should be added to implement explicit futures. We rely on
the modularity of the K framework and we claim that the number of changed
rules is minimal (no rule unrelated to the extension was modified). Moreover,
K definitions being executable, using the K tool, allow users to effectively test
whether the semantics has the desired properties.

The underlying logics for K definitions are matching logic [16] and reachabil-
ity logic [19,22]. Using the encoding of Hoare triples into reachability logic [18],
we automatically have a translation of the proof system defined in the Com-
plete Guide to the Future into reachability logic. This makes possible the use of
provers like that reported in [21] for checking concurrency specific properties.

The paper is structured as follows. Section 2 includes a brief introduction to
K. The main ingredients of a K definition are exemplified using the KOOL pro-
gramming language, which is a part of the K tutorial1. Section 3 presents KFU-
TURE, a version of KOOL with asynchronous methods calls modelled using
futures. The main changes and new added constructs are briefly presented. Sev-
eral experiments with the K tool are reported in Sect. 4. Finally, Sect. 5 concludes
the paper and discusses future work opportunities.

2 A Kool Introduction to K

In a nutshell, the K Framework [20] consists of computations, configurations,
and rules. Computations are special sequences of tasks, where a task can be,
e.g., a fragment of program that needs to be processed. Configurations are used
to describe the program states and are organised as nested pools of cells holding
syntactic and semantic information. K rules distinguish themselves by specify-
ing only what is needed from a configuration, and by clearly identifying what
1 http://www.kframework.org/index.php/K Tutorial

https://github.com/kframework/k/tree/master/k-distribution/tutorial.

http://www.kframework.org/index.php/K_Tutorial
https://github.com/kframework/k/tree/master/k-distribution/tutorial
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changes, and thus, being more concise, more modular, and more concurrent than
regular rewrite rules.

The running example is KOOL [17], a pedagogical and research language
that captures the essence of the object-oriented programming paradigm. Among
the object-oriented features included in KOOL we find the inheritance and the
dynamic method dispatch mechanism. Moreover, KOOL is higher-order, allowing
function abstractions to be treated like any other values in the language. The K

definition of KOOL was the starting point for the K definition of Java [4].

Syntax and Computations. Computations extend syntax with an operation, “�”,
meaning to capture task sequentialization. The basic unit of computation is a
task, which can either be a fragment of syntax, maybe with holes in it, or a seman-
tic task, such as the recovery of an environment. The computation is abstracted
away from the language designer via intuitive program languages syntax anno-
tations like strictness constraints that specify the order of evaluation for its
arguments. The decompositions of computations are similar to the use of stacks
in abstract machines [11] and to the refocusing techniques for implementing
reduction semantics with evaluation contexts [7].

Fig. 1. A fragment of KOOL’s syntax

Figure 1 includes a fragment of the syntax for KOOL, described using BNF
notation. The strictness annotations add semantic information to the syntax by
specifying the order of evaluation of arguments for the corresponding construct.
This is achieved by the means of the heating/cooling rules, which are automati-
cally generated from strictness annotations. The order of evaluation can be left
unspecified (if using the “strict” attribute), or specified to happen in a given
order using the “seqstrict” attribute. For instance, the “strict” attribute for the
addition operator says that all arguments of addition are evaluated, but in an
unspecified order, which is achieved by the following heating/cooling rules:

E1 + E2� E1 � � + E2 E1 + E2� E2 � E1 + �
I1 � � + E2� I1 + E2 I2 � E1 + �� E1 + I2

When the strict attribute has parameters, only those parameters are evaluated.
E.g., for the statement if only the first argument (the conditional expression) is
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evaluated. For seqstrict, no attributes specify the evaluation of all arguments in
a left-to-right order, while a list of positions specifies that the given arguments
are to be evaluated in the given order, allowing for different order of evaluation
to be specified.

Fig. 2. KOOL configuration

Configurations. A configuration is a nested multiset of labeled cells, in which
each elementary cell can contain either a list, a set, a bag, a map, or a com-
putation. Figure 2 includes the configuration for the KOOL language. Here is a
brief description of the cells (the tree-like structure of the list reflects the nesting
structure of the cells):

T – top level cell;
threads – holds a pool of thread cells;

thread – holds the sub-configuration of a thread;
k – holds the nested list of the computations for the thread;
control – holds the local control state of the thread;

fstack – holds the function stack;
xstack – holds the stack of exceptions;
return – holds the type of the value to be returned by the current

method;
crntObj – holds the description of the current object (this);
crntClass – holds the name of the current class which the cur-

rent object belongs to;
envStack – holds the state of the object as a stack of environ-

ments (for each ancestor class an environment binding the
fields of the class to their current locations);

location – holds the location where the object is stored;
env – holds a map binding each name accessible by the thread to a

store location;
holds – include the locks held by the thread;
id – holds a natural number that is the identity of the thread;
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store – holds a global (shared by all threads) map binding the allocated
locations to some values; the fact that the environment is local but the
store is global allows for shared memory while preserving the visibility
domain of variables;

nextLoc – holds a natural number indicating the next free location;
busy – holds the locks which have been acquired but not yet released by

threads;
terminated – holds the unique identifiers of the threads which already ter-

minated (needed for join);
in – holds the list of the input data (needed for reading statements);
out – holds the list of the output data (needed for writing statements);
classes – the pool of the classes of a KOOL program;

class – holds the description of a class;
classname – holds the name of the class;
extends – holds the name of the parent class;
declarations – holds the declarations for the class fields and methods.

The content specification for the elementary cells has a double role: (1) it
specifies the content of that cell in the initial configuration, and (2) it specifies
the type (sort) of the information stored in that cell. The dot notation is used
for the empty data structures: e.g., ·List denotes the empty list, ·Set denotes the
empty set, and so on. The special variable $PGM will be replaced in the initial
configuration with the program to be executed. The internal command execute
triggers the execution of the program after its preprocessing to fill the initial
configuration.

The star character following the name of a cell specifies the multiplicity of
that cell, i.e. a concrete configuration may include zero, one, or more cells of
that kind. For instance, a concrete configuration may include several thread cells
and/or several class cells.

K Rules. The transition relation defining the operational semantics of a lan-
guage is described by K rules. For instance, the rule giving the semantics for the
addition operator is

where above the horizontal line is the pattern used for matching and below the
horizontal line is the pattern that defines the result term replacing the matched
term. This rule is applied only when the above pattern matches the top of the k
cell (we shall see later why). Since the syntax of this operator was defined with
the strict attribute, it follows that it is evaluated only after its arguments have
been evaluated to the integers I1 and I2. The operation +Int effectively adds
two integers. The semantics of the statement if is given by two rules:
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Recall that the syntax of if is strict only in the first argument, so only the
condition expression is evaluated first to either true or false. The two rules
corresponds to the two possible values returned by the evaluation of the condition
expression.

Although K rules are in essence rewrite rules, there are several ways in which
they differ from a regular rewrite rule. First, in-place rewriting (denoted by the
horizontal bar) allows one to specify small changes into a bigger context, by
underlining the part that needs to change and writing its replacement under
the line, instead of repeating the context in both sides of a rewrite rule. For
instance, the rule for addition will be applied only when the pattern I1 + I2
matches the top of the computation cell. This enables another optimisation,
namely the ability of using anonymous variables ( ) for the unused variables in
the context (see, e.g., the rule for if).

Furthermore, K allows the use of cell comprehension for focusing only on the
parts of the cells which are relevant, as in the rule for variable lookup:

The lookup rule above rule specifies that when a variable X is the first
computational task, and X is bound to some location L in the environment, and
L is mapped to some value V in the store, then we rewrite X into V .

The ellipses at the left/right end of a cell are used to specify that there could
be more items in that cell (in the corresponding side) in addition to what is
explicitly specified. Note that the variable to be looked up is the first task in the
k cell (the cell is closed to the left and open to the right), while the binding of
X to L and the mapping of L to V can be anywhere in the env and store cells
(these cells are open in both sides).

Finally, the process of configuration abstraction allows for mentioning only
the relevant cells in a rule, by relying on the static structure of the declared con-
figuration to infer the rest (configuration concretization). For instance, without
K’s configuration abstraction, the lookup rule above would have to also include
the thread and threads cells. Configuration abstraction is crucial for modularity,
because it gives the possibility to write definitions in a way that may not require
to revisit existing rules when the configuration changes as new (orthogonal)
language features are introduced.

Advanced Features of the KOOL Language Semantics. We conclude our
brief introduction to K by showing the semantic rules defining the behavior of
some important features of KOOL which would be affected by the introduction
of futures in the next section.

The new Operator. The rule defining the operator new includes a more complex
matching part and many local rewrites:
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The semantics of new consists of two actions: memory allocation for the new
object and execution of the corresponding constructor. Then the created object
is returned as the result of the new operation. The rule matches a new expression
on the top of the k cell, where the parameters Vs are already evaluated due to
the strictness, and performs the following changes in the configuration:

– replaces the new expression with two actions, memory allocation for the new
object (given by the auxiliary operations create and storeObj) and execu-
tion of the corresponding constructor, followed by the instruction returning
the created object;

– stores the current environment, computation, control, object, and return type
on the function stack;

– initializes the object creation process by emptying the local environment and
the current object, and allocating a location in the store where the created
object will be eventually stored;

– replaces the return type with the class of the newly created object.

Method Calls. The rule for method calls is somehow similar to that of the new
operator:
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Since the syntax for method calls is strict, the expression describing the method
name is evaluated to the corresponding function value. Recall that KOOL is a
higher-order language that allows the function abstractions to be treated like any
other values. A function value is a closure that includes the method parameters,
the body of the method, and the object value. The type held by a method
closure is the entire type of the method in order to dynamically upcast values
when passed to contexts where values of superclass types are expected. An object
value consists of an objectClosure-wrapped bag containing the current class of
the object and the environment stack of the object. The current class of an object
will always be one of the classes mapped to an environment in the environment
stack of the object. The rule matches a method call on top of the computation
cell and performs the following changes in the configuration:

– replaces the method call with the method body followed by a return;;
– pushes the current environment, control data, current object and the return

type onto the function stack;
– binds the actual arguments to formal parameters using the auxiliary opera-

tion mkDecls;
– updates the current object and the return type of the current method.

The arguments of the call are evaluated to a list of values Vs due to the strict
attribute. The variable K matches the rest of the computation.

The return statement performs the dual operations:

– pops the environment, control data, current object and the return type from
the function stack and stores them into the corresponding cells;

– checks the type of the returned value and passes it to the popped computa-
tion; note that its type is cast to that stored in the return cell.

3 KOOL with Futures

This section presents a language design exercise: adding support for futures to
an existing object oriented language executable definition.

We chose KOOL as the reference object oriented language definition, because
it is a relatively small but not trivial language designed for teaching students
object oriented concepts and dynamic typing.

An important aspect of the exercise is given by the executability attribute
of the definition: as expected, designing executable definitions requires more
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attention to details; on the other hand, these definitions are testable, making it
easier to detect design glitches.

Although we took The Complete Guide to the Future [3] as a starting point
for our definitional enterprise, we decided rather early on not supporting certain
Creol-specific constructs such as nondeterministic choice and parallel composi-
tion, as futures themselves bring a high degree of nondeterminism and concur-
rency. The new language we obtained is called KFUTURE.

3.1 Syntax

The syntax of KOOL, excepting that for threads – which was removed –, remains
unchanged and we only added the same constructs as in [3]:

The expressions are enriched with asynchronous calls, a future reading oper-
ation get, and guards used to block/release the objects’s tasks. The only added
statement await is used for releasing tasks and !T is the type of the futures
returning values of type T .

3.2 Configuration

The configuration of the new language is represented in Fig. 3. KFUTURE
objects are top-level independent agents [24], asynchronously communicating by
means of futures.

Being an agent, each object carries its own state – holding fields and their
values –, which can be altered only by the object’s methods/tasks. Thus, the
store cell is now object-local rather than global as in KOOL.

An object manages multiple tasks, each handling a specific future to which
it is linked through the futureId cell. To ensure task atomicity, we follow the line
in [3] and allow only one task being active at a time. Hence an object’s tasks are
split into the active-task and a pool of waiting-tasks.

Tasks are similar in essence to KOOL threads: the active-task cell includes
almost all cells occurring in a thread cell. However, the location and environment
stack envStack of an object are now at the top of the object cell, being shared
by all tasks.

Futures (placed in the futures cell) serve as communication channels between
objects. A future method invocation results in the creation of a new future cell
containing data identifying the target object (oid), the method (closure) and its
arguments. Each future has a state and will eventually produce a result.

To simplify the presentation, we have completely eliminated the threading
constructs existing in the KOOL language. From a definitional point of view, this
amounted to simply eliminating the extra syntax, cells in the configuration and
specific threading rules in the definition. Section 4 shows how Java-like threads
can be defined using futures.
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Fig. 3. The KFUTURE configuration

In the following, we first revisit the changes required to the KOOL semantics
to reflect the new configuration architecture, then describe the semantics of
futures as an addition to the existing semantics.

3.3 Objects and Methods

As objects are now full citizens of the configuration, several changes to the
definition of KOOL are required to reflect that.

Object creation requires a redefinition of the semantics for new:

An instance of the class is created in the cell object and an unique identifier is
assigned to it, while the new construct reduces to a method call to the special
method $clinit on a reference to the newly created object, a method which:
(1) performs basic object allocation and initialisation; (2) calls the constructor
method; (3) returns a reference to the object. Hence, $clinit basically corre-
sponds to the create(Class) � storeObj � (Class(Vs)); return this;
sequence of tasks from the KOOL semantics for new, with the difference that
now these tasks need to occur within the newly created object.

Object references replace KOOL’s object closures. An object reference is a triple
(Id ,MainClass,CurrentClass), where Id corresponds to the contents of the
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object’s location cell, MainClass corresponds to the contents of the mainClass
cell, and CurrentClass corresponds to the current contents of the crntClass cell,
as shown by the new semantics for this:

The replacement of object closures by object references, made mandatory by the
KFUTURE extension, required redefining some of the other KOOL rules, mainly
those related to method and field resolution. Note though that these changes are
actually simplifications to the existing KOOL semantics, inspiring us to redesign
future versions of KOOL to use references instead of closures as object values.

Method calls to foreign objects are desugared into (blocking) future invoca-
tions [3]:

The condition expressed by the clause requires ensures that the called method
belongs indeed to a foreign object.

Method calls for the current object remain basically the same as in KOOL. While
convenient, this additionally is a proper way to treat self calls, avoiding deadlock
(which would occur if handled as foreign object calls) while capturing the direct
transfer of control which was a caveat of the workaround solution proposed in [3].

First, the method is looked up in the object’s environment stack:

Next, once a method is evaluated to a method closure, application saves the
current context before binding the arguments and calling the method:

The only changes from the corresponding KOOL rule are (1) the fact that
we enforce that the method’s object location is the same as the current object’s
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location; and (2) since we are inside the same object, the only object-related
which needs to be updated/saved/restored is the current class.

The KOOL rule for the return statement is preserved unchanged, although
an additional rule will be added below to model returning from a future call.

3.4 Futures

Futures model asynchronous method calls as messages exchanged between objects.
These exchanges are captured by the future cells in the configuration, which serve
as communication channels between objects.

Future method invocations result in opening a channel (future) to the object
owning the method, containing a request for executing the method:

The future will initially be in the sleeping state, waiting to be activated
by its corresponding object. The future invocation evaluates to a pre-future
reference to the newly created future; this will become a full future reference
once the return type of the method is known.

The activation of a sleeping future occurs when there are no active tasks
running for the future’s object, and consists in creating a task to initiate the
method call, and changing the state of the future to active to prevent recurrent
activations:

The auxiliary operation performCall does the actual method invocation
which is similar to the one in KOOL, only without saving a stack frame (because
no context needs to be saved). The contents of the futureId cell links the task to
its corresponding future. The value −1 in the futureId cell is used to signal that
the object is idle.

Returning from a future call occurs when a return statement is encountered and
there are no function frames on the function stack. When this happens, we need
to set the returned value as the result of the corresponding future and to signal
this to the caller by setting the state of the future to complete:
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The active-task cell is resetted to indicate there is no current active task running.

Testing whether a future is resolved can be done using the ? operator:

The Semantics of get. Get can only be called on future references and blocks
until the corresponding future contains a value, with the effect of “returning”
that value to the caller:

The tasks associated to the “returning” value are the same to the ones from
the KOOL rule for return, because we want to also extend the dynamic type
checking aspect of the language over futures.

Another KOOL-related aspect is that of exception handling. Since KOOL
gives semantics for exceptional behaviour, this has to be extended in the case of
futures. Therefore, uncaught exceptions from a future call need to be propagated.

Exceptions and Futures. If there is no exception handler in the exception stack,
the exception thrown by the throw statement is returned as an exceptional value:

When get is used on an exceptional value, the exception is thrown again:

3.5 Yielding Control and Rescheduling

As shown above, the semantics of get is blocking, which can be counter-productive
when there are multiple concurrent asynchronous calls made to the same object.
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The await statement allows one task to yield control until a condition is satisfied:

To avoid overcomplicating the semantics, we restrict conditions to conjunctions
of disjunctions of elements of the Guard type (wait and Exp ?). There are more
rules like the above, handling conjunction and disjunction, and attempting to
simplify guards; however, if the condition cannot be reduced to true, the active
task will need to block and wait to be rescheduled.

Yielding Control. When waiting cannot be reduced, the active task is moved to
the pool of waiting tasks and the object becomes idle:

Note that the guard cell argument of the waiting computation task, holding
a disjunction of basic guards represented as a set, becomes the guard cell of the
newly created waiting-task.

Departing from [3], we chose not to model tasks as a queue, but rather as a
bag, to capture any possible scheduling policy.

Simplifying Guards. A waiting task’s guard is removed if one of the futures it
waits upon completes:

The wait guard is used to unconditionally yield control; therefore, once the
task becomes a waiting task, we can dissolve the guard to allow its reactivation:

Regaining Control. If an object is idle and the guard of one of its waiting tasks
has dissolved, then that waiting task can be reactivated:

3.6 Global and Local Future Invariants

In [3] a proof system for proving a set of monitor invariants that describe the
release points is presented. A monitor invariant i is a local property of an object
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that must hold each time the await statement is scheduled. A monitor invari-
ant is proved in the presence of global invariants I, which describe invariant
properties of the future objects.

These invariants can be easily expressed as matching logic formulas [16],
which can be thought as configuration terms with variables and constraints over
these variables. We exhibit this by two simple examples. Let I be the global
invariant: for any future z associated to the method m of the class C, if the state
of z is completed then the return value is positive. I is formally expressed by the
following matching logic formula, written using the abstraction mechanism:

In the left hand side of the implication we have (the abstraction of) a configura-
tion term, which is a particular matching logic formula: the first line is a pattern
matching objects of the class c having the method m stored at location L, and
the second line is a pattern matching futures associated to the method m (via
location L), and that are completed and have the return value V . The object
reference Oid connects the future with its associated object. In the right hand
side of the implication is the constraint on V .

Similarly, a monitor invariant saying that “for any instance of the class C, its
field fld must have a nonzero value at any release point” is formally expressed
as follows:

Writing the global and monitor invariants as matching logic formulas has the
advantage that they are expressed in the same logic used to give semantics for the
programming language. This allows the direct use of the semantics for proving
the correctness of such properties. In particular, the correctness of invariants can
be proved using the symbolic execution and the circular coinduction technique
described in [2]. More precisely, that general technique can be combined with
the proof system given in [3] to obtain a specialized prover parametric in the
language definition. Since matching logic formulas are written at a lower level, by
considering the configuration as particular formulas, a richer class of properties
can be expressed. On the other hand, the abstraction level used in [3] can be
preserved by developing tools that automatically translate higher-level formulas
into matching logic formulas following the idea used in the MatchC prover [21].

4 Experiments

A main advantage of the formal semantics defined in K is that they are directly
executable using the K tool. A first experiment we did was to test if the KOOL
programs, used to test the KOOL definition, can be executed with the new
semantics. All programs, excepting those including threads, were successfully
executed and their executions produced the same outputs with those obtained
with the definition of KOOL.

Multithreading Defined Through Futures. Even if the threads were removed from
KOOL to define KFUTURE, the concept of threads can be somehow regained
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at the programming level. For example, one may define a base class Thread as
follows:

class Thread {
!void id;
void run() { } // to be overridden
void start() { id = this ! run(); }
void join() { await(id ?); }

}
Then, specific threads can be defined by extending the class Thread with par-
ticular behaviour and overriding the method run.

The Thread class enables the concurrent execution of multiple threads. Note,
however, that KOOL’s globally shared memory is no longer directly available to
the programmer, each object now carrying its own memory.

Nevertheless, the objects themselves are still globally shared and that suffices
from a programming point of view. Programmers need only to assume a shared-
memory model where all object data is hidden and thus only accessible through
the interfaces provided by the objects, which is considered good object-oriented
programming discipline.

Hence, KOOL with futures brings relative little change to the programming
model, while providing certain important benefits at a semantics level: futures
allow for all accesses to memory to be clearly sequentialized, enabling better
abstraction and reasoning techniques for program analysis and verification.

Future-Induced Deadlocks. We tested the definition on various examples in order
to see if there is a combination of method calls for foreign objects and those for
the current object that leads to a deadlock. (Un)Fortunately we found such an
example:

class A {
B b;
void A() { }
void setB(B b) { this.b = b; }
void callB() { b.c (); }
}

class B {
A a;
void B(A a) { this.a = a; a.setB(this); }
void c() { print(”It works!”); }
void callA() { a.callB (); }

}

class Main {
void Main() {

A a = new A();
B b = new B(a);
b.callA ();

}
}

The A object a has a reference to the B object b, and the object b has a
reference to a. The call of b.callA() triggers the call of a.callB(), which in
turn triggers the call of b.c(). The execution blocked on a configuration with
two active futures, the ones for b.callA() and a.callB(), and a sleeping future,
that for b.c(). Although not present in Creol, this problem seems to originate
in the identification between processes and objects proposed in [3].
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5 Conclusion and Future Work

We presented an executable formal semantics, defined using the K Framework,
for an object-oriented programming languages with asynchronous method calls
modelled with futures. We used KOOL – an object oriented programming lan-
guage already defined in K for teaching and research purposes – and we fol-
lowed the line from [3] for the definition of the futures. However, there are some
important points where the two approaches differ, e.g., the treatment of threads,
method calls for the current object, the scheduling of the tasks inside of an object
process. A main advantage of using K Framework is that the formal semantics of
the language is directly executable by the K tool, hence no further encoding of
the formal semantics to an executable framework is needed. The designed defini-
tion can be tested on programs, analysed, and adjusted according to the desired
behaviour. In this way we found several more natural solutions for KFUTURE
than those proposed in [3]. We also detected a case when the combination of the
method calls for foreign objects with those of the current object can lead to a
deadlock.

This exercise to define KFUTURE starting from that of KOOL was also a
good test for the modularity of the K Framework. The configuration of KFU-
TURE is strongly different from that of KOOL: some cells were removed (e.g.
those for threads), some cell have been added (e.g. for objects, futures, auxiliary
constructs), and the nesting structure have been substantially changed. In this
context, it is expected that the rules of KOOL to be changed in order to accom-
modate with the new configuration. This did not happen: from the 129 rules of
KOOL, 8 have been removed because they give semantics for threads and 13
have been replaced with other 49 that give the semantics to both implicit and
explicit futures. Besides the modular aspect of K, this numbers show also that
the change is not trivial. Since the semantics is directly executable, all details
have to be specifed.

The K definition of the new language, KFUTURE, can be found on the github
repository, http://github.com/roKmania/KFuture, and it can be executed with
the version 3.5.2 of the K tool, https://github.com/kframework/k/releases/tag/
v3.5.2.

This exercise is a first step toward a methodology of how to add asynchro-
nous methods/function calls with futures to an existing programming language
defined in K. This methodology could allow to generalise the proof system pro-
posed in [3], for verifying monitor invariant of the release points, to a generic
proof system expressed in the terms of matching logic [16] and reachability
logic [22].
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Abstract. The Aeolus component problem of automatic deployment of
complex distributed component systems. In the general setting, the task
of checking if a distributed application can be deployed is an undecidable
problem. However, the current undecidability proof in Aeolus assumes
the possibility to perform in a synchronized way atomic configuration
actions on a set of interdependent components: this feature is usually
not supported by deployment frameworks. In this paper we prove that
even without synchronized configuration actions the Aeolus component
model is still Turing complete. On the contrary, we show that other
Aeolus features like capacity constraints and conflicts are necessary: if
we remove the former the deployment problem becomes non-primitive
recursive, while in the latter it becomes poly-time.

1 Introduction

Expressiveness of models for concurrent computation is one of those interest that
accompanied Frank de Boer in his extremely productive and diversified research
activity. For instance, in the early 90’s he investigated the use of embedding as
a tool for concurrent language comparison [6] and more recently he considered
decidability/undecidability of termination problems to evaluate the expressive-
ness of basic features of the Actor concurrency model [5]. This paper falls in
this line of research, by considering the Aeolus component model tailored to the
analysis of automatic component deployment. The specific contribution of this
paper is the study of the expressiveness of a specific mechanism for component
configuration used to synchronously configure interdependent components. This
is useful, for instance, when two components are mutually dependent and the
easiest way to deploy them is to install them contemporaneously. Especially in
a distributed component environment, such a synchronized installation is of dif-
ficult implementation. For this reason we have decided to investigate the impact
of the elimination of this mechanism from the Aeolus model.
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The Aeolus component model has been proposed in [4,8] as a formal model
to reason on the component deployment problem. Deployment and manage-
ment of modern large scale component-based applications is a challenging task,
and several tools and technologies are under development to support applica-
tion architects and managers in these complex activities. According to the cur-
rent mainstream approaches, such applications are either deployed by exploiting
pre-configured virtual machines images, which already contain all the needed
software components (see, e.g., Bento Boxes [9], Cloud Blueprints [3], or AWS
CloudFormation [2]), or are designed by using drag-and-drop graphical tools
like Juju [10] leaving the low-level component configuration to pre-programmed
scripts or to automatic configuration tools like Puppet [16] or Chef [15].

Aeolus extends the classical notion of component, seen as a black-box that
exposes provide and require ports, with a finite state automaton describing the
component configuration life-cycle. The automaton states correspond to different
configuration modalities, like uninstalled, installed, running, stopped, etc. and the
transitions represent configuration actions like install, run, stop, etc. Depending
on the internal state, the ports on the interface can be either active or inactive.
For instance, an uninstalled component usually does not activate any require
port, while it can activate require ports when it is in the installed state, and
finally activate some provide port when it actually enters the running state.
Another specific feature of the Aeolus model is that capacity constraints can
be associated to the ports: a provide port could have a maximal number of
connected require ports or a require port can ask for multiple providers offering a
given functionality.1 Additionally, in Aeolus it is also possible to express conflicts:
components can activate special ports that forbids the activation of provide ports
of a given type in the rest of the system.

In [4,8] we have investigated the expressiveness of the Aeolus component
model, showing that it is Turing complete. From this expressiveness result we
have, as a negative consequence, that in general the component deployment
problem is not computable. More precisely, we proved the undecidability of the
achievability problem. Given a finite universe of component types, a target com-
ponent and a target state, the achievability problem consists of deciding if it
possible to reach a final configuration containing at least one instance of the
target component type in the target state by assuming the availability of an
unbounded number of instances of the component types of the universe in their
initial state.

The undecidability of achievability is proved by encoding counter machines,
from which follows the Turing completeness of the Aeolus model. The proof
relies on a specific feature of Aeolus called multiple state change: if there is a
group of components that reciprocally depend one on another to advance in their
internal configuration life-cycle, it is possible to synchronously and atomically
change their state to allow all of them to progress. This specific feature of the
model is clearly of non trivial implementation in distributed component systems

1 This feature of the model is used to capture replication or fault tolerance require-
ments.
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since it would require distributed synchronization and is usually not supported
by deployment frameworks.

In this paper we investigate the impact of the removal of multiple state
changes on the expressiveness of the Aeolus component model. The main result
is that the model is still Turing complete, thus showing that the undecidability
of achievability follows from its intrinsic complexity, and not from the expressive
power of distributed synchronization.

As additional results, we show that this Turing completeness result relies on
both capacity constraints and conflicts. In fact, if we remove at least one of these
two features, achievability turns out to be decidable. In particular, if we remove
conflicts it becomes poly-time, while if we remove capacity constraints (keeping
conflicts), it turns out to be decidable but non-primitive recursive.

Comparison with Previous Work. The Aeolus component model was initially
proposed in [8] where its Turing completeness was proved. In that paper, also
the fragment of the Aeolus model without conflicts and capacity constraints was
considered, showing that the achievability problem is poly-time for that frag-
ment. In [7] the fragment without capacity constraints was studied, showing
that the problem is decidable; its Ackerman-hardness was proved in [4]. A frag-
ment of the Aeolus model without multiple state change (and without capacity
constraints and conflicts) has been considered in [11,12] where a tool for auto-
matic cloud application deployment was presented. In this paper we complete
the analysis of the remaining relevant fragments without multiple state changes.

Structure of the Paper. In Sect. 2 we report the formal definition of the Aeo-
lus component model following [4]. Turing completeness without multiple state
change actions is proved in Sect. 3. In Sects. 4 and 5 we consider the two frag-
ments obtained by removing, besides multiple state change actions, also capacity
constraints or conflicts, respectively. Finally, in Sect. 6 we draw some concluding
remarks.

2 The Aeolus Model

In this section we give a recap of the Aeolus model following [4].
We assume given the following disjoint sets: I for interfaces and Z for com-

ponents. We use N to denote strictly positive natural numbers, N∞ for N∪{∞},
and N0 for N ∪ {0}.

We model component types as finite state automata indicating all possible
component states and state transitions. When a component changes state, the
sets of ports it requires from/provide to other components will also change: intu-
itively, the active ports changes depending on the internal state. A provide port
represents the possibility of furnishing a functionality having a given interface.
Similarly, a require port represents the need for a functionality with a given
interface.
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Definition 1 (Component Type). The set Γ of component types of the
Aeolus model, ranged over by T1, T2, . . . contains 5-ple 〈Q, q0, T, P,D〉 where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state and T ⊆ Q × Q is the set of transitions;
– P = 〈P,R〉, with P,R ⊆ I, is a pair composed of the set of provide and the

set of require ports, respectively;
– D is a function from Q to 2-ple in (P �→ N∞) × (R �→ N0).

Given a state q ∈ Q, D(q) returns two partial functions (P �→ N∞) and (R �→
N0) that indicate respectively the provide and require ports that q activates. The
functions associate to the activate ports a numerical constraint indicating:

– for provide ports, the maximum number of bindings the port can satisfy,
– for require ports, the minimum number of required bindings to distinct com-

ponents,
• as a special case: if the number is 0 this indicates a conflict, meaning that

there should be no other active port, in any other component, with the
same interface.

When the numerical constraint is not explicitly indicated, we assume ∞
as default value for provide ports (i.e., they can satisfy an unlimited amount
of requires) and 1 for require ports (i.e., one provide is enough to satisfy the
requirement). We also assume that the initial state q0 has no demands (i.e., the
second function of D(q0) has an empty domain).

We now define configurations that describe systems composed by component
instances and bindings that interconnect them. A configuration, ranged over by
C1, C2, . . ., is given by a set of component types, a set of deployed components
with a type and an actual state, and a set of bindings. Formally:

Definition 2 (Configuration). A configuration C is a 4-ple 〈U,Z, S,B〉 where:

– U ⊆ Γ is the finite universe of all available component types;
– Z ⊆ Z is the set of the currently deployed components;
– S is the component state description, i.e., a function that associates to com-

ponents in Z a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T, P,D〉,
and q ∈ Q is the current component state;

– B ⊆ I ×Z ×Z is the set of bindings, namely 3-ples composed by an interface,
the component that requires that interface, and the component that provides
it; we assume that the two components are distinct.

In the following we will use a notion of configuration equivalence that relate
configurations having the same instances up to renaming. This is used to abstract
away from component identifiers and bindings.

Definition 3 (Configuration Equivalence). Two configurations 〈U,Z, S,B〉
and 〈U,Z ′, S′, B′〉 are equivalent, noted 〈U,Z, S,B〉 ≡ 〈U,Z ′, S′, B′〉, iff there
exists a bijective function ρ from Z to Z ′ s.t.:
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1. S(z) = S′(ρ(z)) for every z ∈ Z; and
2. 〈r, z1, z2〉 ∈ B iff 〈r, ρ(z1), ρ(z2)〉 ∈ B′.

Notation: we write C[z] as a lookup operation that retrieves the pair 〈T , q〉 =
S(z), where C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection
operators .type and .state to retrieve T and q, respectively. Similarly, given a
component type 〈Q, q0, T, 〈P,R〉,D〉, we use projections to (recursively) decom-
pose it: .states, .init, and .trans return the first three elements; .prov, .req
return P and R; .P(q) and .R(q) return the two elements of the D(q) tuple.
When there is no ambiguity we take the liberty to apply the component type
projections to 〈T , q〉 pairs. For example, C[z].R(q) stands for the partial function
indicating the active require ports (and their arities) of component z in configu-
ration C when it is in state q. We denote with C#

〈T ,q〉 the number of components
of type T in state q in the configuration C.

We are now ready to formalize the notion of configuration correctness:

Definition 4 (Configuration Correctness). Let us consider the configura-
tion C = 〈U,Z, S,B〉.

We write C |=req (z, r, n) to indicate that the require port of component z,
with interface r, and associated number n is satisfied. Formally, if n = 0 all
components other than z cannot have an active provide port with interface r,
namely for each z′ ∈ Z \ {z} such that C[z′] = 〈T ′, q′〉 we have that r is not in
the domain of T ′.P(q′). If n > 0 then the port is bound to at least n active ports,
i.e., there exist n distinct components z1, . . . , zn ∈ Z \ {z} such that for every
1 ≤ i ≤ n we have that 〈r, z, zi〉 ∈ B, C[zi] = 〈T i, qi〉 and r is in the domain of
T i.P(qi).

Similarly for provides, we write C |=prov (z, p, n) to indicate that the provide
port of component z, with interface p, and associated number n is not bound
to more than n active ports. Formally, there exist no m distinct components
z1, . . . , zm ∈ Z \ {z}, with m > n, such that for every 1 ≤ i ≤ m we have that
〈p, zi, z〉 ∈ B, S(zi) = 〈T i, qi〉 and p is in the domain of T i.R(qi).

The configuration C is correct if for each component z ∈ Z, given S(z) =
〈T , q〉 with T = 〈Q, q0, T, P,D〉 and D(q) = 〈P,R〉, we have that (p �→ np) ∈ P
implies C |=prov (z, p, np), and (r �→ nr) ∈ R implies C |=req (z, r, nr).

We now formalize how configurations evolve from one state to another one,
by means of atomic actions:

Definition 5 (Actions). The set A contains the following actions:

– stateChange(z, q1, q2) where z ∈ Z;
– bind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I;
– unbind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I;
– new(z : T ) where z ∈ Z and T is a component type;
– del(z) where z ∈ Z.

The execution of actions can now be formalized using a labelled transition
system on configurations, which uses actions as labels.
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Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions
C α−→ C′ meaning that the execution of α ∈ A on the configuration C produces a
new configuration C′. The transitions from a configuration C = 〈U,Z, S,B〉 are
defined as follows:

C stateChange(z,q1,q2)−−−−−−−−−−−−−−→ 〈U,Z, S′, B〉
if C[z].state = q1
and (q1, q2) ∈ C[z].trans

and S′(z′) =
{

〈C[z].type, q2〉 ifz′ = z
C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U,Z, S,B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 �∈ B
and r ∈ C[z1].req ∩ C[z2].prov

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U,Z, S,B \ 〈r, z1, z2〉〉 if 〈r, z1, z2〉 ∈ B

C new(z:T )−−−−−−→ 〈U,Z ∪ {z}, S′, B〉
if z �∈ Z, T ∈ U

and S′(z′) =
{

〈T , T .init〉 if z′ = z
C[z′] otherwise

C del(z)−−−−→ 〈U,Z \ {z}, S′, B′〉
if S′(z′) =

{
⊥ if z′ = z
C[z′] otherwise

and B′ = {〈r, z1, z2〉 ∈ B | z �∈ {z1, z2}}

Fig. 1. On the need of a multiple state change: how to install a and b?

Notice that in the definition of the transitions there is no requirement on the
reached configuration: the correctness of these configurations will be considered
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at the level of deployment runs as later detailed. Also, we observe that there are
configurations that cannot be reached through sequences of the actions we have
introduced. In Fig. 1, for instance, there is no way for package a and b to reach
the installed state, as each package requires the other one to be installed first. In
practice, when confronted with such situations—that can be found for example
in FOSS distributions in the presence of loops of Pre-Depends that impose an
order in the installation of two depending packages—current tools either perform
all the state changes atomically, or, more often, they abort deployment.

The Aeolus model allows for simultaneous installations by introducing the
notion of multiple state change.

Definition 7 (Multiple State Change). A multiple state change action M =
{stateChange(z1, q11 , q

1
2), · · · , stateChange(zl, ql

1, q
l
2)} is a set of actions of type

state change on different components (i.e., zi �= zj for every 1 ≤ i < j ≤ l).
We use 〈U,Z, S,B〉 M−−→ 〈U,Z, S′, B〉 to denote the effect of the simultaneous
execution of the state changes in M: formally,

〈U,Z, S,B〉 stateChange(z1,q1
1 ,q1

2)−−−−−−−−−−−−−−→ . . .
stateChange(zl,ql

1,ql
2)−−−−−−−−−−−−−−→ 〈U,Z, S′, B〉

Notice that the order of execution of the state change actions does not matter
as all the actions are executed on different components.

We can now define a deployment run, which is a sequence of actions that
transform an initial configuration into a final correct one without violating cor-
rectness along the way. A deployment run is the output we expect from a planner,
when it is asked how to reach a desired target configuration.

Definition 8 (Deployment Run). A deployment run is a sequence α1 . . . αm

of actions and multiple state changes such that there exist Ci such that C = C0,
Cj−1

αj−→ Cj for every j ∈ {1, . . . , m}, and the following conditions hold:

configuration correctness for every i ∈ {0, . . . , m}, Ci is correct;
multiple state change minimality if αj is a multiple state change then there

exists no proper subset M ⊂ αj, or state change action α ∈ αj, and correct

configuration C′ such that Cj−1
M−−→ C′, or Cj−1

α−→ C′.

We now have all the ingredients to define the notion of achievability, that
is our main concern: given a universe of component types, we want to know
whether it is possible to deploy at least one component of a given component
type T in a given state q.

Definition 9 (Achievability Problem). The achievability problem has as
input a universe U of component types, a component type T , and a target state
q. It returns as output true if there exists a deployment run α1 . . . αm such that
〈U, ∅, ∅, ∅〉 α1−→ C1

α2−→ · · · αm−−→ Cm and Cm[z] = 〈T , q〉, for some component z in
Cm. Otherwise, it returns false.

Notice that the restriction in this decision problem to one component in a
given state is not limiting. One can easily encode any given final configuration
by adding a dummy provide port enabled only by the required final states and
a dummy component with requirements on all such provides.
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3 Turing Completeness Without Multiple State Changes

In [4,8] it is proved that the Aeolus component model is Turing complete. More
precisely, we show how to reduce termination for 2 Counter Machines [14], a well-
known Turing-complete computational model, in the achievability problem for
the Aeolus component model. The presented reduction makes use of the multiple
state change actions. In this section, we revisit that proof, showing that multiple
state changes are not strictly necessary.

Before entering into the details, we observe that given a component type T it
is always possible to modify it in such a way that its instances are persistent. To
avoid the component deletion it is sufficient to impose a reciprocal dependence
with a new auxiliary type of components. When this dependence is established
the components cannot be deleted without violating configuration correctness.
In [4] this reciprocal dependence was established via a multiple state change.
However, multiple state changes are not the only way to enforce the persistence
of an instance since the reciprocal dependence can be established by creating
one binding at the time following a precise protocol.

In Fig. 2 we show an example of how a component type can be modified in
order to reach our goal. Three new auxiliary states q′

0, q′
a, and q′

b are created,
with q′

0 becoming the new initial state. States q′
a and q′

b require and provide
respectively ports a and b. Only one instance of T can be present at once in
these two states. This is enforced by simultaneously providing and requiring the
port e. The original states of T are modified to require the port a and provide the
port b. Dually, the auxiliary component Taux has an initial state q0, a final one
qf , and two intermediate states qa and qb providing and requiring respectively
ports a and b. Also in this case, at most one instance of Taux can be in states
qa or qb. We assume that the ports a, b, e and f are fresh, that is, they are not
used by any other component type in the considered universe.

Given a component type T we denote this component type transformation
with ϕ(T ). The ϕ transformation is defined to guarantee the establishment of

Fig. 2. Component type transformation ϕ.
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two reciprocal bindings between pairs of T and Taux instances that forbid their
deletion. In particular, an instance of T cannot be deleted after the state q′

b was
left while the instance of Taux cannot be deleted after state qa. This is due to
the fact that after these states are left the instances are guaranteed to provide
something required by the other instance. If we denote with C#

〈p〉 the number of
instances providing the port p, this property is captured as follows.

Property 1 (ϕ-persistence). A configuration C is ϕ-persistent if C#
〈a〉−C#

〈Taux,qa〉 =

C#
〈b〉 − C#

〈T ,q′
b〉.

The encoding ϕ preserves the ϕ-persistence.

Lemma 1. If C α−→ C′ and C is ϕ-persistent than also C′ is ϕ-persistent.

Proof. The proof can be done considering the type of α actions. Since ϕ-
persistence considers just the amount of active ports of type a and b we can
restrict to consider only actions that can alter these quantities.

If α = stateChange(z, q0, qa) a new port a is provided but at the same
time an instance of type Taux leaving the quantity C#

〈a〉 − C#
〈Taux,qa〉 unal-

tered. The same happens with α = stateChange(z, qa, qb) and for port b when
α = stateChange(z, q′

a, q′
b) or stateChange(z, q′

b, q0).
When a and b are provided, by construction, the only way to reduce their

amount is by deleting a component. A deletion of an instance of type Taux in
state q0, qa or the deletion of type T in states q′

0, q′
a, q′

b does not alter the amount
of a or b ports provided. A deletion of an instance z of T or Taux in a different
state q′ is not possible. In fact, if z is of type T than its deletion reduces C#

〈b〉 by

1. But since there are exactly C#
〈a〉 −C#

〈Taux,qa〉 = C#
〈b〉 −C#

〈T ,q′
b〉 instances requiring

a port b the deletion of z violates the configuration correctness. Similarly, the
configuration correctness is violated also if z is of type Taux. ��

We can therefore consider, without loss of generality, components that can
be deployed in a persistent way. This can lead to a modification of the proof
of the undecidability of achievability for Aeolus [4] that does not assume to use
multiple state changes. The original prove was by reduction from the termina-
tion problem in 2 Counter Machines (2CMs) [14], a well-known Turing-complete
computational model.

A 2CM is a machine with two registers R1 and R2 holding arbitrary large
natural numbers and a program P consisting of a finite sequence of numbered
instructions of the two following types:

– j : Inc(Ri): increments Ri and goes to the instruction j + 1;
– j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1 and

goes to the instruction j + 1, otherwise jumps to the l instruction.

A state of the machine is given by a tuple (i, v1, v2) where i indicates the
next instruction to execute (the program counter) and v1 and v2 are the values
contained in the two registers, respectively.
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Fig. 3. Modeling 2 counter machines (2CMs) in the Aeolus model.

For modelling 2CMs a component to simulate the execution of the program
instructions was used. The content vi of the register Ri is modelled by vi com-
ponents in a particular state ri. Increment instructions add one component in
this state ri, while decrement instructions move one component in state ri to
a different state. The state ri activates a provide port onei , so the simulation
of a test for zero has simply to check the absence in the environment of active
onei ports. In particular, as depicted in Fig. 3, a component type TP was used to
simulate the execution of the program instructions while TR1 and TR2 were used
for the two registers. All these components where made persistent by forcing the
initial execution of multiple state changes creating reciprocal bindings with an
additional component. However, the same can be obtained without the use of
the multiple state change simply by applying the ϕ transformation.

We can therefore prove a stricter undecidability result.

Theorem 1. The achievability problem is undecidable in the fragment of the
Aeolus component model that does not support multiple state changes.

Proof. The proof follows the same technique as the one used in [4] by considering
the universe U = ϕ(TP ) ∪ ϕ(TR1) ∪ ϕ(TR2). ��
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4 Ackermann-Hardness Without Capacity Constraints
and Multiple State Changes

In [4] the achievability problem was proven to be decidable but Ackermann-hard
in the fragment of Aeolus without capacity constraints. Even in this case the
complexity does not decrease if we also remove multiple state changes.

The complexity result in [4] was obtained by reduction from the coverability
problem in reset Petri nets, a problem which is indeed known to be Ackermann-
hard [17].

We start with some background on reset Petri nets.
A reset Petri net RN is a tuple 〈P, T,m0〉 such that P is a finite set of

places, T is a finite set of transitions, and m0 is a marking, i.e., a mapping from
P to N that defines the initial number of tokens in each place of the net. A
transition t ∈ T is defined by a mapping •t (preset) from P to N, a mapping
t• (postset), and by a set of reset arcs t↓⊆ P . A configuration is a marking m .
Transition t is enabled at marking m iff •t(p) ≤ m(p) for each p ∈ P . Firing
t at m leads to a new marking m ′ defined as m’ (p) = m(p) −• t(p) + t•(p) if
p �∈ t ↓, and m’ (p) = 0 otherwise; we denote this marking transformation with
m �→ m’ . A marking m is reachable from m0 if m0 �→∗ m , i.e., it is possible
to produce m after firing finitely many times transitions in T . Given a reset net
〈P, T,m0〉 and a marking m , the coverability problem consists in checking for
the existence of a reachable marking m’ such that m ≤ m’ , i.e. m(p) ≤ m’ (p)
for every p ∈ P . In [17] it is proved that the coverability problem for reset nets
is Ackermann-hard.

The encoding of reset Petri nets into Aeolus presented in [4] relied on three
types of component types: Tp for modelling the tokens, Tt for the transitions,
and log(n) component types TCi

(for 1 ≤ i ≤ log(n)) for modeling the bits in a
binary counter used to count the tokens to be produced or consumed during the
simulation of a transition firing. Here n is the maximal number of tokens that
one transition can produce or consume. The proof technique requires that the
components for the transitions and the counter bits are unique and persistent.
This was ensured via a transformation that exploited conflicts but also multi-
ple state changes. This however, following the example of the ϕ transformation
defined in the previous section, can be obtained also without the use of multiple
state changes. The key idea to avoid a multiple state change is to create a mutual
dependency between pairs of components in two phases and use the conflicts to
ensure that only one component at a time can be present.

Figure 4 depicts the transformation η that guarantees persistence and forbids
the presence of two distinct instances of the same component. This is obtained
by requiring that all the states except the initial ones activate contemporane-
ously a require and a conflict port on the same interface (in the two component
types in the Figure we use the fresh interfaces e and f , respectively). The inter-
dependencies among the two component types are similar to those used in the ϕ
transformation to guarantee persistency. The unique difference is that no capac-
ity constraint is considered; indeed, this is no longer needed because, thanks to
the simultaneous requirement and conflict on the interfaces e and f , and the
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Fig. 4. Component type transformation η.

freshness of the ports a and b, a configuration has at most one a and one b
provide port active.

Note that the size of η(T ) is polynomial w.r.t. the size of T because we are
just introducing a new component type Taux of constant size and we modify T
by adding three new states and three ports.

We can now conclude the new version of the Ackermann-hardness result for
the fragment of Aeolus without capacity constraints and multiple state changes.

Theorem 2. The achievability problem is Ackermann-hard for the fragment of
the Aeolus component model that does not support capacity constraints and mul-
tiple state changes.

Proof. The proof follows the same technique as the one used in [4] with the
difference that now the encoding of the Petri net RN = (P, T,m0) is ΓRN =
{Tp | p ∈ P}∪{η(TCi

) | i ∈ [1..�log(n)�]}∪{η(TT )} where n is the largest number
of tokens that can be consumed or produced by a transition in T and η is the
transformation depicted in Fig. 4. ��

5 Poly-time Without Conflicts and Multiple State
Changes

In [12] it was proven that the achievability problem is poly-time considering the
fragment of Aeolus where no capacity constraint, no multiple state changes, and
no conflicts can be used.

This was done by means of an algorithm that builds a reachability graph
used to check whether a given target component-state pair may be obtained.
As detailed in Algorithm 1, the nodes of the reachability graph are organized in
layers Nodes0, Nodes1, · · · , Nodesn that are generated in subsequent phases.
Initially, Nodes0 contains all the pairs 〈T , T .init〉 corresponding to the initial
states. Given Nodesj , Nodesj+1 is generated by copying the pairs already avail-
able in Nodesj and by adding those new pairs that can be reached by transitions
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from states in Nodesj , assuming the availability in the context of components
of type and state 〈T , q〉 already in Nodesj . The reachability analysis terminates
since there is a finite number of possible component type-state pairs.

Luckily, the same reachability technique can be used to decide achievability
also when capacity constraints can be used. Indeed, we prove that at each layer
Nodesj a sufficient number of components can be created to satisfy all the
constraints that will be activated by the new components at layer Nodesj+1.
The reachability algorithm is therefore correct also in the presence of capacity
constraints.

Algorithm 1. reachabilityAnalysis()

1: Nodes0 = {〈T , T .init〉 | T ∈ U}; provPort =
⋃

〈T ,q〉∈Nodes0
{T .P(q)}; n = 0

2: repeat
3: n = n + 1
4: Arcsn = ∅; Nodesn = ∅
5: for all 〈T , q〉 ∈ Nodesn−1 do
6: for all (q, q′) ∈ T .trans do
7: if T .R(q′) ⊆ provPort then
8: Nodesn .add(〈T , q′〉)
9: for all 〈T , q〉 ∈ Nodesn do

10: provPort .add(T .P(q))

11: Nodesn = Nodesn−1 ∪ Nodesn
12: for all 〈T , q〉 ∈ Nodesn−1, 〈T , q′〉 ∈ Nodesn do
13: if (q, q′) ∈ T .trans then
14: Arcsn.add(〈T , q′〉 −→ 〈T , q〉)
15: if q == q′ then
16: Arcsn.add(〈T , q′〉 〈T , q〉)
17: until Nodesn−1 == Nodesn

Lemma 2. Given a universe of components U , a component type Ttarget, and
a state qtarget, we have that 〈T , q〉 belongs to the reachability graph computed by
Algorithm 1 if and only if there exists a deployment plan that deploys at least
one component of type T in state q.

Proof. We first consider the only if part. We prove that given h〈T ,q〉 > 0 for
every 〈T , q〉 ∈ Nodesn, and given hp > 0 for every provide port p activated
by the component type-state pairs 〈T , q〉 ∈ Nodesn, there exists a deployment
plan from an empty configuration to a configuration containing at least h〈T ,q〉
components of type T in state q, in which at least hp provide ports with inter-
face p have no incoming bindings (thus they are available to satisfy additional
complementary require port with interface p). We proceed by induction on n.

The base case holds because Nodes0 contains all the pairs with just initial
states (Line 1) and components could always be created in their initial state
because they have no requirements by definition.
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In the inductive case we have that for every pair 〈T , q〉 ∈ Nodesi+1 \Nodesi

there exists a pair 〈T , q′〉 ∈ Nodesi where q′ is a predecessor of q (Lines 5–8 of
Algorithm 1). Moreover, for every require port r activated by the components
of type-state 〈T , q〉 ∈ Nodesi+1 \ Nodesi there exists a pair 〈T ′′, q′′〉 ∈ Nodesi

that activates a provide port r (Line 7).
By inductive hypothesis it is possible to obtain a configuration such that:

1. for every 〈T , q′〉 ∈ Nodesi it has at least

h〈T ,q′〉 +
∑

〈T ,q〉∈Nodesi+1\Nodesi

(h〈T ,q〉 + maxp)

components of type T in state q′. By maxp we mean the maximal value
among all the hp;

2. for every provide port p activated by a component type-state pair 〈T ′′, q′′〉 ∈
Nodesi in Nodesi there are at least

hp + (maxRequirep + 1) ×
∑

〈T ,q〉∈Nodesi+1\Nodesi

(h〈T ,q〉 + maxp)

active provide port p that have no incoming binding. By maxRequirep we
mean the maximal number of provide ports with interface p that are necessary
to satisfy the requirements of one component instances of any possible type,
in any possible state.

Thanks to point 1, starting from this configuration it is possible to perform for
every pair 〈T , q〉 of Nodesi+1 \ Nodesi exactly h〈T ,q〉 + maxp(hp) state changes
to obtain components of type T in state q. Indeed, point 2 guarantees there
are enough free provide ports to satisfy the requirements of these components.
Moreover, if the new state q activates new provide ports that were inactive in
the previous state, we have the guarantee that it is possible to unbind these
ports so that these components will have no incoming binding. Hence, for these
interfaces p we will have at least hp free provide ports.

Concerning pairs 〈T ′′, q′′〉 ∈ Nodesi+1∩Nodesi, thanks to point 1 the reached
configuration will contain at least h〈T ′′,q′′〉 instances of type T ′′ in state q′′. By
point 2, we also have the guarantee that for provide ports p activated by these
pairs 〈T ′′, q′′〉 at least hp instances remain free in the new configuration. In fact,
some of them (at most maxRequirep ×

∑
〈T ,q〉∈Nodesi+1\Nodesi

(h〈T ,q〉 + maxp))
will be used to satisfy the requirements of the new component type-state pairs,
and some other (at most

∑
〈T ,q〉∈Nodesi+1\Nodesi

(h〈T ,q〉 + maxp)) could become
inactive due to a state change.

We now move to the if part. We proceed by contradiction. Let us suppose
the existence of a deployment plan 〈U, ∅, ∅, ∅〉 α1−→ C1

α2−→ . . .
αm−−→ Cm such that

Cm contains a component of type T in state q while 〈T , q〉 is not present in the
reachability graph. It is not restrictive to assume that Cm is the first configuration
of the plan having such property (i.e., all the pairs 〈T ′, q′〉 of the components in
C1, · · · , Cm−1 are present in the reachability graph).
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Obviously q cannot be an initial state of T since all the component types
with their initial states are added in Nodes0 (Line 1). Therefore we have that

the last transition of the plan is Cm−1
stateChange(i,s,q)−−−−−−−−−−−−→ Cm. This action can be

executed only if all the require ports activated by q are fulfilled by components in
Cm−1. For the previous assumption, we have that 〈T , s〉, as well as all the pairs
〈T ′, q′〉 of types and states of components in Cm−1, are part of the computed
reachability graph. Let Nodesj be the first layer containing all such pairs: by
construction (Lines 5–8) we will have that 〈T , q〉 ∈ Nodesj+1, thus contradicting
the hypothesis. ��

As a consequence of Lemma 2 we have the following result.

Theorem 3. The achievability problem is poly-time for the fragment of the Aeo-
lus component model that does not support multiple state changes and conflicts.

The proof immediately follows from Lemma2 and the fact that Algorithm 1
is poly-time [12].

6 Conclusions

To the best of our knowledge Aeolus is the first formal model that is designed
on purpose to address the specific problem of software component deployment
in the cloud. It was first introduced in [8]. Differently from the definition of
the language presented here, in [8] an additional kind of requirements—called
weak requirements—was present. Differently from the requirements presented in
this paper (formerly known as strong requirements) that needs to be enforced
at every deployment step, weak requirements must be satisfied only at the end
of a deployment run. The notion of weak requirement was removed from the
model because we found out that their behavior could be simulated with normal
requirements. In this paper we proved that also the notion of multiple state
change can be removed because from the complexity point of view it does not
have an impact. It is interesting to point out that this new foundational result
reflects a recent technic adopted in the context of deployment tools for package-
based software distributions [1] that replaces synchronous installation of circular
dependent packages with multi-stage configuration protocol.

In this work we have considered the deployment of an application from
scratch. If we assume the initial configuration is not empty, we move to a so-
called reconfiguration problem. It is interesting to observe that this problem is
harder than the achievability problem for the fragment without multiple state
change and conflicts for which we prove in this paper that achievability is poly-
time. In fact, in [13] we have recently proved that reconfiguration is PSpace
complete already for the fragment without multiple state change, conflicts and
capacity constraints.
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Abstract. Testing of systems naturally has a non-deterministic
character: on the one hand, internal decisions of the system under test
appear as non-determinism to an observer; on the other hand, the system
under test inevitably receives inputs from the environment that are not
controlled by the tester. To model both aspects, we investigate a proba-
bilistic testing framework in which non-deterministic labelled transition
systems are examined through execution of finite, probabilistic test-cases.
We show that the simulation preorder on labelled transition systems can
be tested probabilistically, elegantly recapturing the notion of confor-
mance testing in this setting.

1 Introduction

For us, Frank is not only a great friend, but also a great scientist and a great
leader. His contributions in many areas have been a source for inspiration in our
work. His leadership has been a driving force in many large successful collaborat-
ing projects in Europe. Thank you Frank! Congratulations for the first successful
60 years; we look forward to working with you in the coming 60 years! The work
presented in this paper was initiated many years ago when Frank was also a
participant in a venue discussing research issues on concurrency and testing.

To study probabilistic phenomena such as randomisation and failure rates in
distributed computing, significant research effort has been put into the exten-
sion of models and methods that have proven successful for non-probabilistic
systems to the probabilistic setting. In the non-probabilistic setting, transition
systems are well-established as a basic semantic model for sequential, concurrent,
and distributed systems. This model has been extended in the literature to the
probabilistic case by adding a mechanism for representing probabilistic choice.

In the work presented in this paper, we consider the specific combination
of classical, non-probabilistic systems, examined with the help of probabilistic
tests. More specifically, we consider tests as finite labelled transition systems
that might contain both probabilistic and non-deterministic choice. As the main
result, we show that the (non-probabilistic) simulation preorder can be tested by
comparing the likelihood that probabilistic tests succeed. Probability, in this set-
ting, is mainly used as a vehicle to examine the branching structure of processes,
since probabilistic choice has the effect of copying and duplicating intermediate

c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 360–372, 2016.
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states of processes, in such a way that each copy can be examined separately.
This concept has been exploited in a number of previous research results, includ-
ing [1,2].

We outline how this theoretic result can practically be exploited in the con-
text of conformance testing, where the relationship of a concrete implementation
with an abstract behavioural specification is checked.

1.1 Related Work

Characterization of Bisimulation by Probabilistic Testing. Abramsky presented
the first work in the 80s [1] to characterize bisimulation relations using proba-
bilistic testing, which is the original motivation of this work. The essential idea
of Abramsky is to utilize the “copying capability” in probability testing to char-
acterize equivalence relations. In this work, we show that the copying feature can
also be used to characterize simulation relation, which is a preorder. A relevant
work along this line is [2], where we have shown that testing preorders can be
characterized by simulation relations over probabilistic systems. The difference
is that here we have probabilistic tests and the systems under test exhibit only
non-deterministic behavior.

Statistical Model Checking. An area related to probabilistic testing is statistical
model checking, which has been proposed as an alternative to exhaustive model
checking for analyzing stochastic (e.g., timed or hybrid) systems [3,6]. In sta-
tistical model checking, the behavior of a system is simulated, thus obtaining
a sample of possible system executions; afterwards, hypothesis testing is used
to check whether the sample represents sufficient statistical evidence that some
specification is satisfied or violated. In contrast to exhaustive methods, statisti-
cal model checking does not provide guarantees, but makes it possible to bound
the likelihood of wrong answers. At the same time, runtime and memory con-
sumption of statistical model checking can be drastically smaller than that of
exhaustive techniques.

The results presented in this paper differ from statistical model checking
methods in two important points: in our setting, it is the tests that are assumed
to be probabilistic, whereas systems under test only exhibit non-deterministic
behavior (in Sect. 3 and later); the situation in statistical model checking is the
opposite. Second, we consider how testing is used to derive simulation relation
between two systems, rather than checking that a system conforms to some
independently defined property.

2 Preliminaries

We consider a model of probabilistic transition systems, containing probabilistic
and non-deterministic choices as independent concepts. Processes, in most parts
of the paper, are transition systems only containing non-deterministic choices,
i.e., there is no probabilistic behaviour. In contrast, tests are defined as transition
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systems that can contain both non-deterministic and probabilistic behaviour,
more precisely as finite trees in which certain states are “accepting.” As we will
see, in this setting it is possible to give an exceptionally simple and elegant
characterisation of simulation in terms of tests.

Most of the definitions follow the lines of [2].

2.1 Basic Concepts

A weighting on a set S is a function σ : S → R≥0 from S to nonnegative real
numbers. For a set S, we use σ(S) to denote

∑
s∈S σ(s). A probability distribution

on a finite set S is a weighting σ on S such that σ(S) = 1. A sub-distribution on
a finite set S is a weighting σ on S such that σ(S) ≤ 1. We use s ∈ σ to denote
that σ(s) > 0. The support Supp(σ) of a weighting σ is the set of elements s
with s ∈ σ. A distribution whose support is a singleton set is called a determin-
istic distribution. Let Weight(S) and Dist(S) denote the sets of weightings and
probability distributions on S, respectively. We will sometimes identify a single
state s with the deterministic distribution that assigns probability 1 to s.

If σ is a weighting on S and ρ is a weighting on R, then σ × ρ is a weighting
on S × R, defined by (σ × ρ)(〈s, r〉) = σ(s) ∗ ρ(r). If σ is a weighting on S and
h : S → R is a function from S to R, then h(σ) is a weighting on R, defined by
h(σ)(r) =

∑
h(s)=r σ(s). If σ and ρ are weightings on S, then σ ≤ ρ denotes that

σ(s) ≤ ρ(s) for all s ∈ S.

2.2 Probabilistic Transition Systems

We assume a finite set Act of atomic actions, ranged over by a and b.

Definition 1. A (probabilistic) transition system is a pair 〈S,−→〉, where

– S is a non-empty finite set of states, and
– −→ ⊆ S × Act × Dist(S) is a finite transition relation.

We use s
a−→ σ to denote that 〈s, a, σ〉 ∈ −→.

A (probabilistic) process is a tuple 〈〈S,−→〉, σ0〉, where 〈S,−→〉 is a proba-
bilistic transition system, and σ0 ∈ Dist(S) is an initial probability distribution
on S.

We write s
a−→ to denote that there is a σ such that s

a−→ σ, and say that
a state s is terminal (written s 	−→) if there is no a and σ such that s

a−→ σ. By
slight abuse of notation, we write s

a−→ s′ if s
a−→ σ such that s′ ∈ σ. A finite

tree is a process 〈〈S,−→〉, σ0〉 such that every state s′ ∈ S can be reached by
exactly one path s0

a1−→ s1
a2−→ · · · an−→ sn = s′ with s0 ∈ σ0.

Each state of a probabilistic transition system has a potential for future
dynamic behavior. When an action is performed, the system makes a probabilis-
tic “choice” of next state. Thus, at each point in time, a snapshot of the system
state will be a distribution over possible states.



Characterization of Simulation by Probabilistic Testing 363

2.3 Probabilistic Testing

To study testing, we define a synchronous parallel composition operator for
probabilistic transition systems, in which two processes P and Q execute in
parallel while synchronizing on all actions in Act.

Definition 2. Let 〈S,−→〉 and 〈R,−→〉 be two transition systems. Their com-
position, denoted by the expression 〈S,−→〉‖〈R,−→〉, is the transition system
〈U,−→〉 where

– U = S × R. A pair (s, r) ∈ U is denoted s‖r.
– −→ ⊆ U × Act × Dist(U) is defined by

s‖r
a−→ σ × ρ iff s

a−→ σ and r
a−→ ρ

The composition of two processes P = 〈〈S,−→〉, σ0〉 and Q = 〈〈R,−→〉, ρ0〉,
denoted P‖Q, is the process 〈〈S,−→〉‖〈R,−→〉, σ0 × ρ0〉.

Following Wang and Larsen [5], we define tests as finite trees with a certain
subset of the terminal states being “accepting states.”

Definition 3. A (probabilistic) test is a tuple 〈〈〈T,−→〉, τ0〉, F 〉 in which the
process 〈〈T,−→〉, τ0〉 is a finite tree, and F ⊆ T is a set of success states, each
of which is terminal.

A test T is applied to a process P by putting the process P in parallel with
the test T and measuring the likelihood of reaching a success state.

We define a testing system as the parallel composition of a process and a
test.

Definition 4. Let P = 〈〈S,−→〉, σ0〉 be a process and T = 〈〈〈T,−→〉, τ0〉, F 〉
be a test. The composition of P and T , denoted P‖T , is called a testing system,
defined as the process 〈〈S,−→〉, σ0〉‖〈〈T,−→〉, τ0〉 with success states S × F .

Our intention is that a testing system defines a probability of reaching a
success state. However, since from each state there may be several outgoing
transitions, such a probability is not uniquely defined. We will be interested in
the maximal probabilities of success. These can be defined inductively on the
structure of the testing system.

Definition 5. Let P‖T be a testing system, with a process P = 〈〈S,−→〉, σ0〉
and test T = 〈〈〈T,−→〉, τ0〉, F 〉. For each state s‖t of P‖T we define its maximal
probability of sucess, denoted t�s� inductively by

– If s‖t is terminal, then t�s� = 1 if t is a success state, else t�s� = 0.
– If s‖t is not terminal, then

t�s� = max
s‖t

a−→ σ × τ

⎛

⎝
∑

s′‖t′
(σ × τ)(s′‖t′) ∗ t′�s′�

⎞

⎠
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For a distribution σ on S and a distribution τ on T , we define

τ�σ� =
∑

s‖t

(σ × τ)(s‖t) ∗ t�s�

We define T �P� = σ0�τ0�.
We note that, using the definition of τ�σ�, we simplify the definition of t�s� to

t�s� = max
s‖t

a−→ σ × τ
τ�σ�

We now define a may-preorder of testing, which abstracts from the set of possible
expected outcomes when testing a process P by a test T : may-testing considers
the highest possible expected outcome of P‖T .

Definition 6. Given two processes P and Q, define

P 
t Q iff ∀T : T �P� ≤ T �Q�
The intention behind the definition of 
t is that intuitively, P 
t Q should
mean that P refines Q with respect to “safety properties.” The motivation is
the following. We can regard the success states of a test as states defining when
the tester has observed some “bad” or “unacceptable” behavior. A process then
refines another one if it has a smaller potential for “bad behavior” with respect
to any test. In the definition of P 
t Q, this means that the maximal probability
of observing bad behavior of P should not exceed the maximal probability of
observing bad behavior of Q.

Example 7. Consider the following processes P and Q. The dashed arrows show
the initial distribution of the processes, the straight arrows the (deterministic)
transitions of the processes.

The probability that P may pass a test is always less or equal to the prob-
ability Q may pass the same test; therefore P 
t Q. To see this, consider the
sub-systems A1,A2,A3:
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Clearly, for any test T it is the case that T �A1� ≤ T �A3� and T �A2� ≤
T �A3�. This implies that

T �P� = 0.3 · T �A1� + 0.7 · T �A2� ≤ 0.2 · T �A1� + 0.8 · T �A3� = T �Q�.

3 Characterization of Simulation by Probabilistic Testing

In the following, we restrict our attention to non-probabilistic processes, but
consider the analysis of such processes with the help of probabilistic tests. We
call a process 〈〈S,−→〉, σ0〉 non-probabilistic if σ0 is a deterministic distribution,
and if, likewise, σ is deterministic for every 〈s, a, σ〉 ∈ −→. The main result of
this section is the relationship between the may-preorder for non-probabilistic
processes, established through execution of probabilistic tests, and the classical
notion of simulation [4]:

Definition 8 (Simulation). Let 〈S,−→〉 and 〈R,−→〉 be two non-probabilistic
transition systems. A simulation relation between 〈S,−→〉 and 〈R,−→〉 is a
binary relation W ⊆ S×R such that, whenever (s, r) ∈ W and s

a−→ s′, there is a
state r′ ∈ R with r

a−→ r′ and (s′, r′) ∈ W . We say that a process 〈〈S,−→〉, s0〉
simulates a process 〈〈R,−→〉, r0〉, denoted by 〈〈S,−→〉, s0〉 � 〈〈R,−→〉, r0〉, if
there is a simulation relation W between 〈S,−→〉 and 〈R,−→〉 with (s0, r0) ∈ W .

Lemma 9. The relation s � r ≡ 〈〈S,−→〉, s〉 � 〈〈R,−→〉, r〉 is the greatest
simulation relation between the non-probabilistic transition systems 〈S,−→〉 and
〈R,−→〉.

The simulation preorder is instrumental in various contexts, in particular (as
discussed in the later sections of this paper) for checking the conformance of
systems with behavioural specifications.

We are now able to give the main theorem of this section (and the paper),
relating the may-preorder of testing with the classical simulation preorder. The
result shows that the simulation preorder of non-probabilistic processes can be
tested in a probabilistic setting, by considering tests possibly containing proba-
bilistic choices.

Theorem 10 (Testability of simulation). Suppose P,Q are non-
probabilistic processes. Then the following equivalence holds:

P 
t Q iff P � Q

For proving this theorem, we first need a number of intermediate results. We can
first observe that every testing system gives rise to a finite set of resolutions, in
which every state has an out-degree of at most one:
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3.1 Linear Resolutions of Processes

Definition 11 (Linearity). A finite tree 〈〈S,−→〉, σ0〉 is called linear if σ0 =
s0 is deterministic and every state has at most one outgoing transition:

for each s ∈ S : s
a−→ σ and s

a′
−→ σ′ imply a = a′ and σ = σ′.

A linear resolution of a finite tree P = 〈〈S,−→〉, σ0〉 is a maximum linear sub-
tree 〈〈S′,−→′〉, σ0〉 of P, i.e., a linear tree consisting of maximum subsets of
states S′ ⊆ S and transitions −→′ ⊆ −→ of P. The set of resolutions of a tree P
is denoted by Res(P).

The notion of linear resolutions naturally extends to finite acyclic processes,
i.e., to processes in which the length of paths s0

a1−→ s1
a2−→ · · · an−→ sn is

bounded. Note that, by definition of a tree, the resolution 〈〈S′,−→′〉, σ0〉 is closed
under transitions: Supp(σ0) ⊆ S′ and Supp(σ) ⊆ S for each 〈s, a, σ〉 ∈ −→′.
Maximality implies that a resolution does not have more terminal states than
the original tree, i.e., s 	−→′ implies s 	−→ for any s ∈ S′.

Intuitively, if a state of a process has two outgoing transitions s
a−→ σ and

s
a′

−→ σ′, any linear resolution of the process will contain at most one of the
transitions, and remove the other one; if s is a state that is kept in the resolution,
exactly one of the transitions will be kept. In the case of a finite non-probabilistic
tree, resolutions correspond to maximum paths starting in the root of the tree.

Example 12. The following diagrams illustrates a linear resolution of a finite
tree T . The resolution is drawn bold:

Note that probabilistic choices are kept in a resolution, so that linear resolu-
tions do not necessarily form simple chains of transitions.

The notion of a resolution leads to a more explicit characterisation of the
maximum success probability of running a test:

Lemma 13. Let P‖T be a testing system, composed of process P = 〈〈S,−→〉, σ0〉
and the test T = 〈〈〈T,−→〉, τ0〉, F 〉. Then

T �P� = max
R∈Res(P‖T )

P (R)
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where the success probability P (R) = PR(σ0×τ0) of a test system resolution R ∈
Res(P‖T ) is recursively defined by:

PR(σ × τ) =
∑

s‖t

(σ × τ)(s‖t) ∗ PR(s‖t)

PR(s‖t) =

⎧
⎪⎨

⎪⎩

1 if t ∈ F is a success state
0 if s‖t 	−→ is a terminal state with t 	∈ F

PR(σ × τ) if s‖t
a−→ σ × τ (in the resolution R)

3.2 Necessary and Sufficient Conditions for the May-Preorder

It is unnecessary to consider the set of all tests for checking the may-preorder;
rather, we can give necessary and sufficient conditions for the preorder by check-
ing whether tests are guaranteed to succeed or not. These criteria will be helpful
in proving the main Theorem 10 of the section:

Lemma 14. For non-probabilistic processes P,Q:

P 
t Q iff ∀T :
(
T �P� = 1 =⇒ T �Q� = 1

)

Proof. “=⇒” By definition, P 
t Q means ∀T : T �P� ≤ T �Q�, which implies
the right-hand side of the equivalence.

“⇐=” Proving by contradiction, we assume ∀T :
(
T �P� = 1 =⇒ T �Q� = 1

)
,

but P 	
t Q, the latter of which implies that there is a test T = 〈〈〈T,−→〉, τ0〉, F 〉
such that T �P� > T �Q�. According to Lemma 13, we can assume that T �P� is
realised by the resolution R = 〈〈SR,−→R〉, σR〉 ∈ Res(P‖T ), which means that
the success probability of R is P (R) = T �P�.

We define a new test T ′ = 〈〈〈T ′,−→′〉, τ0〉, F ′〉, in such a way that T ′�P� = 1:

– T ′ = {t ∈ T | ∃s : s‖t ∈ SR} is the set of test states reachable in R;
– −→′ = {(t, a, τ) ∈ −→ | ∃(s, a, σ) : (s‖t, a, σ × τ) ∈−→R} is the reduct of −→

to transitions in R;
– F ′ = {t ∈ T ′ | ∃s : s‖t 	−→R} are those test states that occur as final states in R.

To see that T ′�P� = 1, observe that R also is a resolution of P‖T ′; all terminal
states of this resolution are success states.

Due to the assumption that ∀T :
(
T �P� = 1 =⇒ T �Q� = 1

)
, this implies

T ′�Q� = 1; in other words, also Q‖T ′ has a resolution R′ in which all terminal
states are success states. This means, in particular, that all success states of T
reached in R are also reached in R′, because otherwise R′ would contain paths
not leading to success. But then also the test system Q‖T has a resolution R′′

containing at least all success states reached in R, which implies P (R′′) ≥ P (R)
and contradicts the assumption T �P� > T �Q�. ��
Similarly, it would be sufficient to consider tests with success probability 0 to
characterise the may-preorder:

Lemma 15. For non-probabilistic processes P,Q:

P 
t Q iff ∀T :
(
T �Q� = 0 =⇒ T �P� = 0

)
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3.3 The May-Preorder as Simulation

We prove the two directions of Theorem10 separately. The more intricate proof
concerns the observation that the may-preorder is a subset of the simulation
preorder, which can be shown by induction over processes:

Lemma 16. If P = 〈〈S,−→〉, s0〉 and Q = 〈〈R,−→〉, r0〉 are non-probabilistic
processes, then:

P 
t Q implies P � Q

Proof. We conduct a proof by contradiction, showing that P � Q implies P 	
t

Q. Since � can be defined as a least fixed-point, we can prove the implication
by means of induction over processes P,Q not in simulation relation.

Assume P � Q. Since � is the greatest simulation relation, this means that
there is a transition s0

a−→ s′, but for all a-transitions r0
a−→ r1, . . . , r0

a−→ rn

of Q we have P ′ = 〈〈S,−→〉, s′〉 � 〈〈R,−→〉, ri〉 = Qi (for i ∈ {1, . . . , n}).
Together with the induction hypothesis and Lemma14, this implies that there
are tests T1, . . . , Tn such that Ti�P ′� = 1, but Ti�Qi� < 1 for all i ∈ {1, . . . , n}.

We construct a new test T , in such a way that T �P� = 1, but T �Q� < 1.
By Lemma 14, this implies P 	
t Q.

We assume Ti = 〈〈〈Ti,−→i〉, τi〉, Fi〉, and, without loss of generality, that the
sets (Ti)n

i=1 are pairwise disjoint. The test T = 〈〈〈T,−→〉, t0〉, F 〉 is defined by:

– T = {t0}∪
⋃n

i=1 Ti, where t0 is a fresh state not occurring in any of the sets Ti;
– −→ = {(t0, a, τa)} ∪

( ⋃n
i=1 −→i

)
, with τa being the distribution

τa(t) =

{
τi(t)/n if t = ti

0 otherwise;

– F =
⋃n

i=1 Fi.

We then have T �P� = 1, since Ti�P ′� = 1 for all i ∈ {1, . . . , n}:

T �P� = t0�s0� = max
s0‖t0

b−→σ×τ

τ�σ�

≥ τa�s′� =
n∑

i=1

τi�s′�
n

=
n∑

i=1

Ti�P ′�
n

=
n∑

i=1

1
n

= 1

Similarly, we can observe that T �Q� < 1:

T �Q� = t0�r0� = max
r0‖t0

b−→σ×τ

τ�σ�

= max
i∈{1,...,n}

τa�ri� = max
i∈{1,...,n}

n∑

j=1

τj�ri�
n

(∗)
< 1

At (∗), we make use of the fact that τj�ri� ≤ 1 for all i, j ∈ {1, . . . , n}, but in
particular τi�ri� = Ti�Qi� < 1 for i ∈ {1, . . . , n}. ��



Characterization of Simulation by Probabilistic Testing 369

The proof for the other direction of Theorem10 proceeds by induction over tests:

Lemma 17. If P = 〈〈S,−→〉, s0〉 and Q = 〈〈R,−→〉, r0〉 are non-probabilistic
processes, then:

∀T :
(
P � Q implies T �P� ≤ T �Q�

)

Proof. We prove the lemma by induction over tests T = 〈〈〈T,−→〉, τ0〉, F 〉.
Suppose ti

ai−→ τi are all transitions outgoing from initial states ti ∈ τ0, for
i ∈ {1, . . . , n}. For each t ∈ T \Supp(τ0), we can identify a sub-test Tt of T that
has t as root.

Assuming P � Q, the transitions outgoing from s0 are s0
bj−→ sj (for

j ∈ {1, . . . , m}), and the transitions outgoing from r0 are r0
cl−→ rl (for l ∈

{1, . . . , k}). Due to P � Q, we know that for every j ∈ {1, . . . , m} there is a
lj ∈ {1, . . . , k} such that bj = clj and 〈〈S,−→〉, sj〉 � 〈〈R,−→〉, rlj 〉. By the
induction hypothesis, it follows that t�sj� ≤ t�rlj� for all t ∈ T \Supp(τ0). From
this we can derive T �P� ≤ T �Q�:

T �P� = τ0�s0� =
∑

t0

τ0(t0) × t0�s0�
(∗)
≤

∑

t0

τ0(t0) × t0�r0� = T �Q�

At (∗), we use the following sub-derivation, for a state t0 ∈ τ0:

t0�s0� = max
s0‖t0

a−→σ×τ

τ�σ� = max
i,j

ti=t0
ai=bj

τi�sj� = max
i,j

ti=t0
ai=bj

∑

t

τi(t) ∗ t�sj�

≤ max
i,j

ti=t0
ai=bj

∑

t

τi(t) ∗ t�rlj� = max
i,j

ti=t0
ai=bj

τi�rlj� ≤ max
i,l

ti=t0
ai=cl

τi�rl� = t0�r0�

This concludes the proof. ��

Lemmas 16 and 17 together imply Theorem 10.

3.4 Linear Tests

Up to this point, we have considered tests as arbitrary finite trees that can,
in particular, exhibit non-deterministic behaviour (transitions t

a−→ t1 and
t

a−→ t2) or have states in which multiple actions are offered to the system under
test (transitions t

a1−→ t1 and t
a2−→ t2). From the perspective of practical test-

ing, both properties are somewhat unusual and can be difficult to implement. We
show in this section that such a rich language of tests is in fact unnecessary, our
main results (in particular Theorem 10) also hold if only linear tests (following
Definition 11) are considered.
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Definition 18. Given two processes P and Q, we define the linear may-
preorder by:

P 
l
t Q iff ∀T :

(
T is linear =⇒ T �P� ≤ T �Q�

)

Lemma 19. For non-probabilistic processes P,Q, the linear may-preorder coin-
cides with the may-preorder:

P 
t Q iff P 
l
t Q

Proof. “=⇒” Holds since every linear test is a test.
“⇐=” There are different ways to prove the implication; importantly, it can

be observed that the proof of Lemma16 only requires linear tests to be con-
structed, from which the implication follows.

We give an independent proof by contradiction as well. Assume P 
l
t Q, but

P 	
t Q. By Lemma 14, this means that there is a test T such that T �P� = 1, but
T �Q� < 1. Since T �P� = 1, by Lemma 13 there is a resolution R ∈ Res(P‖T )
with P (R) = 1. In the same way as in the proof of Lemma 14, it is possible
to derive a new, linear test T ′ from R with T ′�P� = 1; in fact, T ′ is a linear
resolution of T .

From the assumption P 
l
t Q, it follows that T ′�Q� = 1. However,

Res(Q‖T ′) ⊆ Res(Q‖T ), which (by Lemma 13) implies T �Q� = 1, contradicting
the assumption P 	
t Q. ��

Using Lemma 19 and Theorem 10, we can derive a stronger form of our main
theorem:

Theorem 20 (Linear testability of simulation). For non-probabilistic
processes P,Q, the following equivalence holds:

P 
l
t Q iff P � Q

4 Probabilistic Conformance Testing

Conformance testing is concerned with checking that a system (or a piece of
software) behaves correctly with respect to a given specification or standard.
Many well-known applications of testing, for instance the verification of partial
functional properties, can be considered as a part of conformance testing. Since
conformance can pertain to safety- and security-critical aspects, as well as to
contractual commitments, it is of great practical importance when developing
systems.

A common setup for conformance testing is that of black-box testing, which
means that implementation details of the system under test (SUT) are not taken
into account during the testing process. In this scenario, the SUT is executed
for a finite (but large) set of concrete test inputs, observing the responses of the
system, in order to answer (with high confidence) the question whether the SUT
conforms with a given specification.
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We discuss how probabilistic testing of simulation relations, developed in the
last sections, can be used to formally capture this kind of testing. There are
typically a number of sources of non-determinism that have to be considered:

– the SUT might appear to behave non-deterministically, due to internal mech-
anisms (like a scheduler) that are not visible to the environment;

– the specification can be non-deterministic, in order to describe a whole set of
scenarios of system execution, and in order to allow some degree of freedom
in the behavior of the SUT;

– the set of considered concrete tests can be generated randomly, according to
some chosen distributions, and depending on the responses given by the SUT.

Example 21. We consider the following, simplistic model Q1 of a server com-
municating with its environment using the messages Msg (sent to the server)
and Ack (sent by the server). We adopt a discrete model of time and assume the
presence of a further action Tick , expressing that one unit of time has passed. In
the initial state Q1, the server is expected to remain silent until it has received
Msg ; then, after at most two Ticks, the server is supposed to respond with an
Ack , returning to the state Q1:

As a specification of an actual implementation P of such a server, it could
be required that P simulates the model Q1, i.e., P � Q1. Note that this kind of
specification is able to capture very intricate behavioral properties related to the
branching structure of a system. For instance, the model Q2 mostly coincides
with Q1, but is stronger since it requires the server to decide about the delay
before sending Ack at an earlier point (Q2�Q1, but Q1 � Q2). Also, note that we
disregard probabilistic aspects both of the implementation and the specification;
while either might behave non-deterministically, we do not specify or check the
distribution of behavior. ��

4.1 Random Testing of Simulation Relations

A methodology for testing whether a SUT simulates a process (given as specifi-
cation) can be as follows:

1. A number of linear, non-probabilistic tests is generated, and for each of
the tests it is checked whether the SUT P passes the test (considering
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the unique terminal state of the test as success state). This yields a mul-
tiset O ⊆ Act∗ × B, recording both the sequences of input/output actions,
and the test outcomes. The number of tests in O with positive outcome deter-
mines the overall success rate sP of the SUT.

2. The set O is summarized as a single linear test T , using the distribution of
tests in O to synthesize probabilities.

3. The measured success rate sP is compared with the maximum success prob-
ability T �Q� predicted by the specification. Since sP can be considered as
a lower bound of the precise maximum success probability T �P� (for a suf-
ficiently large number of tests), a result sP > T �Q� is an indication for
T �P� > T �Q�, and by Theorem10 for P � Q.

5 Conclusions

We have shown that the simulation relation between non-probabilistic processes
can be characterised through probabilistic testing, and outlined how this result
might be useful for the purpose of conformance testing on non-deterministic
processes. It is planned to study this latter application on more detail, and
evaluate how tools for property-based random testing can be used to implement
the conformance testing approach in practice.
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Foreword

Frank is fun and frustration! This is what I told him 13 years ago and I still
can hold to it. He is full of positive energy, and he works hard, although he has
a rule: it’s stupid to work on a sunny day! Frank is always full of great ideas,
half of those I never understood! I listened to his Hoare logic presentation three
times, without much success. He is a fantastic leader. He has the reasoning mind
of a logician, and the wit of a philosopher, while he can understand Java like an
experienced programmer.

We started working on timed actors in 2006, and we had our first paper on
Timed Rebeca at the Nordic Workshop on Programming Theory in 2007. So, ten
years have passed ... but if we look at our relative age, then nothing has changed.
Congratulations Frank! For your 60th birthday! Wish you yet more success and
happiness for the next 60 years to come!

1 Introduction

Modeling is crucial, both in science and engineering. We build models to be
able to do analysis without having to deal with the details of a system’s imple-
mentation. Edward Lee [1] emphasizes on the difference between engineers and
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 373–392, 2016.
DOI: 10.1007/978-3-319-30734-3 25
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scientists when they build and use a model. Engineers build a model to explore
the design space and construct a system based on the model; and scientists build
a model of an existing system to be able to analyze it. So, engineers do their best
to build the system just like the model, and scientists do their best to build the
model similar to the existing system. No matter we use a model as an engineer or
a scientist, we need to have a faithful model in order to perform a valid analysis
and/or design exploration.

We may hear the following question, mostly in more theoretical communities:
“why yet another modeling language?” This question is usually asked if you
mainly focus on the expressibility of the modeling languages. But usability and
fidelity are also two crucial features of a modeling language, and their importance
is very well acknowledged from a more practical point of view. Models need to be
able to capture the characteristics of the system which affect the properties of our
interest (fidelity), and we need to be able to understand and build a model with
the least possible effort (usability). For example, object-oriented approaches were
introduced with the philosophy of reducing the semantic gap between the real
world problems and the models representing those problems; and their success
is undeniable. With the growing need for various software applications, and
fast changes in hardware and network infrastructures, the answer to the above
question is simple: because we are not there yet! And with “change” being the
only constant in our software world, we will possibly never be there!

The non-functional properties of different nature are becoming more crucial
in correctness of a software system, demanding for new models and/or extensions
of existing languages. Timing features are no more just performance concerns.
In many software systems, nowadays, timing features are part of correctness
properties. So, the so called non-functional properties are becoming first-class
characteristics of a system like the functional ones.

The modeling language Rebeca (Reactive Objects Language) [2,3], is an oper-
ational interpretation of the actor model [4,5] provided with formal semantics
and supported by model checking tools [6]. Rebeca is designed to be a usable
and analyzable modeling language to bridge the gap between software engineers
and formal method community. The application domain targeted by Rebeca
is where we have event-driven systems, with asynchronous message passing. In
Rebeca, we have non-blocking sends, no explicit receive, no shared variables, and
non-preemptive method execution.

In this paper, we will provide a brief overview on Time Rebeca [7,8], the
timed extension of Rebeca which is much praised by Frank de Boer. In the fol-
lowing sections, we will show how Floating Time Transition System is a natural
semantics for event-based actor languages based on the work of [9]. Then we
will have a short survey on state-based model checking of Timed Rebeca based
on [10,11]. Finally, we will conclude by showing how Timed Rebeca is used for
analysis and design exploration in real world case studies which were studied in
[12,13].
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2 Timed Rebeca

Timed Rebeca [7,8] is an extension of Rebeca [2,3] with time features for mod-
eling and verification of time-critical systems. These primitives are added to
Rebeca to address computation time, message delivery time, message expiration,
and period of occurrence of events. In a Timed Rebeca model, each actor has its
own local clock. The local clocks can be considered as synchronized distributed
clocks. Methods are still executed atomically like in Rebeca, however passing of
time while executing a method can be modeled. In addition, instead of having
a queue for the messages, there is a bag of messages where messages are stored
together with their time tags. The time tag of a message represents the time
that the message arrived in the bag and can be taken to be served. The model
is based on discrete events and discrete time.

Model ::= Class∗ Main

Main::= main { InstanceDcl∗ }
InstanceDcl ::= className rebecName(〈rebecName〉∗) : (〈literal〉∗);

Class::= reactiveclass className { KnownRebecs Vars MsgSrv∗ }
KnownRebecs::= knownrebecs { VarDcl∗ }

Vars::= statevars { VarDcl∗ }
VarDcl ::= type 〈v〉+;

MsgSrv ::= msgsrv methodName(〈type v〉∗) { Stmt∗ }
Stmt ::= v = e; | v =?(e, 〈e〉+); | Call; | if (e) { Stmt∗ }[else { Stmt∗ }] |

delay(t);

Call ::= rebecName.methodName(〈e〉∗) [after(t)] [deadline(t)]

Fig. 1. Abstract syntax of Timed Rebeca (from [9]). Angled brackets 〈...〉 are used as
meta parenthesis, superscript + for repetition at least once, superscript ∗ for repeti-
tion zero or more times, whereas using 〈...〉 with repetition denotes a comma separated
list. Brackets [...] indicates that the text within the brackets is optional. Identifiers
className, rebecName, methodName, v, literal, and type denote class name, rebec
name, method name, variable, literal, and type, respectively; and e denotes an (arith-
metic, boolean or nondetermistic choice) expression.

Two major semantics are considered for Timed Rebeca: Floating Time Tran-
sition System (FTTS) [9] which is a natural event-based semantics for actors, and
Timed Transition System (TTS) which is a standard state-based semantics for
timed models. In the FTTS semantics, in each state, the local time of each actor
can be different from the others, i.e., the execution of actors is not synchronized
over their local times. In the TTS semantics the local time of all actors is the
same. Note that when we talk about synchronized local clocks we are explaining
the concept of time in the model, while TTS semantics respects this synchrony,
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in FTTS we relax the time synchronization constraint. Comparing to TTS, FTTS
can be considered as a reduced state transition system where the event-based
properties are preserved. A more detailed description is in Sect. 3. The syntax
of Timed Rebeca is shown in Fig. 1 and we illustrate Timed Rebeca language
constructs using a simple Network on Chip (NoC) example in Fig. 2 [12,14]. NoC
is a promising architecture paradigm for many-core systems. As an example of a
NoC, we modeled and analyzed ASPIN (Asynchronous Scalable Packet switching
Integrated Network), which is a fully asynchronous two-dimensional NoC design
with XY routing algorithm [15]. In the two-dimensional NoC design, each node
has four adjacent nodes and four internal buffers for storing the incoming packets
(one for each direction). Using XY routing algorithm, packets are moving along
X direction first, then along Y direction, to reach their destination nodes. In
ASPIN, packets are transferred through channels, using four-phase handshake
communication protocol. The protocol uses two signals, namely Req and Ack,
to implement four-phase handshaking protocol. This way, to transfer a packet,
first the sender sends a request by raising Req signal, and waits for an acknowl-
edgment which is the raising of Ack signal by the receiver. In the third phase,
data is sent. Finally, after a successful communication all of the signals return
to zero.

A Timed Rebeca model consists of a number of reactive classes, each describ-
ing the type of a certain number of actors (called rebecs in Timed Rebeca)1. As
shown in Fig. 2, two different reactive classes, Manager and Router, are developed
in the NoC model. Manager is the traffic generator of this model and Router is
the model of a node in an ASPIN design. The local state of each actor is defined
by the contents of its message bag and the values of its state variables. A com-
posite id, using X-Y position (line 12), and buffer variables which show that
the buffers are enable or busy (lines 13 and 14) are state variables of a Router,
defined in a statevars block. Manager does not have any state variables in this
model. The communication in Timed Rebeca takes place by asynchronous mes-
sage passing among actors. Each actor has a set of known rebecs to which it can
send messages. Manager, as the traffic generator of the model, may send message
to any of the nodes; so, all the routers from r00 to r33 are its known rebecs.
Contrarily, a router is only allowed to communicates with its neighbors, named
North, East, South, and West (line 9). The actors instantiation and binding the
known rebecs of actors are in the main block (lines 22–28). In this NoC model, a
mesh of 16 Routers is created and known rebecs are set based on the topology
of the mesh (e.g., as shown in line 25, router r13 is the north neighbor of r10,
router r20 is the east neighbor of r10, router r11 is the south neighbor of r10,
and router r00 is the west neighbor of r10).

The same as other actor models, reactive classes of Timed Rebeca declare
the messages to which they can respond, defining message servers. As shown in
Fig. 2, Manager has only generateTraffic message server and Router has four
different message servers, init, getAck, reqSend, and giveAck (lines 17–20).
The definition of a message server is the same as the definition of class methods

1 In this paper we use rebec and actor interchangeably.
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of Java except that it starts with msgsrv keyword and it does not have return
value. To develop the Timed Rebeca model of ASPIN, four phase handshaking
protocol is modeled using three message servers: reqSend, giveAck, and getAck.
A router calls its reqSend message server to route a packet to its neighbors. A
part of reqSend and giveAck message servers is shown in Fig. 3.

1 reactiveclass Manager {

2 knownrebecs {

3 Router r00, r10, ..., r33;

4 }

5 msgsrv generateTraffic() { ... }

6 }

7 reactiveclass Router {

8 knownrebecs {

9 Router North, East, South, West;

10 }

11 statevars {

12 byte Xid, Yid;

13 byte[4] bufNum;

14 boolean[4] full, enable, outMutex;

15 }

16 Router(byte X, byte Y) { ... }

17 msgsrv init() { ... }

18 msgsrv getAck() { ... }

19 msgsrv reqSend(byte Xtarget, byte Ytarget) { ... }

20 msgsrv giveAck(byte Xtarget, byte Ytarget) { ... }

21 }

22 main {

23 Manager m(r00,r10, ... ,r33): ();

24 Router r00(r03,r10,r01,r30): (0,0);

25 Router r10(r13,r20,r11,r00): (1,0);

26 ...

27 Router r33(r32,r03,r30,r23): (3,3);

28 }

Fig. 2. The Timed Rebeca model of ASPIN Network on Chip

As shown in Fig. 3, an actor can change its state variables through assignment
statements (lines 6 and 7), make decisions through conditional statements (line
2), and communicate with other actor by sending messages (line 5). Recurrent
and periodic behavior can be modeled by actors sending messages to themselves
(line 9). Timed Rebeca adds three primitives to Rebeca to address timing issues:
delay, deadline and after. A delay statement models the passing of time of an
actor during the execution of a message server (line 12). Note that all other
statements are assumed to execute instantaneously. The keywords after and
deadline can be used in conjunction with a method call. The term after n
indicates that it takes n units of time for the message to be delivered to its
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receiver (line 5). The ordering of messages in a message bag is based on the
delivery times of messages. Each actor takes the first message from its message
bag (the message with the earliest time tag), executes the corresponding message
server, and then takes the next message (or waits for the next message to arrive),
and so on. Messages are executed in a non-preemptive way (atomically). The
term deadline n is used to show that if its related message is not taken in n
units of time, it will be purged from the receiver’s message bag automatically
(line 21).

1 msgsrv reqSend(byte Xtarget, byte Ytarget) {

2 if(Xtarget > Xid) {

3 byte leavingDirection = ...;

4 if(outMutex[leavingDirection]) {

5 East.giveAck(Xtarget, Ytarget) after(50);

6 outMutex[leavingDirection] = false;

7 enable[leavingDirection] = false;

8 } else

9 self.reqSend(Xtarget, Ytarget) after(100);

10 } else if(Xtarget < Xid) { ... }

11 ...

12 delay(50);

13 }

14
15 msgsrv giveAck(byte Xtarget, byte Ytarget) {

16 if(Xtarget == Xid && Ytarget == Yid) {

17 //Consume the packet

18 } else if(!(Xtarget == Xid && Ytarget == Yid)) {

19 byte enteranceDirection = ...;

20 bufNum[enteranceDirection]++;

21 ((Router)sender).getAck() deadline (50);

22 self.reqSend(Xtarget, Ytarget) after(100);

23 }

24 }

Fig. 3. The body of two message servers of ASPIN model

The XY-routing algorithm is implemented inside reqSend (lines 1–13). lines
2 to 9 shows that how a packet is routed to its east neighbor. If the packet
must be sent to the router’s east neighbor (line 3) and its east outgoing buffer
is free (line 4), message giveAck is sent to the east neighbor and the internal
state of the sender router is changed to the condition after sending a message.
Upon processing giveAck, first the destination address of the newly received
packet is checked and the packet is consumed if its target address is set to that
node. Otherwise, the packet is stored in the buffer of the receiver (line 20),
acknowledgment is sent to the sender router by sending getAck message (line
21), and message reqSend is sent to itself to route the newly received packet
toward its destination (line 22).
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3 Event-Based Semantics: Floating Time Transition
System

FTTS is defined in [16] as the natural semantics of Timed Rebeca. FTTS exploits
the key features of actor models to generate very compact state transition sys-
tems. Having single threaded actors, with no shared variables, and no blocking
send or receive, along with non-preemptive execution of each message server,
ensures that the execution of a message server does not interfere with the execu-
tion of message servers of other actors. Therefore, all the statements of a given
message server of an actor can be executed in isolation (even delay statements)
during a single transition without considering the behavior of the other actors.
This way, after performing a transition from one state to another state, different
actors may be in different local times. The way the states of FTTS are generated
handles the differences between the local times of actors. Such a semantics is rea-
sonable when one is only interested in the order of the events of a model. FTTS
may not be appropriate for reasoning about the synchronized global states of an
actor model [9].

The operational semantics of a Timed Rebeca model M with the set of actors
I is defined as Floating Time Transition System FTTS = (S, s0, Act , ↪→) where
S is the set of states, s0 is the initial state, Act is the set of actions, and ↪→ is
the transition relation, as described below (from [17]).

States. A state s ∈ S of the Timed Rebeca model M consists of the local states
of actors plus their current time. The local state of an actor i in (the global)
state s is the pair of the valuation of its state variables (shown by Vs,i) and the
bag of its received messages (shown by Bs,i). The local time of the actor i is
denoted as nows,i. So, the state s ∈ S is defined as s =

∏
i∈I (Vs,i, Bs,i, nows,i).

Initial State. In the initial state s0 of the Timed Rebeca model M, the state
variables of the actors are set to their initial values (according to their types),
the initial message is put in the bag of actors (their arrival times are set to
zero), and the current times of all the actors are set to zero.

Actions. There is only one kind of action in FTTS, which is taking a message
from the message bag and executing the corresponding message server entirely.
The message tmsg is denoted by a tuple ((sid, rid,mid), ar, dl) where sid is the
id of its sender actor, rid is the id of the receiver actor, mid is the id of its
corresponding message server, ar is its arrival time, and dl is its deadline. This
way, the set of actions, Act, is defined as Act =

⋃
i∈I ((I × {i} × Mi) × N × N)

where Mi is the set of message servers of actor i.

Transition Relations. We first define the notion of release time of a message.
An actor ai in a state s ∈ S has a number of timed messages in its bag. The
release time of the message tmsg = ((sid, rid,mid), ar, dl) ∈ Bs,i is defined as
rttmsg = max(nows,i, ar) (Note that ar < nows,i means that tmsg has arrived at
some time when ai has been busy executing another message server. Hence, tmsg
is ready to be processed at nows,i). Consequently, the set of enabled messages of
actor ai in state s is Es,i = {tmsg ∈ Bs,i | ∀tmsg′ ∈ Bs,i ·rttmsg ≤ rttmsg′} which
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are the messages with the minimal release time. For a set of enabled messages
Es,i, enabling time ETs,i is defined as the release time of members of Es,i.

Now we define the transition relation ↪→⊂ S × Act × S such that for every
pair of states s, t ∈ S, we have (s, tmsg, t) ∈↪→ for every tmsg ∈ Es,i ∧ (∀j ∈
I ·ETs,i ≤ ETs,j). All the transitions of FTTS are called taking-event transitions
and as a result of a taking-event transition labeled with tmsg, tmsg is extracted
from the bag of ai, the local time of ai is set to ETs,i, and all the statements
in the message server corresponding to tmsg are executed sequentially. Here, ai

is called enabled actor. The effect of executing non-delay statements is changing
the state variables of ai and sending some messages to ai or other actors. The
effect of executing a delay statement with parameter d ∈ N is increasing the
local time of ai by d units of time.

1 reactiveclass Ping(3) {

2 knownrebecs { Pong po; }

3 Ping() {

4 self.ping();

5 }

6 msgsrv ping() {

7 po.pong() after(1);

8 delay(2);

9 }

10 }

11

12 reactiveclass Pong(3) {

13 knownrebecs { Ping pi; }

14 msgsrv pong() {

15 pi.ping() after (1);

16 delay(1);

17 }

18 }

19 main {

20 Ping ping(pong):();

21 Pong pong(ping):();

22 }

Fig. 4. The Timed Rebeca model of ping pong example

To illustrate how FTTS is created for a Timed Rebeca model, we prepared
a very simple model in Fig. 4, the ping pong example. In this example, there
are two actors, Ping and Pong, which send messages to each other periodically.
Without loss of generality, we assumed that the actors of this model do not
have state variables. Figure 5 shows the beginning part of the FTTS of the ping
pong example. The first enabled actor of the model is Ping (its constructor puts
message ping in its bag, line 4), so the first executed message is ping. As shown
in the detailed contents of the second state (the gray block), execution of the
message ping, actor Ping is at time 2 (because of executing the delay statement
in line 8); however, actor Pong is at time 0 as it does not execute any messages.
Also, message pong is put in the bag of actor Pong which its release time is 1
(because of the value of after in line 7). The deadline of this message is ∞ as
no specific value is set as the deadline of this message in line 7.

There is no explicit reset operator for the time in Timed Rebeca; so, progress
of time results in an infinite number of states in FTTS. However, Timed Rebeca
models are models of reactive systems which generally show periodic or recur-
rent behaviors. It means that, if the absolute time of the states are ignored,
usually finite number of untimed traces are generated for Timed Rebeca models.
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Fig. 5. The beginning part of the FTTS of ping pong example

Based on this fact, in [9] we presented a new notion for equivalence relation
between two states to make FTTS finite, called shift equivalence relation. In the
shift equivalence relation two states are equivalent if and only if they are the
same except for the value of parts which are related to the time (i.e. the local
times of actors, the arrival times of messages, and the deadlines of messages) and
shifting the value of parts which are related to the time in one state makes it the
same as the other one. This way, instead of preserving absolute value of time,
only the relative difference of timing parts of states are preserved. As discussed
in [9], for most systems of interest, shift equivalence relation succeeds to make
their transition systems finite.

In FTTS, we have to make sure that the models are Zeno-free because a
timed system with Zeno behavior does not exist in the real-world. As the model
of time in Timed Rebeca is discrete, the execution of an infinite number of
message servers in zero time is the only scenario resulting in Zeno behavior.
So, the Zeno behavior happens if and only if there is a cycle of message server
invocations among different actors without progress of time. This can be detected
by static analysis of the Timed Rebeca model.

FTTS can be used for reasoning about event-based properties, i.e., the rela-
tions among actions of systems and the time where they are triggered (messages
are taken from bags). The most expressive action-based logic which can be eval-
uated using FTTS is defined in [17]. As proved in [17], FTTS can be used for
verification of properties in a form of the modal μ-calculus with weak modalities
(a superset of event-based LTL properties). The weak modal μ-calculus has the
same syntax as the modal μ-calculus, where we assume that the diamond (〈a〉ϕ)
and box ([a]ϕ) modalities are restricted to observable transitions, i.e., action a
must be a taking-event transition. The semantics of this logic is identical to that
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of the μ-calculus, except for the semantics of the diamond and box operators —
a state s satisfies 〈a〉ϕ if there is an execution starting from state s to t, such
that a is the only visible action, and t satisfies (inductively) ϕ. The semantics
of box is defined dually.

4 The Standard Semantics: Time Transition System

FTTS can be used for efficient event-based analysis of Timed Rebeca models;
however, it can not be used for the analysis against timed state-based prop-
erties. To be able to analyze Timed Rebeca models against timed state-based
properties, a few mappings and techniques are developed based on TTS.

4.1 Time Transition System of Timed Rebeca

Time Transition System (TTS) of a Timed Rebeca model M is defined as a
tuple TTS = (S, s0, Act,→) where S is the set of states, s0 is the initial state,
Act is the set of actions, and → is the transition relation as described below
(from [17]).

States. A state s ∈ S of the Timed Rebeca model M consists of the local states
of the actors, together with the current time of the state. The local state of
actor ai in (the global) state s is defined as the tuple (Vs,i, Bs,i, pcs,i, ress,i),
where Vs,i and Bs,i are defined as the valuation of state variables and the bag
of messages respectively (the same as in FTTS), pcs,i ∈ {null} ∪ (Mi × N) is
the program counter, and ress,i ∈ N0 is the resuming time for actor ai which
executes a delay in s. The program counter tracks the execution of the current
message server and is null if actor i is idle in s. So, state s ∈ S can be defined as(∏

i∈I (Vs,i, Bs,i, pcs,i, ress,i) , nows

)
where nows ∈ N is the global current time

of s.

Initial State. s0 is the initial state of the Timed Rebeca model M where
the state variables of the actors are set to their initial values (according to their
types), the initial message is put in the bag of all actors having such a message
server, the program counters of all actors are set to null, and the time of the
state is set to zero.

Actions. There are three possible types of actions: taking a message tmsg =
((sid, rid,mid), ar, dl), executing a statement by an actor (which we consider as
an internal transition τ), and progress of n ∈ N units of time. Hence, the set of
actions is Act =

⋃
i∈I ((I × i × Mi) × N × N) ∪ {τ} ∪ N.

Transition Relations. Before defining the transition relation, we introduce the
notation Es,i which denotes the set of enabled messages of actor ai in state s
which contains the messages whose arrival time is less than or equal to nows.
The transition relation →⊂ S ×Act×S is defined such that (s, act, t) ∈→ if and
only if one of the following conditions holds.
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1. (Taking a message for execution). In state s, there exists actor ai such
that pcs,i = null and there exists tmsg ∈ Es,i. Here, we have a transition

of the form s
tmsg−→ t. This transition results in extracting tmsg from the

message bag of ri, setting pct,i to the first statement of the message server
corresponding to tmsg, and setting rest,i to nowt (which is the same as
nows). Note that Vt,i remains the same as Vs,i. These transitions are called
taking-event transitions and ai is called enabled actor.

2. (Internal action). In state s, there exist ai such that pcs,i �= null and
ress,i = nows. The statement of message server of ai specified by pcs,i is
executed and one of the following cases occurs based on the type of the
statement. Here, we have a transition of the form s

τ→ t.
(a) Non-delay statements: the execution of such a statement may change

the value of a state variable of actor ai or send a message to another
actor. Here, pct,i is set to the next statement (or null if there is no more
statements). All other elements of t are the same as those of s.

(b) The statement is a non-deterministic assignment: the execution of a non-
deterministic assignment a =?(e1, ..., en) results in n different transitions
from s to states sv1 , sv2 , ..., svn

, where a = ei in state svi
. The action is

τ , and the execution of τ results in svi
(1 ≤ i ≤ n).

(c) Delay statement with parameter d ∈ N: the execution of a delay statement
sets rest,i to nows +d. All other elements of the state remain unchanged.
Particularly, pct,i = pcs,i because the execution of delay statement is not
yet complete. The value of the program counter will be set to the next
statement after completing the execution of delay (as will be shown in
the third case).

These transitions are called internal transitions.
3. (Progress of time). If in state s none of the conditions in cases 1 and 2

hold, meaning that �ai · ((pcs,i = null ∧ Es,i �= ∅) ∨ (pcs,i �= null ∧ ress,i =
nows)), the only possible transition is progress of time. In this case, nowt is
set to nows + d where d ∈ N is the minimum value which makes one of the
aforementioned conditions become true. The transition is of the form s

d→ t.
For any actor ai, if pcs,i �= null and ress,i = nowt (the current value of pcs,i

points to a delay statement), pct,i is set to the next statement (or to null if
there are no more statements). These transitions are called time transitions.
Note that when such a transition exists, there is no other outgoing transition
from s.

We reuse ping pong example of Fig. 4 to illustrate how TTS is generated and
be able to compare the FTTS and the TTS of this example. Figure 6 presents the
beginning part of the TTS of the ping pong example. In this figure, the details
of the fourth state is shown. As only one timed transition is in the path to the
fourth state, the global time of the state is 1. Also, the execution of both Ping
and Pong actors are suspended by delay statements until reaching time 2 (based
on the value of the program counters and the resuming times). Executing the
first statement of pong message server, a message is scheduled for Ping actor
(line 15), shown as the only content of the bag of Ping.
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Fig. 6. The beginning part of the TTS of ping pong example

Based on TTS semantics, different mappings to existing languages and tools
are created for Timed Rebeca. Recently a dedicated efficient tool is developed
for TCTL model checking of Timed Rebeca.

4.2 Mapping Timed Rebeca to Timed Automata

We developed a mapping technique from Timed Rebeca models into timed
automata [9,18] for generating the TTS of Timed Rebeca models and supporting
state-based model checking. Timed automata [19] model is one of the most widely
used modeling languages for modeling of realtime systems. UPPAAL toolset sup-
ports TCTL model checking of timed automata. In the proposed mapping, each
actor is mapped into two timed automata, called actor-behavior automaton and
actor-bag automaton. Additionally, one time automaton is defined to handle the
behavior of after primitive for all actors, called after-handler automaton.

The actor-behavior automaton models the behavior of an actor accord-
ing to the statements of its message servers and valuations of state variables.
The state variables of each actor are mapped into variables of its correspond-
ing actor-behavior automaton. The actor-behavior automaton, after receiving a
message, moves to a state which represents the beginning of the correspond-
ing message server. To model the behavior of a message server, its statements
are mapped to the transitions of timed automata. The details of this map-
ping are presented in [9]. The actor-bag automaton handles the behavior of
the message bag of each actor using an internal buffer called messageQ. The
actor-bag accepts messages which are sent to its corresponding actor asynchro-
nously, regardless of the state of the corresponding actor-behavior automaton.
Then, actor-bag automaton delivers received messages upon the requests of its



On Time Actors 385

corresponding actor-behavior automaton. The after-handler automaton handles
the messages which should be delivered to the actor-bag automata in the future
(messages which are sent by the after primitive). The after-handler automaton
accepts messages and put them into its buffer until the release time of the mes-
sages. When a message in the buffer of after-handler is released, it is sent to its
corresponding actor-bag automaton.

The parallel composition of the resulting timed automata and the schedu-
lability analysis of the model is done using UPPAAL [20]. Modeling of asyn-
chronous message passing between actors using synchronous communication of
timed automata increases the number of states dramatically [21]. We can apply
some techniques, like using committed states and techniques that are presented
in [22–24], to reduce the number of states of the resulting region transition
system. However, as shown in [9], the technique stays inefficient for modeling
asynchronous communication.

4.3 Mapping Timed Rebeca to Realtime Maude

Timed Rebeca is mapped into Realtime Maude [25,26] to support timed analysis
of Timed Rebeca models with dynamic actor creation. Realtime Maude is a
specification formalism and analysis tool for realtime systems based on rewriting
logic [27]. Realtime Maude is highly expressive and is particularly suitable for
formally specifying distributed realtime systems in an object-oriented way.

In the Realtime Maude model, a multiset of actor objects and messages rep-
resents the state of a Timed Rebeca model, where each actor object represents a
rebec and each message in the multiset represents a message in the set of unde-
livered messages of the Timed Rebeca model. Communication between actors
takes place by putting a message into the multiset of undelivered messages. This
message is remained in the undelivered messages until its message delivery delay
ends (i.e. the parameter specified by after keyword). The instantaneous actions
of a rebec are formalized using rewrite rules, as shown in [10].

The “standard” object-oriented tick rule [25] is used to model time advance
until the next time when something must “happen”. The effect of time elapse on
an actor is that the remaining time for a delay statement is decreased accord-
ing to the elapsed time. For messages traveling between actors, their remaining
delivery delays and deadline are decreased according to the elapsed time. In both
cases, if the deadline expires before the message is served, the message is purged.

Using this mapping, we analyzed several Timed Rebeca models using the
bounded-TCTL model checker engine of Realtime Maude. This mapping sup-
ports dynamic actor creation in the model, which is not supported by other
approaches. Realtime Maude performs bounded model checking and needs high
expertise to work with.

4.4 Direct TCTL Model Checking of Timed Rebeca Models

To overcome the inefficiencies of using back-end model checkers, we developed a
dedicated TCTL model checking toolset for Timed Rebeca models. To this end,
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we directly generated the TTS of Timed Rebeca models and applied a modified
version of the model checking algorithm of [28] for analysis against TCTL≤,≥
properties. As shown in [11], the modified version of the algorithm analyzes a
TTS with V states and E transitions against property Φ in O((V lg V + E)|Φ|)
which is the best possible TCTL≤,≥ model checking algorithm for dense transi-
tion systems.

In [11] we also showed that for the majority of the timed actors, the pro-
posed algorithm cover model checking against complete TCTL properties in
pseudo polynomial time. However, UPPAAL only supports model checking for
a fragment of TCTL and realtime Maude supports bounded-model checking of
TCTL properties.

5 Timed Rebeca in Practice

Timed Rebeca is used in several applications such as modeling and analysis of
routing algorithms for Network on Chips (NOCs) [12,14], and schedulability
analysis of wireless sensor and actuator network applications (specifically, real-
time continuous sensing application for structural health monitoring) [29]. Our
NoC example is the basis and the reference model of the work of Din et al. in
[30] which proposes a scalable verification technique for generic NoC models.

5.1 Analyzing NoCs

As mentioned in details in Sect. 2, Network on Chip (NoC) has emerged as a
promising architecture paradigm for many-core systems. Asynchronous commu-
nication has become conspicuous in NoC design to overcome problems of clock
skew and clock tree distribution of fully synchronous design. Thereby Globally
Asynchronous Locally Synchronous (GALS) NoC has gained attention in design
of such systems. In GALS NoCs, a sent packet might be delayed by a num-
ber of disrupting packets, which creates various end-to-end latencies. Thus, for
analysis of such systems it is essential to consider all possible behaviors of the
systems (at least for specific scenarios) and consider the whole state spaces. Sim-
ulation techniques cannot be applied to exhaustive search. As complexity grows
in NoCs, functional verification and performance prediction in the early stages
of the design process are suggested as ways to reduce the fabrication cost. For-
mal methods have gained more attention as alternative ways for analyzing NoC
designs. Timed Rebeca is used in [12] to model two-dimensional mesh GALS
NoCs with a four-phase handshake communication protocol, and functional and
timing behaviors, the routing algorithm and communication protocol are cap-
tured in the model. Deadlock freedom, message arrival, and end-to-end packet
latency are checked and the verification results are compared and matched to the
simulation results of HSPICE2 using 32 nm technology. This work is extended
in [14] for comparing different routing algorithms in GALS NoCs.
2 HSPICE provides the lowest level simulation for hardware designs. All the details of

transistors and wires of hardware designs are considered in HSPICE simulator.
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Fig. 7. Comparison among latencies of routing algorithms in six different scenarios

Comparing Routing Algorithms in NOC. In [14], Timed Rebeca models
for the three following routing algorithms on GALS NoCs are developed: XY,
Odd-Even, and Dynamic Adaptive Deterministic (DyAD). In XY routing algo-
rithm, as the first step, packets move along the X direction until they reach the
column of the destination. Then they move along the Y direction to reach their
destinations. The Odd-Even routing algorithm works based on the Odd-Even
turn model [31]; north-to-west and south-to-west turns are prohibited in routers
located in an odd column, and east-to-south and east-to-north turns are prohib-
ited in routers located in an even column. The odd-Even turn model restricts the
turns in the packet path to ensure deadlock freedom. Finally, DyAD routing is a
dynamic algorithm that uses a deterministic or adaptive routing based on differ-
ent network congestion conditions. Each router monitors the occupation ratio of
its input buffers; whenever one of the buffers passes the congestion threshold the
corresponding neighboring routers are informed about the congestion. Routers
priodically check their neighbors to change their routing algorithm into adaptive
routing in case of congestion.

FTTS-based model checking of Timed Rebeca is used for comparing the
performance of XY, Odd-Even, and DyAD algorithms. The NoC size in these
comparisons is set to 4 × 4. The size of input buffers is set to 3 packets and
congestion threshold is set to 33 %. To compare the three algorithms, six different
scenarios describing different network traffics, are used. The selected scenarios
are representers of widely occurring traffic patterns. As illustrated in Fig. 7 in the
first three scenarios, DyAD and Odd-Even show less end-to-end packet latency as
these algorithms are designed to avoid congestion. In the second three scenarios,
there are disrupting packets in all possible directions. These scenarios investigate
the impact of low latency of XY and Odd-Even algorithms which is the result
of their simplicity in contrast to DyAD. As shown in Fig. 7, XY shows the best
performance indicating that it works better in a fully chaotic situation.

Design Exploration for ASPIN Architecture on GALS NoC. ASPIN
is a fully asynchronous two-dimensional mesh NoC with physically distributed
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Fig. 8. Comparison among computed latencies for three different scenarios, using
HSPICE simulation, and Timed Rebeca model checking

routers in each core. ASPIN uses the storage strategy of input buffering, and
each input port is provided by an independent FIFO buffer. Packets arrived
from different sides (from neighboring routers on four sides and the local core),
are stored in the FIFO buffer of the input port. If there is more than one request
for an output port, a round robin policy is used for the arbitration. ASPIN uses
XY routing algorithm to route packets from output port of the source router to
the input port of the destination router. Communications between routers are
established using four-phase handshake protocol. The protocol uses two signals
namely Req and Ack. To transfer a packet, first, the sender sends a request by
rising the Req signal, and waits for an acknowledgment from the receiver. All
signals must return to zero before the next packet could be sent.

Traditionally, simulating the ASPIN design using HSPICE is used for the
analysis of these systems. HSPICE provides precise simulation results, and for
that all the details of an ASPIN design must be specified prior to performing
simulation. In addition, the time consumption of HSPICE simulation of ASPIN
is very high. In [12], Timed Rebeca is used for modeling and Afra is used for
the analysis of ASPIN designs. The comparison among the latencies which are
measured using HSPICE simulation and Afra model checker is shown in Fig. 8.
As shown in Fig. 8, three different packet generation scenarios (i.e., different traf-
fics) are used in this comparison. As a result, having similar trends show that
despite the fact that we captured much less details in Timed Rebeca comparing
to HSPICE, Timed Rebeca analysis provides the same results in design explo-
ration, and hence can be used for the required measurements. This comparison
shows that using Timed Rebeca in the early stages of design helps designers in
making suitable architectural decisions according to the desired performance of
the systems.

To compare the new approaches with the simulation technique using
HSPICE, the model of ASPIN for 32 nm CMOS technology was considered.
Running each scenario in HSPICE for the analysis of one path took more than
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24 h on a system with Core i7, 2.6 GHz processor and 24 GB of memory. In con-
trast running the scenarios and analyzing all the paths using the new approaches
took less than 5 s.

5.2 Analyzing WSAN Applications

Distributed Wireless Sensor and Actuator Networks (WSANs) have become
an attractive method of providing low-cost continuous monitoring in differ-
ent applications. However, because of the complexity of concurrent and dis-
tributed programming, networking, and real-time and embedded requirements,
building WSAN applications can be particularly challenging. In WSAN applica-
tions, coordination among distributed sensors must be well configured to achieve
the optimum point which satisfies several constraints, including low power con-
straints, realtime deadlines of physical processes, and constraints on scheduling
and resource utilization. Programmers often use informal worst-case analysis and
debugging to ensure schedules that satisfy these requirements. Not only can this
process be tedious and error-prone, it is inherently conservative and thus likely
to lead to an inefficient use of resources. Moreover, the process fails to provide
any safety guarantees for the resulting configuration.

Timed Rebeca is used to model a case study involving real-time continu-
ous data acquisition for structural health monitoring and control (SHMC) of
civil infrastructure [29]. This system has been implemented on the Imote2 wire-
less sensor platform, and has been deployed for long-term monitoring of several
highway and railroad bridges [32]. Ensuring safe execution requires modeling
the interactions between the CPU, sensor and radio within each node, as well
as interactions between nodes. Moreover, the application tasks are not isolated
from other aspects of the system: they execute alongside tasks belonging to
other applications, middleware services, and operating system components. In
this application, all periodic tasks (sample acquisition, data processing, and radio
packet transmission) are required to complete before the next iteration starts.
The results show that a safe configuration can be found which improves resource
utilization compared to the previous informal schedulability analysis used in [32].
The sampling rate of the system can be increased by 7 % without encountering
safety hazards.

6 Discussion and Related Work

Different approaches have been proposed for modeling and analysis of realtime
systems. Timed automata [19], realtime Maude [25], and TCCS [33] are examples
of modeling formalisms for design and analysis of realtime systems. For designing
Timed Rebeca we looked into all the above languages and used the same basic
ideas and concepts, we also have mappings to and extensive comparisons with
timed automata [18] and realtime Maude [10].

Apart from these well-known and general purpose modeling formalisms, high
level modeling languages are adopted for the realtime requirements. Actor model



390 M. Sirjani and E. Khamespanah

as an example of such languages is extended with timing features to address the
functional behaviors of actors and the timing constraints on patterns of actor
invocations. A realtime actor model, RT-synchronizer, is proposed in [34] as an
example of actor model which enforces realtime relations between events. While
RT-synchronizer is an abstraction mechanism for the declarative specification
of timing constraints over groups of actors, Timed Rebeca allows us to work at
a lower level of abstraction. Using Timed Rebeca, a modeler can easily capture
the functional features of a system, together with the timing constraints for both
computation and network latencies, and analyze the model from various points
of view.

Creol [35] is a concurrent object based language which is designed in parallel
with Rebeca. Concurrent objects of Creol can be checked for schedulability using
the approach of [35], which is developed based on the same idea presented for
Timed Rebeca in [36]. ABS [37] is an extension of Creol in multiple ways. While
in Creol and its descendent, ABS, the focus has been on different modeling
features, for Rebeca we kept the core of the language simple and avoided adding
any complexity. Our focus has been on analysis and formal verification of Rebeca
and its extension. Recently, Timed Rebeca is extended to capture probabilistic
behaviour, the language is presented in [38].
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Abstract. In this paper, we present a small-step operational semantics
for a small concurrent language supporting deferred function calls and
related constructs in the style of the Go programming language. For lexi-
cal scoping, the presence of higher-order functions, but also the presence
of the defer-command, requires the notion of closures in the semantics.

1 Introduction

New programming languages appear all the time, most as variations and evolu-
tions of earlier languages or with new combinations of established features. Many
new designs remain obscure or establish a niche existence, some enjoy their days
in the sun, some new general purpose languages even rise to prominence to stay,
sometimes accompanied by considerable hype. A recent promising newcomer
is Go [13,18,19,36], a language “backed” by Google, which gained quite some
momentum after its inception and after going public in 2009. Syntactically, Go’s
bloodline, tracing back to C, is noticeable in its surface syntax as well as in
simplicity and conciseness as advertised design principles of the language.

At its core, Go is a lexically scoped, concurrent, imperative language with
higher-order functions, supporting object-oriented design. How to most prof-
itably and elegantly combine object-orientation with concurrency is a long-
standing question. See for instance [2] for an early discussion of the issue,
where the essential design decision is whether objects as units of data coin-
cide with the units of concurrency (in which case the objects are “active”) or
objects and threads/processes etc. are different. In, e.g., his PhD thesis, Frank de
Boer [10] proposed and studied the “parallel object-oriented language” POOL,
whose design is firmly in the “active objects” camp, where objects basically
are processes, exchanging messages over channels. Many popular concurrent
object-oriented languages follow such a design, including actor languages, agent
languages etc. The alternative is multi-threading as supported perhaps most
prominently by Java and related languages.
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Go seems not to fit neatly into either camp. For a start, one may debate
to which extent Go is object-oriented. Since the coinage of the term “object
orientation” in Simula [9], being object-oriented has become a staple attribute
of most modern languages in one way or the other, but unfortunately, there is
not overly much consensus on what object-orientation exactly is. Whether or
not Go is object-oriented is salomonically answered by the Go language FAQ as
“yes and no”. In general, the consensus opinion seems to be that Go is object-
oriented but not entirely as you know it, and that at least that it supports
object-oriented programming and design. Officially, there’s no concept named
“object” in the language, and classes and class inheritance as mechanisms of
code reuse are missing. However, Go supports methods, which are functions with
“receiver” as specific argument on which they are dynamically dispatched. The
mechanism relies on interfaces, structural subtyping, there called “duck typing”,
as opposed to more conventional nominal subtyping disciplines (cf. [31]). In
this paper, we ignore Go’s static type system (and thereby its object-oriented
features) concentrating on some aspects of non-local control flow and goroutines.
For a very recent account of Go’s type system and a formal calculus formalizing
aspects of Go, see [30]. That work, however, does not capture deferred function
calls, on which we concentrate in this paper.

Concerning concurrency, Go’s primary feature is asynchronous function calls
(resp. asynchronous method calls). The mechanism is baptized goroutine by the
developers of the language (basically a lightweight form of threads with low over-
head and lacking known thread synchronization mechanisms such as wait and
signal). The second core concurrency construct is (typed) channel communica-
tion, in the tradition of languages like CSP [22,23] or Occam. Since (references
to) channels can be sent over channels, Go allows “mobile channel” flexibility
for communication as known from the π-calculus [32].

This paper concentrates on two aspects of Go, the structural, non-local con-
trol flow with Go’s specific constructs of defer, panic, and recover and the
notion of goroutines. Deferred function calls are to be executed when the sur-
rounding function returns, and independently of whether that return is done fol-
lowing unexceptional control flow or while “panicking”. The command recover
can be used to exit panicking mode and return to normal execution. For lexical
scoping, the small-step semantics uses a variant of closures, so-called capsules
[25,26]. For the concurrent execution of multiple goroutines, we use simple evalu-
ation contexts where the global configurations have to represent the parent-child
relationship between goroutines.

2 A Calculus with Deferred Functions and Goroutines

After defining the abstract syntax of the calculus, we define a small-step seman-
tics by structural, operational rules, where in a first step we concentrate on the
behavior of one single goroutine (Sect. 2.2.1). Afterwards, Sect. 2.2.2 presents the
global semantics, covering the concurrent execution of goroutines.
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2.1 Abstract Syntax

The abstract syntax is given in Table 1. We elide types in this treatment, which
will be covered in the technical report, so variable declarations and abstractions
are untyped. The code is categorized into terms t and expressions e. A term t is
either a value v, where values includes the truth values, the unit value, leaving
further values such as integers etc. unspecified, as they are orthogonal to our
semantics. A term var x := e in t represents the sequential composition of first
e followed by t, where the var-construct binds the local variable x in t, i.e., the
construct is also used to represent local, lexical scopes. Furthermore, sometimes
we write let x=e in t, if the variable x is not written to in t, i.e., is used in
a single-assignment fashion, and additionally use sequential composition t1; t2
as abbreviation for let x=t1 in t2, if x is not mentioned free in t2 at all, i.e.,
if x /∈ fv(t2). Expressions include function applications and conditionals. New
goroutines are created with the expression go ((λx.e1) v). Values, which are
evaluated expressions, are variables and function abstractions. We use () in this
calculus also to represent the absence of a value.

The constructs defer, recover, and panic are used for structured, non-local
control flow: panic and return work similar to throwing and catching excep-
tions and deferred code is executed when the surrounding function call returns,
independent from whether a goroutine is panicking or not. Their semantics is
discussed in more detail in Sect. 2.2.1. The construct return v is run-time syn-
tax (hence underlined). Go itself has a “terminating statement” return, used
to hand back results from callee to caller, if any. In our calculus, reducing a
function application results in a value, which then is returned without a specific
construct in the user-syntax. The return is inserted by the reduction rules to
demarcate the boundaries of the function call’s “stack-frames”. This is necessary
to appropriately capture the semantics of deferred code.

Table 1. Abstract syntax

2.2 Operational Semantics

Next we describe the small-step operational semantics of the calculus. The lan-
guage offers higher-order functions and nested, lexical scopes. Thus function
bodies can outlive their surrounding scope in which they are defined. As a con-
sequence, lexical scoping for non-local variables requires a memory discipline
more complex than a stack -based memory allocation and de-allocation. The
phenomenon that a function definition can outlive its defining scope also occurs
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for deferred function calls, which are executed when the surrounding function
returns and not at the place where the surrounding scope (which may be nested)
ends. Similarly, goroutines, which are asynchronously executed function calls,
have the same effect: when defined, variables refer lexically to a particular scope,
but ultimate execution occurs “outside” that scope.

To represent such features, one conventionally uses closures. Closures [29]
were first implemented in PAL [14,15] and first widely used in Scheme
[34,35]. Go indeed supports closures to enable static scoping. Generally speak-
ing, a closure is a function, i.e., an abstraction together with providing values
for the abstraction’s free variables.

The semantics in this section concentrates on the local semantics of one gor-
outine. For simplicity we also ignore reference values, concentrating on specifying
the order of reduction in the presence of deferred functions. Instead of using full
closures, which would typically require the introduction of references or loca-
tions, we make use of so called capsules in the formulation of the rules in this
presentation. Capsules [25,26] have been recently introduced as a slightly sim-
pler variant of closures to capture static binding in the presence of higher-order
functions. We omit the treatment of references in this section; obviously, they are
supported by Go, though. [25,26] prove that modeling local state with capsules
resp. with closures is equivalent.

A capsule environment, or environment for short, is used to model local state,
here for one sequential piece of code. An environment is a partial, finite function
from variables to values. We use γ, γ1, γ

′, . . . for environments. By dom(γ), we
refer of the domain of γ. We use ⊥ for the undefined value. Let’s write • for
the empty capsule environment. A binding from a variable x to a value v is
written [x �→ v], and in abuse of notation, we write γ[x �→ v] if the mapping γ is
updated by a new binding. That includes adding a new binding, resp., changing
an already existing one for x. We also use the notation [x0 �→ v1, . . . , xn �→ vn]
or [�x �→ �v] when referring to a concrete capsule.

Capsules then are tuples consisting of a term t and an environment γ. We
write γ � t for a capsule. As a standard invariant, it’s required (and maintained
by the rules) that all free variables of t are covered by the environment, i.e.,
dom(γ) ⊇ fv(t). To model panicking code, we assume one specific variable p not
used otherwise. Note that the environment can contain bindings to abstractions
which is reminiscent to the notion of higher-order store [33].

2.2.1 Defer, Panic, and Recover
Besides standard control-flow structures like loops and conditionals, Go supports
various commands for non-local control flow. We concentrate on the following
three ones, defer, panic, and recover (and ignore constructs like goto and
break). Note that, resulting from a deliberate design decision, Go does not sup-
port exceptions, even if the behavior of defer, panic, and recover obviously
represent some “exceptional” control flow.

The local steps are straightforward and are given as a small-step SOS between
capsules. Rule R-Var restructures a nested var-construct. As the construct
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generalizes sequential composition, the rule expresses associativity of that con-
struct. Thus it corresponds to transforming (e1; t1); t2 into e1; (t1; t2). Note that
the grammar insists that, e.g., in an application, both the function and the argu-
ments are values, analogously when acquiring a lock, etc. This form of represen-
tation is known as a-normal form [17]. Together with the rest of the rules, which
perform a case distinction on the first non-var expression in a var-construct, a
deterministic left-to-right evaluation is ensured.

Rule R-Red is the basic evaluation step, replacing in the continuation term t
the local variable by the value v (where [x ← v] is understood as capture-avoiding
substitution). The var-construct introduces a new variable with an initial value
v. To allow imperative update, a fresh variable y′ is used to store the value in
the environment, and y is replaced by y′ in the continuation of the code. In case
the variable is not updated in t, i.e., in a functional, single-assignment setting,
the behavior can more simply but equivalently covered by a simple substitution:

γ � let x:T = v in t −→ γ � t[x ← v]

Table 2. Transition steps
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Sometimes, we will use the function let-construct and the simplified sub-
stitution rule when possible. In contrast to R-Red, the assignment treated in
R-Assign does not introduce a fresh variable but simply updates the value for
an already existing one. Since the assignment does not return a (non-trivial)
value, we use sequential composition as syntactic sugar for simplicity for the
formulation of the rules. The treatment of conditionals is standard (the rule for
false, symmetric to R − If1, is omitted).

The next rule R-App deals with function calls. Parameter passing is done
call-by-value as given in R-App, where the environment is updated to γ[x′ �→ v].
The body of the function is treated by an appropriate substitution e1[x ← x′].
Besides that, the rule introduces a scope for a new variable x0 used to store the
result of the function body before passing it back to the caller. In a situation
where x0 is not mentioned in the function body e1, the expression var x0 :=
e1[x ← x′] in x0 corresponds to an (equivalent) η-expansion of the (instantiated)
function body e1[x ← x′]. It should be noted that the run-time syntax return x0

does not completely correspond to Go’s terminating statement return. In our
reduction semantics, the return syntax is used to demarcate the end of the top-
level stack frame for the function instance currently being executed. The variable
x0 and the η-expanded form of the post-configuration in R-App is introduced
to capture the semantics of deferred code (see also R-Defer).

Deferred code, more precisely, deferred function applications, is executed
“when” the function in which the code is deferred, returns. In Go, the signature
of a function can specify a named return parameter. For instance, a function
taking an integer argument and returning an integer in a specified parameter
x carries the signature int (x int). The return parameter corresponds to the
var-bound variable in rule R-App. Deferred code, which is executed at the end of
the function body, can access and change this return parameter. In the reduction
rules, we omitted the type information; using a named return parameter intro-
duces that variable with the function body as scope and is covered by the rule
R-App in that e1 (and potential deferred code therein) can access and change x0

The defer-statement is treated in R-Defer. Defer allows code to be executed
“later”, exactly at the point where the surrounding function or method returns.
An analogous defer-command has been introduced recently in Apple’s Swift-
language [24] as well. Concretely, only function applications, including partial
applications, can be deferred in Go, but the rule abstractly mentions just an
expression e1. Note also that while deferred functions are allowed in Go to have
a non-trivial return type, the value they eventually may return plays no role. The
only way the deferred code can influence the outcome of the surrounding function
(besides recovering from a panic) is by side-effects, which includes changing the
surrounding function’s return value, making use of named return parameters.

A further subtle point about deferred code is what happens if more than one
piece of code is being deferred when executing a method body. The discipline
adopted is that all of the deferred code will be executed upon return in a LIFO
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manner. In other words, each stack frame can be thought of being equipped with
an “extra stack” of deferred code. Thus, deferred code follows a stack-discipline:
within the stack-frame of the surrounding function, code deferred first will be
executed last.

Once deferred, the deferred code is “guaranteed”1 to be executed and thus a
main purpose of the code is similar to code in the finally-clause of exception
handling as in languages like Java: it can be used to “clean up” data structures,
to close open connections or files, even in case something unexpected happens.
There are some high-level differences between finally-clauses and deferred func-
tion calls. One is that try-catch-finally lexically indicates a block of code to which
the finally-clause belongs to, and once entering the try-catch-finally statement,
the final clause is (almost) guaranteed to be executed independent of how the
try-block is exited. In contrast, a defer-statement may be defined inside a nested
block inside a function body, but its execution is delayed until the surrounding
function body is exited, not the immediately surrounding scope. As a result, the
deferred code may typically outlive its immediately surrounding scope much in
the same way that nested functions in a higher-order language may outlive their
scope. As a consequence, to model or implement the mechanism adequately in
a language with lexical scoping, closures (or here capsules) are needed.

In general, the mechanism of deferred calls offers greater flexibility compared
to finally-clauses as in Java, as deferring code is done at run-time whereas try-
catch-finally blocks are statically given. See for instance [3] for a calculus treating
exceptions or [1] for a compositional Hoare-style proof system for a Java-like
object-oriented language with exceptions à la Java.

Example 1. The code in Listing 1.1 illustrates lexical scoping and the need of
closures for deferred functions: x in the body of the deferred function refers to
the definition of x with value 7. However, this x is updated in the same scope
later, the value being actually printed in the deferred way is 8. The closure
therefore treats its non-local variables “by reference”.2 The increment x++ at
the end of the function body refers clearly to the var-definition in the first line
of the function body and hence has nothing to do with the variable being printed.

1 There’s an exception to this guarantee, though. Deferred code is executed indepen-
dent from whether the goroutine panics or not, but it’s executed only if the enclosing
stack frame returns. Divergence may prevent that, and another reason for failing to
return is that the goroutine containing the deferred code may be terminated due to
the fact that its parent goroutine terminates. See Sect. 2.2.2.

2 In other languages, an alternative semantics for closures exists as well, where, when
building the closure, the non-local variables obtain their meaning passing them “by
value” instead. Of course, a by-value treatment would make it impossible for deferred
code to change the return value, after the main body has been exited, for instance
due to a panic. Passing by value can be achieved here by handing over the value
explicitly as an extra formal parameter, effectively using a “λ-lifted” version of the
deferred code. Indeed, λ-lifting is a transformation used to give semantics to higher-
order functions under lexical scoping [27] and an alternative to closures.
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Listing 1.1. Defer, static scope, and mutable “non-local” variables

func main ( ) {
var x = 0
{ var x = 7 // loca l , nested scope

defer func ( ) {
fmt . Pr in t ln (x ) // = 8

} ( )
x = x+1

}
x++

}

	

The built-in function panic can be used to cause a “panic”, which roughly

corresponds to throwing an exception. Besides that, panics can occur due to a
number of “natural causes” such as attempts to dereference null pointers, out-
of-bounds access to arrays and slices, deadlocks, and many more situations. A
panic causes the standard execution of a method or function to stop and the
control flow to jump directly to the end of the function body. Before returning
to the caller, any code previously deferred in the function body will be executed
in LIFO fashion. In R-Panic, x0 is the designated callee-site variable to hand
over the result of the function to the caller. Since no “non-exceptional” value
is being returned in an (unrecovered) panicking call, x0 is irrelevant and set to
the corresponding types initial value. Omitting the type information, written
summarily as () in R-Panic. The value of the panic is remembered in γ using
the “reserved variable” p. Note that executing deferred code at the end of a
panicking function can execute a second panic, which will overwrite the previous
one. At each point in time there is at most one panic active. To recover from
a panic means to resume the standard mode of execution and a function body
having recovered returns as value of the declared type to its caller (as opposed to
propagating the panic). R-Recover simply retrieves the value of the previously
caused panic from p and unsets it.

Example 2 (Defer Stack). The function f in the code from Listing 1.2 invokes
two function calls in a deferred manner. Instead of deferring (λ().z := z + 1) (),
the derivation below just uses z := z + 1 for simplicity.

Listing 1.2. Stacked defers

func f ( ) int { // a l t e rna t i v e : func f () ( z in t )
var z = 1
defer func ( ) {

z = z+1
} ( )
defer func ( ) {

z = z+2
} ( )
return z // 1

}

At the beginning of the reduction, in (2) below, we assume that the environ-
ment γ1 contains the definition for the function f . The function in Listing 1.2
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does not make use of named return parameters (the return type is just inte-
gers), hence the deferred abstraction cannot access it. Therefore, for illustration,
the derivation treats x0 via a let-binding and handing back the value is done
via substitution in step from (12) to (13). Note in passing that if the updates
to z were not done inside the deferred code, but the function would simply do
z := z + 1; z := z + 2; z, then the returned value via z would be 4, not 1.

Similarly, if f would declare z as return parameter in its signature (in which
case, z could not declared again via var in the same scope), the function would
return 4. In the deviation below, the step from (4) to (5) would use variable z
(and var) instead of the let-bound variable x0 as shown below.

For reference, the environments in the reductions are, where the γ1 at the
start contains already the definition for the function named f , a binding which
remains unchanged:

γ2 = γ1[z′ �→ 1]
γ3 = γ1[z′ �→ 3]
γ4 = γ1[z′ �→ 4]

γ1 � var y := f () in t −→ (2)
γ1 � var y := (λ(). var z := 1 in ((defer z := z + 1); ((defer z:=z + 2); z)))) () in t −→ (3)

γ1 � var y := (let x0=(var z := 1 in ((defer z:=z + 1); ((defer z:=z + 2); z))) in return x0) in t −→ (4)
γ1 � let x0=(var z := 1 in ((defer z:=z + 1); ((defer z:=z + 2); z))) in (let y=return x0 in t) −→ (5)
γ1 � var z:=1 in (let x0=(((defer z:=z + 1); ((defer z:=z + 2); z))) in (let y=return x0 in t)) −→ (6)

γ2 � let x0=(((defer z
′
:=z

′
+ 1); ((defer z

′
:=z

′
+ 2); z

′
))) in (let y=return x0 in t) −→ (7)

γ2 � defer z
′
:=z

′
+ 1; (let x0=((defer z

′
:=z

′
+ 2); z

′
)) in (let y=return x0 in t) −→ (8)

γ2 � let x0=((defer z
′
:=z

′
+ 2); z

′
)) in (let y=return (z

′
:=z

′
+ 1); x0 in t −→ (9)

γ2 � defer z
′
:=z

′
+ 2; (let x0=z

′
in (let y=return (z

′
:=z

′
+ 1); x0 in t) −→(10)

γ2 � let x0=z
′
in (let y=return z

′
:=z

′
+ 2; (z

′
:=z

′
+ 1; x0) in t −→(11)

γ2 � let x0=1 in (let y=return z
′
:=z

′
+ 2; (z

′
:=z

′
+ 1; x0) in t) −→(12)

γ2 � let y=return z
′
:=z

′
+ 2; (z

′
:=z

′
+ 1; 1) in t −→(13)

γ2 � z
′
:=z

′
+ 2; (let y=return z

′
:=z

′
+ 1; 1 in t) −→(14)

γ3 � let y=return z
′
:=z

′
+ 1; 1 in t −→(15)

γ3 � z
′
:=z

′
+ 1; (let y=return 1 in t) −→(16)
γ4 � let y=return 1 in t −→(17)

γ4 � t[y ← 1]. (18)

	


2.2.2 Goroutines and Concurrent Execution
Concurrency is built into the core of Go, where the unit of concurrency is called
goroutine, a pun on the notion of coroutines [8]. Coroutines are already a very
old concept, originally introduced as a generalization of subroutines, namely
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roughly as a procedure that can repeatedly yield “intermediate” results, and for
non-pre-emptive multitasking. Note in passing that the first object-oriented lan-
guage Simula [9,37] supported coroutines already, and a restricted form known
as generators or semi-coroutines has been used in various languages. See e.g. [4]
for a recent semantical account of a calculus with coroutines (using a small-step
semantics as in the presentation here), and including a type and effect system.
Further semantical studies and calculi treating coroutines include [6,7,12,28].

Syntactically, starting a goroutine is similar to deferring code. In both cases,
a (function or method) application is deferred resp. started asynchronously with
the command go. In both cases, while the function may have a return type
and return value, it’s not handed back to the caller of the deferred code3 resp.
the spawner of the new goroutine. For example, in Listing 1.2 above illustrating
stacked defers, one can replace the two defer-commands by two go-commands,
letting the functions run asynchronously with the parent goroutine. Since three
goroutines are then running concurrently, sharing variable z, the result from f
is non-deterministic, depending on the scheduling. However, when a goroutine
terminates, all its children terminate, as well. For that example, it means: if
the parent goroutine, executing the main function and f terminates before the
two child goroutines modify the shared variable z, their update to z will not
become effective.4 It should be noted that if a goroutine is terminated due to
its parent’s termination, this also prevents the coroutine’s already deferred code
from happening: deferred code is guaranteed to happen —panicking or not—
upon return from a call, but this form of aborting of a goroutine precludes any
further returns from being executed.

For instance, the deferred function g in Listing 1.3 may or may not be exe-
cuted, even if the defer-statement itself happens.

Listing 1.3. Termination and defer

func g ( ) {
defer func ( ) {
} ( )

}

func f ( ) {
go func ( ) {

defer g ( )
} ( )
return

}
func main ( ) {

go f ( )
}

The semantics therefore needs to account for the parent-child relationship
between goroutines. We write 〈t〉 to denote a goroutine (without child goroutine),

3 With the exception that deferred code can be used to change the value of return
parameters declared in the function’s signature.

4 Running the example as is, where the main goroutine does not do much else than
spawning two child goroutines, it is practically guaranteed that the parent (and with
it the child goroutines) terminates before the children start affecting z.
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where t is the term being executed, and use ‖ for the parallel composition. Let
G stand for a “set” of goroutines running in parallel, as given as follows.

G :: = ◦ | 〈t ‖ G〉 (19)

As usual, parallel composition ‖ is assumed commutative and associative, and
we use ◦, representing the empty set of goroutines, as neutral element, i.e.,
〈t ‖ ◦〉 ≡ 〈t〉. We use ≡ for the induced congruence. Obviously, when stipulating
that ‖ is associative, we mean the arrangement of elements inside 〈t ‖ . . .〉,
the parenthetic structure using the angle brackets represents the parent-child
relationship between goroutines and is not associative.

To formulate the steps for configurations of the form γ � G, we use evaluation
contexts [16] (also known as reduction contexts [20]) to specify the redex inside
G. Since the evaluation strategy is rather trivial —non-deterministically reducing
one term of one goroutine in G— the definition of the contexts is likewise rather
simple. An evaluation context is basically a syntactic entity, here G, with exactly
one hole (written [ · ]):

E :: = [ · ] | 〈[ · ] ‖ G〉 | 〈t ‖ E〉. (20)

Then E[t] represents the context E with t taking the place of the hole. The global
small-step transition relation is then given inductively by the rules of Table 3.
Rule R-Context lifts a local steps to the global level, using the evaluation con-
texts. Evaluating the go-command spawns asynchronously a new goroutine. The
parent-child relationship is captured in that the new goroutine 〈t〉 runs within
the same enclosing angle brackets. Note that goroutines don’t carry an identity.
Such an identity could be used by the spawning goroutine to obtain back an
eventual result, if any, from the asynchronously running code. Such a gener-
alization would correspond to the notion of futures [5,21]. Cf. also De Boer’s

Table 3. Global transition relation



404 M. Steffen

paper of a proof-theoretic account of a calculus with asynchronous communi-
cation using futures [11]). Of course, the functionality of first-class futures can
easily be implemented in Go using channels.

3 Conclusion, Discussion, and Future Work

We presented an operational semantics, in particular capturing concurrency and
non-standard control-flow using deferred functions, as they have been introduced
in the language Go. Concentrating on the mentioned features, the paper obvi-
ously left out many others that deserve study. These include references and
reference types, which can be treated in a standard manner, namely by intro-
ducing references or locations allocated on a heap; their treatment is orthogonal
to the aspects covered here. Other interesting data structures include arrays and
slices and their iterators.

Concentrating on the run-time behavior and the operational semantics, the
presentation leaves out basically all typing aspects. Go claims to be strongly
typed. While being strongly typed is nearly as vague an attribute for a program-
ming language as being “modern” or “high-level”, Go certainly is light-years
ahead when it comes to imposing typing restrictions with meaningful semantics
guarantees, compared to its spiritual predecessor C (from which Go otherwise
borrows many syntactic conventions). Rather unconventional for most main-
stream object-oriented (typed) languages is to do away with nominal typing
and nominal subtyping (not to mention to do away with classes, class types,
and inheritance, . . . ). Based on record types (or struct types) and interfaces, Go
adopts what is known as structural (sub-)typing, as alternative to nominal sub-
typing. Nominal subtyping was introduced already in the first object-oriented
language Simula [9], and ever since has nominal subtyping been the basis for
subtype polymorphism for most general mainstream, class-based object-oriented
languages, including Smalltalk, Java, C++and more.

Starting with POOL, a “parallel object-oriented language” [10], Frank de
Boer provided semantic studies, proof theories, and verification methods for
numerous language features related to object-orientation and concurrency (fea-
tures like channel communication, multi-threading, objects and object creation,
inheritance, futures, active objects . . . ). It would be interesting to make use of
the proof techniques he and his colleagues developed to apply to Go with its
new take on combining established language features into an interesting design.
While mentioning POOL and as a personal remark: during the early stages of
my own PhD, I was working in a group interested in formal methods for concur-
rency and object-orientation. POOL and its proof theory was one of the works
we carefully scrutinized and which influenced our own work as it was one of the
few solid theoretical studies on this topic available at that time. Though my
concrete thesis work afterwards digressed into type theory for functional (non-
concurrent) object-oriented calculi, later my interest repeatedly came back to
study aspects of concurrency and object-orientation, an interest which has been
sparked by work like Frank’s about POOL.
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Abstract. We verify the correctness of a recursive version of Tony
Hoare’s quicksort algorithm using the Hoare-logic based verification
tool Dafny. We then develop a non-standard, iterative version which is
based on a stack of pivot-locations rather than the standard stack of
ranges. We outline an incomplete Dafny proof for the latter.

Keywords: Automated verification · Algorithms · Quicksort · Program
transformation

1 Introduction

In 1959, while working on a project for automated translation from Russian to
English, Tony Hoare found a recurring need to be able to sort word sequences
into alphabetical order. To tackle this problem he invented an algorithm that was
significantly faster than existing alternatives. The publication of this algorithm
in 1961 as “Quicksort” [7] revolutionised the way we sort, and more generally,
the way we think about and develop algorithms.

Since then, quicksort has inspired practitioners and researchers alike,
including the recipient of this Festschrift. The algorithm has been modified
and implemented millions of times by experienced programmers and students
alike in several programming languages, and has even been choreographed as
a Hungarian dance [16]. As well as the fascination for its elegant and succinct
presentation, it is also interesting because it involves two inner recursive calls,
and thus reasoning and program transformations applied to the algorithm are
non-trivial.

In 1971, Foley and Hoare presented a hand-proof of the correctness of quick-
sort [5], and several proofs have been developed since. Proofs for the recursive
as well as the iterative setting have also been proposed by de Boer and his
co-authors in [1]. Recently, in his Turing Award lecture, Lamport showed an
abstract derivation of iterative quicksort [9]. More recently, and rather surpris-
ingly, de Gouw et al. discovered a subtle bug in Timsort, a sorting algorithm pro-
posed in 2002, and which is the implementation of java.util.Arrays.sort [13]
c© Springer International Publishing Switzerland 2016
E. Ábrahám et al. (Eds.): de Boer Festschrift, LNCS 9660, pp. 407–426, 2016.
DOI: 10.1007/978-3-319-30734-3 27
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for non-primitive types, and part of the Android platform. They discovered the
bug while trying to prove the correctness of Timsort using the Hoare-logic based
tool Key [2].

In this paper, we reason about the correctness of two versions of quicksort: a
recursive version and an iterative version. We too use a Hoare logic-based tool,
namely Dafny [10].

Our recursive quicksort method deviates slightly from the standard version
presented in the literature, in that we split the array into three sub-arrays, the
middle one of length one, and then call the function recursively on the first and
third sub-arrays.

Our iterative quicksort method is, to our knowledge, novel, in that rather
than storing ranges (i.e. pairs of values) in a stack, we only store the locations
of the pivots (i.e. one value), thus saving both space and time.

We have used the tool Dafny to check our implementations. To facilitate the
proofs, we have defined and used lemmas in the proof of the code. We have
proven some, but not all of these lemmas in Dafny.

1.1 Contributions

The key contributions of our paper are as follows:

– A proof of correctness for our variant of recursive quicksort in Dafny.
– A new, iterative version of quicksort based on the pivot locations.
– A proof outline for the correctness of our iterative quicksort in Dafny.

The complete Dafny code for our work can be found at [3]. To the best of our
knowledge, there is no existing proof of imperative recursive quicksort in Dafny
before our work. However, Leino has recently developed a proof in Dafny of
the standard functional recursive algorithm, as well as an alternative version of
the iterative algorithm based on ranges. Both can be found in the Dafny test
suite [11]. Also, to the best our knowledge, there is no exiting version of iterative
quicksort based on pivots. A comparison of its efficiency with other algorithms
is future work.

The rest of this paper is organized as follows:

– Section 2 presents the notation and lemmas we will be using to specify and
prove quicksort.

– Section 3 shows three recursive versions quicksort:
(1) Recursive quicksort as proposed in Hoare’s original paper.
(2) Recursive quicksort as commonly seen in the literature.
(3) Recursive quicksort with the variation that the two sub-ranges are off

by one, and an outline of its proof of correctness.
– Section 4 shows two iterative versions of quicksort:

(1) Iterative quicksort with a stack simulation of recursion.
(2) Novel iterative quicksort based on a stack of pivot locations, and outline

of its proof of correctness.
– Section 5 concludes the paper with an evaluation of our work and an identifi-

cation of future directions of research.
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2 Specifying Quicksort

We now turn to one of the most important parts of automated program verifi-
cation: specifying the program we wish to implement.

2.1 Sorting – The Task

Let’s start by defining the task of sorting the contents of an array.

Given an array a of integers1 we want to rearrange the array so that the
elements of the array are arranged in ascending order. Additionally, we
must ensure that no elements are added to or removed from the array.

2.2 Notation, Predicates and Lemmas

Throughout this paper we adopt the Dafny convention of treating arrays as
pointers to sequences of values. That is, we think of the array a as a pointer to
the sequence a[0], a[1], a[2], ..., a[|a| − 1], where |a| is the length of array a.

More formally, we define a notation for describing a range. For integers i, m
and n:

i ∈ [m..n) ≡def m ≤ i < n

This notation then has a natural lifting to sequences. For a sequence a, value
v and integers m and n:

v ∈ a[m..n) ≡def ∃i ∈ [m..n). [ 0 ≤ i < |a| ∧ a[i] = v ]

where a[i] is the ith value of the sequence. Note above that the range m..n is
capped by the length of the sequence to ensure that no invalid dereferences take
place. We refer to a[m..n) as a slice. A slice is treated as a subsequence of the
original sequence and can be dereferenced as follows:

a[m..n)[i] =
{
a[m + i] if 0 ≤ m + i < |a|
undefined otherwise

This slice notation allows us to elegantly describe interesting properties about
arrays and sequences, such as:

a[m..n) ≤ x ≡def ∀v ∈ a[m..n). v ≤ x
a[m..n) ≤ b[p..q) ≡def ∀v ∈ a[m..n).∀v′ ∈ b[p..q). v ≤ v′

For ease of notation, we introduce the short-hands a[..), a[..m), a[m..) which
describe a complete sequence, a sequence up to m and a sequence from m
onwards, respectively. That is:

a[..) ≡def a[0..|a|) a[..m) ≡def a[0..m) a[m..) ≡def a[m..|a|)
1 The sorting task can actually be defined for an array of any type that has a less-
then-or-equal relation ≤.
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We further adopt the notation that whenever an array reference a occurs in a
context expecting a slice, it should be interpreted as the slice a[..).

Note that Dafny represents sequences with the syntax a[m..n], which is equiv-
alent to the meaning of a[m..n) from our notation. Therefore, whenever the terms
a[m..n] or a[..] appear in our Dafny code, their meaning should be interpreted
as a[m..n), or a[..), respectively.

We introduce a notion of deep equality on sequences, denoted ≈. This
describes when two sequences have exactly the same contents. That is:

a[..) ≈ b[..) ≡def |a| = |b| ∧ ∀i ∈ [0..|a|). a[i] = b[i]

We define the concatenation of two sequences a ++ b such that:

|a ++ b| = |a| + |b|

(a ++ b)[i] =

⎧
⎨

⎩

a[i] if 0 ≤ i < |a|
b[i − |a|] if |a| ≤ i < |a| + |b|
undefined otherwise

We define a predicate that describes when a sequence is sorted. For a sequence
a and natural numbers i and j:

Sorted( a[i..j) ) ≡def ∀m,n ∈ [0..|a|). [ i ≤ m ≤ n < j −→ a[m] ≤ a[n] ]

We also define some other useful predicates over sequences and slices. For
sequences a and b, integers i, j, m and n and an arbitrary value v:

Count( a[i..j), v ) ≡def |{k | k ∈ [i..j) ∧ a[k] = v}|
a[i..j) ∼ b[m..n) ≡def ∀x.Count( a[i..j), x ) = Count( b[m..n), x )

Swapped(a[..), b[..), i, j) ≡def |a| = |b| ∧ i, j ∈ [0..|a|)
∧ b[i] = a[j] ∧ b[j] = a[i]
∧ ∀k ∈ [0..|a|)\{i, j}. a[k] = b[k]

In the above:

– Count( a[i..j), v ) tracks the number of times that v occurs in the slice a[i..j).
– a[i..j) ∼ b[m..n) states that slice a[i..j) is a permutation of slice b[m..n).
– Swapped(a[..), b[..), i, j) states that the sequences a[..) and b[..) are exactly

the same except that the elements at positions i and j have been swapped.

All the operators and predicates above are available, or can be easily encoded,
in Dafny. However, they cannot always be written in infix or symbolic notation.

Finally, we present some useful properties of sequences and their related
predicates. The following hold for all sequences a and b and for all integers i, j,
k, l, m and n:

Deep Equality:

a ≈ b −→ b ≈ a a ≈ b ∧ b ≈ c −→ a ≈ c
a ≈ b −→ |a| = |b| a ≈ b −→ a ∼ b
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Ranges:

a ≈ b[0..i)++a[i..j)++b[j..|b|) ∧ m≤i≤j≤n −→ a ≈ b[0..m)++a[m..n)++b[n..|b|)
a ≈ b[0..i)++a[i..j)++b[j..|b|) ∧ a[i..j) ∼ b[i..j) −→ a ∼ b
a ≈ a[0..i)++b[i..j)++a[j..|a|) ∧ b ≈ c −→ a ≈ a[0..i)++c[i..j)++a[j..|a|)

Permutation:
a ∼ b −→ b ∼ a
a ∼ b ∧ b ∼ c −→ a ∼ c
a ∼ b −→ |a| = |b|

Swapping:
Swapped(a, b, i, i) −→ a ≈ b
Swapped(a, b, i, j) −→ a ∼ b

Sorting:

Sorted( a[i..j) ) ∧ i ≤ m ∧ n ≤ j −→ Sorted( a[m..n) )

2.3 Specifying Methods

Method specifications consist of a Precondition, expected to hold before the
method is executed, and a Postcondition, that the code must ensure holds after
the method terminates. We use the Dafny keywords requires and ensures to
refer to the precondition and postcondition of a method respectively. We use
the Dafny keyword assert within our code to introduce assertions, or mid-
conditions. We also use the Dafny keywords decreases and invariant to intro-
duce variants and invariants for loops and recursive methods.

Given some code C with precondition P and postcondition Q, we adopt the
total correctness interpretation of such a specification [12], whereby

For all program states that satisfy the precondition P , the code C will
run without faulting and will terminate in a program state that satisfies
the postcondition Q.

Sometimes, in our specifications, we need to refer to both the current and
initial values of some variables. For example, in the code snippet x := x+3, the
new value of x depends on its previous value. By default, all of our specifications
refer to the current values of variables. As in Dafny, we use the keyword old( . )
to indicate the value before a method call. For example, old( x ) represents the
value of the program variable x before the call to the current method. Notice that
arrays are pointers to sequences. So, if we have an array a, the term old( a ) is the
value of the pointer before the call, old( a )[..) represents the current contents of
the pointer before the call, while old( a[..) ) represents the contents of the array
before the call.

When writing specifications we use both Dafny syntax and normal mathe-
matical notation as well as our sequence notation as developed in Sect. 2.2. For
example, we write ∀ and ∧ rather than forall and &&.
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2.4 The Specification

Sorting is specified as follows

method quicksort(a:array<int>)
requires a �= null ∧ |a| > 0
ensures a[..) ∼ old( a[..) ) ∧ Sorted( a[..) )

This specification requires that the input be a non-null, non-empty array
(to rule out pathological input) and ensures that the resulting array is sorted.
Additionally, the specification states that no elements are added to or deleted
from the array.

3 Recursive Quicksort

Having identified the task that we need to solve, we now provide several different
implementations of quicksort, ranging from classic to more inventive solutions.

The fundamental idea behind the quicksort algorithm is “divide-and-
conquer”:

1. Choose an element in the list – this element serves as the pivot. Set it aside
(e.g. move it to the beginning or end).

2. Partition the array of elements into two sets – those less than the pivot and
those greater than or equal to the pivot

3. Repeat steps 1 and 2 on each of the two resulting partitions until each set
has one or fewer elements.

3.1 The Original Quicksort

Hoare’s original quicksort program, as published in [7], is given as:

1 method quicksort(a:array<int>, from:nat, to:nat) {
2 if (from < to) then {
3 var i,j := partition(a, from, to);
4 quicksort(a, from, i);
5 quicksort(a, j, to);
6 }
7 }

To sort the whole array, from should be set to 0 and to should be set to |a|.
The code presented above makes use of a variant partition method that

does not require the caller to provide a pivot value and returns a pair rather than
a single value. The pivot value is selected arbitrarily from the range [from..to).
The returned pair specifies a range [i..j) of values that are equal to the chosen
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pivot, with elements in the range [from..i) less than the chosen pivot and [j..to)
greater than the chosen pivot. More formally this can be specified as:

a[m..i) < a[i..j) < a[j..n) ∧ ∃v. [ a[i..j) = v ]

The standard version has also been studied in [1]. More recently, the original
version is not seen that often. This is perhaps due to the fact that when the
array has no duplicate elements, then the middle range will have length 1. i.e.
j = i + 1. The algorithm then behaves like the “standard” quicksort, which
we discuss next.

3.2 The Standard Quicksort

Usually [15], quicksort is presented with a method wrapper and uses a variant
of partition which requires a pivot and returns only one value.

1 method quicksort(a:array<int>){
2 quicksort(a, 0, a.Length)
3 }
4

5 method quicksort(a:array<int>, from:nat, to:nat) {
6 if (from < to) then {
7 var mid:int := partition(a, from, to, a[from]);
8 quicksort(a, from, mid);
9 quicksort(a, mid, to);

10 }
11 }

Partition: The partition method rearranges an array within set bounds
according to a pivot value, whilst leaving the rest of the array unmodified. This
rearrangement places all elements that are smaller than the pivot before all ele-
ments that are greater than or equal to the pivot. The method returns the array
index of the first element in the slice which is greater than or equal to the pivot.
It is specified as follows:

method partition(a:array<int>, from:nat, to:nat, pivot:int)
returns (r:nat)

requires a �= null ∧ 0 ≤ from ≤ to ≤ |a|
ensures from ≤ r ≤ to

∧ a[from..r) < pivot ≤ a[r..to) ∧ a[..) ∼ old( a[..) )
∧ a ≈ old( a[0..from) ) ++ a[from..to) ++ old( a[to..|a|) )

Note that in the case where all elements in the range are smaller than the pivot,
the method will return r = to. Similarly, when all elements in the range are
greater than or equal to the pivot, the method will return r = from.
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3.3 Quicksort – Our Version

Below we show our version of recursive quicksort. In fact, this version was
shown to us by Krysia Broda. It is very similar to the standard version, but
with a little twist added: our version splits the array into three, rather than two
parts: one part that is smaller than, one part that is equal to, and one part that
is greater than or equal to, the pivot. Then, the recursive calls need only be
called on the first and the third sub-part; the pivot remains where it was placed
by swap in the current iteration.

Swap: The swap method switches the places of two elements within an array,
while leaving the rest of the array unmodified. It is specified, making use of our
Swapped predicate defined in Sect. 2.2, as follows:

method swap(a:array<int>, i:nat, j:nat)
requires a �= null ∧ i, j ∈ [0..|a|)
ensures Swapped( a[..), old( a[..) ), i, j)

The Code: In the listing below we give assertions about the state of the vari-
ables at the corresponding program points, shown in green. The full Dafny code
for the example below, together with the definitions of all the predicates used
can be found at [3].

1 method quicksort(a:array<int>, from:nat, to:nat)
2 requires a �= null ∧ 0 ≤ from ≤ to ≤ |a|
3 modifies a
4 ensures a ≈ old( a[0..from) ) ++ a[from..to) ++ old( a[to..|a|) )
5 ∧ a[..) ∼ old( a[..) ) ∧ Sorted( a[from..to) )
6 decreases to − from
7 {
8 var a0:seq<int> := a[..];
9 if (from + 1 < to) {

10 var pivot:int := a[from];
11 assert a ≈ a0 ∧ pivot = a[from] ∧ a[..) ∼ old( a[..) )
12

13 var mid:int := partition(a, from + 1, to, pivot);
14 assert from + 1 ≤ mid ≤ to ∧ pivot = a[from]
15 ∧ a[from + 1..mid) < pivot ≤ a[mid..to)
16 ∧ a ≈ a0[0..from + 1) ++ a[from + 1..to) ++ a[to..|a|)
17 ∧ a[..) ∼ old( a[..) )
18

19 swap(a, from, mid - 1);
20 assert from ≤ mid − 1 ≤ to
21 ∧ a[from..mid − 1) < a[mid-1] ≤ a[mid..to)
22 ∧ a ≈ a0[0..from) ++ a[from..to) ++ a0[to..|a|)
23 ∧ a[..) ∼ old( a[..) )
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24

25 quicksort(a, from, mid - 1);
26 assert from ≤ mid − 1 ≤ to
27 ∧ a[from..mid − 1) < a[mid-1] ≤ a[mid..to)
28 ∧ a ≈ a0[0..from) ++ a[from..to) ++ a0[to..|a|)
29 ∧ a[..) ∼ old( a[..) ) ∧ Sorted( a[from..mid − 1) )
30

31 quicksort(a, mid, to);
32 assert a ≈ a0[0..from) ++ a[from..to) ++ a0[to..|a|)
33 ∧ a[..) ∼ old( a[..) ) ∧ Sorted( a[from..to) )
34 }
35 }

In Fig. 1 we show the assertions at several program points diagrammatically:

– PRE: before the method call (i.e. the precondition)
– MID 2: after the call of partition (i.e. at line 14)
– MID 3: after the call of swap (i.e. at line 20)
– MID 4: after the first recursive call of quicksort (i.e. at line 26)
– MID 5: after the second recursive call of quicksort (i.e. at line 32)
– POST: as an implication of the previous assertion (i.e. again at line 32)

We use F, T for from and to, and K as a shorthand for mid-1.

Fig. 1. Diagrammatic assertions for our recursive quicksort program.
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Verification: We have verified the above code using Dafny. In order to do this,
we defined and used four lemmas. We show below how the verification works:
we have included in green the definition of auxiliary variables (lines 8, 12, 17,
21 and 25 below), and the calls of the lemmas (lines 18, 22, 26 and 27 below).
The complete Dafny code can be found at [3].

1method quicksort(a:array<int>, from:nat, to:nat)
2 requires a �= null ∧ 0 ≤ from ≤ to ≤ |a|
3 modifies a
4 ensures a ≈ old( a[0..from) ) ++ a[from..to) ++ old( a[to..|a|) )
5 ∧ a[..) ∼ old( a[..) ) ∧ Sorted( a[from..to) )
6 decreases to − from
7 {
8 var a0:seq<int> := a[..];
9 if (from + 1 < to) {

10 var pivot:int := a[from];
11 var mid:int := partition(a, from + 1, to, pivot);
12 var a1:seq<int> := a[..];
13

14 swap(a, from, mid - 1);
15 var a2:seq<int> := a[..];
16 L swap impl sameUpTo(a2, a1, from, mid -1);
17

18 quicksort(a, from, mid - 1);
19 var a3:seq<int> := a[..];
20 L sameUpTo prsrv less(a3, a2, pivot, mid, to);
21

22 quicksort(a, mid, to);
23 var a4:seq<int> := a[..];
24 L sameUpTo prsrv grEq(a4, a3, pivot, mid, to);
25 L conc impl Sorted(a4, from, mid, to);
26 }
27 }

From the eighteen assertions mentioned in the code, Dafny only needed help
with the proofs of four, and needed no help at all for the case where from+1 ≥ to.
We now list the lemmas used above, using the convention that a, b, c stand for
sequences of type T , while elem ∈ T is a possible value, and i, j, k, l, m and n
are natural numbers.

L swap impl sameUpTo(a, b, i, j,):

|a| = |b| ∧ i ≤ j < |a| ∧ a[..) ∼ b[..) ∧ Swapped(a, b, i, j)
−→ a ≈ b[0..i) ++ a[i..j + 1) ++ b[j + 1..) ∧ a[..) ∼ b[..)

This lemma says that swapping creates a permutation of the original array,
leaving the [..i) and the [i + 1..) range unmodified. The proof follows by
unfolding the definitions.
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L sameUpTo prsrv less(a, b, elem, m, n):

|a| = |b| ∧ a ≈ b[..m) ++ a[m..n) ++ b[n..) ∧ a[..) ∼ b[..)
∧ b[m..n) < elem

−→ a[m..n) < elem

This lemma says that if an array a is a permutation of an array b, and is
identical with b in the ranges [..m) and [n..), then b is smaller than elem in
the range [m..n), then a is also smaller than elem in the range [m..n). The
proof follows by establishing that a[m..m) ∼ b[m..m).

L sameUpTo prsrv grEq(a, b, elem, m, n):

|a| = |b| ∧ a ≈ b[..m) ++ a[m..n) ++ b[n..) ∧ a[..) ∼ b[..)
∧ elem ≤ b[m..n)

−→ elem ≤ a[m..n)

This lemma says that if an array a is a permutation of an array b, and is
identical with b in the ranges [..m) and [n..), then b is greater or equal to
elem in the range [m..n), then a is also greater or equal to elem in the range
[m..n). The proof follows by establishing that a[m..m) ∼ b[m..m).

L conc impl Sorted(a, i, j, k):

i < j ≤ k ≤ |a| ∧ i < |a| ∧ Sorted( a[i..j − 1) ) ∧ Sorted( a[j..k) )
∧ a[i..j − 1) < a[j − 1] ≤ a[j..)

−→ Sorted( a[i..k) )

This lemma says that concatenation of two sorted sub-ranges [i..j − 1) and
[j..k), where the left sub-range contains smaller elements than the element
at a[j − 1], and where a[j − 1] is smaller or equal to the elements at [j..k)
produces a sorted range [i..k). The proof follows by unfolding the definitions.

4 Iterative Quicksort

An iterative version of quicksort can be obtained from the recursive one directly
by applying the standard transformation of recursion. This is shown in Sect. 4.1.
A more interesting (and more efficient) iterative version can be obtained if we
observe some properties of the first version. This is shown in Sect. 4.2.

4.1 Iterative Quicksort Version 1 – Simulating Method Arguments

The Code: We use a stack, here called memos, to keep track of the parame-
ters of the recursive method. We simulate the push/pop operations by decre-
menting/incrementing the value of top. We start by pushing 0 and |a| onto
memos (lines 9 and 10). Then, we read the values of from and to iteratively
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from the stack (lines 13 and 14), until the stack is empty. The first recur-
sive call, quicksort(a,f,mid-1), is represented by pushing the values from
and mid − 1 onto the stack (lines 21 and 22), and the second recursive call,
quicksort(a,mid,to), is represented by pushing the values to and mid onto
the stack (lines 23 and 24).

1 method quicksort(a:array<int>)
2 requires a �= null ∧ |a| > 0
3 modifies a
4 ensures a[..) ∼ old( a[..) ) ∧ Sorted( a[..) )
5 {
6 var len:int := 2 * a.Length
7 var memos:array<int> := new int[len];
8 var top:int := len - 2;
9 memos[top] := 0;

10 memos[top + 1] := a.Length;
11

12 while( top < len ){
13 var from:int := memos[top];
14 var to:int := memos[top + 1];
15 top := top + 2;
16 if (from + 1 < to) {
17 var pivot:int := a[from];
18 var mid:int := partition(a, from + 1, to, pivot);
19 swap(a, from, mid - 1);
20 top := top - 4;
21 memos[top] := from;
22 memos[top + 1] := mid - 1;
23 memos[top + 2] := mid;
24 memos[top + 3] := to;
25 }
26 }
27 }

We sketch the loop invariant for this version of quicksort in Fig. 2, but do
not discuss the verification in more detail.

4.2 Iterative Quicksort Version 2 – Pivot Storage

Preliminaries: We now discuss the second version of iterative quicksort,
which, to the best of our knowledge, is novel. Rather than just translating the
recursion into iteration, as we did in Sect. 4.1, we instead draw inspiration from
observing the following two facts about the code from Sect. 4.1: Firstly, neigh-
bouring to and from values are off by 1 - this can be seen in lines 22 and 23.
Secondly, after swapping the array elements at from and (mid − 1) (line 19), the
contents of the array at (mid − 1) never changes.

This led us to the idea that, rather than pushing and popping the ranges on
which we operate (i.e. the values from and to) we can instead work with the
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Fig. 2. Invariant sketch for our iterative “simulated recursion” quicksort program.

final location of the pivot (mid − 1). We know that the contents of the array at
this location will not change, and we also know that the next range to operate on
will start at the location succeeding the location of the current pivot. Therefore,
we use an array of pivot locations, called pivs.

We know that pivs contains strictly increasing values:

∀i, j ∈ [0..|pivs|). [ i < j → pivs[i] < pivs[j] ]

We also know the pivot locations delineate array segments with increasing
values and that the contents of array a at location pivs[i] will not change in
subsequent iterations, since all the values preceding it are smaller, and all values
coming after it are greater of equal. We encode these two properties as follows:2

∀i ∈ [top..|a|). a[..pivs[i]) < a[pivs[i]] ≤ a[pivs[i] + 1..)

We use the variable top with values from the interval [0..|a| + 1), to range
over the indices of the array pivs, so that the contents of the slice pivs[top+1..)
is always defined. We initialize top with |a|. We increment top in order to pop
a pivot location, and decrement it in order to push a pivot location. This gives
us the invariant:

0 ≤ top ≤ |a|
We also use variables from and to to delineate the range we are currently

operating on. We have the invariants that

0 ≤ top ≤ |a| ∧ 0 ≤ from ≤ to = pivs[top] ∧ pivs[|a|] = |a|

that the array is sorted up to and including the index from, and that all values
before from are smaller or equal to those starting from and onwards:

Sorted( a[..from + 1) ) ∧ a[..from) ≤ a[from..)
2 The careful reader will notice that the array look-up a[pivs[i]+1] is not always
defined. Nevertheless, the assertion is well-formed, because it stands for ∀i ∈
[top..|a|).∀j ∈ [0..pivs[i]).∀k ∈ [pivs[i]+1..|a|). a[j] < a[pivs[i]] ≤ a[k].
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Note: while the contents of array a at location pivs[i] will not change in subse-
quent iterations, the contents of a at location from might change at subsequent
iterations, as it is possible that a[from] > a[from+k] for some k ∈ IN.

The Code: The deliberations from above lead us to the code below. Essentially,
we have a loop which either increases from, or decreases the distance between
to and from. The loop terminates when a.Length− from ≤ 1, which, given the
invariants from above, implies that Sorted( a[..|a|) ). The loop invariant consists
of nine conjuncts.

1 method quicksort(a:array<int>)
2 requires a �= null ∧ |a| > 0
3 modifies a
4 ensures a[..) ∼ old( a[..) ) ∧ Sorted( a[..) )
5 {
6 var pivs:array<int> := new int[a.Length+1];
7 pivs[a.Length]:= a.Length;
8 var from, to, top := 0, a.Length, a.Length;
9

10 while (a.Length - from > 1)
11 invariant 0 ≤ top ≤ |a| ∧ 0 ≤ from ≤ to = pivs[top]
12 ∧ pivs[|a|] = |a| ∧ ∀i ∈ [top..|a| + 1). pivs[i] ≤ i + 1
13 ∧ ∀i, j ∈ [top..|a| + 1). [ i < j → pivs[i] < pivs[j] ]
14 ∧ ∀i ∈ [top..|a|). a[..pivs[i]) < a[pivs[i]] ≤ a[pivs[i]..)
15 ∧ a[..from) ≤ a[from..)
16 ∧ a[..) ∼ old( a[..) ) ∧ Sorted( a[..from + 1) )
17 decreases |a| − from, to − from
18 {
19

20 if ( (to - from) <= 1 ) {
21 L sorted combine(a, from, to);
22 L prsrv pivot(a,to);
23

24 from := to + 1;
25 top := top + 1;
26 to := pivs[top];
27 } else {
28 var a2:seq<int> := a[..];
29

30 var pivot:int := a[from];
31 var mid:nat := partition(a, from + 1, to, pivot);
32 var a2:seq<int> := a[..];
33

34 swap(a, from, mid - 1);
35 var a3:seq<int> := a[..];
36 L swap prsrv less(a3, a2, from, mid);
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37 L sameUpTo trans(a3, a2, a1, from, to);
38 L sameUpTo prsv sorted(a3, a1, from, to);
39

40 top := top - 1;
41 pivs[top] := mid - 1;
42 to := mid - 1;
43 }
44 }
45 }

We sketch the loop invariant for this version of quicksort in Fig. 3.

Fig. 3. Invariant sketch for our iterative “pivot storage” quicksort program.

Verification: In our Dafny proof we wrote twenty-four assert statements to
guide the prover, and called five lemmas at the code locations listed above. The
lemmas are given below and proven in the next subsection. In the following, a,
b and c stand for sequences, while i, j, k, m and n are natural numbers.

L sorted combine(a, m, n):

m ≤ n ≤ m + 1 ∧ Sorted( a[..m + 1) ) ∧ a[..n) < a[n] ≤ a[n + 1..)
−→ Sorted( a[..m + 2) )

The lemma above increases the range for which we know that an array a is
sorted.

L prsrv pivot(a, m):

m < |a| ∧ a[..m) < a[m] ≤ a[m + 1..) −→ a[..m + 1) ≤ a[m + 1..)

The lemma above increases the range for which we know that elements are
smaller than the elements in the remaining array.
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L swap prsrv less(a, b, m, n):

m < n ≤ |b| ∧ b[..m) < b[m..) ∧ b[m + 1..n) < b[m] ∧ |a| = |b|
∧ Swapped(a, b, m, n − 1)

−→ a[..m) < a[m..) ∧ a[m..n − 1) < a[n − 1]

The lemma above asserts that, after swapping, a pivot correctly partitions
the array. The left subsequence is smaller than the right subsequence and
the middle subsequence is smaller than the element a[n − 1].

L sameUpTo trans(a, b, c, m, n):

|a| = |b| = |c| ∧ m < n ≤ |a| ∧ a ≈ b[..m) ++ a[m..n) ++ b[n..)
∧ a[..) ∼ b[..) ∧ b ≈ c[..m + 1) ++ b[m + 1..n) ++ c[n..)
∧ b[..) ∼ c[..)

−→ a ≈ c[..m) ++ a[m..n) ++ c[n..) ∧ a[..) ∼ c[..)

The lemma above asserts that permutation, and array composition from sub-
arrays are transitive relations.

L sameUpTo prsv sorted(a, b, i, j):

|a| = |b| ∧ i < j ≤ |b| ∧ Sorted( b[..i + 1) ) ∧ a[..i) ≤ a[i..)
∧ a ≈ b[..i) ++ a[i..j) ++ b[j..)

−→ Sorted( a[..i + 1) )

This lemma ensures that swapping preserves sortedness of sub-ranges of the
array.

4.3 Proofs

We now show the proofs of these lemmas.

Proof of L sorted combine(a, m, n):

Given
(1) m ≤ n ≤ m + 1
(2) Sorted( a[..m + 1) )
(3) a[..n) < a[n] ≤ a[n + 1..)

To show
(A) Sorted( a[..m + 2) )

From (1), we obtain that either m = n or m + 1 = n. We proceed by case
analysis.
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1st Case:
(4) m = n
Then we have
(5) a[..m) < a[m] ≤ a[m + 1..) from (3) and (4)
(6) a[m] < a[m + 1] from (5)
(A) Sorted( a[..m + 2) ) from (2) and (6)

2nd Case:
(4) m + 1 = n
Then we have
(5) a[..m + 1) < a[m + 1] from (3) and (4)
(A) Sorted( a[..m + 2) ) from (2) and (5)

Proof of L prsrv pivot(a, m): by unfolding the definitions.

Proof of L swap prsrv less(a, b, m, n):
Given

(1) m < n ≤ |b|
(2) b[..m) < b[m..)
(3) b[m + 1..n) < b[m] ≤ b[n + 1..)
(4) |a| = |b|
(5) Swapped(a, b, m, n − 1)

To Show
(A) a[..m) < a[m..)
(B) a[m..n − 1) < a[n − 1] ≤ a[n..)

We obtain
(6) a[..m) ≈ b[..m) from (5)
(7) a[m] = b[n − 1] from (5)
(8) a[m + 1..n − 1) ≈ b[m + 1..n − 1) from (5)
(9) a[n − 1] = b[m] from (5)
(10) a[n..) ≈ b[n..) from (5)
(A) a[..m) < a[m..) from (2), (7)-(10)
(11) a[m..n − 1) ≈ b[n − 1] ++ b[m + 1..n − 1) from (7), (8)
(12) a[m..n − 1) < b[m] from (11), (2) and (3)
(13) a[m..n − 1) < a[n − 1] from (12), (9)
(14) a[n − 1] ≤ a[n..) from (3), (9) and (10)
(B) a[m..n − 1) < a[n − 1] ≤ a[n..) from (13) and (14)

Proof of L sameUpTo trans(a, b, c, m, n):
Given

(1) |a| = |b| = |c|
(2) m < n ≤ |a|
(3) a ≈ b[..m) ++ a[m..n) ++ b[n..)
(4) a[..) ∼ b[..)
(5) b ≈ c[..m + 1) ++ b[m + 1..n) ++ c[n..)
(6) b[..) ∼ [..c)

To Show
(A) a ≈ c[..m) ++ a[m..n) ++ c[n..)
(B) a[..) ∼ c[..)
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We obtain
(B) a[..) ∼ c[..) from (4) and (6)
(7) b[..m) ≈ c[..m) from (5), and by m < m + 1
(8) b[n..) ≈ c[n..) from (5)
(A) a ≈ c[..m) ++ a[m..n) ++ c[n..) from (3), (7) and (8)

Proof of L sameUpTo prsv sorted(a, b, i, j):
Given

(1) |a| = |b|
(2) i < j ≤ |b|
(3) Sorted( b[..i + 1) )
(4) a[..i) ≤ a[i..)
(5) a ≈ b[..i) ++ a[i..k) ++ b[k..)

To Show
(A) Sorted( a[..i + 1) )

We obtain
(6) Sorted( b[..i) ) from (3) and because i < i + 1
(7) Sorted( a[..i) ) from (5) and (6)
(8) i > 1 → a[i − 1] ≤ a[i] from (4)
(A) Sorted( a[..i + 1) ) from (7) and (8)

5 Experiences, Conclusions and Future Work

Despite extensive testing and hand-written proofs, it was reassuring when Dafny
confirmed the correctness of our quicksort. We found array-sequence infix oper-
ators to be useful in the development of both the algorithm and reasoning.

Dafny was extremely effective in helping us iron out many little, fiddly bugs
at the original stages of our work. As we progressed, the process became both
slow and addictive. Those of us new to Dafny were often surprised to see that
Dafny/Z3 could automatically discharge proof obligations which were, in our
opinion, non-trivial, while it was often unable to discharge what we considered
trivial ones. This was due to our limited previous understanding of Z3.

We therefore proceeded in a somewhat experimental fashion. We inserted
assume statements for all the proof obligations, and gradually replaced them
by assert statements. When the verifier was unable to discharge an obligation,
we wrote a lemma, whose validity we checked through hand-written proofs. As a
result, the lemmas we have developed do not seem to be the most interesting or
intuitive ones, and their choice might have been affected by the particular order
in which we happened to require them.

The computational power needed for the proofs to go through was consider-
able. Therefore, we adopted little tricks to focus the tool on particular aspects of
the proof. For example, we would replace part of the code with assume false,
so that the tool would not need to check validity past this point. We also split the
proof of the pivot-based iterative quicksort into two: First we replaced the code
in the else branch by assume false. This let us prove that the initialization
establishes the loop invariant and that the then branch of the loop preserves
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it. Then we wrote a function whose body consists of assume statements for all
the loop invariants, followed by the code from the else branch of the loop and
ending in assert statements for all the loop invariants. This let us prove that
the else branch of the loop also preserves the loop invariant.

The experimental fashion for discovering useful lemmas, and the ticks to focus
the tool on certain aspects are often seen in the Verification Corner videos [14].
We believe that Visual Studio should provide more automatic support for steer-
ing the proof effort and more help with interactive program and proof develop-
ment.

As future work, we would like to complete the proofs of the lemmas we
have used, complete the proofs of the other two versions of quicksort, and try
and unify the arguments used in the various proofs. We would also like to run
benchmarks to compare the efficiency of our pivot-based algorithm with that of
other algorithms in the literature. Finally, we want to port the Dafny proofs to
our tool Apollo [4], which maps Java, Haskell code and proof idioms onto Dafny.
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