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Preface

This volume contains the papers presented at ICTAC 2015: The 12th International
Colloquium on Theoretical Aspects of Computing held during October 29–31, 2015, in
Cali, Colombia.

The International Colloquia on Theoretical Aspects of Computing (ICTAC) is a
series of annual events founded in 2003 by the United Nations University International
Institute for Software Technology. Its purpose is to bring together practitioners and
researchers from academia, industry, and government to present research results and
exchange experience and ideas. Beyond these scholarly goals, another main purpose is
to promote cooperation in research and education between participants and their
institutions from developing and industrial regions.

The city of Cali, where this year’s ICTAC took place, is the third largest city of
Colombia and the seat of six major universities of the country. The Universidad
Javeriana-Cali, host of the colloquium, has built a reputation on theoretical computer
science through the works of Avispa, a research team founded in the Cali-based uni-
versities of Javeriana and Universidad del Valle, with active members in the univer-
sities of Cork (Ireland), École Polytechnique-Paris (France), Oxford (UK), and
Groningen (The Netherlands). The latter three institutions were co-organizers of this
year’s colloquium, which was also sponsored by Microsoft Research Center, Inria,
CNRS, CLEI, and the Colombian Computation Society.

We were honored to have seven distinguished guests as invited speakers:

– Jean-Raymond Abrial (consultant, France)
– Volker Diekert (University of Stuttgart, Germany)
– César Muñoz (NASA Langley, USA)
– Catuscia Palamidessi (Inria and École Polytechnique, France)
– Davide Sangiorgi (Inria and University of Bologna, Italy)
– Moshe Vardi (Rice University, USA)
– Glynn Winskel (University of Cambridge, UK)

Jean-Raymond Abrial’s talk undertook the study of a proof of a well-known theorem in
planar graphs to motivate the new discipline of mathematical engineering. Volker
Diekert discussed different monitor constructions for checking safety properties of
complex systems. César A. Muñoz’s talk concerned the application of formal methods
to the safety analysis of air traffic management systems. He described the detect and
avoid (DAA) capability to address the challenge of NASA’s Unmanned Aircraft
Systems Integration project. Catuscia Palamidessi’s talk discussed the problem of
protecting the privacy of the user when dealing with location-based services. Davide
Sangiorgi presented his work on refinements of co-inductive proof methods for func-
tional and process languages. He discussed the contraction technique that refines
Milner’s unique solution of equations to reason about bisimilarity. Glynn Winskel
discussed his work on optimal probabilistic strategies for distributed games. Moshe



Vardi’s talk described the rise and fall of mathematical logic in computer science and
then analyzed the quiet revolution in logic that has given rise again to modern appli-
cations of logic to computing.

ICTAC 2015 received 93 submissions from 30 different countries. Each submission
was reviewed by at least three members of the Program Committee, along with help
from external reviewers. Out of these 93 submissions, 25 full-length papers were
accepted. The committee also accepted two short papers and three tool papers. This
corresponds approximately to a 1/3 acceptance ratio.

Apart from the paper presentations and invited talks, ICTAC 2015 continued the
tradition of previous ICTAC conferences in holding a four-course school on three
important topics in theoretical aspects of computing: formal methods and verification,
formal models of concurrency, and security in concurrency. These courses were:
“Formal Modeling” given by Jean-Raymond Abrial (France), “Formal Verification
Techniques,” by Martin Leucker (University of Lübeck, Germany), “Security and
Information Flow,” by Kostas Chatzikokolakis (CNRS-École Polytechnique, France),
and “Models for Concurrency” by Pawel Sobocinski (University of Southampton, UK).
In addition, co-located for the first time with ICTAC, we hosted the 11th International
Workshop on Developments in Computational Models (DCM 2015) chaired by César
A. Muñoz (NASA) and Jorge A. Pérez (University of Groningen).

We thank all the authors for submitting their papers to the conference, and the
Program Committee members and external reviewers for their excellent work in
the review, discussion, and selection process. We are indebted to all the members of the
Organizing Committee for their hard work in all phases of the conference. We also
acknowledge our gratitude to the Steering Committee for their constant support.

We are also indebted to EasyChair that greatly simplified the assignment and
reviewing of the submissions as well as the production of the material for the pro-
ceedings. Finally, we thank Springer for their cooperation in publishing the
proceedings.

August 2015 Martin Leucker
Camilo Rueda

Frank D. Valencia
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Invited Talks Abstracts



An Exercise in Mathematical Engineering:
Stating and Proving Kuratowski Theorem

Jean-Raymond Abrial

Marseille, France
jrabrial@neuf.fr

Abstract. This paper contains the informal presentation of a well known the-
orem on planar graphs: the theorem of Kuratowski (1930). This study is sup-
posed to serve as an example for the proposed new discipline of Mathematical
Engineering. The intend if this discipline is to show to informaticians, by means
of examples, that there must exist important connections between rigorous
mathematics and rigorous computer science. Moreover, in both cases, the
mechanisation of proofs is becoming more and more fashionable these days.
Such mechanisations cannot be performed without a clear understanding of the
mathematical context that has to be rigorously described before engaging in the
proof itself.



Location Privacy via Geo-Indistinguishability

Konstantinos Chatzikokolakis1,2, Catuscia Palamidessi2,3,
and Marco Stronati2

1 CNRS, France
2 LIX, École Polytechnique, France

3 INRIA, France
catuscia@lix.polytechnique.fr

Abstract. In this paper we report on the ongoing research of our team Comète
on location privacy. In particular, we focus on the problem of protecting the
privacy of the user when dealing with location-based services. The starting point
of our approach is the principle of geo-indistinguishability, a formal notion of
privacy that protects the user’s exact location, while allowing approximate
information – typically needed to obtain a certain desired service – to be
released. Then, we discuss the problem that raise in the case of traces, when the
user makes consecutive uses of the location based system, while moving along a
path: since the points of a trace are correlated, a simple repetition of the
mechanism would cause a rapid decrease of the level of privacy. We then show
a method to limit such degradation, based on the idea of predicting a point from
previously reported points, instead of generating a new noisy point. Finally, we
discuss a method to make our mechanism more flexible over space: we start
from the observation that space is not uniform from the point of view of location
hiding, and we propose an approach to adapt the level of privacy to each zone.



A Note on Monitors and Büchi automata

Volker Diekert1 and Anca Muscholl2 and Igor Walukiewicz2

1 Universität Stuttgart, FMI, Germany
diekert@fmi.uni-stuttgart.de
2 LaBRI, University of Bordeaux, France

Abstract. When a property needs to be checked against an unknown or very
complex system, classical exploration techniques like model-checking are not
applicable anymore. Sometimes a monitor can be used, that checks a given
property on the underlying system at runtime. A monitor for a property L is a
deterministic finite automaton ML that after each finite execution tells whether
(1) every possible extension of the execution is in L, or (2) every possible
extension is in the complement of L, or neither (1) nor (2) holds. Moreover, L
being monitorable means that it is always possible that in some future the
monitor reaches (1) or (2). Classical examples for monitorable properties are
safety and cosafety properties. On the other hand, deterministic liveness prop-
erties like “infinitely many a’s” are not monitorable.

We discuss various monitor constructions with a focus on deterministic
x-regular languages. We locate a proper subclass of deterministic x-regular
languages but also strictly large than the subclass of languages which are
deterministic and codeterministic; and for this subclass there exists a canonical
monitor which also accepts the language itself.

We also address the problem to decide monitorability in comparison with
deciding liveness. The state of the art is as follows. Given a Büchi automaton, it
is PSPACE-complete to decide liveness or monitorability. Given an LTL for-
mula, deciding liveness becomes EXPSPACE-complete, but the complexity to
decide monitorability remains open.



Formal Methods in Air Traffic Management:
The Case of Unmanned Aircraft Systems

(Invited Lecture)

César A. Muñoz
NASA Langley Research Center, Hampton, Virginia 23681-2199

Abstract. As the technological and operational capabilities of unmanned aircraft
systems (UAS) continue to grow, so too does the need to introduce these systems
into civil airspace. Unmanned Aircraft Systems Integration in the National Air-
space System is a NASA research project that addresses the integration of civil
UAS into non-segregated airspace operations. One of the major challenges of this
integration is the lack of an on-board pilot to comply with the legal requirement
that pilots see and avoid other aircraft. The need to provide an equivalent to this
requirement for UAS has motivated the development of a detect and avoid
(DAA) capability to provide the appropriate situational awareness and maneuver
guidance in avoiding and remaining well clear of traffic aircraft. Formal methods
has played a fundamental role in the development of this capability. This talk
reports on the formal methods work conducted under NASA’s Safe Autonomous
System Operations project in support of the development of DAA for UAS. This
work includes specification of low-level and high-level functional requirements,
formal verification of algorithms, and rigorous validation of software imple-
mentations. The talk also discusses technical challenges in formal methods
research in the context of the development and safety analysis of advanced air
traffic management concepts.

This invited lecture reports on research conducted at NASA Langley Research Center at the Safety-
Critical Avionics Systems Branch by several individuals including, in addition to the author, Anthony
Narkawicz, George Hagen, Jason Upchurch, and Aaron Dutle.



The Proof Technique of Unique Solutions
of Contractions

Davide Sangiorgi

Università di Bologna and INRIA
davide.sangiorgi@gmaol.com

This extended abstract summarises work conducted with Adrien Durier and
Daniel Hirschkoff (ENS Lyon), initially reported in [38].

Bisimilarity is employed to define behavioural equivalences and reason about
them. Originated in concurrency theory, bisimilarity is now widely used also in
other areas, as well as outside Computer Science. In this work, behavioural
equivalences, hence also bisimilarity, are meant to be weak because they abstract
from internal moves of terms, as opposed to the strong ones, which make no
distinctions between the internal moves and the external ones (i.e., the interac-
tions with the environment). Weak equivalences are, practically, the most rele-
vant ones: e.g., two equal programs may produce the same result with different
numbers of evaluation steps.

D. Sangiorgi—The authors are partially supported by the ANR project 12IS02001 PACE.



A Logical Revolution

Moshe Y. Vardi

Rice University, Department of Computer Science, Rice University,
Houston, TX 77251-1892, USA

vardi@cs.rice.edu,

http://www.cs.rice.edu/*vardi

Abstract. Mathematical logic was developed in an effort to provide formal
foundations for mathematics. In this quest, which ultimately failed, logic begat
computer science, yielding both computers and theoretical computer science.
But then logic turned out to be a disappointment as foundations for computer
science, as almost all decision problems in logic are either unsolvable or
intractable. Starting from the mid 1970s, however, there has been a quiet rev-
olution in logic in computer science, and problems that are theoretically unde-
cidable or intractable were shown to be quite feasible in practice. This talk
describes the rise, fall, and rise of logic in computer science, describing several
modern applications of logic to computing, include databases, hardware design,
and software engineering.

References

1. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and
debugging. Commun. ACM 52(11), 74–84 (2009)

2. Codd, E.F.: A relational model for large shared data banks. Commun. ACM 13, 377–387
(1970)

3. Codd, E.F.: Relational completeness of data base sublanguages. In: Rustin, R. (ed.) Database
Systems, pp. 33–64. Prentice-Hall (1972)

4. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun. ACM 54
(5), 88–98 (2011)

5. de Moura, L.M., Bjørner, N.: Satisfiability modulo theories: introduction and applications.
Commun. ACM 54(9), 69–77 (2011)

6. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical success.
Commun. ACM 52(8), 76–82 (2009)

7. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th IEEE Symposium on
Foundations of Computer Science, pp. 46–57 (1977)

8. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
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On Probabilistic Distributed Strategies

Glynn Winskel

Computer Laboratory, University of Cambridge
gw104@cam.ac.uk

Abstract. In a distributed game we imagine a team Player engaging a team
Opponent in a distributed fashion. No longer can we assume that moves of
Player and Opponent alternate. Rather the history of a play more naturally takes
the form of a partial order of dependency between occurrences of moves. How
are we to define strategies within such a game, and how are we to adjoin
probability to such a broad class of strategies? The answer yields a surprisingly
rich language of probabilistic distributed strategies and the possibility of pro-
gramming (optimal) probabilistic strategies. Along the way we shall encounter
solutions to: the need to mix probability and nondeterminism; the problem of
parallel causes in which members of the same team can race to make the same
move, and why this leads us to invent a new model for the semantics of dis-
tributed systems.
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An Exercise in Mathematical Engineering:
Stating and Proving Kuratowski Theorem

Jean-Raymond Abrial(B)

Marseille, France
jrabrial@neuf.fr

Abstract. This paper contains the informal presentation of a well known
theorem on planar graphs: the theorem of Kuratowski (1930). This study
is supposed to serve as an example for the proposed new discipline of
Mathematical Engineering. The intend if this discipline is to show to
informaticians, by means of examples, that there must exist important
connections between rigorous mathematics and rigorous computer sci-
ence. Moreover, in both cases, the mechanisation of proofs is becoming
more and more fashionable these days. Such mechanisations cannot be
performed without a clear understanding of the mathematical context
that has to be rigorously described before engaging in the proof itself.

1 Introduction

The writing of this paper originated in the frustration I felt after reading some
mathematical works. Let me explain why in this introduction. First of all, why
am I interested in reading some mathematical works either in papers, in text-
books, or in some presentation material, mainly through internet? There are two
reasons for this: (i) I am interested in formalising and mechanically prove some
well known mathematical theorems, and (ii) I have always thought that math-
ematics should be a good cultural framework for informaticians. In this paper,
I will concentrate on this second reason.

In order to link mathematics and computer science, the idea would be to
present some specific material that would help students to understand the way
mathematics is presented by professional mathematicians. Examples could be
taken from the presentations of important, complicated, and well accepted the-
orems by the scientific community. Before proving these theorems, the mathe-
matician has to write down many definitions and sometimes a large collection
of intermediate results that are needed for writing the statement of the theorem
but also, of course, for its proof: let us call this kind of presentation a mathe-
matical context. Sometimes this context is very short, but sometimes it might
also be quite elaborate.

Now, in my opinion, such contexts are not so different from what the pro-
grammer should do before writing a program. He (she) has to state (most of
the time implicitly) the properties of the data his (her) program is handling. An
important part of software engineering these days consists in abstracting and

c© Springer International Publishing Switzerland 2015
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4 J.-R. Abrial

formalising such contexts. So, I (naively) thought that we might take advantage
of learning how professional mathematicians do the same in their work. This is
indeed why I plunge myself into some mathematical works.

Coming back to my frustration, it originated in the fact that I was not very
happy with what I read. Mathematical contexts are quite often badly structured,
hard to understand, and also sometimes miss to give some important definitions
that are used later in a rather cavalier fashion. One of the main complaints I
have is that these presentations are quite often not abstract enough. That seems
to be a very strange conclusion regarding mathematical works, since mathemat-
ics should, in principle, be the realm of abstraction “par excellence”. So, my
conclusion after reading these works is that mathematics, after all, might not
be such a good example to follow and could even induce some bad behaviours
among informaticians. In conclusion, I had no choice but trying to reconstruct
by myself some of these presentations until I feel comfortable with them.

In investigating some “interesting” mathematical works, I came across the
theorem of Kuratowski [1]. This theorem gives a simple characteristic property
of a planar graph. As a reminder, a planar graph is one where there exists
a drawing of the graph on a plane with edges all intersecting on vertices only.
I had access to one book [2] and several papers [3–5] where authors presented, as
they claim it, some “simple” proofs of this theorem. In other documents (slides),
some authors even miss completely the proof because “it is too complicated”. In
reading these presentations, I was surprised that many authors used drawings as
justifications of their proofs although clearly such drawings did not receive any
solid definitions and formalisations. I have even seen somewhere the following
horrifying fragment in a proof: “... as demonstrated in Fig. 7.3”. Of course, I
have nothing against drawings, but they should be used with care and only for
informal illustrations (in what follows, I will use many illustrating drawings).

It took me some times to understand that this theorem of Kuratowski is not
so much a theorem of graph theory than rather a theorem of topology. In fact,
most of the authors develop their proof within the framework of graph theory
only, which is not abstract enough in this case.

This paper contains the result of my own reconstruction of the Theorem of
Kuratowski. I hope it can be a good example for informaticians. This work shows
that this theorem needs a large mathematical context in order to be stated and
proved in a significant and convincing fashion.

Here is the way how the rest of the paper is structured. In Sect. 2, I present a
very abstract concept of regions, simply defined by an interior, an exterior, and
a border. In Sect. 3, I define some relationships between regions: regions can be
either external to each other or else tangent to each other. In Sect. 4, I consider
the case where regions are all connected to each other. In Sect. 5, I refine the
notion of region in order to define the concept of graph. I also give a formal
definition of planar graphs. In Sect. 6, I propose some cutting axioms fomalising
the notion of intersection between region borders. Finally, in Sect. 7, I state and
prove the theorem of Kuratowski. As can be seen, a “mathematical context” of
a significant size is presented before entering into the theorem itself.
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With such a paper, the idea is to start developing a (new) discipline entirely
devoted to the rewriting of some well known mathematical works: Mathematical
Engineering.

2 Definition of Regions

In this section, rather than recalling immediately the formal definition of a graph
(this will be done in Sect. 5 only), we start with a definition of, so called, regions
and propose some properties of them. The reason we are interested by regions
is that the theorem of Kuratowski is concerned with graphs whose plane images
show the presence of parts that are entirely surrounded by edges and thus form
some “regions” of the plane. This is illustrated in Fig. 1, where thirteen regions
can be seen, thirteen because some regions might contain others (Sect. 3.3).

a

b

c

de

Fig. 1. A graph made of regions

2.1 Definition of a Region: Interior, Exterior, and Border

We suppose first that we are given a set P of points, and then we define a
finite set of regions, R. Such regions are built on these points by means of three
functions: interior, int, exterior, ext, and border, brd. Each of them defines a
non-empty set of points:

int ∈ R → P1(P )
ext ∈ R → P1(P )
brd ∈ R → P1(P )

(1)

As an important property, the interior, exterior and border of a region r together
partition the set of points:

int(r) ∩ ext(r) = ∅

int(r) ∩ brd(r) = ∅

ext(r) ∩ bdr(r) = ∅

int(r) ∪ ext(r) ∪ bdr(r) = P

(2)
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2.2 Decomposing the Border of a Region

Given two distinct points, we define the relation, reg, between these two points
and the regions whose border contains these points:

reg ⊆ P × P × R (3)

We have thus the following property defining reg:

(a �→ b �→ r) ∈ reg
⇔
a 	= b
a ∈ brd(r)
b ∈ brd(r)

(4)

Notice that several regions might share these two points in their borders. Also
note that the order of both points a and b is meaningless:

(a �→ b �→ r) ∈ reg ⇔ (b �→ a �→ r) ∈ reg (5)

Given two distinct points in the border of a region, we define the left, lft , and the
right, rht, parts of the border of this region relative to these two points (look
at Fig. 2). Don’t take “left” and “right” with their usual meanings, these are
just convenient names used here, we could have used “north” and “south”, etc.
instead:

lft ∈ reg → P1(P )
rht ∈ reg → P1(P ) (6)

Given a region r and two distinct points a and b in its border, the “left” and
“right” parts of the border of r, as determined by a and b, intersects in the
set {a, b} only and together exactly cover the border of r. Moreover, they each
contain more points than just a and b. In order to enhance readability, we use
the following abbreviations:

p = lft(a �→ b �→ r)
q = rht(a �→ b �→ r) (7)

We have then:

(a �→ b �→ r) ∈ reg
⇒
p ∩ q = {a, b}
p ∪ q = brd(r)
p \ {a, b} 	= ∅

q \ {a, b} 	= ∅

(8)

All this is illustrated on Fig. 2. Again, the drawing in this figure is just a plane
illustration. We might have different drawings within other contexts.
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r

a

b
rht(a,b,r)

lft(a,b,r)

Fig. 2. A region border separated in two parts by two points a and b

3 Relations Between Regions

Given two distinct regions r1 and r2, we might consider four different relation-
ships between them. They might be external to each other, one region might be
internal to the other, they might be externally tangent to each other, or else one
region might be internally tangent to the other. Let us give more information
and properties about such relationships.

3.1 External Regions

Two regions r1 and r2 are external to each other when the interior of r1 together
with its border are strictly included in the exterior of r2.

int(r1) ∪ brd(r1) ⊂ ext(r2) (9)

Notice that we automatically have a similar relationship between r2 and r1:

int(r2) ∪ brd(r2) ⊂ ext(r1) (10)

This is due to the partitioning Property (2).

3.2 Internal Regions

One region, say r1, is totally inside another one, r2, when the interior of r1
together with its border are strictly included in the interior of r2.

int(r1) ∪ brd(r1) ⊂ int(r2) (11)

As previously, we automatically have a reverse relationship between r2 and r1:

ext(r2) ∪ brd(r2) ⊂ ext(r1) (12)

This is due to the partitioning Property (2).

3.3 Externally Tangent Regions

The two regions r1 and r2 might be externally tangent to each other. In the rest
of this paper, this will be the main relationship between regions we are interested
in. By “externally tangent” we mean three things: (i) the two regions share some
part of their borders, (ii) the part of the border of, say, r1 that is not shared
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with the border of r2 is external to r2, and (iii) the interior of both regions are
incompatible. Have a look at Fig. 3 below. More precisely, we suppose that we
have two distinct points a and b in the border of r1 and also in the border of r2,
that is:

(a �→ b �→ r1) ∈ reg
(a �→ b �→ r2) ∈ reg

(13)

In order to enhance readability, we use the following abbreviations:

p1 = lft(a �→ b �→ r1)
p2 = lft(a �→ b �→ r2)
q1 = rht(a �→ b �→ r1)
q2 = rht(a �→ b �→ r2)

(14)

Moreover, the part of the borders in the left of a and b is the same for r1 and
r2, and the other part of the border of each region together with its interior is
strictly included in the exterior of the other region:

p1 = p2
int(r1) ∪ (q1 \ {a, b}) ⊂ ext(r2)
int(r2) ∪ (q2 \ {a, b}) ⊂ ext(r1)

(15)

Notice that our usage of lft is arbitrary here: we could have use rht or both as
well. The external tangency of both regions r1 and r2 induces the existence of
another region, r3, whose interior includes the interior of both regions r1 and
r2 and the common part of their borders as well. Here are the characteristic
elements of r3:

int(r3) = int(r1) ∪ int(r2) ∪ (p1 \ {a, b})
ext(r3) = ext(r1) \ (int(r2) ∪ q2)
brd(r3) = q1 ∪ q2

(16)

It is easy to prove that r3 is indeed a region with the partitioning property:

int(r3) ∩ ext(r3) = ∅

int(r3) ∩ brd(r3) = ∅

ext(r3) ∩ brd(r3) = ∅

int(r3) ∪ ext(r3) ∪ brd(r3) = P

(17)

The main property of r3 with regards to both regions r1 and r2 is that the
interior of r1 and that of r2 are strictly included in the interior of r3. We can
indeed prove easily the following (this is illustrated in Fig. 3)

Lemma 1
int(r1) ⊂ int(r3)
int(r2) ⊂ int(r3) (18)

Another very important property is the following: if two distinct points c and d
both belong to the border of, say, region r1 then they also belong to the border
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r1

r2

a

b

q2
q1

r3

Fig. 3. Regions r1 and r2 are externally tangent to each other

of r3 provided they don’t belong to the common part of the borders of r1 and
r2 (except if they are the same as a or b):

Lemma 2
c �→ d �→ r1 ∈ reg
c /∈ p1 \ {a, b}
d /∈ p1 \ {a, b}

⇒
c �→ d �→ r3 ∈ reg

(19)

3.4 Internally Tangent Regions

One region, say r1, might be internally tangent to the region r2. This can be
defined in a way that is very similar to what we have done in the previous
subsection. This situation induces a region r3 whose interior is strictly included
in that of r2.

Notice that other kinds of relationships between two regions are excluded.
In particular, it is not possible for two regions to be tangent on a single point
only of their respective borders. We consider by extension that such regions are
either exterior to each other, or else one is inside the other.

3.5 Maximal Regions

In this section, we state an important theorem saying that there are some max-
imal regions whose border contains two given points.

Theorem 1: Given a region r1 and two distinct points a and b in its border,
then there exists a region r2 with a and b in its border, and which either cannot
be made larger by means of further externally tangent regions, or else can be
made larger by means of some further externally tangent regions but only by
removing one or both points a and b from its border.

In Fig. 4, one can see two maximal regions containing points a and b in their
border. These regions have the following borders: a−d−b−e−c and a−e−b−d−c.
The proof of this theorem is a consequence of the two lemmas stated in Sect. 3.3
and of the finiteness hypothesis about regions (Sect. 2).
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a

b

c

de

Fig. 4. a−d−b−e−c and a−e−b−d−c are both maximal regions containing a and b

4 Systems of Connected Regions and Definition of Faces

In the rest of the paper, we suppose that we have no regions that are entirely
outside, or entirely inside other regions (Sects. 3.1 and 3.2). We have no isolated
regions: they are all directly or indirectly connected by external tangency.

Among the various connected regions, we consider those having no internally
tangent regions. Such regions are called faces. Let F be the set of such faces.
We consider now the following relation, fr (for face relation), between faces: two
faces are related in fr if they are externally tangent to each other (Sect. 3.3).
Note that fr is obviously symmetric since it is the case that the external tan-
gency relationship between faces (and more generally between regions) is indeed
symmetric. Moreover, the relation fr is irreflexive (a region is not tangent to
itself). Since we have no isolated regions then the relation fr is also connected.
In Fig. 5, four faces f1, f2, f3, and f4 can be seen as well as the relation fr
between them.

a

b

c

de

f1 f2

f3 f4

Fig. 5. The relation fr between faces f1, f2, f3 and f4

Finally, every path within the connected relation fr defines a region that is not
a face. This is so because two tangent regions r1 and r2 lead to the formation of
another region r3 including both regions r1 and r2 (again, Sect. 3.3). In Fig. 5,
the path f2−f4−f3 corresponds to the region with border a−d−b−e−c.

We now state another important theorem saying that given two distinct
points, situated in some borders (not apparently the border of the same face),
then there always exists a region with these two points in its border.

Theorem 2: Given two distinct points a and b, both situated in the borders of
some regions, then there exists a region r, which is not necessary a face, with
these two points being members of the border of r.
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Proof. We suppose that the point a belongs to the border of the region ra and
that the point b belongs to the border of the region rb. If ra is the same as rb,
then this common region is the solution. So, we suppose now that ra and rb are
different. We have two cases:

Case 1: Suppose that the points a belongs exclusively to the borders of faces
ra. Then the region r is the one corresponding to a path from ra to rb in the
relation fr (remember that the relation fr is connected as stated in Sect. 4).

Case 2: Suppose the point a belongs to the common border of two tangent faces
ra1 and ra2. If there is a path from ra1 to rb that is not involving ra2, then
we can take the region corresponding to this path. If there is no such path, it
means that there is a path from ra2 to rb not using ra1, then we can take the
region corresponding to this path. �

Putting these two theorems together, we obtain the following theorem:

Theorem 3: Given two distinct points, situated in some borders, then there
exists a maximal region r with these two points being members of the border
of r.

5 Graphs and Planar Graphs

In this section we refine the concept of regions as stated in Sect. 2 (definition
of regions), in Sect. 3 (relation between regions), and in Sect. 4 (definitions of
connected regions and faces). This will allow us to define the concept of graph.

Notice that the definition of a “graph” we use in this section (and in this
paper) is less general than the well known one that can be found everywhere in
the graph theory literature and in textbooks. We use this restricted definition
only because it is sufficient to state and prove the Theorem of Kuratowski.

5.1 Definitions of a Graph and of Graph Vertices

Proceeding now with our restricted graph definition, we distinguish a finite set
of points in the borders of regions. We call this set of points the set of vertices
V. A finite set of connected faces together with a finite set of vertices is called a
graph. In Fig. 6, we suppose now that the points a, b, c, d, etc. are all vertices.

5.2 A Relation Between Vertices

There exists a symmetric, irreflexive, and connected binary relations, vr (for
vertex relation), between distinct vertices. Two related vertices in vr belong to
the border of the same face. Formally:

vr ⊂ dom(reg) (20)

In Fig. 6, we can see that the relation vr is as follows:

vr = {a �→ d, c �→ d, d �→ b, . . .} (21)
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5.3 Definition of Edges

We now define another finite set called the set of edges E of the graph. An edge
has a content, edg, that is a non-empty set of point:

edg ∈ E → P1(P ) (22)

Moreover, edges are related to the previously defined binary relations fr and vr.
This is done by means of the following two total functions ve and fe (ve is even
a surjection):

ve ∈ vr � E
fe ∈ fr → E

(23)

In Fig. 6, one can see edges e1, e2, etc. between vertices.

a

b

c

de

f1 f2

f3 f4

e1

e2

e3

e4

e5

e6

e7 e8

Fig. 6. A graph

These functions state that there corresponds an edge to each pair of related
vertices and an edge to each pair of related faces. :

ve = {(a �→ d) �→ e1, (c �→ d) �→ e2, (d �→ b) �→ e3, . . .}
fe = {(f1 �→ f2) �→ e8, (f2 �→ f4) �→ e2, (f4 �→ f3) �→ e4, . . .} (24)

The following properties show that edges are not oriented:

v1 �→ v2 ∈ vr ⇒ ve(v1 �→ v2) = ve(v2 �→ v1)
f1 �→ f2 ∈ fr ⇒ fe(v1 �→ v2) = fe(v2 �→ v1) (25)

Finally, the contents of an edge is exactly the “left part” of the two vertices
corresponding to that edge:

v1 �→ v2 �→ f ∈ reg ⇒ edg(ve(v1 �→ v2)) = lft(v1 �→ v2 �→ f) (26)

5.4 Graphs with Loops

When in a graph, an edge links a vertex to itself, then the graph is said to have
a loop. In this paper, we always have graphs without loops. This is because the
relation vr is irreflexive .
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5.5 Simple Graphs

When, in a graph, two vertices are linked with at most one edge, then the graph
is said to be a simple graph. In this paper, we have simple graphs only. This is
because the function ve links pairs of vertices to a single edge.

5.6 Chains in a Graph

Part of a region border linking two vertices a and b and possibly containing
other vertices besides a and b is called a chain of the graph. Notice that a chain
certainly contains some other non-vertex points. Also notice that a chain could
be an edge. However a chain containing more than two vertices is not an edge.

5.7 Connected Graphs

When any two vertices in a graph are linked with a chain, then the graph is said
to be a connected graph. In this paper, we have always connected graphs. This
is because the relation vr is connected.

5.8 Subgraphs

A graph h is said to be a subgraph of a graph g when the sets of faces, vertices,
and edges of h are subsets of corresponding sets in g.

5.9 Graph Drawings

Two graphs g1 and g2, where edges are linked by means of a bijective functions
f , are said to be equivalent in the following circumstances: if v1 and w1 are two
vertices of g1 linked by the edge e1, then f(e1) links v1 to w1. We must make
a clear distinction here between a graph and a graph drawing. The equivalence
relation mentioned previously is rather one between various graph drawings of
the same graph (more is explained in the next subsection). A graph then just
appears to be the equivalence class of the mentioned graph drawing equivalence
relation.

5.10 More on the Equivalence Relation Between Graph Drawings

We now give more information about the equivalence relation defined in the
previous subsection. In fact, an edge between two vertices a and b can be drawn
in the interior or in the exterior (left or right) of a region having a and b in
its border. This distinction between the position of the edge characterises the
equivalence relation. All this is illustrated in Fig. 7, where one can see four equiv-
alent graph drawings. In fact, there are many more possible drawings since an
external link could be positioned “on the left” or “on the right” (or equivalently
“on the north” or “on the south”).
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Fig. 7. Graph drawing equivalences

5.11 Graph Extension

Given a graph g and the set sgd of all its corresponding graph drawings, we
suppose to have two vertices a and b that are not connected by an edge in g. Let
us connect them by means of a new edge thus forming a new graph h. The set
shd of graph drawings of the graph h includes drawings of the set sgd where an
edge linking a to b is drawn in all possible ways.

5.12 Chain Intersections in a Graph

When two chains of a graph drawing intersect each other on a single point, that
point might be a vertex or not. In Fig. 7, the first and last drawings show chains
intersecting in points that are not vertices. If two chains of a graph drawing
intersect at a single point which is not a vertex, it is sometimes (but not always)
possible to find an equivalent graph drawing where the corresponding chains are
not intersecting at all. We can see this in the second and third graph drawings
of Fig. 7.

5.13 Planar Graph

A connected, simple, and loop free graph g (as they are all in this paper) is said
to be a planar graph if there exists at least one graph drawing of this graph where
all chain intersections are vertices. If such a graph drawing does not exist, the
graph g is said to be non-planar.

5.14 Example of a Non-planar Graph: The Graph K5

In Fig. 8, the first two graph drawings are intersecting on vertices only. So,
the corresponding graph is indeed planar. By introducing an additional chain to
these graph drawings (in the last two drawings) the corresponding graph becomes
non-planar.

This non-planar graph is called K5. In the literature, the graph K5 is the
graph where all connections are edge connections. In this paper, we suppose
that the connections could be chain connections. Given a finite set V containing
five vertices, the binary relation between chains corresponding to the graph K5
can be defined as follows:

⋃
x · x ∈ V | {x} × (V \ {x})

The graph K5 is said to be the complete graph with five vertices.
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Fig. 8. The graph K5

5.15 Example of a Non-planar Graph: The Graph K3,3

In Fig. 9, the first two graph drawings are intersecting on vertices only. So,
the corresponding graph is indeed planar. By introducing an additional chain to
these graph drawings (in the last two drawings) the corresponding graph becomes
non-planar.

Fig. 9. The graph K3,3

This non-planar graph is called K3,3. In the literature, K3,3 is the graph where
all connections are edge connections. Here we suppose that in this extension
the connections could be chain connections. Given two finite and disjoint sets
V 1 and V 2 containing three vertices each, the binary relation between chains
corresponding to the graph K3,3 can be defined as follows:

(V 1 × V 2) ∪ (V 2 × V 1)

6 Chain Intersection Axioms

In this section we precisely define in which circumstances two chains might inter-
sect. More precisely, we are given a region r and four distinct vertices in the
border of r: a1, b1, a2, and b2.

a1 	= b1
a2 	= b2
{a1, b1} ∩ {a2, b2} = ∅

(27)

We suppose that a1 and b1 are linked by a chain e1 which is distinct from the
border of r except in a1 and b1. Likewise we suppose that a2 and b2 are linked
by a chain e2 which is distinct from the border of r except in a2 and b2:

e1 ∩ brd(r) = {a1, b1}
e2 ∩ brd(r) = {a2, b2} (28)
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In order to enhance readability, we use the following abbreviations:

p1 = lft(a1 �→ b1 �→ r)
p2 = lft(a2 �→ b2 �→ r)
q1 = rht(a1 �→ b1 �→ r)
q2 = rht(a2 �→ b2 �→ r)
f1 = e1 \ {a1, b1}
f2 = e2 \ {a2, b2}

(29)

Here are one lemma and four axioms. When e1 links a1 to b1 by the interior of
r whereas e2 links a2 to b2 by the exterior of r, then e1 and e2 do not intersect.
Of course, this can be proved since the interior and the exterior of a region are
disjoint:

Lemma 3
f1 ⊂ int(r)
f2 ⊂ ext(r)

⇒
e1 ∩ e2 = ∅

(30)

Figure 10 illustrates this non intersecting case.

a2

b2

e2
a1

b1

e1

Fig. 10. Chains e1 and e2 do not intersect

We suppose now that e1 links a1 to b1 by the interior of r and likewise e2 links
a2 to b2 by the interior of r. Moreover, if a2 and b2 are situated on the same
side (p1 or q1) of the border of r, then e1 and e2 do not intersect:

Axiom 1
f1 ⊂ int(r)
f2 ⊂ int(r)
{a2, b2} ⊂ p1 ∨ {a2, b2} ⊂ q1

⇒
e1 ∩ e2 = ∅

(31)

Figure 11 illustrates this non intersecting case.

e1

a2

b2

a1

b1

Fig. 11. Chains e1 and e2 do not intersect
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We suppose now that e1 links a1 to b1 by the interior of r and likewise e2 links
a2 to b2 by the interior of r. Moreover if a2 and b2 are situated on different sides
(p1 or q1) of the border of r, then e1 and e2 do intersect:

Axiom 2
f1 ⊂ int(r)
f2 ⊂ int(r)
¬ ({a2, b2} ⊂ p1 ∨ {a2, b2} ⊂ q1)

⇒
e1 ∩ e2 	= ∅

(32)

Figure 12 illustrates this intersecting case.

e1

a2

b2

a1

b1

Fig. 12. Chains e1 and e2 do intersect

We suppose now that e1 links a1 to b1 by the exterior of r and likewise e2 links
a2 to b2 by the exterior of r. Moreover, if a2 and b2 are situated on the same
side (p1 or q1) of the border of r then e1 and e2 do not intersect:

Axiom 3
f1 ⊂ ext(r)
f2 ⊂ ext(r)
{a2, b2} ⊂ p1 ∨ {a2, b2} ⊂ q1

⇒
e1 ∩ e2 = ∅

(33)

Figure 13 illustrates this non intersecting case.

a2

b2

e2

a1

b1

e1 a2
b2

e2 a1
b1

e1

Fig. 13. Chains e1 and e2 do not intersect

We suppose finally that e1 links a1 to b1 by the exterior of r and likewise e2 links
a2 to b2 by the exterior of r. Moreover, if a2 and b2 are situated on different
sides (p1 or q1) of the border of r then e1 and e2 do intersect:
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Axiom 4
f1 ⊂ ext(r)
f2 ⊂ ext(r)
¬ ({a2, b2} ⊂ p1 ∨ {a2, b2} ⊂ q1)

⇒
e1 ∩ e2 	= ∅

(34)

Figure 14 illustrates this intersecting case.

a2

b2 e2
a1

b1

e1

Fig. 14. Chains e1 and e2 do intersect

Here are some consequences of the cutting axioms presented in this section. They
are given under the form of four exercises. We use these exercises in Sect. 7:

Exercise 1: Prove that both graph drawings shown in Fig. 15 are equivalent
and that the link between a2 and b2 in the second one does not intersect the link
between a0 and b0, nor with the link between a1 and b1.

a0

a1

b0

b1

a0

a1

b0

b1a2 b2a2 b2

Fig. 15. Exercise 1

Exercise 2: Prove that both graph drawings shown in Fig. 16 are equivalent
and that in the second one, the link between a2 and b2 intersects with the link
between a3 and b3.

a1
b1a2a2 b2

a1

a2

b1

b2 b3

a3b3
a3

Fig. 16. Exercise 2
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Exercise 3: From Exercises 1 and 2 prove that in the second drawing of Exercise
1, the link between a2 and b2 does not intersect any other link like a3−b3 provided
the link between a1 and b1 does not contain any link like the one between a3
and b3 of Exercise 2. Moreover, if there is no chains between the link between a1
and b1 and the border of the region, then there is no intersection at all for the
link between a2 and b2.

Exercise 4: Prove that both graph drawings shown in Fig. 17 are equivalent
and that in the second one, the link between b′

2 and v intersects with the border
of the region.

a1 b1a2a2 b2

b2' 

a1

a2

b1

b2

b2' 

v

v

Fig. 17. Exercise 4

7 The Kuratowski Theorem

We have enough preliminary material to engage now into the proof of the Kura-
towski Theorem. This theorem gives us a necessary and sufficient condition for
a connected, simple, and loop free graph to be non-planar.

Kuratowski Theorem: A graph, supposed to be connected, simple, and loop
free, is non-planar if and only if it contains either K3,3 or K5 as a subgraph.

Informal Proof of the “only if” Part of Kuratowski Theorem1: a non-
planar graph contains either K3,3 or K5 as a subgraph.

We are given a connected, simple, loop free, and planar graph g. This means
that there exists at least one drawing of g where all chains are intersecting with
other chains on vertices only (Sect. 5.13). Let us call gd such a drawing.

We are given two distinct vertices a0 and b0 of g. We suppose that there is
no edge already linking a0 to b0 in g. In other words, the graph g is simple and
so remain after adding an edge linking a0 to b0. Notice that in g there exists a
chain (which is not an edge) linking a0 to b0 since a0 and b0 are on the border
of a region according to Theorem 2 of Sect. 4. Now, we suppose that adding
such an edge between a0 and b0 makes the obtained graph h being non-planar.

1 This proof is inspired by that of Shimon Even in [2].
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Our intention is now to prove the Kuratowski theorem on this graph h.
In the graph drawing gd of graph g, an edge linking a0 to b0 intersects with

at least one chain in a point which is not a vertex. This is so because any graph
drawing of g extended with the edge linking a0 to b0 is a graph drawing of h
(Sect. 5.11) and, by definition, all graph drawings of a non-planar graph such as
h, have this intersecting property (Sect. 5.13).

From the graph drawing gd, we can construct many graph drawings of h.
This is done simply by drawing the edge linking a0 to b0 either inside or outside
any of the regions having a0 and b0 in their borders (Sects. 5.9 and 5.10).

Among those new graph drawings of h, one of them is interesting: this is the
one where the edge from a0 to b0 is inside a maximal region r having a0 and b0
in its border (such a region r exists according to Theorem 1 of Sect. 3). Let us
call hd this particular graph drawing of h. In order to enhance readability, we
use the following abbreviations:

p0 = lft(a0 �→ b0 �→ r)
q0 = rht(a0 �→ b0 �→ r)

Now, there must exist a chain c1 linking two vertices in the border of r and
situated outside the maximal region r since, otherwise, the edge linking a0 to b0
could be moved outside r and thus h would be planar (remember Lemma 3 and
Axiom 4 of Sect. 6). We suppose that this external chain c1 links two vertices
a1 and b1 of the border of region r. In order to enhance readability, we use the
following:

p1 = lft(a1 �→ b1 �→ r)
q1 = rht(a1 �→ b1 �→ r)

The two vertices a1 and b1 cannot be both in p0 or in q0 since otherwise the
region with border c1 and, say, p1 would be externally tangent to r and thus
forms together with it a larger region with a0 and b0 in its border (Sect. 3.3). But
this is not possible because r is supposed to be a maximal region with a0 and b0
in its border. So, a1 and b1 should be respectively in p0 \{a0, b0} and q0 \{a0, b0}
(or the other way around). Moreover, we suppose that c1 is the smallest such
chain. In other words there is no chain like c1 inside it. Also notice that there
is no chain linking c1 to p1 since r is a maximal region, Thus c1 follows the full
assumptions of Exercise 3 (Sect. 6). This is illustrated in Fig. 18.

a0

b0

a1 b1

r

Fig. 18. Edge linking a0 to b0 and chain linking a1 to b1 do not intersect
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In order to enhance readability let us make precise which portions of the border
of r, the chains p0, q0, p1, and q1 cover. In what follows, we use these denotations
rather than the letters p0, q0, etc.

– p0 is (a0, a1, b0) denoted [a0, b0]

– q0 is (a0, b1, b0) denoted [b0, a0]

– p1 is (a1, a0, b1) denoted [a1, b1]

– q1 is (a1, b0, b1) denoted [b1, a1]

Notice some examples of the following denotations used when we remove some
or all end points:

– (a0, a1, b0) \ {b0} denoted [a0, b0[

– (a0, b1, b0) \ {b0} denoted ]b0, a0]

– (a1, a0, b1) \ {a1, b1} denoted ]a1, b1[

– etc.

We consider now the offending chain c2 crossing the new edge linking a0 to b0.
This chain links two vertices a2 and b2 both situated on the border of region r.
This is so because the graph g is supposed to be connected, so vertices in c2
should be connected to vertices in the border of r. Notice that a2 and b2 are
certainly different from a0 and b0 since c2 intersects with the edge a0−b0 in a
point that is not a vertex. We now have three cases:

Case 1: In this case (Fig. 19), we suppose for the moment that a2 is in the chain
]a0, a1[ (the chain linking a0 to a1 but neither in a0 nor in a1). The vertex b2
must be in the chain ]b0, a0[ (the chain linking b0 to a0 but neither in b0 nor in
a0) since c2 intersect with the edge linking a0 to b0 (Axiom 2 of Sect. 6). But
b2 should also be in the chain ]b1, a1[ (the chain linking b1 to a1 but neither in
b1 nor in a1) since otherwise c2 could be moved outside the region r without
crossing any other chain (Axiom 3 and Exercise 3 of Sect. 6).

a0

b0

a1 b1

r

a2

b2

Fig. 19. Case 1

Thus b2 is in the chain ]b1, b0[ (the chain linking b1 to b0 but neither in b1 nor
in b0). Again see Fig. 19. Here K3,3 appears with vertices V 1 = {a0, a1, b2}
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(a) (b)

Fig. 20. Two sub-cases of Case 1

and V 2 = {b0, b1, a2}. Note that this Case1 covers in fact two subcases as shown
in Fig. 20 (a), where a2 is in ]a0, a1[ (studied above) and Fig. 20 (b), where a2 is
in ]b1, a0[.

Case 2: In this case (Fig. 21), we do not modify the position of a2 (it is still
in ]a0, a1[), but we investigate the possibility for b2 to be in ]a0, b1] (the chain
linking a0 to b1 but not in a0).

a0

b0

a1 b1
a2 b2

r

v

b2' 

Fig. 21. Case 2

Clearly, this is not possible as such because then there could exist a drawing of
graph h where the chain c2 could be moved outside region r (Axiom 3 of Sect. 6)
and thus not intersect the edge linking a0 to b0. This failing case is illustrated
in Fig. 22 (see Exercise 1 and Exercise 3 in Sect. 6)

a0

a1

b0

b1

a2 b2 a0

a1

b0

b1a2 b2

Fig. 22. Case 2: not possible. The chain a2−b2 can be moved outsid

In order to prevent this to happen we must suppose that we have a vertex v within
c2 that is connected to the border of r in a vertex b′

2 (remember Exercise 4
of Sect. 6). Now b′

2 cannot be in [a1, b1] (the chain linking a1 to b1 through a0)
since otherwise there could exist a drawing of graph h where c2 could again be
moved outside r. This failing case is illustrated in Fig. 23.
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a0

a1

b0

b1

a2 b2
b2'

v

a0

a1

b0

b1a2

b2
b2'

v

Fig. 23. Case 2: not possible. The chain a2−b2 and other chains can be moved outside

So, b′
2 is in [b1, a1] (the chain linking a1 to b1 through b0). But we can remove

b′
2 from [b0, a0] (the chain linking b0 to a0 through b1) since then the connection

between a2 and b′
2 would be the same as in Case 1 (a) (Fig. 20).

In conclusion, b′
2 is in ]a1, b0] (the chain linking a1 to b0 but not in a1). All

this is shown in Fig. 21. Here K3,3 appears with vertices V 1 = {a0, a1, v}
and V 2 = {b2, b′

2, a2}. The link from a0 to b′
2 is done through b0 and that from

a1 to b2 is done through b1.
Notice that if b2 and b′

2 are not common with b1 and b0 respectively then we
have also K3,3 appearing with vertices V 1 = {a0, b1, b′

2} and V 2 = {b0, a1, b2}.
In fact, this is just Case 1 (b) as shown in Fig. 20. So, the genuine Case 2 are
those where b2 is in b1, or b′

2 is in b0, or both b2 and b′
2 in b1 and b0 respectively.

This make 3 sub-cases and we have four other sub-cases by symmetry. All this
is shown in Fig. 24.

(a) (b) (c) (d) (e)(a') (c') (e')

Fig. 24. Various sub-cases of Case 2

Case 3: In the two previous cases, a2 was in the chain ]a0, a1[ (or similar chains).
In this third case, we now suppose now that a2 is common with a1. Remember
that a2 cannot be common with a0 since the chain a2−b2 intersect with the edge
a0−b0 in a non-vertex. As in previous cases, b2 should be in the chain ]b0, a0[ (the
chain linking b0 to a0 but neither in b0 nor in a0).

We notice that b2 cannot be in the chain [b1, b0[ (the chain linking b1 to b0
but not in b0) since otherwise, the chain c2 could be moved outside region r in
another drawing and thus not cross the edge linking a0 to b0. This failing case
is illustrated in Fig. 25.

In order to avoid this to happen, we must introduce a vertex v in c2 and link
it to the chain ]b1, a1[ in a vertex b′

2. This technique is the same as that used in
Case 2. Now b′

2 cannot be in the chain ]a1, a0[ since this is Case 1 (a), nor can
b2′ be common with a0 since it is Case 2 (e’), nor can it be in the chain [a0, b1[
since it is Case 2 (d). These already encountered cases are illustrated in Fig. 26.
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a0

a1

b0

b1a2

b2

a0

a1

b0

b1a2

b2

Fig. 25. Case 3: not possible. The chain a1−b2 can be moved outside

a0

a1

b0

b1a2

b2v

b2'

Case 1 (a)

a0

a1

b0

b1a2

b2
v

b2'

Case 2 (e')

a0

a1

b0

b1a2
b2

v

b2'

Case 2 (d)

Fig. 26. Case 3: already encountered cases

Finally b2′ cannot be in b1 since then, again, c2 could be moved outside region
r in another drawing. This is illustrated in Fig. 27.

a0

a1

b0

b1
a2

b2

b2'
v

a0

a1

b0

b1
a2

b2

b2'

v

Fig. 27. Case 3: not possible. Chains a1−b2 and b2′−v can be moved outside

So, since all previous cases failed for b2 being in the chain ]b1, b0[, we must
suppose that b2 is in the chain ]a0, b1[. But then, the chain c2 could be moved
outside region r in another drawing and thus not cross the edge linking a0 to b0.
This failing case is illustrated in Fig. 28 (see Exercise 1 at the end of Sect. 6).

In order to avoid the chain c2 to be moved outside in another drawing, we
have to introduce a vertex v in the chain c2 and link it to a vertex b′

2 in the chain
]a1, b1[. This vertex b′

2 cannot be in the chain ]a1, b0[, since this corresponds to
Case 1 (b), nor can it be common with b0 since it corresponds to Case 2 (e).
Finally it cannot be in the chain ]b0, b1[ since it corresponds to Case 2 (d). This
is illustrated in Fig. 29.

The only possibility then for b2 is to be common with b1. But then the chain
c2 can be moved outside. This is illustrated in Fig. 30 (see Exercise 1 at the
end of Sect. 6).

In order to avoid this to happen, we must introduce one or two vertices v
and w in c2 and connect them to two vertices b′

2 and b′′
2 situated in ]a1, b1[ or in

]b1, a1[ respectively. The only possibility for b′
2 or b′′

2 is to be common with a0
and b0 respectively, since otherwise we have situations already encountered in
Case 1 (a), Case 2 (b), and Case 2 (c). This is illustrated in Fig. 31.
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a0

a1

b0

b1a2 b2

a0

a1

b0

b1a2 b2

Fig. 28. Case 3: not possible. Chains a1−b2 can be moved outside

a0

a1

b0

b1a2

b2

v

b2'

Case 1 (b)

a0

a1

b0

b1a2

b2

v

b2'

Case 2 (e)

a0

a1

b0

b1a2

b2

v

b2'

Case 2 (d)

Fig. 29. Case 3: already encountered cases

a0

a1

b0

b1a2 b2

a0

a1

b0

b1a2 b2

Fig. 30. Case 3: not possible. Chain a1 − b1 can be moved outside

a0

a1

b0

b1a2 b2
v

b2' 

b2'' 

a0

a1

b0

b1a2 b2
v

w

b2' 

b2'' 

Case 1 (a) Case 2 (b)

a0

a1

b0

b1a2 b2
v

w

b2' 

b2'' 

Case 2 (c)

a0

a1

b0

b1a2 b2
v

b2' 

b2'' 

Case 2 (c)

Fig. 31. Case 3: already encountered cases

a0

a1

b0

b1a2 b2
v

w

b2' 

b2'' 

a0

a1

b0

b1a2 b2
v

w

b2' 

b2'' 

(a)

a0

a1

b0

b1a2 b2
v

b2' 

b2'' 

(b)(a')

Fig. 32. Case 3
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The final situation is illustrated in Fig. 32 where we have two main cases.
The first main case is decomposed into two subcases. In the first subcase (a),
K3.3 appears with vertices V 1 = {b0, b1, w} and V 2 = {a0, a1, v}. In the
second subcase (a’), K3.3 appears with vertices V 1 = {a0, b1, w} and V 2 =
{b0, a1, v}, Finally, in the second main case (b), K5 appears with vertices
V = {a0, b0, a1, b1, v}.

Notice that we cover all cases. In Case 1, we have a2 ∈ ]a0, a1[ and b2 ∈
]b0, b1[ (and similar cases). In Case 2, we have a2 ∈ ]a0, a1[ and b2 ∈ ]a0, b1]
(and similar cases). So, in Case 1 and Case 2 together, b2 is in ]a0, b0[, which
is the only possibility for b2 when a2 is in ]a0, a1[. In Case 3, we have a2 = a1.

8 Conclusion

As already said, the mathematical context used in this presentation of the Kura-
towski Theorem is quite large. This is not surprising since this theorem involves
many properties of the concerned graphs: they should be simple, loop free, and
connected. Another important property is the existence of a binary relation
between externally tangent faces and the single connection between related faces
and edges (function fe introduced in Sect. 5.3). Consequently, vertices situated
on internal edges are at least 3-connected.

An important aspect of our Mathematical Engineering approach is the usage
of abstraction (regions and their properties in Sects. 2, 3, and 4) and refinement
(graphs in Sects. 5 and 6). We notice that this approach of abstraction and
refinement is also very important in formal Software Engineering.

Another peculiarity we encounter, this time in the proof, is the rather large
number of cases. Here we touch one of the main problems of mathematical pre-
sentations. Usually mathematicians omit to cover all cases, thus putting the
reader in a difficult position, oscillating between a poor comprehension of the
mathematical text and even sometimes a doubt about the validity of the proof.

We remember that this lack of case covering is at the origin of many bugs in
computer programs. However, the problem is that the consequence of a wrong
mathematical proof (with some cases missing) is not so important in mathemat-
ics, whereas a similar situation in a program might have terrible consequences.
In the case of mathematical proofs, the community of mathematicians is eager to
check that a new proposed proof is correct (it might take several years). Whereas
in informatics, the non-correctness of a program is usually discovered by the con-
sequence of a bug only (but then it is sometimes too late). In the programming
discipline we have no equivalent to the community of mathematicians.

I am also interested in mechanically proving some well known and important
mathematical theorems. So, as a further work, I will now engage into the formal
proof of the Theorem of Kuratowski: this will be done in Event-B [6] with the
Rodin toolset [7].

Acknowledgements. I would like to thank very much Dominique Cansell for his
reading of earlier drafts of this work. He gave me many useful suggestions able to
improve the paper.
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Abstract. In this paper we report on the ongoing research of our team
Comète on location privacy. In particular, we focus on the problem of pro-
tecting the privacy of the user when dealing with location-based services.
The starting point of our approach is the principle of geo-indistinguisha-
bility, a formal notion of privacy that protects the user’s exact location,
while allowing approximate information – typically needed to obtain a
certain desired service – to be released. Then, we discuss the problem
that raise in the case of traces, when the user makes consecutive uses of
the location based system, while moving along a path: since the points
of a trace are correlated, a simple repetition of the mechanism would
cause a rapid decrease of the level of privacy. We then show a method to
limit such degradation, based on the idea of predicting a point from pre-
viously reported points, instead of generating a new noisy point. Finally,
we discuss a method to make our mechanism more flexible over space:
we start from the observation that space is not uniform from the point of
view of location hiding, and we propose an approach to adapt the level
of privacy to each zone.

1 Introduction

In recent years, the increasing availability of location information about indi-
viduals has led to a growing use of systems that record and process location
data, generally referred to as “location-based systems”. Examples of these sys-
tems include Location Based Services (LBSs), location-data mining algorithms
to determine points of interest, and location-based machine learning algorithms
to predict traffic patterns.

While location-based systems have demonstrated to provide enormous ben-
efits to individuals and society, the growing exposure of users’ location informa-
tion raises important privacy issues. First of all, location information itself may
be considered as sensitive. Furthermore, it can be easily linked to a variety of
other information that an individual usually wishes to protect: by collecting and
processing accurate location data on a regular basis, it is possible to infer an
individual’s home or work location, sexual preferences, political views, religious
inclinations, etc.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25150-9 2



Location Privacy via Geo-Indistinguishability 29

It is therefore important to design and implement methods for protecting the
user’s privacy while preserving the utility and the dependability of location data
for their use in location-based systems. In this paper, we report on the research
of the INRIA Comète team on this field.

A characteristics of our approach is that we focus on the problem of protecting
the user’s location, rather than the user’s anonymity. The latter is based on the
idea of hiding the association between the user’s location data and his name.
However, there have been several examples of attacks showing that anonymity
is not sufficient to protect the user: in the large majority of cases, location data
can be re-identified by using correlated information.

Furthermore, we focus on methods that provide privacy guarantees which are
(a) based on solid mathematical basis, (b) independent from the adversary side
information, and (c) robust with respect to composition of attacks.

Our approach is based on the notion of geo-indistinguishability, which is
a property similar to that of differential privacy [8]. Basically, the idea is to
obfuscate the real location by reporting an approximate one, using some random
noise. The idea is that from the reported location, the attacker may be able to
make a good guess of the area where the user is actually located, but it should
not be able to make a good guess of the exact location of the user within this
area. This meachanism can be implemented by using a noise with a Laplacian
distribution, that is a negative exponential with respect to the distance from
the real location, like in the case of differential privacy. This method provides a
good level of robustness with respect to composition of attacks, in that the level
of privacy decreases in a controlled way (linearly).

When the user makes several repeated applications of the mechanism from
related points (typically in the case of a trace), however, even a linear decrease
of the level of privacy poses a tall too high to the privacy level. To address this
problem, we propose a predictive mechanism, which avoids the application of the
mechanism when a new (noisy) point can be derived from the previous ones.

Finally, we consider the problem that raises when the space is not uniform
with respect to the hiding value: the point is that in different zones the number of
locations where the user could be located may vary a lot, and as a consequence
these zones should have a different privacy parameter. We address this prob-
lem by proposing an elastic mechanism, which is based on a notion of distance
adapted to the different zones.

1.1 Related Work

Most location privacy mechanisms proposed in the literature involve obfuscation
of the real location. The simplest methods are those based on variants of the cloak-
ing technique, which consists in hiding the real location within a region of possi-
ble locations, for instance by reporting the area around the real location, or by
using dummy locations [2,6,7,11,14,17]. Unfortunately, cloacking methods are
not robust with respect to composition. For instance, reporting the area is sub-
ject to triangulation attacks. Furthermore, they require assumptions about the
attacker’s side information. For example, dummy locations are only useful if they
look equally likely to be the real location from the point of view of the attacker.
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A second class of location obfuscation mechanisms involve the generation of
controlled noise for Bayesian adversaries. We mention in particular [10] and [15]:
The first obtains a perturbation mechanism by crossing paths of individual users,
thus rendering the task of tracking individual paths challenging. The second
obtains an optimal mechanism (i.e., achieving maximum level of privacy for the
user) by solving a linear program in which the constraints are determined by the
quality of service and by the user’s profile.

1.2 Plan of the Paper

In the next section we present our basic approach to location privacy, based o
the notion of geo-indistinguishability. In Sect. 3 we then discuss the problems
that raise when we repeatedly use the mechanism along a trace, and when the
space is not uniform from the point of view of location hiding, and we illustrate
our approach to address these problems. Finally, Sect. 4 presents some future
work.

2 Geo-Indistinguishability

Fig. 1. The prob. density functions
of two planar Laplacians, centered on
the (real) locations (−2,−4) and (5, 3)
respectively.

Our approach is based on the property of
geo-indistinguishability [1], which guaran-
tees that the user’s location is protected,
within a radius r, with a level of noise that
decreases with r, at a rate that depends
on the desired level of privacy. Intuitively,
this means that the real location is highly
indistinguishable from the locations that
are close, and gradually more distinguish-
able from those that are far away. This
characteristics allows us to obtain a good
level of privacy without significant loss of
utility.

From a technical point of view,
geo-indistinguishability is a particular
instance of d-privacy [4], an extension of
differential privacy [8] to arbitrary metric

domains, obtained by replacing the Hamming distance, implicit in the definition
of differential privacy, with the intended distance – namely the geographical
distance in our case. Like differential privacy, geo-indistinguishability is inde-
pendent from the side knowledge of the adversary and robust with respect to
composition of attacks.

We have implemented geo-indistinguishability by adding random noise drawn
from a planar Laplace distribution, see Fig. 1. In [1] we have compared this mech-
anism with the representatives of the other methods proposed in the literature
(the cloaking and the linear programming mechanisms), using the privacy metric
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proposed in [15]. It turns out that our mechanism offers the best privacy guar-
antees, for the same utility, among all those which do not depend on the prior
knowledge of the adversary. The advantages of the independence from the prior
are obvious: first, the mechanism is designed once and for all (i.e. it does not need
to be recomputed every time the adversary changes, it works also in simultane-
ous presence of different adversaries, etc.). Second, and even more important, it
is applicable also when we do not know the prior.

Our technique can be used to enhance any application for location-based
services with privacy guarantees, and can be implemented on the client side
of the application. To this purpose, we are developing a tool, called Location
Guard.

2.1 Location Guard

Location Guard [https://github.com/chatziko/location-guard] is an open source
web browser extension based on geo-indistinguishability, that provides location
privacy when using the HTML5 geolocation API (Fig. 2).

Fig. 2. Privacy level config-
uration on Android, ru in
purple and rp in pink.

When a page is loaded and before any
other code is executed, Location Guard injects
a small snippet of JavaScript that redefines
geolocation.getCurrentPosition, the main func-
tion provided by the Geolocation API to retrieve the
current position. When the rest of the page code
runs and tries to access this function, it gets inter-
cepted by Location Guard, which in turn obtains
the real location from the browser, sanitizes it and
returns it to the page.

The location is sanitized through the use of ran-
dom noise drawn from a Planar Laplace distribu-
tion. The amount of noise added can be configured
easily with a single parameter, the privacy level.
Location guard provides three predefined levels
{high,medium,low} and the user is also free to pick
any other value. Additionally the privacy level can
be adjusted per domain, so that different protec-
tion can be applied to different services: a larger
amount of noise can be added to a weather service
as opposed to a point of interest search engine.

An advantage of geo-indistinguishability is that it is relatively intuitive to
explain to the user the effect of changing the levels on privacy and utility. For
a certain privacy level we can compute two radiuses rp and ru, respectively the
radius of privacy protection and of utility. rp is the area of locations highly indis-
tinguishable from the actual one, i.e. all locations producing the same sanitized
one with similar probabilities. ru is the area in which the reported location lies
with high probability, thus giving an idea of the utility that the user can expect.

https://github.com/chatziko/location-guard
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Both these radiuses can be easily plotted on a map to give the user a direct
impression of privacy and utility, according to the level of protection chosen.

Location Guard has reached considerable popularity since its release in Fall
2014, covering Chrome, Firefox and Opera browsers, and more recently moving
to mobile devices with Firefox for Android. As of June 2015 Location Guard
counts 9,800 active users in Google Chrome, 29,400 in Mozilla Firefox (including
Android) and 5,000 downloads in Opera. Adoption has been mainly through the
browser extension stores, as well as through technology blogs covering Location
Guard [3,13]. In June 2015 it was chosen as “Pick of the Month” in Mozilla
Add-ons Blog [16].

3 Making Geo-Indistinguishability Flexible
Over Time and Space.

Geo-indistinguishability and its current implementation Location Guard are
just a preliminary approach to location privacy, and they present two main
limitations. First, when used repeatedly, there is a linear degradation of the
user’s privacy that limits the use of the mechanism over time. Second, the level
of noise of the Laplacian mechanism has to be fixed in advance independently
of the movements of the user, providing the same protection in areas with very
different privacy characteristic, like a dense city or a sparse countryside. This
limits the flexibility of the mechanism over space.

In this section we present two extensions that we developed to overcome these
issues as well as future challenges that we plan to tackle. Many of techniques
presented are currently being introduced into Location Guard, in order to extend
its range of applications and at the same time provide a realistic experimentation
platform to evaluate them.

3.1 Repeated Use Over Time

The main limitation of Location Guard is that, so far, it works well when used
sporadically, to protect a single location, for instance when querying an LBS to
find some point of interest (restaurants, cinemas,. . . ) in the vicinity.

We aim at extending the range of applications by handling traces (sequences
of location points). This is a very challenging task. Note, in fact, that the naive
approach of applying the noise at every step would cause a dramatic privacy
degradation, due to the large number of points. Intuitively, in the extreme case
when the user never moves (which corresponds to maximum correlation), the
reported locations would be centered around the real one, thus revealing it more
and more precisely as the number of queries increases. Technically, the indepen-
dent mechanism applying ε-geo-indistinguishable noise (where ε is the privacy
parameter) to n locations can be shown to satisfy nε-geo-indistinguishability.
This is a typical phenomenon in the framework of differential privacy, and con-
sequently nε is thought as a privacy budget, consumed by each query. This lin-
ear increase makes the mechanism applicable only when the number of queries
remains small.
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Fig. 3. Original trace (red),
sampled trace (light blue) and
reported trace (yellow) (Color
figure online).

In [5] we explore a trace obfuscation mech-
anism with a smaller budget consumption rate
than the one produced by applying independent
noise. We show that correlation in the trace can
be in fact exploited through a prediction func-
tion that tries to guess the new location based
on the previously reported locations. Predicted
points are safe to report directly (the adversary
would have guessed them in any case) and thus
have a smaller footprint on the privacy budget,
because they reduce the need of applying the
noise at every step. However the inclusion of the
prediction function in a privacy mechanism has
to be private itself, leading to additional costs for
the privacy budget of the user. If there is consid-
erable correlation in the input trace, our carefully
designed budget managers handle this balance
of costs, producing a more efficient predictive
mechanism.

The mechanism is evaluated using the Geo-
life and T-Drive datasets, containing traces of
thousands of users in the Beijing area. The users
are modeled as accessing a location-based service

while moving around the city. The prediction function used is simply behaving
like a cache: It predicts that the user doesn’t move and that the next location
will be the same as the last one. This prediction function has the advantages of
being trivial to implement, independent of the user profile and proved to be very
effective in our evaluation.

Example of Sanitized Trace. Fig. 3 displays one of Geolife trajectories sanitized
with fixed utility. The original trace, in red, starts south with low speed, moves
north on a high speed road and then turns around Tsinghua University for some
time. In order to model a user’s sporadic behavior we sample the trace obtaining
the 9 light blue dots, which are locations where the user queries the LBS. Finally
in yellow we have the reported trace, sanitized by the predictive mechanism, with
only 3 locations. The first used once for the point at the bottom, the second 7
times for the one in the middle and the third twice for point in the top. In this
example the mechanism needed to sanitize with noise only 3 locations, using
them as prediction for the other 6.

3.2 Highly Recurrent Locations

Even with the budget savings of the predictive mechanism, the user’s privacy is
bound to be breached in the long run in those locations that are highly recurrent,
such as home and work. We propose a simple construction to model “geographic
fences”: Areas around highly recurrent locations where the mechanism reports
uniformly, effectively stopping the privacy erosion. On one side the user has to
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Fig. 4. Probability distribution of reported location inside and outside the fence.
Darker colors indicate more likely values (Color figure online).

release publicly the position of her fences but on the other the budget cost when
reporting from inside them is zero, leading to a practical solution that can be
used in combination with the predictive mechanism.

In Fig. 4 we can see an example of fence introduced in an elastic metric. On
the left we have the distribution of reported locations inside the fence, that is
perfectly uniform, covering a few blocks and proving an adequate level of privacy
while costing zero on the budget. On the right we can see the distribution of
reported locations of a point right outside, the fence is clearly visible and the
mechanism reports right around it.

3.3 Flexible Behavior Over Space

Another shortcoming of standard geo-indistinguishability is that the privacy level
has to be fixed independently of the user location. For example, once set to have
a protection in a radius of 200m, that is sufficient in a dense urban environment,
the same protection will be provided when the user moves outside the city,
possibly in sparsely populated area. The problem is described in more depth in
[12], where we propose an elastic mechanism that adapts the level of noise to
the semantic characteristics of each location, such as population and presence
of POIs. We perform an extensive evaluation of our technique by building an
elastic mechanism for Paris’ wide metropolitan area, using semantic information
from the OpenStreetMap database.

The resulting privacy mass of each location is shown in Fig. 5a, where white
color indicates a small mass while yellow, red and black indicate increasingly
greater mass. The figure is just a small extract of the whole grid depicting the
two smaller areas used in the evaluation: central Paris and the nearby suburb of
Nanterre. Note that the colors alone depict a fairly clear picture of the city: in
white we can see the river traversing horizontally, the main ring-road and several
spots mark parks and gardens. In yellow colors we find low density areas as well
as roads and railways while red colors are present in residential areas. Finally
dark colors indicate densely populated areas with presence of POIs.
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(a) Privacy mass of each location (b) Expected error at each location

Fig. 5. Paris’ center (right) and the nearby suburb of Nanterre (left)

Figure 5b shows our utility per location, computed as the expected distance
between the real and the reported location. Compared to Fig. 5a it is clear that
areas with higher privacy mass result to less noise. Populated areas present a
good and uniform error that starts to increase on the river and ring-road. On
the other hand, the large low-density areas, especially in the Nanterre suburb,
have a higher error because they need to report over larger areas to reach the
needed amount of privacy.

We compare the resulting mechanism against the Planar Laplace mechanism
satisfying standard geo-indistinguishability, using two real-world datasets from
the Gowalla and Brightkite location-based social networks. The results show that
the elastic mechanism adapts well to the semantics of each area, adjusting the
noise as we move outside the city center, hence offering better overall privacy.

3.4 A Tiled Mechanism

The extreme flexibility of the elastic mechanism, that can change its behavior
for locations just 100 meters apart, comes with the cost of a heavy phase of pre-
processing to build its semantic map, which is not suitable for Location Guard.

For this reason we propose a lighter version of the elastic mechanism, that
requires no pre-computation of the metric, and is thus suitable for lower end
devices and for an easier inclusion in existing systems. Of course this tiled mech-
anism provides less flexibility: Instead of adapting the noise differently in loca-
tions tens of meters apart, it can only adapt to large areas of a city, covering
tens of square kilometers. These areas, that we call tiles, area small enough to
distinguish a park from a residential area, but still easily computable. In order to
build the set of tiles, we query two online geographical services, overpass-turbo
and dbpedia to obtain a set of polygons together with a quantitative description
of the amount of privacy they provide. This dataset should cover an area large
enough to contain most of the user usual movement and it can easily reach a
few tens of kilometers while retaining a small size. Once this small dataset is
build, we would have a mapping from tiles to their privacy mass, and we would
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Fig. 6. Polygons computed for New York and Paris

use it to define a function � that, for each location, finds the containing polygon
and returns a privacy level adapted to the privacy mass provided by the tile.
Examples of the kind of maps that we aim at obtaining with this method are
shown in Fig. 6.

The mechanism described above, despite achieving the flexible behavior we
needed, would not satisfy geo-indistinguishability. It is enough to notice that
the level of protection, a public information of the mechanism, depends on the
current location of the user, which is sensitive. In order to solve this problem we
would need to make � itself differentially private. A simple way to do it could
be to first sanitize the current location with a fixed privacy level and then feed
it to �. Post processing a sanitized location does not pose any threat to privacy
and would allow the mechanism to reduce sharply the amount of noise added to
location in very private area.

4 Future Work

Regarding the geographic fences we are currently evaluating how to automati-
cally configure their position and size. The user input would be the best option,
however they could also be inferred and suggested automatically. In [9] the
authors developed an attack to identify POI of a specific user, from a set of
mobility traces. A similar technique could be employed on the user’s phone, over
a training period, to collect and analyze her movements for a few days. The
mechanism would then automatically detect recurrent locations and suggest the
user to fence them, possibly detecting more than just home/work locations.

With the use of geolocated queries, such as those used to extract privacy
mass of the elastic mechanism, we could determine the size of the fence so to
include a reasonable amount of buildings for home and other POIs for work.

Concerning the elastic mechanism in some cases we might want to tailor our
mechanism to a specific group of users, to increase the performance in terms of
both privacy and utility. In this case, given a prior probability distribution over



Location Privacy via Geo-Indistinguishability 37

the grid of locations, we can use it to influence the privacy mass of each cell. For
instance, if we know that our users never cross some locations or certain kind of
POIs, we can reduce their privacy mass.

Moreover, we are interested in queries that reward variety other that richness
e.g. a location with 50 restaurants should be considered less private than one
with 25 restaurant and 25 shops.

Finally, different grids could be computed for certain periods of the day or
of the year. For instance, our user could use the map described above during
the day, feeling private in a road with shops, but in the evening only a subset
of the tags should be used as many activities are closed, making a road with
many restaurants a much better choice. The same could be applied to seasons,
imagine for example how snow affects human activities in many regions.

Additionally we are also actively working on the tiled mechanism in order to
provide both a formal proof of privacy as well as an efficient implementation to
include in Location Guard.
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Abstract. When a property needs to be checked against an unknown
or very complex system, classical exploration techniques like model-
checking are not applicable anymore. Sometimes a monitor can be used,
that checks a given property on the underlying system at runtime.
A monitor for a property L is a deterministic finite automaton ML that
after each finite execution tells whether (1) every possible extension of
the execution is in L, or (2) every possible extension is in the comple-
ment of L, or neither (1) nor (2) holds. Moreover, L being monitorable
means that it is always possible that in some future the monitor reaches
(1) or (2). Classical examples for monitorable properties are safety and
cosafety properties. On the other hand, deterministic liveness properties
like “infinitely many a’s” are not monitorable.

We discuss various monitor constructions with a focus on determin-
istic ω-regular languages. We locate a proper subclass of deterministic
ω-regular languages but also strictly larger than the subclass of languages
which are deterministic and codeterministic; and for this subclass there
exist canonical monitors which also accept the language itself.

We also address the problem to decide monitorability in comparison
with deciding liveness. The state of the art is as follows. Given a Büchi
automaton, it is PSPACE-complete to decide liveness or monitorability.
Given an LTL formula, deciding liveness becomes EXPSPACE-complete,
but the complexity to decide monitorability remains open.

Introduction

Automata theoretic verification has its mathematical foundation in classical
papers written in the 1950’s and 1960’s by Büchi, Rabin and others. Over the
past few decades it became a success story with large scale industrial applica-
tions. However, frequently properties need to be checked against an unknown
or very complex system. In such a situation classical exploration techniques like
model-checking might fail. The model-checking problem asks whether all runs
satisfy a given specification. If the specification is written in monadic second-
order logic, then all runs obeying the specification can be expressed effectively
by some Büchi automaton (BA for short). If the abstract model of the sys-
tem is given by some finite transition system, then the model-checking problem
becomes an inclusion problem on ω-regular languages: all runs of the transition
system must be accepted by the BA for the specification, too. In formal terms
c© Springer International Publishing Switzerland 2015
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we wish to check L(A) ⊆ L(ϕ) where A is the transition system of the system
and ϕ is a formula for the specification. Typically testing inclusion is expensive,
hence it might be better to check the equivalent assertion L(A) ∩ L(¬ϕ) = ∅.
This is a key fact, because then the verification problem becomes a reachability
problem in finite graphs.

Whereas the formulas are typically rather small, so we might be able to con-
struct the Büchi automaton for L(¬ϕ), the transition systems tend to be very
large. Thus, “state explosion” on the system side might force us to use weaker
concepts. The idea is to construct a “monitor” for a given specification. A mon-
itor observes the system during runtime. It is a finite deterministic automaton
with at most two distinguished states ⊥ and �. If it reaches the state ⊥, the
monitor stops and raises an “alarm” that no continuation of the so far observed
run will satisfy the specification. If it reaches �, the monitor stops because all
continuations will satisfy the specification. Usually, this means we must switch
to a finer monitor. Finally, we say that a language is monitorable, if in every
state of the monitor it is possible to reach either ⊥ or � or both.

The formal definition of monitorable properties has been given in [18] by
Pnueli and Zaks. It generalizes the notion of a safety property because for a
safety property some deterministic finite automaton can raise an alarm ⊥ by
observing a finite “bad prefix”, once the property is violated. The extension to
the more general notion of monitorability is that a monitorable property gives
also a positive feedback �, if all extensions of a finite prefix obey the specification.
Monitors are sometimes easy to implement and have a wide range of applications.
See for example [13] and the references therein. Extensions of monitors have been
proposed in more complex settings such as for stochastic automata [7,20] and
for properties expressed in metric first-order temporal logic [2]. For practical
use of monitors, various parameters may be relevant, in particular the size of
the monitor or the runtime overhead generated by the monitor (see also the
discussion in [24]).

In the present paper we discuss various monitor constructions. A monitor for
a safety property L can have much less states than the smallest DBA accepting
L. For example, let Σ = {a, b} and n ∈ N. Consider the language L = anbaΣω \
Σ∗bbΣω. The reader is invited to check that L is a safety property and every
DBA accepting L has more than n states. But there is a monitor with three
states, only. The monitor patiently waits to see an occurrence of a factor bb
and then switches to ⊥. Hence, there is no bound between a minimal size of an
accepting DBA and the minimal size of a possible monitor. This option, that a
monitor might be much smaller than any accepting DBA, has been one of the
main motivations for the use of monitors.

There are many deterministic languages which are far away from being moni-
torable. Consider again Σ = {a, b} and let L be the deterministic language of
“infinitely many a’s”. It is shown in [5] that L cannot be written as any countable
union of monitorable languages. On the other hand, if L is monitorable and also
accepted by some DBA with n states and a single initial state, then there is
some monitor accepting L with at most n states.
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In the last section of this paper we discuss the question how to decide whether
a language is monitorable and its complexity. If the input is a Büchi automaton,
then deciding safety, liveness, or monitorability is PSPACE-complete. If the input
is an LTL formula, then deciding safety remains PSPACE-complete. It becomes
surprisingly difficult for liveness: EXPSPACE-complete. For monitorability the
complexity is wide open: we only know that it is PSPACE-hard and that moni-
torability can be solved in EXPSPACE.

1 Preliminaries

We assume that the reader is familiar with the basic facts about automata theory
for infinite words as it is exposed in the survey [25]. In our paper Σ denotes a
finite nonempty alphabet. We let Σ∗ (resp. Σω) be the set of finite (resp. infinite)
words over Σ. Usually, lower case letters like a, b, c denote letters in Σ, u, . . . , z
denote finite words, 1 is the empty word, and α, β, γ denote infinite words. By
language we mean a subset L ⊆ Σω. The complement of L w.r.t. Σω is denoted
by Lc0. Thus, Lc0 = Σω \ L.

A Büchi automaton (BA for short) is a tuple A = (Q,Σ, δ, I, F ) where Q is
the nonempty finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the
set of final states, and δ ⊆ Q × Σ × Q is the transition relation. The accepted
language L(A) is the set of infinite words α ∈ Σω which label an infinite path
in A which begins at some state in I and visits some state in F infinitely often.
Languages of type L(A) are called ω-regular.

If for each p ∈ Q and a ∈ Σ there is at most one q ∈ Q with (p, a, q) ∈ δ, then
A is called deterministic. We write DBA for deterministic Büchi automaton. In a
DBA we view δ as a partially defined function and we also write p ·a = q instead
of (p, a, q) ∈ δ. Frequently it is asked that a DBA has a unique initial state.
This is not essential, but in order to follow the standard notation (Q,Σ, δ, q0, F )
refers to a BA where I is the singleton {q0}.

A deterministic weak Büchi automaton (DWA for short) is a DBA where all
states in a strongly connected component are either final or not final. Note that
a strongly connected component may have a single state because the underlying
directed graph may have self-loops. A language is accepted by some DWA if and
only if it is deterministic and simultaneously codeterministic. The result is in
[22] which in turn is based on previous papers by Staiger and Wagner [23] and
Wagner [27].

According to [18] a monitor is a finite deterministic transition system M
with at most two distinguished states ⊥ and � such that for all states p either
there exist a path from p to ⊥, or to �, or to both. It is a monitor for an
ω-language L ⊆ Σω if the following additional properties are satisfied:

– If u denotes the label of a path from an initial state to ⊥, then uΣω ∩ L = ∅.
– If u denotes the label of a path from an initial state to �, then uΣω ⊆ L.
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A language L ⊆ Σω is called monitorable if there exists a monitor for L. Thus,
even non regular languages might be monitorable. If a property is monitorable,
then the following holds:

∀x∃w : xwΣω ⊆ L ∨ xwΣω ∩ L = ∅ . (1)

The condition in (1) is not sufficient for non-regular languages: indeed con-
sider L = {anbna | n ∈ N}Σω. There is no finite state monitor for this lan-
guage. In the present paper, the focus is on monitorable ω-regular languages. For
ω-regular languages (1) is also sufficient; and Remark 2 below shows an equiva-
lent condition for monitorability (although stronger for non-regular languages).

The common theme in “automata on infinite words” is that finite state
devices serve to classify ω-regular properties. The most prominent classes are:

– Deterministic properties: there exists a DBA.
– Deterministic properties which are simultaneously codeterministic: there

exists a DWA.
– Safety properties: there exists a DBA where all states are final.
– Cosafety properties: the complement is a safety property.
– Liveness properties: there exists a BA where from all states there is a path to

some final state lying in a strongly connected component.
– Monitorable properties: there exists a monitor.

According to our definition of a monitor, not both states ⊥ and � need to be
defined. Sometimes it is enough to see ⊥ or �. For example, let ∅ �= L �= Σω

be a safety property and A = (Q,Σ, δ, I,Q) be a DBA accepting L where all
states are final. Since ∅ �= L we have I �= ∅. Since L �= Σω, the partially defined
transition function δ is not defined everywhere. Adding a state ⊥ as explained
above turns A into a monitor M for L where the state space is Q ∪ {⊥}. There
is no need for any state �. The monitor M also accepts L. This is however not
the general case.

2 Topological Properties

A topological space is a pair (X,O) where X is a set and O is collection of
subsets of X which is closed under arbitrary unions and finite intersections. In
particular, ∅,X ∈ O. A subset L ∈ O is called open; and its complement X \ L
is called closed.

For L ⊆ X we denote by L the intersection over all closed subsets K such
that L ⊆ K ⊆ X. It is the closure of L. The complement X \ L is denoted
by Lc0.

A subset L ⊆ X is called nowhere dense if its closure L does not contain any
open subset. The classical example of the uncountable Cantor set C inside the
closed interval [0, 1] is nowhere dense. It is closed and does not have any open
subset. On the other hand, the subset of rationals Q inside R (with the usual
topology) satisfies Q = R. Hence, Q is “dense everywhere” although Q itself
does not have any open subset.
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The boundary of L is sometimes denoted as δ(L); it is defined by

δ(L) = L ∩ Lc0 .

In a metric space B(x, 1/n) denotes the ball of radius 1/n. It is the set of y
where the distance between x and y is less than 1/n. A set is open if and only
if it is some union of balls, and the closure of L can be written as

L =
⋂

n≥1

⋃

x∈L

B(x, 1/n).

In particular, every closed set is a countable intersection of open sets. Following
the traditional notation we let F be the family of closed subsets and G be the
family of open subsets. Then Fσ denotes the family of countable unions of closed
subsets and Gδ denotes the family of countable intersections of open subsets. We
have just seen F ⊆ Gδ, and we obtain G ⊆ Fσ by duality. Since Gδ is closed
under finite union, Gδ ∩ Fσ is Boolean algebra which contains all open and all
closed sets.

In this paper we deal mainly with ω-regular sets. These are subsets of Σω;
and Σω is endowed with a natural topology where the open sets are defined by
the sets of the form WΣω where W ⊆ Σ∗. It is called the Cantor topology. The
Cantor topology corresponds to a complete ultra metric space: for example, we
let d(α, β) = 1/n for α, β ∈ Σω where n − 1 ∈ N is the length of a maximal
common prefix of α and β. (The convention is 0 = 1/∞.)

The following dictionary translates notation about ω-regular sets into its
topological counterpart.

– Safety = closed sets = F .
– Cosafety = open sets = G.
– Liveness = dense = closure is Σω.
– Deterministic = Gδ, see [12].
– Codeterministic = Fσ, by definition and the previous line.
– Deterministic and simultaneously codeterministic = Gδ ∩ Fσ, by definition.
– Monitorable = the boundary is nowhere dense, see [5].

Monitorability depends on the ambient space X. Imagine we embed R into
the plane R

2 in a standard way. Then R is a line which is nowhere dense in
R

2. As a consequence every subset L ⊆ R is monitorable in R
2. The same

phenomenon happens for ω-regular languages. Consider the embedding of {a, b}ω

into {a, b, c}ω by choosing a third letter c. Then {a, b}ω is nowhere dense in
{a, b, c}ω and hence, every subset L ⊆ {a, b}ω is monitorable in {a, b, c}ω. The
monitor has 3 states. One state is initial and by reading c we switch into the state
⊥. The state � can never be reached. In some sense this 3-state minimalistic
monitor is useless: it tells us almost nothing about the language. Therefore the
smallest possible monitor is rarely the best one.

Remark 1. In our setting many languages are monitorable because there exists
a “forbidden factor”, for example a letter c in the alphabet which is never used.
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More precisely, let L ⊆ Σω be any subset and assume that there exists a finite
word f ∈ Σ∗ such that either Σ∗fΣω ⊆ L or Σ∗fΣω ∩ L = ∅. Then L is moni-
torable. Indeed, the monitor just tries to recognize Σ∗fΣω. Its size is |f |+2 and
can be constructed in linear time from f by algorithms of Matiyasevich [16] or
Knuth-Morris-Pratt [10].

3 Constructions of Monitors

Remark 1 emphasizes that one should not try simply to minimize monitors. The
challenge is to construct “useful” monitors. In the extreme, think that we encode
a language L in printable ASCII code, hence it is a subset of {0, 1}∗. But even
in using a 7-bit encoding there were 33 non-printable characters. A monitor can
choose any of them and then waits patiently whether this very special encoding
error ever happens. This might be a small monitor, but it is of little interest. It
does not even check all basic syntax errors.

3.1 Monitors for ω-regular Languages in Gδ ∩ Fσ

The ω-regular languages in Gδ∩Fσ are those which are deterministic and simulta-
neously codeterministic. In every complete metric space (as for example the Can-
tor space Σω) all sets in Gδ ∩Fσ have a boundary which is nowhere dense. Thus,
deterministic and simultaneously codeterministic languages are monitorable by
a purely topological observation, see [5].

Recall that there is another characterization of ω-regular languages in Gδ∩Fσ

due to Staiger, [22]. It says that these are the languages which are accepted by
some DWA, thus by some DBA where in every strongly connected component
either all states are final or none is final.

In every finite directed graph there is at least one strongly connected com-
ponent which cannot be left anymore. In the minimal DWA (which exists and
which is unique and where, without restriction, the transition function is totally
defined) these end-components consist of a single state which can be identified
either with ⊥ or with �. Thus, the DWA is itself a monitor. Here we face the
problem that this DWA might be very large and also too complicated for useful
monitoring.

3.2 General Constructions

Let w ∈ Σ∗ be any word. Then the language L = wΣω is clopen meaning simul-
taneously open and closed. The minimal monitor for wΣω must read the whole
word w before it can make a decision; and the minimal monitor has exactly
|w| + 2 states. On the other hand, its boundary, L ∩ Lc0 is empty and therefore
nowhere dense. This suggests that deciding monitorability might be much sim-
pler than constructing a monitor. For deciding we just need any DBA accepting
the safety property L ∩Lc0 . Then we can see on that particular DBA whether L
is monitorable, although this particular DBA might be of no help for monitoring.
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Phrased differently, there is no bound between the size of a DBA certifying that
L is monitorable and the size of an actual monitor for L.

Indeed, the standard construction for a monitor ML is quite different from
a direct construction of the DBA for the boundary, see for example [5]. The
construction for the monitor ML is as follows. Let L ⊆ Σω be monitorable
and given by some BA. First, we construct two DBAs: one DBA with state
set Q1, for the closure L and another one with state set Q2 for the closure of
the complement Lc0 . We may assume that in both DBAs all states are final
and reachable from a unique initial state q01 and q02, respectively. Second, let
Q′ = Q1 × Q2. Now, if we are in a state (p, q) ∈ Q′ and we want to read a letter
a ∈ Σ, then exactly one out of the three possibilities can happen.

1. The states p ·a and q ·a are defined, in which case we let (p, q) ·a = (p ·a, q ·a).
2. The state p · a is not defined, in which case we let (p, q) · a = ⊥.
3. The state q · a is not defined, in which case we let (p, q) · a = �.

Here ⊥ and � are new states. Moreover, we let q ·a = q for q ∈ {⊥,�} and a ∈ Σ.
Hence, the transition function is totally defined. Finally, we let Q ⊆ Q′ ∪{⊥,�}
be the subset which is reachable from the initial state (q01, q02). Since L is moni-
torable, Q ∩ {⊥,�} �= ∅; and Q defines a set of a monitor ML. Henceforth, the
monitor ML above is called a standard monitor for L. The monitor has exactly
one initial state. From now on, for simplicity, we assume that every monitor M
has exactly one initial state and that the transition function is totally defined.
Thus, we can denote a monitor M as a tuple

M = (Q,Σ, δ, q0,⊥,�). (2)

Here, δ : Q × Σ → Q, (p, a) �→ p · a is the transition function, q0 is the unique
initial state, ⊥ and � are distinguished states with Q ∩ {⊥,�} �= ∅.

Definition 1. Let M = (Q,Σ, δ, q0,⊥,�), M′ = (Q′, Σ, δ′, q′
0,⊥,�) be moni-

tors. A morphism between M and M′ is mapping ϕ : Q∪{⊥,�} → Q′ ∪{⊥,�}
such that ϕ(q0) = q′

0, ϕ(⊥) = ⊥, ϕ(�) = �, and ϕ(p · a) = ϕ(p) · a for all p ∈ Q
and a ∈ Σ.

If ϕ is surjective, then ϕ is called an epimorphism.

Another canonical monitor construction uses the classical notion of right-
congruence. A right-congruence for the monoid Σ∗ is an equivalence relation ∼
such that x ∼ y implies xz ∼ yz for all x, y, z ∈ Σ∗. There is a canonical right-
congruence ∼L associated with every ω-language L ⊆ Σω: for x ∈ Σ∗ denote
by L(x) = {α ∈ Σω | xα ∈ L} the quotient of L by x. Then defining ∼L by
x ∼L y ⇐⇒ L(x) = L(y) yields a right-congruence. More precisely, Σ∗ acts on
the set of quotients QL = {L(x) | x ∈ Σ∗} on the right, and the formula for the
action becomes L(x) · z = L(xz). Note that this is well-defined. This yields the
associated automaton [22, Sect. 2]. It the finite deterministic transition system
with state set QL and arcs (L(x), a, L(xa)) where x ∈ Σ∗ and a ∈ Σ.

There is a canonical initial state L = L(1), but unlike in the case of reg-
ular sets over finite words there is no good notion of final states in QL for
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infinite words. The right congruence is far too coarse to recognize L, in general.
For example, consider the deterministic language L of “infinitely many a’s” in
{a, b}ω. For all x we have L = L(x), but in order to recognize L we need two
states.

It is classical that if L is ω-regular, then the set QL is finite, but the converse
fails badly [22, Sect. 2]: there are uncountably many languages where |QL| = 1.
To see this define for each α ∈ Σω a set

Lα = {β ∈ Σω | α andβ share an infinite suffix}.

All Lα are countable, but the union {Lα | α ∈ Σω} covers the uncountable
Cantor space Σω. Hence, there are uncountably many Lα. However, |QLα

| = 1
since Lα(x) = Lα for all x.

Recall that a monitor is a DBA where the monitoring property is not defined
using final states, but it is defined using the states ⊥ and �. Thus, a DBA with
an empty set of final states can be used as a monitor as long as ⊥ and � have
been assigned and the required properties for a monitor are satisfied.

Proposition 1. Let L ⊆ Σω be ω-regular and monitorable. Assume that L is
accepted by some BA with n states. As above let QL = {L(x) | x ∈ Σ∗} and
denote ⊥ = ∅ and � = Σω. Then |QL| ≤ 2n and QL ∪{�,⊥} is the set of states
for a monitor for L. At least one of the states in {�,⊥} is reachable from the
initial state L = L(1).

The monitor in Proposition 1 with state space QL is denoted by AL henceforth.
We say that AL is the right-congruential monitor for L.

Proposition 2. Let A be the right-congruential monitor for L. Then the
mapping

L(x) �→ ϕ(L(x)) = (L (x), Lc0 (x))

induces a canonical epimorphism from AL onto some standard monitor ML.

Proof. Observe that L (x) = L(x) and Lc0(x) = L(x)c0. Hence,
(L (x), Lc0 (x)) = (L(x) , L(x)c0 ) and ϕ(L(x)) is well-defined. Now, if L (x) �= ∅
and Lc0 (x) �= ∅, then ϕ(L(x)) ∈ Q where Q is the state space of the standard
monitor M. If L (x) = ∅ then we can think that all (∅, Lc0 (x)) denote the state
⊥; and if Lc0 (x) = ∅ then we can think that all (L (x), ∅) denote the state �. ��
Corollary 1. Let L ⊆ Σω be monitorable and given by some BA with n states.
Then some standard monitor ML for L has at most 2n states.

Proof. Without restriction we may assume that in the BA (Q,Σ, δ, I, F ) accept-
ing L every state q ∈ Q leads to some final state. The usual subset construction
leads first to a DBA accepting L , where all states are final and the states of
this DBA are the nonempty subsets of Q. Thus, these are 2n − 1 states. Adding
the empty set ∅ = ⊥ we obtain a DBA with 2n states where the transition
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function is defined everywhere. If the complement Lc0 is dense, this yields a
standard monitor. In the other case we can use the subset construction also
for a DBA accepting Lc0 . In this case we remove all subsets P ⊆ Q where
L(Q,Σ, δ, P, F ) = Σω. (Note, for all a ∈ Σ we have: if L(Q,Σ, δ, P, F ) = Σω

and P ′ = {q ∈ Q | ∃p ∈ P : (p, a, q) ∈ δ}, then L(Q,Σ, δ, P ′, F ) = Σω, too.)
Thus, if Lc0 is not dense, then the construction for a standard monitor has at
most 2n − 2 states of the form (P, P ) where ∅ �= P and L(Q,Σ, δ, P, F ) �= Σω.
In addition there exists the reachable state � and possibly the state ⊥. ��
Proposition 2 leads to the question of a canonical minimal monitor, at least for
a safety language where a minimal accepting DBA exists. The answer is “no” as
we will see in Example 1 later.

Let us finish the section with a result on arbitrary monitorable subsets of
Σω which is closely related to [21, Lemma 2]. Consider any subset L ⊆ Σω

where the set of quotients QL = {L(x) | x ∈ Σ∗} is finite (=“zustandsendlich”
or “finite state”in the terminology of [21]). If QL is finite, then L is monitorable
if and only if the boundary is nowhere dense. In every topological space this
latter condition is equivalent to the condition that the interior of L is dense in
its closure L . Translating Staiger’s result in [21] to the notion of monitorability
we obtain the following fact.

Proposition 3. Let L ⊆ Σω be any monitorable language and let M be a mon-
itor for L with n states. Then there exists a finite word w of length at most
(n − 1)2 such that for all x ∈ Σ∗ we have either xwΣω ⊆ L or xwΣω ∩ L = ∅.
Proof. We may assume that n ≥ 1 and that the state space of M is included in
{1, . . . , n − 1,⊥,�}. Merging � and ⊥ into a single state 0 we claim that there
is a word w of length at most (n − 1)2 such that q · w = 0 for all 0 ≤ q ≤ n − 1.
Since L is monitorable, there is for each q ∈ {0, . . . , n − 1} a finite word vq of
length at most n−1 such that q ·vq = 0. By induction on k we may assume that
there is a word wk of length at most k(n−1) such that for each q ∈ {0, . . . , k} we
have q · wk = 0. (Note that the assertion trivially holds for k = 0.) If k ≥ n − 1
we are done: w = wn−1. Otherwise consider the state q = k + 1 and the state
p = q · wk. Define the word wk+1 by wk+1 = wkvp. Then the length of wk+1 is
at most (k + 1)(n − 1). Since wk is a prefix of wk+1 and since 0 · v = v for all v,
we have q · wk+1 = 0 for all 0 ≤ q ≤ k + 1. ��
Remark 2. The interest in Proposition 3 is that monitorability can be character-
ized by a single alternation of quantifiers. Instead of saying that

∀x∃w (∀α : xwα ∈ L) ∨ (∀α : xwα /∈ L)

it is enough to say

∃w ∀x (∀α : xwα ∈ L) ∨ (∀α : xwα /∈ L).

The length bound (n − 1)2 is not surprising. It confirms Černý’s Conjecture in
the case of monitors. (See [26] for a survey on Černý’s Conjecture.) Actually,



48 V. Diekert et al.

in the case of monitors with more than 3 states the estimation of the length of
the “reset word” is not optimal. For example in the proof of Proposition 3 we can
choose the word v1 to be a letter, because there must be a state with distance
at most one to 0. The precise bound is

(
n+1
2

)
= (n + 1)n/2 if the alphabet is

allowed to grow with n [19, Theorem 6.1]. If the alphabet is fixed, then the lower
bound for the length of w is still in n2/4 + Ω(n) [15].

4 Monitorable Deterministic Languages

The class of monitorable languages form a Boolean algebra and every ω-regular
set L can be written as a finite union L =

⋃n
i=1 Li \ Ki where the Li and Ki

are deterministic ω-regular, [25]. Thus, if L is not monitorable, then one of the
deterministic Li or Ki is not monitorable. This motivates to study monitorable
deterministic languages more closely.

Definition 2. Let L ⊆ Σω be deterministic ω-regular. A deterministic Büchi
monitor (DBM for short) for L is a tuple

B = (Q,Σ, δ, q0, F,⊥,�)

where A = (Q,Σ, δ, q0, F ) is a DBA with L = L(A) and where (Q,Σ, δ, q0,⊥,�)
is a monitor in the sense of Eq. (2) for L.

The next proposition justifies the definition.

Proposition 4. Let L ⊆ Σω be any subset. Then L is a monitorable determin-
istic ω-regular language if and only if there exists a DBM for L.

Proof. The direction from right to left is trivial. Thus, let L be monitorable and
let L = L(A) for some DBA A = (Q,Σ, δ, q0, F ) where all states are reachable
from the initial state q0. For a state p ∈ Q let L(p) = L(Q,Σ, δ, p, F ). If L(p) = ∅,
then L(p · a) = ∅; and if L(p) = Σω, then L(p · a) = Σω. Thus, we can merge
all states p with L(p) = ∅ into a single non-final state ⊥; and we can merge all
all states p with L(p) = Σω into a single final state � without changing the
accepted language. All states are of the form q0 · x for some x ∈ Σ∗; and, since
L is monitorable, for each x either there is some y with xyΣω ∩ L = ∅ or there
is some y with xyΣω ⊆ L (or both). In the former case we have q0 · xy = ⊥ and
in the latter case we have q0 · xy = �. ��
Corollary 2. Let L ⊆ Σω be a monitorable deterministic ω-regular language
and A be a DBA with n states accepting L. Let B be a DBM for L with state set
QB where the size of QB is as small as possible. Let further QR (resp. QM) be
the state set of the congruential (resp. smallest standard) monitor for L. Then
we have

n ≥ |QB| ≥ |QR| ≥ |QM| .
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Example 1. Let Σ = {a, b} and Γ = {a, b, c, d}.

1. For n ∈ N consider L = anbΣω \ Σ∗bbΣω. It is a safety property. Hence, we
have L = L. Moreover, Σ∗bbΣω is a liveness property (i.e., dense). Hence
Lc0 = Σω. It follows that the standard monitor is just the minimal DBA
for L augmented by the state ⊥. There are exactly n + 4 right-congruence
classes defined by prefixes of the words anba and anb2. We have L(anb2) = ∅.
Hence reading anb2 leads to the state ⊥. This, shows that the inequalities
in Corollary 2 become equalities in that example. On the other hand b2 is a
forbidden factor for L. Hence there is a 3 state monitor for L. Still there is
no epimorphism from the standard monitor onto that monitor, since in the
standard monitor we have L(an+1) = ∅ but in the 3-state monitor ⊥ has not
an incoming arc labeled by a.

0B : 1 2

⊥

b

a

b
a

c

c

a, b, c

d
d

d

Γ

0, 1R : 2

⊥

c

a, b a, b, c

d
d

Γ

0, 1, 2M :

⊥

a, b, c

d

Γ

Fig. 1. Monitors B, R, M for L = L(B).
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2. Every monitor for the language Σ∗(bab ∪ b3)Σω has at least 4 states. There
are three monitors with 4 states which are pairwise non-isomorphic.

3. Let L = (b∗a)ω ∪ {a, b}∗c{a, b, c}ω ⊆ Γω. Then L is monitorable and deter-
ministic, but not codeterministic. Its minimal DBM has 4 states, but the
congruential monitor QR has 3 states, only. We have L = {a, b, c}ω and
Lc0 = Γω. Hence, the smallest standard monitor has two states. In particu-
lar, we have |QB| > |QR| > |QM|, see also Fig. 1.

5 Deciding Liveness and Monitorability

5.1 Decidability for Büchi Automata

It is well-known that decidability of liveness (monitorability resp.) is PSPACE-
complete for Büchi automata. The following result for liveness is classic, for
monitorability it was shown in [6].

Proposition 5. The following two problems are PSPACE-complete:

– Input: A Büchi automaton A = (Q,Σ, δ, I, F ).
– Question 1: Is the accepted language L(A) ⊆ Σω live?
– Question 2: Is the accepted language L(A) ⊆ Σω monitorable?

Proof. Both problems can be checked in PSPACE using standard techniques. We
sketch this part for monitorability. The procedure considers, one after another,
all subsets P such that P is reachable from I by reading some input word. For
each such P the procedure guesses some P ′ which is reachable from P . It checks
that either L(A′) = ∅ or L(A′) = Σω, where A′ = (Q,Σ, δ, P ′, F ). If both tests
fail then the procedure enters a rejecting loop.

If, on the other hand, the procedure terminates after having visited all P ,
then L(A) is monitorable.

For convenience of the reader we show PSPACE-hardness of both problems
by adapting the proof in [6].

We reduce the universality problem for non-deterministic finite automata
(NFA) to both problems. The universality problem for NFA is well-known to be
PSPACE-complete.

Start with an NFA A = (Q′, Γ, δ′, q0, F ′) where Γ �= ∅. We use a new letter
b /∈ Γ and we let Σ = Γ ∪ {b}.

We will construct Büchi automata B1 and B2 as follows. We use three new
states d, e, f and we let Q = Q′ ∪ {d, e, f}, see Fig. 2. The initial state is the
same as before: q0. Next, we define δ. We keep all arcs from δ′ and we add the
following new arcs.

– q
b−→ d

a−→ e
a−→ e for all q ∈ Q′ \ F ′ and all a ∈ Γ .

– e
b−→ d

b−→ d
– q

b−→ f
c−→ f for all q ∈ F ′ and all c ∈ Σ.
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Q′ \ F ′

F ′

d e f

b

b
Γ

b

Γ

b

Σ

Fig. 2. PSPACE-hardness for liveness and monitorability for Büchi automata.

Let us define two final sets of states: F1 = {f} and F2 = {d, f}. Thus, we
have constructed Büchi automata B1 and B2 where

Bi = (Q,Γ, δ, q0, Fi) for i = 1, 2.

For the proof of the proposition it is enough to verify the following two claims
which are actually more precise than needed.

1. The language L(B1) is monitorable. It is live if and only if L(A) = Γ ∗.
2. The language L(B2) is live. It is monitorable if and only if L(A) = Γ ∗.

If L(A) = Γ ∗, then we have L(B1) = L(B2) = Σω, so both languages are live
and monitorable.

If L(A) �= Γ ∗, then there exists some word u /∈ L(A) and hence reading ub
we are necessarily in state d. It follows that ubΣω ∩ L(B1) = ∅ and L(B1) is
not live. Still, L(B1) is monitorable. Now, for all w ∈ Σ∗ we have wbω ∈ L(B2).
Hence, L(B2) is live. However, if u /∈ L(A), then after reading ub we are in state
d. Now, choose some letter a ∈ Γ . For all v ∈ Σ∗ we have ubvaω /∈ L(B2), but
ubvbω ∈ L(B2). Hence, if L(A) �= Γ ∗, then L(B2) is not monitorable. ��

5.2 Decidability for LTL

We use the standard syntax and semantics of the linear temporal logic LTL for
infinite words over some finite nonempty alphabet Σ. We restrict ourselves the
pure future fragment and the syntax of LTLΣ [XU] is given as follows.

ϕ ::=� | a | ¬ϕ | ϕ ∨ ϕ | ϕ XU ϕ,

where a ranges over Σ. The binary operator XU is called the next-until modality.
In order to give the semantics we identify each ϕ ∈ LTLΣ with some

first-order formula ϕ(x) in at most one free variable. The identification is
done as usual by structural induction. The formula a becomes a(x) = Pa(x),
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where Pa(x) is the unary predicate saying that the label of position x is the
letter a. The formula “ϕ neXt-Until ψ” is defined by:

(ϕ XU ψ)(x) = ∃z : (x < z ∧ ψ(z) ∧ ∀y : ϕ(y) ∨ y ≤ x ∨ z ≤ y).

Finally let α ∈ Σω be an infinite word with the first position 0, then we
define α |= ϕ by α |= ϕ(0); and we define

L(ϕ) = {α ∈ Σω | α |= ϕ}.

Languages of type L(ϕ) are called LTL definable, It is clear that every LTL
definable language is first-order definable; and Kamp’s famous theorem [9] states
the converse. In particular, given L(ϕ) there exists a BA A such that L(ϕ) =
L(A). There are examples where the size of the formula ϕ is exponentially smaller
than the size of any corresponding BA A.

For a survey on first-order definable languages we refer to [4]. By LTL decid-
ability of a property P we mean that the input is a formula ϕ ∈ LTLΣ and we ask
whether property P holds for L(ϕ). By Proposition 5 we obtain straightforwardly
the following lower and upper bounds for the LTL decidability of monitorability
and liveness.

Remark 3. The following two problems are PSPACE-hard and can be solved in
EXPSPACE:

– Input: A formula ϕ ∈ LTLΣ .
– Question 1: Is the accepted language L(ϕ) ⊆ Σω live?
– Question 2: Is the accepted language L(ϕ) ⊆ Σω monitorable?

Remark 3 is far from satisfactory since there is huge gap between PSPACE-
hardness and containment in EXPSPACE. Very unfortunately, we were not
able to make the gap any smaller for monitorability. There was some belief
in the literature that, at least, LTL liveness can be tested in PSPACE, see for
example [17]. But surprisingly this last assertion is wrong: testing LTL liveness
is EXPSPACE-complete!

Proposition 6. Deciding LTL liveness is EXPSPACE-complete:

– Input: A formula ϕ ∈ LTLΣ.
– Question Is the accepted language L(ϕ) ⊆ Σω live?

EXPSPACE-completeness of liveness was proved by Muscholl and Walukiewicz
in 2012, but never published. Independently, it was proved by Orna Kupferman
and Gal Vardi in [11].

We give a proof of Proposition 6 in Sects. 5.3 and 5.4 below. We also point
out why the proof technique fails to say anything about the hardness to decide
monitorability. Our proof for Proposition 6 is generic. This means that we start
with a Turing machine M which accepts a language L(M) ⊆ Γ ∗ in EXPSPACE.
We show that we can construct in polynomial time a formula ϕ(w) ∈ LTLΣ such
that

w ∈ L(M) ⇐⇒ L(ϕ(w)) ⊆ Σωis not live.
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5.3 Encoding EXPSPACE Computations

For the definition of Turing machines we use standard conventions, very closely
to the notation e.g. in [8]. Let L = L(M) be accepted by a deterministic Turing
machine M , where M has set of states Q and the tape alphabet is Γ containing
a “blank” symbol B. We assume that for some fixed polynomial p(n) ≥ n+2 the
machine M uses on an input word w ∈ (Γ \ {B})∗ of length n strictly less space
than 2N −2, where N = p(n). (It does not really matter that M is deterministic.)
Configurations are words from Γ ∗(Q × Γ )Γ ∗ of length precisely 2N , where the
head position corresponds to the symbol from Q × Γ . For technical reasons we
will assume that the first and the last symbol in each configuration is B. Let
A = Γ ∪ (Q × Γ ).

If the input is nonempty word w = a1 · · · an where the ai are letters, then
the initial configuration is defined here as

C0 = B(q0, a1)a2 · · · an BBBBB · · · B︸ ︷︷ ︸
2N −n−1 times

.

For t ≥ 0 let Ct be configuration of M at time t during the computation
starting with the initial configuration C0 on input w. We may assume that the
computation is successful if and only if there is some t such that a special symbol,
say qf , appears in Ct. Thus, we can write each Ct as a word Ct = a0,t · · · am,t

with m = 2N − 1; and we have w ∈ L(M) if and only if there are some i ≥ 1
and t ≥ 1 such that ai,t = qf .

In order to check that a sequence C0, C1, . . . is a valid computation we may
assume that the Turing machine comes with a table Δ ⊆ A4 such that the
following formula holds:

∀t > 0 ∀1 ≤ i < 2N − 1 : (ai−1,t−1, ai,t−1, ai+1,t−1, ai,t) ∈ Δ.

Without restriction we have (B,B,B,B) ∈ Δ, because otherwise M would
accept only finitely many words.

We may express that we can reach a final configuration Ct by saying:

∃t ≥ 1 ∃1 ≤ i < 2N : ai,t = qf .

As in many EXPSPACE-hardness proofs, for comparing successive configura-
tions we need to switch to a slightly different encoding, by adding the tape
position after each symbol from A. To do so, we enlarge the alphabet A by
new symbols 0, 1, $,#, k1, . . . kN which are not used in any Ct so far. Hence,
Σ = A ∪ {0, 1, $,#, k1, . . . kN}. We encode a position 0 ≤ i < 2N by using
its binary representation with exactly N bits. Thus, each i is written as a
word bin(i) = b1 · · · bN where each bp ∈ {0, 1}. In particular, bin(0) = 0N ,
bin(1) = 0N−11, . . . , bin(2N − 1) = 1N .

Henceforth, a configuration Ct = a0,t · · · am,t with m = 2N − 1 is encoded as
a word

ct = a0,t bin(0) · · · am,t bin(m)$.
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Words of this form are called stamps in the following. Each stamp has length
2N · N + 1. If a factor bin(i) occurs, then either i = m (i.e., bin(i) = 1N ) and
the next letter is $ or i < m and the next letter is some letter from the original
alphabet A followed by the word bin(i + 1).

Now we are ready to define a language L = L(w) which has the property
that L is not live if and only if w ∈ L(M). We describe the words α ∈ Σω which
belong to L as follows.

1. Assume that α does not start with a prefix of the form c0 · · · c�#, where c0
corresponds to the initial configuration w.r.t. w, each ct is a stamp and in the
stamp c� the symbol qf occurs. Then α belongs to L.

2. Assume now that α starts with a prefix c0 · · · c�# as above. Then we let
α belong to L if and only if the set of letters occurring infinitely often
in α witness that the prefix c0 · · · c� of stamps is not a valid computa-
tion. Thus, we must point to some t ≥ 1 and some position 1 ≤ i < m
such that (ai−1,t−1, ai,t−1, ai+1,t−1, ai,t) /∈ Δ. The position i is given as
bin(i) = b1 · · · bN ∈ {0, 1}N . The string bin(i) defines a subset of Σ:

I(i) = {kp ∈ {k1, . . . , kN} | bp = 1}.

The condition for α to be in L is that for some t the mistake from ct−1 to
ct is reported by (ai−1,t−1, ai,t−1, ai+1,t−1, ai,t) /∈ Δ and the position i such
that I(i) equals the set of letters kp which appear infinitely often in α. Note
that since we excluded mistakes at positition i = 0 (because of the leftmost
B), the set I(i) is non-empty.

Lemma 1. The language L = L(w) is not live if and only if w ∈ L(M).

Proof. First, let w ∈ L(M). Then we claim that L is not live. To see this let
u = c0 · · · c�#, where the prefix c0 · · · c� is a valid accepting computation of M .
There is no mistake in c0 · · · c�. Thus we have uΣω ∩ L = ∅, so indeed, L is not
live.

Second, let w /∈ L(M). We claim that L is live. Consider any u ∈ Σ∗.
Assume first that u does not start with a prefix of the form c0 · · · c�#, where c0
corresponds to the initial configuration w.r.t. w, each ct is a stamp and in the
stamp c� the symbol qf occurs. Then we have uΣω ⊆ L.

Otherwise, assume that c0 · · · c�# is a prefix of u and that all ct’s are stamps,
with c0 initial and c� containing qf . There must be some mistake in c0 · · · c�#,
say for some i and t. Let I(i) be as defined a above. As i ≥ 1 we have I(i) �=
∅. Therefore we let β be any infinite word where the set of letters appearing
infinitely often is exactly the set I(i). By definition of L we have uβ ∈ L. Hence,
L is live. ��
There are other ways to encode EXPSPACE computations which may serve to
prove Proposition 6, see for example [11]. However, these proofs do not reveal any
hardness for LTL monitorability. In particular, they do not reveal EXPSPACE
or EXPTIME hardness. For our encoding this is explained in Remark 4.
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Remark 4. Since are interested in EXPSPACE-hardness, we may assume that
there infinitely many w with w /∈ L(M). Let n be large enough, say n ≥ 3 and
w /∈ L(M), then (B, (q0, a1), a2, qf ) /∈ Δ, where w = a1a2 · · · because otherwise
w ∈ L(M). Define c1 just as the initial stamp c0 with the only difference that
the letter (q0, a1) is replaced by the symbol qf . Let u = c0c1#, then for every
v ∈ Σ∗ we have that uv(kN )ω ∈ L (i.e., there is a mistake at position 1), but
uv(k1k2 · · · kN )ω ∩ L = ∅ (i.e., there is no mistake at position 2N − 1) because
(B,B,B,B) ∈ Δ. Thus, L is not monitorable.

5.4 Proof of Proposition 6

LTL liveness is in EXPSPACE by Remark 3. The main ideas for the proof are
in the previous subsection. We show that we can construct in polynomial time
on input w some ϕ ∈ LTLΣ such that L(ϕ) = L(w). This can be viewed as
a standard exercise in LTL. The solution is a little bit tedious and leads to a
formula of at most quadratic size in n. The final step in the proof is to apply
Lemma 1. ��

6 Conclusion and Outlook

In the paper we studied monitorable languages from the perspective of what is
a “good monitor”. In some sense we showed that there is no final answer yet,
but monitorability is a field where various interesting questions remain to be
answered.

Given an LTL formula for a monitorable property one can construct monitors
of at most doubly exponential size; and there is some indication that this is the
best we can hope for, see [3]. Still, we were not able to prove any hardness for
LTL monitorability beyond PSPACE. This does not mean anything, but at least
in theory, it could be that LTL monitorability cannot be tested in EXPTIME,
but nevertheless it is not EXPTIME-hard.

There is also another possibility. Deciding monitorability might be easier
than constructing a monitor. Remember that deciding monitorability means to
test that the boundary is nowhere dense. However we have argued that a DBA
for the boundary does not give necessarily any information about a possible
monitor, see the discussion at the beginning of Sect. 3.2.

A more fundamental question is about the notion of monitorability. The
definition is not robust in the sense that every language becomes monitorable
simply by embedding the language into a larger alphabet. This is somewhat
puzzling, so the question is whether a more robust and still useful notion of
monitorability exist.

Finally, there is an interesting connection to learning. In spite of recent
progress to learn general ω-regular languages by [1] it not known how to learn a
DBA for deterministic ω-regular languages in polynomial time. The best result
is still due to Maler and Pnueli in [14]. They show that it is possible to learn a
DWA for a ω-regular language L in Gδ ∩ Fσ in polynomial time. The queries to
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the oracle are membership question “uvω ∈ L?” where u and v are finite words
and the query whether a proposed DWA is correct. If not, the oracle provides a
shortest counterexample of the form uvω.

Since a DWA serves also as a monitor we can learn a monitor the very same
way, but beyond Gδ ∩ Fσ it is not known that membership queries to L and
queries whether a proposed monitor is correct suffice. As a first step one might
try find out how to learn a deterministic Büchi monitor in case it exists. This
is a natural class beyond Gδ ∩ Fσ because canonical minimal DBA for these
languages exist. Moreover, just as for DWA this minimal DBA is an DBM, too.

Another interesting branch of research is monitorability in a distributed set-
ting. A step in this direction for infinite Mazurkiewicz traces was outlined in [6].
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Integration in the National Airspace System is a NASA research project
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operations. One of the major challenges of this integration is the lack
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this capability. This talk reports on the formal methods work conducted
under NASA’s Safe Autonomous System Operations project in support
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generate more than 100 thousand jobs. The report identifies precision agricul-
ture and public safety as the two main potential markets for UAS in the US.

As the availability and applications of UAS grow, these systems will inevitably
become part of standard airspace operations. A fundamental challenge for the
integration of UAS into the NAS is the lack of an on-board pilot to comply with
the legal requirement identified in the US Code of Federal Regulations to see and
avoid traffic aircraft. As a means of compliance with this legal requirement, the
final report of the FAA-sponsored Sense and Avoid (SAA) Workshop [4] defines
the concept of sense and avoid for remote pilots as “the capability of a UAS to
remain well clear from and avoid collisions with other airborne traffic.”

NASA’s Unmanned Aircraft Systems Integration in the National Airspace
System project aims to develop key capabilities to enable routine and safe access
for public and civil use of UAS in non-segregated airspace operations. As part of
this project, NASA has developed a detect and avoid (DAA) concept for UAS [1]
that implements the sense and avoid concept outlined by the SAA Workshop.
The NASA DAA concept defines a volume representing a well-clear boundary
where aircraft inside this volume are considered to be in well-clear violation. This
volume is intended to be large enough to avoid safety concerns for controllers and
see-and-avoid pilots. It shall also be small enough to avoid disruptions to traffic
flow. Formally, this volume is defined by a boolean predicate on the states of two
aircraft, i.e., their position and velocity vectors at current time. The predicate
states that two aircraft are well clear of each other if appropriate distance and
time variables determined by the relative aircraft states remain outside a set of
predefined threshold values. These distance and time variables are closely related
to variables used in the Resolution Advisory (RA) logic of the Traffic Alerting
and Collision Avoidance System (TCAS).

TCAS is a family of airborne devices that are designed to reduce the risk
of mid-air collisions between aircraft equipped with operating transponders.
TCAS II [16], the current generation of TCAS devices, is mandated in the US
for aircraft with greater than 30 seats or a maximum takeoff weight greater than
33,000 pounds. Although it is not required, TCAS II is also installed on many
turbine-powered general aviation aircraft. An important characteristic of the
well-clear violation volume is that it conservatively extends the volume defined
by TCAS II, i.e., for an appropriate choice of threshold values, the TCAS II RA
volume is strictly contained within the well-clear violation volume [10]. Hence,
aircraft are declared to be in a well-clear violation before an RA is issued. This
relation between the well-clear violation volume and the TCAS II volume guar-
antees that software capabilities supporting the DAA concept safely interact well
with standard collision avoidance systems for commercial aircraft.

The well-clear definition proposed by NASA satisfies several geometric and
operational properties [11]. For example, it is symmetric, i.e., in a pair-wise
scenario, both aircraft make the same determination of being well-clear or not.
Furthermore, the well-clear violation volume is locally convex, i.e., in a non-
maneuvering pair-wise scenario, there is at most one time interval in which the
aircraft are not well clear. Symmetry and local convexity represent fundamental
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safety properties of the DAA concept. In particular, symmetry ensures that
all aircraft are simultaneously aware of a well-clear violation. Local convexity
states that in a non-maneuvering scenario, a predicted well-clear violation is
continuously alerted until it disappears. Once the alert disappears, it does not
reappear unless the aircraft change their trajectories.

The NASA DAA concept also includes self-separation and alerting algorithms
intended to provide remote pilots appropriate situational awareness of proximity
to other aircraft in the airspace. These algorithms are implemented in a software
library called DAIDALUS (Detect & Avoid Alerting Logic for Unmanned Sys-
tems) [12]. DAIDALUS consists of algorithms for determining the current well-
clear status between two aircraft and for predicting a well-clear violation within
a lookahead time, assuming non-maneuvering trajectories. In the case of a pre-
dicted well-clear violation, DAIDALUS also provides an algorithm that computes
the time interval of well-clear violation. Furthermore, DAIDALUS implements
algorithms for computing prevention bands, assuming a simple kinematic tra-
jectory model. Prevention bands are ranges of track, ground speed, and vertical
speed maneuvers that are predicted to be in well-clear violation within a given
lookahead time. These bands provide awareness information to remote pilots and
assist them in avoiding certain areas in the airspace. When aircraft are not well
clear, or when a well-clear violation is unavoidable, the DAIDALUS algorithms
compute well-clear recovery bands. Recovery bands are ranges of horizontal and
vertical maneuvers that assist pilots in regaining well-clear status within the
minimum possible time. Recovery bands are designed so that they do not con-
flict with resolution advisory maneuvers generated by systems such as TCAS II.
DAIDALUS implements two alternative alerting schemas. One schema is based
on the prediction of well-clear violations for different sets of increasingly con-
servative threshold values. The second schema is based on the types of bands,
which can be either preventive or corrective, computed for a single set of thresh-
old values. A band is preventive if it does not include the current trajectory.
Otherwise, it is corrective. Recovery bands, by definition, are always correc-
tive. In general, both schemas yield alert levels that increase in severity as a
potential pair-wise conflict scenario evolves. The DAIDALUS library is written
in both C++ and Java and the code is available under NASA’s Open Source
Agreement. DAIDALUS is currently under consideration for inclusion as DAA
reference implementation of the RTCA Special Committee 228 Minimum Oper-
ational Performance Standards (MOPS) for Unmanned Aircraft Systems.

Given the safety-critical nature of the UAS in the NAS project, formal meth-
ods research has been conducted under NASA’s Safe Autonomous System Oper-
ations project in support of the development of the DAA concept for UAS. The
use of formal methods includes a formal definition of the well-clear violation
volume, formal proofs of its properties, formal specification and verification of
all DAIDALUS algorithms, and the rigorous validation of the software imple-
mentation of DAIDALUS algorithms against their formal specifications. All for-
mal specifications and proofs supporting this work are written and mechanically
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verified in the Prototype Verification System (PVS) [15]. The tool PVSio [8] is
used to animate PVS functional specifications.

The application of formal methods to the safety analysis of air traffic man-
agement systems faces technical challenges common to complex cyber-physical
systems (CPS). Chief among those challenges is the interaction of CPS with
the physical environment that yields mathematical models with both contin-
uous and discrete behaviors. Formally proving properties involving continuous
mathematics, and in particular, non-linear arithmetic is a well-known problem in
automated deduction. As part of this research effort, several automated decision
and semi-decision procedures for dealing with different kinds of non-linear real
arithmetic problems have been developed [2,7,9,13,14]. Most of these procedures
are formally verified and are available as proof-producing automated strategies
in the PVS theorem prover.

The formal verification of software implementations of a CPS is a major
endeavor even when the algorithms that are implemented have been formally
verified. First, there is a large semantic gap between modern programming lan-
guages and the functional notation used in formal tools such as PVS. However,
the main difficulty arises from the fact that modern programming languages
utilize floating point arithmetic while formal verification is usually performed
over the real numbers. An idea for lifting functional correctness properties from
algorithms that use real numbers to algorithms that use floating-point numbers
is discussed in [5]. However, this research area is still in an early stage. In [3],
a practical approach to the validation of numerical software is proposed. The
approach, which is called model animation, compares computations performed
in the software implementations against those symbolically evaluated to an arbi-
trary precision on the corresponding formal models. While model animation does
not provide an absolute guarantee that the software is correct, it increases the
confidence that the formal models are faithfully implemented in code. Model ani-
mation has been used to validate in a rigorous way the software implementation
of DAIDALUS algorithms against their formal specifications.

Finally, air traffic management systems are unique in some aspects. For
instance, these systems involve human and automated elements and these ele-
ments are often subject to strict operational (and sometimes legal) requirements.
These requirements restrict the design space of operational concepts, such as
detect and avoid for UAS. More importantly, new concepts and algorithms have
to support an incremental evolution of the air space system at a global scale. All
these requirements and restrictions may result in solutions that are non-optimal
from a theoretical point of view or that have complex verification issues due to
legacy systems.
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1. Consiglio, M., Chamberlain, J., Muñoz, C., Hoffler, K.: Concept of integration for
UAS operations in the NAS. In: Proceedings of 28th International Congress of the
Aeronautical Sciences, ICAS 2012, Brisbane, Australia (2012)



62 C.A. Muñoz
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7. Mariano Moscato, César Muñoz, and Andrew Smith. Affine arithmetic and appli-
cations to real-number proving. In: Urban, C., Zhang, X. (ed.), Proceedings of
the 6th International Conference on Interactive Theorem Proving (ITP 2015), vol.
9236 of Lecture Notes in Computer Science, Nanjing, China, Springer, Heidelberg,
August 2015
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This extended abstract summarises work conducted with Adrien Durier and
Daniel Hirschkoff (ENS Lyon), initially reported in [38].

Bisimilarity is employed to define behavioural equivalences and reason about
them. Originated in concurrency theory, bisimilarity is now widely used also
in other areas, as well as outside Computer Science. In this work, behavioural
equivalences, hence also bisimilarity, are meant to be weak because they abstract
from internal moves of terms, as opposed to the strong ones, which make no dis-
tinctions between the internal moves and the external ones (i.e., the interactions
with the environment). Weak equivalences are, practically, the most relevant
ones: e.g., two equal programs may produce the same result with different num-
bers of evaluation steps.

In proofs of bisimilarity results, the bisimulation proof method has become
predominant, particularly with the enhancements of the method provided by the
so called ‘up-to techniques’ [29]. Among these, one of the most powerful ones
is ‘up-to expansion and context’, whereby the derivatives of two terms can be
rewritten using expansion and bisimilarity and then a common context can be
erased. Forms of ‘bisimulations up-to context’ have been shown to be effective
in various fields, including process calculi [27,29,39], λ-calculi [16,18,19,40], and
automata [7,34].

The landmark document for bisimilarity is Milner’s CCS book [21]. In the
book, Milner carefully explains that the bisimulation proof method is not sup-
posed to be the only method for reasoning about bisimilarity. Indeed, various
interesting examples in the book are handled using other techniques, notably
unique solution of equations, whereby two tuples of processes are componentwise
bisimilar if they are solutions of the same system of equations. This method
is important in verification techniques and tools based on algebraic reasoning
[2,32,33].

Milner’s theorem that guarantees unique solutions [21] has however limita-
tions: the equations must be ‘guarded and sequential’, that is, the variables of
the equations may only be used underneath a visible prefix and preceded, in the
syntax tree, only by the sum and prefix operators. This limits the expressive-
ness of the technique (since occurrences of other operators above the variables,
such as parallel composition and restriction, in general cannot be removed), and
its transport onto other languages (e.g., languages for distributed systems or
higher-order languages, which usually do not include the sum operator).
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We propose a refinement of Milner’s technique in which equations are
replaced by special inequations called contractions. Intuitively, for a behavioural
equivalence �, its contraction �� is a preorder in which P �� Q holds if
P � Q and, in addition, Q has the possibility of being as efficient as P . That
is, Q is capable of simulating P by performing less internal work. It is sufficient
that Q has one ‘efficient’ path; Q could also have other paths, that are slower
than any path in P . Uniqueness of the solution of a system of contractions is
defined as with systems of equations: any two solutions must be equivalent with
respect to �. The difference with equations is in the meaning of solution: in the
case of contractions the solution is evaluated with respect to the preorder ��,
rather than the equivalence �.

If a system of equations has a unique solution, then the corresponding system
of contractions, obtained by replacing the equation symbol with the contraction
symbol, has a unique solution too. The converse however is false: it may be that
only the system of contractions has a unique solution. More important, the con-
dition that guarantees a unique solution in Milner’s theorem about equations can
be relaxed:‘sequentiality’ is not required, and ‘guardedness’ can be replaced by
‘weak guardedness’, that is, the variables of the contractions can be underneath
any prefix, including a prefix representing internal work. (This is the same con-
straint in Milner’s ‘unique solution of equations’ theorem for strong bisimilarity;
the constraint is unsound for equations on weak bisimilarity.)

Milner’s theorem is not complete for pure equations (equations in which
recursion is only expressible through the variables of the equations, without using
the recursion construct of the process language): there are bisimilar processes
that cannot be solutions to the same system of guarded and sequential pure
equations.In contrast, completeness holds for weakly-guarded pure contractions.
The contraction technique is als computationally complete: any bisimulation R
can be transformed into an equivalent system of weakly-guarded contractions
that has the same size of R (where the size of a relation is the number of its
pairs, and the size of a system of contractions is the number of its contractions).
An analogous result also holds with respect to bisimulation enhancements such as
‘bisimulation up-to expansion and context’.The contraction technique is in fact
computationally equivalent to the ‘bisimulation up-to contraction and context’
technique — a refinement of ‘bisimulation up-to expansion and context’.

The contraction technique can be generalised to languages whose syntax is
the term algebra derived from some signature, and whose semantics is given
as an LTS. In this generalisation the weak-guardedness condition for contrac-
tions becomes a requirement of autonomy, essentially saying that the processes
that replace the variables of a contraction do not contribute to the initial action
of the resulting expression. The technique can also be transported onto other
equivalences, including contextually-defined equivalences such as barbed con-
gruence, and non-coinductive equivalences such as contextual equivalence (i.e.,
may testing) and trace equivalence [9,10,24]. For each equivalence, one defines
its contraction preorder by controlling the amount of internal work performed.
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Further, a contraction preorder can be injected into the bisimulation game.
That is, given an equivalence � and its contraction preorder ��, one can define
the technique of ‘bisimulation up-to �� and context’ whereby, in the bisimula-
tion game, the derivatives of the two processes can be manipulated with �� and
� (similarly to the manipulations that are possible in the standard ‘bisimulation
up-to expansion and context’ using the expansion relation and bisimilarity) and
a common context can then be erased. The resulting ‘bisimulation up-to �� and
context’ is sound for �. This technique allows us to derive results for � using the
(enhanced) bisimulation proof method, thus transferring ‘up-to context’ forms of
reasoning, originally proposed for labeled bisimilarities and their proof method,
onto equivalences that are contextual or non-coinductive.

The contraction technique cannot however be transported onto all (weak)
behavioural equivalences. For instance, it does not work in the setting of infini-
tary trace equivalence (whereby two processes are equal if they have the same
finite and infinite traces) [10,11] and must testing [9]. A discussion on this point
is deferred to the concluding section.

An example of application of contractions to a higher-order language, which
exploits the autonomy condition, is also reported in [38]

Milner’s theorem about unique solution of equations stems from an axioma-
tisation of bisimulation on finite-state processes [23]. Indeed, in axiomatisations
of behavioural equivalences [2,21], the corresponding rule plays a key role and
is called fixed-point rule, or recursive specification principle; see also [30], for
trace equivalence. The possible shapes of the solutions of systems of equations,
in connection with conditions on the guardedness of the equations, is studied by
Baeten and Luttik [4].

Unique solution of equations has been considered in various settings, includ-
ing languages, algebraic power series and pushdown automata (see the surveys
[17,26]), as well as in coalgebras (e.g., [20]). These models, however, do not have
the analogous of ‘internal step’, around which all the theory of contractions is
built. In functional languages, unique solution of equations is sometimes called
‘unique fixed-point induction principle’. See for instance [35], in which the con-
ditions resembles Milner’s conditions for CCS, and [15], which studies equations
on streams advocating a condition based on the notion of ‘contractive function’
(the word ‘contraction’ here is unrelated to its use in our paper).

A tutorial on bisimulation enhancements is [29]. ‘Up-to context’ techniques
have been formalised in a coalgebraic setting, and adapted to languages whose
LTS semantics adheres to the GSOS format [5]; see for instance [6], which uses
lambda-bialgebras, a generalisation of GSOS to the categorical framework.

Our transporting of the bisimulation proof method and some of its enhance-
ments onto non-coinductive equivalences reminds us of techniques for reduc-
ing non-coinductive equivalences to bisimilarity. For instance, trace equivalence
on nondeterministic processes can be reduced to bisimilarity on deterministic
processes, following the powerset construction for automata [14]; a similar reduc-
tion can be made for testing equivalence [8]. These results rely on transformations
of transitions systems, which modify the nondeterminism and the set of states,
in such a way that a given equivalence on the original systems corresponds to
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bisimilarity on the altered systems. In contrast, in the techniques based on con-
tractions the transformation of processes is performed dynamically, alongside
the bisimulation game: two processes are manipulated only when necessary, i.e.,
when their immediate transitions would break the bisimulation game.

In CSP [12], some beautiful results have been obtained in which systems
of equations have unique solutions provided their least fixed point (intuitively
obtained by infinite unfolding of the equations) does not contain divergent states;
see [32,33]. In CSP the semantics has usually a denotational flavour and, most
important, the reference behavioural equivalence, failure equivalence, is diver-
gent sensitive. We are currently trying to compare this kind of techniques, based
on divergence, with those based on contractions. We just note here that unique
solution of contractions holds in cases where the infinite unfolding of the con-
tractions would introduce divergence.

As for the technique based on equations, so the technique based on contrac-
tions is meant to be used in combination with algebraic reasoning, on terms
whose behaviour is not finite or finite-state: the recursion on the contraction
variables captures the infinite behaviour of terms, and the proof that certain
processes are solutions is carried out with pure algebraic reasoning. In com-
parison with equations, a drawback of unique solution of contractions for an
equivalence � is that the solutions are not �-interchangeable: it may be that P
is solution and Q is not, even though P � Q.

The proof of completeness of the ‘unique solution of contractions’ method
with respect to the bisimulation proof method uses the sum operator to express
the possible initial actions of a process. We are currently exploring how com-
pleteness could be recovered in languages in which the sum operator is missing.

We also plan to explore more in depth the contraction techniques in higher-
order languages. Such study may shed light on the applicability of up-to context
techniques to higher-order languages. In a higher-order language, while there are
well-developed techniques for proving that a bisimulation is a congruence [28],
up-to context is still poorly understood [16,18,19,27,40]. For instance, for pure
λ-calculi and applicative bisimilarity, the soundness of the full up-to context
technique (allowing one to remove any context, possibly binding variables of the
enclosed terms) still represents an open problem.

Another setting in which up-to context techniques have been recently applied
is that of language equivalence for automata, see e.g., [7,34]. Our techniques are
however for languages with internal moves. In the case of automata, a τ -action
could correspond to the empty word, which is absorbed in concatenations of
words, in the same way as τ -actions are absorbed in concatenation of traces.
Even taking into account the way the empty word (or the empty language) and
τ -steps are used, the analogy seems light. It is unclear whether contractions
could be useful on automata.

Our original motivation for studying contractions was to better understand
‘up-to context’ enhancements of the bisimulation proof method and their sound-
ness. More broadly, the goal of the line of work reported is to improve our under-
standing of bisimilarity and the proof techniques for it, including the possibility
of exporting the techniques onto other equivalences.
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Abstract. In a distributed game we imagine a team Player engaging a
team Opponent in a distributed fashion. No longer can we assume that
moves of Player and Opponent alternate. Rather the history of a play
more naturally takes the form of a partial order of dependency between
occurrences of moves. How are we to define strategies within such a
game, and how are we to adjoin probability to such a broad class of
strategies? The answer yields a surprisingly rich language of probabilis-
tic distributed strategies and the possibility of programming (optimal)
probabilistic strategies. Along the way we shall encounter solutions to:
the need to mix probability and nondeterminism; the problem of parallel
causes in which members of the same team can race to make the same
move, and why this leads us to invent a new model for the semantics of
distributed systems.

1 Introduction

I am working on a theory of distributed games and strategies. The games are
distributed in the sense that they involve a team Player in competition with
a team Opponent in widely-spread, possibly varying locations. It is no longer
sensible to regard the history of the play as a sequence of alternating moves,
the case in traditional games. Rather at a reasonable level of abstraction it is
sensible to view a history as a partial order showing the dependency of moves on
earlier moves. Of course the terms Player and Opponent are open to a variety
of interpretations so the intended application areas are very broad.

My own original motivation comes from the wish to generalise domain theory
as a basis for denotational semantics. While domain theory provides a beautiful
paradigm for formalising and analysing computation it has been increasingly
falling short in the burgeoning world of distributed, nondeterministic and prob-
abilistic computation we live in today. In brief, with the wisdom of hindsight,
domain theory abstracted from operational concerns too early. So one aim is to
repair the “little divide” between operational and denotational semantics. There
is also some hope that the common vocabulary and techniques games provide
will help bridge the “big divide” in theoretical computer science between the
fields of semantics and algorithmics.

One could summarise the enterprise as redoing traditional of games and
strategies as a theory based on histories as partial orders of moves. However,
the move from sequences to partial orders brings in its wake a lot of technical
c© Springer International Publishing Switzerland 2015
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difficulty and potential for undue complexity unless it’s done artfully. Here we
have been in a good position to take advantage techniques from the early 1980’s
on a mathematical foundation for work of Hoare and Milner on synchronising
processes in categories of models for concurrency [1] and in particular the model
and techniques of event structures—an analogue of trees where branches have
the form of partial orders [2,3]. The work on distributed strategies described
here could have been done then.

One surprise has been how adeptly distributed strategies fit with probability,
at least once a general enough definition of probabilistic event structures was
discovered and characterised. It was certainly an advantage to have started with
nondeterministic strategies [4]. But as we shall see in the move from nondeter-
ministic to probabilistic strategies new phenomena and an unexpected limitation
appear.

It has become clear recently that there is a built-in limitation in basing
strategies on traditional event structures. Sometimes a distributed strategy can
rely on certain “benign races” where, intuitively, several members of team Player
may race each other to make a common move. If we are to support benign races
in strategies there is a need to work with mathematical structures which support
parallel causes—in which an event can be enabled in several compatible ways.
This extension seems not to be needed for nondeterministic strategies. It was
only revealed in the extension to probabilistic strategies when it was realised
that certain intuitively natural probabilistic strategies could not be expressed,
with the event structures we were working with. Why, will be explained later.

Though event structures allowing parallel causes have been studied existing
structures do not support an operation of hiding central to the composition of
strategies. So to some extent we have had go back to the drawing board and
invent appropriate structures to support parallel causes and simultaneously a
hiding operation. We now know ways to do this. Fortunately the new structures
are not so removed from traditional event structures. They involve the objecti-
fication of cause, so that one can express e.g. that one cause is in parallel with
another or in conflict with another, and assign probabilities to causes—see the
final section which sketches recent work with Marc de Visme.

2 Event Structures [3]

The behaviour of distributed games is based on event structures, rather than
trees. Instead of regarding a play in a game as a sequence of Player and Opponent
moves it is given the structure of a partial order of occurrences of moves.

Event structures describe a process, or system, in terms of its possible event
occurrences, their causal dependency and consistency. Just as it can be helpful to
understand the behaviour of a state-transition diagram in terms of its unfolding
to a tree, more detailed models, such as Petri nets, which make explicit the local
nature of events and their changes on state, unfold to an event structure [5]. In
this sense event structures are a concurrent, or distributed, analogue of trees;
though in an event structure the individual ‘branches’ are no longer necessarily
sequences but have the shape of a partial order of events.
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An event structure comprises (E,≤,Con), consisting of a set E of events
(really event occurrences) which are partially ordered by ≤, the causal dependency
relation, and a nonempty consistency relation Con consisting of finite subsets of
E. The relation e′ ≤ e expresses that event e causally depends on the previous
occurrence of event e′. That a finite subset of events is consistent conveys that its
events can occur together by some stage in the evolution of the process. Together
the relations satisfy several axioms:

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con implies Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈X implies X ∪ {e} ∈ Con.

The first axiom says that an event causally depends on only a finite number of
events, the second that there are no redundant events, which are in themselves
inconsistent. The third axiom expresses the reasonable property that a subset
of consistent events is consistent, while the final axiom entails that the ≤-down-
closure of any consistent set of events is also consistent. Two events e, e′ are
considered to be concurrent if the set {e, e′} is in Con and neither event is
causally dependent on the other.

It is sometimes convenient to draw event structures. For example,

◯ ◯

◯

��������

◯

���� ����
����

�� ◯

illustrates an event structure consisting of five events where, in particular, the top
event on the left causally depends on the previous occurrences of two concurrent
events—the arrows express the causal dependency—one of which is inconsistent
with the event on the far right—we have indicated the inconsistency between
the two events by a wiggly line.

Given this understanding of an event structure, there is an accompanying
notion of state, or history, those events that may occur up to some stage in the
behaviour of the process described. A configuration is a, possibly infinite, set of
events x ⊆ E which is both consistent and down-closed w.r.t. causal dependency:

Consistent: X ⊆ x and X is finite implies X ∈ Con , and
Down-closed: e′ ≤ e ∈ x implies e′ ∈ x.

An individual configuration inherits a partial order from the ambient event struc-
ture, and represents one possible partial-order history.

It will be very useful to relate event structures by maps. A map of event
structures f ∶ E → E′ is a partial function f from E to E′ such that the image of
a configuration x is a configuration fx and any event of fx arises as the image
of a unique event of x. In particular, when f is a total function it restricts to a
bijection x ≅ fx between any configuration x and its image fx.
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A map f ∶ E → E′ preserves concurrency: if two events in E are concurrent,
then their images if defined are also concurrent. The map also reflects causal
dependency locally, in the sense that if e, e′ are events in a configuration x of E
for which f(e′) ≤ f(e) in E′, then e′ ≤ e also in E; the event structure E inherits
causal dependencies from the event structure E′ via the map f . In general a
map of event structures need not preserve causal dependency; when it does we
say it is rigid.

In describing distributed games and strategies we shall rely on two proper-
ties of maps. Firstly, any map of event structures f ∶ E → E′ factors into the
composition of a partial map of event structures followed by a total map of event
structures

E
p

→E0

t

→E′

in such a way that for any other factorisation E
p1

→E1

t1

→E′ with p1 partial and

t1 total, there is a unique (necessarily total) map h ∶ E0 → E1 such that

E1
t1

�����
��

E

p1 ������� p �� E0

h
�	

t �� E′

commutes. The event structure E0 is obtained as the “projection,” or restriction,
of the relations of causal dependency and consistency of the event structure E
to the events on which f is defined. We call the total map t the defined part of f .

Secondly we shall use pullbacks of total maps. Pullbacks are an important
construction in representing a process built from two processes sharing a common
interface. Maps f ∶ A → C and g ∶ B → C always have pullbacks in the category
of event structures, but they are more simple to describe in the case where f
and g are total, and this is all we shall need:

A f
�
�

��

P �
�

π1 	����

π2 �
�
��

C

B
g

	����

Roughly, configurations of the pullback P are matches between configurations
of A and B which satisfy the causal constraints of both. Precisely, finite config-
urations of P correspond to composite bijections

θ ∶ x ≅ fx = gy ≅ y

between finite configurations x of A and y of B such that fx = gy, for which the
transitive relation generated on θ by (a, b) ≤ (a′, b′) if a ≤A a′ or b ≤B b′ has no
non-trivial causal loops, and so forms a partial order.
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3 Distributed Games and Strategies—the Definitions [4]

Often the behaviour of a game is represented by a tree in which the arcs cor-
respond to occurrences of moves by Player or Opponent. Instead we can repre-
sent the behaviour of a distributed game more accurately by an event structure
together with a polarity function from its events to + or − to signify whether
they are move occurrences of Player or Opponent, respectively.

A game might generally have winning conditions, a subset of configurations
at which Player is deemed to have won, or more generally a payoff function from
configurations to the reals.

There are two fundamentally important operations on two-party games. One
is that of forming the dual game in which the moves of Player and Opponent
are reversed. On an event structure with polarity A this amounts to reversing
the polarities of events to produce the dual A⊥. By a strategy in a game we will
mean a strategy for Player. A strategy for Opponent, or a counter-strategy, in a
game A will be identified with a strategy in A⊥. The other operation is a simple
parallel composition of games, achieved on event structures with polarity A and
B very directly by simply juxtaposing them, ensuring a finite subset of events is
consistent if its overlaps with the two games are individually consistent, to form
A∥B.

As an example of a strategy in a game consider the copy-cat strategy for
a game A. This is a strategy in the game A⊥∥A which, following the spirit
of a copy-cat, has Player moves copy the corresponding Opponent moves in the
other component. In more detail, the copy-cat strategy CCA is obtained by adding
extra causal dependencies to A⊥∥A so that any Player move in either component
causally depends on its copy, an Opponent move, in the other component. It can
be checked that this generates a partial order of causal dependency. A finite set is
taken to be consistent if its down-closure w.r.t. the order generated is consistent
in A⊥∥A. We illustrate the construction on the simple game comprising a Player
move causally dependent on a single Opponent move:

⊖
	 
����� ⊕

A⊥ CCA A

⊕

����

⊖

����

	��� � � � �

In characterising the configurations of the copy-cat strategy an important
partial order on configurations is revealed. Clearly configurations of a game A
are ordered by inclusion ⊆. For configurations x and y, write x ⊆− y and x ⊆+ y
when all the additional events of the inclusion are purely Opponent, respectively,
Player moves. A configuration x of CCA is also a configuration of A⊥∥A and as
such splits into two configurations x1 on the left and x2 on the right. The extra
causal constraints of copy-cat ensure that the configurations of CCA are precisely
those configurations of A⊥∥A for which it holds that

x2 ⊑A x1 , defined as x2 ⊇
− y ⊆+ x1 ,
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for some configuration y (necessarily x1∩x2). The relation ⊑A is in fact a partial
order on configurations. Increasing in the order ⊑A involves losing Opponent
moves and gaining Player moves. Because it generalises the pointwise order of
domain theory, initiated by Dana Scott, we call the order ⊑A the Scott order.

Strategies in a game are not always obtained by simply adding extra causal
dependencies to the game. For example, consider the game comprising two Oppo-
nent moves in parallel with a Player move and the strategy (for Player) in which
Player make their move if Opponent makes one of theirs. Here the strategy is
represented by

⊕ ������ ⊕

⊖

����

⊖ .

����

We are forced to split the Player move of the game into two moves, each depen-
dent on different Opponent moves, and mutually inconsistent indicated by the
wiggly line. For reasons such as this we are led to separate the actual moves of
the strategy into an event structure with polarity S and, in order to track how
actual moves correspond to moves in the game, formalise a strategy in a game
A as a total map of event structures

σ ∶ S → A

which preserves polarity. (We have met a very special case of this in the copy-cat
strategy where the role of S is taken by CCA and σ acts as the identity function
on events.) The event structure S describes the possibly nondeterministic plays
of the strategy. Automatically a state of play of the strategy, represented by a
configuration x of S, determines a position of the game, a configuration σx of
A. Directly from the fact that σ is a map, we know that any move in σx is due
to the play of a unique move in x. The total map σ ∶ S → A really just expresses
that S represents a nondeterministic play in the game A. More is expected of a
strategy. For example, consider the game consisting of a Player move concurrent
with a move of Opponent and the two total maps indicated:

(i) S
σ ��

⊖
	 
�

�

��

⊕�

��
A ⊖ ⊕

(ii) S
σ ��

⊕
	 
�

�

��

⊖�

��
A ⊕ ⊖

The first map (i) seems reasonable as a strategy; Player awaits the move of
Opponent and then makes a move. However, the second map (ii) seems dubious;
Player forces Opponent to wait until they have made their move, inappropriate
in a distributed strategy.

Instead of guessing, we seek a principled way to determine what further prop-
erties a strategy should satisfy. In fact, the further conditions we shall impose
on strategies will be precisely those needed to ensure that the copy-cat strategy
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behaves as an identity w.r.t. the composition of strategies.1 To do so we adapt
an important idea of Conway followed up by Joyal, explaining how to extend
the notion of strategy in a game to that of a strategy between games [6,7]. The
operations of dual and simple parallel composition of games are the key.

A strategy from a game A to a game B is a strategy in the compound game
A⊥∥B. In particular, copy-cat of a game A is now seen as a strategy from A
to A.

In composing two strategies one σ in A⊥∥B and another τ in B⊥∥C one firstly
instantiates the Opponent moves in component B by Player moves in B⊥ and vice
versa, and then secondly hides the resulting internal moves over B. The first step
is achieved efficiently via pullback. Temporarily ignoring polarities, the pullback

A ∥ T
A∥τ

�






T ⊛ S

π2 �������

π1 ��������
�

A ∥ B ∥ C

S ∥ C
σ∥C

��

“synchronises” matching moves of S and T over the game B. But we require a
strategy over the game A⊥∥C and the pullback T ⊛S has internal moves over the
game B. We achieve this via the projection of T ⊛S to its moves over A and C.
We make use of the partial map from A∥B∥C to A∥C which acts as the identity
function on A and C and is undefined on B. The composite partial map

A ∥ T
A∥τ

�






T ⊛ S

π2 �������

π1 ��������
�

A ∥ B ∥ C �� A ∥ C

S ∥ C
σ∥C

��

has defined part, yielding the composition

τ⊙σ ∶ T⊙S → A⊥∥C

once we reinstate polarities. The composition of strategies τ⊙σ is a form of
synchronised composition of processes followed by the hiding of internal moves, a
view promulgated by Abramsky within traditional game semantics of programs.

Two further conditions, receptivity and innocence, are demanded of strate-
gies. The conditions are necessary and sufficient to ensure that copy-cat strate-
gies behave as identities w.r.t. composition [4]. Receptivity expresses that any
Opponent move allowed from a reachable position of the game is present as a
move in the strategy. In more detail, σ ∶ S → A is receptive when for any con-
figurations x of S if σx extends purely by Opponent events to a configuration y

1 We consider two strategies σ ∶ S → A and σ′ ∶ S′ → A to be essentially the same if
there is an isomorphism f ∶ S ≅ S′ of event structures respecting polarity such that
σ = σ′f .
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then there is a unique extension of x to a configuration x′ of S such that σx′ = y.
Innocence says a strategy can only adjoin new causal dependencies of the form
⊖� ⊕, where Player awaits moves of Opponent, beyond those already inherited
from the game.

The literature is often concerned with deterministic strategies, in which
Player has at most one consistent response to Opponent. We can broaden the
concept of deterministic strategy to distributed strategies by taking such a strat-
egy to be deterministic if consistent moves of Opponent entail consistent moves
of Player—see [4,8]. Formally, we say an event structure with polarity is deter-
ministic if any finite down-closed subset is consistent when its Opponent events
form a consistent subset. In general the copy-cat strategy for a game need not
be deterministic. Copy-cat is however deterministic precisely for games which
are race-free, i.e. such that at any configuration, if both a move of Player and
a move of Opponent are possible then they may occur together: if whenever x,
x∪{⊕} and x∪{⊖} are configurations of A, where the events ⊕ and ⊖ have the
opposing polarities indicated, then x ∪ {⊕,⊖} is a configuration. Deterministic
distributed strategies coincide with the receptive ingenuous strategies of Melliès
and Mimram [9].

Just as strategies generalise relations, deterministic strategies generalise func-
tions. In fact, multirelations and functions are recovered as strategies, respec-
tively deterministic strategies, in the special case where the games are composed
solely of Player moves with trivial causal dependency and where only the empty
set and singletons are consistent.

As would be hoped the concepts of strategy and deterministic strategy
espoused here reduce to the expected traditional notions on traditional games.
There have also been pleasant surprises. In the extreme case where games com-
prise purely Player moves, strategies correspond precisely to the ‘stable spans’
used in giving semantics to nondeterministic dataflow [10], and in the determin-
istic subcase one recovers exactly the stable domain theory of Gérard Berry [11].

We now turn to how a strategy might be made probabilistic. We first address
an appropriately general way to adjoin probability to event structures.

4 Probabilistic Event Structures [12]

The extension of distributed strategies to probabilistic strategies required a new
general definition of probabilistic event structure. A probabilistic event structure
essentially comprises an event structure together with a continuous valuation on
the Scott-open sets of its domain of configurations.2 The continuous valuation
2 A Scott-open subset of configurations is upwards-closed w.r.t. inclusion and such that

if it contains the union of a directed subset S of configurations then it contains an
element of S. A continuous valuation is a function w from the Scott-open subsets of
C
∞

(E) to [0,1] which is (normalized) w(C∞(E)) = 1; (strict) w(∅) = 0; (monotone)
U ⊆ V �⇒ w(U) ≤ w(V ); (modular) w(U ∪ V ) + w(U ∩ V ) = w(U) + w(V ); and
(continuous) w(⋃i∈I Ui) = supi∈Iw(Ui), for directed unions. The idea: w(U) is the
probability of a result in open set U .
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assigns a probability to each open set and can then be extended to a probability
measure on the Borel sets [13]. However open sets are several levels removed from
the events of an event structure, and an equivalent but more workable definition
is obtained by considering the probabilities of basic open sets, generated by single
finite configurations; for each finite configuration this specifies the probability of
obtaining a result which extends the finite configuration. Such valuations on con-
figurations determine the continuous valuations from which they arise, and can
be characterised through the device of “drop functions” which measure the drop
in probability across certain generalised intervals. The characterisation yields a
workable general definition of probabilistic event structure as event structures
with configuration valuations, viz. functions from finite configurations to the unit
interval for which the drop functions are always nonnegative.

In detail, a probabilistic event structure comprises an event structure E with
a configuration valuation, a function v from the finite configurations of E to the
unit interval which is

(normalized) v(∅) = 1 and has
(non−ve drop) dv[y;x1,⋯, xn] ≥ 0 when y ⊆ x1,⋯, xn for finite configurations
y, x1,⋯, xn of E,

where the “drop” across the generalized interval starting at y and ending at one
of the x1,⋯, xn is given by

dv[y;x1,⋯, xn] =def v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi)

—the index I ranges over nonempty I ⊆ {1,⋯, n} such that the union ⋃i∈I xi is
a configuration. The “drop” dv[y;x1,⋯, xn] gives the probability of the result
being a configuration which includes the configuration y and does not include
any of the configurations x1,⋯, xn.3

5 Probabilistic Strategies [15]

The above has prepared the ground for a general definition of distributed prob-
abilistic strategies, based on event structures. One hurdle is that in a strategy
it is impossible to know the probabilities assigned by Opponent. We need to
address the problem—notorious in domain theory—of how to mix probability
(which Player attributes to their moves) and nondeterminism (ensuing from
Player’s ignorance of the probabilities assigned to Opponent moves). A proba-
bilistic strategy in a game A, presented as a race-free event structure with polar-
ity, is a strategy σ ∶ S → A in which we endow S with probability, while taking
3 Samy Abbes has pointed out that the same “drop condition” appears in early work

of the Russian mathematician V.A.Rohlin [14](as relation (6) of Sect. 3, p.7). Its
rediscovery in the context of event structures was motivated by the need to tie
probability to the occurrences of events; it is sufficient to check the ‘drop condition’
for y−�⊂x1,⋯, xn, in which the configurations xi extend y with a single event.
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account of the fact that in a strategy Player can’t be aware of the probabilities
assigned by Opponent. We do this by extending the notion of configuration val-
uation so that: causal independence between Player and Opponent moves entails
their probabilistic independence, or equivalently, so probabilistic dependence of
Player on Opponent moves will presuppose their causal dependence (the effect
of the condition of “±-independence” below); the “drop condition” only applies
to moves of Player. Precisely, a configuration valuation is now a function v, from
finite configurations of S to the unit interval, which is

(normalized) v(∅) = 1, has
(±-independence) v(x) = v(y) when x ⊆− y for finite configurations x, y of S,
and satisfies the
(+ve drop condition) dv[y;x1,⋯, xn] ≥ 0 when y ⊆+ x1,⋯, xn for finite con-
figurations of S.

One can think of the value v(x), where x is a finite configurations of S, as the
probability of obtaining a result which extends x conditional on the Opponent
moves in x.

We return to the point that “±-independence” expresses that causal inde-
pendence between Player and Opponent moves entails their probabilistic inde-
pendence. Consider two moves, ⊕ of Player and ⊖ of Opponent able to occur
independently, i.e. concurrently, at some finite configuration x, taking it to the
configuration x∪{⊕,⊖}. There are intermediate configurations x∪{⊕} and x∪{⊖}
associated with just one additional move. The condition of “±-independence”
ensures v(x ∪ {⊕,⊖}) = v(x ∪ {⊕}), i.e. the probability of ⊕ with ⊖ is the same
as the probability of ⊕ at configuration x. At x the probability of the Player
move conditional on the Opponent move equals the probability of the Player
move—the moves are probabilistically independent.

5.1 A Bicategory of Probabilistic Strategies

Probabilistic strategies compose. Assume probabilistic strategies σ ∶ S → A⊥∥B
with configuration valuation vS and τ ∶ T → B⊥∥C with configuration valu-
ation vT . Recall how the composition τ⊙σ is obtained via pullback, to syn-
chronise the strategies over common moves, followed by projection, to hide the
synchronisations.

Given z a finite configuration of the pullback T ⊛ S its image π1z under
the projection π1 is a finite configuration of S∥C; taking its left component we
obtain (π1z)1, a finite configuration of S. Similarly, taking the right component
of the image π2z we obtain a finite configuration (π2z)2 of T . It can be shown
that defining v(z) = vS((π1z)1)×vT ((π2z)2) for z a finite configuration of T ⊛S
satisfies the conditions of a configuration valuation (with the proviso that we
treat synchronisation and Player events alike in the drop condition). In the
proof ‘drop functions’ come into their own. A finite configuration x of T⊙S,
after hiding, is a subset of T ⊛ S so we can form its down-closure there to
obtain [x], a finite configuration of T ⊛ S. The assignment of value v([x]) to x
a finite configuration of T⊙S yields a configuration valuation to associate with
the composition τ⊙σ.
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Above, notice in the special case where σ ∶ S → B and τ ∶ T → B⊥, i.e. of a
strategy and a counter-strategy in the game B, that the resulting probabilistic
play is captured by T ⊛ S, which is now a probabilistic event structure.4

Because we restrict to race-free games, copy-cat strategies are deterministic
ensuring that the assignment of one to each finite configuration of copy-cat is a
configuration valuation; this provides us with identities w.r.t. composition.

We don’t have a category however, as the laws for categories are only true
up to isomorphism. Technically we have a bicategory of games and probabilistic
strategies in which the objects are race-free games and the arrows are probabilis-
tic strategies. The 2-cells, the maps between strategies, require some explana-
tion.5 Without the presence of probability it is sensible to take a 2-cell between
two strategies σ ∶ S → A⊥∥B and σ′ ∶ S′ → A⊥∥B to be a map f ∶ S → S′ making

S

σ ����������
f �� S′

σ′

��
A⊥∥B

commute. However, in the situation where the strategies are probabilistic, when
σ is accompanied by a configuration valuation v and σ′ by configuration valua-
tion v′, we need a further constraint to relate probabilities. Normally probability
distributions can be “pushed forward” across measurable functions. But config-
uration valuations don’t correspond to probability distributions in the presence
of Opponent moves and in general we can’t push forward the configuration val-
uation v of S to a configuration valuation fv of S′. We can however do so when
f is rigid: then defining

(fv)(y) =def ∑{v(x) ∣ fx = y} ,

for y ∈ C(S′), yields a configuration valuation fv of S′ —the push-forward of v.
So finally we constrain 2-cells between probabilistic strategies, from σ with v to
σ′ with v′, to those rigid maps f for which σ = σ′f and the push-forward fv is
pointwise less than or equal to v′.

The vertical composition of 2-cells is the usual composition of maps. Hori-
zontal composition is given by the composition of strategies ⊙ (which extends
to a functor on 2-cells via the universal properties of pullback and factorisation
used in its definition).

2-cells include rigid embeddings preserving the value assigned by configura-
tion valuations.6 Amongst these are those 2-cells in which the rigid embedding is
an inclusion—providing a very useful order for defining probabilistic strategies
4 The use of “schedulers to resolve the probability or nondeterminism” in earlier work

is subsumed by that of probabilistic and deterministic counter-strategies. Determin-
istic strategies coincide with those with assignment one to each finite configuration.

5 Their treatment in [15] is slapdash.
6 One way to define a rigid embedding is as a rigid map whose function is injective

and reflects consistency.
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recursively. Let σ ∶ S → A⊥∥B with configuration valuation v and σ′ ∶ S′ → A⊥∥B
with v′ be two probabilistic strategies. Define σ ⊴ σ′ when S ⊆ S′ and the asso-
ciated inclusion map is a rigid embedding and a 2-cell for which v(x) = v′(x) for
all finite configurations of S. This enables us to exploit old techniques to define
strategies recursively: the substructure order on event structures, of which we
have an example, forms a “large complete partial order” on which continuous
operations possess least fixed points—see [2,3].

5.2 Extensions: Payoff and Imperfect Information

We can add payoff to a game as a function from its configurations to the real
numbers [15,16]. For such quantitative games, determinacy is expressed in terms
of the game possessing a value, a form of minimax property. The interest is now
focussed on optimal strategies which achieve the value of the game. In games
of imperfect information some moves are masked, or inaccessible, and strategies
with dependencies on unseen moves are ruled out. It is straightforward to extend
probabilistic distributed games with payoff and imperfect information in way
that respects the operations of distributed games and strategies [17]. Blackwell
games [18], of central importance in logic and computer science, become a special
case of probabilistic distributed games of imperfect information with payoff [15].

6 Constructions on Probabilistic Strategies [19]

There is a richness of constructions in the world of distributed strategies and
games. The language of games and strategies that ensues is largely stable under
the addition of probability and extra features such as imperfect information and
payoff. Though for instance we shall need to restrict to race-free games in order
to have identities w.r.t. the composition of probabilistic strategies.

In the language for probabilistic strategies, race-free games A,B,C,⋯will play
the role of types. There are operations on games of forming the dual A⊥, simple
parallel composition A∥B, sum Σi∈IAi as well as recursively-defined games —the
latter rest on well-established techniques [2] and will be ignored here. The oper-
ation of sum of games is similar to that of simple parallel composition but where
now moves in different components are made inconsistent; we restrict its use to
those cases in which it results in a game which is race-free.

Terms have typing judgements:

x1 ∶ A1,⋯, xm ∶ Am ⊢ t ⊣ y1 ∶ B1,⋯, yn ∶ Bn ,

where all the variables are distinct, interpreted as a probabilistic strategy from
the game �A = A1∥⋯∥Am to the game �B = B1∥⋯∥Bn. We can think of the term
t as a box with input and output wires for the variables:
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The idea is that t denotes a probabilistic strategy S → �A⊥∥ �B with configu-
ration valuation v. The term t describes witnesses, finite configurations of S, to
a relation between finite configurations �x of �A and �y of �B, together with their
probability conditional on the Opponent moves involved.

Duality. The duality, that a probabilistic strategy from A to B can equally well
be seen as a probabilistic strategy from B⊥ to A⊥, is caught by the rules:

Γ,x ∶ A ⊢ t ⊣Δ

Γ ⊢ t ⊣ x ∶ A⊥,Δ

Γ ⊢ t ⊣ x ∶ A,Δ

Γ,x ∶ A⊥ ⊢ t ⊣Δ

Composition. The composition of probabilistic strategies is described in the rule

Γ ⊢ t ⊣Δ Δ ⊢ u ⊣ H
Γ ⊢ ∃Δ. [ t ∥ u ] ⊣ H

which, in the picture of strategies as boxes, joins the output wires of one strategy
to input wires of the other.

Probabilistic Sum. For I countable and a sub-probability distribution pi, i ∈ I,
we can form the probabilistic sum of strategies of the same type:

Γ ⊢ ti ⊣Δ i ∈ I

Γ ⊢ Σi∈Ipiti ⊣Δ.

In the probabilistic sum of strategies, of the same type, the strategies are glued
together on their initial Opponent moves (to maintain receptivity) and only
commit to a component with the occurrence of a Player move, from which com-
ponent being determined by the distribution pi, i ∈ I. We use � for the empty
probabilistic sum, when the rule above specialises to

Γ ⊢ � ⊣Δ,

which denotes the minimum strategy in the game Γ ⊥∥Δ—it comprises the initial
segment of the game Γ ⊥∥Δ consisting of its initial Opponent events.

Conjoining Two Strategies. The pullback of a strategy across a map of event
structures is itself a strategy [15]. We can use the pullback of one strategy against
another to conjoin two probabilistic strategies of the same type:

Γ ⊢ t1 ⊣Δ Γ ⊢ t2 ⊣Δ

Γ ⊢ t1 ∧ t2 ⊣Δ

Such a strategy acts as the two component strategies agree to act jointly. In
the case where t1 and t2 denote the probabilistic strategies σ1 ∶ S1 → Γ ⊥∥Δ
with configuration valuation v1 and σ2 ∶ S2 → Γ ⊥∥Δ with v2 the strategy t1 ∧ t2
denotes the pullback

S1 ∧ S2π1

�����
� π2

�����
�

σ1∧σ2

��
S1

σ1
�����

� S2

σ2
�����

�

Γ ⊥∥Δ
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with configuration valuation x↦ v1(π1x) × v2(π2x) for x ∈ C(S1 ∧ S2).

Copy-cat Terms. Copy-cat terms are a powerful way to lift maps or relations
expressed in terms of maps to strategies. Along with duplication they introduce
new “causal wiring.” Copy-cat terms have the form

x ∶ A ⊢ gy ⊑C fx ⊣ y ∶ B ,

where f ∶ A→ C and g ∶ B → C are maps of event structures preserving polarity.
(In fact, f and g may even be “affine” maps, which don’t necessarily preserve
empty configurations, provided g∅ ⊑C f∅—see [19].) This denotes a determinis-
tic strategy—so a probabilistic strategy with configuration valuation constantly
one—provided f reflects −-compatibility and g reflects +-compatibility. The map
g reflects +-compatibility if whenever x ⊆+ x1 and x ⊆+ x2 in the configurations
of B and fx1 ∪ fx2 is consistent, so a configuration, then so is x1 ∪ x2. The
meaning of f reflecting −-compatibility is defined analogously.

A term for copy-cat arises as a special case,

x ∶ A ⊢ y ⊑A x ⊣ y ∶ A,

as do terms for the jth injection into and jth projection out of a sum Σi∈IAi

w.r.t. its component Aj ,

x ∶ Aj ⊢ y ⊑Σi∈IAi
jx ⊣ y ∶ Σi∈IAi

and

x ∶ Σi∈IAi ⊢ jy ⊑Σi∈IAi
x ⊣ y ∶ Aj ,

as well as terms which split or join ‘wires’ to or from a game A∥B.
In particular, a map f ∶ A → B of games which reflects −-compatibility lifts

to a deterministic strategy f! ∶ A +
�� B:

x ∶ A ⊢ y ⊑B fx ⊣ y ∶ B .

A map f ∶ A→ B which reflects +-compatibility lifts to a deterministic strategy
f∗ ∶ B +

�� A:

y ∶ B ⊢ fx ⊑B y ⊣ x ∶ A.

The construction f∗⊙t denotes the pullback of a strategy t in B across the map
f ∶ A → B. It can introduce extra events and dependencies in the strategy. It
subsumes the operations of prefixing by an initial Player or Opponent move on
games and strategies.

Trace. A probabilistic trace, or feedback, operation is another consequence of
such “wiring.” Given a probabilistic strategy Γ,x ∶ A ⊢ t ⊣ y ∶ A,Δ represented
by the diagram
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t

Γ Δ

A A

we obtain

Γ,Δ⊥ ⊢ t ⊣ x ∶ A⊥, y ∶ A

which post-composed with the term

x ∶ A⊥, y ∶ A ⊢ x ⊑A y ⊣ ,

denoting the copy-cat strategy γA⊥ , yields

Γ ⊢ ∃x ∶ A⊥, y ∶ A. [ t ∥ x ⊑A y ] ⊣Δ,

representing its trace:

t

Γ Δ

A

The composition introduces causal links from the Player moves of y ∶ A to the
Opponent moves of x ∶ A, and from the Player moves of x ∶ A to the Opponent
moves of y ∶ A—these are the usual links of copy-cat γA⊥ as seen from the left of
the turnstyle. If we ignore probabilities, this trace coincides with the feedback
operation which has been used in the semantics of nondeterministic dataflow
(where only games comprising solely Player moves are needed) [10].

Duplication. Duplications of arguments is essential if we are to support the
recursive definition of strategies. We duplicate arguments through a probabilistic
strategy δA ∶ A +

�� A∥A. Intuitively it behaves like the copy-cat strategy but
where a Player move in the left component may choose to copy from either of
the two components on the right. In general the technical definition is involved,
even without probability—see [19]. The introduction of probability begins to
reveal a limitation within probabilistic strategies as we have defined them, a
point we will follow up on in the next section. We can see the issue in the second
of two simple examples. The first is that of δA in the case where the game A
consists of a single Player move ⊕. Then, δA is the deterministic strategy

⊕

⊖

� ������

� ������
⊕

in which the configuration valuation assigns one to all finite configurations —we
have omitted the obvious map to the game A⊥∥A∥A. In the second example,
assume A consists of a single Opponent move ⊖. Now δA is no longer determin-
istic and takes the form

⊕
��

⊖
	���

⊕ ⊖
	���
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and the strategy is forced to choose probabilistically between reacting to the
upper or lower move of Opponent in order to satisfy the drop condition of its
configuration valuation. Given the symmetry of the situation, in this case any
configuration containing a Player move is assigned value a half by the configu-
ration valuation associated with δA. (In the definition of the probabilistic dupli-
cation for general A the configuration valuation is distributed uniformly over
the different ways Player can copy Opponent moves.) But this is odd: in the
second example, if the Opponent makes only one move there is a 50 % chance
that Player will not react to it! There are mathematical consequences too. In the
absence of probability δA forms a comonoid with counit � ∶ A +

��∅. However, as
a probabilistic strategy δA is no longer a comonoid—it fails associativity. It is
hard to see an alternative definition of a probabilistic duplication strategy within
the limitations of the event structures we have been using. We shall return to
duplication, and a simpler treatment through a broadening of event structures
in the next section.

Recursion. Once we have duplication strategy we can treat recursion. Recall
that 2-cells, the maps between probabilistic strategies, include the approximation
order ⊴ between strategies. The order forms a ‘large complete partial order’ with
a bottom element the minimum strategy �. Given x ∶ A,Γ ⊢ t ⊣ y ∶ A, the
term Γ ⊢ μx ∶A. t ⊣ y ∶ A denotes the ⊴-least fixed point amongst probabilistic
strategies X ∶ Γ +

�� A of the ⊴-continuous operation F (X) = t⊙(idΓ∥X)⊙δΓ .
(With one exception, F is built out of operations which it’s been shown can be
be defined concretely in such a way that they are ⊴-continuous; the one exception
which requires separate treatment is the ‘new’ operation of projection, used to
hide synchronisations.) With probability, as δΓ is no longer a comonoid not all
the “usual” laws of recursion will hold, though the unfolding law will hold by
definition.

7 A Limitation

One limitation that is not seen when working with purely nondeterministic
strategies has revealed itself when strategies are made probabilistic. The simple
event structures on which we have based games and strategies do not support
“parallel causes” and this has the consequence that certain informal but intu-
itively convincing strategies are not expressible. We met this in the previous
section in our treatment of a probabilistic duplication strategy δA ∶ A +

�� A∥A.
Probabilistic strategies, as presented, do not cope with stochastic behaviour

such as races as in the game

⊖ �� ⊕ .

To do such we would expect to have to equip events in the strategy with stochas-
tic rates (which isn’t hard to do if synchronisation events are not hidden). So
this is to be expected. But at present probabilistic strategies do not cope with
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benign Player-Player races either! Consider the game

⊕

⊖ ⊖

where Player would like a strategy in which they play a move iff Opponent
plays one of theirs. We might stipulate that Player wins if a play of any ⊖ is
accompanied by the play of ⊕ and vice versa. Intuitively a winning strategy
would be got by assigning watchers (in the team Player) for each ⊖ who on
seeing their ⊖ race to play ⊕. This strategy should win with certainty against
any counter-strategy: no matter how Opponent plays one or both of their moves
at least one of the watchers will report this with the Player move. But we cannot
express this with event structures. The best we can do is a probabilistic strategy

⊕ ���� ⊕

⊖

����

⊖

����

with configuration valuation assigning 1/2 to configurations containing either
Player move and 1 otherwise. Against a counter-strategy with Opponent playing
one of their two moves with probability 1/2 this strategy only wins half the time.
In fact, the strategy together with the counter-strategy form a Nash equilibrium
when a winning configuration for Player is assigned payoff +1 and a loss −1.
This strategy really is the best we can do presently in that it is optimal amongst
those expressible using the simple event structures of Sect. 2.

8 A Solution

If we are to be able to express the intuitive strategy which wins with certainty
we need to develop distributed probabilistic strategies which allow such parallel
causes as in ‘general event structures’ (E,⊢,Con) which permit e.g. two distinct
compatible causes X ⊢ e and Y ⊢ e (see [3]). In the informal strategy described in
the previous section both Opponent moves would individually enable the Player
move, with all events being consistent. But it can be shown that general event
structures do not support an appropriate operation of hiding. Nor is it clear how
within general event structures one could express a variant of the strategy above,
in which the two watchers succeed in reporting the Player move with different
probabilities.

It is informative to see why general event structures are not closed under
hiding. The following describes a general event structure.

Events: a, b, c, d and e.
Enablings: b, c ⊢ e and d ⊢ e, with all events other than e being enabled by
the empty set.
Consistency: all subsets are consistent unless they contain the events a and
b; in other words, the events a and b are in conflict.
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Any configuration will satisfy the assertion

(a ∧ e)  ⇒ d

because if e has occurred it has to have been enabled by (1) or (2) and if a has
occurred its conflict with b has prevented the enabling (1), so e can only have
occurred via enabling (2).

Now imagine the event b is hidden, so allowed to occur invisibly in the
background. The “configurations after hiding” are those obtained by hiding
(i.e. removing) the invisible event b from the configurations of the original event
structure. The assertion above will still hold of the configurations after hiding.
There isn’t a general event structure with events a, c, d and e, and configurations
those which result when we hide (or remove) b from the configurations of the
original event structure. One way to see this is to observe that amongst the con-
figurations after hiding we have {c} ⊆ {c, e} and {c} ⊆ {a, c} where both {c, e}
and {a, c} have upper bound {a, c, d, e}, and yet {a, c, e} is not a configuration
after hiding as it fails to satisfy the assertion. (In a general event structure it
would have to also be a configuration.)

The first general event structure can be built out of the composition without
hiding of strategies described by general event structures, one from a game A to
a game B and the other from B to C; the second structure, not a general event
structure, would arise when hiding the events over the intermediate game B.

To obtain a bicategory of strategies with disjunctive causes we need to sup-
port hiding. We need to look for structures more general than general event
structures. The example above gives a clue: the inconsistency is one of inconsis-
tency between complete enablings rather than events.

Marc de Visme and I have explored the space of possibilities and discov-
ered a refinement of event structures into which general event structures embed,
which supports hiding, and provides a basis on which to develop probabilistic
distributed strategies with disjunctive and parallel causes. One is led to intro-
duce structures in which we objectify cause : a minimal causal enabling is no
longer an instance of a relation but an object that realises that instance (cf. a
proof in contrast to a judgement of theorem-hood). This is in order to express
inconsistency between complete enablings, inexpressible as inconsistencies on
events, that can arise when hiding.

An event structure with disjunctive causes (an edc) is a structure

(P,≤,ConP ,≡)

where (P,≤,ConP ) satisfies the axioms of a event structure and ≡ is an equiva-
lence relation on P such that

∀p1, p2 ≤ p. p1 ≡ p2  ⇒ p1 = p2 .

The events of P represent prime causes while the ≡-equivalence classes of P
represent disjunctive events: p in P is a prime cause of the event {p}

≡
. Notice

there may be several prime causes of the same event and that these may be
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parallel causes in the sense that they are consistent with each other and causally
independent. A configuration of the edc is a configuration of (P,≤,ConP ). An edc
dissociates the two roles of enabling and atomic action conflated in the events
of an event structures. The elements of P are to be thought of as complete
minimal enablings and the equivalence classes as atomic actions representing
the occurrence of at least one prime cause.

When the equivalence relation ≡ of an edc is the identity it is essentially
an event structure. This view is reinforced in our choice of maps. A map from
(P,≤P ,ConP ,≡P ) to (Q,≤Q,ConQ,≡Q) is a partial function f ∶ P ⇀ Q which
preserves ≡ (i.e. if p1 ≡P p2 then either both f(p1) and f(p2) are undefined or
both defined with f(p1) ≡Q f(p2)) such that for all x ∈ C(P )

(i) the direct image fx ∈ C(Q), and
(ii) ∀p1, p2 ∈ x. f(p1) ≡Q f(p2)  ⇒ p1 ≡P p2 .

Edc’s support a hiding operation along the same lines as event structures.
There is an adjunction expressing the sense in which general event structures
embed within edc’s. There is also an adjunction (in fact a coreflection) from
event structures to edc’s which helps give a tight connection between strategies
based on event structures and their generalisation to edc’s. Probability extends
straightforwardly to strategies based on edc’s. The work is recent and in the
process of being written up [20]. We conclude by presenting the deterministic
strategy in the game

⊕

⊖ ⊖

in which Player makes a move iff Opponent does:

⊕ ≡ ⊕

⊖

����

⊖

����

(In the deterministic case each watcher succeeds with certainty. We can also
represent the situation where one watcher succeeds with probability p ∈ [0,1] and
the other with probability q ∈ [0,1] through the obvious configuration valuation.)
The same strategy serves as the duplication strategy for the game comprising a
single Opponent event. This indicates how within the broader framework of edc’s
there are deterministic duplication strategies δA ∶ A +

�� A∥A in which a Player
move in the left component is alerted in parallel by a corresponding Opponent
move in either of the two components on the right. The fact that the duplication
strategies are now deterministic obviates the difficulties we encountered earlier:
duplication now forms a comonoid and we recover the usual laws for recursive
definitions of strategies.
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Abstract. We present a comparative study of four product operators
on weighted languages: (i) the convolution, (ii) the shuffle, (iii) the infil-
tration, and (iv) the Hadamard product. Exploiting the fact that the
set of weighted languages is a final coalgebra, we use coinduction to
prove that an operator of the classical difference calculus, the Newton
transform, generalises (from infinite sequences) to weighted languages.
We show that the Newton transform is an isomorphism of rings that
transforms the Hadamard product of two weighted languages into their
infiltration product, and we develop various representations for the New-
ton transform of a language, together with concrete calculation rules for
computing them.

1 Introduction

Formal languages [8] are a well-established formalism for the modelling of the
behaviour of systems, typically represented by automata. Weighted languages –
aka formal power series [3] – are a common generalisation of both formal lan-
guages (sets of words) and streams (infinite sequences). Formally, a weighted
language is an assignment from words over an alphabet A to values in a set k
of weights. Such weights can represent various things such as the multiplicity of
the occurrence of a word, or its duration, or probability etc. In order to be able
to add and multiply, and even subtract such weights, k is typically assumed to
be a semi-ring (e.g., the Booleans) or a ring (e.g., the integers).

We present a comparative study of four product operators on weighted lan-
guages, which give us four different ways of composing the behaviour of sys-
tems. The operators under study are (i) the convolution, (ii) the shuffle, (iii) the
infiltration, and (iv) the Hadamard product, representing, respectively: (i) the
concatenation or sequential composition, (ii) the interleaving without synchroni-
sation, (iii) the interleaving with synchronisation, and (iv) the fully synchronised
interleaving, of systems. The set of weighted languages, together with the oper-
ation of sum and combined with any of these four product operators, is a ring
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itself, assuming that k is a ring. This means that in all four cases, we have a
well-behaved calculus of behaviours.

Main Contributions: (1) We show that a classical operator from difference calcu-
lus in mathematics: the Newton transform, generalises (from infinite sequences)
to weighted languages, and we characterise it in terms of the shuffle product.
(2) Next we show that the Newton transform is an isomorphism of rings that
transforms the Hadamard product of two weighted languages into an infiltration
product. This allows us to switch back and forth between a fully synchronised
composition of behaviours, and a shuffled, partially synchronised one. (3) We
develop various representations for the Newton transform of a language, together
with concrete calculation rules for computing them.

Approach: We exploit the fact that the set of weighted languages is a final coal-
gebra [16,17]. This allows us to use coinduction as the guiding methodology for
both our definitions and proofs. More specifically, we define our operators in
terms of behavioural differential equations, which yields, for instance, a uniform
and thereby easily comparable presentation of all four product operators. More-
over, we construct bisimulation relations in order to prove various identities.

As the set of weighted languages over a one-letter alphabet is isomorphic to
the set of streams, it turns out to be convenient to prove our results first for the
special case of streams and then to generalise them to weighted languages.

Related Work: The present paper fits in the coalgebraic outlook on systems behav-
iour, as in, for instance, [1,17]. The definition of Newton series for weighted lan-
guages was introduced in [14], where Mahler’s theorem (which is a p-adic version of
the classical Stone-Weierstrass theorem) is generalised to weighted languages. The
Newton transform for streams already occurs in [12] (where it is called the discrete
Taylor transform), but not its characterisation using the shuffle product, which
for streams goes back to [18], and which for weighted languages is new. Related to
that, we present elimination rules for (certain uses of) the shuffle product, which
were known for streams [18] and are new for languages. The proof that the New-
ton transform for weighted languages is a ring isomorphism that exchanges the
Hadamard product into the infiltration product, is new. In [11, Chap. 6], an oper-
ation was defined that does the reverse; it follows from our work that this operation
is the inverse of the Newton transform. The infiltration product was introduced in
[6]; as we already mentioned, [11, Chap. 6] studies some of its properties, using a
notion of binomial coefficients for words that generalises the classical notions for
numbers. The present paper introduces a new notion of binomial coefficients for
words, which refines the definition of [11, Chap. 6].

2 Preliminaries: Stream Calculus

We present basic facts from coinductive stream calculus [18]. In the following,
we assume k to be a ring, unless stated otherwise. Let then the set of streams
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over k be given by kω = {σ | σ : N → k }. We define the initial value of a stream
σ by σ(0) and its stream derivative by σ′ = (σ(1), σ(2), σ(3), . . . ). In order to
conclude that two streams σ and τ are equal, it suffices to prove σ(n) = τ(n),
for all n ≥ 0. Sometimes this can be proved by induction on the natural number
n but, more often than not, we will not have a succinct description or formula
for σ(n) and τ(n), and induction will be of no help. Instead, we take here a
coalgebraic perspective on kω, and most of our proofs will use the proof principle
of coinduction, which is based on the following notion.
A relation R ⊆ kω × kω is a (stream) bisimulation if for all (σ, τ) ∈ R,

σ(0) = τ(0) and (σ′, τ ′) ∈ R. (1)

Theorem 1 (Coinduction Proof Principle). If there exists a bisimulation
relation containing (σ, τ), then σ = τ .

Coinductive definitions are phrased in terms of stream derivatives and initial
values, and are called stream differential equations; see [10,17,18] for examples
and details.

Definition 2 (Basic Operators). The following system of stream differential
equations defines our first set of constants and operators:

Derivative Initial value Name

[r]′ = [0] [r](0) = r r ∈ k

X ′ = [1] X(0) = 0

(σ + τ)′ = σ′ + τ ′ (σ + τ)(0) = σ(0) + τ(0) Sum

(Σi∈Iσi)
′ = Σi∈Iσ

′
i (Σi∈Iσi)(0) =

∑
i∈I σi(0) Infinite sum

(−σ)′ = −(σ′) (−σ)(0) = −σ(0) Minus

(σ × τ)′ = (σ′ × τ) + ([σ(0)] × τ ′) (σ × τ)(0) = σ(0)τ(0) Convolution product

(σ−1)′ = −[σ(0)−1] × σ′ × σ−1 (σ−1)(0) = σ(0)−1 Convolution inverse

The unique existence of constants and operators satisfying the equations
above is ultimately due to the fact that kω, together with the operations of
initial value and stream derivative, is a final coalgebra.

For r ∈ k, we have the constant stream [r] = (r, 0, 0, 0, . . .) which we often
denote again by r. Then we have the constant stream X = (0, 1, 0, 0, 0, . . .).
We define X0 = [1] and Xi+1 = X × Xi. The infinite sum Σi∈Iσi is defined
only when the family {σi}i∈I is summable, that is, if for all n ∈ N the set
{i ∈ I | σi(n) �= 0} is finite. If I = N, we denote Σi∈Iσi by

∑∞
i=0 σi. Note that

(τi × Xi)i is summable for any sequence of streams (τi)i. Minus is defined only
if k is a ring. In spite of its non-symmetrical definition, convolution product on
streams is commutative (assuming that k is). Convolution inverse is defined for
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those streams σ for which the initial value σ(0) is invertible. We will often write
rσ for [r] × σ, and 1/σ for σ−1 and τ/σ for τ × (1/σ), which – for streams – is
equal to (1/σ) × τ .

The following analogue of the fundamental theorem of calculus, tells us how
to compute a stream σ from its initial value σ(0) and derivative σ′.

Theorem 3. We have σ = σ(0) + (X × σ′), for every σ ∈ kω. ��
We will also use coinduction-up-to [15,18], a strengthening of the coinduction
proof principle. Let us first introduce some convenient notation.

Given a relation R on kω, we denote by R̄ the smallest reflexive relation on
kω containing R and closed under the element-wise application of the operators
in Definition 2. For instance, if (α, β), (γ, δ) ∈ R̄ then (α + γ, β + δ) ∈ R̄, etc.
A relation R ⊆ kω × kω is a (stream) bisimulation-up-to if, for all (σ, τ) ∈ R,

σ(0) = τ(0) and (σ′, τ ′) ∈ R̄. (2)

Theorem 4 (Coinduction-up-to). If R is a bisimulation-up-to and (σ, τ) ∈
R, then σ = τ .

Proof. If R is a bisimulation-up-to then R̄ can be shown to be a bisimulation
relation, by structural induction on its definition. Now apply Theorem1.

Using coinduction (up-to), one can easily prove the following.

Proposition 5 (Semiring of Streams – with Convolution Product). If
k is a semiring then the set of streams with sum and convolution product forms
a semiring as well: (kω, +, [0], ×, [1]). If k is commutative then so is kω. ��

Polynomial and rational streams are defined as usual, cf. [17].

Definition 6 (Polynomial, Rational Streams). We call a stream σ ∈ kω

polynomial if it is of the form σ = a0 + a1X + a2X
2 + · · · + anXn, for n ≥ 0

and ai ∈ k. We call σ rational if it is of the form

σ =
a0 + a1X + a2X

2 + · · · + anXn

b0 + b1X + b2X2 + · · · + bmXm

with n,m ≥ 0, ai, bj ∈ k, and b0 is invertible.

Example 7. Here are a few concrete examples of streams (over the natural num-
bers): 1 + 2X + 3X2 = (1, 2, 3, 0, 0, 0, . . .), 1

1−2X = (20, 21, 22, . . .), 1
(1−X)2 =

(1, 2, 3, . . .), X
1−X−X2 = (0, 1, 1, 2, 3, 5, 8, . . .). We note that convolution

product behaves naturally, as in the following example: (1 + 2X2) × (3 − X) =
3 − X + 6X2 − 2X3. ��

We shall be using yet another operation on streams.
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Definition 8 (Stream Composition). We define the composition of streams
by the following stream differential equation:

Derivative Initial value Name

(σ ◦ τ)′ = τ ′ × (σ′ ◦ τ) (σ ◦ τ)(0) = σ(0) Stream composition

We will consider the composition of streams σ with τ if τ(0) = 0, in which case
composition enjoys the following properties.

Proposition 9 (Properties of Composition). For all ρ, σ, τ with τ(0) = 0,
we have [r] ◦ τ = [r], X ◦ τ = τ , and

(ρ+σ)◦τ = (ρ◦τ)+(σ ◦τ), (ρ×σ)◦τ = (ρ◦τ)×(σ ◦τ), σ−1 ◦τ = (σ ◦τ)−1

and similarly for infinite sum.

Example 10. As a consequence, for rational σ, τ , the composition σ◦τ amounts
to replacing every X in σ by τ . For instance, X

1−X−X2 ◦ X
1+X = X(1+X)

1+X−X2 . ��

Defining σ(0) = σ and σ(n+1) = (σ(n))′, for any stream σ ∈ kω, we have
σ(n)(0) = σ(n). Thus σ = (σ(0), σ(1), σ(2), . . .) = (σ(0)(0), σ(1)(0), σ(2)(0),
. . .). Hence every stream is equal to the stream of its Taylor coefficients (with
respect to stream derivation). There is also the corresponding Taylor series rep-
resentation for streams.

Theorem 11 (Taylor Series). For every σ ∈ kω,

σ =
∞∑

i=0

[σ(i)(0)] × Xi =
∞∑

i=0

[σ(i)] × Xi

For some of the operations on streams, we have explicit formulae for the n-th
Taylor coefficient, that is, for their value in n.

Proposition 12. For all σ, τ ∈ kω, for all n ≥ 0,

(σ+τ)(n) = σ(n)+τ(n), (−σ)(n) = −σ(n), (σ×τ)(n) =
n∑

k=0

σ(k)τ(n−k)

3 Four Product Operators

In addition to convolution product, we shall discuss also the following product
operators (repeating below the definitions of convolution product and inverse).

Definition 13 (Product Operators). We define four product operators by
the following system of stream differential equations:
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Derivative Initial value Name

(σ × τ)′ = (σ′ × τ) + ([σ(0)] × τ ′) (σ × τ)(0) = σ(0)τ(0) Convolution

(σ ⊗ τ)′ = (σ′ ⊗ τ) + (σ ⊗ τ ′) (σ ⊗ τ)(0) = σ(0)τ(0) Shuffle

(σ � τ)′ = σ′ � τ ′ (σ � τ)(0) = σ(0)τ(0) Hadamard

(σ ↑ τ)′ = (σ′ ↑ τ) + (σ ↑ τ ′) + (σ′ ↑ τ ′) (σ ↑ τ)(0) = σ(0)τ(0) Infiltration

For streams σ with invertible initial value σ(0), we can define both convolution
and shuffle inverse, as follows:

Derivative Initial value Name

(σ−1)′ = −[σ(0)−1] × σ′ × σ−1 (σ−1)(0) = σ(0)−1 Convolution inverse

(σ−1)′ = −σ′ ⊗ σ−1 ⊗ σ−1 (σ−1)(0) = σ(0)−1 Shuffle inverse

(We will not need the inverse of the other two products.) Convolution and
Hadamard product are standard operators in mathematics. Shuffle and infil-
tration product are, for streams, less well-known, and are better explained and
understood when generalised to weighted languages, which we shall do in Sect. 7.
Closed forms for shuffle and Hadamard are given in Proposition 15 below. In the
present section and the next, we shall relate convolution product and Hadamard
product to, respectively, shuffle product and infiltration product, using the so-
called Laplace and the Newton transforms.

Example 14. Here are a few simple examples of streams (over the natural
numbers), illustrating the differences between these four products.

1
1 − X

× 1
1 − X

=
1

(1 − X)2
= (1, 2, 3, . . .)

1
1 − X

⊗ 1
1 − X

=
1

1 − 2X
= (20, 21, 22, . . .)

1
1 − X

� 1
1 − X

=
1

1 − X
1

1 − X
↑ 1

1 − X
=

1
1 − 3X

= (30, 31, 32, . . .)

(1 − X)−1 = (0!, 1!, 2!, . . .) (3)

We have the following closed formulae for the shuffle and Hadamard prod-
uct. Recall Proposition 12 for the closed form of convolution product. In
Proposition 23 below, we derive a closed formula for the infiltration product
as well.

Proposition 15.

(σ ⊗ τ)(n) =
n∑

i=0

(
n

i

)
σ(i)τ(n − i) (4)

(σ � τ)(n) = σ(n)τ(n) (5)

��
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Next we consider the set of streams kω together with sum and, respectively,
each of the four product operators.

Proposition 16 (Four (semi-)rings of Streams). If k is a (semi-)ring then
each of the four product operators defines a corresponding (semi-)ring structure
on kω, as follows:

Rc = (kω, +, [0], ×, [1]), Rs = (kω, +, [0], ⊗, [1])
RH = (kω, +, [0], �, ones), Ri = (kω, +, [0], ↑, [1])

where ones denotes (1, 1, 1, . . .). ��
We recall from [12] and [18, Theorem 10.1] the following ring isomorphism

between Rc and Rs.

Theorem 17 (Laplace for Streams, [12,18]). Let the Laplace transform Λ :
kω → kω be given by the following stream differential equation:

Derivative Initial value Name

(Λ(σ))′ = Λ(d/dX(σ)) Λ(σ)(0) = σ(0) Laplace

where d/dX(σ) = (X ⊗ σ′)′ = (σ(1), 2σ(2), 3σ(3), . . .). Then Λ : Rc → Rs is
an isomorphism of rings; notably, for all σ, τ ∈ kω, Λ(σ × τ) = Λ(σ) ⊗ Λ(τ). ��
(The Laplace transform is also known as the Laplace-Carson transform.) One
readily shows that Λ(σ) = (0!σ(0), 1!σ(1), 2!σ(2), . . . ), from which it follows
that Λ is bijective. Coalgebraically, Λ arises as the unique final coalgebra homo-
morphism between two different coalgebra structures on kω:

On the right, we have the standard (final) coalgebra structure on streams,
given by: σ → (σ(0), σ′), whereas on the left, the operator d/dX is used instead
of stream derivative: σ → (σ(0), d/dX(σ)). The commutativity of the diagram
above is precisely expressed by the stream differential equation defining Λ above.
It is this definition, in terms of stream derivatives, that enables us to give an
easy proof of Theorem 17, by coinduction-up-to.

As we shall see, there exists also a ring isomorphism between RH and Ri. It
will be given by the Newton transform, which we will consider next.

4 Newton Transform

Assuming that k is a ring, let the difference operator on a stream σ ∈ kω be
defined by Δσ = σ′ − σ = (σ(1) − σ(0), σ(2) − σ(1), σ(3) − σ(2), . . .).
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Definition 18 (Newton Transform). We define the Newton transform N :
kω → kω by the following stream differential equation:

Derivative Initial value Name

(N (σ))′ = N (Δσ) N (σ)(0) = σ(0) Newton transform

It follows that N (σ) = ( (Δ0σ)(0), (Δ1σ)(0), (Δ2σ)(0), . . . ), where Δ0σ =
σ and Δn+1σ = Δ(Δnσ). We call N (σ) the stream of the Newton coefficients of
σ. Coalgebraically, N arises as the unique mediating homomorphism – in fact,
as we shall see below, an isomorphism – between the following two coalgebras:

On the right, we have as before the standard (final) coalgebra structure
on streams, whereas on the left, the difference operator is used instead: σ →
(σ(0), Δσ). We note that the term Newton transform is used in mathematical
analysis [5] for an operational method for the transformation of differentiable
functions. In [12], where the diagram above is discussed, our present Newton
transform N is called the discrete Taylor transformation.

The fact that N is bijective follows from Theorem 20 below, which charac-
terises N in terms of the shuffle product. Its proof uses the following lemma.

Lemma 19. 1
1−X ⊗ 1

1+X = 1.

Note that this formula combines the convolution inverse with the shuffle product.
The function N , and its inverse, can be characterised by the following formulae.

Theorem 20 ([18]). The function N is bijective and satisfies, for all σ ∈ kω,

N (σ) =
1

1 + X
⊗ σ, N −1(σ) =

1
1 − X

⊗ σ.

At this point, we observe the following structural parallel between the Laplace
transform from Theorem17 and the Newton transform: for all σ ∈ kω,

Λ(σ) = (1 − X)−1 � σ (6)
N (σ) = (1 + X)−1 ⊗ σ (7)

The first equality is immediate from the observation that (1 − X)−1 =
(0!, 1!, 2!, . . .). The second equality is Theorem 20.

The Newton transform is also an isomorphism of rings, as follows.
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Theorem 21 (Newton Transform as Ring Isomorphism). We have that
N : RH → Ri is an isomorphism of rings; notably, N (σ � τ) = N (σ) ↑ N (τ),
for all σ, τ ∈ kω.

Expanding the definition of the shuffle product in Theorem20, we obtain the
following closed formulae.

Proposition 22. For all σ ∈ kω and n ≥ 0,

N (σ)(n) =
n∑

i=0

(
n

i

)
(−1)n−iσ(i), N −1(σ)(n) =

n∑

i=0

(
n

i

)
σ(i)

From these, we can derive the announced closed formula for the infiltration
product.

Proposition 23. For all σ, τ ∈ kω,

(σ ↑ τ)(n) =
n∑

i=0

(
n

i

)
(−1)n−i

⎛

⎝
i∑

j=0

(
i

j

)
σ(j)

⎞

⎠
(

i∑

l=0

(
i

l

)
τ(l)

)

5 Calculating Newton Coefficients

The Newton coefficients of a stream can be computed using the following theorem
[18, Theorem 10.2(68)]. Note that the righthand side of (8) below no longer
contains the shuffle product.

Theorem 24 (Shuffle Product Elimination). For all σ ∈ kω, r ∈ k,

1
1 − rX

⊗ σ =
1

1 − rX
×

(
σ ◦ X

1 − rX

)
(8)

Example 25. For the Fibonacci numbers, we have

N (0, 1, 1, 2, 3, 5, 8, . . .) = N
(

X

1 − X − X2

)
=

X

1 + X − X2

It is immediate by Theorems 20 and 24 and Example 10 that the Newton trans-
form preserves rationality.

Corollary 26. A stream σ ∈ kω is rational iff its Newton transform N (σ) is
rational. ��

6 Newton Series

Theorem 20 tells us how to compute for a given stream σ the stream of its Newton
coefficients N (σ), using the shuffle product. Conversely, there is the following
Newton series representation, which tells us how to express a stream σ in terms
of its Newton coefficients.
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Theorem 27 (Newton Series for Streams, 1st). For all σ ∈ kω, n ≥ 0,

σ(n) =
n∑

i=0

(Δiσ)(0)
(

n

i

)

Using
(
n
i

)
= n!/i!(n−i)! and writing ni = n(n−1)(n−2) · · · (n−i+1) (not to be

confused with our notation for the shuffle inverse), Newton series are sometimes
(cf. [9, Eq. (5.45)]) also denoted as

σ(n) =
n∑

i=0

(Δiσ)(0)
i!

ni

thus emphasizing the structural analogy with Taylor series.
Combining Theorem 20 with Theorem 24 leads to yet another, and less fami-

lar expansion theorem (see [19] for a finitary version thereof).

Theorem 28 (Newton Series for Streams, 2nd; Euler Expansion). For
all σ ∈ kω,

σ =
∞∑

i=0

(Δiσ)(0) × Xi

(1 − X)i+1

Example 29. Theorem 28 leads, for instance, to an easy derivation of a rational
expression for the stream of cubes, namely

(13, 23, 33, . . .) =
1 + 4X + X2

(1 − X)4

��

7 Weighted Languages

Let k again be a ring or semiring and let A be a set. We consider the elements of
A as letters and call A the alphabet. Let A∗ denote the set of all finite sequences
or words over A. We define the set of languages over A with weights in k by

kA∗
= {σ | σ : A∗ → k }

Weighted languages are also known as formal power series (over A with coeffi-
cients in k), cf. [3]. If k is the Boolean semiring {0, 1}, then weighted languages
are just sets of words. If k is arbitrary again, but we restrict our alphabet to a
singleton set A = {X}, then kA∗ ∼= kω, the set of streams with values in k. In
other words, by moving from a one-letter alphabet to an arbitrary one, streams
generalise to weighted languages.
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From a coalgebraic perspective, much about streams holds for weighted lan-
guages as well, and typically with an almost identical formulation. This struc-
tural similarity between streams and weighted languages is due to the fact that
weighted languages carry a final coalgebra structure that is very similar to that
of streams, as follows. We define the initial value of a (weighted) language σ by
σ(ε), that is, σ applied to the empty word ε. Next, we define for every a ∈ A
the a-derivative of σ by σa(w) = σ(a · w), for every w ∈ A∗. Initial value and
derivatives together define a final coalgebra structure on weighted languages,
given by

kA∗ → k × (kA∗
)A σ → (σ(ε), λa ∈ A. σa)

(where (kA∗
)A = {f | f : A → kA∗}). For the case that A = {X}, the coalgebra

structure on the set of streams is a special case of the one above, since under
the isomorphism kA∗ ∼= kω, we have that σ(ε) corresponds to σ(0), and σX

corresponds to σ′.
We can now summarize the remainder of this paper, roughly and succinctly,

as follows: if we replace in the previous sections σ(0) by σ(ε), and σ′ by σa

(for a ∈ A), everywhere, then most of the previous definitions and properties
for streams generalise to weighted languages. Notably, we will again have a set
of basic operators for weighted languages, four different product operators, four
corresponding ring stuctures, and the Newton transform between the rings of
Hadamard and infiltration product. (An exception to this optimistic program of
translation sketched above, however, is the Laplace transform: there does not
seem to exist an obvious generalisation of the Laplace transform for streams –
transforming the convolution product into the shuffle product – to the corre-
sponding rings of weighted languages.)

Let us now be more precise and discuss all of this in some detail. For a start,
there is again the proof principle of coinduction, now for weighted languages.
A relation R ⊆ kA∗ × kA∗

is a (language) bisimulation if for all (σ, τ) ∈ R:

σ(ε) = τ(ε) and (σa, τa) ∈ R, for all a ∈ A. (9)

We have the following coinduction proof principle, similar to Theorem 1:

Theorem 30 (Coinduction for Languages). If there exists a (language)
bisimulation relation containing (σ, τ), then σ = τ .

Coinductive definitions are given again by differential equations, now called
behavioural differential equations [17,18].

Definition 31 (Basic Operators for Languages). The following system of
behavioural differential equations defines the basic constants and operators for
languages:
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Derivative Initial value Name

[r]a = [0] [r](ε) = r r ∈ k

ba = [0] b(ε) = 0 b ∈ A, b �= a

ba = [1] b(ε) = 0 b ∈ A, b = a

(σ + τ)a = (σa + τa) (σ + τ)(ε) = σ(ε) + τ(ε) Sum

(Σi∈Iσi)a = Σi∈I(σi)a (Σi∈Iσi)(ε) =
∑

i∈I σi(ε) Infinite sum

(−σ)a = −(σa) (−σ)(ε) = −σ(ε) Minus

(σ × τ)a = (σa × τ) + ([σ(ε)] × τa) (σ × τ)(ε) = σ(ε)τ(ε) Convolution product

(σ−1)a = −[σ(ε)−1] × σa × σ−1 (σ−1)(ε) = σ(ε)−1 Convolution inverse

The convolution inverse is again defined only for σ with σ(ε) invertible in k. We
will write a both for an element of A and for the corresponding constant weighted
language. We shall often use shorthands like ab = a × b, where the context will
determine whether a word or a language is intended. Also, we will sometimes
write A for Σa∈Aa. The infinite sum Σi∈Iσi is, again, only defined if the family
{σi}i∈I is summable, i.e., if for all w ∈ A∗ the set {i ∈ I | σi(w) �= 0} is finite.
As before, we shall often write 1/σ for σ−1. Note that convolution product is
weighted concatenation and is no longer commutative. As a consequence, τ/σ is
now generally ambiguous as it could mean either τ ×σ−1 or σ−1 × τ . Only when
the latter are equal, we shall sometimes write τ/σ. An example is A/(1 − A),
which is A+, the set of all non-empty words.

Theorem 32 (Fundamental Theorem, for Languages). For every σ ∈ kA∗
,

σ = σ(ε) +
∑

a∈A a × σa (cf. [7,17]). ��
We can now extend Theorem 4 to languages. Given a relation R on kA∗

, we
denote by R̄ the smallest reflexive relation on kA∗

containing R and is closed
under the element-wise application of the operators in Definition 31. For instance,
if (α, β), (γ, δ) ∈ R̄ then (α + γ, β + δ) ∈ R̄, etc.

A relation R ⊆ kA∗ × kA∗
is a (weighted language) bisimulation-up-to if for

all (σ, τ) ∈ R:

σ(ε) = τ(ε), and for all a ∈ A : (σa, τa) ∈ R̄. (10)

Theorem 33 (Coinduction-up-to for Languages). If (σ, τ) ∈ R for some
bisimulation-up-to, then σ = τ . ��

Composition of languages is defined by the following differential equation:

Derivative Initial value Name

(σ ◦ τ)a = τa × (σa ◦ τ) (σ ◦ τ)(ε) = σ(ε) Composition

Language compositionσ◦τ is well-behaved, for arbitraryσ and τ with τ(ε) = 0.
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Proposition 34 (Composition of Languages). For τ ∈ kA∗
with τ(ε) = 0,

[r] ◦ τ = [r], a ◦ τ = a × τa, A ◦ τ = τ, σ−1 ◦ τ = (σ ◦ τ)−1

(ρ + σ) ◦ τ = (ρ ◦ τ) + (σ ◦ τ), (ρ × σ) ◦ τ = (ρ ◦ τ) × (σ ◦ τ)

Definition 35 (Polynomial, Rational Languages). We call σ ∈ kA∗
poly-

nomial if it can be constructed using constants (r ∈ k and a ∈ A) and the
operations of finite sum and convolution product. We call σ ∈ kA∗

rational if it
can be constructed using constants and the operations of finite sum, convolution
product and convolution inverse. ��
As a consequence of Proposition 34, for every rational σ, σ ◦ τ is obtained by
replacing every occurrence of a in σ by a × τa, for every a ∈ A.

Defining σε = σ and σw·a = (σw)a, for any language σ ∈ kA∗
, we have

σw(ε) = σ(w). This leads to a Taylor series representation for languages.

Theorem 36 (Taylor Series, for Languages). For every σ ∈ kA∗
,

σ =
∑

w∈A∗
σw(ε) × w =

∑

w∈A∗
σ(w) × w

Example 37. Here are a few concrete examples of weighted languages:

1
1 − A

=
∑

w∈A∗
w = A∗

1
1 + A

=
∑

w∈A∗
(−1)|w| × w,

1
1 − 2ab

=
∑

i≥0

2i × (ab)i

8 Four Rings of Weighted Languages

The definitions of the four product operators for streams generalise straightfor-
wardly to languages, giving rise to four different ring structures on languages.

Definition 38 (Product Operators for Languages). We define four prod-
uct operators by the following system of behavioural differential equations:

Derivative Initial value Name

(σ × τ)a = (σa × τ) + ([σ(ε)] × τa) (σ × τ)(ε) = σ(ε)τ(ε) Convolution

(σ ⊗ τ)a = (σa ⊗ τ) + (σ ⊗ τa) (σ ⊗ τ)(ε) = σ(ε)τ(ε) Shuffle

(σ � τ)a = σa � τa (σ � τ)(ε) = σ(ε)τ(ε) Hadamard

(σ ↑ τ)a = (σa ↑ τ) + (σ ↑ τa) + (σa ↑ τa) (σ ↑ τ)(ε) = σ(ε)τ(ε) Infiltration

For languages σ with invertible initial value σ(ε), we can define both convolution
and shuffle inverse, as follows:
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Derivative Initial value Name

(σ−1)a = −[σ(0)−1] × σa × σ−1 (σ−1)(0) = σ(0)−1 Convolution inverse

(σ−1)a = −σa ⊗ σ−1 ⊗ σ−1 (σ−1)(0) = σ(0)−1 Shuffle inverse

Convolution product is concatenation of (weighted) languages and Hadamard
product is the fully synchronised product, which corresponds to the intersection
of weighted languages. The shuffle product generalises the definition of the shuffle
operator on classical languages (over the Boolean semiring), and can be, equiva-
lently, defined by induction. The following definition is from [11, p. 126] (where
shuffle product is denoted by the symbol ◦): for all v, w ∈ A∗, σ, τ ∈ kA∗

,

v ⊗ ε = ε ⊗ v = v

va ⊗ wb = (v ⊗ wb)a + (va ⊗ w)b (11)

σ ⊗ τ =
∑

v,w∈A∗
σ(v) × τ(w) × (v ⊗ w) (12)

The infiltration product, originally introduced in [6], can be considered as
a variation on the shuffle product that not only interleaves words but als syn-
chronizes them on identical letters. In the differential equation for the infiltration
product above, this is apparent from the presence of the additional term σa ↑ τa.
There is also an inductive definition of the infiltration product, in [11, p. 128].
It is a variant of (11) above that for the case that a = b looks like

va ↑ wa = (v ↑ wa)a + (va ↑ w)a + (v ↑ w)a

However, we shall be using the coinductive definitions, as these allow us to give
proofs by coinduction.

Example 39. Here are a few simple examples of weighted languages, illustrat-
ing the differences between these four products. Recall that 1/1 − A = A∗, that
is, (1/1 − A)(w) = 1, for all w ∈ A∗. Indicating the length of a word w ∈ A∗ by
|w|, we have the following identities:

(
1

1 − A
× 1

1 − A

)
(w) = |w| + 1,

(
1

1 − A
⊗ 1

1 − A

)
(w) = 2|w|

1
1 − A

� 1
1 − A

=
1

1 − A
,

(
1

1 − A
↑ 1

1 − A

)
(w) = 3|w|

(
(1 − A)−1

)
(w) = |w|! (13)

If we restrict the above identities to streams, that is, if the alphabet A = {X},
then we obtain the identities on streams from Example 14. ��
Next we consider the set of weighted languages together with sum and each of
the four product operators.
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Proposition 40 (Four Rings of Weighted Languages). If k is a
(semi-)ring then each of the four product operators defines a corresponding
(semi-)ring structure on kA∗

, as follows:

Lc =
(
kA∗

, +, [0], ×, [1]
)

, Ls =
(
kA∗

, +, [0], ⊗, [1]
)

LH =
(

kA∗
, +, [0], �,

1
1 − A

)
, Li =

(
kA∗

, +, [0], ↑, [1]
)

Proof. A proof is again straightforward by coinduction-up-to, once we have
adapted Theorem 33 by requiring R̄ to be also closed under the element-wise
application of all four product operators above.

We conclude the present section with closed formulae for the Taylor coeffi-
cients of the above product operators, thus generalising Propositions 12 and 15
to languages. We first introduce the following notion.

Definition 41 (Binomial Coefficients on Words). For all u, v, w ∈ A∗, we
define

(
w

u|v
)

as the number of different ways in which u can be taken out of w

as a subword, leaving v; or equivalently – and more formally – as the number of
ways in which w can be obtained by shuffling u and v; that is,

(
w

u | v

)
= (u ⊗ v)(w) (14)

The above definition generalises the notion of binomial coefficient for words
from [11, p. 121], where one defines

(
w
u

)
as the number of ways in which u can

be taken as a subword of w. The two notions of binomial coefficient are related
by the following formula:

(
w

u

)
=

∑

v∈A∗

(
w

u | v

)
(15)

As an immediate consequence of the defining equation (14), we find the following
recurrence.

Proposition 42. For all a ∈ A and u, v, w ∈ A∗,
(

aw

u | v

)
=

(
w

ua | v

)
+

(
w

u | va

)
(16)

Note that for the case of streams, (16) gives us Pascal’s formula for classical
binomial coefficients (by taking a = X, w = Xn, u = Xk and v = Xn+1−k):

(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)

Proposition 43 gives another property, the easy proof of which illustrates the
convenience of the new definition of binomial coefficient. (It is also given in [11,
Proposition 6.3.13], where 1/1 − A is written as A∗ and convolution product
as ◦.)
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Proposition 43. For all u,w ∈ A∗,
(
u ⊗ 1

1−A

)
(w) =

(
w
u

)
.

Example 44.
(
abab
ab

)
=

(
abab
ab|ab

)
+

(
abab
ab|ba

)
= 2 + 1 = 3 ��

We have the following closed formulae for three of our product operators.

Proposition 45. For all σ, τ ∈ kA∗
, w ∈ A∗,

(σ × τ)(w) =
∑

u,v∈A∗ s.t. u·v=w

σ(u)τ(v)

(σ ⊗ τ)(w) =
∑

u,v∈A∗

(
w

u | v

)
σ(u)τ(v) (17)

(σ � τ)(w) = σ(w)τ(w) (18)

A closed formula for the infiltration product can be derived later, once we have
introduced the Newton transform for weighted languages. ��

9 Newton Transform for Languages

Assuming again that k is a ring, we define the difference operator (with respect
to a ∈ A) by Δaσ(w) = σa(w) − σ(w) = σ(a · w) − σ(w), for σ ∈ kA∗

.

Definition 46 (Newton Transform for Languages). We define the Newton
transform N : kA∗ → kA∗

by the following behavioural differential equation:

Derivative Initial value Name

(N (σ))a = N (Δaσ) N (σ)(ε) = σ(ε) Newton transform

(using again the symbol N , now for weighted languages instead of streams). ��
It follows that N (σ)(w) = (Δwσ) (ε), for all w ∈ A∗, where Δεσ = σ and

Δw·aσ = Δa(Δwσ). Coalgebraically, N arises again as a unique mediating iso-
morphism between two final coalgebras:

On the right, we have the standard (final) coalgebra structure on weighted
languages, given by: σ → (σ(ε), λa ∈ A. σa), whereas on the left, the difference
operator is used instead of the stream derivative: σ → (σ(ε), λa ∈ A.Δaσ).
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Theorem 47. The function N is bijective and satisfies, for all σ ∈ kA∗
,

N (σ) =
1

1 + A
⊗ σ, N −1(σ) =

1
1 − A

⊗ σ

(Note again that these formulae combine the convolution inverse with the shuffle
product.) The Newton transform is again an isomorphism of rings.

Theorem 48 (Newton Transform as Ring Isomorphism for Languages).
The Newton transform N : LH → Li is an isomorphism of rings; notably,
N (σ � τ) = N (σ) ↑ N (τ), for all σ, τ ∈ kω.

Noting that N ( 1
1−A ) = [1], a proof of the theorem by coinduction-up to

is straightforward. Part of this theorem is already known in the literature:
[11, Theorem 6.3.18] expresses (for the case that k = Z) that 1

1−A ⊗ (−) trans-
forms the infiltration product of two words into a Hadamard product.

Propositions 22 and 23 for streams straightforwardly generalise to weighted
languages. Also Theorem 24 generalises to weighted languages, as follows.

Theorem 49 (Shuffle Product Elimination for Languages). For all
σ ∈ kA∗

, r ∈ k,

1
1 − (r × A)

⊗ σ =
1

1 − (r × A)
×

(
σ ◦ A

1 − (r × A)

)
(19)

Corollary 50. For all σ ∈ kA∗
, σ is rational iff N (σ) is rational. For all σ, τ ∈

kA∗
, if both N (σ) and N (τ) are polynomial resp. rational, then so is N (σ � τ).

Example 51. We illustrate the use of Theorem49 in the calculation of the
Newton transform with an example, stemming from [14, Example 2.1]. Let
A = {0̂, 1̂}, where we use the little festive hats to distinguish these alpha-
bet symbols from 0, 1 ∈ k. We define β ∈ kA∗

by the following behav-
ioural differential equation: β0̂ = 2 × β, β1̂ = (2 × β) + 1

1−A , β(ε) = 0.
Using Theorem 32, we can solve the differential equation above, and obtain
the following expression: β = 1

1−2A × 1̂ × 1
1−A . We have, for instance, that

β(0̂1̂1̂) = β0̂1̂1̂(ε) =
(
(8 × β) + 6

1−A

)
(ε) = 6. More generally, β assigns to each

word in A∗ its value as a binary number (least significant digit first). By an easy
computation, we find: N (β) = 1

1−A × 1̂; in other words, N (β)(w) = 1, for all w

ending in 1̂. ��

10 Newton Series for Languages

Theorem 27 generalises to weighted languages as follows.

Theorem 52 (Newton Series for Languages, 1st). For all σ ∈ kA∗
,

w ∈ A∗,

σ(w) =
∑

u

(
w

u

)
(Δuσ)(ε)
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Also Theorem 28 generalises to weighted languages.

Theorem 53 (Newton Series for Languages, 2nd; Euler Expansion).
For all σ ∈ kA∗

,

σ =
∑

a1···an∈A∗
(Δa1···anσ)(ε) × 1

1 − A
× a1 × 1

1 − A
× · · · × an × 1

1 − A

where we understand this sum to include σ(ε) × 1
1−A , corresponding to ε ∈ A∗.

11 Discussion

All our definitions are coinductive, given by behavioural differential equations,
allowing all our proofs to be coinductive as well, that is, based on constructions
of bisimulation (up-to) relations. This makes all proofs uniform and transparent.
Moreover, coinductive proofs can be easily automated and often lead to efficient
algorithms, for instance, as in [4]. There are several topics for further research:
(i) Theorems 52 and 53 are pretty but are they also useful? We should like to
investigate possible applications. (ii) The infiltration product deserves further
study (including its restriction to streams, which seems to be new). It is rem-
iniscent of certain versions of synchronised merge in process algebra (cf. [2]),
but it does not seem to have ever been studied there. (iii) Theorem 47 charac-
terises the Newton transform in terms of the shuffle product, from which many
subsequent results follow. Recently [13], Newton series have been defined for
functions from words to words. We are interested to see whether our present
approach could be extended to those as well. (iv) Behavioural differential equa-
tions give rise to weighted automata (by what could be called the ‘splitting’ of
derivatives into their summands, cf. [10]). We should like to investigate whether
our representation results for Newton series could be made relevant for weighted
automata as well. (v) Our new Definition 41 of binomial coefficients for words,
which seems to offer a precise generalisation of the standard notion for numbers
and, e.g., Pascal’s formula, deserves further study.

Acknowledgments. We thank the anonymous referees for their constructive com-
ments.
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Abstract. The delay datatype was introduced by Capretta [3] as a
means to deal with partial functions (as in computability theory) in
Martin-Löf type theory. It is a monad and it constitutes a construc-
tive alternative to the maybe monad. It is often desirable to consider
two delayed computations equal, if they terminate with equal values,
whenever one of them terminates. The equivalence relation underlying
this identification is called weak bisimilarity. In type theory, one com-
monly replaces quotients with setoids. In this approach, the delay monad
quotiented by weak bisimilarity is still a monad. In this paper, we con-
sider Hofmann’s alternative approach [6] of extending type theory with
inductive-like quotient types. In this setting, it is difficult to define the
intended monad multiplication for the quotiented datatype. We give a
solution where we postulate some principles, crucially proposition exten-
sionality and the (semi-classical) axiom of countable choice. We have
fully formalized our results in the Agda dependently typed programming
language.

1 Introduction

The delay datatype was introduced by Capretta [3] as a means to deal with par-
tial functions (as in computability theory) in Martin-Löf type theory. It is used
in this setting to cope with possible non-termination of computations (as, e.g.,
in the unbounded search of minimalization). Inhabitants of the delay datatype
are delayed values, that we call computations throughout this paper. Crucially
computations can be non-terminating and not return a value at all. The delay
datatype constitutes a (strong) monad, which makes it possible to deal with pos-
sibly non-terminating computations just like any other flavor of effectful compu-
tations following Moggi’s general monad-based method [12]. Often, one is only
interested in termination of computations and not the exact computation time.
Identifying computations that only differ by finite amounts of delay corresponds
to quotienting the delay datatype by weak bisimilarity. The quotient datatype
is used as a constructive alternative to the maybe datatype (see, e.g., [2]) and
should also be a (strong) monad.

Martin-Löf type theory does not have built-in quotient types. The most com-
mon approach to compensate for this is to mimic them by working with setoids.
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 110–125, 2015.
DOI: 10.1007/978-3-319-25150-9 8
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But this approach has some obvious shortcomings as well, for example, the con-
cept of a function type is changed (every function has to come with a com-
patibility proof) etc. An alternative approach, which we pursue here, consists
in extending the theory by postulating the existence of inductive-like quotient
types à la Hofmann [6]. These quotient types are ordinary types rather than
setoids.

In this paper, we ask the question: is the monad structure of the delay
datatype preserved under quotienting by weak bisimilarity? Morally, this ought
to be the case. In the setoid approach, this works out unproblematically indeed.
But with inductive-like quotient types, one meets a difficulty when attempting
to reproduce the monad structure on the quotiented datatype. Specifically, one
cannot define the multiplication. The difficulty has to do with the interplay of the
coinductive nature of the delay datatype, or more precisely the infinity involved,
and quotient types. We discuss the general phenomenon behind this issue and
provide a solution where we postulate some principles, the crucial ones being
proposition extensionality (accepted in particular in homotopy type theory) and
the (semi-classical) axiom of countable choice. It is very important here to be
careful and not postulate too much: in the presence of proposition extensionality,
the full axiom of choice implies the law of excluded middle.

As an aside, we also look at the (strong) arrow structure (in the sense of
Hughes [7]) on the Kleisli function type for the delay datatype and ask whether
this survives quotienting by pointwise weak bisimilarity. Curiously, here the
answer is unconditionally positive also for inductive-like quotient types.

This paper is organized as follows. In Sect. 2, we give an overview of the type
theory we are working in. In Sect. 3, we introduce the delay datatype and weak
bisimilarity. In Sect. 4, we extend type theory with quotients à la Hofmann. In
Sect. 5, we analyze why a multiplication for the quotiented delay type is impos-
sible to define. We notice that the problem is of a more general nature, and a
larger class of types, namely non-wellfounded and non-finitely branching trees,
suffer from it. In Sect. 6, we introduce the axiom of countable choice and derive
some important consequences from postulating it. In Sect. 7, using the results of
Sect. 6, we define multiplication for the delay type quotiented by weak bisimilar-
ity (we omit the proof of the monad laws, which is the easy part—essentially the
proofs for the unquotiented delay datatype carry over). In Sect. 8, we quotient
the arrow corresponding to the monad by pointwise weak bisimilarity. Finally,
in Sect. 9, we draw some conclusions and discuss future work.

We have fully formalized the results of this paper in the dependently typed
programming language Agda [13]. The formalization is available at http://cs.
ioc.ee/∼niccolo/delay/.

2 The Type Theory Under Consideration

We consider Martin-Löf type theory with inductive and coinductive types and a
cumulative hierarchy of universes Uk. To define functions from inductive types
or to coinductive types, we use guarded (co)recursion. The first universe is sim-
ply denoted U and when we write statements like “X is a type”, we mean

http://cs.ioc.ee/~niccolo/delay/
http://cs.ioc.ee/~niccolo/delay/
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X : U unless otherwise specified. We allow dependent functions to have implicit
arguments and indicated implicit argument positions with curly brackets (as in
Agda). We write ≡ for propositional equality (identity types) and = for judg-
mental (definitional) equality. Reflexivity, transitivity and substitutivity of ≡
are named refl, trans and subst, respectively.

We assume the principle of function extensionality, expressing that pointwise
equal functions are equal, i.e., the inhabitedness of

FunExt =
∏

{X,Y :U}

∏

{f1,f2:X→Y }

(
∏

x:X

f1 x ≡ f2 x

)
→ f1 ≡ f2

Likewise we will assume analogous extensionality principles stating that strongly
bisimilar coinductive data and proofs are equal for the relevant coinductive types
and predicates, namely, the delay datatype and weak bisimilarity (check DExt,
≈Ext below in Sects. 3 and 4).

We also assume uniqueness of identity proofs for all types,1 i.e., an inhabitant
for

UIP =
∏

{X:U}

∏

{x1,x2:X}

∏

p1,p2:x1≡x2

p1 ≡ p2.

A type X is said to be a proposition, if it has at most one inhabitant, i.e., if
the type

isPropX =
∏

x1,x2:X

x1 ≡ x2

is inhabited.
For propositions, we postulate a further and less standard principle of propo-

sition extensionality, stating that logically equivalent propositions are equal:2

PropExt =
∏

{X,Y :U}
isPropX → isPropY → X ↔ Y → X ≡ Y

Here X ↔ Y = (X → Y ) × (Y → X).

3 Delay Monad

For a given type X, each element of DX is a possibly infinite computation that
returns a value of X, if it terminates. We define DX as a coinductive type by
the rules

now x : DX

c : DX

later c : DX

1 Working in homotopy type theory [15], we would assume this principle only for
0-types, i.e., sets, and that would also be enough for our purposes.

2 Propositions are (−1)-types and proposition extensionality is univalence for (−1)-
types.
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Let R be an equivalence relation on a type X. The relation lifts to an equiv-
alence relation ∼R on DX that we call strong R-bisimilarity. The relation is
coinductively defined by the rules

p : x1R x2

now∼ p : now x1 ∼R now x2

p : c1 ∼R c2

later∼ p : later c1 ∼R later c2

We alternatively denote the relation ∼R with DR, since strong R-bisimilarity
is the functorial lifting of the relation R to DX. Strong ≡-bisimilarity is simply
called strong bisimilarity and denoted ∼. While it ought to be the case morally,
one cannot prove that strongly bisimilar computations are equal in Martin-Löf
type theory. Therefore we postulate an inhabitant for

DExt =
∏

{X:U}

∏

{c1,c2:DX}
c1 ∼ c2 → c1 ≡ c2

We take into account another equivalence relation ≈R on DX called weak
R-bisimilarity, which is in turn defined in terms of convergence. The latter is a
binary relation between DX and X relating terminating computations to their
values. It is inductively defined by the rules

p : x1 ≡ x2

now↓ p : now x1 ↓ x2

p : c ↓ x

later↓ p : later c ↓ x

Two computations are considered weakly R-bisimilar, if they differ by a finite
number of applications of the constructor later (from where it follows classically
that they either converge to R-related values or diverge). Weak R-bisimilarity is
defined coinductively by the rules

p1 : c1 ↓ x1 p2 : x1R x2 p3 : c2 ↓ x2

↓≈ p1 p2 p3 : c1 ≈R c2

p : c1 ≈R c2

later≈ p : later c1 ≈R later c2

Weak ≡-bisimilarity is called just weak bisimilarity and denoted ≈. In this case,
we modify the first constructor for simplicity:

p1 : c1 ↓ x p2 : c2 ↓ x

↓≈ p1 p2 : c1 ≈ c2

The delay datatype D is a (strong) monad. The unit η is the constructor now
while the multiplication μ is “concatenation” of laters:

μ : D (DX) → DX

μ (now c) = c

μ (later c) = later (μ c)

In the quotients-as-setoids approach, it is trivial to define the corresponding
(strong) monad structure on the quotient of D by ≈. The role of the quotiented
datatype is played by the setoid functor D̂, defined by D̂ (X,R) = (DX,≈R).
The unit η̂ and multiplication μ̂ are just η and μ together with proofs of that the
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appropriate equivalences are preserved. The unit η̂ is a setoid morphism from
(X,R) to (D X,≈R), as x1 R x2 → now x1 ≈R now x2 by definition of ≈R. The
multiplication μ̂ is a setoid morphism from (D (DX),≈≈R

) to (DX,≈R), since
c1 ≈≈R

c2 → μ c1 ≈R μ c2 for all c1, c2 : D (DX). The monad laws hold up to
≈R, since they hold up to ∼R.

In this paper, our goal is to establish that the delay datatype quotiented by
weak bisimilarity is a monad also in Hofmann’s setting [6], where the quotient
type of a given type has its propositional equality given by the equivalence
relation. We discuss such quotient types in the next section.

4 Inductive-Like Quotients

In this section, we describe quotient types as particular inductive-like types
introduced by M. Hofmann in his PhD thesis [6]. Let X be a type and R an
equivalence relation on X. For any type Y and function f : X → Y , we say that
f is R-compatible (or simply compatible, when the intended equivalence relation
is clear from the context), if the type

compat f =
∏

{x1,x2:X}
x1Rx2 → f x1 ≡ f x2

is inhabited. The quotient of X by the relation R is described by the following
data:

(i) a carrier type X/R;
(ii) a constructor [ ] : X → X/R together with a proof sound : compat [ ];
(iii) a dependent eliminator: for every family of types Y : X/R → Uk and

function f :
∏

x:X Y [x] with p : dcompat f , there exists a function lift f p :∏
q:X/R Y q together with a computation rule

liftβ f p x : lift f p [x] ≡ f x

for all x : X.

The predicate dcompat is compatibility for dependent functions f :
∏

x:X Y [x]:

dcompat f =
∏

{x1,x2:X}

∏

r:x1Rx2

substY (sound r) (f x1) ≡ f x2.

We postulate the existence of data (i)–(iii) for all types X and equivalence rela-
tions R on X. Notice that the predicate dcompat depends of the availability of
sound. Also notice that, in (iii), we allow elimination on every universe Uk. In our
development, we actually eliminate only on U and once on U1 (Proposition 2).

The propositional truncation (or squash) ‖X‖ of a type X is the quotient of
X by the total relation λx1 x2.	. We write | | instead of [ ] for the constructor of
‖X‖. The non-dependent version of the elimination principle of ‖X‖ is employed
several times in this paper, so we spell it out: in order to construct a function
of type ‖X‖ → Y , one has to construct a constant function of type X → Y .
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Informally an inhabitant of ‖X‖ corresponds to an “uninformative” proof of
inhabitedness of X. For example, an inhabitant of ‖∑

x:X P x‖ can be thought of
as a proof of there existing an element of X that satisfies P that has forgotten the
information of which element satisfies the predicate P . Propositional truncation
and other notions of weak or anonymous existence have been thoroughly studied
in type theory [9].

We call a function f : X → Y surjective, if the type
∏

y:Y ‖∑
x:X f x ≡ y‖ is

inhabited, and a split epimorphism, if the type ‖∑
g:Y →X

∏
y:Y f (g y) ≡ y‖ is

inhabited. We say that f is a retraction, if the type
∑

g:Y →X

∏
y:Y f (g y) ≡ y is

inhabited. Every retraction is a split epimorphism, and every split epimorphism
is surjective.

Proposition 1. The constructor [ ] is surjective for all quotients.

Proof. Given a type X and an equivalence relation R on X, we define:

[ ]surj :
∏

q:X/R

∥∥∥∥∥
∑

x:X

[x] ≡ q

∥∥∥∥∥

[ ]surj = lift (λx. |x, refl|) p

The compatibility proof p is trivial, since |x1, refl| ≡ |x2, refl| for all x1, x2 : X. 
�
A quotient X/R is said to be effective, if the type

∏
x1,x2:X

[x1] ≡ [x2] → x1 Rx2

is inhabited. In general, effectiveness does not hold for all quotients. But we can
prove that all quotients satisfy a weaker property. We say that a quotient X/R
is weakly effective, if the type

∏
x1,x2:X

[x1] ≡ [x2] → ‖x1 R x2‖ is inhabited.

Proposition 2. All quotients are weakly effective.

Proof. Let X be a type, R an equivalence relation on X and x : X. Consider the
function ‖x R ‖ : X → U , ‖x R ‖ = λx′. ‖x R x′‖. We show that ‖x R ‖ is R-
compatible. Let x1, x2 : X with x1 R x2. We have x R x1 ↔ x R x2 and therefore
‖x R x1‖ ↔ ‖x R x2‖. Since propositional truncations are propositions, using
proposition extensionality, we conclude ‖xRx1‖ ≡ ‖xRx2‖. We have constructed
a term px : compat ‖x R ‖, and therefore a function lift ‖x R ‖ px : X/R → U
(large elimination is fundamental in order to apply lift, since ‖x R ‖ : X → U
and X → U : U1). Moreover, lift ‖x R ‖ px [y] ≡ ‖x R y‖ by its computation rule.

Let [x1] ≡ [x2] for some x1, x2 : X. We have:

‖x1 R x2‖ ≡ lift ‖x1R ‖ px1 [x2] ≡ lift ‖x1 R ‖ px1 [x1] ≡ ‖x1 R x1‖
and x1 R x1 holds, since R is reflexive. 
�
Notice that the constructor [ ] is not a split epimorphism for all quotients.
The existence of a choice of representative for each equivalence class is a non-
constructive principle, since it implies the law of excluded middle, i.e., the inhab-
itedness of the following type:

LEM =
∏

{X:U}
isPropX → X + ¬X

where ¬X = X → ⊥.
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Proposition 3. Suppose that [ ] is a split epimorphism for all quotients. Then
LEM is inhabited.

Proof. Let X be a type together with a proof of isPropX. We consider the
equivalence relation R on Bool, x1 R x2 = x1 ≡ x2 + X. By hypothesis we
obtain ‖∑

rep:Bool/R→Bool

∏
q:Bool/R [rep q] ≡ q‖. Using the elimination principle

of propositional truncation, it is sufficient to construct a constant function of
type: ∑

rep:Bool/R→Bool

∏

q:Bool/R

[rep q] ≡ q → X + ¬X

Let rep : Bool/R → Bool with [rep q] ≡ q for all q : Bool/R. We have [rep [x]] ≡
[x] for all x : Bool, which by Proposition 2 implies ‖rep [x] R x‖.

Note now that the following implication (a particular form of axiom of choice
on Bool) holds:

acBool :
∏

x:Bool

‖rep [x] R x‖ →
∥∥∥∥∥

∏

x:Bool

rep [x] R x

∥∥∥∥∥

acBool r = lift2 (λ r1 r2. |d r1 r2|) p (r true) (r false)

where d r1 r2 true = r1 and d r1 r2 false = r2, and lift2 is the two-argument ver-
sion of lift. The compatibility proof p is immediate, since the return type is a
proposition.

We now construct a function of type ‖∏x:Bool rep [x] R x‖ → X + ¬X. It is
sufficient to define a function

∏
x:Bool rep [x] R x → X + ¬X (it will be constant,

since the type X + ¬X is a proposition, if X is a proposition), so we suppose
rep [x] R x for all x : Bool. We analyze the (decidable) equality rep [true] ≡
rep [false] on Bool. If it holds, then we have trueR false and therefore an inhabitant
of X. If it does not hold, we have an inhabitant of ¬X: let x : X, therefore
true R false, and this implies rep [true] ≡ rep [false] holds, which contradicts the
hypothesis. 
�
We already noted that not all quotients are effective. In fact, postulating effec-
tiveness for all quotients implies LEM [10]. But the quotient we are considering
in this paper, namely DX/≈ for a type X, is indeed effective. Notice that, by
Proposition 2, it suffices to prove that ‖c1 ≈ c2‖ → c1 ≈ c2 for all c1, c2 : DX.

Lemma 1. For all types X and c1, c2 : DX, there exists a constant endofunction
on c1 ≈ c2. Therefore, the type ‖c1 ≈ c2‖ → c1 ≈ c2 is inhabited.

Proof. Let X be a type and c1, c2 : DX. We consider the following function.

canon≈ : c1 ≈ c2 → c2 ≈ c2

canon≈ (↓≈ (now↓ p1) p2) = ↓≈ (now↓ p1) p2

canon≈ (↓≈ (later↓ p1) (now↓ p2)) = ↓≈ (later↓ p1) (now↓p2)
canon≈ (↓≈ (later↓ p1) (later↓ p2)) = later≈ (canon≈ (↓≈ p1 p2))
canon≈ (later≈ p) = later≈ (canon≈ p)
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The function canon≈ canonizes a given weak bisimilarity proof by maximizing
the number of applications of the constructor later≈. This function is indeed
constant, i.e., one can prove

∏
p1,p2:c1≈c2

p1 � p2 for all c1, c2 : DX, where the
relation � is strong bisimilarity on proofs of c1 ≈ c2, coinductively defined by
the rules:

↓≈ p1 p2 � ↓≈ p1 p2

p1 � p2

later≈ p1 � later≈ p2

Similarly to extensionality of delayed computations, we assume that strongly
bisimilar weak bisimilarity proofs are equal, i.e., that we have an inhabitant for

≈Ext =
∏

{X:U}

∏

{c1,c2:DX}

∏

p1,p2:c1≈c2

p1 � p2 → p1 ≡ p2 
�

5 Multiplication: What Goes Wrong?

Consider now the type functor D̄, defined by D̄X = DX/≈. Let us try to equip
it with a monad structure. Let X be a type. As the unit η̄ : X → DX/≈, we can
take [ ]◦now. But when we try to construct a multiplication μ̄ : D (DX/≈)/≈ →
DX/≈, we get stuck immediately. Indeed, μ̄ must be of the form lift μ̄′ p for
some μ̄′ : D (DX/≈) → DX/≈ with p : compat μ̄′, but we cannot define such
μ̄′ and p. The problem lies in the coinductive nature of the delay datatype.
A function of type D (DX/≈) → DX/≈ should send a converging computation
to its converging value and a non-terminating one to the equivalence class of non-
termination. This discontinuity makes constructing such a function problematic.
Moreover, one can show that a right inverse of [ ] : DX → DX/≈, i.e., a
canonical choice of representative for each equivalence class in DX/≈, is not
definable. Therefore, we cannot even construct μ̄′ as a composition [ ] ◦ μ̄′′ with
μ̄′′ : D (DX/≈) → DX, since we do not know how to define μ̄′′(now q) for
q : DX/≈.

A function μ̄′ would be constructable, if the type D (DX/≈) were a quotient
of D (DX) by the equivalence relation D≈ (remember that D≈ is a synonym
of ∼≈, the functorial lifting of ≈ from DX to D (DX)). In fact, the function
[ ] ◦ μ : D (DX) → DX/≈ is D≈-compatible, since x1(D≈)x2 → μx1 ≈ μx2,
and therefore the elimination principle would do the job. But how “different” are
D (DX/≈) and the quotient D (DX)/D≈? More generally, how “different” are
D (X/R) and the quotient DX/DR, for a given type X and equivalence relation
R on X?

A function θD : DX/DR → D (X/R) always exists, θD = lift (D [ ]) p. The
compatibility proof p follows directly from c1(DR)c2 → D [ ] c1 ∼ D [ ] c2. But
an inverse function ψD : D (X/R) → DX/DR is not definable. This phenom-
enon can be spotted more generally in non-wellfounded trees, i.e., the canon-
ical function θT : T X/T R → T (X/R) does not have an inverse, if T X is
coinductively defined, where T R is the functorial lifting of R to T X. On the
other hand, a large class of purely inductive types, namely, the datatypes of
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wellfounded trees where branching is finite, is free of this problem. As an exam-
ple, for binary trees the inverse ψBTree : BTree (X/R) → BTreeX/BTreeR of
θBTree : BTreeX/BTreeR → BTree (X/R) is defined as follows:

ψBTree : BTree (X/R) → BTreeX/BTreeR

ψBTree (leaf q) = lift (λx. [leaf x]) pleaf q

ψBTree (node t1 t2) = lift2 (λ s1 s2. [node s1 s2]) pnode (ψBTree t1) (ψBTree t2)

where lift2 is the two-argument version of lift. The simple compatibility proofs
pleaf and pnode are omitted. Wellfounded non-finitely branching trees are affected
by the same issues that non-wellfounded trees have. And in general, for a W-type
T , the function θT : T X/T R → T (X/R) is not invertible, since for function
spaces the function θ→ : (Y → X)/(Y → R) → (Y → X/R) is not invertible.
Invertibility of the function θ→ : (Y → X)/(Y → R) → (Y → X/R), for all
types Y , X and equivalence relation R on X, has been analyzed in the Calculus
of Inductive Constructions [4]. It turns out that surjectivity of θ→ is logically
equivalent to the full axiom of choice (AC)3, i.e., the following type is inhabited:

AC =
∏

{X,Y :U}

∏

P :X→Y →U

⎛

⎝
∏

x:X

∥∥∥∥∥∥

∑

y:Y

P x y

∥∥∥∥∥∥

⎞

⎠ →
∥∥∥∥∥∥

∑

f :X→Y

∏

x:X

P x (f x)

∥∥∥∥∥∥

Together with weak effectiveness (Proposition 2), AC not only implies surjec-
tivity of θ→, but also the existence of an inverse ψ→ : (Y → X/R) → (Y →
X)/(Y → R). We refrain from proving these facts, but we prove Lemma 2 and
Proposition 5, which are weaker statements, but have analogous proofs.

The existence of an inverse ψ→ of θ→ would immediately allow us to define
the bind operation for D̄. Let us consider the case where X is DX and R is weak
bisimilarity, so ψ→ : (Y → DX/≈) → (Y → DX)/(Y → ≈). We define

bind : (Y → DX/≈) → DY/≈ → DX/≈
bind f q = lift2 (λ g c. [bind g c ]) p (ψ→ f) q

where bind is the bind operation of the unquotiented delay monad. The compat-
ibility proof p is obtained from the fact that bind g1 c1 ≈ bind g2 c2 if c1 ≈ c2 and
g1 y ≈ g2 y for all y : Y .

AC is a controversial semi-classical axiom, generally not accepted in construc-
tive systems [11]. We reject it too, since in our system the axiom of choice implies
the law of excluded middle.

3 Notice that AC is fundamentally different from the type-theoretic axiom of choice:

∏

{X,Y :U}

∏

P :X→Y →U

(
∏

x:X

∑

y:Y

P x y

)

→
∑

f :X→Y

∏

x:X

P x (f x)

which is provable in type theory.
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Proposition 4. AC implies LEM.

Proof. Assume AC. With a proof analogous to Lemma2, we can prove that the
function λ f. [ ] ◦ f : (X → Y ) → (X → Y/R) is surjective, for any types X, Y
and equivalence relation R on Y . In particular, given a type X and an equivalence
relation R on X, we have that the type

∏
g:X/R→X/R

∥∥∥
∑

f :X/R→X [ ] ◦ f ≡ g
∥∥∥

is inhabited. Instantiating g with the identity function on X/R, we obtain∥∥∥
∑

f :X/R→X

∏
q:X/R [f q] ≡ q

∥∥∥, i.e., the constructor [ ] is a split epimorphism
for all quotients X/R. By Proposition 3, this implies LEM. 
�
In the following sections, we show that the weaker axiom of countable choice is
already enough for constructing a multiplication for D̄. Countable choice does
not imply excluded middle and constructive mathematicians like it more [14,
Ch. 4].

6 Axiom of Countable Choice and Streams of Quotients

The axiom of countable choice (ACω) is a specific instance of AC where the
binary predicate P has its first argument in N:

ACω =
∏

{X:U}

∏

P :N→X→U

(
∏

n:N

∥∥∥∥∥
∑

x:X

P nx

∥∥∥∥∥

)
→

∥∥∥∥∥∥

∑

f :N→X

∏

n:N

P n (f n)

∥∥∥∥∥∥

We also introduce a logically equivalent formulation of ACω that will be used in
Proposition 5:

ACω2 =
∏

P :N→U

(
∏

n:N

‖P n‖
)

→
∥∥∥∥∥
∏

n:N

P n

∥∥∥∥∥

Let X be a type and R an equivalence relation on it. We show that ACω implies
the surjectivity of the function [ ]N : (N → X) → (N → X/R), [f ]N n = [f n].
This in turn implies the definability of a function ψN : (N → X/R) → (N →
X)/(N → R) that is inverse of the canonical function θN = lift [ ]N soundN, where

soundN : compat [ ]N

soundN r = funext (λn. sound (r n)).

using funext : FunExt.

Lemma 2. Assume acω : ACω. Then [ ]N is surjective.

Proof. Given any g : N → X/R, we construct a term eg :
∥∥∥
∑

f :N→X [f ]N ≡ g
∥∥∥.

Since we are assuming the principle of function extensionality, it is sufficient
to find a term e′

g :
∥∥∥
∑

f :N→X

∏
n:N [f n] ≡ g n

∥∥∥. Define P : N → X → U by
P nx = [x] ≡ g n. We take e′

g = acω P (λn. [ ]surj (g n)), with [ ]surj introduced
in Proposition 1. 
�
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Proposition 5. Assume ACω. Then θN : (N → X)/(N → R) → (N → X/R) is
invertible.

Proof. We construct a term

r :
∑

ψN:(N→X/R)→(N→X)/(N→R)

∏

g:N→X/R

θN (ψN g) ≡ g

Given any g : N → X/R, we define:

h′
g :

⎛

⎝
∑

f :N→X

[f ]N ≡ g

⎞

⎠ →
∑

q:(N→X)/(N→R)

θN q ≡ g

h′
g (f, p) =

(
[f ], trans (liftβ [ ]N soundN f) p

)

The function h′
g is constant. Indeed, let f1, f2 : N → X with p1 : [f1]N ≡ g and

p2 : [f2]N ≡ g. By uniqueness of identity proofs, it is sufficient to show [f1] ≡ [f2].
By symmetry and transitivity, we get [f1]N ≡ [f2]N. We construct the following
series of implications:

[f1]N ≡ [f2]N →
∏

n:N

[f1 n] ≡ [f2 n]

→
∏

n:N

‖(f1 n)R (f2 n)‖ (by weak effectiveness)

→
∥∥∥∥∥
∏

n:N

(f1 n)R (f2 n)

∥∥∥∥∥ (by ACω and ACω → ACω2)

= ‖f1 (N → R) f2‖
→ [f1] ≡ [f2]

The last implication is given by the elimination principle of propositional trun-
cation applied to sound, which is a constant function by uniqueness of identity
proofs. Therefore h′

g is constant and we obtain a function

hg :

∥∥∥∥∥∥

∑

f :N→X

[f ]N ≡ g

∥∥∥∥∥∥
→

∑

q:(N→X)/(N→R)

θN q ≡ g

We get hg eg :
∑

q:(N→X)/(N→R) θN q ≡ g, with eg constructed in Lemma 2. We
take r = (λg. fst (hg eg), λg. snd (hg eg)) and ψN = fst r.

We now prove that ψN (θN q) ≡ q for all q : (N → X)/(N → R). It is sufficient
to prove this equality for q = [f ] with f : N → X. By the computation rule of
quotients, we have to show ψN [f ]N ≡ [f ]. This is true, since

ψN [f ]N = fst (h[f ]N e[f ]N) ≡ fst (h[f ]N |f, refl|) ≡ fst (h′
[f ]N(f, refl)) = [f ] 
�
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Corollary 1. Assume ACω. The type N → X/R is the carrier of a quotient
of N → X by the equivalence relation N → R. The constructor is [ ]N and
we have the following dependent eliminator and computation rule: for every
family of types Y : (N → X/R) → Uk and function h :

∏
f :N→X Y [f ]N with

p : dcompatN h, there exists a function liftN h p :
∏

g:N→X/R Y g with the property
that liftN h p [f ]N ≡ h f for all f : N → X, where

dcompatN h =
∏

{f1,f2:N→X}

∏

r:f1 (N→R) f2

substY (soundN r) (h f1) ≡ h f2

7 Multiplication: A Solution Using ACω

We can now build the desired monad structure on D̄ using the results proved
in Sect. 6. In particular, we can define μ̄ : D (DX/≈)/≈ → DX/≈. We rely on
ACω.

7.1 Delayed Computations as Streams

In order to use the results of Sect. 6, we think of possibly non-terminating com-
putations as streams. More precisely, let X be a type and c : DX. Now c can be
thought of as a stream ε c : N → X + 1 with at most one value element in the
left summand X.

ε : DX → N → X + 1
ε (now x) zero = inlx

ε (later c) zero = inr �

ε (now x) (sucn) = inr �

ε (later c) (sucn) = ε c n

Conversely, from a stream f : N → X + 1, one can construct a computation
π f : DX. This computation corresponds to the “truncation” of the stream to
its first value in X.

π : (N → X + 1) → DX

π f = case f zero of

inlx �→ now x

inr � �→ later (π (f ◦ suc))

We see that DX is a subset of N → X + 1 in the sense that, for all c : DX,
π (ε c) ∼ c, and therefore π(ε c) ≡ c by delayed computation extensionality.

Now let R be an equivalence relation on X. The canonical function θ+1 :
(X+1)/(R+1) → X/R+1 has an inverse ψ+1 whose construction is similar to the
construction of ψBTree for binary trees in Sect. 5. Therefore, for all q : D (X/R),
we have π (θ+1 ◦ (ψ+1 ◦ ε q)) ≡ q.

We define [ ]D : DX → D (X/R) by [ ]D = D [ ]. This function is compatible
with the relation DR, i.e., there exists a term soundD : compat [ ]D.
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Theorem 1. The type D (X/R) is the carrier of a quotient of DX by the equiv-
alence relation DR. The constructor is [ ]D and we have the following dependent
eliminator and computation rule: for every family of types Y : D (X/R) → Uk

and function h :
∏

c:DX Y [c]D with p : dcompatD h, there exists a function
liftD h p :

∏
q:D (X/R) Y q such that liftD h p [c]D ≡ h c for all c : DX, where

dcompatD h =
∏

{c1,c2:DX}

∏

r:c1(DR) c2

substY (soundD r) (h c1) ≡ h c2

Proof. We only define the dependent eliminator. Let h :
∏

x:DX Y [x]D with
p : dcompatD h, and q : D (X/R). Let g : N → (X + 1)/(R + 1), g = ψ+1 ◦ ε q so
π (θ+1 ◦ g) ≡ q.

We prove Y (π (θ+1◦g)). By Corollary 1, it suffices to construct a function h′ :∏
f :N→X+1 Y (π (θ+1◦[f ]N)) together with a proof r : dcompatN h′. One can easily

construct a proof s : [π f ]D ≡ π (θ+1 ◦ [f ]N), so we take h′ f = substY s (h (π f)).
A proof r : dcompatN h′ can be constructed by observing that, for all f1, f2 :
N → X + 1 satisfying f1 (N → R + 1) f2, one can prove π f1 (DR) π f2. 
�

7.2 Construction of μ̄

Using the elimination rule of the quotient D (X/R) defined in Theorem1, we can
finally define the multiplication μ̄ of D̄.

The above diagram makes sense only, if one constructs two compatibility proofs
p : compatD ([ ] ◦ μ) and p′ : compat (liftD ([ ] ◦ μ) p), where compatD is the
non-dependent version of dcompatD.

The first proof is easy, since c1(D≈)c2 → μ c1 ≈ μ c2 for all c1, c2 : D (DX).
It is more complicated to prove compatibility of the second function. Let

q1, q2 : D (DX/≈). We have to show q1 ≈ q2 → liftD ([ ] ◦ μ) p q1 ≡ liftD ([ ] ◦
μ) p q2. By the elimination principle of the quotient D (DX/≈), described in
Theorem 1, it is sufficient to prove [x1]D ≈ [x2]D → liftD ([ ] ◦ μ) p [c1]D ≡
liftD ([ ] ◦ μ) p [c2]D for some c1, c2 : D (DX). Applying the computation rule of
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the quotient D (DX/≈) and spelling out the definition of the constructor [ ]D,
it remains to show D [ ] c1 ≈ D [ ] c2 → [μ c1] ≡ [μ c2], which holds, if one can
prove D [ ] c1 ≈ D [ ] c2 → μ c1 ≈ μ c2. This is provable thanks to Lemma1. It is
easy to see why Lemma 1 is important for completing the compatibility proof of
liftD ([ ] ◦ μ) p. The difficult case in the proof of D [ ] c1 ≈ D [ ] c2 → μ c1 ≈ μ c2
is the case where c1 = now y1 and c2 = now y2, so we are given an assumption
of type [y1] ≡ [y2]. From this, by Lemma 1, we obtain μ (now y1) = y1 ≈ y2 =
μ (now y2).

8 A Monad or an Arrow?

Hughes [7] has proposed arrows as a generalization of monads. Jacobs et al. [8]
have sorted out their mathematical theory.

We have seen that it takes a semi-classical principle to show that quotienting
the functor D by weak bisimilarity preserves its monad structure. In contrast,
quotienting the corresponding profunctor KD, defined by KDX Y = X → DY ,
by pointwise weak bisimilarity can easily be shown to preserve its (strong) arrow
structure (whose Freyd category is isomorphic to the Kleisli category of the
monad) without invoking such principles.

Indeed, the arrow structure on KD is given by pure : (X → Y ) → KDX Y ,
pure f = η ◦ f and ≪: KDY Z → KDX Y → KDX Z, � ≪ k = bind � ◦ k.

Now, define the quotiented profunctor by KDX Y = (X → DY )/(X → ≈).
We can define pure : (X → Y ) → KDX Y straightforwardly by pure f = [puref ].
But we can also construct ≪ : KDY Z → KDX Y → KDX Z as � ≪ k =
lift2 (≪) p � k, where p is an easy proof of �1 (Y → ≈) �2 → k1 (X → ≈) k2 →
(�1 ≪ k1) (X → ≈) (�2 ≪ k2).

This works entirely painlessly, as there is no need in this construction for a
coercion (X → Y/≈) → (X → Y )/(X → ≈) (cf. the discussion above in Sect. 5).
From the beginning, we quotient the relevant function types here rather than
their codomains.

There are some further indications that quotienting the arrow may be a
righter thing to do than quotienting the monad. In particular, the work by
Cockett et al. [5] suggests that working with finer quotients of the arrow consid-
ered here may yield a setting for dealing with computational complexity rather
computability constructively.

9 Conclusions

In this paper, studied the question of whether the delay datatype quotiented by
weak bisimilarity is still a monad? As we saw, different approaches to quotients
in type theory result in different answers. In the quotients-as-setoids, the answer
is immediately positive. We focussed on the more interesting and (as it turned
out) more difficult case of the quotient types à la Hofmann. The main issue in
this case, highlighted in Sect. 5, is that quotient types interact badly with infi-
nite datatypes, such as datatypes of non-wellfounded or non-finitely branching
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trees; such datatypes do not commute with quotienting. For the delay datatype,
and more generally for types that can be injectively embedded into streams or
countably branching trees, a solution is possible assuming the axiom of countable
choice.

In the type theory that we are considering, the employment of semi-classical
principles, such as countable choice, is unavoidable. In homotopy type theory
with higher inductive types [15, Ch. 6], the problem may have a different solution.
One might be able to implement the delay type quotiented by weak bisimilarity
as an higher inductive type, proceeding similarly to the construction of Cauchy
reals in [15, Sect. 11.3], mutually defining the type and the equivalence rela-
tion, and adding a 1-constructor stating that the equivalence has to be read as
equality. Note that this technique is not immediately applicable, since the delay
datatype is coinductive and weak bisimilarity is mixed inductive-coinductive.
One would have to come up with a different construction. We think that the
idea should be to construct the intended monad as a datatype delivering free
completely Elgot algebras [1]. Notice that this would be analogous to the already
mentioned implementation of Cauchy reals, which are constructed as the free
completion of the rational numbers.
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Abstract. Halfway between graph transformation theory and inverse
semigroup theory, we define higher dimensional strings as bi-deterministic
graphs with distinguished sets of input roots and output roots. We show
that these generalized strings can be equipped with an associative prod-
uct so that the resulting algebraic structure is an inverse semigroup. Its
natural order is shown to capture existence of root preserving graph mor-
phism. A simple set of generators is characterized. As a subsemigroup
example, we show how all finite grids are finitely generated. Finally, sim-
ple additional restrictions on products lead to the definition of subclasses
with decidable Monadic Second Order (MSO) language theory.

1 Introduction

A never-ending challenge faced by computer science is to provide modeling con-
cepts and tools that, on the one hand, allows for representing data and compu-
tations in a more and more abstract and richly structured way, but, on the other
hand, remains simple enough to be taught to and used by application designers
and software engineers [33].

A possible approach to this goal consists in generalizing to graphs the tech-
niques that have already been developed for strings or trees such as the notion of
recognizable languages and the associated notion of recognizers. In these direc-
tions, an enormous amount of techniques and works has been developed ranging
from Lewis’ graph composition techniques [27] and Courcelle’s developments of
recognizability to graph languages [8] (see also [9]) up to more recent advances
based on category theoretical development (see [6,13] to name but a few).

Despite numerous achievements in theoretical computer science, there is still
room for polishing these techniques towards applications to computer engineer-
ing. The ideal balance to achieve between usage simplicity and mathematical
coherence is a long-term goal [33]. While the underlying frameworks (the back
end) of application tools to be designed can (and probably should) be based on
robust mathematics, the interface (the front end) of these tools must be kept
simple enough to be taught ad used.

Keeping in mind that strings, free monoids and related automata techniques
are among the simplest and the most robust available models and are already
and successfully put in practice in system modeling methods like event B [2], we
develop in this paper a notion of generalized strings, called higher dimensional
strings, in such a way that:
c© Springer International Publishing Switzerland 2015
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1. higher dimensional strings are simple: they are finitely generated from elemen-
tary graphs composed via a single and associative product that generalizes
string concatenation in free monoids (Theorem 4.14),

2. the resulting classes of generalized strings include large classes of finite graphs
such as, in particular, hypercubes, hence the name higher dimensional (Sect. 5
for the case of grids),

3. the resulting semigroups are inverse semigroups (Theorems 4.6 and 4.8) hence-
forth mathematically rich enough to provide algebraic characterization of
graph-based concepts such as, for instance, existence of graph morphisms
characterized by natural order (Theorem 4.12) or acyclicity defined by a quo-
tient with an adequate ideal (Lemma 6.1),

4. some well-defined and rich subclasses of these generalized strings still has
efficient, expressive and decidable language theory (Theorem5.5).

Technically, following the lines already sketched in [18], we use and generalize
the concept of birooted graphs (with single input and output roots) defined and
used in [31] into the notion of higher dimensional strings (with sets of input
and output roots). This provides a better measure of the amount of overlaps
that occurs in birooted graphs products can be better measured. Thus we can
extend the notion of disjoint product [15,17] and the applicable partial algebra
techniques [5]). This yields to our main decidability result (Theorem5.5).

In some sense, our proposal amounts to combining concepts and results aris-
ing from the theory of inverse semigroups [26,29] with graph transformation
approaches [6,9,13,27].

Of course, various research developments have already shown that inverse
semigroup theory is applicable to computer science, be it for data, compu-
tation, language or system modeling. Concerning data modeling, experiments
in theoretical physics have already shown that structured data as complex as
quasi-crystals can be described by means of some notion of (inverse) tiling semi-
group [23–25]. Inverse semigroup theory has also been used to study reversible
computations [1,10]. More recently, various modeling experiments have been
conducted in computational music [3,21]. These last experiments also led to the
definition of a Domain Specific (Programing) Language (DSL) which semantics
is based on concepts arising from inverse semigroup theory [14,22].

2 Preliminaries

Let A = {a, b, c, · · · } be a finite alphabet of graph edge labels. Every concept
defined in the sequel could be extended to hypergraphs, that is, graphs with
edges that possibly relate more than two vertices (see Footnote 1). However,
restricting our presentation to standard (binary) graph structures allows us to
keep statements (and proofs) simpler.

Relational Graphs. A (relational) graph on the (binary symbols) alphabet A,
simply called A-graph or even graph when A is clear from the context, is a pair
G = 〈V, {Ea}a∈A〉 with set of vertices V and a-labeled edge relation Ea ⊆ V ×V
for every a ∈ A.
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Back and Forth Path Labels. Let Ā = {ā, b̄, c̄, · · · } be a disjoint copy of the
alphabet A. A back and forth path label (or simply path label) is a word from
the free monoid (A + Ā)∗ on the alphabet A + Ā, with empty word denoted by
1 and the product of two words u and v ∈ (A + Ā)∗ denoted by u · v or simply
uv. Then, the reverse mapping w �→ w from (A + Ā)∗ into itself is inductively
defined by 1 = 1, a · v = v · ā and ā · v = v · a for every a ∈ A, x ∈ A + Ā and
v ∈ (A+ Ā)∗. It is an easy observation that the reverse mapping is an involutive
monoid anti-isomorphism, that is, we have u · v = v · u and w = w for every
u, v, w ∈ (A + Ā)∗.

Back and Forth Path Actions. For every X ⊆ V and w ∈ (A + Ā)∗, the set
X · w ⊆ V of vertices reachable from X following w is inductively defined by
X · 1 = X, X · aw = {y ∈ V : ∃x ∈ X, (x, y) ∈ Ea} · w and X · āw = {y ∈ V :
∃x ∈ X, (y, x) ∈ Ea} · w, for every letter a ∈ A and every string v ∈ (A + Ā)∗.
In other words, X · w is the set of vertices that can be reached from a vertex
in X along a path labeled by w, where a (resp. ā) denotes the forward (resp.
backward) traversal of an a-labeled edge in the graph G.

One can check that X · 1 = X and X · (u · v) = (X · u) · v for every X ⊆ V
and every string u, v ∈ (A + Ā)∗. Rephrased in semigroup theoretical term, the
edge relations of the graph G induce an action of the monoid (A + Ā)∗ on the
powerset of the set of vertices of the graph G. It follows that parentheses can be
removed without ambiguity in expressions like (X · u) · v..

Notation for the Singleton Case. When X is a singleton {x}, we may simply
write x · w instead of {x} · w. Similarly, when x · w itself is a singleton we may
also treat it just as the element it contains. In other words, we may simply write
x · w = y instead of {x} · w = {y}, to denote both the fact that there exists a
(back and forth) path from vertex x to vertex y labeled by w and the fact that
this path is unique. Similarly, we may say that x · w is undefined (as a vertex)
in the case x · w = ∅ (as a set).

Graph Morphism. The usual notion of graph morphism can then be (re)defined
via path actions as follows. Let G = 〈V, {Ea}a∈A〉 and G′ = 〈V ′, {E′

a}a∈A〉
be two graphs on the alphabet A. A morphism f from G to G′, denoted by
f : G → G′, is a mapping f : V → V ′ such that we have f(x · a) ⊆ f(x) · a and
f(x · ā) ⊆ f(x) · ā for every x ∈ V and every a ∈ A. Then, by induction, we can
easily prove that f(x · w) ⊆ f(x) · w for every x ∈ V and every w ∈ (A + Ā)∗.

Graph Quotient. Let G = 〈V, {Ea}a∈A〉 be a graph. Let 
 be an equivalence
relation over the set V , that is, a reflexive, symmetric and transitive relation.
Let V/ 
 be the set of equivalence classes {[x]� ⊆ V : x ∈ V } where [x]� =
{x′ ∈ V : x 
 x′}. Then, the quotient of the graph G by the equivalence 
 is
defined to be the graph G/ 
 = 〈V ′, {E′

a}a∈A〉 with set of vertices V ′ = V/ 
G

and set of edges E′
a = {([x], [y]) ∈ V ′ × V ′ : ([x] × [y]) ∩ Ea �= ∅}. The mapping

η� : V → V/ 
 defined by η�(x) = [x]� for every x ∈ V is a surjective morphism
called the canonical morphism from the graph G onto the quotient graph G/ 
.
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3 Unambiguous Graphs and Connecting Morphisms

We define and study in this section the category of unambiguous graphs and
connecting morphisms. Though fairly simple, this study is quite detailed for it
constitutes the foundation of the notion of birooted graphs defined in the next
section.

Definition 1. (Unambiguous Graphs). A graph G = 〈V, {Ea}a∈A〉 is unam-
biguous1 when, for every vertex x ∈ V , for every path w ∈ (A + Ā)∗, there is at
most one vertex y such that x · w = {y}.

Clearly, by simple inductive argument, G is unambiguous as soon as the above
condition is satisfied for every one letter path.

Examples. Graphs examples are depicted in Fig. 1 with ambiguous graph G1

and unambiguous graphs I2 and G2. In this figure, vertices are named only for
illustrative purposes. These vertex names should not be understood as labels.
Only edges are labeled in relational graphs.

Fig. 1. Ambiguous graph G1 and unambiguous graph G2.

One can observe that graph G1 is ambiguous for two reasons. First, the upper
left vertex 1 is the source of two edges labeled by b. Second, the upper right
vertex 2 is the target of two edges labeled by a.

Remark. Observe that when a graph G is seen as a graph automaton on the
alphabet A, it is unambiguous when it is both deterministic and co-deterministic.
In the connected case, these unambiguous graphs are the Schützenberger graphs
studied and used in [31].

Definition 2. (Connecting Morphisms). Let f : G → G′ be a graph mor-
phism between two graphs G = 〈V, {Ea}a∈A〉 and let G′ = 〈V ′, {E′

a}a∈A〉. The
morphism f is a connecting morphism when for every x′ ∈ V ′ there exist x ∈ V
and w ∈ (A + Ā)∗ such that x′ ∈ f(x) · w.

In other words, a morphism f : G → G′ is a connecting morphism when every
vertex of graph G′ is connected to the image of a vertex of G in graph G′.

Examples. Clearly, every surjective (i.e. onto) morphism is a connecting mor-
phism. Another example of (non surjective) connecting morphism f : I2 → G is
depicted in Fig. 2.
1 unambiguity can be generalized to hypergraphs by viewing every binary relation of

the form ∃z1z2z3 a(z1, x, z2, y, z3) with tuples of FO-variables z1, z2 and z3 of
adequate lengths as a primitive binary relation.
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Fig. 2. A connecting morphism ϕ : I2 → G with ϕ(1) = 1 and ϕ(2) = 3.

Remark. Observe that when both G and G′ are unambiguous, then, for every
x ∈ V , every w ∈ (A + Ā)∗, if x · w is not empty then so is f(x) · w and we have
f(x · w) = f(x) · w. This leads us to the following Lemma.

Lemma 3.3. (Unique Morphism Completion). Let G, G1 and G2 be three
graphs. Let f1 : G → G1 and f2 : G → G2 be two graph morphisms. Assume that
f1 is connecting and that both G1 and G2 are unambiguous. Then there exists
at most one morphism g : G1 → G2 such that g ◦ f1 = f2. Moreover, if f2 is
connecting, then so is g.

Clearly, the composition of two connecting morphisms is a connecting morphism.
Since the identity mapping over a graph is also a connecting morphism, this
allows us to define the following categories.

Definition 3.4. (Induced Categories). Let CGrph(A) (resp. UCGrph(A))
be the category defined by finite graphs (resp. by finite unambiguous graphs) as
objects and connecting morphisms as arrows.

We aim now at studying the properties of both category CGrph(A) and cat-
egory UCGrph(A) and, especially, the way they are related. The notion of
unambiguous congruence defined below allows us to transform any graph into
its greatest unambiguous image. In group theory, this generalizes the notion of
Stallings foldings [29].

Definition 3.5. (Unambiguous Congruence). Let G = 〈V, {Ea}a∈A〉 be a
graph on the alphabet A. A relation 
⊆ V × V over the vertices of G is an
unambiguous congruence when it is an equivalence relation such that, for every
a ∈ A, for every x, y ∈ V , if x 
 y then we have both x · a × y · a ⊆
 and
x · ā × y · ā ⊆
.

The existence of a least congruence is stated in Lemma 3.6 and the associated
universality property is stated in Lemma3.7.

Lemma 3.6. (Least Unambiguous Congruence). Let G be a graph, possi-
bly ambiguous. Then there exists a least unambiguous congruence 
G over G.
Moreover, in the case G is unambiguous, then 
G is the identity relation.

The graph G/ 
G is called the greatest unambiguous graph image of the graph G.
Its maximality is to be understood in the following sense.
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Lemma 3.7. (Maximal Unambiguous Image). Let G be a graph. Let 
G be
its least unambiguous congruence. Then, for every graph morphism f : G → H
with unambiguous graph H, there exists a unique morphism g : G/ 
G→ H such
that f = g ◦ η�G

. Moreover, if f is connecting then so is g.

Example. An example of maximal graph image is provided by the graphs
already depicted in Fig. 1 where G2 has not been chosen at random since
G2 = G1/ 
G1 .

Fig. 3. Graph G2 is the maximal unambiguous image of graph G2.

The canonical onto morphism η : G1 → G1/ 
G1= G2 is depicted in Fig. 3,
encoding the least unambiguous congruence on G1 that glues 1 with 5, and 3
with 4.

Remark. The construction described above is a generalization of what is known
in algebra as Stallings folding [29]. Observe that with G = 〈V, {Ea}a∈V 〉, the
least unambiguous congruence 
G equals the least fixpoint of the mapping F :
V × V → V × V defined by

F (R) = R ∪
⋃

{(x · a) × (y · a) ∪ (x · ā) × (y · ā) : (x, y) ∈ R, a ∈ A}

that contains the equality. It follows, by applying classical fixpoint techniques,
that 
G=

⋃
n≥0 Fn(=), henceforth it can be computed in quasi linear time. In

other words, computing the maximal unambiguous image G/ 
G of the graph
G can be done in time quasi linear in the size of the graph G.

Clearly, the category UCGrph(A) is a subcategory of CGrph(A). The next
lemma shows that maximal graph images extend to morphisms henceforth defin-
ing a projection functor from CGrph(A) into UCGrph(A).

Lemma 3.8. (Projected Morphisms). Let G and H be two graphs with a
connecting morphism f : G → H. Let ηG : G → G/ 
G and ηH : H → H/ 
H

be the related canonical onto morphisms. Then there exists a unique connecting
morphism ϕ(f) : G/ 
G→ H/ 
H such that ϕ(f) ◦ ηG = ηH ◦ f .

In other words, we can define the functor ϕ : CGrph(A) → UCGrph(A) by
ϕ(G) = G/ 
G for every graph G and by ϕ(f) as given by Lemma 3.8 for every
connecting morphism f . Then, we have ϕ(G) = G for every unambiguous graph
G and ϕ(f) = f for every connecting graph morphism f between unambiguous
graphs. In other words, ϕ is a projection from CG(A) into UCGrph(A) hence-
forth a left inverse of the inclusion functor from UCGrph(A) to CGrph(A).
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We study a bit further the morphisms in these categories showing that they
both admit pushouts. The following definition, classical in category theory, is
given here for the sake of completeness.

Definition 3.9. (Pushouts). Let 〈f1 : G → G1, f2 : G → G2〉 be a pair of
morphisms. A pair of morphisms 〈g1 : G1 → H, g2 : G2 → H〉 is a pushout of
the pair 〈f1, f2〉 when f1 ◦ g1 = f2 ◦ g2, and, for every other pair of morphisms
〈g′

1 : G1 → H ′, g′
2 : G2 → H ′〉, if f1 ◦ g′

1 = f2 ◦ g′
2 then there exists a unique

morphism h : H → H ′ such that g′
1 = h ◦ g1 and g′

2 = h ◦ g2.

The first pushout lemma, in the category CGrph(A), is a slight generalization
of the pushout in the category Set.

Lemma 3.10. (Synchronization). In category CGrph(A), every pair of mor-
phisms with common source has a pushout.

Proof (sketch of). Let ≡f1,f2 be the equivalence relation over the vertices of the
disjoint sum G1 + G2 induced by f1(x) ≡f1,f2 f2(x) for every vertex x of G. Let
H = G1 + G2/ ≡f1,f2 . Then, the pair 〈η≡f1,f2

◦ i1, η≡f1,f2
◦ i2〉 with canonical

injection i1 (resp. i2) of G1 (resp. G2) into G1 + G2 is a pushout of 〈f1, f2〉 in
category CGrph(A). ��
Example. An example of such a pushout in the category CGrph(A) is depicted
in Fig. 4.

Fig. 4. A “synchronization” pushout example.

Remark. Existence of pushouts in CGrph(A) essentially follows from the exis-
tence of pushouts in the category Set. These pushouts are called synchronization
(or glueing) pushouts since, the pushout of 〈f1 : G → G1, f2 : G → G2〉 essen-
tially glues the vertices of G1 and G2 that have common ancestors in G either
via f1 or via f2.

The second pushout lemma, in the category UCGrph(A), is completed by
a fusion phase (or glueing propagation) defined by taking the maximal unam-
biguous image of the graph resulting from the pushout in CGrph(A).

Lemma 3.11. (Synchronization and Fusion). In category UCGrph(A),
every pair of morphisms with common source has a pushout.
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Proof (sketch of). Take H = G1 + G2/ 
f1,f2 as for Lemma 3.10 with pushout
〈g1, g2〉. Then, take U = H/ 
H the greatest unambiguous image of H. The pair
〈ηH ◦ g1, ηH ◦ g2〉 is a pushout of 〈f1, f2〉 in UCGrph(A). ��
Example. An example of a synchronization + fusion is depicted in Fig. 5.

Fig. 5. A “synchronization + fusion” pushout example.

4 The Inverse Monoid of Birooted Graphs

We are now ready to define birooted graphs as certain cospans in the category
UCGrph(A). For such a purpose, for every integer k > 0, let Ik be the unam-
biguous defined by k distinct vertices {1, 2, · · · , k} and empty edge relations,
and let idk : Ik → Ik be the identity isomorphism.

Definition 4.1. (Birooted Graphs). A birooted graph B is a pair of connect-
ing morphisms

B = 〈in : Ip → G, out : Iq → G〉
from two trivial graphs Ip and Iq to a common unambiguous graph G.

The morphism in is called the input root morphism, or, more simply, the
input root of the birooted graph B. The morphism out is called the output root
morphism, or, more simply, the output root of the birooted graph B.

The pair of positive integers (p, q) that defines the domains of root morphisms
is called the type of the birooted graph. It is denoted by dom(B). The underlying
graph G is the codomain of the input and output morphisms. It is called the
graph of B and it is also denoted by cod(B).

Remark. A birooted graph of type (p, q) can simply be seen as a unambigu-
ous graph G = 〈V, {Ea}a∈A〉 enriched with two tuples of distinguished vertices
(x1, x2, · · · , xp) ∈ V p and (y1, y2, · · · , yq) ∈ V q that label the vertices marked
by the input and the output roots of the birooted graph.

This point of view is depicted in Fig. 6 with two birooted graphs B1 and B2 of
type (2, 2). In such a figure, vertices of input roots are marked by dangling input
arrows, and vertices of output roots are marked by dangling output arrows.
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Fig. 6. Examples of (2, 2)-birooted graphs.

Remark. The name “birooted graphs” is borrowed from [31]. However, our
definition is a clear generalization of the definition given in [31]. Indeed, Stephen’s
birooted graphs are only birooted graphs of type (1, 1).

In category theoretical term, a birooted graph is a cospan (see for instance [4]).
The existence of pushouts in the category UCGrph(A) allows us to define the
product of birooted graphs as the product of their cospan. However, such a
product is (so far) not uniquely determined since, a priori, it may depend on the
chosen pushout.

Definition 4.2. (Birooted Graph Product Instance). Let B1 = 〈in1, out1〉
and let B2 = 〈in2, out2〉 be two birooted graphs. Assume that B1 is of type (p, q)
and that B2 is of type (q, r). Let 〈h1, h2〉 be a pushout of the pair 〈out1, in2〉.
Then, the product instance of birooted graphs via the pushout 〈h1, h2〉 is defined
to be the birooted graphs 〈h1 ◦ in1, h2 ◦ out2〉, and it is denoted by B1 ·h1,h2 B2.

A concrete example of a product instance built from the (2, 2)-birooted
graphs given in Fig. 6 is depicted in Fig. 7.

Fig. 7. A product instance of B1 · B2 · B1 · B2.

We aim now at defining products of birooted graphs up to some adequate notion
of birooted graph equivalence. This is done via the notion of birooted graph
morphisms (Definition 4.3) and the proof that birooted graph product instances
are stable under birooted graph morphisms (Lemma4.4).

Definition 4.3. (Birooted Graph Morphisms). Let B1 = 〈in1, out1〉 and
B2 = 〈in2, out2〉 be two birooted graphs. A birooted graph morphism from B1

to B2 is defined as root preserving graph morphism of their codomain, that
is, a graph morphism h : cod(B1) → cod(B2) such that in2 = h ◦ in1 and
out2 = h ◦ out1. Such a morphism is denoted by h : B1 ⇒ B2.

Two birooted graphs B1 and B2 are isomorphic when there is an isomorphism
h : B1 ⇒ B2. Such a situation is denoted by B1 ∼ B2.

Remark. Thanks to Lemma 3.3, there exists at most one morphism h : B1 ⇒ B2

between any two birooted graphs B1 and B2.
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Lemma 4.4. (Product Stability w.r.t. Birooted Graphs Morphisms).
Let f1 : B1 ⇒ C1 and f2 : B2 ⇒ C2 be two birooted graphs morphisms and
let B1 · B2 and C1 · C2 be two product instances. Then, there exists a (unique)
birooted graphs morphisms h : B1 · B2 ⇒ C1 · C2.

This stability property allows us to define the following birooted graph algebras.

Definition 4.5. (Birooted Graph Algebras). Let HS (A) be the set of classes
of isomorphic birooted graphs extended with the emptyset equipped with the
product defined for every X,Y ∈ H(S) as follows. In the case there is B ∈ X,
C ∈ Y and a product instance B ·C, then we take X ·Y = [B]∼ · [Y ]∼ = [B ·Y ]∼
and we take X · Y = ∅ in all other cases.

Notation. In the sequel we shall simply write B (or C) instead of [B] (or [C])
and we shall simply write B · C for the product [B]∼ · [C]∼ of the corresponding
classes of equivalent birooted graphs.

Theorem 4.6. (Semigroup Property). The algebra HS (A) is a semigroup,
that is, the product of birooted graphs is an associative operation.

Lemma 4.7. (Idempotent Property). A non-zero birooted graph B of the
form B = 〈in, out〉 is idempotent, that is, B · B = B, if and only if in = out.
Moreover, idempotent birooted graphs commute henceforth form a subsemigroup.

Theorem 4.8. (Inverse Semigroup Property). The semigroup HS (A) is an
inverse semigroup, that is, for every element B, there is a unique element B−1

such that
B · B−1 · B = B and B−1 · B · B−1 = B−1

The inverse B−1 of a non-zero birooted graph B = 〈in, out〉 is simply given by
B−1 = 〈out, in〉.
Inverses allow us to define left and right projections that, following inverse semi-
group theory, characterize left and right Green classes.

Definition 4.9. (Left and Right Projection). Let B ∈ HS (A) be a birooted
graph. The left projection BL of the birooted graph B is defined by BL = B−1·B.
The right projection BR of the birooted graph B is defined by BR = B · B−1.

Lemma 4.10. Let B = 〈in, out〉 be a non-zero birooted graph. Then we have
BL = 〈out, out〉 and BR = 〈in, in〉.
Remark. As a general matter of fact, the relation B � C defined over birooted
graphs when there exists a (root preserving) morphism h : C ⇒ B is a (partial)
order relation. We shall see now that it has an algebraic characterization in
inverse semigroup theory: it is the natural order [26].

Definition 4.11 (Natural Order). The natural order ≤ is defined over
birooted graphs by B ≤ C when B = BR · C (or, equivalently, B = C · BL).
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Theorem 4.12 (Natural Order vs Birooted Graph Morphisms). In the
inverse semigroup HS (A), the absorbant element 0 is the least element under the
natural order and, for every pair of non zero birooted graphs B and C, B ≤ C
if, and only if, there is a birooted graph morphism h : C ⇒ B.

The inverse semigroup of birooted graphs gives a fairly simple though math-
ematically robust way to compose birooted graphs one with the other. Now we
aim at characterizing a simple set of generators for this semigroup.

Definition 4.13 (Elementary Birooted Graphs). A elementary birooted
graph is either zero or any birooted graph among Im, Pm,i,j , Tm,a, Tm,ā Fm or
Jm defined below. In the case m = 3 these graphs are depicted in Fig. 8.

Fig. 8. Elementary birooted graphs.

Formally, the birooted graph Pm,i,j = 〈idm : Im → Im, out : Im → Im〉 is
defined for any m > 0 and 1 ≤ i, j ≤ m by out(i) = j, out(j) = i and out(k) = k
for every other 1 ≤ k ≤ m. It is called a root permutation. As a particular case,
when i = j, since Pm,i,j = 〈idm, idm〉, the birooted graph Pm,i,i is denoted by
1m instead and called a root identity.

The birooted graphs Fm = 〈idm−1 : Im−1 → Im−1, out : Im → Im−1〉 and
Jm = 〈in : Im → Im−1, idm−1 : Im−1 → Im−1〉 are defined for any m > 1, by
in(m) = out(m) = m− 1 and in(k) = out(k) = k for every 1 ≤ k ≤ m− 1. They
are called a root fork and a root join.

The birooted graph Tm,a = 〈int : Im → Ga, out : Im → Ga〉 is defined for
any m > 0 and a ∈ A, by Ga being the m + 1 vertex graph with set of vertices
V = {1, · · · ,m,m + 1} and sets of edges Ea = {(m,m + 1)} and Eb = ∅ for
every b �= a, with in(m) = m, out(m) = m + 1 and in(k) = out(k) = k for every
other 1 ≤ k < m. It is called a forward edge. The birooted graph Tm,ā = T−1

m,a is
called a backward edge.

Examples. Some birooted graphs generated by elementary graphs are depicted
in Fig. 9.

Theorem 4.14. Every birooted graphs 〈in : Ip → G, out : Iq → G〉 with n
vertices in G is finitely generated from 0 and the elementary birooted graphs 1k,
Pk,i,j, Tk,a, Tk,ā, Fk and Jk with 1 ≤ k ≤ max(n, p + 1, q + 1).
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Fig. 9. Some elementary compositions.

Definition 4.15 (Bounded Birooted Graphs Algebras). For any given
integer m > 0, let HSm(A) (resp. HS≤m(A)) be the algebraic structure defined
as the subsemigroup of HS (A) generated by 1m, Pm,i,j , Tm,a, Tm,ā (resp. 1k,
Pk,i,j , Tk,a, Tk,ā, Fk and Jk with 1 ≤ k ≤ m).

As an corollary of Theorems 4.6 and 4.8, we have:

Theorem 4.16. For every integer m > 0, the algebra HSm(A) is an inverse
monoid with neutral element 1m.

Remark. As a particular case, it can be shown that HS 1(A) is the free inverse
monoid FIM (A) generated by A. We shall see below that birooted grids of arbi-
trary size but of type (2, 2) belong to HS≤2(A). In other word, in Theorem 4.14,
the bound given for k, depending on the number of vertices of G is not optimal.

5 Languages of Birooted Graphs

Now we aim at developing the language theory of higher dimensional strings,
that is to say, the study of the definability of subsets of HS (A). For such a
purpose, we consider the First Order (FO) logic or the Monadic Second Order
(MSO) logic (see [9]) on birooted graphs. We refer the reader to the book [9]
for a definition of MSO on graphs.

More precisely, we consider HS≤m(A) so that the number of input and output
roots on graphs is bounded. Then, one can enrich the signature A by 2 ∗ m
symbols, necessarily interpreted as singletons in order to describes these roots.
Clearly, this is easily done within FO or MSO logic and we can thus consider
the class of FO-definable or MSO-definable languages of birooted graphs.

Theorem 5.1 (Undecidability). When m ≥ 2, the language emptiness prob-
lem for FO-definable (hence also MSO-definable) languages of birooted graphs
of HS≤m(A) is undecidable.

Proof (sketch of). The undecidability of FO follows from the fact that, as soon as
m ≥ 2, as depicted in Fig. 10, grids of arbitrary size can be finitely generated with
two edge relations a and b modeling horizontal and vertical directions, hence,
together with additional edge relations for encoding arbitrary unary predicates
on grid vertices, classical undecidability results apply [9]. ��
We first check, following the examples depicted in Fig. 9, that these generators
can indeed be defined by means of Pk,i,j , Tk,a, Tk,ā, Fk and Jk with 1 ≤ k ≤ 2.
For instance, we have B5 = (T2,b̄ · J2)R · T2,a · T2,b · (T2,a · J2)R · P2,1,2.
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Fig. 10. A finite set of generators B1,B2, B3, B4, B5 and B6.

Then, as depicted in Fig. 11, we can generate birooted grids of arbitrary size
by taking the (2, 2)-birooted graph Bm,n defined by Gm,n = (Zm ·Ym)n. Clearly,
Bmn contains a grid of size m by 2 ∗ n.

Fig. 11. The (2, 2)-birooted graphs Ym = (B1)
m · B2 · B3 and Zm = (B4)

m · B5 · B6.

One may ask how generating such graphs of unbounded tree-width can be
avoided. It occurs that this can simply be done by restricting the overlaps that
are allowed in product instances.

Recently introduced in the context of birooted words [16] or trees [15,17]
languages, the definition of the disjoint product, extended to birooted graphs,
makes this restriction of overlaps formal.

Definition 5.2 (Disjoint Product). Let B1 = 〈in1, out1〉 and B2 = 〈in2, out2〉
be two birooted graphs. Let 〈h1, h2〉 be a pushout of 〈out1, in2〉 in UCGrph(A)
and let B1 · B2〈in, out〉 with in = h1 ◦ in1 and out = h2 ◦ out2 be the resulting
product. Then this product is a disjoint product when the pair 〈h1, h2〉 is also
a pushout of in 〈out1, in2〉 in the category CGrph(A). In this case, the disjoint
product is denoted by B1 � B2.

In other words, a birooted graph product is a disjoint product when the
fusion phase in the underlying pushout computation is trivial. Although partially
defined, this disjoint product is still associative in the following sense.

Lemma 5.3 (Partial Associativity). For all birooted graphs B1, B2, B3 the
disjoint product B1 � (B2 � B3) is defined if and only if the disjoint product
(B1 � B2) � B3 is defined and, in that case, the products are equal.

Then, the closure under disjoint products and left and right projections are
defined as follows.
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Definition 5.4 (Disjoint Closure and Decomposition). Let X ⊆ HS (A)
be a set of birooted graphs. The disjoint closure of the set X is defined to
be the least set Y of birooted graphs such that X ⊂ Y and that Y is closed
under disjoint product and left and right projections. This closure is denoted by
〈X〉�,L,R.

For every birooted graph B ∈ 〈X〉�,L,R, a combination of elements of X by
disjoint products and let and right projection that equals B is called a disjoint
decomposition of B over X.

Examples. The subset of HS 1(A) generated by disjoint products of elementary
birooted graphs I1 and T1,a with a ∈ A is just the free monoid A∗. Adding left
and right projections, the disjoint closure of such a set is known in the literature
as the free ample monoid FAM (A) whose elements are positive birooted trees
(see [12]). Adding backward edges T1,ā for every a ∈ A, the disjoint closure of
the resulting set is the free inverse monoid FIM (A) whose elements are arbitrary
birooted trees.

Theorem 5.5 (Decidability and Complexity). Let X ⊆fin HS (A) be a
finite subset of HS (A). Then, the emptiness problem for MSO-definable subsets
of the disjoint closure 〈X〉�,R,L is (non-elementary) decidable.

Moreover, for any MSO-definable language L ⊆ 〈X〉�,R,L, the membership
problem B ∈ L for any B ∈ HS (A) is linear in the size of any disjoint decom-
position of B over X.

Proof (sketch of). Every disjoint product in 〈X〉�,R,L is just a disjoint sum with a
bounded glueing of roots. It follows that MSO decomposition techniques (see [30]
or [32]) combined with partial algebra techniques [7] are available, as done in [5]
for languages of labeled birooted trees, to achieve an algebraic characterization
of MSO definable languages in terms of (partial algebra) morphisms into finite
structures. Such an approach also proves the complexity claim for the member-
ship problem. ��
Remark. Of course, the membership problem is non elementary in the size of
the MSO formula that defines L. This already follows from the case of MSO
definable languages of finite words. Also, the problem of finding disjoint decom-
positions over X for birooted graphs may be delicate and is left for further
studies.

As observed above, A∗, FAM (A) and FIM (A) are examples of subsemigroup
of HS (A) that are finitely generated by disjoint product, inverses and/or pro-
jections [15,17]. By applying Theorem 5.5, this proves (again) that their MSO
definable subsets have decidable emptiness problem.

6 The Inverse Monoid of Acyclic Birooted Graphs

Towards application purposes, birooted graphs can be seen as models of comput-
erized system behaviors with vertices viewed as (local) states and edges viewed
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as (local) transition. In this case, one is tempted to detect and forbid directed
cycles which interpretation could be problematic (causally incoherent).

As an illustration of the power of the inverse semigroup framework that is
proposed here, we show how these birooted acyclic graphs can simply be defined
as the quotient of the inverse semigroup of birooted graphs by the semigroup
ideal of cyclic ones. Then, in such a quotient, easily implementable, a product
of acyclic birooted graphs is causally coherent if and only if it is non zero.

Lemma 6.1 (Semigroup Ideal). Let ϕ be a graph property that is preserved
under graph morphisms. Let Iϕ be the set Iϕ ⊆ HS (A) that contains 0 and all
birooted graphs whose underlying graph satisfies ϕ. Then, Iϕ is an semigroup
ideal of HS (A), that is,

HS (A) · Iϕ ⊆ HS (A) and Iϕ · HS (A) ⊆ HS (A)

and the Rees’ quotient HS (A)/Iϕ, that is, the set HS (A) − Iϕ + {0} equipped
with the product defined as in H(A) when the result does not belong to Iϕ and
defined to be 0 otherwise, is still an inverse semigroup.

In other words, much in the same way 0 already appears with products in
HS (A) that have no compatible types, when the property ϕ describes, in some
concrete modeling context, a set of faulty models that is preserves under mor-
phism, then the product in HS (A)/Iϕ equals 0 also when the resulting birooted
graph is faulty.

Clearly, the existence of directed cycles is a property preserved by morphism.
Then, the algebra of birooted acyclic graphs can simply be modeled as the inverse
semigroup HS (A)/IC where IC ⊆ HS (A) is the resulting semigroup ideal con-
taining 0 and all (directed) cyclic birooted graphs.

Such a situation is depicted in Fig. 12 where

Fig. 12. Causal constraints propagation via products.

examples show how products of birooted graphs may propagate causality con-
straints eventually leading to non-causal graphs: the product (B2 · B2).

In other words, with the proposed approach, one can define a modeling soft-
ware in such a way that non-causal models raised by combination of causal con-
straints are easily detected and forbidden, while, at the same time, the underlying
algebraic framework still lays in the theory of inverse semigroups.
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7 Conclusion

We have shown how a rather simple and intuitive composition operation on
graphs, inherited from long standing ideas (see [27]), induces a rich algebraic
structure, an inverse semigroup, from which one can define a natural order and
other mathematically robust operators such as left and right projections, that
capture graph theoretical concepts.

Of course, defining graph products by means of cospans products has already
a long history in Theoretical Computer Science (see e.g. [4,6,13]). The originality
of our approach consists in restricting to the category of unambiguous graphs
and connecting morphisms that allow the resulting semigroup to be an inverse
semigroup.

Still, this inverse semigroup is far from being understood in depth. Little is
known about its subsemigroups. Thanks to [31], one can easily show that, all A
generated E-unitary inverse semigroups (see also [28]) are subsemigroups of the
monoid defined by birooted graphs of type (1,1). This suggests that the semi-
group HS (A) may satisfy some universality property that is still to be discovered.
Also, we have no direct characterizations of the subsemigroups of HS (A) that
could be defined by bounding the number of roots on generators.

Following [5], by restricting the product to disjoint product, techniques aris-
ing from partial algebras [7] are applicable allowing us to inherit from the exist-
ing MSO-language theory of graphs of bounded tree-width [8,9]. It is expected
that tile automata, defined in [15,16] over birooted words or trees, can easily be
extended to higher dimensional strings and related with MSO-definability. Yet,
closure property of MSO-definable languages remains to be detailled. It is by
no means clear under which restrictions the product of two definable languages
remains definable. Also, defining more suitable subsemigroups of (possible Rees’
quotient of) HS (A) that would also have decidable MSO languages is still to be
investigated.

With a view towards application, beyond all experiments mentioned in the
introduction, the modeling power of birooted graphs also needs to be investi-
gated further in both practical modeling problems and more general modeling
theories. For such a purpose, an implementation of the monoid HS (A) with
both graphical and programmatic views of its elements is scheduled. As already
mentioned, multiple roots gives a flavor of concurrency. It is also expected that
higher dimensional strings can be used as (explicitly concurrent) models of par-
tially semi-commutative traces [11,19] henceforth connecting higher dimensional
strings with a part of concurrency theory.

Finally, it has been shown recently that (one head) tree and graph walking
automata semantics is nicely described in terms of (languages of) birooted graphs
with single input and output roots [20]. The generalized birooted graphs pre-
sented here may provide nice semantical models of multi-head walking automata:
partial runs of these automata clearly define languages of birooted graphs with
multiple input and output roots.
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Abstract. It is a well known intuition that the exponential modality of
linear logic may be seen as a form of limit. Recently, Melliès, Tabareau
and Tasson gave a categorical account for this intuition, whereas the first
author provided a topological account, based on an infinitary syntax. We
relate these two different views by giving a categorical version of the topo-
logical construction, yielding two benefits: on the one hand, we obtain
canonical models of the infinitary affine lambda-calculus introduced by
the first author; on the other hand, we find an alternative formula for
computing free commutative comonoids in models of linear logic with
respect to the one presented by Melliès et al.

1 Introduction

The Exponential Modality of Linear Logic as a Limit. Following the work of
Girard [5], linearity has become a central notion in computer science and proof
theory: it provides a finer-grained analysis of cut-elimination, which in turn, via
Curry-Howard, gives finer tools for the analysis of the execution of programs. It
is important to observe that the expressiveness of strictly linear or affine calculi is
severely restricted, because programs in these calculi lack the ability to duplicate
their arguments. The power of linear logic (which, in truth, is not linear at
all!) resides in its so-called exponential modalities, which allow duplication (and
erasing, if the logic is not already affine).

A possible approach to understand exponentials is to see the non-linear part
of linear logic as a sort of limit of its purely linear part. The following old
result morally says that, in the propositional case, exponential-free linear logic
is “dense” in full linear logic:

Theorem 1 (Approximation [5]). Define the bounded exponential

!pA :=

p times︷ ︸︸ ︷
(A&1) ⊗ · · · ⊗ (A&1),

and define ?pA := (!pA⊥)⊥. Note that these formulas are exponential-free (if
A is). Let A be a propositional formula with m occurrences of the ! modality
and n occurrences of the ? modality. If A is provable in full linear logic, then
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M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 144–161, 2015.
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for every p1, . . . , pm ∈ N there exist q1, . . . , qn ∈ N such that A′ is provable in
exponential-free linear logic, where A′ is obtained from A by replacing the i-th
occurrence of ! with !pi

and the j-th occurrence of ? with ?qj
.

For example, from the canonical proof of ?A⊥ &

(!A⊗!A) (contraction, i.e. dupli-
cation), we get proofs of ?p1+p2A

⊥ &

(!p1A⊗!p2A) for all p1, p2 ∈ N.
Remember that, if a linear formula A says “A exactly once”, then !A stands

for “A at will”. The formula A&1 is an affine version of A: it says “A at most
once”. This is a very specialized use of additive conjunction, in the sequel
we prefer to avoid additive connectives and denote the affine version of A by
A•, which may or may not be defined as A&1 (for instance, in affine logic,
A• = A). Therefore, !pA = (A•)⊗p stands for “A at most p times”, hence the
name bounded exponential. So the Approximation Theorem supports the idea
that !A is somehow equal to limp→∞!pA.

Categories vs. Topology. This idea was recently formalized in two quite different
ways. The first is due to Melliès, Tabareau and Tasson [12], who rephrased the
question in categorical terms. It is well known [3] that a ∗-autonomous category
admitting the free commutative comonoid A∞ on every object A is a model of
linear logic (a so-called Lafont category). So, given a Lafont category, how does
one compute A∞? Using previous work by the first two authors [11], Melliès
et al. showed that one may proceed as follows:

– compute the free co-pointed object A• on A (which is A&1 if the category has
binary products);

– compute the symmetric versions of the tensorial powers of A•, i.e. the fol-
lowing equalizers, where Sn is the set of canonical symmetries of (A•)⊗n:

A�n (A•)⊗n Sn

– compute the following projective limit, where A�n ←− A�n+1 is the canonical
arrow “throwing away” one component:

1 A�1 A�2 · · · A�n · · ·

A∞

At this point, for A∞ to be the commutative comonoid on A it is enough that all
relevant limits (the equalizers and the projective limit) commute with the tensor.
Although not valid in general, this condition holds in several Lafont categories
of very different flavor, such as Conway games and coherence spaces.

The second approach, due to the first author [9], is topological, and is based
directly on the syntax. One considers an affine λ-calculus in which variables are
treated as bounded exponentials: in a term of this calculus, a variable x may
appear any number of times, each occurrence appears indexed by an integer
(each instance, noted xi, is labelled with a distinct i ∈ N). The argument of
applications is not a term but a sequence of terms, and to reduce the redex
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(λx.t)〈u0, . . . , un−1〉 one replaces each free xi in t with ui (a special term ⊥
is substituted if i ≥ n). The calculus is therefore affine, in the sense that no
duplication is performed, and in fact it strongly normalizes even in absence of
types (the size of terms strictly decreases with reduction).

At this point, the set of terms is equipped with the structure of uni-
form space1, the Cauchy-completion of which, denoted by Λaff

∞ , contains infini-
tary terms, i.e. allowing infinite sequences 〈u1, u2, u3, . . .〉. The original cal-
culus embeds (and is dense) in Λaff

∞ by considering a finite sequence as an
almost-everywhere ⊥ sequence. Reduction, which is continuous, is defined as
above, except that infinitely many substitutions may occur. This yields non-
termination, in spite of the calculus still being affine: if Δn := λx.x0〈x1, . . . , xn〉,
then Δ := limn→∞ Δn = λx.x0〈x1, x2, x3, . . .〉 and Ω := Δ〈Δ,Δ,Δ, . . .〉 → Ω.

Ideally, these infinitary terms should correspond to usual λ-terms. But there
is a continuum of them, definitely too many. The solution is to consider a par-
tial equivalence relation ≈ such that, in particular, xi ≈ xj for all i, j and
t〈u1, u2, u3, . . .〉 ≈ t′〈u′

1, u
′
2, u

′
3, . . .〉 whenever t ≈ t′ and, for all i, i′ ∈ N, ui ≈ u′

i′ .
After introducing a suitable notion of reduction ⇒ on the equivalence classes of
≈, one finally obtains the isomorphism for the reduction relations

(Λaff
∞ /≈,⇒) ∼= (Λ,→β),

where (Λ,→β) is the usual pure λ-calculus with β-reduction. Similar infinitary
calculi (also with a notion of partial equivalence relation) were considered by
Kfoury [6] and Melliès [10], although without a topological perspective. The
indices identifying the occurrences of exponential variables are also reminiscent
of Abramsky, Jagadeesan and Malacaria’s games semantics [1].

Reconciling the Two Approaches. The contribution of this paper is to draw
a bridge between the two approaches presented above. Indeed, we develop a
categorical version of the topological construction of [9], which turns out to:

1. give a canonical way of building denotational models of the infinitary affine
λ-calculus;

2. provide an alternative formula for computing the free commutative comonoid
in a Lafont category.

Drawing inspiration from [11,12], we base our work on functorial semantics in
the sense of Lawvere, computing free objects as Kan extensions.

Functorial Semantics. The idea of functorial semantics is to describe an algebraic
theory as a certain category constituted of the different powers of the domain of
the theory as the objects, the operations of the theory as morphisms, and encode
the relations between the operations in the composition operation. We will not
consider algebraic theories as Lawvere did, but the more general symmetric
monoidal theories, or PROPs [7] (product and permutation categories).

1 The generalization of a metric space, still allowing one to speak of Cauchy sequences.



A Functorial Bridge Between the Infinitary Affine Lambda-Calculus 147

Definition 1 (Symmetric Monoidal Theory). An n-sorted symmetric
monoidal theory is defined as a symmetric monoidal category T whose objects are
n-tuples of natural numbers and with a tensorial product defined as the point-wise
arithmetical sum.

A model of T in a symmetric monoidal category (SMC) C is a symmetric
strong monoidal functor T → C.

A morphism of models of T in C is a monoidal natural transformation between
models of T in C. We will denote as Mod(T, C) the category with models of T in
C as objects and morphisms between models as morphisms.

The simplest symmetric monoidal theory, denoted by B, has as objects the nat-
ural numbers seen as finite ordinals and as morphisms the bijections between
them (the permutations). Alternatively, B can be seen as the free symmetric
monoidal category on one object (the object 1, with monoidal unit 0). As such,
a model of B is nothing but an object A in a symmetric monoidal category C,
and the categories C and Mod(B, C) are equivalent.

The key non-trivial example in our context is that of commutative
(co)monoids. We remind that a commutative monoid in a SMC C is a triple
(A,μ : A ⊗ A → A, η : 1 → A), with A an object of C, such that the arrows
μ and η interact with the associator, unitors and symmetry of C to give the
usual laws of associativity, neutrality and commutativity (see e.g. [8]). A mor-
phism of monoids f : (A,μ, η) → (A′, μ′, η′) is an arrow f : A → A′ such that
f ◦ μ = μ′ ◦ (f ⊗ f) and f ◦ η = η′. We denote the category of monoids of C
and their morphisms as Mon(C). The dual notion of comonoid, and the relative
category Comon(C), is obtained by reversing the arrows in the above definition.
Now, consider the symmetric monoidal theory F whose objects are the natural
numbers seen as finite ordinals and its morphisms are the functions between
them (i.e. F is the skeleton of the category of finite sets). We easily check that
Mod(F, C) � Mon(C) and Mod(Fop, C) � Comon(C). Indeed, a strict symmetric
monoidal functor from F to C picks an object of C and the image of any arrow
m → n of F is unambiguously obtained from the images of the unique morphisms
0 → 1 and 2 → 1 in F, which are readily verified to satisfy the monoid laws.

Summing up, finding the free commutative comonoid A∞ on an object A
of a SMC C is the same thing as turning a strict symmetric monoidal functor
B → C into a strict symmetric monoidal functor Fop → C which is universal in a
suitable sense. This is where Kan extensions come into the picture.

Free Comonoids as Kan Extensions. Kan extensions allow to extend a functor
along another. Let K : C → D and F : C → E be two functors. If we think of K
as an inclusion functor, it seems natural to try to define a functor D → E that
would in a sense be universal among those that extend F . There are two ways
of formulating this statement precisely, yielding left and right Kan extensions.
We only describe the latter, because it is the case of interest for us:

Definition 2 (Kan Extension). Let C,D, E be three categories and F : C → E,
K : C → D two functors. The right Kan extension of F along K is a functor
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RanKF : D → E together with a natural transformation ε : RanKF ◦ K ⇒ F
such that for any other pair (G : D → E , γ : G ◦ K ⇒ F ), γ factors uniquely
through ε:

C D

E

K

F G

ε

It is easy to check that Cat(G,RanKF ) � Cat(G◦K,F ), where by Cat(f, g)
(f and g being functors with same domain and codomain) we mean the 2-
homset of the 2-category Cat, i.e. the set of all natural transformations from
f to g. In other words, RanK is right adjoint to UK , the functor precompos-
ing with K (whence the terminology “right”—the left adjoint to UK is the
left Kan extension). This observation is important because it tells us that Kan
extensions may be relativized to any 2-category. In particular, we may speak
of symmetric monoidal Kan extensions by taking the underlying 2-category to
be SymMonCat (symmetric monoidal categories, strict symmetric monoidal
functors and monoidal natural transformations).

Now, there is an obvious inclusion functor i : B → F
op (bijections are par-

ticular functions), which is strictly symmetric monoidal. So if E is symmetric
monoidal and A is an object of E , we are in the situation described above with
C = B, D = F

op, K = i and F the strict symmetric monoidal functor correspond-
ing to A, which we abusively denote by A. The fundamental difference is that the
diagram lives in SymMonCat instead of Cat. It is an instructive exercise to
verify that the free commutative comonoid on A, if it exists, is A∞ = RaniA(1),
i.e. the right symmetric monoidal Kan extension of A along i, computed in 1:

B F
op

E

i

A RaniA

Remember that the free commutative comonoid on A is a commutative comonoid
A∞ with an arrow d : A∞ → A such that, whenever C is a commutative
comonoid and f : C → A, there is a unique comonoid morphism u : C → A∞

such that f = d ◦ u. The arrow d is ε, where ε : RaniA ◦ i ⇒ A is the natural
transformation coming with the Kan extension.

More generally, if T1 and T2 are two symmetric monoidal theories, a symmet-
ric monoidal functor i : T1 → T2 induces a forgetful functor Ui : Mod(T2, E) →
Mod(T1, E) such that M �→ M ◦ i. So we may reformulate the problem of finding
the “free T-model” on an object A of E as finding a left monoidal adjoint to Ui

with i : B → T. That is precisely what we did above, with T = F
op.

Computing Monoidal Kan Extensions. The above discussion is interesting
because it provides a way of explicitly computing A∞ from A. In fact, there
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is a well-known formula for computing Kan extensions [8]. When applied to the
above special case, it gives

A∞ =
∏

n

A⊗n/∼,

where A⊗n/∼ is the symmetric tensor product. However, this formula works
only for Kan extensions in Cat and there are no known formulas in other 2-
categories. The main contribution of [11] was to find a sufficient condition under
which the formula is correct also in SymMonCat. The condition is, roughly
speaking, a commutation of the tensor with certain limits depending on the Kan
extension at stake. In the above case, it requires the tensor to commute with
countable products, which, in models of linear logic, boils down to having count-
able biproducts. Lafont categories of this kind do exist (e.g. the category Rel of
sets and relations), but they are a little degenerate and not very representative.

The idea of [12] was to decompose the Kan extension in two, so that the
commutation condition is weaker and satisfied by more Lafont categories. The
intermediate step uses a symmetric monoidal theory denoted by I, whose objects
are natural numbers (seen as finite ordinals) and morphisms are the injections.
Note that Mod(Iop, C) is equivalent to the slice category C ↓ 1. By definition,
this is the category of copointed objects of C: pairs (A,w : A → 1) (with 1 the
tensor unit, not necessarily terminal), with morphisms f : (A,w) → (A′, w′)
arrows f : A → A′ such that w = w′ ◦ f2.

There are of course strict symmetric monoidal injections j : B → I
op and

j′ : Iop → F
op, such that j′◦j = i. Unsurprisingly, RanjA(1) is the free copointed

object on A, which we denoted by A• above. Since Kan extensions compose
(assuming they exist), we have A∞ = Ranj′A•(1):

B I
op

F
op

C

j j′

A

A•

A∞

For the second Kan extension to be computed in SymMonCat using the
Cat formula, a milder commutation condition than requiring countable biprod-
ucts suffices. It is the commutation condition we mentioned above when we
recalled the three-step computation of A∞ (free copointed object, equalizers,
projective limit), which indeed results from specializing the general Kan exten-
sion formula.

One More Intermediate Step. The bridge between the categorical and the topo-
logical approach will be built upon a further decomposition of the Kan extension:
in the second step, we interpose a 2-sorted theory, denoted by P (this is why we
introduced multi-sorted theories, all theories used so far are 1-sorted):

2 The w stands for weakening.
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B I
op

P F
op

C

j k l

A

(Aω, A•)

A∞
A•

We will call the models of P partitionoids. Intuitively, the free partitionoid on A
allows to speak of infinite streams on A•, from which one may extract arbitrary
elements and substreams via maps of type Aω → (A•)⊗m ⊗ (Aω)⊗n. Such maps
are the key to model the infinitary affine λ-calculus. This intuition is especially
evident in Rel (the category of sets and relations), where Aω is the set of all
functions N → A• which are almost everywhere ∗ (in Rel, A• = A � {∗}).

2 The Infinitary Affine Lambda-Calculus

We consider three pairwise disjoint, countable sets of linear, affine and expo-
nential variables, ranged over by k, l,m . . ., a, b, c . . . and x, y, z . . ., respectively.
The terms of the infinitary affine λ-calculus belong to the following grammar:

t, u ::= l | λl.t | tu | let k ⊗ l = u in t | t ⊗ u linear
| a | let a• = u in t | •t affine
| xi | let xω = u in t | 〈u0, u1, u2, . . .〉 exponential

The linear part of the calculus comes from [2]. It is the internal language of
symmetric monoidal closed categories. As usual, let constructs are binders. The
notation 〈u0, u1, u2, . . .〉 stands for an infinite sequence of terms. We use u to
range over such sequences and write u(i) for ui. Note that each ui is inductively
smaller than u, so terms are infinite but well-founded. The usual linearity/affinity
constraints apply to linear/affine variables, with the additional constraint that
if xi, xj are distinct occurrences of an exponential variable in a term, then i �= j.
Furthermore, the free variables of a term of the form u (resp. •t) must all be
exponential (resp. exponential or affine).

The reduction rules are as follows:

(λl.t)u → t[u/l] let k ⊗ l = u ⊗ v in t → t[u/k][v/l]
let a• = •u in t → t[u/a] let xω = u in t → t[u(i)/xi]

In the exponential rule, i ranges over N, so there may be infinitely many sub-
stitutions to be performed. There are also the usual commutative conversions
involving let binders, which we omit for brevity. The reduction is confluent, as
the rules never duplicate any subterm.

The results of [9] are formulated in an infinitary calculus with exponential
variables only, whose terms and reduction are defined as follows:

t, u ::= xi | λx.t | t〈u0, u1, u2, . . .〉, (λx.t)u → t[u(i)/xi]
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Fig. 1. The simply-typed infinitary affine λ-calculus. In every non-unary rule we require
that t, u (or, for the ωI rule, u(i),u(j) for all i �= j ∈ N) contain pairwise disjoint sets
of occurrences of the exponential variables in Γ .

(the abstraction binds all occurrences of x). Such a calculus may be embedded
in the one introduced above, as follows:

x◦
i := let a• = xi in a

(λx.t)◦ := λl.let xω = l in t◦

(t〈u0, u1, u2, . . .〉)◦ := t◦〈•u◦
0, •u◦

1, •u◦
2, . . .〉

and we have t → t′ implies t◦ →∗ t′◦, so we do not lose generality. However, the
categorical viewpoint adopted in the present paper naturally leads us to consider
a simply-typed version of the calculus, given in Fig. 1. It is for this calculus that
our construction provides denotational models. The types are generated by

A,B ::= X | A � B | A ⊗ B | A• | Aω,

where X is an atomic type. Note that the context of typing judgments has
three finite components: exponential (Γ ), affine (Δ) and linear (Σ). Although
it may appear additive, the treatment of contexts is multiplicative also in the
exponential case, as enforced by the condition in the caption of Fig. 1. The typing
system enjoys the subject reduction property, as can be proved by an induction
on the depth of the reduced redex.

3 Denotational Semantics

Definition 3 (reduced fpp, Monoidal Theory P). A finite partial par-
tition ( fpp) is a finite (possibly empty) sequence (S1, . . . , Sk) of non-empty,
pairwise disjoint subsets of N. Fpp’s may be composed as follows: let β :=
(S1, . . . , Sk), with Si infinite, and let β′ := (S′

1, . . . , S
′
k′); we define β′ ◦i β :=

(S1, . . . , Si−1, T1, . . . , Tk′ , Si+1, . . . , Sk), where each Tj is obtained as follows:
let n0 < n1 < n2 < · · · be the elements of Si in increasing order; then,
Tj := {nm | m ∈ S′

j}. It must be noted that endowed with this composition,
fpp’s form an operad.
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We will only consider reduced fpp’s, in which each Si is either a singleton
or infinite. We will use the notation (S1, . . . , Sm;T1, . . . , Tn) to indicate that the
Si are singletons and the Tj are infinite, and we will say that such an fpp has
size m + n. Note that the composition of reduced fpp’s is reduced. The set of all
reduced fpp’s will be denoted by P.

Reduced fpp’s induce a 2-sorted monoidal theory P, as follows: each β ∈ P
of size m + n induces an arrow β : (0, 1) → (m,n) of P. There is also an arrow
w : (1, 0) → (0, 0) to account for partiality. Composition is defined as above.

For example, let β := (E,O), where E and O are the even and odd integers,
and let β′ := ({0},N \ {0}) (these are actually total partitions). Then β′ ◦1 β =
({0}, E \ {0}, O), whereas β ◦2 β′ = ({0}, O,E \ {0}).

Definition 4 (Partitionoid). A partitionoid in a symmetric monoidal cate-
gory C is a strict symmetric monoidal functor3 G : P → C. Spelled out, it is
a tuple (G0, G1, w, (rβ)β∈P)) with (G0, w) a copointed object and rβ : G1 →
G⊗m

0 ⊗G⊗n
1 whenever β is of size m+n, such that the composition of compatible

w and rβ satisfies the equations induced by P.
A morphism of partitionoids G → G′ is a pair of arrows f0 : G0 → G′

0,
f1 : G1 → G′

1 such that f0 is a morphism of copointed objects and r′
β ◦ f1 =

(f⊗m
0 ⊗ f⊗n

1 ) ◦ rβ for all β ∈ P of size m + n.
We say that F is the free partitionoid on A if it is endowed with an arrow

e : F0 → A such that, for every partitionoid G with an arrow f : G0 → A, there
exists a unique morphism of partitionoids (u0, u1) : G → F such that f = e ◦ u.

For example, for any set X, (X,XN, !X , (rβ)β∈P) is a partitionoid in Set, where
!X is the terminal arrow X → 1 and, if β = ({i1}, . . . , {im}; {j1

1 < j1
2 <

· · · }, . . . , {jn
1 < jn

2 < · · · }) and f : N → X, rβ(f) := (f(i1), . . . , f(im), k �→
f(j1

k), . . . , k �→ f(jn
k )) ∈ Xm × (XN)n.

Lemma 1. If (F0, F1) is the free partitionoid on A, then F0 = A•, the free
co-pointed object on A.

Proof. This follows from observing that (A•, F1) is also a partitionoid on A. ��
Definition 5 (Infinitary Affine Category). Let A be an object in a sym-
metric monoidal category. We denote by †A the following diagram:

1 A• (A•)⊗2 · · · (A•)⊗n (A•)⊗n+1 · · ·ε1 ε2 εn εn+1

where ε1 = ε is the copoint of A• and εn+1 := (id)⊗n ⊗ ε, i.e., the arrow erasing
the rightmost component. We set Aω := lim †A (if it exists).

An infinitary affine category is a symmetric monoidal closed category such
that, for all A, the free partitionoid on A exists and is (A•, Aω).

3 An algebra for the fpp operad.



A Functorial Bridge Between the Infinitary Affine Lambda-Calculus 153

Several well-known categories are examples of affine infinitary categories: sets
and relations, coherence spaces and linear maps, Conway games. Finiteness
spaces are a non-example. We give the relational example here, which is a
bit degenerate but easy to describe and grasp. For the others, we refer to the
extended version.

The category Rel has sets as objects and relations as morphisms. It is sym-
metric monoidal closed: the Cartesian product (which, unlike in Set, is not
a categorical product in Rel!) acts both as ⊗ (with unit the singleton {∗})
and �. Let A be a set and let us assume that ∗ �∈ A. The free copointed
object on A is (up to iso) A ∪ {∗}, with copoint the relation {(∗, ∗)}. The
F1 part of the free partitionoid on A in Rel is (up to iso) the set of all
functions N → A• which are almost everywhere ∗. Given a reduced fpp
β := ({i1}, . . . , {im}; {j1

0 < j1
1 < . . .}, . . . , {jn

0 < jn
1 < . . .}), the correspond-

ing morphism of type Aω → (A•)⊗m ⊗ (Aω)⊗n is

rβ := {(a, (ai1 , . . . , aim
, 〈aj1

0
, aj1

1
, . . .〉, . . . , 〈ajn

0
, ajn

1
, . . .〉)) | a ∈ Aω},

where we wrote 〈a0, a1, a2, . . .〉 for the function a : N → A•, i �→ ai.

Theorem 2. An infinitary affine category is a denotational model of the infini-
tary affine λ-calculus.

Proof. The interpretation of types is parametric in an assignment of an object
to the base type X, and it is straightforward (notations are identical). In fact,
we will confuse types and the objects interpreting them.

Let now Γ ;Δ;Σ � t : A be a typing judgment. The type of the corresponding
morphism will be of the form C1 ⊗ · · · ⊗ Cn −→ A, where the Ci come from the
context and are defined as follows. If it comes from l : C ∈ Σ (resp. a : C ∈ Δ),
then Ci := C (resp. Ci := C•). If it comes from x : C ∈ Γ , then Ci := Cω if x
appears infinitely often in t, otherwise, if it appears k times, Ci := (C•)⊗k.

The morphism interpreting a type derivation of Γ ;Δ;Σ � t : A is defined as
customary by induction on the last typing rule. The lin-ax rule and all the rules
concerning ⊗ and � are modeled in the standard way, using the symmetric
monoidal closed structure. The only delicate point is modeling the seemingly
additive behavior of the exponential context Γ in the binary rules (the same
consideration will hold for the elimination rules of • and ω as well). Let us
treat for instance the ⊗I rule, and let us assume for simplicity that Γ = x :
C, y : D, z : E, with x (resp. z) appearing infinitely often (resp. m and n times)
in t and u, whereas y appears infinitely often in t but only k times in u. Let
us also disregard the affine and linear contexts, which are unproblematic. The
interpretation of the two derivations gives us two morphisms

[t] : Cω ⊗ Dω ⊗ (E•)⊗m −→ A, [u] : Cω ⊗ (D•)⊗k ⊗ (E•)⊗n −→ B.

Now, we seek a morphism of type Cω ⊗ Dω ⊗ (E•)⊗(m+n) −→ A ⊗ B, because
x and y appear infinitely often in t ⊗ u, whereas z appears m + n times. This is
obtained by precomposing [t] ⊗ [u] with the morphisms rβ : Cω → Cω ⊗ Cω and
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rβ′ : Dω → (D•)⊗k ⊗ Dω associated with the fpp’s β = (;Tt, Tu) such that Tt

(resp. Tu) contains all i such that xi is free in t (resp. in u), and β′ = (S′
u;T ′

t ) is
defined in a similar way with the variable y.

The weakening on exponential and affine variables in all axiom rules is mod-
eled by the canonical morphisms A• → 1 and Aω → 1. For the rules aff-ax
and exp-ax, we use the canonical morphism A• → A and the identity on A•,
respectively.

The •I rule is modeled by observing that objects of the form Γω ⊗ Δ• are
copointed (from tensoring their copoints), so from an arrow Γω ⊗ Δ• −→ A we
obtain a unique arrow Γω ⊗ Δ• −→ A• by universality of A•. The •E rule is
just composition.

For what concerns the ωI rule, let us assume for simplicity that Γ = x : C.
This defines a sequence of objects (Ci)i∈N such that Ci is either Cω or (C•)⊗ki

according to whether x appears in u(i) infinitely often or ki many times. Let
now Si := {j ∈ N | xj is free in u(i)}, define the fpp βi = (S0, . . . , Si) and let

ε′
i := (id)⊗i ⊗ wi : C0 ⊗ · · · ⊗ Ci−1 ⊗ Ci −→ C0 ⊗ · · · ⊗ Ci−1,

where wi : Ci → 1 is equal to r∅ if Ci = Cω (with ∅ the empty fpp) or it is
equal to ε⊗ki if Ci = (C•)⊗ki . Let β̂i be the reduced fpp obtained from βi by
“splitting” its finite sets into singletons. If we set θi := r

̂βi
, we have that for

all i ∈ N, ε′
i ◦ θi+1 = θi. Let now fi be the interpretations of the derivations of

x : C; ;� u(i) : A• and consider the diagram.

Cω

1 C0 C0 ⊗ C1 C0 ⊗ C1 ⊗ C2 · · ·

1 A• (A•)⊗2 (A•)⊗3 · · ·

θ0

θ1

θ2
θ3

θn

ε′
0 ε′

1 ε′
2 ε′

3

ε1 ε2 ε3 ε4

id f0 f0 ⊗ f1 f0 ⊗ f1 ⊗ f2

We showed above that all the upper triangles commute. It is easy to check that
the bottom squares commute too, making (Cω, ((f0 ⊗· · ·⊗fi−1)◦θi)i∈N) a cone
for †A. Since Aω = lim †A, this gives us a unique arrow f : Cω → Aω, which
we take as the interpretation of the derivation. The ωE rule is just composition,
modulo the interposition of the canonical arrow Aω → (A•)⊗k in case x appears
k times in t.

It remains to check that the above interpretation is stable under reduction,
which may be done via elementary calculations. ��

4 Computing Symmetric Monoidal Kan Extensions

We mentioned that there is a well-known formula for computing regular Kan
extensions (i.e. in Cat). This requires some notions coming from enriched cate-
gory theory, which we recall next (although here the enrichment will be trivial,
i.e. on Set).



A Functorial Bridge Between the Infinitary Affine Lambda-Calculus 155

Definition 6 (Cotensor Product of an Object by a set). Let C be a (locally
small) category. Let A be an object in C and E a set. The cotensor product E◦A
of A by E is defined by:

∀B ∈ C, C(B,E ◦ A) � Set(E, C(B,A))

Any locally small category with products is cotensored over Set (all of its objects
have cotensor products with any set) and the cotensor product is given by:

E ◦ A =
∏

E

A

We will write 〈fe〉e∈E : B → E ◦ A for the infinite pairing of arrows fe : B → A
and πe : E ◦ A → A the projections.

Definition 7 (end). Let C, E be two categories and H : Cop × C → E a functor.
The end of H, denoted by

∫
C H, is defined as the universal object endowed with

projections
∫

C H → H(c, c) for all c ∈ C making the following diagram commute:

c∈C H(c, c) H(c′, c′)

H(c, c) H(c, c′)

f∗

f∗

for all arrows f : c → c′ in C.

Finally, here is the formula computing Kan extensions:

Theorem 3 ([8], X.4, Theorem1). With the notations of Definition 2, when-
ever the objects exist:

RanKF (d) =
∫

c∈C
D(d,Kc) ◦ Fc.

However, as mentioned in the introduction, the formula of Theorem 3 is only
valid in Cat and we do not have any formula for computing a Kan extension in
an arbitrary 2-category, or even in SymMonCat, our case of interest. Fortu-
nately, Melliès and Tabareau proved a very general result [11, Theorem 1] giving
sufficient conditions under which the Kan extension in Cat (something a pri-
ori worthless for our purposes) is actually the Kan extension in SymMonCat
(what we want to compute). What follows is a specialized version of their result.

Theorem 4 ([11]). Let C, D, E be three symmetric monoidal categories and
F : C → E, K : C → D two monoidal symmetric functors. If (all the objects
considered exist and) the canonical morphism

X ⊗
∫

c∈C
D(d,Kc) ◦ Fc −→

∫

c∈C
X ⊗ D(d,Kc) ◦ Fc

is an isomorphism for every object X, then the right monoidal Kan extension (in
the 2-category SymMonCat) of F along K may be computed as in Theorem 3.
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We may now give the abstract motivation behind Definition 5. The key property
therein is that the free partitionoid on A is equal to (A•, Aω). We now instantiate
Theorem 4 to give a sufficient condition for that to be the case.

Proposition 1. Let C be a symmetric monoidal closed category with all free
partitionoids. If, for every objects X and A of C, the canonical morphism

X ⊗
∫

n∈Iop
P((0, 1), (n, 0)) ◦ (A•)⊗n −→

∫

n∈Iop
X ⊗ (

P((0, 1), (n, 0)) ◦ (A•)⊗n
)

is an isomorphism, then C is an infinitary affine category.

Proof. In what follows, when denoting the objects of the theory P, we use the
abbreviation n• := (n, 0) and nω := (0, n).

Let A be an object of C, seen as a strict monoidal functor A : B → C.
We let the reader check that, if (A•, F1) is the free partitionoid on A, then
F1 = Rank′A(1ω), where k′ : B → P is the strict monoidal functor mapping
n �→ n• (indeed, Definition 4 is just this Kan extension spelled out). This functor
may be written as k ◦ j, with j : B → I

op the inclusion functor and k : Iop → P

mapping n �→ n•, which induces a decomposition of the Kan extension, yielding
F1 = RankA•(1ω). Now, the hypothesis is exactly the condition allowing us to
apply Theorem 4, which gives us

F1 =
∫

n∈Iop
P(1ω, n•) ◦ (A•)⊗n,

so it is enough to prove that lim †A =
∫

n∈Iop
P(1ω, n•) ◦ (A•)⊗n.

We start with showing that
∫

n∈Iop
P(1ω, n•) ◦ (A•)⊗n is a cone for †A. Let

ψn : (0, 1) → (n, 0) be the morphism corresponding to the fpp ({0}, . . . , {n−1}; ).
By composing the canonical projection with πψn

(see Definition 6) we get an
arrow

pn :
∫

n∈Iop
P(1ω, n•) ◦ (A•)⊗n → P(1ω, n•) ◦ (A•)⊗n → (A•)⊗n

.

Observe now that the following diagram commutes:

P(1ω, n•) ◦ (A•)⊗n
P(1ω, (n + 1)•) ◦ (A•)⊗n

(A•)⊗n

(εn+1)∗

πψn

πψn+1

because εn+1 ◦ ψn+1 = ψn. Moreover, the diagram

P(1ω, (n + 1)•) ◦ (A•)⊗n+1 (A•)⊗n+1

P(1ω, (n + 1)•) ◦ (A•)⊗n (A•)⊗n

(εn+1)∗

πψn+1

πψn+1

εn+1

commutes too. So, by pasting them with the defining diagram of
∫

n∈Iop
P(1ω, n•)◦

(A•)⊗n, one gets:
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∫
n∈Iop

P(1ω, n•) ◦ (A•)⊗n
P(1ω, (n + 1)•) ◦ (A•)⊗n+1 (A•)⊗n+1

P(1ω, n•) ◦ (A•)⊗n
P(1ω, (n + 1)•) ◦ (A•)⊗n

(A•)⊗n

(εn+1)∗

πψn+1

πψn+1

εn+1
(εn+1)∗

πψn

In particular, (
∫

n∈Iop
P(1ω, n•) ◦ (A•)⊗n, (pn)) is a cone for the diagram.

Reciprocally, let (B, (bn)) be any cone for this diagram. (bn) extends uniquely
into a family (βn) such that:

– ∀n ∈ N, bn = πψn
◦ βn

– (βn) makes the following diagrams commute:

B P(1ω, m•) ◦ (A•)⊗m

P(1ω, n•) ◦ (A•)⊗n
P(1ω, m•) ◦ (A•)⊗n

βm

βn f∗
f∗

for all f : m → n in P.

Indeed, any element s of P(1ω, n•) is of the form s = q ◦ ψm, where m � n and
q ∈ I

op(m•, n•). So the family (βn) is defined by:

∀n ∈ N, βn = 〈A•(q) ◦ bm〉q◦ψm∈P(1ω,n•)

is the unique family satisfying

πq◦ψm
◦ βn = q ◦ πψm

◦ βm

This definition is sound, as m > m′ such that there exists q, q′, ψm, ψm′ such
that s = q ◦ ψm = q′ ◦ ψm′ , we have

q = q′ ◦ ((id)⊗m′ ⊗ (w•)⊗m−m′
)

and as such
A•(q) = A•(q′) ◦ εm−m′+1 ◦ · · · ◦ εm

and, as (bn) is a cone for the sequential diagram,

A•(q) ◦ bm = A•(q′) ◦ bm′ .

So B makes the defining diagram of
∫

n∈Iop
P(1ω, n•) ◦ (A•)⊗n commute, as

such, (βn) (and thus (bn)) factors through it. Since all the cones of †A factor
through

∫
n∈Iop

P(1ω, n•) ◦ (A•)⊗n, it is its limit. ��
Observe that the condition of Proposition 1 is actually quite easy to grasp: it
says that the limit of †A commutes with the tensor, i.e., if we denote by X ⊗ †A

the †A diagram in which each (A•)⊗n and εn are replaced by X ⊗ (A•)⊗n and
idX ⊗ εn, respectively, then the condition says lim(X ⊗ †A) = X ⊗ lim †A.
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5 From Infinitary Affine Terms to Linear Logic

In [9], it was shown that usual λ-terms may be recovered as uniform infinitary
affine terms. The categorical version of this result is that, in certain conditions,
a model of the infinitary affine λ-calculus is also a model of linear logic.

Theorem 5. Let C be an infinitary affine category. If, for every objects X and
A in C, the canonical morphism

X ⊗
∫

(n,m)∈P

(Aω)⊗n ⊗ (A•)⊗m −→
∫

(n,m)∈P

X ⊗ (Aω)⊗n ⊗ (A•)⊗m

is an isomorphism, then C is a Lafont category. Moreover, the free commutative
comonoid A∞ on A may be computed as the equalizer of the diagram: where
δ : Aω → Aω ⊗Aω and ε : Aω → 1 are the morphisms induced by the fpp (;E,O)
(even and odd numbers) and the empty fpp, respectively, and swap : Aω ⊗ Aω →
Aω ⊗ Aω is the symmetry of C.

Aω

A∞ Aω (Aω)⊗3

(Aω)⊗2

id(ε ⊗ id) ◦ δ

(δ ⊗ id) ◦ δ

(id ⊗ δ) ◦ δ

δswap ◦ δ

Fig. 2. Recovering the free co-commutative comonoid

Proof. Let l : P → F
op be the strict monoidal functor mapping (m,n) �→ m + n

and collapsing every arrow (0, 1) → (m,n) to the unique morphism 1 → m + n
in F

op. By composing Kan extensions, we know that A∞ = Ranl(A•, Aω)(1).
Remark that F

op(1, p) is a singleton for all p ∈ N, so the hypothesis is exactly
what allows to apply Theorem 4, giving us

A∞ =
∫

(m,n)∈P

(Aω)⊗n ⊗ (A•)⊗m
.

Now,
∫
(m,n)∈P

(Aω)⊗n ⊗ (A•)⊗m is the universal object making

∫
(m,n)∈P

(Aω)⊗n ⊗ (A•)⊗m

(A•)⊗n ⊗ (Aω)⊗m (A•)⊗n′ ⊗ (Aω)⊗m′

κn,m

κn′,m′
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∫
(m,n)∈P

(Aω)⊗n ⊗ (A•)⊗m

(Aω)⊗2 (Aω)⊗2

δ ◦ κ0,1

swap ◦ δ ◦ κ0,1

commute. We are going to show that
∫
(m,n)∈P

(Aω)⊗n ⊗ (A•)⊗m is a cone for
the diagram of Fig. 2. We will only show that commutes. The family (ιn ⊗ ιm ◦
δ ◦ κ0,1)n,m is a cone for †⊗2

A . Moreover, the θn,m ◦ δ are defined in terms of the
operations of P, they actually are the canonical maps, and

∀n,m, ιn ⊗ ιm ◦ δ ◦ κ0,1 = κ0,n+m

The exact same reasoning gives:

∀n,m, ιn ⊗ ιm ◦ swap ◦ δ ◦ κ0,1 = κ0,n+m

But (κ0,n+m)n,m factors uniquely through (Aω)⊗2 (the limit of †⊗2
A ) and as such,

∀n,m, δ ◦ κ0,1 = swap ◦ δ ◦ κ0,1

which is what we wanted. So
∫
(m,n)∈P

(Aω)⊗n⊗(A•)⊗m is a cone for the diagram
of Fig. 2.

Let us now prove that every cone for the diagram of Fig. 2 is a cone of the
diagrams defining

∫
(m,n)∈P

(Aω)⊗n ⊗ (A•)⊗m.
It is easy to verify that any object B making the diagram defining A∞ com-

mute is endowed with exactly one map B → (Aω)⊗n for all n ∈ N, built from
δ and ε which, is moreover, stable under all swaps. In particular, by composing
these maps (B → (Aω)⊗n)n∈N with the arrow Aω → A•, it is clear that there is
a unique family of arrows

∀n,m ∈ N, B → (A•)⊗n ⊗ (Aω)⊗m

stable under extractions and weakenings. So any cone for the diagram defining
Aω is a cone for the diagram defining

∫
(m,n)∈P

(Aω)⊗n ⊗ (A•)⊗m and as such,

factorizes through it. So
∫
(m,n)∈P

(Aω)⊗n ⊗ (A•)⊗m is the limit of the diagram
of Fig. 2, and thus isomorphic to A∞. ��
Intuitively, this construction amounts to collapsing the family of non-associative
and non-commutative “contractions” built with δ, ε and swap.

It should be remarked that the particular δ used is not canonical, other
morphisms would yield the same result. Indeed, from [9] we know that recovering
usual λ-terms from infinitary affine terms is possible using uniformity which, as
recalled in the introduction, amounts to identifying

λx.〈x0, x1, x2, . . .〉 ≈ λx.〈xβ(0), xβ(1), xβ(2), . . .〉,
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for every injection β : N → N. Theorem 5 amounts to defining a congruence on
terms verifying

λx. 〈x0, x1, x2, · · · 〉 � λx. 〈x0, x2, x4, · · · 〉
λx. 〈x0, x2, x4, · · · 〉 ⊗ 〈x1, x3, x5, · · · 〉 � λx. 〈x1, x3, x5, · · · 〉 ⊗ 〈x0, x2, x4, · · · 〉

which is sufficient to recover ≈.

6 Discussion

We saw how the functorial semantic framework provides a bridge between the
categorical and topological approaches to expressing the exponential modality
of linear logic as a form of limit. This gives a way to construct, under certain
hypotheses, denotational models of the infinitary affine λ-calculus. Moreover, it
gives us a formula for computing the free exponential which is alternative to that
of Melliès et al. Since both formulas apply only under certain conditions, it is
natural to ask whether one of them is more general than the other. Although we
do not have a general result, we are able to show that, under a mild condition
verified in all models of linear logic we are aware of, our construction is applicable
in every situation where Melliès et al.’s is.

Indeed, Melliès et al.’s construction amounts to checking that the Kan exten-
sion along m (below, left) is a monoidal Kan extension, whereas the one exposed
in this article amounts to checking that the two Kan extensions along k, then l
are monoidal (below, right):

C

I
op

F
op

m

P

C

I
op

F
op

k l

As Kan extensions compose, it suffices to know that the Kan extension along
m is monoidal, that m = k ◦ l, and that there exists two monoidal natural
transformations inside the two upper triangles that can be composed to the last
one to be sure that the Kan extensions along k and along l are monoidal too.
We thus get:

Proposition 2. Let C be a symmetric monoidal category with all free parti-
tionoids. Assume that Melliès et al.’s formula works and that Aω exists. If there
exists, for all integers n,m monoidal maps

(A∞)⊗n+m →(Aω)⊗n ⊗ (A•)⊗m

(Aω)⊗n ⊗ (A•)⊗m → (A•)⊗n+m

that composed together are the n + m tensor of the map A∞ → A�1 → A• then
C is an infinitary affine category and a Lafont category.
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Actually, in all models we are aware of, either both formulas work, or neither
does. For instance, our construction fails for finiteness spaces [4], as does the
construction given in [12].
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Abstract. We present a new algorithm for active learning of register
automata. Our algorithm uses counterexample-guided abstraction refine-
ment to automatically construct a component which maps (in a history
dependent manner) the large set of actions of an implementation into a
small set of actions that can be handled by a Mealy machine learner. The
class of register automata that is handled by our algorithm extends pre-
vious definitions since it allows for the generation of fresh output values.
This feature is crucial in many real-world systems (e.g. servers that gen-
erate identifiers, passwords or sequence numbers). We have implemented
our new algorithm in a tool called Tomte.

1 Introduction

Model checking and automata learning are two core techniques in model-driven
engineering. In model checking [13] one explores the state space of a given state
transition model, whereas in automata learning [6,17,25] the goal is to obtain
such a model through interaction with a system by providing inputs and observ-
ing outputs. Both techniques face a combinatorial blow up of the state-space,
commonly known as the state explosion problem. In order to find new techniques
to combat this problem, it makes sense to follow a cyclic research methodology in
which tools are applied to challenging applications, the experience gained during
this work is used to generate new theory and algorithms, which in turn are used
to further improve the tools. After consistent application of this methodology
for 25 years model checking is now applied routinely to industrial problems [16].
Work on the use of automata learning in model-driven engineering started later
[22] and has not yet reached the same maturity level, but in recent years there
has been spectacular progress.

We have seen, for instance, several convincing applications of automata learn-
ing in the area of security and network protocols. Cho et al. [12] successfully used
automata learning to infer models of communication protocols used by botnets.

The second author is supported by NWO project 612.001.216: Active Learning of
Security Protocols (ALSEP). The remaining authors are supported by STW project
11763: Integrating Testing And Learning of Interface Automata (ITALIA). Some
results from this paper appeared previously in the PhD thesis of the first author [1].
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Automata learning was used for fingerprinting of EMV banking cards [5]. It also
revealed a security vulnerability in a smartcard reader for internet banking that
was previously discovered by manual analysis, and confirmed the absence of this
flaw in an updated version of this device [11]. Fiterau et al. [14] used automata
learning to demonstrate that both Linux and Windows implementations vio-
late the TCP protocol standard. Using a similar approach, Tijssen [26] showed
that implementations of the Secure Shell (SSH) protocol violate the standard.
In [23], automata learning is used to infer properties of a network router, and for
testing the security of a web-application (the Mantis bug-tracker). Automata
learning has proven to be an extremely effective technique for spotting bugs,
complementary to existing methods for software analysis.

A major theoretical challenge is to lift learning algorithms for finite state
systems to richer classes of models involving data. A breakthrough has been
the definition of a Nerode congruence for a class of register automata [8,9] and
the resulting generalization of learning algorithms to this class [18,19]. Register
automata are a type of extended finite state machines in which one can test for
equality of data parameters, but no operations on data are allowed. Recently,
the results on register automata have been generalized to even larger classes of
models in which guards may contain arithmetic constraints and inequalities [10].

A different approach for extending learning algorithms to classes of models
involving data has been proposed in [4]. Here the idea is to place an intermediate
mapper component in between the implementation and the learner. This mapper
abstracts (in a history dependent manner) the large set of (parametrized) actions
of the implementation into a small set of abstract actions that can be handled
by automata learning algorithms for finite state systems. In [2], we described an
algorithm that uses counterexample-guided abstraction refinement to automat-
ically construct an appropriate mapper for a subclass of register automata that
may only store the first and the last occurrence of a parameter value.

Existing register automaton models [2,8,9] do not allow for the generation of
fresh output values. This feature is technically challenging due to the resulting
nondeterminism. Fresh outputs, however, are crucial in many real-world systems,
e.g. servers that generate fresh identifiers, passwords or sequence numbers. The
main contribution of this article is an extension of the learning algorithm of [2]
to a setting with fresh outputs. We have implemented the new learning algo-
rithm in our Tomte tool, http://tomte.cs.ru.nl/. As part of the LearnLib tool
[21,24], a learning algorithm for register automata without fresh outputs has
been implemented. In [3], we compared LearnLib with a previous version of
Tomte (V0.3), on a common set of benchmarks (without fresh outputs), a com-
parison that turned out favorably for Tomte. Tomte, for instance, can learn a
model of a FIFO-set buffer with capacity 30, whereas LearnLib can only learn
FIFO-set buffers with capacity up to 7. In this paper, we present an experimen-
tal evaluation of the new Tomte 0.4. Due to several optimizations, Tomte 0.4
significantly outperforms Tomte 0.3. In addition, Tomte can now learn models
for new benchmarks that involve fresh outputs.

http://tomte.cs.ru.nl/
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2 Register Automata

In this section, we define register automata and their operational semantics
in terms of Mealy machines. For reasons of exposition, the notion of register
automaton that we define here is a simplified version of what we have imple-
mented in our tool: Tomte also supports constants and actions with multiple
parameters.

We assume an infinite set V of variables. An atomic formula is a boolean expres-
sion of the form x = y or x �= y, with x, y ∈ V. A formula ϕ is a conjunction
of atomic formulas. We write Φ(X) for the set of formulas with variables taken
from X. A valuation for a set of variables X ⊆ V is a function ξ : X → Z. We
write Val(X) for the set of valuations for X. If ϕ is a formula with variables from
X and ξ is a valuation for X, then we write ξ |= ϕ to denote that ξ satisfies ϕ.

Definition 1. A register automaton (RA) is a tuple R = 〈I,O, V, L, l0, Γ 〉 with

– I and O finite sets of input symbols and output symbols, respectively,
– V ⊆ V a finite set of state variables; we assume two special variables in and

out not contained in V and write Vi/o for the set V ∪ {in, out},
– L a finite set of locations and l0 ∈ L the initial location,
– Γ ⊆ L × I × Φ(Vi/o) × (V → Vi/o) × O × L a finite set of transitions. For

each transition 〈l, i, g, �, o, l′〉 ∈ Γ , we refer to l as the source, i as the input
symbol, g as the guard, � as the update, o as the output symbol, and l′ as
the target. We require that out does not occur negatively in the guard, that is,
not in a subformula of the form x �= y.

In the above definition, variables in and out are used to specify the data para-
meter of input and output actions, respectively. The requirement that out does
not occur negatively in guards means that there are two types of transitions:
transitions in which there are no constraints on the value of out, and transitions
in which the value of out equals the value of one of the other variables in V ∪{in}.

Example 1. As a first running example of a register automaton we use a FIFO-
set with capacity two, similar to the one presented in [19]. A FIFO-set is a
queue in which only different values can be stored, see Fig. 1. Input Push tries
to insert a value in the queue, and input Pop tries to retrieve a value from the
queue. The output in response to a Push is OK if the input value can be added
successfully, or NOK if the input value is already in the queue or if the queue
is full. The output in response to a Pop is Return, with as parameter the oldest
value from the queue, or NOK if the queue is empty. We omit parameters that
do not matter, and for instance write Pop() instead of Pop(in) if parameter in
does not occur in the guard and is not touched by the update.

The operational semantics of register automata is defined in terms of (infinite
state) Mealy machines.
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l0start l1 l2

Push(in)/OK()
v:=in

Pop()/NOK()

in �= v
Push(in)/OK()
w:=in

in = v
Push(in)/NOK()

out = v
Pop()/Return(out)

out = v
Pop()/Return(out)
v:=w

Push()/NOK()

Fig. 1. FIFO-set with a capacity of 2 modeled as a register automaton

Definition 2. A Mealy machine is a tuple M = 〈I,O,Q, q0,→〉, where I, O,
and Q are nonempty sets of input actions, output actions, and states, respec-
tively, q0 ∈ Q is the initial state, and →⊆ Q×I×O×Q is the transition relation.

We write q
i/o−−→ q′ if (q, i, o, q′) ∈→, and q

i/o−−→ if there exists a state q′ such

that q
i/o−−→ q′. A Mealy machine is input enabled if, for each state q and input

i, there exists an output o such that q
i/o−−→. A Mealy machine is deterministic

if for each state q and input action i there is exactly one output action o and

exactly one state q′ such that q
i/o−−→ q′. A deterministic Mealy machine M can

equivalently be represented as a structure 〈I,O,Q, q0, δ, λ〉, where δ : Q × I → Q

and λ : Q × I → O are defined by: q
i/o−−→ q′ ⇒ δ(q, i) = q′ ∧ λ(q, i) = o.

A partial run of M is a finite sequence α = q0 i0 o0 q1 i1 o1 q2 · · · in−1 on−1 qn,

beginning and ending with a state, such that for all j < n, qj
ij/oj−−−→ qj+1. A

run of M is a partial run that starts with initial state q0. A trace of M is a
finite sequence β = i0 o0 i1 o1 · · · in−1 on−1 that is obtained by erasing all the
states from a run of M. We call a set S of traces behavior deterministic if, for
all β ∈ (I · O)∗, i ∈ I and o ∈ O, β i o ∈ S ∧ β i o′ ∈ S =⇒ o = o′. We call
M behavior deterministic if its set of traces is so. Let M1 and M2 be Mealy
machines with the same sets of input actions. Then we say that M1 implements
M2, notation M1 ≤ M2, if all traces of M1 are also traces of M2.

The operational semantics of a register automaton is a Mealy machine in
which the states are pairs of a location l and a valuation ξ of the state variables.
A transition may fire for given input and output values if its guard evaluates to
true. In this case, a new valuation of the state variables is computed using the
update part of the transition. We use 0 as initial value for state variables and
do not allow 0 as a parameter value in actions.

Definition 3. Let R = 〈I,O, V, L, l0, Γ 〉 be a RA. The operational semantics
of R, denoted �R�, is the Mealy machine 〈I × (Z \ {0}), O × (Z \ {0}), L ×
Val(V ), (l0, ξ0),→〉, where ξ0(v) = 0 for all v ∈ V , and relation → is given by

〈l, i, g, �, o, l′〉 ∈ Γ
ι = ξ ∪ {(in, d), (out, e)} ι |= g ξ′ = ι ◦ �

(l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′)
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We call R input enabled or deterministic if its operational semantics �R� is input
enabled or deterministic, respectively. A run or trace of R is just a run or trace,
respectively, of �R�. We call R input deterministic if for each state and for each
input action at most one transition may fire.

Example 2. The register automaton of Fig. 1 is input deterministic but not deter-
ministic. For instance, as there are no constraints on the value of out for Push-
transitions, an input Push(1) may induce both an OK(1) and an OK(2) output
(in fact, the output parameter can take any value). Note that for Push-transitions
the output value does not actually matter in the sense that out occurs neither
in the guard nor in the range of the update function. Hence we can easily make
the automaton of Fig. 1 deterministic, for instance by strengthening the guards
with out = in for transitions where the output value does not matter.

Example 3. Our second running example is a register automaton, displayed in
Fig. 2, that describes a simple login procedure. If a user performs a Register-input
then the automaton returns the output symbol OK together with a password.
The user may then login by performing a Login-input together with the password
that she has just received. After login the user may either change the password
or logout. We can easily make the automaton input enabled by adding self loops
i/NOK in each location, for each input symbol i that is not enabled. It is not
possible to model the login procedure as a deterministic register automaton:
the very essence of the protocol is that the system nondeterministically picks a
password and gives it to the user.

l0start l1 l2

Register()/OK(out)
pwd:=out

in = pwd
Login(in)/OK()

in �= pwd
Login(in)/NOK()

Logout()/OK()

ChangePassword(in)/OK()
pwd:=in

Fig. 2. A simple login procedure modeled as a register automaton

3 Active Automata Learning

Active automata learning algorithms have originally been developed for inferring
finite state acceptors for unknown regular languages [6]. Since then these algo-
rithms have become popular with the testing and verification communities for
inferring models of black box systems in an automated fashion. While the details
change for concrete classes of systems, all of these algorithms follow basically the
same pattern. They model the learning process as a game between a learner and
a teacher. The learner has to infer an unknown automaton with the help of the
teacher. The learner can ask three types of queries to the teacher:
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Output Queries ask for the expected output for a concrete sequence of inputs.
In practice, output queries can be realized as simple tests.

Reset queries prompt the teacher to return to its initial state and are typically
asked after each output query.

Equivalence Queries check whether a conjectured automaton produced by the
learner is correct. In case the automaton is not correct, the teacher provides
a counterexample, a trace exposing a difference between the conjecture and
the expected behavior of the system to be learned. Equivalence queries can
be approximated through (model-based) testing in black-box scenarios.

A learning algorithm will use these three kinds of queries and produce a sequence
of automata converging towards the correct one. We refer the reader to [20,25]
for introductions to active automata learning.

Figure 3 presents the overall architecture of our learning approach, which
we implemented in the Tomte tool. At the right we see the teacher or system
under learning (SUL), an implementation whose behavior can be described by
an (unknown) input enabled and input deterministic register automaton. At the
left we see the learner, which is a tool for learning finite deterministic Mealy
machines. In our current implementation we use LearnLib [21,24], but there
are also other libraries like libalf [7] that implement active learning algorithms.
In between the learner and the SUL we place three auxiliary components: the
determinizer, the lookahead oracle, and the abstractor. First the determinizer
eliminates the nondeterminism of the SUL that is induced by fresh outputs.
Then the lookahead oracle annotates events with information about the data
values that should be remembered since they play a role in the future behavior
of the SUL. Finally, the abstractor maps the large set of concrete values of the
SUL to a small set of symbolic values that can be handled by the learner.

The idea to use an abstractor for learning register automata originates from
[2] (based on work of [4]). Using abstractors one can only learn restricted types
of deterministic register automata. Therefore, [1,3] introduced the concept of
a lookahead oracle, which makes it possible to learn any deterministic register
automaton. In this paper we extend the algorithm of [1,3] with the notion of a
determinizer, allowing us to also learn register automata with fresh outputs. In
addition, we present some optimizations of the lookahead oracle that consider-
ably improve the performance of our tool.

Learner Abstractor
Lookahead

Oracle
Determinizer

Teacher
(SUL)

Fig. 3. Architecture of Tomte

4 A Theory of Mappers

In this section, we recall relevant parts of the theory of mappers from [4]. In
order to learn an over-approximation of a “large” Mealy machine M, we may
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place a transducer in between the teacher and the learner, which translates
concrete inputs to abstract inputs, concrete outputs to abstract outputs, and
vice versa. This allows us to reduce the task of the learner to inferring a “small”
Mealy machine with an abstract alphabet. The determinizer and the abstractor
of Fig. 3 are examples of such transducers. The behavior of these transducers is
fully specified by a mapper, a deterministic Mealy machine in which the concrete
symbols are inputs and the abstract symbols are outputs.

Definition 4 (Mapper). A mapper of concrete inputs I, concrete outputs O,
abstract inputs X, and abstract outputs Y is a deterministic Mealy machine
A = 〈I ∪ O,X ∪ Y,R, r0, δ, λ〉, where

– I and O are disjoint sets of concrete input and output symbols,
– X and Y are disjoint sets of abstract input and output symbols, and
– λ : R × (I ∪ O) → (X ∪ Y ), referred to as the abstraction function, respects

inputs and outputs, that is, for all a ∈ I ∪ O and r ∈ R, a ∈ I ⇔ λ(r, a) ∈ X.

A mapper allows us to abstract a Mealy machine with concrete symbols in I
and O into a Mealy machine with abstract symbols in X and Y . Basically, the
abstraction of Mealy machine M via mapper A is the Cartesian product of
the underlying transition systems, in which the abstraction function is used to
convert concrete symbols into abstract ones.

Definition 5 (Abstraction). Let M = 〈I,O,Q, q0,→〉 be a Mealy machine
and let A = 〈I ∪O,X ∪Y,R, r0, δ, λ〉 be a mapper. Then αA(M), the abstraction
of M via A, is the Mealy machine 〈X,Y ∪{⊥}, Q×R, (q0, r0),→〉, where ⊥�∈ Y
and → is given by the rules

q
i/o−−→ q′, r

i/x−−→ r′ o/y−−→ r′′

(q, r)
x/y−−→ (q′, r′′)

� ∃i ∈ I : r
i/x−−→

(q, r)
x/⊥−−−→ (q, r)

The first rule says that a state (q, r) of the abstraction has an outgoing x-

transition for each transition q
i/o−−→ q′ of M with λ(r, i) = x. In this case, there

exist unique r′, r′′ and y such that r
i/x−−→ r′ o/y−−→ r′′ in the mapper. An x-

transition in state (q, r) then leads to state (q′, r′′) and produces output y. The
second rule in the definition is required to ensure that the abstraction αA(M)
is input enabled. Given a state (q, r) of the mapper, it may occur that for some
abstract input symbol x there exists no corresponding concrete input symbol i
with λ(r, i) = x. In this case, an input x triggers the special “undefined” output
symbol ⊥ and leaves the state unchanged.

A mapper describes the behavior of a transducer component that we can
place in between a Learner and a Teacher. Consider a mapper A = 〈I ∪ O,X ∪
Y,R, r0, δ, λ〉. The transducer component that is induced by A records the cur-
rent state, which initially is set to r0, and behaves as follows:
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– Whenever the transducer is in a state r and receives an abstract input x ∈ X
from the learner, it nondeterministically picks a concrete input i ∈ I such that
λ(r, i) = x, forwards i to the teacher, and jumps to state δ(r, i). If there exists
no concrete input i such that λ(r, i) = x, then the component returns output
⊥ to the learner.

– Whenever the transducer is in a state r and receives a concrete answer o from
the teacher, it forwards λ(r, o) to the learner and jumps to state δ(r, o).

– Whenever the transducer receives a reset query from the learner, it changes
its current state to r0, and forwards a reset query to the teacher.

From the perspective of a learner, a teacher for M and a transducer for A
together behave exactly like a teacher for αA(M). (We refer to [4] for a formal-
ization of this claim.) In [4], also a concretization operator γA(H) is defined.
This concretization operator is the adjoint of the abstraction operator: for a
given mapper A, the corresponding concretization operator turns any abstract
Mealy machine H with symbols in X and Y into a concrete Mealy machine with
symbols in I and O. As shown in [4], αA(M) ≤ H implies M ≤ γA(H).

5 The Determinizer

The example of Fig. 2 shows that input deterministic register automata may
exhibit nondeterministic behavior: in each run the automaton may generate
different output values (passwords). This is a useful feature since it allows us to
model the actual behavior of real-world systems, but it is also problematic since
learning tools such as LearnLib can only handle deterministic systems. Most
(but not all) of the nondeterminism of register automata can be eliminated by
exploiting symmetries that are present in these automata. These symmetries are
captured through the notion of an automorphism.

Definition 6. A zero respecting automorphism is a bijection h : Z → Z satis-
fying h(0) = 0.

Zero respecting automorphisms can be lifted to the valuations, states, actions,
runs and traces of a register automaton. They induce an equivalence relation on
traces. Below we show that each trace is equivalent to a trace in which all fresh
inputs are positive and all fresh outputs are negative. Value 0 plays a special
role as the initial value of variables and does not occur in traces.

Definition 7 (Neat Traces). Consider a trace β of register automaton R:

β = i0(d0) o0(e0) i1(d1) o1(e1) · · · in−1(dn−1) on−1(en−1) (1)

Let Sj be the set of values that occur in β before input ij (together with initial
value 0), and let Tj be the set of values that occur before output oj: S0 = {0},
Tj = Sj ∪{dj} and Sj+1 = Tj ∪{ej}. Then β has neat inputs if each input value
is either equal to a previous value, or equal to the largest preceding value plus
one, that is, for all j, dj ∈ Sj ∪ {max(Sj) + 1}. Similarly, β has neat outputs
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if each output value is either equal to a previous value, or equal to the smallest
preceding value minus one, that is, for all j, ej ∈ Tj ∪ {min(Tj) − 1}. A trace is
neat if it has neat inputs and outputs, and a run is neat if its trace is neat.

Example 4. The trace i(1) o(3) i(7) o(7) i(3) o(2) is not neat, for instance
because the first output value 3 is fresh but not equal to −1, the smallest pre-
ceding value (including 0) minus 1. Also, the second input value 7 is fresh but
not equal to 4, the largest preceding value plus 1. An example of a neat trace is
i(1) o(−1) i(2) o(2) i(−1) o(−2).

The next proposition implies that in order to learn the behavior of a register
automaton it suffices to study its neat traces, since any other trace can be
obtained from a neat trace via a zero respecting automorphism.

Proposition 1. For every run α there exists a zero respecting automorphism h
such that h(α) is neat.

In Example 4, for instance, the (non neat) run with trace i(1) o(3) i(7) o(7) i(3)
o(2) can be mapped to the neat run with trace i(1) o(−1) i(2) o(2) i(−1) o(−2)
by the automorphism h that acts as the identity function except that h(3) = −1,
h(7) = 2, h(2) = −2, h(−1) = 7 and h(−2) = 3.

Whereas the learner may choose to only provide neat inputs, we usually
have no control over the outputs generated by the SUL, so these will typically
not be neat. In order to handle this, we place a mapper component, called the
determinizer, in between the SUL and the learner. The determinizer renames the
first fresh output value generated by the SUL to −1, the second to −2, etc. The
behavior of the determinizer is fully specified by the mapper P defined below.
As part of its state this mapper maintains a function (one-to-one relation) R
describing the current renamings, which grows dynamically during an execution.
Whenever the SUL generates an output n that does not occur in dom(R), the
domain of R, this output is mapped to a value m one less than the minimal value
in ran(R), the range of R, and the pair (n,m) is added to R. For any finite one-
to-one function R that contains (0, 0), let R̂ be a zero respecting automorphism
that extends R. Whenever the learner generates an input m, this is concretized
by the mapper to value n = R̂−1(m), which is forwarded to the SUL. Again, if
n does not occur in the domain of R, then R is extended with the pair (n,m).

Definition 8. Let R be an input deterministic register automaton with inputs
I and outputs O. The polisher for R is the mapper P such that

– the sets of concrete and abstract inputs both equal to I × Z,
– the sets of concrete and abstract outputs both equal to O × Z,
– the set of states consists of the finite one-to-one relations contained in Z×Z,
– the initial state is {(0, 0)}.
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– for all mapper states R, i ∈ I, o ∈ O and n ∈ Z,

λ(R, i(n)) = i(R̂(n))

λ(R, o(n)) =
{

o(R(n)) if n ∈ dom(R)
o(min(ran(R)) − 1) otherwise

δ(R, i(n)) = R ∪ {(n, R̂(n))}
δ(R, o(n)) =

{
R if n ∈ dom(R)
R ∪ {(n,min(ran(R)) − 1)} otherwise

Proposition 2. Any trace of αP(R) with neat inputs is neat. Moreover, αP(R)
and R have the same neat traces.

Example 5. The determinizer does not remove all sources of nondeterminism.
The register automation of Fig. 2, for instance, is not behavior deterministic,
even when we only consider neat traces, because of neat traces Register(1) OK(1)
and Register(1) OK(−1). Figure 4 shows another example, which models a simple
slot machine. By pressing a button a user may stop a spinning reel to reveal
a symbol. If two consecutive symbols are equal then the user wins, otherwise
she loses. The nondeterminism in the automaton of Fig. 2 is harmless since the
parameter value of the OK-output does not matter and the behavior after the
different outputs is the same. The nondeterminism of Fig. 4, however, is real in
the sense that it leads to distinct behaviors with different output symbols.

l0start l1 l2

button()/reel(symbol)
v:=symbol

button()/reel(symbol)
w:=symbol

v �= w
button()/lose()

v = w
button()/win()

Fig. 4. A simple slot machine modeled as a register automaton

In the scenarios of Example 5 the automata nondeterministically select an output
which then ‘accidentally’ equals a previous value. We call this a collision.

Definition 9. Let β be a trace of R as in equation (1). Then β ends with a
collision if (a) output value en−1 is not fresh (en−1 ∈ Tn−1), and (b) the sequence
obtained by replacing en−1 by some other value (except 0) is also a trace of R.
We say that β has a collision if it has a prefix that ends with a collision.

Example 6. The trace button() reel(137) button() reel(137) of the register automa-
ton of Fig. 4 has a collision, because the last occurrence of 137 is not fresh and
if we replace it by 138 the result is again a trace of the automaton.
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In many protocols, fresh output values are selected from a finite but large
domain. TCP sequence and acknowledgement numbers, for instance, are 32 bits
long. The length of the traces generated during learning is usually not that long
and these traces typically only contain a few fresh outputs. As a result, the prob-
ability that collisions occur during the learning process is typically very small.
For these reasons, we have decided in this paper to consider only observations
without collisions. Under the assumption that the SUL will not repeatedly pick
the same fresh value, we can detect whether an observation contains a collision by
simply repeating the experiment a few times: if, after the renames performed by
the determinizer, we still observe nondeterminism then a collision has occurred.
By restricting ourselves to collision free traces, it may occur that the automata
that we learn incorrectly describe the behavior of the SUL in the case of colli-
sions. We will, for instance, miss the win-transition of Fig. 4. But if collisions are
rare then it is extremely difficult to learn those parts of the SUL behavior any-
way. In applications with many collisions (for instance when fresh output values
are selected randomly from a small domain) it may be better not to use the
learning algorithm described in this paper, but rather an algorithm for learning
nondeterministic automata such as the one presented in [27].

Our approach for learning register automata with fresh outputs relies on the
following proposition.

Proposition 3. The set of collision free neat traces of an input deterministic
register automaton is behavior deterministic.

This means that our approach works for those register automata in which, when
a fresh output is generated, it does not matter for the future behavior whether or
not this fresh output equals some value that occurred previously. This is typically
the case for real-world systems such as servers that generate fresh identifiers,
passwords or sequence numbers.

6 The Lookahead Oracle

The main task of the lookahead oracle is to annotate each output action of the
SUL with a set of values that are memorable after occurrence of this action.
Intuitively, a parameter value d is memorable if it has an impact on the future
behavior of the SUL: either d occurs in a future output, or a future output
depends on the equality of d and a future input.

Definition 10. Let R be a register automaton, let β be a collision free trace of
R, and let d ∈ Z/{0} be a value that occurs as (input/output) parameter in β.
Then d is memorable after β iff R has a collision free trace of the form β β′,
such that if we replace all occurrences of d in β′ by a fresh value f then the
resulting sequence β (β′[f/d]) is not a trace of R anymore.

Example 7. In our example of a FIFO-set with capacity 2 (Fig. 1), the set of
memorable values after trace β = Push(1) OK() Push(2) OK() Push(3) NOK()



176 F. Aarts et al.

is {1, 2}. Values 1 and 2 are memorable, because of the subsequent trace β′ =
Pop() Return(1) Pop() Return(2). If we rename either the 1 or the 2 in β′ into a
fresh value, and append the resulting sequence to β, then the result is no longer
a trace of the model. In the example of the login procedure (Fig. 2), value 2207 is
memorable after Register() OK(2207) because Register() OK(2207) Login(2207)
OK() is a trace of the automaton, but Register() OK(2207) Login(1) OK() is not.

When the Lookahead Oracle receives an input action from the Abstractor, the
input is forwarded to the Determinizer unchanged. When the Lookahead Oracle
receives a concrete output action o from the Determinizer (see Fig. 3), then it
forwards a pair consisting of o and a valuation ξ to the Abstractor. The domain of
ξ is a set of variables W and the range equals a set of memorable values after the
occurrence of o. The set W may grow dynamically during the learning process
when the maximal number of memorable values of states in the observation tree
increases.

In order to accomplish its task, the Lookahead Oracle stores all the traces
of the SUL observed during learning in an observation tree. In practice, this
observation tree is also useful as a cache for repeated queries on the SUL. Each
node N in the tree is characterized by the trace to it from the root and N.MemV ,
the set of values which are memorable after running this trace.

Figure 5 shows two observation trees for our FIFO-set example.

N0
{}

N1
{}

N3
{}

Push(2)/OK()

N4
{}

Pop()/Return(1)

Push(1)/OK()

N2
{}

.

.

.

Pop()/NOK()

N0
{}

N1
{1}

N3
{}

Push(2)/OK()

N4
{}

Pop()/Return(1)

Push(1)/OK()

N2
{}

.

.

.

Pop()/NOK()

Fig. 5. Observation trees for FIFO-set without and with Pop() lookahead trace

Whenever a new node N is added to the tree, the oracle computes a set of
memorable values for it. For this purpose, the oracle maintains a set of lookahead
traces. All the lookahead traces are run starting at N to explore the future of
that node and to discover its memorable values.

Definition 11. A lookahead trace is a sequence of symbolic input actions of the
form i(v) with i ∈ I and v ∈ {p1, p2, . . .} ∪ {n1, n2, . . .} ∪ {f1, f2, . . .}.
Intuitively, a lookahead trace is a symbolic trace, where each parameter refers
to either a previous value (pj), or to a new input value (nj), or to a new, fresh
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output value (fj). A lookahead trace can be converted into a concrete lookahead
trace on the fly, by replacing each variable by a concrete value. Within lookahead
traces, parameter p1 plays a special role as the parameter that is replaced by a
fresh value. Instances of all lookahead traces are run in each new node to compute
memorable values. At any point in time, the set N.MemV of known memorable
values is a subset of the full set of memorable values of node N . Whenever a
memorable value has been added to a node, we require an observation tree to
be lookahead complete. This means every memorable value found has to have an
origin, i.e., it has to stem from either the memorable values of the parent node
or the values in the preceding transition:

N
i(d)/o(e)−−−−−→ N ′ ⇒ N ′.MemV ⊆ N.MemV ∪ {d, e}.

We employ a similar restriction on any non-fresh output parameters contained in
the transition leading up to a node. These too have to originate from either the
memorable values of the parent, or the input parameter in the transition. Herein
we differentiate from the algorithm in [1] which only enforced this restriction on
memorable values at the expense of running additional lookahead traces.

The observation tree at the left of Fig. 5 is not lookahead complete since
output value 1 of output Return(1) is neither part of the memorable values of the
node N1 nor is it an input in Pop(). Whenever we detect such an incompleteness,
we add a new lookahead trace (in this case Pop()) and restart the entire learning
process with the updated set of lookahead traces to retrieve a lookahead-complete
observation tree. The observation tree at the right is constructed after adding
the lookahead trace Pop(). This trace is executed for every node constructed,
as highlighted by the dashed edges. The output values it generates are then
tested if they are memorable and if so, stored in the MemV set of the node.
When constructing node N1, the lookahead trace Pop() gathers the output 1.
This output is verified to be memorable and then stored to N1’s MemV set. We
refer to [1] for more details about algorithms for the lookahead oracle.

7 The Abstractor

7.1 Mapper Definition

The behavior of the abstractor can be formally described by a mapper in the
sense of Sect. 4. Let I and O be the sets of input symbols and output symbols,
respectively, of the register automaton that we are learning. The lookahead oracle
annotates output symbols from O with valuations from a set W = {w1, . . . , wn}
of variables, thereby telling the abstractor what are the memorable values it
needs to store. We define a family of mappers AF , which are parametrized
by a function F : I → 2W . Intuitively, w ∈ F (i) indicates that it is relevant
whether the parameter of an input symbol i is equal to w or not. The initial
mapper is parametrized by function F∅ given by F∅(i) = ∅ for all i ∈ I. Using
counterexample-guided abstraction refinement, the sets F (i) are subsequently
extended. The abstraction function of the mapper AF leaves the input and
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output symbol unchanged, but modifies the parameter values. The abstraction
function replaces the actual value of an input parameter by the name of a vari-
able in F (i) that has the same value, or by ⊥ in case there is no such variable.
Thus the abstract domain of the parameter of i is the finite set F (i) ∪ {⊥}.
Likewise, the actual value of an output parameter is not preserved, but only the
name of variable in W ∪ {in} that has the same value, or ⊥ if there is no such
variable. The valuation ξ that has been added as an annotation by the looka-
head oracle describes the new state of the mapper after an output action. The
abstraction function replaces ξ by an update function � that specifies how ξ can
be computed from the old state r and the input and output values received.

Example 8. As a result of interaction with mapper AF∅ , the learner succeeds
to construct the abstract hypothesis shown in Fig. 6. This first hypothesis is
incorrect since it does not check if the same value is inserted twice. This is
because the Abstractor only generates fresh values during the learning phase.

l0start l1 l2

Push(⊥)/OK()
x1:=in

Pop()/NOK() Push(⊥)/OK()
x2:=in

Pop()/Return(x1) Pop()/Return(x1)
x1:=x2

Push(⊥)/NOK()

Fig. 6. First hypothesis of the FIFO-set

A flaw in the hypothesis will (hopefully) be detected during the hypothesis verifi-
cation phase, and the resulting counterexample will then be used for an abstrac-
tion refinement. In order to test the correctness of a hypothesis, we need to
concretize it. Using the theory of [4] we get a concretization operator for free,
but in Tomte we actually use a slightly different concretization, which uses infor-
mation about the abstract hypothesis to make smart guesses about what to do in
situations where the mapper state is not injective. We refer to [1] for a detailed
discussion of this issue.

7.2 Counterexample Analysis

During hypothesis verification the mapper selects random values from a small
range for every abstract parameter value ⊥. In this way it will find a concrete
counterexample trace, e.g. Pop() NOK() Push(9) OK() Pop() Return(9) Push(3)
OK() Push(3) NOK(), that is generated by the SUL but not allowed by the
hypothesis, which specifies that the last output should be OK(). In order to
simplify the analysis and to improve scalability, Tomte first tries to reduce the
length of the counterexample. To this end it uses two reduction strategies, first
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removing loops, then single transitions. Both of these approaches are described
in detail in [15]. Single transition reduction is an optimization applied in this
work but not used in [1].

Long sequences of inputs typically lead to loops when they are run in the
hypothesis. Tomte eliminates these loops and checks if the result is still a coun-
terexample. Removing cycles from the concrete counterexample results in the
reduced counterexample Push(3) OK() Push(3) NOK(). Tomte then eliminates
each transition from left to right, preserving the resulting trace if it is still a coun-
terexample. In this case, removing either transition yields the trace Push(3) OK()
which is not a counterexample. So Push(3) OK() Push(3) NOK() is preserved.
Once shortened, Tomte needs to determine if the counterexample is meant for
the Learner to handle or requires abstraction refinement. It does so by converting
the reduced concrete counterexample into one in which the input parameters are
fresh, Push(1) OK() Push(2) NOK, and running it on the SUL. This fails since
the last output returned by the SUL is OK. This means that Tomte needs to
refine the input abstraction.

For a detailed discussion of the counterexample analysis algorithm used in
Tomte we refer to [1]. Here we just sketch the main ideas. We walk through a
counterexample trace and check for each input value if it occurs earlier in the
trace. If so, then we check if this relation is already covered by mapper parameter
F . If not we have found a potential source for the counterexample. It is possible
that the two values are equal by chance, and that their equality is irrelevant
for the counterexample. We test this by making the value fresh and recheck if
the resulting trace is still a counterexample. If it is still a counterexample, the
equality of the two values is not needed for the counterexample, so we leave the
fresh value in the trace and continue with the next input. Otherwise, the equality
of the two values does matter and we can refine the abstraction by extending
the function F . A complicating factor is that a value not related with a value in
history can still be important for the counterexample by a relation with an input
parameter further on in the trace. So when we toggle a value to a fresh value
we also consider all possible ways to toggle along subsequent parameters in the
trace with the same value to the same fresh value and verify if the result is still a
counterexample. If we find such a possibility then we keep the toggle and continue
with next input parameter, else we have really found a meaningful refinement.
After analysis of the counterexample, three things may happen: (1) the mapper
used by the Abstractor is refined via an extension of function F , (2) the set of
lookahead traces is extended since we have found a new memorable value, the
added lookahead traces should fetch this value during the new learning iteration,
(3) we have discovered that the abstract hypothesis is incorrect, construct an
abstract version of the counterexample, and forward it to the Learner. In the
current algorithm, as an optimization to [1], the set of lookahead traces is only
extended with the shortest lookahead traces required to fetch the memorable
value. This leads to comparatively shorter lookahead traces. Do note however,
that the length of the longer lookahead trace remains heavily dependent on the
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reduced counterexample length. Hence, techniques such as loop and single trace
reduction are essential.

In the analysis of the counterexample for the hypothesis of Fig. 6, Tomte
discovers that it is relevant if the parameter of input Push is equal to variable
x1. Therefore, the set F (Push) is extended to {x1}. Consequently, the alphabet of
the learner is extended with a new input symbol Push(x1) and a corresponding
lookahead trace is added to the lookahead oracle. Again, the entire learning
process is restarted from scratch. The next hypothesis learned is equivalent to
the model in Fig. 1 and the learning algorithm stops.

8 Evaluation and Comparison

We used our tool to learn models of various benchmarks such as SIP, the Alter-
nating Bit Protocol, the Biometric Passport, FIFO-Sets, and Multi-Login Sys-
tems. Apart from the last one all these benchmarks have already been tackled
in [3] with Tomte 0.3, a previous version of our tool, and with LearnLib. All
benchmarks are available via the Tomte website.

Table 1 shows results Tomte 0.4, the release subject of this work, side by side
with the results for LearnLib and Tomte 0.3 as reported in [3]. Results for each
model are obtained by running the learner 10 times with 10 different seeds. Over
these runs we collect the average and standard deviation for the numbers of:

– reset queries run during learning (learn res),
– concrete input symbols applied during learning (learn inp),
– reset queries run during counterexample analysis (ana res), and
– concrete input symbols applied during counterexample analysis (ana inp).

We omit running times here, as we consider the number of queries to be a
superior metric for measuring efficiency, but the reader may find them at http://
automatalearning.cs.ru.nl/. Experiments were done using a random equivalence
oracle configured with a maximum test query length of 100. We used 10000 test
runs per equivalence query for all models apart from the Multi-Login Systems
which required more runs.

Tomte 0.4 shows to be more efficient than LearnLib and Tomte 0.3. The
average number input symbols needed to learn decreased between 15 percent
to over 90 percent compared to Tomte 0.3 and up to 99 percent compared to
LearnLib. LearnLib still performs better for two models but, as noted in [3], it
does not scale well for more complex systems. The average number of inputs
Tomte 0.4 needs for counterexample analysis is also generally lower. Improve-
ments over Tomte 0.3 can be largely explained by the optimizations in lookahead
and counterexample processing that we presented in this article.

The Multi-Login System benchmark can only be handled by Tomte 0.4 (and
no other tool to our knowledge) due to the occurrence of fresh outputs. The
benchmark generalizes the example of Fig. 2 to multiple users. The difference is
an additional input parameter for the user ID, when logging in and registering.

http://automatalearning.cs.ru.nl/
http://automatalearning.cs.ru.nl/
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Table 1. Experimental comparison between LearnLib, Tomte 0.3 and Tomte 0.4

Learnlib Tomte 0.3 Tomte 0.4

learn learn ana ana learn learn ana ana learn learn ana ana
res inp res inp res inp res inp res inp res inp

Alternating bit protocol sender

avg 452 2368 40551 405577 465 2459 7 15 65 224 13 30
stddev 453 2781 125904 1258919 0 2 4 11 1 0 1 5

Alternating bit protocol receiver

avg 6077 102788 72 1420 271 1168 19 56 203 989 4 6
stddev 13184 245291 57 2813 1 0 4 13 0 0 2 2

Biometric passport

avg 914 8517 365 7768 8769 43371 55 287 729 2884 33 143
stddev 614 12089 112 4334 5 35 7 56 1 3 4 43

Alternating bit protocol channel

avg 52 252 29 173 67 210 0 0 37 102 0 0
stddev 29 235 12 115 0 0 0 0 0 0 0 0

Palindrome/repnumber checker

avg 5 5 2050 8032 8366 24713 80 139 413 815 25 23
stddev 0 0 6225 24909 4 9 14 27 1 0 1 2

Session initiation protocol

avg 92324 1962160 106868 1178964 6195 39754 256 1568 2557 14029 177 925
stddev 137990 4078104 336225 3696587 1103 7857 94 626 108 722 33 192

FIFO-set(2)

avg 44 136 12 44 99 423 6 17 52 220 9 19
stddev 11 49 9 44 0 2 1 5 1 2 2 13

FIFO-set(7)

avg 66392 1097470 634 13530 3215 31487 132 1284 1804 19306 143 1123
stddev 195580 3310472 66 2397 7 70 44 616 7 57 52 636

FIFO-set(30)

avg unable to learn 591668 20206862 15714 620479 336435 13285345 11443 473839
stddev 72 2112 1427 232984 107 3416 1785 164348

Multi-Login(1)

avg unable to learn unable to learn 3910 21943 323 7002
stddev 1095 14882 629 19774

Multi-Login(2)

avg unable to learn unable to learn 107057 667356 678 3361
stddev 21274 139189 209 1395

Multi-Login(3)

avg unable to learn unable to learn 6495794 55821831 3202 22846
stddev 1237096 12218366 1021 9750

Moreover, a configurable number of users may register, supporting simultaneous
login sessions for different registered users. Tomte 0.4 was able to successfully
learn instantiations of Multi-Login Systems for 1, 2 and 3 users. The current
learning algorithm does not scale well for higher numbers of users. This can be
ascribed to the large number of memorable values in combination with the large
numbers of abstractions required for this benchmark. The latter is also due to
the order in which memorable values are found and thus indexed, which can
differ per state.
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9 Conclusions and Future Work

We have presented a mapper-based algorithm for active learning of register
automata that may generate fresh output values. This class is more general
than the one studied in previous work [1–3,8,9]. We have implemented our
active learning algorithm in the Tomte tool and have evaluated the performance
of Tomte on a large set of benchmarks, measuring the total number of inputs
required for learning. For a set of common benchmarks without fresh outputs
Tomte outperforms LearnLib (on the numbers reported in [3]), but many fur-
ther optimizations are possible in both tools. In addition, Tomte is able to learn
models of register automata with fresh outputs. Our method for handling fresh
outputs is highly efficient and the computational cost of the determinizer is neg-
ligible in comparison with the resources needed by the lookahead oracle and the
abstractor. Our next step will be an extension of Tomte to a class of models with
simple operations on data.
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Abstract. Product lines are an established framework for software
design. They are specified by special diagrams called feature models. For
formal analysis, the latter are usually encoded by propositional theories
with Boolean semantics. We discuss a major deficiency of this semantics,
and show that it can be fixed by considering that a product is an instan-
tiation process rather than its final result. We call intermediate states
of this process partial products, and argue that what a feature model
M really defines is a poset of partial products called a partial product
line, PPL(M). We argue that such PPLs can be viewed as special par-
tial product Kripke structures (ppKS) specifiable by a suitable version of
CTL (partial product CTL or ppCTL). We show that any feature model
M is representable by a ppCTL theory Φ(M) such that for any ppKs
K, K |= Φ(M) iff K = PPL(M); hence, Φ(M) is a sound and complete
representation of the feature model.

1 Introduction

The Software Product Line approach is well-known in the software industry.
Products in a product line (pl) share some common mandatory features, and
differ by having some optional features that allow the developer to configure
the product the user wants (e.g., MS Office, a Photoshop, or the Linux kernel).
Instead of producing a multitude of separate products, the vendor designs a single
pl encompassing a variety of products, which results in a significant reduction
in development time and cost [23]. Industrial pls may be based on thousands of
features inter-related in complex ways. Methods of specifying pls and checking
the validity of a pl against a specification is an active research area represented
at major software engineering conferences [2,25,31].

brakes 

M1 

car 

eng

abs 

The most common method for designing a pl is to build a
feature model (fm) of the products. A toy example is shown in
the inset figure. Model M1 says that a (root feature called) car
must have an engine and brakes (black bullets denote manda-
tory subfeatures), and brakes can be optionally (note the hol-
low bullet) equipped with an anti-skidding system (abs). The
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 184–202, 2015.
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model specifies a pl consisting of two products: P = {car, eng, brakes} and
P ′ = P∪{abs}. As fms of industrial size can be big and complex, they require
tools for their management and analysis, and thus should be represented by for-
mal objects processable by tools. A common approach is to consider features
as atomic propositions, and view an fm as a theory in the Boolean propo-
sitional logic (BL), whose valid valuations are to be exactly the valid prod-
ucts defined by the fm [3]. For example, model M1 represents the BL theory
Φ(M1) = {eng→car, brakes→car, abs→brakes} ∪ {car→eng, car→brakes}∪{car}:
the first three implications encode subfeature dependencies (a feature can appear
in a product only if its parent is in the product), and the last two implications
encode the mandatory dependencies between features. The root feature must be
always included in the product. This approach gave rise to a series of prominent
applications for analysis of industrial size pls [11,13,28]. However, the Boolean
semantics for fms has an almost evident drawback of misrepresenting fms’ hier-
archial structure.

eng

car brakes abs 

M2 

The second inset figure shows an fm M2 that is essentially
different from M1 (and is, in fact, pathological), but has the same
set of products, PL(M2) = PL(M1) = {P, P ′} determined by
an equivalent Boolean theory Φ(M2) = {car→eng, brakes→eng,
abs→eng}∪{eng→car, eng→brakes} ∪{eng}. The core of the
problem is that two semantically different dependencies (the par-
ent feature and a mandatory subfeature) are both encoded by implication.

We are not the first to have noticed this drawback, e.g., it is mentioned in
[28], and probably many researchers and practitioners in the field are aware of
the situation. Nevertheless, as far as we know, no alternative to the Boolean logic
of feature modeling (FM) has been proposed in the literature, which we think
is theoretically unsatisfactory. Even more importantly, inadequate logical foun-
dations for FM hinder practical analyses: as important information contained in
fms is not captured by their BL-encoding, this information is either missing from
analyses, or treated informally, or hacked in an ad hoc way. In a sense, this is yet
another instance of the known software engineering problem, when semantics is
hidden in the application code rather than explicated in the specification, with
all its negative consequences for software testing, debugging, maintenance, and
communication between the stakeholders.

The main goal of the paper is to show that Kripke structures and modal
logic provide an adequate logical basis for FM. Our main observation is that the
key notion of FM—a product built from features—should be considered as an
instantiation process rather than its final result. We call intermediate states of
this process partial products, and argue that what an fm M really specifies is
a partially ordered set of partial products, which we call a partial product line
(ppl) generated by model M , PPL(M). The commonly considered products of
M (we call them full) only form a subset of PPL(M). We then show that any
ppl can be viewed as an instance of a special type of Kripke structure, which
we axiomatically define and call a partial product Kripke structure (ppKS). The
latter are specifiable by a suitable version of modal logic, which we call par-
tial product CTL (ppCTL), as it is basically a fragment of CTL enriched with a
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zero-ary modality that only holds in states representing full products. We show
that any fm M can be represented by a ppCTL theory ΦML(M) accurately spec-
ifying M ’s intended semantics: the main result of the paper states that for any
ppKS K, K |= ΦML(M) iff K = PPL(M), and hence ΦML(M) is a sound
and complete representation of the fm. Then we can replace fms by the respec-
tive ppCTL-theories, which are well amenable to formal analysis and automated
processing.

In a broader perspective, we want to show that mathematical foundations
of FM are mathematically interesting. Especially intriguing are connections of
FM to event-based concurrency modeling. In fact, pls can be seen as a special
interpretation of configuration structures [32]: features are events, partial prod-
ucts are configurations, and ppls are configuration structures. Then fms can be
seen as a far reaching generalization of Winskel’s event structures [33] and other
formalisms for specifying dependencies between events. On the other hand, we
believe that FM can make a non-trivial contribution to concurrency modeling
by suggesting a very expressive yet simple and practically usable notation for
specifying concurrency (including transaction mechanisms).

Our plan for the paper is as follows. Section 2 motivates our formal frame-
work: we describe the basics of FM, and show how the deficiency of the Boolean
semantics can be fixed by introducing partial products and transitions between
them. In Sect. 3, we formalize fms and their ppl in a way convenient for us to
work in the present paper. In Sect. 4, we introduce the notion of a ppKS as imme-
diate abstraction of ppls, and ppCTL as a language to specify ppKS properties.
We show how to translate an fm into a ppCTL-theory, and formulate our main
results (proofs can be found in the [12]). We discuss some practical applications
of the modal logic view of fms in Sect. 5, and connections between FM and con-
currency in Sect. 6. Related work in the FM literature is discussed in Sect. 7.
Section 8 concludes and lists several open problems. The list of abbreviations
used throughout the paper can be found on page 18.

2 Feature Models and Partial Product Lines

This section aims to motivate the formal framework we will develop in the paper.
In Sect. 2.1, we discuss the basics of FM, and in Sect. 2.2 introduce partial prod-
ucts and ppls. We will begin with ppls generated by simple fms, which can be
readily explained in lattice-theoretic terms. Then (in Sect. 2.3) we show that
ppls generated by complex fms are more naturally, and even necessarily, to be
considered as transition systems.

2.1 Basics of Feature Modeling

An fm is a graphical structure presenting a hierarchial decomposition of features
with some possible cross-cutting constraints (cccs) between them. Figure 1 gives
an example. It is a tree of features, whose root names the product (‘car’ in this
case), and edges relate a feature to its subfeatures. Edges with black bullets
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denote mandatory subfeatures: every car must have an eng (engine), a gear,
and brakes. The hollow-end edge says that brakes can optionally be equipped
with abs. Black angles denote so called OR-groups: an engine can be either gas
(gasoline), or ele (electric), or both. Hollow angles denote XOR-groups (eXclusive
OR): a gear is either mnl (manual) or atm (automatic) but not both; it must be
supplied with oil as dictated by the black-bullet edge. The ×-ended arc says that
an electric engine cannot be combined with a manual gear, and the arrow-headed
arc says that an automatic gear requires ABS. According to the model, the set
of features {car, eng, gas, gear, mnl, oil, brakes} is a valid product, but replacing
the gasoline engine by electric, or removal of oil, would make the product invalid.
In this way, the model compactly specifies seven valid products amongst the set
of 29 possible combinations of 9 non-root features (the root is always included),
and exhibits dependencies between choices.

Fig. 1. A sample fm

In the BL of FM, an fm is a representation of
a BL theory. For example, the theory encoded by
the model in Fig. 1 consists of a set of implications
denoting subfeature dependencies and unary manda-
tory dependencies, as explained in the introduction,
plus three implications denoting grouped mandatori-
ness: {eng→gas∨ ele, gear→mnl∨ atm, mnl∧ atm→⊥}
(with ⊥ denoting False), plus two implications encod-

ing cccs: {mnl∧ele→⊥, atm→abs}. However, as we saw above, a BL encoding is
deficient.

2.2 Partial Product Lines: Products as Processes

What is lost in the BL-encoding is the dynamic nature of the notion of products.
An fm defines not just a set of valid products but the very way these products are
to be (dis)assembled step by step from constituent features. Correspondingly, a
pl appears as a transition system initialized at the root feature (say, car for model
M1 in Fig. 2a) and gradually progressing towards fuller products (say, {car} →
{car, eng} → {car, eng, brakes} or {car} → {car, brakes} → {car, brakes, abs} →
{car, brakes, abs, eng}); we will call such sequences instantiation paths.

The graph in Fig. 2(b1) specifies all possible instantiation paths for M1 (c,
e, b, a stand for car, eng, brakes, abs, resp., to make the figure compact). Nodes
in the graph denote partial products, i.e., valid products with, perhaps, some
mandatory features missing: for example, {c,e} is missing feature b, and {c,b} is
missing feature e. In contrast, {e} and {c,a} are invalid as they contain a feature
without its parent; such sets do not occur in the graph. As a rule, we will call
partial products just products. Product {c,e,b} is full (complete) as it has all
mandatory subfeatures of its member-features; nodes denoting full products are
framed. Each edge encodes adding a single feature to the product at the source
of the edge; in text, we will often denote such edges by an arrow and write, e.g.,
{c} −→e {c, e}, where the subscript denotes the added feature.

We call the instantiation graph described above the ppl determined by M1,
and write PPL(M1). In a similar way, the ppl of M2, PPL(M2), is built in
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Fig. 2. From fms to ppls: simple cases

Fig. 2(b2). We see that although both fms have the same set of full products
(i.e., are Boolean semantics equivalent), their ppls are essentially different both
structurally and in the content of products. This essential difference between the
ppls properly reflects the essential difference between the fms.

2.3 Partial Product Lines: From Lattices to Transition Systems

Generating ppls PPL(M1,2) from models M1,2 in Fig. 2 can be readily explained
in lattice-theoretic terms. Let us first forget about mandatory bullets, and con-
sider all features as optional. Then both models are just trees, and hence are
posets, even join semi-lattices (joins go up in feature trees). Valid products of a
model Mi are upward-closed sets of features (filters), and form a lattice (consider
Fig. 2(b1,b2) as Hasse diagrams), whose join is set union, and meet is intersec-
tion. If we freely add meets (go down) to posets M1,2 (eng∧brakes etc.), and thus
freely generate lattices L(Mi), i = 1, 2, over the respective posets, then lattices
L(Mi) and PPL(Mi) will be dually isomorphic (Birkhoff duality).

The forgotten mandatoriness of some features appears as incompleteness of
some products; we call them partial. Partial products closed under mandatoriness
are full. Thus, ppls of simple fms like in Fig. 2(a) are their filter lattices with
distinguished subsets of full products. Later, we will discuss whether this lattice-
theoretic view works for more complex fms.

Figure 3 (left) shows a fragment of the fm in Fig. 1, in which, for uniformity,
we have presented the XOR-group as an OR-group with a new ccc added to the
tree (note the ×-ended arc between mnl and atm). To build its ppl, we follow
the idea described above, and first consider M3 as a pure tree-based poset with
all the extra-structure (denoted by black bullets and black triangles) removed.
Figure 3 (right) describes a part of the filter lattice as a Hasse diagram (ignore
the difference between solid and dashed edges for a while); to ease reading, the
number of letters in the acronym for a feature corresponds to its level in the
tree, e.g., c stands for car, en for eng etc.

Now consider how the additional structure embodied in the fm influences
the ppl. Two cccs force us to exclude the bottom central and right products
from the ppl; they are shown in brown-red and the respective edges are dashed.
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Fig. 3. From fms to ppls: Complex case

To specify this lattice-theoretically, we add to the lattice of features a universal
bottom element ⊥ (a feature to be a subfeature of any feature), and write two
defining equations: ele ∧ mnl = ⊥ and mnl ∧ atm = ⊥. (We owe this idea and
much of our lattice-theoretic treatment of fms to Pratt’s paper [24].) Then, in
the filter lattice, the join of products {c,en,ele,ge} and {c,ge,mnl,en} “blows up”
and become equal to the set of all features (“False implies everything”). The
same happens with the other pair of conflicting products.

Next we consider the mandatoriness structure of model M3 (given by black
bullets and triangles). This structure determines a set of full products (not shown
in Fig. 3) as we discussed above. In addition, mandatoriness affects the set of
valid partial products as well. Consider the product P = {c, en, ge} at the center
of the diagram. The left instantiation path leading to this product, {c} −→en

{c, en} −→ge P is not good because gear was added to engine before the latter
is fully assembled (a mandatory choice between being electric or gasoline, or
both, has still not been made). Jumping to another branch from inside of the
branch being processed may be considered poor design practice that should
be prohibited, and the corresponding transition is declared invalid. Similarly,
transition {c, ge} −→en P can be also invalid as engine is added before gear
instantiation is completed. Hence, product P becomes unreachable, and should
be removed from the ppl. (In the diagram, invalid edges are dashed (red with a
color display), and the products at the ends of such edges are invalid too1).

Thus, a reasonable requirement for the instantiation process is that process-
ing a new branch of the feature tree should only begin after processing of the
current branch has reached a full product. We call this requirement instantiate-
to-completion (I2C) by analogy with the run-to-completion transaction mecha-
nism in behavior modeling (indeed, instantiating a mandatory branch of a feature
tree can be seen as a transaction).

1 With a more flexible view of product assembly, some possible interleavings could be
prohibited and some allowed. (We owe this idea to an anonymous reviewer.) Then
we need to add a suitable annotating mechanism to the fm formalism.
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Importantly, I2C prohibits transitions rather than products, and it is pos-
sible to have a product with some instantiation paths into it being legal (and
hence the product is legal as well), but some paths to the product being ille-
gal. Figure 4 shows a simple example. In PPL(M4), the “diagonal” transition
{c, ge}−→{c, en, ge} violates I2C and must be removed. However, its target prod-
uct is still reachable from product {c, en} as the latter is fully instantiated. Hence,
the only element excluded by I2C is the diagonal dashed transition.

car

eng gear

oil

c

c,en c,ge

c,ge,oilc,en,ge

M4

PPL(M4)
c,en,ge,oil

Fig. 4. I2C at work.

Thus, a ppl can be richer than its lattice of partial
products (transition exclusion cannot be explained lattice-
theoretically), and hence we need to consider ppls as
Kripke structures, and use modal logic for specifying them.
Moreover, even if all inclusions are transitions, the Boolean
logic is too poor to express important semantic properties
embodied in ppls: e.g., we may want to say that every
product can be completed to a full product, and every full
product is a result of such a completion. Or, if a product
P has feature f , then any full product completing P must
have feature g, and so on.

Thus, the transition relation is an important and inde-
pendent component of the general ppl structure. As soon
as transitions become first-class citizens, it makes sense
to distinguish full products by supplying them, and only
them, with identity loops. Such loops do not add any feature to the product,
and has a clear semantic meaning: the instantiation process can stay in a full
product state indefinitely.

3 Feature Models and Partial Product Lines: Formally

A unified formal approach to fms and their semantics is developed in [27]. Our
variant of fms’ formalization is designed to support our work in the paper: the
structure of our modal theories will follow the structure of fms as defined below.

3.1 Feature Models

Here, mandatory features and XOR-groups are derived constructs. A mandatory
feature can be seen as a singleton OR-group. An XOR-group can be expressed by
an OR-group with an additional exclusive constraint. Typically, cccs are either
exclusive (the x-ended arc in Fig. 1), or inclusive (the dashed arrow arc in Fig. 1),
as done for model M3 in Fig. 3(a).

Definition 1 (Feature Models). A feature model is a tuple M = (T,OR, EX ,
IN ) of the following components:

(i) T = (F, r, ↑) is a tree whose nodes are features: F denotes the set of all
features, r ∈ F is the root, and function ↑ maps each non-root feature
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f ∈ F−r
def= F \ {r} to its parent f↑. The inverse function that assigns

to each feature the set of its children (called subfeatures) is denoted by
f↓. The set of all ancestors and all descendants of a feature f are denoted
by f↑↑ and f↓↓, resp. Features f, g are called incomparable, f#g, if nei-
ther of them is a descendant of the other. We write #2F for the set
{G ⊂ F : G 	= ∅ and f#g for all f, g ∈ G}.

(ii) OR is a function that assigns to each feature f ∈ F a set OR(f) ⊂ 2f↓

(possibly empty) of disjoint subsets of f ’s children called OR-groups. If a
group G ∈ OR(f) is a singleton {f ′} for some f ′ ∈ f↓, we say that f ′ is

a mandatory subfeature of f . Elements in set O(f) def= f↓ \ ⋃ OR(f) are
called optional subfeatures of f .
We call the pair (T,OR) a feature tree and denote it by TOR.

(iii) EX ⊆ #2F is a set of exclusive dependencies between features.
(iv) IN ⊂ #2F × #2F is a set of inclusive dependencies between features.

A member of this set is written as an implication (f1∧ . . . ∧fm) →
(g1∨ . . . ∨gn).

Exclusive and inclusive dependencies are also called cccs. The class of all fms
over the same feature set F is denoted by M(F ). �

3.2 Full and Partial Products

A common approach for formalizing the pl (of full products) of a given fm is
to use BL [3]. Features are considered as atomic propositions, and dependencies
between features are specified by logical formulas. So, given an fm M , each of
its four components gives rise to a respective propositional theory as shown in
the upper four rows of Table 1. Altogether, these theories constitute M ’s full
product theory denoted by Φ!

BL(M) (note the bang superscript). A set of features
P is defined to be a legal full product for M iff P |= Φ!

BL(M). The set of all full
products of M is denoted by FPM .

Table 1. BL theories extracted from an fm M = (T, OR, EX , IN )

(1) ΦBL(T ) = {� → r} ∪ {f ′ → f : f ∈ F, f ′ ∈ f↓}
(2) ΦBL(EX ) = {∧

G → ⊥ : G ∈ EX}
(3!) Φ!

BL(OR) = {f → ∨
G : f ∈ F,G ∈ OR(f)}

(4!) Φ!
BL(IN ) = {∧ G → ∨

G′ : (G,G′) ∈ IN}
(all!) Φ!

BL(M) = ΦBL(T ) ∪ ΦBL(EX ) ∪ Φ!
BL(OR) ∪ Φ!

BL(IN )
(3) ΦI2C

BL(TOR) =
{
f ∧ g → (

∧
Φ!
BL(T

f
OR))∨

(
∧

Φ!
BL(T

g
OR)) : f, g ∈ F, f↑ = g↑}

(all) ΦBL(M) = ΦBL(T ) ∪ ΦBL(EX ) ∪ ΦI2C
BL(TOR)

As discussed in the introduction, the encoding above misrepresents the fm’s
hierarchical structure. Below we revise the propositional encoding of fms based
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on our discussion in Sect. 2, and introduce a BL theory for partial products.
We call this theory M ’s partial product theory and denote it by ΦBL(M) (now
without the bang superscript). Theory ΦBL(M) consists of three components (see
row (all) in the Table): ΦBL(T ) is the BL-encoding of subfeature dependencies
(row (1)), ΦBL(EX ) is the BL-encoding of exclusive dependencies (row (2)), and
ΦI2C
BL(TOR) is the Boolean encoding of the I2C-condition, which we describe below.

Consider once again PPL(M3) in Fig. 3, from which product {c, en, ge} is
excluded as violating the I2C principle. Note that the conflict between features
en and ge is transient rather than permanent, and its propositional specification
is not trivial.2 To solve this problem, we first introduce the following notion.

Definition 2 (Induced Subfeature Tree and I2C). Let TOR = (T,OR) be
a feature tree over a set of features F , and f∈F . A feature subtree induced
by f is a pair T f

OR = (T f ,ORf ) with T f being the tree under f , i.e., T f def=
(f↓↓ ∪ {f}, f, ↑), and mapping ORf is inherited from OR, i.e., for any g ∈ f↓↓,
ORf (g) = OR(g). �
Now we can specify theory ΦI2C

BL(TOR) as shown in row (3) in Table 1. The theory
formalizes the idea that if a valid product contains two incomparable features,
then at least one of these features must be fully instantiated within the product.

A set of features P is defined to be a legal partial product for M iff P |=
ΦBL(M). The set of all partial products of M is denoted by FPM . Below the term
’product’ will mean ’partial product’. Note that transition exclusion discussed
in Sect. 2.3 cannot be explained with BL and needs a modal logic; we will define
a suitable logic and show how it works in Sec. 4.

3.3 Ppls as Transition Systems

The problem we address is when a valid product P can be augmented with
a feature f /∈P so that product P ′ = P�{f} is valid as well. We then write
P −→ P ′ and call the pair (P, P ′) a valid transition.

Two necessary conditions are obvious: the parent f↑ must be in P , and f
must not be in conflict with features in P , that is, P ′ |= (

ΦBL(T ) ∪ ΦBL(EX )
)
.

Compatibility with I2C is more complicated.

Definition 3 (Relative Fullness). Given a product P and a feature f /∈P , the
following theory (continuing the list in Table 1) is defined:

(3)P,f ΦI2C
BL(P, f) def=

⋃ {
Φ!
BL(T

g
OR) : g ∈ P ∩ (f↑)↓

}

We say P is fully instantiated wrt. f if P |= ΦI2C
BL(P, f). �

Definition 4 (Valid Transitions). Let P be a partial product. Pair (P, P ′) is
a valid transition, we write P −→ P ′, iff one of the following two possibilities
(a), (b) holds.

2 We cannot declare that features en and ge are mutually exclusive and write {en∧ge →
⊥} as down the lattice they are combined in the product {c, en, ele, ge}.
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(a) P ′ = P � {f} for some feature f /∈P such that the following three conditions
hold: (a1) P ′ |= ΦBL(T ), (a2) P ′ |= ΦBL(EX ), and (a3) P |= ΦI2C

BL(P, f).
(b) P ′ = P and P is a full product, i.e., P |= Φ!

BL(M). �

Proposition 1. If P is a valid product and P −→ P ′, then P ′ is a valid product.

Definition 5 (Partial Product Line). Let M = (T,OR, EX , IN ) be
an fm. The partial product line determined by M is a triple PPL(M) =
(PPM ,−→M , IM ) with the set PPM of partial products, transition relations
−→M given by Definition 4 (so that full products, and only them, are equipped
with self-loops), and the initial product IM = {r} consisting of the root feature.

4 Partial Product Kripke Structures and Their Logic

In this section, we introduce partial product Kripke structures (ppKSs), which
are immediate abstraction of ppls generated by fms. Then we introduce a modal
logic called partial product CTL (ppCTL), which is tailored for specifying ppKSs’s
properties. Finally, we show that any fm is representable by a ppCTL theory such
that it is a sound and complete representation of the fm.

4.1 Partial Product Kripke Structures

We deal with a special type of Kripke structures, in which possible worlds are
identified with sets of atomic propositions, and hence a labelling function is not
needed.

Definition 6 (Partial Product Kripke Structures). Let F be a finite set
(of features). A partial product Kripke structure (ppKS) over F is a triple K =
(PP,−→, I) with PP ⊂ 2F a set (of non-empty partial products), I ∈ PP the
initial singleton product (i.e., I = {r} for some r ∈ F ), and −→⊆ PP×PP a
binary left-total transition relation. In addition, the following three conditions
hold (−→+ denotes the transitive closure of −→):

(Singletonicity) For all P, P ′ ∈ PP, if P −→ P ′ and P 	= P ′, then P ′=P∪{f}
for some f /∈ P .

(Reachability) For all P ∈ PP, I −→+ P , i.e., P is reachable from I.
(Self-Loops Only) For all P, P ′ ∈ PP, if (P −→+ P ′ −→+ P ), then P = P ′, i.e.,
every loop is a self-loop.

A product P with P −→ P is called full. The set of full products is denoted
by FP. The class of all ppKSs built over F is denoted by K(F ). �
The components of a ppKS K are subscripted with K if needed, e.g., PPK . Note
that any product in a ppKS eventually evolves into a full product because F is
finite, −→ is left-total, and all loops are self-loops. Obviously, for a given fm M ,
PPL(M) is a ppKS. We will also need the notion of a sub-ppKS.

Definition 7 (Sub-ppKS). Let K, K ′ be two ppKSs. We say K is a sub-ppKS
of K ′, denoted by K � K ′, iff IK = IK′ , PPK ⊆ PPK′ , and −→K⊆−→K′ . �
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4.2 Partial Product Computation Tree Logic

We define ppCTL: a fragment of CTL enriched with a constant modality ! to
capture full products.

Formulas in ppCTL are defined using a finite set of propositional letters
F (features), an ordinary signature of propositional connectives: constant �
(truth), unary ¬ (negation) and binary ∨ (disjunction) connectives, and a modal
signature consisting of modal operators: constant modality !, and three unary
modalities AX, AF, and AG. The well-formed ppCTL-formulas φ are given by the
following grammar:

φ: := f | � | ¬φ | φ ∨ φ | AXφ | AFφ | AGφ | ! , where f ∈ F.

Other propositional and modal connectives are defined dually via negation as
usual: ⊥, ∧, EX, EF, EG are the duals of �, ∨, AX, AG, AF, resp. The set of all
ppCTL-formulas over F will be denoted by ppCTL(F ).

P |= f iff f ∈ P (for f ∈ F )

P |= � always holds

P |= ¬φ iff P �|= φ

P |= φ ∨ ψ iff (P |= φ) or (P |= ψ)

P |= AXφ iff ∀〈P −→ P ′〉. P ′ |= φ

P |= AFφ iff ∀〈P=P1 −→ P2 −→ ...〉
∃i ≥ 1. Pi |= φ

P |= AGφ iff ∀〈P=P1 −→ P2 −→ ...〉
∀i ≥ 1. Pi |= φ

P |= ! iff P −→ P

The semantics of ppCTL-formulas is
given by the class k(F ) of ppKSs built
over the same set of features F . Let k ∈
k(F ) be a ppKS (PP,−→, I). We first
define a satisfaction relation |= between
a product P ∈ PP and a formula φ ∈
ppCTL(F ) by structural induction on φ
as shown in the inset table on the right.
Then we define K |= φ iff P |= φ for all
P ∈ PPK (equivalently, iff IK |= AGφ).

4.3 ppCTL-theory of Feature Models

Given an fm M over a finite set of features F , we build two ppCTL theories from
M ’s data, ΦML⊆(M) and ΦML(M) (ML refers to Modal Logic) specified below
such that Theorems 1, 2 and 3 hold.

Theorem 1 (Soundness). PPL(M) |= ΦML(M).

Theorem 2 (Semi-completeness). K |= ΦML⊆(M) implies K � PPL(M).

Theorem 3 (Completeness). K |= ΦML(M) iff K = PPL(M).

Completeness allows us to replace fms by the respective ppCTL-theories, which
are well amenable to formal analysis and automated processing. Semicomplete-
ness is useful as an auxiliary intermediate step to completeness, but also for some
practical problems such as specialization [29].

Theories ΦML⊆(M) and ΦML(M) are built from small component theories:

ΦML⊆(M) = ΦBL(M) ∪ Φ!
ML⊆(M) ∪ ΦI2C�

ML⊆ (TOR), and

ΦML(M) = ΦML⊆(M) ∪ Φ↓
ML(T ) ∪ Φ!

ML(M) ∪ Φ↔
ML(TOR, EX ),

which specify the respective properties of M ’s ppl in terms of ppCTL:
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Φ!
ML⊆(M) = {! → ∧

Φ!
BL(M)},

ΦI2C�

ML⊆ (TOR) =
{
f ∧ ¬∧

Φ!
BL(T

f
OR) → ¬EXg : f, g ∈ F, f↑ = g↑},

Φ↓
ML(T ) =

{
f ∧ ¬∨

f↓ → EXg : f, g ∈ F, g↑ = f
}
,

Φ!
ML(M) = {∧ Φ!

BL(M) → !},
Φ↔

ML(TOR, EX ) =
{ ∧

ΦI2C
BL (f) ∧ ¬f ∧ ¬∨

ΦEX
BL (f) → EXf : f ∈ F

}
, where

ΦI2C
BL (f) = {g → Φ!

BL(T
g
OR) : g, f ∈ F, g↑ = f↑, g 	= f}

ΦEX
BL (f) =

{ ∧
(G \ {f}) : G ∈ EX , f ∈ G

}

We have paid a special attention to this fine-grained structure of the theories
as it helps to tune the process of reverse engineering fms from ppls as explained
above. Details and discussion can be found in the accompanying report [12].

5 Possible Practical Applications

We discuss several practical tasks, in which using modal rather than Boolean
logic could be beneficial.

Automated Analysis of Feature Models. Analysis of fms is an important
practical issue, and as industrial fms can contain thousands of features, the
analysis should be automated [4]. A big group of analysis problems rely on the
Boolean semantics of fms. For example, given an fm M , we may be interested in
checking whether PL(M) is not empty [30], or whether a given set of features
G is a valid full product, i.e., G ∈ PL(M) [18]. We may also be interested in
finding the set of common (core) features among all full products,

⋂
PL(M)

[30], or checking whether f is a core feature, i.e., f ∈ ⋂
PL(M). Specifically, an

important problem is to find so called dead features, which do not occur in any
product [18]. A typical practical approach to these analysis problems is to encode
the fm by a Boolean theory, and then use off-the-shelf tools like SAT-solvers [3].

However, there are some other important analysis problems, in which the use
of the Boolean semantics can be error-prone. For example, it is often important
to know if one fm M1 is a refactoring of another fm M2, or a specialization of M2,
or neither [29]. Standard definitions of refactoring and specialization are based on
semantics, which in the Boolean case gives rise to defining refactoring M1 � M2

as PL(M1) = PL(M2) and specialization M1 � M2 as PL(M1) ⊆ PL(M2).
However, as we have seen above, the Boolean semantics is too poor and makes
the definitions above non-adequate to their goals (see the example in the intro-
duction). Hence, in practice, to investigate refactoring and specialization, engi-
neers should work with pairs (PL(M),M), whose second component represents
the feature hierarchical structure not captured by the first component. Working
with such pairs brings two issues. First, it leads to obvious maintenance prob-
lems: if one of the components changes, the user must remember to propagate
the changes to the other component. Second, having a syntactical “non-Boolean”
object of analysis does not allow us to use SAT-solvers. However, the ppl seman-
tics allows managing both issues. As our completeness theorem shows, the ppl
PPL(M) adequately captures the feature hierarchy, and hence we can analyze
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a single object, PPL(M) or, equivalently, the modal theory ΦML(M). Moreover,
to analyze PPL(M), we can use an off-the-shelf model checker.

Finally, there are analysis problems only addressing the hierarchy, e.g., find-
ing the Lowest Common Ancestor (LCA) of a set of features in the feature tree
[20]. The ppl semantics allows us to analyze such a problem by using a model
checker: given a set of features G and a candidate common ancestor feature c,
we need to check whether the Kripke structure PPL(M) satisfies

∧
G → c.

This way, we could get the set of common ancestors of G. Let us denote it by
C. Now, to check whether an element l ∈ C is the LCA of G, we just need to
check if PPL(M) satisfies l → ∧

C. Other syntactical analysis problems can
be approached in the same way: an fm M is represented by a Kripke structure
PPL(M), the problem to be analyzed is encoded by a ppCTL-formula φ, and
an off-the-shelf model checker is used for checking if PPL(M) |= φ. We plan to
implement such an approach for some realistic examples of fms.

Reverse Engineering. Reverse engineering of fms (RE) is an active research
area in FM: the goal is to build an fm representing a given pl. Depending on
how the pl is specified, the current approaches are grouped into two classes:
(a) RE from BL formulas [11], (b) RE from textual descriptions of features
[1,21]. She et al. in [28] argue that none of these approaches is satisfactory.
The main challenge of RE is to determine an appropriate hierarchical structure
of features. The BL approach is incomplete, since, as already discussed, the
BL semantics cannot capture the hierarchical structure. The textual approach
is also deficient for two reasons: it is an informal approach, and “it suggests
only a single hierarchy that is unlikely the desired one” [28]. To relieve the
deficiencies of these approaches, the current state-of-the-art method [28] uses a
heuristic-based approach, in which both types of information (Boolean formulas
and textual descriptions) are given at the input of the RE procedure. In contrast,
if the input for the procedure were the ppCTL theory of the pl, which contains
everything needed to build the corresponding fm, RE would become simpler and
better manageable. Specifically, our careful decomposition of fms’ structure and
theories into small blocks could also help to tune the RE procedures.

The Vendor’s View of FM. For the product user, an fm is just a structure
of check-boxes to guide his choices, and hence the modal properties of the ppl
are not important. However, they can be important for the vendor, who should
plan and provide a reasonable production of all products in the pl. Consider, for
example, the following scenario.

Suppose we want to design a chassis with two mandatory
components: an engine and a frame. An engine is either of
type e1 xor e2, and a frame is of type f1 xor f2, as specified
in the inset figure. In general, engine ei better fits in frame
fi, i = 1, 2, but the frame supplier can modify the frame
for an extra cost. Thus, we have four full products P0 ∪ Pij

with P0 = {c, e, f} and Pij = {ei, fj}, i, j = 1, 2 (c, e, and f
stand for chassis, engine, and frame, resp.).
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There are two ways of the chassis
assembly. If we first decide on the engine
type, then, for engine ei, we may choose
either to order frame fi, or frame fj , j 	=
i, with a suitable modification, depend-
ing on what is cheaper (we assume that
each frame type has its own supplier).
Thus, from each product P0 ∪ {ei}, i =
1, 2 there are two transitions as shown in
the inset figure on the right. However, if
we first decide on the frame type, then
only the engine of the respective type
can be mounted on the frame, and tran-
sitions from P0 ∪ {fi} to P0 ∪ {fi, ej}
j 	= i are illegal (shown dashed/red in the figure). To exclude the illegal tran-
sitions from the ppl, we need to add to the fm the following two modal cccs:
(fi ∧ e ∧ ¬ei) → AX¬ej for i, j ∈ {1, 2} and i 	= j. Such constraints cannot
be expressed in BL as they do not change the set of partial products, and only
transition are affected.

6 Feature Vs. Event-based Concurrency Modeling

We will summarize similarities and differences between FM and event-based
concurrency modeling (EM) (we will write em for an event model). We will also
point to several possibilities of fruitful interactions between the two disciplines.

Following the survey in [32], we distinguish three approaches in EM. The
first is based on a topological notion of a configuration structure (E, C) with E
a set (possibly infinite) of events, and C⊂2E a family of subsets (usually finite)
of events, which satisfy some closure conditions (e.g., under intersection and
directed union). Sets from C are called configurations and understood as states
of the system: X∈C is a state in which all events from X already occurred.

In the second approach, valid configurations are specified indirectly by some
structure DDD of dependencies between events, which make some configurations
invalid. Formally, some notion of validity of a set X⊂E wrt. DDD is specified so
that an event structure (E,DDD) determines a configuration structure {X⊂E :
X is valid wrt.DDD}. Typical representatives of this approach are Winskel’s prime
and general event structures, and Pratt’s event spaces [24].

The third approach (originated by Gupta and Pratt in [14]) is an ordinary
encoding of sets of propositions by Boolean logical formulas. Then an em is just
a Boolean theory, i.e., a pair (E,Φ) with Φ a set of propositional formulas over
set E of propositions. The left half of Table 2 summarizes this rough mini-survey.

Importantly, transitions between states are typically considered a derived
notion: in [14], any set inclusion is a transition, and in [32], special conditions
are to hold in order for a set inclusion to be a valid transition. A notable exclusion
is event automata by Pinna and Poigné [22], i.e., tuples (E, C,→, I) with → a
given transition relation over configurations (states), and I∈C an initial state.



198 Z. Diskin et al.

FM is directly related to EM, and actually can be seen as a special interpre-
tation of EM. Indeed, features can be considered as events, (partial) products as
configurations, and fms as special event-structure: fm M = (TOR, EX , IN ) can
be seen as a special encoding of a set of dependencies analogous to DDD (the middle
row of the table). An important distinction of the Boolean FM is the presence of
a special subset of final states (products), so that FM’s topological and logical
counterparts are triples rather than pairs (see the Boolean column in the table).
Pinna and Poigné [22] mention final states (they call them quiescent) but do not
actually use them, whereas for FM, final products are a crucial ingredient.

The last column of the table describes FM’s basic topological and logical
structures in the modal logic view: the upper row is our notion of ppKS, and
the bottom one is the theory specified in Sect. 4. Our ppKS is exactly an event
automaton with quiescent states, which, additionally, satisfies the conditions of
Left-totality of the transition relations and Self-loops only, but Pinna and Poigné
do not apply modal logic for specifying automata properties (and do not even
mention it); they also do not consider the I2C-principle.

The comparison above shows enough similarities and differences to hope for
a fruitful interaction between the two fields. We are currently investigating what
FM can usefully bring to EM; and can mention several simple findings. The pres-
ence of two separate Boolean theories allows us to formally distinguish between
enabling and causality [14]. Also, we are not aware of propositional specifica-
tions of transient conflicts (discussed on page 8) such as our Boolean and modal
encoding of I2C. These encodings are nothing but a compact formal specifica-
tion of a transaction mechanism, which is usually considered to be non-trivial.
Remarkably, only recently similar generalizations were proposed for EM in the
formalism of dcr-graphs [15]. The latter also employ two relations between events,
condition and response, that correspond to our subfeature and mandatoriness
relations, and their markings roughly correspond to our partial products. Dcr-
graphs also use two additional relations include/exclude, which allow them to
model several important constructs in concurrent distributed workflow, includ-
ing transient conflicts. These observations show that a simple fm formalism is
capable of encoding complex modal theories specifying non-trivial concurrent
phenomena. Specifically, a detailed comparative analysis of fms and dcr-graphs
should be an interesting and we believe useful research task.

Table 2. Event vs. feature modeling

Approach Event Model Feature Model
Boolean logic Modal logic

Topological (E, C) (F,PP,FP) (F,PP,→, I)
Structural (E,DDD) (F,M)
Logical (E,Φ) (F,ΦBL, Φ

!
BL) (F,ΦML)
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7 Related Work

Behavioral modeling and transition systems have been numerously used in the
FM literature in different contexts, none of which is directly related to our ppKS
and ppCTL. Below we briefly outline the approaches, which we classify into three
groups, and highlight their distinctions from the behavioral model developed in
the present paper (see [12, Sect.VIII] for some details).

Staged Configuration. Czarnecki et al. introduced and developed the concept
of (multi-level) staged configuration in [8,10]: given an fm M , its full products
are instantiated via consecutive specializations (called stages) of M by either
discarding an optional feature or accepting it and hence making it mandatory
for the stage at hand and all consecutive stages. This process is continued until a
fully specialized fm denoting only one configuration is reached. An accurate for-
mal semantics for such multi-level staged configurations was defined by Classen
et al. [6]. The idea was further developed by Hubaux et al. [17], who proposed to
map fms to tasks and conditions of workflows. Their approach supports parallel
execution of stages and choice between them, and iterative configurations.

Although both ppls and configuration stages show how to instantiate full
products, they are essentially different. Configuration paths are sequences of fms
with decreasing variability, whereas instantiation paths in ppls are sequences of
products with increasing commonality. Thus, the two frameworks aim at different
goals and are somewhat orthogonal (but, of course, ppls cover variability too as
full products are included into ppl).

Feature Transition Systems. In a series of papers summarized in [5], Classen
et al. proposed an elegant and effective solution to checking a given pl of transi-
tion systems (TS) in a single run of a model checker rather than checking each
of the TSs separately. The entire pl is encoded as a feature TS (FTS), in which
transitions are labeled by both actions and Boolean expressions over features
as Boolean variables. A truth assignment to the feature variables defines the
behaviour of a single product, and the FTS as a whole represents the entire
pl. They also defined a logic fCTL to allow CTL properties to refer to specific
products in the line and extended the model checking procedures to support
checking FTSs against fCTL properties. Their tools are capable of reporting,
in a single model checking run, all products for which a property holds, as well
as those for which it fails to hold. In [7], Cordy et al. extend a common model
checking framework known as CEGAR, to support FTSs as well. Thus, FTS and
our ppKS are orthogonal ideas: for the former, a product is a TS, while for us a
product is a set of features without any functional properties. These two ideas
can be combined in a single formalism, but we leave it for future work.

Algebraic Approaches. An algebraic model based on commutative idempo-
tent semirings is developed in [16]. Given an fm M , its pl is encoded as a term in
the algebra generated by M ’s leaf features, so that non-leaf features are derived.
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In contrast, for us, all features are basic, which better conforms to a common
FM practice (see [12, Sect.VIII] for a more detailed discussion).

Amongst algebraic models for pls, the closest to ours is the PL-CCS calculus
[19]. It is a process algebra, which extends the classical CCS by an operator ⊕ to
model variability. Each ⊕ occurence in a PL-CCS expression is equipped with a
unique index, and runtime occurrences with the same index must make the same
choice. This differs ⊕’s behaviour from the classical non-deterministic choice in
CCS. In PL-CCS, processes are interpreted as products. The behaviour of a pl
is given by a set of process definitions whose semantics is given by multi-valued
Kripke structures.

There are interesting similarities and differences between PL-CCS and our
ppKS. In PL-CCS, a pl’s behaviour is reconstructed from an immediate pl spec-
ification. In contrast, we extract the behaviour from the fm, which we have
shown can be seen as an indirect pl’s specification providing everything needed
to reconstruct the behavior. We might say that in PL-CCS, the expressive power
of fms is underestimated as they are seen in the Boolean perspective.

Importantly, PL-CCS allows for recursive definitions of processes, which
makes it more expressive than our ppCTL. However, allowing recursive product
definitions leads us beyond the boundaries of the tree-based fms and our goals in
the present paper. Iterative definitions are possible in the so-called cardinality-
based fms [9], and we built a dynamic semantics for them in [26]. On the other
hand, cross-cutting constraints cannot be expressed in PL-CCS, but are readily
specified in our approach (we even allow for modal cccs).

8 Conclusion

We have presented a novel view on fms, in which a product is an instantia-
tion process rather than its final result. We called such products partial, and
showed that the set of partial products together with a set of (carefully defined)
valid transitions between them can be considered as a special Kripke structure,
whose properties are specifiable by a fragment of CTL enriched with a constant
modality. We called this logic ppCTL. Our main result shows that an fm can be
considered as a compact representation of a rather complex ppCTL-theory. Thus,
the logic of FM is modal rather than Boolean. We have also discussed several
practical tasks in FM, which could benefit from the use of the modal logic view
of FM. We conclude with a list of interesting open problems.

(i) Find a complete axiomatic system for ppCTL, i.e., a set of inference rules
complete wrt. the ppKS semantics. Particularly, a complete logic would
allow us to use theorem provers for fm analysis problems.

(ii) Axiomatic characterization of the class of ppKSs representable as PPL(M).
(iii) To build complex pls from smaller component pls, we need some process

algebra for ppKS and fm compositions. As it is clear from Sect. 6, these
algebras should be special versions of process algebras.

(iv) Develop a new modal logic view of event-based models.
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Appendix

The list of abbreviations used in the paper:
Abbreviation Meaning Abbreviation Meaning

ccc crosscutting constraint BL Boolean logic

ppKS partial product Kripke structure ppCTL partial product CTL

fm feature model FM feature modeling

pl product line I2C instantiate-to-completion

ppl partial product line ML Modal Logic
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Abstract. We study the determinism checking problem for regular
expressions extended with interleaving. There are two notions of deter-
minism, i.e., strong and weak determinism. Interleaving allows child ele-
ments intermix in any order. Although interleaving does not increase
the expressive power of regular expressions, its use makes the sizes of
regular expressions be exponentially more succinct. We first show an
O(|Σ||E|) time algorithm to check the weak determinism of such expres-
sions, where Σ is the set of distinct symbols in the expression. Next, we
derive an O(|E|) method to transform a regular expression with inter-
leaving to its weakly star normal form which can be used to rewrite an
expression that is weakly but not strongly deterministic into an equiva-
lent strongly deterministic expression in linear time. Based on this form,
we present an O(|Σ||E|) algorithm to check strong determinism. As far
as we know, they are the first O(|Σ||E|) time algorithms proposed for
solving the weak and strong determinism problems of regular expressions
with interleaving.

Keywords: Regular expressions · Interleaving · Strong determinism ·
Weak determinism · Algorithms

1 Introduction

DTD and XML Schema are two widely used schema languages recommended
by W3C. The Unique Particle Attribution constraint [1] of DTD and XML
Schema requires that all regular expressions used are weakly deterministic. The
idea is inherited from the SGML Standard [2] to ensure more efficient parsing.
Another definition of determinism which is called strong determinism has also
been introduced in the context of XML [5]. Roughly speaking, weak determinism
means that a symbol in the input word can be matched uniquely without look-
ing ahead [11]. Meanwhile, strong determinism requires that the use of operators
also be unique when matching a word. For example, (a∗)∗ is weakly deterministic
but not strongly deterministic.
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The interleaving operator &, also under the name of unordered concatena-
tion, allows child elements intermix in any order. It existed in SGML but was
excluded from the definition of DTDs. RELAX NG resurrects it but in a differ-
ent way. In SGML, for example, (ab)&(cd) accepts only sequences “abcd” and
“cdab”. For a&b∗, a cannot be present between two b. Usually, the purpose of
using & operator is to allow child elements to occur in any order. Hence the above
restriction is undesirable. In RELAX NG, (ab)&(cd) accepts all the sequences
in which a occurs before b and c occurs before d, that is, has the interleaving
semantics. XML Schema permits a strongly limited interleaving at the top level
of a content model but nowhere else [7].

Lots of work (e.g. [4,6,8,9,12]) focused on testing determinism of standard
regular expressions and regular expressions with counting. But little progress has
been made in the scope of regular expressions with interleaving (called RE(&)).
The most difficult parts are that the transitions of the corresponding Glushkov
automata can be exponential and RE(&) do not have the property of locality [10]
thus the above algorithms are not capable of dealing with RE(&). Some results
for expressions with the SGML interleaving operator are provided in [10], which
is not the same with the Relax NG interleaving operator considered here. No
study has investigated the weak and strong determinism properties of RE(&) [3].

However, investigating the determinism properties of RE(&) has much signif-
icance [3]. In practice, it can help to relax the restriction about interleaving used
in XML Schema thus will lead to more succinct and flexible schemas. In this
paper, we study both the weak and strong determinism of regular expressions
extended with interleaving operator. Here we consider the operator interpreting
in the same way with RELAX NG in its more general form. The main contri-
bution of this paper are two O(|Σ||E|) time methods to test weak and strong
determinism of RE(&). As far as we know, they are the first O(|Σ||E|) time
algorithms proposed for solving the above problems.

Our work about weak determinism is related and inspired by the work of
unambiguity of extended regular expressions in SGML document grammars by
Brüggemann-Klein [10]. Although having different semantics, the treatment of
the & operator in [10] is similar to our first algorithm. To obtain a more efficient
algorithm, we get inspiration from [9] which combines the follow sets for the last
symbols of each subexpression together into a single followlast set instead of
computing follow set for each symbol of the expression. We define followlast for
expression with interleaving and establish the relation between followlast and
weak determinism for RE(&). As for strong determinism, we extend the notion
of weakly star normal form [12] to RE(&) and show that a weakly deterministic
RE(&) is strongly deterministic if and only if it is in weakly star normal form.
Then we give a O(|E|) time method to transform an expression to its weakly
star normal form. By combining the method and the O(|Σ||E|) time algorithm
to check weak determinism, we can check strong determinism in O(|Σ||E|).

The rest of paper is organized as follows. Section 2 contains basic definitions
that will be used throughout the paper. Section 3 presents an O(|Σ||E|2) algo-
rithm for weak determinism based on the follow− relations and an O(|Σ||E|)
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time algorithm based on followlast. In Sect. 4 an O(|Σ||E|) time algorithm
checking strong determinism is presented. Details of implementation and exper-
imental results are given in Sect. 5. We conclude in Sect. 6.

2 Preliminaries

2.1 Regular Expressions with Interleaving

Let u and v be two arbitrary strings. By u&v we denote the set of strings that
is obtained by interleaving of u and v in every possible way. That is, u&ε =
ε&u = u, v&ε = ε&v = v. If both u and v are non-empty, let u = au′, v = bv′,
where a and b are single symbols, then u&v = a(u′&v) ∪ b(u&v′). The operator
& is then extended to regular languages as a binary operator in the canonical
way. It is sufficient enough to say that & obeys the associative law. That is
E&(F&G) = (E&F )&G = E&F&G for any expressions E,F,G in RE(&).

For the rest of the paper, Σ always denotes a finite alphabet. The regular
expressions with interleaving over Σ are defined as: ∅, ε or a ∈ Σ is a regular
expression, E∗

1 , E1E2, E1 + E2, or E1&E2 is a regular expression for regu-
lar expressions E1 and E2. They are denoted as RE(&). The language L(E)
described by a regular expression with interleaving E is defined in the following
inductive way: L(∅) = ∅; L(a) = {a}; L(E∗

1 ) = L(E1)∗; L(E1E2) = L(E1)L(E2);
L(E1+E2) = L(E1)∪L(E2); L(E1&E2) = L(E1)&L(E2). E? and E+ are used as
abbreviations of E+ε and EE∗, respectively. For example, consider the following
expressions and their languages: L(ab&cd) = {acbd, acdb, cabd, cadb, abcd, cdab},
L(a&(b&c)) = {abc, bac, bca, cba, cab, acb}.

2.2 Deterministic Regular Expressions with Interleaving

Marked RE(&) are those symbols marked with subscripts hence each symbol can
only occur once. The expression that removes the subscripts of marked symbols
of a marked expression E is denoted by E�. We denote (·)� as unmarking operator
and (·)′ as marking operator. For a language L, let L� denotes {w�|w ∈ L}, then
obviously (L(E))� = L(E�). The set of symbols that occur in E is denoted by
sym(E). The size of a RE(&) expression E is denoted by |E|. Now a concise
definition of weak determinism of expression can be given by its marked form.

Definition 1 ([4]). A marked expression E is weakly deterministic if and only
if for all words uxv ∈ L(E), uyw ∈ L(E) where x, y ∈ sym(E) and u, v, w ∈
sym(E)∗, if x� �= y� then x �= y. An expression E is weakly deterministic if and
only if its marked expression E′ is weakly deterministic.

Intuitively, an expression is weakly deterministic if a symbol in the input word
can be matched without looking ahead when matching against the expression.
For instance, (a1?&b2)a3 is not weakly deterministic since it does not satisfy the
condition if x� �= y� then x �= y with u = b2, v = a3 and w = ε, and with the
competing symbols x = a1 and y = a3. The corresponding unmarked expression
(a?&b)a is not weakly deterministic.
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A bracketing of a RE(&) expression E is a labeling of the iteration nodes
of the syntax tree by distinct indices [6]. The bracketing Ẽ of E is obtained by
replacing each subexpression E∗,+

1 of E with a unique index i with ([iE1]i)∗,+.
Therefore, a bracketed RE(&) expression is a RE(&) expression over alphabet
Σ ∪ ΓE , where ΓE = {[i, ]i | 1 ≤ i ≤ |E|Σ}, |E|Σ is the number of symbol
occurrences in E. A string w in Σ ∪ ΓE is correctly bracketed if w has no
substring of the form [i]i.

Definition 2 ([6]). An expression E is strongly deterministic if E is weakly
deterministic and there do not exist strings u, v, w over Σ ∪ ΓE, strings α �= β
over ΓE, and a symbol a ∈ Σ such that uαav and uβaw are both correctly
bracketed and in L(Ẽ).

For instance, the expression (a∗)∗ is weakly deterministic but not strongly deter-
ministic since [2[1a]1]2[2[1a]1]2, [2[1a]1[1a]1]2 ∈ L(([2([1a]1)∗]2)∗).

For a RE(&) expression E over Σ and for each z ∈ sym(E), the following
definitions are needed to analyze the determinism of expressions.

first(E) = {a|au ∈ L(E), a ∈ sym(E), u ∈ sym(E)∗}
last(E) = {a|ua ∈ L(E), a ∈ sym(E), u ∈ sym(E)∗}
follow(E, z) = {a|uzav ∈ L(E), u, v ∈ sym(E)∗, a ∈ sym(E)}, z ∈ sym(E)
followlast(E) = {a|uav ∈ L(E), u ∈ L(E), u �= ε, a ∈ sym(E), v ∈

sym(E)∗}
It is not hard to see that an expression E is not weakly deterministic if

and only if there exist two symbols x, y ∈ sym(E′) with x� = y� such that
x, y ∈ first(E′) or there is a symbol z ∈ sym(E′) such that x, y ∈ follow(E′, z).

2.3 Computing follow− Sets

We will need to calculate the first and follow− sets. The inductive definition
of the first set for standard regular expressions can be trivially extended to
RE(&). The inductive definition of the follow− can be found in [10].

Definition 3 ([10]). For a marked expression E, we define follow−(E, x) for
x in sym(E) by induction on E as follows:

follow−(E, ε) = first(E)

E = x : follow−(E, x) = ∅
E = F + G :

follow−(E, x) =

{
follow−(F, x) if x ∈ sym(F )
follow−(G, x) if x ∈ sym(G)

E = FG :

follow(E, x)− =

⎧
⎪⎨

⎪⎩

follow−(F, x) if x ∈ sym(F ), x /∈ last(F )
follow−(F, x) ∪ first(G) if x ∈ last(F )
follow−(G, x) if x ∈ sym(G)
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E = F&G :

follow−(E, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

follow−(F, x) if x ∈ sym(F ), x /∈ last(F )
or if x ∈ last(F ), ε /∈ L(G)

follow−(F, x) ∪ first(G) if x ∈ last(F ), ε ∈ L(F )
follow−(G, x) if x ∈ sym(G), x /∈ last(G)

or if x ∈ last(G), ε /∈ L(F )
follow−(G, x) ∪ first(F ) if x ∈ last(G), ε ∈ L(G)

E = F ∗ :

follow−(E, x) =

{
follow−(F, x) if x ∈ sym(F ), x /∈ last(F )
follow−(F, x) ∪ first(F ) if x ∈ last(F )

3 Weak Determinism of RE(&)

The weak determinism problem is to decide, given a regular expression with
interleaving, i.e. r ∈ RE(&), whether r is weakly deterministic or not. The
classical way [11] is to compute the first and follow sets to check whether
there exist symbols x, y such that x, y ∈ first(E′) or x, y ∈ follow(E′, z) for
some symbol z. However, when it comes to & operator, there may be symbols
x, y, z such that x, y ∈ follow(E′, z) yet E is weakly deterministic. For exam-
ple, E = (a&b)a, the corresponding marked expression is E′ = (a1&b2)a3, then
follow(E′, b2) = {a1, a3}. Thus E might be judged to be not weakly determinis-
tic. Yet L(E′) = {a1b2a3, b2a1a3}, it is not hard to see E is weakly deterministic
in fact.

The best known algorithm to check the weak determinism of standard regular
expressions is proposed in [4,11] to check whether the corresponding Glushkov
automata is deterministic. First, they proved that every regular expression can be
transformed into its star normal form. Next, they showed that the determinism
can be tested in O(|Σ||E|) based on Glushkov automaton, via transforming an
expression E into its star normal form in linear time. However, although we
can transform a regular expression with interleaving using similar techniques as
introduced in [11], transitions of the corresponding Glushkov can be exponential.
Moreover, the method B.Groz [8] proposed to test whether a regular expression
is deterministic in linear time by using a new structural decomposition of the
parse tree is also not directly applicable to RE(&).

3.1 The First Algorithm

In this section, we consider a subset follow−(E, z) of follow(E, z) and develop
a method based on follow−(E, z) to check the determinism of RE(&).

Consider the weak determinism between interleavings first. Suppose we have
a marked expression E = E1&...&En. If some Ei is not weakly deterministic,
then E is not weakly deterministic. Assuming each Ei is weakly deterministic,
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E is also not weakly deterministic if there is some symbol a in both E�
i and

E�
j . Because no matter how other symbols intermix, there would always exist

two string u, v such that uaiajv, uajaiv ∈ L(E). So we need to ensure that
sym(E�

i ) ∩ sym(E�
j) = ∅ for every two subexpressions Ei and Ej . As with the

weak determinism between interleaving and other operators, consider a marked
expression H = EF . Symbols that belong to E but not in last(E) can not
be in the same follow set with symbols in F . A violation can only happen if
x, z ∈ last(E), y ∈ first(F ), x� = y�, which will cause follow(H, z) = {x, y}. If
ε /∈ L(E), x always occurs before y in any string accepted by L(H) thus will not
cause nondeterministic. We, therefore, use follow− to exclude these symbols in
first(F ).

First, we have the following property about follow−.
Note that follow− preserves the semantics of follow when not dealing with

& operator. That is, the situation uzyw ∈ L(E), but y /∈ follow−(E, z) occurs
only if z is in subexpression M&N of E with z ∈ sym(M), y ∈ sym(N). The
following lemma is straightforward.

Lemma 1. Let E be a marked expression. There are strings u, v ∈ sym(E)∗

and symbols x, y, z ∈ sym(E) with x� = y� such that uzxv, uzyw ∈ L(E). If
x ∈ follow−(E, z), y /∈ follow−(E, z), then there exists some subexpression
M&N or N&M of E, such that x ∈ sym(M), y ∈ sym(N).

Proof. We prove it by contradiction. Suppose that x, y belong to the same side
of subexpression M&N or N&M of E, then z must be in the other side,
otherwise we will have x, y ∈ follow−(E, z). Assume x, y ∈ sym(M) and
z ∈ sym(N) without loss of generality. Since x ∈ follow−(E, z), by the def-
inition of follow−, x ∈ first(M) and ε ∈ L(M). Since uzxv, uzyw ∈ L(E),
we can see y ∈ first(M) thus y ∈ follow−(E, z). This contradicts with the
assumption that y /∈ follow−(E, z). �	
In fact, we can see from the above analysis that if uzxv, uzyw ∈ L(E), x� = y�

but x, y /∈ follow−(E, z), then there exists some subexpression M&N or N&M
of E, such that x, y ∈ sym(M), z ∈ sym(N). Let substring u′ be the longest
prefix of z and substrings v′, w′ be the longest suffix of z in u, v, w amongst
sym(M), then u′xv′, u′yw′ ∈ L(M). That is, there exists a symbol s ∈ sym(M)
such that x, y ∈ follow−(M, s). Since M is a subexpression of E, then x, y ∈
follow−(E, s). This is shown in Lemma 2.

Lemma 2. Let E be a marked expression. If there are strings u, v ∈ sym(E)∗

and symbols x, y, z ∈ sym(E) with x� = y� such that uzxv, uzyw ∈ L(E) but
x, y /∈ follow−(E, z), then there exist a symbol s ∈ sym(E) such that x, y ∈
follow−(E, s).

The following theorem is the main result of this section which states the relation
between weak determinism and first, follow− sets.

Theorem 1. Let E be a marked expression, z ∈ sym(E). E is not weakly deter-
ministic if and only if there exist x, y ∈ sym(E) with x� = y� such that:
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(1) x, y ∈ first(E) or
(2) x, y ∈ follow−(E, z), for some symbol z ∈ sym(E) or
(3) F&G or G&F is a subexpression of E such that x ∈ sym(F ), and y ∈
sym(G).

Proof. (=>) Assume E is not weakly deterministic, then x, y ∈ first(E),
x� = y� or there are strings u, v, w ∈ sym(E)∗, x, y, z ∈ sym(E) such that
uzxv, uzyw ∈ L(E), x� = y�. In the first case, x, y ∈ first(E), condition (1)
holds. For the latter case, there are three conditions:

(A) x, y ∈ follow−(E, z) or
(B) only one of x and y is in follow−(E, z) or
(C) x, y /∈ follow−(E, z)

For case (A) we are done. As for case (B), we assume x ∈ follow−(E, z) and
y /∈ follow−(E, z), then by Lemma 1, condition (3) holds. The other case can
be proved similarly. For case (C), by Lemma 2, condition (2) or condition (1)
holds.

(<=) It is obvious for condition (1). For condition (2), the proof is the same
with that of Theorem 1 in [10]. As for condition (3), if F&G or G&F is a
subexpression of E and x ∈ sym(F ) and y ∈ sym(G), then uzxv ∈ L(F ) for some
u, v ∈ sym(F )∗, wys ∈ L(G) for some w, s ∈ sym(G)∗. Thus, uwzxvys, uwzysxv
∈ L(F&G), E is not weakly deterministic. �	
The following Corollary indicates the restrictions put on interleaving in XML
Schema might be stronger than necessary.

Corollary 1. Let E = E1&E2&...&En be a marked expression. E is weakly
deterministic if and only if E1, E2, ...En are weakly deterministic and sym(E�

i )∩
sym(E�

j) = ∅ when j �= i .

The process of this approach is formalized in Algorithm 1. The compete function
checks if there are two elements a, b in the input word such that a� = b�. It returns
true if such elements exist, or false otherwise. Below we analyze the time used
to test weak determinism.

Theorem 2. Let E be an expression over a finite alphabet Σ. It can be decided
in O(|Σ||E|2) whether E is weakly deterministic or not.

Proof. The first, last and follow− sets can be implemented bottom up by
converting E into a syntax tree, whose internal nodes are labeled with one of
the operators +,·,+,?,* or &. If sets are maintained as ordered lists, it can be
checked whether there exist x, y such that x� = y� that are included in a first
or follow− set in linear time via merging lists. As soon as this occurs, E is
reported to be not weakly deterministic. Hence the maximum length of each
first or follow− set is |Σ|. Since E has at most O(|E|) subexpressions, and
each subexpression has at most |E| last symbols. At this point, the total time
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is O(|Σ||E|2). Condition (3) can be tested by scanning each symbol x in F to
see whether there exists a symbol y in G such that x� = y�. Emptiness test
of sym(F �) ∩ sym(G�) can be done in O(|Σ|) time with a hash table. So each
subexpression can be examined in O(|Σ|) time. The upper bound of condition
(3) is O(|Σ||E|).

Based on the above discussion, it takes O(|Σ||E|2) time to check the weak
determinism of an expression in RE(&). �	

Algorithm 1. weakDeterm1
Input: An expression E in RE(&)
Output: true if E is weakly deterministic or false otherwise
1: construct the corresponding binary tree T (root) of E
2: return weakDeterm helper1(root)

3.2 The Improved Algorithm

Based on the ideas in the previous section, we can have a simpler method that
runs in O(|Σ||E|) time by optimizing the examination of the follow− relation
used in Theorem 1.

Definition 4. For a marked expression E, we define followlast(E) by induction
on E as follows:

E = x : followlast(E) = ∅
E = F ∗ : followlast(E) = followlast(F ) ∪ first(F )
E = F + G : followlast(E) = followlast(F ) ∪ followlast(G)
E = FG :

followlast(E) =

{
followlast(G) if ε /∈ L(G)
followlast(F ) ∪ first(G) ∪ followlast(G) if ε ∈ L(G)

E = F&G :

followlast(E) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

followlast(F ) ∪ followlast(G) if ε /∈ L(F ), ε /∈ L(G)
followlast(F ) ∪ followlast(G) if ε /∈ L(F ), ε ∈ L(G)
∪ first(G)
followlast(F ) ∪ followlast(G) if ε ∈ L(F ), ε /∈ L(G)
∪ first(F )
followlast(F ) ∪ followlast(G) if ε ∈ L(F ), ε ∈ L(G)
∪ first(F ) ∪ first(G)

For example, for E = F&G, last(E) = last(F ) ∪ last(G). If ε ∈ L(F ) and
ε ∈ L(G), for each z ∈ last(F ), we have follow−(E, z) = follow−(F, z) ∪
first(G). For each z ∈ last(G), we have follow−(E, z) = follow−(G, z) ∪
first(F ). Together these give that followlast(E) = followlast(F ) ∪ first(G) ∪
followlast(G) ∪ first(F ).

We can now move to check the weak determinism constraints by computing
the first and followlast sets.
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Algorithm 2. weakDeterm helper1
Input: the root node F of a binary tree T (root)
Output: true if the expression of T (root) is weakly deterministic or false otherwise

if F = ε, a then
return true

if F = F1|F2 then
if weakDeterm helper1(F1) and weakDeterm helper1(F2) then

if first(F1) ∩ first(F2) �= ∅ then
return false

else return true
else return false

if F = F1F2 then
if weakDeterm helper1(F1) and weakDeterm helper1(F2) then

if first(F1) ∩ first(F2) �= ∅ then
return false

for each symbol a ∈ last(F1) do
if compete(follow−(F, a)) then

return false
return true

else return false
if F = F1&F2 then

if weakDeterm helper1(F1) and weakDeterm helper1(F2) then
if sym(F1)

� ∩ sym(F2)
� �= ∅ then

return false
if first(F1) ∩ first(F2) �= ∅ then

return false
else return true

else return false
if F = F ∗

1 then
if weakDeterm helper1(F1)==false then

return false
for each symbol a ∈ last(F1) do

if compete(follow−(F, a)) then
return false

return true
else return false

Theorem 3. Let E be a marked expression. E is not weakly deterministic if
and only if there exist x, y ∈ sym(E) with x� = y� and a subexpression F of E
such that:

(A) x, y ∈ first(F ) or
(B) F = GH with x ∈ followlast(G) and y ∈ first(H) or
(C) F = G∗ or F = G+ with x ∈ followlast(G) and y ∈ first(G) or
(D) F = G&H with x ∈ sym(G) and y ∈ sym(H).

Proof. (=>) Assume E is not weakly deterministic, then some of conditions
(1)-(3) of Theorem 1 hold. Condition (1) implies condition (A). Condition (2)
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holds if and only in condition (B) or (C) holds. Condition (3) is equivalent to
condition (D).

(<=) Assume some of conditions (A)-(D) hold. If condition (A) holds then
condition (1) or (2) of Theorem 1 hold. Condition (B) and condition (C) imply
condition (2). Condition (D) is equivalent to condition (3), by Theorem 1, E is
not weakly deterministic. �	
The process of this approach is formalized in Algorithm 3.

Algorithm 3. weakDeterm2
Input: An expression E in RE(&)
Output: true if E is weakly deterministic or false otherwise

construct the corresponding binary tree T (root) of E
return weakDeterm helper2(root)

Example 1. The expression E = (a∗
1&b2)∗a3 is not weakly determinis-

tic, since first(E) = {a1, a3}. It can also be notified by the fact that
followlast((a∗

1&b2)∗) = {a1, b2} and first(a3) = {a3}. The expression E =
a1b1&c1a2 is not weakly deterministic, since a2 ∈ sym(c1a2) and a1 ∈
sym(a1b1).

The calculation of first and followlast sets is done at the same time using
bottom-up on the syntax tree of E. The algorithm will terminate as soon as
at least one of the four conditions is satisfied. Thus the length of first set
can be at most O(|Σ|). Since each followlast set contains at most O(2|Σ|)
symbols, the computation can be performed in O(|Σ|) time. Emptiness test
of sym(F �) ∩ sym(G�) can be done in O(|Σ|) time with a hash table. So each
subexpression can be examined in O(|Σ|) time. An expression E contains at most
O(|E|) subexpressions. Thus the time complexity of the algorithm is O(|Σ||E|).
If the size of the alphabet is fixed, the algorithm has linear running time.

Theorem 4. Let E be an expression over a finite alphabet Σ. It can be decided
in O(|Σ||E|) whether E is weakly deterministic or not.

4 Strong Determinism of RE(&)

In this section, we derive an algorithm checking strong determinism based on a
characterization of strong determinism.

In [12], H. Chen et al. proved that a weakly deterministic regular expression
with counting is strongly deterministic if and only if it is in weakly star normal
form (wSNF). We will show it also holds for RE(&).

Definition 5 ([12]). An expression E is in weakly star normal form if, for each
subexpression H∗ of E′, followlast(H) ∩ first(H) = ∅, where E′ is the marked
expression of E.
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Algorithm 4. weakDeterm helper2
Input: the root node F of a binary tree T (root)
Output: true if the expression of T (root) is weakly deterministic or false otherwise
1: if F = ε, a then
2: return true
3: if F = F1|F2 then
4: if weakDeterm helper2(F1) and weakDeterm helper2(F2) then
5: if first(F1) ∩ first(F2) �= ∅ then
6: return false
7: else return true
8: return false
9: if F = F1F2 then

10: if weakDeterm helper2(F1) and weakDeterm helper2(F2) then
11: if followlast(F1) ∩ first(F2) �= ∅ then
12: return false
13: if ε ∈ L(F1) then
14: if first(F1) ∩ first(F2) �= ∅ then
15: return false
16: else return true
17: else return false
18: if F = F1&F2 then
19: if weakDeterm helper2(F1) and weakDeterm helper2(F2) then
20: if sym(F1)

� ∩ sym(F2)
� �= ∅ then

21: return false
22: if first(F1) ∩ first(F2) �= ∅ then
23: return false
24: else return true
25: else return false
26: if F = F ∗

1 then
27: if weakDeterm helper2(F1)==false then
28: return false
29: if followlast(F1) ∩ first(F1) �= ∅ then
30: return false
31: else return true

We first show that every weakly deterministic expression can be transformed to
an equivalent strongly deterministic expression in linear time. The following two
definitions are proposed in [4] to transform a standard regular expression to its
star normal form. We replace ε◦ = ∅ with ε◦ = ε in [4] and add the rules for
E = F&G to get a transformation method for weakly star normal form.

Definition 6. E = ∅, x, ε : E◦ = E
E = F ∗ : E◦ = F ◦

E = F + G : E◦ = F ◦ + G◦

E = FG :
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E◦ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

FG if ε /∈ L(F ), ε /∈ L(G)
F ◦G if ε /∈ L(F ), ε ∈ L(G)
FG◦ if ε ∈ L(F ), ε /∈ L(G)
F ◦ + G◦ if ε ∈ L(F ), ε ∈ L(G)

E = F&G :

E◦ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F&G if ε /∈ L(F ), ε /∈ L(G)
F ◦&G if ε /∈ L(F ), ε ∈ L(G)
F&G◦ if ε ∈ L(F ), ε /∈ L(G)
F ◦ + G◦ if ε ∈ L(F ), ε ∈ L(G)

Definition 7. E = ∅, x, ε : E• = E
E = F + G : E• = F • + G•

E = FG : E• = F •G•

E = F ∗ : E• = F •◦∗

E• = F •&G•

For example, E = (a∗&b∗)∗, then we have E• = (a∗&b∗)∗• = (a∗&b∗)•◦∗ =
(a∗•◦&b∗•◦)∗ = (a + b)∗.

Lemma 3. E• is the weakly star normal form of E which can be computed from
E in linear time and L(E•) = L(E).

The proof can make a direct use of the proof of Theorem 3.1 in [4] so we omit
it here. The E◦ of E has the following property.

Lemma 4. Let E be an RE(&) expression. If followlast(E′) ∩ first(E′) = ∅,
E = E◦.

Proof. This can be proved by induction on the structure of E. The cases for
E = ∅, a(a ∈ Σ), ε are straightforward, where E = E◦.

E = F + G : From the computations of first and followlast, we have
followlast(E′) = followlast(F ′) ∪ followlast(G′) and first(E′) = first(F ′) ∪
first(G′). Since followlast(E′) ∩ first(E′) = ∅, we have followlast(F ′) ∩
first(F ′) = ∅ and followlast(G′) ∩ first(G′) = ∅. By the inductive hypoth-
esis we have F = F ◦ and G = G◦, therefore, E = E◦.

E = FG : If ε /∈ L(F ), ε /∈ L(G), by Definition 6 we have E◦ = FG. Therefore
E = E◦. If ε ∈ L(F ), ε /∈ L(G), from the computations of first and followlast,
we have followlast(E′) = followlast(G′) and first(E′) = first(F ′)∪first(G′).
Since followlast(E′) ∩ first(E′) = ∅, we get followlast(G′) ∩ first(G′) = ∅.
By the inductive hypothesis we have G = G◦, then E◦ = FG◦ = FG = E.
If ε /∈ L(F ), ε ∈ L(G), from the computations of first and followlast,
we have followlast(E′) = followlast(F ′) ∪ followlast(G′) ∪ first(G′) and
first(E′) = first(F ′). Since followlast(E′) ∩ first(E′) = ∅, we can get
followlast(F ′) ∩ first(F ′) = ∅. By the inductive hypothesis we have F = F ◦,
then E◦ = F ◦G = FG = E. The situation when ε ∈ L(F ), ε ∈ L(G) can
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never happens. Otherwise, followlast(E′) = followlast(F ′) ∪ followlast(G′) ∪
first(G′) and first(E′) = first(F ′) ∪ first(G′), followlast(E′) ∩ first(E′)
cannot be ∅, which is a contradiction.

E = F&G : If ε /∈ L(F ), ε /∈ L(G), by Definition 6 we have E◦ = FG. There-
fore E = E◦. The situation when ε ∈ L(F ), ε ∈ L(G) can never happens. Other-
wise, followlast(E′) = followlast(F ′) ∪ followlast(G′) ∪ first(G′) ∪ first(F ′)
and first(E′) = first(F ′) ∪ first(G′), followlast(E′) ∩ first(E′) cannot be ∅,
which is a contradiction. The other cases can be proved similarly.

E = F ∗ : This case can never happen. Since followlast(E′) = followlast(F ′)
∪first(F ′) and first(E′) = first(F ′), E = F ∗ will contradict to followlast(E′)
∩ first(E′) = ∅. �	
It is not hard to see that for any expression E, the weakly star normal of E is
unique. We prove it by the next lemma.

Lemma 5. Let E be an RE(&) expression. E is in weakly star normal form iff
E = E•.

Proof. (=>) We prove it by induction on the structure of E. The cases for
E = ∅, a(a ∈ Σ), ε are straightforward, where E = E•.

E = F + G,E = FG or E = F&G : Suppose E is in wSNF, then for each
subexpression H∗ of E′, followlast(H) ∩ first(H) = ∅. For each subexpres-
sion H∗

1 of F ′ and each subexpression H∗
2 of G′, since F ′, G′ are subexpressions

of E′, we have H1,H2 ⊆ H. Therefore, followlast(H1) ∩ first(H1) = ∅ and
followlast(H2)∩first(H2) = ∅ thus F,G are in wSNF. By the inductive hypoth-
esis we have F = F •, G = G•, then E = F • + G•, E = F •G• or E = F •&G•.
Therefore E = E•.

E = F ∗ : Suppose E is in wSNF, then for each subexpression H∗ of
E′, followlast(H) ∩ first(H) = ∅. For any subexpression H1 of F ′, we have
H1 ⊆ H and F ′ ⊆ H. Therefore, followlast(H1) ∩ first(H1) = ∅ thus F is in
wSNF. By the inductive hypothesis we have F = F •. Since F ′ ⊆ H, we have
followlast(F ′)∩first(F ′) = ∅. By Lemma 4, F = F ◦, then E• = F •◦∗ = F ◦∗ =
F ∗ = E.

(<=) By Lemma 3, E• is in weakly star normal form. Since E = E•, E is in
weakly star normal form. �	
Then from Lemma 5, we have

Corollary 2. If E is not the same with its weakly star normal form E•, E is
not in weakly star normal form.

The following characterization of strong determinism can be found in [12], which
can be trivially extended to expressions in RE(&).

Lemma 6. Let E be an expression in RE(&).
(1) E = ε, a ∈ Σ: E is strongly deterministic.
(2) E = F +G: E is strongly deterministic iff F and G are strongly deterministic
and first(F ) ∩ first(G) = ∅.
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(3) E = FG:
(a) If ε ∈ L(F ), then E is strongly deterministic iff F and G are strongly

deterministic, first(F ) ∩ first(G) = ∅, and followlast(F ) ∩ first(G) = ∅.
(b) If ε /∈ L(F ), then E is strongly deterministic iff F and G are strongly

deterministic, and followlast(F ) ∩ first(G) = ∅.
(4) E = F&G: E is strongly deterministic iff F and G are strongly determinis-
tic, and sym(F ) ∩ sym(G) = ∅.
(5) E = F ∗: E is strongly deterministic iff F is strongly deterministic and
followlast(F ) ∩ first(F ) = ∅.

Proof. The proof is by induction on the structure of E. We only show the induc-
tion step for interleaving. Others can be found in [12].

E = F&G : If E is strongly deterministic, then E is weakly deterministic.
By Corollary 1, sym(F ) ∩ sym(G) = ∅.

If F,G are strongly deterministic, then F,G are weakly deterministic. Since
sym(F ) ∩ sym(G) = ∅, E is weakly deterministic from Corollary 1. If E is
not strongly deterministic, then there are strings u, v, w over ΣE ∪ ΓE , strings
α �= β over ΓE , and a symbol a ∈ sym(E) such that uαav and uβaw are both
correctly bracketed and in L(Ẽ). Assume a ∈ sym(F ) without loss of generality.
Let u′, v′, w′ be the substrings of u, v, w amongst sym(F ) and α′, β′ be the
substrings of α, β amongst ΓF , then both of u′α′av′ and u′β′aw′ are bracketed
correctly and in L(F̃ ), which implies that F is not strongly deterministic. This
is a contradiction. So E is strongly deterministic. �	
Then we can establish the relation between weak determinism and strong deter-
minism by the following lemma.

Lemma 7. Let E be a weakly deterministic expression. E is in wSNF iff E is
strongly deterministic.

The proof from right to left is based on Lemma 6 and Definition 5 by contradic-
tion. The details are omitted here. The proof from left to right is by induction of
E. For instance, we briefly prove the interesting case E = F&G in the inductive
step. Suppose E is in wSNF. Thus F,G is clearly in wSNF. Since E is weakly
deterministic, we have F,G are weakly deterministic and sym(F ) ∩ sym(G) = ∅
by Corollary 1. By the inductive hypothesis we have F,G are strongly determin-
istic. Hence E is strongly deterministic from Lemma 6.

From the above analysis we can get an algorithm to check strong determin-
ism of RE(&). First, check weak determinism of E using weakDeterm2(E). If E
is weakly deterministic, compute the weakly star normal form E• of E. If E• is
the same with E, E is strongly deterministic. Otherwise, E is not strongly deter-
ministic. The time complexity of the algorithm is also O(|Σ||E|). The process is
formalized in Algorithm 5. For instance, E = (a∗)∗. E is weakly deterministic
because it contains only one symbol. E• = a•◦∗•◦∗ = a•◦∗◦∗ = a∗◦∗ = a∗. Since
E �= E•, E is not strongly deterministic. By Lemma 3, the equivalent strongly
deterministic expression of E is E• = a∗.
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Algorithm 5. StrongDeterm
Input: An expression in RE(&)
Output: true if E is strongly deterministic or false otherwise
1: if weakDeterm2(E) is true then
2: compute the weakly star normal form E• of E
3: if equal(E, E•) then
4: return true
5: return false

Theorem 5. StrongDeterm (E) returns true iff E is strongly deterministic.

Proof. It follows from Lemmas 7 and 5. �	
Theorem 6. StrongDeterm(E) runs in time O(|Σ||E|).

The proof follows from Theorem 4 and Lemma 3.

5 Implementations and Experiments

In this section we first study the performance of the followlast algorithm by
comparing it with the follow− algorithm. Experiments were performed on a
computer with a Intel Core 2 Duo CPU(2.67 GHz) and 4G memory. Next, we
discuss implementation of our algorithm for transforming an expression to its
weakly star normal form. We have implemented all our algorithms and made
them available at http://lcs.ios.ac.cn/∼pengff/projects.html.

5.1 Weak Determinism

In this section, we describe experiments for verifying the correctness of algo-
rithms based on followlast and follow− sets. Complex content models are
designed to test the efficiency of the above determinism algorithms.

All algorithms are implemented in Java. First, scan for an input expression
and convert it into a syntax tree. Next, make a post order traversal of the
syntax tree for computing first, followlast and sym sets in subexpressions for
every symbol. These contents are stored in ArrayList objects as attributes of
nodes. At the same time, conditions in Theorems 1 or 3 can be checked for
each subexpression. Once a subexpression meets the condition, the program
is interrupted and shows information for nondeterministic symbols. A general
overview of the interfaces of the followlast algorithm is presented in Fig. 1.

We design three complex content models for testing the efficiency and scala-
bility of the above algorithms. The design for increasingly large content models
is inspired by P. Kilpeläinen [9].

For sequence operator, the content model with interleaving can be defined
by the form: F1&F2&...&Fn, where the repeated subexpression Fi is of the
sequence form aibi?c∗

i d
+
i . Figure 2 shows how the algorithms scales up as the

http://lcs.ios.ac.cn/~pengff/projects.html
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Fig. 1. Checking the weak determinism of (a∗&b)a

Fig. 2. Scale-up: Number of subexpressions for sequence

number of subexpressions is increased. It can be easily observed that it takes
more time for follow− algorithms in these cases. Nonetheless, the gap is not
very large. The reason is that the main difference between the two algorithms
lies in sequence operator. We can see it from Algorithms 2 and 4.

We further study the scalability for choice operator. The content model with
interleaving can be defined by the form: G1&G2&...&Gn, where the repeated
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Fig. 3. Scale-up: Number of subexpressions for choice

subexpression Gi is of the sequence form ai|bi?|c∗
i |d+i . The weak determinism

checking times are shown in Fig. 3. As for choice form, the time usage of follow−

algorithm increases quadratically, and the time usage of followlast algorithm
increases nearly linearly. However, both of them are slower than followlast algo-
rithm for sequence which implies sequence is easier to implement.

5.2 Weakly Star Normal Form and Strong Determinism

E• is built up from H•◦ for subexpressions H∗ of E during a post order traversal
through the syntax tree of E. Some tricks must be mentioned. The expression
is processed to a postfix expression for keeping the order of operations and
removing parentheses, and during this preprocessing, a special symbol 0 is added
before a unary operator. When constructing binary trees, the leaf nodes are
labeled with 0 or a symbol, and the internal nodes are labeled with operators,
i.e. interleaving, choice, sequence or a unary operator. For every subexpression
H∗ of E, if H = M∗, parent node ∗ of node M is deleted. If M is the left
node of its parent, we add parent(node(∗)).left = node(∗).left, otherwise we
add parent(node(∗)).right = node(∗).left. If H = FG, ε ∈ L(F ) and ε ∈ L(G),
then parent node , of nodes F,G is replaced with +. In the end, we can get the
postfix expression of E• by another post order traversal of the syntax tree.

The strong determinism algorithm can be easily implemented by simply
combing the above two algorithms. Note that the process of converting a postfix
expression into an infix expression may add parentheses to the original expres-
sion. For example, from the above algorithm, the postfix expression for wSNF
of E = a, b, c is (ab, c, ). Thus E• = ((a, b), c), but actually nothing has been
changed in E. Therefore, function equal(E,E•) is implemented by comparing
whether the postfix expressions of E and E• are equal or not.
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6 Conclusion

In this paper, we have investigated the determinism problem for regular expres-
sions extended with interleaving. Weak determinism is a property required by
W3C XML Schema Recommendation. An O(|Σ||E|) time algorithm is proposed
based on examination of first and followlast sets. We then explored the trans-
formation from weakly deterministic RE(&) to strongly deterministic RE(&).
Based on this form, we modify the weakly determinism algorithm to strong
determinism. As for future work, we want to investigate whether there is a nat-
ural extension of the Glushkov construction for RE(&) and the relation between
such automata and determinism.
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Abstract. This paper presents a novel causal semantics for concurrency,
based on rigid families. Instead of having causality as primitive notion,
in our model causality and concurrency are derived from precedence, a
partial order local to each run of a process. We show that our causal
semantics can interpret CCS and π-calculus terms. We propose some
criteria to evaluate the correctness of a causal semantics of process calculi
and we argue that none of the previous models for the π-calculus satisfy
them all.

1 Introduction

Formal models for concurrency can be divided into interleaving models, such
as traces and labelled transition systems, in which concurrency is represented
as non deterministic executions, and non interleaving ones, like configuration
structures [23], event structures [22] or presheaves [8]. Non interleaving seman-
tics have a primitive notion of concurrency between computation events. As a
consequence one can also derive a causality relation, generally defined as the
complement of concurrency. These models are therefore sometimes called causal
semantics or, if causality is represented as a partial order on events, partial order
semantics. Causal models are also known to be at the foundations of reversible
concurrent computations [19].

In this paper we propose to take a notion of precedence as the fundamental
relation between events. Precedence is a partial order that can be seen as a
temporal observation, specific to a given run of a process. In a given run, two
events may also not be related by any precedence relation, in which case one
can see them as having occurred either simultaneously or in such a way that
no common clock can be used to compare them. More traditional causality and
concurrency relations are derivable from precedence.

The interpretation of a process is built by induction on the process construc-
tors and defined as operations on rigid families [6,15]. We equip rigid families
with a labelling function on events. In this sense, our semantics resembles the
encoding of CCS in configuration structures [22].
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The operations on rigid families that are used to encode CCS can be easily
adapted to the π-calculus. Importantly, the restriction operator behaves similarly
in the rigid families for both calculi: it removes from the model the executions
that are not allowed. In previous models for the π-calculus [2,9] the restriction
of a private name introduced new orders between events.

Several causal models have been proposed in the literature for process calculi
(see for instance [2–5,7,9,12,13,22]). Each model is shown to be correct, in some
sense. But can a model be more correct than another one? What are the criteria
one uses to make such evaluation? We will show that our model satisfies several
correctness criteria, and we will argue that no previous causal model for the
π-calculus satifies them all.

The correctness criteria will be introduced as we go along the formal devel-
opment.

Outline. In Sect. 2 we introduce the category of rigid families and rigid mor-
phisms. In Sects. 3 and 4 we show how to interpret CCS and π-calculus, respec-
tively, such that the models are compositional and sound. In Sect. 5 we present
the three remaining correction criteria and conclude with Sect. 6.

2 A Category of Rigid Families

In this section we present rigid families, a model for concurrency introduced
by Hayman and Winskel [6,15], that is a close relative to configuration struc-
tures [14]. We first introduce the unlabelled categorical setting. It results in a
generic framework to represent concurrent computations as sets of events (con-
figurations) equipped with a partial order that represent temporal precedence
between events. Importantly precedence is local to a configuration whereas events
can occur in multiple configurations.

When a process P is able to output two messages a and b on two parallel
channels, three kinds of observations are possible. The observer sees the output
on a before the output on b, or the output on b before the output on a, or she
cannot tell in which order they happen, either because they really happen at
the same time, or because the observer does not have a global clock on the two
events. In the rigid family interpretation of P we would have three corresponding
configurations for the parallel emission of a and b.

Definition 1 (Rigid Inclusion of Partial Orders). Given a partial order x,
we write |x| to denote the underlying set and e ≤x e′ whenever (e, e′) ∈ x. Rigid
inclusion of partial orders x � y is defined iff the following hold:

|x| ⊆ |y| and ∀e, e′ ∈ x : e ≤x e′ ⇐⇒ e ≤y e′

∀e ∈ y,∀e′ ∈ x, e ≤y e′ =⇒ e ∈ x

Definition 2 (Rigid Families). A rigid family F = (E,C) is a set of events E
and a non empty family of partial orders, called configurations, such that ∀x ∈ C,
|x| ∈ P(E) and C is downward closed w.r.t rigid inclusion: ∀y � x, y ∈ C.



Rigid Families for CCS and the π-calculus 225

A morphism on rigid families σ : (E,C) → (E′, C ′) is a partial function on
events σ : E ⇀ E′ that is local injective:

For all x ∈ C, e, e′ ∈ x, σ(e) = σ(e′) =⇒ e = e′

and that extends to a (total) function on configurations:

σ(x) = x′ iff σ(|x|) = |x′| and ∀e, e′ ∈ dom(σ), σ(e) ≤x′ σ(e′) ⇐⇒ e ≤x e′

We write F1
∼= F2 whenever there is an isomorphism between F1 and F2 and

we use 0 to denote the rigid family with an empty set of events.

Proposition 1. Rigid families and their morphisms form a category.

∅
e1

e1 < e2

e2

e2 < e1e1, e2

(e1, e2)

Fig. 1. Example of product

Importantly, the morphisms we employ here dif-
fer from the ones introduced by Hayman and
Winskel that are defined on configurations and
are not required to preserve the order1.

If precedence is a partial order that is local
to a configuration, one may also define a global
(partial) order as follows.

Definition 3 (Causality). Let e, e′ ∈ E for (E,C) a rigid family. Define e′ < e
to mean: ∀x ∈ C, if e, e′ ∈ x then e′ <x e.

Rigid families offer a natural notion of disjoint causality: i.e. an event e1 is caused
by either e2 or e3. This type of dependency is a generalisation of Definition 3:

Definition 4 (Disjoint Causality). Let (E,C) a rigid family and e ∈ E,
X ⊂ E such that e /∈ X. Then X is a disjoint causal set for e, denoted X < e
iff the following hold:

1. disjointness ∀e′ ∈ X, ∃x ∈ C such that e′ <x e and ∀e′′ ∈ X \ e′, e′′ �<x e.
2. completeness ∀x ∈ C, e ∈ x =⇒ ∃e′ ∈ X such that e′ <x e;

In particular e′ < e whenever {e′} < e.

Definition 5 (Concurrency). Let (E,C) a rigid family and e, e′ ∈ E. Define
e♦e′ ⇐⇒ ∃x ∈ C, e, e′ ∈ x such that e′ �≤x e and e �≤x e′.

Note that concurrency has an existential quantifier: two events are concurrent
if there exists a configuration in which they are not comparable. On the other
hand, causality is universal: it has to hold for all configurations.

1 We let the reader refer to appendix for details. We also show in appendix how one
can compile an event structure from rigid families and vice versa. Importantly, the
category of Definition 2 and the category of event structures are not equivalent.
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Definition 6 (Operations on Rigid Families). Let E� = E ∪ {�}.
1. Product. Let � denote undefined for a partial function. Define (E,C) =

(E1, C1)× (E2, C2) where E = E1 ×� E2 is the product in the category of sets
and partial functions with the projections σ1 : E → E�

1 , σ2 : E → E�
2 . Define

the projections π1 : (E,C) → (E1, C1), π2 : (E,C) → (E2, C2) and x ∈ C
such that the following hold:
– x is a partial order with |x| ∈ P(E);
– π1(e) = σ1(e) and π2(e) = σ2(e);
– π1(x) ∈ C1 and π2(x) ∈ C2;
– ∀e, e′ ∈ x, if π1(e) = π1(e′) �= � and π2(e) = π2(e′) �= � then e = e′.
– ∀e, e′ ∈ x such that e, e′ ∈ dom(x), e <x e′ ⇐⇒ π1(e) <π1(x) π1(e′) and

π2(e) <π2(x) π2(e′).
– ∀y ⊆ x we have that π1(y) ∈ C1 and π2(y) ∈ C2.

2. Restriction. Define the restriction of an upward closed set of configurations
X ⊆ C as (E,C) � X = (∪C ′, C ′) with C ′ = C \ X. We equip the operation
with a projection π : (E,C) � X → (E,C) such that π is the identity on
events.

3. Prefix. Define e.(E,C) = (e ∪ E,C ′ ∪ ∅), for e /∈ E where

x′ ∈ C ′ ⇐⇒ x′ =
({e <x′ e′ | ∀e′ ∈ x} ∪ x

)
for some x ∈ C.

Let π : e.(E,C) → (E,C) the projection such that π(e) is undefined and π is
the identity on the rest of the events.

Example 1. We obtain the rigid family in Fig. 1 for the product of (∅ ≺ {e1})
and (∅ ≺ {e2}).

Proposition 2. The following properties hold:

1. F1 × F2 is the cartesian product in the category of rigid families.
2. F � X is a rigid family with the projection π : F � X → F a morphism.
3. e.F is a rigid family with the projection π : e.F → F a morphism.

The following proposition shows that the prefix operation adds event e before
any other event in the family.

Proposition 3. Let e.(E,C) = (E′, C ′). ∀e′ ∈ E′, e ≤ e′.

3 Rigid Families for CCS

Criterion 1 (Compositional Interpretation). The interpretation of a
process should be given by composing the interpretations of its subprocesses.

We conceived our category of rigid family as model for a large class of concurrent
languages, including the π-calculus. In order to illustrate how this should work,
we begin by tuning our formalism to finite CCS [17]. We proceed in a similar,
yet more technical, manner in Sect. 4 to model the π-calculus.
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As it is standard in causal models for concurrency [21], product of rigid
families (Definition 6, Eq. (1)) essentially creates all possible pairs of events that
respect the rigidity constraint imposed by the morphisms of our category. One
then needs to prune out the pairs of events that do not correspond to legitimate
synchronisations. We prove in Subsect. 3.2 the correspondence with CCS. For
simplicity we do not deal with recursion in this paper and let the reader refer to
the appendix for a full treatment of non finitary CCS.

3.1 Definitions

Let N be a set of names N = {a, b, c, . . . }, N a set of co-names N = {a, b, c, . . . }.
The function [·] : N → N is a bijection, whose inverse is also denoted by [·] so
that a = a. Let L be the set of event labels defined by the following grammar:

α, β ::= a | a | (α, β)

The pairs of labels are globally denoted by τ . We say that an event is partial if
it is labelled by a name or a co-name. It represents a possible interaction with
the context.

Definition 7 (Labelled Rigid Families). A labelled rigid family F =
(E,C, 	,P) is a rigid family equipped with a distinguished set of names P (the
private names of F) and a labelling function 	 : E → L.

We use labels to determine which events cannot occur in a computation:

Definition 8 (Disallowed Events). Let F = (E,C, 	,P) and e ∈ E. We say
that 	(e) is disallowed if one of the following properties holds:

1. [type mismatch] 	(e) = (α, β) with α �∈ N ∪ N or α �= β;
2. [private name] (	(e) = a ∈ N or 	(e) = a ∈ N) and a ∈ P ;

A synchronisation event may only occur between complementary partial events
(Eq. (1)) and partial events may not use a private name (Eq. (2)).

Definition 9 (Dynamic Label). Define the dynamic label of an event as 	̂(e)
= 	(e) if 	(e) is allowed and ⊥ otherwise.

We extend now the operations of Definition 6 in order to take labels into account.

Definition 10 (Operations on Labelled Rigid Families)

1. Restriction of a name. Let a /∈ P. Then (E,C, 	,P) � a = (E,C, 	,P∪{a}) �
X, where x ∈ X iff ∃e ∈ x such that 	̂(e) = ⊥.

2. Prefix. Define α.(E,C, 	,P) = (E′, C ′, 	′,P) where, for some e /∈ E, e.(E,C)
= (E′, C ′) and 	′(e) = α and 	′(e′) = 	(e′) for e′ �= e.
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3. Product. Let (E,C) = (E1, C1) × (E2, C2) and π1, π2 the projections πi :
(E,C) → (Ei, Ci). Then

(E1, C1, 	1,P1) × (E2, C2, 	2,P2) = (E,C, 	,P1 ∪ P2)

where 	(e) =
{

	i(πi(e)) if π3−i(e) = �(
	1(π1(e)), 	2(π2(e2))

)
otherwise

4. Parallel composition

(E1, C1, 	1,P1) | (E2, C2, 	2,P2) = (E1, C1, 	1,P1) × (E2, C2, 	2,P2) � X

where x ∈ X iff ∃e ∈ x such that 	̂(e) = ⊥.

Definition 11 (SoundRigidFamily).F is sound iff ∀x ∈ F , ∀e ∈ x, 	̂(e) �= ⊥.

Proposition 4. Let F1 = (E1, C1, 	1,P1), F2 = (E2, C2, 	2,P2) sound rigid
families such that P1 ∩ P2 = ∅ and let α a name such that α /∈ P1. Then α.F1,
F1 � a and F1 | F2 are sound rigid families.

3.2 Operational Correspondence with CCS

Criterion 2 (Sound Interpretation). The interpretation of a process can be
equipped with an operational semantics that corresponds to the natural reduction
semantics of the process.

To show the correspondence with the operational semantics of CCS, we need to
define a notion of transition on rigid families. Intuitively, a computation step
consists in triggering a single-event computation {e} that belongs to the set of
configurations. Once e is consumed, the events in conflict with e are eliminated.
The remaining configurations are those that are “above” the configuration {e}.

Definition 12 (Transitions on Rigid Families). Let (E,C, 	,P)/e =
(E′, C ′, 	′,P), for {e} ∈ C, be the rigid family obtained after the occurence of
event e and defined as follows:

– x′ ∈ C ′ ⇐⇒ x′ = x \ {e}, for {e} � x ∈ C;
– e′ ∈ E′ ⇐⇒ ∃x ∈ C, {e} � x and e′ ∈ x;

For all rigid family F = (E,C, 	,P) with {e} ∈ C, note that F/e is also a labelled
rigid family. Now consider (finite) CCS terms defined by the grammar below:

P,Q ::= (P |Q) | a.P | a.P | P\a | 0

As usual, occurrences of a and a in P\a are bound. For simplicity, we assume
that all bound occurrences of names are kept distinct from each other and from
free occurrences.

The interpretation of a CCS process as a rigid family is defined by induction
on the structure of a term:

[[α.P ]] = α.[[P ]] [[P |Q]] = [[P ]]|[[Q]] [[P\a]] = [[P ]] � a [[0]] = 0
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Lemma 1. Let P a process and [[P ]] = (E,C, 	,P) its interpretation.

1. ∀α, P ′ such that P
α−→ P ′, ∃e ∈ E such that 	(e) = α and [[P ]]/e ∼= [[P ′]];

2. ∀e ∈ E, {e} ∈ C, ∃P ′ such that P
�(e)−−→ P ′ and [[P ]]/e ∼= [[P ′]].

A direct corollary of Lemma 1 is that a process and its encoding can simulate
each others reductions.

Theorem 1 (Operational Correspondence with CCS). Let P a process
and [[P ]] = (E,C, 	,P) its encoding.

1. ∀P ′ such that P
τ−→ P ′, ∃{e} ∈ C closed such that [[P ]]/e ∼= [[P ′]];

2. ∀e ∈ E, {e} ∈ C closed, ∃P ′ such that P
τ−→ P ′ and [[P ]]/e ∼= [[P ′]].

3.3 Causality and Concurrency in CCS

A term in CCS can compose with a context and then exhibit more behaviours.
We will show below a property that says that precedence in the semantics of a
term can be seen as an abstraction of the causality that appears when the term
is put into a context.

In the interpretation of a CCS term, if we have a configuration x and two
concurrent events in x, we also have the configuration y with the same events
and the same order as x except for the concurrent events that become ordered
in y. This is stated formally in the following proposition.

Proposition 5. Let [[P ]] = (E,C, 	,P). ∀x ∈ C and ∀e1, e2 ∈ x such that
e1♦xe2, ∃y ∈ C such that |x| = |y| and

1. y preserves the order in x: ∀e, e′ ∈ x, e ≤x e′ =⇒ e ≤y e′

2. x reflects the order in y except for e1 <y e2: ∀e, e′ ∈ y such that ¬(e =
e1 ∧ e′ = e2), e ≤y e′ =⇒ e ≤x e′.

In CCS we cannot guarantee simultaneity. Two concurrent events (Definition 5)
can be observed simultaneously but also in any order. For instance the order
a < b induced by the CCS term a | b is materialized when the term composes
with the context (a.b | [·])\ab. Note that this is a property specific to CCS (and
the π-calculus in Subsect. 4.4), but one can encode in rigid families calculi where
such a property does not hold.

The causality of Definition 3 is called structural in previous models for
CCS [3,22]. But we can also express the disjunctive causality of Definition 4
in CCS. Consider the process a.b | a interpreted in rigid families in Fig. 2, where
events are replaced by their corresponding labels. The disjunctive causal set for
the event labelled b consists of the events labelled a and τ : X = {a, τ} < b.
Disjunctive causal sets in CCS always consist of conflicting events. However, it
is not the case for the disjunctive causal sets of the π-calculus.
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∅

a a τ

a, aa < a a < b a < a τ < b

a < b, a a < a < ba < a < b

Fig. 2. a.b | a in rigid families

4 Rigid Families for the π-calculus

We show how definitions in Sect. 3 can be adapted to the π-calculus [18]. The
treatment of synchronisation labels is more complicated as noted in [9,16] since
names can be substituted during computations. Also, restriction does not nec-
essarily delete events labelled with the private name, due to the phenomenon of
scope extrusion.

However, in our novel approach, the main difficulty of the encoding resides
in the definition of disallowed labels. Given the correct definition, all operations
on rigid families for the π-calculus are straightforward extensions from CCS,
including the restriction. As in CCS, for simplicity, we do not treat recursion or
nondeterministic sum.

4.1 Labels for the π-calculus

We redefine the set L of events labels (see below), in order to handle the labels
of the π-calculus. We use α, β to range over L, on which we define the functions
subj and obj in the obvious manner:

α ::= b〈a〉 | d(c) | (α, β)
subj(b〈a〉) = {b} subj(d(c)) = {d} subj(α, β) = subj(α) ∪ subj(β)
obj(b〈a〉) = {a} obj(d(c)) = {c} obj(α, β) = obj(α) ∪ obj(β)

A labelled rigid family for the π-calculus is defined as in Definition 7, except
that the labelling function 	 : E → L has as codomain the new set L. For a label
α = b(a) or α = b〈a〉, we use the notation α ∈ 	(e) if 	(e) = (α, α′), 	(e) = (α′, α)
or 	(e) = α. The name b is binding in a label α if α = a(b) for some name a. For
simplicity we use the Barendregt convention: a name b has at most one binding
occurrence in all event labels and this occurrence binds all bs in the other event
labels.

We call an event e that binds a name b in a configuration an instantiator
for b. An event e with label c〈d〉 can thus have two instantiators, one for the
subject c and one for the object d. If the event is labelled by a synchronisation
(	(e) = (b〈a〉, d(c))) we can have up to three instantiators (for the names b,
a and d). For all e occurring in a configuration x, we write e′ ∈ instsx(e) and
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e′′ = instox(e) for, respectively, the subject and object instantiator of e. Note
that in the interpretation of a π process (respecting the Barendregt convention)
as a rigid family in Subsect. 4.3, it can be proved that e′ <x e and e′′ <x e.

4.2 Synchronizations

Let Σ be the set of all name substitutions. The function σx : x → Σ returns a
set with all substitutions generated by synchronisation events in x.

Definition 13 (Substitution). We define σx by induction on x:

σ∅ =∅
σx =σx\e if 	(e′) �= (d(a), b〈a′〉)

σx\e ∪ {a′/a} if 	(e′) = (d(a), b〈a′〉) and {a′′/a′} /∈ σx\e

σx\e ∪ {a′′/a} if 	(e′) = (d(a), b〈a′〉) and {a′′/a′} ∈ σx\e

Define 	x(e) = 	(e)σx which applies the substitutions to the label of e.

We can prove that for any configuration x in the interpretation of a π process,
σx is well defined.

The synchronizations of a configuration x are events e ∈ x such that 	(e) =
(b(a), c〈d〉), for some names a, c, d. We use the configuration-indexed predicate
τ̃x : x → 2 to denote events of that sort. The materialized synchronisations are
synchronization events with the 	x(e) = (a(c), a〈d〉). The predicate τx : x → 2 is
the smallest predicate that holds for such events.

Importantly, one cannot simply screen out all τ̃x-events in a rigid family that
are not also τx-events. They might still become fully fledged synchronisations after
composing the family with more context. Yet some pairs of events will never satisfy
the τx predicate, no matter what operations are applied to the rigid family they
belong to. Such events can be identified thanks to their disallowed label.

The definitions of events that have disallowed labels are quite cumbersome
but essentially consist in an exhaustive characterization of events the label of
which proves they can no longer appear in a π-calculus computation (Definition
15 and Definition 16). Such events can only appear after applying the product or
the restriction, operations needed to represent the parallel composition and name
restriction of the π-calculus. They are therefore detected and removed on the fly
(see Definition 10). The reader, uninterested in technical details, may now safely
skip to Subsect. 4.3, having in mind this informal notion of disallowed events.

A τ̃x-event can become a materialized τx-event when the names used as sub-
ject can be matched. This is always a possibility if the names are not private,
because input prefix operations can instantiate them to a common value. How-
ever, when only one of the names is private then a distinct event, occurring
beforehand, has to be in charge of leaking the name to the context. We call such
event an extruder :

Definition 14 (Extruder). An event e ∈ x is an extruder of e′ ∈ x if e <x e′

and 	x(e) = b〈a〉 for some b where a is private and a ∈ subj(	x(e′)).
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Consider a τ̃x-event e occurring in a configuration x. If a, b ∈ subj(	x(e)) we say
that a can eventually match b iff a /∈ P and either b /∈ P or if b ∈ P then there
exists e′, e′′ ∈ x, e′ = instsx(e) and e′′ extruder of e such that e′′ <x e′. We write
U(a, b) iff a = b or if a can eventually match b or b can eventually match a.

Definition 15 (Disallowed τ̃x-Events). Let F = (E,C, 	,P) and x ∈ C,
e ∈ x with τ̃x(e). The label λ = 	x(e) is disallowed if one of the following
properties holds:

1. [type mismatch] λ = (α, β) and it is not the case that α is input and β
output or viceversa;

2. [non unifiable labels] let a, b ∈ subj(λ) and either:
– ¬U(a, b)
– ∃e′ ∈ x such that a, b′ ∈ subj(	x(e′)) for some b′ and ¬U(b, b′).

Condition 1 is straightforward: an output can only synchronize with an input.
Condition 2 says that a τ̃x-event cannot materialize if the names used in subject
position cannot eventually match.

Private names cannot be used to interact with the context. Therefore we
disallows partial events that use a private name as a communication channel
(i.e. in the subject of the label). However, if the private name a is sent to the
context (by an extruder) then a synchronisation on a becomes possible. This is
formally stated by the definition below.

Definition 16 (Disallowed Partial Event). Let F = (E,C, 	,P) and x ∈ C,
e ∈ x with ¬τ̃x(e). The label λ = 	x(e) is disallowed if a ∈ subj(λ), a ∈ P and
�e′ ∈ x extruder of e.

Definition 17 (Dynamic Label). Define the dynamic label of an event as
	̂x(e) = 	x(e) if 	x(e) is allowed and ⊥ otherwise.

We have the same operations as in Definition 10 but applied to the set of labels
of the π-calculus and using the dynamic labels of Definition 17.

4.3 Operational Correspondence with the π-calculus

In this section we show the operational correspondence between processes in
π-calculus and their encoding in rigid families. We assume the reader is familiar
with the π-calculus [18,20]. For the sake of simplicity we use a restricted version
of π-calculus defined by the grammar below:

P ::= (P |P ) | b〈a〉.P | d(c).P | P\a | 0

The restriction of the private name a is denoted as in CCS, to highlight that
in their interpretation in rigid families is similar. We use a late LTS for the π-
calculus recalled in the appendix. Similarly to Subsect. 3.2 we encode a process
into a rigid family as follows:

[[α.P ]] = α.[[P ]] [[P |Q]] = [[P ]]|[[Q]] [[P\a]] = [[P ]] � a [[0]] = 0

We now revisit Definition 12 since transitions on rigid families with dynamic
labels need to apply substitutions on the fly.
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Definition 18 (Transitions on Rigid Families). Let (E,C, 	,P)/e =
(E′, C ′, 	′,P), for {e} ∈ C, be the rigid family obtained after the occurence of
event e and defined as follows:

– x′ ∈ C ′ ⇐⇒ x′ = x \ {e}, for {e} � x ∈ C;
– E′ = ∪|x′|, for all x′ ∈ C ′;
– if 	(e) = (b〈a〉, c(d)) then 	′(e) = 	(e){a/d}; otherwise 	′ = 	.

In a rigid family we have events that do not have an operational correspon-
dence, but are necessary for compositionality. These are the events for which
the predicate τ̃x(e) holds but τx(e) does not. We ignore them when showing the
operational correspondence.

Definition 19 (Complete and Closed Configurations). A configuration x
in a rigid family (E,C, 	,P) is complete if ∀e ∈ x, τ̃x(e) =⇒ τx(e). We say
that x is closed if ∀e ∈ x, τx(e) holds.

Remark that for minimal events (i.e. e such that {e} is a configuration) 	{e}(e) =
	(e).

Lemma 2. Let P a process and [[P ]] = (E,C, 	,P) its encoding.

1. ∀α, P ′ such that P
α−→ P ′, ∃e ∈ E such that 	(e) = α and [[P ]]/e ∼= [[P ′]];

2. ∀e ∈ E, {e} ∈ C complete, ∃P ′ such that P
�(e)−−→ P ′ and [[P ]]/e ∼= [[P ′]].

Proof (sketch).

1. We proceed by induction on the derivation of the rule P
α−→ P ′. We consider

the following cases:

In/Out
α.P

α−→ P
Com

P
b〈a〉−−→ P ′ Q

b(c)−−→ Q′

P |Q τ−→ P ′|Q′{a/c} Restr
P

α−→ P ′

P\a
α−→ P ′\a

a /∈ α

– Rule In/Out: let [[α.P ]] = α.[[P ]] hence we have to show that

[[P ]] ∼= (α.[[P ]])/e, where 	(e) = α. (1)

– Rule Com: we have [[P |Q]] = ([[P ]]× [[Q]]) � X. By induction [[P ′]] ∼= [[P ]]/e1
where 	(e1) = b〈a〉 and [[Q′]] ∼= [[Q]]/e2 where 	(e2) = b(c). Then {e1} ∈
[[P ]] and {e2} ∈ [[Q]] it implies that there exists {e} ∈ [[P ]] × [[Q]] such that
π1(e) = e1 and π2(e) = e2. Hence we have to show that

((
[[P ]]/e1 × [[Q]]/e2

)
� X ′

)
{a/d} ∼= (

([[P ]] × [[Q]]) � X
)
/e

where F{a/d} replaces d with a in all labels.
– Rule Restr: by induction we have that [[P ]]/e ∼= [[P ′]], where 	(e) = α. We

have then to show that {e} ∈ [[P\a]] and

([[P ]]/e) � a ∼= ([[P ]] � a)/e (2)
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2. We proceed by structural induction on P . Consider the following cases as
example:

– P = α.P ′ then [[P ]] = [[α.P ′]] = α.[[P ′]]. There exists only one singleton
configuration {e} ∈ α.[[P ′]], where 	(e) = α. We have that α.P ′ α−→ P ′

hence [[P ′]] ∼= (α.[[P ′]])/e, which follows from Equation 1.
– P = P ′\a then [[P ]] = [[P ′]] � a. We have that ∀{e} ∈ [[P ]], a /∈ subj(	(e))

and {e} ∈ [[P ]].
Consider the subcases where either a /∈ 	(e) or τ̃x(e) holds.

Then P ′\a
�(e)−−→ P ′′\a and P ′ �(e)−−→ P ′′. By induction [[P ′′]] ∼= [[P ′]]/e.

Hence we have to show that [[P ′′]] � a ∼= ([[P ′]] � Xa)/e that is ([[P ′]]/e) �
Xa

∼= ([[P ′]] � Xa)/e which follows from Equation 2.

A direct consequence of Lemma 2 is that, as in CCS, a process and its encoding
can simulate each others reductions.

Theorem 2 (Operational Correspondance with the π calculus). Let P
a process and [[P ]] = (E,C, 	,P) its encoding.

1. ∀P ′ such that P
τ−→ P ′, ∃{e} ∈ C closed such that [[P ]]/e ∼= [[P ′]];

2. ∀e ∈ E, {e} ∈ C closed, ∃P ′ such that P
τ−→ P ′ and [[P ]]/e ∼= [[P ′]].

4.4 Causality and Concurrency in the π-calculus

Proposition 5 extends to the π-calculus.
The disjoint causal sets in the π-calculus, capture the causality induced by

the prefix operator (as in CCS), but also the causality induced by the restriction
of private names. Consider as an example the process (b〈a〉 | c〈a〉 | a)\a with its
encoding in rigid families in Fig. 3, where events are replaced by their labels. The
disjoint causal set for the event labelled a consists of the events labelled b〈a〉 and
c〈a〉, that is {b〈a〉, c〈a〉} < a. Indeed the event labelled a cannot appear by itself:
either b〈a〉 or c〈a〉 precedes it. However in rigid families disjunctive causality [9]
is not ambiguous: in every configuration the order on the events is fixed.

∅

b〈a〉 c〈a〉

b〈a〉
c〈a〉b〈a〉 < a c〈a〉 < ab〈a〉 < c〈a〉 c〈a〉 < b〈a〉

b〈a〉 < c〈a〉 < a c〈a〉 < b〈a〉 < a

b〈a〉 < a < c〈a〉 c〈a〉 < a < b〈a〉c〈a〉 < a,
b〈a〉 < a

b〈a〉 < c〈a〉,
b〈a〉 < a

c〈a〉 < b〈a〉,
c〈a〉 < a

b〈a〉 < a,
c〈a〉

c〈a〉 < a,
b〈a〉

Fig. 3. (b〈a〉 | c〈a〉 | a)\a in rigid families
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5 Advanced Criteria

In the previous section we have presented an interpretation that is compositional
and sound both for CCS and the π-calculus. We propose in this section a few
additional notions of correctness that our semantics enjoys. These criteria are
of particular interest in the π-calculus, as previous causal models do not satisfy
them. Hence we only formally prove them for the π-calculus, but they can be
shown to hold for CCS as well.

5.1 Realisability

Criterion 3 (Realisable Interpretation). Every labelled run should repre-
sent a possible execution.

A labelled trace of an open system can be closed if the right context composes
with the open term. In this case we say that the trace is realisable. This can
be seen somehow as the dual to soundness. If soundness means that the model
has enough labelled events and runs, we also require that it has not too many of
them. In order to formalise this criterion, we need to use the notion of context.
A context C in the π-calculus is defined as a process with a hole:

C[·] := [·] ‖ α.C[·] ‖ P |C[·] ‖ C[·]\a

We do not know how to define a notion of context for rigid families in general,
as it is not clear what is a rigid family with a hole. However, if a structure F
has an operational meaning (i.e. ∃P a process such that F = [[P ]]) we can use a
π-calculus context C[·] to define a new term [[C[P ]]].

When analysing the reductions of a process in context, we need to know the
contribution the process and the context have in the reduction. To this aim we
associate to the context C[·] instantiated by a process P a projection morphism
πC,P : [[C[P ]]] → [[P ]] that can retrieve the parts of a configuration in [[C[P ]]]
that belong to [[P ]].

Definition 20. Let C[·] a π-calculus context, and P a process. The projection
πC,P : [[C[P ]]] → [[P ]] is inductively defined on the structure of C as follows:

– πC,P : [[α.C ′[P ]]] → [[P ]] is defined as πC,P (e) = πC′,P (e);
– πC,P : [[C ′[P ]|P ′]] → [[P ]] is defined as πC,P (e) = πC′,P (π1(e)), where π1 :

[[C ′[P ]|P ′]] → [[C ′[P ]]] is the projection morphism defined by the product;
– πC,P : [[C ′[P ]\a]] → [[P ]] defined as πC,P (e) = πC′,P (e).

One can easily verify, by case analysis, that the projection πC,P : [[C[P ]]] →
[[P ]] is a morphism. We naturally extend πC,P to configurations.

We can now prove our first criterion: every partial labelled configuration can
be “closed”.
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Theorem 3. ∀x ∈ [[P ]], there exists C a context for [[P ]] and z ∈ [[C[P ]]] closed
such that πC,P (z) = x.

Proof (sketch). We proceed in several steps:

1. We show that for x ∈ [[P ]] there exists a context C1 = α1 · · · αn.[·] and x1 ∈
[[C1[P ]]] such that
– πC1,P (x1) = x and
– ∀e ∈ x1, if τ̃x1(e) then ∀b ∈ subj(	x1(e)) we have that b /∈ P =⇒ ∃e1 ∈

x1, e1 ∈ instsx1
(e) such that 	(e1) = d′(b).

2. Define a precontext as a multiset of labels such that b(a) ∈ χ =⇒ �c(a) ∈ χ.
For x1 ∈ [[P1]] we define a precontext and a function f : χ → x1 associating a
label to any partial event. Intuitively for every open or partial event e ∈ x1 we
associate a label α ∈ χ that “closes” the event. Let ς be a set of substitutions
generated by x1 and χ.

We ask that given x1, the precontext χ and the total and injective function
f : χ → x1 satisfy the following:
– ∀e ∈ x1 with 	x1(e) = (b〈a〉, c(d)) then 	χ(e) = (b〈a〉, b(d));
– ∀e ∈ x1 with 	x1(e) = b〈a〉 or 	x1(e) = b(d) there exists α ∈ χ, α = b′(a′)

or α = b′〈a′〉 respectively, such that f(α) = e and b′ς = b;
– ∀α1, α2 ∈ χ, such that α1 = b(a), a = subj(α2) ⇐⇒ f(α1) <x1 f(α2)

and there is a ∈ obj(	x1(f(α1))) private.
In the above we have that 	χ(e) = 	(e)ς(e).

3. Let x1 ∈ [[P1]] with χ a precontext and f : χ → x1 a total function as defined
above. We construct a process P2 from the precontext χ such that
– there are no private names in P2: (\a) /∈ P2, for any name a;
– α ∈ P2 ⇐⇒ α ∈ χ ;
– α1 · · · αn.0 ∈ P2 ⇐⇒ ∃a ∈ obj(	x1(e1)), a ∈ P and en <x1 ei, a ∈

subj(	x1(ei)) for f(α1) = e1 and f(αi) = ei, with i ∈ {2, n}.
The context required by the theorem is C = P2 | [·]. The conditions above
guarantee that we construct the context from the precontext and that the
sequential operator are only used for an extrusion from P (and the instanti-
ation in P2) of a private name.

4. We show that ∃x2 ∈ [[P2]] and g : x2 → x1 a total, injective function such
that

α ∈ P2 ⇐⇒ e ∈ x2, 	(e) = α

g(e2) = e1 ⇐⇒ f(	(e2)) = e1

e2 <x2 e′
2 ⇐⇒ g(e2) <x1 g(e1)

Intuitively, x2 is the configuration that composes with x1 in order to pro-
duce the closed configuration z. We have that x2 is maximal in [[P2]], hence
it contains all labels in χ. The conditions above ensure that the function
g keeps the correspondence between partial events in x1 and their ‘future’
synchronisation partners in x2.
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5. Let x1 ∈ [[P1]] and x2 ∈ [[P2]] defined above. We have that [[P1|P2]] =
(
[[P1]] ×

[[P2]]
)

� X and π1, π2 the projections. Denote [[P1|P2]] = (E,C). We show
that ∃z ∈ [[P1|P2]] closed with π1(z) = x1 and such that z /∈ X.

Using Theorem 3 we have the following straightforward corollary, that says
that any context has to preserve and reflect the concurrency relation on events,
and consequently the precedence between events. It follows from the preservation
and reflection of order by the morphisms.

Corollary 1. ∀x ∈ [[P ]] and ∀C context for [[P ]] such that z ∈ [[C[P ]]] and
πC,P (z) = x we have that e1♦xe2 ⇐⇒ π−1

C,P (e1)♦zπ
−1
C,P (e2).

5.2 Structural Congruence

Criterion 4 (Denotational Interpretation) The interpretation should be
invariant for structural congruence.

Corollary 1 says that the interpretation does not contain too much concurrency.
We also would like to prove that the interpretation contains enough concurrency,
or, dually, that it does not have too much causality: specifically we require that
the restriction operator does not introduce too much causality. Surprisingly this
is obtained by simply requiring that the semantics preserves structural congru-
ence. The interesting case is the scope extension rule:

Theorem 4 (Preservation of Structural Congruence)

[[(P )\a | Q]] ∼= [[(P | Q)\a]] if a /∈ fn(Q)

Proof (sketch). We show that

F1 =
(
[[P ]] � X1 × [[Q]]

)
� X2

∼= (
[[P ]] × [[Q]]

)
� X3 = F2.

where F1 = (E1, C1, 	1,P1) and F2 = (E2, C2, 	2,P2). Let us denote π1,P : F1 →
[[P ]] and π1,Q : F1 → [[Q]] and similarly for π2,P , π2,Q. Define a bijection on
events as follows ι(e1) = e2 ⇐⇒ π1,P (e1) = π2,P (e2) and π1,Q(e1) = π2,Q(e2).
To show it is an isomorphism we show that x1 ∈ F1 ⇐⇒ x2 ∈ F2, where
ι(x1) = x2.

To better understand the importance of this criterion, consider the causal
models presented in [2]. In those models, there is a tight correspondence with
the standard transition semantics of the π-calculus. In particular, the first output
that extrudes a name has a different label than all subsequent outputs of that
name, and moreover it precedes them in the causal relation. If we had made
a similar choice here, in the process P = (b〈a〉 | c〈a〉)\a, we would have only
configurations where one of the output would precede the other. By the way
parallel composition is defined, this would imply that in P | (b(x) | c(y)) the τ
transitions are causally related. However this process is structurally congruent
to (b〈a〉 | c〈a〉 | b(x) | c(y))\a, where the τ transitions are concurrent. Thus
Theorem 4 would fail. Though the causal model of [2] is defined on transition
systems one can represent the causality relation induced in a rigid family as in
Fig. 4. We can see then that the two processes (b〈a〉 | c〈a〉)\a| (b(x) | c(y)) and
(b〈a〉 | c〈a〉 | b(x) | c(y))\a have different interpretations.
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∅

b〈a〉 c〈a〉

b〈a〉 < c〈a〉 c〈a〉 < b〈a〉

∅

τb τc

τb < τc τc < τb

∅

τb τc

τb, τc

Fig. 4. (b〈a〉 | c〈a〉)\a, (b〈a〉 | c〈a〉)\a| (b(x) | c(y)) and (b〈a〉 | c〈a〉 | b(x) | c(y))\a in
the model of [2]

5.3 Reversibility and Stability

In the operational setting, reversible variants for CCS [11] and the π-calculus [10]
have been studied. We conjecture that rigid families are suitable models for the
reversible π- calculus, but leave this as future work. Instead we show, intuitively,
why rigid families are a good fit for reversibility.

Reversible calculi allow actions to backtrack in a different order then they
appeared in the forward computation. The only constraint is that the causal
order between events is respected: we cannot undo the cause before the effect.
Configuration structures and rigid families are a suited for reversible calculi as
the (rigid) inclusion between sets dictates the allowed forward and backward
transitions. Then it is important that in the closed term we can backtrack on
any path allowed by the forward computation. We can generalise the realisability
criterion (Theorem 3) to the reversible setting: there exists a context that closes
a configuration and that preserves all possible paths leading to it.

∅

b〈a〉 c〈a〉

b〈a〉, c〈a〉b〈a〉, a c〈a〉, a

b〈a〉, c〈a〉, a

Fig. 5. The configuration struc-
tures of (b〈a〉 | c〈a〉 | a(d))\a in [9]

In previous works [22] this condition is
called stability and is defined on the domain
underlying the rigid families. Intuitively sta-
bility means that in any configuration one can
deduce a partial order on events. Notably, the
semantics proposed in [9] does not satisfy it.

Consider the process (b〈a〉 | c〈a〉 | a(d))\a
with the rigid family depicted in Fig. 3. Its
representation in [9] is represented in Fig. 5.
In this process a is private and it cannot be
used as a communication channel. The con-
text has first to receive the name from one of
its extruders: on channel b or on channel c.
This type of disjunctive causality is what the
model of [9] depicts. In the top configuration the extruder of a is either b〈a〉
or c〈a〉. However in a closed term we can never express this type of disjunctive
causality. We can either close the term with a process of the form b(a′).a′〈〉 or
c(a′′).a′′〈〉. Hence there is no context which can close such a configuration. In
our model, instead, in any configuration that has disjunctive causality the order
of occurrence between events is fixed.
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6 Conclusions

We presented a novel causal semantics for concurrent computations. Importantly,
we exhibit correction criteria that differentiate our model from others. We have
stated that a correct causal model should be:

1. Compositional: we have defined a category of rigid families such that the
encoding of a term is given by a categorical operation on the encoding of its
subterms.

2. Realisable: each configuration in the interpretation of a process is realisable
and the precedence in the closed system is the same as in the open one.

3. Sound: we showed an operational correspondence with the reduction seman-
tics of CCS and the π-calculus.

4. Denotational: the rules of structural congruence are preserved by the causal
semantics.

The first two correction criteria can be seen as internal coherence results:
open traces can compose to form correct closed executions. External coherence
criteria relate rigid families to other models for concurrency. In this paper we
used the model to give interpretations to CCS and π-calculus processes that
satisfy the third and fourth correction criteria. As future work, we plan to show
a correspondence between reversible π-calculus [10] and its encoding in rigid
families. The correction criteria have then to hold in a reversible setting as well.
As we showed in Subsect. 5.3 this is particularly interesting for the realisability
criterion.

In the π-calculus the input prefix plays the double role of instantiator and
of structural predecessor. We can interpret in rigid families a calculus without
prefix precedence [24] and we conjecture that the partial orders would then
characterise the information flow rather then the temporal precedence.

Equivalence relations defined on previous causal model for CCS have a cor-
respondence in reversible CCS [1]. We plan to show as future work that such
equivalence relations can be defined on rigid families and possibly correspond to
bisimulations in the reversible π-calculus.
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Abstract. This is a language-theoretic investigation into a situation
where a server serves an unbounded number of requests, and handling a
request requires a bounded number of (arbitrarily delayed) steps. From
a description of the system in interleaving semantics, one endeavours to
determine whether some sequence from a given regular language is possi-
ble. We model unbounded parallelism using the iterated shuffle operator,
investigate quotients of the so-called simple shuffled languages with reg-
ular languages, and prove a sufficient condition for obtaining another
simple shuffled language by that operation.

1 Introduction

Imagine a restaurant where each of unboundedly many clients orders a finite
sequence of menu items, pays up and leaves. All clients are served in parallel
(the kitchen is very large), and we would like to determine whether a sequence
of events from some regular set might occur. When we model this scenario using
formal languages, such questions are about language intersections and quotients.

The unbounded parallelism in our restaurant can be described as an iterated
shuffle, as introduced in [14], which yields the possible interleavings of an unbou-
nded number of words from a given language. This operation already produces
non-context-free languages when applied to finite sets (see [11]). The sequences of
events in the scenario constitute a language of the class SHUF = (∪, , )(FIN )
of simple shuffled languages built up from the finite languages using union, shuffle
and iterated shuffle. By demonstrating a close relationship between quotients
with regular languages and Petri net reachability, we show that SHUF is not
closed under such quotients (which would make answering the question easy
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in all cases, provided the operation was efficiently computable), but exhibit a
nontrivial subset which is closed under all regular quotients.

This paper is structured as follows: Sect. 2 introduces the basic notions used
in the rest of the paper, in Sect. 3 we present our results in three subsections,
the main result appearing in Subsect. 3.2 while the other two are concerned with
relating our problem to Petri nets, Sect. 4 lists related work and Sect. 5 concludes
with an outlook.

2 Shuffles and Quotients

In this section, we fix the notation and introduce formal languages with concate-
nation and shuffle. We then define quotients of languages, and other prerequi-
sites. When they are first introduced and defined, notions appear in italics.

The symbol − stands for set difference. A multiset over a finite set A (A-
multiset) is a function A → N. A singleton is a multiset assigning 1 to some a ∈ A
and 0 to all other a′ �= a ∈ A. It may be written a. An empty multiset (of constant
value 0) is also written 0. If s and t are multisets, let s ≤ t iff ∀a ∈ A, s(a) ≤ t(a).
Multisets s, t are added component-wise, ∀a ∈ A, (s+ t)(a) = s(a)+ t(a), can be
scaled by natural numbers k ∈ N, ∀a ∈ A, (k · s) · (a) = k · (s · a), and t can be
subtracted from s provided s ≥ t, then ∀a ∈ A, (s − t)(a) = s(a) − t(a). The set
of all A-multisets is denoted by A⊕.

2.1 Operators for Constructing Languages

A language is a set L ⊆ Σ∗, where Σ∗ is the free monoid generated by a finite
alphabet Σ. The binary operation concatenation will be denoted by 
 or ·, the
empty word by ε. For w ∈ Σ∗ let ‖w‖ denote the length of w. If A ⊆ Σ∗ then |A|
denotes the cardinality of A which also can be infinite. In particular, ‖ε‖ = 0.
For A ⊆ Σ∗ let ‖A‖ = max{‖w‖ | w ∈ A} the norm of A.

The shuffle operator : Σ∗ ×Σ∗ → 2Σ∗
has the following recursive definition:

for all a, b ∈ Σ and v, w ∈ Σ∗, ε w = w ε = {w} and aw bv = {a} 
 (w
bv) ∪ {b} 
 (aw v). It extends canonically to a binary operation on languages,
: 2Σ∗ × 2Σ∗ → 2Σ∗

where A B :=
⋃

w∈A,v∈B w v. As it is associative and

commutative, we write
i∈I

Li for the shuffle of several languages indexed by I.

The iterated shuffle of a language A is defined in analogy to the Kleene star
as A :=

⋃
i∈N

A (i), where A (0) = {ε} and A (i+1) = A A (i). We also define
A (≤n) as

⋃
i∈{0...n}(A

(i)). Likewise for concatenation, we define A�(0) = {ε},
A�(i+1) = A 
 A�(i), A�(≤n) =

⋃
i∈{0...n}(A

�(i)). Then the Kleene star A∗ :=
⋃

i∈N
A�(i).

A family of languages (see [13]) is a non-empty class of languages that is closed
under change of alphabets, excluding {ε} and ∅. The family of finite languages
is denoted by FIN . An operation, in this context, is a mapping of families
to families that is monotonic with respect to inclusion. Many operations on
families of languages can be derived as algebraic closures from k−ary operations
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on languages, for example, one can define closure under language concatenation
(
). Generally, taking the closure of the family F under operations O1 . . . On,
i.e. the least family containing F and closed under all of these operations is
again an operation, denoted (O1 . . . On). (O1 . . . On)(F) is then the family of
all languages obtained by applying any number of operations from O1 . . . On,
including none, to languages from F . (∪,
,∗)(F) is the rational closure of (F),
and REG = (∪,
,∗)(FIN ) is the family of regular languages.

The family SHUF := (∪, , )(FIN ) does not offer the application of con-
catenation to infinite sets. Any language in ( )(FIN ) (which is a proper subset
of ( , )(FIN ), in turn a proper subset of SHUF , cf. [16]) consists of n-fold
shuffles of words taken from a finite set. Each of these definitions gives rise to a
family of terms: a ( , )(FIN )- (resp. SHUF)-term is either a finite language,
or A or A B (or A∪B), where A and B are ( , )(FIN )- (resp. SHUF-)terms
(we also use the well-known regular expressions for regular languages).

We recall a normal form lemma from [13] or [14]:

Lemma 1 (Normal Form). Any language L ∈ SHUF can be written as⋃
i∈I Li with Li = Bi Ai , I a finite index set and all Ai and Bi finite; the

sets Bi can be chosen to be singletons {wi}.
This result generalises to other commutative operators [18]. In our proofs, the
subclass ( , )(FIN ) will play a role. Its normal form is similar:

Lemma 2 (Normal Form). Any language L ∈ ( , )(FIN ) can be written as
B A , where A and B are finite.

Proof. IfL is finite, setA = {ε} andB = L. Otherwise, as long as the ( , )(FIN )-
term chosen for L is not already in normal form, there is at least one of the fol-
lowing situations (using associativity and commutativity of ): a subterm of the
form (X ) is reducible by idempotence [14]. A subterm of the form (X Y ) or
(X Y ) can be rewritten into (X Y ). Otherwise, a subterm can be trans-
formed using the associativity of binary shuffle into a term with a shuffle of two
finite sets, which is another finite set; or there is a shuffle of two sets B1 , B2 with
Bi finite, which can be combined to (B1 ∪ B2) ; or the whole term is in normal
form. Assign to each term the multiset of the heights of subtrees under -nodes.
Every reduction step decreases this multiset in the Dershowitz-Manna order [8]
induced by (N,≤). Hence a normal form is reached. �
Note that these normal forms are not unique, as for example any non-empty set
Ai could be replaced by Ai ∪ {w}, where w ∈ Ai − Ai.

Despite the rather limited modelling capability, the problem v ∈? w is NP-
complete [23], but the word problem for a fixed language stays within NP even
for much larger families built upon both shuffle and concatenation [2].

2.2 Language Quotients

This section introduces the left and right quotients of a language by another.
The right quotient of L ⊆ Σ∗ by M ⊆ Σ∗ is the set

L/M := {u ∈ Σ∗ | ∃v ∈ M,uv ∈ L},
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while the left quotient is L\M := {v ∈ Σ∗ | ∃u ∈ M,uv ∈ L}. It easily follows
from the definition that L ⊆ (L/M) 
 M , and that the left quotient obeys
analogous laws because of the reversal rule L/M = (Lr\Mr)r, subject to reversal
closure of the language class.

The operation π : 2Σ∗ → 2Σ∗
, π(L) := {u ∈ Σ∗ | uv ∈ L} returns the

least prefix-closed language containing L. The right (left) quotient contains only
prefixes (suffixes) of the original language, viz. L/M ⊆ π(L) and symmetrically.

When taken with respect to a single letter, the quotient is called derivative; its
application to regular expressions is known as Brzozowski derivative [6]. In that
case, we may write L/a instead of L/{a}. For L ∈ SHUF , clearly Lrev ∈ SHUF .
For L ∈ REG, Lrev may need a larger minimal DFA, but it is still regular. The
following fact is well known:
Theorem 1. If R is regular and Q is any language, then R/Q is regular. A reg-
ular language has only finitely many distinct left and right quotients.

Any quotient R/Q is regular if R is regular, though it might not be effectively
computable, depending on Q and its representation. This is due to the fact that
the resulting language is still recognised by the same finite monoid, only the
accepting state mapping changes (see e.g. Pin and Sakarovitch, [21]).

Forming the quotient with respect to a regular language is also an example of a
rational transduction. In the form given by Nivat’s theorem (see e.g. Berstel [3]),
if Σ′ = {a′ | a ∈ Σ} (Σ ∩ Σ′ = ∅) and L ⊆ Σ∗, then L/R equals g(h−1(L) ∩
Σ′∗R), with the homomorphisms h : a �→ a, a′ �→ a, g : a′ �→ a, a �→ ε for all
a ∈ Σ. In Latteux [19] for example, more elaborate remarks of this kind are used
to show a closure property of a family of languages under certain quotients. But
this line of argumentation does not offer any obvious advantage for describing
quotients of shuffle languages, as the shuffle operation generally does not mix
well with transductions, so a different technique must be used there to describe
the effect of a quotient with another language.

2.3 Rules for Quotients
The left and right quotient operations are linear in both arguments: they dis-
tribute over ∪ (Lemma 3). A product rule is satisfied when deriving the shuffle of
two languages (Lemma 8). We recall several rules from [15], where the proofs can
be found for the case of the left quotient. The versions adapted to the right quo-
tient, as presented here, follow immediately by reversal. Let Σ be an alphabet,
A,B ⊆ Σ∗, a ∈ Σ, x ∈ Σ∗. Then the following propositions hold:
Lemma 3. For � ∈ {/, \},
(A ∪ B) � C = (A � C) ∪ (B � C) and A � (B ∪ C) = (A � B) ∪ (A � C).

Lemma 4. A/(B 
 C) = (A/C)/B.

Lemma 5. (A 
 B)/C = A/(C/B) ∪ A 
 (B/C).

Lemma 6. For � ∈ {/, \}, A � B∗ = A � (⋃
i∈N

B(�)i
)
=

⋃
i∈N

(
A � B(�)i

)
.

Lemma 7. For � ∈ {/, \}, A � x = A
(⋃m

i=0(A
( )i) � x

)
, m ≤ ‖x‖.

Lemma 8. For � ∈ {/, \}, (A B) � a = (A � a) B ∪ A (B � a).
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2.4 Orders and Transition Systems

We assume familiarity with the notions of pre-ordered set (a set with a reflexive
and transitive binary relation on it), well-quasi-order (a pre-ordered set with the
property that any infinite sequence contains an infinite ascending subsequence),
and transition system (basically a set of states with a binary transition relation on
it, which may carry supplementary structure such as transition labels or a start
state). A well-structured transition system (see Finkel and Schnoebelen [10]) is
a transition system (S,→, . . . )1 with a well-quasi-order � ⊆ S × S satisfying
upward-compatibility: ∀s1 � t1, ∀(s1, s2) ∈ →, ∃t2, t1

∗→ t2 ∧ s2 � t2 ( ∗→
denoting the reflexive and transitive closure of →).

2.5 Semilinear Sets

A semilinear set of dimension d is a finite union of sets of the form x+
⋃

j∈J cj ·yj ,
where x ∈ Z

d, the index set J is finite and ∀j ∈ J , cj ∈ N ∧ yj ∈ Z
d.

2.6 Petri Nets

A labelled Petri net (see for example Wimmel [24]) is a tuple N = (P, T,Σ,W−,
W+, λ) of two disjoint finite sets P and T of places and transitions, respectively,
a non-empty finite alphabet Σ, pre- and post- arc weight functions W−,W+ :
T → (P → N) and a labelling function λ : T → Σ. A marking of N is a function
M : P → N, extended canonically to sequences of transitions. The marking
M fires to the marking M ′ via the transition t ∈ T , written M

t→N M ′, iff
M ≥ W−(t) and M ′ = (M − W−(t)) + W+(t) (marking equation). Firing is
extended to sequences s ∈ T ∗ by M

ε→N M ′ and M
st→N M ′ iff ∃M ′′,M s→N M ′′

and M ′′ t→N M (t ∈ T ). If M
s→N M ′, we also write Ms for M ′ since it is

uniquely determined (otherwise, Ms is undefined). We say that M ′ is a successor
of M . A marking M ′ is said to be reachable from M (implicitly in N) if (M,M ′)
is in the reflexive and transitive closure of the successor relation associated to
N . The set of all markings reachable in N from M0 is denoted by RS(N,M0).
A transition t is isolated if W−(t) = W+(t) = 0.

3 Observations and Results

The objective of this section is to describe the regular quotients of simple shuffle
languages, and to exhibit a subclass S ⊆ SHUF that is effectively closed under
quotients with regular languages. That is, if L ∈ S and R ∈ REG, L/R (and by
symmetry L\R) is again in S and furthermore a (∪, , )(FIN ) -term for it can
be effectively computed.

Note that for any pair (L,R) of languages, ε ∈ L/R iff L ∩ R �= ∅. This
motivates computing quotients to answer questions about language intersections.
1 The dots indicate that the transition system may have further structure, such as

initial states or labels. This notation stems from [10].
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L/R R

Fig. 1. When is there a SHUF-term for L/R?

The first subsection shows the membership problem of L/R to be as hard as
Petri Net reachability, on the other hand it can itself be decided using Petri nets,
as the third subsection will explain. The second subsection is concerned with a
prefix-based representation of the quotients which will be used in the second
subsection to derive a closure property for a subclass of SHUF , and in the third
subsection to represent quotients as Petri nets.

3.1 Simulating Petri Nets

In this subsection, we show that the membership problem of L/R is at least as
hard as Petri Net reachability.

Definition 1 (Parikh Image, Letter Count). Given a finite alphabet Σ and
a word w ∈ Σ, ψ(w) is the multiset defined recursively by ψ(ε)(a) = 0 for all
a ∈ Σ, and ψ(au)(a′) = ψ(u)(a′)+(if a = a′ then 1 else 0). It induces a mapping
from languages to sets of multisets in the canonical way.

There is an effective construction assigning to each Petri net N , a pair (M0,Mf )
of markings of N and a pair (LN , RN ) ∈ SHUF ×REG such that ε ∈ LN/RN ⇔
Mf ∈ RS(N,M0). If M is a Σ-multiset, ψ−1(M) =

a∈M
aM(a) is the (finite)

set of all words w with letter count ψ(w) = M .

Construction 1 (Reduction from Petri Net Reachability). Given N =
(P, T,Σ,W−,W+, λ) and a marking M0, let the alphabet ΣN be the disjoint
union P + P ′ + {a, b, c}, where P ′ = {p′ | p ∈ P}. Let h be a homomorphism
mapping any p ∈ P to p′. Then define2

A−(t) = b · h(ψ−1(W−(t))) · a, AN (t) = ψ−1(W+(t)) · A−(t),
AN =

⋃
t∈T AN (t), BN (M0) = ψ−1(M0) c,LN (M0) = BN (M0) AN ,

R′
N = c(b{pp′ | p ∈ P}a)∗ and RN (Mf ) = ψ−1(Mf ) · R′

N .

We will show that Mf ∈ RS(N,M0) ⇔ ε ∈ LN (M0)\RN (Mf ), equivalently
ψ−1(Mf ) ⊆ LN (M0)\R′

N :

Lemma 9 (Correctness of Construction 1)

Proof. By definition, ψ−1(Mf ) ⊆ LN\R′
N ⇔ ∃w ∈ LN , v ∈ R′

N , ψ−1(Mf )v = w.
By Lemma 4 and RN (Mf ) = ψ−1(Mf )·R′

N , we have that ψ−1(Mf ) ⊆ LN\R′
N ⇔

ε ⊆ LN\RN (removing the remaining ψ−1(Mf ) prefix).

2 The order of the P ′ letters in A−(t) could just as well be fixed, but ψ−1 is required
so the P letters can appear wherever they are needed.
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For any s = t1 · ... · t‖s‖ ∈ T ∗, define words(s) = ψ−1(Ms)cA′(t‖s‖) · ... · A′(t1),
where A′(t) = bh′(ψ−1(W−(t)))a, h′ being a homomorphism mapping each p′ ∈
P ′ to pp′ (notice ψ(A′(t))(b) = 1).

Proceed by induction over n to show that if s is a transition sequence of length
n, M0s ∈ RS(N,M0) ⇔ words(s) ⊆ LN ⇔ ε ∈ LN\ψ−1(M0s)R′

N .
If this common induction hypothesis holds for all s of length n and t ∈ T ,

then M0st ∈ RS(N,M0) ⇒ words(st) ⊆ LN : if M0st is in RS(N,M0), then so
is M0s. Using the induction hypothesis, words(s) ⊆ LN . By definition of words,
any word in words(st) can be written xcdw with d ∈ A′(t). This can only be
achieved in LN by shuffling x′d′ ∈ AN (t) into some word x′′cd′′w ∈ LN , where
x′′d′′ ∈ P ∗. Furthermore, ψ(d′′) must equal W−(t), ψ(x′′) = ψ(x) − W+(t) by
the definition of AN (t). If such an x′′cd′′w is in LN , then so is x′′d′′cw because
each letter of d′′ is by definition of LN issued either from a prefix ψ−1(W+(t′))
for some transition t′, or from BN (M0s). In both cases, moving the letter to the
left of c results again in a word of LN . Hence xcdw is in LN AN ⊆ LN .

words(st) ⊆ LN ⇒ M0st ∈ RS(N,M0): by induction hypothesis, words(s) ⊆
LN . For some w ∈ words(st) such that w ∈ LN , proceed as in the proof of the
converse, decomposing w as described above. The marking equation then proves
this direction as well.

words(st) ⊆ LN ⇒ ε ∈ LN\(ψ−1(M0st)R′
N ): for any s, all words(s) are clearly

in ψ−1(M0s)R′
N .

ε ∈ LN\ψ−1(M0st)R′
N ⇒ words(st) ⊆ LN : If xcw ∈ LN ∩ψ−1(M0s)R′

N , then
ψ(x) = M0s by construction, and ∀c′, c′′, ψ(c′) + ψ(c′′) = ψ(c) ⇒ c′xc′′w ∈ LN

because the prefix xc is issued from a word of BN (M0s), and any reordering of
that word is also in BN (M0s) by construction. Now M0s ≥ W−(t) because t can
fire from M0s. Therefore c′′ may be any word from ψ−1(W−(t)), which means
that A(t) can be shuffled into the c′xc′′ prefix to yield d′xd′′, for any d′′ ∈ A′(t)
and d′ such that ψ(d′) = W+(t) + Ms − W−(t), since the letters may occur in
arbitrary order by construction. But that is precisely the marking equation. �
An example of a Petri net3 with a non-semilinear reachability set was developed
in Hopcroft and Pansiot [12]. It has transition sequences that iteratively double
a component of the marking.

Example 1 (Hopcroft and Pansiot’s Example). LetLHP = plc {qbp′a, pmbp′l′a,
mpbp′l′a, pmbl′p′a,mpbl′p′a, qllbq′m′a, lqlbq′m′a, llqbq′m′a, qllbm′q′a, lqlbm′q′a,
llqbm′q′a, npbq′a, pnbq′a} and RHP = c(b(pp′ + qq′ + ll′ + mm′ + nn′)a)∗.

Proposition 1 (Counterexample to Closure under Regular Quotients).
LHP/RHP �∈ SHUF .

Proof. The Parikh image ψ(LHP/R′
HP ) is not semilinear, as it is by Lemma 9

subject to the same constraints as the reachability set of the corresponding net.

3 Equivalently described in [12] as a “Vector Addition System with States” (VASS).
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Instead, ∀w ∈ LHP/R′
HP , ψ(w)(p)=1 ⇔ ψ(w)(l)+ψ(w)(m) ≤ 2ψ(w)(n) and any

such marking with ψ(w)(p)=1 is reachable [12], whereas SHUF languages have
semilinear Parikh images, as can be ascertained from their normal form [17]. �

3.2 Quotients Representable as Finite Trees

The discussion in this section is based on the fact that all SHUF languages
derived from L by quotients are built from the prefixes of a set of words that can
be read off the SHUF-term. As remarked in Subsect. 2.2, we have L/M ⊆ π(L).
We will attempt to control the SHUF languages that arise from the quotients.
We have already discussed how they can fail to lie in SHUF in general and will
now propose a sufficient condition. The subsection concludes with an example.

We assume that the language L ∈ SHUF is given in normal form
⋃

i∈I{wi}
Ai with i and all Ai finite. For quotients by finite languages, we can use the rules
in Subsect. 2.3.

Lemma 10 (Quotient by a Single Letter). If L ∈ SHUF , then L/a ∈
SHUF can be computed from a normal form of L.

Proof. Direct consequence of Lemmas 8 and 7. �
Lemma 11 (Quotient by A 
 B). If L/A,L/B ∈ SHUF can be computed
from a normal form of L for any L ∈ SHUF , then so can L/(A 
 B).

Proof. Direct consequence of Lemma 4. �
Lemma 12 (Quotient by A ∪ B). If L/A,L/B ∈ SHUF can be computed
from a normal form of L for any L ∈ SHUF , then so can L/(A ∪ B).

Proof. Let
⋃

i∈I{wi} Ai be the normal form of L ∈ SHUF and R =
⋃

i∈I Li

a finite union of languages. By distributivity of quotient over union (Lemma 3),
L/Q =

⋃
i∈I,j∈{1,...,k} ({wi} Ai ) /Lj). �

The quotient L/w by a single word is computed by induction over ‖w‖ using
Lemma 4. The base case w = ε is trivial. The induction step performs a quotient
by a single letter and applies Lemma 1 to put the result into normal form for the
next step. It follows that SHUF is closed under quotients with finite languages.

For the remainder of the section, we will mostly consider ( , )(FIN ) rather
than SHUF languages because the first step in computing any quotient of a
SHUF language will always be an application of distributivity (Lemma3).

Observation 1 (Quotient Consists of Shuffles of Prefixes). If L = B
A ∈ ( , )(FIN ) in normal form, then for any language Q ⊆ Σ∗, L/Q =⋃

k∈K Lk with Lk = B′
k A′

k A where B′
k ⊆ π(B) ∪ π(A), A′

k ⊆ π(A), for
some countable index set K.

Proof. If the proposition holds word-wise for L/{w} for w ∈ Q, then with K ′

countable the proposition is seen to hold. Induction over ‖w‖. For the induction
basis note that B A has the required form and quotient by ε is the identity.
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For w = ua, (B′ A′ A )/w = ((B′ A′ A )/a)/u.(B′ A′ A )/a) =
(B′ (A′/a) ∪ (B′/a) A′) A ∪ A′ B′ (A /a), applying Lemma8 twice,
which equals (B′ (A′/a) ∪ (B′/a) A′) A ∪ A′ B′ A

⋃
z∈A({z}/a).

Factoring the A out by Lemma 3 yields a finite union of terms of the form
(B′ A′ A )/a) with B′ ⊆ π(B) ∪ π(A) and A′ ⊆ π(A) again. �

The set K need by no means be finite, for example L = {ab} /{b2
k | k ∈ N}

is not in SHUF : the letter count of any word w ∈ L is ψ(w) = (n, n − 2k)
for some n, k ∈ N. The assumption L ∈ SHUF would entail that within the
normal form L =

⋃
i∈I Li at least one Li has, for arbitrary k ∈ N, an infinite

intersection L ∩ {anbn−2k | n ∈ N}. But this means that the count of a’s can be
increased without bound while leaving the count of b’s unchanged, choosing ever
increasing powers of 2 for the removed part. This in turn entails that aj ∈ Ai

for some j ∈ N, which forces words with letter count (n + j, n − 2k′
) to be in

L, contradicting ∃k, ψ(w) = (n, n − 2k) when j ≤ 2k′
. Since this holds for any

k ∈ N, the contradiction is guaranteed to happen and L �∈ SHUF .
Observation 1 is too weak for quotients of SHUF languages by regular lan-

guages. These do not, in general, have such a representation for finite K because
it is possible that some words that appear as prefixes of words from A can only
be iterated together in certain combinations. Take, for example, {abc} /(cc)∗.
This yields {abab, aabb, abc} , a language that does not even possess a normal
form involving only prefixes of abc. Instead it becomes necessary to “pre-shuffle”
certain prefixes. We shall have to keep this complication in mind.

Definition 2 (Standard Representation). Given a normal form
⋃

i∈I{wi}
Ai of a language L ∈ SHUF , let B =

⋃
i∈I Bi and A =

⋃
i∈I Ai. Let W =

π(A) ∪ π(B) − {ε}. A W standard representation (W -SR) of a ( , )(FIN )
normal form C D where C is a finite shuffle of π(A) ∪ π(B) words and D is
a finite shuffle of π(A) words is a pair v = (xv,Y v) = (xv, {(yj)v}1≤j≤n) of a
W -multiset and a set of n W -multisets such that

C =
w∈W

w (x(w))D =
j∈{1,...,n}

(

w∈W

w (yj(w))

)

Thus the multiset x stands for the shuffle of the words of C, which are then
shuffled with an iterated shuffle of yj-fold shuffles of words of D. Let L(v) denote
the language C D defined in this way by v = (x, {yj}1≤j≤n).

We write ew for a singleton (ew(w) = 1 and ew(w′) = 0 if w′ �= w). For
example, when W = π({abcd}), L = a {abcd, abc} would be represented as
(ea, {eabcd,eabc}) while L = a ab ab {abcd, abc, abc abc ab} could then
be represented as (ea, {eabcd,eabc, 2 · eabc + eab}). The W -SR of a language is
in general not unique. In the following, when W is not specified, it is implicitly
given as some prefix-closed finite language not containing the empty word.

Definition 3 (SR Comparison). For any given W , define � to be the binary
relation on W -SRs such that v � v′ holds whenever the x part of v does not exceed
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that of v′ in any component, and the semilinear set
{∑

j∈J cj · yj

∣∣∣∀j ∈ J, cj ∈ N

}

of v is contained in that of v′.

The relation � does not imply language inclusion. Instead, v � w implies that
another language with a standard representation can be shuffled with v to obtain
w. Let V (W ) be the set of all standard representations for fixed W :

Lemma 13 (Meaning of �). v � v′ ⇒ ∃u ∈ V,L(v) L(u) = L(v′).

Proof. L(v′) =
w∈W

w (xv′ (w)) Uv′ (constant plus unbounded part) =

w∈W
w (xv′ (w)−xv(w))

w∈W
w (xv(w)) Uv′ Uv (permissible because

the semilinear set inclusion implies that the shuffles that can be obtained from
the yv can also be obtained from the yv′ , hence Uv′ = Uv Uv′)
=

(
w∈W

w (xv′ (w)−xv(w)) Uv′
)

L(v).
The term in parentheses is a ( , )(FIN ) language normal form built from the
same words, of standard representation u. �
Let the language L(F ) of a transition system F = (X, ���) whose nodes are
labelled with standard representations be the union of the languages associ-
ated with the nodes. A finitely rooted V -labelled forest is a transition system
(X, ���,X0, v) with a finite set X0 ⊆ X of designated root nodes without incom-
ing transitions, a labelling function v : X → V , no cycles x ���∗ x, no multiple
incoming transitions for any x ∈ X. The forest is finite if X is, and it is a tree if
it has only one root. Tip nodes of F are nodes x such that ¬∃y ∈ X, (x, y) ∈���.

Given a language L ∈ SHUF in normal form
⋃

i∈I Li, Li = {wi} Ai , let F0 be
the finitely rooted forest consisting of one node ni for each Li, and no transitions.
Suppose for some other language Q, L/Q is in SHUF and furthermore standard
representations {qj}j∈J can be computed such that Li/Q =

⋃
j∈J Bj Aj =⋃

j∈J L(qj) in normal form.
We construct a sequence of finite finitely rooted forests as follows: let Fk+1(V )

be obtained by forming the quotient L(n)/Q of each language of a tip node n
and extending Fk by |J | fresh nodes labelled with the standard representations
{qj}j∈J of the normal form of L(n)/Q, and one transition from n to each qj .
Unions of forests area defined component-wise. Since new nodes in Fk+1 are
always children of nodes in Fk,

⋃
k∈N

Fk is still a union of finitely many trees.

Lemma 14 (The k-th Forest Represents a Quotient). L(Fk) is equal to
L/Q�(≤k).

Proof. By induction over k that the union of the languages of the tip nodes always
represents L/Q�(k). The induction step transforms this into (L/Q�(k))/Q =
L/Q�(k+1). By definition,

⋃
0≤j≤k L/Q�(j) = L/Q�(≤k). �

Lemma 15 (The Forests Represent a Quotient in the Limit)⋃
k∈N

L(Fk) = L/Q∗

Proof. Follows from Lemma14, since L/Q∗ =
⋃

k∈N
L/Q�(≤k) by definition of

Q∗ and the fact that a variant of Lemma 3 holds for countable unions. �
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If the sequence {Fk}k∈N reached a fixed point, the resulting language would obvi-
ously be in SHUF . However, that does not usually happen: repeated quotients
of {abc} by cc result in a new language every time. We will have to take a closer
look at the standard representations along each branch of the forest and exploit
the recurring pattern to finish after a finite number of operations.

We define another sequence of finite finitely rooted forests, starting from G0 =
F0. After extending Fk by the nodes labelled with {qj}j∈J , we check for each qj

whether there is some node x on the path from a root node to the new node nj

such that l(x) � qj . In that case the label of nj is changed to accel(l(x), qj).

Definition 4 (SR Acceleration). For v, v′ ∈ V with v � v′, let accel(v, v′) be
defined as (xv,Y v′ ∪ {y′}) with y′ = xv′ − xv (component-wise).

Next, we introduce a restriction on the language L which leads to quotients with
any regular language R being in SHUF again.

Definition 5 (Independent Prefix Property). A language L ∈ ( , )(FIN )
has the independent prefix property if there is a W -standard representation v =
(x,Y ) for some W , L = L(v), such that ∀w ∈ W , ∃nw ∈ N, nw · ew ∈ Y , and
v is said to exhibit L’s independent prefix property. A language L ∈ SHUF , in
normal form

⋃
i∈I Li, has the independent prefix property if every Li does.

This restriction (a multiple of each singleton corresponding to a prefix of an A
word being present in Y ) may appear somewhat arbitrary or contrived, but in
fact it means that our system description counts every prefix of a word of W
modulo a fixed number only (which may be chosen arbitrarily large).

Lemma 16 (Well-Quasi-Ordering Nodes Along Paths). If L ∈ ( , )
(FIN ) has the independent prefix property and v is a SR exhibiting it, then the
labels of nodes along each path in Fk(v) and Gk(v) are well-quasi-ordered by �.

Proof. Since the semilinear sets along each path already form an ascending chain
by Definition 4 in the case of Gk and because they are constant in the case of
Fk, it is sufficient to look at the x components of the node labels. The Lemma of
Dickson states that every N

n, n ∈ N is well-quasi-ordered by the usual product
order. �
Lemma 17 (Finite Number of Acceleration Steps). If L has the inde-
pendent prefix property and v = (x,Y ) is a normal form SR for L such that
∀w ∈ W , ∃nw ∈ N, nw ·ew ∈ Y , then the Y components of the node labels along
each path of Gk(v) are well-quasi-ordered by set inclusion.

Proof. Along each branch of Gk(v), we will keep track of these supplementary
pieces of information: the density δ ∈ Q, the offset z ∈ W⊕ and a finite set
Ξ ⊆ W⊕. Partition Y initially into Y o + Y n, where Y n contains one multiple
nw · ew of each ew, w ∈ W (defining a W -multiset, n(w) := nw). The initial
computation of z and δ at the root nodes is as follows: initialise Ξ := ∅ and
δ := 1/

∏
w nw and z as the node label’s x component, then iterate over the

elements yo of Y o, distinguishing three cases:
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1. yo ≥ z and yo =
∑

y∈Y n
cy · y or yo = z +

∑
y∈Y n

cy · y for some numbers
{cy}y∈Y n

∈ N.
2. yo ≥ z, but case 1 does not hold
3. otherwise.

In the first case, do not add yo to Y since it is superfluous and contributes
nothing to the language. In the second or third case, assign z := z + yo

and update δ := 2δ and Ξ := Ξ ∪ ∑
w((yo − z)(w) mod nw)ew ∪ ∑

w(yo(w)
mod nw)ew. For the second case, this guarantees that the updated value Ξ is a
proper superset of its previous value, because otherwise the extra conditions of
the first case would hold.

At every node of Gk(v), recompute δ, z and Ξ in the same way with the new
members of Y as compared to its predecessor in the forest (the Y component
of the node label may only accumulate more elements along the path).

This construction works because δ underapproximates the fraction of those
multisets inside z +BOX(n) where BOX(n) = {p ∈ W⊕ | p ≤ n} (n being the
multiset

∑
w∈W nw · ew) which can be obtained as sums of x and some positive

combination of multisets of Y . The underapproximation of this fraction by δ
remains valid when translating BOX(n) by adding an arbitrary multiset. The
number δ can only increase or stagnate, and only increase a number of times
bounded by a global constant depending on the numbers nw because of the
way it is updated. Together, δ and z impose a well-quasi-order on the sets Y ,
compatible with the semantics of Y (equality implying language equality). �

Fig. 2. Illustration of Lemma 17.

Intuitively, the space above a certain multiset z (which itself varies along the
path) fills up with ever more grid points, and the filling of the space is in discrete
steps since new copies of the Y n grid are disjointly added whenever the new yo is
not a grid point. For each density of grid points, the well-quasi-ordering property
ensures that at some point, the process stops or the density is increased, which
can happen only a number of times that is bounded by the numbers nw.

Lemma 18 (The Sequence {Gk}k∈N Stabilises). If L has the independent
prefix property and v = (x,Y ) is a normal form SR for L of the required form,
then there is a number k ∈ N such that Gk(v) = Gk+1(v) =: G(v).
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Proof. Proof by contradiction, assuming that the union of all forests in G con-
tains an infinite tree. That tree, by Kőnig’s lemma, contains either an infinite
branching or an infinite path. Branching is finite by the assumption on Q, and an
infinite path cannot occur because the number of acceleration steps encountered
along each path is finite by Lemma 17. �
Theorem 2. The class S ⊆ SHUF with the independent prefix property is
closed under quotients with regular languages.

Proof. By structural induction over a regular expression for R. The base case,
single letters, holds by Lemma 10. The cases of concatenation and union hold by
Lemmas 11 and 12, where the independent prefix property is seen to be preserved.
The case of Kleene star is handled by constructing G. �
It is of course possible and advisable to keep the same set W for all SRs encoun-
tered in the recursive algorithm suggested by our proof. This allows the whole
process, as in Example 2, to be represented in a single forest, and prevents the
size of W from increasing due to prefix combinations being added.

Note that while closure under regular quotients fails to hold in general, the
construction still works for many examples even without L possessing the inde-
pendent prefix property. However, the computation is not guaranteed to termi-
nate under these circumstances. The following example should be helpful.

Example 2 ({abc, a2c, ab, a4} \(ab(c + ab)∗(cc))∗) (∈ S)).

Here, W = {abc, aac, ab, aa, a}; we have represented node labels on the first
tree and ( , )(FIN )-expressions for the corresponding languages on the second
one. The label of the top node is v = (∅, {eabc,eaac,eab, 2eaa}): multiples of ea

could be added to underline the independent prefix property, but since 2eaa is
obviously equivalent to 4ea, we did not include these redundant elements in Y .
Tip nodes that are not expanded further are repetitions (gray). Some nodes have
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not yet been fully expanded (the complete example is somewhat larger than the
prefix shown, but, according to our result, finite). The node in the dashed box
is the result of an acceleration (after two iterations of the inner Kleene star Y
was augmented by ab ab a4, represented as 2eab + 2ea + eaa).

3.3 Any Quotient as a Petri Net

The prefix idea from the previous subsection also allows to answer the emptiness
problem of L ∩ R by Petri nets.

Construction 2 (Synchronised Product of Petri Nets). If Ni = (Pi, Ti,
Σi,W

−
i ,W+

i , λi) are Petri nets (i ∈ {1, 2}), then N1 ⊗ N2 is defined as (P, T,
Σ,W−,W+, λ) with P = P1 + P2 (disjoint union), Σ = Σ1 ∪ Σ2 (in general
not disjoint), T = {(t1, t2) | t1 ∈ T1, t2 ∈ T2, λ1(t1) = λ2(t2)}, W±((t1, t2)) =
W±

1 (t1) + W±
2 (t2) for ± ∈ {+,−}, λ((t1, t2)) = λ1(t1) = λ2(t2).

Lemma 19 (Synchronisation). If Ni = (Pi, Ti, Σi,W
−
i ,W+

i , λi) are Petri
nets (i ∈ {1, 2}), then for any transition sequence s and marking M in N1 ⊗N2,
Ms exists iff M |iπi(s) do and λ(π1(s)) = λ(π2(s)), and M |iπi(s) = Ms|i (M |i
denoting the restriction of a marking to Pi and πi(s) being the homomorphism
that projects each pair of transitions in T to the i-th component).

Proof. As in Winskel [25], except that λ(π1(s)) = λ(π2(s)) = λ(s). �
Construction 3 (Petri Nets for L ∈ SHUF and Regular Quotient).
Let v = (x,Y ) be a W -SR (alphabet Σ) and (X = {x ∈ W⊕ | ∃w ∈ {x}∪Y , x ≤
w}). The associated labelled Petri net is Nv = (P, T,Σ + {∗},W−,W+, λ) with
P = {px | x ∈ X}, transitions {ty | y ∈ Y }, {teaw+x,ew+x | eaw + x ∈ W⊕, a ∈
Σ} and {tea+x,x | ea + x ∈ W⊕, a ∈ Σ} and {tea,ε | a ∈ W ∩ Σ}, where

W−(ty)=0; W+(ty)=py; W−(tx,y)=px; W+(tx,y)=py if y �= ε, otherwise 0,
λ(ty)=∗, λ(teaw+x,ew+x)=a, λ(tea+x,x)=a, λ(tea,ε)=a.

Let NRv be an arbitrary DFA accepting Rrev, represented as a labelled Petri net
in the obvious manner (states as places, state transitions as labelled transitions),
and augmented by one isolated transition labelled ∗.

Set M0 = q0, where q0 is the place representing the start state of the automaton.

Construction 3 is used as follows to decide whether w ∈ L(v)/R: each marking
M of the net Nv is converted to a finite language by interpreting it as a W -SR
(M, ∅). By firing each transition tyi

a number ni of times, one gets a
∑

niyi-fold
shuffle,

yi∈Yv

{w (niyi(w)) | w ∈ W}, hence an empty marking corresponds to

the language {ε}. Note that the number of markings corresponding to each word
length is finite. One must show that the transitions of Nv effect right quotients
on the shuffle. The composition Nv ⊗ NRv then makes sure that those markings
corresponding to right quotients with the words of R are the only ones reachable.

Proposition 2 (Correctness of Construction3). w ∈ L(v)/R ⇒ ∃M ∈
RS(Nv ⊗ NRv) with L((M, ∅)) � w and such an M can be computed:
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Let Nv ⊗NR = (P, T,Σ,W−,W+, λ). Now, w ∈ L(v)/R ⇒ ∃r ∈ R,w ∈ L(v)/r.
Let V be the set of all W -multisets v such that the Parikh image of any word in
L((v, ∅)) equals ψ(w). This is finite and easily determined, since incrementing
any component of the first component of the SR (v, ∅) clearly increases the Parikh
image of all words in the associated language by the same non-zero multiset.

If r = r1...r‖r‖, then by Lemma4, L(v)/r = ((L(v)/r‖r‖)/...). We must show
that for all a ∈ Σ, at any point i ∈ {1...‖r‖} the successor markings via tran-
sitions t ∈ Nv with λ(t) = a correspond to the Li of a normal form of L(v)/ri.
This is easily checked using the definition of the language associated with a SR
and the definition of Nv.

Any transition sequence s(v) ∈ T ∗ such that L((M0s, ∅)) = {L(v)/r} must
end in a marking from V for the places of Nv and a marking of NRv representing
an end state of the automaton. By Lemma19, this is tantamount to a Petri net
reachability query in Nv ⊗ NRv with the start marking M0 = q0.

The converse is similar: if M such that w ∈ ψ(M) is reachable in Nv from 0,
and an end state is reachable by the same transition sequence in NRv, then by
induction over a transition sequence ‖s‖ such that M0s = M , using the definition
of Nv w is indeed in the quotient. �
Example 3 ((abc, aac) /(cc)∗ as a Petri net). W = {abc, aac, ab, aa, a}. The
hatched place is the end (and start) state of NRv. In this example it is not
hard to ascertain that ε and aabb are in the quotient.

4 Related Work

Languages defined with shuffle and concatenation have been researched for some
time by several groups. Notable publications include Jantzen [13], Ésik and
Bertol [9], Bloom and Ésik [5]. The operations of concatenation and shuffle
have historically received attention because of their connection to concurrent
processes and Petri net languages, cf. Jantzen [13]. Free terminal Petri net lan-
guages [22] are also closed under left letter, right letter and right word quotient,
which reflects the firing dynamics of the net. Process algebras like [1] have par-
allel operators that also produce interleaved execution sequences and therefore
shuffled languages. Recently, the expressive power of the shuffle product has been
examined in the context of more restricted families, allowing combinations of a
few operations to be applied to a family of elementary languages, for example
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Berstel et al. [4], Castiglione and Restivo [7]. Recently, Berglund, Björklund and
Högberg have researched the complexity of parsing shuffle-and-concatenation
languages [2].

5 Conclusion and Outlook

Our goal was to obtain more insight into the structure of shuffled languages in
terms of their quotients. This has arguably been achieved to some extent for
the class of simple shuffled languages. We found that SHUF is not closed under
quotients with regular languages (disproving a closure property conjectured in
[15] and by Proposition 3 also undecidability of the emptiness of the intersection).
On the other hand, there is a nontrivial subclass of SHUF which is effectively
closed under quotients with regular languages, and which contains for instance
the prefix closures of the languages {a1 · . . . · an} , n ∈ N. We remark that
the reduction (Lemma 9) from Petri net reachability to membership in L/R,
L ∈ SHUF , R ∈ REG is clearly in polynomial time. It is known that Petri net
reachability is EXPSPACE hard [20], so the membership problem in L/R is,
too. By Proposition 3, this is the worst case. The use of well-quasi-orderings on
transition systems in the proof of Theorem 2 provides yet another example for
the application of such techniques.

While the original problem (of deciding membership in the intersection of a
simple shuffled and a regular language) may indeed appear contrived, unbounded
shuffles do occur in real-world systems and it is desirable to learn more about
their properties. We envisage further work on using the introductory setting
(observations of a system with an unknown number of parallel processes) to study
problems such as learning of shuffled languages from observations. Also, simple
shuffled languages constitute a class of somewhat limited modelling capacity.
A more general framework as well as classes of languages involving concatenation
but still presenting the behaviour of our class S would also be of interest.

Acknowledgements. We would like to thank the anonymous reviewers for providing
valuable comments.
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Abstract. Event Structures (ESs) address the representation of direct
relationships between individual events, usually capturing the notions
of causality and conflict. Recently, Arbach et al. introduced the new
Dynamic Causality Event Structure (DCES), in which some event may
change the causal dependencies of other events, by adding or dropping
causal predecessors. Interestingly, DCES turned out to be incomparable—
concerning their expressive power—to van Glabbeek’s and Plotkin’s
Event Structure for Resolvable Conflicts (RCES), up to then consid-
ered to be one of the most general ES models.

In this paper, also motivated by process modelling in the health care
domain, we present a generalisation of the DCESs, by firstly allowing
sets of events for modifying dependencies, and secondly by introduc-
ing higher-order dynamics. We show that the newly defined structure is
strictly more expressive than the RCESs.

1 Introduction

Concurrency Model. Event Structures (ESs) usually address statically defined
relationships that constrain the possible occurrences of events, typically repre-
sented as causality (for precedence) and conflict (for choice). An event is a single
occurrence of an action; it cannot be repeated. ESs were first used to give seman-
tics to Petri nets [9], then to process calculi [3,5], and recently to model quantum
strategies and games [11]. The semantics of an ES itself is usually provided by
the sets of traces compatible with the constraints, or by configuration-based sets
of events, possibly in their partially-ordered variant (posets).

Dynamics. In [1], we (together with Arbach and Peters) introduced an extension
of ESs, the so-called Dynamic Causality ESs (DCESs). In this extended model,
the causal dependency between events is dynamised: adders are events that
dynamically add dependencies to other events; droppers are events that remove
dependencies for other events (see [2] for full details).

Let us draw an analogy to the notion of types in programming languages:
there, one distinguishes between first-order types, consisting of simple so-called
base types, and more involved higher-order types, structured by type operators
that produce types of higher-order by building upon types of lower-order using
a form of λ-abstraction. It is likewise natural to move from first-order dynamics
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to higher-order dynamics. In the following, we use the convenient terminology
of rules to discuss this move. First-order rules represent the principle in DCES:
the occurrence of one event adds or drops causes of other events. Second-order
rules now allow to specify that an event may turn another event into an adder
or dropper for a dependency; in other words, with such a rule, the occurrence
of an event dynamically activates a new rule. Higher-order rules then consist of
chains of activations of respectively lower-order rules.

Motivation. We have two reasons to study higher-order dynamics in ESs. One
reason is the incomparability of DCES with the RCES model. The other reason
is their usability for process modeling.

The incomparability of DCES and the RCES is essentially due to two aspects:
(1) the rather simple difference on whether dynamics is driven by individual
events (DCES) or sets of events (RCES); (2) the notion of order sensitivity—for a
set of events different behaviour is possible depending on the order of occurrence.
DCES are order-sensitive, as there could be both an adder and a dropper for
the same dependency, so if both take place their order of occurrence determines
whether the dependency is afterwards present or absent. In contrast, RCES are
not order-sensitive, as the underlying transition relation can only see sets of
previously occurred events to determine the possible next steps; thus, the order
of occurrence of past events cannot be taken into account. From a mathematical
point of view, the obvious question arises, whether there is a natural structure
that subsumes both DCESs and RCESs, possibly an extension of one of the
models. Analysing the incomparability by example, one observes that RCES
allows us to model dependencies like “disabling of a disabling after an event”,
which cannot be represented by DCES, at least not with first-order dynamics.
Higher-order dynamics, though, would be capable to express such dependencies,
so it seems promising to generalise DCESs towards higher-order dynamics and
set-based triggers to be able to simulate the behaviours of RCESs.

In an ongoing case study [6], we study models of a patient treatment process
at the German Heart Institute Berlin using DCES. Thereby, the need for set-
based adding and at least second-order dynamics was observed. The first was
needed to model the following dependency: if disease d is diagnosed and a medica-
ment m is prescribed this could cause trouble, therefore both together change
the dependencies. The second was needed to describe a timing condition: if a
drug is stopped after a diagnosis then a replacement drug should be given, but
only if it happens in this order!

Overview. We generalise the DCESs approach in Sect. 3 first by allowing set-
based dependency modifications (instead of only single events) and second by
allowing higher-order dynamics. In contrast to the DCES model with four rela-
tions (causality, conflict, growing causality and shrinking) and its causal state
function we present in this work the higher-order dynamic-causality ES (HDES),
which consist of a set of events and a rule set; the latter governs the further
behaviour and — as it is dynamically changing—is updated in each transition.
In Sect. 4 we show that the newly defined higher-order dynamic-causality Event
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Structures (HDESs) are strictly more expressive than the configuration struc-
tures in [8], and since the transition graph of an RCES is such a configuration
structure, we found a natural structure subsuming RCESs and DCESs. In par-
ticular, we found that this subsumption only requires dynamics of third order.

Contributions. We define the HDES model as non-trivial generalisation of the
DCES model [1]; the key ingredient here is the algorithm to compute rule updates
to define transitions. We then show that any configuration structure (as defined
in [8]) can be translated into a HDES, requiring only third-order dynamics.

Related Work. Hildebrandt et al. introduced a declarative process model, the
so-called Dynamic Condition Response Graphs (DCR Graphs), cf. [4]. Those
DCR Graphs also generalise ESs by splitting the causality/dependency relation
into two, a condition and a response relation, further they allow events to occur
more than once; one relating aspect is their dynamic inclusion and exclusion of
events, but in contrast to our approach this is only first-order dyanmics.

In RCESs [7], there is some kind of dynamic causality, but it is there very
implicit, so it can be deduced, but not easily be used for modelling purposes.

2 Technical Preliminaries

In this section we recap the definitions RCESs, and DCESs.

2.1 Event Structures for Resolvable Conflicts

Event Structures for Resolvable Conflicts (RCES) were introduced in [7] to gen-
eralise former types of ESs and to give semantics to general Petri Nets. They
allow to model the case where a and b cannot occur together until c has taken
place, i.e., initially a and b are in a conflict until the occurrence of c resolves this
conflict. An RCES consists of a set of events and a witness relation � between
sets of events. Here the witness relation also models conflicts between events.
The behaviour is defined by a transition relation between sets of events that is
derived from the witness relation.

Definition 1. An Event Structure for Resolvable Conflicts (RCES) is a pair
ρ = (E,�) , where E is a set of events and �⊆ (E)2 is the enabling relation.

In [7] several versions of configurations are defined. Here we consider only
reachable and finite configurations. The intuition for the following transition
definition is: if X ⊆ Y then there is a transition from X to Y iff there exists a
witness (w.r.t �) for each subset of Y .

Definition 2. Let ρ = (E,�) be an RCES and X,Y ⊆ E. Then:

X →rcY if X ⊆ Y ∧ (∀Z ⊆ Y . ∃W ⊆ X . W � Z).



Higher-Order Dynamics in Event Structures 261

The set of configurations of ρ is defined as

C(ρ) = {X ⊆ E | ∅→∗
rcX ∧ X is finite}

where →∗
rc is the reflexive and transitive closure of →rc.

As an example consider the RCES ρ = (E,�), where E = {a, b, c}, {b} �
{a, c}, and ∅ � X iff X ⊆ E and X 	= {a, c}. It models the above-described initial
conflict between a and c that can be resolved by b. In Fig. 1, the transition graph
is shown, i.e. the nodes are all reachable configurations of ρ and the directed
edges represent →rc. Note, because of {a, c} ⊂ {a, b, c} and ∅ 	� {a, c}, there is
no transition from ∅ to {a, b, c}.

∅

{a}

{b}

{c}

{a, b}

{b, c}

{a, b, c}

Fig. 1. Transition graphs of RCESs ρ with resolvable conflict.

We consider two RCESs as equivalent if they have the same transition graphs.
Note that, since we consider only reachable configurations, the transition equiv-
alence defined below is denoted as reachable transition equivalence in [7].

Definition 3. Two RCESs ρ = (E,→rc) and ρ′ = (E′,→′
rc) are transition

equivalent, denoted by ρ�t ρ
′, if E = E′ and →rc ∩ (C(ρ))2 = →′

rc ∩ (C(ρ′))2.

We adapt the notion of transition equivalence to arbitrary types of ESs with
a transition relation. Let x and y be two arbitrary types of ESs on which a
transition relation is defined. We denote the fact that x and y have the same
transition graphs by x �t y. Note that for RCESs, transition equivalence is
the most discriminating semantics studied in the literature. So we consider two
RCESs as behaviourally equivalent if they have the same transition graphs.

2.2 Dynamic Causality

Dynamic Causality ESs were introduced in [1], the main idea is to enhance the
Prime ES of Winskel [10] with two new relation � and �, which change the causal
state of events, i.e. if (c,m, t) ∈ �, notated as [c→ t]�m, the causal predecessor
c will be dropped from the target t after the occurrence of the modifier m.
Similarly (c,m, t) ∈ �, notated as m� [c → t], the causal predecessor c will be
added to the target t after the occurrence of the modifier m.

In Fig. 2 there is a small example for an Dynamic Causality ES with one drop-
ping “[water→plant]�rain” and one adding “pest infestation� [pest control →
harvest]”. Note the dotted arrow to denote an initially absent dependency. In this
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plow

water

plant harvest

rain

pest infestation

pest control

Fig. 2. An example DCES.

example the regular work-flow can be observed as the static dependencies, while
the exceptional behaviour is modelled with the dynamic dependencies.

Here we shortly recap the definitions:

Definition 4. Let π = (E,#,→) be a prime event structure (PES) with con-
flict relation # and causality relation →. A Dynamic Causality Event Structure
(DCES) is a triple Δ = (π,�,�), where � ⊆ E3 is the shrinking causality rela-
tion, and � ⊆ E3 is the growing causality relation such that for all e, e′, e′′ ∈ E:

1. [e→e′′]�m ∧ �m′ ∈ E . m′ � [e → e′′] =⇒ e → e′′

2. m� [e → e′′] ∧ �m′ ∈ E . [e→e′′]�m′ =⇒ ¬(e → e′′)
3. m� [e → e′′] =⇒ ¬([e→e′′]�m)

Sometimes, we use use the expanded form (E,#,→,�,�) instead of (π,�,�).

Condition 1 ensures that, if only a dropping of a causal dependency exists,
then the dependency should exist initially. Similarly, Condition 2 ensures the
initial absence of a dependency, if there is only an adder. If there are droppers
and adders for the same causal dependency we do not specify whether this
dependency is contained in →, because the semantics depends on the order in
which the droppers and adders occur. Condition 3 prevents that a modifier adds
and drops the same cause for the same target.

The order of occurrence of droppers and adders determines the causes of an
event. For example assume a� [c → t] and [c→ t]�d, then after ad, t does not
depend on c, whereas after da, c depends on t. Thus, configurations like {a, d}
are not expressive enough to represent the state of such a system. Therefore, in
a DCES, a state is a pair of a configuration C and a causal state function cs,
which computes the causal predecessors of an event, that are still needed.

Definition 5. Let Δ = (E,#,→,�,�) be a DCES.

(1) The function mc : P(E) × E → P(E) denotes the maximal causality that
an event can have after some history C ⊆ E, and is defined as

mc(C, e) = { e′ ∈ E \ C | e′ → e ∨ ∃ a ∈ C . a� [e′ → e] }.

(2) A state of Δ is a pair (C, cs) where cs : E \C → P(E \C) such that C ⊆ E
and cs(e) ⊆ mc(C, e).
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(3) We denote cs as causality state function, which shows for an event e that has
not yet occurred, which events are still missing such that e becomes enabled.

(4) An initial state of Δ is S0 = (∅, csi), where csi(e) = {e′ ∈ E | e′ → e}.
Note that S0, is the only state with an empty set of events; for other sets of
events there can be multiple states. The behaviour of a DCES is defined by the
transition relation on its reachable states with finite configurations.

Definition 6. Let Δ = (E,#,→,�,�) be a DCES and C,C ′ ⊆ E.
Then (C, cs)→d(C ′, cs′) if :

1. C ⊆ C ′

2. ∀e, e′ ∈ C ′ . ¬(e#e′)
3. ∀e ∈ C ′ \ C . cs(e) = ∅
4. ∀e, e′ ∈ E \ C ′ . e′ ∈ cs(e) \ cs′(e) =⇒ ([e′ → e]�) ∩ (C ′ \ C) 	= ∅
5. ∀e, e′ ∈ E \ C ′ . ([e′ → e]�) ∩ (C ′ \ C) 	= ∅ =⇒ e′ /∈ cs′e
6. ∀e ∈ E \ C ′ . e′ ∈ cs′(e) \ cs(e) =⇒ (� [e′ → e]) ∩ (C ′ \ C) 	= ∅
7. ∀e, e′ ∈ E \ C ′ . (� [e′ → e]) ∩ (C ′ \ C) 	= ∅ =⇒ e′ ∈ cs′(e)
8. ∀e, e′ ∈ E \ C . ([e′ → e]�) ∩ (C ′ \ C) = ∅ ∨ (� [e′ → e]) ∩ (C ′ \ C) = ∅
9. ∀t,m ∈ C ′ \ C . ∀c ∈ E . m� [c → t] =⇒ (c ∈ C ∨ m ∈ {c, t}).

Condition 1 insures the accumulation of events. Condition 2 insures conflict
freeness. Condition 3 insures that only events which are enabled after C can
take place in C ′. Condition 4 insures that, if a cause disappears, there has to
be a dropper of it. The same is ensured by Condition 6 for appearing causes.
Condition 5 insures that if there are adders, the cause has to appear in the
new causal state, unless it occurred. Similarly Condition 7 insures, that causes
disappear, when there are droppers. To keep the theory simple, Condition 8
avoids race conditions; it forbids the occurrence of an adder and a dropper of the
same causal dependency within one transition. Condition 9 ensures that DCESs
coincide with Growing Causality ESs of [1], and forbids, in the non trivial casese,
the concurrency of an adder and its target.

Based on this state definition, we can now define the proper equivalence for
DCESs:

Definition 7. Let Δ = (E,#,→,�,�) be a DCES.

(1) The set of (reachable) states of Δ is defined as

S(Δ) = { (X, csX) | S0→∗
d (X, csX) ∧ X is finite },

where →∗
d is the reflexive and transitive closure of →d.

(2) Let Δ′ = (E′,#′,→′,�′,�′) be another DCES.
Then Δ and Δ′ are state transition equivalent, denoted by Δ�sΔ

′,
if E = E′ and →d ∩ (S(Δ))2 = →′

d ∩ (S(Δ′))2.
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3 Generalisation

We want to model all features of the RCESs, like for example disabling of an
event after the conjunction of two events and a disabling of a disabling after
another event. Therefore, in this paper, we enrich the dynamicity approach with
two concepts. Firstly, we focus on the aspect of set-based dynamics. In contrast
to the DCESs, we now allow sets of events as modifiers for a causal dependency
and the modification only takes place if all elements of the set occurred (note
that for singletons this is exactly the same as in DCESs), in such a manner a
disabling after a and b is easily modelled. Secondly, we study the idea of higher-
order dynamics, i.e. events may alter the capabilities of other events to change
causal dependencies (e.g. so a disabling capability of an event could be dropped
by another).

For two simple example see Fig. 3. The first is an example for set-based
dynamics, in which there are two diagnosis, which demand two different treat-
ments. But if both diagnosis appear at the same time, those two treatments are
not applicable anymore, but a third treatment must be performed. The second
one is an example for 2nd-order dynamics, in which the following process is mod-
eled. After a diagnosis a treatment should follow, but before the treatment a new
doctor, Mr. x, joins the treatment team. Mr. x wants to perform an additional
test, before continuing with the standard treatment. However, if he read a new
paper before joining the team, in which was explained, that the additional test
is not necessary anymore, he does not want to perform the test anymore.

diagnosis 1
treatment 1

diagnosis 2
treatment 2

treatment 3

diagnosis

treatment

doctor x joins

doctor x reads paper

test

Fig. 3. An example for set-based dynamics and one for 2nd-order dyanmics.
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3.1 Higher Order Dynamics

In contrast to the DCESs of [1] we use a rule set, which is updated after each
transition, and not a causal state function. For us a state is a configuration with
its current set of rules.

Further we will omit the conflict relation from our new structures, because
it can be expressed by a mutually adding: a#b can be modelled by a � [b → b]
and b� [a→a]. The next definition describes how rule set may look like:

Definition 8. For a given set of events E a HDES rule is produced by the
following grammar, with start symbol R:

R −→ A� [R] | A� [R] | [c→ t] c, t ∈ E

A −→ F F ⊆ E

For a given rule r we call the rank of r, written as rk(r), the number of
� symbols plus the number of � symbols occurring in r. For a rule set R we
call its projection to the rules of rank zero the causality relation, written as
→R (or → if the rule set is clear). Let r = M1 op1[. . . Mk opk[c → t] . . . ], with
opi ∈ {�,�} (for 1 ≤ i ≤ k) be a rule of rank k, then we denote with ri the
subrule ri = Mi opi[. . . Mk opk[c→ t] . . . ] (for 1 ≤ i ≤ k).

We call a set of HDES rules R a HDES rule set, if for each rule r =
M1 op1[. . . Mk opk[c → t] . . . ] ∈ R with I, J ⊂ {1, . . . , k}, such that i ∈ I ⇔
opi = � and j ∈ J ⇔ opj = �, it follows

1. ∀i ∈ I . ∃r′ ∈ R . (r′ = ri+1) ∨ (r′ = M ′
1� [. . . [M ′

k′ � [ri+1]] . . . ])
2. ∀j ∈ J . (	 ∃r′ ∈ R . r′ = rj+1) ∨ (∃r′ ∈ R . r′ = M ′

1 � [. . . [M ′
k′−1 � [M ′

k′ �
[ri+1]]] . . . ])

3. M � [r] =⇒ ¬(M � [r])

Those three conditions are just generalisations of those in the definition of the
DCESs.

A set based higher order dynamic causality Event Structure (HDES) is a tuple
Δ = (E,R), where E is a set of events and R is an HDES rule set over E.

Like in DCESs configurations are not expressive enough to capture the behav-
ioural state of an HDES.

Definition 9. Let Δ = (E,R) be HDES, C ⊆ E, S be an HDES rule set over
E. Then we call (C,S) a state of Δ. The initial state of Δ is S0 = (∅, R).

Like in the case of DCESs the behaviour of an HDES is defined by the tran-
sition relation on its states, but before we can define such transitions, we will
define for a state a rule update w.r.t. to a set of events. We will only consider
rules with modifier sets, which are included in the new set of events, but were
not included in the old set of events in the old state. Dropping rules are exe-
cuted immediately (if they are not dropped themselves), and adding rules are
executed in the transition. Further we forbid for an adding rule some concurrent
occurrences of events: If the rule adds a causality M � [c → t], then t is only
allowed to be in the transition, if it is in M , or if the cause c is in M ∪ T .
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Definition 10. Let (C,RC) be a state of a HDES Δ = (E,R) and C ′ ⊆ E with
C ⊆ C ′, then we call a rule M op [r] active if (M ⊆ C ′) ∧ (M ∩ C ′ \ C 	= ∅),
otherwise we call it passive. We call a rule r independent if, there is no active
rule r′ dropping r.

We call RC′ a rule update for (C,RC) w.r.t. C ′, written as (C,RC) −→C′

RC′ , iff RC′ can be obtained by the Algorithm1.
The algorithm consists of two parts, firstly the dropping rules are considered

(lines 2 - 8) and step by step the independent rules are executed (if active — line 6)
or copied to the new set (if passive — line 8), secondly (lines 11 - 16) each adding
rules is executed, if active (line 14), else copied to the new set (line 16), and finally
all causality rules (rules of the form [c→ t]) are copied to the new set (line 19).

input : A HDES state (C,RC) of a HDES Δ = (E,R) and a set of
events C ′, with C ⊆ C ′ ⊆ E

output: A set of HDES rules RC′

1 RC′ ← ∅;
2 while ∃r ∈ RC ,M ⊆ E . r = M � [r′] do // while there are dropping
rules

3 let r ∈ RC . (r = M � [r′]) ∧ (	 ∃r′′ ∈ RC . (r′′ = M ′ � [r]) ∧ (M ′ ⊆
C ′) ∧ (M ′ ∩ C ′ \ C 	= ∅)); // chose a independent rule

4 RC ← RC \ {r}; // remove the rule from the old set
5 if (M ⊆ C ′) ∧ (M ∩ C ′ \ C 	= ∅) then // active or passive rule?
6 RC ← RC \ {r′}; // drop the target from old set
7 else
8 RC′ ← RC′ ∪ {r}; // copy the rule to the new set
9 end

10 end
11 foreach r = M � [r′] ∈ RC do // for each adding rule
12 RC ← RC \ {r}; // remove the rule from the old set
13 if (M ⊆ C ′) ∧ (M ∩ C ′ \ C 	= ∅) then // active adding rule?
14 RC′ ← RC′ ∪ {r′}; // add the target to the new set
15 else
16 RC′ ← RC′ ∪ {r}; // add the rule to the new set
17 end
18 end
19 RC′ ← RC′ ∪ RC ; // copy the causal rules to the new set
20 return RC′ ;

Algorithm 1. HDRule set update algorithm

Definition 11. Let Δ = (E,R) be HDES, and (C,RC) and (C ′, RC′ , ) two of
its states. Then (C,RC)→HD (C ′, RC′) if

1. C ⊆ C ′

2. ∀t ∈ C ′ \ C . ∀c ∈ E . c →RC
t =⇒ c ∈ C

3. (C,RC) −→C′ RC′
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4. ∀M ⊆ E . (M ∩ (C ′ \ C) 	= ∅) ∧ (M ⊂ C ′) ∧ ((M op[r]) ∈ Rc) =⇒ (op = �)
⊕ (op = �)

5. ∀M,M ′ ⊆ C ′,∀c ∈ E, t ∈ C ′ \ C,∀r ∈ Rc . (M � C) =⇒ (r = M � [c → t]
=⇒ (c ∈ C ∪ M ∨ t ∈ M))

Condition 1 ensures an accumulation of events and 2 the left closure under the
actual causality relation. Condition 3 ensures that all rules, which modifier sets
are included in C ′ but not in C are executed, and the new rule set is adjusted.
Condition 4 ensures that in a transition the same rule can not be added and
dropped by the same modifier set. The last condition 5 is a generalisation of the
DCES condition, that forbids the concurrency of an adder and its target.

By this definition we may add rules, which never become active: For example
if we have an active adding rule like M1� [M2� [r]], and M2 is contained in the
current configuration C union the modifier set M1. Such a behaviour could be
prevented by more a more strict version of condition 5.

4 From Configuration Structures to HDES

In this section we present a translation of an RCES into an HDES, such that
both are transition equivalent. We show the result for the even more general
class of configuration structures [8]. So here we recap there definition:

Definition 12. Let E be a set, we call a pair (E, C) with C ⊆ P(E) a configu-
ration structure. For x, y in C we write x →C y if x ⊆ y and

∀Z(x ⊆ Z ⊆ y ⇒ Z ∈ C).

The relation →C is called the step transition relation.

For the proof, we need some more notation.

Definition 13. Let τ = (E, C) be a configuration structure over E, D ⊆ E, and
F ⊆ E. We denote with Enτ (D) ⊆ E \ D the set of events, which are enabled in
D, in a formal way e ∈ Enτ (D) ⇐⇒ ∃D′ ⊇ D . D →τ D′∧e ∈ D′\D. Analogous
we denote with Disτ (D) ⊆ E \ D′ the set of not enabled (or disabled) events,
more formal Disτ (D) := D′ \ (D ∪ Enτ (D)). For F ⊆ E we further denote with
Conτ (D,F ) ⊆ E \ D the set of events, which can be concurrent with F in D, in
a formal way e ∈ Conτ (D,F ) ⇐⇒ ∃D′ ⊇ D . D →τ D′ ∧ F ∪ {e} ⊆ D′ \ D.

Now we can formulate and prove our result. The new HDESs are strictly
more expressive than any configuration structure. For any RCES the transition
graph is a configuration structure, so the HDESs will be strictly more expressive
than the RCESs. It was shown in [1], that there are DCESs, whose behaviour
could not simulated by any RCES. Now we show that for each RCES there is
a transition equivalent HDES. Both results together (plus the obvious inclusion
of DCESs in HDESs), yield the strict inclusion.
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Definition 14. Let τ = (E, C) be a configuration structure, then we define a
HDES namely HDES(τ) := (E,R) as follows:

For each e ∈ Disτ (∅) we add the rule e → e to R. Let F ⊆ Enτ (∅) with
∅→τ F , then we add the rule F � [e→e] for all e ∈ (Enτ (∅) \ Conτ (∅, F )) to R.

Let now be C ⊆ E be a non-empty configuration of τ . We add the rule
C � [e → e] to R, if e ∈ Disτ (C). Similarly we add the rule C � [e → e], if
e ∈ Enτ (C). Further for each D � C and for each e ∈ Disτ (D) we add the rule
C � [D� [e→e]] to R.

For all F ⊆ Enτ (C) with C →τ C ′ and F ⊆ C ′ and for all e ∈ (Enτ (C) \
Conτ (C,F )) we add the rule C � [F � [e→e]] to R. Further for all D � C and for
all A ⊆ Enτ (D) with D→τ D′ and A ⊆ D′ and for all e ∈ (Enτ (D)\Conτ (D,A))
we add the rule C � [D� [A� [e→e]]] to R.

In this translation from configuration structures to HDES we have unique states
for each configuration, i.e. for each reachable set of events there exists exactly
one rule set and therefore one state.

Definition 15. Let τ be a configuration structure, Δ = (E,R) its translation,
and C 	= ∅ a non-empty configuration of τ , we call a rule-set RC the correspond-
ing rule-set to C, if it can be obtained from R in the following way:

(1.) For any D � C remove any dropping rule D� [r].
(2.) For any dropping rule C � [r] remove the rule and its target r.
(3.) For any adding rule C � [r] remove the rule but add the target r.

Note that by this algorithm and the construction of R in the translation, each
rule D op [r] with D ⊆ C is dropped from RC and each rule E op [r] with
E 	⊆ C is copied to RC . There are exactly the causality rules e → e in RC , for
which e ∈ Disτ (C) and there are further more the concurrency restricting rules
F � [e→e], if F ⊆ Enτ (C) with C →τ C ′, F ⊆ C ′ and e ∈ (Enτ (C)\Conτ (C,F )).

We now show that in each reachable state the rule set corresponds to the
configuration, and even for any transition starting at a state where the rule set
corresponds to the configuration this will hold in the resulting state.

Firstly we show that starting with the initial rule set we reach in one step
only states with corresponding rule sets.

Lemma 1. Let τ = (E, C) be a configuration structure, Δ := HDES(τ), and
(∅, R)→C RC be a rule-update, then RC corresponds to C.

Proof. Since (∅, R)→C RC is a rule-update as defined in 10, all active indepen-
dent dropping rules are considered, this are all rules of the form D � [r] for
D ⊆ C and note that by construction r is no dropping rule. Those dropping
rules drop by construction all former added or initial causality rules (e.g. e→e)
and concurrency restricting rules (e.g. F � [e→e]). After the dropping rules we
consider the active adding rules there are two types, first causality adding rules
(e.g. C � [e→e]) and concurrency restricting rules (e.g. C � [F � [e→e]]). Finally
we copy the newly added causality rules to the new rule set. This is exactly the
same as in 15, because for each in step (1.) removed rule D� [r] there is a rule
C � [r], which will be executed in step (2.). Thus RC corresponds to C.
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Secondly we show that starting from a state with a corresponding rule set we
reach in one step only states with corresponding rule sets. The proof is almost
the same as above.

Lemma 2. Let τ = (E, C) be a configuration structure, Δ := HDES(τ), and
(C,RC) →C′ R′

C be a rule-update where RC corresponds to C, then R′
C corre-

sponds to C ′.

Proof. Since (C,RC) →C′ R′
C is a rule-update as defined in 10, all active inde-

pendent dropping rules are considered, this are all rules of the form D � [r]
for C ′ ⊆ D ⊆ C (no smaller modifier sets are possible, because RC is a corre-
sponding rule set) and note that by construction r is no dropping rule. Those
dropping rules drop by construction all former added causality rules (e.g. e→e)
and concurrency restricting rules (e.g. F � [e→e]). After the dropping rules we
consider the active adding rules there are two types, first causality adding rules
(e.g. C ′ � [e → e]) and concurrency restricting rules (e.g. C ′ � [F � [e → e]]).
Finally we copy the newly added causality rules to the new rule set. This is
exactly the same as in 15, because for each in step (1.) removed rule D � [r]
there is a rule C � [r], which will be executed in step (2.). Thus R′

C corresponds
to C ′.

Lemma 3. Let τ = (E, C) be a configuration structure, Δ := HDES(τ), and
(C,SC) and (D,SD) two reachable states of Δ, then C = D =⇒ SC = SD.

Proof. Because both states are reachable it follows from the previous two
Lemmas 1 and 2 that both rule sets corresponds to the configurations, if those
configurations are the same then clearly the corresponding rule sets too.

The above lemma justifies to speak about configurations of Δ and and tran-
sitions in between them, instead of states, because the rule sets are unique for
each reachable configuration (they are the corresponding ones). In order to com-
pare to the original configuration structure τ it is therefore sufficient to show
that both are transition equivalent.

Lemma 4. Let τ = (E, C) be a configuration structure and Δ := HDES(τ),
then ∅→τ C iff (∅, R)→Δ (C,RC).

Proof. Let ∅ →τ C, it follows by Definition 13 e ∈ Enτ (∅) for each e ∈ C and
C ⊆ Conτ (∅, C). Thus by construction in Definition 14 there is no rule e→e for
any e ∈ C in the rule set R furthermore is there no rule D� [e→e] for any c ∈ C
and D ⊆ C. We now show all conditions of the transition Definition 11 hold.
Condition 1 is clearly satisfied because ∅ ⊆ C, the only initial causality rules are
by construction deactivating rules like e → e, which do not occur for events in
C therefore condition 2 holds. Next condition 3 constraints only the rule update
and is fulfilled by assumption. The structural condition 4 enforces the the same
rule is not added and dropped by the same set of modifiers, this is fulfilled by
construction 14 of Δ. Regarding the last condition 5, let us first assume there is a
rule M � [e→e], such that M ⊆ C and e ∈ C\M , then either in the configuration
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M the event e is disabled or initially e may not be concurrent with M (by
construction of the rule set), but since ∅→τ C and therefore ∅→τ M ∪ {e} and
M →τ M ∪{e} (because τ is a configuration structure). Thus no rule M � [e→e]
with M ⊆ C and e ∈ C \ M is in R and therefore the property holds. We
have shown that all conditions of the transition Definition 11 hold, so we have
(∅, R)→Δ (C,RC).

To show the equivalence we assume ∅ 	→τ C then there are, by Definitions 13
and 2, D ⊂ C and e ∈ C \ D, such that e /∈ Conτ (∅,D). Caused by construction
14 there is a rule D � [e → e] in R. Thus by condition 5 of the transition
Definition 11 it follows ∅ 	→Δ C.

Lemma 5. Let τ = (E, C) be a configuration structure, Δ := HDES(τ), C ∈ C,
and RC the to C corresponding rule-set, then C →τ C ′ iff (C,RC)→Δ (C ′, RC′).

Proof. Let →τC, it follows by Definition 13 e ∈ Enτ (C) for each e ∈ C ′ and
C ′ ⊆ Conτ (C,C ′). Thus by construction of R in Definition 14 and because of
RC being a to C corresponding rule set by assumption, there is no rule e→e for
any e ∈ C ′ in the rule set RC furthermore is there no rule D � [e → e] for any
e ∈ C ′ and D ⊆ C ′. We now show all conditions of the transition Definition 11
hold. Condition 1 is clearly satisfied because C ⊆ C ′, the only causality rules
are by construction of R and because RC is corresponding to C deactivating
rules like e→e, which do not occur for events in C ′ (because they are enabled)
therefore condition 2 holds. Next condition 3 constraints only the rule update
and is fulfilled by assumption. The structural condition 4 enforces the the same
rule is not added and dropped by the same set of modifiers, this is fulfilled
by construction 14 of Δ. Regarding the last condition 5, let us first assume
there is a rule M � [e → e], such that M ⊆ C ′ and e ∈ C ′ \ M , then either
in the configuration M the event e is disabled or in C the event e may not be
concurrent with M (by construction of the rule set), but since →τC and therefore
→τCM ∪ {e} and →τMM ∪ {e} (because τ is a configuration structure). Thus
no rule M � [e → e] with M ⊆ C ′ and e ∈ C ′ \ M is in RC and therefore the
property holds. We have shown that all conditions of the transition Definition 11
hold, so we have (C,RC)→Δ (C ′, RC′).

To show the equivalence we assume C 	→τ C ′ then there are, by Definitions 13
and 2, D ⊂ C ′ and e ∈ C ′\D, such that e /∈ Conτ (C,D). Caused by construction
14 there is a rule D � [e → e] in RC . Thus by condition 5 of the transition
Definition 11 it follows (C,RC) 	→Δ (C ′, RC′).

Theorem 1. Let τ = (E, C) be a configuration structure then the HDES Δ :=
HDES(τ) is transition equivalent.

Proof. By induction with Lemmas 4 and 5.

5 Conclusion

In this paper we present a more general and more elegant dynamic-causality ES
than in [1], by allowing dynamicity of higher order and set-based modifications.
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This new HDES ( higher-order dynamic-causality ES) only consists of an event
set and a rule set, which is updated after each transition.

We show that for arbitrary configuration structures with the step transition
relation (as defined in [8]), there is a HDES (with at most third order dynamics)
with the same transition graph. Since the transition graph of an Event Struc-
ture for Resolvable Conflicts (RCESs) [7] is a configuration structure, the newly
defined HDESs are strictly more expressive than the RCESs (because of the
incomparability of DCESs and RCESs in [1]).

As future work we want to study the HDES more deeply. We want investigate,
whether there is a strict hierarchy in the level of dynamicity, i.e. there are some
structure with order n dynamics, that can not be formulated with order n−1. We
also want to relate our approach with the DCR-Graphs [4] and the π-calculus.
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Abstract. We propose a variant of public announcement logic for asyn-
chronous systems. We give a syntax where sending and receiving mes-
sages are modeled by different modal operators. The natural approach to
defining the semantics leads to a circular definition, but we describe two
restricted cases in which we solve this problem. The first case requires the
Kripke model representing the initial epistemic situation to be a finite
tree, and the second one only allows announcements from the existential
fragment. Finally, we provide complexity results for the model checking
problem.

1 Introduction

Asynchrony has long played a central role in distributed systems, where access
to a centralized clock is not always possible, and where communication may not
be delivered or received immediately or predictably. Recently, with the prolifera-
tion of multi-agent systems (MAS) where independent agents interact, communi-
cate, and make decisions under imperfect information, modelling how knowledge
evolves with informative events has also become increasingly important. One of
the first and most influential proposals in this direction is public announcement
logic (PAL) [11], in which some external omniscient entity publicly makes true
announcements to some group of agents. This logic has led to the powerful and
much studied dynamic epistemic logic (DEL) [14]. However, both these logics
assume synchronicity, even though there has been some discussion on this matter
for the latter [4]. In PAL for instance, messages are immediately received by all
agents at the same time, as soon as they are sent. As far as we know, little work
has been done to address the same problem in asynchronous scenarios.

Our goal in this work is the logical study of scenarios with asynchronous
announcements. As a first step, similar to PAL, we consider a simple scenario:
messages are true at the time of announcement, public (directed to everyone),
and we do not model their origin, but rather assume that some external and
omniscient entity emits them. Consider the scenario where three autonomous
agents, moving through an area, receive messages from a public channel. They
do not all read the messages (logical formulas) at the same time, but they do

c© Springer International Publishing Switzerland 2015
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read them in the same order. Figure 1 depicts the architecture of the system:
each agent has a private copy of the channel and they read messages in first in,
first out (FIFO) order, that is, messages are read in the order they are sent.

new announcement

FIFO for agent a

FIFO for agent b

FIFO for agent c

read

read

read

Fig. 1. Agent architecture

In PAL, not only are all messages received at the same time by all agents,
but they are also received at the same time they are sent. Therefore, in PAL,
the announcement operator combines both sending and receiving. In contrast, in
our setting, messages are not received immediately and they may be received at
different times by different agents. The syntax reflects this aspect by providing
both a sending operator, which adds new messages to the public channel, and
a receiving operator for each agent, which allows her to read the first message
in the channel that she has not read yet. Thus, in our logic, we provide the
following modal operators:

– Kiϕ, where i is an agent and ϕ a formula. Intuitively, this will mean “agent
i knows ϕ,” and as usual, this will be interpreted as “ϕ is true at every state
that agent i considers possible.” Below, we discuss the accessibility relation
we use to define all the states agent i considers possible at a given state (all
states that are indistinguishable from the current state for agent i).

– 〈ψ〉ϕ, which will mean “after the currently true formula ψ is (asynchronously)
announced, ϕ is immediately true.”

– ©iϕ which will mean “after agent i receives the next announced formula in
her queue, ϕ is immediately true.”

Interestingly, the most intuitive semantics for this logic presents a challenging
problem of circular definition. We describe this difficulty in more detail below,
but the basic issue is that in order to check the truth of some formulas, we must
quantify over the set of all indistinguishable states that are consistent. A state
is consistent if it is the result of making a true announcement in a state that
is itself consistent. So evaluating the truth of a formula requires determining
whether a state is consistent, which in turn requires evaluating the truth of for-
mulas. In PAL, a similar problem occurs, as the definition of the update of a
model by an announcement and the definition of the truth values are mutually
dependent. While in PAL this circularity can be solved simply by resorting to
a double induction, things are more complicated here. Indeed, because of asyn-
chrony, an agent does not know what or how many messages other agents have
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received; therefore, evaluating a knowledge operator in a state requires consid-
ering possibly infinitely many indistinguishable states, which makes a double
induction impossible. This circularity problem is inherent to the asynchronous
setting, and is independent from our choice to consider an external source for
the announcements.

We partially tackle this issue by defining two restricted cases in which we
manage to avoid circularity. The first one requires the Kripke model representing
the initial epistemic situation to be a finite tree; the second one only allows
announcements from the existential fragment. In the latter case, the semantics
is defined thanks to an application of the Knaster-Tarski fixed point theorem [12].

Finally, we study the model checking problem for our logic and establish the
following complexity results:

Restrictions Complexity of model checking

Propositional announcements PSPACE-complete

Finite tree initial models in PSPACE

Announcements from the existential fragment in EXPTIME, PSPACE-hard

The paper is organized as follows. In Sect. 2, we recall (synchronous) public
announcement logic. In Sect. 3 we present the language and the models for asyn-
chronous public announcement logic we propose here. In Sect. 4 we present the
circularity problem for defining the semantics of the logic, and we exhibit two
cases where it can be solved. We then present some validities in Sect. 5, and we
study the model checking problem in Sect. 6. Finally we discuss related work in
Sect. 7 and future work in Sect. 8.

2 Background: Public Announcement Logic

In this section, we present background on (synchronous) Public Announcement
Logic (PAL) [11]. Let P be a countable infinite set of atomic propositions, and
let AGT be a finite set of agents.

Definition 1 (Syntax of PAL). The syntax for PAL is as follows:

ϕ::=p | (ϕ ∧ ϕ) | ¬ϕ | Kiϕ | 〈ϕ〉
PAL

ϕ

where p ∈ P and i ∈ AGT.

The intuitive meaning of the last two operators is the following: Kiϕ means
that agent i knows ϕ, 〈ψ〉PALϕ means that ψ is true and after ψ has been publicly
announced and publicly received by all the agents, ϕ holds.

The semantics of PAL relies on classic Kripke models and the possible worlds
semantics, widely used in logics of knowledge [5].
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Definition 2. A Kripke model is a tuple M = (W, {→i}i∈AGT ,Π), where:

– W is a non-empty finite set of worlds,
– for each i ∈ AGT, →i⊆ W × W is an accessibility relation for agent i,
– Π : W → 2P is a valuation on worlds.

Note that we do not require the accessibility relations to be equivalence
relations as is traditionally done in epistemic logic [14].

Example 1. Let us consider the following Kripke model, where w, u and v are
worlds, a and b are agents and p is a proposition. The arrows represent the
agents’ accessibility relations. At world w, agent a considers u and v possible,
and agent b considers only world v possible.

w : p

u : ¬p v : p

a a, b

The semantics is given as follows:

– M, w |= p if p ∈ Π(w);
– M, w |= ϕ1 ∧ ϕ2 if M, w |= ϕ1 and M, w |= ϕ2;
– M, w |= ¬ϕ if M, w 	|= ϕ;
– M, w |= Kiϕ if for all u such that w →i u, M, u |= ϕ;
– M, w |= 〈ψ〉PALϕ if M, w |= ψ and Mψ, w |= ϕ where Mψ is the restriction

of M to worlds where ψ holds.

Example 2. Let M be the model of Example 1. We have M, w |= 〈p〉PALKap.
Indeed, we have Mp, w |= Kap where Mp is

w : p v : p
a, b

The model checking in public announcement logic is in P and the satisfiability
problem in public announcement logic is PSPACE-complete [9]. A tableau proof
system for public announcement logic is provided in [3].

3 Language and Models

3.1 Language

Again, P is a countable infinite set of atomic propositions, and AGT is a finite
set of agents.

Definition 3 (Syntax). The syntax for the logic is as follows:

ϕ::=p | (ϕ ∧ ϕ) | ¬ϕ | Kiϕ | 〈ϕ〉ϕ | ©i ϕ,

where p ∈ P and i ∈ AGT.
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We use L to denote the set of all formulas. The intuitive meaning of the last
three operators is the following: Kiϕ means that agent i knows ϕ, 〈ψ〉ϕ means
that ψ is true and after ψ has been put on the public channel, ϕ holds, and ©iϕ
means that agent i has a message to read, and after he has read it, ϕ holds. We
classically define (ϕ ∨ ψ)::=¬(¬ϕ ∧ ¬ψ), (ϕ → ψ)::=(¬ϕ ∨ ψ), the dual of the
knowledge operator: K̂iϕ::=¬Ki¬ϕ, meaning that agent i considers ϕ possible,
and the dual of the announcement operator: [ψ]ϕ::=¬〈ψ〉¬ϕ, meaning that if ψ
is true, then ϕ holds after its announcement. |ϕ| is the length of ϕ.

Note that in (synchronous) public announcement logic (see Definition 1),
the emission and the reception of a formula ψ is mixed in the operator 〈ψ〉PAL,
because in this setting, emission and reception occur simultaneously. In the asyn-
chronous version of announcement logic we propose here (see Definition 3), the
emission of ψ is represented by 〈ψ〉 and the reception of a message by Agent i is
represented by the operator ©i. Note that not only can emission and reception
occur at different times, but also different agents may receive the same message
at different times.

3.2 Models

The models on which our logic is interpreted represent situations obtained by
announcements being made in an initial epistemic model, with agents asynchro-
nously receiving these announcements. We now define initial epistemic models,
sequences of announcements, and a third notion that we call cuts, representing
the announcements each agent has received at the current time.

Initial Kripke Model. An initial model is given as a Kripke model M =
(W, {→i}i∈AGT ,Π), as defined in Definition 2. An initial model represents the
initial static situation before any announcements are made.

Sequences of Announcements. We consider that, in a given scenario, not
every formula may be announced, but rather that there is a certain set of relevant
announcements. Furthermore, we allow the number of times an announcement
can be made to be bounded.

To represent this, we define an announcement protocol to be a multiset of
formulas in our language, where the multiplicity of an element ψ is either an
integer or ∞.

Example 3. The reader may imagine a card game where it is only possible to
announce ‘Agent a has a heart card’ once and ‘Agent a does not know whether
Agent b has a heart card or not1’ twice. We let the proposition ♥i mean “agent
i has a heart card,” and define the announcement protocol to be:

{{♥a , K̂a♥b ∧ K̂a¬♥b , K̂a♥b ∧ K̂a¬♥b}}.

1 that is ‘a considers ♥b possible and considers ¬♥b possible’.
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Given an announcement protocol A, we denote by Seq(A) the set of finite
sequences σ = [ϕ1, . . . , ϕk] such that the multiset {{ϕ1, . . . , ϕk}} is a submultiset
of A. We let |σ| =

∑k
i=1 |ϕi|. For σ, σ′ ∈ Seq(A), we write σ ≤ σ′ if σ is a prefix

of σ′. The sequence σ|k is the prefix of σ of length k.
Given a formula ϕ and a sequence of formulas σ, ϕ::σ (resp. σ::ϕ) is the

sequence obtained by adding ϕ at the beginning (resp. at the end) of σ.

States. We can now define the models of our logic. Let M be an initial model
and A an announcement protocol. We define the asynchronous model M ⊗ A =
(S, {Ri}i∈AGT ), where each Ri is a pre-accessibility relation, which we define in
Sect. 3.2, and S is a set of states defined as follows:

S =
{
(w, σ, c) | w ∈ W,σ ∈ Seq(A) and c : AGT → {0, ..., |σ|}}

.

States are also denoted S, S′, etc.
The first element of a state represents the world the system is in. The sec-

ond element is the list of messages that have already been announced. The last
element, c, is called a cut, and for each i ∈ AGT , c(i) is the number of announce-
ments of σ that Agent i has received so far. Given two cuts c and c′, we write
c < c′ if for all i, c(i) ≤ c′(i) and there exists j such that c(j) < c′(j).

Example 4. Consider the state S = (w, ε,0), where ε denotes the empty sequence
of formulas and 0 is the function that assigns 0 to all agents. S represents an
initial world w in which no announcement has been made (and therefore no
announcement has been received either). It can be represented as follows:

w

Example 5. Consider the state S = (w, [ϕ,ψ, χ], c) where c(a) = 2 and c(b) = 1.
S is the state representing that in initial world w, the sequence [ϕ,ψ, χ] of
formulas has been announced and is now in the public channel, Agent a has
received ϕ and ψ, and agent b has only received ϕ. Only χ remains in the queue
of a and has not been read yet, and only ψ and χ remain in the queue of b. We
represent S as follows:

w ϕ ψ χ

a

b

and we may also write S = (w, [ϕ,ψ, χ], a �→ 2
b �→ 1 ).

The definition of S allows for all combinations of worlds, sequences of annou-
ncements, and cuts. This definition is an over-approximation of the set of states
we want to consider: indeed, some of the states in S are inconsistent. For exam-
ple, suppose that w is a world in M where p does not hold. Then, the state
(w, [p],0) is intuitively inconsistent because as the formula p is not true in w, it
cannot have been announced. This notion of inconsistency is the source of the
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circularity problem. Indeed, to define whether a state is consistent requires one
to define whether an announcement can be made, and this requires the seman-
tics of our logic to be defined. But to define the semantics of the knowledge
operators, we need to define which consistent states are related to the current
one, which requires us to define which states are consistent, hence the circularity
(see Sect. 4).

Pre-accessibility Relation Definition. We now define, for each agent, a pre-
accessibility relation that does not yet take consistency into account, but is only
based on the agents’ accessibility relations on the initial model and the current
cut. This is the first step toward the final definition of the agents’ accessibiliy
relations, which is presented below.

Definition 4. The pre-accessibility relation for Agent i, written Ri, is defined
as follows: given S = (w, σ, c) and S′ = (w′, σ′, c′), we have SRiS

′ if:

1. w →i w′, and
2. c(i) = c′(i) and σ|c(i) = σ′|c′(i)

The first clause is obvious. The second clause says that Agent i is aware of, and
only aware of, messages that she has received: therefore she can only consider
possible states where she has received exactly the same messages. However, the
sequence of messages she has not yet received may be longer or shorter in a
related state. Also, as she has no information about what messages the other
agents have received, we do not put any constraints on c′(j) if j 	= i.

Example 6. Here we give an example of an inconsistent state, to show why fur-
ther refinement of the above-defined models is necessary. Let us consider the
following initial model, where w, u, v and z are worlds, a and b are agents and p
is a proposition. The arrows represent the agents’ accessibility relations, before
any announcements have been made. So at world w, agent a considers u and v
possible, and agent b considers world z possible.

w : p

u : ¬p v : p z : p

a a b

Now assuming that the announcement protocol A contains p, ϕ and ψ, a
partial depiction of the asynchronous model M⊗A is below. We depict the states
w, u, v, and z where no announcements have been made, as well as copies of u
where two different sequences of announcements have been made, and received
in one state by b and in a different state by a. Of course, the entire model M⊗A
is infinite so we do not depict all the states here. The grey state shown in the
asynchronous model is not consistent because p has been announced although p
is not true in u.
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w

u v z u p ϕ

b

u ψ

a

. . .

a a b a b

4 Semantics: The Circularity Problem

Figures 2 and 3 show a naive attempt to define the truth conditions, which we
explain in Sect. 4.1. Unfortunately, this leads to a circularity problem which we
detail in Sect. 4.2. We show how to solve this problem for restricted cases in
Sects. 4.3 and 4.4.

(w, ε,0) |= �
(w, σ, c) |= � if there is c′ < c s.t. (w, σ, c′) |= �, or

σ = σ′::ψ, (w, σ′, c) = � and(w, σ′, c) = ψ

Fig. 2. Truth conditions for consistency

(w, σ, c) |= p if p ∈ Π(w)
(w, σ, c) |= ϕ1 ∧ ϕ2 if (w, σ, c) |= ϕ1 and (w, σ, c) |= ϕ2

(w, σ, c) |= ¬ϕ if (w, σ, c) �|= ϕ
(w, σ, c) |= Kiϕ if for all S′ s.t. (w, σ, c)RiS

′ and S′ |= �, S′ |= ϕ
(w, σ, c) |= 〈ψ〉ϕ if σ::ψ ∈ Seq(A), (w, σ, c) |= ψ and (w, σ::ψ, c) |= ϕ
(w, σ, c) |= ©iϕ if c(i) < |σ| and (w, σ, c+i) |= ϕ

where c+i(j) =
c(j) if j �= i
c(j) + 1 if j=i

Fig. 3. Truth conditions for formulas

4.1 Intuitions

The pre-accessibility relation takes into account states that are not actually
consistent, because they contain announcements that were not true at the time
they were made. The intuitive meaning of (w, σ, c) |= � is that the state (w, σ, c)
is consistent, that is, all announcements were true when they were made. Figure 2
is an attempt to define this concept formally. The first clause is obvious: the
initial state where no announcements have been made is consistent. The second
clause gives two possibilities for a state to be consistent. Either there was an
earlier consistent state, (w, σ, c′) and then some agents received some already
announced formulas, increasing the cut from c′ to c, or a new, true announcement
ψ has been made from an earlier consistent state, increasing the history from σ′

to σ′.ψ.
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In Fig. 3, the first three clauses are straightforward. The fourth clause says
that Agent i knows ϕ if ϕ holds in all consistent states that are indistinguishable
to her. The fifth clause says that 〈ψ〉ϕ holds in a state S if ψ can be announced
(it is true in S), and ϕ holds in the state obtained by adding ψ to the public
channel. The last clause says that ©iϕ holds if Agent i has at least one unread
announcement in the channel, and ϕ holds after she reads the first message.

4.2 Circularity

Let us consider the following example, where AGT = {a}. Let the initial model
be M = (W,→a,Π) where W = {w}, →a= {(w,w)} and Π(w) = ∅. Let
the announcement protocol be A = {{Kap}}. According to Fig. 2, we have:
(w, [Kap],0) |= � iff (w, ε,0) |= Kap. But, as (w, ε,0)Ra(w, [Kap],0), the def-
inition of the truth value of (w, ε,0) |= Kap depends on the truth value of
(w, [Kap],0) |= �. To sum up, the definition of (w, [Kap],0) |= � depends on
itself.

4.3 When the Initial Model Is a Finite Tree

If we assume the initial model M = (W, {→i}i∈AGT ,Π) to be such that W is
finite and

⋃
i →i makes a finite tree over W , then the circularity problem can

be avoided. Indeed, in this case, we can define a well-founded order on tuples of
the form (w, σ, c, ϕ), where ϕ is either a formula in L or the symbol �, the idea
being that a tuple (w, σ, c, ϕ) means ‘w, σ, c |= ϕ’.

Definition 5. The order ≺ is defined as follows:

(w, σ, c, ϕ) ≺ (w′, σ′, c′, ϕ′) if either

1 w is in the subtree of w′ in M,
2 or w = w′ and |σ| + |ϕ| < |σ′| + |ϕ′|,
3 or w = w′, |σ| + |ϕ| = |σ′| + |ϕ′| and c < c′,

where |�| = 1.

It is easy to see that ≺ is a well-founded order, and with this order Figs. 2 and 3
together form a well-founded inductive definition of consistency and semantics
of our language.

We detail the non-trivial cases. For the second clause of Fig. 2, observe that
by Point 3 of Definition 5, if c′ < c then (w, σ, c′,�) ≺ (w, σ, c,�), and for all
w, σ′, c and ψ, by Point 2 of Definition 5, we have (w, σ′, c, ψ) ≺ (w, σ′::ψ, c,�).

For the fourth clause of Fig. 3, by Point 1 of Definition 5 we have that for
all ϕ, σ, σ′, c, c′, if w′ is a child of w then (w′, σ′, c′, ϕ) ≺ (w, σ, c,Kiϕ).

Finally, for the fifth clause of Fig. 3, by Point 2 of Definition 5 we have
that (w, σ::ψ, c, ϕ) ≺ (w, σ, c, 〈ψ〉ϕ) for all w, σ, c, ϕ and ψ (note that |〈ψ〉ϕ| =
1 + |ψ| + |ϕ|).
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The following simple example illustrates how our semantics works, and how
it indeed captures the intuitions behind the operators.

Example 7. Suppose that we have only one agent a. Let us consider the following
initial model M:

w : p

u : ¬p v : p

a a

In this model, p holds in the actual world w, but Agent a does not know it.
Assume that p can be announced at least once (p ∈ A). We show that, as
expected, after p is announced and Agent a has received this announcement, it
holds that Agent a knows that p holds. Formally, we prove that, in M ⊗ A, we
have (w, ε,0) |= 〈p〉 ©a Kap.

To do so we show that (w, [p], a �→ 1) |= Kap, from which it follows that
(w, [p],0) |= ©aKap, hence the desired result.

By Definition 4 for pre-accessibility relations, every state S such that (w, [p],
a �→ 1)RaS is of the form S = (w′, p::σ, a �→ 1), where w′ ∈ {u, v} and σ is a
sequence of announcements. We just have to show that each such state either is
inconsistent or verifies p.

First, for w′ = u. According to the first clause of Fig. 3, we have that
(u, ε,0) 	|= p, and by the second clause of Fig. 2 it follows that (u, [p],0) 	|= �,
from which it follows also that (u, [p], a �→ 1) 	|= � and (u, p::σ, a �→ 1) 	|= �, for
any σ.

Now, for w′ = v, by the first clause of Fig. 3, we have that for all states
of the form S = (v, p::σ, a �→ 1), S |= p, so that finally every state related to
(w, [p], a �→ 1) is either inconsistent or verifies p. Note that we could also prove
that S is consistent.

In practice, this setting can be used as an approximation scheme: unfolding
models and cutting at level l of the obtained trees amounts to assuming that
agents cannot reason about deeper nesting of knowledge. This approach is similar
to the well known idea of bounded rationality, [7], where it is assumed that due to
computational limits, agents have only approximate, bounded information about
other agents’ knowledge, which is represented by allowing only finite-length paths
in the Kripke model. We point out, however, that this method of approximation
is only appropriate in certain settings. One issue is that it does not allow the
accurate representation of transitive accessibility relations, where the leaves of
an initial model of any depth l may be reached just by evaluating a formula
with one knowledge operator. This setting calls for more work to clarify what
this representation really captures, and to develop precise results about which
formulas we are able to correctly evaluate using this method of approximation.
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4.4 Announcing Existential Formulas

Now, we again allow the initial model to be arbitrary. In particular, we may use
an initial model whose underlying frame is KD45 (relations are serial, transi-
tive and Euclidean) or S5 (relations are equivalence relations) (see [5]). But we
restrict the announcement protocol to the existential fragment2, generated by
the following rule:

ϕ::=p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | K̂iϕ | ©i ϕ | 〈ϕ〉ϕ
where p ∈ P and i ∈ AGT . Formulas of the existential fragment are called exis-
tential formulas. If an announcement protocol contains only formulas of the exis-
tential fragment, we call it an existential announcement protocol. For instance,
Example 3 consists of an existential announcement protocol.

Here we can again tackle the circularity problem by defining consistency and
truth conditions separately. We first define as a fixed point the semantics of
announcements in A, together with consistency. In a second step we define the
semantics of the full language with existential announcements as described in
Fig. 3, but using the fixed point to evaluate consistency.

Let us fix an initial model M = (W, {→i}i∈AGT ,Π) and an existential
announcement protocol A. Let B be the set of all pairs (S, ϕ) such that S is
a state of M ⊗ A and ϕ is either a formula in A or the symbol �, which is
true only at consistent states. Observe that (P(B),⊆) forms a complete lattice.
We now consider the function f : P(B) → P(B) defined in Fig. 4. Function
f takes a set Γ of truth pairs (pairs (S, ϕ) such that S |= ϕ), and extends it
with the new truth pairs that can be inferred from Γ by applying each of the
rules in Figs. 2 and 3 one time. For instance, if (w, σ, c) |= ϕ and (w, σ, c) |= ψ,
then (w, σ, c) |= ϕ ∧ ψ. That is, if (w, σ, c, ϕ) and (w, σ, c, ψ) are in Γ , then
(w, σ, c, ϕ ∧ ψ) is in f(Γ ), which explains line 3 in Fig. 4. Every other line of
Fig. 4 similarly follows from one line of the truth conditions.

Now, as we restrict to existential formulas, it is easy to see that f is monotone,
that is, if Γ1 ⊆ Γ2 then f(Γ1) ⊆ f(Γ2). By the Knaster-Tarski Theorem [12], f
has a least fixed point Γ ∗ :=

⋃
n∈N

fn(∅).
We can now define the truth condition for consistency as: S |= � if (S,�) ∈

Γ ∗, and use Fig. 3 to define the semantics of the language with existential
announcements.

Remark 1. If announcements of the form Kiϕ were allowed, then we would have
to add the clause

{
(w, σ, c,Kiϕ) | for all (w′, σ′, c′) such that (w, σ, c)Ri(w′, σ′, c′),

either (w′, σ′, c′,�) 	∈ Γ or (w′, σ′, c′, ϕ) ∈ Γ

}

to the definition of f in Fig. 4. But then, if (w, σ, c)Ra(w′, σ′, c′) we would have:
2 The terminology ‘existential fragment’ is used in the model checking community [1],

because the operators K̂i, ©i and 〈ϕ〉 are existential. For instance, we will require
that (w, σ, c) |= K̂iϕ iff there exists S′ s.t. (w, σ, c)RiS

′, S′ |= �, and S′ |= ϕ. When
these operators are not in the scope of a negation, only existential quantification
needs to be used in the semantic interpretation of formulas.
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f(Γ ) = Γ ∪ {(w, σ, c, p) | p ∈ Π(w)}
∪ {(w, σ, c, ¬p) | p �∈ Π(w)}
∪ {

(w, σ, c, ϕ ∧ ψ) | (w, σ, c, ϕ) ∈ Γ and (w, σ, c, ψ) ∈ Γ
}

∪ {
(w, σ, c, ϕ ∨ ψ) | ((w, σ, c, ϕ) ∈ Γ or (w, σ, c, ψ) ∈ Γ

}

∪
{

(w, σ, c, K̂iϕ) | there exists (w′, σ′, c′) such that (w, σ, c)Ri(w
′, σ′, c′),

(w′, σ′, c′, �) ∈ Γ and (w′, σ′, c′, ϕ) ∈ Γ

}

∪ {(w, ε,0, �) | w ∈ W}
∪ {

(w, σ, c, �) | there is c′ < c s.t. (w, σ, c′, �) ∈ Γ
}

∪
{

(w, σ, c, �) | (w, σ′, c, �) ∈ Γ and (w, σ′, c, ψ) ∈ Γ ,
where σ = σ′ :: ψ

}

∪ {
(w, σ, c, ©iϕ) | c(i) < |σ| and (w, σ, c+i, ϕ) ∈ Γ

}

(w, σ, c, ψ ϕ) σ::ψ Seq( ), (w, σ, c, ψ) Γ and (w, σ::ψ, c, ϕ) Γ

Fig. 4. Function applying one step of the truth conditions

– (w, σ, c,Kap) ∈ f(∅);
– (w, σ, c,Kap) /∈ f({(w′, σ′, c′,�), (w′, σ′, c′,¬p)})

It would thus no longer hold that f(Γ1) ⊆ f(Γ2) whenever Γ1 ⊆ Γ2. As f
is clearly not a decreasing function either, we would not be able to apply the
Knaster-Tarski theorem.

5 Validities

We say that a formula ϕ is valid if for every initial model M and every announce-
ment protocol A, such that either M is a finite tree or A is an existential
announcement protocol, and for every consistent state S ∈ M ⊗ A,3 we have
M ⊗ A, S |= ϕ. We write |= ϕ to express that ϕ is valid. As usual, we use [ϕ]ψ
as shorthand for ¬〈ϕ〉¬ψ.

Proposition 1. We have:

1. |= ©1 ©2 ϕ ↔ ©2 ©1 ϕ
2. |= ©1� → (©1ϕ ↔ ¬ ©1 ¬ϕ)
3. |= ¬ ©1 � → [ϕ] ©1 K1ϕ, where ϕ is a propositional formula 4

Proof. We prove the first validity and the other two are left to the reader.
Suppose that we have M ⊗ A, (w, σ, c) |= ©1 ©2 ϕ. By Fig. 3, this means

that c(1) < |σ| and M ⊗ A, (w, σ, c+1) |= ©2ϕ, and the latter implies that

3 Recall definition of M ⊗ A from 3.2.
4 A propositional formula is any formula without modalities, i.e. no occurrences of Ki,

〈ϕ〉, or ©.
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c+1(2) < |σ| and M⊗A, (w, σ,
(
c+1

)+2) |= ϕ. Now, because
(
c+1

)+2 =
(
c+2

)+1,
we get that M⊗A, (w, σ, c+2) |= ©1ϕ, and therefore M⊗A, (w, σ, c) |= ©2©1ϕ.
The proof for the other direction is symmetric.

Let us comment on the above validities. Validity 1 says that it is possible
to permute the order of agents that receive next messages in their respective
queues. Validity 2 says that if an agent has a message to read, then reading
the message is a deterministic operation. Validity 3 says that if an agent has
no pending messages and some propositional formula5 is announced, then after
reading his next message, the agent will know that formula.

We also establish the following proposition, which essentially says that in the
case where all sequences of announcements are possible, if all the ©i operators
in a formula ϕ are under the scope of a knowledge operator, then its truth
value is left unchanged by the announcement of any other formula ψ. Indeed,
the knowledge operator considers all possibilities for the content of the agent’s
channel, so that the possibility that ψ is in it is considered, no matter whether
it was actually the announced formula or not.

In the following, either let M be a finite tree and AU the universal announce-
ment protocol containing every formula with infinite cardinality, or let M be an
arbitrary initial model and AU the announcement protocol containing every for-
mula in the existential fragment with cardinality infinity.

Proposition 2. Let ϕ be a formula in L, in which every ©i is under the scope of
some Kj. For every initial model M and consistent state S = (w, σ, c) ∈ M⊗AU ,
for every ψ ∈ AU , we have M ⊗ AU , S |= 〈ψ〉ϕ ↔ ψ ∧ ϕ.

This result follows immediately from the following lemma:

Lemma 1. Let ϕ be a formula in L, in which every ©i is under the scope
of some Kj. For every initial model M and for every consistent state S =
(w, σ, c) ∈ M ⊗ AU , for every ψ ∈ AU such that (w, σ::ψ, c) is consistent, we
have M ⊗ AU , (w, σ::ψ, c) |= ϕ iff M ⊗ AU , (w, σ, c) |= ϕ.

Proof. By induction on ϕ. The Boolean cases are omitted.
Case ϕ = Kaϕ′:
It is enough to observe that: {S | (w, σ::ψ, c)RaS} = {S | (w, σ, c)RaS}.
Case ϕ = 〈ϕ1〉ϕ2:
By definition of AU , σ::ϕ1 ∈ Seq(AU ). We therefore have (w, σ::ψ, c) |=

〈ϕ1〉ϕ2 iff (w, σ::ψ, c) |= ϕ1 and (w, σ::ψ::ϕ1, c) |= ϕ2. By induction hypothesis,
this is equivalent to (w, σ, c) |= ϕ1 and (w, σ::ψ, c) |= ϕ2. Again by induction
hypothesis, the latter is equivalent to (w, σ, c) |= ϕ2, which is in turn equivalent
to (w, σ::ϕ1, c) |= ϕ2 (observe that (w, σ::ϕ1, c) is consistent as (w, σ, c) |= ϕ1).
We finally obtain that (w, σ::ψ, c) |= 〈ϕ1〉ϕ2 iff (w, σ, c) |= ϕ1 and (w, σ::ϕ1, c) |=
ϕ2, that is (w, σ, c) |= 〈ϕ1〉ϕ2.

5 We restrict to propositional formulas in order to avoid Moore’s paradox [14].
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Finally, the case ϕ = ©iϕ
′ is not possible as ©i is not under the scope of

any Kj .
In our framework, the behavior of the public channel is common knowledge.

For instance, let us consider a situation with two agents, 1 and 2, where Agent 1
has read all the announced messages. Now, assume that p is announced, thus
put in the queue, and Agent 1 reads it. Agent 1 now knows p, but she also knows
that if Agent 2 has read all the announced messages (and in particular the last
one, which is p), then Agent 2 also knows p. In some sense, it means that initially
Agent 1 knows that Agent 2 will receive the same messages as herself. This is
reflected in the following validity: ©1⊥ → [p!] ©1 K1(p ∧ (©2⊥ → K2p)).

6 Model Checking

Here we address the model checking problem when A is a finite multiset, that
is, when the support set of A is finite and the multiplicity of each element is an
integer. More precisely, we consider the following decision problem:

– input: an initial pointed model,6 (M, w), a finite multiset of formulas A (where
multiplicities are written in unary), a formula ϕ0;

– output: yes if M ⊗ A, (w, ε,0) |= ϕ0, no otherwise.

6.1 Propositional Announcements

In this section, we suppose that formulas in A are propositional (which is a
particular case of existential announcements). We consider the model checking
problem for asynchronous announcement logic where inputs M, w,A, ϕ0 are such
that A only contains propositional formulas. This problem is called the model
checking problem for propositional protocols.

Theorem 1. The model checking problem for propositional protocols is in
PSPACE.

Proof. Figure 5 presents an algorithm that takes a pointed model (M, w), a finite
multiset A, a sequence σ ∈ Seq(A), a cut c on σ and a formula ϕ as an input. To
check the consistency of a state (w, σ, c), we call checkconsistency(M,A, w, σ, c)
which verifies that every (propositional) formula ψ occurring in σ evaluates to
true with the valuation Π(w).

It is easily proven by induction that, for all ψ, the following property P (ψ)
holds:

M,A, w, σ, c |= ψ iff mc (M,A, w, σ, c, ψ) returns true.

6 A pointed model is a model with a specified state.
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This establishes soundness and completeness of the algorithm. We now ana-
lyze its complexity.

First, observe that because A is finite and each element has finite multiplic-
ity, we have that Seq(A) only contains sequences of length linear in |A| (recall
that multiplicities are written in unary). It is therefore easy to see that the
consistency check (∗�) is done in polynomial time in the size of the input and
thus requires a polynomial amount of space. Now, the number of nested calls
of mc is bounded by the size of the formula to check, and each call requires a
polynomial amount of memory for storing local variables, so that the algorithm
runs in polynomial space.

function mc (M, A, w, σ, c, ϕ)
match ϕ do
case p: return p ∈ V (w);
case �: return checkconsistency(M, A, w, σ, c) (∗�)
case ¬ψ: return not mc (M, A, w, σ, c, ψ);
case (ψ1 ∧ ψ2): return mc (M, A, w, σ, c, ψ1) and mc(M, A, w, σ, c, ψ2);
case Kaψ :
for u ∈ Ra(w), σ′ ∈ Seq(A), c′ on σ′ do
if c′(i) = c(i) and σ′[1..c(i)] = σ[1..c(i)] and
mc (M, A, u, σ′, c′, �) then
if not mc (M, A, u, σ′, c′, ψ) then

return false
return true

case 〈ψ〉χ :
if σ::ψ ∈ Seq(A) and mc (M, A, w, σ, c, ψ) then
return mc (M, A, w, σ.ψ, c, χ);

else
return false;

case ©iψ: return c(i) < |σ| and mc (M, A, w, σ, c+i, ψ)

Fig. 5. Model checking algorithm

Theorem 2. The model checking problem for propositional protocols is
PSPACE-hard.

6.2 Finite Tree Initial Model

In this section, we restrict the set of inputs M,A, w, ϕ0 of the model checking
problem to those where the initial pointed models (M, w) are finite trees rooted
in w.

Theorem 3. The model checking problem when we restrict initial models to
finite trees is in PSPACE.

Proof. We consider the algorithm of Fig. 5 again but now the consistency check-
ing (∗�) consists of calling the following procedure:
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function checkconsistency(M, A, w, σ, c)
if c = 0

return true
else
for c′ < c do
if mc (M, A, w, σ, c′, �) then

return true

return mc (M, A, w, σ′, c, �) and mc (M, A, w, σ′, c, ψ) where σ = σ′.ψ

Soundness and completeness are proven by induction on inputs using the
order ≺ defined in Sect. 4.3.

Concerning the complexity, the argument given in the proof of Theorem 1
no longer holds. In order to bound the number of nested calls of mc, we have to
remark that from a call of mc to a sub-call of mc:

(1) either we change the current world w in the initial model for a successor u
in the finite tree;

(2) or the quantity |σ| + |ϕ| +
∑

i∈AGT c(i) is strictly decreasing, where |ϕ| is
the length of ϕ and if σ = [ϕ1, . . . , ϕk] then |σ| =

∑k
i=1 |ϕi|.

Now, the number of times (1) occurs is bounded by the depth depth(M, w) of
the finite tree M, w. As each ϕ is either a subformula of the input formula ϕ0 or a
subformula of a formula in A, |ϕ| ≤ |ϕ0|+|A| where |A| :=

∑
ψ∈A |ψ|, and where

each single formula ψ is counted as many times as it occurs in the multiset A.
Furthermore, |σ| ≤ |A| and c(i) ≤ |A|. Thus, the quantity |σ|+|ϕ|+∑

i∈AGT c(i)
is bounded by (|AGT | + 2)|A| + |ϕ0|. Therefore, the number of nested calls to
mc is bounded by depth(M, w) × ((|AGT | + 2)|A| + |ϕ0|). So the algorithm
requires polynomial amount of memory in the size of the input (recall that the
multiplicity of A is encoded in unary).

6.3 Existential Announcements

In this subsection, we design an exponential time algorithm for the model check-
ing problem in the case of existential announcements.

Given an input M,A, w, ϕ0, the algorithm first computes the least fixed
point Γ ∗ of the function f defined in Sect. 4.4. Because the number of possible
sequences in Seq(A) is exponential in |A|, the set B of pairs (S, ϕ) where S ∈
M⊗A and ϕ ∈ A∪{�} is exponential size in the size of the input, and therefore
computing the fixed point requires exponential time in the size of the input. This
gives us the semantics of consistency for states of M ⊗ A.

Then, to evaluate ϕ0, we use the procedure mc of Fig. 5, in which checking the
consistency of a state (w, σ, c), (∗�), is done by checking whether (w, σ, c,�) ∈
Γ ∗. The algorithm mc also requires exponential time. To sum up:

Theorem 4. The model checking problem where the announcements are exis-
tential is in EXPTIME.
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7 Related Work

As far as we know, there has not been much work on the relationship between
knowledge, announcements and asynchronicity. In [4], asynchronicity in dynamic
epistemic logic is studied, but with the idea of synchronicity being that all agents
observe a universal clock, whereas our notion of synchronicity is that all agents
receive messages at the same time, immediately when they are sent. A logic
dealing with knowledge and asynchronicity is also developed in [10], but in this
setting, messages do not have logical content: they are atomic propositions, and
it is impossible, for example, to make an announcement about knowledge or
about the effect of another announcement.

Arbitrary public announcement logic (APAL) [2] has some similarity to our
approach. In this logic, one can ask whether some formula holds after any possi-
ble announcement; this is not possible in our logic, but the knowledge operator
considers any possible future sequence of announcements that follows the proto-
col, which is a similar idea. Interestingly, the satisfiability problem for APAL is
undecidable, but decidability can be achieved by considering a constraint similar
to our restriction to existential announcements [6,13].

The Knaster-Tarski theorem is often used to define the denotational seman-
tics of programming languages [15] in the same spirit as our definition of consis-
tency when announcements are existential. We also note that our definition of
asynchronous models M⊗A, especially the notion of cuts, is in the spirit of [8].

8 Future Work

This work constitutes a first attempt to provide an epistemic logic for reason-
ing about asynchronous announcements. In the future, first, we would like to
overcome the circularity problem, and hence define the semantics, for the most
general case (removing the finite tree and existential conditions), and provide
model checking algorithms in these cases. One approach to this problem may be
using coinduction to define the set of consistent states. Once we have defined the
semantics for the general case, we plan to provide a complete axiomatization.

Second, we would like to model more general situations of asynchronous com-
munication. We plan to consider the case where messages are not read in FIFO
order, but are received and read in arbitrary order. We also plan to model the
origin of the messages, allowing formulas saying that “After Agent a broadcasts
that ϕ holds, ψ holds”. In our current setting, when the external broadcaster
makes a new announcement, the only effect is to queue it in the channel with-
out affecting anyone’s epistemic state. However, in the case where the agents
themselves make the announcements, Agent a making an announcement should
impact her knowledge: after the announcement she should know, for instance,
that the channel is not empty. She should also know that, after another agent
checks their channel, that agent will know that ψ has been announced.

Third, we would like to model not only asynchronous broadcast on a public
channel but also private asynchronous communications between agents in the
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system. In essence, this amounts to defining a complete asynchronous version of
dynamic epistemic logic [14].

Finally, it would be interesting to add temporal operators to our language,
in order to express such things as “After p is announced and Agent 1 receives
it, eventually she will know that Agent 2 knows p” (assuming that agents are
forced to eventually read announcements).
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Abstract. A population protocol is a computational model based on
pairwise interactions and designed for networks of passively mobile finite
state agents. In the population protocol model, and also in the mod-
els that extend it, the interacting pairs are supposed to be chosen by
a theoretical fair scheduler. In this paper, we present the HS Scheduler
which is a totally distributed synchronous randomized handshake pro-
cedure. We then prove that this randomized handshake procedure can
be a probabilistic consistent scheduler for population protocols that is
fair with probability 1. By adopting a protocol aware version of the HS
Scheduler, we introduce the iterated population protocols model where
nodes can stop participating in the protocol’s computation once they
reach a final state. We then study the time complexity of the compu-
tation of a particular case of this model where a final state is reached
in only one computation step. We present some upper bounds that are
later validated by simulations results.

Keywords: Population protocol · Distributed randomized handshake ·
Probabilistic fair scheduler · Iterated population protocol

1 Introduction

Sensor networks are composed of small entities with limited resources, memory
and computational power. Deployed in a specified area, the sensor nodes have to
communicate via a wireless media and cooperate to finally reach a global goal.
The sensor nodes can compute a global property of their environment: calculate
the global temperature, detect if there is an intrusion in a monitored area, etc.
But how to compute in such networks with restricted resources and capacities?

Angluin et al. proposed the population protocols model [3]. A population
protocol is a pairwise computational model designed for anonymous passively
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mobile finite state agents in populations of finite but unbounded size. Initially,
the entities have inputs that will be mapped to states according to an input
function. Then, communication between pairs of nodes can take place permitting
to the nodes to exchange their states and to update them according to the defined
transition function of the protocol. Like in any distributed computing system,
there are many facts, such as the environment, the mobility of the nodes or their
energies, that may interfere in the selection of the entities that will be able to
communicate and also in the order in which they will communicate. In literature,
these facts are represented by the scheduler.

However, to guarantee the success of the task of the distributed system,
a fairness condition should be guaranteed by the scheduler. Some works suppose
a local fairness condition which preserves the fact that each node of the system
is given a turn to act infinitely often. The local fairness is one variant of weak
fairness in distributed computing [4]. In the population protocols model, the
imposed fairness is a global one. Angluin et al. give a definition of the global
fairness that they assume in their model, and propose a probabilistic scheduler
called the Random Scheduler. Spirakis et al. propose a new definition of this
fairness and present two new probabilistic fair schedulers [6]: the State Scheduler
and the Transition Function Scheduler. All these schedulers are supposed to be
theoretical entities able to choose at each iteration of the protocol only one
communicating pair of nodes.

Based on the rendezvous algorithm of Métivier et al. [9], and inspired from
its use in [11] as a communication synchronizer in population protocols, we
present in this paper a distributed randomized handshake algorithm that we
called Handshake Scheduler for population protocols (HS Scheduler). This algo-
rithm can in somehow simulate realistic facts influencing the communication in
a network: There could be no possible communication at a given time as it could
be more than one ordered communicating pair of nodes. We prove that the HS
Scheduler can be a probabilistic consistent fair scheduler for population proto-
cols with probability 1. We give some analysis of the behavior of this scheduler.
We then introduce the model of the iterated population protocols where, unlike
the basic population protocols model, the nodes can stop participating in the
protocol’s computation once they reach a specific final state. We propose a pro-
tocol aware version of the HS Scheduler adapted to this new model. We then
focus on the case where only one computation step is enough for a node to reach
a final state. We present some upper bounds of the time complexity of a protocol
computation in this model while considering some random possible topologies
of the communication graph. As an application, we propose an iterated medi-
ated population protocol that computes a Maximal Matching of a communication
graph. We implement and simulate this protocol on the ViSiDiA platform [1].
And thanks to the simulations results, the theoretical upper bounds of the time
complexity are validated.

The paper is organized as follows. Section 2 recalls the main definition of
population protocols. Section 3 presents the already existing schedulers in pop-
ulation protocols. In Sect. 4, the distributed fair scheduler based on random-
ized handshakes is defined. Then, Sect. 5 introduces the iterated population
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protocols and some theoretical results about the time complexity upper bounds
of a particular variant of this model that are later validated by experimental
results in Sect. 6. Finally, the paper is concluded by a recall of the main contri-
butions and ideas about future directions.

2 Population Protocols

Formally, a population protocol A consists of a 6-tuple (X,Y,Q, I,O, δ),
where:

– X: a finite input alphabet,
– Y : a finite output alphabet,
– Q: a finite set of states,
– I: X → Q: an input function mapping inputs to states,
– O: Q → Y : an output function mapping states to outputs,
– δ: Q × Q → Q × Q: a transition function defined on pairs of states as a set

of transition rules. If δ(u, v) = (u′, v′), then (u, v) → (u′, v′) is a transition,
δ1(u, v) = u′ and δ2(u, v) = v′. Note that δ is not symmetric as u here plays
the role of an initiator and v plays the role of a responder.

Running the protocol A on a population P consisting of a set A of n agents
can be described as follows. Initially, the agents are deployed to sense a specific
parameter from their environment. The sensed values will be defined as inputs
from the alphabet X and thereafter mapped to states from Q according to I.
The resulting states will form the initial configuration C0 of the protocol A. As
defined in [3], a population’s configuration is a snapshot of the agents states
of the population. Formally, it is a mapping C: A → Q that specifies the state
of each member of the population. Then, interactions between pairs of agents
can take place. Two agents are able to establish a two-way communication once
they come sufficiently close to each other. They exchange their states and update
them according to the transition function δ. The graph G = (V,E), where V is
the set of the vertices representing the set A of the population’s agents and E
the set of the edges representing all the possible communications links between
pairs of nodes, is called the communication graph (or also the interaction
graph). The communication graph can be directed but without self-loops.

Let C and C ′ be population configurations, and let u, v be distinct agents.
We say that C goes to C ′ via an encounter e = (u, v) ∈ E, denoted C

e→ C ′ (or
C → C ′), if C ′(u) = δ1(C(u), C(v)), C ′(v) = δ2(C(u), C(v)) and C ′(w) = C(w)
for all w ∈ A � {u, v}. C ′ is the configuration resulting from the interaction
between the pair of nodes u and v on the configuration C. We say that C goes
to C ′ in one step. C ′ can also be reachable from C via a sequence of configurations
C0, C1, . . . , Ck where C = C0 and Ck = C ′ and we can write C

∗→ C ′.
An execution is a finite or infinite sequence of population configurations C0,

C1, C2, . . . such that for each i, Ci → Ci+1. An infinite execution is fair if for every
possible transition C → C ′, if C occurs infinitely often in the execution, then C ′

also occurs infinitely often. A computation is an infinite fair execution [3].
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The population protocols do not halt, but they stabilize once the outputs stop
changing: it is when the computations lead to a configuration C such as, for every
C ′ reachable from C, O(C) = O(C ′). The agents can continue interacting but
the outputs of their states will not change anymore.

3 Related Works : Existing Schedulers

There are different works that extend the population protocols model. We cite
the mediated population protocols [8] where, in addition to assigning states to
nodes, states are assigned to the edges of the communication graph. We also
cite Paloma [7], where the nodes are equipped with a O(log(n)) memory space,
instead of a constant one, with n the total number of nodes in the network.
For the basic population protocol model and all those extending it, the authors
always suppose the existence of a fair scheduler responsible of the choice of the
pairs of nodes that will communicate. Angluin et al. characterize the fairness by
the following condition: let C, C ′ two configurations such as C →C ′, if C occurs
infinitely often in the execution, then C ′ will too. For the probabilistic popula-
tion protocols model, they propose a probabilistic scheduler called the Random
Scheduler. In [6], Spirakis et al. give a new definition of the fairness condition
(that we will detail later) and they present two new probabilistic schedulers: the
State Scheduler and the Transition Function Scheduler.

We give a brief description of these schedulers:

– The Random Scheduler: At each step, this scheduler chooses indepen-
dently, randomly and uniformly only one edge from the interaction graph
which is supposed to be complete. This scheduler allows to only one pair of
nodes to communicate by exchanging their states and then updating them
according to the transition function of the protocol. Given this random, uni-
form and independent choice, Angluin et al. stated that the Random Scheduler
is fair with probability 1. Also, Spirakis et al. proved that this scheduler is
fair with probability 1 with respect to their fairness definition. This scheduler
acts without any knowledge on the protocol that the population is running,
so it is called a protocol oblivious (or agnostic) scheduler.

– The State Scheduler: Unlike the Random Scheduler, the State Scheduler
is protocol aware which means that it has some knowledge about the proto-
col run by the population. The scheduler takes this knowledge into account
while choosing the pairs of nodes that will communicate. This scheduler first
chooses independently and uniformly at random an ordered pair of states
(q1, q2) from all the interaction candidates of the current configuration. An
ordered pair of states (q1, q2) is said interaction candidate under a config-
uration C if ∃(u, v) ∈ E such that C(u) = q1 and C(v) = q2. Then, the
scheduler chooses independently and uniformly at random only one ordered
pair of nodes related by an edge in E and which states are (q1, q2). This chosen
nodes will communicate and update their states according to the transition
function. This scheduler was proved to be fair with probability 1.
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– The Transition Function Scheduler: This scheduler is protocol aware
as the choices it makes concerning the communicating pair is based on the
transition function rules of the protocol. The scheduler chooses pairs that,
when they communicate, will lead to the protocol progress: that is at least
the initiator or the responder will change its state or even both of them and
it ignores all the transitions where no state changes. To reach a configuration
C ′ from a configuration C, the scheduler proceeds as follows. First, it picks
independently and uniformly at random a pair ((q1, q2), (q′

1, q
′
2)) where (q1, q2)

is an interaction candidate under C and δ(q1, q2) = (q′
1, q

′
2). Then, it chooses

independently and uniformly at random an ordered pair of nodes (u, v) ∈ E,
which states correspond to (q1, q2) under C. Then, to obtain C ′, the transition
function is applied to (q1, q2) to update their states. In case the transition
function scheduler can not find any pair able to lead to the protocol progress,
it works like the Random Scheduler. This scheduler was proved to be fair with
probability 1.

4 The Distributed Probabilistic Fair Handshake
Scheduler for Population Protocols

In this section, we introduce the HS Scheduler that is a probabilistic fair sched-
uler based on randomized handshakes. It is implementable in a distributed way
and can be used in simulations and experiences of population protocols in real-
world sensor networks without any need of identifiers, unlike what is used in [5].
Also, compared to this previous work, the designation of the initiator and the
responder is obtained in one computation step.

4.1 The Randomized Rendezvous Algorithm

In anonymous asynchronous networks, based on point-to-point communication
via synchronous message passing, both the sender and the receiver need to be
ready to exchange messages. It is an agreement to communicate and it is called a
rendezvous. As Angluin state in [2] that there is no deterministic algorithm to
implement synchronous message passing in an anonymous network that passes
messages asynchronously, the authors of [9] propose a distributed randomized
rendezvous algorithm described by Algorithm 1. Each node v of the network
chooses at random a node c(v) from its neighborhood, for which it sends 1,
and it sends 0 to the rest of its neighbors. This implies that v would like to
synchronize with node c(v). There is a rendezvous between v and c(v) if they
mutually choose each other by sending 1 to each other.

Locally, when a node v has more than one neighbor, Algorithm 1 defines
how v will choose only one of them to synchronize with. This guarantees that
each node in the network will never be able to participate in more than one
rendezvous at a given time. As a consequence, the global result of Algorithm 1
is a set of disjoint pairs of nodes that are synchronized.
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Algorithm 1. The Randomized Rendezvous Algorithm
1: loop
2: Randomly choose a neighbor c(v);
3: Send 1 to c(v);
4: Send 0 to each neighbor p �= c(v);
5: Receive messages from all the neighbors;
6: rc(v) ← the number received from c(v);
7: if rc(v) = 0 then
8: There is no rendezvous
9: else
10: There is a rendezvous with c(v)
11: end if
12: end loop

4.2 The Randomized Handshake Scheduler for Population
Protocols

The authors of [11] study the broadcast in anonymous mobile asynchronous
Wireless Sensor Networks. They propose a randomized algorithm based on the
OR population protocol to avoid collision and information duplication problems.
They used Algorithm 1 as a synchronizer between pairs of nodes: communications
take place between pairs of nodes that succeeded in obtaining rendezvous. These
pairs are not ordered, which means that the initiator and the responder are not
distinguished. This symmetry does not affect in any way their result, as in the
OR protocol, the transition function consists of one symmetric transition rule
which is:

δ(q1, q0) = δ(q0, q1) = (q1, q1) .

We can conclude from [11] that the randomized rendezvous algorithm can
be useful in synchronizing pairs of nodes before starting the protocol exchanges.
We can also notice that the global result of this algorithm is in somehow what a
scheduler is supposed to do in a distributed system, which is choosing which pairs
of nodes will interact and in what order they will interact. However, the pair of
nodes picked by a scheduler in population protocols should be ordered so that
each of the two nodes is assigned a role of an initiator or a responder. Therefore,
to really fit the role of a scheduler for population protocols, we have to make some
adjustments to the randomized rendezvous algorithm. We introduce symmetry
breaking between the chosen pairs of nodes to obtain ordered pairs. So, instead
of sending 1 when inviting the chosen neighbor, a node v will generate an integer
rv ∈ {1, 2, . . . , N} where N is a constant such that N ≥ 2. A rendezvous will
take place, if two nodes mutually choose each other and generate two different
non zero values. The role of the initiator in the application of the transition
rules of the population protocol will be attributed to the node that generated
the higher value. Also, as we consider a synchronous execution of Algorithm 1,
and to avoid energy dissipation and network congestion, a node v will not send
the 0 messages anymore to inform its neighbors that its choice does not involve
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them. If a node v did not receive any message from its chosen neighbor c(v)
before the end of the round, it considers that c(v) has chosen another neighbor
to communicate with.

The result of these modifications is the distributed algorithm described in
Algorithm 2. This algorithm can play the role of a distributed scheduler for
population protocols as, based on handshakes, it is able to choose randomly
at each step, a set of disjoint ordered pairs of nodes among all those of the
interaction graph. We call this algorithm the Handshake Scheduler for population
protocols (and we denote it later by HS Scheduler).

Algorithm 2. The Randomized Handshake Scheduler Algorithm
1: loop
2: Randomly choose a neighbor c(v);
3: Choose a random number rv ∈ {1, 2, . . . , N};
4: Send rv to c(v);
5: rc(v) ← the message received from c(v);
6: if rc(v) = NULL or rc(v) = rv then
7: There is no synchronization
8: else
9: Start the synchronization
10: if rv > rc(v) then
11: The current node is the initiator
12: else
13: The current node is the responder
14: end if
15: Exchange state with c(v);
16: Apply a transition rule (if applicable) according to the attributed role;
17: Terminate the synchronization
18: end if
19: end loop

Once a synchronization (or a handshake) is established between two nodes,
they exchange their states. If there is a transition rule involving these states,
they will apply it with respect to their roles.

Probability of at Least a Handshake. For any pair e = (u, v), such that
the edge e exists in the communication graph G, there is a handshake between
nodes u and v (we denote this event HS(e)) if, and only if, c(u) = v and c(v) = u
and ru �= rv.

We first note that the probability that c(u) = v is

Pr(c(u) = v) =
1

d(u)
, (1)

where d(u) is the degree of the node u.
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We also note that the probability that u and v generate two different non
zero values is:

Pr(ru �= rv) =
N∑

i=1

1
N

N − 1
N

= 1 − 1
N

. (2)

Then we obtain:

Pr (HS(e)) =
1 − 1

N

d(u)d(v)
. (3)

In the sequel, we denote {e1, . . . , em} the set of edges in the interaction graph.
We also denote by HSG the event: There is at least a handshake in the graph G.
The HSG and HS(e) are respectively the complement event of HSG and HS(e).
Then we have:

Pr
(HSG

)
= Pr

(∧m
i=1HS(ei)

)
. (4)

This leads us to the case already analyzed in the work of Métivier et al. [9]. So,
by reusing this result with the value of Pr (HS(e)) that we already established,
we obtain:

Pr
(HSG

) ≤
(

1 − 1 − 1
N

2m

)m

∼ e− 1− 1
N

2 . (5)

This yields:

Pr (HSG) ≥ 1 − e
1
N

−1
2 .

Lemma 1. Let A be the population protocol running on the communication
graph G = (V,E). Then, the probability that the scheduler picks at least one

ordered pair of nodes at the end of Algorithm 2 is lower bounded by 1 − e
1
N

−1
2 .

The Number of Simultaneous Handshakes. Let G = (V,E) be the com-
munication graph of a population protocol A. Let X be the random variable
(r.v) which counts the number of simultaneous handshakes that can take place
at the same step. Using the linearity of the expectation, we can easily obtain the
expected number of X:

E (X) =
∑

(u,v)∈E

(
1 − 1

N

d(u)d(v)

)
. (6)

4.3 The Fairness of the Handshake Scheduler

Given the analysis results presented in the previous section, we can notice that
the HS Scheduler is able to either select zero, or one, or even more than one edge
from the communication graph at a given time. With respect to this description,
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we give a new definition of one step transition. Let C and C ′ be configurations.
We say that C can go in one step to C ′, if starting from C we can reach C ′ in only
one iteration of the HS Scheduler algorithm via a set of encounters enc. Formally,
we denote it C → C ′, or equivalently C

enc−−→ C ′ such that enc = {e1, e2, . . . , ek}
where ∀i ∈ {1, 2, . . . , k}, ei ∈ E and ∀l, l′ ∈ {1, 2, . . . , k}, if el = (u, v) and el′ =
(u′, v′) then u �= u′, u �= v′, v �= u′ and v �= v′. Also, ∀ei = (ui, vi) ∈ enc, we have
C ′(ui) = δ1(C(ui), C(vi)) and C ′(vi) = δ2(C(ui), C(vi)), and C ′(w) = C(w) for
any node w which is not an extremity of an edge from enc.

The transition graph T = (V (T ), E(T )) of a protocol A running on a graph
G = (V,E), denoted T (A, G) [3], is the directed graph, that may contain self
loops, where the nodes are all possible configurations and the edges relating
them are all possible one-step transitions (according to our new definition).

Theorem 1. The HS Scheduler is a probabilistic consistent scheduler.

Proof. We recall the definition from [6] of a probabilistic scheduler w.r.t a
transition graph T (A, G). A probabilistic scheduler defines for each configu-
ration C ∈ V (T ) an infinite sequence of probability distributions of the form
(dC

1 , dC
2 , . . .), over the set Γ+(C) = {C ′ | C → C ′}, where dC

t : Γ+(C) → [0, 1]
and such that ΣC′∈Γ+(C) dC′

t = 1 holds for all t and C ′. Also from [6], a proba-
bilistic scheduler is consistent with respect to a transition graph T (A, G), if for
all configurations C ∈ V (T ) it holds that dC = dC

1 = dC
2 = . . . which means

that any time the configuration C is encountered, the scheduler chooses the next
configuration with the same probability.

So, let T (A, G) be any transition graph and Ci be any configuration in V (T ).
Let Cj be any configuration in V (T ) reachable in one step from Ci. We define
EncCiCj

= {enc | enc ⊂ E(G) and Ci
enc→ Cj}. And, for each element enc from

EncCiCj
, we will define the set E of the edges of the communication graph G,

as the union of three disjoint subsets: enc, F1 and F2. F1 will represent the set
of edges that are joint to enc. F2 will represent the set of edges that are disjoint
to enc. More formally, for each element enc from EncCiCj

, we rewrite the set E
as following:

E = enc � F1 � F2 .

F1 = {f ∈ E | if f = (u, v) then ∃e ∈ enc such that e = (u, v′) or e = (u′, v)}.
F2 = {f ∈ E | if f = (u, v) then ∀e ∈ enc, if e = (u′, v′) then u �= u′, u �= v′,

v �= u′ and v �= v′} .
Any time Ci is encountered, Cj is selected with the following probability

PrCiCj
=

∑

enc⊂EncCiCj

Pr (HS(enc)) Pr
(HS(F2)

)
.

Thus, we can state that the HS Scheduler is probabilistic. Also, the probability
of handshakes on any set of edges, depends on the probability of a handshake on
each of its edges. And we already proved in the previous section that for any edge
e = (u, v) ∈ E, Pr (HS(e)) = 1− 1

N

d(u)d(v) which does not depend on time. Therefore,
the value of the probability PrCiCj

will be independent of the number of times
Ci has been encountered. This leads us to conclude that the HS Scheduler is also
consistent.
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Theorem 2. The HS Scheduler is fair with probability 1.

Proof. We recall the theorem from [6]: Any consistent scheduler, for which it
holds that PrCiCj

> 0, for any protocol A, any communication graph G, and all
configurations Ci, Cj ∈ V (T (A,G)) where Ci → Cj and Ci �= Cj , is fair with
probability 1.

Let T (A, G) be any transition graph and Ci, Cj be any configurations in V (T )
such that Ci → Cj and Ci �= Cj . In Theorem 1, we already proved that the HS
Scheduler is a probabilistic consistent scheduler. And, based on the definition of
Ci → Cj , we have: ∃ enc ⊂ E such that Ci

enc−−→ Cj which means that PrCiCj
> 0.

So, applying the theorem from [6], we conclude that the HS Scheduler is fair with
probability 1.

5 The Time Complexity of Iterated Population Protocols

Population protocols are defined as being protocols that do not halt, but only
stabilize [3]. However, introducing termination to this model would be interesting
as it could help the nodes preserve their energies. In [10], the authors suppose
that the nodes can have access to some global knowledge via an oracle called
an Absence Detector. Based on this knowledge, a node can decide to halt. But,
what if a node can halt while having only a local knowledge which is its current
state?

5.1 The Iterated Population Protocols

Starting from the basic model of population protocols, we suppose that a node
can stop participating in the computation of the protocol when it reaches a
specific state that we call final state. We define Qfinal the set of final states such
that Qfinal ⊂ Q. Once a node reaches a final state, it will never change its state
anymore. Also, it will no longer have any impact on the protocol progress: that
is if a node in a final state is involved in a communication (as an initiator or as
a responder), the result will be the identity for both nodes states. We call these
protocols iterated population protocols.

To stop participating on the protocol’s computation, a node should first stop
being a candidate for the scheduler’s choices. We here propose a scheduler for
iterated population protocols which is a protocol aware version of the sched-
uler HS. We call it the Protocol Aware Handshake Scheduler and will denote it
PA HS Scheduler. This scheduler will take into account the states of the par-
ticipating nodes. When starting the scheduler algorithm on a node, the state of
this node is checked. If it is a final state, the algorithm will stop running.

In the sequel, we will assume the use of the PA HS Scheduler as a scheduler
when talking about iterated population protocols. We will also focus, through
the following theoretical analysis, on the case where only one computation step
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suffices to lead a node to reach a final state. Initially, the nodes have their initial
inputs that they map to states. Then, once a pair of nodes is picked by the
scheduler, they will communicate and make a computation step that will lead
both of them for sure to final states. Also, both of them will stop participating
on the protocol computation.

5.2 A General Upper Bound

As a general upper bound for the time complexity of an iterated population
protocol, we have the following lemma:

Lemma 2. Let A be an iterated population protocol. Then, the expected time to
compute A is upper bounded by O(n).

Proof. Let T be the r.v. that counts the number of rounds before the population
agents computing the iterated protocol A halt. For any t ≥ 1, let Xt denote the
number of simultaneous computations in the graph G at round t, and let Yt be
the r.v. Yt = n− 2Xt. It is clear that, for any t ≥ 1, T ≤ t if, and only if, Yt ≤ 1.

We define the following (pessimistic) process (Y ′
t )t≥0:

Y ′
t =

⎧
⎨

⎩

n if t = 0
Y ′

t−1 − 2 if Xt ≥ 1
Y ′

t−1 if Xt = 0.
(7)

The process (Y ′
t )t≥0 is an irreversible ergodic Markov chain whose states are in

the set {n, · · · , 0} and by Lemma 1, the transition probabilities are given by:
Pr

(
Y ′

t = 0 | Y ′
t−1 = 0

)
= 1 and for any i > 0, and any j ∈ {n, · · · , 0},

Pr
(
Y ′

t = i | Y ′
t−1 = j

)
=

⎧
⎪⎪⎨

⎪⎪⎩

e
1
N

−1
2 if i = j

1 − e
1
N

−1
2 if i = j − 2

0 otherwise.

(8)

Let T ′ denote the time for the process (Y ′
t )t≥0, starting at Y ′

0 = n to reach the
absorbing state Y ′

t ≤ 1. Then, an easy computation yields to E (T ′) = n

1−e
1
2 ( 1

N
−1)

.

On the other hand, it is clear that T < T ′ and hence E (T ) ≤ E (T ′), which
ends the proof. �

5.3 Upper Bound When the Interaction Graph Is with Bounded
Degree

Let G = (V,E) be the interaction graph of an iterated population protocol. In
this section, we consider interaction graphs with degrees bounded by Δ. Then
we have the following lemma:
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Lemma 3. Let T the time complexity of an iterated population protocol. The
expected value of T satisfies:

E (T ) ≤ − log(nΔ
2 )

log
(
1 −

(
1− 1

N

Δ2

)) .

Proof. Let t an iteration of the algorithm and we define the sequence of graphs
(Gt)(t≥0) as follows: G0 = G and for all t ≥ 1, Gt+1 is the graph obtained by
removing, from Gt, the pairs that execute a computation step and their incident
edges.

We define the following random variables: for any t ≥ 0, Xt denotes the
number of edges of the graph Gt and Yt denotes the number of edges removed
from the graph Gt at the end of iteration t. Then, we have Xt+1 = Xt − Yt and
thus:

E (Xt+1 | Gt) = E (Xt | Gt) − E (Yt | Gt)
= Xt − E (Yt | Gt). (9)

On the other hand, for any pair e = (u, v), if a computation is done by the pair
(u, v) at iteration t, then the edge e is removed from the graph Gt. Hence, by (6),

E (Yt | Gt) ≥
∑

(u,v)∈E(Gt)

1 − 1
N

dt(u)dt(v)
,

where dt(.) stays for the degree in the graph Gt. Then:

E (Xt+1 | Gt) ≤ Xt −
∑

(u,v)∈E(Gt)

1 − 1
N

dt(u)dt(v)
. (10)

Since, for any u, dt(u) ≤ Δ, this becomes:

E (Xt+1 | Gt) ≤ Xt

(
1 − 1 − 1

N

Δ2

)
. (11)

For t ≥ 0, we define the r.v. Zt = Xt

(1−(1− 1
N ) 1

Δ2 )t . Then, E (Zt+1 | Gt) ≤ Zt.

Thus, the r.v. Zt is a super-martingale, and then:

E (Zt+1) = E (E (Zt+1 | Gt)) ≤ E (Zt) . (12)

A direct application of a theorem from [12] yields to E (Zt) ≤ Z0 = m. Thus:

E (Xt) =
(

1 − 1 − 1
N

Δ2

)t

E (Zt) ≤ m

(
1 − 1 − 1

N

Δ2

)t

. (13)

We have m ≤ nΔ
2 and the algorithm halts when Xt < 1. This implies that t is

upper bounded by − log(nΔ
2 )

log(1−(1− 1
N ) 1

Δ2 ) which ends the proof. �

Corollary 1. If Δ is a constant, then the expected time to compute the iterated
population protocol is O (log n).
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5.4 Upper Bound When the Interaction Graph Is a Random Graph

A random graph is a graph obtained by starting with a set of n vertices and
adding edges between them at random. Different random graph models produce
different probability distributions on graphs. The most commonly studied model,
called Gn,p, includes each possible edge independently with probability p (and
so, the edge is not included with probability q = 1 − p). In this section, we
consider this model, with p > 0. It is straightforward that we have some edges.

Analysis of a Single Round. By reusing the result of Lemma 3 from [13],
w.r.t the analysis that we presented in Sect. 4, we obtain the following lemma:

Lemma 4. Let Gn,p = (V,E) be a random graph, and let u and v be two ver-
tices. Then,

Pr (HS(e)) =

(
1 − qn−1

)2

(n − 1)2 p
(1 − 1

N
) . (14)

Thus, if we denote by Xn,p the number of simultaneous handshakes in Gn,p,
then

E (Xn,p) =
n

2 (n − 1) p

(
1 − qn−1

)2
(1 − 1

N
) . (15)

On the other hand, the expression (15) can be simplified for some particular
values of p:

– If p is a constant, then
(
1 − qn−1

)2 → 1 as n → ∞. Hence, E (Xn,p) ∼
1
2p (1 − 1

N ) as n → ∞.
– If np = λ + o(1) > 0, that is the average degree of any vertex v is a constant,

then qn−1 ∼ e−λ. Hence,

∃α > 0 such that E(Xn,p) ∼ αn.

– If n2p = λ + o(1), then

∃β > 0 such that E(Xn,p) ∼ β.

– If nγp = λ + o(1), with γ > 2 then

E(Xn,p) → 0, as n → ∞.

A more interesting case is p = α log n
n for α > 1. Indeed, this value is the

connectivity threshold for Gn,p. In this case, we have the following expression
for the expected number of simultaneous computations:

E(Xn,p) ∼ n

2α log n
(1 − 1

N
), as n → ∞. (16)
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The Time Complexity of Iterated Rounds. In this section, we analyze the
complexity of an iterated protocol in random graphs. We focus our study on the
case p = α log n

n (with α > 1), that is on the random graphs which are connected
with high probability. We have the following theorem:

Theorem 3. Let Gn,p = (V,E) be a random graph with p = α log n
n (for α > 1).

Let T the time complexity of an iterated population protocol. The expected value
of T satisfies:

E (T ) ≤ − log n

log
(
1 − 1− 1

N

α log n

) .

Proof. The proof uses the same arguments as for the proof of Lemma 3. We
define the sequence of graphs (Gt)(t≥0), and the two r.v. Xt as the size of Gt

and Yt as the number of edges removed at the end of the computation step t.
Then we have Xt+1 = Xt − 2Yt, and

E (Xt+1 | Gt) = Xt − 2E (Yt | Gt) .

Then, using (16), this becomes:

E (Xt+1 | Gt) = Xt − Xt

α log Xt
(1 − 1

N
).

Now, as Xt ≤ n, ∀t ≥ 0, we have:

E (Xt+1 | Gt) ≤
(

1 − 1 − 1
N

α log n

)
Xt.

Then, the theorem holds by the same reasoning as for the proof of (12)
and (13). �
Corollary 2. If the graph is a Gn,p with p = α log n

n , then the expected time to
compute the iterated population protocol is O (log n).

6 Application

The concepts of iterated protocols, the fair HS Scheduler and the PA HS Sched-
uler, are also valid and applicable for all the models that extend the population
protocols. In this section, as an application, we will consider the iterated medi-
ated population protocol that computes a Maximal Matching of a communication
graph.

6.1 Maximal Matching with Iterated Mediated Population
Protocols

The mediated population protocols extend the basic population protocols by
adding states to the edges of the interaction graph. So formally, in addition
to X, Y , Q, I, O that are already defined in population protocols, a mediated
population protocol consists of [8]:
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– S: a finite set of edge states,
– ι: X → S: an edge input function mapping inputs to edge states,
– ω: S → Y : an edge output function mapping edge states to outputs,
– r: an output instruction,
– δ: Q × Q × S → Q × Q × S: a transition function.

We also recall the definition of a Maximal Matching. Let G = (V,E) be an
undirected graph. Let M be a set of edges from E such that each two edges from
M do not share any vertex. M is called a Matching. A Matching M is maximal,
if by adding any edge to M , M will not be a Matching any more. Formally, M
is a Matching of G if M = {e ∈ E | ∀e1, e2 ∈ M, if e1 = (u1, v1) and e2 =
(u2, v2) then u1 �= u2 , u1 �= v2 , v1 �= u2 and v1 �= v2}. And, M is maximal if, for
any Matching M ′ of G, M �⊂ M ′.

Let MaxMatch be the mediated population protocol that computes a Maxi-
mal Matching in a communication graph G = (V,E) as given in [8]. MaxMatch
will be described by:

– X = {0}, Y = {0, 1},
– Q = {q0, q1}, S = {0, 1},
– I(0) = q0, O(q0) = 0 and O(q1) = 1,
– ι(0) = 0, ω(0) = 0 and ω(1) = 1,
– δ(q0, q0, 0) = (q1, q1, 1).
– r:  ̏Get each edge e ∈ E such that ω(se) = 1 where se is the state of the

edge e.˝

By using a PA HS Scheduler aware about the fact that the state q1 is a final
state while running the MaxMatch protocol, we obtain the iterated MaxMatch
protocol.

6.2 The Simulations

To validate the theoretical study about the time complexity upper bounds
presented on the previous section, we proceed on simulations of the iterated
MaxMatch protocol. We opt for ViSiDiA (Visualization and Simulation of Dis-
tributed Algorithms) as it represents a suitable platform to simulate population
protocols and their variants. It is a Java platform that offers to the user an envi-
ronment where he can implement his distributed algorithm, generate the graph
representing the network on which the algorithm will be executed, launch the
simulation, and visualize it [1]. In ViSiDiA, a network is represented by a graph
G = (V,E), where V is the set of vertices representing the processors and E
is the set of edges representing the communication links existing between the
processes. Each vertex v has a label λ(v) that describes its state. The edges can
also be labeled. Each process is able of making local computations and exchang-
ing messages with its neighbors. This can cause changes on its labels.

Therefore, we implement the iterated MaxMatch on ViSiDiA. Then, we
begin the simulations on populations where the communication graph is a
bounded degree graph. The results are in Table 1 where we can notice that
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Table 1. Simulations results of the iterated MaxMatch in bounded degree graphs

n Δ Experimental average Theoretical upper bound

100 6 8 202

1000 6 9 284

5000 6 11 341

10000 6 12 366

100 4 6 82

1000 4 7 118

5000 4 9 142

10000 4 11 153

Table 2. Simulations results of the iterated MaxMatch in random graphs

n Experimental average Theoretical upper bound

100 7 16

1000 10 38

2000 11 46

3000 12 51

4000 14 55

5000 15 59

6000 16 61

7000 17 63

8000 19 65

9000 20 67

10000 22 69

the theoretical upper bound that we calculated is always respected, that is the
experimental average of the iterations needed to compute the protocol never
exceeded the theoretical upper bound.

We also proceeded on simulations on populations where the communication
graph is a Gn,p where p = 2 log(n)

n . The results in Table 2 validate the upper
bound presented in the previous section.

7 Conclusion

In this paper, we proposed a distributed synchronous scheduler for population
protocols based on randomized handshakes. We proved that this scheduler is
a probabilistic consistent fair scheduler with probability 1. The algorithm that
describes the scheduler is synchronous. As a future work, we aim to adapt this
scheduler to the asynchronous context of the networks where the population
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protocols are run and give a theoretical study of its behavior. We also aim to
study the time complexity of the stabilisation of some protocols under these two
schedulers. Furthermore, we introduced nodes termination in the population
protocols. Based only on their local knowledge, nodes can stop participating in
the computation of the protocol if they reach states described as final. We only
studied the case of iterated population protocol where one computation step
suffices to lead a node to a final state, however it could be interesting to study
more general cases. Also, characterizing the computational power of the iterated
population protocols and the iterated mediated population protocols can be one
of the future directions of this work.
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Abstract. The Quantified Constraint Satisfaction Problem (QCSP) is a
generalization of classical constraint satisfaction problem in which some
variables can be universally quantified. This additional expressiveness
can help model problems in which a subset of the variables take value
assignments that are outside the control of the decision maker. Typi-
cal examples of such domains are game-playing, conformant planning
and reasoning under uncertainty. In these domains decision makers need
explanations when a QCSP does not admit a winning strategy. We extend
our previous approach to defining preferences amongst the requirements
of a QCSP by considering more general relaxation schemes. We also
present key complexity results on the hardness of finding preferred con-
flicts of QCSPs under this extension of the notion of preference. This
paper unifies work from the fields of constraint satisfaction, explanation
generation, and reasoning under preferences and uncertainty.

1 Introduction

Uncertainty is ubiquitous in real-world decision-making. However, quantifying
the nature of the uncertainty can be very difficult, if not impossible, in many
settings. Domain experts can usually provide qualitative statements of which
risks are more important to consider than others, and which outcomes are more
likely than others using qualitative statements. In this paper we report on the
formal underpinnings of an approach to risk-aware decision-making that is based
on an extension of the classic Constraint Satisfaction Problem (csp) known as
the Quantified Constraint Satisfaction Problem (qcsp) [1]. Parameters under
the control of the decision maker are modelled as existentially quantified vari-
ables since a value (a decision) must be assigned (made) to these variables. All
uncertain variables are universally quantified so that decision makers must con-
sider how to preempt every possible assignment to those variables. Of course,
such a formulation means that it will be seldom possible for a decision maker
to satisfy the constraints of the qcsp since it is likely that some values of the
universal (uncertain) variables cannot be preempted. Therefore, we assist the
decision maker by abstracting their decision problem so the specific reasons for
infeasibility can be focused upon.

c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 309–327, 2015.
DOI: 10.1007/978-3-319-25150-9 19



310 D. Mehta et al.

Example 1 (Weekend Planning). Assume that John wants to prepare a plan
for Saturday and Sunday on Friday evening. He is interested in two activities:
rowing (row) and watching movie (mov). Also, assume that there are two weather
possibilities: sun (s) and rain (r). Each activity should be carried out on a
different day. If the activity is rowing then the weather should be sunny. Let Asat
and Asun denote the activities performed on Saturday and Sunday, respectively.
Let Wsat and Wsun denote the weather on Saturday and Sunday, respectively.
The basic formulation of this problem is as follows:

∃Asat,Asun ∈ {row,mov} : ∀Wsat,Wsun ∈ {s, r} :
{(Asat �= Asun), (Asat = row ⇒ Wsat = s), (Asun = row ⇒ Wsun = s)}

There is no decision that can be made in this case that properly responds to
the risk. This is because for any assignment to Asat and Asun there is at least one
assignment to Wsat and Wsun that is inconsistent with it. Many relaxations,
giving rise to risk responses, of this problem are possible. For example, one
relaxation could be to restrict the domain of Wsat to {s} and another could be
to restrict Wsun to {s}. However, if John knows that on Saturday it is less likely
to rain, then the former would be preferred over the latter. The QCSP obtained
by removing a less likely value r from Wsat is as follows:

∃Asat,Asun ∈ {row,mov} : ∀Wsat ∈ {s} : Wsun ∈ {s, r} :
{(Asat �= Asun), (Asat = row ⇒ Wsat = s), (Asun = row ⇒ Wsun = s)}

This QCSP is satisfiable, i.e. there is an appropriate risk response in this
setting. This is because there exist assignments to the existential variables,
Asat = row and Asun = mov, such that for any assignment to the uncer-
tain/universal variables, Wsat and Wsun, the constraints are satisfied. �

Our work is motivated by the development of a qualitative approach to reason
under uncertainty. Stochastic variables can be modelled as universally quantified
variables where preferences capture the likelihood of scenarios. Most preferred
explanations correspond to most likely scenarios that we can control by excluding
unlikely (least preferred) ones. We present a non-intrusive approach that assumes
nothing about the capabilities of the solver but a way of testing the consistency of
a qcsp. Such non-intrusive explanation algorithms are the most commonly used
in practice, e.g. in ILOG Configurator. The non-intrusive approach is advocated
by Junker [2].

In this paper we present a framework for generating preferred explanations
in a qcsp setting. An advantage of the framework is that recent developments
in qcsp modelling and solving qcsps can be applied directly to qualitative risk
management [3,4]. We present a variety of explanation generation algorithms
that take a preference (or likelihood) ordering into account in order to generate
the most preferred (most likely) explanation in a given context. We consider
both total and partial orders amongst the requirements of a qcsp and present
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efficient algorithms for each case. We also provide a key complexity result that
characterises when generalisations of our framework become intractable. In [5]
we restricted our attention to a specific type of relaxation functions. In this
paper we broaden the scope of these relaxation functions and elaborate on the
complexity challenges that such a generalisation entails.

2 Preliminaries

Definition 1 (Constraint Satisfaction Problem). A constraint satisfaction
problem (csp) is a 3-tuple P =̂ 〈X ,D, C〉 where X is a finite set of variables
X =̂ {x1, . . . , xn}, D is a set of finite domains D =̂ {D(x1), . . . , D(xn)} where
the domain D(xi) is the finite set of values that variable xi can take, and a set
of constraints C =̂ {c1, . . . , cm}. Each constraint ci is defined by the ordered set
var(ci) of the variables it involves, and a set sol(ci) of allowed combinations
of values. An assignment of values to the variables in var(ci) satisfies ci if it
belongs to sol(ci). A solution to a csp is an assignment to each variable by a
value from its domain such that every constraint in C is satisfied.

Definition 2 (Quantified CSP). A qcsp, φ, has the form

Q.C = Q1x1 ∈ D(x1) · · · Qnxn ∈ D(xn).C(x1, . . . , xn)

where C is a set of constraints (see Definition 1) defined over the variables
x1 . . . xn, and Q is a sequence of quantifiers over the variables x1 . . . xn where
each Qi (1 ≤ i ≤ n) is either an existential, ∃, or a universal, ∀, quantifier.

The expression ∃xi.c means that “there exists a value a ∈ D(xi) such that the
assignment (xi, a) satisfies c”. Similarly, the expression ∀xi.c means that “for
every value a ∈ D(xi), (xi, a) satisfies c”. Following the work of Gent et al. [4],
the semantics of these expressions can be formally defined as follows: if Q is
of the form ∃x1Q2x2 . . . Qnxn then Q.C(x1, . . . , xn) is true if and only if there
exists some value a in D(x1) such that Q2x2 . . . Qnxn.C(x1, . . . , xn)[(x1, a)] is
true. If Q is of the form ∀x1Q2x2 . . . Qnxn then Q.C(x1, . . . , xn) is true if and
only if for each value a in D(x1), Q2x2 . . . Qnxn.C(x1, . . . , xn)[(x1, a)] is true.

When the variable and the domain of the variable is clear from context we
often write Qi rather than Qixi ∈ D(xi) in the quantifier sequence. When the
position of a universal quantifier, Qi, in the sequence Q is j such that j �= i we
write Qj

i , where 1 ≤ j ≤ n, otherwise we simply write Qi.

3 Relaxations of Requirements

Requirements correspond to either a constraint in the qcsp, or the scope of a
universal quantifier, or the position of a universal quantifier. The requirements
of an input qcsp are called original requirements. When the input qcsp is incon-
sistent, we seek the closest qcsp by relaxing one or more original requirements.
For example, an extensional constraint could be relaxed by removing some of
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its nogoods, the scope of a universal quantifier could be relaxed by restricting
its scope to a subset of the domain of the universally quantified variable, and
the position of a universal quantifier could be relaxed by moving it to the left in
the sequence of quantifiers. Notice that a universal quantifier could be relaxed
by either relaxing its scope or relaxing its position. However, we treat them sep-
arately for the purpose of clarity. We frame relaxation of each as instances of
requirement relaxation, over a partial order defined for that purpose.

Definition 3 (Substitution of a Requirement). Given a qcsp φ, the sub-
stitution of a requirement r in φ results in a new qcsp φ[r].

– If the requirement r ≡ Qixi ∈ D(xi) of type scope of universal quantifier is to
be substituted by Qixi ∈ D′(xi) then

Q1x1 . . . Qixi ∈ D(xi) . . . Qnxn.C[Qixi ∈ D′(xi)]

results in the following qcsp:

Q1x1 . . . Qixi ∈ D′(xi) . . . Qnxn.C.

– If the requirement r ≡ Qi of type position of universal quantifier is to be
substituted by Qk

i , where k < i then

Q1 . . . Qk . . . Qi−1Qi . . . Qn.C[Qk
i ]

results in positioning Qi in k and moving the other quantifiers accordingly as
shown in the following qcsp:

Q1 . . . Qk
i Qk+1

k . . . Qi
i−1 . . . Qn.C.

– If the requirement r ≡ cj of type constraint is to be substituted by another
constraint c′

j then
Q.(c1 . . . cj . . . cm)[c′

j ]

results in the following qcsp:

Q.(c1 . . . c′
j . . . cm).

The notion of requirement substitution can be lifted to work on a set of require-
ments R: φ[∅] = φ, φ[{r} ∪ R] = (φ[r])[R].

Definition 4 (Ordering over Requirement Relaxations). Let R be the
set of possible relaxations of a requirement r0 and let r1 ∈ R and r2 ∈ R be two
relaxations of r0. We say that r2 is a relaxation1 of r1, denoted by r1 � r2, if
and only if for any qcsp φ if φ[r1] is satisfiable then φ[r2] is also satisfiable. We
say that r2 is a strict relaxation of r1, denoted by r1 � r2, if and only if r1 � r2
is true and the converse is not true.

1 A relaxation of a requirement is also a requirement.
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We require that the partial order � also be a meet-semilattice, i.e., greatest lower
bounds are guaranteed to exist: if r1, r2 ∈ R, then r1 r2 is well-defined in which
case r1  r2 � r1 and r1  r2 � r2 hold.

Definition 5 (Relaxations of a Constraint). Given a constraint c =̂
〈var(c), sol(c)〉 we define its relaxations in terms of adding additional allowed
tuples to sol(c):

{sol′(c) : sol(c) ⊆ sol′(c) ⊆ Πx∈var(c)D(x)}.

The relaxations of c form the usual lattice using intersection, that is,  =̂ ∩.

Definition 6 (Relaxations of Universal Scopes). Given a requirement ∀x ∈
D(x), the set of relaxations of the scope of the universally quantified variable x,
is defined as:

{(∀x ∈ D′(x)) : ∅ ⊆ D′(x) ⊆ D(x)}
Given two requirements (∀x ∈ D(x)) and (∀x ∈ D′(x)),

(∀x ∈ D(x))  (∀x ∈ D′(x))
=̂ (∀x ∈ (D(x) ∪ D′(x))).

Therefore, the relaxations of ∀x ∈ D(x) also form a meet-semilattice.
A relaxation of the position of a universal quantifier requirement corresponds

to moving a universally quantified variable to the left in the sequence of quan-
tifiers.

Informally, the relaxation of the position of a universal quantifier gives the
existential variable the opportunity to take a value based on value taken by the
universal variable.

Definition 7 (Relaxations of Universal Positions). Given a position of the
universal quantified variable xi as a requirement, Qi

i, its possible relaxations is
defined as follows:

{Qj
i : 1 ≤ j ≤ i} ∪ {Q1

i xi ∈ ∅}
Given two relaxations Qj

i and Qk
i of a requirement Qi

i, Qj
i Qk

i = Q
max(j,k)
i . The

elements of the relaxations of Qi
i also form a lattice using .

Definition 8 (Relaxation of a QCSP). Given a requirement r of a qcsp φ,
and a requirement relaxation r′ such that r � r′, φ[r′] is a relaxation of φ.

Example 2 (Relaxation of a QCSP). Consider a qcsp defined on the variables
x1 and x2 such that D(x1) = {3, 5} and D(x2) = {6, 9, 10} as follows: ∃x1 ∈
{3, 5}∀x2 ∈ {6, 9, 10}.{x2 mod x1 = 0}. This qcsp is false. This is because for
any value for variable x1 there is at least one value in the domain of x2 that is
inconsistent with it.

If we relax the constraint requirement (x2 mod x1 = 0) to (x2 mod x1 < 2)
the resulting qcsp ∃x1 ∈ {3, 5}∀x2 ∈ {6, 9, 10}.{x2 mod x1 < 2} becomes true.
If we relax the scope of the domain of the universally quantified variable x2 to
{6, 9} then the resulting qcsp ∃x1 ∈ {3, 5}∀x2 ∈ {6, 9}.{x2 mod x1 = 0} is true.
If we relax the position of the universal quantifier from 2 to 1 the resulting qcsp
∀x2 ∈ {6, 9, 10}∃x1 ∈ {3, 5}.{x2 mod x1 = 0} is true. �
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4 Preferred Conflicts as Explanations

Given an unsatisfiable qcsp (a conflict) we compute explanations of this unsat-
isfiability by relaxing a subset of its requirements to the point where any fur-
ther relaxation would yield a satisfiable qcsp (a minimal conflict). Let φ be a
qcsp defined over the set of original requirements including those that can be
relaxed and those that cannot be relaxed. An original requirement that cannot
be relaxed is also called a mandatory requirement. We use Υ to denote a set
of original requirements of φ that can be relaxed. R is a relaxation function on
Υ that maps each original requirement in Υ to its set of possible requirement
relaxations, i.e., ∀ri ∈ Υ , Ri is the set of possible requirement relaxations of ri.

For each ri ∈ Υ , we use †i to denote its full relaxation (or bottom relaxation).
If a requirement r is a constraint c then its bottom relaxation is the Cartesian
product of the domains of the variables involved in the constraint c, i.e., †r =
Πx∈var(c)D(x). If a requirement r is either a scope of a universal quantifier or a
position of a universal quantifier Qi then †r = ∀xi ∈ ∅. Throughout the paper
we assume that each ri ∈ Υ can be fully relaxed, i.e., ∀ri ∈ Υ , †i ∈ Ri.

We say that I ∈ ∏ Ri is an instance of R if and only if ∀ri ∈ Υ , Ii is an
element of Ri. Let I and I ′ be two instances of R. We say that I ′ is a strict
relaxation of I, denoted I � I ′, if and only if there exists a requirement ri ∈ Υ
such that Ii � I ′

i and for all the other requirements rj ∈ Υ , Ij � I ′
j .

We use
�

(R) to denote the top instance of R, i.e., if I =
�

(R) then there
does not exist any other instance I ′ of R such that I ′ � I. We use

⊔
(R) to

denote the bottom (or a most relaxed) instance of R, i.e., if I =
⊔

(R) then
there does not exist any other instance I ′ of R such that I � I ′. The former
is well-defined when there is a unique minimal relaxation and the latter one is
well-defined when there is a unique maximal relaxation for each requirement.

We say that a conflict is an instance of R that makes φ inconsistent. When
confronted with an inconsistent qcsp a user is generally interested in resolving the
conflicts. To allow a user to resolve a conflict by relaxing at most one requirement
it is important to ensure the minimality of the conflict. We define the notion of
minimal conflict with respect to a (typically incomplete) consistency propagation
method Π, such as qac [6], in a similar way to Junker [2]. In what follows, the con-
sistency of a qcsp is defined in terms of Π so consistency means Π-consistency.
Using an incomplete operator is perfectly reasonable since it only means that the
conflict computed is minimal with respect to the consistency operator. Further-
more, some interesting qcsp may be easy to solve in practice despite the worst
case theoretical complexity, e.g., the QCSPs solved in [7].

Definition 9 (Minimal Conflict). Given a set of original requirements Υ that
can be relaxed, and a consistency propagator Π, a minimal conflict I of a qcsp
φ is an instance of R such that φ[I] is inconsistent and there does not exist any
I � I ′ such that φ[I ′] is inconsistent.

If I is a minimal conflict of φ under R then φ[I] corresponds to a maximally
relaxed explanation of φ [8]. There may be some requirements that are more
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important to the user than others. A user generally prefers to relax less important
requirements. Based on the order of importance of requirements, the minimal
conflicts of an inconsistent qcsp can be ordered. A minimal conflict is generally
resolved by relaxing the least important requirement. We say that a minimal
conflict is more important than another if resolving the former involves the
relaxation of a more important requirement than resolving the latter.

Example 3 (Minimal Conflict of a QCSP). Consider a qcsp defined on the
variables x1 and x2 such that D(x1) = D(x2) = {1, 2, 3} as follows: ∃x1 ∈
{1, 2, 3}∀x2 ∈ {1, 2, 3}.{x1 < x2}. Let Υ = {r1, r2} be a set of original require-
ments of φ that can be relaxed, where r1 ≡ ∀x2 ∈ {1, 2, 3}, and r2 ≡ x1 < x2.
Let R be the relaxation function on Υ such that R1 = {∀x2 ∈ {1, 2, 3},∀x2 ∈
{1, 3},∀x2 ∈ {3}} and R2 = {x1 < x2, x1 ≤ x2}.

Let I = {∀x2 ∈ {1, 2, 3}, x1 < x2} and I ′ = {∀x2 ∈ {1, 3}, x1 < x2} be
two instances of R. Notice that both I and I ′ are conflicts since φ[I] ≡ ∃x1 ∈
{1, 2, 3}∀x2 ∈ {1, 2, 3}.{x1 < x2} and φ[I ′] ≡ ∃x1 ∈ {1, 2, 3}∀x2 ∈ {1, 3}.{x1 <
x2} are inconsistent. Notice that I � I ′, since I1 � I ′

1 and I2 = I ′
2. Therefore,

I is not a minimal conflict. However, I ′ is a minimal conflict. The reason is that
if we relax I ′ further either by relaxing ∀x2 ∈ {1, 3} to ∀x2 ∈ {3} or by relaxing
x1 < x2 to x1 ≤ x2 it will result in a consistent qcsp. �

Now we define the notion of preference over conflicts of a quantified csp building
upon the notion of preference over conflicts of a csp [2]. Given two conflicts I
and I ′ of a quantified csp, we say that I is more important than I ′ if resolving
I involves relaxing a more important requirement. As the user is supposed to
solve all the conflicts, it is better to confront him/her first with those conflicts
that involve more critical decisions, i.e., with those conflicts that involve relaxing
more important requirements.

Definition 10 (Anti-lex Ordering). Let ≺ be a total order in terms of impor-
tance on the set of original requirements Υ . Here, ri ≺ rj means that ri is more
important than rj. Let I and I ′ be two instances of a relaxation function R. We
say that I ≺antilex I ′ if and only if ri is the least important original requirement
such that Ii �= †i ∧ I ′

i = †i, rj is the least important original requirement such
that I ′

j �= †j ∧ Ij = †j, and ri ≺ rj.

Many conflicts may exist so we focus on the preferred one. If I and I ′ are two
minimal conflicts of R and I ≺antilex I ′ then it means that I is more important
than I ′.

Definition 11 (Preferred Conflict). Given a total order ≺ in terms of
importance on set of requirements Υ , a minimal conflict I of a qcsp φ is a
preferred conflict if and only if there is no other minimal conflict I ′ of φ such
that I ′ ≺antilex I.

Notice that in Definition 11 the non-bottom relaxations of a given original require-
ment are incomparable. The notion of preferrered conflict is extended in Sect. 8 by
assuming an ordering over the relaxations of a given original requirement.
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Example 4 (Antilex Ordering on Instances of R). Consider a qcsp defined on
variables x1, x2 and x3 such that D(x1) = {1, 2}, D(x2) = {1, 2, 3} and D(x3) =
{2, 3} as follows: ∃x1∀x2∃x3.{x1 < x2, x2 < x3}. This qcsp is unsatisfiable.

Let Υ = {r1, r2, r3} be the set of original requirements that can be relaxed,
where r1 ≡ ∀x2 ∈ {1, 2, 3}, r2 ≡ x1 < x2, and r3 ≡ x2 < x3. Let us assume that
r1 ≺ r2 ≺ r3 is the order of importance on the requirements. The relaxation
function R is defined as follows: R1 = {∀x2 ∈ {1, 2, 3},∀x2 ∈ ∅} R2 = {x1 <
x2, true}, and R3 = {x2 < x3, true}. Here †1 ≡ ∀x2 ∈ ∅, †2 ≡ true, and
†3 ≡ true. From the definition of minimal conflict it follows that I = {∀x2 ∈
{1, 2, 3}, x1 < x2, true} and I ′ = {∀x2 ∈ {1, 2, 3}, true, x2 < x3} are the only
minimal conflicts of R. The least important requirements that need to be relaxed
for resolving the conflicts I and I ′ are r2 and r3 respectively, and since r2 is
more important than r3, I ≺antilex I ′. Since there are only two minimal conflicts,
I is also the preferred conflict. �

If a total order on the original requirements is not specified, then one can also
use a partial order to compute a preferred conflict. Given a partial order � in
terms of importance on Υ , a minimal conflict I of φ is a preferred conflict if and
only if there is a total order ≺ of � such that I is a preferred conflict of φ with
respect to ≺.

5 Two-Point Relaxation Functions

We present an algorithm for computing a preferred conflict of φ under the two-
point relaxation function R, where for every original requirement ri ∈ Υ , Ri =
{†i, ri}. If †i is in Ri then ri is allowed to relax fully. Notice that any pair of
instances, say I and I ′, can only be different if there exists at least one rj ∈ Υ
such that Ij �= I ′

j , and that would imply that either Ij = †j or I ′
j = †j holds in

a two-point relaxation function. Therefore, any pair of instances of the two-point
relaxation function R are comparable and hence they are totally ordered with
respect to ≺antilex.

The following proposition shows how to compute a preferred conflict by
decomposing a given two-point relaxation function defined on a given set of
original requirements, which will form the basis for Algorithm2.

Proposition 1. Let Υ = {r1, . . . , rm} be an original set of requirements
of a qcsp φ and let R = {{†1, r1}, . . . , {†m, rm}} be a relaxation func-
tion on Υ . Suppose that Υ 1 = {r1, . . . , rk} and Υ 2 = {rk+1, . . . , rm} are
disjoint sets of requirements of φ and that no requirement of Υ 2 is pre-
ferred to a requirement of Υ 1. Let I2 be the preferred conflict under R2 =
{{r1}, . . . , {rk}, {†k+1, rk+1}, . . . , {†m, rm}}. Let I1 be the preferred conflict of
φ under R1 = {{†1, r1}, . . . , {†k, rk}, {I2

k+1}, . . . , {I2
m}}. If I1 is the preferred

conflict of φ under R1 and I is the preferred conflict of φ under R then I = I1.
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Proof. To prove that I = I1, i.e., I1 is the preferred conflict of φ under R, we
prove that any instance of R that is not in R1 cannot be the preferred conflict
of R. From the definition of R1, this is equivalent to proving that the projection
of Υ 2 on I i.e., I⇓Υ 2 , is equal to I2

⇓Υ 2 . We prove this by contradiction. If we
assume that I⇓Υ 2 �= I2

⇓Υ 2 then either I⇓Υ 2 ≺antilex I2
⇓Υ 2 or I⇓Υ 2 �antilex I2

⇓Υ 2 .
If I⇓Υ 2 ≺antilex I2

⇓Υ 2 then it means that there exists a conflict I ′ under R2

such that I ′
⇓Υ 1 = I2

⇓Υ 1 and I ′
⇓Υ 2 = I⇓Υ 2 . This would imply that I ′ ≺antilex I2,

which contradicts the assumption that I2 is the preferred conflict of R2. If
I⇓Υ 2 �antilex I2

⇓Υ 2 then I �antilex I2. This would imply I is not the preferred
conflict under R, which also contradicts the assumption.

Let Υ = {r1, . . . , rm} be an original set of requirements of φ that can be relaxed
and let R = {{†1, r1}, . . . , {†m, rm}} be a relaxation function on Υ . The algo-
rithm QuickQcspXplain for computing a preferred conflict is depicted in
Algorithm 1. If the input qcsp, φ, is consistent then there is no conflict
in which case the algorithm raises an exception. Otherwise, the algorithm
QuickQcspXplain′ (Algorithm 2) is invoked, which computes the preferred
conflict I of φ under R on the set of requirements Υ .

The invariant of QuickQcspXplain′ is that φ under the top instance of R is
inconsistent. If it is not the case then it means that φ is consistent under R. One
of the parameters of the algorithm is Δ, which is a Boolean variable. It is true
if it is unknown that φ is inconsistent under the bottom instance B =

⊔
(R). If

φ is inconsistent under B, then the preferred conflict of φ under R is B (Line
1-2). If |Υ | = 1 then it means that there exists only one requirement with two
possible relaxations. As the bottom instance is already known to be consistent
from Line 1, the top instance of R has to be inconsistent and the preferred
conflict is

�

(R).
If the cardinality of the set of the original requirements is greater than one,

it is ordered in decreasing order of their importance with respect to ≺. To find
the preferred conflict the ordered set of original requirements is divided into two
sets: Υ1 = {r1, . . . , rk} and Υ2 = {rk+1, . . . , rm} such that no requirement of Υ2

is more important than one of Υ1. First, a relaxation function R2 is obtained
from R by enforcing that each requirement in Υ 1 cannot be relaxed (Line 8-9).
If I2 is the preferred conflict of φ under relaxation function R2 then, from
Proposition 1, the preferred conflict of R is the preferred conflict of R1, obtained
from R by setting each Rr for each r ∈ Υ2 to the corresponding one in I2 (Line
10-12).

Algorithm 1. QuickQcspXplain(φ, Υ,R,≺)
Require: : A qcsp φ; ∀ri ∈ Υ , Ri = {†i, ri}.
Ensure: : A preferred conflict of φ.
1: if ⊥ �∈ Π(φ) then
2: return exception “no conflict”
3: I ← QuickQcspXplain′(φ, true, Υ, R, ≺)
4: return I
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Algorithm 2. QuickQcspXplain′(φ,Δ, Υ,R,≺)
1: if Δ and ⊥ ∈ Π(φ[

⊔
(R)]) then

2: return
⊔

(R)
3: if |Υ | = 1 then
4: return

�
(R)

5: let r1, . . . , rm be an enumeration of Υ that respects ≺
6: let k = 
(1 + m)/2� where 1 ≤ k < m
7: Υ 1 ← {r1, . . . , rk} and Υ 2 ← {rk+1, . . . , rm}
8: R2 ← R
9: ∀r ∈ Υ 1, R2

r ← {(Rr)}
10: I2 ← QuickQcspXplain′(φ, true, Υ 2, R2, ≺)
11: R1 ← R
12: ∀r ∈ Υ 2, R1

r ← {I2
r }

13: Δ2 ≡ (((I2)⇓Υ2
) �= (⊔(R2)⇓Υ2

))

14: I1 ← QuickQcspXplain′(φ, Δ2, Υ
1, R1, ≺)

15: return I1

QuickQcspXplain′ avoids unnecessary consistency checks in cases where
it is known that φ is consistent under the bottom instance. Notice that if the
execution continues after Line 2, then it is known that φ is consistent under the
bottom instance. If all requirements in Υ 2 are set to their bottom relaxation in
I2 and all requirements in Υ 1 are set to their bottom relaxation in I1 then this
would imply that φ is consistent under the bottom instance of R. Therefore,
whenever all the requirements in Υ 2 are set to their bottom relaxation in I2,
Δ2 is set to false (Line 13) to avoid the consistency check in Line 1 when
computing I1.

QuickQcspXplain is a reformulation of QuickXplain [2] in terms of relax-
ations, and thereby generalising it to qcsp with at most one distinct relaxation
available for each of the original requirements, i.e., a requirement is either present
or fully relaxed. In the worst-case, QuickQcspXplain will perform O(k log n

k )
number of consistency checks, where n is the number of original requirements
and k is the number of original requirements in the preferred conflict that are not
fully relaxed. Here consistency checks refers to the number of times consistency
of a qcsp is checked using Π.

6 Multi-point Relaxation Functions

We now consider QuickGenQcspXplain (Algorithm 3), a more general algo-
rithm allowing for multi-point relaxation function (requirement relaxation lat-
tices of arbitrary size). The algorithm receives as parameters a qcsp φ, a relax-
ation function R on Υ and a lexicographic order ≺ on Υ . For the multi-point
relaxation function, Algorithm1 becomes inapplicable as it assumes that for each
requirement in Υ there are only two possible relaxations: the top relaxation (the
original requirement itself) and the bottom relaxation. The task of computing a
preferred conflict under the multi-point relaxation function defined over a given
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Algorithm 3. QuickGenQcspXplain(φ, Υ,R,≺)
Require: : A qcsp φ.
Ensure: : A preferred conflict of φ.
1: if ⊥ �∈ Π(φ) then
2: return exception “no conflict”
3: if ⊥ ∈ Π(φ[

⊔
(R)]) then

4: return
⊔

(R)
5: ∀ri ∈ Υ, R′

i ← {†i,
�

(Ri)}
6: I′ ← QuickQcspXplain(φ, Υ, R′, ≺)
7: R′′ ← R
8: for all ri ∈ Υ s.t. I′

i = †i do
9: R′′

i ← {†i}
10: return QcspRelax(φ, R′′, Υ )

set of original requirements can be divided into two subtasks. First, we com-
pute a minimal set of preferred original requirements that cannot be satisfied
together. Here minimality means that if any of the preferred original require-
ments is fully relaxed, then the resulting set of original requirements becomes
consistent. Second, we relax the minimal set of inconsistent preferred original
requirements as computed in the first step to a point in the relaxation space
such that the relaxation is inconsistent but any further relaxation results in a
consistent state.

If φ is consistent then Algorithm 3 raises an exception. If φ is inconsistent
under the bottom instance of R then the bottom instance of R is the preferred
conflict. Otherwise, the algorithm first computes a minimal set of preferred orig-
inal requirements that leads to an inconsistent qcsp regardless of the way the
other requirements are relaxed. To do so, it constructs a two-point relaxation
function R′ such that for every original requirement in Υ there are only two pos-
sible relaxations: the top relaxation (a.k.a. original requirement) and its bottom
relaxation (Line 5). It then invokes QuickQcspXplain (Algorithm 1), which
returns the preferred conflict, I ′, of φ under R′. The elements of I ′ that are
set to top relaxations are the preferred original requirements that lead to an
inconsistent φ when the other requirements are set to their bottom relaxations.

Although I ′ is the preferred conflict of R′, it may not necessarily be a pre-
ferred conflict of R. The reason is that I ′ may not be a minimal conflict of
R since there may exist a conflict I under R such that I ′ � I. Therefore,
it may be possible to relax I ′ further under R. I ′ (the instance returned by
QuickQcspXplain) can be seen as an approximation of the preferred conflict
under R. To compute the exact preferred conflict, first a multi-point relaxation
function R′′ is obtained from R where for all requirements i such that I ′

i = †i,
R′′

i is set to a singleton set containing only the bottom relaxation of the original
requirement ri. R′′ represents the set of most important conflicts, i.e., if there
is a conflict I ′′ ∈ R that is not in R′′, and I ′′ is more important than any of
those in R′′, then that conflict cannot be minimal. The elements of R′′ form
a semi lattice whose meet element is I ′. Thus, a minimal conflict of R′′ is a
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preferred conflict of R. The relaxation function R′′ is passed as a parameter to
QcspRelax (Algorithm 4) which computes a minimal conflict under R′′. This
algorithm is an adaptation of the algorithm QuantifiedXPlain as described
in [8].

Algorithm 4. QcspRelax(φ,R, Υ )
1: while ∃i : |Ri| > 1 do
2: ∀Ri choose ri from {r ∈ Ri : ∀r′ ∈ Ri, r �� r′}
3: if ⊥ ∈ Π(φ[{r1, . . . , rk}]) then
4: return {r1, . . . , rk}
5: while ⊥ /∈ Π(φ[{r1, . . . , rk}]) do
6: choose i from Υ s.t. ri �= �

(Ri)
7: r′

i ← ri

8: R′
i ← {r : r ∈ Ri, r � ri}

9: choose ri from {r ∈ R′
i : ∀r′ ∈ R′

i, r �� r′}
10: Ri ← {r : r ∈ Ri, r

′
i �� r}

11: ∀Rj : Rj ← {r : r ∈ Rj , rj � r}
12: return {r1, . . . , rk}

Algorithm 4 considers a current candidate relaxation comprising one element
from each relaxation space, r1 . . . rk, and use � to obtain successive approx-
imations to a minimal conflict. We begin with a maximal relaxation of each
requirement, and then progressively tighten these one at a time: we select an
i such that ri may be assigned a new relaxation strictly tighter than the old
one, tightening by a minimal amount at each step to ensure minimality of the
final conflict of φ. When an inconsistency is detected, all relaxations tighter
than or incomparable to the current approximation from future consideration
are eliminated, as unnecessary for a minimal conflict. At the same time, the
relaxation space for the last-relaxed requirement, Ri, is restricted to ensure that
the requirement may not be as relaxed as the earlier relaxation, r′

i, that did
not produce an inconsistency, as we have guaranteed that the relaxation cannot
take part in the minimal conflict currently under construction. The relaxation
space for the last-relaxed requirement, Ri, contains only those relaxations that
are weaker than ri and incomparable to r′

i. Each termination of the inner while
loop can call Π at most O(d) times for each requirement since the qcsp is made
tighter in each iteration. Here d is the maximum no. of relaxations of require-
ments. Whenever an inconsistency is detected in the inner while loop (Line 5)
at least one relaxation is removed from one relaxation space of one requirement.
This process is repeated with the restricted relaxation spaces, until eventually
only one possible relaxation remains for each requirement, or the chosen maximal
relaxation (Line 3) is inconsistent, thus fully determining the minimal conflict.

Example 5 (Preferred Conflict wrt. ≺antilex). Consider a qcsp defined on
variables x1, x2 and x3 such that D(x1) = {1, 2}, D(x2) = {1, 2, 3} and
D(x3) = {2, 3} as follows: ∃x1∀x2∃x3.{x1 < x2, x2 < x3}. This qcsp is unsat-
isfiable. Let Υ = {r1, r2, r3} be the set of original requirements that can be
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relaxed, where r1 ≡ ∀x2 ∈ {1, 2, 3}, r2 ≡ x1 < x2, and r3 ≡ x2 < x3. Let us
assume that r1 ≺ r2 ≺ r3. The relaxation function R is defined as follows: R1 =
{∀x2 ∈ {1, 2, 3},∀x2 ∈ {1, 2},∀x2 ∈ {1, 3},∀x2 ∈ ∅} R2 = {x1 < x2, true}, and
R3 = {x2 < x3, true}.

In order to find a preferred conflict for the multi-point relaxation function
R, the first step is to find a most important set of original requirements that
are in conflict. This is done by first computing the two-point relaxation function
R′ from R, where R′

1 = {∀x2 ∈ {1, 2, 3},∀x2 ∈ ∅}, R′
2 = {x1 < x2, true}, and

R′
3 = {x2 < x3, true}. From Example 4 it follows that I = {∀x2 ∈ {1, 2, 3}, x1 <

x2, true} is the preferred conflict of R′. A preferred conflict of R is a minimal
conflict I ′ of R such that I � I ′. It follows that I1 = {∀x2 ∈ {1, 2}, x1 <
x2, true} and I2 = {∀x2 ∈ {1, 3}, x1 < x2, true} are two preferred conflicts of
R. Notice that I � I1 and I � I2 and both I1 and I2 are minimal conflicts
of R. �

Complexity. Only k requirements are relaxed in Algorithm 4, since the set of
relaxations for the remaining requirements n − k are made singleton in Line 9
of Algorithm 3. Since there are at most d possible relaxations of each of the k
requirements, the upper bound on the number of calls to Π is O(k d). In the
worst-case the number of calls to Π performed by QuickGenQcspXplain is
the number of calls to Π performed by QuickQcspXplain and QcspRelax,
which is O(k log n

k ) + O(k d). Notice that no assumption on the incremental-
ity of Π is made. If Π is incremental then the complexity can be reduced to
O(k max(log n

k , d)). It may also be possible to express the complexity of the
algorithm in terms of the width the lattice of the relaxations of the require-
ments.

Correctness. To prove the correctness of Algorithm 3 we need to prove that if
I ′ is the preferred conflict of R′ then the preferred conflict of R is the minimal
conflict of R′′. Notice that ≺antilex partitions the instances of R into equivalence
classes. By construction, R′ contains an instance from every equivalent class of R
under ≺antilex. Consequently, an optimal instance of R′ is an optimal instance
of R. By construction, the preferred conflict of R′′ is either I ′ or one of the
relaxations of I ′. All the relaxations of I ′ that are minimal conflict of φ are
equivalent under ≺antilex. Therefore, the preferred conflict of R is the minimal
conflict of R′′.

To prove that Algorithm4 is correct we need to show that it returns a minimal
conflict of φ under R. The invariant of Algorithm4 is that there is at least one
instance of R that makes φ inconsistent. Notice that the invariant holds when
Algorithm 4 is called, otherwise there would not be any conflict. The only place
where R is modified are Lines 10 and 11 after which also the invariant holds
since the instance that causes the inconsistency (in Line 5) is not removed.
The fact that the returned instance is a conflict follows from two facts: (a) in
Line 4 the algorithm returns an instance I of R that makes φ inconsistent, and
(b) in Line 12 it returns the only instance of the current R after keeping the
invariant. What remains to be proved is that the returned conflict is minimal. In
Line 2 the algorithm selects a maximal instance of the current R so minimality
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is assured. in Line 12, the selected inconsistent maximal instance would not be
a minimal conflict if the algorithm removes a relaxation of the selected instance
that is inconsistent when there is no a weaker or incomparable relaxation of the
removed one that is inconsistent too. But this can not happen since in Line 10 we
only remove instances that are consistent, and in Line 11 those that are removed
are not weaker than than the current inconsistent one, which is kept.

7 Totally Ordered Requirement Relaxations

We consider a special case of the multi-point relaxation function R over a set
of original requirements Υ such that � is a strict total order on Ri for each
requirement ri. Specifically, for all mutually different r, r′, r′′ ∈ Ri, if r � r′ then
r′ �� r, if r � r′ and r′ � r′′ then r � r′′, and either r � r′ or r′ � r. Notice that
� is always a total order on relaxations of a position of a universal quantifier.
Also, in some cases it may be possible that the user specified relaxations for
a constraint requirement or a scope of the universal quantifier requirement are
totally ordered with respect to the � relation.

In the inner while loop (Line 5) of QcspRelax, whenever an inconsistency is
detected, the set of relaxations of the last chosen requirement i (Line 3) becomes
singleton when Ri is totally ordered with respect to � due to the pruning that
takes place afterwards. All the relaxations that are weaker than ri are removed
from Ri (Line 9), and all the relaxations that are tighter than ri are removed
from Ri (Line 10), and there are no incomparable relaxations of ri in Ri since
Ri is totally ordered with respect to �. After every failure in the inner while
loop at least one Ri becomes singleton. Since there are at most k requirements
that are not singleton initially (when QcspRelax is invoked), the algorithm
can fail at most k times.

8 Preferences on Requirement Relaxations

The instances of R so far are ordered based on ≺antilex, which in turn is based
on the preferences defined on the original set of requirements Υ . It is natural
to think that a user may provide an order of importance on relaxations of a
given requirement [9]. For example, a tighter relaxation of a given requirement
is more important than a weaker relaxation of the same requirement. When a
pair of relaxations are incomparable with respect to �, a user may also provide
an ordering between them based on his preference. In general, we assume that
there is a total order of importance on the set of relaxations of an original
requirement that extends the ordering imposed by �.

The instances of R may not always be totally ordered with respect to ≺antilex.
Any equivalent class resulting from ≺antilex can be further ordered by using a
given ordering on the relaxations of original requirements. For example, if both
I and I ′ are preferred conflicts (based on Definition 11) and if they are incom-
parable with respect to ≺antilex, then it would be more desirable to choose the
one that involves a more important requirement relaxation of a more important
original requirement.
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Definition 12 (Lex Ordering). Let ≺ be a total order on Υ . Let ≺i be a total
order on Ri for each ri ∈ Υ such that ∀r, r′ ∈ Ri, r � r′ ⇒ r ≺i r′. Let I and
I ′ be two instances of R. We say that I ≺lex I ′ iff ∃k : Ik ≺k I ′

k and for all
rj ∈ Υ such that rj ≺ rk, Ij = I ′

j.

The idea is to use ≺lex to order the instances of an equivalent class of R resulting
from using ≺antilex in order to find the preferred conflict. The notion of preferred
conflict is redefined as follows:

Definition 13 (Preferred Conflict+). Given a total order ≺ in terms of
importance on Υ and a total order ≺i in terms of importance on Ri for each
original requirement ri ∈ Υ , a minimal conflict I of φ is a preferred conflict+ iff
for all other minimal conflict I ′ of φ either I ≺antilex I ′, or if neither I ≺antilex

I ′ nor I ′ ≺antilex I then I ≺lex I ′.

Example 6 (Breaking Ties with ≺lex). Consider again the qcsp as described in
Example 5 on variables x1, x2 and x3 such that D(x1) = {1, 2}, D(x2) = {1, 2, 3}
and D(x3) = {2, 3} as follows: ∃x1∀x2∃x3.{x1 < x2, x2 < x3}. This qcsp is
unsatisfiable. Let Υ = {r1, r2, r3} be the set of original requirements that can
be relaxed, where r1 ≡ ∀x2 ∈ {1, 2, 3}, r2 ≡ x1 < x2, and r3 ≡ x2 < x3. Let us
assume that r1 ≺ r2 ≺ r3. The relaxation function R is defined as follows: R1 =
{∀x2 ∈ {1, 2, 3},∀x2 ∈ {1, 2},∀x2 ∈ {1, 3},∀x2 ∈ ∅}, R2 = {x1 < x2, true}, and
R3 = {x2 < x3, true}. Let (∀x2 ∈ {1, 2, 3}) ≺1 (∀x2 ∈ {1, 2}) ≺1 (∀x2 ∈ {1, 3})
≺1 (∀x2 ∈ ∅) be an ordering of importance on the relaxations of r1. The ordering
of relaxations for the requirements r2 and r3 are (x1 < x2) ≺2 true, and (x2 < x3)
≺3 true respectively.

From Example 5 it follows that I1 = {∀x2 ∈ {1, 2}, x1 < x2, true} and
I2 = {∀x2 ∈ {1, 3}, x1 < x2, true} are two preferred conflicts of R, which are
incomparable with respect to ≺antilex. More specifically, in Example 5 ∀x2 ∈
{1, 2} and ∀x2 ∈ {1, 3} are incomparable. However, here ∀x2 ∈ {1, 2} is preferred
over ∀x2 ∈ {1, 3}, Therefore, the ties between I1 and I2 are broken with respect
to ≺lex and I1 is the only preferred conflict+. �

We show that the number of consistency checks for finding the preferred conflict+

(under Definition 13) is exponential in the worst-case, given P �= NP , when
the relaxation lattice of a requirement is arbitrary and the consistency check
is polynomial. We remark that finding the preferred conflict+ involves verifying
whether there exists a minimal conflict that involves a given relaxation of a given
requirement. In the following we define this problem and prove its intractability.

Definition 14 (Restricted Minimal Conflict). Given a qcsp φ, a relax-
ation function R on Υ , an original requirement i ∈ Υ and a relaxation r ∈ Ri,
the restricted minimal conflict problem is to find a minimal conflict I of φ such
that Ii = r.

Although finding a minimal conflict is polynomial, the restricted minimal conflict
problem is intractable. We prove this by reduction from 3-SAT [10].
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Proposition 2. Given a polynomial consistency operator and a meet-semilattice
relaxation function, finding a restricted minimal conflict of a qcsp is NP-
complete.

Proof. To prove this we use a reduction from 3-SAT to the restricted minimal
conflict problem. Let 〈V,C〉 be a 3-SAT instance, where V = {x1, . . . , xn} is
a set of Boolean variables and C is a set of clauses defined on any 3 variables
of V . To construct an instance of the restricted minimal conflict problem that
solves the given SAT instance, we define φ over the set of original requirements
{r0, r1, . . . , rn, rn+1}. The original requirement r0 is equivalent to u∧C, where u
is a Boolean variable that denotes whether C is inconsistent or not. For each xi ∈
V , 1 ≤ i ≤ n, we associate an original requirement ri that is equivalent to xi ∧
¬xi. The requirement rn+1 is equivalent to C ⇒ ¬u, which is a hard requirement.
The set of original requirements that can be relaxed is Υ = {r0, . . . , rn}. The
relaxation function R on Υ is defined as follows: R0 = {r0, C} and ∀xi ∈ V ,
1 ≤ i ≤ n, Ri = {ri,¬xi, xi}.

By construction φ[I] is inconsistent for all I such that I⇓V represents an
assignment that violates any clause c ∈ C and I0 = C. The definition of R0

guarantees that when C is violated, no minimal conflict can involve the relaxation
u ∧ C since it is tighter than C. Additionally, φ[I] is inconsistent for all I such
that I⇓V represents an assignment that makes all the clauses in C consistent
and I0 = r0. Therefore, a minimal conflict I where I0 = r0 is necessarily one
that satisfies all the clauses, i.e., I⇓V is compatible with every clause in C.
Finding a minimal conflict where I0 = r0 is equivalent to finding a solution of
the 3-SAT instance, which may involve trying all combinations of relaxations
of the requirements from r1 to rn. Thus finding a restricted minimal conflict is
NP-complete.

The bottom relaxation of each ri ∈ Υ is omitted in Ri in the proof of Proposi-
tion 2 for the sake of clarity. Nevertheless, the result holds if they are considered.
The following corollary follows from Proposition 2.

Corollary 1. Given a polynomial consistency operator and a meet-semilattice
relaxation function, finding a restricted minimal conflict of a qcsp requires a
non-polynomial number of consistency checks, and hence finding a preferred
conflict+ (under Definition 13) also requires a non-polynomial number of con-
sistency checks.

9 Checking Equivalence for Partial Implementations

In VLSI CAD, checking equivalence for partial implementations is about check-
ing whether a partial implementation can (still) be extended to a complete
design, which is equivalent to a given full specification [11]. This can be achieved
by combining parts of the implementation that are not yet finished into black
boxes. If the implementation differs from the specification for all possible substi-
tutions of the black boxes, a design error is found in the current partial imple-
mentation.
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Fig. 1. An example of a partial implementation that can still be extended to a complete
design

In the implementation of complex designs, errors may occur due to the dis-
tribution of the implementation task to several groups of designers. Each team
may locally take implementation decisions that are locally consistent but glob-
ally inconsistent. Figure 1 shows an example of a partial implementation that can
still be extended to a complete design. Notice there is indeed a possible imple-
mentation for each one of the boxes since the boxes can be replaced with the
sub-circuits that they cover. Figure 2 shows an example of a partial implementa-
tion that cannot be extended to a complete design. Suppose that the coordinator
of the implementation decides to split the implementation between two teams
in such a way that the first team will be responsible for inputs x1, x2, x3, x4, x5

and x8 and implement the behaviour in the grey box, and the second team is in
charge of implementing the remaining part of the circuit using x6 and x7. This
partition is clearly inconsistent. Black box one should be in charge of the third
AND gate if this box is the one that has access to x8. Once the first black box
is implemented, there is no way of completing the implementation if the second
black box does not have access to x8.

Scholl and Becker [11] proposed a necessary condition for checking the con-
sistency of partial implementations. The condition is only a necessary condition
since, even if the condition is satisfied, it might be still impossible to complete
the implementation. Basically it is a quantified CSP where for each box, the
variables associated with its inputs are universally quantified and the variables
associated with its output are existentially quantified.

∀I1∃O1 . . . ∀Ib∃Ob.φ

In this quantified CSP:

– b is the number of black boxes,
– Ij/Oj is the set of Boolean variables associated with the inputs/outputs of

black box j, and
– φ is a qcsp that approximates the equivalence between the specification and

the partial implementation.
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Fig. 2. An example of a partial implementation that cannot be extended to a complete
design

In short this means that regardless of the values of the inputs it is possible
to compute the expected outputs for the gate.

Approaches have been certainly suggested for addressing this verification
problem [11,12]. However, to the best of our knowledge, the problem of com-
puting preferred explanations to errors has not been addressed. Formally, If
∀I1∃O1 . . . ∀Ib∃Ob.φ is unsatisfiable, one would like to compute the most pre-
ferred explanation for the error taking into account that there are boxes that
are more critical (e.g., involve more important resources) than others? We pro-
pose to compute an explanation that involves the constituents of a most critical
box, assuming that the preferences of the individuals that participate in the
implementation process are consistent.

10 Conclusions

In this paper we presented a framework for generating most preferred explana-
tions for the inconsistency of a qcsp. The additional expressiveness of the qcsp
can help model problems in which a subset of the variables take value assign-
ments that are outside the control of the decision maker, e.g. in game-playing,
conformant planning and reasoning under uncertainty. We presented various set-
tings for representing preferences, and in each case we presented an algorithm
for computing preferred explanations based on the notion of conflict. Finally, we
provided key complexity results on the limits of computing preferred explana-
tions in this setting and motivated the applicability of the framework with an
example coming from the industry.

In the future we are planning to empirically prove the effectiveness of our
approach by implementing it on top of an already existing qcspsolver (e.g., [4]
or [13]). Even though the focus of our work is on the computation of preferred
explanations for an unsatisfiable qcsp, it might be also interesting to find out
whether preferred explanations for that type of unsatisfiable problems can be
easily expressed and computed in alternative frameworks like those found in the
answer set programming community (e.g., [14,15]).
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Abstract. There exist quite a few theorems of the alternative for linear
systems in the literature, with Farkas’ lemma being the most famous.
All these theorems have the following form: We are given two closely
related linear systems such that one and exactly one has a solution.
Some specialized classes of linear systems can also be represented using
graphical structures and the corresponding theorems of the alternative
can then be stated in terms of properties of the graphical structure.
For instance, it is well-known that a system of difference constraints
(DCS) can be represented as a constraint network such that the DCS is
feasible if and only if there does not exist a negative cost cycle in the
network. In this paper, we provide a new graphical constraint network
representation of Unit Two Variable Per Inequality (UTVPI) constraints.
This constraint network representation permits us to derive a theorem of
the alternative for the feasibility of UTVPI systems. UTVPI constraints
find applications in a number of domains, including but not limited to
program verification, abstract interpretation, and array bounds checking.
Theorems of the Alternative find primary use in the design of certificates
in certifying algorithms. It follows that our work is important from this
perspective.

1 Introduction

In this paper, we focus on deriving a graphical theorem of the alternative for lin-
ear feasibility in UTVPI constraints. UTVPI constraint systems find applications
in a number of problem domains, including but not limited to real-time schedul-
ing [GPS95], program verification [CC77] and operations research [LM05]. The
graphical characterization of feasibility in UTVPI constraints permits the design
of certificates in certifying algorithms.

The field of certifying algorithms is concerned with validating the results of
implementations of algorithms. Even algorithms that can be proven correct, suf-
fer the risk of being implemented incorrectly. One of the more famous examples
of this phenomenon is the error discovered in the implementation of a planarity
testing algorithm in the LEDA software [MN99]. In this case, there was a subtle
bug in the implementation of planarity testing. Bug identification is a non-trivial
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task in and of itself. In the case of LEDA, matters were complicated by the lack
of certificates. Consequently, there is widespread interest in the design and devel-
opment of certifying algorithms, i.e., algorithms which provide certificates that
validate the answer that is provided. For instance, an algorithm for graph pla-
narity testing could provide a planar embedding when it declares a graph to be
planar, and a subgraph of the input graph that is homeomorphic to K3,3 or K5,
in the event that it declares the graph to be non-planar (Kuratowski’s Theorem).
It is understood that the implementations of algorithms for verifying a planar
embedding and checking homeomorphism to K3,3 and K5 are trivial enough to
be checked by a simple, provably correct implementation.

The important contributions of this paper are as follows:

1. We propose a new constraint network structure for UTVPI constraints. This
network structure is similar to the constraint network structure for differ-
ence constraints [CLRS01], but incorporates many features that are unique
to UTVPI constraint systems.

2. We present a theorem of the alternative for the recognition of linear infea-
sibility in UTVPI constraints. This theorem is similar in spirit to Farkas’
lemma for a system of linear constraints, and is crucial from the perspective
of designing certifying algorithms [Rub90].

The rest of the paper is organized as follows: Sect. 2 discusses the preliminar-
ies of UTVPI constraints and Farkas’ lemma. In Sect. 3, we provide a detailed
description of the new constraint network representation of UTVPI constraints.
In Sect. 4, we describe some of the other constraint network representations for
UTVPI constraints. The theorem of the alternative is detailed in Sect. 5. We
conclude in Sect. 6 by summarizing our contributions and identifying avenues
for future research.

2 Preliminaries

In this section, we formally define the linear feasibility problem in UTVPI con-
straints and also define the various terms that will be used in the rest of the
paper.

Definition 1. A constraint of the form ai · xi + aj · xj ≤ cij is said to be a
Unit Two Variable Per Inequality (UTVPI) constraint if ai, aj ∈ {−1, 0,+1}
and cij ∈ Z.

Definition 2. A constraint of the form ai · xi + aj · xj ≤ cij is said to be a
difference constraint if ai, aj ∈ {−1, 0,+1}, cij ∈ Z and furthermore, ai = −aj.

It is easy to see that UTVPI constraints subsume difference constraints.

Definition 3. A constraint of the form xi ≤ ci or −xi ≤ ci, where ci ∈ Z, is
called an absolute constraint.
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Both difference constraints and UTVPI constraints clearly subsume absolute
constraints (see Sect. 3).

Definition 4. A conjunction of UTVPI constraints is called a UTVPI con-
straint system and can be represented in matrix form as A · x ≤ b. If the con-
straint system has m constraints over n variables, then A has dimensions m×n.

The following lemma is known as Farkas’ Lemma and is well-known in the oper-
ations research community [Sch87].

Lemma 1. Let A denote an m × n matrix and let b denote an m-vector.
Then, either I : ∃x ∈ R

n A · x ≤ b or (mutually exclusively)
II : ∃y ∈ R

m
+ yT · A = 0, yT · b < 0.

First observe that both System I and System II cannot be simultaneously true.
Since if there exists x satisfying System I and y satisfying System II, then

A · x ≤ b

⇒ y · (A · x) ≤ y · b, since y is non − negative
⇒ (y · A) · x ≤ y · b

⇒ 0 ≤ r < 0

If I does not hold, then the dual system is either unbounded or infeasible.
However, y = 0 is clearly a feasible solution to the dual and hence the function
y · b is unbounded over the dual. The lemma follows.

It is worth noting that there are several variants of Farkas’ lemma in the liter-
ature. A formal proof of the above lemma along with a geometric interpretation
can be found in [Sch87]. Farkas’ lemma can be specialized to difference con-
straints through a constraint network representation, as described in [CLRS01].
Essentially, the variables become nodes and the constraints become directed
edges in this setting. A consequence of Farkas’ Lemma is that the difference
constraint system is feasible if and only if the corresponding constraint network
does not have a negative cost cycle.

We describe a very similar network-constraint correspondence for UTVPI
constraints in this paper.

3 Constraint Network Representation

Let U : A · x ≤ b denote the UTVPI constraint system and let X denote the set
of all (fractional and integral) solutions to U. Corresponding to this constraint
system we construct the constraint network G = 〈V,E, c〉 as follows.

For each variable xi create a node in V . For ease of reference, both the
variable and its corresponding node are referred to as xi in this paper.

Constraints are represented as edges using the following rules:

(a) A constraint of the form xi −xj ≤ cij is represented as a directed edge from
the node xj to the node xi having weight cij . These edges are called “gray”
edges and are represented by xj

cij→ xi or by xi
cij← xj .
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(b) A constraint of the form −xi − xj ≤ cij is represented by an undirected

“black” edge (xi

cij

� xj).
(c) A constraint of the form xi+xj ≤ cij is represented by an undirected “white”

edge (xi

cij

� xj).

A (k−1)-path in our constraint network, is a sequence of k nodes, x1, x2, . . . xk,
and (k − 1) edges e1, e2, . . . ek−1, such that ei is the edge corresponding to one of
the constraints between xi and xi+1 in the UTVPI constraint system.

For a k-path to be considered valid, it must have the following property: For
every i from 2 to k − 1, the coefficients of xi in the constraints corresponding to
the edges ei and e(i−1) have opposite signs.

Example 1. The path defined by the sequence of nodes x1, x2, x3, x4 and the

sequence of edges x1

c1,2

� x2, x2

c2,3

� x3, x3

c3,4

� x4 is x1

c1,2

� x2

c2,3

� x3

c3,4

� x4.
However this path is not valid because the coefficients of x2 in the constraints

corresponding to the edges x1

c1,2

� x2 and x2

c2,3

� x3 have the same sign. In fact,
both of these constraints are of the form −xi − xj ≤ cij .

Definition 5. The weight of a path is the sum of the weights of the edges along
that path.

Example 2. Consider the path x1

3

� x2
1← x3

4

� x4. The weight of this path is 8.

A closed walk is simply a valid (k− 1)-path for which x1 = xk. In this paper, we
refer to closed walks as cycles. Note that a cycle, as defined above can consist of
edges and nodes that occur more than once. Thus, the notion of a cycle in this
paper differs from the notion of a cycle in a constraint network corresponding
to a difference constraint system.

Example 3. Suppose we have the system of constraints:

x1 − x2 ≤ −3 −x1 + x4 ≤ 1 −x1 − x4 ≤ 1 x1 − x5 ≤ 1
−x1 + x5 ≤ 0 x2 + x3 ≤ 1 x2 − x3 ≤ 1

Then, as we can see in Fig. 1, the 8-path

x1
−3← x2

1

� x3
1→ x2

−3→ x1
0→ x5

1→ x1
1→ x4

1

� x1

forms a cycle even though the nodes x1 and x2 and the edge x2
−3→ x1 are used

multiple times.

At this juncture, it is important to point out that all three types of edges,
viz., “white”, “black” and “gray” are directionless, i.e., it may be necessary to
traverse them in either direction. As shown in Subsect. 3.1,
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x1 x2 x3

x4

x5

−3

1

1

1

1

0

1

Fig. 1. Example constraint network (without node x0)

xi
cij← xj

cjk

� xk
ckl→ xl is a valid path from xi to xl but requires that gray edges

are traversed in both directions.
Finally, we add a node x0 to the network. Without loss of generality, we

assume that node x0 is assigned the value 0. This gives us a point of reference
and allows us to determine values for the remaining variables. For each node xi in

the network we add the four edges x0

(2·n+1)·C
� xi, x0

(2·n+1)·C
� xi, x0

(2·n+1)·C→ xi,

and xi
(2·n+1)·C→ x0 where C is the largest absolute weight of any edge in the

network. These edges allow every node to be reached from x0 without introducing
infeasibility into the system. As discussed in Sect. 5, a UTVPI system is infeasible
if and only if there exists a specific type of cycle of negative weight in the
corresponding constraint network. Observe that any cycle that is introduced by
the addition of x0, must use x0 and therefore, at least one edge that enters x0

and at least one edge that leaves x0. However, these edges have such a large
weight ((2 ·n+1) ·C), that the weight of such a cycle cannot be negative, unless
a negative weight cycle existed in the network to begin with.

The newly added edges also permit the addition of absolute constraints. An
absolute constraint xi ≤ c is converted into a pair of constraints: xi + x0 ≤ c
and xi − x0 ≤ c, which are added to the UTVPI system (after the absolute
constraint is deleted from the system). The corresponding edges are added to
the constraint network by changing the weight of the appropriate edges from x0.
In the preceding example, this would mean changing the weights of the edges
x0 � xi and x0 → xi to c.

We will now argue that the above replacement strategy is solution preserving,
i.e., if the original UTVPI system is feasible, then it stays feasible after the
replacement. Likewise, if the original system is infeasible, then it stays infeasible
after the replacement.
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Let P1 : A · x ≤ b denote a UTVPI system with x1 ≤ c denoting an absolute
constraint in this system. We consider the following cases.

(i) P1 is non-empty : We can set x0 = 0. Thus, after replacement the constraints
x1 + x0 ≤ c and x1 − x0 ≤ c both become x1 ≤ c and the system remains
feasible with x0 = 0 part of a satisfying assignment.

(ii) P1 is empty : Observe that if there exists a subsystem of P1 that is infeasible
and which does not include the constraint x1 ≤ c, then it stays infeasible after
the replacement. Let us therefore consider the case in which the constraint
x1 ≤ c is part of the only infeasible subsystem of P1. In this case, we sum
x1 + x0 ≤ c and x1 − x0 ≤ c, to produce the constraint 2 · x1 ≤ 2 · c which is
equivalent to the original constraint. Thus, replacing x1 ≤ c does not affect
the infeasibility of the system.

In similar fashion, we can show that a constraint of the form: −xi ≤ c, can
be replaced by the following constraints: −xi − x0 ≤ c and x0 − xi ≤ c, without
affecting the feasibility of the original UTVPI system.

Consider the following constraint system.

x1 + x3 ≤ 0 x2 − x3 ≤ −7 x4 − x2 ≤ 3
−x1 − x4 ≤ 5 x1 ≤ 6 (1)

The resulting network is shown in Fig. 2. The weight of 63 on some of the
edges from x0 to the other nodes is obtained as (2 · 4 + 1) · | − 7|. Also note that
the edges x0 � x1 and x0 → x1 have weight 6, corresponding to the constraint
x1 ≤ 6.

x1

x2 x3

x4

x0

63
63

6
6

63
63

63
63

63
63

63
63

63
63

63
63

0

5

3

−7

Fig. 2. Example constraint network.
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3.1 Edge Reductions

We now introduce the notion of edge reductions.

Definition 6. An edge reduction is an operation which determines a single edge
equivalent to a two-edge path and represents the addition of the two UTVPI
constraints which correspond to the edges in question. If this addition results in
a UTVPI constraint, the reduction is said to be valid.

Valid reductions correspond to the following transitive inference rule for UTVPI
constraints:

a · xi + b · xj ≤ cij −b · xj + b′ · xk ≤ cjk
a · xi + b′ · xk ≤ cij + cjk

In the case of a valid reduction, since the resultant constraint is a (valid)
UTVPI constraint, the path reduces to an edge corresponding to the sum of the
two constraints.

Table 1 lists all the valid edge reductions:

Not all edge reductions are valid. For example, the reduction of the path

xi

cij

� xj

cjk

� xk, corresponding to the constraints xi +xj ≤ cij and xj +xk ≤ cjk,
is not valid, since adding the constraints produces the non-UTVPI constraint

xi + 2xj + xk ≤ cij + cjk. However, the reduction of the path xi

cij

� xj

cjk

� xk,
corresponding to the constraints xi +xj ≤ cij and −xj −xk ≤ cjk, is valid, since
adding these constraints produces the UTVPI constraint xi − xk ≤ cij + cjk.

Reductions can also be applied to longer paths by repeatedly applying edge
reductions until only one edge remains. A path P with k edges is said to reduce
to an edge e, if there exists a series of (k − 1) valid edge reductions which can

be used to convert P to e. For instance, the path x1

c1
� x2

c2
� x3

c3
� x4 reduces to

the edge x1

c1+c2+c3
� x4.

Definition 7. We say that a path has type t, if it can be reduced to a single edge
of type t, where t ∈ { � , � ,←,→}.

Thus, the path x1

c1
� x2

c2
� x3

c3
� x4 is a white path. Note that, every valid path

must have a type.

It is important to note that when reducing a path down to a single edge, the
order in which the reductions are performed does not affect the final weight of
the edge (see Lemma 2).

Lemma 2. Edge reductions are associative.

Proof. Since each reduction corresponds to the addition of two constraints, the
lemma follows from the associativity of addition in inequalities. 
�
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Example 4. Let p1 denote the path xi
cij← xj

cjk

� xk
ckl→ xl. Likewise, let p2 denote

the sub-path xi
cij← xj

cjk

� xk and let p3 denote the sub-path xj

cjk

� xk
ckl→ xl.

It is not hard to see that regardless of the order in which edge reductions are

performed on p1, the edge that it is finally reduced to is xi

cij+cjk+ckl

� xl.

Table 1. Valid edge reductions

Constraints Path Reduction Result

xj − xi ≤ a, xk − xj ≤ b xi
a→ xj

b→ xk xi
a+b→ xk xk − xi ≤ a + b

xj − xi ≤ a, −xk − xj ≤ b xi
a→ xj

b

� xk xi

a+b

� xk −xk − xi ≤ a + b

xj + xi ≤ a, xk − xj ≤ b xi

a

� xj
b→ xk xi

a+b

� xk xk + xi ≤ a + b

−xj − xi ≤ a, xk + xj ≤ b xi

a

� xj

b

� xk xi
a+b→ xk xk − xi ≤ a + b

xi − xj ≤ a, xj − xk ≤ b xi
a← xj

b← xk xi
a+b← xk xi − xk ≤ a + b

−xi − xj ≤ a, xj − xk ≤ b xi

a

� xj
b← xk xi

a+b

� xk −xi − xk ≤ a + b

xi − xj ≤ a, xj + xk ≤ b xi
a← xj

b

� xk xi

a+b

� xk xi + xk ≤ a + b

xi + xj ≤ a, −xj − xk ≤ b xi

a

� xj

b

� xk xi
a+b← xk xi − xk ≤ a + b

4 Related Work

We now contrast our constraint network construction with existing representa-
tions. First, we will look at the network representation in [Min01]. This repre-
sentation was also used in [LM05,Min06,BHZ08,SS10].

[Min01] transforms the input UTVPI system into a potential network as
follows:

For each variable, two nodes (a positive version and a negative version) are
added to the constraint network. For instance, corresponding to the variable xi,
we create the nodes x+

i and x−
i . Each constraint is replaced by a pair of equivalent

constraints. For instance, a difference constraint xi − xj ≤ c is replaced by the
two constraints x+

i − x+
j ≤ c and x−

j − x−
i ≤ c. The exception is for absolute

constraints, each of which is simply converted to a single equivalent constraint.
For instance, xi ≤ c yields x+

i − x−
i ≤ 2 · c. Once all the equivalent constraints

have been determined, they are represented in a constraint network, as discussed
in [CLRS01]. Thus, the network constructed as per [Min01] has 2 · n nodes
(assuming n variables in the constraint system) and up to 2 ·m edges (assuming
m constraints in the original constraint system). The resultant network is called
the potential network. Figure 3 shows the potential network, corresponding to
System (1).
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It is important to note that even if the constraint system consisted solely of
difference constraints, our constraint network differs from the one proposed in
[CLRS01] (for instance, the weights on the edges from x0 to the other nodes are
not 0).

x+
1

x−
1

x−
2

x+
2

x−
3

x+
3

x−
4

x+
4

5

5

−7

−7

003 3

12

Fig. 3. Example potential network.

An alternate constraint network is used in [Rev09] to find the closure of a
system of UTVPI constraints. This network construction avoids doubling the
number of nodes and edges by using undirected edges and labeling the end-
points of each edge with the coefficient of the corresponding variable. Thus, the
constraint a · xi + b · xj ≤ c is represented by the edge shown in Fig. 4.

xi xj

a c b

Fig. 4. Example edge.

The construction used by [Rev09] also introduces the vertex x0 to handle
absolute constraints. For the purposes of network construction the absolute con-
straint a · xi ≤ c is treated as a · xi + 0 · x0 ≤ c. Thus, System (1) results in the
constraint network shown in Fig. 5.

Our constraint network differs from the one in [Min01] in several respects:

(a) In our constraint network, the edges are “undirected”. This is in marked
contrast to the potential network in [Min01], which has directed edges.
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x1

x2 x3

x4

x0

0

1

6

−1−1 5

1

−1

3

−11 −7

1

1

0

Fig. 5. Example constraint network.

(b) Our constraint network directly reflects the original input UTVPI system.
Accordingly, our network retains information about constraint types
explicitly.

(c) The network in [Min01] is in essence a difference constraint network rep-
resentation of UTVPI constraints. Consequently, certificates of infeasibilty
cannot be produced directly.

Our constraint network differs from the one in [Rev09] in the following ways:

(a) The constraint network in [Rev09] does not include the large weight edges
from x0 used by our network to ensure reachability.

(b) In the network in [Rev09], each absolute constraint is represented by only
one edge. By using two edges, we ensure that no edge is traversed twice in a
row.

5 Theorem of the Alternative: Linear Feasibility

In this section, we demonstrate results that exactly characterize linear feasibility
in UTVPI constraint systems by using the UTVPI constraint network description
in Sect. 3.

Recall that U : A · x ≤ b denotes the UTVPI constraint system, X denotes
the set of all (both fractional and integral) solutions to U, and G is the constraint
network constructed from U (see Sect. 3).
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Example 5. Let U denote the following infeasible system of UTVPI constraints:

x1 + x2 ≤ 2 x1 + x4 ≤ −1 x1 − x4 ≤ −1
x3 − x1 ≤ 0 −x1 − x2 ≤ 2 −x1 − x3 ≤ −3 (2)

The corresponding constraint network G (except for the node x0) is shown
in Fig. 6.

We shall be using Example 5 to illustrate several of the lemmata and theorems
in this section.

x1 x2

x3

x4

2

2

0

−3

−1

−1

Fig. 6. Example constraint network (without node x0)

Theorem 1. Either X is non-empty or (mutually exclusively) there exists one
of the following paths in G:

(a) A path from a node xi to itself that can be reduced to a single gray edge of
negative weight. This will be referred to as a path of type (a).

(b) A path of negative weight from a node xi to itself that consists of two sub-
paths from xi to itself, viz., a path which can be reduced to a single white
edge and a path which can be reduced to a single black edge. This type of path
will be referred to as a path of type (b).

Example 6. In Fig. 6, the cycle x1
0→ x3

−3

� x1

−1

� x4
−1→ x1 is a path of type (b)

because:

1. the cycle has negative weight,

2. the sub-cycle x1
0→ x3

−3

� x1 can be reduced to the single black edge x1

−3

� x1,
and

3. the sub-cycle x1

−1
� x4

−1→ x1 can be reduced to the single white edge x1

−2
� x1.
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To prove Theorem 1, we will first need to prove a number of lemmata, which will
build up to the desired result.

Lemma 3. If there is a path of type (b) from xi to itself, then there is a path of
type (a) from xi to itself.

Proof. Since edge reductions are associative (Lemma 2), the path of type (b)
can be reduced to a single white edge and a single black edge. Let c1 denote the
weight of the white edge and c2 denote the weight of the black edge. These edges
can then be reduced to a single gray edge of weight (c1 + c2) (see Table 1). As
the original path had negative weight, the reduced edge edge also has negative
weight (in fact, it has the same weight). Observe that the reduced edge goes
from xi to itself. It follows that any path of type (b) is also a path of type (a). 
�

Example 7. Consider the path (cycle) x1
0→ x3

−3
� x1

−1
� x4

−1→ x1 in Fig. 6. As
explained in Example 6, this path is a path of type (b), since it can be reduced to

the path x1

−3

� x1

−2

� x1. However, this path can be reduced to the edge x1
−5→ x1.

Thus, this is a path of type (a).

Lemma 4. If G contains a path of type (a), then X is empty.

Proof. Since valid edge reductions correspond to additions of UTVPI constraints
that produce other UTVPI constraints, a negative gray cycle, i.e., a path of
type (a), corresponds to a sequence of UTVPI constraints which can be added
together to produce the constraint: xi − xi ≤ ci < 0. However, this is an obvi-
ous contradiction. Thus, if a negative gray cycle exists in G, then there is no
assignment to the variable xi, that satisfies this constraint. It follows that X is
empty. 
�
Thus, we have shown that the existence of a path of type (a) or type (b) implies
the infeasibility of the UTVPI constraint system.

We will now show that if X is empty, then G must contain a path of type
(a) or type (b).

The following lemmata will help us achieve that goal.

Lemma 5. If X is empty, then there exists a subset of constraints in U, which
can be added together (possibly with repetitions) to produce a contradiction, i.e.,
a constraint of the form xi − xi ≤ c < 0.

Proof. If X is empty, then by Farkas’ Lemma there exists a rational vector
y ≥ 0 such that yT · A = 0 and yT · b < 0. We can assume without loss of
generality that y ∈ Z

m. Let Uj represent the jth constraint of U. Consider the
set S = {Uj : yj > 0, j = 1 . . .m}, i.e., S is the set of constraints in U, for which
the corresponding element of y is non-zero. Summing the constraints of S with
the constraint Uj appearing yj times in the sum, for each j = 1 . . .m, we get the
constraint

xi − xi = 0 = yT · A · x ≤ yT · b < 0,

where xi is one of the variables that is involved in a constraint in S. 
�
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Example 8. In System (2), all of the constraints can be added together, with no
repetitions, to produce the constraint x1 − x1 ≤ −1.

Lemma 6. If X is empty, then there exists a set S ⊆ U of constraints, such
that

(a) the constraints in S can be added together (possibly with repetitions), to
produce the constraint xi − xi ≤ c < 0, where xi is a variable defining
one or more of the constraints in S, and

(b) the addition can be carried out in a sequence of steps, such that at each step,
the resultant constraint is a UTVPI constraint (permitting constraints of the
form: xi + xi ≤ cii).

Proof. Observe that part (a) of Lemma 6 follows directly from Lemma 5. In other
words, the emptiness of X guarantees the existence of a set of constraints S ⊆ U
and and a vector v > 0, such that the weighted sum of the constraints in S with
respect to v, produces the contradiction: xi − xi ≤ c < 0, where xi is a variable
defining one or more of the constraints in S. Let Cj denote the jth constraint in
S. Note that the weighted sum of the constraints in S refers to the sum taken by
multiplying constraint Cj with vj . Without loss of generality, we assume that v
is minimal, i.e., there does not exist a vector v′, where 0 ≤ v′ ≤ v, v′ �= v, for
which this property still holds.

It follows that we can construct a sequence of constraints T from S, such
that

(a) constraint Cj appears vj times, and
(b) adding all the constraints in T produces the constraint xi − xi ≤ c < 0.

All that remains to be shown is that the constraints in T can be reordered
so that the constraint that results after each addition is a UTVPI constraint.

Observe that the left hand side of the resultant constraint (xi−xi ≤ c < 0) is
just 0. Hence, any variable introduced (positively or negatively) by the inclusion
of one constraint in the weighted sum, must be canceled by the addition of some
other constraint in which this variable occurs with the opposite sign. Otherwise
this variable would remain in the final sum. Utilizing this fact, we impose the
following order on the sequence T :

(a) Pick a constraint in which xi appears positively; this is the first constraint
Cj . Let xb denote the other variable in Cj .

(b) Add Cj to the constraint in T , which eliminates xb. The resultant constraint
could contain a new variable, say xc.

(c) Repeat step (b), canceling each non-xi variable as it is introduced. Note
that, if at any point xc = xi, then we need to cancel one occurrence of xi.

All constraints can be added in this fashion. However, two situations need to
be addressed:
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(a) At some point, prior to adding the last constraint, the sum yields a constraint
of the form xi − xi ≤ b, b ≥ 0 - In this case, the remaining constraints in
T add to xi − xi ≤ c − b < 0, thereby contradicting the minimality of the
vector v.

(b) At some point, prior to adding the last constraint, we get a constraint of
the form xi − xi ≤ b < 0 - Once again the minimality of the vector v is
contradicted.

Thus, at each step of the addition process, the constraint that results is a
UTVPI constraint, with the allowed exception of constraints having the form:
xi + xi ≤ cii. 
�
Example 9. In System (2) (see Example 5), we can start with x1 and add the
constraints as follows:

1. Start with the constraint l1 : x1 + x4 ≤ −1.
2. Add the constraint l2 : x1 − x4 ≤ −1 to l1 thereby eliminating x4, and

producing the constraint l3 : x1 + x1 ≤ −2.
3. Add the constraint l4 : x3 − x1 ≤ 0 to l3, thereby eliminating x1, and

producing the constraint l5 : x1 + x3 ≤ −2.
4. Add the constraint l6 : −x1 − x3 ≤ −3 to l5, thereby eliminating x3 and

producing the constraint l7 : x1−x1 ≤ −5, which is the desired contradiction.

We now obtain a bound on the number of times that a constraint can occur in
a contradiction derived from a weighted sum of constraints.

Lemma 7. If the network G has a path of type (a), then it has a path of type
(a) in which each edge is used at most twice.

Proof. Assume that there is a path of type (a) (say P ), in which an edge is used
k ≥ 3 times. Note that a path of type (a) is equivalent to a cycle of negative
weight that can be reduced to a single gray edge. This means that one of the
nodes defining P is used k times. We will argue that P must contain a sub-path
of type (a), in which every node (and hence every edge) is used at most two
times.

Observe that the negative gray cycle P can be subdivided into sub-cycles,
each of which uses xi only once. For convenience, we will count the first and last
nodes of a cycle as the same occurrence. Each sub-cycle is simply the part of the
main cycle P , between, and including, two occurrences of the node xi.

On account of how cycles are defined, each of these sub-cycles can be reduced
to the equivalent of a single white edge, black edge or gray edge from xi to itself.
Those sub-cycles which can be reduced to black edges shall be referred to as
black sub-cycles. White and gray sub-cycles are defined similarly. Since the P is
gray cycle, it must be the case that the number of white sub-cycles is equal to
the number of black sub-cycles. Otherwise, the cycle represented by P , would
not reduce to a single gray edge. Thus, as in Lemma 3, each white sub-cycle can
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be paired with a black sub-cycle to produce a gray sub-cycle that uses xi twice.
If the weight of this sub-cycle is negative it constitutes a path of type (b).

This means that the path P is equivalent to several gray sub-cycles each of
which uses xi at most twice. Since P has a negative weight, at least one of these
sub-cycles must have negative weight. Thus, there must exist a gray cycle of
negative weight which uses xi at most twice. It follows that there exists a path
of type (a) in G, such that each edge is used at most twice. 
�
Example 10. Let U represent the following infeasible system of constraints:

x1 − x2 ≤ −3 −x1 + x2 ≤ 4 −x1 + x4 ≤ 1
−x1 − x4 ≤ 1 x2 + x3 ≤ 1 x2 − x3 ≤ 1 (3)

The corresponding constraint network, G, (except for the node x0) is shown
in Fig. 7.

x1 x2 x3x4

−3

4 1

1

1

1

Fig. 7. Example constraint network (without node x0)

In Fig. 7, the negative weight gray cycle

x1
−3← x2

4← x1
−3← x2

1
� x3

1→ x2
−3→ x1

1→ x4

1
� x1

uses the edge x1
−3← x2 three times. However, it can be divided into the gray

sub-cycle
x1

−3← x2
4← x1,

the white sub-cycle

x1
−3← x2

1

� x3
1→ x2

−3→ x1,

and the black sub-cycle

x1
1→ x4

1

� x1.

Note that, each of these sub-cycles uses x1 once. We then combine the white and
black cycles to form the gray cycle

x1
−3← x2

1
� x3

1→ x2
−3→ x1

1→ x4

1
� x1.

This is a negative weight gray cycle that uses edge x2
−3→ x1 twice. Thus, the

constraint x1 − x2 ≤ −3 appears twice in the corresponding sum of constraints.
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The above lemma leads to the following corollary.

Corollary 1. Let A · x ≤ b denote an infeasible UTVPI system. Then there
exists a vector y ≥ 0, such that,

(a) y · A = 0,
(b) y · b < 0,
(c) yi ∈ {0, 1, 2}, i = 1, 2, . . .m.

The proof of Corollary 1 follows from the discussion in the proof of Lemma7.
We note that in case of difference constraints, the dual variables in Corollary 1
can be confined to the set {0, 1}.

Lemma 8. If X is empty, then a path of type (a) or a path of type (b) exists in G.

Proof. From the previous lemmata, we know that any inconsistency can be
expressed as a sequence of constraints that can be added to get a constraint
of the form xi − xi ≤ c < 0. Furthermore, this sequence can be reordered so
that at each step, the resultant constraint is a UTVPI constraint. Since valid
edge reductions in G correspond precisely to such additions, such a sequence
of constraints corresponds to a sequence of edges which can be reduced to a
single gray cycle of negative weight, i.e., a path of type (a). If, as mentioned in
Lemma 7, the cycle consists of a white sub-cycle and a black sub-cycle, then it
is also a path of type (b). 
�
With the preceding lemmata proved, we now return to Theorem1.

Theorem 1. Either X is non-empty or (mutually exclusively) there exists one
of the following paths in G:

(a) A path from a node xi to itself that can be reduced to a single gray edge of
negative weight. This will be referred to as a path of type (a).

(b) A path of negative weight from a node xi to itself that consists of two sub-
paths from xi to itself, viz., a path which can be reduced to a single white
edge and a path which can be reduced to a single black edge. This type of
path will be referred to as a path of type (b).

Proof. As per Lemmas 3 and 4, if G contains a path of type (a) or type (b), then
X must be empty. Likewise, as per Lemma 8, if X is empty, then G must contain
a path of type (a) or type (b). In other words, the theorem of the alternative
holds. 
�

6 Conclusion

In this paper, we presented a new constraint network representation for UTVPI
constraints. This constraint network has the following property: The given UTVPI
constraint system is feasible if and only if the corresponding constraint network
does not contain a gray cycle as defined in Sect. 3. The graphical theorem of the
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alternative presented in this paper finds applications in the design of certifying
algorithms. In the event that a UTVPI system is infeasible, an algorithm can sup-
plement the “no” answer with the negative gray cycle.

From our perspective, there are two problems that merit further
investigation:

1. Discovering a graphical theorem of the alternative for horn constraints -
A constraint of the form

∑n
i=1 ai · xi ≥ bi is called a Horn constraint, if the

ai ∈ {0, 1,−1} and at most one of the ai = 1. It is clear that horn constraints
generalize difference constraints. A conjunction of Horn constraints consti-
tutes a Horn Constraint System (HCS). HCSs have the following interesting
property: Linear feasibility implies integer feasibility [CS13]. It is unknown
whether horn constraints can be represented graphically.

2. Finding the gray cycle of shortest length in case of an unsatisfiable UTVPI
system - Finding optimal length certificates is an important problem in SMT
solvers [DdM06]. From the perspective of a user, short proofs of infeasibil-
ity are ideal, since such proofs can be checked by hand. Polynomial time
algorithms for optimal length refutations exist for certain constraint classes
[Sub09], but the problem is NP-hard in general [ABMP98].
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Abstract. We study the strong and strutter trace distances on Markov
chains (MCs). Our interest in these metrics is motivated by their relation
to the probabilistic LTL-model checking problem: we prove that they cor-
respond to the maximal differences in the probability of satisfying the
same LTL and LTL-x (LTL without next operator) formulas, respectively.
The threshold problem for these distances (whether their value exceeds
a given threshold) is NP-hard and not known to be decidable. Neverthe-
less, we provide an approximation schema where each lower and upper-
approximant is computable in polynomial time in the size of the MC.

The upper-approximants are Kantorovich-like pseudometrics, i.e.
branching-time distances, that converge point-wise to the linear-time
metrics. This convergence is interesting in itself, since it reveals a nontriv-
ial relation between branching and linear-time metric-based semantics
that does not hold in the case of equivalence-based semantics.

1 Introduction

The growing interest in quantitative systems, e.g. probabilistic and real-time
systems, motivated the introduction of new techniques for studying their oper-
ational semantics. For the comparison of their behaviour, metrics are preferred
to equivalences since the latter are not robust with respect to small variations of
the numerical values. Behavioral metrics generalize the concept of equivalence
by measuring the behavioral dissimilarities of two states.

Several proposals of behavioral distances [8,10,12,13,20] measure the differ-
ence according to this general schema: d(u, v) = supφ∈Φ |φ(u)−φ(v)|, where Φ is a
suitable set of properties of interest and φ(u) denotes the value of the property φ
evaluated at state u. A logical characterization as above is desirable in particular
when the distances are defined in a different way (e.g., as a fixed-point [8,10,13],
a Hausdorff lifting [8] or games [9]) because it relates them in terms of a set
Φ of expressible properties. Many logical characterizations in the literature use
quantitative logics, whose semantics is given in terms of real-valued functions.
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Such real-valued logics are not supported by quantitative model checking tools
(e.g., PRISM [15] and Uppaal [4]). Therefore, it is desirable to also have logical
characterizations relating the distances to the logics adopted by these tools.

In this work we are interested in the relation with the probabilistic model
checking problem for LTL [21] against Markov chains (MCs). In particular we
provide two logical characterizations. The first relates the trace distance δt, which
generalizes trace equivalence, to the probabilistic LTL-model checking problem
as δt(u, v) = supϕ∈LTL |P(u)([[ϕ]])−P(v)([[ϕ]])|, where P(u)([[ϕ]]) is the probabil-
ity of executing a run from u satisfying the formula ϕ. The second relates the
strutter trace distance δst, which generalizes stutter trace equivalence, to LTL-x

(LTL without next operator) as δst(u, v) = supϕ∈LTL-x |P(u)([[ϕ]]) − P(v)([[ϕ]])|.
An immediate application is that P(u)([[ϕ]]) (i.e., probabilistically model check-
ing ϕ at u) can be approximated by P(v)([[ϕ]]) with an error bounded by δt(u, v),
for any ϕ ∈ LTL. This may lead to savings in the overall cost of model checking.

This further motivates the study of efficient methods for computing these
distances. Unfortunately, in [6,19] the threshold problem for the trace distance is
proven to be NP-hard and, to the best of our knowledge, its decidability is still an
open problem. Nevertheless, in [6] it is shown that the problem of approximating
this distance with arbitrary precision is decidable. This is done by providing two
effective sequences that converge from below and above to the trace distance.
In this paper we provide an alternative approximation schema that, differently
from [6], is formed by sequences of lower and upper-approximants that are shown
to be computable in polynomial time in the size of the MC. With respect to [6],
our approach is more general with the nice consequence that the same result is
obtained for the problem of approximating the stutter trace distance.

Notably, in our construction the upper-approximants are Kantorovich-like
pseudometrics, i.e., branching-time distances. These metrics form a net—a con-
cept used in topology that generalizes infinite sequences—that converges point-
wise to the linear-time metrics. The result is interesting in itself, since it reveals a
nontrivial link (by means of a converging net) between branching and linear-time
metric-based semantics that does not hold when a more standard equivalence-
based semantics on MCs is used instead. This opens new perspectives in the
study of the operational behavior of quantitative systems, and suggests relat-
ing behavioral distances by means of converging nets rather than the standard
‘greater than or equal to’ relation, commonly used in the literature (e.g., in [8]).
The technical contributions of the paper can be summarized as follows.

1. We provide a logical characterization of the trace distance terms of LTL. This
result, differently from previous proposals (e.g. [8,10]), explicitly relates the
trace distance to the probabilistic model checking problem of LTL formu-
las. We show that a similar characterization holds also for the stutter trace
distance on the fragment of LTL without next operator.

2. We construct two nets of bisimilarity-like distances that converge to the strong
and stutter trace distance. This construction leverages on a classical duality
result that characterizes the total variation distance between two measures as
the minimal discrepancy associated with their couplings. To do so we generalize
and improve two important results in [5], namely Theorem 8 and Corollary 11.
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3. We demonstrate that each element of the proposed converging nets is com-
putable in polynomial time in the size of the MC. Moreover, we provide other
two sequences of pseudometrics that, respectively, converges from below to
the two linear distances. Also the lower approximants are proven to be poly-
nomially computable. The pairs of converging sequences of upper and lower
approximants form the approximation schemata for the problem of comput-
ing the strong and stutter trace distances. The approximation schema for the
trace distance improves the one proposed in [6].

2 Preliminaries and Notation

The set of functions from X to Y is denoted by Y X . Any preorder � on Y
is extended to Y X as f � g iff f(x) � g(x), for all x ∈ X. For f ∈ Y X , let
≡f = {(x, x′) | f(x) = f(x′)}. For R ⊆ X×X an equivalence relation, X/R is the
quotient set, [x]R the R-equivalence class of x, and for A ⊆ X, [A]R =

⋃
x∈A[x]R.

Measure Theory. A field over a set X is a nonempty family Σ ⊆ 2X closed
under complement and finite union. Σ is a σ-algebra if, in addition, it is closed
under countable union; in this case (X,Σ) is called a measurable space and the
elements of Σ measurable sets. For F ⊆ 2X , σ(Σ) denotes the smallest σ-algebra
containing F . For (X,Σ),(Y,Θ) measurable spaces, f : X → Y is measurable if
for all E ∈ Θ, f−1(E) = {x | f(x) ∈ E} ∈ Σ. The product space, (X,Σ)⊗(Y,Θ),
is the measurable space (X ×Y,Σ ⊗Θ), where Σ ⊗Θ is the σ-algebra generated
by the rectangles E × F , for E ∈ Σ and F ∈ Θ. A measure on (X,Σ) is a σ-
additive function μ : Σ → R+, i.e., μ(

⋃
i∈N

Ei) =
∑

i∈N
μ(Ei) for all of pairwise

disjoint Ei ∈ Σ; it is a probability measure if, in addition, μ(X) = 1. Hereafter
Δ(X,Σ) denotes the set of probability measures on (X,Σ). Given a measurable
function f : (X,Σ) → (Y,Θ), any measure μ on (X,Σ) defines a measure μ[f ]
on (Y,Θ) by μ[f ](E) = μ(f−1(E)), for all E ∈ Θ; it is called the push forward
of μ under f. A measure ω on (X,Σ) ⊗ (Y,Θ) is a coupling for (μ, ν) if for all
E ∈ Σ and F ∈ Θ, ω(E × Y ) = μ(E) and ω(X × F ) = ν(F ) (i.e., μ is the left
and ν the right marginal of ω). Ω(μ, ν) denotes the set of couplings for (μ, ν).

Metric Spaces. For a set X, d : X × X → R+ is a pseudometric on X if for
any x, y, z ∈ X, d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥ d(x, z); d is
a metric if, in addition, d(x, y) = 0 implies x = y. If d is a (pseudo)metric on X,
(X, d) is called a (pseudo)metric space. We define ker(d) = {(u, v) | d(u, v) = 0}.
For (X,Σ) a measurable space, Δ(X,Σ) can be metrized by the total variation
distance ‖μ − ν‖ = supE∈Σ |μ(E) − ν(E)|. A (pseudo-)metric d : X × X → R+

is lifted to Δ(X,Σ) by means of the Kantorovich (pseudo-)metric, defined as
K(d)(μ, ν) = min

{∫
d dω | ω ∈ Ω(μ, ν)

}
.

The Space of Words. Let Xn be the set of words on X of length n ∈ N,
X∗ =

⋃
n∈N

Xn, AB = {ab ∈ X∗ | a ∈ A, b ∈ B} (A,B ⊆ X∗) and X+ = XX∗.
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An infinite word π = x0x1 . . . over X is an element in Xω. For i ∈ N, define
π[i] = xi, π|i = x0 . . . xi−1 ∈ Xi, and π|i = xixi+1 . . . ∈ Xω. For A ⊆ Xn, the
cylinder set for A (of rank n) is defined as C(A) = {π ∈ Xω | π|n ∈ A} ⊆ Xω.
For an arbitrary family F ⊆ 2X , let Cn(F) = {C(X1 · · · Xn) | Xi ∈ F}, for n ≥ 1,
and C(F) =

⋃
n≥1 C

n(F).
If (X,Σ) is a measurable space, (X,Σ)n denotes the product space over Xn,

and (X,Σ)ω the measurable space over Xω with σ-algebra generated by C(Σ)
(i.e., the smallest s.t., for all n ∈ N, the prefix (·)|n and tail (·)|n functions are
measurable). Note that, the stepwise extension fω : Xω → Y ω of the function
f : X → Y is measurable if f is so. Often, Xn and Xω will also denote (X, 2X)n

and (X, 2X)ω, respectively.

3 Markov Chains and Linear-Time Equivalences

In this section we recall discrete-time Markov chains and the notions of strong
and stutter probabilistic trace equivalences on them.

In what follows we fix a finite set A of atomic propositions.

Definition 1. A Markov chain is a tuple M = (S, τ, �) consisting of a countable
set S of states, a transition probability function τ : S → Δ(S) and a labeling
function � : S → 2A.

Intuitively, if M is in the state u, it moves to a state v ∈ S with probability
τ(u)(v). We say that p ∈ A holds in u if p ∈ �(u). We will use M = (S, τ, �) to
range over the class of MCs and we will refer to it and its constituents implicitly.

An MC can be thought of as a stochastic process that, from an initial state u,
emits execution runs distributed according to the probability P(u) given below.

Definition 2. Let P : S → Δ(Sω) be such that, for all u ∈ S, P(u) is the unique
probability measure1 on Sω such that, for all n ≥ 1 and Ui ⊆ S (i = 0..n)

P(u)(C(U0 · · · Un)) = 1U0(u) · ∫
P(·)(C(U1 · · · Un)) dτ(u) ,

where 1A denotes the indicator function for a set A.

Intuitively, P(u)(E) is the probability that, starting from u, the MC executes a
run in E ⊆ Sω. For example, P(u)(C(u0..un)) = 1u0(u) · ∏n−1

i=0 τ(ui)(ui+1).

Remark 3. In Definition 2, since C(U0) = C(U0S), the case P(u)(C(U0)) is cov-
ered implicitly. Indeed, P(u)(C(U0S)) = 1U0(u) · ∫

P(·)(C(S)) dτ(u) = 1U0(u) ·∫
1 dτ(u) = 1U0(u), since for all v ∈ S, P(v) is a probability measure. 
�

Two states of an MC are considered equivalent if they exhibit the same “observ-
able behaviour”. In this work we focus on linear-time properties. In this respect,
we recall the most used linear-time equivalences on MCs: strong and stutter
probabilistic trace equivalences.
1 Existence and uniqueness follows by the Hahn-Kolmogorov extension theorem.
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Fig. 1. (Left) u and v are stutter trace equivalent but neither bisimilar nor trace equiv-
alent; (Right) δt(u, v) =

√
2/4 (see [6]) and δb(u, v) = 1/2. States are labeled by colors.

Definition 4. Two states u, v ∈ S are probabilistic trace equivalent, written
u ∼t v, if for all T ∈ C(S/≡�

), P(u)(T ) = P(v)(T ).

Intuitively, ∼t tests two states w.r.t. all linear-time events, considered up to
label equivalence. This is in accordance to the fact that the only things that
we observe in a state are the atomic properties (labels). Hereafter, T denotes
C(S/≡�

) and its elements are called trace cylinders.
The stutter (or weak) variant of the probabilistic trace equivalence considers

a transition step as “visible” only when a change of the current behavior occurs.
The guiding idea to define stutter events is to replace the notion of “step” with
that of “stutter step”. Formally, this corresponds to change the definitions of
the tail (i.e., the “next step”) and prefix functions over infinite words. Let X
be a set and R ⊆ X × X equivalence. For n ≥ 1, define the n-th R-stutter tail
function tlnR : Xω → Xω, by induction on n, as follows

tl1R(π) =

{
π|j if ∃j s.t. (π[0], π[j]) /∈ R and ∀i < j, (π[0], π[i]) ∈ R

π otherwise (i.e., π is R-constant) ,

tln+1
R (π) = tl1R(tlnR(π)) .

Intuitively, tl1R seeks for the first tail whose head is not R-equivalent to π[0] (if it
exists!) and tlnR(π) is the n-th composition of it. For example, let π = aaabbbcω,
then tl1=(π) = bbbcω and, for all n > 1, tln=(π) = cω. The n-th R-stutter prefix
function pfnR : Xω → Xn is defined, by induction on n ≥ 1, as pf1R(π) = π[0] and
pfn+1

R (π) = π[0]pfnR(tl1R(π)).
Now, the standard definition of cylinder set for A ⊆ Xn can be turned to that

of R-stutter cylinder set for A (of rank n) as CR(A) = {π ∈ Xω | pfnR(π) ∈ A}.
For a family F ⊆ 2X , denote by Cn

R(F) = {CR(E1 · · · En) | Ei ∈ F} the set of
all R-stutter cylinders of rank n over F and CR(F) =

⋃
n≥1 C

n
R(F). If (X,Σ) a

measurable space, we denote by (X,Σ)ω
R the measurable space of infinite words

over X with σ-algebra generated by σ(CR(Σ)) (i.e., the smallest σ-algebra such
that, for all n ≥ 1, the n-th R-stutter prefix and tail functions are measurable).

Definition 5. Two states u, v ∈ S are probabilistic stutter trace equivalent,
written u ∼st v, if for all T ∈ C≡�

(S/≡�
), P(u)(T ) = P(v)(T ).

Intuitively, ∼st equates the states that have the same probability on all the
≡�-stutter linear-time events, considered up to label equivalence. Hereafter, ST
denotes C≡�

(S/≡�
) and its elements will be called stutter trace cylinders.
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By σ-additivity of the measures P(u), for all u ∈ S, it is easy to show that
∼t ⊆ ∼st. Note that, ∼st �⊆ ∼t (see Fig. 1(left) for a counterexample).

4 Trace Distances and Probabilistic Model Checking

We give the definitions of strong and stutter trace distances and provide logical
characterizations to both of them in terms of suitable fragments of LTL, relating
the two behavioral distances to the probabilistic model checking problem.

Linear Distances. The strong and stutter probabilistic trace equivalences on
MCs are naturally lifted to pseudometrics δt, δst : S × S → [0, 1] as follows

δt(u, v) = supE∈σ(T ) |P(u)(E) − P(v)(E)| , (strong trace distance)

δst(u, v) = supE∈σ(ST ) |P(u)(E) − P(v)(E)| . (stutter trace distance)

Observe that two states u, v ∈ S are strong (resp. stutter) trace equivalent iff
δt(u, v) = 0 (resp. δst(u, v) = 0). Moreover, by σ(ST ) ⊆ σ(T ), it holds δst ≤ δt.

Note that, the above distances are total variation distances between two mea-
sures, namely the restriction of P(u) and P(v), on σ(T ) and σ(ST ), respectively.

Linear Temporal Logic. (LTL) is a formalism for reasoning about sequences
of events [21]. The LTL formulas are generated by the following grammar

ϕ ::= p | ⊥ | ϕ → ϕ | Xϕ | ϕ U ϕ , where p ∈ A .

Let LTL-u and LTL-x be the fragments, respectively, built without until (U)
and next (X) operators. The semantics of the formulas is given by means of a
satisfiability relation defined, for an MC M and π ∈ Sω, as follows

M, π |= p if p ∈ �(π[0]) ,

M, π |= ⊥ never ,

M, π |= ϕ → ψ if M, π |= ψ whenever M, π |= ϕ ,

M, π |= Xϕ if M, π|1 |= ϕ ,

M, π |= ϕ U ψ if ∃i ≥ 0 s.t. M, π|i |= ψ, and ∀ 0 ≤ j < i, M, π|j |= ϕ .

Define [[ϕ]] = {π | M, π |= ϕ} and [[L]] = {[[ϕ]] | ϕ ∈ L}, for any L ⊆ LTL. The
probabilistic model checking problem for MCs against LTL formulas consists in
determining the probability P(u)([[ϕ]]) for an initial state u and ϕ ∈ LTL. For
any L ⊆ LTL, the pseudometric

δL(u, v) = supϕ∈L |P(u)([[ϕ]]) − P(v)([[ϕ]])|
measures the maximal difference that can be observed between the states u and v
by model checking them over a set L of linear temporal logic formulas of interest.

In the rest of the section we characterize δt and δst respectively as δLTL (or
δLTL-u) and δLTL-x . We do this by exploiting the following result.
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Lemma 6 ([2]). Let μ and ν be two finite measures on a measurable space
(X,Σ). If Σ is generated by a field F , then ‖μ − ν‖ = supE∈F |μ(E) − ν(E)|.
By Lemma 6, to provide a logical characterization for δt it suffices to show that
the σ-algebra σ(T ) is generated by [[LTL]] (or [[LTL-u]]).

Theorem 7. (i) σ(T ) = σ([[LTL]]) = σ([[LTL-u]]), (ii)δt = δLTL = δLTL-u .

Remark 8. δt = δLTL is not trival. Figure 1(right) shows an MC from [6, Ex. 1]2

where it is proven that δt(u, x) is obtained on a maximizing event in σ(T ) that
is not ω-regular, hence it cannot be expressed by a single LTL formula. 
�
In Theorem 7, the proof of σ(T ) ⊆ σ([[LTL]]) uses the measurability of the n-th
tail function (·)|n w.r.t. σ(T ). However, (·)|n is not measurable w.r.t. σ(ST ), so
the logical characterization does not carry over easily to the stutter case.

We solve this problem by giving a coinductive characterization to Lamport’s
stutter equivalence [16] (for a standard definition see e.g. [3, Sect. 7.7.1]). For a
relation R ⊆ Sω × Sω, π ∈ Sω is said R-constant if, for all i ∈ N, π R π|i.
Definition 9. A relation R ⊆ Sω × Sω is a stutter relation if whenever π R ρ

(i) π[0] ≡� ρ[0];
(ii) π is R-constant iff ρ is R-constant;
(iii) π|1 R ρ or π R ρ|1 or π|1 R ρ|1.

Two traces π, ρ ∈ Sω are stutter equivalent, written π � ρ, if they are related
by some stutter relation.

Stutter relations are closed under union and reflexive/symmetric/transitive
closure, therefore � is an equivalence and a stutter relation.

Proposition 10. π � ρ iff ∀ϕ ∈ LTL-x. (M, π |= ϕ ⇔ M, ρ |= ϕ).

The above states that � characterizes the logical equivalence w.r.t. LTL-x.
Definition 9 and Proposition 10 are essential to prove the next result.

Theorem 11. (i) σ(ST ) = σ([[LTL-x]]), (ii) δst = δLTL-x .

Proof. We prove (i), then (ii) follows by Lemma 6. (⊇) We prove [[ϕ]] ∈ σ(ST )
by induction on ϕ. We show the case ϕ = φ U ψ. Define q : Sω → Sω, as q(π) =
pf1≡�

(π)q(tl1≡�
(π))3. The function q is idempotent, moreover, it is σ(ST )–σ(T )

measurable, i.e., for all E ∈ σ(T ), q−1(E) ∈ σ(ST ). It can be shown that
R={(π, ρ) | q(π) ≡�ω q(ρ)} is a stutter relation. Therefore, by q(π) ≡�ω q(q(π)),
we get π R q(π), hence π � q(π). Then, the following hold:

[[φ U ψ]] = {π | ∃i ≥ 0. q(π)|i ∈ [[ψ]], ∀0 ≤ j < i. q(π)|j ∈ [[φ]]} ([[·]] & Prop. 10)
=

⋃
i≥0

⋂
0≤j<i(((·)|i ◦ q)−1([[ψ]]) ∩ ((·)|j ◦ q)−1([[φ]])) . (preimage)

2 The MC has been adapted to the case of labeled states, instead of labeled transitions.
3 Note that q = limn≥1 pf

n
≡�

, i.e., it is the unique map s.t., for all n ≥ 1, pfn≡�
= (·)n◦q.
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By inductive hypothesis on φ, ψ and σ(ST )-measurability of (·)|k ◦ q, for any
k ∈ N, it follows that [[φUψ]] ∈ σ(ST ). (⊆) The σ-algebra σ(ST ) is alternatively
generated by the family F =

{
C≡�

(C1 · · · Cn) ∈ ST | Ci �= Ci+1

}
. Hence, it suf-

fices to show F ⊆ σ([[LTL-x]]). Define B : F → LTL-x by induction as follows,

B(C≡�
(C1)) =

∧
p∈A

A(p,C1) ,

B(C≡�
(C1 · · · Cn+1)) =

(
B(C≡�

(C1)) ∧ ¬B(C≡�
(C2)

)
U B(C≡�

(C2 · · · Cn+1)) ,

where A(p,C) = p if there exists s ∈ C s.t. p ∈ �(s), otherwise A(p,C) = ¬p.
For T ∈ F one can prove that [[B(T )]] = T . 
�

5 Convergence from Branching to Linear Distances

We provide two nets of pseudometrics that converge, respectively, to the strong
and stutter trace distances. The pseudometrics are shown to be liftings of multi-
step extensions of probabilistic bisimilarity and a suitable stutter variant of it.

Our construction is inspired by [5, Cor. 11], where the bisimilarity pseudo-
metric δb of Desharnais et al. [11] is shown to be an upper bound for the trace
distance δt. Their result is based on an alternative characterization of δb by means
of the notion of “coupling structure” [5, Th. 8]. The proof of δt ≤ δb uses a classic
duality result asserting that the total variation of two measures coincides to the
minimal discrepancy measured among all their couplings (Lemma 12). Formally,
given μ, ν ∈ Δ(X,Σ), the discrepancy of ω ∈ Ω(μ, ν) is the value ω(�∼=Σ), where
∼=Σ =

⋂ {E × E | E ∈ Σ} is the inseparability relation w.r.t. Σ.

Lemma 12 ([18, Th.5.2]). Let μ, ν be probability measures on (X,Σ). Then,
provided that ∼=Σ is measurable in Σ⊗Σ, ‖μ−ν‖ = min {ω(�∼=Σ) | ω ∈ Ω(μ, ν)}.

Along the way to obtain our construction, we nontrivially extend (and improve
the proofs of) both Corollary 11 and Theorem 8 in [5]. Moreover, this construc-
tion reveals a nontrivial relation between branching and linear-time metric-based
semantics (by means of a convergence of the observable behaviors) that does not
hold by using the standard equivalence-based semantics.

5.1 The Strong Case

We start by introducing a multi-step generalization of probabilistic bisimulation.

Definition 13. Let k ≥ 1. An equivalence relation R ⊆ S×S is a k-probabilistic
bisimulation on M if whenever u R v, then, for all Ei ∈ S/≡�

and C ∈ S/R,

P(u)(C(E0 · · · Ek−1C)) = P(v)(C(E0 · · · Ek−1C)) .

Two states u, v ∈ S are k-probabilistic bisimilar, written u ∼k
b v, if they are

related by some k-probabilistic bisimulation.
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The notion of k-bisimulation weakens that of probabilistic bisimulation of
Larsen and Skou [17] by equating states that have the same probability to move
to the same k-bisimilarity class after having observed the same labels within
k-steps. Note that ∼1

b coincides with Larsen and Skou bisimilarity. Moreover,
for all k ≥ 1, ∼k

b is a k-bisimulation and, by σ-additivity of the measures,
∼1

b ⊆ ∼k
b ⊆ ∼t.

u

x

y z

1
2

1
2

1
2

1
2

1 1

v

a b

c d

1
2

1
4

1
4

1
2

1
2

1 1

Remark 14. Clearly,
⋃

k≥1 ∼k
b ⊆ ∼t. How-

ever, the converse inclusion does not hold.
A counterexample is shown in the picture
aside, where states are labeled by colors.

It is easy to see that u and v are prob-
abilistic trace equivalent, but they are not
probabilistic k-bisimilar for any k ≥ 1. 
�

u

x

y z

1

1
2

1
2

1 1

v

a b

c d

1
2

1
2

1
2

1
21 1

Remark 15. Differently from what one may
expect, the k-bisimilarities do not necessar-
ily get weaker by increasing k, i.e., for an
arbitrary k ≥ 1, it does not hold ∼k

b ⊆ ∼k+1
b .

An example is shown aside where u ∼4
b v but

u �∼5
b v, hence ∼4

b �⊆ ∼5
b . 
�

Next we show how to “lift” the above equivalences to behavioral pseudometrics.
A pseudometric that lifts bisimilarity is δb [11], defined as the least fixed point
of the following operator on 1-bounded pseudometrics d : S × S → [0, 1]

Θ(d)(u, v) =

{
1 if u �≡� v

K(d)(τ(u), τ(v)) otherwise .
(Kantorovich Operator)

Intuitively, two states are incomparable if they have different labels, otherwise
the difference is given by Kantorovich distance of their transition probabilities.

Analogously, for k ≥ 1, define the k-steps transition probability function
τk : S → Δ(Sk) as the function such that τk(u) is the unique probability mea-
sure on Sk that, for all Ui ⊆ S (i = 1..k), τk(u)(U1 · · · Uk) = P(u)(C(uU1 · · · Uk))
(i.e., τk(u) = P(u)[(·)k ◦ (·)|1]). Note that, τ = τ1. Then Θ is generalized by

Θk(d)(u, v)

{
1 if u �≡� v

K(Λk(d))(τk(u), τk(v)) otherwise .

where Λk(d)(u1..uk, v1..vk) = 1 if ui �≡� vi for some i = 1..k, otherwise d(uk, vk).
We call the above k-Kantorovich operator. It is easy to see that Θk is monotonic,
so that, by Tarski fixed point theorem, it has least fixed point, hereafter denoted
by δk

b . Note that δ1b = δb, moreover the following hold.
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Lemma 16 (k-Bisimilarity Distance). u ∼k
b v iff δk

b (u, v) = 0.

Due to the above result we call δk
b the k-bisimilarity pseudometric.

Next we characterize δk
b by means of the notion of coupling structure of

rank k. A coupling structure may be thought of as a stochastic process generating
of infinite traces of pairs of states starting from a distinguished initial pair (u, v)
and distributed according to a coupling in Ω(P(u),P(v)). The traces of pairs of
states are generated by multi-steps of length k.

Definition 17 (Coupling Structure). A function C : S ×S → Δ(Sk ⊗Sk) is
a coupling structure of rank k ≥ 1 if for all u, v ∈ S, C(u, v) ∈ Ω(τk(u), τk(v)).

The set of coupling structures of rank k is denoted by Ck.

Definition 18. For k ≥ 1 and C ∈ Ck, let PC : S × S → Δ(Sω ⊗ Sω) be such
that, for all u, v ∈ S, PC(u, v) is the unique probability measure on Sω ⊗Sω such
that, for all, n ≥ 1 and Ui, Vi ⊆ S (i = 0..nk).

PC(u, v)(C(U0,nk)×C(V0,nk)) = 1U0×V0(u, v) · ∫ PC(·)(C(Uk,nk) × C(Vk,nk)) dω ,

where, Ui,j = Ui · · · Uj (similarly for V )4 and ω is the unique (subprobability)
measure on S ⊗S s.t., for all A,B ⊆ S , ω(A×B) = C(u, v)(U1,k−1A×V1,k−1B).

The following lemma extends [5, Th. 8] to k-bisimilarity pseudometrics and
provides the alternative characterization of δk

b in terms of coupling structures.

Lemma 19 (Coupling Lemma). δk
b (u, v) = inf {PC(u, v)(�≡�ω ) | C ∈ Ck}.

Thanks to Lemma 19 and the next result we can show that the k-bisimilarity
pseudometrics δk

b form a net that converges point-wise to the trace distance δt.
Recall that a poset is directed if all its finite subsets have an upper bound.

A net over a topological space X is a function from a directed poset to X. We
denote a net as (xi)i∈D, meaning that i ∈ D is mapped to xi. A net (xi)i∈D over
X converges to x ∈ X, written (xi)i∈D → x, if for every open subset A ⊆ X
such that x ∈ A, there exits h ∈ D such that, for all j � h, xj ∈ A.

Theorem 20. Let (X,Σ) be a measurable space s.t. ∼=Σ ∈ Σ ⊗ Σ, μ, ν be prob-
ability measures on it, (D,�) be a directed poset and Ω : D → 2Ω(μ,ν) be a
monotone map such that

⋃
i∈D Ω(i) is dense in Ω(μ, ν) w.r.t. the total variation

distance. Then, the net (ui)i∈D over R+ defined by ui = inf {ω(�∼=Σ) | ω ∈ Ω(i)},
converges to ‖μ − ν‖.
Proof. By Lemma 12, for all i ∈ D, ui ≥ ‖μ − ν‖. Moreover, by monotonicity
of Ω, i � j implies ui ≤ uj . Therefore, to prove (ui)i∈D → ‖μ − ν‖, it suffices
to show infi∈D ui = ‖μ − ν‖. Recall that for Y �= ∅ and f : Y → R bounded
and continuous, if D ⊆ Y is dense then inf f(D) = inf f(Y ). By hypothesis⋃

i∈D Ω(i) ⊆ Ω(μ, ν) is dense; moreover, μ × ν ∈ Ω(μ, ν) �= ∅. We show that

4 We assume that Ui,j = {ε} whenever i > j.
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ev	∼= : Ω(μ, ν) → R, defined by ev	∼=(ω) = ω(�∼=) is bounded and continuous. It is
bounded since all ω ∈ Ω(μ, ν) are probability measures. It is continuous because
‖ω − ω′‖ ≥ |ω(�∼=) − ω′(�∼=)| = |ev	∼=(ω) − ev	∼=(ω′)| (1-Lipschitz continuity). Now,
applying Lemma 12, we derive our result. 
�
Recall that, δt(u, v) is the total variation distance between P(u) and P(v)
restricted on σ(T ). Observe that the inseparability relation w.r.t. σ(T ) is ≡�ω ,
which is easily seen to be measurable in σ(T ) ⊗ σ(T ). Therefore, by Lemma 12,

δt(u, v) = min {ω(�≡�ω ) | ω ∈ Ω(P(u),P(v))} .

The next lemma shows that (i) a coupling structure C induces a measure
PC(u, v) which is a proper coupling for the pair (P(u),P(v)); (ii) the set of
couplings constructed via the coupling structures grows by multiples of the rank
k; and (iii) their union is dense in Ω(P(u),P(v)).

Lemma 21. Let u, v ∈ S be a pair of states of an MC M. Then,

(i) for k ≥ 1 and C ∈ Ck, PC(u, v) ∈ Ω(P(u),P(v));
(ii) for k, h ≥ 1, {PC(u, v) | C ∈ Ck} ⊆ {PC(u, v) | C ∈ Chk};
(iii)

⋃
k≥1 {PC(u, v) | C ∈ Ck} is dense in Ω(P(u),P(v)) w.r.t. the total variation.

Proof. (sketch) (i) It follows directly by definition of PC and the definitional
conditions of coupling structures. (ii) Let k, h ≥ 1 and C ∈ Ck. Define D(u, v) as
the unique measure on Shk ⊗ Shk such that, for all E,F ⊆ Shk,

D(u, v)(E × F ) = PC(C(SE) × C(SF )).

Then, D ∈ Chk and PC(u, v) = PD(u, v). (iii) Let Ω =
⋃

k≥1 {PC(u, v) | C ∈ Ck}.
Note that

⋃
n∈N

{C(E) × C(F ) | E,F ⊆ Sn} is a field generating the σ-algebra
of Sω ⊗Sω. To prove that Ω is dense w.r.t. the total variation it suffices to show
that, for all μ ∈ Ω(P(u),P(v)), n ∈ N and E,F ⊆ Sn, there exists ω ∈ Ω s.t.
ω(C(E) × C(F )) = μ(C(E) × C(F )) (consequence of [2, Lemma 5]). One can
check that this equality holds for ω = PC(u, v) and C ∈ Cn s.t. C(u, v) = μ[f ] is
the push forward of μ along f : Sω → Sn, defined as f(π, ρ) = (π|1n, ρ|1n). 
�
Note that Lemmas 19 and 21(i) imply that, for all k ≥ 1, δk

b ≥ δt. This general-
izes [5, Cor. 11] to arbitrary k-bisimilarity distances.

Denote by K the poset over N \ {0} with partial order n � m iff there exists
k ∈ N such that m = nk. It is easy to see that K is directed. According to
Theorem 20, Lemmas 19 and 21 suffice to prove the following net-convergence.

Theorem 22 (Convergence). The net (δk
b )k∈K converges point-wise to δt.

Remark 23. The use of the preorder � in the definition of the directed poset K

is essential in Theorem 22. Indeed, if � is replaced by the standard total order
≤ over natural numbers, the net-convergence does not hold (by Lemma 16, the
MC shown in Remark 15 provides a counterexample). 
�
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Remark 24 (Equivalence vs Metric-based semantics). Although
⋃

k≥1 ∼k
b �= ∼b

(see Remark 14), by Theorem 22, we have that infk≥1 δk
b = δt. Note that this is

not in contradiction with Lemma 16. Actually it shows how much an equivalence
and a metric-based semantics may differ. The explanation is topological, and it is
due to the fact that equivalences (interpreted as functions) differ from 1-bounded
pseudometrics by mapping pairs of states to the two-point space {0, 1} (with the
discrete topology) which is disconnected, whereas [0, 1] is connected. 
�

5.2 The Stutter Case

We show how the construction that led to Theorem 22 can be easily adapted to
obtain a net that converges to the strutter trace distance δst. This proves that
the method is general enough to accommodate nontrivial convergence results.

Definition 25. Let k ≥ 1. An equivalence relation R ⊆ S × S is a ≡�-stutter
k-probabilistic bisimulation on M if whenever u R v, then, for all Ei ∈ S/≡�

and C ∈ S/R,

P(u)(C≡�
(E0 · · · Ek−1C)) = P(v)(C≡�

(E0 · · · Ek−1C)) .

Two states u, v ∈ S are ≡�-stutter k-probabilistic bisimilar, written u ∼k
sb v, if

they are related by some ≡�-stutter k-probabilistic bisimulation.

The above definition weakens that of k-probabilistic bisimulation by restricting
the events to be tested only to those that are ≡�-stutter invariant.

It is easy to show that, for all k ≥ 1, ∼k
b ⊆ ∼k

sb. Note that, ∼k
sb �⊆ ∼k

b (in
Fig. 1(left), u ∼1

sb v but u �∼1
b v). In analogy with the strong case, for all k ≥ 1,

∼k
sb is a ≡�-stutter k-bisimulation, ∼1

sb ⊆ ∼k
sb ⊆ ∼st.

Now we lift these equivalences to pseudometrics by means of a Kantorivich-
like operator. For k ≥ 1, define the ≡�-stuttered k-steps transition probability
function τk

s : S → Δ(Sk) as the function s.t., τk
s (u) is the unique probability

measure on Sk that, for all Ui ⊆ S , τk
s (u)(U1 · · · Uk) = P(u)(C≡�

(uU1 · · · Uk))
(i.e., τk

s (u) = P(u)[pfk≡�
◦ tl1≡�

]). Define, for d : S × S → [0, 1] pseudometric,

Ψk(d)(u, v) =

{
1 if u �≡� v

K(Λk(d))(τk
s (u), τk

s (v)) otherwise .

The above extends to the stutter case the k-Kantorovich operator. Clearly, Ψk

is monotonic, so that, by Tarski fixed point theorem, it has a least fixed point,
denoted by δk

sb.
Due to the following result we call δk

sb the ≡�-stutter k-bisimilarity distance.

Lemma 26 (Stutter k-Bisimilarity Distance). u ∼k
sb v iff δk

sb(u, v) = 0.

Next we provide a characterization of δk
sb by means of the notion of coupling

structure, now modified to accommodate the notion of ≡�-stutter step.
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Definition 27. A function C : S ×S → Δ(Sk ⊗Sk) is a stutter coupling struc-
ture of rank k ≥ 1 if, for all u, v ∈ S, C(u, v) ∈ Ω(τk

s (u), τk
s (v)).

Hereafter, Cs
k denotes the set of stutter coupling structures of rank k.

Denote by st(Sω) the measurable space over Sω with σ-algebra σ(C≡�
(2S)).

The stutter coupling structures are used to define measures in the product space
st(Sω) ⊗ st(Sω).

Definition 28. For k ≥ 1 and C ∈ C
s
k, let PC : S × S → Δ(st(Sω) ⊗ st(Sω))

be such that, for all u, v ∈ S, PC(u, v) is the unique probability measure on
st(Sω) ⊗ st(Sω) such that, for all, n ≥ 1 and Ui, Vi ⊆ S (i = 0..nk)

PC(u, v)(C≡�
(U0,nk)×C≡�

(V0,nk)) = 1U0×V0 (u, v) · ∫ PC(·)(C≡�
(Uk,nk)×C≡�

(Vk,nk)) dω ,

where, Ui,j = Ui · · · Uj (similarly for V ) and ω is the unique (subprobability)
measure on S ⊗S s.t., for all A,B ⊆ S , ω(A×B) = C(u, v)(U1,k−1A×V1,k−1B).

The following gives a characterization of the k-stutter bisimilarity pseudometric
δk
sb in terms of stutter coupling structures. Note that, by Proposition 10, � is

the inseparability relation w.r.t. σ(ST ) and, since LTL-x is countable, it holds
� ∈ σ(ST ) ⊗ σ(ST ).

Lemma 29 (Coupling Lemma). δk
sb(u, v) = inf {PC(u, v)(��) | C ∈ C

s
k}.

According to Theorem 20 what follows suffices to prove the convergence.

Lemma 30. Let u, v ∈ S be a pair of states of an MC M. Then,

i. for k ≥ 1 and C ∈ C
s
k, PC(u, v) ∈ Ω(P(u),P(v));

ii. for k, h ≥ 1, {PC(u, v) | C ∈ C
s
k} ⊆ {PC(u, v) | C ∈ C

s
hk};

iii.
⋃

k≥1 {PC(u, v) | C ∈ C
s
k} is dense in Ω(P(u),P(v)) w.r.t. the total variation,

where P(u) is assumed to be restricted on the sub-σ-algebra σ(C≡�
(2S)).

The next result is a direct consequence of Theorem 20, Lemmas 29, and 30.

Theorem 31 (Convergence). The net (δk
sb)k∈K converges point-wise to δst.

6 Approximation Schema for the Linear Distances

In this section we provide each of the two trace distances (strong and stutter)
with an approximation schema, that is, a pair of sequences of pseudometrics that
converges from below and above to them. We show that each lower- and upper-
approximant is computable in polynomial time in the size of the MC.

In the following, we assume that M has a finite set of states and its transition
probabilities are rational (i.e., τ(u)(v) ∈ Q∩ [0, 1]). The size of M is determined
by the sum of the size of the binary representation of its components. Under this
restrictions the pseudometrics proposed in this section have finite domain and
image in Q. They are computable if they can be computed on all their domain.
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6.1 The Strong Case

Lower-Approximants. The sequence of lower-approximants will be defined
by restricting the set of measurable sets over which δt evaluates the differences
in the probabilities. Formally, for k ≥ 1, let Ek be the set of all finite unions of
cylinders in Ck(S/≡�

). We define the pseudometrics lk : S × S → [0, 1] as follows

lk(u, v) = maxE∈Ek
|P(u)(E) − P(v)(E)|

The following lemma states that the sequence (lk)k≥1 is increasing and that
converges point-wise to the trace distance δt.

Lemma 32. For all k ≥ 1, lk ≤ lk+1 and δt = supk≥1 lk.

Proof. lk ≤ lk+1 follows by Ek ⊆ Ek+1. The equality δt = supk≥1 lk is a conse-
quence of [2, Theorem 6] and the fact that

⋃
k≥1 Ek is a field generating σ(T ).


�
By looking at its definition, it is not clear whether lk can be computed in poly-
nomial time in the size of M. Indeed, the maximum ranges over a set whose
cardinality may be exponential in |Sk| in the worst case. The following charac-
terization shows that to compute lk we do not need to evaluate the probabilities
on all the elements of Ek but only on the thin cylinders of rank k.

Proposition 33. lk(u, v) = 1
2

∑
C∈Ck(S) |P(u)(C) − P(v)(C))|.

Proof. Note that Ek is finite and closed under complement. Let F be the family of
cylinders C ∈ Ck(S) s.t. P(u)(C) ≥ P(v)(C). By Hahn decomposition theorem,
for F =

⋃ F we have P(u)(F )−P(v)(F ) = maxE∈Ek
|P(u)(E)−P(v)(E)|. Then

2 · lk(u, v) = 2 · ∑
F∈F P(u)(F ) − P(v)(F ) (σ-additive)

=
∑

F∈F (P(u)(F ) − P(v)(F )) + (P(v)(F c) − P(u)(F c)) (compl.)

=
∑

C∈Ck(S) |P(u)(C) − P(v)(C))| , (F ∪ Fc = Ck(S))

where the second equality holds since P(v)(F c) = 1 − P(v)(F ). 
�
Note that the cylinders in Ck(S) are all those of the form C(u1..uk), for some
ui ∈ S (i = 1..k), and P(u)(C(u1..uk)) = 1u1(u) · ∏k−1

i=1 τ(ui)(ui+1). Then,
by Proposition 33, to compute lk(u, v) we need only 2kSk multiplications, Sk

subtractions and Sk − 1 summations. Hence lk can be computed in O(kS2+k).

Theorem 34. lk can be computed in polynomial time in the size of M.

Upper-Approximants. The decreasing sequence (uk)k≥1 of upper-approxi-
mants converging to δt simply derives from the net of k-bisimilarity pseudomet-
rics presented in Sect. 5. and is defined by uk = δ2

k−1

b (actually, any infinite
subsequence of (δk)k∈K is fine). The actual contribution of this section is to
show that, for all k ≥ 1, the k-bisimilarity distance δk

b can be characterized as
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the optimal solution of a linear program that can be constructed and solved in
polynomial time in the size of the MC.

Our linear program characterization leverages on a dual linear program char-
acterization of the Kantorovich distance. For X finite, d : X × X → [0, 1] a
pseudometric and μ, ν ∈ Δ(X), the value of K(d)(μ, ν) coincides with the opti-
mal value of the following linear programs.

Primal Dual

min
ω

∑
x,y∈X d(x, y) · ωx,y

∑
y ωx,y = μ(x) ∀x ∈ X

∑
x ωx,y = ν(y) ∀y ∈ X

ωx,y ≥ 0 ∀x, y ∈ X

max
α

∑
x∈X(μ(x) − ν(x)) · αx

αx − αy ≤ d(x, y) ∀x, y ∈ X

Consider the linear program in Fig. 2, hereafter denoted by D. Note that for
an optimal solution of D the value of the unknown d ∈ R

S×S is maximized at
each component. Therefore, for an optimal solution of D it holds that, if u ≡� v
and u �∼k

b v, the maximal value of du,v is achieved at K(Λk(d))(τk(u), τk(v)).
Otherwise, du,v = 1 when u �≡� v, and du,v = 0 when u ∼k

b v. Thus, any
optimal solution of D induces a fixed point for Θk whose kernel coincides with
∼k

b . In fact, an optimal solution of D characterizes the greatest fixed point of
the operator Υ k : [0, 1]S×S → [0, 1]S×S defined by Υ k(d)(u, v) = 0 if u ∼k

b v,
otherwise Υ k(d)(u, v) = Θk(d)(u, v).

argmax
d,α

∑
u,v∈S du,v

du,v = 0 ∀u, v ∈ S. u ∼k
b v

du,v = 1 ∀u, v ∈ S. u 	≡� v

du,v =
∑

x∈Sk τk(u)(x) − τk(v)(x)
)
αu,v

x ∀u, v ∈ S. u ≡� v and u 	∼k
b v

αu,v
x − αu,v

y ≤ dxk,yk ∀u, v ∈ S ∀x, y ∈ Sk. ∀i. xi ≡� yi

αu,v
x − αu,v

y ≤ 1 ∀u, v ∈ S ∀x, y ∈ Sk. ∃i. xi 	≡� yi

Fig. 2. Linear program characterization of the k-bisimilarity distance δk
b .

Lemma 35. Υ k has a unique fixed point that coincides with δk
b .

This implies that for any optimal solution of D, du,v = δk
b (u, v), for all u, v ∈ S.

Note that D has a number of constraints bounded by O(|S|2 + |S|2k+2) and
a number of unknowns bounded by O(|S|2 + |S|k+2). Moreover, the following
lemma ensures that the linear program D can be constructed in polynomial time,
provided that k is a constant.

Lemma 36. ∼k
b can be computed in polynomial time in the size of M.
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Theorem 37. δk
b can be computed in polynomial time in the size of M.

Proof. (sketch) By Lemma 36, D can be constructed in polynomial time. Since
the number of constraints and unknowns in D are bounded by a polynomial in
the size of M, D can be solved in polynomial time with the ellipsoid method. 
�

6.2 The Stutter Case

As one may expect, the sequences (lkst)k≥1 and (uk
st)k≥1 of lower- and upper-

approximants for the stutter trace distance δsb can be defined similarly to those
we have shown in the previous section for the strong case. Specifically, for k ≥ 1

lkst(u, v) = maxE∈Sk
|P(u)(E) − P(v)(E)| and uk

st(u, v) = δ2
k−1

st ,

where Sk is the set of all finite unions of stutter trace cylinders in Ck
≡�

(S/≡�
).

Convergence and (anti)monotonicity of the sequences follow exactly as before.
However, what is not immediate is the proof that, for all k ≥ 1, lkst and uk

st can
actually be computed in polynomial time. The first difficulty arises, when for
computing lkst, we try to apply the characterization provided by Lemma 32:

lk(u, v) = 1
2

∑
C∈Ck≡�

(S) |P(u)(C) − P(v)(C))| .

The thin cylinders in Ck
≡�

(S) are of the form C(w), for some w ∈ A∗
1 · · · A∗

k and
Ai ∈ S/≡�

(i = 1..k), hence Ck
≡�

(S) is not finite (the word w can be arbitrar-
ily long). Similarly, as for computing uk

st, if we tried to apply directly the LP
characterization in Fig. 2 we would have an infinite number of constraints.

To cope with this problem, we propose a reduction from the stutter to the
strong case. Formally, we show that, for k ≥ 1, the problem of computing
P(u)(C≡�

(u1..uk)) and the k-stutter bisimilarity distance δk
sb for an MC M can

be reduced to computing P(u)(C(u1..uk)) and δk
b for an MC N derived from M.

The following states that N is obtained by replacing the probability tran-
sition function τ in M with the (1-)stutter probability transition function τ1

s .

Lemma 38. Let M = (S, τ, �) and N = (S, τ1
s , �). Then, for all k ≥ 1,

(i) Ui ⊆ S, PM(u)(C≡�
(U1 · · · Uk)) = PN (u)(C(U1 · · · Uk));

(ii) Ψk
M = Θk

N .

Next we show that N can be constructed in polynomial time and its size is
polynomial in the size of M. Consider the problem of computing τ1

s (u)(v).
We consider two possible cases:

Case u �≡� v. By definition τ1
s (u)(v) = PM(u)(C([u]+≡�

v)). This is the probability
of reaching the state v starting from u visiting only states in [u]≡�

prior to
reaching v. Using LTL-like notations, this can be written as PM(u)([u]≡�

U
{v}). This is a well studied probabilistic model checking problem that can be
solved in polynomial time in the size of M as the solution of a linear system
of equations (see e.g. [3, Sect. 10.1.1 p.762]).
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Case u ≡� v. By definition τ1
s (u)(v) = PM(u)(uv[v]ω≡�

). This corresponds to the
probability of making a transition from u to v and, from v, generating an
infinite run that never escapes from the ≡�-equivalence class of v, i.e., τ(u)(v)·
P(v)([v]ω≡�

). The probability PM(v)([v]ω≡�
) can be conveniently computed as

1−∑
x	≡�u τ1

s (v)(x), reusing the probabilities computed in the previous case.

Therefore N can be constructed in polynomial time in the size of M.

Lemma 39. N = (S, τ1
s , �) has size polynomial in the size of M.

Proof. It suffices to show that τ1
s is rational of size polynomial in the size of

M. Let u, v ∈ S. If u �≡� v then τ1
s (u)(v) = PM(u)([u]≡�

U {v}). Its value
is the solution of a system of linear equations where the coefficients are some
transition probabilities taken from M (or a sum of them). Therefore τ1

s (u)(v) is
an intersection of hyperplanes given by some equalities with rational coefficients
whose size is bounded in the size of M. Thus, we conclude that τ1

s (u)(v) is
rational of size polynomial in size of M. The case u �≡� v follows by the previous
one since τ1

s (u)(v) = τ(u)(v) · (1 − ∑
x	≡�u τ1

s (v)(x)).

By Lemmas 38 and 39, and Theorems 34 and 37, the following holds.

Theorem 40. lksb and δk
sb can be computed in polynomial time in the size of M.

Remark 41. Theorems 37 and 40 do not contradict the fact that the problem of
approximating the trace distances up to a given precision ε > 0 is NP-hard [7].
Indeed, this requires one to compute the lower and upper approximants lk∗ and
δk
∗ (∗ ∈ {b, sb}), for increasing values of k, until δk

∗ − lk∗ < ε. Note that the
time-complexity of this procedure increases exponentially in the value of k. 
�

7 Conclusions and Future Work

In this paper we provided the strong and stutter trace distances with a logical
characterization in terms of LTL and LTL-x formulas, respectively. These char-
acterizations, differently from other proposals, relate these behavioral distances
to the probabilistic model checking problem over MCs.

Then, we proposed a family of behavioral equivalences, namely probabilis-
tic k-bisimilarities, that weaken probabilistic bisimilarity of Larsen and Skou
on MCs. This equivalences are in turn generalized to pseudometrics by means
of a fixed point definition that uses a generalized Kantorovich operator. These
pseudometrics are shown to form a net that converges point-wise to the trace
distance. Remarkably, to prove this convergence we extended and improved two
important results in [5], namely, Theorem 8 and Corollary 11. The proposed
construction is shown to be general enough to accommodate a second nontrivial
convergence result between a net of suitable stutter variants of k-bisimilarities
pseudometrics and the stutter trace distance. These convergences are interest-
ing because they reveal a nontrivial relation between branching and linear-time
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metric-based semantics that in Remark 14 is shown not hold when the standard
equivalence-based semantics on MCs are used instead.

The above distances are then used to provide the strong and stutter trace
distances with an approximation schema, that is, two sequences of pseudometrics
that converge from above and below to the two respective linear distances. Each
of these lower and under-approximants are shown to be computable in polyno-
mial time in the size of the MC. Notably, for this proof the under-approximants
of the trace distance (i.e., the k-bisimilarity pseudometrics) are given a char-
acterization in terms of optimal solutions of a linear program that have size
polynomial in the MC. The one we proposed generalizes and improves the linear
program characterization given in [5, Eq. 8] for the (undiscounted) bisimilarity
pseudometric of Desharnais et al. that, in contrast, has a number of constraints
exponential in the size of the MC. Moreover, our approximation schema improves
that in [6] both for the generality of its applicability and in terms of computa-
tional complexity.

Natural questions are (i) to see if the on-the-fly algorithm for the computation
of bisimilarity distance in [1] can be used to compute the k-bisimilarity distances
and their stutter variants; (ii) whether this approximation technique carries over
to models with non-determinism, such as MDPs (where a recent result by Fu [14]
gives new insight on how to obtain minimal information in case the distance is not
a bisimilarity metric, and where the PSPACE-complexity results is sharpened
to NP ∩ coNP); (iii) whether a similar construction can be applied to stochastic
models with continuous time, such as CTMCs.
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Abstract. In this work, we study the interplay between monadic second
order logic and the partial order theory of bounded place/transition-nets.
First, we show that the causal behavior of any bounded p/t-net can be
compared with respect to inclusion with the set of partial orders specified
by a given MSO sentence ϕ. Subsequently, we address the synthesis of
Petri nets from MSO specifications. More precisely, we show that given
any MSO sentence ϕ, one can automatically construct a bounded Petri
net whose behaviour minimally includes the set of partial orders specified
by ϕ. Combining this synthesis result with the comparability results we
study three problems in the realm of automated correction of faulty Petri
nets, and show that these problems are decidable.

Keywords: Monadic second order logic · Petri nets · Slice languages

1 Introduction

Petri nets [19], also known as place/transition-nets, are recognized as an elegant
mathematical formalism for the specification of concurrent systems. One of the
main advantages of modeling concurrent systems via Petri nets, is that there
exist very precise, but yet intuitive, ways of formalizing the notion of causality
between events in a given run of such a net. One of the most prominent ways
of formalizing causality in Petri nets is via the notion of Petri net process [17].
Intuitively, a Petri net process is a DAG whose vertex set is partitioned into
conditions and events. While condition vertices are used to keep track of each
token ever created or consumed during a concurrent run, the event vertices are
used to keep track of which transitions created or consumed each such token. In
such a process π, an event v causally depends on the occurrence of an event v′

if there is a path from v′ to v in π. The partial order induced on the events of a
process is called a causal-order. The causal behavior of a Petri net N is the set
of all causal orders derived from processes of N .

In this work we study the interplay between the causal behavior of Petri
nets, and monadic second order (MSO) logic. Our first result states that given
any bounded Petri net N , and any monadic second order logic sentence ϕ in
the vocabulary of partial orders, one can decide whether all causal orders of
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 368–387, 2015.
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N satisfy ϕ. Previously, such a decidability result was known for the class of
pure1 bounded Petri nets [1]. Nevertheless, pure bounded Petri nets form a
strict subclass of bounded Petri nets which is not able to model certain impor-
tant concurrency theoretic primitives, such as waiting loops in communication
protocols [2]. Thus, our first main result establishes the decidability of the model
checking problem for the partial order behavior of general bounded Petri nets
against MSO specifications, and removes the purity restriction imposed on pre-
vious works.

In our second result we show that given a MSO formula ϕ and a bounded
Petri net N , one can decide whether all partial orders satisfying ϕ belong to
the causal behavior of N . At an intuitive level our second result states that one
can decide whether the causal behavior of a given Petri net over-approximates
the set of partial orders defined by a given MSO formula. To the best of our
knowledge this result was not known even for pure Petri nets.

Our third result concerns the automated synthesis of bounded Petri nets
from partial order specifications. A Petri net is (b, r)-bounded if it is b-bounded
and each place appears repeated at most r times. It is an interesting observation
that the causal behavior of a Petri net may change with the addition of repeated
places. Contrast this fact with other partial order semantics, such as the exe-
cution semantics studied in [5,23] for which repeated places are not relevant2.
We show that given any MSO formula ϕ, one can determine whether there is a
(b, r)-bounded p/t-Net N whose causal behavior includes the set of partial orders
specified by ϕ. In the case the answer is positive, we show how to construct a
(b, r)-bounded Petri net whose behavior minimally includes the set of partial
orders specified by ϕ. In particular, if the behavior of some (b, r)-bounded Petri
net precisely matches the behavior specified by ϕ, then this net will be returned
by the algorithm.

Combining the three results mentioned above, we establish the decidability of
three problems related to the automated design of concurrent systems. First, we
introduce a notion of optimally correcting subsystems for bounded Petri nets.
We show that these correcting subsystems can be automatically constructed.
Subsequently we define a notion of automated repair for bounded Petri nets,
and show that this notion is effective. Finally, we consider the synthesis of Petri
nets from partial order contracts, where the goal is to construct a net whose
behavior comprises all partial orders defined by an MSO formula ϕyes , but no
partial order defined by a formula ϕno .

2 Preliminaries

In this section we will briefly recall the definitions of monadic second order logic,
Petri nets, and the partial order semantics of Petri nets.
1 A Petri net is pure if no transition consumes and produces a token at the same place.
2 In the execution semantics the fact that an event v1 is smaller than an event v2
indicates that v2 occurs after v1, but v1 need not be necessarily the cause of v2. If
N is a net and p is a place that is a linear combination of places in N , then N and
N ∪{p} have the same execution behavior. This is not true for the causal semantics.
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2.1 The Monadic Second Order Logic of Partial Orders

In this section we define the monadic second order logic of partial orders, which
will be used to describe partial order properties. We represent a partial order �
via a relational structure � = (V,<, l) where V is a set of vertices, <⊂ V ×V is an
irreflexive, asymmetric, transitive relation, and l ⊆ V × T is a function (viewed
as a relation) which labels each vertex v ∈ V with an element of a finite set T .
Here, T should be regarded as a finite set of transitions in a concurrent system, or
more precisely, a Petri net. First-order variables representing individual vertices
are taken from the set {x1, x2, ...} while second order variables representing sets
of vertices are taken from the set {X1,X2, ...}. The set of MSO formulas in the
vocabulary of partial orders is the smallest set of formulas containing:

– the atomic formulas xi ∈ X, xi < xj , l(xi, a) for each i, j ∈ N with i �= j and
each a ∈ T ,

– the formulas ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ∃xi.ϕ(xi) and ∃Xi.ϕ(Xi), where ϕ and ψ are
MSO formulas.

An MSO sentence is a MSO formula ϕ without free variables. If ϕ is a sen-
tence, and � = (V,<, l) a partial order, then we denote by � |= ϕ the fact that �
satisfies ϕ. Let ϕ be an MSO formula expressing a property of T -labeled partial
orders, and let c ∈ N. We denote by P(c, T, ϕ) the set of all T -labeled c-partial-
orders satisfying ϕ.

2.2 Petri Nets

A Petri net is a tuple N = (P, T,W,m0) where P is a set of places, T is a set of
transitions such that P ∩ T = ∅, W : (P × T ) ∪ (T × P ) → N is a function that
associates with each element (x, y) ∈ (P × T ) ∪ (T × P ) a weight W (x, y), and
m0 : P → N is a function that associates with each place p ∈ P a non-negative
integer m0(p).

A marking for N is any function of the form m : P → N. Intuitively, a
marking m assigns a number of tokens to each place of N . The marking m0 is
called the initial marking of N . If m is a marking and t is a transition in T , then
we say that t is enabled at m if m(p) − W (p, t) ≥ 0 for every place p ∈ P . If this
is the case, the firing of t yields the marking m′ which is obtained from m by
setting m′(p) = m(p)−W (p, t)+W (t, p) for every place p ∈ P . A firing sequence
for N is a mixed sequence of markings and transitions m0

t1−→ m1
t2−→ ...

tn−→ mn

such that for each i ∈ {1, ..., n}, ti is enabled at mi−1, and mi is obtained from
mi−1 by the firing of ti. We say that such a firing sequence is b-bounded if for
each i ∈ {0, ..., n} and each p ∈ P , mi(p) ≤ b. We say that N is b-bounded if
each of its firing sequences is b-bounded.

2.3 The Causal Semantics of Petri Nets

In this subsection we introduce the Goltz-Reisig partial order semantics for Petri
nets [17]. Within this semantics, partial orders are used to represent the causality
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between events in concurrent runs of a Petri net. The information about the
causality between events is extracted from objects called Petri net processes,
which encode the production and consumption of tokens along a concurrent run
of the Petri net in question. The definition of processes, in turn, is based on the
notion of occurrence net.

An occurrence net is a DAG O = (B ∪̇ V, F ) where the vertex set B ∪̇ V
is partitioned into a set B, whose elements are called conditions, and a set V ,
whose elements are called events. The edge set F ⊆ (B×V )∪(V ×B) is restricted
in such a way that for every condition b ∈ B,

|{(b, v) | v ∈ V }| ≤ 1 and |{(v, b) | v ∈ V }| ≤ 1.

In other words, conditions in an occurrence net are unbranched. For each condi-
tion b ∈ B, we let InDegree(b) denote the number of edges having b as target.
A process of a Petri net N is an occurrence net whose conditions are labeled
with places of N , and events are labeled with transitions of N . Processes are
intuitively used to describe the token game in a concurrent execution of the net.

Definition 2.1 (Process[17]). A process of a Petri net N = (P, T,W,m0)
is a labeled DAG π = (B∪̇V, F, ρ) where (B∪̇V, F ) is an occurrence net and
ρ : (B ∪ V ) → (P ∪ T ) is a labeling function satisfying the following properties.

1. Places label conditions and transitions label events.

ρ(B) ⊆ P ρ(V ) ⊆ T

2. For every p ∈ P ,

|{b : InDegree(b) = 0, ρ(b) = p}| = m0(p).

3. For every v ∈ V , and every p ∈ P ,

|{(b, v) ∈ F : ρ(b)=p}| = W (p, ρ(v)) and |{(v, b) ∈ F : ρ(b)=p}| = W (ρ(v), p)

Item 1 says that the conditions of a process are labeled with places, while the
events are labeled with transitions. Item 2 says that the minimal vertices of the
process, are conditions. Intuitively each of these conditions represent a token
in the initial marking of N . Thus for each place p of N the process has m0(p)
minimal conditions labeled with the place p. Item 3, determines that the token
game of a process corresponds to the token game defined by the firing of tran-
sitions in the Petri net N . Thus if a transition t consumes W (p, t) tokens from
place p and produces W (t, p) tokens at place p, then each event labeled with t
must have W (p, t) in-neighbours that are conditions labeled with p, and W (t, p)
out-neighbours that are conditions labeled with p.

Let R ⊆ X × X be a binary relation over a set X. We denote by tc(R) the
transitive closure of R. If π = (B ∪ V, F, ρ) is a process then the causal order of
π is the partial order �π = (V, tc(F )|V ×V , ρ|V ) which is obtained by taking the
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Fig. 1. A 2-bounded Petri net N . A process π of N . The partial order �π derived from
π. The extension �∗

π of �π.

transitive closure of F and subsequently by restricting tc(F ) to pairs of events
of V . In other words the causal order of a process π is the partial order induced
by π on its events.

If � = (V,<, l) is a partial order, then we let �∗ = (V ′, <′, l′) be the extended
version of �, where V ′ = V ∪{vι, vε}, <′=< ∪({vι}×V )∪(V ×{vε})∪{(vι, vε)},
l′|V = l, l′(vι) = ι and l′(vε) = ε. In other words, �′ is obtained from � by the
addition of an element vι that is smaller than all other elements, and an element
vε that is greater than all other elements. The addition of these minimal and
maximal elements to a partial order are made to avoid the consideration of
special cases in some of our future lemmas.

We denote by Pcau(N) the set of all extended versions of partial orders
derived from processes of N .

Pcau(N) = {�∗
π|π is a process of N}

We say that Pcau(N) is the causal language of N . We observe that several
processes of N may correspond to the same partial order in Pcau(N).

3 Slice Automata

In this section we define slices and slice automata. Slice automata will be used to
provide static representations of infinite families of partial orders. We notice that
slices can be related to several formalisms such as, multi-pointed graphs [16], co-
span decompositions [7] and graph transformations [4,6,16,21]. However, some
notions such as the notion of unit slice, saturated slice automata, and transitive
reduction of slice automata which will be defined below, and which are crucial
to the development of our work, are intrinsic to the slice theoretic formalism.

A slice S = (V,E, l, s, t, [I, C,O]) is a DAG where V = I∪̇C∪̇O is a set of
vertices partitioned into an in-frontier I, a center C and an out-frontier O; E is
a set of edges, s, t : E → V are functions that associate with each edge e ∈ E a
source vertex es and a target vertex et, and l : V → T ∪N is a function that labels
the center vertices in C with elements of a finite set T ∪ {ι, ε}, and the in- and
out-frontier vertices with positive integers in such a way that l(I) = {1, ..., |I|}
and l(O) = {1, ..., |O|}. We require that each frontier-vertex v in I ∪ O is the
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endpoint of exactly one edge e ∈ E and that the edges are directed from the in-
frontier to the out frontier. More precisely, for each edge e ∈ E, we assume that
es ∈ I ∪C and that et ∈ C∪O. For simplicity we may omit the source and target
functions s and t when specifying a slice and write simply S = (V,E, l). We may
also speak of a slice S with frontiers (I,O) to indicate that the in-frontier of S
is I and that the out-frontier of S is O.

Fig. 2. i) A slice and its pictorial representation. (ii) Composition of slices.

A slice S1 = (V1, E1, l1) with frontiers (I1, O1) can be glued to a slice S2 =
(V2, E2, l2) with frontiers (I2, O2) provided |O1| = |I2|. In this case the glueing
gives rise to the slice S1 ◦ S2 = (V3, E3, l3) with frontiers (I1, O2) which is
obtained by taking the disjoint union of S1 and S2, and by fusing, for each
i ∈ {1, ..., |O1|}, the unique edge e1 ∈ E1 for which l1(et

1) = i with the unique
edge e2 ∈ E2 for which l2(es

2) = i. Formally, the fusion of e1 with e2 is performed
by creating a new edge e12 with source es

12 = es
1 and target et

12 = et
2, and by

deleting e1 and e2. Thus in the glueing process the vertices in the glued frontiers
disappear.

A unit slice is a slice with exactly one vertex in its center. A unit slice is initial
if it has empty in-frontier and final if it has empty out-frontier. We assume that
the center vertex of an initial slice is always labeled with the special symbol ι and
that the center vertex of a final slice is labeled with the special symbol ε. The
width of a slice S with frontiers (I,O) is defined as w(S) = max{|I|, |O|}. If T is
a finite set of symbols, then we let

−→
Σ (c, T ) be the set of all unit slices of width

at most c whose unique center vertex is labeled with an element of T ∪ {ι, ε}.
We assume however that the center vertices of non-initial and non-final slices
in

−→
Σ (c, T ) are labeled with elements from T . The symbols ι and ε are reserved

for initial and final slices respectively. Observe that
−→
Σ (c, T ) is finite and has

asymptotically |T | · 2O(c log c) slices. A sequence U = S1S2...Sn of unit slices is
called a unit decomposition if Si can be glued to Si+1 for each i ∈ {1, ..., n − 1}.
In this case, we let

◦
U= S1 ◦ S2 ◦ ... ◦ Sn be the DAG derived from U, which is

obtained by gluing each two consecutive slices in U.

Fig. 3. A unit decomposition U and the graph
◦
U obtained by glueing each two con-

secutive slices in U.
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Definition 3.1 (Slice Automaton). Let T be a finite set of symbols and let
c ∈ N. A slice automaton over a slice alphabet

−→
Σ (c, T ) is a finite automaton

A = (Q,Δ, q0, F ) where Q is a set of states, q0 ∈ Q is an initial state, F ⊆ Q is
a set of final states, and Δ ⊆ Q × −→

Σ (c, T ) × Q is a transition relation such that
for every q, q′, q′′ ∈ Q and every S ∈ −→

Σ (c, T ):

1. if (q0,S, q) ∈ Δ then S is an initial slice,
2. if (q,S, q′) ∈ Δ and q′ ∈ F , then S is a final slice,
3. if (q,S, q′) ∈ Δ and (q′,S′, q′′) ∈ Δ, then S can be glued to S′.

Fig. 4. A slice automaton. Circles are states. A transition (q,S, q′) is represented by
an arrow from q to q′ with the slice S depicted next to it.

Languages of a Slice Automaton. A slice automaton A can be used to
represent three types of language. At a syntactic level, we have the slice language
L(A) which consists of the set of all unit decompositions accepted by A.

L(A) = {S1S2...Sn|S1S2...Sn is accepted by A} (1)

At a semantic level, we have the graph language LG(A) which consists of all
DAGs represented by unit decompositions in L(A), and the partial order lan-
guage Lpo(A), which consists of all partial orders derived from DAGs in LG(A).
If H is a DAG, we let tc(H) denote the partial order which is obtained by taking
the transitive closure of H. Formally, the graph language and the partial order
languages accepted by A are defined as follows.

LG(A) = { ◦
U | U ∈ L(A)} Lpo(A) = {tc(

◦
U) | ◦

U∈ LG(A)}. (2)

Saturation. Let H be a DAG whose vertices are labeled with elements from a
finite set T . Then we let ud(H,

−→
Σ (c, T )) denote the set of all unit decompositions

U in L(
−→
Σ (c, T )) for which

◦
U= H. We say that a slice automaton A over

−→
Σ (c, T )

is saturated if for every DAG H ∈ LG(A) we have that ud(H, c) ⊆ L(A).

Transitive Reduction. The transitive reduction of a DAG H = (V,E, l) is
the minimal subgraph tr(H) of H with the same transitive closure as H. In
other words tc(tr(H)) = tc(H). We say that a DAG H is transitively reduced
if H = tr(H). Alternatively, we call a transitively reduced DAG a Hasse dia-
gram. We say that a slice automaton A is transitively reduced if every DAG in
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LG(A) is transitively reduced. Theorem 3.2 states that any slice automaton A
can be converted into a transitively reduced slice automaton tr(A) representing
the same partial order language in such a way that the saturation property is
preserved.

Theorem 3.2. Let A be a slice automaton over
−→
Σ (c, T ). Then one can con-

struct in time 2O(c log c) · |A| a slice automaton tr(A) such that Lpo(tr(A)) =
Lpo(A). Additionally, if A is saturated, then so is tr(A).

We note that in [13] we proved a weaker version of Theorem 3.2 which only pre-
serves a property called weak-saturation. However for the purposes of the present
paper we need the transitive reduction to preserve the stronger version of satura-
tion defined above. Transitively reduced saturated slice automata are important
for our setting because they can be used to canonically represent infinite families
of partial orders. Additionally, as we will show in the next subsections, transi-
tively reduced saturated slice automata can be used to represent two important
classes of partial orders. First, these automata can represent MSO-definable sets
of c-partial orders. Second, they can be used to represent the causal behaviour
of bounded Petri nets.

4 c-Partial-Orders

In this section we will introduce the notion of c-partial-order. First, we will show
that sets of c-partial orders definable via saturated slice automata are closed
under union, intersection and an appropriate notion of complementation. This
will allow us to operate with infinite sets of c-partial-orders in a similar way in
which one operates with infinite sets of strings.

In Sect. 5 we will connect MSO logic with slice languages and show that MSO-
definable sets of c-partial-orders can be effectively represented by saturated slice
automata. In Sect. 6 we will show that for any c ∈ N, the set of c-partial-orders
of any given bounded Petri net can be represented via a saturated transitively
reduced slice automaton. Combined, these two results will imply the decidability
of the model checking of the causal behavior of bounded Petri nets.

c-Partial Orders. Let T be a finite set whose elements should be regarded
as transitions of a concurrent system. We say that a partial order � is a T -
labeled partial-order if each node of � is labeled with some element of T . The
Hasse diagram of a partial order � is the directed acyclic graph H with the least
number of edges whose transitive closure equals �. In other words, H is the Hasse
diagram of � if H is the transitive reduction of �.

We say that a DAG G = (V,E, l) can be covered by k paths if there exist
directed paths p1 = (V1, E1), ..., pk = (Vk, Ek) in G such that V = ∪k

i=1Vi and
E = ∪k

i=1Ei. We note that the paths are not assumed to be edge disjoint nor
vertex disjoint. We say that a partial order � is a c-partial-order if its Hasse
diagram H = (V,E, l) can be covered by c paths. For instance, in Fig. 5, we
depict the Hasse diagram of a 3-partial-order.
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Fig. 5. The Hasse diagram of a 3-partial-order. H can be covered by 3 paths. The two
outer horizontal paths plus the path in zig-zag in the center.

We denote by P(c, T ) the set of all c-partial orders whose vertices are labeled
with elements from T . Lemma 4.1 below, states that the set P(c, T ) can be rep-
resented by a saturated, transitively reduced slice automaton whose size depends
only on |T | and c.

Lemma 4.1. For any finite set T and any c ∈ N, one can construct a saturated
transitively reduced slice automaton A(c, T ) over

−→
Σ (c, T ), of size |T | · 2O(c log c),

such that Lpo(A(c, T )) = P(c, T ).

Next we show that boolean operations realized with saturated transitively redu-
ced slice automata are reflected into the partial order languages they represent.
First, we define a suitable notion of complementation for sets of c-partial-orders.

Definition 4.2 (c-Complementation). Let P be a set of T -labeled partial
orders. We let Pc

= P(c, T )\P denote the c-complement of P.

Let A∪A′, A∩A′ and Ac
be the slice automata whose slice languages are respec-

tively L(A)∪L(A′), L(A)∩L(A′) and L(A(c, T ))\L(A). Lemma 4.3 below states
that operations performed on saturated, transitively reduced slice automata are
reflected on the partial order languages they represent.

Lemma 4.3 (Properties of Saturated Slice Languages). Let A and A′ be
two transitively-reduced slice automata over

−→
Σ (c, T ). Assume that A is saturated.

1. Lpo(A ∪ A′) = Lpo(A) ∪ Lpo(A′)
2. Lpo(A ∩ A′) = Lpo(A) ∩ Lpo(A′)
3. Lpo(Ac

) = Lpo(A)
c
.

4. Lpo(A) ⊆ Lpo(A′) if and only if L(A) ⊆ L(A′).
5. Lpo(A) ∩ Lpo(A′) = ∅ if and only if L(A) ∩ L(A′) = ∅.
6. If A′ is saturated then A ∪ A′ and A ∩ A′ are also saturated.

In other words, Lemma 4.3 implies that union, intersection and c-complementation
of partial order languages represented by saturated, transitively reduced slice
automata are computable, and inclusion and emptiness of intersection of these
partial order languages are decidable. We note that Lemma 4.3 would not be true
if some of the involved automata were not transitively reduced. This lemma would
also not hold if none of the automata were saturated. To illustrate the role of sat-
uration, let U and U′ be two distinct unit decompositions of the same DAG H,
and let L = {U} and L = {U′}. Note that neither L nor L′ is saturated. We have
that Lpo ∩ L′

po = {tc(H)}, but L ∩ L′ = ∅. Now, to illustrate the role of transi-
tive reduction, let H and H ′ be two distinct DAGs representing the same partial
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order �. In other words, � = tc(H) = tc(H ′). Let L = ud(H, (
−→
Σ (c, T )) be the

set of all unit decompositions of H, and L′ = ud(H ′, (
−→
Σ (c, T )) be the set of all

unit decompositions of H ′. Note that both L and L′ are saturated, but at least
one of these languages is not transitively reduced, since the transitive reduction
of a DAG is unique. Now we have that Lpo ∩ L′

po = {�}, but L ∩ L′ = ∅.

5 MSO-Definable Sets of c-Partial-Orders and Slice
Languages

In this section we will show that MSO-definable sets of T -labeled c-partial-orders
can be represented via saturated, transitively reduced slice automata over the
slice alphabet

−→
Σ (c, T ). More precisely, we will show that for each c ∈ N, and

each MSO formula ϕ, one can construct a slice automaton
−→
Σ (c, T ) representing

precisely the set of c-partial orders satisfying ϕ. This statement is formalized in
Theorem 5.1 below, where P(c, T, ϕ) denotes the set of all T -labeled c-partial-
orders satisfying ϕ.

Theorem 5.1. Let ϕ be an MSO formula expressing a partial order property,
Then one can construct a saturated transitively reduced slice automaton
A∗(c, T, ϕ) such that P(c, T, ϕ) = Lpo(A∗(c, T, ϕ)).

To prove Theorem 5.1 we will need to make a small detour. More precisely, we
will first define the monadic second order logic of directed acyclic graphs with
edge set quantifications, or MSO2 logic for short. Subsequently, in Lemma 5.2,
we will show that given an MSO2 formula ϕ one can construct a saturated,
transitively reduced slice automaton whose slice language consists of all unit
decompositions that yield a graph satisfying ϕ. To show that these automata
are sufficient to represent the set of all c-partial orders satisfying ϕ, we will prove
a simple but crucial proposition stating that all unit decompositions of a DAG
that can be covered by c-paths have width at most c. In other words, all unit
decompositions of the Hasse diagram of a c-partial-order have width at most c.

We will represent a general DAG G by a relational structure G = (V,E, s, t, l)
where V is a set of vertices, E a set of edges, s, t ⊆ E × V are respectively the
source and target relations, l ⊆ V × T is a vertex labeling relation, where T is
a finite set of symbols. If e is an edge in E and v is a vertex in V then s(e, v) is
true if v is the source of e and t(e, v) is true if v is the target of e. If v ∈ V and
a ∈ T then l(v, a) is true if v is labeled with a. First-order variables representing
individual vertices will be taken from the set {x1, x2, ...} and first order variables
representing edges, from the set {y1, y2, ...}. Second order variables representing
sets of vertices will be taken from the set {X1,X2, ...} and second order variables
representing sets of edges, from the set {Y1, Y2, ...}. The set of MSO2 formulas
is the smallest set of formulas containing:

– the atomic formulas xi ∈ Xj , yi ∈ Yj , s(yi, xj), t(yi, xj), l(xi, a) for each
i, j ∈ N and a ∈ T ,
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– the formulas ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ∃xi.ϕ(xi) and ∃Xi.ϕ(Xi), ∃yi.ϕ(Yi) and
∃Yi.ϕ(Yi), where ϕ and ψ are MSO2 formulas.

An MSO2 sentence is a formula ϕ without free variables. If ϕ is a sentence,
then we denote by G |= ϕ the fact that G satisfies ϕ. Lemma 5.2 below states
that the set of all unit decompositions U over a slice alphabet

−→
Σ (c, T ) whose

graph
◦
U satisfies a given MSO2 sentence can be represented by a saturated slice

automaton.

Lemma 5.2 ([14]). Given a MSO2 formula ϕ, one can effectively construct a
slice automaton A(c, T, ϕ) over

−→
Σ (c, T ) such that

L(A(c, T, ϕ)) = {U ∈ L(
−→
Σ (c, T )) | ◦

U|= ϕ}.

We recall that Courcelle’s celebrated model checking theorem states that MSO2

properties can be model-checked in linear time on graphs of constant treewidth
[9]. Since graphs of constant slice-width also have constant treewidth, Lemma 5.2
can be regarded as a special case of Courcelle’s theorem transposed to the slice
theoretic framework. This transposition is necessary due to a matter of compat-
ibility with our results connecting slice languages to the partial order behaviour
of bounded Petri nets established in the subsequent section. Additionally, some
statements concerning c-partial orders, such as Proposition 5.3 which is crucial
for our results, do not have a direct analog in the context of treewidth. The
proof of Lemma 5.2 follows by reducing the model checking problem for graphs
of constant slicewidth3 to the model checking problem for unit decompositions.
In other words, we will translate an MSO2 formula on the vocabulary of graphs
to a MSO formula ϕ′ on the vocabulary of unit decompositions in such a way
that a graph G satisfies ϕ if and only if each unit decomposition U of G satis-
fies the formula ϕ. Once this translation has been done, we can construct the
automaton A(c, T, ϕ) using an approach that is similar to the construction of
finite automata from MSO formulas over strings which is reminiscent to the
proof of Büchi’s celebrated result stating that the set of strings satisfying a
MSO formula is regular [8,15]. It is worth mentioning that our construction
shares similarities with constructions that can be found in [18,22]. Proposition
5.3 below establishes a correspondence between c-coverable DAGs and their sets
of unit decompositions.

Proposition 5.3 Let H be a DAG. If H can be covered by c paths, then any
unit decomposition of H has width at most c.

We let γ(c) be the MSO2 sentence which is true on a DAG H whenever H can
be covered by c paths. Then we have that L(A(c, T, ϕ ∧ γ(c))) is the set of all
unit decompositions in L(A(c, T, ϕ)) whose corresponding DAG can be covered
by c-paths.
3 A DAG has slicewidth c if it can be decomposed into a unit decomposition over−→

Σ (c, T ).
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Lemma 5.4 For any MSO2 formula ϕ and any positive integer c ∈ N, the slice
automaton A(c, T, ϕ ∧ γ(c)) is saturated.

Recall that if H is a DAG, then tr(H) denotes the transitive reduction of H.

Proposition 5.5 (Partial Orders vs Hasse Diagrams). For any MSO for-
mula ϕ expressing a partial order property, there is an MSO2 formula ϕgr

expressing a property of DAGs such that for any partial order � ∈ P(c, T ), � |= ϕ
if and only if tr(�) |= ϕgr .

Let c ∈ N, T be a finite set, and ϕ be a MSO formula. We denote by P(c, T, ϕ)
the set of all c-partial orders satisfying ϕ whose vertices are labeled with ele-
ments from T . We denote by ρ be the MSO2 formula which is true on a DAG
H whenever H is transitively reduced, i.e., whenever H = tr(H).

Proof of Theorem 5.1. Let ρ be the MSO2 formula which is true in a DAG H
whenever H is transitively reduced. Let ϕgr be the formula obtained from ϕ as
in Proposition 5.5. Then we have that a DAG H satisfies γ(c) ∧ ρ ∧ ϕgr if and
only if H can be covered by c paths, H is transitively reduced and if the partial
order tc(H) induced by H satisfies ϕ. By Lemma 5.4, the slice language of the
automaton A(c, T, ϕ ∧ ρ ∧ γ(c)) is saturated, regular, and consists precisely of
the unit decompositions yielding a graph satisfying ϕ ∧ ρ ∧ ψ(c). Thus we just
need to set A∗(c, T, ϕ) = A(c, T, ϕ ∧ ρ ∧ γ(c)). ��

6 c-Partial-Orders and Petri Nets

In this section we will connect the notion of c-partial-order with bounded Petri
nets. We start by stating Theorem 6.1 which says that the set of all c-partial-
orders derived from processes of any bounded Petri net can be effectively rep-
resented by a transitively reduced, saturated slice automaton. In other words,
slice automata provide us with a suitable way of representing and manipulating
sets of partial orders associated with bounded Petri nets. Recall that Pcau(N)
denotes the set of all causal orders corresponding to processes of N . We denote
by Pcau(N, c) the set of all c-partial orders in Pcau(N).

Theorem 6.1 (Expressibility). Let N = (P, T,W,m0) be a b-bounded Petri
net. Then one can construct in time 2O(|P |·c·log b·c) · |T ||P | a saturated transi-
tively reduced slice automaton A(N, c) over

−→
Σ (c, T ) such that Lpo(A(N, c)) =

Pcau(N, c).

We note that Theorem 6.1 is a substantial refinement of a theorem proved in
[12] stating that the full set of causal-orders of a Petri net can be effectively
represented via slice automata. More precisely, Theorem 6.1 can be regarded as a
parameterized version of this result which allows us to represent only the partial
orders in the causal behaviour of a net up to a fixed width c. The following
observation states that the representation of the full causal behaviour of a b-
bounded Petri net may be achieved by setting c = b · |P |.
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Observation 1 Let N = (P, T ) be a b-bounded Petri net and let � be a causal
order in P(N). Then � is a c-partial order for some c ≤ b · |P |.
Therefore, if we set c = b · |P | we have that P(N, c) = P(N). The proof of
Theorem 6.1 has two parts. The first part, is a characterization of Hasse dia-
grams arising from Petri-net partial orders in terms of interlaced flows, a notion
introduced in [12]. The second part is a filtering process that takes a transi-
tively reduced slice automaton A over

−→
Σ (c, T ) and returns another transitively

reduced slice automaton F(A, N, c) over
−→
Σ (c, T ) representing only those Hasse

diagrams in LG(A) that admit a set of interlaced flows. Since interlaced flows
are a certificate to the fact that a Hasse diagram arises from a partial order of
the net, we have that F(A, N, c) represents precisely those causal orders of N
that are in Lpo(A).

Below we will consider the notion of interlaced flows. If H is the Hasse dia-
gram of a causal-order, then an interlaced flow is a four-tuple f = (bb, bf ,pb,pf )
of functions of type E → N defined over the edges of H which is used to keep
track of the way in which tokens of a Petri net are consumed and produced along
a partially ordered run. Intuitively, for each e ∈ E, the value bb(e) counts the
total of tokens produced by es and consumed by et. The value pb(e) keeps track
of some tokens produced in the past of the node es and consumed by the node
et. The value pf (e) keeps track of some of the tokens produced in the past of es

and consumed in the future of et, and finally, bf (e) keeps track of some tokens
produced by es and consumed in the future of et.

Definition 6.2 (p-interlaced Flow). Let N = (P, T,W,m0) be a p/t-net, H =
(V,E, l) a Hasse diagram with l : V → T and p ∈ P a place of N . A p-interlaced
flow is a four-tuple f = (bb, bf,pb,pf) of functions of type E → N which satisfies
the following equations around each internal vertex of H:

1. ∀v ∈ V,
∑

et
1=v bf(e1) + pf(e1) =

∑
es
2=v pb(e2) + pf(e2).

2. ∀v ∈ V \{vε}, In(v) =
∑

et=v bb(e) + pb(e) = W (p, l(v)).
3. ∀v ∈ V, Out(v) =

∑
es=v bb(e) + bf(e) = W (l(v), p).

Intuitively, Item 6.2.1 states that on a p-interlaced-flow, the total number of
tokens produced in the past of a vertex v, that arrives at it without being
consumed, will eventually be consumed in the future of v. Item 6.2.2 says that
the set of all tokens produced in the past of v and consumed by v is equal to
the number of tokens consumed by the transition l(v) on the place p. Similarly,
Item 6.2.3 says that the set of all tokens produced by v and consumed at the
future of v is equal to the number of tokens produced by the transition l(v) on
the place p. The following theorem characterizes causal orders of Petri nets in
terms of sets of interlaced flows.

Theorem 6.3. (Interlaced Flow Theorem [12]). Let N = (P, T,W,m0) be a
b-bounded p/t-net and H = (V,E, l) be a Hasse diagram. Then the partial order
induced by H is a causal order of N if and only if there exists a set {fp}p∈P of
p-interlaced flows on H such that for every edge e of H, the component bbp(e)
of fp(e), which denotes the direct transmission of tokens, is strictly greater than
zero for at least one p ∈ P .
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Intuitively, each flow fp keeps track of the production and consumption of tokens
at place p according to the transitions labeling nodes of H. Each edge e of H
indicates a direct causal dependence between the event corresponding to the
node es and the event corresponding to the node et. In other words, there must
exist at least one place p such that the component bbp(e) corresponding to the
number of tokens created by the transition l(es) and consumed by the transition
l(et) must be strictly greater than 0.

Lemma 6.4. Let A be a transitively reduced slice automaton over
−→
Σ (c, T ), let

N be a b-bounded Petri net, and c ∈ N. Then one can construct a transitively
reduced slice automaton F(A, N, c) such that

LG(F(A, N, c)) = {H ∈ LG(A) | H admits an P -interlaced flow.}. (3)

Additionally, if A is saturated, so is F(A, N, c).

In particular, if A is the saturated slice automaton representing the set P(c, T ) of
all c-partial orders, then the automaton F(A, N, c) is a saturated slice automa-
ton representing all c-partial-orders of N . Therefore, Theorem 6.1 follows from
Lemma 6.4.

By combining Theorem 5.1 with Theorem 6.1, we have an algorithm for
determining whether all c-partial orders of a bounded Petri net N satisfy a given
MSO formula ϕ. The converse also holds. In other words, we can also determine
effectively whether all c-partial-orders satisfying ϕ belong to the causal behavior
of N . These statements are formalized in Theorem 6.5 below.

Theorem 6.5. (Verification). Let ϕ be an MSO formula, N be a b-bounded
Petri net and c ∈ N.

i) One may effectively determine whether Pcau(N, c) ⊆ P(c, T, ϕ).
ii) One may effectively determine whether Pcau(N, c) ∩ P(c, T, ϕ) = ∅.
iii) One may effectively determine whether P(c, T, ϕ) ⊆ Pcau(N, c).

In particular, if we set c = b · |P | then by Observation 1 we can use Theorem
6.5.i to model check the whole causal behaviour of any bounded Petri net against
MSO specifications. As mentioned in the introduction, previously, such a result
had only been known for the restricted case of pure Petri nets. As we will see in
Sect. 7, Theorem 6.5.ii and Theorem 6.5.iii will allow us to construct Petri nets
whose causal language separates MSO definable sets of partial orders.

6.1 Synthesis

In this subsection we consider the problem of automatically constructing Petri
nets whose behavior consists precisely of the set of partial orders specified by
a given MSO formula. In other words, we will consider the synthesis of Petri
nets from MSO specifications. Indeed we will provide an algorithm for a more
robust version of the synthesis problem, in the sense that if there is no p/t-net
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of a particular type whose causal behavior equals the set of partial orders P
specified by ϕ, then our algorithm will construct a Petri net whose behaviour
minimally over-approximates P. This notion of minimality is formalized below in
Definition 6.6. First, we argue that when dealing with the synthesis of bounded
Petri-nets with the causal semantics, it makes sense to consider repeated places.

Let N = (P, T,W,m0) be a b-bounded Petri net and let p be a place of N .
We let p− : T → N and p+ : T → N be functions that specify respectively how
many tokens each transition t takes from p and produces into p respectively. In
other words, p−(t) = W (p, t) and p+(t) = W (t, p) for each transition t ∈ T . We
define the type of the place p is as the triple (m0(p), p−, p+). Two places p1 and
p2 are said to be identical if they have the same type. Intuitively, two places
are identical if and only if they have identical initial marking and identical flow
relations. As we can see in Fig. 6, adding repeated places may change the causal
behavior of a Petri net. We contrast this observation with the fact that adding
repeated places has no effect if we consider other partial order semantics, such as
the execution semantics introduced in [23]. Therefore, in our synthesis problems
we will consider two parameters for a matter of flexibility, the bound b of a Petri
net, and the maximum number r of identical places of each type. We say that a
net N is (b, r)-bounded if N is b-bounded and there are at most r places of each
given type.

Fig. 6. Two Petri nets N1 and N2. The places p1 and p2 are repeated. π is a process
of N2. The circles are conditions, the squares are events. �π is the causal order of π.
Note that �π does not belong to the causal language of N1. This shows that repeated
places do change the causal behavior of a Petri net.

Definition 6.6 (c-causally-minimial). We say that a (b, r)-bounded Petri net
N is c-causally-minimal for a partial order language P, if P ⊆ Pcau(N, c) and if
there is no other (b, r)-bounded Petri net N ′ with P ⊆ Pcau(N ′, c) � Pcau(N, c).

Note that the minimality of N is defined with respect to inclusion of causal
languages. Intuitively, N is c-causally-minimal for P if N is the (b, r)-bounded
Petri net whose causal language Pcau(N, c) contains as few elements outside
from P as possible. Our next theorem states that given a MSO formula ϕ and
positive integers c, b, r, one can automatically construct a (b, r)-bounded Petri
net that is c-causally minimal for the set of c-partial orders specified by ϕ.
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Theorem 6.7 (Synthesis). Let ϕ be a MSO formula on the vocabulary of T -
labeled partial orders. Then for any c, b, r ∈ N one may automatically deter-
mine whether there exists a (b, r)-bounded Petri net N such that P(c, T, ϕ) ⊆
Pcau(N, c). If such a net exists, one can construct a (b, r)-bounded Petri net that
is c-causally-minimal for P(c, T, ϕ).

We observe that a minimal net may not be unique. In other words there may
exist two Petri nets N1 and N2 whose behavior is c-causally-minimal for P, but
for which P(N1, c) �= P(N2, c). The algorithm solving the synthesis problem is
able to list all possible (b, r)-bounded nets that are c-causally-minimal for P.

It is worth comparing Theorem 6.7 with existing literature. In the context of
the sequential (or interleaving) semantics of Petri nets the synthesis problem has
been considered with respect to many formalisms. In particular, the synthesis
from regular sets has been studied extensively in [2,3,10,11] via a set of combina-
torial techniques called theory of regions. Thus, using the Büchi-Elgot Theorem
stating that MSO Logic over strings is as expressive as regular languages [8], the
theory of regions can be used to synthesize nets whose interleaving behavior sat-
isfies a given MSO formula over strings. The synthesis of Petri nets from infinite
sets of partial orders has been considered in [5] but with another partial order
semantics, the execution semantics, which is not aimed at representing causality
between events, but rather the order of executions of these events (without any
causal implication). However with respect to this partial order semantics the
synthesis from logical specifications has also not been considered.

7 Behavioural Design and Correction

In this section we apply Theorems 6.1 and 6.7 to establish the decidability of
three problems related to the behavioural specification of Petri nets with causal
semantics.

7.1 Optimally Correcting Subsystem

Let ϕ be an MSO formula specifying a set of safe behaviors, and let N be a
(b, r)-bounded Petri net whose behaviour Pcau(N) contains some faulty partial
order. In the next theorem (Theorem 7.1) we will show that we may be able to
fix N by automatically synthesizing the best (b, r)-bounded Petri net N ′ whose
partial order behavior lies in between Pcau(N, c) ∩ P(c, T, ϕ) and Pcau(N, c). In
other words, the partial order behavior of N ′ is a subset of the partial order
behavior of N which preserves all safe runs of N . Additionally, the partial order
behavior of N ′ has as few unsafe partial-order runs as possible. We say that
N ′ is an optimally correcting subsystem of N with respect to ϕ. We notice that
the net N ′ does not need to be a sub-net of N , and indeed N ′ can have even
more places than N . Only the behavior of N ′ is guaranteed to be a subset of the
behavior of N .
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Theorem 7.1 (Optimally Correcting Subsystem). Let c, b, r ∈ N. Given
a (b, r)-bounded Petri net N = (P, T,W,m0) and an MSO formula ϕ, we may
automatically synthesize a (b, r)-bounded Petri net N ′ such that

i) N ′ is c-causally-minimal for P(c, T, ϕ) ∩ Pcau(N, c),
ii) Pcau(N ′, c) ⊆ Pcau(N, c).

The notion of optimally correcting subsystem is appropriate for three reasons.
First, as mentioned above, we have that

P(c, T, ϕ) ∩ Pcau(N, c) ⊆ P(N ′, c) ⊆ P(N, c).

Second, the minimality condition says that if there is a (b, r)-bounded Petri
net N ′ whose c-partial-order behavior precisely matches Pcau(N, c) ∩ P(c, T, ϕ)
then such a Petri net will be returned. In this case, our synthesis algorithm
completely corrects the original Petri net. Finally, if all c-partially-ordered runs
of N indeed satisfy ϕ, then our synthesis algorithm returns a net N ′ satisfy-
ing Pcau(N ′, c) = Pcau(N, c). Thus the set of c-partial order behaviors of the
synthesized net does not change if the original net is already correct (although
the structure of the net per si may change). In Subsect. 7.2 below we consider a
related problem that finds analogies with the field of automatic program repair.

7.2 Behavioral Repair

In this section we consider the notion of automated repair of Petri nets with the
partial order semantics. Given MSO formulas ϕ and ψ and a Petri net N , one is
asked to automatically synthesize a Petri net N ′ whose partial order behavior is
lower-bounded by Pcau(c, T, ϕ)∩Pcau(N, c) and upper bounded by Pcau(c, Tψ).
A similar notion of repair has been considered in the context of reactive systems,
except for the fact that reactive systems with a sequential semantics are used
instead of Petri nets, and LTL formulas are used instead of MSO formulas [24].
In both cases, the intuition is that while ϕ specifies a set of correct behaviors
that should be preserved whenever present in the original system, the formula ψ
specifies a set of behaviors that are allowed to be present in the repaired system.

Theorem 7.2 (Behavioral Repair). Let c, b, r ∈ N. Given a (b, r)-bounded
Petri net N = (P, T,W,m0) and an MSO formula ϕ, we may automatically
determine whether there exists a (b, r)-bounded Petri net N ′ such that

(i) N ′ is c-causally-minimal for P(c, T, ϕ) ∩ Pcau(N, c),
(ii) Pcau(N ′, c) ⊆ Pcau(c, T, ψ).

In case such a net exists, one may automatically construct it.

Note that while Theorems 7.2.i and 7.2.ii imply that P(c, T, ϕ) ∩ Pcau(N, c) ⊆
P(N ′, c) ⊆ P(c, T, ψ), the minimality condition in Theorem 7.2.i implies that
if N ′ is successfully synthesized, then its behavior has as few partial-order runs
contradicting ϕ as possible.
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7.3 Synthesis from Partial Order Contracts

Suppose that we are in the early stages of development of a concurrent system.
We have arrived to the conclusion that every behavior satisfying a given MSO
formula ϕyes should be present in the system, but that no behavior in the system
should satisfy a formula ϕno . Clearly we require that P(ϕyes) ∩ P(ϕno) = ∅. We
say that the pair (ϕyes, ϕno) is a partial order contract. We can try to develop a
first prototype of our system by automatically synthesizing a (b, r)-bounded Petri
net N containing all c-partial orders specified by ϕyes but no partial order in
ϕno. The next theorem says that if such a net exists, then it can be automatically
constructed.

Theorem 7.3 (Synthesis from Contracts). Let ϕyes and ϕno be MSO for-
mulas such that P(c, T, ϕyes) ∩ P(c, T, ϕno) = ∅. Then one may automatically
determine whether there exists a (b, r)-bounded Petri net N such that P(c, T, ϕyes)
⊆ Pcau(N, c) and P(c, T, ϕno) ∩ Pcau(N, c) = ∅. In case such a net exists one
may construct it.

8 Conclusion

In this work we showed that the model checking of the partial order behavior of
arbitrary bounded Petri nets against MSO specifications is decidable. Previously,
a similar result was only available in the context of pure, bounded Petri nets.
It is interesting to note that our model checking result uses completely different
techniques than those employed in [1]. We also showed that the reverse direction
is decidable. Namely, we showed that one can determine whether the set of c-
partial-orders satisfying a given MSO formula ϕ is included on the c-partial-order
behavior of a given Petri net N . Finally, we combined these two results with the
synthesis of Petri nets from MSO specification to establish the decidability of
interesting problems in the realm of automated design. Namely, we showed how
to compute optimally correcting subsystem for Petri nets, we defined a suitable
notion of automated repair for Petri nets, and we established the decidability
of the synthesis of Petri nets form MSO-definable partial order languages. This
last result in particular, can be regarded as a partial order theoretic version of
the notion of language separator [20] which has turned to be of fundamental
importance in formal language theory.
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Abstract. We investigate a new computational interpretation for an
intuitionistic focused sequent calculus which is compatible with a resource
aware semantics. For that, we associate to Herbelin’s syntax a type sys-
tem based on non-idempotent intersection types, together with a set
of reduction rules –inspired from the substitution at a distance paradigm–
that preserves (and decreases the size of) typing derivations. The
non-idempotent approach allows us to use very simple combinatorial
arguments, only based on this measure decreasingness, to characterize
strongly normalizing terms by means of typability. For the sake of com-
pleteness, we also study typability (and the corresponding strong nor-
malization characterization) in the reduction calculus obtained from the
former one by projecting the explicit substitutions.

1 Introduction

Intuitionistic logic can be expressed in different formal systems such as natural
deduction and sequent calculi. Equivalence between these two formal styles has
been widely studied [19,21,41,43,49], i.e. every derivation in one system can
be encoded into a derivation of the other one. However, this correspondence is
not one-to-one, in particular several cut-free proofs in intuitionistic sequent cal-
culus correspond to the same normal natural deduction derivation. This gives
rise to a restriction of sequent calculi, the so-called focused sequent calculi [3],
which preserves its structure and expressive power, while establishing a bet-
ter relationship with natural deduction. Indeed, a one-to-one correspondence is
achieved between the cut-free proofs in focused sequent calculi and the normal
derivations in natural deduction.

In 1994 Herbelin [25] introduced the λ-calculus, obtained by a computational
interpretation of the focused sequent calculus for the minimal intuitionistic logic
LJT . In contrast to the usual λ-calculus notation for natural deduction, λ nota-
tion brings head variables to the surface, treats sequences of arguments as lists,
and encodes cuts with explicit substitutions. Its operational semantics is specified
by means of a complete set of cut-elimination rules. The calculus is permutation-
free and can be used to describe proof-search in pure Prolog and some of its
extensions [36]. The reduction system of the λ-calculus was then extended [17]
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with permutation rules, thus showing how to model beta-reduction, i.e. thus
giving a natural basis for implementation of functional languages.

Unfortunately, Herbelin’s calculus is not compatible with a resource aware
semantics, mainly because propagation of explicit cuts w.r.t. the structure of
λ-terms induces useless duplications of empty resources (cf. technical discus-
sion in Sect. 3 after Corollary 1). This is substantiated when trying to interpret
the λ-calculus by means of proof-nets [23] or non-idempotent intersection types
(pioneered by [9,28,30]).

The first contribution of the paper is to propose a new computational inter-
pretation for the focused intuitionistic sequent calculus LJT , called E-calculus,
which is compatible with a resource aware semantics. The calculus keeps Herbe-
lin’s syntax but changes the operational semantics of λ to a resource-controlled
interpretation, inspired from the structural lambda-calculus [2], and the linear
substitution calculus [1,37]. The terms of the E-calculus can be seen as λ-terms
with explicit cuts of the form t[x/u], where [x/u] is propagated according to
the number of free occurrence of x in t (and not w.r.t. the structure of terms).
For the sake of completeness, we also study in the second part of the paper the
I-calculus, a formalism using full –in contrast to partial– substitution, in which
normal forms are exactly the same as those of the E-calculus, and whose reduction
sequences are obtained by projecting E-reduction sequences into terms without
explicit cuts. In other words, E-reduction implements the meta-level operators of
the I-calculus by using a resource aware semantics specified by means of explicit
reduction rules. Thus, the paper gives a self-contained study of calculi based on
sequent calculus, completely independent from their isomorphic natural deduc-
tion counter-part.

The second contribution of the paper is to provide type systems based on
non-idempotent intersection types for both E and I calculi. Intersection types
were introduced to give characterizations of strong β-normalizing terms in the
λ-calculus [11,33,42]; since then they have been used to characterize termination
properties in a broader sense [13], as well as to construct models of the λ-calculus
itself [6] Commonly, intersection types are idempotent, i.e. σ∧σ = σ, but we use
here non-idempotent types [9,28,30], suitable to obtain quantitative information
about reduction sequences. The non-idempotent type systems are used in this
paper to characterize strongly normalizing terms, i.e. an I-term (resp. E-term) is
typable if and only if it is strongly I-normalizing (resp. E-normalizing). Thanks
to the non-idempotent approach, the characterization proofs use simple combi-
natorial arguments, and do not need any reducibility technique as required in
the idempotent case. More precisely, in the case of the E-calculus, the character-
ization proof is based on the postponement of the erasing steps of the calculus
and a combinatorial argument based on a weighted subject reduction property.
In the case of the I-calculus, which does not admit postponement of erasing
steps, a characterization of strongly normalizing I-terms is obtained from the
characterization of strongly normalizing E-terms by a projection lemma.

Some Related Work: In the last years, there has been a growing interest in non-
idempotent intersection types. The relation between the size of a non-idempotent
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intersection typing derivation and the head/weak-normalization execution time of
lambda-terms by means of abstract machines was established by D. de Carvalho
[16]. Non-idempotence is used to reason about the longest reduction sequence of
strongly normalizing terms in both the lambda-calculus [7,15] and in different
lambda-calculi with explicit substitutions [8,27]. Non-idempotent types also
appear in linearization of the lambda-calculus [28], type inference [30,38], different
characterizations of solvability [40] and verification of higher-order programs [39].
While the inhabitation problem for intersection types is known to be undecidable
in the idempotent case [46], decidability was recently proved [10] through a sound
and complete algorithm in the non-idempotent case. Concerning the use of idem-
potent intersection types for focused intuitionistic sequent calculi, two different
papers [18,22] provide characterizations of strongly normalizing terms by means
of typability, but none of them give quantitative information about reduction, as
done in this paper. Moreover, in contrast to [22], which is based on explicit con-
trol operators for weakening and contraction, we keep the simple, original syntax
of Herbelin.

The work presented in this paper originates from a first computational inter-
pretation of LJT appearing in an unpublished technical report [26]. The app-
roach in [26] gives an elegant formulation of the typing rules by introducing
witness derivations everywhere, so that it is too costly and resource demand-
ing (see the discussion at the end of Sect. 8). The type systems in this paper
only require witness derivations for potentially erasable arguments of functions
and substitutions. As a consequence, the upper bound for the longest reduction
sequence of a strongly normalizing term obtained in this paper, represented just
by the size of a typing derivation, is tighter than the one in [26].

Structure of the Paper: The explicit E-calculus is introduced in Sect. 2 and its
associated typing system in Sect. 3. The characterization of strongly E-normalizing
terms is developed in Sects. 4 and 5 presents the syntax and the operational
semantics of the I-calculus, while Sect. 6 presents a non-idempotent typing system
for I together with its properties. In Sect. 7 an inductive definition of strongly I-
normalizing terms is used to complete the characterization result for the I-calculus.
Finally, we conclude in Sect. 8.

2 The E-Calculus

This section introduces the syntax and the operational semantics of the E-
calculus. The term language follows from [25], while the reduction rules aim to
give a resource aware semantics based on the substitution at a distance paradigm
[1,37].

Given a countable infinite set of symbols x, y, z, . . ., three syntactic categories
are defined as E-objects, E-terms and E-lists, respectively:

o, p: := t | l t, u: := xl | tl | λx.t | t[x/t] l,m: := nil | t; l

The construction [x/u] is said to be an explicit cut. Remark that the symbol
x alone is not an object of the syntax (term variables in natural deduction style
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would be encoded by x nil), and explicit cuts do not apply to lists, but only to
terms, i.e. l[x/u] is not in the grammar. We write tl1 . . . ln for (. . . (tl1) . . . ln)
and xnil for x nil. The size of the object o is denoted by |o|.

The notions of free and bound variables are defined as usual, in particular,

fv(xl) := {x} ∪ fv(l) fv(t[x/u]) := (fv(t) \ {x}) ∪ fv(u)
fv(tl) := fv(t) ∪ fv(l) fv(nil) := ∅
fv(λx.t) := fv(t) \ {x} fv(t; l) := fv(t) ∪ fv(l)

The number of free occurrences of x in o is written |o|x. We work with the
standard notions of α-conversion (i.e. renaming of bound variables for abstrac-
tions and substitutions), and Barendregt’s convention [5].

We also consider two categories of E-contexts:

L :: = � | L[x/t] O, P : := C | V
C, D : := � | xV | Cl | λy.C | C[y/u] | t[y/C] | tV
V, U : := C; l | t; V

When the replacement of the hole of O by the object o is well defined (i.e. gives
an object), then we denote it by O[o]. Similarly, L[t] denotes the term obtained by
replacing the hole of L by the term t. We write Cx for a context C which does not
capture the free variable x, i.e. there are no abstractions or explicit substitutions
in the context that binds the variable x. For instance, C = λy.� can be specified
as Cx while C = λx.� cannot. In order to emphasize this particular property we
write Cx[[t]] instead of Cx[t], and we may omit x when it is clear from the context.

The reduction relation →E is defined as the closure by contexts O of the
following rewriting rules:

L[λx.t]nil �→dBnil L[λx.t]
L[λx.t](u; l) �→dBcons L[t[x/u]l]
Cx[[x l]][x/u] �→c Cx[[u l]][x/u] if |Cx[[x l]]|x > 1
Cx[[x l]][x/u] �→d Cx[[u l]] if |Cx[[x l]]|x = 1
t[x/u] �→w t if |t|x = 0
L[xl]m �→@var

L[x(l@m)]
L[tl]m �→@app

L[t(l@m)]

where the operation @ is defined by the following equations:

nil@l := l (u; l)@m := u; (l@m)

An example of reduction sequence is

(λx.x(xnil; nil))(u; nil) →dBcons x(xnil; nil)[x/u]nil →@var

x(xnil; nil)[x/u] →c x(u nil; nil)[x/u] →d u(u nil; nil)

There are many differences with the reduction rules in [25]. First of all, the use
of the meta-operation @ for concatenating lists in the rules �→@var

and �→@app

replaces the explicit concatenation rules in [25]. This is particularly convenient
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since we only reduce objects that are terms (even if these terms occur inside lists),
so that the proofs are simpler/shorter because there are less rules and only of
one kind. A major difference with [25] is the use of rules at a distance, specified
by means of (term and list) contexts, where the propagation of substitutions
is not performed by structural induction on terms, since they are consumed
according to the multiplicity of their corresponding variables. As a consequence,
the behaviour of substitution is specified by a resource aware semantics, thus
preventing the useless duplication of empty resources, which happens in [25]
when using reduction steps of the form (tl)[x/u] → t[x/u]l[x/u], where |tl|x =
0. This is particularly unsuitable when considering non-idempotent types (cf.
the discussion at the end of Sect. 3). In contrast to other calculi at a distance
which only contains w and c-rules, such as for example the linear substitution
calculus [1,37], we also consider here a dereliction rule d. This is appropriate
to obtain a weighted subject reduction property relative to our typing system
(cf. Sect. 3), which would fail for the alternative rewriting rule C[[x l]][x/u] �→c

C[[u l]][x/u] when |C[[x l]]|x = 1.
The reduction relation →E can also be refined. We write →X for the closure

by contexts O of the rewriting rule �→X for every X. We define B@ := {dBnil ∪
dBcons ∪ @var ∪ @app} and →B@:=

⋃
X∈B@ →X . The non-erasing reduction

relation →E\w is given by →B@∪{d,c}, i.e. →E\w=→E \ →w, and plays a key role in
the characterization of strongly E-normalizing terms (cf. Sect. 4).

Let R be any reduction system. We denote by →∗
R (resp. →+

R) the reflexive-
transitive (resp. transitive) closure of a given reduction relation →R. The
reduction relation R is confluent if and only if for all objects o1, o2, o3 such
that o1 →∗

R o2 and o1 →∗
R o3, there is o4 being able to close the diagram,

i.e. o2 →∗
R o4 and o3 →∗

R o4. An object o is strongly R-normalizing, written
o ∈ SN (R), if there is no infinite R-reduction sequence starting at o, and o is
R-finitely branching if the set {o′ | o →R o′} is finite. If an object o is R-strongly
normalizing and R-finitely branching then the depth of o, written ηR(o), is the
maximal length of R-reduction sequences starting at o.

3 A Non-idempotent Typing System for E-Terms

This section introduces the typing system QE for the E-calculus. Given a count-
able infinite set of base types α, β, γ, . . . we consider types and multiset types
defined as follows:

(types) τ, σ, ρ : := α | M→τ
(multiset types) M : := [τi]i∈I where I is a finite set

Our types are strict [12,48], i.e. the type on the right hand side of a functional
type is never a multiset. They also make use of usual notations for multisets, as
in [16], so that [ ] denotes the empty multiset, and [σ, σ, τ ] must be understood
as σ ∧σ ∧ τ , where the symbol ∧ enjoys commutativity and associativity but not
idempotence, i.e. σ ∧ σ is not equal to σ.

Type assignments, written Γ,Δ, are functions from variables to multi-
set types, assigning the empty multiset to all but a finite set of variables. The



A Resource Aware Computational Interpretation for Herbelin’s Syntax 393

domain of Γ is given by dom(Γ ) := {x | Γ (x) �= [ ]}. The intersection of type
assignments, written Γ + Δ, is defined by (Γ + Δ)(x) := Γ (x) + Δ(x), where
the symbol + denotes multiset union. Hence, dom(Γ + Δ) = dom(Γ ) ∪ dom(Δ).
When dom(Γ ) and dom(Δ) are disjoint we write Γ ;Δ instead of Γ +Δ. We write
Γ \\x for the assignment (Γ \\x)(x) = [ ] and (Γ \\x)(y) = Γ (y) if y �= x.

The symbol is called the empty stoup. A stoup Σ is either a type σ or
the empty stoup. Type environments are pairs of the form Γ | Σ, where Γ is
a type assignment and Σ is a stoup. Type judgments are triples of the form
Γ | Σ 	 o:τ , where o is an object, Γ | Σ a type environment and τ a type. The
QE type system for the E-calculus is given in Fig. 1 ; it derives type judgments
of the form Γ | 	 t:τ and Γ | σ 	 l:τ , where t is a term and l is a list. We write
Γ | Σ 	QE

o:τ or Φ �QE
Γ | Σ 	 o:τ to denote derivability in system QE. The

hlist-size of the type derivation Φ is a positive natural number written sz2(Φ)
which denotes the size of Φ where every node hlist counts 21. Example 1 further
justifies the use of this hlist-size function.

∅ | τ � nil:τ
(ax)

Γ | � t:τ

Γ \\ x | � λx.t:Γ (x)→τ
(→ r)

Γ | σ � l:τ

Γ + {x:[σ]} | � xl:τ
(hlist)

Γ | � t:σ Δ | σ � l:τ

Γ + Δ | � tl:τ
(app)

Γ | � t:ρ Δ | τ � l:σ

Δ + Γ | [ ]→τ � t; l:σ
(→ l/∈)

(Γj | � t:τj)j∈J J �= ∅ Δ | τ � l:σ

Δ +j∈J Γj | [τj ]j∈J →τ � t; l:σ
(→ l∈)

Δ | � u:σ Γ | � t:τ x /∈ dom(Γ )

Γ + Δ | � t[x/u]:τ
(es/∈)

(Δj | � u:σj)j∈J J �= ∅ x:[σj ]j∈J ; Γ | � t:τ

Γ +j∈J Δj | � t[x/u]:τ
(es∈)

Fig. 1. The type system QE for the E-Calculus

Notice that the system QE is syntax oriented, i.e. for each type judgment of
the form Γ | Σ 	 o:τ there is a unique typing rule whose conclusion matches the
type judgment. Indeed, there are two different rules to type a list t; l, but the
type in the stoup Σ discriminates between them. There is a similar distinction
for terms of the form t[x/u] depending on whether x is in the free variables of
t or not. A consequence of this property is that statements usually proved in
generation Lemmas (cf. [6,35]) are straightforward in system QE.

1 The node hlist counts 2 since it corresponds, in the standard sequent calculus, to
an application of an axiom rule followed by a contraction.
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The (app) typing rule is the head-cut rule in the underlying logical system;
similarly, (es/∈) and (es∈) give an interpretation of the so-called mid-cut [25].
The type derivation for t (resp. for u) in rule (→ l/∈) (resp. (es/∈)) is called a wit-
ness derivation, and turns out to be essential to guarantee strong-normalization
of the whole typed term t; l (resp. t[x/u]). Indeed, if witness derivations are not
required, then non-terminating terms like t(Ω; l) or t[x/Ω] would be typable in
the system, for Ω = (λx.xxnil)λx.xxnil. The rules (→ l/∈) and (→ l∈) (resp.
(es/∈) and (es∈)) can be specified by means of a unique typing rule (→ l) (resp.
(es)), usually used in the proofs in order to save some space. They have the
form:

(Γj | 	 t:τj)j∈J Δ | τ 	 l:σ
Δ +j∈J Γj | [τi]i∈I →τ 	 t; l:σ

(→ l)

(Δj | 	 u:σj)j∈J x:[σi]i∈I ;Γ | 	 t:τ
Γ +j∈J Δj | 	 t[x/u]:τ

(es)

where (I = ∅ ⇒ |J | = 1) and (I �= ∅ ⇒ I = J).
The system QE is relevant [14], i.e. typing environments only contain the con-

sumed premises. Moreover, in contrast to [6,8], no subtyping relation is needed
for abstractions and/or applications.

Lemma 1. If Γ | Σ 	QE
o:τ , then dom(Γ ) = fv(o).

We now introduce a technical tool which will be used in Sect. 4 in order to give
a characterization of strongly E-normalizing terms. Indeed, we do not want to
distinguish terms having explicit cuts at different head positions, mainly because
they do have exactly the same maximal reduction lengths. More precisely, the
head graphical equivalence ∼ on E-terms, inspired from the σ-equivalence
on λ-terms [44] and the σ-equivalence on λ-terms with explicit substitutions [2],
is given by the contextual, transitive, symmetric and reflexive closure of the
following axiom

(tl)[x/u] ≈ t[x/u]l, where |l|x = 0

Notice that (xl)[x/u] cannot be ∼-converted into x[x/u]l when x /∈ fv(l), since
x alone is not a term of the calculus.

The main properties of system QE for E-terms follow.

Lemma 2 (Invariance for ∼). Let o, o′ be E-objects s.t. o ∼ o′. Then,

1. o →E\w o0 iff o′ →E\w o′
0, where o0 ∼ o′

0. In particular, ηE\w(o) = ηE\w(o′).

2. Φ � Γ 	QE
o:τ iff Φ′ � Γ 	QE

o′:τ . Moreover, sz2(Φ) = sz2(Φ′).

Lemma 3 (Weighted Subject Reduction). Let Φ � Γ | Σ 	QE
o:τ . If o →E\w

o′, then Φ′ � Γ | Σ 	QE
o′:τ and sz2(Φ) > sz2(Φ′).
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The sz2 function plays a central role in obtaining a strictly decreasing measure in
the subject reduction lemma above. More precisely, if we consider the standard
measure on typing derivations, written sz, which counts 1 for every node of
the derivation tree, then the weighted subject reduction property does not hold.
Here is an example.

Example 1. Let t be the term x(xnil; nil), and consider the following type
derivation Φt such that sz(Φt) = 5.

Φt :=

∅ | σ 	 nil:σ
x:[σ] | 	 xnil:σ ∅ | τ 	 nil:τ

x:[σ] | [σ]→τ 	 xnil; nil:τ
x:[σ, [σ]→τ ] | 	 x(xnil; nil):τ

Let u be a term s.t. Φ1
u � Δ1 | 	 u:σ and Φ2

u � Δ2 | 	 u:[σ]→τ . Therefore,

Φ :=
Φ1

u � Δ1 | � u:σ Φ2
u � Δ2 | � u:[σ]→τ Φt � x:[σ, [σ]→τ ] | � t:τ

Δ1 + Δ2 | � t[x/u]:τ

where sz(Φ) = 6 +i=1,2 sz(Φi
u).

Given the reduction step t[x/u] →c x(u nil; nil)[x/u] = t′, there is a deriva-
tion Φ′ typing t′ such that sz(Φ′) = sz(Φ). Indeed,

Φ′ :=
Φ2

u � Δ2 | � u:[σ]→τ

Φ1
u � Δ1 | � u:σ ∅ | σ � nil:σ

Δ1 | � u nil:σ ∅ | τ � nil:τ

Δ1 | [σ]→τ � u nil; nil:τ

x:[[σ]→τ ] + Δ1 | � x(u nil; nil):τ

Δ1 + Δ2 | � t′:τ

Corollary 1. If o is QE-typable then o ∈ SN (E\w).
As we mentioned in the introduction, the λ-calculus [25] is not compatible with
a resource aware semantics, as illustrated by the following example. Consider a
λ-reduction of the form o = (tl)[x/u] → t[x/u]l[x/u] = o′, and suppose |tl|x = 0.
Let Φ be a typing derivation for the object o, thus having the following form:

Φ :=

Φt � Γt | 	 t:σt Φl � Γl | σt 	 l:τ
Γt + Γl | 	 tl:τ Φu � Δ | 	 u:σ

(Γt + Γl) + Δ | 	 (tl)[x/u]:τ

The typing derivation for the object o′, let say Φ′, must use twice the typing
tree Φu, and thus sz2(Φ) > sz2(Φ′) cannot hold. In other words, propagation of
substitution w.r.t. the structure of terms induces useless duplications of empty
resources, turning out to be inappropriate in the framework of a resource aware
semantics.

The last key property relates typing with expansion:
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Lemma 4 (Subject Expansion). Let Γ | Σ 	QE
o′:τ . If o →E\w o′, then

Γ | Σ 	QE
o:τ .

4 Characterizing Strongly E-Normalizing Terms

This section is devoted to the characterization of E-strong normalization. We
use the technical tools developed in Sect. 3 to characterize strongly normalizing
E-terms by means of QE-typability, namely, the subject reduction and expansion
properties.

We start by giving an alternative definition of SN (E\w), where →E\w is defined
as →E \ →w. Indeed, the inductive set of E\w-strongly-normalizing objects,
written ISN (E \w), is the smallest subset of objects satisfying the following
properties:

(EL) nil ∈ ISN (E\w).
(NEL) If t, l ∈ ISN (E\w), then t; l ∈ ISN (E\w),

(L) If t ∈ ISN (E\w), then λx.t ∈ ISN (E\w).
(HL) If l ∈ ISN (E\w), then xl ∈ ISN (E\w).
(W ) If t, s ∈ ISN (E\w) and |t|x = 0, then t[x/s] ∈ ISN (E\w).

(dBnil) If (λx.t)l1 . . . ln (n ≥ 0)∈ISN (E\w), then (λx.t)nill1 . . . ln∈ISN (E\w).
(dBcons) If t[x/u]ml1 . . . ln (n ≥ 0) ∈ ISN (E\w), then (λx.t)(u;m)l1 . . . ln ∈

ISN (E\w).
(@var) If x(m1@m2)l1 . . . ln (n ≥ 0) ∈ ISN (E\w), then (xm1)m2l1 . . . ln ∈

ISN (E\w).
(@app) If t(m1@m2)l1 . . . ln (n ≥ 0) ∈ ISN (E \w), then (tm1)m2l1 . . . ln ∈

ISN (E\w).
(C) If C[[u l]][x/u]∈ISN (E\w) and |C[[x l]]|x > 1, then C[[x l]][x/u]∈ISN (E\w).
(D) If C[[u l]] ∈ ISN (E\w) and |C[[x l]]|x = 1, then C[[x l]][x/u] ∈ ISN (E\w).
(E) If (tl)[x/s] ∈ ISN (E\w) and |l|x = 0, then t[x/s]l ∈ ISN (E\w).

Remark in particular that case (E) guarantees the closure of ISN (E\w) for
the head graphical equivalence.

It is not difficult to show that the sets SN (E\w) and ISN (E\w) coincide (the
proof follows the same scheme used for example in [26]) so that we can show the
following result:

Lemma 5. Let o be an E-object. If o ∈ SN (E\w) then o is QE-typable.

Proof. By induction on the structure of o ∈ ISN (E\w) = SN (E\w).
– If o = nil, o = t; l, o = λx.t, o = xl, or o = u[x/v] with |u|x = 0, then the

proof is straightforward by using the i.h.
– If o ∈ ISN (E\w) comes from one of the rules (dBnil), (dBcons), (C), (D), (@var)

or (@app), then the property holds by the i.h. and the Subject Expansion
Lemma 4.



A Resource Aware Computational Interpretation for Herbelin’s Syntax 397

– If t[x/s]l ∈ ISN (E\w) comes from the rule (E), then (tl)[x/s] ∈ ISN (E\w),
so that (tl)[x/s] is QE-typable by the i.h. and the property holds by Lemma2.

Strong E-normalization can be now obtained from strong E\w-normalization as
follows:

Lemma 6 (From E\w to E). Let o be an E-object. If o ∈ SN (E\w), then
o ∈ SN (E).

Proof. One first shows a postponement property for w-reduction steps given by:
if o →+

w →E\w o′, then o →E\w→+
w o′. Then the property is proved by contradiction

using the postponement property.

We can now conclude with the main result of this section.

Theorem 1. Let o be an E-object. Then o is QE-typable iff o ∈ SN (E).

Proof. Let o be QE-typable. Then o ∈ SN (E\w) by Corallary 1 and o ∈ SN (E)
by Lemma 6. For the converse, o ∈ SN (E) ⊆ SN (E\w) because →E\w⊆→E. We
conclude by Lemma 5.

5 The I-Calculus

We now introduce the syntax and the operational semantics of the I-calculus,
slightly differently defined in [20]. The I-calculus can be obtained from E by an
appropriate projection function (cf. Lemma 8).

Given a countable infinite set of symbols x, y, z, . . ., three syntactic categories
as I-objects, I-terms and I-lists are respectively defined by the following
grammars:

o: := t | l t, u, v: := λx.t | xl | (λx.t)l l,m: := nil | t; l

Remark that general terms of the form tl are not I-terms.
As before, we work with Barendregt’s convention and the standard notion of

α-conversion. The notions of I-term and I-list contexts are defined as expected
according to the grammars above. The reduction relation →I is given by the
context closure of the following rules:

(λx.t)nil �→βnil
λx.t (λx.t)(u; l) �→βcons

t{x/u}◦ l

where the operations ◦ and { / } are defined as follows:

(xl)◦ m := x (l@m) nil{x/v} := nil
((λy.t)l)◦ m := (λy.t)(l@m) (u; l){x/v} := u{x/v}; l{x/v}
(λx.t)◦ m := (λx.t)m (y l){x/v} := yl{x/v}

(xl){x/v} := v ◦ l{x/v}
((λy.t)l){x/v} := (λy.t{x/v})l{x/v}
(λy.t){x/v} := λy.t{x/v}
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The substitution operator { / } is defined on α-equivalence classes of terms in
order to avoid the capture of free variables. Notice that substitution distributes
with respect to @ and ◦, i.e. one can show that (t@l){x/u} = t{x/u}@l{x/u}
and (t◦ l){x/u} = t{x/u}◦ l{x/u}. As expected, the I-calculus enjoys confluence.

An erasing step is the closure by contexts of the reduction rule (λx.t)(u; l) �→
t{x/u}◦ l, where x /∈ fv(t), i.e. an erasing step discards the argument u since
x /∈ fv(o) implies o{x/u} = o. Notice that erasing steps cannot be postponed, so
that we cannot apply to the I-calculus the same (simple) proof technique used in
Sect. 4 to characterize E-strong normalization. An example of non-erasing step is

(λy.ynil)(xnil;xnil; nil) → x(xnil; nil)

while (λy.znil)(xnil;xnil; nil) → z(xnil; nil) is an erasing step. Non-erasing
steps play a key role in Lemma 11.

The I-calculus can be simulated in the E-calculus in terms of more atomic
steps. Indeed,

Lemma 7. Let o be an I-term. If o →I o′, then o →+
E o′.

Proof. One first shows that for all I-objects t, u, l, t[x/u] →∗
E t{x/u} and tl →∗

E

t◦ l. The proof of the statement of the lemma then proceeds by induction on
I-reduction. The interesting case is when o = (λx.t)(u; l) →I t{x/u}◦ l = o′, for
which we conclude by o = (λx.t)(u; l) →E t[x/u]l →∗

E t{x/u}l →∗
E t{x/u}◦ l = o′

using the properties mentioned above.

Reciprocally, the E-calculus can be projected into the I-calculus. For that, we
first remark that the system sub = {w, d, c,@var,@app} is locally confluent and
terminating. Hence sub-normal forms of objects are unique; we thus write sub(o)
for the sub-normal forms of the object o.

Lemma 8 (Projection). Let o be an E-term. If o →E o′, then sub(o) →∗
I

sub(o′).

Proof. One first shows that for all E-terms t, u, one has sub(t[x/u]) =
sub(t){x/sub(u)}. The proof of the statement of the lemma is then by induction
on E-reduction using the previous remark.

Using confluence of I, together with Lemmas 7 and 8 we obtain the following
property.

Corollary 2. The reduction relation →E is confluent.

6 A Non-idempotent Typing System for I-Terms

In this section we restrict to I-objects the system QE introduced in Sect. 3. The
resulting system QI is given in Fig. 2. As before, relevance holds for I-objects.

Lemma 9. If Γ | Σ 	QI
o:τ , then dom(Γ ) = fv(o).
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Typing Rules {(ax), (→ r), (hlist), (→ l/∈), (→ l∈)} plus

Γ | � λx.t:σ Δ | σ � l:τ

Γ + Δ | � (λx.t)l:τ
(app)

Fig. 2. The type system QI for the I-Calculus

In order to characterize the set SN (I) of strongly I-normalizing term by means
of QI-typability, we first need to show that every QI-typable term is strongly
I-normalizing. This is obtained as follows:

Lemma 10. Let o be an I-term. Then, o ∈ SN (E) implies o ∈ SN (I).

Proof. A direct consequence of Lemma 7.

Corollary 3. If Φ �QI
Γ | Σ 	 o:τ , then o ∈ SN (I).

Proof. If o is QI-typable, then o is also trivially QE-typable. Theorem 1 gives
o ∈ SN (E) and Lemma 10 gives o ∈ SN (I).

The converse property, i.e. the fact that every strongly I-normalizing term is
QI-typable, will be proved in Sect. 7. For that, the following key property will
be used.

Lemma 11 (Subject Expansion for Non-erasing Reductions). If Φ �QI

Γ | Σ 	 o′:τ and o →I o′ is a non-erasing step, then there exists Φ′ such that
Φ′ �QI

Γ | Σ 	 o:τ .

Proof. By induction on the non-erasing reduction relation →I.

7 Characterizing Strongly I-Normalizing Terms

This section completes the characterization result for the I-calculus, namely, we
show that every strongly I-normalizing term is QI-typable, so that, together with
Corallary 3, we obtain a full characterization of strongly I-normalizing terms by
means of QI-typability.

In order to achieve the main result of this section, we define an inductive
set of objects ISN (I) containing the set of strongly I-normalizing objects and
contained in the set of those that are QI-typable. The set ISN (I) is inspired
by the idempotent intersection typing system proposed by Valentini [47], then
revisited by Kikuchi [31].

We start by defining the set ISN (I) as the smallest subset of I-objects
satisfying the following properties:

(ax) nil ∈ ISN (I).
(→ r) If t ∈ ISN (I), then λx.t ∈ ISN (I).
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(hlist) If l ∈ ISN (I), then xl ∈ ISN (I).
(→ l) If t ∈ ISN (I) and l ∈ ISN (I), then t; l ∈ ISN (I).

(appnil) If λx.t ∈ ISN (I), then (λx.t)nil ∈ ISN (I)
(app∈) If t{x/u}◦ l ∈ ISN (I) and x ∈ fv(t), then (λx.t)(u; l) ∈ ISN (I).
(app/∈) If t◦ l ∈ ISN (I) and u ∈ ISN (I) and x /∈ fv(t), then (λx.t)(u; l) ∈

ISN (I).

Every strongly I-normalizing object o turns out to be in ISN (I).

Theorem 2. If o ∈ SN (I), then o ∈ ISN (I).

Proof. By induction on 〈ηI(o), |o|〉.
If o = nil, then the statement is trivial. If o = u; l, then the i.h. gives u and

l in ISN (I) so that u; l ∈ ISN (I) using rule (→ l). The same reasoning can
be applied if o = λx.t or o = xl. If o = (λx.t)l, we consider two cases.

– l = nil. The i.h. gives λx.t ∈ ISN (I), then (λx.t)nil ∈ ISN (I) using rule
(appnil).

– l = u; l′. We consider again two cases.
• x ∈ fv(t). Since ηI(t{x/u}◦l) < ηI(o), then by the i.h. we have t{x/u}◦l ∈

ISN (I), then we obtain o ∈ ISN (I) using rule (app∈).
• x /∈ fv(t). Since ηI(t{x/u}◦ l) = ηI(t◦ l) < ηI(o), then by the i.h. we

have t◦ l ∈ ISN (I). Moreover, ηI(u) < ηI(o), so that also by the i.h. we
have u ∈ ISN (I). Then o ∈ ISN (I) using rule (app/∈).

Moreover, every object in ISN (I) is QI-typable.

Theorem 3. If o ∈ ISN (I), then there exists Φ′ such that Φ′ �QI
Γ | Σ 	 o:τ .

Proof. By induction on the definition of the predicate ISN (I). The cases (ax),
(→ r), (hlist) and (→ l) are straightforward. Let consider (λx.t)nil ∈ ISN (I)
coming from λx.t ∈ ISN (I) by rule (appnil). By the i.h. we have Γ | 	QI

λx.t:τ , thus we conclude by:

Φ′ :=
Γ | 	 λx.t:τ ∅ | τ 	 nil:τ (ax)

Γ | 	 (λx.t)nil:τ
(app)

Consider (λx.t)(u; l) ∈ ISN (I) coming from t{x/u}◦ l ∈ ISN (I) and x ∈
fv(t) by rule (app∈). By the i.h. Γ | 	QI

t{x/u}◦ l:τ , thus we get Γ | 	QI

(λx.t)(u; l):τ by Lemma 11.
Consider (λx.t)(u; l) ∈ ISN (I) coming from t◦ l ∈ ISN (I), u ∈ ISN (I)

and x /∈ fv(t) by rule (app/∈). By the i.h. Γ1 | 	QI
t◦ l:τ and Γ2 | 	QI

u:σ.
It can be proved, by induction that there are Γ ′

1 | 	QI
t:τ ′ and Γ ′′

1 | τ ′ 	QI
l:τ ,

where Γ1 = Γ ′
1 + Γ ′′

1 . Thus we get the following QI-derivation:

Φ′ :=

Γ ′
1 | 	 t:τ ′

Γ ′
1 | 	 λx.t:[ ]→τ ′ (→ r)

Γ2 | 	 u:σ Γ ′′
1 | τ ′ 	 l:τ

Γ2 + Γ ′′
1 | [ ]→τ ′ 	 u; l:τ

(→ l/∈)

Γ ′
1 + Γ ′′

1 + Γ2 | 	 (λx.t)(u; l):τ
(app)
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We can thus conclude this section with the equivalence between strongly I-
normalizing terms and typable terms in system QI.

Corollary 4. Γ | Σ 	QI
o:τ if and only if o ∈ SN (I).

8 Conclusion

This paper proposes a resource aware computational semantics for Herbelin’s
syntax. The resulting E-calculus can be seen as a refinement of the non resource
aware I-calculus, whose meta-level operations are implemented by more atomic
reduction rules in E. In contrast to more complex resource-controlled interpreta-
tions (cf. [22]) realized by means of explicit control operators for weakening and
contraction, our implementation is achieved by rewriting rules inspired from the
substitution at a distance paradigm, recently used in successful investigations in
computer science.

We define typing systems for both calculi I and E, based on relevant, strict,
non-idempotent intersection types. Typing rules of the systems are syntax directed.
In both cases, typability is used to completely characterize strongly normalizing
terms. Our results are presented in a self-contained form, without resorting to
their isomorphic natural deduction counter-parts. The proofs only use combi-
natorial arguments, neither reducibility candidates nor memory operators have
been necessary.

Balance between typing and reduction systems in a resource aware frame-
work is sensitive; this is illustrated by the approach in [26] and the one taken
here. Indeed, adding a dereliction rule to the reduction system, as done in this
paper, allows to restrict the witness type derivations to erasable subterms only,
while dereliction can be simply omitted, as done in [26], when using a resource
consuming approach based on witnesses everywhere.
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Aix-Marseille II, These de doctorat (2007)

17. Dyckhoff, R., Urban, C.: Strong normalization of herbelin’s explicit substitution
calculus with substitution propagation. J. Logic Comput. 13(5), 689–706 (2003)
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Abstract. We consider (un)decidability of Multi-Lane Spatial Logic
(MLSL), a multi-dimensional modal logic introduced for reasoning about
traffic manoeuvres. MLSL with length measurement has been shown to
be undecidable. However, the proof relies on exact values. This raises the
question whether the logic remains undecidable when we consider robust
satisfiability, i.e. when values are known only approximately. Our main
result is that robust satisfiability of MLSL is undecidable. Furthermore,
we prove that even MLSL without length measurement is undecidable.
In both cases we reduce the intersection emptiness of two context-free
languages to the respective satisfiability problem.

Keywords: Robustness · Interval logic · Spatial logic · Undecidability

1 Introduction

To reason about configurations of cars on a motorway in a formal manner we need
an abstract representation of a motorway and the cars on it. In [13] the authors
model a motorway as a set of lanes, where the extension of a lane is represented
by the real numbers. The space occupied by a car then is a subinterval of the real
numbers, together with the lane the car is located on. Additionally, the authors
define Multi-Lane Spatial Logic (MLSL) to express topological properties of the
cars on the motorway from the local perspective of a car. Possible properties
are, e.g. ‘there is a car on an adjacent lane’ or ‘there is some free space in front
of us’ or ‘there is a collision’, i.e. an overlap of occupied spaces. MLSL then has
been extended to support length measurement and dynamic modalities [12,16].
With the dynamic modalities specifications of, e.g. a distance controller can be
expressed in the logic. With length measurement properties such as ‘there are
five units of free space in front of me’ can be expressed. MLSL with length
measurement has been proven to be undecidable [16].

However, in all variants of MLSL considered it was assumed that data are
known exactly, e.g. the position of every car is known exactly. Considering that
the logic is used to express spatial properties of traffic on a motorway and that
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data are obtained by imperfect sensors this assumption is too idealistic. This
raises the question, whether the logic becomes decidable when values are known
only approximately. Consider Metric Temporal Logic (MTL) [15] as an example
where weakening the assumption of working with exact values leads to decid-
ability. MTL is undecidable [10] and the proof heavily relies on formulas of the
form �(P =⇒ ♦=1Q), which specifies that always exactly 1 time unit after P
holds Q will hold. However, the fragment Metric Interval Temporal Logic, where
exact timing properties are not expressible, is decidable [3].

As an intermediate result we show that even without length measurement
MLSL is undecidable. This is surprising, because in this fragment we can only
express topological relations between cars. Even though this fragment does not
contain length measurement it still assumes exact positions. To formalize that
values are known only approximately we consider a robust satisfaction relation,
where a model robustly satisfies a formula iff all similar models also satisfy the
formula. Our main result is that robust satisfiability of MLSL without length
measurement is undecidable. To prove this we reduce the intersection emptiness
of two context-free languages to the robust satisfiability problem. Our proof also
works for a variety of restrictions on MLSL, e.g. when the extension of the lanes
is represented by natural numbers instead of real numbers or when the minimal
or maximal size of cars is bounded or any combination of these.

Robustness of spatial logics received little attention so far, because most
spatial logics consider qualitative properties. However, as MLSL is inspired by
temporal logics, robustness of timed systems is related. Our definition of robust
satisfaction is similar to other approaches to introduce robustness into a formal-
ism. A robust timed automaton accepts a trajectory iff it also accepts all slightly
perturbed trajectories [8]. They were defined with the hope that by making exact
timing properties inexpressible, the universality problem (does an automaton
accept all trajectories) would become decidable, similarly to the satisfiability
problem for MITL. However, the universality problem remains undecidable for
robust timed automata [11]. In [7] a robust interpretation for a fragment of
Duration Calculus has been defined. Whether this fragment is decidable with
this robust interpretation is not known. For a survey on robustness in timed
systems we suggest [1].

MLSL is inspired by DC [6], Interval Temporal Logic [17] and Shape Calculus
[19]. Other logics similar to MLSL are CDT [20] and Halpern-Shoam-logic (HS)
[9]. CDT and HS are one dimensional modal interval logics used to express
temporal properties. In both of these logics topological properties of intervals
can be expressed. However, while in MLSL there is a constant number of atomic
propositions, in CDT and HS there is an arbitrary but finite number of atomic
propositions. Further, both of these logic leave the temporal structure quite
unconstrained, i.e. time may be branching or linear, dense or discrete.

2 Multi-Lane Spatial Logic

With Multi-Lane Spatial Logic (MLSL) we reason about static motorway traffic
configurations. To this end we model the configuration of a motorway at a specific
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point in time as a traffic snapshot. In such a traffic snapshot the motorway is
represented in a two dimensional manner, i.e. one vertical and one horizontal
dimension. The vertical dimension represents the lane a car is located on and the
horizontal dimension represents the position along the lane. A car then reserves
the part of a lane where it is currently driving. When a car is changing lanes it
has multiple reservations on adjacent lanes.

In the original definition of MLSL the model contains information about
whether a car intents to change lanes (there called claims), the perspective
from which formulas are evaluated (there called ego) and how a traffic snap-
shot changes as time progresses. We do not need this expressiveness to show
undecidability. Hence, we consider a simplified logic without this information.
As original MLSL is a conservative extension of our simplified logic our results
also hold for the original logic.

With small adaptions our definitions in this section are taken from [13,16].

2.1 The Model

To formally define a traffic snapshot, we assume a countably infinite set of glob-
ally unique car identifiers I and an arbitrary but fixed set of lanes L = {0, . . . , k},
for some k ∈ N≥1.

Definition 1 (Traffic Snapshot). A traffic snapshot T S is a structure T S =
(res, pos , br-dis), where res, pos , br-dis are functions

– res : I → P(L) such that res(C) is the set of lanes the car C reserves,
– pos : I → R such that pos(C) is the position of the car C along the lanes,
– br-dis : I → R>0 such that br-dis(C) comprises the braking distance and the

physical size of C,

where P(L) denotes the powerset of L.

In the original definition the authors imposed sanity conditions on a traffic snap-
shot, such as 1 ≤ |res(C)| ≤ 2 holds for all cars C [13]. Our results hold regardless
of whether these conditions are assumed. The extension of a lane occupied by a
reservation is given by the safety envelope of a car, which is defined as

se(C) = [pos(C), pos(C) + br -dis(C)] .

We reason only about a finite part of a traffic snapshot. In the original defi-
nition of MLSL this is called a view and we keep this name here.

Definition 2 (View). For a given traffic snapshot T S with a set of lanes L, a
view V is defined as a structure V = (L,X), where

– L ⊆ L is an interval of lanes that are visible in V ,
– X ⊆ R is an interval representing the extension of the lanes visible in V .
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A subview of V is obtained by restricting the lanes and extension we observe.
Let L′,X ′ be subintervals of L and X, then we define

V L′
= (L′,X) and VX′ = (L,X ′) .

If the interval of lanes is empty or the extension is a point interval we say that
the view is empty.

To give the semantics of MLSL in a uniform way we define chopping of views
into subviews.

Definition 3 (Chopping Views). Let Vi = (Li,Xi) be views with i ∈ {0, 1, 2}
and Xi = [ri, ti]. Then we define vertical chopping (denoted by �) and horizontal
chopping (denoted by �) of V0 into V1 and V2 as

V0 = V1 � V2 iff L0 = L1 ∪ L2 and L1 ∩ L2 = ∅ and X0 = X1 = X2 and
(L1 = ∅ or L2 = ∅ or max(L1) + 1 = min(L2)) ,

V0 = V1 � V2 iff t1 = r2 and r0 = r1 and t0 = t2 and L0 = L1 = L2 .

The intuition is that after vertical chopping the lane intervals of the subviews
are adjacent and non-overlapping because each lane should belong to exactly one
subview. After horizontal chopping the new subviews are adjacent and share a
common point, which is the endpoint of the left subview and the startpoint of
the right subview. Note that a nonempty view can be chopped into an empty and
a nonempty subview and that an empty view can be chopped into two empty
subviews.

Let CVar be the set of variables ranging over I. A valuation ν is a function
ν : CVar → I that maps car variables to car identifiers. Additionally we define
valuation updates with the override notation ⊕ from Z [21] as ν ⊕{c �→ C}(c′) =
C if c = c′ and ν(c′) otherwise.

Definition 4 (Model). Let T S be a traffic snapshot, V a view and ν a valua-
tion, then we call M = (T S, V, ν) a model of MLSL.

2.2 The Logic

The atoms of MLSL are used to express that some part of a lane is filled by a
reservation or completely free of reservations. The chop operators in the logic
are defined using the chop operators on views. The horizontal chop formula
φ0 � φ1 expresses that on the left subview φ0 and on the right subview φ1 holds.

With the vertical chop formula
φ1

φ0

we require that the lower subview satisfies φ0

and that the upper subview satisfies φ1. Note that for both chop formulas the
satisfying subviews might be empty. Additionally, the logic is closed under first
order operators.
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Definition 5 (Syntax). Given variables c, c′ ∈ CVar the syntax of MLSL is
given by

φ ::= c = c′ | free | re(c) | ¬φ | φ ∧ φ | ∃c. φ | φ � φ | φ

φ
.

Definition 6 (Semantics). Let c, c′ ∈ CVar. Then, given a traffic snapshot
T S, a view V = (L,X) with X = [r, t], and a valuation ν we define the satis-
faction of a formula by a model M = (T S, V, ν) as

M |= c = c′ iff ν(c) = ν(c′),
M |= free iff |L| = 1 and r < t and

(∀C ∈ I. L �⊆ res(C) or se(C) ∩ (r, t) = ∅),
M |= re(c) iff |L| = 1 and r < t and

L ⊆ res(ν(c)) and X ⊆ se(ν(c)),
M |= ¬φ iff M �|= φ,

M |= φ0 ∧ φ1 iff M |= φ0 and M |= φ1,

M |= ∃c. φ iff ∃C ∈ I. T S, V, ν ⊕ {c �→ C} |= φ,

M |= φ0 �φ1 iff ∃V0, V1. V = V0 � V1 and
T S, V0, ν |= φ0 and T S, V1, ν |= φ1,

M |= φ1

φ0

iff ∃V0, V1. V = V0 � V1 and

T S, V0, ν |= φ0 and T S, V1, ν |= φ1 .

In addition we make use of the standard abbreviations such as true,∨,∀.
Additionally, we use a derived modality to express that somewhere on the motor-
way φ holds. It is defined by using both chop operators as

〈φ〉 def= true �

⎛

⎝
true
φ

true

⎞

⎠ � true .

3 Undecidability of MLSL

Undecidability of Duration Calculus was proven by a reduction to the halt-
ing problem of a two counter machine [5]. This construction has been adapted
to prove undecidability of MLSL with length measurement, where length mea-
surement allows to compare the size of the current view to a constant [16].
The authors defined that the representation of a configuration of a two counter
machine is of length 5k, where k is a constant. The value m of a counter was
represented in an interval of length k and consisted of m reservations and the
remaining space of a configuration was used for markers to separate the counters.
To increase the value of a counter they required that for all reservations part of
the representation of the counter there is a reservation 5k space units later (in
the next representation of the counter’s value) and additionally, there is exactly
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one reservation in the later representation for which there is no reservation 5k
space units earlier. For this construction it is important to be able to specify the
distance between reservations.

The construction from [16] does not work in our setting, as we consider
MLSL without length measurement. Instead, we reduce the emptiness prob-
lem of the intersection of two context-free languages, which is undecidable [14],
to the satisfiability problem of MLSL. For the reduction we create a formula
such that satisfying models represent derivations of two context-free grammars
for the same word. A letter is represented as a fixed number of successive reser-
vations. Different letters are represented by a different number of reservations in
their representation. Letters are separated by free space, and rewrite steps are
represented by different lanes.

Definition 7 (Context-Free Grammar). A context-free grammar (CFG) is
a tuple G = (N , T ,R, S), where N is the set of nonterminals, T with T ∩N = ∅
is the set of terminals, S ∈ N is the starting nonterminal and R ⊆ N ×(T ∪N )∗

is the set of rewrite rules. A rewrite rule (N,w) ∈ R is usually written as
N → w. We extend → as follows. Let RN = {w | (N,w) ∈ R}, i.e. the set of
words that may replace N . Let u, v, w ∈ (T ∪ N )∗, N ∈ N then uNv → uwv
with (N,w) ∈ R is a rewrite step. A sequence of rewrite steps is a derivation.
The language L(G) of a CFG G is the set of terminal words reachable with a
derivation that starts with S. We refer to σ ∈ N ∪ T as letter.

All grammars we consider are in Chomsky normal form. With the definition
we use this implies that the empty word is not in the language of a grammar in
Chomsky normal form. Still the language intersection problem of these grammars
remains undecidable.

Definition 8 (Chomsky Normal Form). A CFG G = (N , T ,R, S) is in
Chomsky normal form (CNF) iff all rewrite rules have the form N0 → τ or
N0 → N1N2, where N0, N1, N2 ∈ N , τ ∈ T .

Definition 9 (Derivation Tree). For a grammar G = (N , T ,R, S) in CNF a
derivation tree is a N ∪T -labelled tree, where the following conditions hold. The
label of the root is S. All leaves and no other nodes are labelled by terminals.
Further, for any node labelled by a nonterminal N let w = σ0σ1 . . . σk−1 be the
word formed by its k children, then (N,w) ∈ R.

3.1 Construction

First we give an intuitive explanation of how a model satisfying the formula we
construct in this section looks like. We encode two CFGs GD and GU in one
formula such that a satisfying model represents two derivation trees, one from
each grammar. The representation of a derivation tree for GD has its root on
the top lane and grows downward, whereas the tree for GD has its root on the
bottom lane and grows upward. In a satisfying model every letter is represented
as a number of successive reservations without space in between.
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SU

CU CU

CU CUaU

aU bU

SD

AD BD

AD AD bD

aD aD

Fig. 1. Visualisation of an
MLSL model represent-
ing two derivation trees
of derivations taken from
Example 1. The boxes
correspond to letters and
reservations are not shown

Representations of adjacent letters are separated
by free space and different letters are represented by
a different number of reservations. If a nonterminal
from the downwards growing grammar is replaced by
a word, the word is represented on the lane below the
nonterminal such that the horizontal space used to
represent the word is strictly contained in the space
used for the nonterminal. Equality of the derived
words is represented as horizontal alignment of ter-
minals that differ only in their subscripts (e.g. aU and
aD in Fig. 1). In Fig. 1 we depict an MLSL model rep-
resenting the derivation trees of the derivations from
Example 1. Note that we never show the view in our
visualisations of models.

Example 1. Let GD = (ND, T ,RD, SD) and GU =
(NU , T ,RU , SU ) be two grammars in CNF, where
ND = {AD, BD, SD}, T = {a, b}, NU = {CU , SU}
and RD,RU are given in BNF-like notation:

SD → ADBD SU → CUCU

AD → ADAD | a CU → CUCU | a | b

BD → BDBD | b

Two derivations of GD and GU are SD → ADBD →
ADADBD → ADADb → aADb → aab and SU →
CUCU → aCU → aCUCU → aaCU → aab.

Given two CFGs GD = (ND, T ,RD, SD) and
GU = (NU , T ,RU , SU ) such that ND ∩ NU = ∅, we
assume two sets TD, TU and bijective functions πD : T → TD and πU : T → TU

such that TD, ND, TU and NU are all disjoint. The idea behind the two functions
is that we want to differentiate between the MLSL encoding of terminals from
GU and from GD.

Letter. Let μ : TD ∪ ND ∪ TU ∪ NU → N>0 be an injective function. In MLSL
we represent every letter σ ∈ TD ∪ND ∪TU ∪NU as μ(σ) successive reservations
from different cars, without free space in between. We formalize this as

letter(σ, c)def= re(c)� ∃c1, . . . , cμ(σ)−1.

re(c1)� . . . � re(cμ(σ)−1) ∧
i�=j∧

i,j∈{1,...μ(σ)−1}
ci �= cj ,

where c ∈ CVar is a car variable. We use c as an identifier to uniquely differen-
tiate letters within a formula.
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Assume that the letter aD is represented by one reservation, and that the
letter bD is represented by two reservations. We have to distinguish between two
occurrences of aD and one occurrence of bD. To be able to recognize letters we
demand that before and after every letter there is some free space. For this we
define

letter free(σ, c)def= free � letter(σ, c)� free .

The formulas letter and letter free are used in other formulas, which will always
bind the car variable, here c.

Start. To ensure that there is a starting letter we express that the topmost lane
contains the starting nonterminal SD as

startD
def=∃c.

letter free(SD, c)
true

.

Step. Now we encode the rewrite relation as a formula. Recall that we consider
grammars in Chomsky normal form, so any right-hand side of a rewrite rule has
one or two letters. For a word w we define

word(w)def=

{
l∃c0. letter free(σ0, c0) if |w| = 1 ,

∃c0, c1. c0 �= c1 ∧ letter free(σ0, c0)� letter free(σ1, c1) if |w| = 2 ,

where σj is the j-th letter of w.
To define that a nonterminal N is replaced by a word w, according to the

rewrite rule RD, we define

stepD(N, c)def=
free
free

�
( letter(N, c)

∨
w∈RN

D
word(w)

)
�

free
free

.

This means that we replace a nonterminal on the lane below it with any of the
words from the rewrite relation. As we use letter free in the definition of word ,
we ensure that the replaced letter is horizontally larger than its replacement.
Note that we subscripted the formula with D, because we only use it to encode
derivation trees growing downward.

As all nonterminals should be replaced on the next lane we define

step allD
def=∀c.

∧

N∈ND

(〈letter free(N, c)〉 =⇒ 〈stepD(N, c)〉) .

In the premise we test, whether somewhere the car variable c is used as identifier
for an occurrence of the nonterminal N . Intuitively, we bind the variable c to
the occurrence matched in the premise. For this to work as intended we have
to assume that c is used as identifier for only this one occurrence. We formalize
this later. In the conclusion we use this c, bounded to one specific occurrence
of a nonterminal, to state that below this occurrence there should be a word as
defined by the rewrite relation.
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Side Conditions. As already mentioned we do not consider cars with two
reservations or overlapping reservations. To exclude these we define

mutexdef=¬∃c, c′. c �= c′ ∧ 〈re(c)∧〉 , no 2 resdef=¬∃c.
〈re(c)〉
〈re(c)〉 .

We define asmdef=mutex ∧ no 2 res.
As we want to encode derivations, all reservations should be part of the

representation of the derivation. Thus, all reservations should belong to the
representation of some letter, as ensured by

all res in letterdef=∀c. 〈re(c)〉 =⇒
∃c′.

∨

σ∈ND∪NU∪
TD∪TU

〈letter free(σ, c′) ∧ (true � re(c)� true)〉 ,

under the assumption that asm holds. We point out that re(c) in the premise
and re(c) in the conclusion refer to the same reservation, as every car has
only one reservation. Further, letter free(σ, c′) is evaluated on the same view as
(true � re(c)� true). Thus, this formula ensures that every reservation is inside
the representation of a letter.

We want to ensure that all representations of letters are part of a derivation,
i.e. we want to forbid orphaned letters. For this we demand that for all letters
not on the topmost lane, there is a nonterminal above them. The formula

letter next to letterD
def= ∀c.

∧

σ∈ND∪TD

(〈 〈∃c′. free ∨ re(c′)〉
letter free(σ, c)

〉
=⇒

∃c′′.
∨

N∈ND

(
〈letter free(N, c′′)〉 ∧

〈 letter(N, c′′)
letter free(σ, c)

〉))

ensures this, where we use 〈∃c′. free ∨ re(c′)〉 to match at least one lane, without
regard for what is on the lane. Similar as in step allD we bind a car variable c
to the occurrence of a letter σ in the premise of the implication. However, in
the premise we additionally require that the letter is not located on the topmost
lane. This is necessary, because we do not want to demand that there is another
nonterminal above the starting nonterminal. In the conclusion we bind a new
variable c′′ to the occurrence of a nonterminal N and require that the represen-
tation of N is above and strictly larger than the representation of σ. Intuitively,
letter next to letterD ensures that from any representation of a letter there is a
sequence of vertically adjacent representations leading to SD on the top lane.
As step allD requires that all of these sequences obey the rewrite rules, now we
can extract derivations from satisfying models.

Second Grammar. The formulas so far can be used to ensure that the MLSL
representation of a derivation from the grammar GD starts at the top lane and
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grows downwards. Now we add formulas that demand that a derivation from GU

starts at the bottom and grows upwards.
For all formulas φD defined so far we create a formula φU by replacing indices

D with U in φ and swapping lower and higher formulas in vertical chop operators.
For example we define

startU
def=∃c.

true
letter free(SU , c)

,

stepU (N, c)def=
free
free

�
( ∨

w∈RN
U

word(w)

letter(N, c)

)
�

free
free

,

and the other formulas are similarly defined.
The formula

free lanedef=
true
free
true

requires that there is at least one lane without any reservations. This, together
with letter next to letterD, ensures that below this free lane there are no repre-
sentations of letters from GD. If there was such a letter, then from that letter
the sequence of vertically adjacent representations would be interrupted by a
free lane. Symmetrically, there is no letter from GU above this free lane.

We say for two words w,w′ that w is a subsequence of w′ iff we can create w
from w′ by only removing letters from w′. We now define that the derived word
of one grammar is a subsequence of the derived word of the other grammar.
For i ∈ {D,U} and τ ∈ T we use τi as abbreviation for πi(τ). Let c, c′ be car
variables, then we define

φ(τ, c, c′)def=

〈 free
true
free

�
( letter(τD, c)

true
letter(τU , c′)

)
�

free
true
free

〉
,

which requires that the representations of the terminal τ using the variables c, c′

are horizontally aligned. The horizontal alignment is enforced by ensuring that
the formulas letter(πD(τ), cD) and letter(πU (τ), cU ) are evaluated on the same
extension. This is done by evaluating the horizontal chops before the vertical
chops. Further, we define

subseqD
def=

∧

τ∈T
∀c. (〈letter free(τD, c)〉 =⇒ ∃c′. (〈letter free(τU , c′)〉 ∧ φ(τ, c, c′))) ,

subseqU
def=

∧

τ∈T
∀c′. (〈letter free(τU , c′)〉 =⇒ ∃c. (〈letter free(τD, c)〉 ∧ φ(τ, c, c′))) .

Note that in subseqD and subseqU the subformula φ(τ, c, c′) is the same. How-
ever, the car variable names and the subscripts D and U outside φ(τ, c, c′) are
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swapped. The formula subseqD ensures that for every terminal τ , when the down-
ward derivation contains the downward encoding πD(τ) of τ , then the upwards
derivation contains the upward encoding πU (τ) of τ , horizontally aligned. In
other words subseqD requires that each terminal from the downwards derivation
has an horizontally aligned corresponding terminal from the upwards deriva-
tion. The horizontal alignment prevents that two downwards terminals share
the same corresponding upwards terminal. The explanation for subseqU is sym-
metric. Because one word is a subsequence of the other word and vice versa, the
two derived words are equal.

For the final formula we conjoin the downward and the upward formulas:

F (GD, GU )def=
∧

i∈{U,D}
step all i ∧ start i ∧ letter next to letter i ∧ subseq i ∧

free lane ∧ all res in letter ∧ asm.

Now we can state our first lemma. We can create an MLSL formula that is
satisfiable iff there is a word derivable in two CFGs.

Lemma 1. Given CFGs GD = (ND, T ,RD, SD) and GU = (NU , T ,RU , SU )
we can create a formula F (GD, GU ) such that

∃w ∈ L(GD) ∩ L(GU ) iff ∃M.M |= F (GD, GU ) .

Proof. In the full version of this paper [18].

As the intersection emptiness of two context-free languages is undecidable [14],
we obtain our first main theorem.

Theorem 1. The satisfiability problem of MLSL is undecidable.

4 Undecidability of Robust Satisfiability

The undecidability result for MLSL by Hilscher and Linker relies on length
measurement [16] and in their construction the authors rely on exact values.
Even though in our construction we do not use length measurement, we still
rely on correct positional information. For example, we represented letters as
non-overlapping, successive reservations without free space in between, i.e. when
the position of a single car is shifted a small amount the resulting model does
not satisfy the formula.

Here we show that MLSL remains undecidable, even when the position of
cars along the lanes are perturbed. We chose positional perturbations as it seems
realistic, considering that the position could be obtained via GPS and the lane
via more accurate means. We say that a model M robustly satisfies a formula
iff there is some ε > 0 such that all models differing by at most ε (w.r.t. to a
metric) from M also satisfy the formula. A formula is robustly satisfiable iff
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there is a model that robustly satisfies the formula. In the following we adapt
our construction from Sect. 3 to this definition of robust satisfiability.

Our definition of robust satisfiability is similar to the definition of tube accep-
tance from [8], where a robust timed automaton accepts a trajectory iff the
automaton also accepts all similar trajectories.

4.1 Robust Satisfiability of MLSL

We define a metric on models of MLSL and robust satisfiability of MLSL formulas
w.r.t. to this metric. A metric can be understood to assign to every two models
a distance.

Definition 10 (Metric on Models). Let M = (T S, V, ν), M′ = (T S ′, V ′, ν′)
with T S = (res, pos, br-dis), T S ′ = (res ′, pos ′, br-dis ′), V = (L, [r, t]) and V =
(L′, [r′, t′]). Then we define d(M,M′) = ∞ if L �= L′ or res �= res ′ or br-dis �=
br-dis ′ and

d(M,M′) = max
C∈I

{|r − r′|, |t − t′|, |pos(C) − pos ′(C)|,
|(pos(C) + br-dis(C)) − (pos ′(C) + br-dis ′(C))|}

otherwise.

Since we only use absolute values, the distance between two models always is
positive. Further, it is not difficult to show that the triangle inequality is satis-
fied. Thus, d is indeed a metric. This means that the distance of two models is
infinite, if they disagree on discrete values. Otherwise the distance is the greatest
difference of any dense value.

With this we can define robust satisfaction of a formula.

Definition 11 (Robust Satisfaction). Let M be a model and let φ be an
MLSL formula. Then we say that M robustly satisfies φ, denoted by M |=R φ,
if and only if

∃ε ∈ R>0.∀M′. d(M,M′) ≤ ε implies M′ |= φ .

A formula is robustly satisfiable iff there is a model that robustly satisfies it.

Example 2. Consider the following formulas:

φ0
def= c0 �= c1 ∧ 〈re(c0) � re(c1)〉 ,

φ1
def=φ0 ∧ ¬∃c2, c3. c2 �= c3 ∧ 〈re(c2) ∧ re(c3)〉 .

The formula φ0 requires that there are two successive reservations from different
cars without free space in between. The model M0, depicted in Fig. 2(a), robustly
satisfies φ0 because the positions of the cars can be perturbed by a small amount
without affecting satisfaction by the model. Hence, φ0 is robustly satisfiable. The
model, M1 (Fig. 2(b)) does not robustly satisfy φ0 because if the position of c1 is
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increased (moved to the right) by an arbitrary small amount there is free space
between the reservations, which violates φ0.

The formula φ1 additionally requires that there are no overlapping reserva-
tions. Thus, M0 does not satisfy the formula. While M1 satisfies φ1, moving a
single car in any direction either creates overlapping reservations or free space,
both of which violate the formula. In general φ1 requires that the reservation of
c0 ends exactly where the reservation of c1 starts. Naturally, this is not robustly
satisfiable.

(a) (b)

c0 c1 c0 c1

Fig. 2. (a) The model M0, which contains two overlapping reservations and (b) The
model M1, which contains two reservations. The second reservation starts exactly
where the first ends

4.2 Construction

We need to replace those parts of our construction, that are affected by small per-
turbations of positions. For this we adapt our representation of letters, because
they are represented as successive reservations starting exactly where another
reservation ends. Additionally, we have to adapt the subseq-formulas, because
they ensured perfect alignment of letters, which is not possible in a setting with
perturbations.

Letter. To represent letters we remove the assumption that there are no over-
lapping reservations. However, we still do not consider cars with multiple reser-
vations. For a finite set C ⊆ CVar of car variables we define

only(C)def=
∧

c∈C
re(c) ∧ (∀c′. (true � re(c′) � true) =⇒

∨

c′′∈C
c′′ = c′) ,

only free(C)def= free � only(C)� free ,

to ensure that the current view is filled by reservations from all car variables
in C, but does not contain reservations from any other cars. See Fig. 3 for a
visualisation. Now we can define our representation of letters as

letter(σ, c)def= startmarker(c)� ∃c0, . . . , cμ(σ)−1.

i�=j∧

i,j∈{0,...μ(σ)−1}
ci �= cj ∧

only free({c0})� . . . � only free(cμ(σ)−1)� ∃e. endmarker(e) ,

startmarker(c)def= only({c})� ∃c′. c �= c′ ∧ only({c, c′})� only({c′}) ,

endmarker(e)def=∃c′. e �= c′ ∧ only({c′})� only({e, c′})� only({e}) ,
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where σ is either a terminal or a nonterminal and c, e are car variables. Our
representation of letters begins and ends with two different markers. In between
these markers the representation contains μ(σ) reservations. This representation
of letters does not depend on exact positions of cars. In Fig. 3 we depict two
adjacent letters with free space in between them.

c0 c1 c2

only({c0, c1}) onlyfree({c2})

letterfree(a, c0)

c3 c4

startmarker(c3) μ(σ)
reservations

endmarker(c4)

letterfree(a, c3)

Fig. 3. Visualization of a model satisfying letter free(a, c0) � letter free(a, c3) with
µ(a) = 2, where letter free uses the new letter -formula. Reservations are shown as rec-
tangles with rounded corners; different heights are used for better visualisation

Subsequence. In Sect. 3 we ensured that terminals at the same position in
the derived words are horizontally aligned. With imprecise positions we cannot
ensure such an alignment. We define the new subsequence formulas similar to
their definition in Sect. 3. For i ∈ {D,U} and τ ∈ T we use τi as abbreviation
for πi(τ). Let c, c′ be car variables, then we define

ψ(τ, c, c′)def=

〈 free
true
free

�
( letter free(τD, c)

true
letter(τU , c′)

∨
letter(τD, c)

true
letter free(τU , c′)

)
�

free
true
free

〉
,

which requires that one representation of τ is horizontally strictly contained
within the other representation. Horizontal containment is ensured by aligning
letter with letter free. The disjunction represents that it does not matter which
representation is the larger one. Further, we define

subseqD
def=

∧

τ∈T
∀c. (〈letter free(τD, c)〉 =⇒ ∃c′. (〈letter free(τU , c′)〉 ∧ ψ(τ, c, c′))) ,

subseqU
def=

∧

τ∈T
∀c′. (〈letter free(τU , c′)〉 =⇒ ∃c. (〈letter free(τD, c)〉 ∧ ψ(τ, c, c′))) .

As before, the subformula ψ(τ, c, c′) is the same in subseqD and subseqU and we
swapped the car variable names and the subscripts D and U outside ψ(τ, c, c′).

All other formulas remain as they are, only that they use the new letter
formula. The final formula looks almost as before, with the exception that we do
not forbid overlapping reservations. This does not pose a problem, because still
all reservations are required to be inside a letter and there we exactly specified
which reservations we allow. As already mentioned the final formula does not
contain mutex anymore. We define
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Frobust(GD, GU )def=
∧

i∈{U,D}
step all i ∧ start i ∧ letter next to letter i ∧ subseq i ∧

free lane ∧ all res in letter ∧ no 2 res .

The following lemma reduces the intersection problem of two CFGs to the robust
satisfiability problem.

Lemma 2. Given CFGs GD = (ND, T ,RD, SD) and GU = (NU , T ,RU , SU )
we can create a formula Frobust(GD, GU ) such that

∃w ∈ L(GD) ∩ L(GU ) iff ∃M.M |=R Frobust(GD, GU ) .

Proof. In the full version of this paper [18].

Thus, we get our second theorem.

Theorem 2. The robust satisfiability problem of MLSL is undecidable.

5 Discussion

For our constructions we do not require some of the features of original MLSL,
i.e. claims and the ego constant. Hence, we consider a simplified logic without
these features. As original MLSL is a conservative extension of our simplified
logic, our results also apply to original MLSL. Further, our constructions do
not require that a car has multiple reservations. Still we allowed for multiple
reservations to not deviate from the original logic too far.

In the following we discuss some possible restrictions on the model side, to
perhaps arrive at a decidable logic. Further, we discuss whether the resulting
restricted logic remains undecidable.

As both of our constructions rely only on topological arguments, the construc-
tions still can be used to prove undecidability after various restrictions on the
model are imposed. However, both of our constructions require that all terminals
of a derivation are horizontally contained in the representation of the starting
nonterminal of that derivation without overlapping with another letter. As a
derivation contains an unbounded amount of terminals, for our constructions to
work the maximum size of the representation of the starting nonterminal needs
to be unbounded, or the minimum size of terminals needs to be unbounded.

Our construction from Sect. 3 requires that there is no free space in between
reservations of the same letter. This implies that the minimum and maximum size
of letters are bounded by the minimum and maximum size of reservations. Hence,
when we impose bounds on both, by the above argument the construction does
not work anymore, i.e. there are context-free grammars for which F (GD, GU ) is
unsatisfiable even though the intersection of the languages is not empty.

Our construction from Sect. 4 does not restrict the size of reservations or
the free space in between reservations in any way. Thus, the maximum size of
a letter is not bounded by the maximum size of a reservation. To restrict the
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maximum size of a letter we could bound the maximum size of a view. Then,
by the above argument we can not use our construction to answer whether
the robust satisfiability problem of the resulting restricted logic is undecidable.
Note that undecidability of robust satisfiability implies undecidability of classical
satisfiability.

Below we name the mentioned restrictions, and we introduce discreteness of
the horizontal dimension as new restriction:

P0: The maximum size of reservations (given by br -dis) is bounded.
P1: The maximum size of the view is bounded.
Q0: The minimum size of reservations is bounded.
Q1: The horizontal domain is discrete.

Note that in effect P1 implies P0, and that Q1 implies Q0. In Table 1 we summa-
rize our arguments from above using the names introduced for our restrictions.

Table 1. The table shows under which combination of restrictions on the model our
constructions still serve to prove undecidability of the (robust) satisfiability problem
(�). With X we mark combinations where our constructions do not work. In the table
let R ∈ {P0, P1, Q0, Q1} and i ∈ {0, 1}

R P0 and Qi P1 and Qi

Construction from Sect. 3 � X X

Construction from Sect. 4 � � X

At last we point out that our constructions strongly depend on the unbound-
edness of the number of lanes and cars.

6 Conclusion

As our first result we proved undecidability of MLSL without length measure-
ment via a reduction from the emptiness of the intersection of two context free
grammars. As our second result we proved that the logic remains undecidable
even when the position along the lane is known only approximately. This proof
also works with restrictions of MLSL, e.g. when the extension of the lanes is
discrete instead of dense or when the minimal or maximal size of reservations
are bounded or any combination of these.

In future work it is worthwhile to create a connection between MLSL and
other well studied logics. This may lead to a better understanding of MLSL and
increase interest in this logic. Consider for example the modal logic of inter-
vals Halpern-Shoam-logic (HS) [9]. There we have a set of atomic propositions
and intervals over a domain, e.g. the real numbers. Every interval satisfies an
atomic proposition or its negation. Additionally, we can use for each of Allen’s
interval relations (before, after, begins etc.) [2] a modal operator that captures
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the semantics of the relation. In a reduction from HS to MLSL, car reservations
might correspond to intervals, (negated) propositions to lanes and the horizontal
chop operator to modal operators in HS.

Additionally, we are interested in decidable fragments of MLSL. Possible
fragments could be obtained by restricting the nesting of vertical and horizontal
chops or imposing an upper bound on the possible number of lanes. Further, it
might be interesting to consider simpler modal operators, such as the unary left
and right neighbourhood modalities from [4,9] instead of the chop operators.
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Abstract. In this paper we integrate the aspect-oriented paradigm into
a process algebra based component model (BRIC), where correctness is
guaranteed by construction. We contribute with an approach to capture,
specify and use aspects to safely evolve component-based systems. We
establish that components extended by aspects preserve a convergence
relation that guarantees service conformance. We illustrate our results
by presenting a case study of an autonomous healthcare system.

Keywords: Component-based aspect-oriented design · Correctness by
construction · Behavioural convergence · CSP

1 Introduction

Aspect-oriented programming (AOP) [10] has been presented as a theory to cap-
ture, define and modularise crosscutting concerns, which spread through appli-
cations. Aspects are hard to modularise by using conventional programming
units, such as functions or classes, because they tend not to be units of the
system’s functional decomposition, but rather to be properties that affect the
semantics of regular components [10]. Some aspects are so recurring that have
become classical examples of when and how applying AOP: context-sensitive
behaviour, performance optimizations, monitoring, logging, persistence, distri-
bution, security and transactional management, just to name a few. Successful
AOP technologies are used both in industry and academy, as AspectJ [9] for
Java and AspectC [2] for the C language.

Aspect-oriented programming is part of a broader development strat-
egy, Aspect-Oriented Software Development (AOSD) [6], which brings aspect-
oriented analyses to early phases of software development. The incorporation of
aspect-oriented design (AOD) in the modelling phase creates a more accurate
and natural correspondence between specification and implementation, helping
to improve development activities that tend to be very costly, such as testing
and maintenance.

A promising scenario that we investigate here is the integration of AOSD and
component-based model driven development (CB-MDD) [15], a well recognised
approach to develop complex systems, which are built from simpler ones, called
components, with well-defined interface and behaviour. This integration provides
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a way to capture and modularise, in early specification phases, some system
aspects that otherwise would be scattered through regular components. As far
as we are aware, there is no work that explores the integration between AOD
and CB-MDD formal approaches, which is the main goal of this work.

We contribute by formalising how to capture, model and weave aspects with
components in the BRIC component model [12,13], which formalises the core
CB-MDD concepts and, moreover, supports compositions, where behavioural
properties, such as deadlock freedom, are ensured by construction. Our aspect-
oriented design (AOD) approach supports safely extension of BRIC components
by preserving a notion of service conformance given in terms of a convergence
relation [4] that is suitable to capture model evolution.

This work is organised as follows: Sect. 2 presents the BRIC component model
[13]. Section 3 presents the first contribution of this work, where we stablish how
to define and weave aspects into component-based specifications. In Sect. 4 we
prove that aspects guarantee service conformance by establishing how it relates
with behavioural convergence [4]. Our results are illustrated by a case study of
an autonomous healthcare system in Sect. 5. We conclude with our contributions
and discuss related work in Sect. 6.

2 The BRIC Component Model

The BRIC component model specifies components, connectors, their behaviour
(given in the Communicating Sequential Processes (CSP) language [14]) and the
rules by which they are assembled. Global behavioural properties (e.g., deadlock
freedom) of compositions using the BRIC rules are guaranteed by construction,
which implies they can be proved by local analyses. This is a direct consequence
of the conditions imposed by the rules as demonstrated in [13].

2.1 CSP

A process algebra like CSP can be used to describe systems composed of inter-
acting components, which are independent self-contained processes with inter-
faces used to interact with the environment. Such formalisms provide a way to
explicitly specify and reason about interactions between different components.
Furthermore, phenomena that are exclusive to the concurrent world, that arise
from the combination of components and not individual components, like dead-
lock and livelock, can be more easily understood and controlled using such for-
malisms. Tool support is another reason for the success of CSP in industrial
applications, and consequently, for our choice to use it as the formal notation.
For instance, FDR3 [7] provides an automatic analysis of model refinement and
of properties like deadlock and divergence.

The two basic CSP processes are STOP (deadlock) and SKIP (successful ter-
mination). The prefixing c -> P is initially able to perform only the event c;
afterwards it behaves like process P. The prefixing choice c?x -> P inputs a
value through channel c and assigns it to the variable x, and then behaves like
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P, which has the variable x in scope. Multiple inputs and outputs are also pos-
sible. For instance, c?x?y!z inputs two values that are assigned to x and y and
outputs the value z. A Boolean guard may be associated with a process: given a
predicate g, if the condition g holds, the process g&P behaves like P; it deadlocks
otherwise. It can also be defined as if g then P else STOP.

The sequential composition P1;P2 behaves like P1 and, provided it terminates
successfully, P2 takes over. The external choice P1 [] P2 initially offers events of
both processes. The occurrence of the first event resolves the choice in favor of the
process that performs it. The environment has no control over the internal choice
P1 |~| P2. The parallel composition P1 [| cs |] P2 synchronizes P1 and P2
on the channels in the set cs; events that are not in cs occur independently.
Processes composed in interleaving P1 ||| P2 run independently. The event
hiding operator P \ cs encapsulates the events that are in the channel set cs,
which become no longer visible to the environment. These operators can also
appear indexed by non empty sets of events. For example, the process [] x:A
@ P(x) behaves as the external choice between x -> P(x) for each x ∈ A (A is
a finite and non-empty set of events).

In this work we use two denotational models of CSP: traces (T) and stable
failures or just failures (F). Let Σ be the alphabet of all possible events and
Σ∗ the set of all possible finite sequences of events in Σ, then: a trace of a
process P is a sequence (a member of Σ∗) of events that it can perform and T(P)
denotes the set of all its finite traces. For example T(e1 -> e2 -> STOP) =
{〈 〉, 〈e1〉, 〈e1, e2〉}. The function application F(P) consists of all stable failures
(s,X), where s is a trace of P (s ∈ T(P)) and X is a set of events P can refuse
in some stable state after s. A stable state is one that can only be changed by
a visible event (registered in the process trace). The unique invisible event CSP
has is τ ; it can happen, for example, in the internal choice P |~| Q, which will
be implemented as a process which can take an invisible τ event to decide the
choice of P or Q. We also use α P(α P ⊆ Σ) to denote the (alphabet) set of
events P can communicate and |c| to stand for the set of events that can be
communicate through a channel c.

As an example consider the CSP process SRV. It communicates the event
srv.in.v.1, where srv is a channel of type I DTSER and SUB INT is a finite sub-
set of N; the tags in and out distinguish input from output events and v indicates
the communication of a SUB INT value. The process SRV offers the environment
the choice between srv.in.v.1 and srv.in.v.2; if it synchronises on the first
then SRV communicates, non deterministically, srv.out.v.1 or srv.out.v.2
and recurses. The same reasoning applies in the case the environment synchro-
nises on srv.in.v.2.

datatype I_DTSER = in.v.SUB_INT | out.v.SUB_INT

channel srv : I_DTSER

SRV =

srv.in.v.1 -> (srv.out.v.1 -> SRV |~| srv.out.v.2 -> SRV)

[]

srv.in.v.2 -> (srv.out.v.3 -> SRV |~| srv.out.v.4 -> SRV)
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2.2 BRIC

A component is defined as a contract (Definition 1) that specifies its behaviour,
communication points (channels) and their types.

Definition 1 (Component Contract). A component contract Ctr : 〈B,R,
I,C〉 comprises an observational behaviour B specified as a CSP process, a set of
communication channels C, a set of interfaces I (data types), and a total function
R : C �→ I mapping channels to interfaces, such that B is an I/O process.

We require the CSP process B to be an I/O process, which is a non-divergent
process with infinite traces, but a finite state space. Moreover, it offers to the
environment the choice over its inputs (external choice) but reserves the right
to choose between its outputs (internal choice). It represents a widely range
of specifications, including the server-client protocol, where the client sends
requests (inputs) to the server, which decides the outputs to be returned to
the client. The CSP process SRV we met before is actually an I/O process by
Definition 2 and, by Definition 1, it can be encapsulated as the BRIC component
CtrSRV = 〈SRV, {srv �→ I DTSER}, {I DTSER}, {srv}〉.
Definition 2 (I/O Process). We say that a CSP process P is an I/O process
if it satisfies the following five conditions, which are formally presented in [13]:

(1) I/O channels: Every channel in P has its events partitioned between inputs
and outputs.

(2) infinite traces: P has an infinite set of traces (but finite state-space).
(3) divergence-freedom: P is divergence-free.
(4) input determinism: If a set of input events in P are offered to the envi-

ronment, none of them are refused.
(5) strong output decisive: All choices (if any) among output events on a

given channel in P are internal; the process, however, must offer at least
one output on that channel.

Contracts can be composed using any of the four rules available in the model:
interleaving, communication, feedback, or reflexive. Each of these rules impose
different side conditions, which must be satisfied by the contracts and chan-
nels involved in the composition in order to guarantee deadlock freedom by
construction.

The rules provide asynchronous pairwise compositions, mediated by infinite
buffers, and focus on the preservation of deadlock freedom in the resulting com-
ponent. Using the rules, developers may synchronise two channels of two com-
ponents, or even of the same component. The four rules are illustrated in Fig. 1.
The result of an application of a composition rule is a new component.

The interleave composition rule is the simplest form of composition. It aggre-
gates two independent entities such that, after composition, these entities still
do not communicate between themselves. They directly communicate with the
environment as before, with no interference from each other. The communication
composition states the most common way for linking complementary channels of
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Fig. 1. Composition rules

two different entities. The next two compositions allow the link of two comple-
mentary channels of a same entity. First, the feedback composition provides the
possibility of creating safe cycles for systems with a tree topology. In practice,
however, there are more complex systems that indeed present cycles of dependen-
cies in the topology of the system structure. The last composition rule, reflexive
composition, is more general than the feedback one and allows cyclic topologies.
However, in general it requires a global analysis to ensure deadlock freedom.

3 Aspect Oriented Modelling for BRIC

In the aspect oriented paradigm, a join point is a well-defined point in a program
execution, established in terms of its control flow and/or predicates over its state
space. A pointcut stands for a collection of join points grouped by a common
predicate. We can consider a join point as the result of a behavioural pattern
matching, a dynamic entity that serves the purpose of identifying the points
where advices (behaviour modifiers) can be incorporated. An advice is an action
(behaviour) that is designed to be offered on a set of related join points, grouped
into a pointcut. The process of causing the relevant advice to be offered on join
points is called weaving, which is by definition a dynamic process [16].

In our AOD approach for BRIC, a join point represents an I/O process stable
state, one without internal transitions leading out from it. A pointcut groups a
set of related join points. An advice is an I/O process that is designed to be
weaved with BRIC components at a set of join points highlighted (marked) in
their behaviour. An aspect is a pair formed of an advice and a pointcut, which
expresses the intention to weave such an advice into the pointcut join points.
The fact that we have a common language for describing component behaviour,
pointcuts and advices has a tremendous positive impact on dealing with the
complexity of our aspect-component weaver (ACW) [10]. This task is reduced to
combine CSP processes, which benefit from an extensive set of operators [14].

A pointcut raises a set of join points that need to be marked, so the ACW
(presented later in this section) is able to identify where advices must be plugged.
We use as marks the events communicated through a special kind of channel, a
check mark channel. A check mark channel c communicates only two events, c.bf
and c.af , which are offered sequentially (c.bf then c.af) acting as join points
marks (Definition 3). The event c.bf must be an input; so, according to the input
determinism property (Definition 2), a decision to mark a join point is always
predictable (deterministic).

Recall the component CtrSRV we presented in Sect. 2 and suppose we want to
mark, for logging purposes, every time it communicates srv.in.v.2 followed by
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Fig. 2. Marking join points

srv.out.v.3 or srv.out.v.4. Figure 2 shows the SRV’s LTS (for visualisation
purposes) and the resulting process after marking the described join point with
the events communicated through the channel c : {bf,af}.

Definition 3 (Check Mark Channel). Consider an I/O channel c, we say
that c is a check mark channel if and only if: {|c|} = {c.bf, c.af}∧ c.bf ∈ inputs.

The pattern and the mark events used to define and signalise join points are
encapsulated in a pointcut designator (or just a pointcut, Definition 4). It is
defined by a CSP process P , which marks join points by offering the events of a
check mark channel c. For example, consider the process P1 defined as follows:

P1 = srv.in.v.2 -> c.bf-> c.af ->

(srv.out.v.3 -> P1 [] srv.out.v.4 -> P1)

αP1 = union ({srv.in.v.2,srv.out.v.3, srv.out.v.4}, {|c|})

Furthermore, consider the LTS depicted on the right-hand side of Fig. 2. It
is the result of the pointcut p : 〈P1, c〉 application over SRV. After engaging in
srv.in.v.2, P1 does c.bf and c.af sequentially, then offers the choice between
srv.out.v.3 and srv.out.v.4, returning, in either case, to its initial state.
Note that P1 is not an I/O process (it does not satisfy the strong output deci-
siveness property of Definition 2 by offering outputs in external choice), although
its composition with SRV (SRV [|diff(αP1, |c|)|] P1) is, as we can see by
analysing the LTS of the composition on the right-hand side of Fig. 2.

Definition 4 (Pointcut Designator). Consider a check mark channel c and
a CSP process P . We say that pcd : 〈P, c〉 is a pointcut designator if and only if:

(i) P is deterministic and deadlock-free;
(ii) ∀t ∈ traces(P) • t ↓ c.af ≤ t ↓ c.bf ≤ t ↓ c.af + 1 . P never communicates

more c.af events than c.bf events, and neither do they fall more than one
behind;

(iii) ∃tˆ〈c.bf〉 ∈ traces(P) =⇒ (t ˆ〈c.bf 〉,Σ � {c.af }) ∈ failures(P). If P
communicates c.bf then it rejects everything but c.af ;
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(iv) ∃tˆ〈c.bf〉 ∈ traces(P) =⇒ (t ,Σ � {c.bf }) ∈ failures(P). If P can commu-
nicate c.bf then it rejects everything but c.bf .

Given a component behaviour B (an I/O process), P performs c.bf and c.af ,
sequentially, every time B synchronises on its behavioural pattern. The behav-
ioural properties of I/O processes (Definition 2), especially strong output deci-
siveness and input determinism, associated with the pointcut well-formed con-
ditions (Definition 4) allow us to state that:

(i) if P offers, initially, a set of input events iset, then B matches P , if it offers,
initially, at least one element of iset;

(ii) if P offers, initially, a set of output events oset, then B matches P , if it
offers, initially, only a non-empty subset of oset;

(iii) inductively, the above holds for any subsequent state of P and B, provided
P \ {|c|} and B have performed the same trace.

The check mark channel c should only be used to mark join points, so {|c|}
(the set of events communicated through c), iset and oset are disjoint. Since P is
deterministic [14]: (i) is a consequence of input determinism; (ii) an implication
of the strong output decisiveness property; (iii) emerges by the fact that the
events {|c|} are business meaningless, so {|c|} ∩ αB = ∅. Therefore, for B, it does
not matter if P engages in any event via channel c, so B is concerned only with
the process P \ {|c|}, which behaves as P , where all events from {|c|} are hidden
from the environment.

We have established the means to define, locate and mark join points. Next,
we discuss how to define the behaviour we want to weave at them. An advice
(Definition 5) comprises an I/O process A (obeying some well-formed condi-
tions), which is designed to be weaved at join points marked by a check mark
channel c and to interact with its environment through a set of I/O channels C.

Definition 5 (Advice). Let A, C and c stand, respectively, for a CSP process,
a set of I/O channels and a check mark channel. We say that adv : 〈A,C, c〉 is
an advice if and only if:

(i) A \ {|c|} is an I/O process.
(ii) c �∈ C and α(A \ {|c|}) ⊆ {|C|}. The events performed by A are signalled in

its interface, except those communicated through c;
(iii) ∀t ∈ traces(A) • t ↓ c.af ≤ t ↓ c.bf ≤ t ↓ c.af + 1 . A never communicates

more c.af ’s than c.bf ’s, and neither do they fall more than one behind;
(iv) ∃tˆ〈c.bf〉 ∈ traces(P) =⇒ (t ,Σ � {c.bf }) ∈ failures(P). If P can commu-

nicate c.bf then it rejects everything but c.bf ;
(v) ∃tˆ〈c.af〉 ∈ traces(P) =⇒ (t ,Σ � {c.af }) ∈ failures(P). If P can commu-

nicate c.af then it rejects everything but c.af .

Definition 5 requires the advice visible behaviour (A \ {|c|}) to be an I/O process,
which is not enforced on the pointcuts behaviour (Definition 4). This is because
advices are designed to change how a component behaves by being weaved into
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its behaviour, which must be, by Definition 1, an I/O process; on the other
hand, pointcuts are designed to just mark join points into components behaviour,
leaving unchanged their external behaviour (the behaviour exhibited though
their interface), therefore they do not need to behave as I/O processes.

As an example, consider the join points marked over the component CtrSRV
by the pointcut p : 〈P1, c〉 (on the right-hand side of Fig. 2). The advice
a : 〈A, {db}, c〉 comprises the logging I/O process A, which is designed to be
weaved at each join point marked by c and to interact with its environment by
the channel db. By communicating c.bf and c.af it knows where A must be
weaved. The I/O process A communicates the event db.out.save.v.2 to log
in a database the fact that its target server CtrSRV has performed srv.in.v.2,
followed by srv.out.v.3 or srv.out.v.4. Figure 3 shows the result component
behaviour after weaving the advice a (on the right-hand side) at the join point
marked by the pointcut p (on the left-hand side).

subtype I_DB = in.save.v.SUB_INT | out.save.v.SUB_INT

channel db : I_DB

A = c.bf-> db.out.save.v.2 -> c.af -> A

Advices can present different levels of encapsulation, depending on how their
functional behaviour (A � C) are positioned in relation to c.bf and c.af marking
events. We say that adv is self-contained if A, when projected over C, is confined
between c.bf and c.af (Definition 6). This is the case of a : 〈A, {db}, c〉.

Finally, we define an aspect as a tuple comprising a pointcut (Definition 4)
and an advice (Definition 5). In Definition 7: (i) ensures pcd and adv agree on
the mark events used to signalise join points and (ii) requires the pcd.P and
adv.A alphabets, except for {|c|}, to be disjoint; it avoids possible interferences
between adv.A and pcd.P .

Definition 6 (Self-contained Advice). We say that an advice adv : 〈A,C, c〉
is self-contained if and only if:

Fig. 3. Weaving advices into join points
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(i) (〈〉, Σ � {c.bf}) ∈ failures(A). Initially, A rejects everything but c.bf ;
(ii) ∃tˆ〈c.af〉 ∈ traces(A) =⇒ (t ˆ〈c.af 〉,Σ � {|c.bf |}) ∈ failures(A). If A

performs c.af , then it rejects everything but c.bf .

Definition 7 (Aspect). An aspect asp : 〈pcd, adv〉 is a tuple consisting of a
pointcut pcd and an advice adv such that:

(i) adv.c = pcd.c (ii) (α pcd.P ∩ α adv.A) ⊆ {|adv.c|}
Given an aspect asp : 〈pcd, adv〉 and a component T : 〈B,R, I,C〉, the task of our
ACW is to search over B for all join points defined by pcd, mark them, weave
the adv’s behaviour at these join points and, finally, extend C and I by the adv’s
channels and their types, respectively. Definition 8 presents the ACW partial
(not all aspects and components are weave-able) operator.

Definition 8 (Aspect-Component Weaver). Consider a BRIC component
T : 〈B,R, I,C〉 and an aspect asp : 〈pcd, adv〉, such that adv : 〈A,C, c〉 and
pcd : 〈P, c〉 . We define the ACW (infix) partial operator ×

× : Aspect ×
BRIC → BRIC

asp ×
× T = 〈(B [|ss|] P ) [|c|] A,R ∪ R′, I ∪ I ′,C ∪ C〉

where

ss = αP � {|c|} ∧ I ′ = {type(ch) | ch ∈ C} ∧ R′ = {ch �→ type(ch) | ch ∈ C}
provided C ∩ C = ∅ ∧ (B [|ss|] P ) \ {|c|} ≡F B

The provided clause above restricts the possible compositions between aspects
and components: the act of discovering and marking join points does not change
the overall behaviour of the target components (B [|ss|] P \ {|c|} ≡F B, where
≡F means failure equivalence [14]). Therefore, the mark events c.bf and c.af do
not change, from the environment perspective, the behaviour of T ; pcd marks at
least one join point on B, so B [|ss|] P deadlocks if both processes cannot agree
on the behavioural pattern described by P at least once (the previous failure
equivalence implies B [|ss|] P is deadlock free); (C ∩ C = ∅) the interaction
points of adv and T are disjoint, so when A is weaved into T there is no clash
between their interfaces.

The behaviour of asp ×
× T is given by (B [|ss|] P ) [|c|] A, where ss = αP � {|c|}.

The ACW operator ×
× acts in two phases over B: by synchronising it with P on

αP � {|c|}, it marks join points, and then by putting this result in parallel with
A on {|c|}, it inlays A at each join point (between c.bf and c.af) marked on B.
Concerning the result component structure, the interaction points of asp ×

× T are
C ∪ C, the types of C (I ′) and I from its interface, and interaction points and
interfaces are related by R∪R′, where R′ relates C and I ′. Note that in Definition
8 we have assumed the behaviour of asp ×

× T is an I/O process, which is proved
by Lemma 1.
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Lemma 1 (BRIC is Closed Under ACW). Consider the BRIC component
T : 〈B,R, I,C〉 and the aspect asp : 〈pcd, adv〉, such that pcd : 〈P, c〉 and adv :
〈A,C, c〉. If asp ×

× T is defined, then it is a BRIC component.

Proof.

Part i (asp ×
× T structure)

[I′ = {type(ch) | ch ∈ C}, R′ = {ch �→ type(ch) | ch ∈ C}, Definition 8]

R
asp ×

×

T
= R∪ R′ ∧ I

asp ×
×

T
= I∪ I′ ∧ C

asp ×
×

T
= C∪ C

=⇒ R is a total function between C and I∧ R′ is a total function between C and I′

=⇒ [C∩ C = ∅] R
asp ×

×

T
is a total function between C

asp ×
×

T
and I

asp ×
×

T

�

Part ii (asp ×
× T behaviour)

[Definition 8, ss = αP � {|c|}] B
asp ×

×

T
= (B [|ss|] P ) [|c|] A ∧ (B [|ss|] P ) \ {|c|} ≡F B

=⇒ [Definition 2, ≡F semantics [14]] (B [|ss|] P ) \ {|c|} is an I/O process

=⇒ [c.bf ∈ inputs, hiding semantics [14], (i - iii - iv) of Definition 4]

B [|ss|] P is an I/O process

=⇒ [C∩ C = ∅, αP ∩ {|C|} = ∅, parallelism semantics [14], (iii - iv - v) of Definition 5]

(B [|ss|] P ) [|c|] A is an I/O process 
�

By Definition 7 the aspect LOG : 〈p, a〉 modularises the logging feature we have
developed alongside our aspect theory and, by Definition 8, the result of weaving
LOG with CtrSRV is the component LOG ×

× CtrSRV below. We emphasise that it
is possible to reuse both p and a with other pointcuts and advices to capture
new aspects, given the loose coupling between them.

〈
(SRV [|diff(αP1, {|c|})|] P1) [|{|c|}|] A,
{srv �→ I DTSER, db �→ I DB}, {I DTSER, I DB}, {srv, db}

〉

4 Safely Evolving BRIC Components Using Aspects

In this section we discuss how AOD can be used to safely evolve BRIC spec-
ifications. In [4], we develop a set of BRIC extension relations based on the
concept of behavioural convergence, which fulfils the substitutability principle
[17]: a component extension should be usable wherever the original component
was expected, without any other component, acting as a client, being able to tell
the difference. In this section we prove that a convergent component can be con-
cisely and elegantly generated from an original component by using aspects in
the style defined in the previous section; so the original and the (aspect oriented)
evolved component satisfy the BRIC substitutability principle.

Convergence is a behavioural relation between I/O processes. An I/O process
B′ is convergent to B (B′ io ecvg B, Definition 9) if in each converging point of
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their execution it can offer more or equal inputs (Y ∩ inputs ⊇ X ∩ inputs) but
is restricted to offer less or equal outputs (Y ∩ outputs ⊆ X ∩ outputs). It can
also offer any other event (Σ�Y ⊆ X) after a new input and before converging to
its original behaviour, adding more implementation details. A convergent point
(t′ ecvg t) represents a state reachable by both the original and the convergent
process when doing two convergent sequences of events; these sequences differ
only because the convergent process is allowed to do extra new-in-context-inputs
(inputs not allowed by the original process at that point) in converging points
followed by any event not allowed by the original process.

In Definition 9, T(B) and F(B) stand for the traces and failures of a process
B, respectively. Recall that Σ stands for the alphabet of all possible events, Σ∗

is the set of possible sequences of events from Σ, the input events are contained
in Σ (inputs ⊆ Σ) and in(B, t) is a function that yields the set of input events
that can be communicated by the I/O process B after some t ∈ T(B). Therefore
in : I/OProcess × Σ∗ → inputs; similarly, out(B, t) yields the set of output
events of B after t. Additionally, if t1 ≤ t2, it means that t1 is a subtrace of t2.

Definition 9 (Behavioural Convergence). Consider two I/O processes B

and B′. We say that B′ is an I/O convergent behaviour of B (B′ io ecvg B),
if and only if:

∀(t′,X) ∈ F(B′),∃(t, Y ) ∈ F(B)•⎛

⎜⎜⎝

t′ ecvg t∧⎛

⎝

(
Y ∩ inputs ⊇ X ∩ inputs∧
Y ∩ outputs ⊆ X ∩ outputs

)

∨(Σ�Y ⊆ X)

⎞

⎠

⎞

⎟⎟⎠
where, t′ ecvg t ⇐⇒

⎛

⎜⎜⎜⎜⎝

(#t′ > #t) ∧ ∃t1, t2, t3 : Σ∗,∃ne ∈ Σ |⎛

⎜⎜⎝

t′ = t1ˆ〈ne〉ˆt2ˆt3 ∧ t1 ≤ t∧
ne ∈ inputs ∧ ne /∈ in(T, t1)∧

set(t2) ∩ (in(T, t1) ∪ out(T, t1)) = ∅∧
t1ˆt3 ecvg t

⎞

⎟⎟⎠

⎞

⎟⎟⎟⎟⎠
∨ (t′ = t)

Consider the process SRV (on the left-hand side of Fig. 2) and SRV’ (on the right-
hand side of Fig. 3). Based on Definition 9, we have that SRV′ io cvg SRV. To
explain why this is the case, let (t′,X) and (t, Y ) be failures of SRV′ and SRV,
respectively. Then by a non-exhaustive analysis:

– If (t′,X) = (〈srv.in.v.2〉, Σ � {c.bf}), then we know that t′ ecvg t, for
t = 〈srv.in.v.2〉. The failure after t is (t, Y ) = (〈srv.in.v.2〉, Σ � {srv.out.v.3}),
and Y ∩ inputs ⊃ X ∩ inputs and Y ∩ outputs ⊂ X ∩ outputs;

– If (t′,X) = (〈srv.in.v.2, c.bf〉, Σ � {db.out.save.2}), then we know t′ ecvg t,
for t = 〈srv.in.v.2〉 because c.bf ∈ inputs and c.bf ∈ in(SRV, t). The failure
after t is (t, Y ) = (〈srv.in.v.2〉, Σ � {srv.out.v.3}), and Σ�Y ⊂ X;

Behavioural convergence is a relation between I/O processes. Based on that
in [4] we define an inheritance relation for BRIC (Definition 10), which considers
components structure and behaviour. Structurally, it guarantees that the inher-
ited component preserves at least its parent’s channels and their types. Regard-
ing behaviour, they are related by convergence. Additionally, it guarantees, for
the purpose of substitutability, that the inherited component only refines the
behaviour exhibited by common channels (default channel congruence [4]) or
that additional inputs over common channels are not exercised by any possible
client of its parent (input channel congruence [4]).



436 J. Dihego and A. Sampaio

Definition 10 (Component Inheritance). Consider T and T ′ two BRIC

components. We say that T ′ inherits from T (T �ecvg T ′) if and only if:

RT ⊆ RT ′ ∧ BT ′ io ecvg BT

provided their corresponding channels are default or input channel congruent

We know SRV’ io ecvg SRV and LOG ×
× CtrSRV channels extends those of CtrSRV.

Additionally, SRV’ is also default channel congruent w.r.t SRV [4]. Therefore, by
Definition 10 we have CtrSRV �ecvg LOG ×

× CtrSRV. In fact, this relation between
aspects and inheritance always holds as proved by Theorem 1.

Theorem 1 (Aspects and Inheritance). Let T and asp stand for a com-
ponent and an aspect, respectively. If asp ×

× T is defined, then T �ecvg asp ×
× T ,

provided asp.adv is self-contained (see Definition 6).

Proof.

T ′

=

[
Definition 8, T : 〈B,R, I,C〉, asp : 〈〈P, c〉, 〈A, C, c〉〉,
T ′ = asp ×

× T, I′ = {type(ch) | ch ∈ C}, R′ = {ch �→ type(ch) | ch ∈ C}

]

〈(B [|αP � {|c|}|] P ) [|c|] A,R∪ R′, I∪ I′,C∪ C〉
=⇒ [Definition 8, C∩ C = ∅, set theory]

(i) RT ⊆ RT ′

=⇒
[
Definition 7, Definition 8, Definition 10, alphabetised parallelism semantics,
(B [|αP � {|c|}|] P ) \ {|c|} ≡F B, αP � {|c|} ⊆ αB, αA ∩ αB= ∅, αA ∩ αP = {|c|}

]

(ii) ∀c : CT • (BT ′ and BT are default channel congruent on c)

=⇒
[
(iii - iv) of Definition 4, Definition 9, Definition 3 (c.bf ∈ inputs), parallelism
semantics, (B [|αP � {|c|}|] P ) \ {|c|} ≡F B, αP � {|c|} ⊆ αB, {|c|} ∩ αB= ∅

]

∃tˆ〈c.bf〉 ∈ T(P ) =⇒ (tˆ〈c.bf〉, Σ � {c.af}) ∈ F(P ) ∧ (t, Σ � {c.bf}) ∈ F(P )∧
∀(t′, X) ∈ F(B [|αP � {|c|}|] P ), ∃(t, Y ) ∈ F(B) • t′ ecvg t∧

⎛

⎝

(
Y ∩ inputs ⊇ X ∩ inputs∧
Y ∩ outputs ⊆ X ∩ outputs

)

∨(Σ�Y ⊆ X)

⎞

⎠

=⇒ B [|αP � {|c|}|] P io ecvg B

=⇒ [Definition 6]

∃tˆ〈c.af〉 ∈ T(A) =⇒ (tˆ〈c.af〉, Σ � {|c.bf |}) ∈ F(A) ∧ (〈〉, Σ � {c.bf}) ∈ F(A)

=⇒ [αA ∩ αB [|αP � {|c|}|] P = ∅, (i - iv - v) Definition 5]

(B [|αP � {|c|}|] P ) [|c|] A io ecvg B [|αP � {|c|}|] P

=⇒ [(B [|αP � {|c|}|] P ) \ {|c|} ≡F B, Definition 8]

(iii) (B [|αP � {|c|}|] P ) [|c|] A io ecvg B

=⇒ [(i), (ii), (iii), Definition 10] T �ecvg asp ×
× T 
�

Considering the substitutability principle for BRIC (with focus on deadlock free-
dom, but not limited to it) as stated in Theorem 2 [4] and Theorem 1 we enun-
ciate the relevant Corollary 1.
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Theorem 2 (Substitutability). Let T , T ′ to be two components such that
T �ecvg T ′. Consider S[T ] a deadlock free component contract, where T is a
basic component contract that was composed within S using one of the BRIC

composition rules, then S[T ′] is deadlock free.

Corollary 1 (Aspects Preserve Substitutability). Let T and asp stand for
a component and an aspect, respectively. Consider S[T ] a deadlock free compo-
nent contract, where T is a basic component contract that was composed within
S using one of the BRIC composition rules. If asp ×

× T is defined, then S[asp ×
× T ]

is deadlock free.

The above corollary follows direct from Theorems 1 and 2. As far as the authors
are aware, this is the first time a relation between component inheritance and
aspects-oriented design is established for a formal approach to CB-MDD. It
offers two ways to evolve component specifications that, although distinct in
concept, are related by their implementation mechanisms. It is important to
make clear that aspects are designed to cope with crosscutting concerns that
scatter through families of components by enlarging them, where inheritance is
exclusively designed to create such families. It is fair to say that aspects operate
horizontally and inheritance vertically over component family trees.

5 Case Study

We model an autonomous healthcare robot that monitors and medicates
patients, being able to contact the relevant individuals or systems in case of
emergency. It receives data from a number of sensors and actuates by inject-
ing intravenous drugs and/or by calling the emergency medical services and the
patient’s relatives or neighbours. We use the following data types: BI (breath
intensity), BT (body temperature), DD (drug dose), BGL (blood glucose level), CL
(call list, the relevant individuals to be called in the case of emergency), DRUG
(the drugs in the robot’s actuators), QUEST (the robot’s question list, to ask the
patient when its voice recognition module is used).

nametype BI = {1..5} , BT = {34..41} , DD = {0..5}

datatype BGL = low | normal | threshold | high

datatype CL = c911 | cFamily | cNeighbor | ack

datatype DRUG = insulin | painkiller | antipyretic

datatype QUEST = chest | head | vision | lst

These data types are composed into more elaborated ones that will be com-
municated through the channels used to connect sensors, actuators and phones
to the robot: BS, the body attached sensors; IS, the vision recognition devices;
VS, the noise recognition devices; TK, the voice interaction devices; PH,the phone
interface and INV, the intravenous injection actuator.

datatype BS = breath.BI | bodyTemp.BT | bloodGlucose.BGL

datatype IS = numbnessFace.Bool | fainting.Bool

datatype VS = cough.Bool | troubleSpeaking.Bool
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datatype TK = visionTrouble.Bool | chestDiscomfort.Bool |

headache.Bool | ask.QUEST

datatype PH = call.CL

datatype IVN = administer.DRUG.DD

Each type above can be an input (tag in) or an output (tag out), depending
on whether it is produced or consumed by a specific component.

channel bodySen: in.BS | out.BS

channel imageRec : in.IS | out.IS

channel voiceRec : in.VS | out.VS

channel talk : in.TK | out.TK

channel phone : in.PH | out.PH

channel intravenousNeedle : in.IVN | out.IVN

The behaviour of our healthcare robot is defined in terms of the I/O process
HC BOT. It waits for the breath level indicator; if this level is critical (< 3), then it
behaves as MOD CALL P1 (module phone call priority one). MOD CALL P1 contacts
a patient’s neighbour, the registered emergency service and relatives, in that
order, then it waits for at least two of them to acknowledge before coming back
to its initial state. Otherwise, the patient is breathing normally, and the robot
reads the noise sensor to check whether he is coughing (voiceRec.in.cough?b).
If so, it reads the body temperature (bodySen.in.bodyTemp?t) and blood glu-
cose sensors (bodySen.in.bloodGlucose?g). If the body temperature exceeds 38
degrees Celsius, then it administers a dose of antipyretic (intravenousNeedle.
out.administer.antipyretic.d ap). If the blood glucose level is in the thresh-
old or high, it administers insulin (intravenousNeedle.out.administer.in-
sulin.d in), otherwise it just comes back to its initial state. After administrat-
ing any drug, and before coming back to its initial state, the robot must contact
the patient’s neighbour and relatives by behaving as MOD CALL P2 (module phone
call priority two), where at least one of them must acknowledge. The phone call
modules are very simple and we omit them here for space limitations.

If the patient is breathing normally but in silence, the robot asks the image
recognition module to inform about: any unusual sign in his face (imageRec.in.
numbnessFace?nf) or if he fainted (imageRec.in.fainting?f). If at least one
condition holds, the robot administers a painkiller (intravenousNeedle.out.
administer.painkill er.d pk), calls the relevant individuals by behaving as
MOD CALL P1. In any case, it goes to its initial state.

HC_BOT = bodySen.in.breath?x ->

if (x < 3) then bodySen.out.breath.x -> MOD_CALL_P1; HC_BOT

else voiceRec.in.cough?b ->

if b then bodySen.in.bodyTemp?t-> bodySen.in.bloodGlucose?g->

if(t > 38)

then |~| d_ap : DD @

intravenousNeedle.out.administer.antipyretic.d_ap ->

MOD_CALL_P2 ; HC_BOT

else

if (g == high or g == threshold)
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then |~| d_in : DD @

intravenousNeedle.out.administer.insulin.d_in ->

MOD_CALL_P2 ; HC_BOT

else HC_BOT

else

imageRec.in.numbnessFace?nf -> imageRec.in.fainting?f ->

if (nf or f) then |~| d_pk : DD @

intravenousNeedle.out.administer.painkiller.d_pk ->

MOD_CALL_P1; HC_BOT

else HC_BOT

In BRIC, the healthcare robot is defined in terms of the CtrHC BOT contract,
where I BS stands for in.BS ∪ out.BS as well as the other channel types.

CtrHC BOT =̂
〈
HC BOT,

⎧
⎨

⎩

bodySen �→ I BS, imageRec �→ I IS,
voiceRec �→ I VS, phone �→ I PH,
intravenousNeedle �→ I IVN

⎫
⎬

⎭ ,

⎧
⎨

⎩

I BS, I IS,
I VS, I PH,
I IVN

⎫
⎬

⎭ ,

{bodySen, imageRec, voiceRec, phone, intravenousNeedle}

〉

The robot CtrHC BOT is able to diagnose and select the appropriate drug
to be administered. Nevertheless, there is no criteria to define an appro-
priate drug dose given the seriousness of the patient condition. The I/O
process HC BOT TK addresses this question by using two criteria: each
degree above 38 degrees Celsius will correspond to an unite of antipyretic
(intravenousNeedle.out.administer.antipyretic.t%37) and, the insulin
dose will be one or two unities if the blood glucose level is on the threshold
or greater than two, otherwise.

In addition to the refinement of the HC BOT drug dose selection mechanism,
the I/O process HC BOT TK is also able to interact with patients by the voice
simulation/recognition device through the new channel talk. It offers, initially,
the possibility of behaving as MOD TALK: it receives a chat request, then collects
information about chest discomfort (talk.in.chestDiscomfort?cd), headache
(talk.in.headache?hd) and vision problems (talk.in.visionTrouble?vt). If
the patient reports chest discomfort associated with headache or vision problems,
the robot understands that a serious situation is under way and calls all the
relevant individuals (MOD CALL P1). In any case, it goes to its initial state.

HC_BOT_TK =

bodySen.in.breath?x ->

if (x < 3)

then bodySen.out.breath.x -> MOD_CALL_P1; HC_BOT_TK

else voiceRec.in.cough?b ->

if (b) then bodySen.in.bodyTemp?t ->

bodySen.in.bloodGlucose?g ->

if(t > 38)

then intravenousNeedle.out.administer.antipyretic.t

MOD_CALL_P2 ; HC_BOT_TK

else

if (g == high) then |~| d_in_h : {3,4,5} @
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intravenousNeedle.out.administer.insulin.d_in_h ->

MOD_CALL_P2 ; HC_BOT_TK

else

if (g == threshold) then |~| d_in_t : {1,2} @

intravenousNeedle.out.administer.insulin.d_in_t ->

MOD_CALL_P2 ; HC_BOT_TK

else HC_BOT_TK

else

imageRec.in.numbnessFace?nf -> imageRec.in.fainting?f ->

if (nf or f) then |~| d_pk : DD @

intravenousNeedle.out.administer.painkiller.d_pk ->

MOD_CALL_P1; HC_BOT_TK

else HC_BOT_TK

[] MOD_TALK ; HC_BOT_TK

MOD_TALK = talk.in.ask.lst ->

talk.out.ask.chest -> talk.in.chestDiscomfort?cd ->

talk.out.ask.head -> talk.in.headache?hd ->

talk.out.ask.vision -> talk.in.visionTrouble?vt ->

if (cd and (hd or vt)) then MOD_CALL_P1 else SKIP

In BRIC, this extension is defined by the contract CtrHC BOT TK . According
to Definition 10, we have CtrHC BOT ACC �ecvg CtrHC BOT TK .

CtrHC BOT TK=̂

〈
HC BOT TK,

⎧
⎪⎪⎨

⎪⎪⎩

bodySen �→ I BS, imageRec �→ I IS,
voiceRec �→ I VS, phone �→ I PH,
intravenousNeedle �→ I IVN,
talk �→ I TK

⎫
⎪⎪⎬

⎪⎪⎭
,

⎧
⎨

⎩

I BS, I IS,
I VS, I PH,
I IVN, I TK

⎫
⎬

⎭ ,

{bodySen, imageRec, voiceRec, phone, intravenousNeedle, talk}

〉

We can have many kinds of robots attached to a patient, sharing an extremely
critical resource, his/her intravenous access, a common point where drugs can be
injected without doctors supervision. In life threatening scenarios, doctors can
be compelled to intervene, but they will need to know which robot injected which
drug and in which dose, so they can proceed with the appropriate intervention.

This is a classic problem, which has a well-known solution: logging. There-
fore, we must, originally, redefine each component in our specification to add
the logging feature. As new communication channels must be used to imple-
ment the logging functionality, we need to update component interfaces to refer
to these new channels as well as their types. If we have many types of robots,
we must face an exhaustive and error prone task in updating each of them and,
worst, it must be done each time we need to change the logging and/or robots
specifications. Thanks to our AOD approach to CB-MDD, we can solve this
problem in a more modular and maintainable way by defining a logging aspect.

We identify each robot with a unique identifier, a member of BOT ID,
whose elements range from one to TOP (a natural number). First we define
a check mark channel and an pointcut to capture the condition we are
interested on: a robot has administered a drug. We define the tags bf and
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af, which are used by the check mark channel drug mark. It communi-
cates {bf, af} alongside the injected drug DRUG and its respective dose DD.
The process DET DRUD synchronises on any access to the intravenous needle
(intravenousNeedle.out.administer.dg.dose) and marks it as a join point
by performing the events drug mark.bf.dg.dose and drug mark.af.dg.dose
sequentially.

channel drug_mark : {bf ,af}.DRUG.DD

DET_DRUD = [] dg: DRUG , dose: DD @

intravenousNeedle.out.administer.dg.dose ->

drug_mark.bf.dg.dose -> drug_mark.af.dg.dose -> DET_DRUD

αDET_DRUD = union ({| intravenousNeedle.out|}, {| drug_mark |})

We want to log triples: which robot has administered, which drug, in which
quantity. The channel drug log will be used by our advice to log the fact that
some robot (BOT ID) has administered a dose of a given drug (DRUG.DD) to its
target patient. The advice behaviour is given by the I/O process LOG DRUG(x);
it synchronises on the check mark event drug mark.bf.dg.dose, then logs the
fact that the robot x has injected the amount dose of the drug dg (drug log.
out.log.x.dg.dose). After, it agrees on drug mark.af.dg.dose (the join point
end mark) and goes to its initial state.

channel drug log : in . l og .BOT ID .DRUG.DD| out . l og .BOT ID .DRUG.DD
LOG DRUG(x)= [ ] dg : DRUG, dose : DD @ drug mark . bf . dg . dose −>

drug log . out . l og . x . dg . dose −>
drug mark . a f . dg . dose −> LOG DRUG(x)

We define our logging drug aspect as LOG D : 〈PD,AD〉, where PD :
〈DET DRUD, drug mark〉 and AD : 〈LOG DRUG(x), {drug log}, drug mark〉. Then,
LOG D can be weaved (Definition 8) into CtrHC BOT and CtrHC BOT TK ,
resulting, respectively, in the following components:

〈
HC BOT [|diff(α DET DRUD, {|drug mark|})|] DET DRUD

[|{|drug mark|}|] LOG DRUG (1),⎧
⎨

⎩

bodySen �→ I BS, imageRec �→ I IS, phone �→ I PH,
voiceRec �→ I VS, intravenousNeedle �→ I IVN,
drug log �→ I IDL

⎫
⎬

⎭ ,

⎧
⎨

⎩

I BS, I IS,
I VS, I PH,
I IVN, I IDL

⎫
⎬

⎭ ,

{bodySen, imageRec, voiceRec, phone, intravenousNeedle, drug log}

〉

〈

HC BOT TK [|diff(α DET DRUD, {|drug mark|})|] DET DRUD
[|{|drug mark|}|] LOG DRUG (1),

⎧
⎨

⎩

bodySen �→ I BS, imageRec �→ I IS, phone �→ I PH,
voiceRec �→ I VS, intravenousNeedle �→ I IVN,
talk �→ I TK, drug log �→ I IDL

⎫
⎬

⎭ ,

⎧
⎪⎪⎨

⎪⎪⎩

I BS, I IS,
I VS, I PH,
I IVN, I TK,
I IDL

⎫
⎪⎪⎬

⎪⎪⎭
,

{bodySen, imageRec, voiceRec, phone, intravenousNeedle, talk, drug log}

〉

We know that CtrHC BOT �ecvg CtrHC BOT TK and, by Definition 8 and
Theorem 1, we have that:

CtrHC BOT �ecvg LOG D ×
× CtrHC BOT
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CtrHC BOT TK �ecvg LOG D ×
× CtrHC BOT TK

Two important results conclude this case study. They come from the transi-
tivity of inheritance and the ACW identity over inheritance [3]. If T , T ′ and T ′′

are components and asp an aspect, transitivity ensures that if T �ecvg T ′ and
T ′

�ecvg T ′′ then T �ecvg T ′′. The ACW identity over inheritance guarantees
that if T �ecvg T ′ and asp ×

× T is defined, then asp ×
× T �ecvg asp ×
× T ′.

CtrHC BOT �ecvg LOG D ×
× CtrHC BOT TK

LOG D ×
× CtrHC BOT �ecvg LOG D ×
× CtrHC BOT TK

6 Conclusions and Related Work

This work defines a formal approach to introduce aspect-oriented modelling into
component-based specifications, where preservation of some properties is guar-
anteed by construction. We developed for the BRIC component model a proper
way to characterise pointcuts, advices and aspects. We proved aspects preserves
a conformance notion, given in terms of the substitutability principle [17]. We
also established a connection between component inheritance and aspects, pre-
senting them as interchangeable ways to safely extend component specifications.

We brought the recognised aspects benefits (crosscutting concerns modu-
larisation, reuse, maintainability [10]) to a trustworthy component-base model,
where behaviour properties can be compositionally verified [13]. We have not
addressed the entire aspects theory, but created a formal basis to its adoption
in CB-MDD.

To illustrate how the design of component-based specifications can benefit
from aspect theory, we developed a case study of an autonomous healthcare
system, which evolve by the addition of new functionalities via inheritance and
by the modularisation of its crosscutting concerns in a reusable and maintainable
manner with aspects. We show how these concepts can be put together benefiting
design, clarity and maintainability.

In [1], the authors define an aspect-weaver algorithm for a process algebra
based on CSP with process equivalence given in the traces model. Aspects are
processes and the weaver works by resolving synchronism, in our strategy, we con-
sider components and aspects in different categories given their distinct nature.
We define equivalence in the failures model, which considers refusals in addition
to traces. Differently from [1] our approach is compositional, so global properties
can be checked locally.

The Protocol Modelling framework [11] also uses a CSP-like parallelism to
weave aspects and supports local reasoning. Nevertheless, it requires specifica-
tions to be deterministic, a limitation we have relaxed. It address, as [1], only
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behavioural constructions. We differentiate by considering both structure and
behaviour at a component level, where extensibility and conformance are prop-
erly addressed. The work reported in [5] identifies categories of aspects that
preserve corresponding classes of properties; our focus here is to use aspects
that obey a particular protocol to evolve system design models by preserving
some conformance notions.

This work benefits from the formalisation, given by a denotational semantics,
of the aspects theory for a programming language that embodies the key features
of join points, pointcuts, and advices [16].

As future work, we plan to mechanise our AOM approach in CSP-Prover
[8], an interactive theorem prover for CSP based on Isabelle/HOL. We expect
to develop a tool support for assisted development of component-based speci-
fications with aspects and inheritance support. It receives a specification in a
high level language (as SysML), translates it to BRIC and performs a formal
verification in CSP-Prover.

References

1. Andrews, J.H.: Process-algebraic foundations of aspect-oriented programming.
In: Matsuoka, S. (ed.) Reflection 2001. LNCS, vol. 2192, pp. 187–209. Springer,
Heidelberg (2001)

2. Coady, Y., Kiczales, G., Feeley, M., Smolyn, G.: Using aspectC to improve the
modularity of path-specific customization in operating system code. SIGSOFT
Softw. Eng. Notes 26(5), 88–98 (2001)

3. Dihego, J., Sampaio, A.: Aspect-oriented development of trustworthy component-
based systems - Extended version, Technical report (2015). http://www.cin.ufpe.
br/jdso/technicalReports/TR062.pdf

4. Dihego, J., Sampaio, A., Oliveira, M.: Constructive extensibility of trustworthy
component-based systems. In: Proceedings of the 30th Annual ACM Symposium
on Applied Computing, SAC 2015. ACM (2015)

5. Djoko, S.D., Douence, R., Fradet, P.: Aspects preserving properties. Sci. Comput.
Program. 77(3), 393–422 (2012)

6. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-oriented Software Develop-
ment, 1st edn. Addison-Wesley Professional, Reading (2004)

7. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — A
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
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Abstract. Attribute-driven software architecture design aims to pro-
vide decision support by taking into account the quality attributes of
softwares. A central question in this process is: What architecture design
best fulfills the desirable software requirements? To answer this question,
a system designer needs to make tradeoffs among several potentially
conflicting quality attributes. Such decisions are normally ad-hoc and
rely heavily on experiences. We propose a mathematical approach to
tackle this problem. Game theory naturally provides the basic language:
Players represent requirements, and strategies involve setting up coali-
tions among the players. In this way we propose a novel model, called
decomposition game (DG), for attribute-driven design. We present its
solution concept based on the notion of cohesion and expansion-freedom
and prove that a solution always exists. We then investigate the com-
putational complexity of obtaining a solution. The game model and the
algorithms may serve as a general framework for providing useful guid-
ance for software architecture design. We present our results through
running examples and a case study on a real-life software project.

Keywords: Software architecture · Coalition game · Decomposition
game

1 Introduction

The architecture of a software lays out the basic system composition; it is cru-
cial to the software, as it heavily influences important quality attributes such as
performance, reliability, usability and security [3]. A focusing question of soft-
ware design is the following: What architecture best fulfills the desirable software
requirements? In most cases, however, a “perfect” architecture that fulfills every
requirement is unlikely to exist. For example, performance and security are both
key non-functional requirements, which may demand fast response time to the
users, and the application of a sophisticated encryption algorithm, respectively.
These two requirements are in intrinsic conflict, as a strong focus of one will neg-
atively impact the fulfilment of the other. A main task of the software architect,
therefore, is to balance such “interactions” among requirements, and decide on
appropriate tradeoffs among such conflicting requirements.
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25150-9 26



446 J.Liu and Z. Wei

While it is a common practice to design software architecture through the
architects’ experiences and intuition, formal approaches for architecture design
are desirable as they facilitate standardisation and automation of this process,
providing rigorous guidelines, allowing automatic analysis and verifications [8].
Notable formal methods in software architecture include a large number of formal
architecture description languages (ADL), which are useful tools in communicat-
ing and modeling architectures. However, as argued by [16], industry adoptions
of ADL are rare due to limitations in usability and formality.

In this paper, we investigate the problem of software architecture design
from a game theory perspective. Computational game theory studies the algo-
rithmic nature of conflicting entities and establishes equilibria: A state of balance
that minimises the negative effects among players. The field has attracted much
attention in the recent 10–15 years due to applications in multi-agent systems,
electronic markets and social networks [11–13]. Our goal here is to interpret the
interactions among software requirements as a game whose equilibrium give rise
to a desirable software architecture. Our motivation comes from the following
two lines of research:

(1). Attribute driven design (ADD) : ADD is a systematic method for software
architecture design. The method was invented by Bass, Klein and Bachmann
in [5] and subsequently updated and improved through a sequence of works
[4,15]. The goal is to assist designers to analyse quality attribute tradeoffs and
provide design suggestions and guidance. Inputs to ADD are functional and
non-functional requirements, as well as design constraints; outputs to ADD are
conceptual architectures which outline coarse-grained system compositions. The
method involves a sequence of well-defined steps that recursively decompose a
system to components, subcomponents, and so on. These steps are not algorith-
mic: They are meant to be followed by system designers based on their experi-
ence and understanding of design principles. As mentioned by the authors in [5],
an ongoing effort is to investigate rigorous approaches in producing conceptual
architectures from requirements, hence enabling automated design recommenda-
tion under the ADD framework. To this end, we initiate a game-theoretic study
to formulate the interactions among software requirements so that a conceptual
architecture can be obtained in an algorithmic way.

(2). Coalition game theory : A coalition game is one where players exercise col-
laborative strategies, and competition takes place among coalitions of players
rather than individuals. In ADD, we can imagine each requirement is “handled”
by a player, whose goal is to set up a coalition with others to maximise the collec-
tive payoff. The set of coalitions then defines components in a system decomposi-
tion which entails a software architecture. This fits into the language of coalition
games. However, the usual axioms in coalition games (with transferrable util-
ity) specify super-additivity and monotonicity, that is, the combination of two
coalitions is always more beneficial than each separate coalition, and the payoff
increases as a coalition grows in size. Such assumptions are not suitable in this
context as combination of two conflicting requirements may result in a lower
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payoff. Hence a new game model is necessary to reflect the conflicting nature
of requirements. In this respect, we propose that our model also enriches the
theory of coalition games.

Our Contribution. We provide a formal framework which, following the ADD
paradigm [5], recursively decomposes a system into sub-systems; the final decom-
position reveals design elements in a software architecture. The basis of the
framework is an algorithmic realisation of ADD. A crucial task in this algorith-
mic realisation is system decomposition, which derives a rational decomposition
of an attribute primitive. We model system decomposition using a game, which
we call decomposition game. The game takes into account interactions between
requirements, which express the positive (enhancement) or negative (canceling)
effects they act on each other. A solution concept (equilibrium) defines a rational
decomposition, which is based on the notions of cohesion and expansion-freedom.

We demonstrate that any such game has a solution, and a solution may
not be unique. We also investigate algorithms that compute solutions for the
decomposition game. Finding cohesive coalitions with maximal payoff turns out
to be NP-hard (Theorem 13). Hence we propose a relaxed notion of k-cohesion
for k ≥ 1, and present a polynomial time algorithm for finding a k-cohesive
solution of the game (Theorem 16). To demonstrate the practical significance
our the framework, we implement the framework and perform a case study on a
real-world Cafeteria Ordering System.

Related Works. The work [9] starts a systematic study of tradeoff among
quality attributes using empirical analysis. This investigation is then extended
in [17]. The work [1] follows the ADD framework to define architecture by
computing tradeoff between non-functional requirements based on relationships
between non-functional and functional requirements. Another related work is
[10] which uses hierarchical clustering to group requirements into software com-
ponents based on their interactions. Here the authors label each component with
a set of attributes and identify similarities between components based on their
common attributes. Hence this work does not put emphasis on the enhancement
and conflicts between requirements.

Paper Organisation. Section 2 introduces the formal ADD framework.
Section 3 discusses decomposition game and its solution concept. Section 4
presents algorithms for solving decomposition games. Section 5 presents the case
study and finally Sect. 6 concludes with future works.

2 Algorithmic Attribute Driven Design (ADD) Process

ADD is a general framework for transforming software requirements into a con-
ceptual software architecture. Pioneers of this approach introduced it through
several well-formed, but informally-defined concepts and steps [5,15]. A natural
question arises whether it can be made more algorithmic, which provides unbi-
ased, mathematically-grounded outputs. To answer this question, one would first
need to translate the original informal descriptions to a mathematical language.
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2.1 Software Requirements and Constraints

Functional Requirements. Functional requirements are specifications of what
tasks the system perform (e.g. “the system must notify the user once a new email
arrives”). A functional requirement does not stand alone; often, it acts with other
functional requirements to express certain combined functionality (e.g. “the user
should log in before making a booking”). Thus, a functionality may depend on
other functionalities. We use a partial ordering (F,≺) to denote the functional
requirements where each r ∈ F is a functional requirement, and r1 ≺ r2 denotes
that r1 depends on r2. Note that ≺ is a transitive relation.

Non-functional Requirements. Non-functional requirements specify the
desired quality attributes; ADD uses general scenarios and scenarios as their
standard representations. A general scenario is a high-level description on what
it means to achieve a non-functional requirement [5]. For example, the general
scenario “A failure occurs and the system notifies the user; the system contin-
ues to perform in a degraded manner” refers to the availability attribute. There
has been an effort to document all common general scenarios; a rather full list
is given in [4]. Note that a general scenario is vaguely-phrased and is meant
to serve as a template for more concrete “instantiations” of quality attributes.
Such “instantiations” are called scenarios. More abstractly, we use a pair (S,≈)
to denote the non-functional requirements where S is a set of scenarios and ≈
is an equivalence relation on S, denoting the general scenario relation: q1 ≈ q2

means that q1 and q2 instantiates the same general scenario.

Design Constraints. Design constraints are factors that must be taken into
account and enforce certain design outcomes. A design constraint may affect both
functional and non-functional requirements. More abstractly, we use a collection
of sets C ⊆ 2F∪S to denote the set of design constraints, where each set c ∈ C
is a design constraint. Intuitively, if two requirements r1, r2 belong to the same
c ∈ C, then they are constrained by the same design constraint c.

Derived Functionalities. The enforcement of certain quality attributes may
lead to additional functionalities. For example, to ensure availability, it may be
necessary to add extra functionalities to detect failure and automatically bypass
failed modules. Hence we introduce a derivation relation ↪→⊆ S × F such that
r ↪→ s means the functional requirement s is derived from the scenario r.

2.2 Attribute Primitives

Fig. 1. Example 1: the
requirements, constraints
and their relations.

The intentional outcome of ADD describes the
design elements, i.e., subsystems, components or
connectors. It is important to note that the goal of
ADD is not the complete automation of the design
process, but rather, to provide useful guidance.
Thus, the conceptual view reveals only the organi-
sational structure but not the concrete design.
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An attribute primitive is a set of design elements that collaboratively perform
certain functionalities and meet one or more quality requirements; it is also
the minimal combination with respect to these goals [5]. Examples of attribute
primitives include data router, firewall, virtual machine, interpreter and so on.
ADD prescribes a list of attribute primitives together with descriptions of their
properties and side effects (such as in [4]). Hence, ADD essentially can be viewed
as assigning the right attribute primitives to the right requirement combinations.
Note also that an attribute primitive may be broken down further.

Definition 1 (Attribute Primitive). An attribute primitive is a tuple

A = (F,S,C,≺,≈, ↪→)

where F is a set of functional requirements, S is a set of scenarios, C ⊆ 2F∪S is
a set of design constraints, ≺ is the dependency relation on F, ≈ is the general
scenario relation of S, and ↪→⊆ S × F is a derivation relation.

Let A = (F,S,C,≺,≈, ↪→) be an attribute primitive. We also need the following:

– A requirement of A is an element in the set R := F ∪ S.
– For r ∈ F, the dependency set of r is the set f(r) := {r′ ∈ F | r 	 r′}.
– For r ∈ S, the general scenario of r is the set g(r) := {r′ ∈ S | r ≈ r′}, i.e.,

the ≈-equivalence class of r.
– For r ∈ R, the constraints of r is the set c(r) := {t ∈ C | r ∈ t}.
– For r ∈ S, the derived set of r is d(r) := {s ∈ F | r ↪→ s}, and for s ∈ F, let

d−1(s) := {r ∈ S | r ↪→ s}

Definition 2 (Design Element). A design element of A is a subset D ⊆ R.
An decomposition of A is a sequence of design elements D = (D1,D2, . . . Dk)
where k ≥ 1,

⋃
1≤i≤k Dk = R, and each Di ∩ Dj = ∅ for any i �= j.

Example 1. Figure 1 shows an attribute primitive A = (F,S,C,≺,≈, ↪→)

– F = {f1, f2, f3} and S = {q1, q2, q3} are the requirements
– C = {c1, c2} where c1 = {q1, q3}, c2 = {q1}
– f1 ≺ f2, q1 ≈ q2, q1 ↪→ f1, q1 ↪→ f2 ,q2 ↪→ f1, q2 ↪→ f2, q3 ↪→ f3.

2.3 The ADD Procedure

Essentially ADD provides a means for system decomposition: The entire sys-
tem is treated as an attribute primitive, which is the input. At each step, the
procedure decomposes an attribute primitive A by identifying a decomposition
(D1,D2, . . . , Dk). The process then maps each resulting design element Di to an
attribute primitive Ai = (Fi,Si,Ci,≺i,≈i, ↪→i), which contains all elements in
Di and may require some further requirements and constraints. Hence we require
that Di ⊆ Fi ∪ Si and ≺i, ≈i, Ci, ↪→i are consistent with ≺, ≈, C and ↪→ on
Di, resp.; in this case we say that Ai is consistent with Di. Thus the attribute
primitive A is decomposed into k attribute primitives A1,A2, . . . ,Ak. On each
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Ai where 1 ≤ i ≤ k, the designer may choose to either terminate the process, or
start a new step recursively to further decompose Ai. See Procedure 1.

We point out that the ADD procedure, as presented by its original propo-
nents, involves numerous additional stages other than the ones described above
[15]. The reason we choose this over-simplified description is that we believe these
are the steps that could be rigorously presented, and they abstractly capture in
a way most of the steps mentioned in the original informal description.

Procedure 1. ADD(A) (General Plan)
1: (D1, D2, . . . , Dk) ← Decompose(A) // compute a rational decomposition of A
2: for 1 ≤ i ≤ k do
3: Ai ← an primitive attribute consistent with Di

4: if Ai needs further decomposition then
5: ADD(Ai)

TheDecompose(A) operation produces a rational decomposition (D1, . . . , Dk)
of the input attribute primitive A that satisfies the requirements of A. We also
note that Decompose(A) amounts to a crucial step in the ADD process, as the
decomposition determines to a large extend how well the quality attributes are
met. This step is also a challenging one as interactions among quality attributes
create potential conflicts. Thus, in the next section, we define a game model which
allows us to automate the Decompose(A) operation.

3 Decomposition Games

3.1 Requirement Relevance

The Decompose(A) procedure looks for a rational decomposition that meets
the requirements in A as much as possible. Let A = (F,S,C,≺,≈, ↪→) be an
attribute primitive. Relevance between requirements are determined by relations
≺,≈, ↪→ and the constraint set C. In the following, the Jaccard index J(S1, S2)
between two sets S1, S2 — a common statistical measure for similarity of sets —
is defined as J(S1, S2) = |S1∩S2|

|S1∪S2| ; Intuitively, the relevance of a requirement r

to other requirements is influenced by the “links” between r and the functional,
the non-functional requirements, as well as design constraints.

Definition 3 (Relevance). Two requirements r1, r2 ∈ R are relevant if

– r1, r2 ∈ F, and either d−1(r1) ∩ d−1(r2) �= ∅ (derived from some common
scenario), or f(r1) ∩ f(r2) �= ∅ (relevant through dependency), or c(r1) ∩
c(r2) �= ∅ (share some common design constraints).

– r1, r2 ∈ S, and either r1 ≈ r2 (instantiate the same general scenario), or
d(r1) ∩ d(r2) �= ∅ (jointly derives some functionality) or c(r1) ∩ c(r2) �= ∅.

– r1 ∈ F, r2 ∈ S, and either f(r1) ∩ d(r2) �= ∅ (r1 depends on a requirement
that is derived from r2), or c(r1) ∩ c(r2) �= ∅.
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If two requirements are relevant, the “amount of relevance” depends on overlaps
between their derived sets, dependency sets and constraints. If two requirements
are not relevant, then we regard them as having a negative relevance λ < 0,
which represents a “penalty” one pays when two irrelevant requirements get in
the same design element.

Definition 4. We define the relevance index σ(r1, r2) of r1 �= r2 ∈ R as follows:

1. if two functional requirements r1, r2 ∈ F are relevant, then

σ(r1, r2) = αJ(d−1(r1), d−1(r2)) + βJ(f(r1), f(r2)) + γJ(c(r1), c(r2));

2. if two scenarios r1, r2 ∈ S are relevant, then

σ(r1, r2) = βJ(d(r1), d(r2)) + γJ(c(r1), c(r2));

3. If r1 ∈ F and r2 ∈ S are relevant, then

σ(r1, r2) = σ(r2, r1) = βJ(f(r1), d(r2)) + γJ(c(r1), c(r2));

4. otherwise, σ(r1, r2) = λ

The constants α, β, γ are positive real numbers, that represent weights on the
overlaps in d1, d2’s generated sets, dependency sets and constraints, respectively.
We require α+β+γ=1.

For simplicity, we do not include these constants in expressing the function σ,
and all subsequent notions that depend on σ.

Example 2. Continue from A in Example 1. To emphasise the non-functional
requirements we give a larger weight to α, setting α = 0.5, β = 0.4, γ = 0.1.
We also set λ = −0.5. Then σ(r1, r2) = 0.4 × 2

2 = 0.4 for any (r1, r2) ∈
{(q1, q2), (q3, f3)}∪ ({q1, q2}×{f1, f2}); σ(q1, q3) = 0.1× 1

2 = 0.05; σ(f1, f2) =
0.5× 2

2 +0.4× 2
2 = 0.9; and relevance between any other pairs is −0.5. Figure 2 (a)

illustrates the (positive) relevance in a weighted graph.

3.2 Decomposition Games

We employ notions from coalition games to define what constitutes a rational
decomposition. In a coalition game, players cooperate to form coalitions which
achieve certain collective payoffs [6].

Definition 5 (Coalition Game). A coalition game is a pair (N, ν) where N
is a finite set of players, and each subset D ⊆ N is a coalition; ν : 2N → R is a
payoff function associating every D ⊆ N a real value ν(D) satisfying ν(∅) = 0.

This provides the set up for decompositions: Imagine a coalition game consisting
of |R| agents as players, where each agent is in charge of a different requirement.
The players form coalitions which correspond to sets of requirements, i.e., design
elements. The payoff function would associate with every coalition a numerical
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value, which is the payoff gained by each member of the coalition. Therefore,
an equilibrium of the game amounts to a decomposition with the right balance
among all requirements – this would be regarded as a rational decomposition.

It remains to define the payoff function. Naturally, the payoff of a coalition
is determined by the interactions among its members. Take r1, r2 ∈ D. If one
of r1, r2 is a functional requirement, then their interaction is defined by their
relevance index σ(r1, r2), as higher relevance means a higher level of interaction.
Suppose now both r1, r2 are scenarios (non-functional). Then the interaction
becomes more complicated, as a quality attribute may enhance or defect another
quality attribute. In [14, Chapter 14], the authors identified effects acting from
one quality attribute to another, which is expressed by a tradeoff matrix T :

– T has dimension m × m where m is the number of general scenarios
– For i �= j ∈ {1, . . . , m}, the (i, j)-entry Ti,j ∈ {−1, 0, 1}.

Let g1, g2, . . . , gm be general scenarios. Ti,j = 1 (resp. Ti,j = −1) means g1 has a
positive (resp. negative) effect on g2, Ti,j = 0 means no effect. E.g., the tradeoff
matrix defined on six common quality attributes is:

Performance Modifiability Security Availability Testability Usability

Performance 0 −1 0 0 0 −1
Modifiability −1 0 0 1 1 0

Security −1 0 0 1 −1 −1
Availability 0 0 0 0 0 0
Testability 0 1 1 1 0 1
Usability −1 0 0 0 −1 0

Note that the matrix is not necessarily symmetric: The effect from g1 to g2

may be different from the effect from g2 to g1. For example, an improvement in
system performance may not affect security, but increasing security will almost
always adversely impact performance. We assume that the matrix T is given
prior to ADD; this assumption is reasonable as there is an effective map from
any general scenario to the main quality attribute it tries to capture. We use
this tradeoff matrix to define the interaction between two scenarios in S.

Definition 6 (Coalitional Relevance). For a coalition D ⊆ R and r ∈ D,
the coalitional relevance of r in D is the total relevance from r to all other
requirements in D, i.e., ρ(r,D) =

∑
s∈D,s �=r σ(r, s).

Definition 7 (Effect Factor). For scenarios r1, r2 in the same coalition D,
the effect factor from r1 to r2 expresses the effect of r1 towards r2, i.e.,

ε(r1, r2,D) =

⎧
⎪⎨

⎪⎩

−|ρ(r1,D)| if T (g(r1), g(r2)) = −1
0 if T (g(r1), g(r2)) = 0
ρ(r1,D) if T (g(r1), g(r2)) = 1

We are now ready to define the interaction between two scenarios r1, r2 ∈ R.
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Definition 8 (Interaction). Let r1 �= r2 ∈ R be requirements. The interaction
between r1, r2 is simply the relevance σ(r1, r2) if one of r1, r2 is functional; oth-
erwise (both r1, r2 are non-functional), it is the sum of their effect factors, i.e.,

the interaction ν(r1, r2,D) :=

{
σ(r1, r2) if {r1, r2} ∩ F �= ∅

ε(r1, r2,D) + ε(r2, r1,D) otherwise

The coalition utility ν(D) of any coalition D ⊆ R is defined as the sum of
interactions among all pairs of requirements in the coalition, i.e.,

ν(D) =
∑

r1 �=r2∈D

ν(r1, r2,D)

Definition 9 (Decomposition Games (DG)). Let A = (F,S,C,≺,≈, ↪→)
be an attribute primitive. The DG GA is the coalition game (F ∪ S, ν) where
ν : 2F∪S → R is the coalition utility function.

Example 3 (Coalition Utility). Continue the setting in Example 2. Let the
general scenarios be g1 = {q1, q2} and g2 = {q3}. We assume matrix T specifies
T (g1, g2) = 1 and T (g2, g1) = −1. Consider the coalition C = {q1, q3, f3}. We
have: ρ(q1, C) = 0.05 − 0.5 = −0.45; and ρ(q3, C) = 0.4 + 0.05 = 0.45. So
ε(q1, q3, C) = −0.45 × 1 = −0.45 and ε(q3, q1, C) = 0.45 × (−1) = −0.45.

Thus ν(q1, q3, C) = −0.45 − 0.45 = −0.9. Therefore, ν(C) = σ(q1, f3) +
σ(q3, f3) + (−0.9) = (−0.5) + 0.4 + (−0.9) = −1 but ν(C \ {q1}) = ν({q3, f3}) =
σ(q3, f3) = 0.4; See Fig. 2(b).

As it has turned out, despite the fact that matrix T indicates q1 will act
positively to q3, and that q1, q3 have a positive (0.05) relevance, adding q1 into
the coalition of {q3, f3} drastically decreases the coalition utility.

Fig. 2. (a) Weights on the edges are relevance (function σ) between requirements in
Example 2; the diagram omits the negative weighted pairs. (b) The decomposition
{S1, S2} is a solution with ν(S1) = 2.5, ν(S2) = 0.4. The coalition C has ν(C) = −1
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3.3 Solution Concept

The decomposition game as defined above is a form of hedonic game, which
consists of a set of players, and each player’s payoff depends only on the mem-
ber of her coalition [2,7]. This setting is different from the typical coalition
formation games with transferrable utilities (TU): Firstly, in TU games, one
normally assumes the axioms of superadditivity (ν(D1 ∪ D2) ≥ ν(D1) + ν(D2))
and monotonicity (D1 ⊆ D2 ⇒ ν(D1) ≤ ν(D2)) which would obviously not hold
for decomposition as players may counteract with each other, reducing their com-
bined utility. Secondly, the typical solution concepts in coalition games (such as
Pareto optimality, and Shapely value) focus on distribution of payoffs to each
individual player assuming a grand coalition consisting of all players. In decom-
position such a grand coalition is normally not desirable and the focus is on the
overall payoff of each coalition D, rather than the individual requirements. The
above differences motivate us to consider a different solution concept of DG GA.
At any instance of the game, the players form a decomposition (D1,D2, . . . , Dk).
We assume that the players may perform two collaborative strategies:

1. Merge strategy: Two coalitions may choose to merge if they would obtain a
higher combined payoff.

2. Bind strategy: Players within the same coalition may form a sub-coalition if
they would obtain a higher payoff.

Example 4 (A Dilemma). We present an example demonstrating the dynam-
ics of a DG GA. This example shows a real-world dilemma: As a coalition pur-
sues higher utility through expansion (merging with others), it may be better to
choose a “less-aggressive” expansion strategy over the “more-aggressive” counter-
part, even though the latter clearly brings a higher payoff. Assume the following
situation (which is clearly plausible in an attribute primitive):

– R = {d1, d2, d3, d4} where S = {d1, d4} and d1 �≈ d4.
– We set σ({d1, d2}) = σ({d1, d3}) = σ({d2, d3}) = 0.1, and σ({d2, d4}) = 0.5.
– The tradeoff matrix indicates T (g(d1), g(d4)) = 0, T (g(d4), g(d1)) = −1.
– And, d1 and d4 are irrelevant, namely σ(d1, d4) = λ = −0.7.

Suppose we start with the decomposition {S = {d1, d2}, {d3}, {d4}}. Then
ν(S) = ρ(d1, d2, S) = ν(d1, d2, S) = 0.1. Coalition S has two merge strategies:

(1) For S1 = S ∪ {d3}: ν(d1, d2, S1) = σ(d1, d2) = 0.1, ν(d1, d3, S1)=σ(d1, d3)=
0.1, ν(d2, d3, S1)=σ(d2, d3)=0.1. Thus ν(S1)=0.3.

(2) For S2 = S ∪ {d4}: ν(d1, d4, S2) = ε(d4, d1, S2) = −0.7 + 0.5 = −0.2,
ν(d1, d2, S2) = σ(d1, d2) = 0.1 , ν(d2, d4, S2) = σ(d2, d4) = 0.5. Hence
ν(S2)=0.1−0.2+0.5=0.4

Merging with {d4} clearly results in a higher payoff for the combined coalition.
However, if this merge happens, as ν ({d2, d4}) = 0.5 > ν(S2) = 0.4, d2 and d4

would choose to bind together, hence leaving S2. This would be undesirable if
d1 is a critical non-functional requirement for d2.
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Example 4 shows that a solution concept would be a decomposition where no
“expansion” nor “crumbling” occur to any coalition. Formally, we define the
following solution concepts:

Definition 10 (Solution). Let D = (D1, . . . , Dk) be a decomposition of A.

1. A coalition D ⊆ R is cohesive if for all C ⊆ D, ν(C) < ν(D); D is cohesive
if so is every Di.

2. A coalition Di is expansion-free with respect to D if max{ν(Di), ν(Dj)} >
ν(Di ∪ Dj); D is expansion-free if so is every Di.

A solution of a DG is a decomposition that is both cohesive and expansion-free.

Example 5 (Solution). Continue from Example 3, the utilities for

S1 = {q1, q2, f1, f2} and S2 = {q3, f3} are :

– S1: ν(q1, q2, S1) = 0, ν(q1, f1, S1) = ν(q1, f2, S1) = ν(q2, f1, S1) = 0.4,
ν(q1, f2, S1) = 0.4, ν(f1, f2, S1) = 0.9. Thus ν(S1) = 0.4 × 4 + 0.9 = 2.5

– S2: w(q3, f3, S2) = 0.4. Thus ν(S2) = 0.4

Both S1 and S2 are cohesive. Furthermore, we have ν(q1, q3,R)=0.75−1.05=−0.3
and ν(q2, q3,R) = 0.2−1.05 = −0.85. Thus ν(R)=2.9−0.5×6−0.85−0.3=−1.45.
Consequently, {S1, S2} is also expansion-free, and is thus a solution of the game.

A solution of a DG GA corresponds to a rational decomposition of the
attribute primitive A. As shown by Theorem 11, any attribute primitive admits
a solution, and rather expectedly, a solution may not be unique.

Theorem 11 (Solution Existence). There exists a solution in any DG GA.

Proof. We show existence of a solution by construction. Let (D1,D2, . . . , Dk) be
a longest sequence such that for any i = 1, . . . , k, Di is a minimal coalition with
maximal utility in 2R \{D1, . . . , Di−1} (i.e., ∀D ⊆ 2R \{D1, . . . , Di−1} : ν(D1) ≥
ν(D) and ∀D ⊆ D1 : ν(D1) > ν(D)).

We claim that D = (D1, . . . , Dk) is a solution in GA. Indeed, for any
1 ≤ i ≤ k, any proper subset of Di would have payoff strictly smaller than
ν(Di) by minimality of Di. Thus D is cohesive. Moreover, if ν(Di ∪ Dj) >
min{ν(Di), ν(Dj)} for some i �= j, then Dmin{i,j} does not have maximal utility
in R \ {D1, . . . , Dmin{i,j}−1}. Hence D is expansion-free. ��
Proposition 12. The solution of a DG may not be unique.

Proof. Let A = (F,S,C,≺,≈, ↪→) be an attribute primitive where S = ∅ and
F = {d1, d2, . . . , d6}. We may define C,≺,≈, ↪→ in such a way that

– For all {i, j} ⊆ {1, 2, 3, 4} and {i, j} ⊆ {4, 5, 6}, i �= j ⇒ ν({di, dj}) = 0.1
– For all i ∈ {1, 2, 3}, j ∈ {5, 6}, ν({di, dj}) = −0.1

Consider C = {C1 = {d1, d2, d3}, C2 = {d4, d5, d6}} and D = {D1 =
{d1, d2, d3, d4}, D2 = {d5, d6}}. Note that ν(C1) = 0.3 and ν(C2) = 0.3; C
is cohesive and C is expansion-free as ν(F) = 0.3 = ν(C1). Note also that
ν(D1) = 0.6 and ν(D2) = 0.1; D is cohesive and D is expansion-free as
ν(D1) > ν(F) ��
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4 Solving Decomposition Games

Based on our game model, the operation Decompose(A) in Procedure 1 is reduced
to the following DG problem:

INPUT: An attribute primitive A = (F,S,C,≺,≈, ↪→)
OUTPUT: A solution D = (D1,D2, . . . , Dk) of the game GA

Here, we measure computational complexity with respect to the number of
requirements in F ∪ S. The proof of Theorem 11 already implies an algorithm
for solving the DG problem: check all subsets of R to identify a minimal set with
maximal utility; remove it from R and repeat. However, it is clear that this algo-
rithm takes exponential time. We will demonstrate below that a polynomial-time
algorithm for this problem is, unfortunately, unlikely to exist.

We consider the decision problem DG D: Given A and a number w > 0, is
there a solution D of GA in which the highest utility of a coalition reaches w?
Recall that the payoff function ν of GA is defined assuming constants α, β, γ > 0
and λ < 0. The theorem below holds assuming λ < −γ.

Theorem 13. The DG D problem is NP-hard.

Proof. The proof is via a reduction from the maximal clique problem, which
is a well-known NP-hard problem. Given an undirected graph H = (V,E), we
construct an attribute primitive A such that any cohesive coalition in GA reveals
a clique in H. Suppose V = {1, 2, . . . , n}. The requirements of A consist of n2

scenarios: R = S := {ai,i′ | 1 ≤ i≤n, 1 ≤ i′ ≤n}. In particular, all requirements
are non-functional. We define an edge relation E′ on S such that

1. (i, j) ∈ E iff (ai,i′ , aj,j′) ∈ E′ for some 1 ≤ i′ ≤ n and 1 ≤ j′ ≤ n
2. If (ai,i′ , aj,j′) ∈ E′ then (ai,i′′ , aj,j′′) /∈ E′ for any (i′′, j′′) �= (i′, j′).
3. Any ai,i′ is attached to at most one edge in E′.

Note that such a relation E′ exists as any node i ∈ V is only connected
with at most n − 1 other nodes in H. Intuitively, a set of requirements
Ai = {ai,1, . . . , ai,n} serves as a “meta-node” and corresponds to the node i
in H. In constructing A, we may define the general scenarios in such a way that

– T (g(ai,j1), g(ai,j2)) = 0 for any 1 ≤ i ≤ n and j1 �= j2.
– T (g(ai1,j1), g(ai2,j2)) = −1 for any (i1, i2) /∈ E.
– T (g(ai1,j1), g(ai2,j2)) = 1 for any (ai1,j1 , ai2,j2) ∈ E′
– T (g(ai1,j1), g(ai2,j2)) = 0 for any (i1, i2) ∈ E but (ai1,j1 , ai2,j2) /∈ E′

For every 1 ≤ i ≤ n and 1 ≤ j < j′ ≤ n, put in a constraint ci(j, j′) = {ai,j , ai,j′}.
Thus the relevance between ai,j and ai,j′ is

σ(ai,j , ai,j′) =
|c(ai,j) ∩ c(ai,j′)|
|c(ai,j) ∪ c(ai,j′)| =

γ

2(n − 1)

Furthermore if i �= i′, then for any j, j′ we set σ(ai,j , ai,j′) = λ. Suppose
U = {i1, . . . , i�} induces a complete subgraph of H. We define the meta-clique
coalition of U as

DU =
⋃

1≤j≤�

Aij
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By the above definition, for any 1≤s<t≤�, take j, j′ such that (ais,j , ait,j′) ∈ E′.

w(is, it,DU ) = ε(ais,j ,DU ) + ε(ait,j′ ,DU )
= ρ(ais,j ,DU ) + ρ(ait,j′ ,DU )

= (n − 1) × γ

2(n − 1)
+ (n − 1) × γ

2(n − 1)
= γ

Thus ν(DU ) = n(n−1)γ
2 . Taking out any element from DU results in a strict

decrease in utility, and hence DU is cohesive.
Now take any coalition D ⊆ R that contains two requirements ai,i′ , aj,j′ such

that (i, j) /∈ E. Let s = |Ai∩D| and t = |Aj∩D|. Note also that σ(aj,j′ , ai,i′′) = λ
for any ai,i′′ ∈ Ai ∩ D. Therefore we have

ν(D) − ν(D \ {aj,j′}) ≤ γ + 2w(aj,j′ , ai,i′ ,D) × s ≤ γ + 2λ + γ = 2(λ + γ) < 0

The last inequality above is by assumption that λ < −γ. Thus D is not cohesive.
By the above argument, a coalition D ⊆ R is cohesive in GA iff D is the

meta-clique coalition DU for some clique U in H. Furthermore, a decomposition
D = (D1,D2, . . . , Dk) is a solution in GA iff V can be partitioned into sets
U1, . . . , Uk where each Ui is a clique, and Di = DUi

for all 1≤ i≤k. In particular,
H has a clique with � nodes if and only if GA has a solution that contains a
coalition whose utility reaches �(�−1)γ

2 . This finishes the reduction. ��
Theorem 13 shows that, in a sense, identifying a “best” solutions in a DG GA is
hard. The main difficulty comes from the fact that one would examine all subsets
of players to find an optimal cohesive coalition. This calls for a relaxed notion of
a solution that is computationally feasible. To this end we introduce the notion
of k-cohesive coalitions. Fix k ∈ N and enforce this rule: Binding can only take
place on k or less players. That is, a coalition C is k-cohesive whenever ν(C) is
greater than the utility of any subsets with at most k players.

Definition 14. Fix k ∈ N. In a DG GA = (F∪S, ν), we say a coalition D ⊂ F∪S
is k-cohesive if ν(D′) < ν(D) for all D′ ⊂ D with |D′| ≤ k. An decomposition
D is k-cohesive if every coalition in D is k-cohesive; if D is also expansion-free,
then it is a k-cohesive solution of the game GA.

Remark. In a sense, the value k in the above definition indicates a level of
expected cohesion in the decomposition process. A higher value of k implies less
restricted binding within any coalition, which results in higher “sensitivity” of
design elements to conflicts. In a software tool which performs ADD based on
DG, the level k may be used as an additional parameter.

Let R be a set of requirements. A coalition D is called maximally k-cohesive
in R if |D| ≤ k, D is k-cohesive and ν(D) ≥ ν(D′) for any D′ ⊆ R. Suppose
the operation max(R, k) computes a maximally k-cohesive set in R. The algo-
rithm DGame(A, k) (Procedure 2), which uses Cohesive(A, k) (Procedure 3) as a
subroutine, computes a k-cohesive solution of GA. Note that the Cohesive(A, k)
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Procedure 2. DGame(A, k)
INPUT: Attribute primitive A, k > 0
OUTPUT: Attribute Decomposition D
1: D ← Cohesives(A, k)
2: Combine ← true
3: while Combine do
4: Combine ← false
5: for (D, D′) ∈ D2, D �= D′ do
6: if ν(D′ ∪ D) > ν(D) and ν(D′ ∪ D) > ν(D′) then
7: D ← D′ ∪ D and remove D′ from D
8: Combine ← true
9: return D

Procedure 3. Cohesive(A, k)
INPUT: Attribute primitive A, k > 0
OUTPUT: Attribute Decomposition D
1: D ← [ ], R ← F ∪ S
2: while |R| > 0 do
3: S ← max(R, k) // compute a maximally k-cohesive coalition
4: R ← R \ S
5: D ← [D, S]

6: return D

operation maintains a list D, which when returned, denotes a decomposition.
Note also that the returned D = (D1, . . . , Dm) satisfies the following condition:

∀1 ≤ i ≤ m : Di is maximally k-cohesive in Di ∪ · · · ∪ Dm

We call this D a maximally k-cohesive decomposition.

Lemma 15. Suppose D is a maximally k-cohesive decomposition. Take any 1≤
i<j ≤n. If ν(Di ∪ Dj) > max{ν(Di), ν(Dj)} then Di ∪ Dj is k-cohesive.

Proof. Let Si =
⋃

i≤j≤m Dj for any i = 1, . . . , m. Suppose ν(Di ∪ Dj) >
max{ν(Di), ν(Dj)} for 1 ≤ i < j ≤ m. By assumption Di is maximally k-
cohesive in Si. For any finite set U ⊆ Di ∪ Dj ⊆ Si such that |U | ≤ k, we have
ν(U) ≤ ν(Di) < ν(Di ∪ Dj). Hence Di ∪ Dj is also k-cohesive. ��
Theorem 16. Given an attribute primitive A, the DGame(A, k) algorithm com-
putes a k-cohesive solution of the decomposition game GA in time O(nk), where
n is the number of requirements in A.

Proof. The DGame(A, k) algorithm calls Cohesive(A, k) to produce a maximally
k-cohesive decomposition D, and then performs several iterations to “combine”
the coalitions in D. By Lemma 15, the decomposition D after each iteration
is k-cohesive. There is a point when for all D,D′ ∈ D we have ν(D ∪ D′) ≤
max{ν(D), ν(D′)}. At this moment, the while-loop will terminate and D is
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expansion-free. The time complexity is justified as there are O(nk) subsets of
F ∪ S with size ≤ k. Thus computing a maximally k-cohesive decomposition
takes time O(nk). ��

5 Case Study: Cafeteria Ordering System

Fig. 3. Interactions between require-
ments in the COS [14]. Blue edges
indicate positive interactions and red
edges indicate negative interactions
(Color figure online).

To demonstrate applicability of our game
model in real-world, we build a DG for a
cafeteria ordering system (COS). A COS
permits employees of a company to order
meals from the company cafeteria online
and is a module of a larger cafeteria man-
agement system. The requirements of the
project have been produced through a sys-
tematic requirement engineering process
and is well-documented (See full details
from [14, Appendix C]). Since COS is
a subsystem within a larger system, the
requirements also incorporate interfaces
with other subsystems of the overall sys-
tem. The initial attribute primitive has 60
requirements with |S| = 11, |F| = 49 and 7
design constraints. Non-functional require-
ments conflict with each other, e.g., the
general scenario USE conflicts with the general scenario PER. Also the require-
ments exhibit some complex relationships, e.g. SEC1 ↪→ Order.Pay.Deduct.

We demonstrate the complicated interactions among requirements using a
complete graph where nodes are all requirements in R = S ∪ F; see Fig. 3.
The edges are in two colours: (r1, r2) gets blue if w(r1, r2,R) > 0 and red if
w(r1, r2,R) < 0.

We run the DGame(A, k) algorithm to identify a k-cohesive solution for dif-
ferent levels k of expected cohesion. In order to clearly identify sub-components,
we give a higher penalty λ between conflicting requirements: α = 0.4, β = 0.3,
γ = 0.3, λ = −1.3. We choose k ∈ {1, . . . , 7}. As argued above, setting a higher
value of k should in principle improve the quality of the output decomposition,
although this also means a longer computation time. We implement our algo-
rithm using Java on a laptop with Intel Core i7-3630QM CPU 2.4 GHz 8.0 GB
RAM. The running time for different values of k is: 503 milliseconds for k = 3
and approximately 1140 s for k = 6 (Table 1).

Cohesion Level k = 3. The 3-cohesive solution consists of 5 coalitions. An
examination at the requirements in each coalition reveals: Coalition 0 relates to
usability and ensures availability of user interactions; it apparently corresponds
to a user interface module. Coalition 1 is performance-oriented and is separated
from the usability requirements; it thus corresponds to a back-end module that
handles all the internal operations. Coalition 2 deals with the payroll system
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Table 1. Resulting 3- and 6-cohesive solutions, ordered by payoff values.

3-Cohesive Solution 6-Cohesive Solution

Coalition 0

AVL1 ROB1 SAF1 SEC(1,2,4) USE(1,2)
Order.Confirm Order.Menu.Data
Order.Deliver.(Select,Location)

Order.Pay Order.Place Order.Retrieve
Order.Units.Multiple UI2 UI3

AVL1 ROB1 SAF1 SEC(1,2,4) PER(1,2,3)
USE(1,2) Order.Confirm Order.Deliver

Order.Deliver.(Select,Location)
Order.Menu.Date Order.Pay

Order.Retrieve Order.Place Order.Units
Order.Units.Multiple UI2 UI3

Coalition 1

PER(1,2,3) Order.Units.TooMany
Order.Deliver.(Times,Notimes)

Order.Place.(Cutoff,Data,Register,No)
Order.Pay.(OK,NG) Order.Done.Failure
Order.Confirm.(Prompt,Response,More)

Order.pay.(Deliver,Pickup,Deduct)
Order.Done.Patron SI2.2 SI2.3

Coalition 2
Order.pay.(Deliver,Pickup,Deduct)

Order.Done.Patron SI2.2 SI2.3

Order.Units.TooMany
Order.Deliver.(Times,Notimes)

Order.Place.(Cutoff,Data,Register,No)
Order.Pay.(OK,NG) Order.Done.Failure
Order.Confirm.(Prompt,Response,More)

Coalition 3

Order.Menu Order.Unit Order.Done
Order.Done.(Menu,Times,Cafeteria)

Order.Done.(Store,Inventory)
Order.Deliver Order.Menu.Available

Order.Confirm.Display
Order.Pay.Method SI1.3 SI2.5 CI2

Order.Done
Order.Done.(Menu,Times,Cafeteria)

Order.Done.(Store,Inventory)
SI1.3 SI2.1 SI2.4 SI2.5 CI1 CI2

Coalition 4 SI1.1 SI1.2 Order.Menu.Available SI1.1 SI1.2

Fig. 4. The 3-cohesive solution. Coalition 0 : Java Spring framework uses server page
as user interface and provides a powerful encryption infrastructure (Spring Crypto
Module). Server page is suitable for implementing interactive user interface. Coalition
1: Enterprise Java Bean (EJB) is a middleware (residing in the application server) used
to communicate between different components. It provides rich features for processing
HTTP requests. Coalition 2: The COS uses a package solution from corresponding
payroll system. Coalition 3: A servlet is a controller in Java application server which
separates business logic from control. Coalition 4: A web service interface outside COS.

outside COS and defines a controlling interface from COS to payroll. Coalition 3
consists of several functional requirements that control life cycle of the COS.
Coalition 4 is an interface to access the inventory system outside COS.

It is clear that this solution separates the control, user inputs and computa-
tion modules, and fits the MVC (Model-View-Controller) architectural pattern.
In addition, there is a design constraint that requires the use of Java and Oracle
database engine. So, we instantiate the design elements as in Fig. 4.
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Cohesion Level k = 6. The 6-cohesive solution also contains five coalitions,
with a similar structure as the 3-cohesive counterpart. There are, neverthe-
less, several important differences: Firstly, the performance (PER) scenarios now
belong to coalitions 0. This means that some performance-related computation
is moved to the front-end. This is reasonable as this lightens the computation
load of the back-end and thus improving performance and availability. Secondly,
the functional requirement Order.Menu.Available is moved to coalition 4, which
is the interface between COS and the inventory system. This requirement spec-
ifies that the menu should only display those food items that are available in
inventory.

Instead of server page, we use scripting to reduce the server’s computation
load. This can be achieved by changing the front-end to a JavaScript oriented
designs. The main difficulty lies in that we need to put extra effort when using
JavaScript to communicate with web server (such as AJAX) in order to ensure
usability, performance and security. We instantiate design elements as in Fig. 5.

Fig. 5. The 6-cohesive solution. Coalition 0 uses JavasScript as a front end for user
interface. It also takes some computation for sever in order to achieve better perfor-
mance. Coalition 1 is an interface for accessing the payroll system. Coalition 2 ensures
the business logic in COS. Coalition 3 coordinates input from front end (coalition 0) to
back end (coalition 1). Coalition 4 is an interface for accessing the inventory system.

6 Conclusion and Future Work

Analysing tradeoff among requirements in software architecture design has been
an important research topic. The use of computational games in software archi-
tecture design is a novel technique aimed to contribute to this line of research. We
argue that equilibrium concepts in games provide an appropriate formal set-up
of arguing rational designs. The proposed game-based approach not only builds
on established software architecture methodology (ADD), but is also shown —
through a case study — to provide reasonable design guidelines to a real world
application. We suggest that this framework would be useful in the following:

– Designing a software system that involves a large number of functionalities
and quality attributes, which will result in a complicated architecture design
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– Designing a software system that hinges on the satisfaction of certain core
quality attributes

– Evaluating and analysing the rationale of an architecture design in a formal
way; identifying potential risks with a design.

It is noted that the framework described here assumes the completion of require-
ment analysis. In real life requirements are usually identified as the software is
implemented (e.g. the agile software development methodology). It would thus
be interesting to develop a dynamic version of the game model, which sup-
ports architectural design using incremental refinements. Another future work
is to develop a mechanism which maps coalitions generated by the algorithm to
appropriate attribute primitives. This would then lead to a full automation of
the ADD process linking requirements to conceptual architecture designs.
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Abstract. This paper presents a component-based scheme for the devel-
opment of multi-rate critical embedded systems. A multi-rate system
is formally specified as a modular assembly of several locally mono-
clocked components into a globally multi-clocked system. Mono-clocked
components are modeled in particular using the synchronous program-
ming language Quartz. Each synchronous component is first trans-
formed into an intermediate model of clocked guarded actions. Based on
the abstraction of component behaviors, consistent communication net-
works can be established, in which the production and consumption of
inter-component dataflow are related by affine relations. Furthermore,
symbolic component schedules and corresponding minimal buffering
requirements are computed.

Keywords: Synchronous programming · Component-based design ·
Affine relation · Symbolic schedule

1 Introduction

With the continuous growth of critical embedded system scale, one of the preva-
lent trends in system engineering is towards component-based design. In this
kind of design approach, systems are composed of various components, which
may provide different functions and run at different rates. The integration stage
takes in charge of integrating components to build multi-rate systems, while
respecting all the functional requirements, especially the ones of inter-component
communications. In practice, systems generally comprise a large number of com-
ponents, therefore developing low-level integration code, i.e. manually building
inter-component communications, is tedious and error-prone.

In this paper, we apply synchronous programming [3] in the component-
based design of multi-rate critical embedded systems. Synchronous program-
ming languages such as Esterel [4], Lustre [10] or Quartz [15] are all based on
the synchronous hypothesis. Under this assumption, behaviors are projected onto
a discrete sequence of logical instants. As the sequence is discrete, nothing occurs
between two consecutive instants. Such temporal abstraction makes synchronous
programming lend itself to modeling predictable component behaviors. Synchro-
nous components are referred to as mono-clocked components, since each of them
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 464–482, 2015.
DOI: 10.1007/978-3-319-25150-9 27
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holds a master clock driving its own execution. Furthermore, when integrating
synchronous components, deterministic concurrency is a system-level key fea-
ture that refers closely to component behaviors, inter-component communication
strategies and component schedules. In the past few decades, several integration
approaches based on synchronous programming have been proposed.

Esterel components are restricted by the mono-clocked feature that connected
components must be driven by the same clock. To go beyond this restriction, an
extended version of the Esterel language, named multi-clocked Esterel, is pro-
posed [5]. Although components are still mono-clocked in the extended version,
they can now communicate with each other even if driven by different clocks. To
transfer data among different clock scales, two kinds of feasible communication
devices are introduced, which are sampler and reclocker. The integrated system
thereby comprises a number of components running at different rates. Nonethe-
less, the frequency relations between clocks and the potential dependency cycles
between simultaneous components have not been well studied in multi-clocked
Esterel programming.

A software architecture language Prelude [9] is introduced for integrating
synchronous components into multi-rate critical embedded systems. In detail, it
provides a high layer of abstraction upon the Lustre language. Such high-level
abstraction implements component-based design by assembling locally synchro-
nous components (named tasks in Prelude) into globally multi-rate systems.
Furthermore, real-time constraints (e.g. periods, deadlines, release dates, etc.)
are well analyzed in Prelude programs to synthesize appropriate scheduling poli-
cies and tailor-made buffering communication protocols. Nevertheless, each task
has only one computation mode therefore provides a single function. To build a
real size system, thousands of Prelude tasks are required, whereas most RTOS
accept at most one hundred tasks [14]. In addition, inter-task communications
are all user-specified, the combined network can thus be prone to inconsistency.

In this paper, we propose a new component-based design approach for multi-
rate critical embedded systems. Mono-clocked components in our proposal are
modeled in the Quartz language. Different from Prelude tasks, each Quartz
component can have multiple computation modes and provide various func-
tions. That is, a component can switch its own mode along with its execu-
tion to perform different computations. In this way, a Quartz component can
play the roles of multiple Prelude tasks such that the amount of components
is controllable when building real size systems. In the proposed approach, a
synthesis technique is first introduced to abstract component behaviors. The
obtained interface behaviors are based on computation modes and motivate the
synthesis of communication networks, in which affine relations are used to define
communication patterns that are the production-consumption relations of inter-
component dataflow. To guarantee the network consistency, communication pat-
terns are partially user-defined then the remaining ones are determined in an
automatic way. In addition, a valid schedule can be computed, which respects
data dependencies and describes partially ordered firing relations between com-
ponents. Finally, minimal capacities of communication buffers are determined.
Based on all these essential factors, the integration of synchronous components
gets achieved.
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A simplified aircraft turning control system is used as a running example to
illustrate our approach throughout the paper. The system is designed for control-
ling aircraft turning, according to the pilot commands. To regulate the inflight
direction, corresponding aircraft actuators (i.e. ailerons and rudder) have to turn
in a concerted way. As a consequence, the aircraft is rolled and a banked turn
is realized. To achieve smooth aircraft turning, the control system periodically
computes and issues the moving angles for ailerons and rudder in response to the
pilot commands and to the aircraft movement. As depicted in Fig. 1, the system
comprises four distributed controllers [1]: main controller (MC), left wing con-
troller (LWC), right wing controller (RWC) and rudder controller (RC). Accord-
ing to the pilot-commanded roll angle cM and the current angles of actuators,
MC computes the moving angle of each actuator until the aircraft movement
accords with cM . The remaining controllers are respectively in charge of turning
a particular actuator gradually towards the goal moving angle emitted from MC,
then send the current angles of actuators back to MC.

Fig. 1. A simplified aircraft turning control system

The rest of this paper is organized as follows. Section 2 introduces a tagged
model [12] to formally define clocks, then briefly reviews the intermediate model
clocked guarded action system, which serves as the starting point. Section 3
presents how to abstract interface behaviors from the intermediate model. In
Sect. 4, the synthesis of communication networks is presented, including defin-
ing communication patterns, computing valid schedules and minimal buffering
requirements. Section 5 ends the paper with conclusions and future work.

2 Foundations

2.1 Tagged Model

We start with the following sets: V is a non-empty set of data values; B =
{ff, tt} ⊂ V is a set of Boolean values where ff and tt respectively denote false
and true; T is a dense set equipped with a partial order relation, denoted by ≤.
The elements in T are called tags. We now introduce the notion of time domain.

Definition 1 (Time Domain). A time domain is a partially ordered set (T ,≤)
where T ⊂ T that satisfies: T is countable; T has a lower bound 0T for ≤, i.e.,
∀t ∈ T , 0T ≤ t; ≤ over T is well-founded; the width of (T ,≤) is finite.



Multi-rate System Design Through Integrating Synchronous Components 467

(T,≤) provides a continuous time dimension. (T ,≤) defines a discrete time
dimension that corresponds to the logical instants [11], at which the presence of
data can be observed during the system execution. Thus, the mapping of T on
T allows one to move from “abstract” to “concrete”.

A chain (C,≤) ⊆ (T ,≤) is a totally ordered set of tags admitting a lower
bound 0C . We denote the set of all chains in T by CT .

Definition 2 (Event). An event on a given time domain T is a pair (t, v) ∈
T × V, which associates a tag t with a data value v.

All the events whose tags belong to the same chain, can constitute a dataflow.
Formally,

Definition 3 (Signal). A signal s : C → V is a function from a chain of tags
to a set of values, where C ∈ CT . The domain of s is denoted by tags(s).

S = ∪C∈CT (s : C → V) is the set of signals over the time domain (T ,≤). The
presence status of signal s : C → V is denoted by its associated clock, which is
a special signal ŝ : C → {tt}. A signal is present only when its clock ticks.

The constraints on clocks are referred to as clock relations, such as synchro-
nization relation s1=̂s2, i.e., s1 and s2 are synchronous (tags(s1) = tags(s2)),
and inclusion relation s1≤̂s2 (tags(s1) ⊆ tags(s2)).

2.2 Clocked Guarded Actions and Quartz

Clocked Guarded Actions. To process synchronous programs, it is quite
natural to first compile them into intermediate models. In this way, the whole
processing can be modularly divided into several steps and the models can be
reused for different purposes, such as validation, comparison, model transforma-
tion and code generation. Furthermore, the processing on intermediate models
is independent of particular synchronous languages.

Clocked guarded actions (CGAs) are designed in the spirit of traditional
guarded commands, which are well-established intermediate code for the descrip-
tion of concurrent systems. CGAs have become a common representation for
various synchronous languages [7,18].

Definition 4 (CGA System). A CGA system is a set of CGAs of the form
〈γ ⇒ A〉 composed by using the parallel operator ||. Guard γ is a Boolean condi-
tion. Action A is either an assignment or an assumption. They are defined over
a set of variables X . Each variable x ∈ X owns an associated clock x̂ ∈ S. CGAs
can be of the following forms:

γ ⇒ x = τ (immediate)
γ ⇒ next(x) = τ (delayed)
γ ⇒ assume(σ) (assumption)
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The execution of a CGA system is to iteratively evaluate the guards to trigger
the actions. Once a guard is evaluated to true, the corresponding action instan-
taneously starts. Both kinds of assignments evaluate the (Boolean or arithmetic)
expression τ at the current instant. An immediate assignment x = τ instanta-
neously transfers the value of τ to variable x. Furthermore, it implicitly imposes
the constraint γ → x̂: the clock of x ticks whenever γ holds. On the other hand,
the effect of a delayed assignment next(x) = τ takes place at next instant x̂
ticks. An assumption assume(σ) declares a constraint σ that has to be satisfied
when γ holds. Clock relations can be declared as assumptions.

When a given variable x is present but no assignment to it can be fired, its
value is determined by the absence reaction. The reaction determines the value,
according to the storage type of the assigned variable: a non-memorized variable
is reset to the default value that depends on its data type; a memorized variable
keeps its previous value, or takes its default value at the initial instant.

Guarded actions describe behaviors via two parts: the dataflow part com-
putes internals and outputs; the controlflow part computes labels. CGAs in the
controlflow part are particularly in the form of γ ⇒ next(l) = true, where label
l is a non-memorized Boolean internal denoting a pause location of controlflow.
If l holds at the current instant, it means that the controlflow reached the pause
location of l at the end of the previous instant, then it resumes from this location
at the beginning of the current instant. Such instant where l holds is named an
instant of l. Note that more than one label can hold at the same instant. This
enables the description of the parallelism feature [15] of synchronous programs.

Quartz Programs into CGA Systems. The latest version of the Quartz lan-
guage (aka. clocked Quartz) introduces clocked variables. In a Quartz program,
classic variables, including labels, are synchronous and driven by the master
clock clk, whereas each clocked variable x has its own clock x̂ such that x can
be absent, i.e. x≤̂clk.

Quartz programs follow an imperative style. The modeling of MC in Quartz
is sketched in Fig. 2. In the interface part, inputs (prefixed by ?) and outputs
(prefixed by !) are declared as clocked variables of real data type. In the body
part, internals such as cmd and langle are first declared as classic variables of real
data type, then a do while loop is embedded in an infinite loop. Furthermore,
the assignment cmd = cM takes place at the instants of label L0, langle =
rLW occurs at the instants of L1 and the assignment to rM is fired when L2
holds. These assignments consequently impose the clock constraints L0 → ĉM ,
L1 → r̂LW and L2 → r̂M . As illustrated, I/O are in general modeled as clocked
variables to avoid unnecessary communications. I/O are assumed to be clocked
variables in the following.

The translation of classic Quartz programs (i.e., with no clocked variable)
into CGA systems has been proposed and implemented in the Averest frame-
work1 [7]. In the translated CGA system, a master clock clk is introduced and

1 http://www.averest.org/.

http://www.averest.org/
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module MainContro l ler
( clocked real ?cM , ?rLW , ! rM , . . .)
{

real cmd , lang l e , . . . ;
. . .
loop {

L0 : pause ;
cmd = cM ;
. . .
do {

L1 : pause ;
l a n g l e = rLW ;
. . .

} while ( . . .)
L2 : pause ;
rM = . . . ;
. . .

}
}

Fig. 2. Main controller Fig. 3. Finite automaton

synchronization relation between each classic variable x and clk is declared as a
guarded assumption true ⇒ assume(x=̂clk).

In the translation of (clocked) Quartz programs, the clock relations of clocked
variables are not so straightforward. Different from synchronization relations
between classic variables and master clock, the clock relations of clocked vari-
ables are closely related to controlflow. As illustrated in the modeling of MC, the
presence status of clocked variables depend on the labels. However, both con-
trolflow and dataflow are represented symbolically in CGA systems. To clarify
clock relations, controlflow has to be further processed to get explicit.

To this end, finite automaton has been introduced as a variant of CGA sys-
tem, which is translated from original CGA system via an abstract simulation
[2]. In a finite automaton, the controlflow is explicitly represented: each state
st is a function st : L → B, where L ⊂ X is the set of labels and ∀l ∈ L,
st(l) denotes the value of label l in st; edges between states are labeled with
conditions that must be fulfilled to enable the transitions.

Definition 5 (Finite Automaton). A finite automaton is a tuple
{S, st0,T,D}, where S is a set of states, st0 ∈ S is the initial state, T ⊆ (S×G×S)
is a finite set of state transitions where G is the set of transition condi-
tions, Gst denotes the set of transition conditions belonging to st ∈ S, i.e.
∀(st, g, st′) ∈ T, g ∈ Gst. D is a mapping S → 2Λ, which assigns each state
st ∈ S a set of dataflow guarded actions D(st) ⊆ Λ that can be simultaneously
executed in state st.

A finite automaton can have at most one active state st at the same instant.
Only a subset D(st) of guarded actions needs to be considered at each instant.
Following this way, the executable code generated from finite automata can be
optimized to generally have a smaller size and a better runtime performance [2].

In finite automata, the clock relations of clocked variables can be synthe-
sized from guarded actions. Given a guarded action 〈γ ⇒ x = τ〉 ∈ D(st),
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all the clocked variables appearing in γ and τ are present in state st: ∀y ∈
V arsC(γ) ∪ V arsC(τ), st → ŷ, where V arsC(γ) denotes the set of clocked vari-
ables in γ. Moreover, if x is a clocked variable, then it is conditionally present
in state st: st ∧ γ → x̂. As illustrated in Fig. 3, guarded actions to cmd, langle
and rM are grouped under different states, the clock relations of clocked vari-
ables can then be synthesized: L0 → ĉM , L1 → r̂LW and L2 → r̂M , which are
equivalent to the ones imposed from the source MainController module.

3 Synthesis of Mode-Based Interface Behaviors

In our proposal, component behaviors are abstracted into computation modes.
In a computation mode, a component consumes a predefined number of tokens
(aka. data values) from its input channels, then produces a predefined number
of tokens on its output channels. Formally,

Definition 6 (Computation Mode). A computation mode m is a function
m : Φ → N, where Φ ⊂ X is the set of I/O variables and ∀x ∈ Φ, m(x) denotes
the token number of x within mode m.

The precedence relations between input tokens and output tokens are embodied
rather in mode instances, which are implementations of computation modes
and describe concrete component behaviors. This notion will be elaborated in
Sect. 3.2. Note that computation modes do not impose any other constraints on
component behaviors, such as the number of consumed instants, consumption
orders among input tokens or production orders among output tokens.

A component is named multi-mode component if its behaviors can be
abstracted into multiple computation modes. Component behaviors can be first
clustered into computation modes, then the analyses of transition relations
among modes conduce to a transition system, called a mode switching in this
paper. Mode-based interface behaviors are thus obtained.

In this section, we introduce a synthesis technique to abstract mode-based
interface behaviors from CGA systems. To provide explicit controlflow represen-
tation for the synthesis, the starting point is in fact the variant finite automata.
Recall that CGA systems are intermediate models, the proposed synthesis tech-
nique is thereby independent of particular synchronous languages.

3.1 SMT-based Synthesis of Controlflow-Driven Productions

As the number of produced tokens of each output should be predefined in any
mode, the output production of a given multi-mode component has to be purely
controlflow-driven. That is, in the viewpoint of finite automata, state transi-
tions determine which output productions take place. In the sequel, a mapping
between state transitions and presence status of outputs can be built, when
controlflow-driven productions are synthesized.

The synthesis is based on Satisfiability Modulo Theories (SMT) [13]. The
concept of SMT is to check the satisfiability of arbitrary logic formulas of linear
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real and integer arithmetic, scalar types, and other user-defined data structures.
In detail, given a formula over first-order predicates, a SMT solver can answer
whether there exist assignments to the free variables such that the whole for-
mula is evaluated to true. When it returns the result invalid, it means that no
assignment to the free variables can make the formula hold. When the result is
valid, it means that the formula is always true no matter what assignments to
the free variables. When the result is satisfiable, it means that the formula is
evaluated to true when there are appropriate assignments to the free variables.

SMT-based Local Synthesis. The first stage is to perform the synthesis
within each state separately. Guarded actions within a state can be encoded into
a single equation system. As each guarded action A = 〈γ ⇒ x = τ〉 can be seen
as a conditional equation, it can be basically encoded into a SMT implication
constraint of the form I(A) = 〈γ → x = τ〉. Then, it is straightforward to collect
the conjunction of all the implication constraints within the same state st. We
call this conjunction the assertion system in st: Zst =

∧
A∈D(st) I(A).

Recall that if variable x is present in state st but its value cannot be deter-
mined by any action, then absence reaction works. Hence, the constraint encoded
from absence reaction should be added to Zst. Assume that i is a Boolean input,
st(l) = true and 〈l ∧ i ⇒ x = true〉 ∈ D(st) is the only guarded action that can
assign the non-memorized classic variable x in state st. The absence reaction to
x in st is thus 〈l ∧ ¬i ⇒ x = false〉 (the default value of Boolean type is false).
The corresponding SMT constraint 〈l ∧ ¬i → x = false〉 is added to Zst.

Besides guarded actions, each transition condition g ∈ Gst is encoded into a
SMT Boolean constraint of the form E(g) = 〈g = true〉. The assertion system
of a transition from state st to st′ is Zst→st′ = Zst ∧ (

∨
(st,g,st′)∈T

E(g)). Using
SMT solver, we check its satisfiability. If it proves that Zst→st′ is invalid, the
transition st → st′ cannot occur in any case.

To synthesize controlflow-driven productions, we check the satisfiability of the
guards of guarded actions under the assertion system Zst→st′ . Given an output
x, the guards of guarded actions assigning it in state st are {γ1, . . . , γn}. We

check the satisfiability of their disjunction, i.e.
n∨

i=1

γi. If the SMT solver proves

that the disjunction is valid, it means that the production of x is executed every
time st transforms to st′. That is, the production of x is driven by st → st′.
If the disjunction is proved to be invalid, it means that the production of x is
provably disabled during st → st′. Besides valid and invalid results, SMT solver
may prove that the disjunction is satisfiable, i.e., the satisfiability of the guards
depends on the assignments to the free variables. In that case, the constraints
from predecessor states have to be taken into account.

SMT-based Constraint Propagation. There are two possibilities how con-
straints are propagated across states: (1) absence reaction assigns the previous
value to a memorized variable; (2) a delayed action next(x) = τ evaluates τ in
a previous state, then assigns x in the current state. In both cases, the current
value of a given variable is determined by the computation in a previous state.
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Constant propagation is a static program analysis technique that is used
by compilers to iteratively identify constant expressions. In [2], the propaga-
tion technique was extended by using SMT solver to propagate constraints,
such as values of memorized variables and values assigned by delayed actions,
across states. This SMT-based constraint propagation technique is reused in our
synthesis. With the addition of propagated constraints, the guards that were
proved satisfiable in local synthesis can now be proved valid or invalid. Addi-
tional controlflow-driven productions are thereby synthesized.

Furthermore, propagated constraints imply the dependencies between con-
secutive transitions. For instance, stpre, st, st′, st′′ are four states, and the
transitions between them contain (stpre, true, st), (st, x, st′), (st,¬x, st′′). Given
〈l ⇒ next(x) = true〉 ∈ D(stpre) (where stpre(l) = true), the constraint
〈x = true〉 is then propagated into Zst→st′ and Zst→st′′ . In the sequel, Zst→st′

is proved valid whereas Zst→st′′ is invalid. This means that only st → st′ can be
enabled after stpre → st. Such dependency relation is encoded into a mapping
relation Γ : T → 2T, such that 〈st → st′〉 ∈ Γ (stpre → st).

The whole procedure is embedded in an iteration to repeatedly propagate
the constraints, recheck the satisfiability, then update assertion systems and
transition dependencies. The complete algorithm is sketched in Fig. 4.

method Constra intPropagat ion (stpre, st) {
i f Γ (stpre → st) = null

Γ (stpre → st) := new List < Transition > ()
else

return
Zstpre→st := Assert ionSystem (stpre → st)
Zst := Assert ionSystem (st)
foreach (st, g, st′) ∈ T

Zst→st′ := Zst ∧ (
∨

(st,g,st′)∈T
E(g)) stpre→st)

i f SMTCheck(Zst→st′ ) = s a t i s f i a b l e | va l i d
Γ (stpre → st).add(st → st′)

foreach (st, g, st′) ∈ T

Constra intPropagat ion (st, st′ )
}

Fig. 4. Algorithm of SMT-based constraint propagation

3.2 Synthesis of Modes and Mode Switching

After analyzing controlflow-driven productions, each output production should
be provably controlflow-driven. During each state transition, presence status of
I/O can be decided. The set of present I/O during a transition st → st′, denoted
as IO(st → st′), is made up of two parts: required I/O within st and computed
outputs along with the transition.

Computed outputs along with st → st′ are simply the ones whose productions
are driven by st → st′. Required I/O within st are synthesized from the guarded
actions. Given 〈γ ⇒ x = τ〉 ∈ D(st) (or 〈γ ⇒ next(x) = τ〉 ∈ D(st)), it requires
the set (V ars(γ) ∪ V ars(τ)) ∩ Φ of I/O for evaluating γ and τ , where V ars(γ)
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is the set of variables in γ and Φ denotes the set of I/O variables. The required
I/O within st are naturally the union of required I/O of each guarded action
belonging to D(st).

Moreover, IO(st → st′) can be divided into disjoint sets I(st → st′) and
O(st → st′), where I(st → st′) (resp. O(st → st′)) is the set of present inputs
(resp. present outputs) during st → st′. Note that the computations of present
inputs actually depend on current state rather than state transitions, I(st → st′)
is equivalent to the set of present inputs in st, denoted as I(st).

Given a finite automaton, once presence status of I/O during each transition
are known, the transitions can be clustered to build mode instances by following
the aforementioned feature that the consumption of input tokens precedes the
production of output tokens in each computation mode.

Definition 7 (Mode Instance). In finite automata, a mode instance is a
sequence of consecutive transitions st1 → . . . → stn−1 → stn, in which I(stn) �=
∅ and ∃i ∈ [1, n[ s.t. O(sti → sti+1) �= ∅, ∀a ∈ [1, i − 1], O(sta → sta+1) = ∅,
∀b ∈ [i + 1, n[, I(stb) = ∅.
Note that all the intervals in this paper are integer intervals.

Given a finite automaton {S, st0,T,D}, all potential transition tracks (i.e.
sequences of consecutive transitions starting from the initial state st0) can be
deduced, in which each pair of consecutive transitions (stpre → st, st → st′)
satisfies the dependency relation 〈st → st′〉 ∈ Γ (stpre → st). Then, according to
Definition 7, transition tracks can be divided into segments, i.e. mode instances.

Computation modes and instances are characterized by controlflow barriers
and I/O token numbers. Controlflow barriers divide transitions into different
mode instances. A barrier is the ending of a mode instance and the beginning of
the next. Given a mode instance st1 → . . . → stn, its beginning and ending are
respectively st1 and stn. The synthesis of mode instances is in fact to distinguish
controlflow barriers along with transition tracks.

To compute the I/O token numbers, a function Pst→st′ : Φ → {0, 1} is
introduced. Pst→st′(x) returns 1 if the given I/O x is present in st → st′ (i.e.
x ∈ IO(st → st′)), or returns 0 if it is absent. The token number of x within
a mode instance st1 → . . . → stn is thereby the accumulation of its presence

during each transition, i.e.
n−1∑
i=1

Psti→sti+1(x). By this means, I/O token numbers

are computed.
According to the characteristics, mode instances can be categorized into dif-

ferent computation modes. The given mode instances are the implementations
of the same mode if they have identical I/O token numbers, and their beginnings
are the same state or the endings of the same previous mode. Once the set of
instances that implement the same mode m is decided, the beginning set Bm

and ending set Em of mode m are obtained, which are respectively the set of
beginnings and the set of endings of the involved instances.

Furthermore, the transition relations between modes can be synthesized. In
our design, these transition relations are conveniently expressed using Property
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Specification Language (PSL), in particular using Sequential Extended Regular
Expressions (SEREs) [8]. Given two modes m1 and m2, their transition relations
can be well deduced by comparing their beginning sets and ending sets:

– alternative relation m1|m2, meaning that when m1|m2 is executed, either m1

or m2 is executed. m1|m2 holds if Bm1 = Bm2 .
– sequential relation m1;m2, meaning that m1 and m2 are executed in successive

order. m1;m2 holds if Em1 = Bm2 .
– repeatable relation m1[∗], which means that m1 can be repeatedly executed.

m1[∗] holds if Bm1 = Em1 .

Based on these basic relations, a mode switching can be iteratively formed, which
represents complete transition relations between modes.

4 Affine Communications for Multi-mode Components

The synthesis of mode-based interface behaviors has been implemented as a
.NET program, which is based on the Averest framework and the SMT solver
Z3 that provides .NET managed API. After abstracting multi-mode compo-
nent behaviors, the synthesized interface behaviors promote the establishment
of inter-component communications. In this section, the proposed communica-
tion strategy is devoted to the multi-mode components, whose mode switchings
follow the BNF form

〈switching〉 ::= [〈prefix〉“; ”]“{”〈repeated〉“}”“[∗]”
〈prefix〉 ::= 〈mode〉“; ”〈prefix〉|〈mode〉

〈repeated〉 ::= 〈modes〉“; ”〈repeated〉|〈modes〉
〈modes〉 ::= 〈mode〉|〈mode〉“[∗]”

where 〈mode〉 is a computation mode, 〈mode〉“[∗]” denotes a repeatable mode,
〈prefix〉 is a mode sequence serving as an optional prefix, “{”〈repeated〉“}”“[∗]”
is a mode sequence repeated infinitely. In the following, each mode switching M is
by default composed of an optional prefix sequence Mρ followed by an infinitely
repeated sequence Mr, i.e., M := Mρ;Mr[∗].

Based on mode-based interface behaviors, we obtain mode-based dataflow.
Given a multi-mode component p, its mode switching is synthesized as

M := m1; . . . ;mκ; {mκ+1; . . . ;mι[∗]; . . . ;mn}[∗],

then dataflow x produced or consumed by p correspondingly composes an ampli-
tude sequence

M |x := m1(x); . . . ;mκ(x); {mκ+1(x); . . . ;mι(x)[∗]; . . . ;mn(x)}[∗],

where ∀i ∈ [1, n], mi(x) is the token number of x in mode mi.
As M := Mρ;Mr[∗], M |x can be divided into prefix Mρ|x :=

m1(x); . . . ;mκ(x) and period Mr|x := mκ+1(x); . . . ;mι(x)[∗]; . . . ;mn(x).
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The sum of tokens in an amplitude sequence M |x is denoted as ||M |x||. Accord-

ingly, ||Mρ|x|| is a constant
κ∑

i=1

mi(x) whereas ||Mr|x|| is in general a linear

polynomial, in which each variate denotes the times of repetition of a repeatable
mode in a period. Due to the existence of repeatable modes, mode-based dataflow
is more general than ultimately periodic dataflow in affine dataflow graphs [6],
in which ||Mr|x|| is always a constant (since no repeatable mode exists).

In the aircraft turning control system, the synthesized mode switchings MMC

and MLWC are respectively equal to {m1;m2[∗];m3}[∗] and {m′}[∗], where

– mode m1: according to the pilot-commanded roll angle of aircraft, calculate
the goal moving angles of ailerons and rudder.

– repeatable mode m2: according to the current angles of ailerons and rudder,
calculate the current roll angle of aircraft; if the current roll angle is not equal
to the desired one, continue to adjust the moving angles of actuators.

– mode m3: according to the current angles of ailerons and rudder, calculate
the current roll angle of aircraft; if the current roll angle satisfies the pilot
command, terminate the adjustment of actuators.

– mode m′: according to the moving angle cLW from MC, control the corre-
sponding actuator and return its angles before and after the adjustment.

Then the corresponding mode-based dataflow contain

MMC |cLW
:= Mr

MC |cLW
[∗] := {1; 1[∗]; 0}[∗] ||Mr

MC |cLW
|| = 1 + 1 ∗ α

MMC |rLW
:= Mr

MC |rLW
[∗] := {0; 1[∗]; 1}[∗] ||Mr

MC |rLW
|| = 1 + 1 ∗ α

MLWC |cLW
:= Mr

LWC |cLW
[∗] := {1}[∗] ||Mr

LWC |cLW
|| = 1

MLWC |rLW
:= Mr

LWC |rLW
[∗] := {2}[∗] ||Mr

LWC |rLW
|| = 2

where variate α ∈ N denotes the times of repetition of m2 in a period. RWC and
RC have the similar mode-based interface behaviors as LWC. The corresponding
dataflow cRW , cR, rRW and rR are thereby respectively similar to cLW and rLW .

4.1 Affine Communication Patterns

To integrate multi-mode components, the communication patterns between them
have to be determined, which are periodic production-consumption relations of
inter-component dataflow. Indeed, flow-preserving is the basic communication
pattern, in which every produced token is consumed once. In compound pat-
terns, every produced token may be consumed several times or rejected by the
consumer. In our proposal, compound communication patterns are expressed
using affine relations [16], which have been employed to denote periodic firing
relations of actors in affine dataflow graphs [6].

Definition 8 (Affine Relation). An affine relation applies its parameters
(n, ϕ, d) to a clock ŝ1 in order to produce another clock ŝ2 by inserting n − 1
tags between each pair of successive tags in tags(ŝ1), then counting on this cre-
ated timeline each dth tag, starting from the ϕth tag.
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ŝ1
timeline

ŝ2

Fig. 5. (3, 4, 5)-affine relation

We say that the signals s1 and s2 are (n, ϕ, d)-affine or equivalently s2 and
s1 are (d,−ϕ, n)-affine, where n and d are strictly positive integers while ϕ can
be negative. When ϕ is negative, starting from the ϕth tag means that |ϕ| (the
absolute value of ϕ) tags are concatenated with the head of the created timeline
as the beginning of counting. Figure 5 presents a (3, 4, 5)-affine relation.

As one can notice, periodic order relations exist between ticks of affine clocks
and they can be computed according to a timeline. Assume that a timeline ŝ :
C → {tt} is created, where C = {t−|ϕ|, t1−|ϕ|, . . . , t0, t1, . . .} such that ∀i1, i2 ∈
[−|ϕ|,+∞[, i1 ≤ i2 → ti1 ≤ ti2 . Then, (n, ϕ, d)-affine clocks ŝ1 and ŝ2 can be
determined, ŝ1 : C1 → {tt}, where C1 = {ti∗n|i ∈ N}, ŝ2 : C2 → {tt}, where
C2 = {tϕ+i∗d|i ∈ N}. The periodicity of order relations between ticks of ŝ1 and
ŝ2 is straightforward: each period consists of n ∗ d tags; within each period, ŝ1

ticks d times while ŝ2 ticks n times; the order relations between ticks of ŝ1 and
ŝ2 are the same within each period. Formally, ∀ta ∈ C1, (tb ∈ C2) ∧ (ta ≤ tb) →
(ta+n∗d ≤ tb+n∗d) ∧ (ta+n∗d ∈ C1) ∧ (tb+n∗d ∈ C2). Such periodic feature starts
from the tag tφ ∈ C1, where φ is equal to 0 if ϕ < 0, to n if 0 ≤ ϕ < n
or to �ϕ

n � ∗ n if n ≤ ϕ. The sign �ϕ
n � refers to the largest integer not bigger

than the fraction ϕ
n . Since C1 and C2 are subsets of C, their ticks are totally

ordered. Furthermore, for each tick tb ∈ C2, if 0 ≤ b, there exists the immediate
predecessor tick tpre

b in C1 such that tpre
b ≤ tb and ∀ta ∈ C1, t

pre
b ≤ ta → tb ≤ ta.

In our proposal, a (n, ϕ, d)-affine communication pattern means a pair of
(n, ϕ, d)-affine clocks ŝ1 and ŝ2 to respectively denote the rates of the production
and consumption of a dataflow. That is, d tokens are produced and consumed n
times in each period. Moreover, each token consumed in a tick tb ∈ tags(ŝ2) is
produced in the immediate predecessor tick tpre

b ∈ tags(ŝ1). For the consump-
tions that precede the start of production, since no preceding production exists,
initial value is consumed instead. Such production-consumption relation can be
formally summarized: the αth produced token is consumed as the f0 first input
tokens, then the (α + i)th produced token is successively consumed fi times,
where i ∈ [1,+∞[, α = φ

n and

f0 =
{ �φ−ϕ

d � if ϕ < n
0 if n ≤ ϕ

β =
{

φ − ϕ − (f0 − 1) ∗ d if f0 > 0
φ − ϕ if f0 = 0

fi = �β + i ∗ n

d
� − �β + (i − 1) ∗ n

d
�
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Note that 0th produced token is also known as the initial value and the sign
�φ−ϕ

d � refers to the smallest integer not less than φ−ϕ
d . According to these for-

mulas, such periodic production-consumption relation can be computed. Further-
more, a mapping from production indices to corresponding consumption indices
in a period can be built: Ω(n,ϕ,d) : [1, d] → 2[1,n]. For instance, given (3, 4, 5)-
affine communication, α = 1, Ω(3,4,5)(1) = {1}, Ω(3,4,5)(2) = Ω(3,4,5)(5) = ∅,
Ω(3,4,5)(3) = {2} and Ω(3,4,5)(4) = {3}, i.e., the first period starts from the 2nd

production and in each period, among the five produced tokens, the 1st, 3rd and
4th tokens are respectively consumed once.

Flow-preserving communication pattern can be seen as a special affine com-
munication pattern. (n, ϕ, d)-affine pattern is indeed a flow-preserving pattern
if and only if n = d and ϕ ∈ [0, n[. By default, flow-preserving communication
pattern is identified as (2, 1, 2)-affine pattern.

4.2 Consistent Communication Networks

In practice, incomplete affine relations are specified for inter-component com-
munication patterns. Incomplete affine relation means that the parameter ϕ is
undetermined. Indeed, the value of ϕ depends not only on the parameters n and
d, but also on the interface behaviors of connected components.

Given two components p1 and p2, their mode switchings are respectively Mp1

and Mp2 . A dataflow x is produced by p1 and consumed by p2. By default, its
tokens produced in the prefix of p1 (i.e. Mρ

p1
) are consumed by the prefix of

p2 (i.e. Mρ
p2

). According to this, the parameter ϕ in the affine pattern of x is
determined as:

ϕ = n ∗ ||Mρ
p1

|x|| − d ∗ ||Mρ
p2

|x||.
Furthermore, once a communication pattern is determined, the hyperperiod of
connected components (i.e. the rate between their periods) is obtained.

Proposition 1. When a dataflow x connects components p1 and p2 by following
(n, ϕ, d)-affine communication pattern, then the hyperperiod of p1 and p2 is μ : ν,
s.t.,

μ =
d ∗ ||Mr

p2
|x||

δ
, ν =

n ∗ ||Mr
p1

|x||
δ

where δ is the greatest common divisor (GCD) of n ∗ ||Mr
p1

|x|| and d ∗ ||Mr
p2

|x||.
Proof. Recall that (n, ϕ, d)-affine communication implies periodic production-
consumption relation: d tokens are produced and consumed n times in each
period of communication. In the viewpoint of connected components, d tokens
are produced in d

||Mr
p1

|x|| period of producer and n consumptions occur in n
||Mr

p2
|x||

period of consumer. The rate between d
||Mr

p1
|x|| and n

||Mr
p2

|x|| is
d∗||Mr

p2
|x||

n∗||Mr
p1

|x|| . This
can be equivalently transformed to reduce into lowest terms:
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d ∗ ||Mr
p2

|x||
n ∗ ||Mr

p1
|x|| =

μ ∗ δ

ν ∗ δ
=

μ

ν
,

where δ is the GCD of d∗||Mr
p2

|x|| and n∗||Mr
p1

|x||. Hence, μ ∈ N
∗ (resp. ν ∈ N

∗)
denotes the amount of periods of producer (resp. of consumer) in a hyperperiod.

The consistency of communication network requires the hyperperiod of each
pair of (directly or indirectly) connected components to be consistent, i.e., their
execution must follow a stable rate. To guarantee the consistency feature in the
design of communication network, communication patterns are partially user-
specified so as to obtain the hyperperiods of connected components. The remain-
ing communication patterns are then automatically determined according to the
hyperperiods.

In the aircraft turning control system, the communication pattern of dataflow
cLW is user-specified as flow-preserving, i.e. (2, 1, 2)-affine pattern. Recall that
||Mr

MC |cLW
|| = 1 + α and ||Mr

LWC |cLW
|| = 1, where α denotes the times of

repetition of repeatable mode m2 in a period of MC. According to Proposition 1,
the hyperperiod of MC and LWC is consequently 1 : (1+α). Then, the pattern of
dataflow rLW can be deduced: in one hyperperiod, 2∗(1+α) (i.e. ||MLWC |rrLW

||∗
(1 + α)) tokens of rLW are produced by LWC whereas the consumption only
occurs (1 + α) ∗ 1 (i.e. ||MMC |rrLW

|| ∗ 1) times. To guarantee the consistency of
communication network, the pattern of rLW can be (1, 0, 2)-affine.

4.3 Mode-Based Schedules and Buffering Requirements

After building consistent communication networks, determinate affine commu-
nication patterns and hyperperiods motivate the synthesis of periodic mode-
based schedules, which consist of partially ordered firing relations between mode
instances of connected components.

To streamline the presentation of the synthesis procedure, repeatable modes
are provisionally left out of account in the periods of components. Given a
pair of connected components p1 and p2, their periods are respectively Mr

p1
:=

m1; . . . ;mj and Mr
p2

:= m′
1; . . . ;m

′
l. When their hyperperiod is μ : ν, the

mode instances involved in a hyperperiod compose two totally ordered sets
Mr

p1
[= μ] = {ma

b |a ∈ [1, μ], b ∈ [1, j]} and Mr
p2

[= ν] = {m′a
b |a ∈ [1, ν], b ∈ [1, l]},

where ma
b is the ath mode instance of mb in a hyperperiod. The periodic

mode-based schedules are consequently the precedence relations (denoted by
�) between the mode instances in Mr

p1
[= μ] ∪ Mr

p2
[= ν].

Given a dataflow x that is produced by p1 and consumed by p2, the produc-
tion (resp. the consumption) number of x in a hyperperiod is thus μ ∗ ||Mr

p1
|x||

(resp. ν ∗ ||Mr
p2

|x||). Furthermore, for each index ε ∈ [1, μ ∗ ||Mr
p1

|x||], the εth

token of x in a hyperperiod is produced in ma
b , in which a = � ε

||Mr
p1

|x||� and b

satisfies that

b−1∑

i=1

ma
i < ε − (a − 1) ∗ ||Mr

p1
|x|| ≤

b∑

i=1

ma
i .
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In the sequel, a mapping from production indices of dataflow x to corre-
sponding mode instances of producer p1 is built:

Θx
p1

: [1, μ ∗ ||Mr
p1

|x||] → Mr
p1

[= μ].

In like manner, for each index η ∈ [1, ν ∗ ||Mr
p2

|x||], the ηth consumption of x
takes place in which mode instance can be determined as well. Then, a mapping
from consumption indices of dataflow x to corresponding mode instances of
consumer p2 is built:

Δx
p2

: [1, ν ∗ ||Mr
p2

|x||] → Mr
p2

[= ν].

Recall that δ is the GCD of d ∗ ||Mr
p2

|x|| and n ∗ ||Mr
p1

|x||, let q denote
||Mr

p1
|x||∗||Mr

p2
|x||

δ . According to Proposition 1, d ∗ q tokens of x are produced
and n ∗ q consumptions occur in a hyperperiod. Therefore, a hyperperiod con-
tains q periods of (n, ϕ, d)-affine communication pattern. Recall that Ω(n,ϕ,d) :
[1, d] → 2[1,n] is a mapping from production indices to corresponding consump-
tion indices in a period of (n, ϕ, d)-affine pattern. Through accumulating opera-
tion, an extended mapping Ωq

(n,ϕ,d) : [1, d ∗ q] → 2[1,n∗q] is obtained. As a result,
precedence relations between mode instances can be deduced: in a hyperperiod,
the mode instance producing the εth token has to precede all the mode instances
that consume it. Formally,

Ωq
(n,ϕ,d)(ε) �= ∅ → ∀i ∈ Ωq

(n,ϕ,d)(ε), Θ
x
p1

(ε) � Δx
p2

(i).

In like manner, precedence relations between mode instances of prefixes can
be deduced from the mapping relations. More generally, when repeatable modes
exist in p1 or p2, their hyperperiod μ : ν turns into a fraction with variates,
in which each variate denotes the times of repetition of a repeatable mode in a
period. The instances of repeatable modes should therefore be taken into account
in the schedule synthesis. The synthesis method above also applies to this more
general case.

Recall that the hyperperiod of MC and LWC is 1 : (1 + α). Mr
MC [= 1] =

{m1
1,m

1
21

, . . . m1
2α

,m1
3} and Mr

LWC [= 1 + α] = {m′1, . . . ,m′1+α}. In a hyperpe-
riod, 1 + α tokens of cLW are produced by MC and consumed 1 + α times by
LWC. In detail, m1

1 produces the 1st token, m1
2β

produces the (1 + β)th token
(β ∈ [1, α]), and m′ς performs the ςth consumption (ς ∈ [1, 1 + α]). In addi-
tion, (2, 1, 2)-affine communication pattern implies that each produced token of
cLW corresponds to one consumption. Based on all these mapping relations, the
synthesized schedule contains m1

1 � m′1 and m1
2β

� m′1+β , where β ∈ [1, α].
Meanwhile, 2 ∗ (1 + α) tokens of rLW are produced by LWC and consumed

1+α times by MC in a hyperperiod. In detail, m′ς produces the (2∗ ς −1)th and
the (2∗ς)th token (ς ∈ [1, 1+α]), m1

2β
performs the βth consumption (β ∈ [1, α]),

and m1
3 performs the last one. (1, 0, 2)-affine communication pattern implies that

the (2∗ ς −1)th token corresponds to one consumption. Based on these mapping
relations, the synthesized schedule contains m′β � m1

2β
and m′1+α � m1

3, where
β ∈ [1, α].
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The synthesized schedule ensures that the producer writes always before the
consumer reads. Nonetheless, it does not ensure the requirement that the current
mode instance of consumer reads before the next mode instance of producer
overwrites the token produced by its previous mode instance. This requirement
closely refers to the buffering requirement. A buffer is allocated for an inter-
component dataflow to cache and transfer tokens. Its size has to be big enough
to avoid untimely overwriting.

Before calculating minimal buffering requirements, we introduce the notion
of lifespan. The lifespan of a given token is an interval of mode instances. Its
endpoints are ma

b and mi
j , such that ma

b produces the token and mi
j is the last

instance consuming it.

Definition 9. (Lifespan). Given a dataflow x in (n, ϕ, d)-affine communica-
tion pattern, the lifespan of its εth produced token in a hyperperiod, is

spx(ε) =

{
[Θx(ε),Δx(max(Ωq

(n,ϕ,d)(ε)))] if Ωq
(n,ϕ,d)(ε) �= ∅

∅ if Ωq
(n,ϕ,d)(ε) = ∅

Given two tokens of the same dataflow, if there may exist an overlap between
their lifespans, at least two buffer cells are required. The intersection operation
∩ is thus defined to check the overlap between lifespans: given spx(ε) = [me

a,mh
b ]

and spx(ε′) = [mi
k,mj

l ], where ε < ε′, s.t. me
a � mi

k, then

(me
a = mi

k) ∨ (me
a ≺ mi

k ∧ mi
k � mh

b ) → spx(ε) ∩ spx(ε′) �= ∅
me

a ≺ mi
k ∧ mh

b � mi
k → spx(ε) ∩ spx(ε′) = ∅

Note that to minimize the buffering requirement, if no precedence exists between
mh

b and mi
k, mh

b � mi
k is added as an additional constraint in schedule.

The indices of produced tokens whose lifespans overlap spx(ε) compose a set

⋂

x

(ε) = {i|i ∈ [1, μ ∗ ||Mr
p1

|x||], spx(ε) ∩ spx(i) �= ∅}.

Let |⋂x(ε)| denote the size of
⋂

x(ε). Hence, the minimal buffering requirement
for dataflow x in the hyperperiod phase is

max
1≤i≤μ∗||Mr

p1
|x||

(|
⋂

x

(i)|).

In aircraft turning control system, for the produced tokens of cLW in a hyper-
period, their lifespans are defined as

spcLW
(ε) =

{
[m1

1,m
′1] if ε = 1,

[m1
2ε−1

,m′ε] if ε ∈ [2, 1 + α]

Then, the intersection of any pair of successive tokens is spcLW
(ε)∩spcLW

(ε+1),
where ε ∈ [1, α]. Based on the synthesized precedence relations, we deduce that

max
1≤i≤1+α

(|⋂cLW
(i)|) = 1, i.e. the minimal buffering requirement for cLW is 1.

Similarly, we can deduce that no overlap exists between the lifespans of any pair
of tokens for rLW , the corresponding buffering requirement is equal to 1 as well.
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5 Conclusion

This paper presents a component-based multi-rate system design methodology.
Each multi-mode component is first modeled as a synchronous component, in
particular as a Quartz module in our proposal. After abstracting component
behaviors, the generated mode-based interface behaviors motivate the synthesis
of affine communication networks. Furthermore, valid schedules and correspond-
ing buffering requirements are computed for building reliable networks.

One perspective for future work is to develop reusable component adapters
and communicators to apply affine communication patterns, symbolic schedules
and calculated buffering requirements in assembling multi-rate systems. This
work would also utilize the optimization technique [17] to reduce the communi-
cation quantity.
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Abstract. In the Android platform application security is built primar-
ily upon a system of permissions which specify restrictions on the oper-
ations a particular process can perform. Several analyses have recently
been carried out concerning the security of the Android system. Few of
them, however, pay attention to the formal aspects of the permission
enforcing framework. In this work we present a comprehensive formal
specification of an idealized formulation of Android’s permission model
and discuss several security properties that have been verified using the
proof assistant Coq.

Keywords: Android · Security properties · Formal verification · Coq

1 Introduction

Android [22] is an open platform for mobile devices developed by the Open Hand-
set Alliance led by Google, Inc. Concerning security, Android embodies mech-
anisms at both OS and application level. As a Linux system, Android behaves
as a multi-process system and therefore the security model resembles that of
a multi-user server. Access control at application level is implemented by an
Inter-Component Communication reference monitor that enforces MAC policies
regulating access among applications and components.

Application security is built primarily upon a system of permissions, which
specify restrictions on the operations a particular process can perform. Permis-
sions are basically tags that developers declare in their applications, more pre-
cisely in the so-called application manifest, to gain access to sensitive resources.
At installation time the user of the device is requested to grant the permissions
required by the application or otherwise the installation of the application is can-
celed. After a successful installation, an application will be able to access system
and application resources depending on the permissions granted by the user.

Several analyses have recently been carried out concerning the security of the
Android system. Some of them [15,21] point out the rigidity of the permission
system regarding the installation of new applications in the device. Other stud-
ies [13,18] have shown that many aspects of Android security, like privilege esca-
lation, depend on the correct construction of applications by their developers.
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 485–504, 2015.
DOI: 10.1007/978-3-319-25150-9 28
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Additionally, it has been pointed out [18,19] that the mechanism of permission
delegation offered by the system has characteristics that require further analy-
sis in order to ensure that no new vulnerabilities are added when a permission
is delegated. Few works, however, pay attention to the formal aspects of the
permission enforcing framework.

Reasoning about implementations provides the ultimate guarantee that dep-
loyed mechanisms behave as expected. However, formally proving non-trivial
properties of code might be an overwhelming task in terms of the effort required,
especially if one is interested in proving security properties rather than func-
tional correctness. In addition to that, many implementation details are orthog-
onal to the security properties to be established, and may complicate reasoning
without improving the understanding of the essential features for guaranteeing
important properties. Complementary approaches are needed where verification
is performed on idealized models that abstract away the specifics of any partic-
ular implementation, and yet provide a realistic setting in which to explore the
security issues that pertain to the realm of those (critical) mechanisms.

Security models play an important role in the design and evaluation of high
assurance security systems. State machines, in turn, are a powerful tool that can
be used for modeling many aspects of computing systems. In particular, they
can be employed as the building block of a security model. The basic features of
a state machine model are the concepts of state and state change. A state is a
representation of the system under study at a given time, which should capture
those aspects of the system that are relevant to the analyzed problem. State
changes are modeled by a state transition function that defines the next state
based on the current state and input. If one wants to analyze a specific safety
property of a system using a state machine model, one must first specify what it
means for a state to satisfy the property, and then check if all state transitions
preserve it. Thus, state machines can be used to model the enforcement of a
security policy on a system.

The main contribution of the work presented in this paper is the development
of a comprehensive formal specification of the Android security model and the
machine-assisted verification of several security properties. Most of those prop-
erties have been discussed in previous works where they have been presented
and analyzed using a variety of formal settings and approaches. In this work
we provide a complete and uniform formulation of multiple properties using the
higher order logic of the Calculus of Inductive Constructions [23], and the formal
verification is carried out using the Coq proof assistant [12,26]. Furthermore, we
present and discuss proofs of properties that have not been previously given
a formal treatment. The idealized security model formalizes behaviour of the
security mechanisms of Kitkat [1] (as of June 2015 the single most widely used
Android version) according to the official documentation and available imple-
mentations. We claim that our results also apply to Lollipop, the latest version
of Android. The formal security model and the proofs of the security properties
presented in this work may be obtained from [20].
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2 Background

Architecture of Android. The architecture of Android takes the form of a software
stack which comprises an operating system, a run-time environment, middleware,
services and libraries, and applications.

At the bottom of the software stack, providing a level of abstraction between
the hardware and the upper layers of the software stack, is positioned the Linux
Kernel. The multitasking execution environment provided by Linux allows mul-
tiple processes to execute concurrently. In fact, each application running on an
Android device does so within its own instance of the Dalvik virtual machine
(DVM). The applications running on a DVM are sandboxed, that is, they can not
interfere with the operating system or other applications nor can they directly
access the device hardware.

The Application Framework is a set of services that collectively form the
environment in which Android applications run and are managed. This frame-
work implements the concept that Android applications are constructed from
reusable, interchangeable and replaceable components. This concept is taken a
step further in that an application is also able to publish its capabilities along
with any corresponding data so that they can be found and reused by other
applications. The Android framework includes several key services, or compo-
nents, like the Activity Manager, which controls all aspects of the application
lifecycle and activity stack and the Content Providers, which allows applications
to publish and share data with other applications.

Located at the top of the Android software stack are the applications. These
comprise both the native applications provided with the particular Android
implementation (for example web browser and email applications) and the third
party applications installed by the user after purchasing the device.

Application Components. An Android application is built up from components. A
component is a basic unit that provides a particular functionality and that can be
run by any other application with the right permissions. There exist four types of
component: Activities, Services, Content Providers and Broadcast Receivers [2].
An activity is essentialy a user interface of the application. Typically, each
application has a principal activity which is the first screen the user sees when the
application is started. Even if applications usually have a principal activity, any
activity can be started if the initiator has the right permissions. In a same session
multiple instances of the same activity can be running concurrently. A service is
a component that executes in background without providing an interface to the
user. Any component with the right permissions can start a service or interact
with it [2]. If a component starts a service that is already running no new instance
is created, the component just interacts with the running instance of the service
[4,9]. A content provider is a component intended to share information among
applications. A component of this type provides an interface through which
applications can manage persisted data [25]. The information may reside in a
SQLite data base, the web or in any other available persistent storage [2], and it
can be presented by a content provider in the form of a file or a table. Finally, a
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broadcast receiver is a component whose objective is to receive messages, sent
either by the system or an application, and trigger the corresponding actions.
Those messages, called broadcasts, are trasmitted all along the system and the
broadcast receivers are the components in charge of dispatching those messages
to the targeted applications.

Three out of the four preceding types of components, activities, services and
broadcast receivers, are activated by a special kind of message called intent.
An intent makes it possible for different components, belonging to the same
application or not, to interact at runtime [2]. Typically, an intent is used as a
broadcast or as a message to interact with activities and services.

Android’s Security Model. Android implements a least privilege model by ensur-
ing that each application executes on a sandbox, enforcing then that each appli-
cation only has unrestricted access to the resources it owns. For an application
to access other components of the system it must require, and be granted, the
corresponding access permission. The sandbox mechanism is implemented at
kernel level and relies on the correct application of a Mandatory Access Control
policy which is enforced by a reference monitor using a user identifier (UID)
[17] assigned to each installed application. Interaction among applications is
achieved through Inter Process Communication) (IPC) mechanisms [10]. Even
if the kernel provides traditional UNIX-like IPC (like sockets and signals) appli-
cation developers are recommended to make use to higher level IPC mechanisms
provided by Android. One such mechanism are intents, that allow to specify
security policies that regulate communication between process/applications [8].

Every Android application must be digitally signed and be accompanied by
the certificate that authenticates its origin. Those certificates, however, are not
required to be signed by a Certification Authority, current practice indicates
that certificates are signed by the developers. The Android platform uses the
certificates to establish that different applications have been developed by the
same author. This information is relevant both to assign permissions of the type
signature (see below) or to authorize applications to share the same UID, and
therefore be allowed to also share their resources or even be executed within the
same process [5].

Permissions. Applications usually need to use system resources to execute prop-
erly. This entails that it’s (almost) necessary the existence of a decision procedure
(a reference monitor) that guarantees the authorized access to those resources.
Decisions are taken following security policies which make use of a quite simple
notion of permission. The permission system of Android embodies the following
procedures: (i) an application declares the set of permissions needed to acquire
further capacities from those that are by default assigned to it, (ii) at installa-
tion time the required permissions are granted or refused, depending of the time
of permissions and the certificate attached to the application, or, as it’s more
frequently the case, by direct authorization of the owner of the device. There are
also permissions that are automatically granted by the system, (iii) if a requested
permission is refused the application should not be installed on the device, and
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typically that is the case, but there exist ways to install an application with non
granted permissions [6].

In the general case, if an application is installed then it may exercise all
the permissions it requests. Note that it’s not possible to dynamically assign
permissions in Android. Every permission is identified by a name/text and has
assigned a protection level. There are two principal classes of permissions: the
ones defined by the applications, by the sake of self-protection, and those prede-
fined by Android, which are intended to protect access to resources and services
of the system. Depending on the protection level of the permission, the system
defines the corresponding decision procedure [7]. There exist four classes of per-
mission level: (i) Normal, assigned to low risk permissions that grant access to
isolated characteristics, (ii) Dangerous, permissions of this level are those that
provide access to private data or control over the device, (iii) Signature, a per-
mission of this level can be granted only if the application that requires and
the application that have defined it are both signed with the same certificate,
and (iv) Signature/System, this level is assigned to permissions that regulate the
access to critical system resources or services.

On the other side, an application can also declare the permissions that are
needed to access it. The granularity of the permissions system makes it possible
to specify the privileges required to access to a component of the application
and different set of permissions can be defined for different components.

It is also possible for a developer to force the system to execute a verifica-
tion in runtime. For doing that, Android provides methods that can verify the
permissions of an application in runtime. This mechanism might be used by a
developer, for instance, to force the system to check that an application has
specific privileges once a certain internal counter has reached a given value.

Since version Honeycomb, a component can access any other component of
the same application without being required to have explicitly granted access to
that component.

Permission Delegation. Android provides two mechanisms by which an appli-
cation can delegate its own permissions to another one. These mechanisms are:
pending intents and URI permissions. An intent may be defined by a developer
to perform a particular action, for instance to start an activity. A PendingIntent
is an object which is associated to the action, a reference that might be used
by another application to execute that action. The object might be used by
authorized applications even if the application that created it, which is the
only one that can cancel the reference, is no longer active. The URI permis-
sions mechanism can be used by an application that has read/write access on
a content provider to (partially) delegate those permissions to another applica-
tion. An application may attach to the result returned to an activity owned by
another application an intent with URIs of resources of a content provider it
owns together with an operation identifier. This grants to the receiving applica-
tion the privileges to perform the operation on the indicated resources indepen-
dently of the permissions the application has. The Android specification estab-
lishes that only activities may receive an URI permission by means of intents.
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These kinds of permissions may also be explicitly granted using the method
grantUriPermission() and revoked using the method revokeUriPermission().
In any case, for this delegation mechanism to work an explicit declaration must
be done in the application owner of the content provider authorizing the access
to the resources in question.

The Android Manifest. Every Android application must include in its root direc-
tory a XML file called AndroidManifest. All the components included in the
application as well as some static attributes of them are declared in that file.
Additionally, both the permissions requested at installation time and the ones
required by the application to be accessed are also included. The authoriza-
tion to use the mechanism of URI permissions explained above is also specified
in the manifest file of an application. One of the most important elements of
a manifest is <application>: it describes attributes of the application and
also the elements that describe the components embodied by the application.
Each component is declared using one of the following elements: <activity>,
<service>, <provider>, and <receiver>. Additionally, the body of the man-
ifest includes: (i) <uses-permission>, that specifies those permissions, defined
by the system or an application, which shall be required at installation time; (ii)
<permission>, that defines statically an application level permission and its
protection level. There must be one declaration for each defined permission; and
(iii) <permission-tree>, which is used to reserve a name space that can be used
to define application level permissions on runtime. It defines prefixes to attach to
any permission defined dynamically using the method addPermission(). Several
declarations of this kind of element shall define as many prefixes. Additionally,
the element <application> has the attribute android:permission which is
used to specify, if any, the permission required to access any component of the
application [3]. As to the elements declared by the components included in the
application, there are two common attributes: (i) android:permission, similar
to the one defined for the application, but this one has precedence over it, and
(ii) android:exported, if this attribute is set to true the component shall be
available to be accessed from an external application.

3 A Formally Verified Security Model of Android

In this section we outline the formalization of the idealized security model of
Android. We first provide a brief description of the specification setting and
the proof-assistant Coq, then we describe the state of the model and provide
an axiomatic semantics of successful operations in the Android system. The
operations are specified as state transition functions.

3.1 The Proof Setting

The Coq proof assistant is a free open source software that provides a (depen-
dently typed) functional programming language and a reasoning framework
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based on higher order logic to perform proofs of programs. Coq allows devel-
oping mathematical facts. This includes defining objects (sets, lists, functions,
programs); making statements (using basic predicates, logical connectives and
quantifiers); and finally writing proofs. The Coq environment supports advanced
notations, proof search and automation, and modular developments. It also pro-
vides program extraction towards languages like Ocaml and Haskell for execution
of (certified) algorithms. These features are very useful to formalize and reason
about complex specifications and programs.

We developed our specification in the Calculus of Inductive Constructions
(CIC) using Coq. The CIC is a type theory, in brief, a higher order logic in
which the individuals are classified into a hierarchy of types. The types work
very much as in strongly typed functional programming languages which means
that there are basic elementary types, types defined by induction, like sequences
and trees, and function types. An inductive type is defined by its constructors
and its elements are obtained as finite combinations of these constructors. Data
types are called Sets in the CIC (in Coq). On top of this, a higher-order logic is
available which serves to predicate on the various data types. The interpretation
of the propositions is constructive, i.e. a proposition is defined by specifying
what it means for an object to be a proof of the proposition. A proposition is
true if and only if a proof can be constructed.

3.2 Model States

Applications. An application, as depicted in Fig. 1, is defined by its identifier,
the certificate of its public key, the AndroidManifest, and the resources that
will be used at run-time. Although Android applications do not statically declare
the resources they are going to use, we decided to include this declaration in the
current version of our model for the sake of simplicity.

Fig. 1. Formal definition of applications
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Manifest. The type Manifest is an abstraction of the AndroidManifest file. Man-
ifests are modelled as 6-tuples that respectively declare application components,
the set of permissions it needs, the permissions that will be required by the
application at runtime and those that are delegated.

An application component (Comp) is either an activity, a service, a broadcast
receiver or a content provider. All of them are denoted by a component identifier
of type CompId. A content provider (ContProv), in addition, encompasses a map-
ping to the managed resources (of type Res) from the URIs (of type Uri) assigned
to them for external access. We omit the definition types Uri and Res, which are
formally defined in the Coq specification. While the components constitute the
static building blocks of an application, all runtime operations are initiated by
component instances, which are represented in our model as members of the
abstract type iComp.

The first component of a manifest (of type Comps) stores the set of appli-
cation components included in the application. The second component (of type
Perms) stores the set of permissions the application needs to be executed prop-
erly. A permission (Perm) is defined as a tuple comprised of a permission identi-
fier (PermId) and the permission level (PermLvl) that indicates the security level,
which can be either dangerous, normal, signature, or signature/system. The third
and fourth component store the set of permissions that are defined in the appli-
cation and the application components that are exported, respectively. The fifth
component (of type ExtPerms) stores the information that is required to access
the application, namely the permission required (if any) to access any component
of the application, the permission required to access a particular component and
the permissions required for performing a read or write operation on a content
provider. Finally, the sixth component (of type DelPerms) stores the informa-
tion concerning the delegation of permissions for accessing content providers and
resources of content providers of the application as the result of using the URI
permissions mechanism.

States. The states of the platform are modelled as 8-tuples that respectively
store data about the set of installed applications and their permissions, running
components, a registry of temporary and permanent delegated permissions and
information about the applications installed in the system image of the platform;
the formal definition appears in Fig. 2.

The first and second component of a state record the set of installed applica-
tions and the permissions granted to them by the system or the user, respectively.
The third component stores the permissions defined by each installed applica-
tion and the fourth component the set of running component instances. The fifth
and sixth components keep track of the permanent and temporary permissions
delegations, respectively. A permanent delegated permission (of type DelPP) rep-
resents that an application has delegated permission to perform either a read,
write or read/write operation (of type OpTy) on the resource identified by an
URI of the indicated content provider. A temporary delegated permission, in
turn, refers to permission that have been delegated to a component instance.
The seventh component stores the values of resources of applications. The final
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Fig. 2. The state

component stores the applications installed in the Android system image, infor-
mation that is relevant when granting permissions of level signature/system.

We use some functions and predicates to manipulate and observe the com-
ponents of the state. Some of these operations, used in this paper, are presented
and described in Table 1.

Valid State. The model formalizes a notion of valid state that captures several
well-formedness conditions. It is formally defined as a predicate validState on the
elements of type AndroidST. This predicate holds on a state s if the following
conditions are met:

– the applications installed in s and their corresponding components have unique
identifiers;

– every component belongs to only one application;
– every user-defined permission is declared in an installed application;
– all the parts involved in active permission delegations are installed in the

system;
– if there is a temporary permission delegation taking place, the recipient is

running;
– If a component is running, it can not be a content provider;
– all the running instances belong to a unique component, which is part of an

installed application; and
– all the resources in the system have a unique value and are owned by an

installed application.

All these safety properties have a straightforward interpretation in our model1

[20]. Valid states are invariant under execution, as will be shown later.

3.3 Platform Semantics

Our formalization considers a representative set of actions to install and uninstall
applications, start and stop the execution of component instances, to read and
1 We omit the formal definition of validState due to space constraints.
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Table 1. Helper functions and predicates

compInstalled(c, s) holds if component c belongs to an installed
application in state s

isCProvider(c) holds if component c is a content provider

running(ic, c, s) is satisfied if ic is an instance of component c
running in state s

canStart(c′, c, s) holds if the application containing component c′

(installed in state s) has the required permissions
to create a new running instance of component c

insNotInState(ic, s) requires ic to be a new instance in the state s

runComp(ic, c, s) returns the running component instances of state s
with the addition of the new instance ic of the
component c

inApp(c, ap) holds if component c belongs to application ap

inManifest(c, ap) holds if component c belongs to the application
components that are exported by the application
ap in its manifest file

existsRes(u, cp, s) holds if there exists a resource, pointed to by the
URI u, in the content provider cp

canOp(c, cp, pt, s) is satisfied if the application containing component c
has the appropriate permissions to perform the
operation pt (of type OpTy) on the content
provider cp in the state s

delPerms(c, cp, u, pt, s) establishes that the component c has been delegated
permissions to perform the operation pt on the
resource identified by u of content provider cp in
the state s

canGrant(u, cp, s) is satisfied if possible to delegate permissions on the
content provider cp for resource identified by u in
the state s

delPPerms(ap, cp, u, pt, s) holds if application ap has permanent delegated
permissions to perform the operation pt on the
resource identified by u of the content provider cp
in the state s

delTPerms(ic, cp, u, pt, s) is satisfied if the running instance ic has temporary
delegated permissions to perform the operation
pt on the resource identified by u of the content
provider cp in the state s

compCanCall(c, sac, s) is satisfied if component c can perform the system
call sac in the state s

grantTPerm(ic, cp, u, pt, s) returns the temporary permissions delegations of
state s with the incorporation of the new
temporary delegated permission corresponding to
the running instance ic
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Table 2. Actions

install ap Installs application ap in the system

uninstall ap Uninstalls application ap from the system

start ic c The running component ic starts the execution of
component c

stop ic The running component ic finishes its execution

read ic cp u The running component ic reads the resource
corresponding to URI u from content provider cp

write ic cp u val The running component ic writes value val on the resource
corresponding to URI u from content provider cp

grantT ic cp act u pt The running component ic delegates temporary
permissions to activity act. This delegation enables act
to perform operation pt (of type OpTy) on the resource
assigned to URI u from content provider cp

grantP ic cp ap u pt The running component ic delegates permanent
permissions to application ap. This delegation enables
ap to perform operation pt on the resource assigned to
URI u from content provider cp

revoke ic cp u pt The running component ic revokes delegated permissions
on URI u from content provider cp to perform
operation pt

call ic sac The running component ic makes the API call sac (of type
SACall)

write resources from content providers, to delegate temporary/permanent per-
missions and revoke them and to perform system application calls; see Table 2.
The behavior of an action a (of type Action) is formally described by giving a
precondition and a postcondition, which represent the requirements enforced on
a system state to enable the execution of a and the effect produced after this
execution takes place. We represent the execution of an action with the relation
↪→ (one-step execution):

Pre(s, a)
Post(s, a, s′)

s
a

↪→ s′

Intuitively, this relation models a system state transition fired by a particular
action a. This transition takes place between a state s which fulfills the precon-
dition of the action, and a state s′ in which the postcondition holds.

Figure 3 presents the semantics of the following actions: start (start the exe-
cution of a component instance), read (a running component reads resources of
a content provider), and grantT (a running component delegates temporary per-
missions to an activity). Notice that what is specified is the effect the execution
of an action has on the state of the system.
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Fig. 3. Formal semantics of actions start, read, and grantT
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One-step execution preserves valid states, i.e. the state resulting from the
execution of an action on a valid state is also valid.

Lemma 1. ∀(a : Action)(s s′ : AndroidST),
validState s ⇒ s

a
↪→ s′ ⇒ validState s′

System state invariants, such as state validity, are useful to analyze other relevant
properties of the model. In particular, the results presented in the following
section are obtained from valid states of the system.

4 Security Properties

In this section we present and discuss some relevant properties that can be
established concerning the Android security framework. Many of these properties
have already been analyzed elsewhere. Some of them, however, have not been
studied in previous works. All of the properties were successfully stated and
proved using our specification, which represents, up to our knowledge, the first
comprehensive analysis under the same formal model of multiple safety and
security properties of the Android system. The corresponding Coq development
can be found at [20]. To simplify the presentation that follows we will assume all
variables of type AndroidST to be valid states, and variables of type App to be
installed applications in a given state, when there is no possibility of confusion.
Components will also be assumed to be installed.

4.1 Privileges

One of the most important properties claimed about the Android security model
is that it meets the so-called principle of least privilege, i.e. that “each applica-
tion, by default, has access only to the components that it requires to do its
work and no more” [2]. Using our specification we have proved several lemmas
which were aimed at showing the compliance with this principle when a running
instance creates another component instance, reads/writes a content provider
or delegates/revokes a permission. In this setting, least privilege means that a
running instance will need to have the appropriate permissions to execute the
desired action in each of these scenarios. In particular, the following specific
properties were proved:

– if components c and c′ belong to the same application, then c can start c′;
– if a component c′ is not exported and the component c belongs to another

application, then c cannot start c′;
– if components c and c′ belong to two different applications ap and ap′, and c′

requires a permission that ap does not have, then c cannot start c′;
– if components c and c′ belong to two different applications ap and ap′, c′

requires no permission, but ap′ requires a permission that ap does not have,
then c cannot start c′;



498 G. Betarte et al.

– if ic can read/write the resource pointed by the URI u in cp, then its associated
component belongs to an application that has permission to do so, either from
its installation or through a delegation of permissions2;

– if a content provider cp and a component c belong to the same application,
then all running instances of c can read or write cp;

– if ic delegated permissions, temporary or permanent, to read or write a resource
pointed by the URI u in cp, then ic can perform this operation;

– if ic revoked permissions to read or write the resource pointed by the URI u
in cp, then ic can perform this operation.

All properties have a straightforward representation in our model.
While the fulfillment of the principle of least privilege when creating a new

instance is widely studied in the literature [19,24], the analysis of this principle
when accessing a content provider or delegating/revoking a permission has not
been covered in other publications. Since our model includes these two scenarios,
we are able to formally state and prove lemmas like the following:

Lemma 2. ∀(s : AndroidST)(ap ap′ : App)(c : Comp)(ic : iComp)
(cp : ContProv)(u : Uri), ap �= ap′ ∧ inApp(c, ap) ∧ running(ic, c, s)∧
inApp(cp, ap′) ∧ ¬inManifest(cp, ap′) ∧ existsRes(u, cp, s) ⇒
Pre(s, read ic cp u) ⇐⇒ delPerms(c, cp, u, read, s))

If cp is not exported and c belongs to a different application than a, then cp can
be read by c if and only if the application corresponding to the latter has delegated
permissions to do so3.

Lemma 3. ∀(s : AndroidST)(ap ap′ : App)(c : Comp)(ic : iComp)
(cp : ContProv)(act : Activity)(pt : OpTy)(u : Uri),
inApp(c, ap) ∧ running(ic, c, s) ∧ inApp(cp, ap)∧
existsRes(u, cp, s) ∧ canGrant(u, cp, s) ⇒
Pre(s, grantT ic cp act u pt) ∧ Pre(s, grantP ic cp ap′ u pt)

If c and cp belong to the same application and cp authorizes the delegation on
u, then ic can delegate both temporary and permanent permissions on u.

The above lemmas establish that even if a component of an application is
not exported, it can still be accessed from a different application. In particular,
Lemmas 2 and 3 show that it is possible for an external application to obtain
delegated permissions to access a non-exported content provider. This contra-
dicts the description of exported components given in the official developer’s
guide [3].

The interested reader is referred to [20] where he can find the Coq files with
the complete proofs of the lemmas we have just discussed.
2 In particular, ic can read/write the resource pointed by u in cp if ic has permission
due to a delegation via intents.

3 In [20] we prove a similar result for action write.
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Revocation. One of the peculiarities of the Android security model is that the
explicit revocation of delegated permissions is relatively coarse-grained, in the
sense that it is impossible to only revoke permissions to a particular application.

Although this property was studied in [19], no formal statement or proof is
provided in that work. In our formal setting we are able to state and prove the
following lemma:

Lemma 4. ∀(s s′ : AndroidST)(ic : iComp)(cp : ContProv)(u : Uri)(pt : OpTy),
s ↪

revoke ic cp u pt−−−−−−−−−−−→ s′ ⇒ (∀(ap : App),¬delPPerms(ap, cp, u, pt, s′)) ∧
(∀(ic′ : iComp)(c : Comp), running(ic′, c, s′) ⇒ ¬delTPerms(ic′, cp, u, pt, s′)

If ic revokes the permission to perform operation pt over the resource pointed by
u in cp, this revocation will be applied to all the applications in the system.

A direct consequence of this property is that a running component can revoke
permissions that were not delegated by itself, which may result in confusing and
problematic scenarios [19]. For instance, suppose applications A and B both have
the same delegated permission p. In the case that an application C revokes p
with the intention that B does not longer use it, A shall also lose that permission
without further notice. Application A will just find out when attempting a task
that requires p, provoking then a runtime exception.

Privilege Escalation. According to [18], in the Android system a privilege
escalation attack occurs when “an application with a permission performs a priv-
ileged task on behalf of an application without that permission”. This privileged
task can be, for instance, invoking a system service, or accessing an application.
We have proved that a privilege escalation scenario involving either task is pos-
sible in our model. The proof was divided in two separate lemmas, one for each
kind of privileged operation.

Lemma 5. ∀(s : AndroidST)(ic : iComp)(c : Comp)(sac : SACall),
¬Pre(s, call ic sac) ∧ ¬Pre(s′, call ic sac) ∧ compCanCall(c, sac, s′) ∧
s ↪

start ic c−−−−−−→ s′ ⇒ ∃(ic′ : iComp), running(ic′, c, s′) ∧ Pre(s′, call ic′ sac)

If ic cannot perform the API call sac but it starts the execution of a component
c which is able to do it, then it will be possible to invoke sac through an instance
of c.

Lemma 6. ∀(s s′ : AndroidST)(c c′ c′′ : Comp)(ic : iComp), ¬isCProvider(c′′)∧
¬canStart(c, c′′, s)∧¬canStart(c, c′′, s′)∧canStart(c′, c′′, s′) ∧ s↪

start ic c′
−−−−−−−→s′ ⇒

∃(ic′ : iComp), running(ic′, c′, s′) ∧ Pre(s′, start ic′ c′′)

If ic cannot access a component c’ but it starts the execution of a component c’
which is able to do it, it will be possible to start c” through an instance of c’.

The proof of Lemma 6 is fairly straightforward: we need to give a running
instance of a component which is always able to access component c′′ in state
s′. We claim that this witness is the resulting instance of executing the start

operation in state s (hypothesis s ↪
start ic c′
−−−−−−−→ s′). Calling this instance ic′, we
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have to prove that both running(ic′, c′, s′) and Pre(s′, start ic′ c′′) are veri-
fied. The first predicate is trivially satisfied by the definition of ic′. Next, the
precondition of operation start, as described in Sect. 3, requires ic′ to be able
to start component c′′, which must be installed in state s′ and be different from
a content provider. While the first and third requests are explicitly assumed in
the hypotheses of the lemma, we prove that component c′′ is installed in state
s′ beginning by the fact that, by hypothesis, c′′ is installed in state s and, since
the start operation does not change the installed applications, c′′ must be in s′

as well. The proof of Lemma 5 is analogous to the one just described.
More informally, in the above lemmas ic represents the unprivileged running

component and c′ the component that has the permissions to make a API call
(predicate compCanCall in Lemma 5) or access another component, respectively.
If ic access c′ (creating a running instance of c′), then the privileged operation
will be available to be executed (by, at least, the running instance just created).

In models that avoid privilege escalation it is not enough to call an instance
with the required permissions to perform a privileged operation. In such models,
extra controls are implemented in order to prevent the called instance from being
used as a deputy of an unprivileged component [13]. The issues just discussed
were originally presented in [13,16,18] but referred to earlier versions of the
Android platform and used different approaches to perform their analysis. Since
our formalism fully captures both the interaction between components and the
execution of API calls in the Android system we are convinced that the latest
versions of the platform are still vulnerable to privilege escalation attacks.

4.2 Permission Redelegation

The last property we want to discuss makes explicit that it is possible to redel-
egate a permission an unlimited number of times. This particular aspect of the
Android security model was also studied by Fragkaki et al. [19] and has been
successfully represented in our formalism.

Lemma 7. ∀(s : AndroidST)(ap ap′ : App)(c : Comp)(ic : iComp)(act : Activity)
(cp : ContProv)(u : Uri)(pt : OpTy), inApp(c, ap) ∧ running(ic, c, s)∧
existsRes(u, cp, s) ∧ (delTPerms(ic, cp, u, pt, s)∨delPPerms(ap, cp, u, pt, s)) ⇒
Pre(s, grantT ic cp act u pt) ∧ Pre(s, grantP ic cp ap′ u pt)

If ic or an application ap have a delegated permission, they can redelegate it in
a temporary or permanent way.

As a corollary of this property, if a running component receives a temporal
permission delegation, then any instance of that component can redelegate the
given permission to the application itself in a permanent way. Consequently,
a permission that was originally temporarily delegated, ends up being perma-
nently delegated [19]. This behavior means that in practice, the two delega-
tion mechanisms are not substantially different. For example, a running compo-
nent can receive a permission delegation through an intent because the sender
wants this permission to get revoked when the recipient finishes execution.
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However, the receiver could redelegate the given permission to its own appli-
cation in a permanent way so that it can only be revoked via the method:
revokeUriPermission(); which would contradict the original purpose of the
sender.

5 Related Work

Several works have analyzed the limitations and weaknesses of the security model
of Android. The study of most of the properties that we have formally verified
and presented in this paper is scattered in several publications from the litera-
ture. The results presented in those publications are formulated using different
formal settings in accordance to the type of study and properties in which they
are interested.

Felt et al. [18] study, although not formally, Android applications to deter-
mine whether Android developers follow least privilege policies when declaring
applications permission requests. The authors develop in particular an OS mech-
anism for defending against permission re-delegation (when an application with
permissions performs a privileged task for an application without permissions).
Our work initiates the development of an exhaustive formal specification of the
Android security model from which it is possible to formally reason, for instance,
about the property of least privilege for any application.

In Chaudhuri’s work [14] it is defined a typed language to model the com-
munication between different components of the Android’s platform. Given an
expression defined in this language, if a type can be inferred for it, the oper-
ation being modelled is in compliance with some desirable security properties
concerning the integrity and confidentiality of the information being exchanged.
Analogously, Armando et al. [10] and Bugliesi et al. [13] present a type and effect
system in which they model basic Android’s components and the semantics of
some operations. Although these three publications follow similar approaches,
they all define different new languages, which are focused on the features being
analyzed in each work. Additionally, no formal guarantee is provided of the cor-
rectness of the results obtained.

In the case of the work by Fragkaki et al. [19], instead of defining a typed
language, the authors generalize the Android permission scheme and propose an
abstract formal framework to represent the systems that meet these general char-
acteristics. This model is used to enunciate security properties that, according
to the authors, any instantiation should obey. In this way, the Android platform
is represented as a particular instance of the proposed abstract model and its
formal analysis consists of checking if the enunciated security properties actually
hold on it. As pointed out in Sect. 4, many of the properties studied in [19] were
selected to be proved in our own model. The success in doing so shows that our
formal framework is expressive enough to enunciate and prove the properties in
question, offering the support of a widely used tool, as it is Coq, in all the stages
of the proof development process.

Finally, Shin et al. [24] adapt the approach followed by Zanella et al. [11]
to build a formal framework that represents the Android’s permission system,
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which is based on the Calculus of Inductive Constructions and it is developed in
Coq, as we do. However, that formalization does not consider several aspects of
the platform covered in our model, namely, the different types of components,
the interaction between a running instance and the system, the reading/writing
operation on a content provider and the semantics of the permission delega-
tion mechanism. These last two aspects of our model allow us to formulate and
prove security properties which cannot be formally studied in Shin’s model,
such as Lemmas 4, 6, and 7, addressed in Sect. 4. Furthermore, there are impor-
tant differences between the two models regarding the way of representing, for
example, the applications and its components, the state of the platform, the
AndroidManifest file and the operations execution. We claim that the results
we have obtained constitute a quite complete, expressive and extensible model
of Android’s permission system. Moreover, we understand our contribution as
an alternative adaptation of the work presented in [11] rather than an extension
of the one proposed by Shin.

6 Conclusion and Future Work

This work initiates the development of an exhaustive formal specification of the
Android security model that includes elements and properties that have been
partially analyzed in previous works. The formal model considers the latest ver-
sion of the security mechanisms of the platform. Furthermore, we present the
proof of security properties concerning the Android permission mechanisms that
have not previously been formally verified. Thus, this specification represents,
up to our knowledge, the first comprehensive analysis under the same formal
model of several security properties of the Android system. The formal develop-
ment is about 5.5kLOC of Coq (see Fig. 4) , including proofs, and constitutes a
suitable basis for reasoning about Android security model.

Fig. 4. LOC of Coq development

There are several directions for future work. We are already working in enrich-
ing the model with behaviour not considered so far, like the actions of sending
and receiving broadcasts and implicit intents, application update, and man-
agement of signatures and certificates. We are also interested in producing an
alternative definition of the model which would be better suited for the verifi-
cation of a toy implementation of the control access decision procedure. From
this result, and using the program extraction mechanisms provided by Coq, we
expect to derive a certified Haskell prototype of the reference monitor.
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References

1. Android Developers. Android KitKat. https://developer.android.com/about/
versions/kitkat.html. Accessed on August 2015

2. Android Developers. Application Fundamentals. http://developer.android.com/
guide/components/fundamentals.html. Accessed on August 2015

3. Android Developers. Application Manifest. http://developer.android.com/guide/
topics/manifest/manifest-intro.html. Accessed on August 2015

4. Android Developers. Context. http://developer.android.com/reference/android/
content/Context.html. Accessed on August 2015

5. Android Developers. manifest. http://developer.android.com/guide/topics/
manifest/manifest-element.html#uid. Accessed on August 2015

6. Android Developers. Permissions. http://developer.android.com/guide/topics/
security/permissions.html. Accessed on August 2015

7. Android Developers. R.styleable. http://developer.android.com/reference/
android/R.styleable.html. Accessed on August 2015

8. Android Developers. Security Tips. http://developer.android.com/training/
articles/security-tips.html. Accessed on August 2015

9. Android Developers. Services. http://developer.android.com/guide/components/
services.html. Accessed on August 2015

10. Armando, A., Costa, G., Merlo, A.: Formal modeling and reasoning about the
android security framework. In: 7th International Symposium on Trustworthy
Global Computing (2012)

11. Zanella Béguelin, S., Betarte, G., Luna, C.: A formal specification of the MIDP
2.0 security model. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S.
(eds.) FAST 2006. LNCS, vol. 4691, pp. 220–234. Springer, Heidelberg (2007)

12. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in theoretical computer
science. Springer, Berlin (2004)
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Abstract. A runtime verification technique has been developed for CSP
via translation of CSP models to Kripke structures. With this technique,
we can check that a system under test satisfies properties of traces and
refusals of its CSP model. This complements analysis facilities avail-
able for CSP and for all languages with a CSP-based semantics: Safety-
Critical Java, Simulink, SysML, and so on. Soundness of the verification
depends on the soundness of the translation and on the traceability of the
Kripke structure analysis back to the CSP models and to the property
specifications. Here, we present a formalisation of soundness by unifying
the semantics of the languages involved: normalised graphs used in CSP
model checking, action systems, and Kripke structures. Our contribu-
tions are the unified semantic framework and the formal argument itself.

Keywords: Semantic models · UTP · Formal testing · Runtime
verification

1 Introduction

CSP [19] is a well established process algebra with consistent denotational, opera-
tional and axiomatic semantics that have been thoroughly studied. A commercial
model checker, FDR3 [9] and its predecessors, has been in widespread use for
years and has encouraged industrial take up. For finite processes, FDR3 provides
a semantics in terms of normalised graphs: deterministic finite automata with
edges labelled by events and nodes by sets of maximal refusals.

Recently, this semantics has been used to develop a runtime verification tech-
nique for CSP [17]. It checks the behaviour of programs or simulations during
their execution against given specifications; this is typically applied in situations
where model checking would be infeasible due to the size of the state space.

In the approach of [17], a specification of traces and refusals of a CSP process
is translated to a safety LTL formula. Runtime verification of the resulting prop-
erty is then carried out using a technique that assumes that the system under
test (SUT) behaves like an unknown Kripke structure. (Although the technique
does not require the construction of the Kripke structure, its soundness is estab-
lished in terms of an unknown Kripke structure that models the SUT.) Soundness
of the CSP technique is argued via translation of the FDR3 normalised graphs
to nondeterministic programs, and then to Kripke structures.
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 505–523, 2015.
DOI: 10.1007/978-3-319-25150-9 29
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Based on the Kripke structures, we can apply an existing runtime verifi-
cation technique that defines practical health monitors (error-detection mecha-
nisms) [13]. They do not provide false positives or negatives and can be activated
at any time during the execution of an SUT. Using the technique in [17], health
monitors can be created based on specifications of CSP processes and, there-
fore, based on any language for which a CSP-based semantics exists. Some very
practical examples are Safety-Critical Java [8], Simulink [5], and SysML [15].
For Safety-Critical Java, this technique can complement assertion-based analy-
sis techniques that use JML [3] and SafeJML [10], which support reasoning about
data models and execution time, with facilities to reason about reactivity.

Soundness is rigorously argued in [17] based on the following premises:

1. the semantics of finite CSP processes as a normalised graph, as originally
described in [18, Chapter 21] and then implemented in FDR3, is consistent
with the CSP semantics;

2. a mapping of the normalised graphs into nondeterministic programs defined
in [17] preserves the semantics of CSP;

3. a semantics in terms of Kripke structures for these nondeterministic programs,
defined in [17] in terms of their operational semantics, preserves the semantics
of the programs; and

4. a mapping of a safety LTL formula of a particular form to a trace and refusal
specification defined in [17] captures the semantics of the safety formula in
the failures model.

With these results, we can then conclude that the notion of satisfaction in the
failures model corresponds to the notion of satisfaction in Kripke structures.

In this paper, we still take (1) as a premise: it is widely accepted and vali-
dated both in the standard semantic theories of CSP [19] and in the extensive
use of FDR3 (and its predecessors). We, however, go further and formalise the
notions of semantics preservation in (2) and (3). We carry out this work using
Hoare and He’s Unifying Theories of Programming [12], a relational semantic
framework that allows us to capture and relate theories for a variety of pro-
gramming paradigms. A UTP theory for CSP is already available, as are many
others (for object-orientation [21], time [20], and so on). Finally, as pointed out
in [17], (4) is trivial because the mapping from the safety LTL formula subset
under consideration to trace and refusal specifications is very simple.

In formalising (2) and (3), we define UTP theories for normalised graphs and
Kripke structures. The nondeterministic programs are action systems and are
encoded in the UTP theory for reactive processes. Galois connections between
these theories establish semantic preservation. Unification is achieved via an
extra UTP theory that captures a kind of stable-failures model, where traces
are associated with maximal refusals. Galois connections with this extra theory
identify the traces and maximal refusals of a normalised graph, an action system,
and a Kripke structure. Figure 1 gives an overview of our results.

In the unified context of the theory of traces and maximal refusals, we define
satisfaction for CSP normalised graphs and for Kripke structures. The properties
that we consider are the conditions, that is, predicates on a single state, of
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Fig. 1. New UTP theories and their relation to reactive processes

that theory of traces and maximal refusals. The Galois connections are used to
establish the relationship between satisfaction in CSP and in Kripke structures.

Besides contributing to the UTP agenda of unification of programming the-
ories, we open the possibility of using the runtime verification technique of
Kripke structures for other languages with a UTP semantics, such as, Circus [16],
rCOS [14], Handel-C [4], and SystemC [22].

The approach is restricted to the, still significant, class of divergence-free
programs. Divergence freedom is a standard assumption in testing techniques,
where observation of divergence is perceived as deadlock.

Next, we give an overview of the UTP and the existing theory of reactive
processes. Our theories are presented afterwards: normalised graphs in Sect. 3,
Kripke structures in Sect. 4, and traces and maximal refusals in Sect. 5. Section 3
also gives the Galois connection between graphs and reactive processes, and
Sect. 4 between reactive processes and Kripke structures. Finally, Sect. 5 gives the
Galois connections between graphs, reactive processes and Kripke structures and
traces and maximal refusals. In Sect. 5, we also define satisfaction and present our
main result: soundness of the CSP runtime verification technique. We conclude
and present related and future work in Sect. 6.

2 A UTP Theory of Reactive Processes

In the UTP, relations are defined by predicates over an alphabet (set) of obser-
vational variables that record information about the behaviour of a program. In
the simplest theory of general relations, these are the programming variables v ,
and their dashed counterparts v ′, with v used to refer to an initial observation
of the value of v , and v ′ to a later observation.

Theories are characterised by an alphabet and by healthiness conditions
defined by monotonic idempotent functions from predicates to predicates. The
predicates of a theory with alphabet a are the predicates on a that are fixed
points of the healthiness conditions. As an example, we consider the existing
theory of reactive processes used in our work to model action systems.
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A reactive process interacts with its environment: its behaviour cannot be
characterised by the relation between its initial and final states only; we need to
record information about the intermediate interactions. To that end, the alpha-
bet of the theory of reactive processes includes four extra observational vari-
ables: ok , wait , tr , and ref and their dashed counterparts.

The variable ok is a boolean that records whether the previous process has
diverged: ok is true if it has not diverged. Similarly, ok ′ records whether the
process itself is diverging. The variable wait is also boolean; wait records whether
the previous process terminated, and wait ′ whether the process has terminated
or not. The purpose of tr is to record the trace of events observed so far. Finally,
ref records a set of events refused, previously (ref ) or currently (ref ′).

The monotonic idempotents used to define the healthiness conditions for
reactive processes are in Table 1. The first healthiness condition R1 is charac-
terised by the function R1(P) =̂P ∧ tr ≤ tr ′. Its fixed points are all predicates
that ensure that the trace of events tr ′ extends the previously observed trace
tr . R2 requires that P is unaffected by the events recorded in tr , since they are
events of the previous process. Specifically, R2 requires that P is not changed if
we substitute the empty sequence 〈〉 for tr and the new events in tr ′, that is, the
subsequence tr ′ − tr , for tr ′. Finally, the definition of R3 uses a conditional. It
requires that, if the previous process has not terminated (wait), then a healthy
process does not affect the state: it behaves like the identity relation II .

Table 1. Healthiness conditions of the theory of reactive processes

The theory of reactive processes is characterised by the healthiness condition
R =̂R1 ◦ R2 ◦ R3. The reactive processes that can be described using CSP can
be expressed by applying R to a design: a pre and postcondition pair over ok ,
wait , tr and ref , and their dashed counterparts. In such a process R(pre � post),
the precondition pre defines the states in which the process does not diverge, and
post the behaviour when the previous process has not diverged and pre holds.

Typically, a theory defines a number of programming operators of interest.
Common operators like assignment, sequence, and conditional, are defined for
general relations. Sequence is relational composition.

P ; Q =̂ ∃w0 • P [w0/w ′] ∧ Q [w0/w ], where outα(Q) = inα(Q)′ = w ′

The relation P ; Q is defined by a quantification that relates the intermediate val-
ues of the variables. It is required that the set of dashed variables outα(P) of P ,
named w ′, matches the undashed variables inα(Q) of Q . The sets w , w ′, and w0

are used as lists that enumerate the variables of w and the corresponding deco-
rated variables in the same order.
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A central concern of the UTP is refinement. A program P is refined by a
program Q , which is written P 	 Q , if, and only if, P ⇐ Q , for all possible
values of the variables of the alphabet. We write [P ⇐ Q ] to represent the
universal quantification over all variables in the alphabet. The set of alphabetised
predicates in the theory of relations form a complete lattice with this ordering.

As well as characterising a set of healthy predicates via their fixed points,
healthiness conditions can be viewed as functions from arbitrary relations to
predicates of the theory that they define. Since they are monotonic idempotents,
their images, that is, the theory that they characterise, are also complete lattices
under refinement. In these theories, recursion is modelled by weakest fixed points
μX • F (X ), where F is a monotonic function from predicates to predicates.

In presenting our theories in the next sections, we define their alphabet and
healthiness conditions, and prove that the healthiness conditions are monotonic
and idempotent. Finally, we establish Galois connections between them.

3 A UTP Theory for Normalised Graphs

A normalised graph (N ,n0, t : N × Σ �→ N , r : N → F(FΣ)) is a quadruple,
where N is a set of nodes, n0 is the initial node, t defines the transitions between
nodes from N labelled with events from a set Σ, and r defines labels for states
as sets of (maximal) refusal sets, that is, finite sets of finite sets of events in Σ.

Alphabet. We take N and Σ as global constants, and define the alphabet to
contain the variables n,n ′ : N to represent the source and target nodes, e : Σε

to represent labels of the transitions, and r ′ : F(FΣε) to represent labels of the
target nodes. The predicates define a graph by identifying the source and target
nodes n and n ′ of the transitions, their associated events e, and the labelling r ′

of the target nodes. The initial node is always ι, a constant of type N . In ι, only
the special event ε is available. The set Σε = Σ ∪ {ε}.

Example 1. We consider the graph for a → c → STOP � b → c → STOP
shown in Fig. 2 . It is defined in our UTP theory by the following relation.

EG =̂ n = ι ∧ e = ε ∧ n ′ = n1 ∧ r ′ = {{c, ε}} ∨
n = n1 ∧ e ∈ {a, b} ∧ n ′ = n2 ∧ r ′ = {{a, b, ε}} ∨
n = n2 ∧ e = c ∧ n ′ = n3 ∧ r ′ = {{a, b, c, ε}}

We observe that n1, n2 and n3 are arbitrary node identifiers: values in N . ��
By including just r ′ in the alphabet, instead of r and r ′, we avoid the need

to specify labelling for a node repeatedly whenever it is used as a source or a
target of a transition (and to include a healthiness condition to ensure that the
duplicated information is consistent). Since the initial node is always ι, for which
labelling is irrelevant, it is enough to define the labels of the target nodes to get
information for all (reachable) nodes. Normalised graphs are connected.
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Fig. 2. Normalised graph for a → c → STOP � b → c → STOP

Healthiness Conditions. Table 2 defines the healthiness conditions of our theory.
HG1 requires all nodes to have a non-empty label: every label contains at least one
set X , and, as specified by HG2, each X contains ε. HG2 is concerned with ι and
ε; from ι, the only possible event is ε, which is then always refused, and, besides,
no transition leads back to ι. HG3 requires that, for any node n and event e, there
is at most one transition: the graph is deterministic. Similarly, HG4 establishes
that all transitions that target a node n ′ define the same label: labelling is unique.
HG5 requires that, if there is no transition from a node n ′ for an event e1, then
e1 is in all refusals X of the label r ′ of n ′. We write G(w , x , y , z ) to denote the
predicate G [w , x , y , z/n, e,n ′, r ′]. Finally, HG6 rules out the empty graph false.

Table 2. Healthiness conditions of the normalised-graph theory

All of HG1 to HG6 are conjunctive (that is, of the form HC(P) =̂P ∧ F (P),
for a function F (P) that is monotonic or does not depend on P). So, they
are all monotonic, idempotent, and commute [11]. Commutativity establishes
independence of the healthiness conditions. We can then define the healthiness
condition HG of our theory as the composition of HG1 to HG6. Commutativity
implies that HG is an idempotent, just like each of HG1 to HG6.

Connection to Reactive Processes. In [17], graphs are transformed to nondeter-
ministic programs of a particular form. They are action systems [2]: initialised
nondeterministic loops, with part of the state at the beginning of each itera-
tion visible. These are, therefore, reactive processes, that communicate to the
environment the value of the relevant state components at the start of a loop.

For a graph G , the corresponding action system AS (G) in [17] is as follows.
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Definition 1.

AS (G) =̂ varn, tr , ref • n, tr , ref := ι, 〈〉, Σ; μY • vis!(tr , ref ) →
Skip�ref = Σε�� e : Σε \ ref •

tr := tr � 〈e〉;
n, ref : [true,∃ r ′ • G ∧ ref ′ ∈ r ′]; Y

The program uses a local variable n as a pointer to the current node as it
iterates over G . The initial value of n is ι. As the loop progresses, the program
accumulates the traces of events tr and records a refusal ref in r . Their values
are initialised with the empty sequence 〈〉 and the whole set of events Σ (but
not ε). The values of tr and ref are communicated in each step of the iteration
via a channel vis. It is the values that can be communicated that capture the
traces and maximal refusals semantics of G .

The loop is defined by a tail recursion (μY • . . . ; Y ). Its termination con-
dition is ref = Σε, that is, it terminates when there is a deadlock. Otherwise, it
chooses nondeterministically (�) an event e that can be offered, that is, an event
from Σε \ ref , updates tr to record that event, and then updates n and ref as
defined by G using a design n, ref : [true,∃ r ′ •G ∧ ref ′ ∈ r ′]. The postcondition
∃ r ′ • G ∧ ref ′ ∈ r ′ defines the new values of n and ref ; the value of ref is also
chosen nondeterministically from the events in r ′ as defined by G .

Example 2. For the process in Example 1, the corresponding reactive process
obtained from the graph in Fig. 2, is equivalent to that shown below, where we
unfold the recursion and eliminate nondeterministic choices over one element
relying on the property (� e1 : {e2} • P(e1)) = P(e2).

varn, tr , ref • n, tr , ref := ι, 〈〉, {a, b, c};
vis!(tr , ref ) → tr := tr � 〈ε〉; n, ref := n1, {c, ε};
� e : {a, b} • vis!(tr , ref ) → tr := tr � 〈e〉; n, ref := n2, {a, b, ε};

vis!(tr , ref ) → tr := tr � 〈c〉; n, ref := n3, {a, b, c, ε};
vis!(tr , ref ) → Skip ��

Besides the healthiness conditions of reactive processes, as defined in Sect. 2, the
processes of interest here satisfy the healthiness condition below.

R4(P) =̂P ∧ ran tr ′ ⊆ {|vis|}

It ensures that all events observed in the trace are communications over the
channel vis. Together with R1, R4 guarantees that this holds for tr and tr ′. We
use ran s to denote the set of elements in a sequence s.

The function ν(G) defined below maps a graph G to a reactive process. It
provides an abstract specification for AS (G) using the observational variables
of the reactive process theory, rather than programming constructs.
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Definition 2. ν(G) =̂R(true � νP (G)) where

νP (G) =̂ tr < tr ′ ⇒⎛

⎜⎜⎜⎜⎝

∃ trM , refM • (trM , refM ) = msg ◦ last (tr ′) ∧⎛

⎜⎜⎝

(∃ e,n ′, r ′ • G [node(G)(〈〉)/n])
�trM = 〈〉�(∃ r ′ • refM ∈ r ′ ∧
G [node(G)(front trM ), last trM ,node(G)(trM )/n, e,n ′]

)

⎞

⎟⎟⎠

⎞

⎟⎟⎟⎟⎠

We use a node-labelling partial function node(G) that maps traces to nodes of G .
It is well defined, because an essential property of a normalised graph is that,
for every trace, there is a unique node to which it leads [19, p.161]. We define
ν(G) as a design that specifies that it never diverges: the precondition is true.
The postcondition νP (G) defines that if an event has occurred (tr < tr ′), then
the behaviour is given by the failure (trM , refM ) communicated in the last event
recorded in tr ′. We use the function msg(vis.(trM , refM )) =̂ (trM , refM ). With
trM and refM , νP (G) specifies that what happens next depends on whether the
failure emitted contains the empty trace (trM = 〈〉). If it does, then G has to
have a node reachable via 〈〉. Otherwise, the last two elements of the trace must
describe a transition in G . The target of this transition has a set of refusal sets
r ′; the refusal set in the failure must be an element of r ′.

The function ν(G) is the left (upper) adjoint of a Galois connection between
the theories of normalised graphs and reactive processes. To establish this result,
and others in the sequel, we use the relationship between an R2-healthy assertion
ψ used as a postcondition and the process Proc(ψ) that implements ψ. We define
Proc(ψ) =̂R(true � ψ), as a reactive design that requires that the process does
not diverge and establishes ψ. Moreover, for a reactive design P , we define a sim-
ple way to extract its postcondition Post(P) =̂P [true, true, false/ok , ok ′,wait ].

Theorem 1. The pair (Proc,Post) is a Galois connection.

Proof. A design φ � ψ is defined by ok ∧ φ ⇒ ok ′ ∧ ψ. So, in R(φ � ψ), the
values of ok and ok ′ in ψ are defined by the design to be true. Moreover, the
value of wait is defined by R3 to be false. Therefore, below we consider, without
loss of generality, that ψ does not have free occurrences of ok , ok ′, or wait .

Post ◦ Proc(ψ)
= (R(true � ψ))[true, true, false/ok , ok ′,wait ] [definitions of Post and Proc]
= R1 ◦ R2((true � ψ)[true, true, false/ok , ok ′,wait ]) [definition of R]
= R1 ◦ R2(ψ[true, true, false/ok , ok ′,wait ]) [substitution in a design]
= R1 ◦ R2(ψ) [ok , ok ′, and wait are not free in ψ]
= R1(ψ) [ψ is R2]
⇒ ψ [definition of R1 and predicate calculus]
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Next, we prove that Proc ◦ Post(P) = II , so we have a co-retract. We use Pb
a to

stand for the substitution P [a, b/wait , ok ′], and use t and f for true and false.

Proc ◦ Post(P)
= R(true � P [true, true, false/ok , ok ′,wait ]) [definitions of Proc and Post ]

= R(true � (R(¬ P f
f � P t

f )[true, true, false/ok , ok ′,wait ]))

[reactive-design theorem: P = R(¬ P f
f � P t

f )]

= R(true � R(¬ P f
f ⇒ P t

f )) [substitution]

= R(true � R2(¬ P f
f ⇒ P t

f ))

[R = R1 ◦ R2 ◦ R3 and R1 ◦ R3(P � R1 ◦ R3(P)) = R1 ◦ R3(P � Q)]

= R(true � ¬ P f
f ⇒ P t

f ) [assumption: P is R2]

= R(¬ P f
f � P t

f ) [property of a design]

= P [reactive-design theorem]

��
For graphs and reactive processes we have the following result.

Theorem 2. ν(G) defines a Galois connection.

Proof. From the definition of ν(G), we have that ν(G) = Proc ◦ νP (G). Since
νP (G) is monotonic and universally disjunctive, it defines a Galois connection
between normalised graphs and (R2-healthy) assertions. By Theorem 1, Proc
defines a Galois connection between assertions and reactive processes. The com-
position of Galois connections is a Galois connection itself. ��
With the above theorem, we formalise the point (2) described in Sect. 1.

4 A UTP Theory for Kripke Structures

A Kripke structure (S , s0,R : P(S ×S ),L : S → PAP ,AP) is a quintuple, where
S is the set of states, s0 is the initial state, R is a transition relation between
states, and L is a labelling function for states. The labels are sets of atomic
propositions from AP that are satisfied by the states. R is required to be total,
so that there are no stuck states in a Kripke structure.

In our theory, states are identified with the valuations of variables v , which
define the properties satisfied by the states, and so define L and AP . Moreover,
we include pc, pc′ : 0 . . 2 to record a program counter. The value of pc in a
state defines whether it is initial, pc = 0, intermediate, pc = 1, or final, pc = 2.
Satisfaction of properties is checked in the intermediate states.

In Kripke structures for reactive processes, the other variables of interest
are tk : seq Σε, whose value is the trace performed so far, and refk : PΣε,
whose value is the current refusal, and their dashed counterparts t ′

k and ref ′
k .

We present, however, a theory that is not specific to these variables.
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Example 3. Figure 3 gives the Kripke structure for the process in Example 1 and
corresponding program in Example 2. In Fig. 3, we give the values of the variables
tk and refk in each state as a pair. For the states in which pc = 0 or pc = 2,
however, the values of these variables is arbitrary and not given. The states for
which pc = 2 have self-transitions to avoid stuck states. ��

Fig. 3. Kripke structure for a → c → STOP � b → c → STOP

Example 4. The relation EK for the Kripke structure in Fig. 3 is as follows.

pc = 0 ∧ pc′ = 1 ∧ t ′
k = 〈 〉 ∧ ref ′

k = Σ ∨
pc = pc′ = 1 ∧ tk = 〈 〉 ∧ refk = Σ ∧ t ′

k ∈ {〈a〉, 〈b〉} ∧ ref ′
k = {a, b, ε} ∨

pc = pc′ = 1 ∧ tk = 〈a〉 ∧ refk = {a, b, ε} ∧ t ′
k = 〈a, c〉 ∧ ref ′

k = {a, b, c, ε} ∨
pc = pc′ = 1 ∧ tk = 〈b〉 ∧ refk = {a, b, ε} ∧ t ′

k = 〈b, c〉 ∧ ref ′
k = {a, b, c, ε} ∨

pc = 1 ∧ tk ∈ {〈a, c〉, 〈b, c〉} ∧ pc′ = 2 ∨
pc = 2 ∧ pc′ = 2 ��

Healthiness Conditions. Table 3 presents the healthiness conditions. From the
initial state, we move to an intermediate state, and there is no transition back
to the initial state or out of the final state. All this is ensured by HK1. With
HK2 we establish that the value of v when pc = 0 or pc = 2 is arbitrary.
Similarly, with HK3 we establish that the value of v ′ when pc′ = 2 is arbitrary.
SelfT specifies transitions that keep the value of pc, but that preserve v only
in intermediate states. These are a kind of self transitions. We use v = v ′ to
refer to the conjunction v1 = v ′

1 ∧ . . . ∧ vn = v ′
n including an equality for each

variable in v and v ′. Finally, HK4 requires that either the Kripke structure is
empty, or there is a transition from the initial state.

HK1 is conjunctive and so idempotent, and monotonic since ValT does not
depend on K . For HK2 and HK3, monotonicity follows from monotonicity of
sequence. Idempotence follows from the result below [12, p.90].

Lemma 1. SelfT ; SelfT = SelfT where outα(SelfT ) = inα(SelfT ) = {v ′, pc′}.
The proof of this results and others omitted below can be found in [6].
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Table 3. Healthiness conditions of the Kripke-structure theory

HK4 is conjunctive and so idempotent, and monotonic since ∃ v , v ′ • K [0/pc] is
monotonic on K . Commutativity of HK1 with HK2 and HK3 is proved in [6].
Commutativity of HK1 and HK4 is simple because they are both conjunctive.
Commutativity of HK2 and HK3 is established in [12, p.90]. Finally, commuta-
tivity of HK2 and HK4, and of HK3 and HK4 are established in [6].

We cannot introduce a healthiness condition HK(K ) = (true; K ) ⇒ K that
requires that a Kripke structure is not empty; (like H4 in the case of designs) it
is not monotonic. So, we keep false in the lattice; it represents miracle, as usual.

Connection from Reactive Processes. As mentioned above, for modelling proces-
ses, the additional variables are tk and refk , and their dashed counterparts t ′

k

and ref ′
k . In this more specific setting, we have the extra healthiness condition

below.

HK5(K ) =̂K ∧ ValRT
ValRT =̂ t ′

k = 〈〉 ∧ pc = 0 ∧ pc′ = 1 ∨
t ′
k �= 〈〉 ∧ pc = pc′ = 1 ∧ tk = front t ′

k ∨
pc′ = 2

The property ValRT defines valid reactive transitions. From the initial state,
we reach just the empty trace, and each transition between intermediate states
capture the occurrence of a single event: the last event in t ′

k .
As discussed previously, we can represent a CSP process G by a reactive

process P that outputs in a channel vis the failures of G with maximal refusals. In
other words, the events of P define the failures of G . Below, we define how, given
a reactive process P whose events are all communications on vis, we construct
a corresponding Kripke structure κ(P) whose states record the failures of G . To
model the state of the action system before it produces any traces or maximal
refusals, we let go of HK1 and allow transitions from states for which pc = 2
back to an intermediate state with pc′ = 1.
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Definition 3. κ(P) =̂ κI ◦ Post(P) where

κI (P) =̂ ∃wait ′, tr , tr ′, ref , ref ′ • P ∧ Iκ

Iκ =̂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

tr = tr ′ ∧ pc = 2 ∧ pc′ = 1 ∨
#(tr ′ − tr) = 1 ∧

pc = 0 ∧ pc′ = 1 ∧ (t ′k , ref ′
k ) = msg ◦ last (tr ′) ∨

#(tr ′ − tr) > 1 ∧
pc = 1 ∧ pc′ = 1 ∧
(tk , refk ) = msg ◦ last ◦ front (tr ′) ∧ (t ′k , ref ′

k ) = msg ◦ last (tr ′) ∨
¬ wait ′ ∧ #(tr ′ − tr) > 1 ∧

pc = 1 ∧ pc′ = 2 ∧ (tk , refk ) = msg ◦ last ◦ front (tr ′) ∨
¬ wait ′ ∧ pc = 2 ∧ pc′ = 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In defining κ(P), of interest is the behaviour of P when the previous process
did not diverge (ok ′ is true) and terminated (wait is false) and P has not
diverged (ok ′ is true). This is the postcondition of P , as defined by Post . The
postcondition has in its alphabet the variables wait ′, tr , tr ′, ref , and ref ′. In
defining κI , these variables are quantified, and used in Iκ to define the values of
pc, tk , refk , pc′, t ′

k , and ref ′
k from the theory of Kripke structures.

If only one output has occurred (#(tr ′ −tr) = 1), then the event vis.(t ′
k , ref ′

k )
observed defines the state that can be reached from the initial state of the Kripke
structure. When more events have occurred, we define a transition between
the intermediate states characterised by the last two events. Prefix closure of
P ensures that we get a transition for every pair of events. When P termi-
nates (¬ wait ′), we get two transitions, one from the last event to the final
state (pc′ = 2), and the loop transition for the final state.

To establish that κ(P) defines a Galois connection, we use a result in [12]
proved in [6]. It considers functions L and R between lattices A and B (ordered
by 	) with alphabets a and c, when L and R are defined in terms of a predicate
I over the alphabet defined by the union of a and c. We can see these functions
as establishing a data refinement between A and B with coupling invariant I .

Theorem 3. L and R defined below are a Galois connection between A and B.

L(PC ) =̂ ∃ c • PC ∧ I and R(PA) =̂ ∀ a • I ⇒ PA

This result can be used to prove the following theorem.

Theorem 4. κ(P) defines a Galois connection.

Proof. From Theorem 1, we know that Post defines a Galois connection.
Theorem 3 establishes that κI defines a Galois connection as well. Their compo-
sition, which defines κ, therefore, also defines a Galois connection. ��
The above theorem formalises the point (3) mentioned in Sect. 1.
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5 A UTP Theory for Traces and Maximal Refusals

This is a theory of conditions (predicates on a single state) with alphabet okM ,
trM and refM . These variables are similar to those of the theory of reactive
processes, but refM records only maximal refusals. We use the notion of refine-
ment in this theory to define satisfaction for relations in all our theories.

As can be expected, there is a rather direct Galois connection between reac-
tive processes and definitions of traces and maximal refusals in this theory.

Definition 4. θ(P) =̂ θP ◦ Post(P) where

θP (P) =̂ ∃wait ′, tr , tr ′, ref , ref ′ • P ∧ Iθ
Iθ =̂ okM = (tr ′ > tr) ∧ (okM ⇒ (trM , refM ) = msg ◦ last (tr ′))

In defining the failures of θ(P), we need the postcondition of P . From that, we
obtain failures once P has started communicating, so okM is characterised by
(tr ′ > tr). If we do have a failure, it is that last communicated via vis in tr ′.

Theorem 5. θ(P) defines a Galois connection.

Proof. Similar to that of Theorem4. ��
The healthiness conditions of a theory of traces and refusals are well known [19].
We record, however, via the healthiness condition HM below the role of okM , as
a flag that indicates whether observations are valid.

HM(M ) =̂ okM ⇒ M

(This is just the healthiness condition H1 of the UTP theory of designs, which
first introduces the use of ok). The predicates of our theory of traces and maximal
refusals are used as conditions in our satisfaction relations presented next.

5.1 Satisfaction for Normalised Graphs

The function η(G) defines a Galois connection between the theory of normalised
graphs and the theory of traces and maximal refusals.

Definition 5 η(G) =̂ ∃n, e,n ′, r ′ • okM ⇒ G ∧ Iη where

Iη =̂

⎛

⎜⎜⎝ (n = node(G)(〈〉))�trM = 〈〉�

⎛

⎜⎜⎝

n = node(G)(front trM ) ∧
e = last trM ∧
n ′ = node(G)(trM ) ∧
refM ∈ r ′

⎞

⎟⎟⎠

⎞

⎟⎟⎠

As required, we define η(G) by characterising traces trM and refusals refM
using the variables n, e, n ′ and r ′ from the theory of graphs. If okM is true, then
trM is empty if the current node n can be reached with the empty trace (that is,
it is the initial node). Otherwise, the trace is that used to reach n concatenated
with 〈e〉. Moreover, refM is a refusal in the label r ′ of the target node.

To establish that η(G) is the left adjoint of a Galois connection between
the theories of normalised graphs and of maximal refusals, we use the following
general result, similar to that in Theorem 3.
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Theorem 6. L and R defined below are a Galois connection between A and B.

L(PC ) =̂ ∃ c • b ⇒ PC ∧ I and R(PA) =̂ ∀ a • I ⇒ PA

where b is a boolean variable in the alphabet a of A, and HC(PA) = b ⇒ PA is
a healthiness condition of the lattice B.

The proof is similar to that of Theorem3 and can be found in [6].

Theorem 7. η(G) defines a Galois connection.

Proof. Direct application of Theorem 6.

Using η(G), we can use refinement in the theory of traces and maximal refusals
to define satisfaction as shown below.

Definition 6. For a property φ and a graph G, we define Gsatφ =̂ φ 	 η(G).

Normalised graphs G have the same traces and maximal refusals as the reactive
program ν(G) that it characterises.

Theorem 8. η(G) = θ ◦ ν(G)

Proof.

θ ◦ ν(G)

= ∃ tr , tr ′ • νP (G) ∧
okM = (tr ′ > tr) ∧ (okM ⇒ (trM , refM ) = msg ◦ last (tr ′))

[definitions of θ and ν]

= ∃ tr , tr ′ •
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

tr < tr ′ ⇒
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃ trM , refM • (trM , refM ) = msg ◦ last (tr ′) ∧
⎛

⎜
⎜
⎜
⎜
⎝

(∃ e,n ′, r ′ • G[node(G)(〈〉)/n])
�trM = 〈〉�

⎛

⎝
∃ r ′ • refM ∈ r ′ ∧

G[node(G)(front trM ), last trM ,node(G)(trM )

/n, e,n ′]

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∧
okM = (tr ′ > tr) ∧ (okM ⇒ (trM , refM ) = msg ◦ last (tr ′))

[definition of νP ]

= ¬ okM ∨
∃ tr , tr ′ •
⎛

⎜
⎜
⎜
⎜
⎝

∃ trM , refM • (trM , refM ) = msg ◦ last (tr ′) ∧
⎛

⎜
⎜
⎝

(∃ e,n ′, r ′ • G[node(G)(〈〉)/n])
�trM = 〈〉�

(∃ r ′ • refM ∈ r ′ ∧
G[node(G)(front trM ), last trM ,node(G)(trM )/n, e,n ′]

)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

∧
(tr ′ > tr) ∧ (trM , refM ) = msg ◦ last (tr ′)

[case analysis on okM ]
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= ¬ okM ∨
∃ tr , tr ′ •
⎛

⎜
⎜
⎝

(∃ e,n ′, r ′ • G[node(G)(〈〉)/n])
�trM = 〈〉�

(∃ r ′ • refM ∈ r ′ ∧
G[node(G)(front trM ), last trM ,node(G)(trM )/n, e,n ′]

)

⎞

⎟
⎟
⎠

∧
(tr ′ > tr) ∧ (trM , refM ) = msg ◦ last (tr ′)

[predicate calculus]

= ¬ okM ∨
⎛

⎜
⎜
⎝

(∃ e,n ′, r ′ • G[node(G)(〈〉)/n])
�trM = 〈〉�

(∃ r ′ • refM ∈ r ′ ∧
G[node(G)(front trM ), last trM ,node(G)(trM )/n, e,n ′]

)

⎞

⎟
⎟
⎠

∧
∃ tr , tr ′ • (tr ′ > tr) ∧ (trM , refM ) = msg ◦ last (tr ′)

[predicate calculus]

= ¬ okM ∨
⎛

⎜
⎜
⎝

(∃ e,n ′, r ′ • G[node(G)(〈〉)/n])
�trM = 〈〉�

(∃ r ′ • refM ∈ r ′ ∧
G[node(G)(front trM ), last trM ,node(G)(trM )/n, e,n ′]

)

⎞

⎟
⎟
⎠

[predicate calculus]

= ¬ okM ∨
⎛

⎜
⎜
⎝

(∃n, e,n ′, r ′ • G ∧ n = node(G)(〈〉))
�trM = 〈〉�

(∃n, e,n, r ′ • refM ∈ r ′ ∧
G ∧ n = node(G)(front trM ) ∧ e = last trM ∧ n ′ = node(G)(trM )

)

⎞

⎟
⎟
⎠

[predicate calculus]

= ∃n, e,n ′, r ′ • okM ⇒ G ∧
⎛

⎜
⎜
⎝

(n = node(G)(〈〉))
�trM = 〈〉�

(
refM ∈ r ′ ∧
n = node(G)(front trM ) ∧ e = last trM ∧ n ′ = node(G)(trM )

)

⎞

⎟
⎟
⎠

[property of conditional]

= η(G) [definition of η]

��
This establishes that our transformations preserve traces and maximal refusals.
So, to check satisfaction for a graph G , we can use θ ◦ ν(G), instead of η(G).

5.2 Satisfaction for Kripke Structures

The function ζ(G) defines a Galois connection between the theory of Kripke
structures and the theory of traces and maximal refusals.

Definition 7.

ζ(K ) =̂ ∃ pc, pc′, tk , t ′
k , refk , ref ′

k • K ∧
okM = (pc ∈ {0, 1}) ∧ (okM ⇒ trM = t ′

k ∧ refM = ref ′
k )

The traces trM and refusals refM that are captured are those of the target states.
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Theorem 9. ζ(K ) defines a Galois connection.

Proof. Direct consequence of Theorem 3. ��
Using ζ, we can use refinement in the theory of traces and maximal refusals to
define satisfaction for Kripke structures as shown below.

Definition 8. For a property φ and a Kripke structure K , we define

K sat (pc′ = 1 ⇒ φ) =̂ φ 	 ζ(K ∧ pc′ = 1)

The Kripke structures ζ ◦ κ(P) have the same traces and maximal refusals as
the reactive process P that they characterise.

Theorem 10. θ(P) = ζ(κ(P) ∧ pc′ = 1)

Proof.

ζ(κ(P) ∧ pc′ = 1)

= ζ

⎛

⎜
⎜
⎜
⎜
⎝

∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧⎛

⎝
#(tr ′ − tr) = 1 ∧ pc = 0 ∨
#(tr ′ − tr) > 1 ∧ pc = 1 ∧ (tk , refk ) = msg ◦ last (front tr ′) ∨
tr ′ = tr ∧ pc = 2

⎞

⎠ ∧

pc′ = 1 ∧ (t ′
k , ref

′
k ) = msg ◦ last (tr ′)

⎞

⎟
⎟
⎟
⎟
⎠

[definition of κ(P) and predicate calculus]

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃ pc, pc′, tk , t ′
k , refk , ref

′
k •⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧⎛

⎝
tr = tr ′ ∧ pc = 2 ∨
#(tr ′ − tr) = 1 ∧ pc = 0 ∨
#(tr ′ − tr) > 1 ∧ pc = 1 ∧ (tk , refk ) = msg ◦ last (front tr ′)

⎞

⎠

∧
pc′ = 1 ∧ (t ′

k , ref
′
k ) = msg ◦ last (tr ′)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∧
okM = (pc ∈ {0, 1}) ∧ (okM ⇒ trM = t ′

k ∧ refM = ref ′
k )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

[definition of ζ]

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧
∃ pc, t ′

k , ref
′
k •(

tr = tr ′ ∧ pc = 2 ∨
#(tr ′ − tr) = 1 ∧ pc = 0 ∨ #(tr ′ − tr) > 1 ∧ pc = 1

)

∧
(t ′

k , ref
′
k ) = msg ◦ last (tr ′) ∧

okM = (pc ∈ {0, 1}) ∧ (okM ⇒ trM = t ′
k ∧ refM = ref ′

k )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

[predicate calculus]
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=

⎛

⎜
⎜
⎜
⎜
⎝

∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧⎛

⎝
∃ pc •

tr = tr ′ ∧ pc = 2 ∨
#(tr ′ − tr) = 1 ∧ pc = 0 ∨ #(tr ′ − tr) > 1 ∧ pc = 1

⎞

⎠ ∧

okM = (pc ∈ {0, 1}) ∧ (okM ⇒ (tM , refM ) = msg ◦ last (tr ′))

⎞

⎟
⎟
⎟
⎟
⎠

[predicate calculus]

=

(∃wait ′, tr , tr ′, ref , ref ′ • Post(P) ∧
okM = tr ′ > tr ∧ (okM ⇒ (tM , refM ) = msg ◦ last (tr ′))

)

[predicate calculus]

= θ(P) [definition of θ(P)]

��
This establishes the semantic preservation of our transformation.

As a consequence, it is direct that, to check satisfaction for a graph G , we
can use κ ◦ ν(G), instead of η(G), as shown below.

Theorem 11. G sat φ ⇔ κ ◦ ν(G) sat (pc′ = 1 ⇒ φ)

Proof.

G sat φ

= φ 	 η(G) [definition of sat]
= φ 	 θ ◦ ν(G) [Theorem 8]
= φ 	 ζ(κ ◦ ν(G) ∧ pc′ = 1) [Theorem 10]
= κ ◦ ν(G) sat (pc′ = 1 ⇒ φ) [definition of sat]

��
This is the main result of this paper.

6 Conclusions

We have previously developed a monitor for runtime verification of sequential
nondeterministic programs with Kripke-structure semantics. It can check the
program’s execution behaviour against a subset of LTL safety formulas.

In this paper, we have presented novel UTP theories for normalised graphs
and Kripke structures that model these nondeterministic programs. They are
complete lattices under the UTP refinement order. Our relation of interest, how-
ever, is satisfaction, which we have defined for graphs and Kripke structures.
Using this framework, we can justify the soundness of the translation of CSP
models via normalised graphs into Kripke structures. This induces a concrete
translation from CSP processes to sequential nondeterministic programs.

The framework also indicates how to translate a subset of safety formulas
into CSP specifications on traces and refusals. These formulas belong to the
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formula class handled by the runtime monitor. The framework guarantees that
an execution of some CSP process P satisfies a specification a given specification
if, and only if, P ’s translation into a sequential nondeterministic program does.

Temporal model checking of UTP designs (pre and postcondition pairs) based
on Kripke structures is discussed in [1]. Like we do, [1] defines satisfaction as
an extra relation in a lattice ordered by refinement. Satisfaction is defined for
states, and temporal logic operators are modelled as fixed-point operators. We
adopt a similar notion of state as variable valuations, but do not formalise tem-
poral operators. On the other hand, we define explicitly a theory of Kripke
structures, rather than encode them as designs. Moreover, we capture the rela-
tionship between Kripke structures and failure models: directly to action systems
encoded as reactive processes and indirectly to normalised graphs. As far as we
know, we give here the first account of automata-based theories in the UTP.

An issue we have not covered is the relationship of our theories with the
existing UTP CSP theory [7,12]. That amounts to formalising the operational
semantics of CSP and the normalisation algorithm of FDR3. Since maximal
refusals cannot be deduced from the denotational semantics of CSP [19, p. 124],
we do not expect an isomorphism between the theories.

An important property of normalised graphs and Kripke structures that is
not captured by our healthiness conditions is connectivity. The definition of
a monotonic idempotent that captures this property is left as future work. For
Kripke structures, we also do not capture the fact that there are no intermediate
stuck states. If we consider that every assignment of values to v is a valid state,
then this can be captured by the function HK6(K ) = (K ; true) ⇒ K .
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Abstract. Kademlia is the most popular peer-to-peer distributed hash
table (DHT) currently in use. It offers a number of desirable features
that result from the use of a notion of distance between objects based on
the bitwise exclusive or of n-bit quantities that represent both nodes and
files. Nodes keep information about files close or near to them in the key
space and the search algorithm is based on looking for the closest node
to the file key. The structure of the routing table defined in each peer
guarantees that the lookup algorithm takes no longer than O(log(n))
steps, where n is the number of nodes in the network.

This paper presents a formal specification of a P2P network that uses
the Kademlia DHT in the Maude language. We use sockets to connect
different Maude instances and create a P2P network where the Kademlia
protocol can be used, hence providing an implementation of the protocol
which is correct by design. Then, we show how to abstract this system in
order to analyze it by using Real-Time Maude. The model is fully para-
meterized regarding the time taken by the different actions to facilitate
the analysis of various scenarios. Finally, we use time-bounded model-
checking and exhaustive search to prove properties of the protocol over
different scenarios.

Keywords: Kademlia · Distributed specification · Formal analysis ·
Maude · Real-Time Maude

1 Introduction

Kademlia based distributed hash tables (DHTs) [11] are an essential factor in
the implementation of P2P networks since the Kad DHT was incorporated in the
eMule client [5]. Among the large number of DHTs studied through theoretical
simulations and analysis, such as Chord [25], CAN [21], or Pastry [24], Kademlia
is the one that has been chosen for implementation of file sharing systems over
large networks due to its relative simplicity. Some of its advantages are that
there is only one routing algorithm from start to finish; it prevents a number of
attacks by preferring long-standing nodes over new ones in the routing tables;
and it allows nodes to learn about the network simply by participating in it.
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DHTs are mainly used for file sharing applications and decentralized storage
systems, due to its lack of security. On the one hand, the large number of users
involved in the systems and the absence of a central authority certifying the trust
of the participants suggests that the system must be able to operate even if some
of them are malicious. On the other hand, the dynamics of the system, mainly
the arrival and departure of nodes in P2P networks, and the continuous upload
of new data, requires a precise information which is challenging to acquire. Most
of the existing studies evaluate these problems experimentally. There is a lack of
formal descriptions, even though they have obtained good results in the analysis
of other distributed networks and protocols.

This paper presents a distributed specification in Maude [6], a formal specifi-
cation language based on rewriting logic, of the behavior of a P2P network that
uses the Kademlia DHT. Rewriting logic [13] is a unified model for concurrency
in which several well-known models of concurrent and distributed systems can
be represented. The specification language Maude supports both equational and
rewriting logic computations. It can be used to specify in a natural way a wide
range of software models and systems and, since (most of) the specifications are
directly executable, Maude can be used to prototype those systems. Moreover,
the Maude system includes a series of tools for formally analyzing the specifica-
tions. Since version 2.2 Maude supports communication with external objects by
means of TCP sockets, which allows for the implementation of real distributed
applications. Real-Time Maude [19] is a natural extension of the Maude lan-
guage that supports the specification and analysis of real-time systems, including
object-oriented distributed ones. It supports a wide spectrum of formal methods,
including: executable specification, symbolic simulation, breadth-first search for
failures of safety properties in infinite-state systems, and linear temporal logic
model checking of time-bounded LTL formulas. Real-Time Maude strengthens
that analyzing power by allowing to specify sometimes crucial timing aspects. It
has been used, for example, to specify the Enhanced Interior Gateway Routing
Protocol (EIGRP) [22], embedded systems [17], and the AER/NCA active net-
work protocol [16]. Moreover, analysis of real-time systems using Maude sockets,
and thus requiring a special treatment for them, has been studied [1,26]. While
the algebraic representation of the distribution used in these works follows, as
well as our work, the approach presented in [22], the way used to relate logical
and physical time allows for a more precise and formal analysis than the one
used here, allowing the system to synchronize only when needed.

Our distributed specification of the Kademlia protocol has been implemented
on top of the routing protocol described in [22] and uses an external Java clock.
Since we formally specify the semantics of the protocol, we obtain a correct by
design application. Moreover, this distributed system can be simulated and ana-
lyzed in Maude if a “centralized” version is provided. This version is obtained
by using: (i) an algebraic specification of the sockets provided by Maude; (ii) an
abstraction of the underlying routing protocol, which allows the analysis tools to
focus on the properties; and (iii) Real-time Maude, as explained above. That is,
we abstract some implementation details but leave the protocol implementation
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unmodified, which allows us to use the centralized protocol to prove proper-
ties that must also hold in the distributed version. The analyses that can be
performed on the protocol include the simulation of the system to study, for
example, how its properties change when its parameters, like the redundancy
constant, are modified; examine the reaction of the system to different attacks;
and check properties such as that any published file can be found or that files
remain accessible even if their publishing peers become offline. Actually, we
present different levels of abstraction, which allows us to focus on the properties
we want to prove while discarding the unnecessary implementation details.

Our specification is, to the best of our knowledge, the first formal description
of a Kademlia DHT. The use of formal methods to describe the behavior of
the Kademlia DHT may help to understand the informal description of the
protocol and the algorithm given in [11], and to identify areas that are not
covered in the description and are being resolved in different ways in different
implementations. In particular, the Maude language gives us the opportunity of
executing the distributed specification taking into account the time aspects of the
protocol in order to detect weak points in the protocol that would be interesting
to study. Then using the centralized model that mirrors the distributed one,
we can analyze all possible executions of the system, either by searching in the
execution tree (which is in fact represented as a graph for efficiency reasons) or
by using model checking techniques.

The rest of the paper is structured as follows: Sect. 2 presents the Kademlia
protocol and how to specify generic distributed systems in Maude, as well as
some related work. Section 3 describes the distributed specification in Maude of
this protocol. Section 4 shows how the distributed system can be represented in
one single term, while Sect. 5 describes how to simulate and analyze it. Finally,
Sect. 6 concludes and presents some future work.

2 Preliminaries and Related Work

We present in this section the basic notions about Maude and Kademlia and the
related work.

2.1 Maude

In Maude [6] the state of a system is formally specified as an algebraic data
type by means of an equational specification. In this kind of specification we
can define new types (by means of keyword sort(s)); subtype relations between
types (subsort); operators (op) for building values of these types; and equations
(eq) that identify terms built with these operators. We can distinguish between
Core Maude [6, PartI], which is implemented in C++ and provides the basic
features, and Full Maude [6, PartII], an extension of Maude implemented in
Maude itself and used as basis for further extensions, as we explain below.
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The dynamic behavior of such a distributed system is then specified by
rewrite rules of the form t −→ t′ if C, that describe the local, concurrent
transitions of the system. That is, when a part of a system matches the pattern
t and satisfies the condition C, it can be transformed into the corresponding
instance of the pattern t′.

In object-oriented specifications, classes are declared with the syntax class
C | a1:S1,. . ., an:Sn, where C is the class name, ai is an attribute identifier,
and Si is the sort of the values this attribute can have, for 1 ≤ i ≤ n. An
object is represented as a term < O : C | a1 : v1, . . ., an : vn > where O
is the object’s name, belonging to a set Oid of object identifiers, and the vi’s are
the current values of its attributes. Messages are defined by the user for each
application (introduced with syntax msg).

In Maude, the state of a concurrent, object-oriented system is called a config-
uration. It has the structure of a multiset made up of objects and messages that
evolves by concurrent rewriting. The rewrite rules specify the behavior associated
with the messages. By convention, the only object attributes made explicit in a
rule are those relevant for that rule. We use Full Maude’s object-oriented notation
and conventions [6] throughout the whole paper; however, only the centralized
specification is specified in Full Maude (which is required by Real-Time Maude),
while the actual implementation of the distributed protocol is in Core Maude
because Full Maude does not support external objects. The complete Maude code
can be found at http://maude.sip.ucm.es/kademlia.

In [22], we described a methodology to implement distributed applications in
such a way that the distributed behavior remains transparent to the user by using
a routing protocol, the Enhanced Interior Gateway Routing Protocol (EIGRP).
Figure 1 presents the architecture proposed in that paper, where the lower layer
provides mechanisms to translate Maude messages from and to String (Maude
sockets can only transmit Strings); to do so, the user must instantiate a theory
requiring a (meta-represented) module with the syntax of all the transmitted
messages. The intermediate layer, EIGRP, provides a message of the form to : ,
with the first argument an object identifier (the addressee of the message) and
the second one a term of sort TravelingContents, that must be defined in
each specific application. We have slightly modified this layer to share the tick!
message obtained from the Java server in charge of dealing with time.1 This layer
provides a fault-tolerant and dynamic architecture where nodes may join and
leave at any moment, and where nodes are always reached by using the shortest
path, thus allowing us to implement realistic systems. Finally, the upper layer is
the application one, which in our case corresponds to Kademlia. It relies on the
lower layers to deliver the messages and focus on its specific tasks, just like the
real Kademlia protocol.

1 In the standard implementation, tick! messages are introduced into the configura-
tion each second. However, the time can be customized to get these messages in the
time span defined by the user.

http://maude.sip.ucm.es/kademlia
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Kademlia

to : / tick!

EIGRP Protocol

send

Message/String conversionBasic intrastructure

Fig. 1. Layers for distributed applications

2.2 Kademlia

Kademlia is a peer-to-peer (P2P) distributed hash table used by the peers to
access files shared by other peers. In Kademlia both peers and files are identified
with n-bit quantities, computed by a hash function. Information of shared files is
kept in the peers with an identifier close to the file identifier, where the notion of
distance between two identifiers is defined as the bitwise exclusive or of the n-bit
quantities. Then, the lookup algorithm which is based on locating successively
closer nodes to any desired key has O(log n) complexity, where n is the number
of nodes in the network.

In Kademlia, every node keeps the following contact information: IP address,
UDP port, and node identifier, for nodes of distance between 2i and 2i+1 from
itself, for i = 0, . . . , n and n the identifier length. In the Kademlia paper [11]
these lists, called k-buckets, have at most k elements, where k is chosen such
that any given k nodes are very unlikely to fail within an hour of each other.
k-buckets are kept sorted by the time they were last seen. When a node receives
any message (request or reply) from another node, it updates the appropriate
k-bucket for the sender’s node identifier. If the sender node exists, it is moved to
the tail of the list. If it does not exist and there is free space in the appropriate
k-bucket it is inserted at the tail of the list. Otherwise, the k-bucket has not free
space, the node at the head of the list is contacted and if it fails to respond it is
removed from the list and the new contact is added at the tail. In the case the
node at the head of the list responds, it is moved to the tail, and the new node
is discarded. This policy gives preference to old contacts, since the longer a node
has been up, the more likely it is to remain up another hour and also prevents
attacks by preferring long-standing nodes.

k-buckets are organized in a binary tree called the routing table. Each k-
bucket is identified by the common prefix of the identifiers it contains. Internal
tree nodes are the common prefix of the k-buckets, while the leaves are the
k-buckets. Thus, each k-bucket covers some range of the identifier space, and
together the k-buckets cover the entire identifier space with no overlap. Figure 2
shows a routing table for node 00000000 and a k-bucket of length 5. Identifiers
have 8 bits.
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Fig. 2. A routing table example for node 00000000

The Kademlia protocol consists of four Remote Procedure Calls (RPCs):

– PING checks whether a node is online.
– STORE instructs a node to store a file identifier together with the contact of

the node that shares the file to publish it to other nodes.
– FIND-NODE takes an identifier as argument and the recipient returns the con-

tacts of the k nodes it knows that are closest to the target identifier.
– FIND-VALUE takes an identifier as argument. If the recipient has information

about the argument, it returns the contact of the node that shares the file;
otherwise, it returns a list of the k contacts it knows that are closest to the
target.

In the following we summarize the dynamics of looking for a value and pub-
lishing a shared file from the Kademlia paper [11].

Looking for a Value. To find a file identifier, a node starts by performing a
lookup to find the k nodes with the closest identifiers to the file identifier. First,
the node sends a FIND-VALUE RPC to the α nodes it knows with an identifier
closer to the file identifier, where α is a system concurrency parameter. As nodes
reply, the initiator sends new FIND-VALUE RPCs to nodes it has learned about
from previous RPCs, maintaining α active RPCs. Nodes that fail to respond
quickly are not considered. If a round of FIND-VALUE RPCs fails to return a node
any closer than the closest one already seen, the initiator resends the FIND-VALUE
to all of the k closest nodes it has not queried yet. The process terminates when
any node returns the value or when the peer that started the query has obtained
the responses from its k closest nodes.

Publishing a Shared File. Publishing is performed automatically whenever a file
needs it. To maintain persistence of the data, files are published by the node
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that shares them from time to time. Those nodes that have information about
the whereabouts of a file publish it more frequently than the node sharing it.

To share a file, a peer locates the k closest nodes to the key, as it is done in
the looking for a value process, although it uses the FIND-NODE RPC. Once it
has located the k closest nodes, it sends them a STORE RPC.

2.3 Related Work

One of the first proposals about using formal methods for analyzing the DHT
behavior is due to Borgströn et al., who prove in [4] the correctness of the lookup
operation of the DHT-based DKS system, developed in the context of the EU-
project [9], for a static model of the network using value-passing CCS. Besides,
Bakhshi and Gurov give in [3] a formal verification of Chord’s stabilization algo-
rithm using the π-calculus. Lately Lu, Merz, and Weidenbach [10,12] have mod-
eled Pastry’s core routing algorithms in the specification language TLA+. The
model has been validated using the TLC model checker and they have proved
the CorrectDelivery safety property stating that there can be only one node
responsible for any key at any time using the interactive theorem prover TLAPS
of TLA. A different approach is used by P. Zave in [27] to analyze correctness
of the Chord DHT protocol. She uses the Alloy language and checks properties
with the Alloy analyzer. Properties are expressed as invariants of the system and
proved by an exhaustive enumeration of instances over a bounded domain. The
analysis revealed some flaws in the original description of the algorithm, which
allowed the author to propose some improvements.

Regarding the Kademlia DHT there is a previous work of the first author [20]
focused on the Kademlia and the Kad routing tables. The paper highlights the
main differences between the Kademlia proposal [11] and its first real implemen-
tation in the eMule network. Both routing tables were specified in the Maude
formal specification language. The network specification presented in this paper
uses the Kademlia routing table. The specification is designed in a modular way
to support other Kademlia style routing tables, like the one from Kad. This will
allow us to compare the behavior of different systems only changing the routing
table specification.

3 Protocol Specification

We present in this section the main details of the distributed implementation of
the Kademlia protocol. The Kademlia network is modeled as a Maude configu-
ration of objects and messages, where the objects represent the network peers
and the messages represent the protocol RPCs.

3.1 Peers

Peers in our specification are objects of class Peer, defined as follows:
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class Peer | RT : RoutingTable, Files : TFileTable,

Publish : TPublishFile, SearchFiles : TSearchFile,

SearchList : TemporaryList .

which indicates that the class Peer has the attributes RT, of sort RoutingTable;
Files, of sort TFileTable; Publish, of sort TPublishFile; SearchFiles, of
sort TSearchFile; and SearchList, of sort TemporaryList These attributes
are defined as follows:

– RT is a list that keeps the information of the routing table.
– Files is a table that keeps the information of the files the peer is responsible

for publishing. It includes the file identifier, the identification of the peer that
shares the file, a time for republishing the file and keep it alive, and a time to
remove the file from the table.

– Publish is a table that keeps the information of the files shared by the peer.
The information includes the file identifier, the file location in the peer, and a
time for republishing the file. This time is greater than the time for republish-
ing of the Files table and prevents the information in the Files table from
being removed.

– SearchFiles is a table that keeps the files a peer is looking for. The informa-
tion includes the file identifier and a waiting time to proceed with the search.
This time is used when the file is not found and it should be researched later.

– SearchList is an auxiliary list used in the search and publish processes to
keep the information of the nodes that have been already contacted by the
searcher/publisher and the state in which the searching/publishing process is.
As the searcher/publisher finds out new closer nodes to the file identifier, it
stores them in this file, and starts sending them messages.

Following is an example of an object of class Peer. We identify the peers
by 6-bit quantities, represented by its decimal value to improve readability in
the examples presented in this paper. This size provides us with enough nodes
for our example network. However the specification may use any n-bit quantity
or the complete Kademlia contact information, since it is parameterized with
respect to the peers identification.

< peer(c(48)): Peer |

RT : (empty-bucket ! c(14)! c(0)! c(16))!! (empty-bucket ! c(33))!!

(empty-bucket ! c(60)! c(58)! c(56))!!

(empty-bucket ! c(50)) +

c(8)+ PING(c(48),c(14),5,1)+ c(60)c(50) + 4,

Files : < 32 & c(48);; 19 > # < 38 & c(0);; 4 > # < 54 & c(0);; 8 >,

Publish : < 22 &"File4"@ 25 > # < 32 &"File5"@ 26 >,

SearchFiles : < 12 &"File7"; 1 >,

SearchList : temp-empty >

The routing table has four buckets, the first one with the contacts which
have its first bit set to 0 (values between 0 and 31), the second with the contacts
with its first two bits set to 10 (values between 32 and 47), and so on. The
bucket dimension, which is also a parameter of the specification, is set to 3 in
our example. We observe that the first and the third buckets are full. In the



532 I. Pita and A. Riesco

snapshot shown in the example, the peer has had knowledge of a new contact
c(8), but since it should be located in the first bucket, which is full, the peer
has sent a PING message to the first contact in the bucket, to verify whether it is
still alive. The peer will wait four more time units for the reply before it decides
that the contact is not alive and removes the PING message. Meanwhile it has
had knowledge of two more contacts c(60) and c(50), which are waiting to be
processed. See [20] for a detailed explanation of the routing table specification.

The peer keeps information about three files which has been published by
other peers in the Files attribute. These are file 32, which has been published
by peer c(48), and files 38 and 54, published by the peer c(0). These files are
kept in this peer because it is one of the closest nodes to the file identification.
We can choose the redundancy parameter in our specification, in the example it
is set to three. The time parameter that appears at the end of each file represents
the time remaining for republishing the files to keep them up to date. Each time
a peer receives a STORE message for a node that it is already keeping it, updates
this time value to the time chosen in the specification for republishing. In this
way Kademlia prevents all the redundant peers that keep a file from republishing
it at the same time.

The Publish attribute presents two files upload to the network by the peer.
The first parameter is the file identifier, next is the file name, and the last
parameter is the time remaining for republishing the files to keep them alive.

We observe in the SearchFiles attribute the identifier of a file that the
peer wants to search for. Again the last parameter is the time remaining for
the process to take place. The searched files are removed from the list when the
search process succeed, if it fails the search process is repeated after some time.

Finally, the searchList attribute is a list of contacts used in the publish
and look-for processes to find the closest nodes to the file identification. In our
example, it is empty since the peer is not performing any of these tasks.

3.2 RPCs

There is a Maude message for each RPC defined in the Kademlia protocol. For
example, the FIND-VALUE RPC and its two possible replys are defined as follows:

op FIND-VALUE : MyContact BitString -> TravelingContents [ctor] .

op FIND-VALUE-REPLY1 : MyContact BitString

Set{vCONTACT}{vContact-BitString} -> TravelingContents [ctor] .

op FIND-VALUE-REPLY2 : MyContact BitString MyContact [ctor] .

Note that terms of this form will be used to form messages with the operator
to : described in Sect. 2.1, where the first parameter is the identifier of the
addressee. The first parameter of these operators identifies the peer sending the
message, while the second one represents the key the sender is looking for. The
reply has also an additional parameter that keeps a set of the k nodes the peer
knows that are the closest ones to the target, where k is the bucket dimension
or the contact of the owner of the file.
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For example, a message from node c(14) to node c(48) requesting for infor-
mation about file 54 has the form:

to peer(c(48)) : FIND-VALUE(c(14),54) .

this message will be in the Maude configuration of nodes and messages.
The reply message sended by node c(48) to node c(14) if the node does not

have information about file 54 in its Files attribute list, which is not the case
in our example, will be:

to peer(c(14)) : FIND-VALUE-REPLY1(c(48),54,c(56),c(58),c(50)) .

since the closest nodes to file 54 in the routing table of node c(48) are the nodes
c(56), c(58) and c(50). The order in which these contacts are returned is not
important, since they will be ordered by their distance to the given file in the
node that ask for them.

Since node c(48) is one of the closest nodes in the network to file 54 in our
example, and it has this file in its File attribute list, the message that it will
return contains the contact of the owner of the file, which is node c(0).

to peer(c(14)) : FIND-VALUE-REPLY2(c(48),54,c(0)) .

3.3 Process Specification in Maude

The specification of the different processes follows their definition. For exam-
ple, the searching process starts automatically when there are identifiers in the
SearchFiles attribute of some connected peer with time for searching equal
to one. A greater value indicates that the file has already been searched for, it
was not found, and now it is waiting for repeating the search. When the search
starts, the auxiliary list SearchList is filled with the closest nodes the searcher
has in its routing table, and the time of this file in the searchFiles table is
set to INF. It will remain with this value until the search process ends. The
number of closest nodes used to initialize the auxiliary list is a parameter of the
specification. The original Kademlia paper [11] indicates that it is a system wide
concurrency parameter, such as 3. Notice that in the implementation the file is
ordered by the distance of the contact to the file identification. In our example,
when node c(48) starts searching file 12 we have:

< peer(c(48)): Peer |

RT : (empty-bucket ! c(14)! c(0)! c(16)) !! (empty-bucket ! c(33)) !!

(empty-bucket ! c(60)! c(58)! c(56))!! (empty-bucket ! c(50)) +

c(8)+ PING(c(48),c(14),5,1)+ c(60)c(50) + 4,

Files : < 32 & c(48) ;;19 > # < 38 & c(0) ;;4 > # < 54 & c(0) ;;8 >,

Publish : < 22 &"File4"@ 25 > # < 32 &"File5"@ 26 >,

SearchFiles : < 12 &"File7"; INF >,

SearchList : < c(14),2,20,0 > < c(16),4,20,0 > < c(0),12,20,0 >

where the first value of the nodes in the SearchList is the contact, the second
value is the distance from the contact to the searched file, the third is the time
that the node will remain in the list if no response is received from a sended
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RPC, and the fourth value is a flag that indicates if the contact has already sent
the FIND-VALUE RPC, has received the response, or has sent a STORE message
and is waiting a response.

The searching process continues by sending FIND-VALUE RPCs to the first
nodes in the list to find closer nodes to the file identifier. The process is controlled
by the rewrite rule:

crl [lookfor-file21] :

< peer(SENDER) : Peer | SearchFiles : < I1 & (S1 ; INF) > # SF,

SearchList : SL >

=> < peer(SENDER) : Peer | SearchFiles : < I1 & (S1 ; INF) > # SF,

SearchList : set-flag(Tr,SrchListRmve,SL) >

to peer(Tr) : FIND-VALUE(SENDER, I1)

if not all-sended(SL) /\ Tr := first-not-send(SL) /\

messages-in-process(SL) < ParallelSearchRPC /\

number-nodes-reply(SL) < kSearched .

which states that the RPC is only sent if the number of parallel messages is
less than the given constant, ParallelSearchRPC, the peer in charge of the
search has not received response yet from a certain number of peers given by the
kSearched constant, and there are nodes in the search list that have not been
contacted yet. Once the RPC is sent, a flag is activated in the search list that
marks this node as in process with set-flag.

Following our example, when peer c(48) sends the first RPCs, the configu-
ration will have among other peers and messages the following:

to peer(c(14)) : FIND-VALUE(c(48),12)

to peer(c(16)) : FIND-VALUE(c(48),12)

to peer(c(0)) : FIND-VALUE(c(48),12)

< peer(c(48)) : Peer |

RT :(empty-bucket ! c(14) ! c(0) ! c(16)) !! (empty-bucket ! c(33))!!

(empty-bucket ! c(60) ! c(58) ! c(56)) !!

(empty-bucket ! c(50)) +

c(8) + PING(c(48), c(14),5,1) + c(60) c(50) + 4,

Files : < 32 & c(48);; 19 > # < 38 & c(0);; 4 > # < 54 & c(0);; 8 >,

Publish : < 22 &"File4"@ 25 > # < 32 &"File5"@ 26 >,

SearchFiles : < 12 &"File7" ; INF >,

SearchList : < c(14), 2, 20, 1 > < c(16), 4, 20, 1 >

< c(0), 12, 20, 1 >

The receivers of the FIND-VALUE messages may find the file the searcher is
looking for in its table or it may return the closest nodes it knows about. In
the first case, it sends a FIND-VALUE-REPLY2 message to the searcher including
the node identifier of the peer that shares the file. When the searcher receives
this reply the process finishes by sending a FILE-FOUND message and the file is
removed from its searching table. The FILE-FOUND message is a ghost message
that remains in the configuration to show the files that have been searched and
found, hence easing the description of some properties, that just check whether
this message appears in the configuration. In the second case, the receiver sends
a FIND-VALUE-REPLY1 message to the searcher including the closest nodes to
the file identifier it knows about. When the searcher receives this message it
changes its search list, adding the nodes ordered by the distance to the objective.
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Only nodes closer than the one which proposes them are added. When the full
list is traversed, a flag is activated to mark this node as done in the search
list. Additionally, the searcher routing table is updated with the move-to-tail
operation that puts the identifier of the message sender first in the list, so that
it will not be removed from the routing table, as it is the last peer the searcher
knows it is alive. The searching process continues by sending new FIND-VALUE
messages to the new nodes in the SearchList that have not been asked yet, and
are closer to the searched file identifier than the nodes that have already answer
the RPC. If the process does not find the file in any of the contacted nodes, it
does not remove the file from the SearchFile table and initializes its time for a
new search.

4 Centralized Simulation

We use Real-Time Maude [19] to analyze our system. Real-Time Maude is an
extension of Maude that allows to perform time-bound analyses such as breadth-
first search or model checking. However, Real-Time Maude does not support
distributed applications, so in order to use it we need to “centralize” our config-
uration. We discuss below how to achieve this and how to improve (or abstract)
this representation. In this case, we distinguish between “architecture abstrac-
tions,” which simplify the state by removing the transitions not related to the
properties we want to verify, and “formal abstractions,” which refers to estab-
lished techniques that allow to improve the proofs by different means. It is worth
noting that this transformation does not introduce an important overhead on
the complexity of the specification: while the distributed implementation of the
protocol has around 3100 lines of code, the centralized one has 3300 lines of
code, approximately.

4.1 First Architecture Abstraction

As explained above, in order to use the analysis features provided by Real-
Time Maude, we need to represent the distributed configuration described in
the previous section as a single term. This centralized specification must fulfill
the following requirements:

– The underlying architecture must be simulated. This simulation includes not
only redirecting the messages, but also possible delays and errors.

– Nodes can connect and disconnect during the process.

In order to solve the first issue, we provide a class Process with a single
attribute conf that keeps the configurations in different locations2 separated
from each other:

class Process | conf : Configuration .

2 We will use the word location to denote the different Maude instances appearing in
the distributed system.
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Besides “separating” the processes, we must provide an algebraic specification
of the built-in sockets. In our case, we use an object of class Socket for each two
connected locations in the distributed (real) protocol. This class has attributes
sideA and sideB, indicating the two sides of the socket; delay, which stores the
delay associated to this socket; and listA and listB, the lists of DelayedMsg
(pairs of messages and time) sent to sideA and sideB, respectively:

class Socket | sideA : Oid, sideB : Oid, delay : Time,

listA : List{DelayedMsg}, listB : List{DelayedMsg} .

In this way, we can simulate the delay due to the network and specify the
architecture with only four rules, two for moving messages into the socket and
two more for putting the messages into the target configuration, depending of
the side of the socket. For example, the rule moving a message from the list
to the side of the socket indicated by sideA is specified as follows, where it is
important to note that the time of the element being moved has reached 0:

rl [receive1] :

< S : Socket | sideA : O, listA : dl(to O’ : TC, 0) DML >

< O : Process | conf : CONF >

=> < S : Socket | listA : DML >

< O : Process | conf : (to O’ : TC CONF) > .

In order to simulate errors and disconnections in the peers we have added
two attributes to the Peer class: Life and Reconnect, containing values of sort
TimeInf. Basically, when the Life attribute reaches the value 0, it is set to INF,
the peer cannot receive nor send messages, and the Reconnect attribute is set
to a random value. Similarly, when Reconnect reaches 0, it is set to INF, Life
is set to a random time, and the peer works again.

4.2 Second Architecture Abstraction

Note that the abstraction in the previous section provides an exact correspon-
dence between the distributed system and the centralized one. However, it is
possible that most of the properties are either independent of the underlying
architecture, independent of the disconnections from the peer, or both. For this
reason, we can define more refined abstractions that omit some of these aspects.
To abstract the architecture we just use a multiset of peers and messages, so
messages sent by a peer reach the addressee immediately; to abstract the con-
nections and disconnections we just remove the Life and Reconnect attributes
introduced above and the associated rules, hence preventing the nodes from
unwanted disconnections. In this way we obtain two main advantages: (i) the
analysis is optimized, since the number of reachable states is greatly reduced;
and (ii) it is easier to understand the results and trace back the causes.

4.3 Formal Abstractions

Beyond simplifying the state with the abstractions above, we can also apply
other techniques to improve our proofs. The state space reduction technique



Specifying and Analyzing the Kademlia Protocol in Maude 537

in [8] allows us to turn rules (which generates transitions and hence new states
during the search and model checking processes) into equations given they ful-
fill some properties: the specification thus obtained is still a correct executable
Maude specification (that is, it is terminating, confluent, and coherent; see [6]
for details) and the property is invisible for the rules transformed into equations.
This invisibility concept informally requires the rules to preserve the satisfiabil-
ity of the atomic predicates involved in the formulas being proved, and is also
the basis for our own abstractions. Another interesting way of reducing the state
space can be found in [18].

Regarding infinite systems, an important abstraction can be found in [14].
This abstraction turns an infinite-state system into a finite one by collapsing
states by means of equations. This kind of abstraction was not necessary in our
case, since our system becomes finite by setting a bound in the execution time.

5 Analysis

We can use now Real-Time Maude in two different ways: to execute the cen-
tralized specification and to verify different properties. The former is achieved
by using the Maude commands trew and tfrew, that execute the system (the
second one applies the rules in a fair way) given a bound in the time; with find
earliest and find latest, that allow the user to check the paths that lead to
the first and last (in terms of time) state fulfilling a given property; and with
tsearch, that checks whether a given state is reachable in the given time. The
latter is accomplished by using the tsearch command to check that an invariant
holds; by looking for the negation of the invariant we can examine whether there
is a reachable state that violates it. The specification can also be analyzed by
using timed model checking with the command mc, that allows the user to state
linear temporal logic formulas with a bound in the time.

Note that, before starting the analysis, we need to relate “real-time,” as
defined by our external Java clock in the distributed specification, and the “real-
time” defined by Real-Time Maude. Our distributed specification contains a
number of timeouts, defined by natural numbers, and we ask to the Java server
to wait this number of seconds. We just mimic this strategy in the centralized
specification, using natural numbers (or a constant INF standing for infinite time)
and we ask Real-Time Maude to wait the maximal possible amount.

We have verified our system with networks form 6 to 20 nodes. We abstract
the concrete connections and assume total network connectivity. The life time of
each node is randomly chosen, although we use an upper bound life constant to
control the ratio of alive nodes. We change the peers that share and search files,
as well as the number and time of published and searched files. The analysis of
networks with hundreds of nodes using a model checker requires the use of some
of the abstraction techniques explained in Sect. 4.3 and it is left as future work.

We can simulate how different attacks may affect a network. For example, in
the node insertion attack, an attacking peer intercepts a search requests for a
file, which are answered with bogus information [15]. The attacking peer creates
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its own identifier such that it matches the hash value of the file. Then the search
requests are routed to the attacking peer, that may return its own file instead
of routing the search to the original one. Since the Kademlia network sends the
request not only to the closest peer the searcher may find the original file. The
find earliest command can be used to study different network parameters
and check whether this attack is effective. We study if a file may be found in a
node that is not the closest one to the file identifier, with the following command:

Maude> (find earliest init =>* {< O : Process | conf :

(to O’ : FILE-FOUND(SENDER, N2) CONF) > CONF’} .)

Note that, since the FILE-FOUND message returns in its first parameter the peer
that is publishing the file, we only need to check whether the peer identifier is
the closest to the file identifier.

From the model-checking point of view, there are several properties that can
be proved over this protocol. The basic property all P2P networks should fulfill
is that if a peer looks for a file that is published somewhere, the peer even-
tually finds it. We define three propositions (of sort Prop, imported from the
TIMED-MODEL-CHECKER module defined in Real-Time Maude) over the configu-
ration expressing that a peer publishes a file; a peer is looking for that file; and
the peer that searches the file finds it. Note that, as in the command above,
all the properties are defined taking into account that the configurations are
wrapped into objects of class Process, that may contain other objects and mes-
sages on the conf attribute (hence the CONF variable used there) and that other
processes may also appear in the initial configuration (hence the CONF’ variable
used at the Process level):

op PublishAFile : Nat -> Prop [ctor] .

eq {< O : Process | conf : (< O’ : Peer | Publish :

< I1 & (S1 @ TC4) > # PF > CONF) > CONF’} |= PublishAFile(I1) = true .

op SearchAFile : MyContact Nat -> Prop [ctor] .

eq {< O : Process | conf : (< peer(Searcher) : Peer | SearchFiles :

< I1 & (S1 ; TC3) > # SF > CONF) > CONF’} |=

SearchAFile(Searcher,I1) = true .

op FindAFile : MyContact Nat -> Prop [ctor] .

eq {< O : Process | conf : (to peer(Searcher) : FILE-FOUND(I2,I1)

CONF) > CONF’} |= FindAFile(Searcher,I1) = true .

Assuming an initial configuration where a peer publishes the file 54, that is
searched by peer(c(33)), we can use the following command to check that the
property holds:

Maude> (mc init’ |=t PublishAFile(54) /\ SearchAFile(c(33),54) =>

<> FindAFile(c(33),54) in time < 20 .)

Result Bool : true

Another basic property is that once a file is published it remains published
in some peers unless the publisher is disconnected. We can define the properties
FilePublished, stating that a peer publishes a file, and PeerOffline, indicating
that a peer is offline, similarly to the properties above and use the following
command to check the property:
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Maude> (mc init |=t (<> [] (FilePublished(53,c(0))) U PeerOffline(c(0))

in time < 40 .)

Result ModelCheckResult : counterexample(...)

In a network where peer(c(0)) has published file 53. Notice that the model
checker finds a counterexample. The reason is that all the peers that share the
file may be offline at the same time. The property should be reformulated, stating
that if the file is published it will always be published again or the publisher will
be disconnected:

Maude> (mc init |=t ([] <> (FilePublished(53,c(0)) \/ PeerOffline(c(0)))

in time < 40 .)

Result Bool : true

6 Conclusion and Ongoing Work

We have presented in this paper a distributed implementation of the Kademlia protocol
in Maude. This distributed system uses sockets to connect different Maude instances
and, moreover, to connect each one of these instances to a Java server that takes care
of the time. It can be used to share files (only text files in the current specification)
using this protocol, allowing peers to connect and disconnect in a dynamic way, adding
and searching for new files. Moreover, we also provide a centralized specification of the
system, which abstracts most of the details of the underlying architecture to focus on
the Kademlia protocol. This centralized specification allows us to simulate and analyze
the system using Real-Time Maude to represent the real time implemented in Java in
the distributed implementation of the protocol. This centralized implementation of the
protocol just mapped real-time to natural numbers. Although this “time sampling”
is usual, the relation between physical time and logic time can be refined further. For
example, the paper [1], which describes a theory for the orchestration of service-oriented
solutions, or [26], which presents a theory for medical devices, provide a much more
refined relation, taking into account small deviations due to hardware.

As future work we plan to use the narrowing techniques implemented in Maude
[7] to analyze the Kademlia DHT protocol. In this way, we could apply the analyses
described in recent works (see e.g. [2,23]) to our system and check whether an error
state is reachable from a generic state (a state with variables).

Another line of research is to compare the performance of the routing tables under
different parameters, like the bucket dimension or the concurrency parameters used in
the node lookup procedure. The comparison can also be done for the different variants
of the routing tables taking advantage of the fact that the specification is parametric
on the routing table. We also plan to study more complex properties that could apply
under other scenarios.
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17. Ölveczky, P.C.: Formal model engineering for embedded systems using Real-Time
Maude. In: Durán, F., Rusu, V., (eds.) Proceedings of the 2nd International Work-
shop on Algebraic Methods in Model-based Software Engineering, AMMSE 2011,
EPTCS, vol. 56, pp. 3–13 (2011)
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Abstract. This paper deals with runtime enforcement of untimed and
timed properties with uncontrollable events. Runtime enforcement con-
sists in modifying the executions of a running system to ensure their
correctness with respect to a desired property. We introduce a frame-
work that takes as input any regular (timed) property over an alphabet of
events, with some of these events being uncontrollable. An uncontrollable
event cannot be delayed nor intercepted by an enforcement mechanism.
Enforcement mechanisms satisfy important properties, namely sound-
ness and compliance - meaning that enforcement mechanisms output
correct executions that are close to the input execution. We discuss the
conditions for a property to be enforceable with uncontrollable events,
and we define enforcement mechanisms that modify executions to obtain
a correct output, as soon as possible. Moreover, we synthesise sound and
compliant descriptions of runtime enforcement mechanisms at two levels
of abstraction to facilitate their design and implementation.

1 Introduction

Verifying a user-provided specification at runtime consists in running a mechanism
that assigns verdicts to a sequence of events produced by an instrumented sys-
tem w.r.t. a property formalizing the specification. This paper focuses on runtime
enforcement (cf. [3,12,13,15,21]) which goes beyond pure verification at runtime
and studies how to react to a violation of specifications. In runtime enforcement,
an enforcement mechanism (EM) takes a (possibly incorrect) execution sequence
as input, and outputs a new sequence. Enforcement mechanisms should be sound
and transparent, meaning that the output should satisfy the property under con-
sideration and should be as close as possible to the input. When dealing with timed
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properties, EMs can act as delayers over the input sequence of events [17–19]. That
is, EMs buffer input events for some time and then release them in such a way that
the output sequence of events satisfies the property.

Motivations. In this paper, we focus on online enforcement of properties with
uncontrollable events. Introducing uncontrollable events is a step towards more
realistic runtime enforcement. As a matter of fact, uncontrollable events natu-
rally occur in many applications scenarios where the EM has no control over
certain input events. For instance, certain events from the environment may be
out of the scope of the mechanism at hand. This situation arises for instance in
avionic systems where a command of the pilot has consequences on a specific
component. In this domain, it is usual to add control mechanisms to check the
validity of an event on particular points according to observations. For instance,
the “spoiler activation”1 command decided by the pilot is sent by the panel to
a control flight system, and this leads finally to a specific event on the spoilers.
Placing an EM directly on the spoiler permits to avoid incoherent events, accord-
ing to the pilot commands (which are events out of the scope of the EM). In
the timed setting, uncontrollable events may be urgent messages that cannot be
delayed by an enforcement mechanism. Similarly, when a data-dependency exists
between two events (e.g., between a write event that displays a value obtained
from a previous read event), the first read event is somehow uncontrollable as it
cannot be delayed by the enforcement mechanism without preventing the write
event to occur in the monitored program.

Challenges. Considering uncontrollable events in the timed setting induces new
challenges. Indeed, enforcement mechanisms may now receive events that cannot
be buffered and have to be released immediately in output. Since they influence
the satisfaction of the property under scrutiny, delays of controllable events
stored in memory have to be recomputed upon each uncontrollable event. More-
over, the occurrence of such events has to be anticipated, meaning that all possi-
ble sequences of uncontrollable events have to be considered by the enforcement
mechanism. Thus, new enforcement strategies are necessary for both untimed
and timed properties.

Contributions. We introduce a framework for runtime enforcement of regular
untimed and timed properties with uncontrollable events. It turns out that the
usual notion of transparency has to be weakened. As we shall see, the initial order
between uncontrollable and controllable events can change in output, contrary
to what is prescribed by transparency. Thus, we propose to replace transparency
with a new notion, namely compliance, ensuring that the order of controllable
events is maintained while uncontrollable events are output as soon as they
are received. We define a property to be enforceable with uncontrollable events
when it is possible to obtain a sound and compliant enforcement mechanism
for any input sequence. It turns out that a property may not be enforceable

1 The spoiler is a device used to reduce the lift of an aircraft.
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because of certain input sequences. Intuitively, enforceability issues arise because
some sequences of uncontrollable events that lead the property to be violated
cannot be avoided. We give a condition, represented by a property, that indicates
whether soundness is guaranteed by the enforcement monitor or not, depending
on the input given so far. We describe enforcement mechanisms at two levels of
abstraction. The synthesised enforcement mechanisms are sound and compliant
whenever the previously mentioned condition holds.

Outline. Section 2 introduces preliminaries and notations. Sections 3 and 4
present the enforcement framework with uncontrollable events in the untimed
and timed settings, respectively, where enforcement mechanisms are defined at
two levels of abstraction. Section 5 discusses related work. Section 6 presents
conclusions and perspectives.

2 Preliminaries and Notation

Untimed notions. An alphabet is a finite set of symbols. A word over an alphabet
Σ is a sequence over Σ. The set of finite words over Σ is denoted Σ∗. The length
of a finite word w is noted |w|, and the empty word is noted ε. Σ+ stands for
Σ∗ \ {ε}. A language over Σ is any subset L ⊆ Σ∗. The concatenation of two
words w and w′ is noted w.w′ (the dot could sometimes be omitted). A word
w′ is a prefix of a word w, noted w′ � w if there exists a word w′′ such that
w = w′.w′′. The word w′′ is called the residual of w after reading the prefix
w′, noted w′′ = w′−1.w. The word w′′ is then called a suffix of w. Note that
w′.w′′ = w′.w′−1.w = w. These standard definitions are extended to languages
in the natural way. Given a word w and an integer i such that 1 ≤ i ≤ |w|, we
note w(i) the i-th element of w. Given a tuple e = (e1, e2, . . . , en) of size n, for an
integer i such that 1 ≤ i ≤ n, we note Πi the projection on the i-th coordinate,
i.e. Πi(e) = ei. Given a word w ∈ Σ∗ and Σ′ ⊆ Σ, we define the restriction
of w to Σ′, noted w|Σ′ , as the word w′ ∈ Σ′ whose letters are the letters of w
belonging to Σ′ in the same order. Formally, ε|Σ′ = ε and ∀σ ∈ Σ∗,∀a ∈ Σ,
(w.a)|Σ′ = w|Σ′ .a if a ∈ Σ′, and (w.a)|Σ′ = w|Σ′ otherwise.

Automata. An automaton is a tuple 〈Q, q0, Σ,−→, F 〉, where Q is the set of states,
called locations, q0 ∈ Q is the initial location, Σ is the alphabet, −→⊆ Q×Σ×Q is
the transition relation and F ⊆ Q is the set of accepting locations. Any location
in F is called accepting. Whenever there exists (q, a, q′) ∈−→, we note it q

a−→ q′.
Relation −→ is extended to words σ ∈ Σ∗ by noting q

σ.a−−→ q′ whenever there exists
q′′ such that q

σ−→ q′′ and q′′ a−→ q′. Moreover, for q ∈ Q, q
ε−→ q always holds.

An automaton A = 〈Q, q0, Σ,−→, F 〉 is deterministic if ∀q ∈ Q,∀a ∈ Σ, (q a−→
q′ ∧ q

a−→ q′′) =⇒ q′ = q′′. A is complete if ∀q ∈ Q,∀a ∈ Σ,∃q′ ∈ Q, q
a−→ q′.

A word w is accepted by A if there exists q ∈ F such that q0
w−→ q. The language

(i.e. set of all words) accepted by A is noted L(A). A property is a language over
an alphabet Σ. A regular property is a language accepted by an automaton. In
the sequel, we shall assume that a property ϕ is represented by a deterministic
and complete automaton Aϕ.
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Timed languages. Let R≥0 be the set of non-negative real numbers, and Σ a finite
alphabet of actions. An event is a pair (t, a) ∈ R≥0 ×Σ. We define date(t, a) = t
and act(t, a) = a the projections of events on dates and actions respectively.
A timed word over Σ is a word over R≥0 × Σ whose real parts are ascending,
i.e. σ is a timed word if σ ∈ (R≥0 × Σ)∗ and ∀i ∈ [1; |σ| − 1],date(w(i)) ≤
date(w(i + 1)). tw(Σ) denotes the set of timed words over Σ. For a timed word
σ = (t1, a1).(t2, a2) . . . (tn, an) and an integer i such that 1 ≤ i ≤ |σ|, ti is the
time elapsed before action ai occurs. We naturally extend the notions of prefix
and residual to timed words. We note time(σ) = date(σ(|σ|)), and define the
observation of σ at time t as the timed word obs(σ, t) = max�({σ′ | σ′ � σ ∧
time(σ′) ≤ t}). We also define the remainder of the observation of σ at time t as
nobs(σ, t) = (obs(σ, t))−1.σ. The untimed projection of σ is ΠΣ(σ) = a1.a2 . . . an,
it is the sequence of actions of σ with dates ignored. σ delayed by t ∈ R≥0 is
the word noted σ +t t such that t is added to all dates: σ +t t = (t1 + t, a1).(t2 +
t, a2) . . . (t|σ| + t, a|σ|). We also extend the definition of the restriction of σ to
Σ′ ⊆ Σ to timed words, such that ε|Σ′ = ε, and for σ ∈ tw(Σ) and (t, a) such
that σ.(t, a) ∈ tw(Σ), (σ.(t, a))|Σ′ = σ|Σ′ .(t, a) if a ∈ Σ′, and (σ.(t, a))|Σ′ =
σ|Σ′ otherwise. A timed language is any subset of tw(Σ). Moreover, we define
an order on timed words: we say that σ′ delays σ, noted σ �d σ′, whenever
ΠΣ(σ′) � ΠΣ(σ) and ∀i ∈ [1; |σ| − 1],date(σ(i)) ≤ date(σ′(i)). Note that the
order is not the same in the different constraints: σ′ is a prefix of σ, but dates
in σ′ exceed dates in σ. We also define a lexical order �lex on timed words with
identical untimed projections, such that ε�lex ε, and for two words σ and σ′ such
that ΠΣ(σ) = ΠΣ(σ′), and two events (t, a) and (t′, a), (t′, a).σ′ �lex(t, a).σ if
t′ < t ∨ (t = t′ ∧ σ′ �lex σ).

Consider for example the timed word σ = (1, a).(2, b).(3, c).(4, a) over the
alphabet Σ = {a, b, c}. Then, ΠΣ(σ) = a.b.c.a, obs(σ, 3) = (1, a).(2, b).(3, c),
nobs(σ, 3) = (4, a), and if Σ′ = {b, c}, σ|Σ′ = (2, b).(3, c), and for instance
σ �d (1, a).(2, b).(4, c), and σ �lex(1, a).(3, b).(3, c).(3, a).

Timed automata. Let X = {X1,X2, . . . , Xn} be a finite set of clocks. A clock
valuation is a function ν from X to R≥0. The set of clock valuations for the set
of clocks X is noted V(X), i.e., V(X) = {ν | ν : X → R≥0}. We consider the
following operations on valuations: for any valuation ν, ν + δ is the valuation
assigning ν(Xi) + δ to every clock Xi ∈ X; for any subset X ′ ⊆ X, ν[X ′ ← 0] is
the valuation assigning 0 to each clock in X ′, and ν(Xi) to any other clock Xi

not in X ′. G(X) denotes the set of guards consisting of boolean combinations of
simple constraints of the form Xi 	
 c with Xi ∈ X, c ∈ N, and 	
∈ {<,≤,=,≥,
>}. Given g ∈ G(X) and a valuation ν, we write ν |= g when for every simple
constraint Xi 	
 c in g, ν(Xi) 	
 c ≡ true.
Definition 1 (Timed Automaton [1]). A timed automaton (TA) is a tuple
A = 〈L, l0,X, Σ, Δ,G〉, such that L is a set of locations, l0 ∈ L is the initial
location, X is a set of clocks, Σ is a finite set of events, Δ ⊆ L×G(X)×Σ×2X×L
is the transition relation, and G ⊆ L is a set of accepting locations. A transition
(l, g, a,X ′, l′) ∈ Δ is a transition from l to l′, labelled with event a, with guard
defined by g, and with the clocks in X ′ to be reset.
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The semantics of a timed automaton A is a timed transition system [[A]] =
〈Q, q0, Γ, →, FG〉 where Q = L×V(X) is the (infinite) set of states, q0 = (l0, ν0)
is the initial state, with ν0 = ν[X ← 0], FG = G × V(X) is the set of accepting
states, Γ = R≥0 ×Σ is the set of transition labels, each one composed of a delay
and an action. The transition relation →⊆ Q × Γ × Q is a set of transitions

of the form (l, ν)
(δ,a)−−−→ (l′, ν′) with ν′ = (ν + δ)[Y ← 0] whenever there is a

transition (l, g, a, Y, l′) ∈ Δ such that ν + δ |= g, for δ ≥ 0.

A timed automaton A = 〈L, l0,X,Σ,Δ,G〉 is deterministic if for any (l, g1, a, Y1,
l′1) and (l, g2, a, Y2, l

′
2) in Δ, g1 ∧ g2 is unsatisfiable, meaning that only one tran-

sition can be fired at any time. A is complete if for any l ∈ L and any a ∈ Σ,
the disjunction of the guards of all the transitions leaving l and labeled by a is
valid (i.e., it evaluates to true for any clock valuation).

A run ρ from q ∈ Q is a valid sequence of transitions in [[A]] starting from

q, of the form ρ = q
(δ1,a1)−−−−→ q1

(δ2,a2)−−−−→ q2 . . .
(δn,an)−−−−−→ qn. The set of runs from

q0 is noted Run(A) and RunFG
(A) denotes the subset of runs accepted by A,

i.e. ending in a state in FG. The trace of the run ρ previously defined is the
timed word (t1, a1).(t2, a2) . . . (tn, an), with, for 1 ≤ i ≤ n, ti =

∑i
k=1 δk. Thus,

given the trace σ = (t1, a1).(t2, a2) . . . (tn, an) of a run ρ from a state q ∈ Q
to q′ ∈ Q, we can define w = (δ1, a1).(δ2, a2) . . . (δn, an), with δ1 = t1, and
∀i ∈ [2;n], δi = ti − ti−1, and then q

w−→ q′. To ease the notation, we will only
consider traces and note q

σ−→ q′ whenever q
w−→ q′ for the previously defined

w. Note that to concatenate two traces σ1 and σ2, it is needed to delay σ2: the
concatenation σ of σ1 and σ2 is the trace defined as σ = σ1.(σ2 +t time(σ1)).
Thus, if q

σ1−→ q′ σ2−→ q′′, then q
σ−→ q′′.

Timed properties. A regular timed property is a timed language ϕ ⊆ tw(Σ) that
is accepted by a timed automaton. For a timed word σ, we say that σ satisfies
ϕ, noted σ |= ϕ whenever σ ∈ ϕ. A regular timed property is a timed language
accepted by a timed automaton. We only consider deterministic and complete
regular timed properties.

Given an automaton A such that Q is the set of states of [[A]] and −→ its
transition relation, and a word σ, we note q after σ = {q′ ∈ Q | q

σ−→ q′} for
q ∈ Q. We note Reach(σ) = q0 after σ. These definitions are valid in both the
untimed and timed cases. We extend these definitions to languages: if L is a
language, q after L =

⋃
σ∈L q after σ and Reach(L) = q0 after L.

3 Enforcement Monitoring of Untimed Properties

In this section, ϕ is a regular property defined by a complete and deterministic
automaton Aϕ = 〈Q, q0, Σ,−→, F 〉. The purpose of an enforcement mechanism
(EM) for ϕ is to modify the executions of a running system, represented by
words so as to satisfy ϕ. It takes as input a word, representing an execution,
and outputs a word, i.e. an execution. We consider uncontrollable events in the
set Σu ⊆ Σ. These events cannot be modified by the EM, i.e. they cannot be
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suppressed nor buffered, so they must be emitted by the EM whenever they are
received. Let us note Σc = Σ \Σu the set of controllable events, which are on the
scope of the EM. The EM can decide to buffer them to delay their emission, but
it cannot suppress them (nevertheless, it can delay them endlessly, keeping their
order unchanged). Thus, the EM may interleave controllable and uncontrollable
events.

3.1 Enforcement Functions and their Requirements

An enforcement function is a description of the input/output behaviour of an
EM. Formally, we define enforcement functions as follows:

Definition 2 (Enforcement Function). Given an alphabet of actions Σ, an
enforcement function is a function E : Σ∗ → Σ∗, i.e. a function that modifies
an execution.

As stated previously, the usual purpose of an EM is to ensure that the executions
of a running system satisfy a property, thus its enforcement function has to be
sound, meaning that its output always satisfies the property:

Definition 3 (Soundness). E is sound with respect to ϕ if ∀σ ∈ Σ∗, E(σ) |= ϕ.

The usual notion of transparency in enforcement monitoring [15,21] states that
the output of an enforcement function is the longest prefix of the input satis-
fying the property. The name “transparency” stems from the fact that correct
executions are left unchanged. However, because of uncontrollable events, events
may be released in a different order from the one they are received. Therefore,
transparency can not be ensured, and we define the weaker notion of compliance.

Definition 4 (Compliance). E is compliant w.r.t. Σu and Σc, noted
compliant(E, Σc, Σu), if ∀σ ∈ Σ∗, E(σ)|Σc

� σ|Σc
∧∀u ∈ Σu, E(σ).u � E(σ.u).

Fig. 1. A property and its corresponding precondition property of enforceability.
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Intuitively, compliance states that the EM does not change the order of the
controllable events and emits uncontrollable events immediately upon their
reception, possibly followed by stored controllable events. When clear from the
context, the partition is not mentioned: E is said to be compliant.

We say that a property is enforceable whenever there exists a compliant
function that is sound with respect to that property.

Example 1. Figure 1a depicts property ϕex which states that writing to a
shared storage device should be authenticated and is authorized only when the
device is not locked. ϕex is not enforceable if the uncontrollable alphabet is
{LockOn ,LockOff }2 since reading the word LockOn from l0 leads to l3, which is
not an accepting location. However, the existence of such a word does not imply
that it is impossible to enforce this property for some other input words. If word
Auth is read, then location l1 is reached, and from this location, it is possible to
enforce ϕex by emitting Write only when in location l1.

3.2 Synthesising Enforcement Functions

Example 1 shows that some input words cannot be corrected by the EM, because
of uncontrollable events. This leads us to define another property that captures
the sequences that can be input to an EM while ensuring soundness.

Definition 5 (Pre,Enf)

– Pre(ϕ) = 〈Q, q0, Σ,−→′,Qenf〉, with

−→′= (−→ ∩Qenf ×Σ × Q) ∪ {(q, a, q) | q ∈ Qenf ∧a ∈ Σ}

– Enf(ϕ) = 〈Q, q0, Σ,−→,Qenf〉.
where Qenf = {q ∈ F | (q after Σ∗

u) ⊆ F}, Qenf = Q \ Qenf .

Qenf is the set of accepting locations of Aϕ from which it is impossible to reach a
non-accepting location by reading only uncontrollable events, and thus possible
to enforce the property (since it is possible to indefinitely delay all controllable
events to ensure the property).

Intuitively, Pre(ϕ) is the property specifying whether it is possible to enforce
ϕ from a location that has already been reached by triggering the output
sequence of the enforcement mechanism (i.e. a location reached by a prefix of
the output) or not. Thus, it can be used to know if soundness is guaranteed
or not (i.e. if a location from Qenf has been reached). Since the enforcement
mechanism ensures that soundness is satisfied as soon as possible, Pre(ϕ) is a
co-safety property, because once Qenf is reached, ϕ can be ensured from then.

Example 2. For property ϕex, Qenf = {l1, l2}, and Pre(ϕex) is the property rep-
resented by the automaton in Fig. 1b.

2 Uncontrollable events are emphasized in italics.
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Since it is not possible to enforce ϕ from locations in Q \ Qenf , (because uncon-
trollable events could lead to a location in Q \ F trapped with uncontrollable
events), an enforcement function should try to always be able to reach locations
in Qenf to ensure soundness. Thus, property Enf(ϕ) holds on a sequence when-
ever Qenf is reached in Aϕ with this sequence. Since Qenf ⊆ F , satisfying Enf(ϕ)
is sufficient to satisfy ϕ. Thus, we shall enforce Enf(ϕ).

Based on the above definition and the enforcement limitation illustrated in
Example 1, we synthesise an enforcement function for ϕ that is compliant, and
sound w.r.t. a property that is as close as possible to ϕ (see later Propositions 1
and 2).

Definition 6 (storeϕ, Eϕ).3 Function storeϕ : Σ∗ → Σ∗ × Σ∗ is defined as
follows:

– storeϕ(ε) = (ε, ε);
– for σ ∈ Σ∗ and a ∈ Σ, let (σs, σc) = storeϕ(σ), then:

storeϕ(σ.a) =
{

(σs.a.σ′
s, σ

′
c) if a ∈ Σu

(σs.σ
′′
s , σ′′

c ) if a ∈ Σc
, where:

σ′
s = max�({w � σc | σs.a.w |= Enf(ϕ)}),

σ′
c = σ′−1

s .σc,

σ′′
s =

{
ε if σs.σc.a �|= Enf(ϕ),
σc.a otherwise,

σ′′
c = σ′′−1

s .(σc.a).

The enforcement function Eϕ : Σ∗ → Σ∗ is s.t. for σ ∈ Σ∗, Eϕ(σ) =
Π1(storeϕ(σ)).

Intuitively, σs is the word that can be released as output, whereas σc is the buffer
containing the events that are already read/received, but cannot be released as
output yet because they lead to an unsafe location from which it would be
possible to violate the property reading only uncontrollable events. If σs satisfies
Pre(ϕ), then the output will always satisfy the property afterwards.

Upon receiving a new action a, it is output if it belongs to Σu, followed
by the longest prefix of σc that leads to Qenf . If the a is controllable, σc.a is
output if it leads to Qenf , else a is added to the buffer. Property Enf(ϕ) is used
instead of ϕ to ensure that the output of the enforcement function always leads
to locations in Qenf , so that the property will still be satisfied (if it was) upon
receiving uncontrollable events.

Enforcement functions as per Definition 6 are sound and compliant.

Proposition 1. Eϕ is sound with respect to Pre(ϕ) =⇒ ϕ, as per Definition 3.

Proposition 2. Eϕ is compliant, as per Definition 4.

Notice that for some properties, blocking all controllable events may still satisfy
soundness and compliance. However, for any given input σ, Eϕ(σ) is the longest
possible word that ensures to reach Qenf . Controllable events are blocked only
when it is not certain that Qenf will be reached.
3 Eϕ and storeϕ depend on Σu and Σc, but we did not add them in order to lighten
the notations.
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3.3 Enforcement Monitors

Enforcement monitors are operational descriptions of enforcement mechanisms.
Here, we give a representation of the previous enforcement function as a tran-
sition system whose output should be exactly the output of the enforcement
function defined in Sects. 3.1 and 3.2. The purpose is to ease the implementa-
tion, since this representation is closer to the real behaviour of a monitor.

Definition 7 (Enforcement Monitor). An enforcement monitor E for ϕ is
a transition system 〈CE , cE

0 , Γ E , ↪→E〉 such that:

– CE = Q × Σ∗ is the set of configurations.
– cE

0 = 〈q0, ε〉 is the initial configuration.
– Γ E = Σ∗×{dump(.),pass-uncont(.), store-cont(.)}×Σ∗ is the alphabet, where

the first, second, and third members are an input, an operation, and an output,
respectively.

– ↪→E⊆ CE ×Γ E ×CE is the transition relation, defined as the smallest relation
obtained by applying the following rules in order (where w/ 	
 /w′ stands for
(w, 	
, w′) ∈ Γ E):

• dump: 〈q, σ.σc〉 ε/ dump(σ)/σ−−−−−−−−−→ 〈q′, σc〉, with q
σ−→ q′, and q′ ∈ Qenf ,

• pass-uncont: 〈q, σc〉 a/ pass-uncont(a)/a−−−−−−−−−−−−→ 〈q′, σc〉, with a ∈ Σu and q
a−→ q′,

• store-cont: 〈q, σc〉 a/ store-cont(a)/ε−−−−−−−−−−−→ 〈q, σc.a〉.
Rule dump outputs a prefix of the word in memory (the buffer) whenever it is
possible to ensure soundness afterwards. Rule pass-uncont releases an uncon-
trollable event as soon as it is received. Rule store-cont simply adds a control-
lable event at the end of the buffer. Compared to Sect. 3.2, the second member
of the configuration represents buffer σc in the definition of storeϕ, whereas σs

is here represented by location q which is the first member of the configuration,
such that q = Reach(σs).

Proposition 3. The output of the enforcement monitor E for input σ is Eϕ(σ).

Remark 1. Enforcement monitors as per Definition 7 are somewhat similar to the
ones in [13], except that we choose to explicitly keep the memory as part of the
configuration and get uniform definitions in the untimed and timed settings (see
Sect. 4). Hence, enforcement monitors as per Definition 7 can also equivalently
be defined using a finite-state machine, extending the definition in [13].

4 Enforcement Monitoring of Timed Properties

In this section, we extend the framework presented in Sect. 3 to enforce timed
properties. Enforcement mechanisms and their properties should be redefined.
Enforcement functions need an extra parameter representing the date at which
the output is observed. Soundness has to be adapted because, at any time instant,
one has to allow the property not to hold, provided that it will hold in the future.
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Considering uncontrollable events with timed properties raises several diffi-
culties. First, the order of the events might be modified. Thus, previous defin-
itions of transparency [19], stating that the output of an enforcement function
will eventually be a delayed prefix of the input, can not be used in this situation.
Moreover, when delaying some events to have the property satisfied in the future,
one must consider the fact that some uncontrollable events could occur at any
moment (and cannot be delayed). Finally, some properties enforceable in [18]
cannot be enforced using uncontrollable events, meaning that it is impossible to
ensure the soundness of our enforcement mechanisms, as shown in Example 3.
It could be possible to use the same definition of soundness as in Sect. 3, where
the output always satisfies the property, but then soundness would have been
ensured for less properties (i.e. only for safety properties). Weakening soundness
allows to enforce more properties, and to let enforcement mechanisms produce
longer outputs.

In this section, ϕ is a timed property defined by a deterministic and complete
timed automaton Aϕ = 〈L, l0,X, Σ,Δ,G〉 with semantics [[Aϕ]] = 〈Q, q0, Γ,−→,
FG〉.

4.1 Enforcement Functions and their Properties

An enforcement function takes a timed word and the current time as input, and
outputs a timed word:

Definition 8 (Enforcement Function). An enforcement function is a func-
tion from tw(Σ) × R≥0 to tw(Σ).

As for the untimed case, we define the notions of soundness and compliance.

Definition 9 (Soundness). An enforcement function E is sound w.r.t. ϕ if
∀σ ∈ tw(Σ), ∀t ∈ R≥0,∃t′ ≥ t, E(σ, t′) |= ϕ.

Definition 10 (Compliance). An enforcement function E is compliant if
∀σ ∈ tw(Σ), ∀t ∈ R≥0,∃t′ ≥ t, E(σ, t′)|Σu

= σ|Σu
∧ σ|Σc

�d E(σ, t′)|Σc
.

An enforcement function is sound if for any input timed word, at any time
instant, the value of the enforcement function satisfies the property in the future.
Compliance is similar to the untimed setting but there are noteworthy differ-
ences. First, controllable events can be delayed. Moreover, since timing informa-
tion is attached to events, it is not necessary to consider an event of Σu. Indeed,
the dates of uncontrollable events are the same in the input and in the output,
meaning that they are emitted immediately upon their reception. Compliance
states that controllable events can be delayed, but their order must be pre-
served by the enforcement mechanism (i.e. when considering the projections on
controllable events, the output should be a delayed prefix of the input). Regard-
ing uncontrollable events, any uncontrollable event is released immediately when
received (i.e. when considering the projections on uncontrollable events, the out-
put should be equal to the input).

As in the untimed setting, we say that a property is enforceable whenever
there exists a sound and compliant enforcement function for this property.
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4.2 Synthesising an Enforcement Function

Example 3 (Non enforceable property). Consider the property defined by the
automaton in Fig. 2 with alphabet Σ = {a, b}. If all actions are controllable
(Σu = ∅), the property is enforceable because one needs to delay events until
clock x exceeds 2. Otherwise, the property is not enforceable. For instance, if
Σu = {a}, word (1, a) cannot be corrected.

Fig. 2. A timed property enforceable if Σu = ∅.

We define a property Pre(ϕ), indicating whether it is possible to enforce
property ϕ.

Definition 11 (Pre). Property Pre(ϕ) is defined as the timed property which
semantics is 〈Q, q0, Γ,−→′,Qenf〉 where:

– Qenf(ϕ) = {q ∈ FG | (q after tw(Σu)) ⊆ FG},
– Qenf(ϕ) = Q \ Qenf(ϕ),
– −→′= (−→ ∩Qenf ×Γ × Q) ∪ {(q, γ, q) | q ∈ Qenf ∧γ ∈ Γ}.
Qenf(ϕ) is the set of states of [[Aϕ]] from which it is impossible to reach a bad
state reading only uncontrollable events. Thus, it corresponds to the set of states
from which it is possible to enforce the property under consideration. Qenf is the
set of states of the semantics of ϕ from which it is not possible to enforce the
property, because there is a timed word containing only uncontrollable events
(which cannot be modified nor suppressed) leading to a state that is not accept-
ing. In the following, Qenf(ϕ) is noted Qenf and Qenf(ϕ) is noted Qenf to ease
the notation.

Pre(ϕ) is a property indicating whether it is possible to enforce ϕ from the
state of the semantics reached after reading a timed word (i.e. every possible
continuation leads to Qenf). Note that once Qenf is reached, enforcement becomes
effective, then the property will always be satisfied in the future, which explains
why Pre(ϕ) is a co-safety property.

Note that, unlike in the untimed case, Qenf , Qenf and Pre(ϕ) are defined
on the semantics of the automaton representing the property and not on the
automaton itself. Indeed, the set of states in the semantics in the untimed setting
is the same as the set of locations of the property, thus the use of the semantics
is not necessary.

We also define function Safe which, given a state, returns the set of sequences
of controllable events that can be emitted safely. Function Safe is then extended
to words:
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Definition 12 (Safe (states)).

– Given a state q of the semantics of a timed automaton,
Safe(q) = {σ ∈ Σ∗

c | ∀w ∈ tw(Σ),ΠΣ(w|Σc
) � σ =⇒ ∃w′ ∈ tw(Σ), w �

w′ ∧ ΠΣ(w′
|Σc

) � σ ∧ ∃q′ ∈ Qenf , q
w′
−→ q′}.

– Given a word σ ∈ tw(Σ), Safe(σ) = Safe(q), with q = Reach(σ).

Intuitively, Safe(q) is the set of sequences of controllable events for which it is
always possible to compute dates to reach Qenf , even if any uncontrollable event
occurs at any time. Safe shall be used to determine if the enforcement mecha-
nism can release some previously-received controllable events. Contrary to the
untimed case, some delay between two consecutive events may be needed to sat-
isfy the property, thus an uncontrollable event could be received by the enforce-
ment mechanism while the delay elapses. Should this happen, the enforcement
mechanism needs to compute again the dates for the events it has not output
yet in order to reach Qenf if possible. Safe is used to ensure this, i.e. that Qenf

remains reachable with the events that have not been output yet even if some
uncontrollable events occur.

Let us now define an enforcement function for a timed property ϕ, denoted
as Eϕ.

Definition 13 (Eϕ). Let storeϕ be the function defined inductively by
storeϕ(ε) = (ε, ε, ε), and for σ ∈ tw(Σ), and (t, a) such that σ.(t, a) ∈ tw(Σ), if
(σs, σb, σc) = storeϕ(σ), then

storeϕ(σ.(t, a)) =
{

(σ′
s, σ

′
b, σ

′
c) if a ∈ Σu,

(σs. obs(σb, t), σ′′
b , σ′′

c ) if a ∈ Σc,
with:

κϕ(σ1, σ2, t) = minlex(max�({w | ΠΣ(w) � σ2 ∧ date(w(1)) + time(σ1) ≥
t ∧ ΠΣ(w) ∈ Safe(σ1) ∧ ∃qi ∈ Reach(σ1), qi

w−→ qenf ∈ Qenf})).
σ′

s = σs. obs(σb, t).(t, a),
σb1 = nobs(σb, t),
σ′

b = κϕ(σ′
s,ΠΣ(σb1).σc, t)+t time(σ′

s),
σ′

c = ΠΣ(σ′
b)

−1.(ΠΣ(σb1).σc),
σ′′

b = κϕ(σs. obs(σb, t),ΠΣ(σb1).σc.a, t)+t time(σs. obs(σb, t)),
σ′′

c = ΠΣ(σ′′
b )−1.(ΠΣ(σb1).σc.a),

For σ ∈ tw(Σ), we define Eϕ(σ, t) = obs(Π1(sσ).Π2(sσ), t), with sσ = storeϕ(σ).

In the definition of storeϕ, the actions of the input belong to one of the three
words σs, σb and σc. Word σs represents what has already been output and can-
not be modified anymore. The timed word σb contains the controllable events
that are about to be output, such that if σb is concatenated to σs, the concate-
nation satisfies ϕ. The untimed word σc contains the controllable actions that
remain, meaning that, whatever dates are associated to these actions, it is not
sure that Qenf would be reached if it was emitted after σb. Yet, the actions of σc

might be released later (because of the occurrence of an uncontrollable event for
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instance). Thus it is used to compute the new values for σb and σc when needed.
Note that only the events of σc are stored with no dates. Indeed, σc is used only
when recomputing dates, thus there is not any date to associate to the events in
σc. κϕ is computable: even though the number of words satisfying ΠΣ(w) � σ2

is infinite, since there is an infinite number of possible dates, it is possible to
consider only a finite number of words, by considering only words that lead to
different regions [1] of the automaton. Moreover, checking if ΠΣ(w) ∈ Safe(σ1)
is also computable, because it is a reachability issue, that is computable in the
region automaton.

Roughly speaking, the enforcement mechanism described in the previous def-
inition waits for the controllable events of the input to belong to the safe words
of the current state, reached with the uncontrollable events (i.e. in σc ∈ Safe(q)
if q is the current state), and then starts to emit as many controllable events as
possible, with minimum dates greater than the current time. Since the input is
safe, Qenf will be reached at some point in the future, and then the enforcement
mechanism starts again to wait for the input to be safe for the state reached so
far, and goes on like previously.

Proposition 4. Eϕ is sound with respect to Pre(ϕ) =⇒ ϕ, as per Definition 9.

Proposition 5. Eϕ is compliant, as per Definition 10.

4.3 Enforcement Monitors

As in the untimed setting, we give here an operational description of an enforce-
ment mechanism whose output is exactly the output of Eϕ, as defined in
Definition 13.

Definition 14. An enforcement monitor E for ϕ is a transition system
〈CE , cE

0 , Γ E , ↪→E〉 such that:

– CE = tw(Σ) × Σ∗
c × Q × R≥0 is the set of configurations.

– cE
0 = 〈ε, ε, q0, 0〉 ∈ CE is the initial configuration.

– Γ E = ((R≥0×Σ)∪{ε})×Op×((R≥0×Σ)∪{ε}) is the alphabet, composed of an
optional input, an operation and an optional output. The set of operations is
{dump(.),pass-uncont(.), store-cont(.),delay(.)}. Whenever (σ, 	
, σ′) ∈ Γ E ,
it is noted σ/ 	
 /σ′.

– ↪→E is the transition relation defined as the smallest relation obtained by apply-
ing the following rules given by their priority order:

• Dump: 〈(tb, a).σb, σc, q, t〉 ε/ dump(tb,a)/(tb,a)−−−−−−−−−−−−−→ 〈σb, σc, q
′, t〉 if tb = t with

q
(tb,a)−−−→ q′,

• Pass-uncont: 〈σb, σc, q, t〉 (t,a)/ pass-uncont(t,a)/(t,a)−−−−−−−−−−−−−−−−−−→ 〈σ′
b, σ

′
c, q

′, t〉, with

q
(t,a)−−−→ q′ and (σ′

b, σ
′
c) = update(q′, σb, σc, t),

• Store-cont: 〈σb, σc, q, t〉 (t,c)/ store-cont((t,c))/ε−−−−−−−−−−−−−−−→ 〈σ′
b, σ

′
c, q, t〉, with

(σ′
b, σ

′
c) = update(q, σb, σc.c, t),
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• Delay: 〈σb, σc(l, v), t〉 ε/ delay(δ)/ε−−−−−−−−→ 〈σb, σc, (l, v + δ), t + δ〉,
where update is a function computing κϕ from previous definition of Eϕ.

In a configuration 〈σb, σc, q, t〉, σb is the word to be output as time elapses; σc is
what is left from the input; q is the state of the semantics reached after reading
what has already been output; t is the current time instant, i.e. the time elapsed
since the beginning of the run.

Sequences σb and σc are as in the definition of storeϕ, whereas q represents
σs, such that q = Reach(σs). Function update computes the values of σb and
σc to ensure soundness. Function update represents the computation of function
κϕ in the definition of storeϕ.

Proposition 6. The output of E for input σ is Eϕ(σ).

4.4 Example

Figure 3 depicts a property modeling the use of some shared writable device.
One can get the status of a lock through the uncontrollable events LockOn and
LockOff indicating that the lock has been acquired, and that it is available,
respectively. The uncontrollable event Auth is sent by the device to authorize
writings. Once event Auth is received, the controllable event Write can be sent
after having waited a little bit for synchronization. Each time the lock is acquired
and released, we must also wait before issuing a new Write order. The sets of
events are: Σc = {Write} and Σu = {Auth , LockOff , LockOn }.

Let us follow the output of function storeϕ over time with the following
input word: σ = (1, Auth). (2, LockOn). (4, Write). (5, LockOff). (6, LockOn).
(7, Write). (8, LockOff). Let (σs, σb, σc) = storeϕ(obs(σ, t)). Table 1 gives the
values taken by σs, σb, and σc over time. To compute them, first notice that

Fig. 3. Property modeling writes on a shared storage device.
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Table 1. Values of (σs, σb, σc) = storeϕ((1, Auth). (2, LockOn). (4, Write). (5, LockOff).
(6, LockOn). (7, Write). (8, LockOff)) over time.

t σs σb σc

1 (1, Auth) ε ε

2 (1, Auth).(2, LockOn) ε ε

4 (1, Auth).(2, LockOn) ε Write

5 (1, Auth).(2, LockOn). (5, LockOff) (7, Write) ε

6 (1, Auth).(2, LockOn).(5, LockOff). (6, LockOn) ε Write

7 (1, Auth).(2, LockOn).(5, LockOff). (6, LockOn) ε Write . Write

8 (1, Auth).(2, LockOn).(5, LockOff).
(6, LockOn).(8, LockOff)

(10, Write).(10, Write) ε

10 (1, Auth).(2, LockOn).(5, LockOff).(6, LockOn).
(8, LockOff). (10, Write).(10, Write)

ε ε

Qenf = {l1, l2} × V({x}). Moreover, we can see that Write ∈ Safe(l1) because it
is always possible to delay the Write event in such a way that the current state
remains in Qenf , whatever are the uncontrollable events. Consequently, whenever
σs leads to l1, σb is empty (because Write is the only controllable event, thus
σb must start with a Write event).

Figure 4 shows the execution of the enforcement monitor with input (1, Auth).
(2, LockOn). (4, Write). (5, LockOff). (6, LockOn). (7, Write).(8, LockOff). In a
configuration, the input is on the right, the output on the left, and the mid-
dle is the current configuration of the enforcement monitor. Variable t keeps
track of global time. A valuation is represented as an integer – the value
of the (unique) clock x. Observe that the final output at t = 10 is the
same as the one of the enforcement function: (1, Auth).(2, LockOn).(5, LockOff).
(6, LockOn).(8, LockOff).(10, Write). (10, Write).

5 Related Work

Runtime enforcement was pioneered by Schneider with security automata [21],
a runtime mechanism for enforcing safety properties. In this work monitors are
able to stop the execution of the system once a deviation of the property has
been detected. Later, Ligatti et al. proposed edit-automata, a more powerful
model of enforcement monitors able to introduce and suppress events from the
execution. Later, more general models were proposed where the monitors can
be synthesised from regular properties [13]. More recently, Bloem et al. [6] pre-
sented a framework to synthesise enforcement monitors for reactive systems,
called as shields, from a set of safety properties. A shield acts instantaneously
and cannot buffer actions. Whenever a property violation is unavoidable, the
shield allows to deviate from the property for k consecutive steps (as in [7]).
Whenever a second violation occurs within k steps, then the shield enters into
a fail-safe mode, where it ensures only correctness. Another recent approach
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Fig. 4. Execution of an enforcement monitor with input (1, Auth). (2, LockOn).
(4, Write). (5, LockOff). (6, LockOn). (7, Write). (8, LockOff). LockOff is abbreviated
as off, LockOn as on, and Write as w.

by Dolzehnko et al. [11] introduces Mandatory Result Automata (MRAs). MRAs
extend edit-automata by refining the input-output relationship of an enforce-
ment mechanism and thus allowing a more precise description of the enforcement
abilities of an enforcement mechanism in concrete application scenarios. All the
previously mentioned approaches considered untimed specifications, and do not
consider uncontrollable events.

In the timed setting, several monitoring tools for timed specifications have
been proposed. RT-Mac [20] permits to verify at runtime timeliness and
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reliability correctness. LARVA [8,9] takes as input safety properties expressed
with DATEs (Dynamic Automata with Times and Events), a timed model sim-
ilar to timed automata.

In previous work, we introduced runtime enforcement for timed proper-
ties [19] specified by timed automata [1]. We proposed a model of enforcement
monitors that work as delayers, that is, mechanisms that are able to delay
the input sequence of timed events to correct it. While [19] proposed synthe-
sis techniques only for safety and co-safety properties, we then generalized the
framework to synthesise an enforcement monitor for any regular timed prop-
erty [17,18]. In [16], we considered parametric timed properties, that is timed
properties with data-events containing information from the execution of the
monitored system. None of our previous research endeavors considered uncon-
trollable events. Considering uncontrollable events entailed us to revisit and
redefine all the notions related to enforcement mechanisms (soundness, trans-
parency weaken into compliance, enforcement function, and enforcement mon-
itor). Moreover, we define an enforcement condition as a property, that allows
to determine when an enforcement mechanism can safely output controllable
events, independently of the uncontrollable events that can be received by the
enforcement mechanism.

Basin et al. [4] introduced uncontrollable events in safety properties enforced
with security automata [21]. More recently, Basin et al. proposed a more gen-
eral approach [3] related to enforcement of security policies with controllable
and uncontrollable events. Basin et al. presented several complexity results and
showed how to synthesise enforcement mechanisms. In case of violation of the
property, the system stops the execution. The approaches in [3,4] only handle
discrete time, and clock ticks are considered as uncontrollable events. In our
framework, we consider dense time using the expressiveness of timed automata.
We synthesise enforcement mechanisms for any regular property, and not just
safety properties. Moreover, our monitor are more flexible since they block the
input word only when delaying events cannot prevent the violation of the desired
property, thus offering the possibility to correct violations due to the timing of
events.

6 Conclusion and Future Work

This paper extends the research endeavors on runtime enforcement and focuses
on the use of uncontrollable events. An enforcement mechanism can only observe
uncontrollable events, but cannot delay nor suppress them. Considering uncon-
trollable events entails to change the order between controllable and uncontrol-
lable events, and to adapt the usual requirements on enforcement mechanisms.
Therefore, we weaken transparency into compliance. We define enforcement
mechanisms at two levels of abstraction (enforcement functions and enforcement
monitors), for regular properties and regular timed properties. Since not all prop-
erties can be enforced, we also give a condition, depending on the property and
the input word, indicating whether or not the enforcement mechanism can be
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sound with respect to the property under scrutiny. An enforcement mechanism
outputs all received uncontrollable events, and stores the controllable ones, until
soundness can be guaranteed. Then, it outputs events only when it can ensure
that soundness will be satisfied.

Several extensions of this work are possible. A first extension is to consider
more risky strategies regarding uncontrollable events, outputting events even if
some uncontrollable events could lead to a bad state. Following such strategies
could be guided by an additional probabilistic model on the occurrence of input
events. A second extension is to implement the enforcement mechanisms using
UPPAAL libraries [14]. A third extension is to use runtime enforcement to mod-
ify at runtime the parameters of a system with stochastic behaviour, as done
offline in [2]. A fourth extension is to define a theory of runtime enforcement for
distributed systems where enforcement monitors are decentralised on the com-
ponents of the verified system, as is the case with verification monitors in [5]. A
fifth extension is to distinguish inputs from outputs in properties, and consider
for instance timed i/o automata [10] to formalise properties.
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Abstract. We report on a tool prototype for model-based testing of
cyber-physical systems. Our starting point is a hybrid-system model
specified in a domain-specific language called Acumen. Our prototype
tool is implemented in Matlab and covers three stages of model-based
testing, namely, test-case generation, test-case execution, and confor-
mance analysis. We have applied our implementation to a number of
typical examples of cyber-physical systems in order to analyze its applica-
bility. In this paper, we report on the result of applying the prototype
tool on a DC-DC boost converter.

Keywords: Model-based testing · Conformance testing · Cyber-physical
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1 Introduction

Cyber-physical systems have been the focus of much research in the past few
years: their structure and behavior are complex in nature and they often involve
critical applications. Correctness of such systems is a major concern and, hence,
rigorous validation and verification techniques are to be developed to ensure
their correctness. Model-based testing [6] is a rigorous verification technique
that is used to established that the behavior of an implementation conforms to
the specified behavior of a model.

There are some proposals for extending the theory of model-based testing to
the domain of cyber-physical systems [3,4,7,8,11,13]. In this paper, we report
on a prototype model-based testing tool for cyber-physical systems, based on
a variant of the theory presented in [3,4]. We extend the theory of [3,4] by
an offline test-case generation algorithm. Subsequently, in a prototype tool,
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we implement the three steps of our model-based testing trajectory, namely,
test-case generation, test-case execution, and conformance analysis.

Our prototype tool is implemented in Matlab and starts off with a hybrid-
system model in a domain-specific language called Acumen Modeling Language
[14]. Our choice of Acumen is motivated by the local knowledge and expertise
in this particular language. However, the principles described in this paper are
defined generically for hybrid-timed state sequences and hybrid automata and,
hence, are applicable to a wide set of languages. Based on a model in Acumen, we
generate offline test cases that are robust (up to a given threshold) with respect
to minor deviations between the model and its implementation. Subsequently, we
implement a test-case execution module that interfaces Matlab with the system
under test. In our case, we interfaced Matlab with the Acumen simulator which
simulates a model of the system under test.

In order to evaluate its applicability, we applied our tool to a few typical
examples of cyber-physical systems. In this paper, we focus on one such example,
namely the DC-DC boost converter to illustrate the functionality of the tool.

Organization. In Sect. 2, we review our variant of the conformance theory based
on the approach of [3,4]. Then, we describe our test-case generation technique
for this theory of conformance. In Sect. 3, we describe the general architecture
of the tooling. In Sect. 4, we report on the application of our tool to the DC-DC
boost converter case study. In Sect. 5, we conclude the paper and present the
directions of our future research and implementation activities.

This paper is based on previous work reported in [5].

2 Theory

In this section, we explain the underlying theory of our tool implementation
based on and extending the theory of [3,4].

2.1 Semantic Domain

In order to have a model of hybrid-systems behavior, we need to model the
input and output trajectories of the system dynamics. In [3,4], it is decided to
take a discretized sampling of these trajectories as the basic starting point for
conformance testing. The following notion of timed state sequences is defined to
this end.

Definition 1 (Hybrid-Timed State Sequence (TSS) [3]). Consider a sam-
ple size N ∈ N, a dense time domain T = R≥0, and a set of variables V .
A hybrid-timed state sequence (TSS) is defined as pair (x,t), where x ∈ Val(V )N ,
t ∈ T

N , and Val(V ) : V → R. The i ’th element of a TSS (x,t) is denoted by
(xi,ti), where xi ∈ Val(V ) and ti ∈ T. Also, we denote the set of all TSSs defined
over the set of variables V , considering a specific N ∈ N, by TSS(V,N).
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A hybrid system according to [3], defined below, is a mapping from the initial
condition and timed sequences of input variables to timed sequences of output
variables.

Definition 2 (Hybrid System [3]). Hybrid system H with initial condition
H ⊂ 2Val(V ), sample size N and input and output variables, respectively, VI and
VO is modeled as a mapping: H : H × TSS(VI , N) �→ TSS(VO, N). We write
yH(h0, (u, tu)) to denote the output TSS to which the pair (u, tu) is mapped by
H, considering h0 as the initial condition.

2.2 Conformance

The conformance notion [3,4], presented below, compares the output reaction
of the model and the system under test to the same input stimuli. The system
under test is said to conform to the model, if the output behavior is “similar”,
i.e., they differ temporally or in signal values not more than the pre-defined τ
and ε threshold, respectively.

Definition 3 ((τ, ε) -Conformance). Consider a test duration T ∈ T and
τ, ε > 0; then TSS (y, t) (τ, ε)-conforms to TSS (y′, t′) (both with sample size
N and defined on the set V of variables), denoted by (y, t) ≈τ,ε,V (y′, t′), if and
only if

1. for all i ∈ [1, N ] such that ti ≤ T , there exists k ∈ [1, N ] such that tk ≤ T ,
|ti − tk| < τ and for each v ∈ V , ||yi(v) − y′

k(v)|| < ε, and
2. for all i ∈ [1, N ] such that t′i ≤ T , there exists k ∈ [1, N ] such that tk ≤ T ,

|t′i − tk| < τ and for each v ∈ V , ||y′
i(v) − yk(v)|| < ε.

A hybrid system H (τ, ε)-conforms to a hybrid system H′ (both with the same
sample size and sets of input and output variables), denoted by H ≈τ,ε H′, when
for each initial condition h0 and each TSS (u, tu) on the common input variables
VI , yH(h0, (u, tu)) ≈τ,ε,VO

yH′(h0, (u, tu)).

Choosing the right conformance value for τ and ε is application dependent and
is left to the user. However, in order to give some insight about the degree of
conformance between a specification and a system under test, one may fix a
value for τ and determine the minimal value of ε for which (τ, ε)-conformance
holds. The following definition formalizes this concept.

Definition 4 (Conformance Degree). If H1 and H2 are two hybrid sys-
tems, given a predefined τ , the conformance degree of H1 to H2, denoted by
CDτ (H1,H2), is defined as CDτ (H1,H2) := inf {ε : H1 ≈τ,ε H2}.
Note that our notion of conformance (degree) simplifies that of [3,4] in a couple
of ways: firstly, in our notion the number of discrete jumps is immaterial for
our notion of conformance; secondly, we take the sample size of the specification
and the implementation to be the same; finally, we simplified the super-dense
time domain into a dense time domain. All of these are for the sake of simplicity
in presentation (while keeping the definitions still applicable to our practical
settings). Generalization to the original setting of [3,4] is straightforward.
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2.3 Test-Case Generation

In order to check conformance, we need to stimulate both the model and the
system under test and then compare their outputs. To this end, we need to make
sure that the inputs fed into the system are valid. Validity in our context has
two aspects: firstly our Acumen input models (as well as other typical models of
cyber-physical systems) feature state-dependent behavior. In other words, not all
combinations of input valuations are valid for system specification. (This aspect
is not addressed in the proposal of [3,4] where models are assumed to be input-
enabled.) Moreover, since the notion of conformance allows for some deviation
between the model and the implementation, the inputs should not be too close
to the boundaries of specification states (closer than the specified thresholds τ
and ε in time and values, respectively); otherwise, the generated test cases may
cease to be applicable in the course of test-case execution.

In order to give a generic exposition of our approach, we formulate it using
the notion of hybrid automata, quoted below.

Definition 5 (Hybrid Automata [9]). A hybrid automaton is defined as a
tuple (Loc, V , (l0,v0), →, I, F ), where

– Loc is a finite set of locations;
– V = VI � VO is the set of continuous variables;
– l0 denotes the initial location and v0 is an initial valuation of V;
– →⊆ Loc × B(V ) × Reset(V ) × Loc is the set of jumps where:

• B(V ) ⊆ Val(V ) indicates the guards under which the switch may be per-
formed, and

• Reset(V ) ⊆ Val(V )2 is the set of all value assignments to all or a subset
of the variables V ;

– I : Loc → B(V ) determines the allowed valuation of variables in each location
(called the invariant of the location);

– F : Loc → B
(
V ∪ V̇

)
describes some constraints on variables and their deriv-

atives and specifies the allowed continuous behavior in each location.

In order to generate test cases for a hybrid automaton, we take two issues into
account: validity of inputs in each location and the distance of the values from the
location boundaries. These two aspects are summarized in the following notion
of “sound and robust” test case. This notion is inspired by the notion of solution
of hybrid automata [12].

Definition 6 (Solution). A solution to the hybrid automaton HA = (Loc, V ,
(l0, v0),→, I, F ) is a function s : [1, J ] → T → Loc × V al(V ) for some J , where
for each 1 ≤ j ≤ J : dom(s(j)) = [tj , tj+1] for some tj , tj+1 ∈ T, t1 = 0, and

– s(1)(0) = (l0, v0);
– for each 1 ≤ j ≤ J and t ∈ [tj , tj+1]: x satisfies I(l) and F (l), where (l, x) =

s(j)(t); and
– for each 1 ≤ j < J : there exists l

g,r−→ l′ such that x satisfies g and (x, x′)
satisfies r, where (l, x) = s(j)(tj+1) and (l′, x′) = s(j + 1)(tj+1).
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Definition 7 (Sound and Robust Test Case). A sound and (τ, ε)-robust
test case of size N for a hybrid automaton is a TSS (y, t) with sample size N
on the set VI of variables if and only if there exists a solution s of the hybrid
automaton such that

1. for each i ≤ N , there exists a j ∈ dom(s), t ∈ dom(s(j)), yi = s(j)(t) ↓ VI

(soundness),
– t − τ ∈ dom(s(j)) and t + τ ∈ dom(s(j)) (τ -robustness), and
– for each ε′ ≤ ε, there exists a t′ ∈ dom(s(j)) such that for each variable v ∈

VO it holds that ||val(s(j)(t))(v) − val(s(j)(t′))(v)|| = ε′ (ε-robustness).

When τ and ε are known from the context, we simply use the term “sound and
robust test case”.

3 Tool

In this section, the implementation of the conformance method in the tooling is
discussed. In Fig. 1, an architectural view of our tool is presented. The grey area
corresponds to the Graphical User Interface (GUI) which interacts with the tool
functionality. The tooling is created in the Matlab R2013b environment. This
environment was preferred to keep the implementation generic and also to be
able to use the Java compatibility of Matlab in order to interface with various
modeling and implementation frameworks.

Fig. 1. Tool architecture overview

The three main steps of the conformance method are test-case generation,
test-case execution, and conformance analysis and they can easily be recognized
in the architecture of the tool depicted in Fig. 1. The application of test-case gen-
eration and execution methods results in generating input-output data for both
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the model and the implementation under test. Application of the conformance
analysis, subsequently, results in a conformance judgment possibly accompanied
with an additional witness for conformance violation, which is fed into the GUI
for visualization purposes.

As depicted in Fig. 1, there is a clear separation between the “Main script”
module and the GUI. This division provides us with two builds of the tool,
namely the Script Build and the GUI Build. The Script Build contains the
full functionality of the tooling which is implemented using Matlab scripting
methods (.m files), and is controllable from a command-line interface. The GUI
Build contains selected functionality of the tool and offers a GUI for intuitive
and easy use, especially for non-expert users. In Fig. 2, a preview of the GUI
Build is provided.1

Fig. 2. Tool GUI

In the remainder of this section, we focus on the three main phases of the
conformance method.

Test-case Generation. In Fig. 1, before the test-case generation algorithm is exe-
cuted, the simulation parameters as specified in the Acumen file are loaded into
Matlab. This process is performed by an Acumen file parser which extracts the
specified simulation parameters and all model variables from the implementation
1 The prototype tool can obtained from http://ceres.hh.se/mediawiki/

Tool Prototype for Conformance Testing of CyPhy Systems.

http://ceres.hh.se/mediawiki/Tool_Prototype_for_Conformance_Testing_of_CyPhy_Systems
http://ceres.hh.se/mediawiki/Tool_Prototype_for_Conformance_Testing_of_CyPhy_Systems
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modeled in Acumen. Definition 7 is then implemented in order to generate sound
and robust test cases [5]. We made a slight simplification, by focusing on a subset
of hybrid systems in which, firstly, the guards are not time-dependent and sec-
ondly, the invariants are only specified as intervals of input variable valuations.
This simplified the implementation of the soundness and robustness checks.

Test-case Execution. The test-case execution refers to the application of gen-
erated test cases on the implementation modeled in Acumen. In this step, a
combination of Java and Matlab code is used in order to execute test cases /
inputs on an Acumen (hybrid-system) model. This process involves communi-
cation between the Matlab tooling and the Acumen runtime environment. Note
that further use of Acumen refers to the Acumen runtime environment.

The (simulator) data that is transferred between Matlab and Acumen uses the
JSON-format for information exchange of the Acumen simulator state; see Fig. 3.
Since existing JSON parsers failed to unwrap the simulation data from Acumen
correctly, a custom Matlab JSON parser was designed and implemented for this
purpose. This custom Matlab JSON parser uses the preloaded model variables of
the Acumen file parser to extract all model variables of the implementation.

Fig. 3. Socket connection

To initiate the communication between the
Matlab tooling and Acumen, a command line
interface is used (from within Matlab) to start
up Acumen in the background. Moreover, Acu-
men automatically loads a pre-specified Acu-
men file, in this case the implementation, and
starts the simulation of this model. Since this
start-up sequence is performed with Acumen
in server mode, it creates a socket connection
to execute a co-simulation. Hence, when the simulation of the implementation is
automatically started, Acumen waits for a valid socket connection or client, in
this case the Matlab tooling. In Fig. 1, this start-up process of the socket con-
nection between Matlab and Acumen is shown as the first step of the test-case
execution.

As soon as the Matlab tooling initiates the socket connection by running
its embedded Javaclient, the (initial) simulator state is send over to Matlab.
When Matlab returns the simulator state to Acumen, one simulation step of the
implementation (in Acumen) is performed. This process repeats itself for every
timestep of the full simulation duration as specified in the Acumen model file.

Conformance Analysis. The conformance analysis is an implementation of Defi-
nition 3. In addition to providing a yes/no answer, the tool provides a visualiza-
tion of the counter-example in case the conformance relation does not hold. This
is achieved by plotting both the specification and the implementation trajecto-
ries and depicting the case of violation by a (τ, ε) box around the specification
point which does not find a counterpart in the implementation (or the other way
around). Additionally, our implementation automatically calculates the confor-
mance degree based on Definition 4.
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Fig. 4. (a) a PCB [2], its schematic [1], and (b) its hybrid automaton model [1]

4 Experiment: DC-DC Boost Converter

The developed tool has been experimented with on several classical hybrid-
system examples, such as the bouncing ball, the thermostat, and the DC-DC
boost converter. The DC-DC boost converter example is discussed below. The
DC-DC boost converter is a hybrid-system example (see [10]) that originates
from the field of electrical engineering and is used to “boost” an input DC volt-
age to an increased output value. In Fig. 4a, such a boost converter is shown
together with a schematic that shows the principle of operation. The boost of
the DC voltage is a consequence the combined physical properties of the induc-
tor L and capacitor C, which are controlled by the switch S and diode D. This
process transforms the input voltage E to an increased output voltage that is
applied to the resistive load R. Note that the control elements of the boost con-
verter transform the otherwise continuous system into a hybrid system. Finally,
the system is made input dependent by tuning the resistive load R which results
in internal stabilizing behavior of the boost converter.

In Fig. 4b, the hybrid-automaton model of the DC-DC boost converter is
shown. The four discrete states of the system are solely dependent on the position
of the switch S and the mode of the diode D (conducting/blocking). In addition,
the physical properties of the system are modelled by the electric charge q of the
capacitor and the magnetic flux φ of the inductor. For further understanding of
the specified dynamics, state guards and reset maps see [10].
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Fig. 5. DC-DC boost converter conformance analysis

In Fig. 5, the output power of a specific boost converter is shown. The blue
and black lines indicate the response of the model (in Matlab) and implemen-
tation (Acumen) respectively, which are visibly diverging. Hence, conformance
analysis is needed in order to evaluate the conformance (degree) of the implemen-
tation with respect to the model. Non-conformance is detected and is indicated
in red. In the lower sub-plot, an automatic zoom of the non-conformance area is
performed in order to provide visual feedback of the τ -ε area around the corre-
sponding data point. The following values are used in the conformance analysis
of Fig. 5: τ = 0.00001, ε = 7.

5 Conclusions and Future Work

In this paper, we reported on an implementation of a conformance testing theory
for cyber-physical systems, based on the conformance notion of [3,4]. To this end,
we have developed the notion of sound and robust test cases. We have used this
notion to generate off-line test cases from a hybrid-system model in the domain
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specific language Acumen [14]. We have implemented the test-case generation,
test-case execution, and conformance analysis in a Matlab-based prototype.

In order to manage the complexity of the implementation, we have made sev-
eral simplifying assumptions on the structure of the invariants and guards in the
specification. Relaxing these assumptions requires non-trivial numerical analy-
sis of the specification and is left for future work. Turning our off-line test-case
generation into an on-line test-case generation algorithm is another non-trivial
extension. This is particularly interesting when non-determinism is allowed in the
specification. Defining a notion of coverage along the lines of [7,8] and adapting
our test-case generation algorithm in order to maximize specification coverage
is another avenue for our future research.
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Abstract. We present the first official release of Caal, a web-based
tool for modelling and verification of concurrent processes. The tool is
primarily designed for educational purposes and it supports the clas-
sical process algebra CCS together with its timed extension TCCS. It
allows to compare processes with respect to a range of strong/weak and
timed/untimed equivalences and preorders (bisimulation, simulation and
traces) and supports model checking of CCS/TCCS processes against
recursively defined formulae of Hennessy-Milner logic. The tool offers a
graphical visualizer for displaying labelled transition systems, including
their minimization up to strong/weak bisimulation, and process behav-
iour can be examined by playing (bi)simulation and model checking
games or via the generation of distinguishing formulae for non-equivalent
processes. We describe the modelling and analysis features of Caal, dis-
cuss the underlying verification algorithms and show a typical example
of a use in the classroom environment.

1 Introduction

Concurrency is a classical topic taught at many universities as a bachelor or
master degree course in Computer Science. For an introductory course in concur-
rency, the typical content includes the use of a simple language for the description
of parallel processes (e.g. CCS, CSP, ACP or Petri nets) that is used for modelling
concurrent systems and for explaining the key concepts of equivalence checking
and model checking. At Aalborg University, we offer such an introductory course
called Semantics and Verification to the 6th semester software engineering and
computer science students. The course is based on our Reactive Systems book [1]
that, among others, introduces the CCS process algebra (Calculus of Communi-
cating Systems [14]) and bisimulation/model checking approach, including the
corresponding game characterization. In order to motivate the students to study
and appreciate the theoretical concepts in concurrency, we engage them in a
few medium-size modelling exercises. This hands-on modelling experience makes
them realize that designing even small concurrent systems is difficult and that
support by an adequate tool can be very useful. For this purpose, we introduce
the open-source tool Caal (standing for Concurrency workbench developed at
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 573–582, 2015.
DOI: 10.1007/978-3-319-25150-9 33
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Fig. 1. Game module in Caal

AALborg university) that supports CCS and TCCS as the input language. Caal
is programmed in TypeScript, a typed superset of JavaScript that compiles into
plain JavaScript. The input language of Caal is an extension of the well-known
Concurrency Workbench (CWB) [5] input syntax, so existing CWB projects can
be opened in Caal. The tool is hosted at

http://caal.cs.aau.dk

and it runs in any modern browser but a stand-alone installation is possible too.
Caal offers an editor with online syntax correction, an explorer for the

visualization of the generated labelled transition systems, including different
minimizations w.r.t. to strong and weak bisimulation as well as the display of
strong/weak and timed/untimed transitions. The explorer module enables an
interactive exploration of the state-space via a predefined depth of the view
horizon (suitable for exploring large state-spaces), automatic layout with the
possibility to lock and rearrange the position of nodes, zoom functionality, sim-
plification w.r.t. structural congruence and export as a raster graphics image.
The verification module of Caal allows to formulate equivalence and model
checking queries and verify them either individually or collectively. It is pos-
sible to generate distinguishing formulae for non-equivalent processes or enter
the game module (see Fig. 1) and interactively play (bi)simulation and model
checking games.

Related Work. Concurrency WorkBench (CWB) [5] and its continuation Con-
currency WorkBench of the New Century (CWB-NC) [6] are perhaps the best
known tools for modelling and analysing CCS processes. Throughout a number
of years, CWB has been the tool of choice in courses on concurrency at Aalborg
University. Unfortunately, both CWB and CWB-NC are no longer in active
development and the latest binaries are from 1999 (CWB) and 2000 (CWB-
NC). The download links on the CWB-NC homepage do not work any more

http://caal.cs.aau.dk
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and it has become more and more difficult to acquire and install CWB as it
relies on an outdated compiler (as a consequence e.g. Mac OS X binaries are not
available). Moreover, CWB is only a command line tool and despite the fast ver-
ification algorithms it implements, the graphical interface is lacking. Apart from
the fact that Caal provides a modern user interface, integrated process editor
and the possibility to visualize the processes and play a variety of (bi)simulation
and model checking games, the verification approach also differs. While CWB
is using global partitioning algorithms for checking equivalences, we use local
on-the-fly approach based on dependency graphs.

Recently, there have been efforts to provide graphical add-ons to CWB as
e.g. the Bisimulation Game-Game project [15], but there is no support for model
checking games and the tool relies on transition graphs generated by CWB. The
tool pseuCo [7] allows to compile an educational Java-based concurrent language
into CCS and visualize/minimize the resulting transition systems. TAPAs [4]
is another educational tool for specifying and analyzing concurrent processes
described in CCSP (CCS plus additional CSP operators). It has a nice GUI
but it does not consider bisimulation/model checking games and timed process
algebra. Other tools supporting CCS language are more on the experimental
level (command line input) and are not targeted towards educational purposes.
Let us name here e.g. implementation of CCS in Maude [16] or in Haskell [3].

Finally, there exist mature tools with modern designs like FDR3 [9],
CADP [8] and mCRL2 [10], with expressive input languages and efficient analysis
methods. Our tool does not aim to compete with them in terms of performance,
we are instead focusing on the educational aspects.

2 Modelling Features

Caal supports the CCS and timed CCS (TCCS) input syntax. Let A be a
finite set of channels, let A = {a | a ∈ A} be the set of dual channels1 and let
Act = A ∪ A ∪ {τ} be the set of actions. Let K be a finite set of process names.
The collection of CCS expressions is given by the abstract syntax

P,Q: := K
∣∣∣ α.P

∣∣∣ P + Q
∣∣∣ P | Q

∣∣∣ P [f ]
∣∣∣ P \ L

∣∣∣ 0

where K ∈ K, α ∈ Act, L ⊆ A and f : Act −→ Act is the relabelling function
satisfying f(τ) = τ and f(a) = f(a) for every a ∈ Act. By convention τ = τ .
The behaviour of each process name K ∈ K is given by its defining equation
K

def= P . The syntax of TCCS is further extended with the delay prefix operator
such that for every nonnegative integer d and a process expression P , we have
that d.P is also a process expression.

The SOS rules for the CCS and TCCS operators are given in Table 1. For
TCCS we support at the moment the discrete time semantics that is defined
1 In Caal dual channels are prefixed with an apostrophe and the output bar is dis-

played automatically by the editor.



576 J. Andersen et al.

Table 1. SOS rules for CCS and TCCS

ACT
α.P

α−→ P
SUM1 P

α−→ P ′

P + Q
α−→ P ′ SUM2

Q
α−→ Q′

P + Q
α−→ Q′

COM1 P
α−→ P ′

P | Q
α−→ P ′ | Q

COM2
Q

α−→ Q′

P | Q
α−→ P | Q′ COM3

P
a−→ P ′ Q

a−→ Q′

P | Q
τ−→ P ′ | Q′

CON P
α−→ P ′

K
α−→ P ′ K

def
= P REL P

α−→ P ′

P [f ]
f(α)−−−→ P ′[f ]

RES P
α−→ P ′

P \ L
α−→ P ′ \ L

α, α /∈ L

Table 2. SOS rules for unit delays in TCCS (d ranges over nonnegative integers)

ONE
d.P

1−→ (d − 1).P
d ≥ 1 ACT

α.P
1−→ α.P

α �= τ REL P
1−→ P ′

P [f ]
1−→ P ′[f ]

SUM
P

1−→ P ′ Q
1−→ Q′

P + Q
1−→ P ′ + Q′

CON P
1−→ P ′

K
1−→ P ′

K
def
= P RES P

1−→ P ′

P \ L
1−→ P ′ \ L

COM
P

1−→ P ′ Q
1−→ Q′

P | Q
1−→ P ′ | Q′

if P | Q � τ−→

in Table 2. The semantics is for simplicity given for single-unit time delays as
longer delays are just a syntactic sugar for a series of one time unit delays.

We assume the classical definitions of weak/strong and timed/untimed equiv-
alences and preorders like simulation and trace preorder/equivalence, and bisim-
ilarity (see e.g. [1]) that are supported in Caal, including their game character-
ization via two-player games between attacker (trying to disprove the validity of
the equivalence/preorder) and defender (supporting its validity).

As for model checking, the tool supports a subset of the modal μ-calculus [12]
with recursively defined fixed points given by the syntax:

φ: := tt | ff | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈α〉φ | [α]φ | 〈〈α〉〉φ | [[α]]φ | X

where α ∈ Act and where X is a variable from a finite set of variables such that
every variable has exactly one declaration of the form X

min= φ (minimum fixed
point) or X

max= φ (maximum fixed point). Here the modal operators are available
in their strong variants 〈α〉 (there is an α-successor) and [α] (for all α-successors),
as well as the weak ones 〈〈α〉〉 and [[α]] that abstract away from τ -actions. We
use the abbreviations 〈A〉φ and [A]φ for a set of actions A ⊆ Act, standing
for ∨α∈A〈α〉φ and ∧α∈A[α]φ, respectively. By 〈−〉φ we understand 〈Act〉φ and
similarly for [−]φ. The same conventions are used for the weak modalities.
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For most practical applications it is enough to consider formulae where the
recursively defined variables do not contain cyclic references (hence a variable
X can refer to itself and/or to another variable Y , but Y may not refer back to
X, neither directly or indirectly via other variables). This restriction, adopted
by Caal, allows for faster implementation of the verification engine and makes
the interpretation of model checking games between defender (claiming that a
process satisfies a given formula) and attacker (claiming that it does not satisfy
the formula) a lot easier as we can always uniquely determine whether we are
in the context of a minimum or a maximum fixed point. Defender is then the
winner of any infinite play whenever we are in the context of maximum fixed
point and attacker is the winner if we are in the minimum fixed-point context.

For guarded CCS processes (where every occurrence of a process name is
within the scope of action prefixing) we know that two processes are bisimilar if
and only if they satisfy exactly the same set of formulae of the Hennessy-Milner
logic [11]. In case of strong bisimilarity we allow only the strong modalities in the
formulae, and in case of weak bisimilarity we consider only the weak modalities.
The theorem implies that if two processes are not bisimilar, we can find the
so-called distinguishing formula that is satisfied in one of the processes but not
in the other one. This can be useful when debugging CCS processes.

Finally, the tool supports also the extension of the logic with time modalities
so that we can have formulae of the form 〈d〉φ, [d]φ, 〈〈d〉〉φ and [[d]]φ where
d is a nonnegative integer. The modality 〈d〉φ requires that it is possible to
delay d time units and then satisfy φ, while the modality [d]φ expresses that
whenever it is possible to delay d time units then φ must be satisfied. Even though
the future after a given time delay is always deterministic, there is a difference
between the two operators as if a process cannot delay d time units (due to some
enabled τ actions that are urgent in the TCCS semantics) then [d]φ will be always
satisfied while 〈d〉φ will never be satisfied. The weak time delay modalities allow
us to interleave the single-unit time delays with arbitrary many τ -actions. The
modalities are in Caal further extended with time intervals such that 〈d1, d2〉φ
with d1 ≤ d2 is the abbreviation for 〈d1〉φ ∨ 〈d1 + 1〉φ ∨ 〈d1 + 2〉φ ∨ . . . ∨ 〈d2〉φ,
and similarly [d1, d2] stands for [d1]φ ∧ [d1 + 1]φ ∧ [d1 + 2]φ ∧ . . . ∧ [d2]φ. The
intervals in weak modalities are defined analogously.

3 Verification Engine

The verification algorithms for both equivalence/preorder checking and model
checking are based on a fixed-point computation over a structure called depen-
dency graph [13]. Such graphs, for the verification problems in question, can
be generated on-the-fly and there exist efficient local algorithms by Liu and
Smolka [13] for computing the fixed points.

A dependency graph is a pair G = (V,E) where V is a finite set of nodes and
E ⊆ V × 2V is a finite set of hyperedges of the form (v, T ) where v ∈ V is the
source node and the nodes in T ⊆ V are called the target nodes. An assignment
on G is a function A : V → {0, 1}. We define a function F from assignments
to assignments as follows: F (A)(v) = 1 if and only if there is (v, T ) ∈ E such
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Fig. 2. Two processes s and t (left) and the constructed dependency graph (right)

that A(v′) = 1 for all v′ ∈ T . As all assignments form a complete lattice w.r.t.
to the natural point-wise ordering and the function F is monotonic, there is
by Knaster-Tarski theorem a unique minimum and maximum fixed point of the
function F , denoted by Amin resp. Amax . The fixed points for G can be computed
in linear-time by the use of local on-the-fly Algorithms [13].

We shall now hint at how the verification questions for CCS/TCCS can be
encoded in fixed-point computations on dependency graphs. The idea, depicted
in Fig. 2 for strong bisimulation, is that nodes in the dependency graph are pairs
of processes and for any transition from one of the two processes, we create a
new hyperedge with targets that correspond to all possible transitions under the
same label from the other process. The hyperedges in the dependency graph are
annotated with the transitions that initiated their creation. If for some pair of
states there is a transition for which the other process does not have any answer,
the resulting set of target nodes is empty and the created hyperedge ensures that
the pair will get the value 1 in the minimum fixed-point assignment (denoted in
our example by a double circle around the pair). One can prove that for any
pair of nodes (s′, t′) in the dependency graph it holds that s′ ∼ t′ (the states
are strongly bisimilar) if and only if Amin((s′, t′)) = 1. In order to establish that
Amin((s, t)) = 1, it is enough to explore only a fraction of the dependency graph
(e.g. constructing only two hyperedges from (s, t) to (s1, t1) and from (s1, t1) to
the emptyset is sufficient). As the construction of the complete dependency graph
can often be avoided by using on-the-fly algorithms, it is sometimes possible to
show nonequivalence even for processes with infinitely many reachable states,
a situation where the traditional partitioning algorithms will never terminate.

We can also use the computed fixed point on the dependency graph to derive
a distinguishing formula for the processes s and t in Fig. 2. First, for every node
that has a hyperedge with an empty set of targets, we can directly find such
a formula, like for the node (s1, t1) where s1 |= 〈c〉tt while t1 �|= 〈c〉tt . From
this formula we can now inductively construct a distinguishing formula [a]〈c〉tt
for the root node (s, t). Note that this is not the only distinguishing formula,
if we e.g. use instead the hyperedge from (s, t) with the two target nodes, we
derive the formula 〈a〉(〈c〉tt ∧ 〈b〉tt) that is arguably more complex than the
formula [a]〈c〉tt . The problem of finding the simplest distinguishing formula is
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Algorithm 1. Simple Communication Protocol (CCS) in Caal

1: Send = acc.Sending;

2: Sending = ’send.Wait;

3: Wait = ack.Send + error.Sending + ’send.Wait;

4: Rec = trans.Del;

5: Del = ’del.Ack;

6: Ack = ’ack.Rec;

7: Med = send.Med’;

8: Med’ = ’trans.Med + tau.Err + tau.Med;

9: Err = ’error.Med;

10: set L = {send, trans, ack, error};
11: Impl = (Send | Med | Rec) \ L;

12: Spec = acc.’del.Spec;

nontrivial and Caal uses a greedy heuristic approach to report reasonably small
distinguishing formulae.

The approach via dependency graphs is used also for trace-like equivalences
and the corresponding dependency graphs are described in master theses avail-
able at the tool’s homepage. For recursive formulae the construction of depen-
dency graphs requires several copies of the graphs, one for each fixed-point defi-
nition, but the same uniform approach is also used here. Finally, the dependency
graphs are used for guiding the tool in bisimulation and model checking games.

4 Case Study

We shall now present a simplified version of a communication protocol, where a
sender is supposed to forward messages through unreliable medium to a receiver,
who then acknowledges it via a direct handshake after which the protocol is again
ready to accept another message. A more sophisticated variant of such a protocol
(e.g. the Alternating Bit Protocol [2]) is a typical mini-project exercise that we
use in our Semantics and Verification course.

The CCS processes describing the protocol are given in Algorithm 1. The
sender, defined at lines 1–3, receives a message acc from the environment, for-
wards the message via the internal channel send to the medium and then waits
for the acknowledgment, an error message from the medium, or tries to resend
the message. The receiver, defined at lines 4–6, can receive the message through
the medium via the internal channel trans, deliver the message to its envi-
ronment via the output action ’del and then acknowledge this to the sender.
The medium, defined at lines 7–9, communicates with the sender/receiver via the
channels send and trans but can also enter an error state and inform the sender
about this (line 9) or silently lose the message and enter its initial state. The
implementation of the protocol (line 11) is a parallel composition of the three
components described above where all channels except for acc and ’del are
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(a) Before weak bisimulation collapse (b) After weak bisimulation collapse

Fig. 3. Reachable state-space for the process Impl

restricted, enforcing a handshake synchronization over these channels. Finally, at
line 12, we can see the abstract specification of the protocol. We have deliberately
introduced some design errors in order to demonstrate the typical mistakes the
students make when modelling more advanced variants of communication pro-
tocols. In the rest of this section, we shall demonstrate the debugging options
that Caal offers for analysing and correcting such mistakes.

By entering the verification module of Caal, we can promptly find out that
the processes Impl and Spec are not weakly bisimilar. We can now enter the
explorer module in order to visualize and interactively explore the transition
system of the process Impl as depicted in Fig. 3a, however, even for this small
example, the system is already too large. We can choose to visualize the collapsed
transition system where all weakly bisimilar states are merged together as shown
in Fig. 3b and here we can already see some design issues. We can e.g. observe
that the implementation contains a deadlock (the right-most state).

In general, the labelled transition systems (even after the bisimulation col-
lapse) are often too large to analyse manually. Hence, if two processes are not
weakly bisimilar, a natural question to ask is whether they provide the same
weak traces (sequences of visible actions). It appears that this is not the case
for our example and Caal informs the user that the process Impl can perform
the sequence of visible actions acc, ’del, ’del and such a trace is not possible
in the specification. By analysing the trace in the game module, we can see that
the problem is at line 3 where the sender has the option to resubmit the message
unboundedly many times. Hence we may decide to remove this resubmission
option and modify the CCS definition as Wait = ack.Send + error.Sending.
After this fix, we can now verify that the implementation and the specification
are weakly trace equivalent, while they are still not bisimilar. We can ask Caal
to generate a distinguishing formula that holds in Impl but not in Spec and the
tool returns the formula <<acc>>[[’del]]F that states that the implementation
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Algorithm 2. Time Annotated Communication Protocol (TCCS) in Caal

1: Send = acc.2.’send.1.ack.2.Send;

2: Rec = trans.1.’del.2.’ack.8.Rec;

3: Med = send.(3.’trans.Med + 5.tau.Med);

4: Impl = (Send | Med | Rec) \ {send, trans, ack};
5: Spec = acc.’del.Spec;

can perform the visible action acc, possibly with some additional τ -transitions
before and after, such that after this it is not possible to perform the action ’del
(not even preceded by some τ -actions). By entering the game module, the user
can play a game against the computer (playing defender) that will reveal to the
user (playing attacker) that the formula holds in the state Impl. The game will
in fact reveal the presence of a deadlock configuration that we already observed
in the explorer.

Alternatively, we can directly formulate the deadlock property as a recursive
HML formula X min= [-]ff or <->X. Caal confirms that the implementation
satisfies the property X and in the game module, the computer can convince the
user that a deadlock is indeed reachable. The analysis of the discovered deadlock
points to the fact that medium should not be allowed to silently discard messages.
After changing the definition at line 8 into Med’ = tau.Err + ’trans.Med we
finally achieve a correct implementation (weakly bisimilar to its specification).

We may also ask if the protocol contains a reachable livelock (an infinite
sequence of τ -actions that can be executed in a row). Caal allows to formulate
this property using two recursively defined variables Y min= Z or <->Y (claiming
the reachability of livelock) and Z max= <tau>Z (expressing the existence of an
infinite τ -sequence). The implementation indeed contains a livelock and the game
provides a convincing argument for this fact.

Caal moreover allows to model TCCS processes. A variant of the commu-
nication protocol is given in Algorithm 2, where both the sender, receiver and
medium have been annotated with delays such that e.g. the medium needs 3
time units to deliver the message but it will lose it after 5 time units. Caal will
show that the processes Impl and Spec are weakly untimed bisimilar. However,
if the receiver process gets just little bit slower and the delay prefix 8 at line 2 is
replaced with delay 9 then the weak untimed bisimulation equivalence does not
hold anymore as it is now possible that the medium loses a message.

We can also verify that the TCCS process Impl satisfies the formula

X max= [acc] <<0,6>> <’del> tt and [-]X;

expressing the invariant that whenever the action acc is performed then the
message can be delivered within 6 time units. The property X actually does not
hold but if we ask instead whether the message can be delivered withing 7 time
units then it is satisfied.
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5 Conclusion

We presented Caal, an educational tool for modelling and analysing CCS
processes. The tool runs in a browser with limited computational resources but
it benefits from the efficient on-the-fly algorithms. This is clearly sufficient for
the typical student exercises and mini-projects. At the moment, we are exploring
the parallelization of the fixed point computation and outsourcing this work to
a super-computer via the approach “verification as a web-service”. Our Reactive
System book [1] is now used at more than 18 universities around the world and
we expect that Caal, once publicly announced, becomes a natural supplement
to the concurrency courses based on the CCS formalism.
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Abstract. Reactive Modules is a high-level specification language for
concurrent and multi-agent systems, used in a number of practical model
checking tools. Reactive Modules Games is a game-theoretic extension of
Reactive Modules, in which concurrent agents in the system are assumed
to act strategically in an attempt to satisfy a temporal logic formula rep-
resenting their individual goal. The basic analytical concept for Reactive
Modules Games is Nash equilibrium. In this paper, we describe a tool
through which we can automatically verify Nash equilibrium strategies
for Reactive Modules Games. Our tool takes as input a system, speci-
fied in the Reactive Modules language, a representation of players’ goals
(expressed as CTL formulae), and a representation of players strategies;
it then checks whether these strategies form a Nash equilibrium of the
Reactive Modules Game passed as input. The tool makes extensive use of
conventional temporal logic satisfiability and model checking techniques.
We first give an overview of the theory underpinning the tool, briefly
describe its structure and implementation, and conclude by presenting a
worked example analysed using the tool.

1 Introduction

Model checking is the best-known and most successful technique for automated
formal verification, and is focussed on the problem of checking whether a (com-
puter) system S satisfies a property ϕ, where typically ϕ is represented as a
temporal logic formula. Model checking has proved to be a very successful tech-
nique for systems where S is a complete and monolithic description of the state
space of the system. In this case, S is usually called a closed system. However, in
many situations, especially when dealing with concurrent and distributed multi-
agent systems, S can be better represented as a collection of local and inter-
dependent processes. In this modelling framework, it is common to understand
such processes as modules, that is, as being open rather than closed systems, in
which the behaviour of each process/module may depend on the behaviour of
other processes, which constitute its environment, cf., [2,12].

We are interested in the verification of concurrent and multi-agent systems
where (computer) processes are modelled as open systems. In particular, we are
interested in systems modelled using a game-theoretic approach. In this setting,
a system is modelled as a game, system components are modelled as players
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 583–594, 2015.
DOI: 10.1007/978-3-319-25150-9 34
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(each choosing and then following a given strategy), possible computation runs
are the plays of the game, and the desired or expected behaviour of the system
is specified with the goals that the players of the game wish to see satisfied. In
many cases, for instance when considering reactive systems, such goals can be
naturally expressed using temporal logic formulae.

However, because now one is following a game-theoretic approach, it is only
natural to ask whether the system has a stable behaviour from a game-theoretic
point of view, that is, whether the strategies used by the players modelling
the system are in equilibrium [15]. Then, in this case, we talk about equilibrium
checking rather than model checking. In fact, model checking is a simpler instance
of equilibrium checking where either players are forced to cooperate or the whole
system is modelled as a one-player game. However, in general, these may not be
the best representations of the system.

A way to model the kind of systems just described (open systems) is using
the Reactive Modules Language (RML [2]). This is a high-level specification lan-
guage for reactive, concurrent, and multi-agent systems, which is used in model
checking tools such as MOCHA [1] and Prism [13]. However, RML is used to spec-
ify general open systems rather than concurrent games. Recently [11], a subset
of RML, called the Simple Reactive Modules Language (SRML [19]) was given
a game-theoretic interpretation, which provides a game semantics for reactive
and concurrent systems written in SRML, and which can be used to perform an
equilibrium analysis of open systems modelled as SRML specifications. Indeed,
with SRML, one can analyse systems using a language that is much closer to
real-world programming and system modelling languages.

In this paper, we present a tool for the automated verification of Nash equilib-
ria in concurrent and reactive systems modelled as concurrent games succinctly
represented using the SRML specification language. More specifically, we develop
a Python implementation of the above theory of games that, in particular, can
be used to solve the equilibrium checking problem for this kind of concurrent
games/systems. Since the tool, which we call EAGLE (“Equilibrium Analyser
for Game-Like Environments”), can be used to automatically check whether
a set of strategies forms a Nash Equilibrium in a given game-like concurrent
system, its analytical power goes beyond model checking.

Related Work. Reactive Modules [2] is used as a specification language in ver-
ification tools such as MOCHA [1] and Prism [13]. In each case, open systems
modelled as concurrent games can also be specified. However, these tools do not
have explicit support for equilibrium analysis. Instead, it is model checking with
respect to logics such as PCTL and ATL that these tools allow. MCMAS [14] is
another tool for the specification and verification of open systems, modelled as
multi-agent systems. In MCMAS, systems are described using the Interpreted
Systems Programming Language and properties are described using ATL∗ and
strategy logic—see [5]. Similar to MOCHA and Prism, in MCMAS the analysis
of systems focuses on the model checking problem for the logics just mentioned.
Because strategy logic can express the existence of Nash equilibria in a concur-
rent and multi-agent game, in principle, it is possible to analyse some equilib-
rium properties of MCMAS systems. However, this has to be manually crafted.
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Closer to EAGLE is PRALINE [4], a tool for computing Nash equilibria in con-
current games played on graphs. Whereas PRALINE focuses on the synthesis
problem (constructing strategies in equilibrium), EAGLE focuses on the veri-
fication problem (checking that a given profile of strategies is in equilibrium).
There are many other tools available online which either use game techniques for
design and verification or allow the analysis of winning strategies in games. For
instance, see [3,6,9] for a few references. However, as just said, these tools focus
on the study of winning strategies in such games rather than in the equilibrium
analysis of these systems/games.

2 Preliminaries

Logic. In this paper we will be dealing with logics that extend classical proposi-
tional logic. Thus, these logics are based on a finite set Φ of Boolean variables.
A valuation for propositional logic is a set v ⊆ Φ, with the intended interpreta-
tion that p ∈ v means that p is true under valuation v , while p �∈ v means that
p is false under v . For formulae ϕ we write v |= ϕ to mean that ϕ is satisfied
by v . Let V (Φ) = 2Φ be the set of all valuations for variables Φ; where Φ is clear,
we omit reference to it and simply write V .

Kripke Structures. We use Kripke structures to model the dynamics of our
systems. A Kripke structure K over Φ is given by K = (S ,S 0,R, π), where
S = {s0, . . .} is a finite non-empty set of states, R ⊆ S × S is a total transition
relation on S , S 0 ⊆ S is the set of initial states, and π : S → V is a valuation
function, assigning a valuation π(s) to every s ∈ S . Where K = (S ,S 0,R, π) is
a Kripke structure over Φ, and Ψ ⊆ Φ, then we denote the restriction of K to Ψ
by K |Ψ , where K |Ψ = (S ,S 0,R, π|Ψ ) is the same as K except that the valuation
function π|Ψ is defined as follows: π|Ψ (s) = π(s) ∩ Ψ.

Runs. A run of K is a sequence ρ = s0, s1, s2, . . . where for all t ∈ N we have
(st , st+1) ∈ R. Using square brackets around parameters referring to time points,
we let ρ[t ] denote the state assigned to time point t by run ρ. We say ρ is an
s-run if ρ[0] = s. A run ρ of K where ρ[0] ∈ S 0 is referred to as an initial run.
Let runs(K , s) be the set of s-runs of K , and let runs(K ) be the set of initial
runs of K . Notice that a run ρ ∈ runs(K ) induces an infinite sequence ρ ∈ V ω of
propositional valuations, viz., ρ = π(ρ[0]), π(ρ[1]), π(ρ[2]), . . .. The set of these
sequences, we denote by runs(K ). Given Ψ ⊆ Φ and a run ρ : N → V (Φ), we
denote the restriction of ρ to Ψ by ρ|Ψ , that is, ρ|Ψ [t ] = ρ[t ] ∩ Ψ for each t ∈ N.
We can extend the notation for restriction of runs to sets of runs. In particular,
we write runs(K )|Ψ for the set {ρ|Ψ : ρ ∈ runs(K )}.

Trees. By a tree we here understand a non-empty set T ⊆ N
∗
0, such that (i)

T is closed under prefixes, i.e., for every u ∈ T , also (u) ⊆ T , and (ii) u ∈ T
implies ux ∈ T for some x ∈ N0. For s ∈ S , a state-tree for a Kripke structure
K = (S ,S 0,R, π) is a function κ : T → S , where T ⊆ N

∗
0 is a tree, κ(ε) ∈ S 0,
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and, for every u ∈ N
∗
0 and x , y ∈ N0 such that ux , uy ∈ T , (i) κ(u) R κ(ux ), and

(ii) κ(ux ) = κ(uy) implies x = y . By trees(K ) we denote the state-trees for the
Kripke structure K . By a computation tree we understand a function κ : T →
V (Φ), where T is a tree. For Ψ ⊆ Φ we write κ|Ψ for the restriction of κ to Ψ ,
i.e., for every u ∈ T , κ|Ψ (u) = κ(u) ∩ Ψ . Notice that every state-tree κ : T → S
induces a computation tree κ : T → V (Φ) such that for every u ∈ T we have
that κ[u] = π(κ(u)). In such a case κ is said to be a computation tree for K .
The set of computation trees for K we denote by trees(K ). We can extend the
notation for restrictions of computation trees to sets of computation trees as
done for runs, that is, we write trees(K )|Ψ for the set {κ|Ψ : κ ∈ trees(K )}.

3 Reactive Modules Games

Reactive Modules. The objects used to define agents in SRML are known as
modules. An SRML module consists of: (i) an interface, which defines the name
of the module and lists the Boolean variables under the control of the module;
and (ii) a number of guarded commands, which define the choices available to
the module at every state.

Guarded commands are of two kinds: those used for initialising the variables
under the module’s control (init guarded commands), and those for updating
these variables subsequently (update guarded commands). A guarded command
has two parts: a condition part (the “guard”) and an action part, which defines
how to update the value of (some of) the variables under the control of a module.
The intuitive reading of a guarded command ϕ � α is “if the condition ϕ is
satisfied, then one of the choices available to the module is to execute the action
α”. We note that the truth of the guard ϕ does not mean that α will be executed:
only that it is enabled for execution—it may be chosen.

Formally, a guarded command g over a set of Boolean variables Φ is an
expression

ϕ � x ′
1 := ψ1; · · · ; x ′

k := ψk

where ϕ (the guard) is a propositional formula over Φ, each xi is a member of
Φ and each ψi is a propositional logic formula over Φ. Let guard(g) denote the
guard of g . Thus, in the above rule, guard(g) = ϕ. We require that no variable
appears on the left hand side of two assignment statements in the same guarded
command. We say that x1, . . . , xk are the controlled variables of g , and denote
this set by ctr(g). If no guarded command of a module is enabled, the values of
all variables in ctr(g) are left unchanged.

Formally, an SRML module, mi , is defined as a triple mi = (Φi , Ii ,Ui),
where: Φi ⊆ Φ is the (finite) set of variables controlled by mi ; Ii is a (finite) set
of initialisation guarded commands, such that for all g ∈ Ii , we have ctr(g) ⊆ Φi ;
and Ui is a (finite) set of update guarded commands, such that for all g ∈ Ui ,
we have ctr(g) ⊆ Φi .

Moreover, an SRML arena, A, is defined to be an (n + 2)-tuple

A = (N , Φ,m1, . . . ,mn)
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where N = {1, . . . ,n} is a set of agents, Φ is a set of Boolean variables, and
for each i ∈ N , mi = (Φi , Ii ,Ui) is an SRML module over Φ that defines the
choices available to agent i . We require that {Φ1, . . . , Φn} forms a partition of Φ
(so every variable in Φ is controlled by some agent, and no variable is controlled
by more than one agent).

The behaviour of an SRML arena is obtained by executing guarded com-
mands, one for each module, in a synchronous and concurrent way. The exe-
cution of an SRML arena proceeds in rounds, where in each round every mod-
ule mi = (Φi , Ii ,Ui) produces a valuation vi for the variables in Φi on the basis
of a current valuation v . For each SRML arena A, the execution of guarded
commands induces a unique Kripke structure KA, which formally defines the
semantics of A. Based on KA, one can define the sets of runs and computation
trees allowed in A, namely, those associated with the Kripke structure K ; we
write runs(A) and trees(A) for such sets. Indeed, one can show that for every A
there is a KA such that runs(A) = runs(KA)|Φ and trees(A) = trees(KA)|Φ,
that is, with the same runs and computation trees when restricted to Φ. Likewise,
for every K there is an SRML module whose runs and computation trees are
those of K . In this paper, we provide, amongst others, a Python implementation
of all these constructions.

Games. The model of games we consider has two components. The first compo-
nent is an arena: this defines the players, some variables they control, and the
choices available to them in every game state. Preferences are specified by the
second component of the game: every player i is associated with a goal γi , which
will be a logic formula. The idea, as in several models of strategic behaviour,
is that players desire to see their goal satisfied by the outcome of the game.
Formally, a game is given by a structure:

G = (A, γ1 . . . , γn)

where A = (N , Φ,m1, . . . ,mn) is an arena with player set N , Boolean variable
set Φ, and mi an SRML module defining the choices available to each player i ;
moreover, for each i ∈ N , the temporal logic formula γi represents the goal that
i aims to satisfy.1 Games are played by each player i selecting a strategy σi

that will define how to make choices over time. Given an SRML arena A =
(N , Φ,m1, . . . ,mn), a strategy for module mi = (Φi , Ii ,Ui) is a structure σi =
(Qi , q0i , δi , τi), where Qi is a finite and non-empty set of states, q0i ∈ Qi is the
initial state, δi : Qi ×V−i → 2Qi \ {∅} is a transition function, and τi : Qi → Vi

is an output function. Note that not all strategies for a module may comply with
that module’s specification. For instance, if the only guarded update command
of a module mi has the form � � x ′ := ⊥, then a strategy for mi should not
prescribe mi to set x to true under any contingency. Strategies that comply with
1 Goals can be given by any logic with a Kripke structure semantics. Although we will

consider CTL goals here, due to generality, at this point all definitions will be made
leaving this open. Indeed, one could extend our implementation to SRML games
with CTL∗ or µ-calculus goals.
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the module’s specification are called consistent. Let Σi be the set of consistent
strategies for mi . A strategy σi can be represented by an SRML module (of
polynomial size in |σi |) with variable set Φi ∪ Qi . We write mσi

for such a
(strategy) module specification.

Once every player i has selected a strategy σi , a strategy profile �σ =
(σ1, . . . , σn) results and the game has an outcome, which we will denote by [[�σ]].
The outcome [[�σ]] of a game with SRML arena A = (N , Φ,m1, . . . ,mn) is defined
to be the Kripke structure associated with the SRML arena A�σ = (N , Φ ∪⋃

i∈N Qi ,mσ1 , . . . ,mσn
) restricted to valuations with respect to Φ, that is, the

Kripke structure KA�σ
|Φ. The outcome of a game will determine whether or not

each player’s goal is or is not satisfied. Because outcomes are Kripke structures,
in general, goals can be given by any logic with a well defined Kripke structure
semantics. Assuming the existence of such a satisfaction relation, which we denote
by “|=”, we can say that a goal γi is satisfied by an outcome [[�σ]] if and only if
[[�σ]] |= γi ; in order to simplify notations, we may simply write �σ |= γi .

We are now in a position to define a preference relation �i over outcomes
for each player i with goal γi . For strategy profiles �σ and �σ′, we say that

�σ �i �σ′ if and only if �σ′ |= γi implies�σ |= γi .

On this basis, we can also define the standard solution concept of Nash equilib-
rium [15]: given a game G = (A, γ1, . . . , γn), a strategy profile �σ is said to be a
Nash equilibrium of G if for all players i and all strategies σ′

i in the game, we have

�σ �i (�σ−i , σ
′
i),

where (�σ−i , σ
′
i) denotes the strategy profile (σ1, . . . , σi−1, σ

′
i , σi+1, . . . , σn). Here-

after, let NE (G) be the set of (pure strategy) Nash equilibria of game G .

4 Reactive Modules Games in Python

Our main contribution is EAGLE, a Python implementation of the theory of
games described in the previous sections. In particular, EAGLE allows a simple
high-level Python description of games specified in SRML, where players are
assumed to have branching-time (CTL) goals and strategies can be described
as SRML modules. More importantly, EAGLE allows the automated verifica-
tion of solutions of such games, that is, checking whether a particular profile
of strategies is or is not a Nash equilibrium of a given RM game—a problem
called equilibrium checking. From a systems analysis point of view, this is the
game-theoretic equivalent to the model checking problem in formal verification.
A short description of our verification tool is given next.

Our tool expects as input an RM game G = (A = (N , Φ,m0, ...,mn), (γi)i∈N )
and a strategy profile �σ. Because strategies are modelled as finite state machines
with output (which are known as transducers), they can easily be described,
uniformly, using SRML. Goals, on the other hand, are written using the syntax
for CTL formulae in [7]. For ease of use, a simple command-line interface can be
used to input text files with the specification of games. An concrete example will
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be given later, but all implementation details can be found in [18]. Moreover,
EAGLE implements an algorithm—which uses two external libraries for CTL
satisfiability and model checking—that automatically solves these multi-player
games, that is, their (Nash) equilibrium problem.

More precisely, on input (G , �σ), the tool outputs True if and only if
�σ ∈ NE (G). We have also implemented, using the command-line interface, a
“verbose” mode in which a detailed account of the running process of the algo-
rithm is given. For instance, apart from checking solutions of a given game, the
tool reports whether or not players get their goal achieved, and in the case they
do not, whether they could benefit from changing the strategy they are cur-
rently using. We should note that because in a Nash equilibrium strategy profile
no player can benefit from unilaterally changing its strategy, it is the case that if
the tool reports that �σ �∈ NE (G), then there is some player who does not get its
goal achieved, but can change to a different strategy that achieves its goal. On
the contrary, if the tool reports that �σ ∈ NE (G), then no player can benefit from
changing its strategy, in particular, those who do not get their goal achieved.

Throughout, we made the following assumptions, which define what a correct
input is. In some cases, the assumptions are about the games themselves (1 & 2),
and in other cases about the input files (3). In particular, we have made the
following assumptions:

1. That the modules, both for the arena and for the strategy profile, respect
the specification of SRML. In particular, we require: (a) that no variable is
assigned twice in the same guarded command; (b) that the guards to init
commands are “�”; (c) that in the assignment statements x := ψ in init
commands, ψ is a Boolean constant, � or ⊥; (d) that for every module mi =
(Φi , Ii ,Ui), both Ii and Ui are sets instead of bags, i.e. that they contain only
pairwise distinct elements; (e) that for every module mi = (Φi , Ii ,Ui) and for
every command g ∈ Ii ∪ Ui we have that ctr(g) ⊆ Φi .

2. That the strategy profile is consistent with the arena, as required by the game
model.

3. That the input strings for goals are syntactically correct CTL formulae, in
particular that they respect the alternation between path quantifiers and
tense operators.

To make this concrete, we will, later and in the next section, present some
examples.

CTL Satisfiability and Model Checking. In order to solve the equilibrium prob-
lem for Reactive Modules games we used a CTL variant of the algorithms first
introduced in [10] to check whether a strategy profile is or is not a Nash equilib-
rium. The technique developed in [10] relies on the existence of two oracles, one
for model checking and one for satisfiability of the temporal logic at hand. In
the case of this paper, such oracles are for CTL, and can be obtained using any
“off-the-shelf” open source external libraries for CTL satisfiability (Ctl Sat)
and CTL model checking (Ctl MC). Specifically, we decided to use the Python
CTL model checker Mr.Waffles [17] and the CTL satisfiability checker in [16],
both open source libraries available online.
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For Ctl MC, the Mr.Waffles library implements Kripke structures with
a class PredicatedGraph which extends the networkx library for finite graphs
with a predicate attribute for every node: a list of the propositional variables
(represented as strings) that are true at this node. It then provides a check
method that takes a string representing a CTL formula (in prefix notation) and
outputs a list of the states at which the formula is satisfied. Hence, checking
whether a Kripke structure satisfies a CTL formula amounts to checking that all
the initial states are in this list. For Ctl Sat, we use a command-line interface
to access an external program that inputs CTL formulae as strings (in infix
notation), which is wrapped using a Python subprocess instance.

Concrete Data Structures. We represent propositional variables as ints, and
propositional valuations as lists of ints. We implemented a Python class for
propositional logic, which we used to store the guards and the Boolean values
of guarded commands. There is one subclass for each case in the grammar and
two special instances, T and F, to represent � and ⊥. Also, we implemented
assignment statements as Python named tuples (var, b) where var is an int
and b is an instance of the propositional logic class. Guarded commands are
implemented as named tuples (guard, action) where guard is an instance of the
propositional logic class and action is a list of assignment statements. Reactive
modules were also implemented as named tuples (ctrl, init, update) where
ctrl is a list of ints representing the variables the module controls, init and
update are lists of guarded commands.2

Input Format. As expected we use Python files, which we then parse using the
Python eval function. The input to the equilibrium checking algorithm is repre-
sented as a Python dict with three keys: (i) modules is a list of reactive modules
representing the SRML arena, (ii) goals is a list of CTL formulae represented
as strings in Mr.Waffles notation, and (iii) strategies is a list of reactive
modules representing the strategy profile. More specifically, we represent mod-
ules as Python dictionaries, following the same structure as the named tuples
for modules described before. The guards and the Boolean values in guarded
commands are expressed using Mr.Waffles prefix notation, and the proposi-
tional variable represented by the int n is simply denoted by xn. At this point it
is worth noting that using our Python assistant any finite-state strategy can be
represented, including non-deterministic ones, by extending the set of controlled
variables to represent strategy states without affecting the outcome of the game
(of course, as long as the strategy is consistent with its module).

System Architecture. Our system has five Python modules, as follows: 1.
A module that implements the command-line interface and the main algorithm; it
also implements the verbose mode and prints some running time measurements.

2 EAGLE is being improved and updated frequently. The implementation details in
this paper constitute the main design decisions at the moment of submission to
ICTAC (in June 2015).
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2. A module that implements the propositional logic class. 3. A module that imple-
ments the concrete data structures described before, as well as the parsing of input
modules and guarded commands. 4. A module that implements the algorithm to
translate an arena to its induced Kripke structure, represented as a Mr.Waffles
PredicatedGraph instance. 5. A module that implements a construction to trans-
late an arena, given as a list of modules, into a single CTL formula (used with the
Ctl Sat command-line interface) representing the branching behaviour of the
arena; this module is also responsible for wrapping the Ctl Sat command-line
interface, using a Python subprocess instance.

Evaluation. EAGLE was tested with a number of systems taken from the lit-
erature, and the results are reported in [18]. The running time measures show
that its performance is greatly driven by the CTL satisfiability solver, which
is used to check whether an alternative player’s strategy could be constructed
whenever a strategy profile does not satisfy some player’s goal. Details can be
found in [18]. These experimental results go from two-player games that required
hours to be analysed (Ctl Sat used) to multi-player games whose equilibrium
analysis took a few seconds (only Ctl MC used). It was clear, in all cases, that
the bottleneck was in the CTL satisfiability subroutine. In the future, we would
like to compare EAGLE with PRALINE [4], the only other tool we are aware
of that is focused on the equilibrium analysis of concurrent games.

Example. This example illustrates the concrete syntax used for modules in
SRML as well as its translation to the concrete syntax in our Python implemen-
tation. The SRML module depicted below (on the left), named toggle, controls
two variables x and y . It has two init guarded commands and two update
guarded commands. The init commands define two choices for the initialisa-
tion of the pair (x , y): assign it the value (�,⊥) or the value (⊥,�). The first
update command says that if (x , y) has the value (�,⊥) then the correspond-
ing choice is to assign it the value (⊥,�), while the second command says that
if the pair (x , y) has the value (⊥,�), we can assign it the value (y , x ) in the
next state. Note that the two update commands define essentially the same
choice, but in the first command the action mentions Boolean constants directly,
whereas the second command mentions the values of the variables at the current
state, and requires to evaluate those to assign the values for the next state. In
other words, the module toggle first non-deterministically picks an initial pair in
{(�,⊥), (⊥,�)}, then at each round it deterministically toggles between these
two pairs. This SRML module is written in our Python assistant for equilibrium
checking as shown below (on the right):
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5 Case Study: A Peer-to-Peer Communication Protocol

To understand better the usefulness of an equilibrium checking tool, we now
present a case study based on the system presented in [8]. Consider a peer-to-peer
network with two agents (the extension to n > 2 agents is straightforward—we
restrict to two agents only due to space and ease of presentation). At each time
step, each agent either tries to download or to upload. In order for one agent to
download successfully, the other must be uploading at the same time, and both
are interested in downloading infinitely often.

While [8] considers an iBG model [10], where there are no constraints on the
values that players choose for the variables under their control, we will consider
a modified version of the communication protocol: using guarded commands, we
require that an agent cannot both download and upload at the same time. This
is a simple example of a system which cannot be specified as an iBG, but which
has an SRML representation.

We can specify the game modelling the above communication protocol as
a game with two players, 0 and 1, where each player i ∈ {0, 1} controls two
variables ui (“Player i tries to upload”) and di (“Player i tries to download”);
Player i downloads successfully if (di ∧ ui−1). Formally, we define a game G =
(A, γ0, γ1), where A = ({0, 1}, Φ,m0,m1), Φ = {u0, u1, d0, d1}, and m0,m1 are
defined as follows:

module m0 controls u0, d0
init
:: � � u ′

0 := �, d ′
0 := ⊥

:: � � u ′
0 := ⊥, d ′

0 := �
update
:: � � u ′

0 := �, d ′
0 := ⊥

:: � � u ′
0 := ⊥, d ′

0 := �

module m1 controls u1, d1
init
:: � � u ′

1 := �, d ′
1 := ⊥

:: � � u ′
1 := ⊥, d ′

1 := �
update
:: � � u ′

1 := �, d ′
1 := ⊥

:: � � u ′
1 := ⊥, d ′

1 := �
Players’ goals can be easily specified in CTL: the informal “infinitely often”
requirement can be expressed in CTL as “From all system states, on all paths,
eventually”. Hence, for i ∈ {0, 1}, we define the goals as follows: γi = AGAF(di∧
u1−i).

This is clearly a very simple system/game: only two players and four con-
trolled variables. Yet, checking the Nash equilibria of the game associated
with this system is a hard problem. One can show—and formally verify using
EAGLE—that this game has at least two different kinds of Nash equilibria
(one where no player gets its goal achieved, and another one, which is Pareto
optimal, where both players get their goal achieved). In general, the game has
infinitely many Nash equilibria, but they all fall within the above two categories.
Based on the SRML specifications of players’ strategies given below, which can
be seen to be consistent with modules m0 and m1, we can verify that both
(StPlayer(0),StPlayer(1)) �∈ NE (G) and (OnlyUp(0),OnlyUp(1)) ∈ NE (G).
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module StPlayer(i) controls ui , di
init
:: � � u ′

i := �, d ′
i := ⊥

update
:: � � u ′

i := di , d ′
i := ui

module OnlyUp(i) controls ui , di
init
:: � � u ′

i := ⊥, d ′
i := �

update
:: � � u ′

i := ⊥, d ′
i := �

6 Future Work

We see a number of ways in which EAGLE can be improved: From a theoret-
ical point of view, there is no reason to restrict to CTL goals. More powerful
temporal logics could be considered. Also, our tool solves games with respect
to the most widely used solution concept in game theory: Nash equilibrium.
However, other solution concepts could be considered. It would also be useful to
support, e.g., quantitative/probabilistic reasoning or epistemic specifications so
that more general agent’s preference relations or beliefs can be modelled. Finally,
even though our verification system is quite easy to use, we could implement a
more user-friendly interface to input temporal logic goals. At present, our main
limitations are given by the syntax used by the two external libraries we use to
solve the underlying CTL satisfiability and model checking problems.
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5. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Heidelberg (2014)

6. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
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Abstract. Concurrent games as event structures form a partial order
model of concurrency where concurrent behaviour is captured by non-
deterministic concurrent strategies—a class of maps of event structures.
Extended with winning conditions, the model is also able to give seman-
tics to logics of various kinds. An interesting subclass of this game model
is the one considering deterministic strategies only, where the induced
model of strategies can be fully characterised by closure operators. The
model based on closure operators exposes many interesting mathematical
properties and allows one to define connections with many other seman-
tic models where closure operators are also used. However, such a closure
operator semantics has not been investigated in the more general non-
deterministic case. Here we do so, and show that some nondeterministic
concurrent strategies can be characterised by a new definition of nonde-
terministic closure operators which agrees with the standard game model
for event structures and with its extension with winning conditions.

Keywords: Concurrent games · Event structures · Closure operators

1 Introduction

Event structures [13] are a canonical model of concurrency within which the par-
tial order behaviour of nondeterministic concurrent systems can be represented.
In event structures, the behaviour of a system is modelled via a partial order of
events which are used to explicitly model the causal dependencies between the
events that a computing system performs. Following this approach, in the model
of event structures, the interplay between concurrency (independence of events)
and nondeterminism (conflicts between events) can be naturally captured.

Event structures have a simple two-player game-theoretic interpretation [16].
Within this framework, games are represented by event structures with polari-
ties, and a strategy on a game is a polarity-preserving map of event structures
satisfying some behaviour-preserving properties. In [16], concurrent games were
presented as event structures and proposed as a new, alternative basis for the
semantics of concurrent systems and programming languages. The definition of
strategies as presented in [16] was given using spans of event structures—a fam-
ily of maps of event structures. This definition has been both generalised and
specialised to better understand particular classes of systems/games.
c© Springer International Publishing Switzerland 2015
M. Leucker et al. (Eds.): ICTAC 2015, LNCS 9399, pp. 597–607, 2015.
DOI: 10.1007/978-3-319-25150-9 35
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For instance, in [20] the original definition of strategies was given a charac-
terisation based on profunctors, and related sheaves and factorisation systems, a
more abstract presentation that can provide links with other models of concur-
rency based on games. In the other direction, in [19], Winskel studied a subclass
of concurrent systems corresponding to deterministic games. In this simpler set-
ting, concurrent strategies were shown to correspond to closure operators.

In this paper, we will investigate a model of strategies that is intermediate
between the representations based on closure operators (which correspond to
deterministic strategies) and profunctors (which correspond to the general model
of nondeterministic strategies). In particular, we provide a mathematical model,
which builds on closure operators and has a simple game-theoretic interpretation,
where some forms of concurrency and nondeterminism are allowed to coexist.

Semantic frameworks based on closure operators are not new. In fact, they
have been used in various settings as a semantic basis, amongst other rea-
sons, because they can provide a mathematically elegant model of concurrent
behaviour—see, e.g., [3,7,14,17,19], for some examples. In particular, seman-
tics based on closure operators provide an intuitively simple operational reading
of their behaviour. However, such a simplicity comes at a price: the interplay
between concurrency and nondeterminism must be severely restricted.

The model we provide here inherits many of the desirable features of systems
with closure operator semantics, but also some of its limitations. In particu-
lar, it can be used to represent concurrent systems/games represented as event
structures having a property called race-freedom, a structural condition on event
structure games which ensures that no player can interfere with the moves avail-
able to the other. Our main results are significant since most known applications
of games as event structures fall within the scope of the class of race-free games
(cf. Sect. 6). The various models of games and strategies we have described above
can be organised, in terms of expressive power, as shown in Fig. 1.

Fig. 1. The following abbreviations are used: Deterministic Concurrent Games (DCG);
Race-free Concurrent Games (RCG); General Concurrent Games (CG); Deterministic
Strategies (DS); Closure Operators (CO); Nondeterministic CO (NCO); Strategies as
spans of event structures (S) and profunctors (P). The model of strategies in bold
(NCO) is the one investigated in this paper.

Structure of the Paper. The rest of the paper is organised as follows. Section 2
presents some background material on concurrent games as event structures and
Sect. 3 introduces nondeterministic closure operators. Section 4 describes when
and how concurrent strategies can be characterised as nondeterministic closure
operators and Sect. 5 extends such a characterisation to games with winning



A Mathematical Game Semantics of Concurrency and Nondeterminism 599

conditions. Section 6 concludes, describes some relevant related work, and puts
forward a number of potential interesting application domains.

2 Concurrent Games as Event Structures

An event structure comprises (E,≤,Con), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty
consistency relation Con consisting of finite subsets of E, which satisfy axioms:

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con =⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

The configurations of E consist of those subsets x ⊆ E which are

Consistent: ∀X ⊆ x. X is finite =⇒ X ∈ Con, and
Down-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x.

We write C(E) for the set of configurations of E. We say that an event structure
is well-founded if all its configurations are finite. We only consider well-founded
event structures. Two events e1, e2 which are both consistent and incomparable
with respect to causal dependency in an event structure are regarded as concur-
rent, written e1 co e2. In games the relation of immediate dependency e � e′,
meaning e and e′ are distinct with e ≤ e′ and no event in between plays an
important role. For X ⊆ E we write [X] for {e ∈ E | ∃e′ ∈ X. e ≤ e′}, the
down-closure of X; note that if X ∈ Con then [X] ∈ Con. We use x−⊂y to mean

y covers x in C(E), i.e., x ⊂ y with nothing in between, and x
e−−⊂ y to mean

x ∪ {e} = y for x, y ∈ C(E) and event e /∈ x. We use x
e−−⊂ , expressing that

event e is enabled at configuration x, when x
e−−⊂ y for some configuration y.

Let E and E′ be event structures. A map of event structures is a partial
function on events f : E → E′ such that for all x ∈ C(E) its direct image
fx ∈ C(E′) and if e1, e2 ∈ x and f(e1) = f(e2) (with both defined) then
e1 = e2. The map expresses how the occurrence of an event e in E induces
the coincident occurrence of the event f(e) in E′ whenever it is defined. Maps
of event structures compose as partial functions, with identity maps given by
identity functions. Thus, we say that the map is total if the function f is total.

The category of event structures is rich in useful constructions on processes.
In particular, pullbacks are used to define the composition of strategies, while
restriction (a form of equalizer) and the defined part of maps will be used in
defining strategies. Any map of event structures f : E → E′, which may be a
partially defined on events, has a defined part the total map f0 : E0 → E′, in
which the event structure E0 has events those of E at which f is defined, with
causal dependency and consistency inherited from E, and where f0 is simply f
restricted to its domain of definition. Given an event structure E and a subset
R ⊆ E of its events, the restriction E �R is the event structure comprising events
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{e ∈ E | [e] ⊆ R} with causal dependency and consistency inherited from E; we
sometimes write E \ S for E � (E \ S), where S ⊆ E.

Event Structures with Polarity. Both a game and a strategy in a game are
represented with event structures with polarity, comprising an event structure
E together with a polarity function pol : E → {+,−} ascribing a polarity +
(Player) or − (Opponent) to its events; the events correspond to moves. Maps
of event structures with polarity, are maps of event structures which preserve
polarities. An event structure with polarityE is deterministic iff

∀X ⊆fin E. Neg [X] ∈ ConE =⇒ X ∈ ConE ,

where Neg [X] =def {e′ ∈ E | pol(e′) = − & ∃e ∈ X. e′ ≤ e}. We write Pos[X] if
pol(e′) = +. The dual, E⊥, of an event structure with polarity E comprises the
same underlying event structure E but with a reversal of polarities.

Given two sets of events x and y, we write x ⊂+ y to express that x ⊂ y and
pol(y \ x) = {+}; similarly, we write x ⊂− y iff x ⊂ y and pol(y \ x) = {−}.

Games and Strategies. Let A be an event structure with polarity—a game;
its events stand for the possible moves of Player and Opponent and its causal
dependency and consistency relations the constraints imposed by the game.

A strategy (for Player) in A is a total map σ : S → A from an event struc-
ture with polarity S, which is both receptive and innocent. Receptivity ensures
an openness to all possible moves of Opponent. Innocence, on the other hand,
restricts the behaviour of Player; Player may only introduce new relations of
immediate causality of the form � � ⊕ beyond those imposed by the game.

Receptivity: A map σ is receptive iff
σx

a−−⊂ & polA(a) = − =⇒ ∃!s ∈ S. x
s−−⊂ & σ(s) = a .

Innocence: A map σ is innocent iff
s � s′ & (pol(s) = + or pol(s′) = −) =⇒ σ(s) � σ(s′).
Say a strategy σ : S → A is deterministic if S is deterministic.

Composing Strategies. Suppose that σ : S → A is a strategy in a game A.
A counter-strategy is a strategy of Opponent, so a strategy τ : T → A⊥ in
the dual game. The effect of playing-off a strategy σ against a counter-strategy
τ is described via a pullback. Ignoring polarities, we have total maps of event
structures σ : S → A and τ : T → A. Form their pullback,

The event structure P describes the play resulting from playing-off σ against
τ . Because σ or τ may be nondeterministic there can be more than one maximal
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configuration z in C(P ). A maximal z images to a configuration σΠ1z = τΠ2z
in C(A). Define the set of results of playing-off σ against τ to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C(P )} .

Winning Conditions. A game with winning conditions comprises G = (A,W )
where A is an event structure with polarity and the set W ⊆ C(A) consists of the
winning configurations (for Player). Define the losing conditions (for Player) to
be L = C(A) \ W . The dual G⊥ of a game with winning conditions G = (A,W )
is defined to be G⊥ = (A⊥, L), a game where the roles of Player and Opponent
are reversed, as are correspondingly the roles of winning and losing conditions.

A strategy in G is a strategy in A. A strategy in G is regarded as winning
if it always prescribes moves for Player to end up in a winning configuration,
no matter what the activity or inactivity of Opponent. Formally, a strategy σ :
S → A in G is winning (for Player) if σx ∈ W for all ⊕-maximal configurations

x ∈ C(S)—a configuration x is ⊕-maximal if whenever x
s−−⊂ then the event s

has −ve polarity. Equivalently, a strategy σ for Player is winning if when played
against any counter-strategy τ of Opponent, the final result is a win for Player;
precisely, it can be shown [5] that a strategy σ is a winning for Player iff all the
results 〈σ, τ〉 lie within W , for any counter-strategy τ of Opponent.

3 Nondeterministic Closure Operators

It is often useful to think “operationally” of a strategy σ : S → A as an func-
tion that associates to a configuration of A another configuration of A that,
potentially, can be played next. Since, in general, a concurrent strategy can be
nondeterministic then such a function may not be between configurations of A,
but rather a function from C(A) to the powerset of C(A), denoted by ℘(C(A)).
In particular, for race-free concurrent games—those games which satisfy a struc-
tural condition called race-freedom, to be defined in the following section—given
a strategy σ : S → A, we define σµ : C(A) → ℘(C(A)) with respect to σ as follows:

y′ ∈ σµ(y) iff ∃x, x′ ∈ C(S). σx = y & x′ ∈ f−→
µ (x) & σx′ = y′

for some operator f−→
µ : C(S) → ℘(C(S)), also defined with respect to σ : S → A,

as a nondeterministic closure operator f−→ : C(S) → ℘(C(S)), that is, as an
operator from C(S) to ℘(C(S)) that satisfies the following properties:

1. ∀x′ ∈ f−→(x). x ⊆+ x′,
2. ∀x′ ∈ f−→(x). {x′} = f−→(x′),
3. x1 ⊆− x2 =⇒ f−→(x1) ⊆ f−→(x2)

In fact (for 3):

∀x′
1 ∈ f−→(x1). ∃ x′

2 ∈ f−→(x2). x′
1 ⊆ x′

2 and
∀x′

2 ∈ f−→(x2). ∃!x′
1 ∈ f−→(x1). x′

1 ⊆ x′
2.
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That is, such that for some x, x′ in C(S) and f−→
µ , the diagram below commutes:

Remark. If f−→
µ is deterministic in the sense that the image of f−→

µ (x) is a
singleton set, for every x ∈ C(S), then f−→

µ can be regarded as a usual closure
operator on the configurations of S, with the order given by set inclusion. To see
this, simply let x′, {x′}, and f−→

µ (x) be cl−→(x), where cl−→(x) =
⋃

f−→
µ (x), and

eliminate quantifiers as they are no longer needed. Moreover, the condition that
Pos[x1] = Pos[x2] (given by x1 ⊆− x2 in 3) can be eliminated too as no positive
event of

⋃
f−→
µ (x1) is inconsistent with a positive event of x2. And since f−→

µ (x)
is the set of maximal configurations in {x′ ∈ C(S) | x ⊆+ x′} we know that f−→

µ

preserves negative events; then we can also omit all references to polarities so as
to yield the following presentation: 1. x ⊆ cl−→(x); 2. cl−→(x) = cl−→(cl−→(x));
3. x1 ⊆ x2 =⇒ cl−→(x1) ⊆ cl−→(x2). These facts are formally presented below.

Proposition 1 (Deterministic Games). Let A be a game and σ : S → A a
concurrent strategy. If S is deterministic, then f−→

µ is a closure operator.

4 Strategies as Nondeterministic Closure Operators

In [5] it was shown that in order to build a bicategory of concurrent games, where
the objects are event structures and the morphisms are concurrent strategies
(that is, innocent and receptive maps of event structures), a structural property
called race-freedom had to be satisfied by the ‘copy-cat’ strategy in order to
behave as an identity in such a bicategory. Race-freedom proved again to be
a fundamental structural property of games as event structures when studying
games with winning conditions: it was, in [5], shown to be a necessary and
sufficient condition for the existence of winning strategies in well-founded games.

Race-freedom, formally defined below, is satisfied by all concurrent games
we are aware of. Informally, race-freedom is a condition that prevents one player
from interfering with the moves available to the other player. Formally, a game
A is race-free if and only if for all configurations y ∈ C(A) the following holds:

y
a−−⊂ & y

a′

−−⊂ & pol(a) �= pol(a′) =⇒ y ∪ {a, a′} ∈ C(A) .

Race-freedom proves to be useful again. It is shown to be a necessary and suf-
ficient condition characterising strategies as nondeterministic closure operators.
To see that race-freedom is necessary, consider the following simple example.

Example 2 (Race-Freedom). Let A be the game depicted below. The wiggly line
means conflict, that is, that the set of events {�,⊕} is not a configuration of A.
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This game is not race-free. Moreover, there is a strategy for Player that can-
not be represented as a nondeterministic closure operator, namely, the strategy
σ : S → A that plays ⊕. To see that this is the case, consider condition 3
of nondeterministic closure operators (the other two conditions are satisfied).
Let f−→ : C(S) → ℘(C(S)) be a candidate nondeterministic closure operator
to represent σ. Observe that even though ∅ ⊆ {�}, it is not the case that
f−→(∅) ⊆ f−→({�}); indeed, f−→(∅) = {{⊕}} and f−→({�}) = {{�}}. ��
Proposition 3. Let A be a concurrent game that is not race-free. Then, there
is a nondeterministic strategy σ : S → A for Player that do not determine a
nondeterministic closure operator on C(S)—and similarly for Opponent.

Then, if one wants to build a model where every strategy has a nondeterministic
closure operator representation for every game, race-freedom will be a necessary
condition. This is not a surprising result since, as mentioned before, copy-cat
strategies, which can be represented as conventional closure operators, require
this condition. What is, therefore, much more interesting is that race-freedom is
in fact a sufficient condition too, as shown by the result below.

Theorem 4 (Closure Operator Characterisation). Let σ : S → A be a
nondeterministic concurrent strategy in a race-free concurrent game A. Then,
the strategy σ determines a nondeterministic closure operator on C(S).

Proof (Sketch). Since A is race-free then S is race-free (because S cannot intro-
duce inconsistencies between events of opposite polarity). Then, f−→

µ (x) is the set
of ⊕-maximal configurations that cover x, namely f−→

µ is the nondeterministic
closure operator determined by σ, as shown next.

Suppose σx = y & σx′ = y′ & y′ ∈ σµ(y). Then (for 1) x ⊆ x′ and Neg[x] =
Neg[x′], for every x′ ∈ f−→

µ (x). And, (for 2) as every x′ is ⊕-maximal, then
it cannot be extended positively by any configuration; hence, f−→

µ (x′) = {x′}.
Now, (for 3) suppose σx1 = y1 & σx2 = y2 & y2 ∈ σµ(y1), with x1 ⊆− x2 (and
therefore y1 ⊆− y2). Thus, since

– f−→
µ (x1) is the set of ⊕-maximal configurations that cover x1, and

– Pos[x1] = Pos[x2], and
– S is race-free,

then f−→
µ (x1) ⊆ f−→

µ (x2), because x2 enables at least as many ⊕-events as x1;
recall that x1 ⊆− x2 means that Neg[x1] ⊆ Neg[x2] and Pos[x1] = Pos[x2]. ��
Informally, what Theorem4 shows is that whereas in the deterministic case,
a strategy σ : S → A can be seen as a partial function between the config-
urations of A which satisfies the axioms of a closure operator, in the nonde-
terministic race-free setting, a strategy can be seen as a partial function from
C(A) to ℘(C(A)) which satisfies the axioms of a nondeterministic closure oper-
ator. This, we believe, gives a more operational view of strategies than the one
given by strategies as maps of event structures [16] or as certain fibrations and
profunctors [20].
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Race-free/Probabilistic Games. Because our nondeterministic closure operator
characterisation of strategies only applies to race-free games, a natural question
is whether race-freedom is either a mild or a severe modelling restriction. (We
already know that race-freedom is not a real restriction with respect to sequential
systems, but it is a restriction with respect to concurrent ones.) Even though we
do not address such a question in this paper, we would like to note that a possible
way to relax the race-freedom structural condition is by moving to a quantitative
setting where races were allowed but only in a probabilistic manner, that is, to
a setting where players’ choices are associated with a probability distribution.

5 Characterising Winning Strategies

Theorem 4 provides a key closure operator (game semantic) characterisation of
the model of nondeterministic concurrent strategies in games as event structures.
It relies, in particular, in the fact that the games are race-free. Under the same
conditions, other general theorems for games with winning conditions can also be
given with respect to the new closure operator game semantics. In particular, we
extend the characterisation of strategies as nondeterministic closure operators
to games with winning conditions. We start by providing the following result.

Theorem 5. Let A be a race-free game. A strategy σ : S → A in (A,W ) is
winning iff σµ(y) ⊆ W for all y ∈ C(A) under σ.

Based on Theorem 5, which relates the standard definition of strategies as maps
of event structures with strategies as nondeterministic closure operators, known
techniques to characterise winning strategies can be used so that such concurrent
strategies can be characterised, instead, with respect to the existence of nonde-
terministic closure operators. First, let us define the set of results of a concurrent
game via nondeterministic closure operators.

Given A and two nondeterministic closure operators σµ and τµ for Player
and Opponent, their one-step composition at y ∈ C(A), denoted by (σµ � τµ)(y),
induces the following set of configurations: {σµ(y′) ⊆C(A) | y′ ∈ τµ(y)}. Now, let
the set R be the partial results of playing-off σµ against τµ, which is inductively
defined as follows: (σµ � τµ)(∅) ⊆ R and if y ∈ R then (σµ � τµ)(y) ⊆ R. Finally,
similar to the case where the results of a concurrent game are computed using
a pullback construction, we define the set of results of the game as the maximal
elements of R, which we simply denote by σµ � τµ. Using these definitions one
can show that � is a commutative operator, that is, that the following holds.

Proposition 6. Let σ and τ be two strategies for Player and Opponent. Then

σµ � τµ = τµ � σµ

The equivalence relation given by Proposition 6 ensures that the two strategies
can be played in parallel while preserving the same set of results—a property of
the composition of strategies in the model of games as event structures.
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Based on the above results, one can also show that winning strategies, when
represented as nondeterministic closure operators, can be characterised with
respect to the sets of results obtained when composing them with every deter-
ministic strategy, represented as closure operators, for the other player. Finally,
the following result fully captures the notion of winning in race-free games.

Theorem 7 (Winning Strategies). Let A be a race-free concurrent game.
The nondeterministic closure operator σµ is winning for Player if and only if
(σµ � τµ) ⊆ W , for all closure operators τµ for Opponent.

Theorem 7 follows from results about winning strategies [5], and the fact that not
only every strategy σ : S → A determines a unique (partial) nondeterministic
closure operator σµ : C(A) → ℘(C(A)), but also every operator σµ is determined
by some (total) nondeterministic closure operator f−→ : C(S) → ℘(C(S)).

6 Conclusions, Application Domains, and Related Work

In this paper, we studied a mathematical model, which builds on closure opera-
tors and has a game-theoretic interpretation, where some forms of concurrency
and nondeterminism are allowed to coexist. In particular, the model extends
those based on deterministic games—and hence on closure operators too.

Indeed, deterministic games/strategies are already important in the model of
games as event structures. Strategies in this kind of games can represent stable
spans and stable functions [18], Berry’s dI-domains [4], closure operator models
of CCP [17], models of fragments of Linear Logic [1,3], and innocent strategies in
simple games [8], which underlie Hyland–Ong [9] and AJM [2] games. Strategies
in deterministic games are also equivalent to those in Melliès and Mimram [11]
model of asynchronous games with receptive ingenious strategies.

However, none of the models above mentioned allow a free interplay of non-
determinism and concurrency: either nondeterminism is allowed in a sequential
setting, or concurrency is studied in a deterministic setting. Still, nondetermin-
ism is needed in certain scenarios, or may be a desirable property. We would like
to mention three prominent cases: concurrent game models of logical systems [5],
formal languages with nondeterministic behaviour [12,15], and concurrent sys-
tems with partial order behaviour—also called ‘true-concurrency’ systems [13].

Logical Systems. In order to give a concurrent game semantics of logical systems
such as classical or modal logics, the power to express nondeterministic choices is
needed, in particular, in order to be able to interpret disjunctions in a concurrent
way—a “parallel or” operator. Deterministic strategies—and hence conventional
closure operators—are unable to do this in a full and faithful way.

Formal Languages. Another example where nondeterminism is allowed is within
formal languages such as ntcc [12], a nondeterministic extension of CCP, and in
simple programming languages with nondeterminism as the one initially studied
by Plotkin using powerdomains [15]. Whereas in the former case no game the-
oretic model has been studied, in the latter case no closure operator semantics
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has been investigated. Indeed, to the best of our knowledge, no game theo-
retic characterisation of powerdomains has been defined so far. An interesting
potential application would be a (nondeterministic closure operator) game char-
acterisation of Kahn–Plotkin concrete domains [10] given the simpler structure
of nondeterministic choices allowed in such a denotational model.

True-concurrency. In concurrent systems with partial order behaviour, such as
Petri nets or asynchronous transition systems, both concurrency and nondeter-
minism are allowed at the same time, which prevents the use of conventional
closure operators as the basis for the definition of a fully abstract model. In all
of these cases, the model of concurrent games as event structures could be used as
an underlying semantic framework, and in particular our nondeterministic clo-
sure operator characterisation/semantics when restricted to race-free systems.
A good starting point would be to consider free-choice nets [6], since in this case
race-freedom can be easily imposed by associating it with conflicts in the net.
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Abstract. Having the type of all types in a type system results in
paradoxes like Russel’s paradox. Therefore type theories like predica-
tive calculus of inductive constructions (pCIC) – the logic of the Coq
proof assistant – have a hierarchy of types Type0, Type1, Type2, . . . ,
where Type0 : Type1, Type1 : Type2, . . . . In a cumulative type system,
e.g., pCIC, for a term t such that t: Typei we also have that t: Typei+1.
The system pCIC has recently been extended to support universe poly-
morphism, i.e., definitions can be parametrized by universe levels. This
extension does not support cumulativity for inductive types. For exam-
ple, we do not have that a pair of types at levels i and j is also considered
a pair of types at levels i + 1 and j + 1.

In this paper, we discuss our on-going research on making inductive
types cumulative in the pCIC. Having inductive types be cumulative
alleviates some problems that occur while working with large inductive
types, e.g., the category of small categories, in pCIC.

We present the pCuIC system which adds cumulativity for inductive
types to pCIC and briefly discuss some of its properties and possible
extensions. We, in addition, give a justification for the introduced cumu-
lativity relation for inductive types.

1 Introduction

The type system of the proof assistant Coq, a variant of the predicative calculus
of inductive constructions (pCIC) (see [3] for details), has recently been extended
to support universe polymorphism [6]. There the calculus is extended with sup-
port for universe polymorphic definitions and inductive types are treated by con-
sidering copies of them at different universe levels – so long as levels satisfy con-
straints imposed by the inductive type and the environment. In this system the
simple definition for a category, Class Category: Type := {O: Type; H: O →O→Type;

...} defines a type Categoryij where i is the universe level for objects and j is
the universe level for homomorphisms. This allows a straightforward definition
of the category of small1 categories, Definition Cat: Category := {|O:= Category;

H:= Functor;...|} which defines a term of type category, Catijkl:Categoryij , with
object type Categorykl

2. However, inductive types such as Category not being
1 Here, smallness and largeness are to be understood as relative to universe levels.
2 Subject to side constraints on universe levels, e.g., k, l < i.
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cumulative implies that having a term t such that t: Categorykl and
t : Categoryk′l′ is possible if and only if k = k′ and l = l′.

This side condition, however, has undesirable consequences. First and fore-
most, the term Cat above is not the category of all small categories, rather
all categories at some particular lower universe level. Furthermore, statements
about Cat impose restrictions on its universe levels. That is, only those copies
of Cat that conform to the restrictions imposed are subject to the stated fact.
For instance, showing that the trivial category (a category with a single object
and its identity arrow) with object type unit: Type0 is the terminal object of
Catijkl, implies k = 0. Also, showing that Catijkl has exponentials (functor cate-
gories) implies j = k = l. The latter restriction is inconsistent with the restric-
tion n < m on TypeCat: Categorymn, the category of types and functions in
Coq: Definition Type_Cat: Category := {|O:= Type; H:= fun A B ⇒ A → B;...|}. Note

that here m is the level of type of O:=Type@{k} for some k while n is the level
of type of A → B, i.e., Type@{k}, hence n = k. This means, a copy of Cat cannot
both have exponentials and a copy of TypeCat in its objects. Furthermore, having
Catijkl cartesian closed restricts it so that j = k = l = 0. For further details of
using universe levels to represent smallness/largeness in category theory see [7].
There, in addition to the issues mentioned above, we shortly discuss how this
representation works intuitively and as expected.

It is, furthermore, noteworthy that such issues are not particular to cate-
gory theory and are rather prevalent in any case incorporating large inductive
types. Take the well-known definition of sets in type theory with inductive types:
Inductive Ens: Type :=ens : Π(A: Type),(A →Ens) →Ens. In this case, Ensi: Typei+1

has constructor ensi: Π(A: Typei),(A →Ensi) →Ensi. As a result, the ensemble of
small ensembles, ens Ens (λ(x: Ens). x), can’t be formed as x in the body of the
lambda-term is at a strictly lower universe level than the result ensemble.

To solve these problems, explicit lifting functions, e.g., Lift_Ens: Ensi →Ensj

with i ≤ j, could be used. They allow formation of terms such as the ensemble of
lifted small ensembles. However, we can’t prove, or even specify,
Π(t: T), t = Lift_T t. As a result, working with such lifted values and types
depending on them in particular is very complicated.

The rest of this paper is structured as follows: in Sect. 2 we present an exten-
sion of pCIC with cumulative inductive types and discuss its properties. In
Sect. 3, we introduce lpCuIC; a subsystem of pCuIC for which we can prove
soundness by reducing it to the soundness of pCIC using lifter terms. These
lifters will in addition provide an intuitive reason why the cumulativity relation
introduced in pCuIC is suitable. In Sect. 4, we conclude with discussing possible
extensions to the presented system.

2 pCIC with Cumulative Inductive Types (pCuIC)

In this section we present the predicative calculus of cumulative inductive con-
structions (pCuIC for short), an extension of the predicative calculus of induc-
tive constructions (pCIC) which additionally supports cumulativity for inductive
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types. The definition of pCuIC is identical to that of pCIC, except for the cumu-
lativity rule C-Ind of Fig. 2. The rules for typing judgements of this system are
presented in Fig. 1. In the sequel, we use x, y, z . . .X, Y, Z . . . to denote variables,
m,n, . . . , M,N, . . . for terms, i, j, . . . for natural numbers and s to stand for a
sort, i.e., Prop or Typei.

(Empty)

· �

(Decl)
Γ � T : s x �∈ Γ

Γ, x : T �

(Type)
Γ �

Γ � Typei : Typei+1

(Prop)
Γ �

Γ � Prop : Typei

(Var)
Γ � (x : T ) ∈ Γ

Γ � x : T

Γ � t : (Πx : A.B) Γ � t′ : A

Γ � (t t′) : B[t′/x]
(App)

Γ � A : s Γ, x : A � B : s′ (s, s′, s′′) ∈ RΠ

Γ � Πx : A. B : s′′ (Prod)

(Lam)
Γ, x : A � t : B

Γ � (λx : A. t) : (Πx : A. B)

Γ � t : A Γ � B : s A � B

Γ � t : B
(Conv)

A ∈ Ar(s) Γ � A : s′ (Γ, X : A � Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ � Ind(X : A){C1, . . . , Cn} : A
(Ind)

I ≡ Ind(X : A){C1, . . . , Cn} Γ � I : A 1 ≤ i ≤ n

Γ � Constr(i, I) : Ci[I/X]
(Constr)

I ≡ Ind(X : Π
→
x :

→
A. s){C1, . . . , Cn} Γ � →

a :
→
A (s, s′) ∈ Rξ Γ � c : (I

→
a )

Γ � Q : (Π
→
x :

→
A.(I

→
x) → s′) (Γ � fi : ξ(I, Q,Constr(i, I), Ci) ∀1 ≤ i ≤ n)

Γ � Elim(c, Q){f1, . . . , fn} : (Q
→
a ) c

(Elim)

Fig. 1. Typing judgements

2.1 Typing Rules

Figure 1 contains typing rules of PCuIC where the conversion/cumulativity rela-
tion, �, of rule Conv is defined in Fig. 2.

The relation RΠ governs the level of products formed in the system and is
given by RΠ = {( , Prop, Prop), (Typei, Typej , Typemax(i,j))}. In other words, Prop
is impredicative while Type is predicative. The relation Rξ governs formation of
eliminations, Rξ = {(Prop, Prop), (Typei, Typej), (Typei, Prop)} That is, we do not
allow terms that are not proofs to be constructed by case analysis on a proof.
The judgement Γ � expresses validity of context Γ and judgement Γ � t : A
expresses the fact that term t has type A under context Γ . In case x does not
appear freely in B, we abbreviate Πx : A. B as A → B.

Rules Ind, Constr and Elim, respectively, concern formation of induc-
tive types, their constructor terms and their elimination. For further reading
on inductive types in calculus of constructions refer to [4,5]. Here, arity for a
sort s, Ar(s), types strictly positive in X, Pos(X) and types of constructors,
Co(X), are as follows:



First Steps Towards Cumulative Inductive Types in CIC 611

Ar(s) := Π
→
x :

→
M. s Pos(X) := Π

→
x :

→
M. X

→
m

Co(X) := X
→
m | Pos(X) → Co(X) | Π

→
x :

→
M. Co(X)

provided that in Pos(X) and Co(X), above, X does not appear in
→
m or

→
M . This

is to ensure that X appears in constructors only strictly positively. In Fig. 1, ξ
is the type for eliminators defined below.

Definition 1 (Eliminator Type). Let C be a type of constructor for X and
let Q and c be two terms. Then, the type of eliminator for C, ξ(I,Q, c, C) ≡
(ξX(Q, c, C))[I/X] is defined as follows:

ξX(Q, c, P → N) = Πp : P. (Π
→
x :

→
M. (Q

→
m (p

→
x))) → ξX(Q, (c p), N)

for P ≡ Π
→
x :

→
M. (X

→
m)

ξX(Q, c,Πx : M. N) = Πx : M. ξX(Q, (c x), N)
ξX(Q, c,X

→
a ) = (Q

→
a c)

�
In this system, variable x in terms λx : A. B and Πx : A. B are bound in B
and variable X in Ind(X : A){C1, . . . , Cn} is bound in C1, . . . , Cn. We consider
terms equal up to renaming of bound variables, α-conversion. Additionally, we
assume that before any substitution, if necessary, α-conversion is performed so
as to prevent any variable capture.

2.2 Reduction Rules

The computational rule corresponding to inductive types, expectedly, corre-
sponds to induction/recursion. The elimination of a term of an inductive type
should perform a case analysis on its input and apply the corresponding pro-
vided elimination for that case by recursively eliminating any argument of the
constructor that is of the inductive type. This will be made more clear later. For
now let us consider recursors for constructors. A recursor for a constructor, as the
name suggests, takes the arguments of a constructor and performs the provided
elimination by recursively eliminating sub-terms. The recursor μ(I, F, f, C) for
a constructor C of an inductive type I takes two terms f and F . The term f is
the term that performs elimination for constructor C while term F corresponds
to recursive elimination of sub-terms.

Definition 2 (Recursor). Let C be a type of constructor for X and F and f be
terms. Then, recursor μ(I, F, f, C) = (μX(F, f, C))[I/X] is defined as follows:

μX(F, f, P → N) = λp : P.μX(F, (f p (λ
→
x :

→
M. (F

→
m (p

→
x)))), N)

for P ≡ Π
→
x :

→
M.(X

→
m)

μX(F, f,Πx : M. N) = λx : M. μX(F, (f x), N)
μX(F, f,X

→
a ) = f

�
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We consider two computation rules for pCuIC, β, for function application, (λx :
A. t)t′ →β t[t′/x] and ι for elimination of inductive types,

Elim((Constr(i, I)
→
m), Q){f1, . . . , fn} →ι (μ(I, Felim(I,Q, f1, . . . , fn), fi, Ci)

→
m)

for I ≡ Ind(X : A){C1, . . . , Cn}, A ≡ Π
→
x :

→
A.s where Felim(I,Q, f1, . . . , fn) ≡

λ
→
x :

→
A. λc : (I

→
x). Elim(c,Q){f1, . . . , fn}. In the sequel, we write � to denote

definitional equality, i.e., αβιη-conversion. For proofs of why eliminator types
and recursors above are well-typed, refer to [4,5].

As an example of inductive types and their elimination, let us define in
pCuIC the prime example of inductive types, natural numbers, nat ≡ Ind(X :
Type0){X,X → X}. Let us use Zero ≡ Constr(1, nat) : nat and Succ ≡
Constr(2, nat) : nat → nat to refer to the zero and successor constructors of
the natural numbers. We construct the eliminator for type nat as follows.

· �
(
λQ : (nat → s).λf1 : (Q Zero).

λf2 : (Πp : nat. (Q p) → Q (Succ p)). λn : nat. Elim(n, Q){f1, f2}
)
:

(
ΠQ : (nat → s). (Q Zero) → (Πp : nat. (Q p) → Q (Succ p)) → Πn : nat. Q n

)

Which is precisely the induction (in case s =Prop) and recursion principle for
natural numbers.

As another example of an inductive type consider the even predicate defined
inductively. even ≡ Ind(X : nat → Prop){X Zero,Πn : nat. X n → X
(Succ (Succ n))} This type has two constructors. The first constructor constructs
a proof that Zero is an even number. The second constructor, takes a natural
number n and a proof that n is even and produces a proof that (Succ (Succ n))
is even.

2.3 Cumulativity

The relation � in rule Conv reflects both convertibility and cumulativity. Rules
for this relation are depicted in Fig. 2. Rule C-Ind corresponds to cumulativity of
inductive types. Intuitively, rule C-Ind establishes relation I

→
m � I ′ →

m, if every
arity type and constructor parameter type of I is a subtype of the corresponding

type in I ′. As a condition of C-Ind we have ∀i. X
→
mi � X

→
m′

i. This means
that the ith constructor of I and I ′ if applied to the same terms must produce
instances of I and I ′ with the same values for arities.

As an example, consider the type of categories which in pCuIC is of the form:
Categoryi,j ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o → o → Typej .N} for
i, j ∈ N where i and j don’t appear in N . Clearly, we can use C-Ind to derive
Categoryi,j � Categoryk,l given that i ≤ k and j ≤ l. A similar argument can
show that Ensi � Ensj given that i ≤ j. Hence, pCuIC doesn’t suffer from the
problems mentioned earlier regarding the category of small categories and the
ensemble of small ensembles.
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(C-Prop) (C-Type)

Prop � Typei

i ≤ j

Typei � Typej

(C-Prod)
A � A′ B � B′

Πx : A. B � Πx : A′. B′

(C-Conv)
A � B

A � B

A � A′ A′ � B′ B � B′

A � B
(C-Congr)

I ≡ (Ind(X : Π
→
x :

→
N. s){Π

→
x1 :

→
M1. X

→
m1, . . . , Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π

→
x1 :

→
M ′

1. X
→
m′

1, . . . , Π
→
xn :

→
M ′

n. X
→
m′

n}
s � s′ ∀i. Ni � N ′

i ∀i, j. (Mi)j � (M ′
i)j

length(
→
m) = length(

→
x) ∀i. X

→
mi � X

→
m′

i

I
→
m � I ′ →

m
(C-Ind)

Fig. 2. Conversion/cumulativity relation

2.4 Properties

Although we do not provide any proof, we believe that the following two con-
jectures, stating properties of pCuIC and relation �, respectively, hold and can
be proven in a way akin to their counterparts in [2] or [4].

Conjecture 1. pCuIC has the following properties:

1. Church-Rosser property for βι-reduction (Church-Rosser)
2. βι strong normalization (Strong Normalization)
3. Every derivation Γ � t : A has a sub-derivation that derives Γ � and every

derivation Γ, x : T, Γ ′ � has a sub-derivation that derives Γ � T : s for some
sort s (Context-Validity)

4. if Γ � t : A, then there is a sort s such that Γ � A : s (Typing-Validity)
5. if Γ � t : A and t →∗

βι t′ then Γ � t′ : A (Subject Reduction)�

Conjecture 2. Properties of �:

1. � is a partial order relation over �: t�t
t�t′ t′�t′′

t�t′′
t�t′ t′�t

t�t′

2. The relation � is well-founded, i.e., there is no infinite decreasing chain A0 

A1 
 . . . , where t ≺ t′ if t � t′ and t �� t′ (Well-Founded)

3. if Γ � t : A, then there exists B such that Γ � t : B and for any C such that
Γ � t : C we have B � C (Principal Type)�

The system presented in this paper, pCuIC, has a strictly richer type system
compared to pCIC. In other words, Γ �pCIC t : A implies Γ �pCuIC t : A but the
converse does not hold. Consider the instance of the ensemble of small ensembles
expressed in pCuIC as EEi ≡ (Constr(1, Ensi+1) Ensi (λx : Ensi. x)) · � EEi :
Ensi+1 is derivable in pCuIC but not in pCIC. The inductive type Ensi is
defined as: Ensi ≡ Ind(X : Typei+1){ΠA : Typei. (A → X) → X}.

In pCuIC, Π types are considered invariant in their domain type. However,
we believe that results similar to those discussed in this paper hold for the case
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with full contravariance for the domain type of Π types. Note that points 2 and
3 of Conjecture 2 don’t hold in the version of pCuIC with full contravariance.
Although, we believe they do hold in the subsystem pCuICn, a subsystem of
PCuIC in which the universe levels are squashed such that Typen is the type
of all types (note that Typen itself has no type in pCuICn). This treatment is
similar to that of ECCn in the proof of quasi normalization of ECC in [2].

For systems such as pCuIC, the strong normalization and subject reduction
properties (stated in Conjecture 1 for pCuIC) imply (see [2]) the soundness and
decidability of type checking. However, as of writing of this paper we have not
yet proven the conjectures above. Another approach to proving soundness of
pCuIC is by reducing it to the soundness of pCIC. That is, the soundness of
pCuIC follows from the following conjecture:

Conjecture 3. Let Γ �pCIC T : s be a pCIC type such that Γ �pCuIC t : T . Then
there exists a term t′ such that Γ �pCIC t′ : T . �

In other words, every pCIC type that is inhabited in pCuIC is also inhabited in
pCIC. We can use this conjecture to prove the soundness of pCuIC as follows. Let
False ≡ Ind(X : Prop){} be the inductive type with no constructors. According
to the Conjecture 3, if there is a term t such that · �pCuIC t : False then there is
a term t′ such that · �pCIC t′ : False which implies unsoundness of pCIC which is
a contradiction. The main difficulty in proving this conjecture though is the fact
that there are types in pCuIC that are not valid types in pCIC. As an example
consider any type that involves the term EEi (ensemble of small ensembles)
above. Lifting such a term results in a type where the dependent argument is
ensemble of lifted small ensembles (and not ensemble of small ensembles). Note
that such terms and types can be part of a term which has a pCIC type. The
situation is particularly complicated with the functions whose domain type is a
type that is not a valid pCIC type.

3 Lesser pCuIC

In this section we introduce the lesser pCuIC (lpCuIC for short) which is a
subsystem of pCuIC for which we can prove soundness by reducing it to the
soundness of pCIC. This furthermore gives an intuition why the cumulativity
relation introduced in this paper for inductive types is suitable.

Definition 3 (lpCuIC). The system lpCuIC is the system pCuIC where rules
C-Ind and App are replace respectively by:

I ≡ (Ind(X : Π
→
x :

→
N. s){Π(

→
x1 :

→
M1. X

→
m1, . . . , Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π

→
x1 :

→
M ′

1. X
→
m′

1, . . . , Π
→
xn :

→
M ′

n. X
→
m′

n}
s � s′ ∀i. Ni �pCIC N ′

i ∀i, j. (Mi)j �pCIC (M ′
i)j

length(
→
m) = length(

→
x) ∀i. X

→
mi � X

→
m′

i

I
→
m � I ′ →

m
(C-Ind’)
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(App’)
Γ � t : (Πx : A. B) Γ � t′ : A

Γ � (t t′) : B[t′/x]
(Γ �pCIC t′ : A or x �∈ FV (B))

We furthermore impose the restrictions that in any derivation of Γ �lpCuIC t : T ,
for any sub-derivation of Γ ′ �lpCuIC t′ : T ′ we have Γ ′ �pCIC T ′ : s and for any

sub-derivation of Γ ′ �lpCuIC T ′ : Π
→
x :

→
A.s we have Γ ′ �pCIC T ′ : Π

→
x :

→
A.s �

In other words, lpCuIC is a subsystem of pCuIC in which every valid type is
also a valid type in pCIC and any functions whose output type depend on their
input can’t be applied to terms that are not of the appropriate type in pCIC.

In lpCuIC, we define the following lifters for the cumulativity relation. These
lifters are then used to show that any type inhabited in lpCuIC is also inhabited
in pCIC. This will give us a soundness proof for lpCuIC.

Definition 4 (Lifters). Let T and T ′ be two terms such that T �lpCuIC T ′.
Then, we define the lifter ΥT�lpCuICT ′ recursively on derivation of T �lpCuIC T ′. If
the last rule used to derive T �lpCuIC T ′ is:

C-Prop, C-Type or C-Conv then ΥT�lpCuICT ′ = λx : T. x

C-Prod then ΥΠx:A. B�lpCuICΠx:A′. B′ = λf : Πx : A. B.λx : A′.
ΥB�lpCuICB′ (f x)

C-Congr then ΥA�lpCuICB = ΥA′�lpCuICB′

C-Ind then Υ
I

→
t �lpCuICI′ →

t
= λx : I

→
t .Elim(x,Q){φ1, . . . , φn} for:

Q ≡ λ
→
y :

→
MA. λz : I

→
y .I ′ →

y φi = υ(I,Q,Constr(i, I), Ci,Constr(i, I ′), C ′
i)

I ′ ≡ Ind(X : Π(
→
x :

→
M ′

A). s′){C ′
1, . . . , C

′
n}

I ≡ Ind(X : Π(
→
x :

→
MA). s){C1, . . . , Cn}

Here, the constructor lifter for C, υ(I,Q, c, C, f, C′) = υX(Q, c, C, f, C′)[I/X]
is defined as follows:

υX(Q, c, P → N, f, P ′ → N ′) = λp : P. λz : (Π
→
x :

→
M.Q

→
t (p

→
x)).

υX(Q, (c p), N, (f z), N ′)

for P ≡ Π
→
x :

→
M. X

→
t

υX(Q, c,Πx : M. N, f,Πx : M ′. N ′) = λx : M. υX(Q, (c x), N, (f x), N ′)

υX(Q, c,X
→
t , f,X

→
t ) = f

�

Lemma 1 (Type Correctness of Lifters). Let T and T ′ be two terms such
that T �lpCuIC T ′ and Γ �lpCuIC T : s and Γ �lpCuIC T ′ : s′. Then, Γ �pCIC

ΥT�lpCuICT ′ : T → T ′. �

Theorem 1 (Inhabitants in lpCuIC). Let t and T be terms such that
Γ �lpCuIC t : T . Then there exists t′ such that Γ �pCIC t′ : T . �
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Corollary 1 (Soundness of lpCuIC). · �lpCuIC t : False implies that there
exists t′ such that · �pCIC t′ : False. �

For proofs of the above lemma, theorem and corollary refer to [8].
The ensemble of ensembles EEi is a valid term in lpCuIC, i.e., · �lpCuIC EEi :

Ensi+1. For the cumulativity relation Ensi �lpCuIC Ensi+1, we have the lifter:

ΥEnsi�lpCuICEnsi+1 = λx : Ensi.Elim(x, λz : Ensi.Ensi+1){φ}

for φ ≡ λA : Typei.λp : (A → Ensi).λz : (A → Ensi+1).Constr(1, Ensi+1) A z.
As an example, Theorem 1 gives the following term in pCIC for EEi:

Constr(1, Ensi+1) Ensi (λx : Ensi.ΥEnsi�lpCuICEnsi+1 x)

Which is the ensemble of lifted small ensembles and a valid term in pCIC.
The whole purpose of lpCuIC is to demonstrate an intuition of the work-

ings of pCuIC and why we believe it has the properties discussed earlier. Note
that although lpCuIC can express terms like ensemble of ensembles, it does not
provide us with a flexible enough working environment. As an example, the
type eq Ensi+1 EEi EEi is not a valid lpCuIC type when eq T is the equality
for type T . This is due to the fact that EEi and hence eq Ensi+1 EEi EEi

is not a valid type in pCIC. Here the inductive equality type is defined as:
eq ≡ λA : Typei. λx : A. Ind(X : A → Prop){X x}

4 Discussion and Conclusion

We presented pCuIC which extends pCIC with cumulativity for inductive types
and discussed issues that this treatment helps mitigate. We furthermore justified
the cumulativity relation for inductive types that we introduced by showing that
there is a sub-system of pCuIC, lpCuIC, in which any such cumulativity relation
has a corresponding lifting in pCIC. This, in addition, allowed us to reduce
soundness of lpCuIC to the soundness of pCIC.

Inductive types considered lack parameters and mutual inductive types (see
[5] for details). Parameters can be considered as variables in the context while
an inductive type is being defined. For instance, consider the type of equality eq
defined above. There, A and x are parameters of the inductive type eq. In gen-
eral, the values of parameters can influence the variance of types involving them
in an inductive definition. Consider F : Typei → Typej � Ind(X : Typel){ΠA :
Typek.(F A) → X}. In this case we can’t determine, e.g., whether F A � F B
for A � B. Hence separate analysis of different instances of inductive types with
different parameters can help make the cumulativity results more fine-grained.
In a different approach, we could add support for variables in the context, e.g.,
F above, to specify variance of their result with respect to their input, if appro-
priate, in addition to their type.

On the other hand, mutually inductive types are restricted to only appear
strictly positively in one another. Therefore, although it is subject to further
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research, it seems natural that the approach presented here can be straightfor-
wardly extended to the case of mutual inductive types.

Another interesting case is when we have x: Typei in an inductive type. We
have not considered variance of x in our relation. Doing so will result in having,
e.g., list A � list B for A � B. Such cumulativity relations can be very useful
in practice, lessening the need of explicit conversions.

We believe that the typical ambiguity and also elaboration and unification
algorithms presented in [6] can be directly extended to this system. However,
as higher order unification is undecidable in general, lifting functions can be
used as hints to facilitate unification when necessary. Note that these liftings
are not based on case analysis on the input anymore and are hence free of the
aforementioned problems.
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