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Preface

There is a growing interest in building more effective technologies for future software
engineering by properly integrating formal techniques into conventional software
engineering process. The development of the Structured Object-Oriented Formal
Language (SOFL) over the past two decades has shown some possibilities of achieving
effective integrations to build practical formal techniques and tool support for
requirements analysis, specification, design, inspection, review, and testing of software
systems. SOFL integrates Data Flow Diagram, Petri Nets, and VDM-SL to offer a
graphical and formal notation for writing specifications; a three-step approach to
requirements acquisition and system design; specification-based inspection and testing
methods for detecting errors in both specifications and programs; and a set of tools to
support modeling and verification. Meanwhile, the Modeling, Simulation, and Verifi-
cation Language (MSVL) is a parallel programming language developed over the past
decade. Its supporting tool MSV has been developed to enable us to model, simulate,
and verify a system formally. The two languages complement each other.

Following the success of the previous SOFL workshops, the 4th international
workshop on SOFL+MSVL (SOFL+MSVL 2014) was jointly organized in Luxem-
bourg by Shaoying Liu research group at Hosei University, Japan, and Zhenhua Duan
research group at Xidian University, China, with the aim of bringing industrial, aca-
demic, and government experts and practitioners of SOFL or MSVL to communicate
and to exchange ideas. The workshop attracted 20 submissions on specification-based
testing, specification inspection, model checking, specification animation, formal
methods education, formal verification, formal semantics, and formal analysis. Each
submission was rigorously reviewed by two or more PC members on the basis of
technical quality, relevance, significance, and clarity, and 12 papers were accepted for
publication in the workshop proceedings. The acceptance rate is 60 %.

We would like to thank the organizer of ICFEM 2014 for supporting the organi-
zation of the workshop, all of the Program Committee members for their great efforts
and cooperation in reviewing and selecting papers, and our postgraduate students for
their various helps. We would also like to thank all of the participants for attending the
presentation sessions and actively joining in discussions at the workshop. Finally, our
gratitude goes to the editors Alfred Hofmann and Christine Reiss of Springer for their
continuous support for the publication of the workshop proceedings.

November 2014 Shaoying Liu
Zhenhua Duan
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An Implementation Framework for Optimizing Test Case
Generation Using Model Checking

Longhui Chang1,2(✉), Huaikou Miao1,2, and Gongzheng Lu2

1 School of Computer Engineering and Science, Shanghai University,
Shanghai 200444, China

{changlh,hkmiao}@shu.edu.cn
2 Shanghai Key Laboratory of Computer Software Testing and Evaluating,

Shanghai 201112, China
lugz@shu.edu.cn

Abstract. Model checking based automated software testing has gained a great
popularity in the field of software test. However, during the process of test cases
generation, the redundant trap properties lead to calling the model checker
frequently and generating redundant test cases. This paper presents an imple‐
mentation framework for optimizing test cases generation based on satisfiability
solving. After a new test case is generated, the SAT solver is employed to
determine whether the generated test case covers the rest trap properties. If the
trap properties are covered by the generated test case, they will be removed from
the trap properties set. The bound model checker is used as the test generation
engine, which effectively limits the length of counterexamples and ensures
covering the same test goals with shorter total length. Our approach can not only
decrease the times of calling the model checker, but also help to realize the
automatic optimization of model checking based test cases generation.

Keywords: Bound model checking · Satisfiability · Test case generation · Trap-
properties reduction

1 Introduction

With the advantage of automatic test cases generation, the software testing method based
on model checking gets more and more attention. Model checking based test cases
generation can be simply described as [1]: after the system under test (SUT) is formally
modeled, the trap properties set are generated according to the model and coverage
criteria. And then the model checker is used to verify whether the model satisfies the
certain trap properties, and it will generate counterexamples automatically in the case
of unsatisfiability. Automation process that uses model checker to generate test cases
for each trap property, however, can often create a larger test cases set. And the redundant
trap properties set that call model checker constantly will cause the consuming of system
resources. Therefore, people have been focusing on optimizing test cases generation
based on model checking. This paper proposes a solution to reduce trap properties set,
which are generated by DFS algorithm, by deleting the trap properties that are covered

© Springer International Publishing Switzerland 2015
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2014, LNCS 8979, pp. 3–16, 2015.
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by generated test case in the process of test cases generation. Meanwhile, in order to
control the total length of test cases set, we choose the bound model checker, which
keeps a border k to limit length of the path to search. Since NuSMV model checker is
already used on a formal verification of real-world application, it is selected as test
generation engine in our implementation framework. And the commands of NuSMV
help to get dimacs file of the SUT, which is used to call the SAT solver to verify whether
the trap properties are covered by generated test case. This paper introduces an imple‐
mentation framework from UML modeling to test cases generation and a case study
running through the part of implementation framework shows the feasibility of our
method.

The remainder of this paper is organized as follows: Sect. 2 describes background
knowledge of model checking and SAT theory. The implementation framework for test
cases generation is introduced in Sect. 3. The implementation and experiment of the
framework are presented in Sect. 4. Section 5 summarizes some related work, and we
finally conclude the paper and highlight our future work.

2 The Preliminaries

In this section, we introduce the basic knowledge of optimizing test cases generation
based on model checking. Model checking starts formalizing the model of the SUT, and
then chooses the right coverage criterion to generate trap properties set. As the model
and trap properties are inputted into model checker, counterexamples will be generated
when the trap properties are discovered to be false. In the process of optimization, the
SAT theory is used to verify whether the generated test cases cover the rest trap prop‐
erties.

2.1 Linear Temporal Logic

The most widely used temporal specification languages in model checking are LTL
(Linear Temporal Logic) and CTL (Computation Tree Logic). In this paper, we mostly
use the temporal LTL [2] to describe trap properties. The definition of LTL formula is
given below:

An LTL formula consists of Boolean operators, atomic propositions and temporal
operators. The “AP” is atomic propositions. The operator “X” refers to the “next” oper‐
ator, “U” stands for “until” operator. The “G” is the “always” operator, stating that a
condition has to hold at all states of a path, and “F” is the “eventually” operator that
requires a certain condition to eventually hold at some time in the future.

Trap properties express the items that make up a coverage criterion by claiming that
these items cannot be reached or covered. For example, a trap property may claim that
a certain state can never be reached or a transition can never be covered. And the resulting
counterexample shows how the state or transition described by the trap property is
reached or covered. This counterexample can be used as a test case.

4 L. Chang et al.



2.2 SAT Theory and Bounded Model Checking

Given a proposition formula, determining whether there exists a variable assignment that
makes the formula evaluate to true is called the Boolean Satisfiability Problem (SAT) [3].
SAT was the first problem proven to be NP-complete problem. However, the efficient
SAT solver is often successful in answering this problem. Given an SAT instance, SAT
algorithms can completely either find a satisfying variable assignment, or prove that no
such solution exists. In most implementations, the search is based on DPLL [4] algorithm
proposed by Davis, Logemann and Loveland, and the proposition formula is usually
expressed in a product of sums form which is usually called Conjunctive Normal Form
(CNF). A formula in CNF is a conjunction of one or more clauses, where each clause is
a constraint formed as the disjunction of one or more literals. A literal, in turn, is a Boolean
variable or its negation. A propositional formula in CNF has some nice properties that
can help prune the search space and speed during the search process. To satisfy a CNF
formula, each clause must be satisfied individually. If a variable assignment causes any
clause in the formula to make all its literals evaluate false, then that current variable
assignment or any extension of it will never satisfy the formula. A clause that has all its
literals assigned to value 0 is called a conflicting clause and directly indicates to the solver
that some of the currently assigned variables must be unassigned first before continuing
the search for a satisfying assignment. The DPLL algorithm is a depth-first backtracking
framework. At each step, the algorithm picks a variable v and assigns a value to v. The
formula is simplified by removing the satisfied clauses and eliminating the false literals.
If an empty clause results after simplification, the procedure backtracks and tries the other
value for v until all variables are valued. If the clauses set gets the true value, the CNF is
defined satisfiability. Otherwise, it is unsatisfiability. Our primary task is to prove the
unsatisfiability of the instance.

The bounded model checking (BMC) constructs an SAT instance that is satisfiable
if and only if the underlying state transition system can realize a finite sequence of state
transitions that reaches certain states of interest. The main idea of BMC is to turn SUT
or model to Kripke, and express the properties to be verified in LTL formulae, then set
the upper bound of the border k, and combine model and LTL formulae into SAT
instance. If the property is verified to be false, then we will get a counterexample. On
the contrary, it explains that the model meets the properties after running the k steps.
For the border k, which is the maximum bound to be checked, if no value is given for
it, the BMC will find the shortest counterexample which violate the model.

3 Implementation Framework for Optimizing Test Cases
Generation

The framework for automatic test cases generation by model checking is shown in
Fig. 1. On the one hand, the right coverage criteria are chosen to generate trap properties
set. On the other hand, the SUT is converted to input program of model checking. After
putting properties and SMV program into SMV model checker, it can generate coun‐
terexamples to indicate violated trap properties and such counterexamples are suited
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as test cases. The main goal of optimization in the process of test cases generation is
to minimize trap properties set to avoid repeated trap properties calling NuSMV, thus
to avoid wasting resources and generating redundancy test cases.

Fig. 1. The test case generation framework of model checking

3.1 UML Formal Modeling

The SUT can be modeled by the finite state machine (FSM), data flow diagram, and
UML diagram. This paper uses statechart diagram of UML to describe the SUT.
Figure 2 is the statechart diagram of an ATM. It mainly describes the user withdrawing
money by ATM.

Fig. 2. ATM statechart diagram

ATM statechart diagram begins with a start action. After the user determines to
continue (cont), the system will enter the password (pwd) state. If the password is correct,
the system will transfer to the main interface automatically. Otherwise, return to the pwd
state under the condition that the number of inputting password is less than three times.
If the times is equal to three, the system will swallow card, and exit the system finally.
In the main interface, user can input p1, p2, p3 to withdraw, query and modify password

6 L. Chang et al.



respectively, and can return to the main interface if the user does not continue other
action. Figure 2 descripts the process of withdrawing from ATM, and embodies the
transition logic and transition conditions between state nodes.

Fig. 3. The partial SMV program for ATM

3.2 From UML to SMV Procedure Model

The Unified Modeling Language (UML) is the standard visual language used for modeling
the software behavior. So we choose the UML to describe the system model. But while
we call the model checker, the UML model should be converted to SMV program. A SMV
program is composed of a set of modules. The VAR module declares the states and local
variables of the model. The transition relationships are captured in the ASSIGN module.

An Implementation Framework for Optimizing Test Case Generation 7



The process to generate SMV procedure consists of two steps. Firstly, the ArgoUML
tool is used to convert UML diagram into XML document which is up to XMI (XML-
based Metadata Interchange) standard descripting the UML diagram completely. The
XMI not only unifies exchange of a large number of information, but also regulates XML
document transformed from UML model and helps to achieve the mapping from UML
diagrams to XML.

Secondly, the states set, transitions set and triggering events are extracted from
statechart diagram to structure the SMV program by parsing the XMI document. In the
VAR module of SMV program, all states are represented with enumeration type and
initialized. Transitions are converted to a series of next statements by defining with case
statements. We only give the part of SMV program for ATM example for paper limi‐
tation, as shown in Fig. 3.

3.3 Encoding Test Coverage Criterion into Trap Properties

A model checker will be called to find counterexamples by formulating a coverage
criterion as a verification condition for the model checker [6]. The coverage criterion
available for statechart diagram includes state coverage, transition coverage, and tran‐
sition composition coverage. In this paper, we choose the state coverage criterion as the
example, which can be considered as reachability property. Counterexamples generated
by reachability properties satisfy the state coverage if all states of the model are covered
at least once by them. Reachability properties defined in LTL formulae begin with the
keyword LTLSPEC in SMV model. Following the LTLSPEC, the reachability property
is defined by “G” operator.

Table 1. Reachability properties for ATM

No. State Trap property

TP1 chpwd G!chpwd

TP2 query G!query

TP3 quit G!quit

TP4 main G!main

TP5 wdraw G!wdraw

TP6 swallow G!swallow

TP7 start G!start

TP8 pwd G!pwd

For example, to reach the pwd state in Fig. 2, the following trap property is
used: . The negation means that no transitions are existed to reach
state pwd. Then we will get the counterexample which does not satisfy the trap
property but is the test sequence reach the state pwd. In the process of generating

8 L. Chang et al.



trap properties, we employ the depth first search algorithm to traverse all the
states, which, on certain extent, ensures that the trap properties with higher
priority has higher coverage rate than those lower priority at the default sort. All
trap reachability properties of ATM of Fig. 2 are listed in Table 1.

3.4 Generate Test Cases and Dimacs File

The BMC takes a model and the properties as input, a counterexample will be generated
when the property violates the model. Here we encapsulate the NuSMV commands [7]
of generating counterexamples by BMC into a .bat file, shown in Fig. 4. The model
checker reads the SMV program and sets up bmc. We can get the state sequence with
the command show_traces and the total execution time with time command.

Fig. 4. .bat for generating test cases

Conceptually a test case is a single trace through the state machine. We can express
the test case as a constrained finite state machine, or CFSM [6], by adding special vari‐
ables, states, which control the machine. The CFSM of the counterexample (start, cont,
pwd, cntqual3, swallow, exit, quit) generated by TP1 is shown in Fig. 5. Expressing the
generated test case as a CFSM helps us to restore the test case to a model.

An Implementation Framework for Optimizing Test Case Generation 9



Fig. 5. The partial CFSM program for test case generated by TP1

As we convert the generated test case to the CFSM, we use the NuSMV commands,
shown as the following, to generate Dimacs file for SAT solver, to verify the consistency
of the model and rest trap properties.

10 L. Chang et al.



The input, model-file, refers to the CFSM. And the output is a dimacs file which
contains of CNF formulae set. Then the SAT solver is called to search a variable assign‐
ment for the CNF formulae. If the result is false, it indicates that generated test case has
covered the current property. Then the property should be deleted before it calls NuSMV.

3.5 Reduction of Trap Properties Set

In the simple approach that test cases are generated by calling the model checker for
each trap property, which results in a test case for a feasible trap property. It means that
the same or a similar test case might be created several times, or that a test case might
be a prefix of another test case because a test case may contain several trap properties
violation. If the number of trap properties is too large, more time will be cost to create
redundant test cases.

Fig. 6. The algorithm for reducing trap propertie

To avoid the above phenomenon, the test cases generation should be monitored. In
this paper, we consider the SAT instance of the generated test case and the rest trap
properties to verify whether the generated test case covers the rest trap properties. As we
convert the consistency verification of the rest trap properties and generated test case into
the CNF formulae, each state will be assigned a variable automatically. And the satisfying
assignment that is found can be decoded into a state sequence which reaches states of
interest [3]. If the result of SAT solver is false, which means there exists a state sequence
in the model violates the trap property according to the SAT theory at Sect. 2.2, the trap

An Implementation Framework for Optimizing Test Case Generation 11



property is duplicated with the generated test case. Then the trap property can be removed
from the trap properties set. For example, if the counterexample generated for the first
trap property is , another counterexample corresponding with the third
trap property is . Then the tc3 will not be generated for that tc3 is contained
by tc1 as its prefix. As the trap properties are generated by DFS algorithm, the trap
properties with higher priority largely cover those with lower priority, which on certain
extent ensures that as many redundant trap properties as possible are deleted and the calling
of the model checker is avoided. The algorithm for optimizing the trap properties set which
based on satisfiability using SAT solving is shown in Fig. 6.

We input the ATM model and trap properties set TP[] that contains all trap properties
ordered by DFS according to state coverage criterion, the output is a reduced test cases
set TC[]. Firstly, the trap properties should be described in LTL. While the TP[] is not
empty, model checker verifies TP[i]. Once a new counterexample is generated as the
model violates the trap property, the SAT solver is called for checking whether the rest
trap properties are covered by the generated counterexample. If the result of SAT solver
is unsatisfiability, the trap property will be removed from TP[]. Otherwise, repeat the
process until the TP[] is empty. Once the trap properties that are covered by generated
counterexample are removed, it will not call model checker to generate repeated test cases.

4 Implementation and Experiment

We implemented the techniques described above in our test cases generation tool. We
chose the Eclipse as the development platform because it supports many plug-ins, such
as ArgoEclipse, and it has ability to add customize modules. After the formal modeling,
the UMLEclipse we added translates UML diagram defined by the user into an XMI
file, as described in the Sect. 3.2. From there, we are able to construct the input file of
model checker. The SMV program generation module, using the API provided by
Dom4j, is called to parse the XMI file by extracting the states set, transitions set and
triggering evens set and generates the SMV program. The trap properties based on
coverage criteria that chosen by the user can be generated according to the extraction
result of parsing the XMI file, based on the construction given in Sect. 3.3. The parsing
process is implemented by calling the common JUnit test execution engine to run the
JAVA files. We encapsulate the NuSMV commands into a .bat file and it is invoked to
call model checker to generate counterexample, which corresponds with the certain trap
property. Then we can convert this new counterexample to CFSM by adding the states
and transitions according to the Sect. 3.4. Using another .bat file, encapsulated the
commands of SAT solving, we verify whether the rest trap properties are redundancy.
The redundancy trap properties whose results are false are removed from the trap prop‐
erties set according to the optimization algorithm described in the Sect. 3.5. We will
maintain a loop to keep generating counterexample one by one. So once a new coun‐
terexample is generated, it will be used to check the rest trap properties and we will
reduce the trap properties set. This paper only chooses the state coverage as the example
to explain the feasibility of our tool. In fact, there are transition coverage and composi‐
tion coverage properties available in our tool to generate different counterexamples to
meet the requirements of user.
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Using our test cases generation tool we experimented with the ATM example
described in Fig. 2. And the Fig. 3 and Table 1 show the SMV model and trap properties
respectively. The result of running the model checker for verifying the first trap property
is shown in Fig. 7.

Fig. 7. The result of running model checker for trap property TP1

As the trap property is false, the trace will be generated. This counterexample in
Fig. 7 denotes pwd is true in next state s1, which violates the given property, i.e., there
exists a path from start to pwd. The same to the next state. Then the counterexample
constructed from SMV only shows the variables that value have changed in next state,
such as pwd changes from FALSE to TRUE. After getting the counterexample, we can
build the CFSM for the first counterexample shown in Fig. 4. Another .bat file is ran to
call the Zchaff solver and the computational result is shown in Fig. 8. Here, we just focus
on that the trap property is true or false, and do not consider the state trace. As the trap
property is false, we will remove it according to our optimization theory. The value of
bound, k, explains that it takes k steps to reach the target state.

Fig. 8. The result of running SAT solver

An Implementation Framework for Optimizing Test Case Generation 13



After the tool repeats above operation, the final result of optimizing test cases gener‐
ation is described in Table 2. The third column lists the trap properties that cover current
trap property. For example, TP4 is covered by the test case generated by the trap property
TP1, and TP6 is covered by TP3. If the trap property is covered by the generated test
case, this trap property will be removed. So the TP4, TP6, TP7, TP8 will be deleted
before they call the model checker. Without using our optimization, it will be 8 test cases
and calls model checker 8 times. Here, we just generate 4 test cases and the number of
times of calling the model checker is reduced. By analyzing the results, the optimization
method reduces the test cases set effectively.

Table 2. The result of opimization based on SAT

Trap Property Test case Be covered TP Delete

TP1: G!chpwd <start, pwd, main, chpwd> N

TP2: G!query <start, pwd, main, query> N

TP3: G!quit <start, pwd, swallow, quit> N

TP4: G!main TP1 Y

TP5: G!wdraw <start, pwd, main, wdraw> N

TP6: G!swallow TP3 Y

TP7: G!start TP1 Y

TP8: G!pwd TP1 Y

In bound model checking, the border k helps us to limit the length of counterexam‐
ples, and the total length of counterexamples is shorter than that produced by normal
checker. Table 3 shows the total length comparison of our optimized method with non-
optimized for the state and transition coverage criteria. The 87 expresses the total length
of counterexamples generated by normal model checker without optimization, and the
28 expresses the total length of counterexamples generated by BMC with our optimized
method, which shrinks by 60 %. The result shows that the total length of counterexamples
generated by BMC is shorter than those produced by normal model checker, even under
non-optimized method case, which reflects the advantage of BMC. Based on this anal‐
ysis, our optimized method reducing the test set can ensure that the less test cases with
shorter total length cover the same test goals.

Table 3. The result of optimization method based on SAT

Total length of optimized/non-optimized MC(Model Checker) BMC

State coverage 43/87 28/42

Transition coverage 47/112 34/68

14 L. Chang et al.



5 Related Work

Testing based on model checking has obtained lots of achievements, but a few for bound
model check. Such as, Moonzoo Kim and Yunho Kim [8] applied SAT-based bounded
analysis to embedded software verification. Kelson Gent and Michael S. Hsiao [9] used
BMC to generate functional test at the register transfer level. These method all utilized
the bounded characteristic of BMC.

At the same time, many approaches dedicating to optimize the generation process
based on model checking have been proposed. For example, Fraser et al. [10] used the
LTL rewriting rules in the test generation process to eliminate the trap properties that
have been covered, and at the same time produced less redundant test suite. Hamon [11]
extended the existing test cases iteratively to meet the other trap properties in SAL
integration. But this method is only suitable for those open programming interface model
checking. Godefroid et al. [12] put forward the optimization of CTL and LTL semantics.
In this paper, we implement a framework for optimizing test cases generation using
model checker based on SAT. Our approach for optimizing the test cases generation
process is effective and realizable.

6 Conclusion

Test automation based on model checking has become a hot spot in software testing.
Although many optimization approaches has been presented, its commonality and
implementability is not strong. The novel method proposed by this paper will reduce
the test suite based on SAT theory by deleting the trap properties covered by generated
test case. We give a detailed implementation steps for reducing the trap properties from
UML formal modeling to test cases generation. The result of case study shows that our
method not only decreases the times of calling model checker, but also shrinks the total
length of the test cases and reduces test cases set to avoid the possibility of test cases
space explosion. In the future work, we will pay more attention to the influence of
boundary value k, which may affect the length of test cases set and the coverage rate of
test goals. And at the same time, we will devote ourselves to implement the complete
automation for the process of optimizing test cases generation.
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Abstract. How to generate adequate test cases based on a specification
to cover all of the paths in its implementation is a challenge in software
testing. This paper presents a new approach to selecting test cases for
program testing. The essential idea is to generate a set of test cases
based on a given operation specification in pre-post notation, and then
apply the genetic algorithm to facilitate the generation of more effective
test cases in terms of program path coverage. The principle of GA is
discussed and an improvement of the GA through integration with Tabu
list is presented. An experiment is conducted to study how the improved
GA can be applied and to evaluate its effectiveness. The result shows
that our proposed method is more efective than conventional methods
and can cover all paths based on formal specification.

Keywords: Formal specification · Genetic algorithm · Tabu list

1 Introduction

Most of testing projects try to adopt automatic test case generation to improve
productivity and coverage rate. An important step in automatic testing is to
select appropriate test cases. An effective application of formal specification
in practice is facilitating test case generation, and the automation of the pro-
gram testing process [13]. The automatic specification-based testing (ASBT) is
a potentially effective technique for software reliability and attractive to the
software industry, which can reduce the cost and time and avoid many human
errors at the testing process. More and more companies adopt the formal spec-
ification to the requirement analysis or system design, this makes the auto-
matic specification-based testing become practical. ASBT has proposed several
approaches that let the test cases be generated only based on specifications. The
criteria for determining if test cases satisfy the test condition have been put
forward, but it does not ensure that every path in the related program can be
traversed. Now the problem is how to ensure the paths in the related program
can be traversed completely.
c© Springer International Publishing Switzerland 2015
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2014, LNCS 8979, pp. 17–31, 2015.
DOI: 10.1007/978-3-319-17404-4 2
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To solve the above problem, “Vibration” method has been proposed [12].
It has improved path coverage rate dramatically, however it still can not ensure
to cover all paths in the representative program. There is also a large body of
research on specification-based testing. Many projects automated test cases gen-
eration from specifications, such as Z specification [1,2], UML statecharts [3,4],
or ADL specifications [5,6]. The Korat which is one of the novel frameworks
for automated testing of Java Programs, is based on Java predicates [7]. Given
a predicate and a bound on the size of its inputs, Korat generates all inputs
for which the predicate returns true. Marisa A.S’anchez has examined algebraic-
specification based testing with particular attention to the approach reported by
Gilles Bernot, Marise Claude Gaudel and Bruno Marre [8]. It did not only focus
on the generation of test cases from the initial specification but also the additions
and revisions during the development. D.Marinov and S. Khurshid presented a
framework for automated testing of Java programs called TestEra [9]. TestEra
uses the Alloy Analyzer (AA) [10] to automatically generate method inputs and
check correctness of outputs, but it requires programmers to learn a specifica-
tion language much different than Java. Cheon and Leavens have proposed an
automatic translation of JML specifications into test oracles for JUnit [11]. But
the programmers have to provide sets of possibilities for all method parameters,
which add a burden of test cases generation for programmers.

In this paper, Genetic Algorithm (GA) has been used to address the problem
by studying how to ensure the paths in the related program can be traversed com-
pletely. Roy P. Pargas, Mary J. Harrold, and Robert R. Peck [18] have already
applied standard genetic algorithms to generate a test data for a specific path.
On the other hand, we propose improved genetic algorithms to generate test
cases for all paths in the related program. A large number of test cases are gen-
erated by GA, and the appropriate test cases have been chosen after genetic
manipulation to cover all paths in the related program. In addition, we improve
the algorithm by integrating the Tabu search method.

The remainder of this paper is organized as follows. Section 2 gives a brief
introduction to the formal specification and automatic test cases generation.
In Sect. 3, we present how to apply GA to solve this issue and improve the GA
using Tabu search method. In Sect. 4, we present the result of the experiments.
In Sect. 5, we conclude the study and point out some problems in practice we
need to solve in the future.

2 Formal Specification and Automatic Test Case
Generation

Our work proposed in this paper is based on the automatic specification-based
testing(ASBT) method by Liu in [13], it is therefore necessary to introduce briefly
Liu’s work for readability of this paper. Automatic specification-based testing
(ASBT) is a potentially effective technique for software industry, by avoidance of
many human errors during a testing process to save development cost and time
significantly. In the formal specification, we let S(Siv, Sov)[Spre, Spost] represent



Applying GA with Tabu List for Automatically Generating Test Cases 19

the specification of an operation S, where Siv is the set of all input variables
whose values are not changed by operation S, Sov is the set of all output vari-
ables whose values are produced or updated by the operation, and Spre and
Spost are the pre- and post-condition of S, respectively. Each formal specification
S(Siv, Sov)[Spre, Spost] can be transformed into an equivalent functional scenario
form (FSF): (∼Ppre ∧ C1 ∧ D1) ∨ (∼Ppre ∧ C2 ∧ D2) ∨ ... ∨ (∼Ppre ∧ Cn ∧ Dn).
∼Spre ∧ C1 ∧ D1 is called a functional scenario.

In the functional scenario, the tilde mark ∼ in ∼Spre represents the initial
values of the variables in pre-condition before operation; Ci is a guard con-
dition which is derived from Spost, which includes only input or initial state
variables; ∼Spre ∧ Ci is test condition. Each test condition can be transformed
into an equivalent disjunctive normal form: P1 ∨ P2 ∨ ... ∨ Pm, each Pi presents
a conjunction of atomic predicates. Each Pj consists of Qi, in the format like
this:Q1 ∧ Q2 ∧ ... ∧ Qw. To generate a test case based on formal specification is
to generate a test case by satisfying the atomic predicates in the test condition.
This process can be decomposed into two steps:

Step1: Generating a test case t to satisfy the Q1

Step2: If t satisfies the all other atomic predicates, t is a test case; otherwise,
go back to Step1 until finding a test case that satisfies all the atomic predicates
or to be stopped by human operation.
The process is illustrated in Fig. 1. Each note denotes a state that satisfies all the
predicates expressions along the “path” from the starting state S0 to itself; and
each edge denotes a predication. Therefore, the S1a represents a state that satis-
fies all predicates along the “path”, from Q11 to Q1a. The dotted line in the graph
represents omission of many intermediate “state transitions”. All the states S1a,
S2b, . . . ,Smv are called accepting states, each of which represents a state that sat-
isfied all the predicates along the path from S0 to itself. For example, S1a denotes
a state that satisfies the conjunction Q11∧Q12∧ . . .∧ Q1a [12,13].

The essential idea of ASBT is to generate a test set that covers every scenario
by satisfying its test condition at least once. Generally, this problem may be
handled by generating more test cases, but what test cases should be generated

Fig. 1. The graph of the disjunctive normal form of a testing condition
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is still a big challenge. Liu has proposed the “Vibration method” which tries to
change the “distance” between the variables to find more test cases to cover all
corresponding program paths. For example, if there are two expressions E1 and
E2, the “distance” (| E1-E2 |) between E1 and E2 will be changed as the values
of variables in two expressions changed. A test case is created to satisfy the
relation when the distance is small; another new test case will be created when
the distance is greater. Repeating this process by increasing and decreasing the
distance between E1 and E2 until the terminated decision is made. Although
this method improved path coverage rate dramatically, it can not ensure that
all paths will be covered since the distance is changed randomly at every time.
In this paper, we introduce the GA to improve the performance of coverage rate
in ASBT. And then we improve the GA using Tabu list, to guarantee a better
performance of GA in automatic test cases generation. In next section, we will
describe the procedure of how to apply GA to generate test cases based on formal
specification [13].

3 Applying GA to Automatic Test Case Generation

In this section, we propose applying GA to automatic test case generation based
on formal specification. By utilizing GA, the process of choosing test cases will be
more effective. Initially, GA generates a population based on the specification,
in which each individual is a set of test cases. The individual who has high
path coverage rate will be selected to produce next generation. After the GA
manipulation, the population in the next generation will be better and have a
higher path coverage rate. The evolution will continue until all the paths in the
program have been traversed.

3.1 Definition of Chromosome for Automatic Test Case Generation

The first step of GA is to randomly generate population of chromosomes [16]. Each
member in the population is called individual. In our work, an individual is a test
set consisting of one or more test cases. The test cases are generated based on the
formal specification. If the chromosome is defined as a test case, it is difficult to
judge whether the chromosome is good enough to be used to generate next gener-
ation. Because every chromosome will be in only two states:one is covered a path;
the other is not cover a path. If the chromosome is defined a set of test cases, there
will be a path coverage rate for every chromosome, and then we can judge which
one is appropriate to be selected to generate the next generation. Figure 2 shows
an example of a chromosome definition for a set of test cases. Every genetic locus
in each chromosome corresponds to a test case, which satisfies the precondition.
For example, the input variables are numeric type from 1 to 100, and then genetic
locus will be defined as a number from 1 to 100 randomly. The length of the chro-
mosomes (how many test cases in a chromosome) equals to the number of the
paths. Thus, in the Fig. 2, ti represents a test case, and n denotes the number of
the paths. By generating a large scale of chromosomes in a population, we can
generate a lot of test cases satisfied the precondition.
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Fig. 2. Chromosome definition for test cases generation

Figure 3 shows an example of the initial population when we don’t have any
previous test patterns or knowledge to generate test patterns from corresponding
paths mapIn this example, input parameters are generated randomly in a feasible
region. Figure 4 shows an example of the initial population when we have some
previous test patterns or knowledge to generate test patterns from corresponding
paths map. In this example, we use these test patterns as a part of chromosomes
and generate other input parameters randomly.

3.2 Evaluation Function

In a genetic operation, the evaluation function is a fitness function which is
devised for each problem to be solved. Given a particular chromosome, the fit-
ness function returns a single numerical “fitness”, or “figure of merit”, which is
supposed to be proportional to the “utility” or “ability” of the individual which
that chromosome represents. In this case, the fitness function is defined as the
path coverage rate, when the chromosome covered more paths, its evaluation
value will be higher. In this study, we assume that the number of all paths in
the related program is known and define the fitness function in Eq. (1) below,
which is normalized to values between 0 to 1.

f =
k

n
(1)

In Eq. (1), f is the evaluation function, k is the number of the paths that
chromosome has covered; n is the number of all paths in the corresponding
programs. The individual who achieves an evaluation value f =1 means that the
individual has covered all paths in the corresponding programs, and it is the
optimal solution to the problems.

3.3 Genetic Manipulation

Selection. Selection is the stage in which individual generates for next genera-
tions from a population based on fitness values. There are many kinds of selection
methods in GA, and we apply tournament selection [16] in this study. Tourna-
ment selection has a simple rule and can guarantee that the better one will be
chosen and the worse one will be eliminated. Tournament selection involves ran-
domly picking several individuals from the population and staging a tournament
to determine which one is finally selected. It generates a random value between
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Fig. 3. An example of initial populations when we don’t have any previous test patterns

Fig. 4. An example of initial populations when we have some previous test patterns

zero and one and comparing it to a pre-determined selection probability. If the
random value is less than or equal to the selection probability, the fitter can-
didates is selected; otherwise, it select other candidates again. The probability
parameter provides a convenient mechanism for adjusting the selection pres-
sure. The tournament size is 3, selecting the highest fitness one to be parent for
next generation by comparing the three individuals. The individuals selected by
tournament selection as parents to do crossover.

Crossover. Crossover is a genetic operator used to vary the programming of
chromosomes from one generation to the next. In this paper we choose two-
point crossover [16] since it can keep the stability of the individuals’ value of
fitness when the average fitness in the population is high enough. There is a
variable t, which is generated randomly. When it is bigger than the crossover
rate, the crossover will take two individuals, and cuts their chromosome strings at
some randomly chosen position, to produce two “head” segments, and two “tail”
segments. The two segments between the “head” and “tail” are then swapped
over to produce two new full length chromosomes. The two offsprings each inherit
some genes from each parent.

Mutation. Mutation is a genetic operator used to maintain genetic diversity.
When a number of the input parameter is 1, we can apply a simple mutation.
An example of a simple mutation is shown in Fig. 5. Mutation is applied to each
child individually after selection and crossover. It randomly alters each gene with
a small probability. If the variable t which is generated randomly is bigger than
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Fig. 5. An example of a simple mutation

Fig. 6. An example of a different vector mutation for the two input parameters

mutation rate, the mutation manipulation will be executed. Mutation provides
a small amount of random search, and helps ensure that no point in the search
space has a zero probability of being examined. When a test case is consisted of
multiple input parameters, a mutation is defined as a different vector mutation.
Figure 6 shows an example for the two input parameters.

Repeat the above steps until the individuals whose fitness is 1 have been
found or the termination condition has been met [14–16].

3.4 Proposal of GA with Tabu List for Covering Paths

We design test cases generation method based on the standard GA to find all
paths in the corresponding program. Figure 6 shows an example of the paths in
a program, in the form of binary tree. Gene has been designed as a test case,

Fig. 7. A path map of a test program
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Fig. 8. An array records paths which have been found like a Tabu list

and the number of genes contained in each individual equals to the number
of the paths. There are 8 paths in Fig. 7, each node is a predicate extracted
from the formal specification. Every individual generated 8 test cases once a
time, but the test cases did not cover all paths necessarily. After selection and
crossover operation, individuals will cover more and more paths; therefore the
population will be better and better. This process will be terminated until the
fitness = 1 has been found. For example, there is an array to record paths which
has been covered. If one of the test cases covered path N0-N1-N3-N7, we add this
path to the array, as shown in Fig. 8. The GA will not be terminated until all
paths have been recorded. In other words, the process will be stopped before the
best individual has been found, which saves the time and makes the algorithm
more effective.

4 Experiments

4.1 Experiment Method

Judging triangle’s type is often introduced in the research about software testing
as a typical example to demonstrate the idea of the testing. Firstly, we create the
formal specification of judging triangle’s type including precondition and post-
condition, as shown in Fig. 9. There are three inputs and five paths in the pro-
gram that implements the specification, as shown in Fig. 10. If the three inputs
can not form a triangle, it is a test case that covers the path1. If the three inputs
can form a triangle, they will cover one of the other four paths. All inputs are
real number type. Due to the complexity and clarity of the logical in this pro-
gram, even there are plenty of combinations of inputs, only a small amount of
combinations can cover certain paths in the program. Therefore, blind search
became costly.

The experiment environment parameters are shown in Table 1. Then we change
the parameters in GA to determinate what the parameters set for. Figure 11 shows

Table 1. Experiment environment

OS Windows 7

Processor Intel CoreI i7 CPU 2.80 GHz

Memory(RAM) 8 GB

System type 64-bit operation system

Tool Eclipse
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Fig. 9. An example of a formal specification to judge triangle’s type

Fig. 10. An example of a paths map to judge triangle’s type

Fig. 11. Relationship between the execution time and the number of entity.

that if the number of the population is changed to 50, 100, 200 and 300, respec-
tively, the execution time will be different. As the Fig. 11 shows that while the
population size in 100 the experiment results are the stablest. From Fig. 12, we
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Fig. 12. Relationship between the execution time and a mutation rate.

Fig. 13. Relationship between the execution time and a crossover rate.

can find that while the mutation rate is from 0.03 to 0.05 the cost of time is less.
And the Fig. 13 shows cost of time is not very sensitive to crossover rate, in con-
trast, the mutation rate influenced the results more than other parameters.

Table 2 shows the execution parameters. The GA execution parameters are
determined by preliminary tests and the choice of selection and crossover method.
Based on the standard GA, we don not need to apply complicated selection and
crossover method. In this phase, we prove that applying GA to automatically test
cases generation is feasible and effective.

The design of the experiments is limited by the type of inputs. When the
types of the input are naturel number, real number, or char, the design will
be relatively easy. In this experiment, only inputs of naturel number type will
be considered.

Table 2. GA execution parameters

No. of entities 100

Crossover rate 0.8

Mutation rate 0.03

Selection method Tournament method

Crossover method Two-point crossover

Mutation method Simple mutation

Length of gene 35

Repeat time 50
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Table 3. Execution time and generation

Execution Time Generation Path coverage rate

best average worst best average worst

121 ms 427 ms 940 ms 30 120 268 100 %

4.2 Experimental Results

Table 3 shows the results of the execution time and generations until a solution
is reached by GA which repeats 50 times and all paths are covered. The results
showed in Table 3 that the average generation is around 100, and the average
time is less than 0.5 s.

4.3 Experiments About Comparison of GA and GA with Tabu List

The example containing 80 paths has been introduced here to show the difference
between the standard GA and the GA with Tabu list. Figure 14 shows the formal
specification and the paths we designed for the experiment.

Based on the formal specification, there are three inputs including variables x,
y and z. However, it is not clear about how many paths in the relative program
since the postcondition is true. We design a map of test paths based on the
formal specification. In this map, there are 80 paths from start to end. As we
marked the node in the map, every path has a sequence number when it passes
through the nodes, which is showed at right Fig. 14. We generate test cases to
cover the 80 paths in order to cover all paths in the relative program as far as
possible. With the standard GA, we need to find the best individual who has
covered all paths in the map; by using GA with Tabu list, the process will end
when all paths have been traversed.

Table 4 shows the execution parameters in this experiment. The standard
GA and GA with Tabu list have different parameters according to their different
designs. As a result, when the number of entities is 750, we achieved a best result

Table 4. Exeperiment parameters

GA GA with Tabu list

2 No. of entities 750 50

Crossover rate 0.9 0.9

Mutation rate 0.03 0.03

Selection method Tournament method Tournament method

Crossover method Two-point crossover Two-point crossover

Mutation method Simple mutation Simple mutation

Length of gene 80 80

Repeat time 50 50
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Fig. 14. An example of formal specification and a map of test paths

using standard GA; on the other hand, it costs too much time when the number
of entities is large in the experiment using GA with Tabu list.

Table 5 shows the results of the two methods. When using standard GA,
the execution will be terminated when the individual whose value of fitness is
1 has been found. It takes too much execution time to find the best individual
who has covered all paths in the program. In practice, we merely need to cover
all paths in the related program. The experiment of GA with Tabu list shows a
much better result comparing with the standard GA. The GA with Tabu list has
been terminated when all paths have been covered before finding the best one
who has a best path coverage rate. From the Table 5, the GA with Tabu list has
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Table 5. Comparison of GA and GA with Tabu list

Average time Average generation

GA 15033 ms 273.36

GA with Tabu list 11 ms 2.78

Fig. 15. Relationship between number of entities and execution time in the method
using GA with Tabu list

saved much time and generation; that is because it did not cost too much time
to find the best individual, and just several generations need to be produced to
cover all paths in the related program.

Since the size of the population has influenced the results of the experiment
using GA with Tabu list, we have changed the size of the population to do
another experiment to see the relationship between the size of the population
and the execution time of CPU. As is shown in Fig. 15, it got a best result around
the population size of 30.

4.4 Discussion

Applying GA to automatic test cases generation can cover all paths in the test
program effectively, as is shown in Table 6. The Vibration method which has been
proposed covering all paths in the related program, but the results showed that
the coverage rate is 92 % [12]. From Table 6, the V-method(Vibration method)
has a much better result than Pairwise testing, however the coverage rate is still
not reach the 100 %. The GA can cover all paths based on formal specification
which is more effective than V-method and Pairwise testing method. On the
other hand, this method need high cost for fitness evaluations of individuals
because of the necessity for the running the program many times. Therefore, we
need to speed up the proposed method using parallel processing on many-core
architectures.

In order to improve the GA, we combined GA with Tabu search, and execu-
tion time has been reduced obviously, which is showed in Table 5. As shown in
Table 5, the test case generation method using GA with Tabu list takes much
less time than the standard GA. In standard GA, we attempt to find the best
individual who covered all paths, on the contrary, the GA with Tabu list found
all paths in the program before finding the best one. In the beginning, the two
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Table 6. Comparison of path coverage rate

Testing methods Number of test cases Path coverage rate

Pairwise testing 58 53 %

V-Method 56 92 %

Standard GA 80 100 %

GA with Tabu list 80 100 %

methods are introduced to find the test cases which satisfy the test condition,
afterwards, the standard GA focus on find the best one who covered all paths,
while the GA with Tabu list does not care about the fitness function in the
later time.

In this paper, we assume that the number of all paths in the related program
is known. In the other hand, in practice, we do not know how many paths in
the related program. Fortunately, there is an open source software [17] on the
internet which can check out the number of paths in the program. It makes
that generating the test cases to cover all paths in the test program with our
method become practicable. We also need evaluations using a more complicated
and practical program as our future work.

5 Conclusion

In this paper, we applied GA to generate test cases based on a formal specifica-
tion. We demonstrated the procedure of the design about how to generate test
cases using GA and our proposed method is more effective than conventional
methods and can cover all paths. We also conducted two experiments to test
our methods; one is to apply the standard GA to generate test cases of judging
a triangle; the other containing 80 paths to compare the performance of GA
and GA with Tabu list. The results show that the path coverage rate can reach
100 %, and the GA with Tabu list has a better performance than standard GA.
How to locate the bugs in the program is still a problem unaddressed in this
paper. Our future work will concentrate on detecting the bugs in the program
using a more practical problem.
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Abstract. When developing a formal specification for a software project using
the SOFL three-step modeling approach, it is essential to ensure the conformance
relation between every two level specifications. Inspection is an important tech‐
nique to verify the specifications. In this paper, we describe an inspection method
through building traceability for rigorously verifying the conformance relation.
The method consists of two steps: (1) traceability establishment and (2) inspection
of the target specifications through the built traceability. We also provide some
inspection strategies such as checklists based on SOFL features to help the
inspector find errors and keep the consistency. Our tool provides a convenient
interface to separate components in different specifications and save their rela‐
tionships to keep the consistency. We describe the design and implementation of
our supporting tool in this paper. A case study to inspect the specifications of a
travel plan booking system is given to show how the proposed method can be
applied in practice.

Keywords: SOFL · Specification · Traceability · Inspection · Conformance

1 Introduction

One of the primary problems in software projects is that the requirements documented
in specifications may not be accurately and easily understood by the developers carrying
out different tasks [1]. In general, requirements specifications need to be written by
humans, and probably will be changed during the communication between customers
and designers. Therefore, the target specifications stand a great chance to contain errors.
Eliminating the errors in the early phase of a software project can produce a considerable
positive effect on the overall cost of the project, and the reliability of the final software
product [2]. Formal engineering methods have been recognized as an effective and
efficient approach for developing large-scale software systems. One way to improve the
quality of specifications and therefore the quality of the corresponding software program
is to formalize specifications. We choose Structured Object-Oriented Formal Language
(SOFL) for this purpose in this paper.
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The SOFL method provides a three-step approach to developing formal specifica‐
tions. Such a development is an evolutionary process, starting from an informal speci‐
fication, to a semi-formal one, to finally a formal specification [1]. In the evolutionary
process, the errors can be made because of inaccurate understanding of the requirements,
incorrect uses of mathematical expressions, or wrong decisions in defining data or func‐
tions [3]. When changes take place on one level specification, it may require appropriate
changes in the related specifications. However, how to keep the conformance between
the specifications after the changes still remains an unaddressed problem. Our research
mainly focuses on how to sustain the consistency between different level specifications
and eliminate errors.

According to the IEEE standard [4], the purpose of an inspection is to detect and
identify software product anomalies. An inspection is a systematic peer examination
that verifies the software product conforms to applicable regulations, standards, guide‐
lines, plans, specifications, and procedures. The inspector collects software engineering
data like anomaly and effort data by using supporting documentations such as checklists
to show what should be checked.

In this paper, we propose an inspection method through building traceability for
rigorously verifying the conformance relation. This method mainly consists of two steps:
(1) traceability establishment and (2) inspection of the target specifications through the
built traceability. The first step is based on the structure and syntax of SOFL three-step
specifications, corresponding items will be generated together in the evolutionary
process. The checklists will be provided to help the inspector confirm whether to establish
the traceability between two items in different specifications or not. The second step
inspects the target specifications through the built traceability. Pair review is a useful way
to check whether the traceability is correct or not by comparing the textual specifications
and the Condition Data Flow Diagram (CDFD). Our supporting tool provides a conven‐
ient interface to separate components in different specifications and save their relation‐
ships to keep the consistency. Based on the correct syntax of components, our tool can
get all items automatically to check whether the target specification fits user’s require‐
ments or not. We present a case study of the inspection method by describing how it is
applied to inspect the specifications of a travel plan booking system to show the method’s
feasibility, and explore some potential challenges in using our supporting tool.

The rest of this paper is organized as follows. We introduce some basic concepts in
Sect. 2. Section 3 mainly discusses the possible way to build the traceability and how
to inspect the components through the traceability. We discuss the design and imple‐
mentation of our supporting tool in Sect. 4. In Sect. 5, a case study is given to show how
the proposed method can be applied in practice. Related work is introduced in Sect. 6.
Finally, we give conclusions and point out future research directions in Sect. 7.

2 Basic Concepts

In this section, we first introduce SOFL and then some inspection strategies, such as
checklists and pair reviews for inspecting SOFL specifications.
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2.1 SOFL

SOFL is a formal engineering method that provides a formal but comprehensible
language for both requirements and design specifications. A SOFL specification mainly
consists of two parts: the textual specification and the Condition Data Flow Diagram.
The textual specification is a written documentation and mainly built by the component
called “process”. A process models a transformation from input to output, which
provides pre-condition and post-condition to describe the functionality and constraints
of transferred data. Different processes contact with each other to handle data. A set of
processes can be defined in a “module”, which can achieve some independent functions
of the target system. At the same time, some processes can also be decomposed into a
low level “module”, which can explain the complicated data manipulation more clearly.
By combining the generation and decomposition of processes reasonably, we can easily
achieve the system requirements in our SOFL specification. Figure 1 shows an example
of SOFL textual specification.

The textual specification is produced based on a three-step approach to developing
formal specifications. Such a development is an evolutionary process, starting from an
informal specification, to a semi-formal specification, then to a formal specification.
Informal specification is the first step in SOFL method to reach user’s requirements.
Although it is difficult to define the concept of a well-organized specification, such a
specification must clearly and concisely describe the following items:

(1) the functions to be implemented in the software project;
(2) the resources to be used in implementing functions;
(3) the necessary constraints on both functions and resources.

The semi-formal specification derives from the informal specification. Its goal is to
clarify and define all the functions, resources, and constraints, and to determine the
relationships among those three parts contained in the informal specification. The most
distinct feature of a semi-formal specification is that the format of the specification obeys
the syntax of the formal specification, but the pre- and post-conditions of all processes
in modules are defined in a natural language in an organized manner. In the formal
specification, by evolving all items from the semi-formal specification in logical expres‐
sions, some processes written by the natural language will be found too complicated to
transform into logical expressions. Under this situation, we need decompose the process
into some sub processes to keep them logical.

Another important part of SOFL is Condition Data Flow Diagram. Different from
the textual specification, the CDFD is a directed graph that specifies how processes
work together to provide functional behaviors. The process specification mainly
focuses on the internal logical relationships and data constraints, while the CDFD
mainly represents the relation between different processes by transferring different data.
Figure 2 shows an example of CDFD describing a flight plan.
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Fig. 1. SOFL textual specification

Fig. 2. CDFD describing a flight plan

From Fig. 2, we can see that each module generated by a set of processes has a
corresponding CDFD. A process in the CDFD is presented as a rectangle pane and
connects each other by arrows called data flows. A data flow represents input or output
data in the textual specification. Also there is another kind of rectangles starting with a
number called data stores. A data store is a variable holding data in rest. By using these
rectangles, data can convert into the expected situation.

2.2 Checklists

When inspecting specifications, we need strategies to help inspectors check SOFL
specifications easily. One strategy is Checklist. Checklists are a well-established reading
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support mechanism often used by individual inspectors for the purposes of preparation.
Checklists are based upon a series of specific questions that are intended to focus the
inspector’s attention on common sources of defects.

The format of the checklist follows what is used by Laitenberger and DeBaud [5]
and suggested by Chernak [6]. The schema consists of two components, “where to
look” and “how to detect”. The first component is a list of potential “problem spots”
that may appear in the work product, and the second component is a list of hints on
how to identify a defect in the case of each problem spot.

Finally, the questions are ordered to support the inspector in achieving a thorough
understanding of the specifications. As the inspector moves through the different groups
of questions (invariant, process, etc.), he successively proceeds from a higher-level and
general perspective toward a more detailed and fine-grained one. Each group of ques‐
tions requires more and more understanding of each item in three-step specifications,
and the final question in the evolutionary specifications section, “does the target speci‐
fication match the corresponding specification?” will be easier to answer once all the
other questions have been applied.

2.3 Pair Review

Pair review is a group way of inspecting requirements specifications like a software
development technique called pair programming. In pair programming, two program‐
mers work together at a single keyboard, one is coding while the other observes and
reviews. The roles are switched at regular intervals. Based on characters of SOFL
language we mentioned above, pair review is very helpful when inspecting the textual
specification and the corresponding CDFD. By reviewing the textual specification, we
can see whether the input and output data in the CDFD are correct or not, and data should
be stored in the right data stores. By reviewing the CDFD, we can check whether the
set of processes in the corresponding textual specification are generated in the right order
or not. At the same time, the types of data flow and the logical constraints about pre-
and post-condition will be confirmed in the textual specifications.

3 Building Traceability and Inspection

Requirements traceability refers to the ability to describe and follow the life of a require‐
ment, in both forwards and backwards direction. For example, from its origins, through
its development and specification, to its subsequent deployment and use, and through all
periods of on-going refinement and iteration in any of these phases. Francisco et al. [7]
think that requirements traceability refers to the ability to define, capture and follow the
traces left by requirements on other elements of the software development environment
and the trace left by those elements on requirements. Some traceability definitions
emphasize the use of traceability to document the transformation of a requirement into
successively concrete design and development artifacts. Elizabeth et al. [8] explain that
in the requirements engineering field, traceability is about understanding how high-level
requirements – objectives, goals, aims, aspirations, expectations, needs – are transformed
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into low-level requirements. It is therefore primarily concerned with the relationships
between layers of information. From this definition, we can find that the SOFL method
is from high-level requirements included in informal specification to low-level require‐
ments included in formal specification. In this process, the requirements traceability is
clear in corresponding items.

There are two steps in our inspection method through building traceability. First, we
generate the traceability between three different specifications. The traceability means
the congruent relationships of elements which represent the same users’ requirements
in different specifications. For example, a function in the informal specification may be
correlated to a process in the corresponding semi-formal specification. Second, by
comparing with the built traceability and CDFD, we inspect corresponding items in
different specifications together.

Because there are three specifications, we separate the traceability into two parts to
make it more clearly: (1) traceability between informal and semi-formal specifications,
(2) traceability between semi-formal and formal specifications.

3.1 Building Traceability between Informal and Semi-formal Specifications

During the first part, user’s requirements will be refined and described more precisely.
To cover as many user’s requirements as possible, the structures in the informal speci‐
fications are rough. They contain only three components: functions, data resources and
constraints. Because of the partition in informal specification, the conversion to semi-
formal specification is quite flexible and mainly depends on user’s experience. However,
we can still compare corresponding components based on structures in different speci‐
fications as shown in Fig. 3. By making a signal between the corresponding items –
examples of components – in different specifications, every item will get the relationship
with one or many items. We can make a checklist as shown in Table 1 to build the
traceability about all items clearly between informal specification and semi-formal
specification. If an item has no traceability with other items, the item should be removed
or some items need to be added in the corresponding specification by comparing with
the same kind of items.

3.2 Building Traceability between Semi-formal and Formal Specifications

For the second part, structures are almost the same between semi-formal and formal
specifications. We should pay more attention about the invariants and processes. As
shown in Table 2, corresponding invariant definitions will be compared with together
to check whether their logical meanings are the same or not. Also we need to focus on
the pre- and post-condition of processes to make the logical expression fit the require‐
ments written in natural language.
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Table 1. Checklist about traceability between informal and semi-formal specifications

Informal specification(S1):

Component Question

1 Function Is the function too big to be separated into sub functions?

2 Does the function have the same name process in S2?

3 Data resource Is the data resource used in the corresponding function?

4 Is the data resource evolved into the data type in S2?

5 Constraint Is the constraint associated with a function or a data
resource?

6 Does the constraint have the similar invariant in S2?

7 Is the constraint achieved in the pre- or post-condition of a
process in S2?

Semi-formal specification(S2):

8 Constant identifier Is the constant identifier available and can be found in data
resources in S1?

9 Type identifier Is the type identifier needed from data resources in S1?

10 State variable Is the state variable defined based on the type identifier?

11 Invariant Does the invariant have the corresponding relation with the
constraint in S1?

12 Process Is the process named by the function in S1?

13 Is the process treated as a sub function in S1?

Fig. 3. Corresponding components between informal and semi-formal specifications
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Table 2. Checklist about traceability between semi-formal and formal specifications

Semi-formal specification(S2):

Component Question

1 Constant identifier Is the constant identifier available and can be connected
with similar constant in S3?

2 Type identifier Is the type identifier defined based on the standard format?

3 State variable Is the state variable defined based on the type identifier?

4 Invariant Does the invariant match the meaning of the corresponding
invariant in S3?

5 Process Does the process have the same name, input data, output
data in S3?

6 Does the pre- and post-condition of the process match the
logical expression in S3?

7 Is the process divided into many sub processes in S3?

Formal specification(S3):

8 Constant identifier Is the constant identifier available and can be found in
constant identifier declarations in S2?

9 Type identifier Does the type identifier exist in S2?

10 State variable Does the state variable exist in S2?

11 Invariant Does the invariant have the same meaning of invariants in
natural language in S2?

12 Process Does the process have the same name, input data, output
data in S2?

13 Does the pre- and post-condition of the process fit the
natural expression in S2?

14 Is the process treated as a sub process and is a series of
processes equal to the process in S2?

After generating two parts of traceability, we can inspect all items throughout the
whole requirements specifications.

3.3 Inspection through Built Traceability

To inspect errors and defects, firstly we should provide the standard format of all data
types. We can get them from the existing publication in [1], especially about the syntax
of Set type, Sequence type, Composite type, Product type, Map type, Union type, and

Development of a Software Tool 39



Process type. The key words of these types will influence building traceability between
different specifications.

For making pair reviews by two inspectors, the textual specification and corre‐
sponding CDFD should be inspected together. We can inspect the traceability based on
building functional scenarios provided in [9]. Let P(Piv, Pov)[Ppre, Ppost] denote the
formal specification of an operation P, where Piv and Pov are the sets of all input and
output variables. Ppre and Ppost are the pre-condition and post-condition of operation
P, respectively. Let Ppost = C1∧D1∨C2∧D2∨…∨Cn∧Dn, where Ci (i∈{1, 2, …, n})
is a guard condition and Di is a defining condition. Then, a conjunction ~Ppre∧Ci∧Di
is called a functional scenario.

To make inspectors to check corresponding items easily, we provide functional
scenarios from CDFD as a standard to compare with both two specifications. In this
situation, define the format (input_1, input_2,…, input_n){process_1, process_2,…,
process_n}(output_1, output_2,…, output_n) as a functional scenario from CDFD.
Fig. 4 shows a CDFD about making a hotel plan.

In this CDFD, we can get 3 functional scenarios:

(1) (user_id, password, new_password){Login, ChangePassword} (pass‐
word_success);

(2) (user_id, password){Login}(wrong_message);
(3) (user_id, password, hotel_request){Login, MakeHotelPlan}(hotel_plan).

These three functional scenarios show three different conditions with submitting
different data. When inspecting traceability between semi-formal and formal specifica‐
tion, a set of processes with same functional scenario (1), (2), (3) will be generated, and
errors about wrong data flows should be removed.

4 Supporting Tool

We have built a supporting tool, called the Traceability-based Specifications Inspection
Supporting Tool (TSIST), to support our inspection method through building tracea‐
bility. The goal of building the tool is to help inspectors check specifications more
precisely, and save the traceability information made by them for iterative inspections.

Fig. 4. CDFD of making a hotel plan
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The supporting tool is implemented using Visual Studio 2012 with language C#.
Figure 5 gives the CDFD of TSIST functions. As Fig. 5 shows, our tool can search
key words from specifications, divide all items, then build traceability between different
items in corresponding specifications, and finally inspect specifications by comparing
traceability and CDFD. The whole process in using TSIST summarizes into three main
functions below:

(1) Searching key words and inspecting syntax errors in three specifications;
(2) Selecting items from corresponding specifications manually or automatically;
(3) Building traceability between corresponding items in two specifications and

saving traceability information for comparisons and iterative inspections.

4.1 Searching Key Words

TSIST provides the function to search key words in the specification documentation.
When a key word is entered in the search column, our tool will match the key word in
the target specification and find out all eligible elements. In this way, the user can check
the syntax of target items quickly.

4.2 Selecting Items Automatically

To build traceability between two specifications, the inspector should get all items in
textual specifications first. Obviously, we provide the manual way to add items directly.
Based on the standard format of items, the inspector can also traverse the specification
to get all items of the same component (such as Function, Data resource, Process).

To make the component “process” as an example. Setting the targetCompo‐
nent = “process”, endFlag = “(”, breakFlag = “;”, when reading the specifications from
the beginning, the scanner gets the targetComponent, it will repeatedly read the next
character until finding the key word endFlag. By using this way, the inspector can get
names of all processes easily. From the structure and syntax of the component “process”,
we can find when we get the breakFlag before meeting the endFlag, it means the process
ends with the syntax “end_process;” then the scanner will skip and try to find the next
targetComponent. By changing endFlag, we can get input data, output data, pre- and
post-condition of the target process respectively.

Fig. 5. CDFD of TSIST functions
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4.3 Building Traceability

After generating all items in specifications, TSIST provide an interface to select corre‐
sponding items to build traceability between two specifications as shown in Fig. 6. At
the same time, the traceability between informal and semi-formal specification and the
traceability between semi-formal and formal specifications can be generated together to
keep the consistency through the whole requirements specifications.

Compared with the checklists, the inspectors can build traceability by using our
inspection supporting tool, the traceability between corresponding specifications can be
saved and removed in iterative inspections. Through building traceability, the pair
reviews based on the textual specification and CDFD will help inspectors check speci‐
fications and detect defects more precisely.

5 Case Study

We have conducted a case study applying our inspection method to the inspection of
the specifications of a travel plan booking system (TPBS). The purpose of this case study
is to show how our inspection method works through building traceability, to learn about
its performance in terms of usability and capability of finding errors, and to investigate
how the inspection method can be well supported by TSIST.

5.1 Background

TPBS specifications describe a travel plan booking system, which allows the customer
to search travel information, design his personal travel plan, and book target services
(flights, hotels, etc.). TPBS mainly includes four functions:

Fig. 6. Interface of TSIST
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(1) designing the tour plan;
(2) reserving flights;
(3) making bus arrangement;
(4) booking hotels.

Figure 7 shows the textual specifications and corresponding CDFD of TPBS. From
the informal specification to semi-formal specification, the functions of TPBS (such as
Update_User_Profile, Reserve_ for_Hotel) are listed in details, showing how the input
and out-put data flow between different processes. Data resources (such as
Tour_Plan_Information, Bus_Plan_Information) will be checked to fit the types in the
semi-formal specification. And constraints are used to show the range of data in the
process. From the semi-formal specification to formal specification, the natural language
used in pre- and post-condition evolves into logical expressions.

5.2 Building Traceability

As shown in Fig. 6, we can get all items such as “Process” in the target specification.
Based on the checklist shown in Table 1, we decide where to build traceability between
corresponding items. For example, in Fig. 6, we build the traceability between the
process {ReserveForFlight} in the semi-formal specification and a set of the processes
{MakeFlightPlan, OrganizeFlightContract, ConfirmFlightContract} in the formal spec‐
ification because they realize the same functions. Table 3 gives the number of items and
traceability in corresponding specifications. From this table, we can know every item
has the traceability with others and the item in the high level may trace to a set of items
in the more formal specification because they are more precise and smaller.

5.3 Inspection

After building traceability, we can check corresponding items such as the process
{ReserveForFlight} and the set of processes {MakeFlightPlan, OrganizeFlightContract,

Fig. 7. Textual specifications and corresponding CDFD of TPBS
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ConfirmFlightContract} together in the textual specifications. They will be checked
whether they are equal not only in the syntax domain but also in the logical domain. Pair
Review based on textual documentations and CDFD (also includes the decomposition
of CDFD) helps inspectors understand requirements easily and find errors through data
flows. For example, from the CDFD of the process “ReserveForFlight”, we can know
the process has the input “reserve_for_flight_request” and the output “flight_reserva‐
tion_result”, “flight_confirmation_signal”. At the same time, this process has some
operations with three data stores called “FlightPlanDB”, “FlightContractDB”,
“CustomerDB”, respectively. These features should be reflected in the corresponding
textual specification. The incorrect data or missing processes in TPBS can be corrected
in our supporting tool. The traceability through three specifications is saved for the
iterative inspection.

6 Related Work

Many publications have affirmed that the requirements traceability plays an essential
role in the software inspection. Although there still exists many challenges about how
to create the traceability and how to inspect requirements based on the traceability.

Gotel and Finkelstein investigated and discussed the underlying nature of the
requirements traceability problem in [10]. They introduced the distinction between pre-
requirements specification traceability and post-requirements specification traceability,
and pointed out that the major problems attributed to poor requirements traceability are

Table 3. Number of Items and Traceability
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due to inadequate pre-requirements specification traceability. They thought the solution
is to re-focus research efforts on pre-requirements specification traceability from
increasing awareness to access and presentation of information.

Francisco et al. [7] introduced a cited tool called TOOR to trace requirements
considering both technical and social factors. TOOR can link requirements to design
documents, specifications, code, and other artifacts in the life cycle through user-defin‐
able relations that are meaningful for the kind of connection being made by using both
browsing and regular-expression search.

Letelier [11] presented a traceability metamodel integrating textual specifications
with standard UML specifications, using the UML context itself. The metamodel offers
a core framework for types of entities and types of traceability links that can be adapted
to a particular UML project. Additionally, a configuration process for requirements
traceability based on the corresponding UML profile was sketched.

Works made by Balasubramaniam [12] focused on the role of institutional context and
the strategic conduct in explaining the differences in traceability practice across system
development efforts. By contrasting two extremes of practice – low-end and high-end –
they provided an understanding of these factors affecting traceability practice.

Corriveau [13] developed a process called Traceability for Object-Oriented Quality
Engineering, or TOOQE, to minimize scaling problems caused by the quick increasing
software development with the number of designers involved in a project. TOOQE
emphasized traceability and the integration of development and testing to achieve
quality and maintainability. TOOQE featured an iterative design process that let the
developer correct mistakes and learn more about the problem they are trying to solve as
they go along. Each iteration includes requirements capture, analysis, design, coding,
and testing.

Based on the related work above, we know how to build the traceability faces many
problems not only in the technical field but also in the social factors. We must provide
enough information about requirements to support the traceability and save it in a proper
way in the evolving process.

7 Conclusion and Future Work

In this paper, we propose an inspection method through building traceability for rigor‐
ously verifying the conformance relationship. This method mainly consists of two steps:
(1) traceability establishment and (2) inspection of the target specifications through the
built traceability. Inspection strategies such as Checklist and Pair review are used to help
the inspectors build traceability and check textual specifications and CDFD together for
finding errors.

Our supporting tool can divide all items based on the component types, build trace‐
ability and check specifications through traceability and CDFD. We present a case study
applying our inspection method to inspect the specifications of a travel plan booking
system, to show the method’s feasibility and capability of finding errors, and to inves‐
tigate how the inspection method can be well supported by our tool.

In the future, we will improve our supporting tool to make it more user-friendly and
support more ways of building traceability and inspecting specifications.
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Abstract. This paper presents Unified Bounded Model Checking
(UBMC) for the verification of an infinite state system described with
Modeling, Simulation and Verification Language (MSVL) which is an exe-
cutable subset of Projection Temporal Logic (PTL). The desired prop-
erty is specified by a Propositional PTL (PPTL) formula. We present the
bounded semantics of PPTL and the approach to implementing UBMC.
A Bounded Labeled Normal Form Graph (BLNFG) is constructed on the
fly and a counterexample of minimal length is produced to ease the inter-
pretation and understanding for debugging purposes. Finally, a resource
allocation algorithm is presented as an example to illustrate how the pro-
posed approach works.

Keywords: Bounded model checking · Unified model checking · Propo-
sitional Projection Temporal Logic · Modeling · Verification

1 Introduction

Techniques for automatic formal verification of finite state transition systems
have been studied in recent years. Compared to other formal verification tech-
niques (e.g. theorem proving), model checking [1,2] is an automatical approach.
Model checking has been widely used in many fields such as verification of hard-
ware, software and communication protocols. In model checking, the system to
be verified is modeled as a finite state machine, and the specification is formalized
by a temporal logic formula.

For a system in practice, the number of states in it can be very large and the
explicit traversal of the state space becomes infeasible. To fight with this prob-
lem, several approaches, such as Symbolic Model Checking (SMC) [3], Abstract
Model Checking (AMC) [4], and Compositional Model Checking [5], etc. have
been proposed with success. The combination of symbolic model checking with
BDDs [6,7] pushed the barrier to systems with 1020 states and more later [3].
But the bottleneck of SMC is the amount of memory that is required for storing
and manipulating BDDs. The boolean functions required to represent the set of
states can grow exponentially. Bounded model checking (BMC) is an important
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progress in formal verification after SMC [8]. The basic idea in BMC is to search
for a counterexample in executions whose length is bounded by some integer k.
If the property is not satisfied, an error is found. Otherwise, we cannot tell
whether the system satisfies the property or not. In this case, we can consider
to increase k, and then perform the process of BMC again. BMC problem can
be efficiently reduced to a propositional satisfiability problem, and can therefore
be solved by SAT methods rather than BDDs. SAT procedures do not suffer
from the state space explosion problem of BDD-based methods. Modern SAT
solvers can handle propositional satisfiability problems with hundreds of thou-
sands of variables or more. Tools supporting BMC are NuSMV2 [9], bounded
model checker developed by CMU [10], Thunder of Intel [11], and so on.

With model checking and bounded model checking, the mostly used temporal
logics are LTL [12], CTL [1], and their variations. However, expressiveness of both
LTL and CTL is not powerful enough. There are at least two types of properties
in practice which cannot (or with difficulty to) be specified by LTL and CTL:
(1) time related properties such as “a property P holds after the 100th time unit
and before the 200th time unit”; (2) periodically repeated of property P . The
expressiveness of Propositional Projection Temporal Logic (PPTL) [13] is full
regular [14] which allows us to verify full regular properties and time related
properties of systems in a convenient way.

In recent years, the verification of infinite state systems has attained increas-
ing interest. The main limitation of model checking is that it is restricted to
(essentially) finite-state systems. In general, the model checking problem is unde-
cidable for infinite state systems, and hence, it may happen that the verification
process does not terminate. In the verification of an infinite state system, theorem
proving [15] is a powerful technique. Predicate abstraction has been introduced
as a technique for reduction of infinite state systems to finite one in the work of
Graf and Saidi [16]. Verification by abstraction can be applied to infinite state
systems as shown in [17–19]. Another way to deal with the difficulty of verifi-
cation is the method of compositional verification that uses the combination of
temporal case splitting and data type reductions to reduce types of infinite or
unbounded range to small finite types, and arrays of infinite or unbounded size
to small fixed-size arrays [20,21]. In bounded model checking of infinite state
systems [22], three-valued logic is employed in order to explicitly forward uncer-
tain information in the case a proof cannot be established due to insufficient
bounds.

Modeling, Simulation and Verification Language (MSVL) is a subset of Pro-
jection Temporal Logic (PTL) [13,23] with framing techniques [24]. It can be
used for the purpose of modeling, simulation and verification of software and
hardware systems. For the verification of a finite system by MSVL, a method
named Unified Model Checking has been presented in [25]. With this method, a
system is first modeled as p in MSVL. Thus, p is a non-deterministic program
of MSVL and also a formula of PTL. Second, the property we want to check is
specified by a formula φ in PPTL. To check whether or not p satisfies φ amounts
to proving |= p → φ. It turns out to prove �|= p ∧ ¬φ. Thus, for finite state
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programs in MSVL, we can translate the model checking problem into a satis-
fiability problem in PPTL since finite state programs in MSVL are equivalent
to PPTL formulas. To check the satisfiability of p ∧ ¬φ, Labeled Normal Form
Graph (LNFG) of p∧¬φ can be constructed. But for an infinite state transition
system, the path in the LNFG may be a straight infinite line and we cannot get
the result that whether the system satisfies the given property forever.

Given an infinite system p in MSVL, a property of the system in terms of a
PPTL formula φ, and a user supplied upper bound k, we present an approach
named Unified Bounded Model Checking (UBMC) which combines bounded
model checking and unified model checking approaches. In order to do this,
bounded semantics of PPTL is presented. Further, the procedure of UBMC
can be described as a process to construct the Bounded Labeled Normal Form
Graph (BLNFG) of p ∧ ¬φ on the fly. BLNFG is constructed progressively as
the current bound increases. If a finite or an infinite counterexample is found
at a given bound that is less than the upper bound, the construction of the
BLNFG stops and the counterexample is output. When there is no new node
to be dealt with and no counterexample is found, the construction of BLNFG
terminates and the result is given that the property is valid. If the current bound
is increasing until the upper bound with no counterexamples found, it cannot
be determined whether the system satisfies the property or not. At this time, we
can increase the upper bound and construct the BLNFG of p ∧ ¬φ again.

The main advantages of our technique are the follows. First, our method
can partially verify an infinite system described by MSVL. We can give the
result that whether the property is valid in bound k. Second, our method can
find counterexamples relatively quicker. This is due to the depth first nature in
the construction of our BLNFG. Finding counterexamples is arguably the most
important feature of model checking. Third, it finds a counterexample of minimal
length. This feature helps users to understand a counterexample more easily.

This paper is organized as follows. In the next section, as a property specifica-
tion language, PPTL formulas are presented. Then the language MSVL used for
the description of an infinite system is formalized. In Sect. 3, the bounded seman-
tics of PPTL formulas is given. Next, the method for constructing a BLNFG is
formalized in detail. A resource allocation algorithm is presented to illustrate
how our approach works in Sect. 5. Finally, conclusion is drawn in Sect. 6.

2 Preliminaries

2.1 Propositional Projection Temporal Logic

Let Prop be a countable set of atomic propositions. A formula P of PPTL is
given by the following grammar:

P ::= p | © P | ¬P | P1 ∨ P2 | (P1, · · · Pm) prj P

where p ∈ Prop, P1, · · · , Pm and P are all well-formed PPTL formulas. © (next)
and prj (projection) are basic temporal operators.
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A mapping from Prop to B = {true, false} is used to define a state s,
s : Prop → B. s[p] denotes the valuation of p at the state s. An interval σ is
a non-empty sequence of states. The length of σ, |σ|, is the number of states
minus 1 if σ is finite, and ω otherwise. The set of non-negative integers N0

with {ω}, Nω = N0 ∪ {ω} is used for both finite and infinite intervals. The
relational operators, =, <,≤, is extended to Nω by considering ω = ω, and for
all i ∈ N0, i < ω. Moreover, the relation symbol 
 is defined as ≤ −(ω, ω).

In an interpretation I = (σ, i, j), σ is an interval, i an integer, and j an
integer or ω such that i 
 j ≤ |σ|. If formula P is interpreted and satisfied over
a subinterval < si, · · · , sj > of σ with the current state being si, it is denoted
by the notation (σ, i, j) |= P . The satisfaction relation (|=) is inductively defined
as follows:

I − prop I |= p iff si[p] = true, and p ∈ Prop is an proposition
I − not I |= ¬P iff I �|= P
I − or I |= P ∨ Q iff I |= P or I |= Q
I − next I |= ©P iff i < j and (σ, i + 1, j) |= P
I − prj I |= (P1, · · · , Pm) prj P, if there exist integers r0 ≤ r1 ≤ · · · ≤ rm ≤ j

such that (σ, r0, r1) |= P1, (σ, rl−1, rl) |= Pl, 1 < l ≤ m, and (σ′, 0, |σ′|) |= Q
for one of the following σ′:

(a) rm < jandσ′ = σ ↓ (r0, · · · , rm) · σ(rm+1,··· ,j), or

(b) rm = j and σ′ = σ ↓ (r0, · · · , rh) for some 0 ≤ h ≤ m.

where P , P1, · · · , Pm and Q are PPTL formulas.
A formula P is satisfied by an interval σ, denoted by σ |= P , if (σ, 0, |σ|) |= P .

A formula P is called satisfiable if σ |= P for some σ. A formula P is valid,
denoted by |= P , if σ |= P for all σ.

For any PPTL formula Q, it can be rewritten into its normal form [26]:

NF (Q) ≡
n0∨

j=0

(Qej ∧ empty) ∨
n∨

i=0

(Qci ∧ ©Qfi)

where Qej and Qci are conjunctions of atomic propositions (or their negations)
in Qp which is the set of atomic propositions appearing in the PPTL formula Q,
and Qfi is an arbitrary PPTL formula.

For a PPTL formula Q, its corresponding LNFG can be constructed, which
explicitly illustrates models of the formula. Here, an example is given to show
the LNFG of a PPTL formula intuitively and the formal definition can be found
in [27].

Fig. 1. LNFG of formula ¬(true;¬ © q) ∧ (p ∨ ©(p; q))
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Example 1. LNFG of formula ¬(true;¬© q)∧ (p∨©(p; q)) is shown in Fig. 1.

In the LNFG of a formula as shown in Fig.1, each node is specified by a PPTL
formula, while each edge is a directed arc labeled with a state formula. The extra
propositions lk are employed to mark the infinite paths in the LNFG which are
not the models of the PPTL formula.

2.2 Modeling, Simulation and Verification Language

MSVL is a subset of Projection Temporal Logic [13,23] with framing technique
[24]. Based on the language, we have developed a model checking tool named
MSV which works in three modes: modeling, simulation and verification.

The arithmetic expression e and boolean expression b of MSVL are induc-
tively defined as follows:

e ::= n | x | © x | ©−x | e0 op e1 (op ::= +| − | ∗ |\|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is an integer and x a variable. The elementary statements in MSVL are
defined as follows. The meanings of all statements in MSVL are given in [13].

Termination: empty State Assignment : x <== e Assignment : x := e
State Frame: lbf(x) Interval Frame: frame(x) Conjunction: p∧q
Selection: p ∨ q Next : ©p Always: �p Sequence: p; q
Conditional : if b then p else q

def=(b → p) ∧ (¬b → q)

While: while b do p
def=(p ∧ b)∗ ∧ �(empty → ¬b)

where x denotes a variable, e stands for an arbitrary arithmetic expression,
b denotes a boolean expression, and p, q stand for programs of MSVL.

Any MSVL program p can be rewritten into its normal form [13,24]. Accord-
ing to normal form, we can construct an LNFG G = (CL(p), EL(p), v0, L =
{L1, . . . , Lm}) to model an infinite state MSVL program p. Each node is spec-
ified by a program in MSVL, while each edge is a directed arc labeled with a
state formula pe from node q to node r and identified by a triple, (q, pe, r).

Note that the number of nodes is finite only when the range of values of the
variables in the program is limited to a finite set. When the range of variables is
infinite, we cannot construct a finite LNFG of the program. For example, in the
program frame(i) and (int i <== 0 and skip; while(true){(i := i + 1)}), the
value of i is increasing and a finite LNFG of the program cannot be constructed
always. In the LNFG of an infinite state MSVL program, there exist three kinds
of paths: finite paths, loop paths and infinite paths with infinite states.

3 Bounded Semantics for PPTL

The basic idea of bounded model checking, as explained before, is to consider
only a finite prefix of a path that may be a witness to the desired property. We
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Fig. 2. σ is a (k, l)-loop Fig. 3. σ is a finite interval

restrict the length of the prefix by some bound k. In practice, we progressively
increase the bound, looking for witnesses in longer and longer traces.

A crucial observation is that, though the prefix of a path is finite, it still might
represent an infinite path if there is a back loop from the last state of the prefix
to any of the previous states as in Fig. 2. If there is no such loop, as in Fig. 3, the
prefix does not say anything about the behavior of the path beyond state sk.

Definition 1 ((k,l)-loop). For l, k ∈ N0 and l ≤ k, if there is a transition
from sk to sl in σ i.e. σ = (s0, · · · , sl−1) · (sl, · · · , sk)ω, we call interval σ a (k,
l)-loop, k-loop for short.

Obviously, if σ is an infinite interval with a loop, it must be a k-loop for some k ∈
N0. We will use the notion of k-loop in order to define the bounded semantics of
PPTL. The bounded semantics is an approximation to the unbounded semantics,
which will allow us to define the bounded model checking problem. Since each
PPTL formula can be transformed into an equivalent formula in NF, we do not
need to deal with all types of PPTL formulas in the bounded semantics.

In the bounded semantics, we only consider a finite prefix of a path. In
particular, we only use the first k + 1 states (s0, . . . , sk) of a path to determine
the validity of a formula along the path. If a path is a k-loop then we simply
maintain the original semantics of atomic propositions, ¬, ∨, and © operators,
because all the information about this infinite path is contained in the prefix of
length k. Since empty ≡ ¬ © true and more ≡ ©true, the bounded semantics
of empty and more can be deduced by the bounded semantics of ¬ and ©. In
fact, the formula empty cannot be satisfied over an infinite interval, while more
is satisfied all the time in an infinite interval.

Definition 2 (Bounded Semantics for a Loop). Let k ∈ N0 and σ be a
k-loop interval, a PPTL formula f is valid along σ with bound k (denoted by
σ |=k f) iff σ |= f .

We now consider the case where σ is not a k-loop. We use the notation (σ, i) |=k f
(0 ≤ i ≤ k ≤ |σ|) to represent that formula f is interpreted and satisfied over
the subinterval < si, · · · , sk > of σ with the current state being si. (σ, 0) |=k f
is denoted by σ |=k f .

In the bounded semantics without a loop, we only consider formulas con-
structed from atomic propositions and negations of atomic propositions with ∨,
∧, and © operators as well as empty and more.

Definition 3 (Bounded Semantics without a Loop). Let k ∈ N0 and σ be
an interval that is not a k-loop. The bounded satisfaction relation |=k is defined
as follows:
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(σ, i) |=k p iff si[p] = true if p ∈ Prop is an atomic proposition
(σ, i) |=k ¬p iff si[p] = false if p ∈ Prop is an atomic proposition
(σ, i) |=k P1 ∨ P2 iff (σ, i) |=k P1 or (σ, i) |=k P2

(σ, i) |=k P1 ∧ P2 iff (σ, i) |=k P1 and (σ, i) |=k P2

(σ, i) |=k ©P iff i + 1 ≤ k and (σ, i + 1) |=k P
(σ, i) |=k empty iff i = |σ|
(σ, i) |=k more iff i < |σ|

Lemma 1. Let k ∈ N0, f be a PPTL formula, and σ a finite interval. We have
σ |=k f ⇒ σ |= f .

Proof: To prove Lemma 1, we first prove a stronger conclusion given below:

(σ, i) |=k f ⇒ (σ, i, |σ|) |= f (0 ≤ i ≤ k)

Lemma 1 can be concluded by setting i = 0. We prove the above conclusion
by induction on the structure of formula f :

Base case:

f ≡ p ∈ Prop : (σ, i) |=k p ⇒ si[p] = true ⇒ (σ, i, |σ|) |= p
f ≡ ¬p ∈ Prop : (σ, i) |=k ¬p ⇒ si[p] = false ⇒ (σ, i, |σ|) �|= p ⇒

(σ, i, |σ|) |= ¬p
f ≡ empty : (σ, i) |=k empty ⇒ i = |σ| ⇒ (σ, i, |σ|) |= empty

Inductive cases: Suppose for any PPTL formula f , (σ, i) |=k f ⇒ (σ, i, |σ|) |= f .

1. By hypothesis, when i < k ≤ |σ|, we have (σ, i+1) |=k f ⇒ (σ, i+1, |σ|) |= f .
By the definitions of semantics, (σ, i + 1) |=k f iff (σ, i) |=k ©f and (σ, i +
1, |σ|) |= f iff (σ, i, |σ|) |= ©f , so we can get (σ, i) |=k ©f ⇒ (σ, i, |σ|) |=
©f . When i = k, (σ, i+1) |=k f is false. Because false ⇒ (σ, i, |σ|) |= ©f ,
we can get (σ, i) |=k ©f ⇒ (σ, i, |σ|) |= ©f .

2. By hypothesis, we have (σ, i) |=k P1 ⇒ (σ, i, |σ|) |= P1 and (σ, i) |=k P2 ⇒
(σ, i, |σ|) |= P2. By the definitions of bounded semantics, we can easily get
(σ, i) |=k P1 ∨ P2 ⇒ (σ, i, |σ|) |= P1 ∨ P2. Similarly, (σ, i) |=k P1 ∧ P2 ⇒
(σ, i, |σ|) |= P1 ∧ P2.

Note that we do not need to deal with more in the above inductive cases
since more ≡ ©true.

Lemma 2. Let f be a PPTL formula and σ a finite interval. Then σ |= f ⇒
∃k, k ∈ N0, σ |=k f .

Proof: Since σ is a finite interval, so |σ| ∈ N0.

σ |= f ⇒ (σ, 0, |σ|) |= f
⇒ (σ, 0, k) |= f ∧ k = |σ|
⇒ ∃k, k ≥ 0, (σ, 0) |=k f
⇒ ∃k, k ≥ 0, σ |=k f
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4 Unified Bounded Model Checking of MSVL

In the Unified Model Checking implemented in [25], LNFG of p ∧ ¬φ is con-
structed to check whether a finite state MSVL program p satisfies a PPTL
formula φ. According to [27], finite and infinite models of p ∧ ¬φ are precisely
characterized by the paths which satisfy certain conditions in the LNFG. For a
PPTL formula Q, an interval σπ can be defined for a given path π in the LNFG
of formula Q and given a model σ of formula Q , σ |= Q, a path πσ can be
constructed according to the transition rules [27].

In the previous section, we defined the bounded semantics of PPTL. According
to it, a BLNFG can be constructed to describe the model of p ∧ ¬φ in bound k.

Definition 4. (Bounded Labeled Normal Form Graph, BLNFG). For
a MSVL program p, a PPTL formula φ, and k ∈ N0, its BLNFG is a tuple
G = (CL(p ∧ ¬φ), EL(p ∧ ¬φ), v0, L = {L1, . . . , Lm}, C = {C1, . . . , Ck}), where
CL(p ∧ ¬φ), EL(p ∧ ¬φ), V0 and L are identical to the ones defined in [27] and
each Ci ⊆ CL(p ∧ ¬φ), 0 ≤ i ≤ k, is the set of nodes with cq = i, where cq

represents the depth of a node q.

Since the set CL(p∧¬φ) of nodes and the set EL(p∧¬φ) of edges are inductively
produced by repeatedly rewriting the new created nodes into their normal forms,
the BLNFG can be constructed progressively with the current bound increasing
until a user supplied upper bound k. When constructing BLNFGs by normal
form reductions, for any chop formula P ;Q, we equivalently rewrite it by P ∧
fin(lk);Q as implemented in [27]. For convenience, we use inf(π) to denote the
set of nodes which infinitely often occur in the infinite path π.

By conclusions in [27], we can get the Corollaries 1 and 2 respectively as
follows.

Corollary 1. If π is a finite or an infinite path with inf(π) � Li for all 1 ≤ i ≤
m and cq ≤ k (k ∈ N0) for all nodes q on π in the BLNFG of formula p ∧ ¬φ,
then the interval obtained from the path σπ |=k p ∧ ¬φ.

Corollary 2. For a finite or an infinite interval σ, if σ |=k p ∧ ¬φ, then πσ

translated from σ with inf(πσ) � Li for all 1 ≤ i ≤ m and cq ≤ k for all nodes q
on πσ can be found in the BLNFG of formula p ∧ ¬φ.

Corollaries 1 and 2 tell us that a finite or an infinite interval σ |=k p ∧ ¬φ iff
there exists a corresponding finite or infinite path satisfying certain conditions
in the BLNFG of formula p ∧ ¬φ in bound k.

Because a MSVL program p does not satisfy a PPTL formula φ iff p ∧ ¬φ
is satisfiable, then we can get the following corollary which is important in our
unified bounded model checking.

Corollary 3. In the LNFG of an infinite system p in MSVL, finite paths precisely
characterize finite models of p; loop paths with inf(π) � Li for all 1 ≤ i ≤ m,
precisely characterize loop models of p.
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According to Corollary 3, our bounded model checking approach can be deduced
to the construction of the BLNFG of p ∧ ¬φ. In the on-the-fly construction of
p ∧ ¬φ, i is the current bound which stops increasing once a counterexample is
found or reaches the upper bound. Initially, we create the root node p ∧ ¬φ and
set cp∧¬φ to 0.

For a given bound i, nodes whose depth equals i are dealt with. In order to
retain consistency, we use p ∧ ¬φ to represent the node that will be dealt with.
For a node p ∧ ¬φ, p and ¬φ are rewritten into their normal forms respectively.
The function NF () defined in [26] is called to produce normal form of a PPTL
formula or MSVL program. Then we can get the conjunction of these two normal
forms. The first part of the conjunction is a disjunction. A finite path ended by
the empty node is found once one disjunct can be satisfied. At this time, the
construction of the BLNFG terminates and a finite counterexample is output.
Because the depth of nodes that are dealt with is increasing progressively, our
process produces counterexamples of minimal length, which eases the under-
standing for debugging purposes. If no counterexample is found by checking the

Fig. 4. The construction of the BLNFG for p ∧ ¬φ
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first part, the second part of the conjunction will be dealt with. For every dis-
junct, a new node will be generated if the present state can be satisfied. If the
node pfj ∧ ¬φfs does not exist, a new node pfj ∧ ¬φfs whose depth is i + 1 is
generated. Otherwise, a loop will be generated. If inf(π) � Li for all 1 ≤ i ≤ m,
the infinite path is output as a counterexample and the construction of BLNFG
terminates. If not, this infinite interval is not a model of p∧¬φ and is not taken
into account. At this time, we will check whether there exist other nodes whose
depth is equal to i. If these nodes exist, they will be dealt with by the same
process above. Those new generated nodes whose depth is equal to i+1 will not
be dealt with immediately. When the current bound increases to i+1, pfj ∧¬φfs

will be considered.
In case that all nodes whose depth is i have been dealt with and no coun-

terexample has been found, the current bound i will increase. If there is no node
to be dealt with at this time, it means that the whole LNFG of p ∧ ¬φ has been
constructed. Because no valid path exists in the LNFG, we can get the result
that the property φ is valid. If the value of i is still less than the upper bound k,
the nodes whose depth equals i will be dealt with by the same process above.
If the value of i is larger than the upper bound k, the process has to stop and
it cannot be determined whether the system satisfies the property or not. The
construction of the BLNFG for p ∧ ¬φ is depicted in Fig. 4.

Based on our UBMC algorithm, the model checker acting as a module in
the MSV toolkit [25] has been developed. Under the bounded verification mode,
a finite or an infinite system model is described by a MSVL program and the
property is specified by a PPTL formula. A upper bound can be set by the user,
otherwise it will be the default value.

5 A Case Study: Verification of Resource
Allocation Algorithm

Banker’s algorithm [28] is a resource allocation and deadlock avoidance algo-
rithm developed by Dijkstra. It tests for safety by simulating the allocation of
predetermined maximum possible amounts of all resources. The algorithm tests
for possible deadlock conditions for all other pending activities before deciding
whether allocation is permitted.

The algorithm is originally developed in the design process of operating sys-
tems. When a new process enters a system, it must declare the maximum num-
ber of each resource type that it may ever claim. When a process gets all its
requested resources, it must return them in a finite time interval. Many varia-
tions of Banker’s algorithm have been applied in cloud computing where differ-
ent computing tasks may be assigned to different platforms. Because resources
available are usually limited on a given platform, it becomes necessary to check
whether the tasks to be executed are schedulable.

We describe a variation of the resource allocation algorithm by a MSVL
program where it is assumed that five tasks need to be scheduled every time
and there exist four types of resources to be allocated. An array maxres is
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Fig. 5. The verification result of the resource allocation algorithm

used to indicate the number of resources available of each type. A 5 × 4 matrix
maxclaim defines the maximum demand of each task and another 5 × 4 matrix
curr defines the number of resources which are already allocated to each task.
In the program, the platform keeps running through a nonterminal loop and the
maximum demand of each task changes among three cases randomly. A boolean
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variable fail is used to represent whether the tasks are schedulable in each case
and order is an array used to record every task’s execution order.

Assume that we want to check whether or not the tasks are schedulable
in each case and the third task is always executed after the second one. The
property can be specified by �(p ∧ q) in PPTL where p is defined as fail = 0
and q is defined as order[1] < order[2]. The upper bounded length is set to 100.
Then we can verify the model with the bounded model checker. The verification
result is shown in Fig. 5.

The counterexample is found when the bound increases to 89. By analysing
the counterexample, we find that the resources available are too limited to sched-
ule these five tasks. When the variable maxclaim=[[4, 2, 1, 4], [2, 2, 5, 2], [5, 1,
3, 5], [3 ,5 ,3 ,0], [3 ,2 ,3 ,3]], the first and the fourth types of resources are not
enough. The program is verified again after we add one resource to the first and
the fourth types respectively. Then we can get the result that the given property
is valid for the modified program.

6 Conclusion

In this paper, we have proposed an approach named UBMC, which combines
bounded model checking with unified model checking for verifying infinite state
programs in MSVL. In our approach, a BLNFG is constructed on the fly to find
whether there exist counterexamples in the given bound. This new technique
produces counterexamples of minimal length and speeds up the verification. We
also use a resource allocation example to show our approach. To examine our
method, several case studies with larger examples are required in the near future.
Moreover, lots of efforts are needed to improve our bounded model checker.
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Abstract. Nested timed automata (NeTAs), proposed by Li et al. are
a pushdown system whose stack symbols are timed automata (TAs).
With this formal models, we can model and analyze complex real-time
frameworks with recursive context switches. The reachability problem of
NeTAs is proved to be decidable, via encoding NeTAs to dense timed
pushdown automata (DTPDAs). This paper gives a forward algorithm
for reachability problem of NeTAs, by dividing the problem into two
phases and integrating these two corresponding results. One phase is the
reachability checking for the stack contents (i.e. TAs) and another is the
state reachability problem for the TAs nested in an NeTA. The algo-
rithm neglects time accumulation during context switches and thus an
over-approximation of the original problem. As the result, the algorithm
gains soundness in the sense that there exists one corresponding timed
trace in the NeTA when the approximation has a timed trace to the state
in less time-complexity.

1 Introduction

Nested timed automata (NeTAs) are a pushdown system whose stack symbols
are Timed Automata (TAs). It has been proposed to analyze recursive behavior
of components in real-time systems, such as interrupts or procedure calls. It
either behaves as the top TA in the stack, or switches from one TA to another
following three kinds of transitions: pushing a new TA, popping the current TA
when terminates, or replacing the top TA of the stack. A technical contribution
of NeTA is that it allows local clocks in a natural way where the clocks are not
frozen in the stack. The safety property of NeTAs is decidable [1] in general, by
encoding NeTAs to the dense timed pushdown automata (DTPDAs) [2].

This paper proposes a forward analysis algorithm for NeTAs, as an approx-
imation of configuration reachability analysis. NeTA may push the current TA
on the top of the stack to switch to another TA. As modeling the real-time pro-
gram behavior, the forward analysis from the initial state is natural and useful
in checking non-reachability to the states with unintented properties. For exam-
ple, in modelling non-maskable interrupts, pushing TA may not be controlled
by the NeTA itself. In this case, the reachability may hold much more than the
c© Springer International Publishing Switzerland 2015
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2014, LNCS 8979, pp. 62–80, 2015.
DOI: 10.1007/978-3-319-17404-4 5
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general case since the push operation can happen at any time. Comparing with
the general reachability checking, this may ease the algorithm in practice. The
fundamental idea of the algorithm is to separate the timing behavior of TAs
from the pushdown system. In this way, we can divide the reachability problem
of NeTAs into two phases: reachability problem of TAs and reachability prob-
lem of pushdown systems(PDSs), then we combine the results of two phases, as
follows:

– The first phase can be judged by checking the traditional P-automaton recog-
nizing all the possible stack words(ignoring timing feature) for NeTA whether
it satisfies some conditions.

– The second phase can be work out some by mature analysis algorithm such
as zone construction to define a finite equivalence class on dense time.

The algorithm neglects time accumulation during context switches and thus
just an over-approximation of the original problem. However, we have proved
that the algorithm gains soundness by means that when a trace is found by the
algorithm, there exists one corresponding timed trace in reality.

The rest of the paper is organized as follows. Section 2 gives an introduction
of TAs, PDSs and NeTAs. Section 3 shows the formal definition of reachability
problem of NeTAs and the forward analysis algorithm for NeTA. Section 4 proves
the correctness of the forward analysis algorithm for NeTAs. The related work
is presented in Sects. 5 and 6 concludes the paper.

2 Preliminaries

Let R
≥0 and N denote the sets of non-negative real numbers and natural numbers

respectively. Let N
ω = N ∪ {ω}, where ω is the first limit ordinal. Let I denote

the set of intervals over N
ω. An interval can be written as a pair of a lower limit

and an upper limit in the form of either (a, b), [a, b), [a, c], (a, c], where a, c ∈ N,
b ∈ N

ω,‘(’ and ‘)’ denote open limits, and ‘[’ and ‘]’ denote closed limits. For a
number r ∈ R

≥0 and an interval I ∈ I, we use r ∈ I to denote that r belongs
to I.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R
≥0,

assigns a value to each clock x ∈ X. ν0 represents all clocks in X assigned to
zero. Given a clock valuation ν and a time t ∈ R

≥0, (ν + t)(x) = ν(x) + t, for
x ∈ X. A clock assignment function ν[y ← b] is defined by ν[y ← b](x) = b if
x = y, and ν(x) otherwise.

2.1 Timed Automata

Definition 1 (Timed Automata). A timed automaton is a tuple A = (Q, q0,
F,X,Δ), where

– Q is a finite set of control locations, with the initial location q0 ∈ Q,
– F ⊆ Q is the set of final locations,
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– X is a finite set of clocks,
– Δ ⊆ Q × O × Q, where O is a set of operations. A transition (q1, φ, q2) ∈ Δ

is written as q1
φ−→ q2, in which φ is either

Local ε, an empty operation,
Test x ∈ I? where x ∈ X is a clock and I ∈ I is an interval, or
Assignment x ← I where x ∈ X and I ∈ I.

Given a TA A, we use Q(A), q0(A), F (A), X(A) and Δ(A) to represent its
set of control locations, initial location, set of final locations, set of clocks and
set of transitions, respectively. We will use similar notations for other models.

Remark 1. We adopt the definition style of TAs from [1], which looks different
from the one in [3,4]. The main reason lies in that this definition style is compat-
ible with the definition of NeTAs [1]. Note that TAs defined in Definition 1 are
diagonal-free. All test transitions only compare some clock with some constant,
which can lead to the fact that all clock constraints have the form x ∼ c, where
c ∈ N and ∼∈ {<,≤,=, >,≥}.

Definition 2 (Semantics of TAs). Given a TA A = (Q, q0, F,X,Δ), a con-
figuration(state) is a pair (q, ν) of a control location q ∈ Q, and a clock valuation
ν on X. The transition relation of the TA is represented as follows:

– Progress transition: (q, ν) t−→A (q, ν + t), where t ∈ R
≥0.

– Discrete transition: (q1, ν1)
φ−→A (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the
following holds:
• Local φ = ε, then ν1 = ν2.
• Test φ = x ∈ I?, ν1 = ν2 and ν2(x) ∈ I holds.
• Assignment φ = x ← I, ν2 = ν1[x ← r] where r ∈ I.

The initial configuration is (q0, ν0). The transition relation is → and we

define →= t−→A ∪ φ−→A , and define →∗ to be the reflexive and transitive closure
of →.

Definition 3 (State Reachability Problem of TAs). Given a timed automa-
ton A = (Q, q0, F,X,Δ) ∈ A and two locations p and q, where p, q ∈ Q(A),
determine whether there exist two clock valuation ν1 and ν2 such that (q0, ν0) →∗

(p, ν1) →∗ (q, ν2). We write (A, p) →∗ (A, q), if there exist such two clock valua-
tions; otherwise (A, p) �

∗ (A, q).

Remark 2. The definition style is different from the classical definition style [3].
The major difference is that we specify two locations p and q that must be
reached in order from the initial control location q0, while the classical definition
requires at least one of final locations can be the reached from initial control
location q0. These two definitions are same in nature, since a modification of the
algorithm for state reachability analysis of TAs goes for our definition.

The state reachability problem of TAs is equivalent to the emptyness problem of
TAs. Some symbolical on-the-fly algorithms [5,6] based on the notion of zones
are proposed for solving this problem, e.g. forward analysis algorithm used in
Uppaal. For completeness, we present an algorithm for state reachability prob-
lem of TAs in AppendixA.
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2.2 Pushdown System

Definition 4 (Pushdown Systems). A pushdown system P = (P, Γ,Δ, c0) is
a quadruple where P contains the control locations and Γ is the stack alphabet.
A configuration of P is a pair 〈p,w〉 where p ∈ P and w ∈ Γ ∗. Let Conf(P)
denote the set of all possible configurations. c0 is the initial configuration. We
associate a unique unlabelled transition system TP = (Conf(P ),⇒P , c0) with P.

Δ is a finite subset of (P × Γ ) × (P × Γ ∗);we also write 〈p, γ〉 ↪→ 〈p′, w〉 if
((p, γ), (p′, w)) ∈ Δ. The transition relation of TP is determined by the set of
rules Δ as follows:

IF 〈p, γ〉 ↪→ 〈p′, w〉, then 〈p, γw′〉 ⇒P 〈p′, ww′〉 forall w′ ∈ Γ ∗.

We define ⇒∗
P to be the reflexive and transitive closure of ⇒P .

Definition 5 (Forward Reachability Problem of PDSs). Given a push-
down system P = (P, Γ,Δ, c0), and a target configuration ct, determine whether
there exists c0 ⇒∗

P ct.

As for the forward reachability problem of PDSs, an well-known efficient algo-
rithms [7] have been proposed based on the construction of P-automaton, which
can recognize all the configurations that can be reached from the initial config-
uration c0 as a regular language.

Definition 6 (P-automaton). Given a pushdown system P = (P, Γ,Δ, c0), a
P-automaton is a quintuple A = (Q,Γ,→, P, F ) where Q ⊇ P is a finite set of
states, →⊆ Q×Γ ×Q is the set of transitions, and F ⊆ Q the set of final states.
P accepts or recognizes a configuration 〈p,w〉 if the transition system (Q,Γ,→, p)
satisfies p

w−→∗
q for some q ∈ F .

P-automata are classified into Post∗-automata and Pre∗-automata. Post∗-
automaton accepts the set of configurations that can be reached from initial
configuration while Pre∗-automaton accepts the set of configurations that can
reach the initial configuration. In our forward analysis, a Post∗-automaton is
constructed to further reveal useful information.

2.3 Nested Timed Automata

Definition 7 (Nested Timed automata). A nested timed automaton is a
triplet N = (T,A0,Δ), where

– T is a finite set of timed automata, with the initial timed automaton A0 ∈ T .
– Δ ⊆ T ×P ×(T ∪{ε}), where P = {push, pop, internal}. A rule (Ai,Φ,Aj) ∈

Δ is written as Ai
Φ−→ Aj, where

Push Ai
push−−−→ Aj,

Pop Ai
pop−−→ ε, and

Internal Ai
internal−−−−−→ Aj.
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The initial state of NeTAs is the initial location in A0, s.t. q0(A0). We also
assume that X(Ai) ∩ X(Aj) = ∅, and Q(Ai) ∩ Q(Aj) = ∅ for Ai,Aj ∈ T and
i �= j.

Definition 8 (Semantics of NeTAs). Given a NeTA (T,A0,Δ), a configura-
tion is a stack, and the stack alphabet is a tuple 〈A, q, ν〉, where A ∈ T is a timed
automaton, q is the current running control location where q ∈ Q(A), and ν is
the clock valuation of X(A). For a stack content c = 〈A1, q1, ν1〉〈A2, q2, ν2〉 . . .
〈An, qn, νn〉, let c + t be 〈A1, q1, ν1 + t〉〈A2, q2, ν2 + t〉 . . . 〈An, qn, νn + t〉.

The transition of NeTAs is represented as follows:

– Progress transitions: c
t−→N c + t.

– Discrete transitions: c
φ−→N c′ is defined as a union of the following four kinds

of transition relations.
• Intra-action 〈A, q, ν〉c φ−→N 〈A, q′, ν′〉c, if q

φ−→ q′ ∈ Δ(A), and one of the
following holds:
∗ Local φ = ε, then ν = ν′.
∗ Test φ = x ∈ I?, ν = ν′ and ν′(x) ∈ I holds.
∗ Assignment φ = x ← I, ν′ = ν[x ← r] where r ∈ I.

• Push 〈A, q, ν〉c push−−−→N 〈A′, q0(A′), ν′
0〉〈A, q, ν〉c, if A push−−−→ A′, and q ∈

Q(A).
• Pop 〈A, q, ν〉c pop−−→N c, if A pop−−→ ε, and q ∈ F (A).
• Inter-action 〈A, q, ν〉c internal−−−−−→N 〈A′, q0(A′), ν′

0〉c, if A internal−−−−−→ A′, and
q ∈ F (A).

The initial configuration c0 = 〈A0, q0(A0), ν0〉. We use −→ to range over the tran-
sitions above and −→∗ is the reflexive and transitive closure of −→, conventionally.
We use 〈A, q〉 to represent topmost TA in stack and its corresponding location.

3 Forward Analysis for NeTAs

In this section, we first give the formal definition of reachability problem of
NeTAs. Then, in order to concisely describe our forward analysis, we introduce
how to construct a pushdown system from an NeTA and two important con-
cepts: forward reachability and bi-directional reachability. The forward analysis
algorithm is given at last.

3.1 Reachability Problem of NeTAs

Definition 9. Given an NeTA N = (T,A0,Δ) and two pairs 〈Ai, p〉, 〈Aj , q〉,
where Ai,Aj ∈ T , p ∈ Q(Ai),q ∈ Q(Aj), determine whether there exist two con-
figurations c and c′, such that c0 = 〈A0, q0(A0), ν0〉 −→∗ c = 〈Ai, p, ν〉 · · · −→∗

c′ = 〈Aj , q, ν
′〉 · · · , where ν, ν′ are clock valuations over X(Ai) and X(Aj)

respectively. We also write 〈Ai, p〉 �→ 〈Aj , q〉, if 〈Ai, p〉 can reach 〈Aj , q〉.
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Consider a set of interrupts embedded in a real-time system. Some interrupts are
unmasked and could happen any time. Thus wherever one interrupt is invoking
its interrupt handler, another unmaskable interrupt could preempt the current
executing interrupt and invoke its own interrupt handler. If the interrupt han-
dlers share some common resources, it may be necessary to check their reacha-
bility. Assume two handlers happen to initialize some device. If both handlers
may think they are the only handlers use the device, there might cause a prob-
lem: handler A wants to read data after the first initialization by itself. But if
the initialization of B is reachable from the initialization of A, B might initialize
the device unexpectedly. It actually requires to check two specific interrupts’
reachability, which can be reduced to the reachability problem of NeTAs.

Example 1. An NeTA N = (T,A0,Δ) is defined as follows:

– T = {A0,A1,A2,A3,A4}, where we assume A2,A3,A4 may reach one of their
final locations respectively, while A0,A1 may not.

– A0 ∈ T is the initial TA of N ;
– Δ = {A0

push−−−→ A1,A1
pop−−→ ε,A1

push−−−→ A2,A2
pop−−→ ε,A2

internal−−−−−→ A3,

A3
pop−−→ ε,A1

push−−−→ A4,A4
pop−−→ ε}.

Given N and two pairs 〈A4, q0(A4)〉 and 〈A3, q0(A3)〉, determine if 〈A4, q0(A4)〉 �→
〈A3, q0(A3)〉.

In Example 1, we need to determine if 〈A4, q0(A4)〉 �→ 〈A3, q0(A3)〉. The
intuition is that only when the two pairs could appear at the top of stack and
one configuration with former pair 〈A4, q0(A4)〉 at the top of stack could reach
another configuration with latter pair 〈A3, q0(A3)〉 at the top of stack, could
〈A4, q0(A4)〉 �→ 〈A3, q0(A3)〉 be possible. The following figure shows the idea
(Fig. 1).

Fig. 1. Reachable path in Example 1

3.2 PDS Contruction from a NeTA

Definition 10. Given nested timed automata N = (T,A0,Δ), we construct a
pushdown system P = (P, Γ,Δ, c0) from N , where P = {•}, Γ = {A|A ∈
T (N )}, c0 = 〈•,A0〉,Δ ∈ (P × Γ ) × (P × Γ≤2) defined as follows:
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– if Ai
internal−−−−−→ Aj ∈ Δ(N ) for any Ai ∈ T (N ) and ∃qf ∈ F (Ai) s.t.

(Ai, q0(Ai)) →∗ (Ai, qf ), then 〈•,Ai〉 ↪→ 〈•,Aj〉;
– if Ai

push−−−→ Aj ∈ Δ(N ) for any Ai ∈ T (N ) then 〈•,Ai〉 ↪→ 〈•,AjAi〉;
– if Ai

pop−−→ ε ∈ Δ(N ) for any Ai ∈ T (N ) and ∃qf ∈ F (Ai) s.t. (Ai, q0(Ai)) →∗

(Ai, qf ) , then 〈•,Ai〉 ↪→ 〈•, ε〉.
An algorithm for constructing P-automaton from a PDS is given in Appen-

dixB.
From the pushdown system P = (P, Γ,Δ, c0), we can construct a P-automaton

Apost∗ = (Q,Γ,→, P, F ) which recognizes all possible configurations that
are reachable from initial configuration c0. Notice the fact that the P-automaton
Apost∗ has only one initial state whose labeled is •. Since the initial state is fre-
quently used in the following definitions and algorithms, let s0 denote the distinc-
tive initial state for simplicity.

3.3 Forward Reachability

Definition 11. Given a P-automaton Apost∗ = (Q,Γ,→, P, F ) which can recog-
nize all possible reachable configurations of pushdown system P = (P, Γ,Δ, c0).
We define Ai � Aj, where Ai,Aj ∈ Γ if and only if there exists a transition

upon Apost∗ in the form of s0

Ak0=Aj−−−−−→ s1

Ak1−−→ s2 · · · sn−1

Akn−1=Ai−−−−−−−→ sn, where
Aki

∈ Γ for any ki and si ∈ Q(Apost∗) for 0 ≤ i ≤ n.

The intuition of the forward reachability of two TAs Ai � Aj is the fact that
when the topmost stack symbol is Ai, it would be likely to use only “push” and
“internal” transition rules to make the topmost symbol be Aj with Ai in stack.

Our forward analysis only cares about those TAs who can forward reach Aj .
Let Fwd TA SetAj

= {Ak|Ak � Aj}. The following algorithm shows how to
compute Fwd TA SetAj

.
Note in Algorithm 1, we assume there exists some p ∈ Q(Apost∗) such that

(s0,Aj , p) ∈→ (Apost∗). The basic idea of Algorithm 1 is to use the breadth
first search method to search all transitions(or edges) concerned. In order to
avoid revisiting the self-loop transitions, whenever a new transition is added to
tempEdgeSet, only when it has never already been visited before.

3.4 Bi-directional Reachability

Definition 12. Given a P-automaton Apost∗ = (Q,Γ,→, P, F ) for pushdown
system P = (P, Γ,Δ, c0), We define Ai � Aj, where Ai,Aj ∈ Γ if and

only if there exists a transition by Apost∗ in the form of s0

Ak0=Ai−−−−−→ s1

Ak1−−→
s2 · · · sn−1

Akn−1−−−−→ sn, where for 0 ≤ i ≤ n,si ∈ Q(Apost∗), for 0 ≤ i ≤
n − 1,Aki

∈ Γ ,Aj ∈ {Akn−1} ∪ {γ|(s0, γ, q•,Akn−1
) ∈→ (Apost∗)}, for 0 ≤ i <

n − 1, (s0, ε, q•,Aki
) ∈→ (Apost∗), and if Akn−1 �= Aj, then (s0, ε, q•,Akn−1

) ∈→
(Apost∗).
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Algorithm 1. Compute Fwd TA SetAj

input : P-automaton Apost∗ = (Q, Γ, →, P, F ); TA Aj that need to be forward
reached

output: the set of TAs Fwd TA SetAj = {Ak|Ak � Aj}
1 V istied := ∅, EdgeSet := ∅;
2 forall the (s0, Aj , p) ∈→ (Apost∗) do
3 EdgeSet := EdgeSet ∪ {(s0, Aj , p)};
4 V isited := V isited ∪ {(s0, Aj , p)};
5 do
6 tempEdgeSet := ∅;
7 forall the (p, γ, q) ∈ EdgeSet do
8 forall the (q, γ′, q′) ∈→ (Apost∗) do
9 if (q, γ′, q′) /∈ V isited then

10 V isited := V isited ∪ {(q, γ′, q′)};
11 tempEdgeSet := tempEdgeSet ∪ {(q, γ′, q′)};

12 EdgeSet := tempEdgeSet;

13 while EdgeSet �= ∅;
14 Fwd TA SetAj := {γ|(p, γ, q) ∈ V isited};
15 return Fwd TA SetAj ;

The intuition of the bi-directional reachability of Ai � Aj is the fact that
when the topmost stack symbol is Ai, it would be likely to use only “pop”
and “internal” transition rules to make the topmost symbol be Aj without Ai

remained in stack. In Example 1, it’s easy to find that A2 � A1, since when
the topmost symbol A2 is popped out, the next topmost symbol could be A1.
The specific situation is shown in the following figure.

Fig. 2. A demonstration of A2 � A1 in Example 1

Algorithm 2 shows how to compute those TAs that can be bi-directionally
reached from Ai.

Note in Algorithm 2, we also assume there exists some p ∈ Q(Apost∗) such
that (s0,Ai, p) ∈→ (Apost∗). The basic idea underlying Algorithm2 is similar
to that of Algorithm 1. The major difference is to ensure all TAs along the bi-
directional path except the last one should be able to popped out of the stack.
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Algorithm 2. Compute Bi TA SetAi

input : P-automaton Apost∗ = (Q, Γ, →, P, F ); TA Ai that bi-directionally
reach other TAs

output: the set of TAs Bi TA SetAi = {Ak|Ai � Ak}
1 V isited := ∅, EdgeSet := ∅;
2 forall the (s0, γ, p) ∈→ (Apost∗) do
3 if γ is Ai or p is q•,Ai then
4 EdgeSet := EdgeSet ∪ {(s0, γ, p)};
5 V isited := V isited ∪ {(s0, γ, p)};
6 do
7 tempEdgeSet := ∅;
8 forall the (p, γ, q) ∈ EdgeSet do
9 if (s0, ε, q•,γ) ∈→ (Apost∗) then

10 forall the (q, γ′, q′) ∈→ (Apost∗) do
11 if (q, γ′, q′) /∈ V isited then
12 V isited := V isited ∪ {(q, γ′, q′)};
13 tempEdgeSet := tempEdgeSet ∪ {(q, γ′, q′)};
14 if (s0, ε, q•,γ′) ∈→ (Apost∗) then
15 forall the (s0, γ

′′, q•,γ′) ∈→ (Apost∗) do
16 if (s0, γ

′′, q•,γ′) /∈ V isited then
17 V isited := V isited ∪ {(s0, γ′′, q•,γ′)};
18 tempEdgeSet := tempEdgeSet∪{(s0, γ′′, q•,γ′)};

19 EdgeSet := tempEdgeSet;

20 while EdgeSet �= ∅;
21 Bi TA SetAi := {γ|(p, γ, q) ∈ V isited};
22 return Bi TA SetAi ;

3.5 Forward Analysis Algorithm for NeTAs

Our forward analysis algorithm for NeTAs is presented in Algorithm3.
The idea underlying it is quite simple: to check whether 〈Aj , q〉 is reach-

able from 〈Ai, p〉, firstly, locally check whether p and q is reachable from ini-
tial locations in Ai and Aj and whether reach final locations, respectively, by
region construction, without considering context switch; secondly, check whether
Aj is reachable from Ai, by P-automaton technique, without considering time
elapse. In other words, check whether there exists a TA Ak ∈ T (N ) such that
Ai � Ak � Aj hold; finally, combine the results of two stages. In our algorithm
two cases are considered separately: One case is that Ai can directly forwardly
reach Aj(i.e. Ai � Aj) and the other case is that Ai can not directly forwardly
reach Aj but there exists a Ak that act as a bridge connecting Ai and Aj

(i.e. Ai � Ak � Aj). In the latter case, it is required that the Ai can reach
one of its final locations from the specified location p by the definition of �.
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Algorithm 3. Forward Analysis Algorithm for NeTAs
input : NeTA N = (T, A0, Δ); two pairs 〈Ai, p〉, 〈Aj , q〉, where Ai, Aj ∈ T (N ),

p ∈ Q(Ai) and q ∈ Q(Aj)
output: if 〈Ai, p〉 	→ 〈Aj , q〉 output “Yes”; otherwise output “No”

1 if (Ai, q0(Ai)) �
∗ (Ai, p) then

2 return “No”;

3 if (Aj , q0(Aj)) �
∗ (Aj , q) then

4 return “No”;

5 With NeTA N = (T, A0, Δ), construct a pushdown system P = (P, Γ, Δ, c0)
according to definition 10;

6 Construct a P-automaton Apost∗ = (Q, Γ, →, P, F ) for PDS P;
7 if �s s.t.(s0, Ai, s) ∈→ (Apost∗) or �s s.t.(s0, Aj , s) ∈→ (Apost∗) then
8 return “No”;

9 Use algorithm 1 to search TAs that can forward reach Aj ,
Fwd TA SetAj = {Ak|Ak � Aj};

10 if Ai ∈ Fwd TA SetAj then
11 return “Yes”;

12 if �qf ∈ F (Ai) s.t.(Ai, p) →∗ (Ai, qf ) then
13 return “No”;

14 Use algorithm 2 to search TAs that can be bi-directionally reached from Ai,
Bi TA SetAi = {Ak|Ai � Ak};

15 if Bi TA SetAi ∧ Fwd TA SetAj �= ∅ then
16 return “Yes”;
17 else
18 return “No”;

For better upstanding we describe our algorithm by applying it to example 1.
The corresponding P automaton is shown in Fig. 3. Our algorithm in lines 1–4
first checks whether two TAs A4,A3 from their initial locations can reach their
respective locations q0(A4), q0(A3). If do not hold, it trivially return a “No”.
Obviously, due to the reflexiveness of →, these 2 conditions hold. In lines 5–6,
a P-automaton Apost∗ is constructed which can recognize all possible stack con-
figurations ignoring the internal change of TAs. The P-automaton Apost∗ is
showed in the Fig. 3. In lines 7–8, it checks whether both TAs can appear at
the top of stack. If can not, trivially return a “No”. In Fig. 3, there are 2 tran-
sition rules s0

A4−−→ q•,A4 and s0
A3−−→ q•,A2 , meaning both of 2 TAs can appear

at the top of stack. Go on to line 9. Our algorithm find all TAs that each of
them can forward reach A3 by using Algorithm 1. Let Fwd TA SetA3 denote
the set of TAs. From Fig. 3, we can find Fwd TA SetA3 = {A3,A1,A0}. In
lines 10–11, it checks whether A4 ∈ Fwd TA SetA3 . If so, return “Yes”. Clearly,
A4 /∈ Fwd TA SetA3 . In lines 12–13, it checks whether A4 can reach some final
locations from current location p. If not, return “No”. By assumption, A4 can
reach some final locations. In line 14, we find all TAs that can be bi-directionally
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Fig. 3. P-automaton constructed in Example 1

reached from A4 by using Algorithm 2. Let Bi TA SetA4 denote the set of TAs.
It’s easy to find Bi TA SetA4 = {A4,A1}. In lines 15–18, it checks whether the
intersection of two sets(i.e. TAs Fwd TA SetA3 and Bi TA SetA4) is empty or
not. Since both sets have a common TA A1, our algorithm return a “Yes”.

Fig. 4. One possible reachable path in Example 1

In the computation process, we actually find a relatively coarse but not pre-
cise reachable path that witness 〈A4, q0(A4)〉 �→ 〈A3, q0(A3)〉. Figure 4 shows
one of the possible reachable paths.

Remark 3. Our algorithm is sound in the sense that it can find a relatively coarse
reachable path and return “Yes” if and only if 〈Ai, p〉 �→ 〈Aj , q〉. However, our
algorithm is not precise as the reachable paths we find are not detailed enough
to construct a concrete reachable path with timing trace. Actually, it neglects
time accumulation during context switches. Besides, our algorithm only search
some “best-case” reachable paths, not capable of systematically searching all
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possible path. We say these reachable paths are “best-case” in the sense that
although it could have infinitely many concrete reachable paths, any concrete
reachable path’s backbone is one of these “best-case” reachable paths, sice a
preemption and resumption can be simulated by a progress transition of a local
TA. In terms of the above analysis our algorithm is over-approximation.

We find it difficult to design a precise algorithm that could search all reach-
able paths systematically. The reason lies in that there could be infinitely many
reachable paths and each of them could differs greatly with others, implying
unlikely to find some effective way to search all reachable paths. Despite of
imprecision, our algorithm is capable for almost all cases since the safety prop-
erty are mostly concerned and the precise timing information is usually not
important.

4 Correctness of Forward Analysis Algorithm for NeTAs

In this section, we prove our algorithm’s correctness.

Lemma 1. Given an NeTA N = (T,A0,Δ) and two pairs 〈Ai, p〉, 〈Aj , q〉,
where Ai,Aj ∈ T , a unique P-automaton Apost∗ = (Q,Γ,→, P, F ) is associ-
ated with NeTA N . If 〈Ai, p〉 �→ 〈Aj , q〉, the following 4 properties hold:

1. ∃s1, s2 ∈ Q(Apost∗) s.t. (s0,Ai, s1), (s0,Aj , s2) ∈→ (Apost∗);
2. for TAs Ai and Aj, the following hold:

– (Ai, q0(Ai)) →∗ (Ai, p)
– (Aj , q0(Aj)) →∗ (Aj , q)

3. ∃Ak ∈ T (N ) s.t. Ai � Ak � Aj;
4. if Ai � Aj doesn’t hold, then ∃qf ∈ F (Ai) s.t. (Ai, p) →∗ (Ai, qf ).

Lemma 2. Given an NeTA N = (T,A0,Δ) and two pairs 〈Ai, p〉, 〈Aj , q〉,
where Ai,Aj ∈ T , a unique P-automaton Apost∗ = (Q,Γ,→, P, F ) is associ-
ated with NeTA N . If the following 4 properties hold:

1. ∃s1, s2 ∈ Q(Apost∗) s.t. (s0,Ai, s1), (s0,Aj , s2) ∈→ (Apost∗);
2. for TAs Ai and Aj, the following hold:

– (Ai, q0(Ai)) →∗ (Ai, p)
– (Aj , q0(Aj)) →∗ (Aj , q)

3. ∃Ak ∈ T (N ) s.t. Ai � Ak � Aj;
4. if Ai � Aj doesn’t hold, then ∃qf ∈ F (Ai) s.t. (Ai, p) →∗ (Ai, qf ).

then 〈Ai, p〉 �→ 〈Aj , q〉.
The proofs of Lemmas 1 and 2 are given in AppendicesC and D respectively.

Theorem 1 (Correctness Of Algorithm 3). Algorithm3 can correctly decide
the reachability problem of NeTAs.

Algorithm 3 determine the reachability problem of NeTAs by checking the 4
properties described in above 2 lemmas. With Lemma 1 and 2, Algorithm 3 can
correctly decide the reachability problem of NeTAs.
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5 Related Work

Reachability of timed automata (TAs) is proved to be decidable based on the con-
struction of region automata, which finitely abstracts timed behaviors of TA [3].
However, this construction does not lead to a practical reachability algorithm of
TA due to an enormous combinatorics explosion. Symbolic on-the-fly algorithms
was proposed and implemented to avoid the complexity of blow-up caused by
timing constraints. These algorithms were based on zones and DBMs to repre-
sent sets of clock valuations. For practical purpose, these zone-based algorithms
could be used in our forward analysis.

In NeTA, only simple clock updates and diagonal-free time constraints are
allowed. The updatable timed automata (UTAs) [8] was a natural syntactic exten-
sion of TA. It enjoyed the possibility of updating the clocks in a more elaborate
way than just simple reset in TA. The undecidability and decidability results
were given for several specific cases [8]. A forward analysis of UTA has been pro-
posed in [9] for specific subclass of UTA that do not use comparisons between
clocks.

Decidability of the reachability problem of NeTA is proved by translation
to Dense-timed pushdown automata (DTPDAs) [2]. DTPDAs extend the clas-
sical models of pushdown automata and timed automata, in the sense that the
automaton operates on a finite set of real-valued clocks, and each symbol in the
stack is equipped with a real-valued clock. The problem of reachability has been
proven to be decidable for DTPDAs. It relies on constructing a classical untimed
pushdown automaton over time abstract. However, the untimed automaton pro-
duced generally contains a very large number of states. Although a zone-based
reachability analysis of DTPDAs has been proposed in [10], the precise forward
analysis may require a significant effort compared to our algorithm.

Recursive timed automata(RTA) [11] is an extension of timed automata with
recursive structure. It has local clocks by the mechanism of “pass-by-value”.
When the condition of “glitch-freeness”, i.e. all the clocks of components are
uniformly either by “pass-by-value” or by “pass-by-reference”, the reachability
is shown to be decidable. RTAs have a mechanism of freezing clocks while in
the stack by ‘pass-by-value’ while NeTA do not. Since our algorithm ignores
the accumulation of time while being in the stack, a similar technique may be
applied to RTAs for estimating rough reachability.

6 Conclusion

We gave a forward analysis algorithm for NeTA to check the state reachability.
The basic idea of algorithm is to divide the reachability problem of NeTAs
into two phases: one phase is the reachability checking for the stack contents
and another is the state reachability problem for the TAs nested in an NeTA.
Although the algorithm is over-approximation, it is sound and complete in the
sense that when it can find an over-approximate trace ignoring the accumulation
of time in the stack, there exists one such reachable timed trace and vice versa.
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We proved the correctness of the algorithm in Sect. 4. The proof is based on
the insight of 4 properties that are an sound approximation to the reachablity
problem of NeTAs. Our algorithm complexity is PSPACE-Complete as the
reachability algorithm of TAs is used, which is PSPACE-Complete, and the
rest can be done in polynomial time and polynomial space. This shows that our
algorithm may be used for verification of real-time systems with elaborate data
structures such as DBM.

Our algorithm will not work for the NeTAs with invarints, in which each TAs’
location is assigned to a clock constraint. The reason lies in that our algorithm
neglects the time accumulation during context switches but it has to be consid-
ered since we need to ensure every discrete and progress transition would lead to a
valid configuration. However, our algorithm could be applying counter-example-
guided-abstraction-refinement (CEGAR) to NeTAs with invariants, which is our
future work.
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on the research. This research is supported by the National Nature Science Foundation
of China (61100052, 61472240, 91318301, 61261130589), JSPS Kakenhi Grant-in-Aid for
Scientific Research(B) (25280023) and Challenging Exploratory Research(26540026).

A An Algorithm for State Reachability Problem of TAs

An algorithm based on the notion of region is given in the following. In order to
better describe the algorithm, we need to introduce some definitions first.

Let C be the maximal clock constant appearing in the TA. Given a clock
valuation ν over a set of clock X = {x1, . . . , xn},and a time t ∈ R

≥0, (ν + t)(x)
is redefined by ν(x) + t if ν(x) + t ≤ C and otherwise any non-integral value C ′

whose integral part is C. A function isInt(x) is defined by 1 if ν(x) is an integer
and 0 otherwise, determining whether the value of a given clock is integer or
not. A vector H(ν),which characterizes integral properties of a clock valuation
ν, is defined by (isInt(x1), . . . , isInt(xn)).

For any time interval I ∈ I that appears in the TA, we bound it in the fol-
lowing way: Ib = {r|r ∈ I ∧ r ≤ C ′}. Without confusion, any interval mentioned
in the following is bounded.

Definition 13 (Region Equivalence). For a real number d, let {d} denote the
fractional part of d, and �d� denote its integer part. We say, two clock valuations
ν1, ν2 are region-equivalent, denoted ν1 ∼ ν2, if and only if

1. for all x, either �ν1(x)� = �ν2(x)� or both ν1(x) > C and ν2(x) > C,
2. for all x, if ν1(x) ≤ C then {ν1(x)} = 0 iff {ν2(x)} = 0 and,
3. for all x, y if ν1(x) ≤ C and ν1(y) ≤ C then {ν1(x)} ≤ {ν1(y)} iff {ν2(x)} ≤
{ν2(y)}.
The equivalence class [ν1] induced by ∼ is called a region, where [ν1] represent
all clock valuations that is region-equivalent to ν1.
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A symbolic state of TA is a pair 〈q,R〉 representing a set of states of the TA,
where p is a location and R is a region. A symbolic transition describes all the
possible concrete transitions from the set of states.

Definition 14. Given a region R, we define its direct successor: R↑ = {ν+t|ν ∈
R∧H(ν + t) = mint′ H(ν + t′) �= H(ν)}, where t, t′ ∈ R

≥0. We define R(x) |= I
if ∀ν ∈ R, ν(x) ∈ I, and Ix(R) = {[ν[x ← r]]|ν ∈ R ∧ r ∈ I}, where x ∈ X is
a clock and I is a time interval. Let � denote the symbolic transition relation
over symbolic states defined by the following rules:

– 〈q,R〉 � 〈q,R↑〉
– 〈q,R〉 � 〈q′, R〉, if q

ε−→ q′

– 〈q,R〉 � 〈q′, R〉, if q
x∈I?−−−→ q′ and R |= I

– ∀R′ ∈ Ix(R), 〈q,R〉 � 〈q′, R′〉, if q
x←I−−−→ q′

With the above definitions, we give a reachability algorithm for diagonal-free
TAs. In Algorithm 4, we use a boolean variable flag to indicate whether the
corresponding location is reached from p or not.

Algorithm 4. An Algorithm for state reachability problem of TAs

input : TA A = (Q, q0, F, X, Δ); two control locations p, q ∈ Q(A)
output: “yes” if (A, p) →∗ (A, q);“no” otherwise

1 if p = q0(A) then
2 flag := true;
3 else
4 flag := false;

5 PASSED := ∅, WAIT := {〈q0(A), {ν0}, f lag〉};
6 while WAIT �= ∅ do
7 take 〈p′, R, flag〉 from WAIT ;
8 if p′ = q ∧ flag = true then
9 return “yes”;

10 if p′ = p ∧ flag = false then
11 flag := true;

12 if 〈p′, R, flag〉 /∈ PASSED then
13 PASSED := PASSED ∪ {〈p′, R, flag〉};
14 forall the 〈q′, R′〉 such that 〈p′, R〉 � 〈q′, R′〉 do
15 add 〈q′, R′, f lag〉 to WAIT ;

16 return “no”;

Remark 4. Algorithm 4 is based on region, which could be computational expen-
sive. Although it could be optimized by using the well-known zone technique, it
does not improve its theoretical complexity.
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B An Algorithm for P-Automaton from PDS

The following is an effective algorithm for constructing P-automaton from a
PDS, which is taken from [7].

Algorithm 5. An algorithm for constructing a P-automaton from PDS
input : a pushdown system P = (P, Γ, Δ, c0);

a P-Automaton A = (Q, Γ, →0, P, F ) without transitions into P and
without ε-transitions

output: the automaton Apost∗
1 trans := (→0) ∩ (P × Γ × Q);
2 rel := (→0)\trans, Q′ := Q;
3 forall the 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ Δ do
4 Q′ := Q′ ∪ {qp′,γ1};
5 while trans �= ∅ do
6 pop t = (p, γ, q) from trans;
7 if t /∈ rel then
8 rel := rel ∪ {t};
9 if γ �= ε then

10 forall the 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ do
11 trans := trans ∪ {(p′, ε, q)};
12 forall the 〈p, γ〉 ↪→ 〈p′, γ1〉 ∈ Δ do
13 trans := trans ∪ {(p′, γ1, q)};
14 forall the 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 ∈ Δ do
15 trans := trans ∪ {(p′, γ1, qp′,γ1)};
16 rel := rel ∪ {(qp′,γ1 , γ2, q)};
17 forall the (p′′, ε, qp′,γ1) ∈ rel do
18 trans := trans ∪ {(p′′, γ2, q)};

19 else
20 forall the (q, γ′, q′) ∈ rel do
21 trans := trans ∪ {(q, γ′, q′)};

22 return (Q′, Γ, rel, P, F );

With out of generality,we assume that A has no transition leading to an
initial state. For Algorithm 5, the input is a pushdown system P = (P, Γ,Δ, c0)
and an automaton A accepting c0, and the output is an automaton Apost∗ with
ε-moves that accept all reachable configurations of P. In Algorithm 5, Apost∗ is
obtained from A in two phases:

1. For each (p′, γ′) satisfying that P contains at least one rule of the form
〈p, γ〉 ↪→ 〈p′, γ′γ〉, add a new state qp′,γ′ .

2. Add new transitions to A according to the following saturation rules:
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– If 〈p, γ〉 ↪→ 〈p′, ε〉 and p
γ−→∗

q in the current automaton, add a transition
(p′, ε, q).

– If 〈p, γ〉 ↪→ 〈p′, γ′〉 and p
γ−→∗

q in the current automaton, add a transition
(p′, γ′, q).

– If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and p
γ−→∗

q in the current automaton, first add
(p′, γ′, qp′,γ′) and then (qp′,γ′ , γ′′, q).

C A Proof of the Lemma 1

Proof. Since 〈Ai, p〉 �→ 〈Aj , q〉, by Definition 9, there exists two configurations
c and c′, such that c0 = 〈A0, q0(A0), ν0〉 −→∗ c = 〈Ai, p, ν〉 · · · −→∗ c′ =
〈Aj , q, ν

′〉 · · · , where ν, ν′ are clock valuations over X(Ai) and X(Aj) respec-
tively.

1. Obviously, by the definition of reachability problem of NeTAs, 〈Ai, p〉 �→
〈Aj , q〉 implies both of TAs, Ai and Aj , must appear at the top of stack. Since
Apost∗ can recognize all reachable configurations from initial configuration

c0 = 〈•,A0〉, there must be 2 transitions s0
Ai−−→ s1 and s0

Ai−−→ s1, where
s1, s2 ∈ Q(Apost∗).

2. By contradiction. Assume property 2 don’t hold. With out loss of generosity,
assume (Ai, q0(Ai)) �

∗ (Ai, p). This implies the control location p of TA Ai

can never be reached . Furthermore, 〈Ai, p〉 can never appear at the top of
stack, which contradicts the fact c0 = 〈A0, q0(A0), ν0〉 −→∗ c = 〈Ai, p, ν〉 · · · .
Hence, property 2 must hold.

3. If i = j = k, then it’s trivial that Ai � Ak � Aj due to the reflexive
of � and �. If not this case, consider expanding the reachable path c =
〈Ai, p, ν〉 · · · −→∗ c′ = 〈Aj , q, ν

′〉 · · · . Since we focus on the TAs’ reachabil-
ity, we ignore the internal location change and timing behaviours of TAs. The
reachable path can be transformed to a transition sequence ω0 = 〈Ak0(i.e.Ai)〉
· · · φ0−→ ω1 = 〈Ak1〉 · · · φ1−→ · · · φn−1−−−→ ωn = 〈Akn

(i.e.Aj)〉 · · · , where ωk repre-
sent stack word and φk ∈ {push, pop, internal}, for 0 ≤ k < n. Noticed that
some reachable paths have useless “segment”. If there exist 0 ≤ a < b ≤ n,

such that ωa = 〈Aka
〉 · · · φa−→ · · · φb−1−−−→ ωkb

= 〈Akb
〉 · · · and ωa = ωb, the par-

tial transition sequence is useless “segment”. It can be replaced with ωa, keep-
ing its original reachability. Assume the new transition sequence replaced all

useless “segment” is ω0 = 〈Ak0(i.e.Ai)〉 · · · φ0−→ ω1 = 〈Ak1〉 · · · φ1−→ · · · φm−1−−−→
ωm = 〈Akm

(i.e.Aj)〉 · · · , where for 0 ≤ i, j ≤ m, ωi �= ωj . Notice the fact that
for the new transition sequence there exists some 0 ≤ k ≤ m − 1 such that:
– for 0 ≤ t ≤ k, φt ∈ {pop, internal};
– for k + 1 ≤ t ≤ m − 1, φt ∈ {push, internal}.

By the definition of � and �, we have Ai � Ak � Aj .
4. if Ai � Aj don’t hold, there must be some k such that Ai � Ak, and

k �= i. This implies the fact that when the top symbol of stack is Ai, it must
be either popped out through “pop” transition or replaced with another TA
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through “internal” transition. In either way, Ai muse reach one of its final
locations;otherwise, it cannot be popped or replaced by the semantics of TAs.
Therefore, ∃qf ∈ F (Ai) s.t. (Ai, p) →∗ (Ai, qf ).

D A Proof of the Lemma 2

Proof. The main idea is to construct a reachable path of 〈Ai, p〉 �→ 〈Aj , q〉 from
the above 4 properties. Due to the first property, (s0,Ai, s1) ∈→ (Apost∗) implies
Ai can appear at the top of stack. We can construct a reachable path of c0 =
〈A0, q0(A0), ν0〉 →∗ c1 = 〈Ai, q0(Ai), ν0〉 · · · through all kinds of operations but
Pop operation. Besides, configuration c1 in the form c1 = 〈Ak0 , pk0 , νk0〉〈Ak1 ,
pk1 , νk1〉 · · · 〈Akn

, pkn
, νkn

〉,where for 0 ≤ i ≤ n,Aki
∈ T (N ), pki

∈ Q(Aki
) and

νki
is a clock valuation over X(Aki

), should satisfy the requirement that for
0 ≤ i ≤ n, if ∃pf ∈ F (Aki

) s.t. (Aki
, q0(Aki

)) →∗ (Aki
, pf ), then pki

= pf .
Note we can always do this, because when transferring to c1 each time one TA is
pushed into the stack, we can always check if topmost symbol in stack can reach
one of its final locations. If so, wait until it reach one of its final locations. With
second property, (Ai, q0(Ai)) →∗ (Ai, p) implies c1 = 〈Ai, q0(Ai), ν0〉 · · · →∗

c2 = 〈Ai, p, ν〉 · · · , where ν is a clock valuation over X(Ai). Note the transitions
from c1 to c2 involve only progress transition and intra-action of TA Ai. Next
we consider two different cases.

1. if Ai � Aj holds, when the topmost symbol in stack is Ai, we can always
make the topmost symbol be Aj through all kinds of operations except Pop
operation. Hence, c2 = 〈Ai, p, ν〉 · · · →∗ c3 = 〈Aj , q0(Aj), ν0〉 · · · . Note in the
process of transferring to c3, the symbols below topmost symbol Ai are still
there and their locations are not changed.

2. if Ai � Aj doesn’t hold, there exist a k, k �= i s.t. Ai � Ak � Aj , where
Ak ∈ T (N ). By the definition of � and the specific requirement for c1, we
have c2 = 〈Ai, p, ν〉 · · · →∗ c4 = 〈Ak, q0(Ak), ν〉 · · · through only pop and
internal operations. Note, due to the fourth property, Ai can reach one of its
final locations and can be popped out or replaced. For Ak � Aj , similarly we
have c4 = 〈Ak, q0(Ak), ν〉 · · · →∗ c5 = 〈Aj , q0(Aj), ν〉 · · · through all kinds of
operations except Pop operation.

In general, in both cases we have c0 →∗ c2 = 〈Ai, p, ν〉 · · · →∗ c6 =
〈Aj , q0(Aj), ν0〉 · · · . By second property, we have c6 = 〈Aj , q0(Aj), ν0〉 · · · →∗

〈Aj , q, ν
′〉 · · · , where ν′ is a clock valuation over X(Aj). Since c0 →∗ c2 =

〈Ai, p, ν〉 · · · →∗ 〈Aj , q, ν
′〉 · · · , 〈Ai, p〉 �→ 〈Aj , q〉 holds.
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Abstract. Scenario-based formal specification animation can dynam-
ically present the specification without translating it into executable
program. The behaviours of the system defined in the specification are
organized as sequences of processes. The user can observe a specific system
behaviour by watching the “execution” of the sequence of processes. To
present the “execution”, each process is sequentially connected via data,
which are generated based on the pre- and post-condition of the specifi-
cation. However, the animation method does not provide the user with a
chance of observing what happens inside a process. In this paper, we use a
sequence of atomic predicate expressions to present the behaviour defined
in a specific process. The atomic predicate expressions are organized based
on the dependency of variables that are involved in the process. We define
the variable dependency and illustrate the derivation of the dependency
graph from the specification. The procedure to reorganize the atomic pred-
icates based on the dependency graph is demonstrated with an example.

Keywords: Animation · Variable dependency · Formal specification ·
Process

1 Introduction

Specification animation is a technique for dynamically demonstrating the behav-
iour of the potential system through specification “executions” [1]. The execution
can be implemented using different techniques. Most of the existing animation
approaches automatically transform the formal specification into a program in
an executable programming language and then execute the program to provide
chances for the user to understand and validate the specification [2,3,10]. How-
ever, this approach can only deal with a subset of the formal notation in which
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the formal specification is written, because formal specifications are generally
not executable [4]. In our previous work [13], we proposed a new animation app-
roach called scenario-based animation, which can directly deal with the execution
of formal specifications without the need of the transformation. The basic unit
in the animation is operational behaviour, which is usually defined by a specific
relation between the input and output of the system. Each operational behaviour
is defined as a sequence of independent operations called system functional
scenario in the formal specification. The independent operations are defined
as processes in the context of SOFL. The test data (or animation data), which
can be automatically generated based on logical expressions derived from the
specification, are used to connect processes for simulating the actual execution
of the system functional scenario.

A process in the SOFL formal specification describes an independent relation
between the input and output under a certain condition and usually presented
as a predicate expression called operation functional scenario. It precisely
defined the condition that should be satisfied by the input and output. A process
can be realized as the basic functional unit in the SOFL specification. Different
processes are integrated together to describe system behaviours. Although the
scenario-based animation clearly presents how the processes are organized, it
does not provide the user with a chance of observing what happens inside a
process. In this paper, we use a sequence of atomic predicates, which can be
derived from the operation functional scenario, to present the behaviour defined
in a specific process. The sequence of the atomic predicates are decided based
on the dependency of variables involved in the process.

In an executable program, the user can understand the function of the pro-
gram by reading the statements one by one. This is because the statements in
the program are organized in an execution order. The latter statements can not
be executed until the previous statements have been executed. The value of vari-
ables in the program are changed by executing related statements. Therefore,
the execution order indicates the dependency relations among the variables. The
atomic predicates in process can not be executed. They only describe conditions
that should be satisfied by the input and output data. There is no order between
predicates to indicate which one should be presented first to user so that the
user can understand what happens inside the process by reading the predicates
sequentially. In order to reorganize the atomic predicates into a meaningful order,
the dependency of variables involved in the process is adopted. We introduce how
to build the dependency graph and how to reorganize the predicates based on
the dependency graph.

The remainder of this paper is organized as fellows. Section 2 describes the
scenario-based animation method as a background. Section 3 introduces the vari-
able dependency in the context of formal specification and compares it with the
variable dependency in the program. Section 4 demonstrates how the atomic
predicates in a process is reorganized based on the dependency graph. Section 5
gives a brief overview of related work. Finally, in Sect. 6 we conclude the paper
and point out future research directions.
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2 Scenario-Based Animation

The scenario-based animation method is first proposed in our previous work [13].
In this section, we briefly introduce the idea of the animation method can give
some definitions used in the rest of the paper.

The animation process includes the following three steps:

1. Deriving all possible system scenarios from the formal specification.
2. Extracting specific operation scenario for each process involved in a selected

system scenario.
3. Generating data based on operation scenarios and “executing” system sce-

nario using the generated data.

The basic unit in the scenario-based animation method is the system func-
tional scenario. As mentioned previously, each system scenario presents a specific
behaviour of the system. In order to observe all the potential behaviours of the
system, we suggest that every possible system functional scenario defined in the
specification should be animated. A system scenario defines a specific kind of
operational behaviour of the system through a sequential executions of opera-
tions. It is usually presented to end users as a pair of input and output, that
is, given an input, the result of a behaviour of the system results in a certain
output. The definition of a system functional scenario is detailed in Definition 1.

Definition 1. A system functional scenario, or system scenario for short,
of a specification is a sequence of operations di[OP1, OP2, . . . , OPn]do, where di
is the set of input variables of the behaviour, do is the set of output variables, and
each OPi(i ∈ {1, 2, . . . , n}) is an operation.

The system scenario di[OP1, OP2, . . . , OPn]do defines a behaviour that trans-
forms input data item di into the output data item do through a sequential
execution of operations OP1, OP2, . . . , OPn. Actually, other data items are used
or produced within the process of executing the entire system scenario but not
being presented. For example, the first operation OP1 in the system scenario
receives the input data item di and produces a data item, which is the input
data item of operation OP2. Operation OP2 cannot be executed without the
output data item of OP1. We call these data items implicit data items. In order
to show the behaviour of system step by step in an animation, the implicit data
items in system scenario should be presented explicitly. When presenting implicit
data items explicitly is necessary, we use [di, OP1, d1, OP2, d2, . . . , dn−1, OPn, do]
to present a system scenario, where d1 indicates the output data item of OP1 or
input data item of OP2.

To animate a specific system scenario, data are used to connect each opera-
tion involved in the scenario. Since the data is restricted by the pre- and post-
conditions of process, the data present a real environment of the behaviour. The
user and experts can observe the behaviour by monitoring the data.

When collecting input and output data for a single process, the operation
functional scenarios of the process have to be extracted first. By operation func-
tional scenario, we mean an predicate expression derived from the pre- and
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Fig. 1. Scenario-based animation of a simple ATM specification

post-condition of a process, which precisely defines the relation of a set of input
and output data. Liu first gives a formal definition of operation functional sce-
nario [12] and we repeat it here to help the reader understand the rest of this
paper.

Definition 2. Let OP (OPiv, OPov)[OPpre, OPpost] denote the formal specifi-
cation of an operation OP , where OPiv is the set of all input variables whose
values are not changed by the operation, OPov is the set of all output variables
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whose values are produced or updated by the operation, and OPpre and OPpost

are the pre and post-condition of operation OP , respectively.

Definition 3. Let OPpost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ . . . ∨ (Cn ∧ Dn), where
each Ci(i ∈ {1, . . . , n}) is a predicate called a “guard condition” that contains
no output variable in OPov and ∀i,j∈{1,...,n} ·i �= j ⇒ Ci ∧ Cj = false ; Di a
“defining condition” that contains at least one output variable in OPov but no
guard condition. Then, a formal specification of an operation can be expressed as
a disjunction (∼OPpre∧C1∧D1)∨(∼OPpre∧C2∧D2)∨. . .∨(∼OPpre∧Cn∧Dn).
A conjunction ∼OPpre ∧Ci ∧Di is called an operation functional scenario,
or operation scenario for short.

The data used to connect processes can be generated by using the algorithm
introduced in [13]. They are generated based on the operation functional scenario
and satisfy the pre- and post-condition of related processes. Therefore, the gen-
erated data can present the intermediate status of the system scenario. The user
can observe the corresponding system behaviour through monitoring the data.
Figure 1 shows the animation of the formal specification defining a simple ATM
system.

3 Variable Dependency

As shown in Fig. 1, the original scenario-based animation method can clearly
presents the relation between different processes, and the data satisfying the pre-
and post-condition provide the user a real environment in which the specification
is running. However, the animation method does not reveal how the input of a
process produces the output.

If a process is implemented into program, user can observe how the input pro-
duces the output by watching the execution of the program. In the execution,
each statement in the program is executed sequentially. Unlike the program, the
specification can not be executed, and there is no sequence between different
predicate expressions included in the operation functional scenario. In order to
present the behaviour inside the process, the predicates in operation scenario are
reorganized to simulate the sequence of statements in the program. The reorga-
nization is based on the dependency of the variables involved in the scenario.

3.1 Comparing with the Variable Dependency in Program

Variable dependency is widely used in program analysis [5–7]. A graph called
Dependence Graph is generated to help the analysts understand the relation
between different variables used in the program and check the data consistency.
Some researchers use program dependence graph to do the analysis and optimiza-
tion [8,9].

There are two differences between the variable dependency in program and
the variable dependency in specification. The first difference is that the variable
at the left side of a assignment is dependent on the variables at the right side
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Fig. 2. A simple program segment

Fig. 3. A simple process specification

of a assignment in the program. Consider the program segment shown in Fig. 2.
Three variables and two statements are included in the program segment, and
the dependency relation between each variable is that “y” is dependent on “x”,
and “z” is dependent on “y”. In the third line of the program, the value of
variable “y” is determined by the value of “x”. The value of “z” is determined
by the value of “y” in the forth line. Note that both “y” and “z” are at the left
side of assignment.

However, the variable dependency relation in specification is different from
the case in the program. Use the process specification in Fig. 3 as an example,
which contains three variables and the pre- and post-condition appears the same
as the two statements in the previous program. The pre-condition indicates that
“x” and “y” are dependent on each other rather than that “y” is dependent
on “x”. This is because the pre-condition is a predicate and only describes the
condition that “x” and “y” should satisfy. There is no difference between “y =
x + 5” and “x = y − 5” in term of the pre-condition. If the value of “x” is
generated first in the data generation process, the value of “y” is based on the
value of “x” and vice versa. Therefore, we can state that before the value of any
variable is generated, the variables in the same predicate are dependent on each
other.

The second difference between the variable dependency in specification and
the variable dependency in program is that the variables in specification may
be involved in loop dependence. Consider the program and specification shown
in Fig. 4 as example. The program at the left side contains three variables “x”,
“y”, and “z”. According to the statements, “y” depends on “x”, “z” depends
on “y”, and “x” depends on “z”. It seems that the three variables are involved
in loop dependence, however, the variable “x” in the third line and the variable
“x” in the fifth line actually represent two different values.
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Fig. 4. Example for loop dependence

In the other hand, the pre-condition of the process shown in the right side
of Fig. 4 indicates that variable “x”, “y”, and “z” are dependent on each other.
As long as the value of any variable is determined, the other two variables will
depend on both this variable and each other, and the variable with determined
value depends on non of other variables.

The two differences between the variable dependency in specification and
program are caused by two reasons: first, the variables at the right side of assign-
ment in the program are actually represent values, however, all the variables in
specification represent undetermined values; second, the statements in program
are executed one by one in a predetermined order and they change the value of
variables, on the contrary, the predicates in the specification only describe the
conditions that should be satisfied by the variables and do not have orders.

3.2 Variable Dependency in Specification

Since the variable dependency in specification is different from the variable
dependency in program, the existing algorithms [5,6] for creating variable depen-
dency in program can not be used here. To derive the variable dependency in
specification, the following two principle must be satisfied:

– The variables in the same predicate must depend on each other.
– At least one output variable depends on input variables.

The derivation process can be roughly separated into two steps: decomposing
operation functional scenario and building dependency graph. Decomposing the
operation functional scenario is to translate the scenario ∼OPpre ∧Ci ∧Di into
an equivalent disjunctive normal form (DNF) with form P1 ∨P2 ∨ . . .∨Pn. A Pi

is a conjunction of atomic predicate expressions, say Q1
i ∧ Q2

i ∧ . . . ∧ Qm
i .

Each conjunction Pi in the DNF defines one possible situation that the oper-
ation functional scenario can be satisfied. For example, the operation functional
scenario of the process shown in Fig. 5 is “(x < 50 ∨ x > 100) ∧ y = x+ 10”. In
the scenario, the disjunction “x < 50∨x > 100” is the pre-condition, “y = x+10”
is the defining condition, and there is no guard condition. The translated DNF
of the scenario is “(x < 50 ∧ y = x + 10) ∨ (x > 100 ∧ y = x + 10)”. There
are two conjunctions in the DNF. Each of them describes a possible combina-
tion of variables that satisfies the scenario. Since each conjunction in DNF is
exclusive, the generated data in the animation can make only one conjunction
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Fig. 5. Example for scenario decomposition

Fig. 6. Example specification for illustrating dependency graph

to be true. In order to present the conjunction in a meaningful manner to the
user, the atomic predicate expressions are reorganized based on the dependency
of variables involved in the conjunction.

For each atomic predicate Qm
i , each variable involved in it corresponds to a

vertex in the dependency graph and there is an edge connecting each vertex. For
example, the operation functional scenario of the specification in Fig. 6 can be
translated to a DNF with nine atomic predicates: “x < 50∧y < 20∧z < 30 ∧ x +
y < 5 ∧ x + y + z < 20 ∧ z + s < 15 ∧ a = x + y ∧ b = a + s ∧ c = a + b”. Each
variable in the predicates correspond to a vertex in the dependency graph and
there is an edge connecting the variables involved in the same predicate. Figure 7
shows the dependency graph of the DNF. The upper side is the dependency of
input variables and the lower side is the output variables.

4 Reorganizing Atomic Predicates in Operation
Functional Scenario

The purpose of reorganizing atomic predicates in operation functional scenario
is to arrange the predicates in a meaningful order so that they can present how
the input of a process produce the output. The program can present the proce-
dure clearly since the statements in the program are executed one by one and the
value of variables are changed and decided after the execution of each statement.
However, the atomic predicates in operation functional scenario do not have
order and the value of variables are only required to satisfy the predicate. The
reorganization of the atomic predicates tries to make the value of the variables
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Fig. 7. Dependency graph of process “Calculate D”

in latter predicates can be decided by the value of variables decided in previous
predicates, so that the user can observe the predicates in an “executionorder”.
By execution order, we mean the relation between the previous predicate and
the next one seems that they are executed one by one.

To reorganize the atomic predicates in an execution order, the variable depen-
dency is adopted. Since the variable dependency graph of program is a tree
structure, the value of lower level variables in the tree can be decided by higher
level variables. The tree structure indicates the procedure that how the input
produces the output. On the contrary, the variable dependency graph of spec-
ification is a graph with loop rather than a tree. This is because the variables
in the same predicate depend on each other, and more than two variables in a
predicate will make loops in the dependency graph. To make the predicates can
be organized in an execution order, the variable dependency graph with loops
should be reformed to a tree structure.

Stage 1. Eliminate the vertex in the variable dependency graph containing only
input variables of the process. The elimination makes the reminder of the graph
be a connected graph and contain minimum number of loops. If the reminder
graph contains loops, eliminate another vertex to make the reminder of the graph
be a connected graph and contain minimum number of loops. The elimination
terminates if the reminder graph is a tree. The the vertices are called “pre-decided
variables”

Note that in Step 1 the dependency graph includes only input variables of the
process, this is because the value of input variables is generated first in the ani-
mation and they decide the value of output variables. To reform the dependency
graph into a tree structure, the loops in the dependency graph have to be elim-
inated. Based on the algorithm in graph theory, the edges that struct loops are
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Fig. 8. Tree structure in dependency graph

usually deleted to eliminate the loops. Since only deleting edges can not indi-
cate which variable should be the root of the true structure, this method is not
appropriate for our reorganization purpose.

For example, the dependency graph in Fig. 7 contains a loop among variable
“x”, “y”, and “z”. If any edge in this loop is deleted, the graph will become a tree
and any of the four variable can be the root of the tree. Based on the analysis
of the process specification in Fig. 6, “x” or “y” should be the root of the tree
so that the tree can be organized in an execution order. However, if the vertex
“x” is eliminated and marked as pre-decided variable, the root of the tree can
be decided based on the following step.

Stage 2. Calculate the number of variables excluding pre-decided variables of
each atomic predicates containing only input variables, where the number called
the freedom degree of predicate. Select the variable in the predicate that con-
tains pre-decided variables and has minimum freedom degree as the root of the
tree structure in the dependency graph. Mark the selected variable as pre-decided
variable.

If the vertex “x” is eliminated in the dependency graph and marked as pre-
decided variable, the predicate containing “x” and has minimum freedom degree
is “x + y < 5”. Based on Step 2, variable “y” should be the root of the tree.
Figure 8 shows the tree structure after vertex “x” is eliminated. The dotted edges
connecting “x” indicate that it is eliminated and the bold border of vertex “y”
indicates that “y” is the root of the tree.

After reorganizing the input variables, the order of output variable should
be decided. Unlike the dependency graph of input variables, there is no need to
eliminate a vertex to break the loop in the dependency graph of output variables.

Stage 3. Calculate the freedom degree of each atomic predicates. Select the vari-
able in the predicate that contains pre-decided variables and has minimum free-
dom degree as the start point to traverse the vertices in dependency graph of
output variables. Mark the selected variable as pre-decided variable.

Stage 4. Recalculate the freedom degree of each atomic predicates after an out-
put variable is marked as pre-decided variable. Select the variable in the predicate
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that contains pre-decided variables and has minimum freedom degree as the start
point to traverse the vertices in dependency graph of output variables. Mark the
selected variable as pre-decided variable. Repeat the selection procedure until all
the output variable has been traversed.

Table 1. Reorganization of the atomic predicates

Step Variable Atomic predicate

1 x (pre-decided) x < 50

2 y y < 20

x+ y < 5

3 z z < 30

x+ y + z < 20

4 s z + s < 15

5 a a = x+ y

6 b b = a+ s

7 c c = a+ b

Table. 1 shows the steps and the final order of the atomic predicate in spec-
ification “Calculate D” in Fig. 6. The steps in the table is following the stages
described previously and the order of the atomic predicates presents the how the
input proceeds to the output.

5 Related Work

Formal specification animation is an effective technique for the communication
between users and developers, however, the scenario-based specification anima-
tion [13] can only present the system behaviour at process level. Liu and Wang
introduced an animation tool called SOFL Animator for SOFL specification ani-
mation [10]. When performing animation, the tool will automatically translate
the SOFL specification into Java program segments, and then use some test
case to execute the program. In order to provide reviewers a graphic presenta-
tion of the animation, SOFL Animator uses Message Sequence Chart (MSC) to
present the simulation of the operational behaviours. Since not all the specifica-
tion can be translated to program, only part of the specification can be presented
in this way.

Muhammand et al. [5] introduced an method for deriving variable depen-
dency in the program. The method includes building a dependency graph. They
used the dependency relations to check the program and found that checking
program using variable dependency is more effective that checking all the vari-
ables in the program. In [8], Paul Anderson et al. introduced their tool called
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CodeSurfer. This tool can automatically derive the program dependency graph
and support the user to inspect the program based on the dependency graph.
In this paper, the dependency graph is also used but for different purpose. It is
used to clearly present the operation functional scenario of the process so that
the use can understand what happens inside the process.

6 Conclusions and Future Work

In this paper, we describe how the use the variable dependency graph to present
the atomic predicates of the process in a meaningful order. Since the original
scenario-based animation method does not provide a chance for user to observe
the behaviour of a specific process, presenting the predicates of a process in an
execution order can let the user understand how the input variables proceeds to
the output. We distinguish the difference between the variable dependency in for-
mal specification and the variable dependency in program. We also demonstrate
how to manipulate the dependency graph so that it can be used to reorganize
the atomic predicates.

In the future, one of our major focus is to add a function to our existing tool
to support the presentation of the sequence of the atomic predicates. It will be an
additional component of the scenario-based animation tool. Our another focus
is to find a way make the data generation algorithm in the original animation
method more effective and efficient.
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Abstract. Compact and easy-to-learn educational material of core ideas
in formal methods is prepared for students in software engineering courses.
Although mathematical logic is usually employed to explore the basic
ideas precisely and concisely, some students with limited background are
not able to follow the contents. We adapt Alloy to sugar wrap logic, which
makes it possible for students to learn the core ideas by experimenting with
the tool. The proposed material covers model-oriented specification nota-
tions and SAT-based automatic formal verification methods. These are
important subfields of formal methods in view of both theory and prac-
tice for software engineering courses.

1 Introduction

Industry needs software engineers familiar with formal methods as these are
new technologies to raise reliability levels of software-intensive systems. Current
software engineering courses, however, do not allocate enough time for teaching
formal methods since the courses cover lots of topics in a limited amount of time.
Compact and easy-to-learn educational material is needed.

The conventional sources of formal methods are divided into two cases;
(a) strong indications of mathematical logic (cf. [6,13]), or (b) in-depth explana-
tions of a particular method (cf. [1,3,16,28]). The first approach is quite orthodox
in presenting the basic ideas of formal methods, and it requires adequate training
in mathematical logic before understanding the contents. The second approach
is good for courses whose focus is to provide technical details of one particular
notation. “Learning by Doing” style material, reported successful [19], is also
fallen in this category.

Academic software engineering (SE) courses, however, are to present the sub-
ject matter as a general principle, focusing neither on mathematical logic too
much, nor on a specific notation. These SE courses provide students with scien-
tific knowledge on software development. It is considered to follow the statement
by Shaw [25]; software engineering is the branch of computer science, in which
scientific knowledge is preferentially applied. Formal methods are such knowl-
edge stocks on scientific methods of software development [10].
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Although formal methods cover a wide variety of topics, they can be divided
into several subfields; model-oriented specifications, property-oriented specifica-
tions, or, algorithmic verification methods such as logic model-checking to name
a few. Model-oriented specifications, in particular, are adapted in various formal
notations of both historical and practical importance, e.g. VDM [16], SOFL [20],
Z [26], B-method [1], Event-B [3], and Alloy [15]. Their syntax, semantics and
methodological aspects are divergent, but these notations share a set of common
core concepts.

This paper introduces the educational material on model-oriented specifica-
tion notations and automated formal verification methods. Instead of relying on
mathematical logic in its bare form, the material employs Alloy [15] to encode,
not all, but most concepts and allow quick feedback with the automatic analysis
tool. The idea is similar to the material described in [23], which employs Maude
for teaching property-oriented notations and term rewriting systems (TRS). The
coverage of the topics is complementary to what this paper mentions.

This paper structured as follows; Sect. 2 presents a background to develop
the proposed educational material, which is followed by a series of examples
adapted from the material in Sects. 3–5. Section 6 reports our experience in using
the material in courses at graduate schools. Section 7 concludes the paper with
discussion on the future use of the material.

2 Context

As the demand is increased in industry, academic software engineering courses
are expected to offer curricula including formal methods. Some successful courses
focus on a specific formal notation, some of which adapt “Leaning by Doing”
style of teaching [19]. Students in software engineering, however, are expected
to have broad knowledge on the subject, formal methods. They, when work in
software industry, may use formal notations different from the one taught at
schools. Questions arise here what common core ideas are in formal methods
and how these are presented to students.

Formal methods have a long history starting in 1970’s, and a lot of specifica-
tion notations have been proposed since then. They are sometimes categorized
according to the basic concepts they share [27]; e.g. model-oriented or property-
oriented. Such common concepts are what to be taught in a disciplined manner in
academic software engineering courses. For example, some of property-oriented
notations share the notion of algebraic specifications and term-rewriting [23].

The model-oriented approach is of practical importance, adapted in various
formal notations such as VDM, SOFL, Z, B-method, and Event-B. They have
successful applications to industrial software development. Their syntax, seman-
tics and methodological aspects are divergent. These notations share a set of
core concepts, the state-based specification style and notion of refinement.

In conventional courses focusing on a particular notation, students are less
motivated to understand the common core ideas than the details with the syn-
tax of the notation and features of its tool. Semantics are usually explained



Using Alloy in Introductory Courses of Formal Methods 99

using mathematical logic, but understanding common ideas from them is not
easy. Students are expected to be familiar with various mathematical concepts;
LPF for VDM, Zermelo set theory for Z, or typed set theory for B-method and
Event-B. These differences are important from the viewpoints of the mathemat-
ical foundation of the formal notations. However, software engineering students
usually are more concerned with software designs than mathematical logic. There
is a gap between the conventional ways of mathematical presentations and the
common core ideas that software engineering students should know.

This paper introduces an alternative approach to teaching the common core
ideas in model-oriented specification notations. The material adapts the notion
of lightweight formal methods (LFM) [14], which makes the tool-assisted learning
possible [18]. It can be said “teaching heavyweight formal methods (model-oriented
specification notations) with a lightweight formal notation (Alloy).”

We adapted Alloy because of the three main reasons; (a) the logic behind
Alloy, namely first-order relational logic with a built-in transitive closure oper-
ator, is adequate to represent most concepts in the subject matter, (b) Alloy
adapts its syntax familiar to software engineers and thus mathematical logic is
sugared-wrapped, and (c) descriptions in Alloy can be analyzed automatically,
which provides quick feedback to the students.

In addition to the core concepts of model-oriented notations, the educational
material includes topics relating to the automatic verification methods. Since
the advent of the bounded model-checking (BMC) to use Boolean satisfiability
(SAT) [8], there has been much progress on these methods. Therefore, under-
standing the basis of SAT-based formal verification is important for software
engineering students who may have lots of occasions to use such related tools.
We present verification problems in the Alloy notation. Alloy is considered a high-
level language to encode SAT problems since the Alloy tool uses SAT solvers as
its backend.

Note that the topics on the model-based notations and on the SAT-based ver-
ification are mostly independent. When the material is used in classes at school,
the instructors may choose appropriate topics from the material by considering
the amount of time allocated for the subject matter in their courses.

Unfortunately, the analysis with Alloy is not complete because of the bounded
analysis to achieve full automation. There are certainly formulas not properly
handled; such cases result in spurious counterexamples for the case of checking
assertions or missing instances for the case of generating witnesses (Chap. 5
in [15]). We, however, decided to use Alloy and not interactive theorem-provers,
although the latter fully covers first-order logic. Our conjecture is that automated
analysis is preferable for software engineering students who are not familiar
with proof tactics that requires comprehensive knowledge on mathematical logic.
Student may further study mathematical logic for formal methods in detail once
they get to know such core concepts. Therefore, the Alloy-based educational
material is developed for the introductory courses.
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3 A Brief Introduction of Alloy

The educational material starts with a brief introduction of Alloy [15]. This part
uses a simple example of Composite pattern, which is one of the well-known
design patterns of object-oriented programs [11]. Since software engineering stu-
dents are supposed to be familiar with the design patterns, the example is suit-
able for introducing Alloy.

3.1 Specification of Composite Pattern

Figure 1 illustrates a class diagram to show the structural aspects of the Com-
posite pattern. In Alloy snippets, the structural elements, such as Component,
are defined as sig (signature). Component, an abstract class, is designated by
abstract sig. It has a named field parent whose type is Component, and
is accompanied with a multiplicity keyword lone to stand for “zero or one.”
Component has two concrete classes, Composite and Leaf. The sig Composite
has a named field children to refer to a set of Component instances. The links
fact asserts that children and parent are related. This fact must always be
satisfied being applicable to all the instances.

CompositeLeaf

*Component

Fig. 1. Composite pattern

abstract sig Component { parent : lone Component }

sig Composite extends Component { children : set Component }

sig Leaf extends Component {}

fact links {

all c : Composite, x : Component | x in c.children iff x.parent = c

}

The Composite pattern represents tree structures. There is a root Composite,
namely Root, not to have any parent. Root is a named instance, and is defined
in a manner similar to a singleton class in object-oriented programming style.

one sig Root extends Composite { no parent }

Root is a singleton (one sig) and inherits from Composite but has no parent.
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3.2 Analysis with Scope-Bounded Search

Alloy provides two analysis commands, run and check. The run command allows
us to enumerate configurations of instances to satisfy both the Alloy descriptions
and the chosen predicate pred. We are now interested in obtaining a rooted tree,
and thus define a predicate show to mention that all the instances can be traced
from the sole Root. The operator *children denotes the reflexive-transitive
closure of children relation.

pred show () { Component in Root.*children }

run show for <N>

The run command has an argument, <N> in the above example, to specify the
scope of the analysis. Alloy searches for satisfiable configurations in the scope. It
misses configurations outside the bound, and thus the search is not complete. For
this example, Alloy tool returns appropriate witness instances in the specified
scope of, for example, 3 or 5.

The check command of Alloy is employed to see whether a specified assertion
is valid or not. The assertion acyclic below mentions that there is no Composite
to be contained in a transitive closure of children from itself. In particular, we
embed the predicate show above in the fact construct so that the check is
conducted for rooted trees only.

fact { show[] }

assert acyclic { no c : Composite | c in c.^children }

check acyclic for <N>

The restriction due to the bounded search is also applicable to the check com-
mand, but this assertion can be shown satisfied in appropriate scopes.

4 Model-Oriented Specification Notations

This section introduces core ideas common to various model-oriented notations.
It includes example Alloy snippets for illustrating the contents of the material.

4.1 State-Based Specification Style

Model-oriented notations employ state-based specification style for operations.
The core ideas of (a) pre- and post-conditions and (b) invariants, are common to
VDM, B-method, Event-B, and Z, but their roles in the specification descriptions
are slightly different in each notation. The differences are concretely explained
with Alloy snippets.

We use here BirthdayBook example [26] to show descriptions in each nota-
tion. All are presented in their original syntax, and their intended meanings
are explained by translating them to Alloy. Note that the Alloy snippets, in
some cases, are not exactly same as the original. For example, Alloy does not
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have partial mappings while VDM has. Furthermore, the Alloy snippets ignore
the fact that VDM is based on three-valued logic or Kleene logic.

VDM Specification consists of type declarations and state definition [16], and
VDM-like Alloy versions of AddBirthday are here. The first version is almost
a direct translation from the VDM counterpart. The function dom is defined in
Alloy utility module util/relation.

sig Name, Date {} // token types in VDM

sig BirthdayBook { // state in VDM

known : set Name,

birthday : Name -> Date // no partial mapping in Alloy

}

pred invBB (b : BirthdayBook) { b.known = dom[b.birthday] }

The type of birthday is not appropriate as an Alloy description, because Alloy
does not have partial mappings while VDM has. If we use this description for
the analysis, some unexpected results will happen. The next version simulates
the partiality in that the domain of birthday refers to a subset of Name. We
introduced an auxiliary named field names to denote the domain of birthday.

sig Name, Date {}

sig BirthdayBook {

known : set Name,

names : set Name, // simulating the partiality

birthday : names -> Date // using total mappings in Alloy

}

pred invBB (b : BirthdayBook) { b.known = dom[b.birthday] }

The VDM state definition is accompanied with an invariant invBB, which men-
tions that the domain of birthday is equal to known.

In VDM, an operation consists of pre- and post-conditions. Below, two Alloy
predicates are defined. Both birthday and known are updated in the post-
conditions (postAddBB). We follow a convention that the values in the post-
state are referenced by an identifier with ’ such as b’. The postAddBB takes two
arguments of BirthdayBook, and b and b’ refer to its instance in the pre- and
post-state respectively.

pred preAddBB (b : BirthdayBook, n : Name) { not(n in b.known) }

pred postAddBB (b,b’ : BirthdayBook, n : Name, d : Date)

{ b’.birthday = b.birthday ++ (n -> d) && b’.known = b.known + n }

Note that, in VDM, the specifier is responsible for the operation to satisfy
the invariant. It, however, does not show explicitly the role of the invariant.
Proof obligation, explained in Sect. 4.2, is the basis of the formal checking to see
whether the operation specifications satisfy the invariant.

Invariant in Z, on the other hand, is a well-formedness condition that all the
valid models should satisfy, and is a part of the BirthdayBook specification. Its
role is explained in terms of the following Alloy snippets.
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fact { all b : BirthdayBook | invBB[b] }

pred AddBB_Z (b,b’ : BirthdayBook, n : Name, d : Date)

{ not(n in b.known) && b’.birthday = b.birthday ++ (n -> d) }

All the valid BirthdayBook instances satisfy invBB, which is specified with the
fact above. The invariant in Z is regarded as an auxiliary condition added
implicitly to the user-defined functional specification. The above Alloy snippets
show that the named field known need not be updated because the invariant is
satisfied for all BirthdayBook instances, and thus the changes in the birthday,
described explicitly in AddBB Z, are propagated to the known.

4.2 Proof Obligations

Proof obligation (PO) is a logic formula, defined in each specification notation,
used to ensure the consistency of the descriptions. PO plays an important role
in model-oriented notations since it provides correctness criteria of the declara-
tive specifications. Although the state-based specification style is common, PO
formula is different in each notation. We present some examples below.

The satisfiability PO of VDM [16] looks as follows if it is written in Alloy.
Invariant in VDM is a required condition that the operation (post-conditions)
should satisfy. The snippets show that the invariant is considered an assumption
on the pre-state; invBB[b] comes in the antecedent of the formula.

assert VDMsatsfiability {

all b : BirthdayBook, n : Name, d : Date | some b’ : BirthdayBook |

preAddBB[b,n] && invBB[b] => postAddBB[b,b’,n,d] && invBB[b’]

}

Unfortunately, in Alloy, the check command returns counterexamples while the
assertion can be ensured valid by inspection. These are actually spurious coun-
terexamples due to the bounded search of Alloy.

The proof obligation in B-method takes a different form. B-method adapts
weakest precondition semantics [1], and requires predicate transformers to repre-
sent PO. When Alloy pred construct represents B-method predicate, the predi-
cate transformer is higher-order and Alloy cannot represent it. Alternatively, we
construct PO manually by following the B-method semantic rules.

assert Bfeasibility {

all b : BirthdayBook, n : Name, d : Date |

invBB[b] && preAddBB[b,n] => invBB[mkBB[b.known+n,b.birthday++(n->d)]]

}

fun mkBB (x : set Name, y : Name->Date) : BirthdayBook {

{ b : BirthdayBook | b.known = x && b.birthday = y }

}

The check command ensures that the assertion is valid. No spurious counterex-
ample was generated.
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The PO in VDM is close to what the human engineers imagine from the state-
based specification styles; it ensures the existence of a post-state for all the valid
pre-states. Contrarily, constructing PO in B-method requires a pre-processing or
symboic execution based on the weakest pre-condition semantics. The resultant
formula, using ∀-quantifier only, is simpler than the PO formula of VDM that
has ∃-quantifier. Students may intuitively understand such differences by using
Alloy to check those formulas.

4.3 Refinement

Refinement is a concept that software engineering students are not familiar
with. Although it is sometimes explained in relation to an intuitive stepwise
software development method, the notion of refinement is more than that. Fur-
thermore, the correctness of refinement is ensured to discharge relevant proof
obligations (PO). When using tools such as RODIN, for Event-B, these logical
formulas are generated and proved automatically1. Although such an automa-
tion is inevitable in view of tool users, the educational material must explain
the core ideas explicitly, in particular the rational of PO formulas in each formal
notation compactly and precisely.

The educational material sees the refinement from two viewpoints. The first is
concerned with the role of refinement in the correct-by-construction (CxC) soft-
ware development. It discusses the methodological aspects of refinement, and
includes the classical notion of the stepwise development method. The second
view looks at the refinement from the simulation relations, a mathematical basis
of rigorous semantics and proof obligations. Although there are several simu-
lation relationships from mathematical viewpoints, each specification notation,
other than Z or Alloy, has its own built-in refinement relationship.

Those students, in courses to teach a particular notation other than Z or
Alloy, may lose a chance to know that there are several variations in the notion
of refinement. Although such variations might be considered an advanced topic
or too detailed, these are so important that the differences should be taught
in the introductory courses on formal methods. In Z or Alloy, which does not
provide any built-in refinement PO, we have to write down formulas to express
PO for refinement checking by ourselves. Knowing the variations is inevitable
to conduct refinement checking. As a demonstration, the educational material
contains the Alloy snippets for checking the refinement of a simple BirthdayBook
example (Sect. 1.5 in [26]).

The methodological views on the refinement are important before going
into the technical details. Refinement in model-oriented notations historically
follows the Hoare-style data refinement [12]. An initial specification is refined
towards concrete, executable programming language constructs. It is called data
reification in VDM [16] or vertical refinement in general. An alternative style of
usage, the horizontal refinement or superposition refinement [4], is possible in
Event-B [3]. We can construct descriptions by adding new features on the existing

1 We switch to the interactive proof when the automatic prover fails.
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ones, which allows an incremental style of building specifications. It is particu-
larly useful to construct requirements in a CxC way.

The superposition refinement requires the notation, Event-B, to adapt guard
or enabling conditions in place of preconditions as in VDM. In vertical refine-
ment, the precondition of the concrete operation is weaker than the abstract
one. Oppositely, the guard condition of the concrete event is stronger than the
abstract one. These differences manifest themselves in proof obligations of each
specification notation that has built-in refinement PO. Such technical differ-
ences particularly need to understand when we study B-method and Event-B,
two notations in the same family.

OP_ABS

A A

OP_CON

Fig. 2. Forward refinement

Mathematical notion of the refinement is defined in terms of simulation rela-
tionship between the abstract operation (or event) and concrete one. Although
two simulation rules, forward and backward, are formulated [12], the notations
such as VDM, B, and Event-B, adapt the forward simulation rule only (Fig. 2).
The Alloy snippets, which follow Bolton’s approach [7], help students understand
the difference of two simulation relations. Basically, the Alloy snippets are con-
crete description of forward and backward simulation rules, which is sometimes
informally explained in terms of diagrams such as Fig. 2.

Note that it should be pointed out here that two rules do not come from
theoretical interests but are important in view of practice. Both rules are sound,
but neither is complete [12]. Students must know in what situation the forward
rule is not applicable although the refinement is intentionally correct. The educa-
tional material includes Alloy snippets of Phoenix-Apollo Theaters problem [28]
to explain how the two simulation rules are applied to show the correctness of
refinement. When checking if Apollo is a refinement of Phoenix, the forward rule
is not applicable, but the backward rule is effective.

5 SAT-Based Formal Verification

The educational material contains (a) state-transition diagram and bounded
model-checking (BMC), (b) software model-checking based on the BMC, and
(c) automated test case generation for checking programs. These are independent
of model-oriented specification notation, but are important topics in software
engineering courses.
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5.1 Bounded Model-Checking

Logic model-checking is now matured enough to be used in industry. Some text-
books (cf. [13]) also include the topic. Among various model checking algorithms,
a bounded model-checking (BMC) method encodes transition relations as clauses
in propositional logic and employs SAT solver to show the validity. BMC is some-
times superior to other model-checking algorithms in view of scalability to find
counterexamples.

00

01

11

10

S0

S1

S3

S2

Fig. 3. Two bit counter

In the material, a simple historical example, 2-bit counter (Fig. 3) [8], illus-
trates the basic idea, which is followed by a bounded model-checking method
of general Linear Temporal Logic (LTL) formulas. Here are the Alloy snippets
for the 2-bit counter problem. Bit denotes values stored in each state (State).
For example, the state S1 has value of 01 in Fig. 3, which is represented in the
snippets as S1.value = One− > Zero.

abstract sig Bit {}

one sig Zero, One extends Bit {}

abstract sig State { value : Bit -> Bit }

one sig S0, S1, S2, S3 extends State {}

fact {

S0.value = Zero->Zero && S1.value = One->Zero

&& S2.value = Zero->One && S3.value = One->One

}

The transition relations are kept in Trans. For example, the transition from S0
to S1 is represented as S0− >S1.

pred Init (s: State) { s = S0 }

one sig Trans { t : State -> State }

pred T (s,s’ : State) { s->s’ in Trans.t }

fact { Trans.t = S0->S1 + S1->S2 + S2->S3 + S3->S0 }

We here consider a safety property, �¬(One−>One), which denotes that the
value of the counter is always other than One−>One. BMC is a checking method
to see if a formula of the form System∧¬Property, a conjunction of System
and a negation of Property, is valid. If satisfied, then the Property is violated
and the obtained assignments constitute a counterexample. For the case of the
2-bit counter, because ¬(�¬(One−>One)) = �(One−>One), the check is to see
if there is some state s to satisfy P[s]; the predicate P[s] is defined as below.
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pred P (x : State) { x.value = One->One }

pred BMC (x1,x2,x3,s4 : State) {

Init[x1] && T[x1,x2] && T[x2,x3] && T[x3,x4] // System

&& (P[x1] || P[x2] || P[x3] || P[x4]) // negation of Property

}

run BMC for 4

The above Alloy command with the scope bound 4 returns a counterexample
while it misses the violation for all the transition sequences with the length ≤3.
The tool experiment helps students understand how the search bound is sensitive
to the BMC results.

5.2 Other SAT Applications

As discussed above, bounded model-checking is itself an interesting subject and
is a typical example of applying SAT technology to checking software artifacts [24].
The idea is adapted in software model-checkers, which works on source program
codes of C or Java. Such an SBMC tool2 encodes potential execution paths of a
program in logic formula. Furthermore, in automatic test case generation,
specification-based testing (SBT) method [9] employs pre- and post-conditions,
or design by contract (DbC) of procedure.

BMC, SBMC, and SBT all make use of satisfiability checking of logic for-
mula. The differences are what information is encoded; transition relations of
an automaton for BMC, potential execution paths of a program for SMBC, and
DbC of an operation for SBT. Students can experiment with the Alloy tool to
learn that satisfiability checking is a common basis.

Last, a modern way of using model-checkers often relies on abstraction so as
to make the state space to be of adequate size. It is called abstraction-aided ver-
ification (AAV) to make it clear the importance of abstraction. AAV is based on
a method to obtain an abstract transition system from a given concrete system.
Calculating abstract transition relation is basically a satisfiability checking and
thus the problem is presented in the Alloy notation; a satisfied relation between
two abstract states becomes a transition between these. In the educational mate-
rial, we borrow the file transfer example from the Event-B Book (Chap. 4 in [3]).
With AAV, we can show the correctness of the file transfer protocol for files with
any length of n. Without abstraction, we only check the protocol for a specified
concrete value for n such as 5 or 10.

AAV is an established method, but the information can be found, today, in
research papers only. The Alloy-based material may de-mystify the AAV method
so that the students may understand there is no magic in them. The students
also understand why AAV tools sometimes consume lots of computing power;
the satisfiability checker is repetitively called to calculate abstract transition
relations in order to construct an abstract transition system.

2 hereafter called SBMC to stand for software bounded-model checker.
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6 Course Experience

The educational material was publicly available in a form of a textbook [22]
(about 200 pages), which is supposed to be used in a one-semester course. Course
is offered at The Graduate University for Advanced Studies (SOKENDAI) every
other year from 2009, and at Tokyo Institute of Technology (Tokyo Tech.) every
year from 2012.

At SOKENDAI, the course students have their jobs in industry to be part-
time working for their degrees in software engineering. Some of them had some
prior experience in one or a few formal notations, A particular student working
in industry had been involved in an industry-academia consortium to conduct
feasibility studies of formal methods (e.g. Event-B) with “Learning by Doing”
style activities. He commented that the educational material motivated engineers
to learn general ideas of formal methods if they already had experience in at least
one formal notation. Software engineers in industry are so busy that they do not
have enough time to identify such common cores from a lot of existing material.

At Tokyo Tech., a software engineering course focusing on formal methods is
offered as a part of the enPiT program3 supported by MEXT4. It is designed for
students who plan to find their careers in software industry. Most of the students
is interested more in programming and using advanced software tools than in
paper and pencil games (mathematical logic) or drawing diagrams (UML). They
do not find any difficulty in using Alloy although the course allocates only two
lectures, total of three hours, for teaching the basics of Alloy. We found a side
effect of the material in that it turns out to be a good course of Learning by
Doing for Alloy, which we did not intended. The material contains many Alloy
examples of functional specifications and the proof obligations can be understood
as a set of typical formulas for the correctness conditions. These can serve as
a good reference for students when they use Alloy for describing and checking
their own software design afterwards.

Last, it is not easy to evaluate the effectiveness of the educational material in
an objective manner. Ideally, it is desirable to run two courses simultaneously and
make comparisons, in which one course uses the Alloy-based proposed material
and the other may follow conventional way of teaching, probably more on the
mathematical logic. We unfortunately do not have such resources up to now.

7 Discussions and Conclusion

This paper described tool-assisted teaching of formal methods in software engi-
neering courses. It provides an alternative way of teaching; instead of relying on
mathematical logic in its bare form, we used Alloy to encode the core concepts
and allowed quick feedback with the automatic analysis tool. Our conjecture is
that automated analysis is preferable for software engineering students who are

3 Education Network for Practical Information Technologies, http://www.enpit.jp.
4 Ministry of Education, Cultural, Sports, Science and Technology, Japan.

http://www.enpit.jp
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not familiar with proof tactics that requires comprehensive knowledge on math-
ematical logic. Note that we do not say that mathematical logic is not needed
anymore. Student may start studying mathematical logic in detail once they get
to know such core concepts. In a sense, the Alloy-based educational material is
expected to motivate them to study mathematical logic.

As pointed out in [15,18], tool-assisted learning helps students understand
abstract concepts in software using analyzable concrete descriptions, thereby
enhance their ability of abstractions. The educational material proposed in this
paper shares the philosophy behind some textbooks in that tool-assisted learn-
ing was effective to show abstract concepts in a concise manner. There are,
indeed, such textbooks, for example, in concurrent and distributed program-
ming [5,21]. The topics are presented with concrete descriptions that are ana-
lyzable by model-checkers. This view is also shared with the material to use
Maude for teaching property-oriented notations [23].

The proposed material focuses on learning the common core concepts, and
does not provide further aspects relating to formal methods. Apparently, it is
important to have some modeling experience with formal methods, which may
be the focus of the Learning by Doing approach. These two approaches are, in
our view, complementary. Therefore, we may suggest a combining course where
the Learning by Doing method using a particular formal notation is augmented
with the material discussed in this paper. We actually prepare such a course in
which Event-B/RODIN is used for the Learning by Doing part. As mentioned
in Sect. 4.3, RODIN tool encapsulates technical details of the refinement proof
obligations. It is instructive to use the material discussed in this paper for stu-
dents to learn the notion of refinement in reasonably details.

As we see, in Western countries, the formal methods are not just theoretical
computer science, but have strong connections with practices (cf. [2,14,17]). On
the other hand, in non-Western countries, formal methods are imports and often
considered too theoretical. The motivation of the educational material can be
said to de-mystify the formal methods. We hope that the material would help
organizing similar courses in schools, not only in Japan, but also in non-Western
countries. The contents are publicly available as [22], and sharing the teaching
experience with us is really appreciated.
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Abstract. Ensuring correspondence is very important and useful in
designing security protocols. Previously, many research works focus on
the verification of former-correspondence which means “if the protocol
executes some event, then it must have executed some other events
before”. However, in some security protocols, it is also important to
ensure the engagement of some events after an event happens. In this
work, we propose a new property called later-correspondence, which is
very useful for e-commerce protocols. The applied π-calculus is extended
to specify the protocols. A simplified intruder model is proposed for mod-
eling the intruder capabilities which includes the malicious behaviors of
both protocol agents and intruders. The later-correspondence is verified
based on the Labeled Transition System (LTS) using model checking.
In order to avoid the states explosion, we limit the number of proto-
col sessions and reduce most of the useless messages from the intruder
knowledge with message pattern filtering. We implement our method
in a model checker PAT [23] and the verification results show that our
method can verify later-correspondence in an effective way.

1 Introduction

With the development of network technology, Internet is heavily involved in our
life and work. Meanwhile, security protocols play a very important role in the
Internet security. However, the design of protocols is error-prone and it is hard to
find security flaws with the traditional testing methods [24]. Analyzing protocol
properties through formal methods thus becomes an effective approach. In recent
years, there has been more and more research works focusing on formal verifi-
cation for security protocols, such as belief logic [1], theorem proving [6], strand
space [4,5] and model checking [2,3]. Some automatic verification tools have
been developed, for example Athena [7], ProVerif [8], Murphi [12], AVISPA [9]
c© Springer International Publishing Switzerland 2015
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2014, LNCS 8979, pp. 111–126, 2015.
DOI: 10.1007/978-3-319-17404-4 8
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and NRL [10] etc. These tools can verify security protocols efficiently regarding
to secrecy and authentication properties.

As the basic property of security protocol, authentication has been studied
extensively. One effective method is to use correspondence [14,18,19,22,24,25].
Woo and Lam firstly defined the correspondence assertion [25] to describe cor-
respondence property. The general form of correspondence is like that: “if the
protocol executes some event, then it must have executed some other events
before” [24] which we called former-correspondence. The form of the later-
correspondence is “if a protocol executed some events then it will execute some
other events later”. Now there is a lot of research about the verification of former-
correspondence while less research on the later-correspondence. Not only later-
correspondence can be used to verify authentication of security protocols, but
also can be used to verify that the messages of the protocol have been sent and
received in the expected order [24].

Recently, It is important to verify later-correspondence. For example, in some
electronic commerce protocols, it is necessary to guarantee the property “if the
purchaser has made a payment, then the seller will send goods later”. This is a
typical example of later-correspondence, but it can’t be verified through former-
correspondence. The flaw is like that because of some malicious attacks, the
event e2 will not execute after executing the first event e1. The kind of flaw is
easy to be found through verification of later-correspondence and the designers
can revise the protocol on time.

Comparison with Former-Correspondence. Suppose the valid run of one
protocol is like . . . e1 . . . e2 . . . A process P satisfies later-correspondence if and
only if for every run of protocol, there is an event e2 happens after event e1 hap-
pens. As mentioned above, former-correspondence is the general correspondence:
“if the protocol executes some event, then it must have executed some other
events before”. The later-correspondence focus on whether there will be one event
execute after the specific event rather than executing before the event. The later-
correspondence can be verified through opposite of the former-correspondence
in some situations, but it can’t be replaced in some other situations.

To verify the later-correspondence: after e1 executes, there will be e2 to
execute. We will analysis whether it can be transformed into the former-
correspondence: before e2 executes, there has been e1 executed. The traces of
the protocol running have many cases and the result is listed in Table 1.

Table 1. Analysis of different cases

Former-correspondence result Later-correspondence result

. . . e1. . . e2. . . True True

. . . e1. . . True False

. . . e2. . . False True

. . . True True

. . . e2 . . . e1. . . False False
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The result shows that later-correspondence cannot be replaced by former-
correspondence entirely. So the research about later-correspondence is significant
and necessary. But there are some particular problems in verifying later-
correspondence. For example, some exceptions that an attacker blocks all commu-
nications or the hardware is broken after the occurrence of event e1 could prevent
e2 from occurring. This dissatisfies the later-correspondence. In the paper, we pay
more attention to find the logic flaws in the design of the protocols. So some con-
straints are raised to avoid these invalid attacks. In the paper, we assume the hard-
ware and network are always healthy and ignore the exceptions. In the attacker
model, we restrict that the attackers cannot just block the messages. But they
can replace the correct messages, which means the attacker can block the correct
message and send another one.

This paper gives a formal definition of later-correspondence and proposes a
method for verifying later-correspondence based on model checking technology.
The rest of the paper is organized as follows. In Sect. 2, we discuss the related
work. We present our main works which include syntax, operational semantics
and verification in Sect. 3. In Sect. 4, we analysis the experimental results. Finally
we draw a conclusion and give a brief introduction about future work in Sect. 5.

2 Related Works

The correspondence and authentication have been extensively studied. Using
CSP and automatic tool FDR, Lowe modeled and analyzed authentication of
Needham-Schroeder public key protocol [13] and found a flaw [2]. In paper [3], we
also used CSP and FDR to model BGP protocol and verify the correspondence.
However, CSP has a limited description capacity. When using CSP/FDR to
verify protocols, a manual intruder model is needed. The method in this paper
is based on the applied π-calculus [27] which can support more cryptographic
primitives (including encryption,decryption and hash functions). Besides this,
we also put forward an intruder model which can be automatically constructed.

Gordon and Jeffrey developed Cryptyc which can be used to describe fresh
values and keys. Based on type system, Cryptyc system also can verify authen-
tication of protocols [14–16]. In [17], based on Gordons theory Bugliesi drawn
on a translation of well-typed -spi protocols into valid Cryptyc protocols. Then
Bugliesi developed a type system for authentication protocols which need to be
built upon a tagging scheme [18]. Although Cryptyc is mainly applied in shared-
key protocols and public-key protocols. It mainly supports the basic encryption
and decryption cryptographic primitives. With constructors and destructors, our
method can model more cryptographic primitives, such as hash, signature etc.

In paper [19], Cremers proposed a general trace model to verify various for-
mal definitions of authentications. Since this model is abstract, it does not suf-
fice to prove protocols (in) correct. Due to the limitation of specifying security
properties with LTL, Corin extended the LTL as PS-LTL for specifying secu-
rity properties, and present a decision procedure to check a fragment of PS-LTL
against symbolic traces for limited session protocols. In addition, they demon-
strated the procedure was sound and complete [20]. The later-correspondence
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can be specified though always and eventually in LTL seemingly, but LTL has
some limitations. The LTL is built up from propositional variables generally, but
the later-correspondence is based on event which may contain arguments. This
arguments will be instantiated as actual values in different runs. Another limi-
tation is LTL can not specify the relationship about the number of occurrences
of event. For example, one property like that the number of occurrences of e1 is
greater than, or equal to,the number of occurrences of e2. Similar to the former-
correspondence in Proverif, we extend it and formalize the later-correspondence
in the paper.

Based on Athena and Scyther, Schmidt designed a verification tool Tamarin
which models security protocols as multiset rewrite systems and describes proper-
ties as first-order logic formulas. Besides, they designed a novel constraint-solving
algorithm to verify properties for unlimited session protocols [21]. Luu has devel-
oped a protocol verification tool SEVE in PAT (Process Analysis Toolkit) model
checker. The verifier can also automatically build intruder model. It can verify
secrecy, authentication, anonymity and receipt freeness through model checking
technology [22]. However, the intruder model constructed by SEVE is simple and
has low capacity. We also do model checking in the trace model which is similar
with SEVE. The difference is that we extended the applied π-calculus [27] and our
intruder model is more effective.

Blanchet developed the protocol verifier ProVerif [8] and added event oper-
ator and destructor in applied π-calculus [27]. ProVerif can verify the corre-
spondence for security protocols automatically [24]. Whereas, it can only verify
former-correspondence, but cannot be used to verify later-correspondence. On
the basic of ProVerif, we define the later-correspondence and verify it in the
trace model. ProVerif has been proven very effective in terms of security proto-
col verification. Based on the input language of ProVerif and we implemented the
automatic tool SPChecker in PAT. Our method can verify later-correspondence
effectively.

3 Modeling and Verification for Security Protocol

Figure 1 shows the method for modeling the protocols and the verification of
later-correspondence. The protocols are formalized with the extended π-calculus
[27] of ProVerif [8] and they are processed by the compiler. The intruder knowl-
edge generator will construct the messages of intruder automaticly. With the
intruder knowledge the π-calculus process can be transformed into LTS model
based on the operational semantics. Then the later-correspondence can be ver-
ified though the on-the-fly refinement checking algorithm. If it finds an attack,
one counter-example will be generated. The subsections will introduce every part
in Fig. 1.

3.1 Syntax

Figure 2 gives the syntax of the terms and processes, most of them are based on
π-calculus [27]. We only introduce the part which is extended by ProVerif [24].
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Fig. 1. The architecture

ProVerif has extended the applied π-calculus with destructor application and
event. The destructor application let x = g (M1, . . . , Ml) in P else Q represents
if it evaluates g (M1,Ml) successfully, the result will be assigned to x and P is
executed, else Q is executed. Function application and destructor application
can be private or public, the public one will be owned by all agents included the
intruders and the private one cant be known by intruders. Using functions and
destructors, the data structures and cryptographic operations can be described.
event(M). P means P will be executed after event(M) executes, it is used to
specify correspondence.

3.2 Operational Semantics

The semantics model is based on labeled transition systems, we review the LTS
firstly.

Definition 1 (Labeled Transition System). An LTS is a 3-tuple L =
(S, init, T ) where S is the state set,init ∈ S is the initial state and T : S×∑

τ×S
is the states transition. Let

∑
τ is a set of all events,

∑ ∗ is a set of all traces.
Some related relations is defined as follows.

– s
e1,e2,...,en−−−−−−−→ s′:For s′, s ∈ S, if exits s0, ..., sn ∈ S for all 0 ≤ i < n such that

Si
ei+1−−−→ Si+1 where ei ∈ ∑

τ, s0 = s and sn = s′

– s →∗ s′:If exiting e1, ..., en ∈ ∑
τ such that s

e1,...,en−−−−−→ s′. In particular, s →∗ s.
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– Let tr :
∑ ∗ is a sequence of events. s

tr=⇒ s′ means if exiting e1, ..., en ∈ ∑
τ

such that s
e1,...,en−−−−−→ s′, then tr = 〈e1, ..., en〉 is one trace of L.

– enabled(s) = {e :
∑

τ |∃s′ ∈ S, s
e−→ s′}.

– The set of traces is traces(L) = {tr :
∑ ∗ | ∃s′ ∈ S, init

tr=⇒ s′}

A semantic configuration is a 3-tuple(P, V,C), where P is the current process,
V is the map of the global variables and local variables which is a set of mappings
from a name to a value, and C is a set of channels. Figure 3 presents the rules of
operational semantics, | is symmetric and associative.eval(v, exp) evaluates the
value of the exp given valuation v. pair(a, b) records a mapping from name a
to its value b. The set of bound names bn(A) contains every name n which is
under restriction νn inside A. The set of bound variables bv(A) consists of all
those variables x occurring in A that are bound by restriction νx or input u(x).
The set of free names fn(A) consists of those names n occurring in A not in the
scope of the binder νn. The set of free variables fv(A) contains the variables x
occurring in A which are not in the scope of a restriction νx or input u(x). τ
represents the internal event, we will ignore it when verifying the protocol based
on LTS model.

Rule OUT represents when outputting an expression through channel u, it
will calculate its value and put it on the channel. The term N will be added in
map V if an input term N is input in rule IN . The PAR rule represents the
parallel composition of P and Q. In rule RES, a new name a is created and it
will record the name a and its value a in map V . DESTR1 and DESTR2 is the
rule of destructor application. It will perform process P and record pair(x,M ′)
if there is a term M ′ such that g(M1,M2, ...,Ml) = M ′, else it will perform
process Q. Rule COND1 and COND2 mean if M and N reduce to the same

Fig. 2. Syntax of the process calculus
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Fig. 3. Operator semantics

term at running, it will perform process P , else it will perform process Q. Event
rule represents it will execute process P after event(M) executes. The π-calculus
can be represented by LTS through the reduction rules.

3.3 Definition of Later-Correspondence

Based on semantics model, we formally define the later-correspondence.Later-
correspondence is the form of properties “if the protocol executes e event, then
e1, ..., el will be executed later”. Like ProVerif the events may include arguments
[24], which allows one to relate the values of variables at the various events. The
events in our method can also be const terms.

Definition 2. The event(M) will happens in trace tr = (P0, V0, C0) →∗

(P ′, V ′, C ′) if and only if there exists a reduction(event(M).P, V, C)
event(M)−−−−−−→

(P, V,C).

Definition 3. For a protocol implementation L = (S, init, T ), it satisfies the
later-correspondence event(M) → ∧l

k=1 event(Mk) if and only if ∀tr = 〈e1, ..., en〉
∈ traces(L).∃1 ≤ i ≤ n.(ei = event(M)

∧l
k=1(∃i < jk ≤ n.ejk = event(Mk)))

3.4 Example

As an example, we model for one Certified Email protocol [29]. As the protocol
has some obvious defects in the resolve sub-protocol and we improve it. The
result of verification will be analyzed in Sect. 5. The Certified Email consists of
two sub-protocols: the exchange protocol and the resolve protocol:
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1. Exchange protocol

E1 : A → B : h(m), Eska(h(m))
E2 : B → A : c, r, s, h(receiptb), Certtb, Eskb(h(m))
E3 : A → B : Epkb(m)
E4 : B → A : Epka(receiptb)

2. Resolve protocol

R1 : A → TPP : Certtb, Eskb(h(m)), Epkttp(m)
R2 : TTP → A : Epka(receiptb)
R3 : TTP → B : Epkb(m)

A,B, TTP represents the sender, receiver and the trusted third party. m is
the email they exchange. receiptb is the receipt of B. It executes the exchange
protocol in normal circumstances. When it is abnormal or the dispute exists,
resolve protocol will be executed. TTP generates receiptb for B before protocol
executes and B generates the signature (c, r, s) for receiptb. A can check whether
it is a valid signature through calculating (c, r, s) = H(h(receiptb)). Certtb is the
certificate that TTP generates for B and Certtb = Epkttp(receiptb).

Exchange protocol executes like that: firstly A sends h(m) and the signature
of h(m)Eska(h(m)) to B. B will check whether the signature is valid and if it is
valid, B sends the signature (c, r, s), h(receiptb) and Certtb to A. After receiv-
ing the messages, A will check whether the signature (c, r, s) is valid through
h(receiptb) and check the validity of the Certtb.

If the two conditions are satisfied, A makes sure that it can get receiptb from
TTP when it is abnormal. A sends Epkb(m) to B and B will send Epkb(m)
to A after checking that m is valid. Resolve protocol executes like that: A
sends Certtb, Eskb(h(m)), Epkttp(m) to TTP and TTP will Check the validity
of Certtb, restore the receiptb from Certtb and check the validity of m. If the
two conditions are satisfied, TTP will send the encrypted message Epkb(m) to
B and send the encrypted receipt Epka(receiptb) to A.

This protocol can be formalized by the π-calculus which is introduced in
Sect. 3.2. The protocol model includes the process A, process B, process TTP .
A initially has message m, the public key and private key of A, the public key
of B and TTP . The skT in the parameters is used for process TTP ,so it is not
known by process A.

The agent A can be modeled as follows. let (= crs) = getcrs(qm) in . . . This
construct is syntactic sugar for let x = getcrs(qm) in if(x = crs) then . . . The
last line in the model means the agent A will executes the exchange protocol
with TTP .

clienta(pkA, skA, pkB , pkT , skT ) =
c〈(hash(m), aencs(hash(m), skA))〉.
c(x).let(crs, qm, zs, bhm) = x in
let(= crs) = getcrs(qm)in
if hash(m) = adecs(bhm, pkB) then
c〈aencsec(m, pkB)〉.c(y)
c〈val(zs, bhm, aencsec(m, pkT ))〉|ttp(pkA, skT , pkB , pkT )
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B initially has receipt r, the public key and private key of B, the public key
of A and TTP , the certificate Certtb. The agent B can be modeled as:

clientb(pkA, skB , pkB , pkT , cts) =
c(x).let(hm, shm) = x in;
let(= hm) = adecs(shm, pkA)in
let ctsp = adec(cts, skB)in
c〈(getcrs(hash(r)), hash(r), aenc(ctsp, pkT ), aencs(hm, skB))〉.
c(msg).let msgjm = adecsec(msg, skB)in
let(= hm) = hash(msgjm)in c〈aencsec(r, pkA)〉

TTP initially has the public key and private key of TTP , the public key of
A and B. The agent TTP can be modeled as:

ttp(pkA, skT , pkB , pkT ) =
c(xt).let(ct, ehm,msgpkt) = getval(xt)in
let cst = adec(ct, skT )in let yt = getrfrombit(cst)in
let hmt = adecs(ehm, pkB)in let msg = adecsec(msgpkt, skT )in
if hash(msg) = hmt then
c〈aencsec(yt, pkA)〉.
event(sendRec(yt)).
c〈aencsec(msg, pkB)〉.
event(sendMsg(msg))

We formalize the later-correspondence “After TTP sends r to A, it will send
m to B later” as event (sendRec (r)) → event (sendMsg (m)). In Sect. 4, we
will analysis the verification result.

3.5 The Intruder Model

The intruder model considers the malicious behavior of the malicious proto-
col agents and the intruders. We also regard the malicious agents as intruders.
Contrary to honest agents that execute faithfully each statement specified by
the protocol, the intruders can intercept, compose, decompose, encrypt, decrypt
and send any messages [26]. The message knowledge of intruder is infinite, but
most of them are invalid and the valid messages are finite.

The intruder model is based on Dolev-Yao model [26] and it also considers
the malicious agent. We simplify the intruder model so that the knowledge is
finite. Let K(M) represents the intruder owns message M . F represents the
set of fresh values. Pc represents the set of the public channels. t represents
term. SameType(t,M) means the types of t and M are the same. C(u)\t means
message t is removed from the message set of channel u. Figure 4 gives the
intruder semantic and its rules.

The malicious behavior of the protocol agents can also be represented by
the intruder behavior. For example, one behavior that agent A sends a invalid
message to B can be modeled use the rule resend. The intruder blocks the
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Fig. 4. Intruder rules

valid message t and sends one invalid message t′ to B. In the rest we assume
the protocol agents are honest and their malicious behavior is represented by
intruders.

Because of the state space explosion, we limit the number of protocol ses-
sions and generate the finite effective messages for intruders. SPChecker updates
the intruder knowledge through the message pattern. For example from mes-
sage aenc(sign((msg, k), skB), pkX) in the protocol, we can record the mes-
sage pattern aenc(sign((bitstring, key), skey), pkey). Figure 5 shows the process
of updating the intruder knowledge. Firstly, SPCheker executes the protocol
without intruders, we can get the global variables GlobalMsg and messages
PublicChannelMsg which are put in the public channel. For every message in
GlobalMsg, one corresponding attacker message will be generated and both of
them are put into AttackerMsg. We also can get all message patterns Message
Pattern from the messages PublicChannelMsg. Secondly, based on the Message
Pattern and AttackerMsg, all possible messages will be constructed in
ConstructedMsg. But some messages in ConstructedMsg are invalid. Finally,
the invalid messages will be removed through verifying the secrecy by ProVerif.
For one message, if its verification of secrecy is true, it will not be owned by the
intruder and it is an invalid one. We can make sure that all the messages in the
initial intruder knowledge are valid.

3.6 Verification

In this section we will present the important algorithms for verification of the
later-correspondence. Given a process P of a security protocol, we will verify the
later-correspondence: event(begin(M)) → event(end(M)). The initial V (this is
introduced in the operational semantics) is empty and every channel from set
C has no terms. The initial protocol configuration can be (P, V,C). We will get
the LTS(S, init, T ) based on the semantics rules, where S = {s|(P, V,C) →∗

s},init = (P, V,C), T = {(s1, e, s2) : S × ∑
τ × S|s1 e−→ s2, s1 ∈ S, s2 ∈ S}.

Form the LTS model (S, init, T ), we have all traces of process P . For every
path in the trace model, we will check whether “If begin(M) has executed, then
end(M) will be executed eventually” is true. As shown in Table 1, we can check
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Fig. 5. Process of constructing intruder messages

the property through the events sequence in the trace. In the procedure, the on-
the-fly technique is used and if the proposition of one trace is false, the procedure
will stop and we get one counter-example. This technique reduces the verification
time greatly.

Termination. In order to avoid states explosion, we limit the number of pro-
tocol sessions. The intruder knowledge is also finite through efficient messages
generation procedure. So the traces of LTS model from the process P is finite.
Because the sequential processes in process P are finite, the events in every trace
are also finite. In conclusion, the procedure which checks the proposition in every
trace can be terminated in a limited time.

Verification Algorithm. Let impl is the initial configuration of the proto-
col implementation and property is the later-correspondence that needs to be
verified. Figure 6 shows the later-correspondence verification algorithm. The
algorithm checks every trace which is from the LTS model. LTS model will
be constructed in algorithm next. For simplicity some details of the procedure
are skipped and we omit the procedure for producing the counterexample.



122 X. Xie et al.

Fig. 6. Algorithm: correspondenceV erify(impl, property)

The procedure will check the later-correspondence using a depth-first-search
way. pending is a stack and the initial configuration is put into pending in
line 1. From line 2 to line 16, it will check for every configuration in the stack
until finding one counterexample. The function next is presented in Fig. 7. Given
a configuration im, it will return a set of configurations for each event. event
in the procedure represents the event through which the configuration can have
a reduction. mark is the set of weight for events. For every two events (e1,e2)
of the property, SPChecker will generate unique weight for them and their sum
is zero. The weight of other events which are not in the property is zero. state
means the current weight of the configuration and it will be calculated from the
last configuration. Line 4 to line 8 means that the current path ends and im has
no next configurations, so it will check the state of the last configuration. In order
to prevent producing the first type of attacks which are introduced in Sect. 1 and
they are caused by the interruption of messages, we ignore the counterexamples
that only execute the first event. In line 5 if the state is not equal to zero and
it does not only execute one event, it is a counterexample. Line 9 to line 15
checks every configuration in the next set. When every second-event appears,
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Fig. 7. Algorithm: next(im)

it will check the validity in Line 11. If both states of the last configuration
and the current configuration are not equal zero after one second-event, it is
an counterexample. In line 14, the current configuration is put into the stack
pending for checking the rest part.

4 Results Analysis

We have implemented our verifier based on PAT and have verified various
authentication protocols. Table 2 shows the experimental results for various pro-
tocols on a CPU 3.0 GHz Core Duo CPU and 4 GB RAM.

Using the SPChecker, we verified the later-correspondence of the certified
email protocol, the AndrewSecureRPC protocol, the Handshake protocol, the
simplified NeedhamSchroeder protocol and the Woo-Lam protocol. We also found
counterexamples from all of the protocols. The second column describes the time
of constructing initial knowledge and the third column presents the verification
time. We can find that the intruder knowledge is constructed in a shorter time.
The result shows our strategies discussed can reduce the number of messages
effectively. We believe that the performance of our verifier will be improved
significantly using more reduction techniques.

We analysis the verification of the certified email protocol here. In order to
verify the later-correspondence “TTP sends r to A, and then it will send m to B
later”. We formalize the property as: event (sendRec (r)) → event (sendMsg (m)).

Table 2. Experimental results

Intruder knowledge Verification

constructed time time

Certified Email protocol [29] 1.37 s 5 s

AndrewSecureRPC protocol [28] 1.61 s 2 s

NeedhamSchroeder protocol [30] 1.02 s 22 s

Handshake protocol [30] 0.79 s 27 s

Woo-Lam protocol [28] 0.65 s 379 s
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Fig. 8. The counter-example

In the Fig. 8, it represents the counterexample. Because of the different order of
executing in parallel process,the sequence of the events in the counterexample are
not exactly same with the protocol performing sequence. TTP receives message
c?val(aenc(tobitstr(r), pk(skT )), aencs(hash(m Attacker), skB), aencsec
(m Attacker, pk(skT ))) in line 13. It makes that TTP sends aencsec(r, pk(skA))
to A in line 14 and sends aencsec(m Attacker, pk(skB)) in line 16.

The counterexample shows that after event sendRec(r) executes, it exe-
cutes the event sendMsg(m Attacker) rather than sendMsg(m). So the later-
correspondence is not satisfied. Because of the reply attack, the intruder (intruder
or malicious agent) recorded the message about m Attacker from the previous
run and sends it to TTP in the next run. At last, the agent A obtains the receipt
r but B can’t get message m.

5 Conclusion and Future Works

This paper has given the definition of later-correspondence. Later-correspondence
describes the expected order of messages which has been sent and received. Using
the input language of ProVerif [8], we presented an automatic method for veri-
fying later-correspondence. An automatic verifier SPChecker has been developed
based on PAT [23]. Not like other model checking tools, SPChecker can construct
intruder model through ProVerif filtering automatically. In order to solve the sta-
tes explosion problem, we limit the number of sessions and took some strategies,
the experimental results have demonstrated its effectiveness. The counterexam-
ple of the Certified Email protocol shows that the protocol does’t satisfy the later-
correspondence because of the existing replay attack.
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For the future work, we will improve our intruder model and apply more
reduction techniques to improve the performance. Secondly, we will extend
SPChecker and make it verify the non-repudiation and fairness based on cor-
respondence in e-commerce protocols.
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Abstract. Projection temporal logic programming language MSVL can
be well used in modelling simulation and verification of concurrent pro-
grams. Non-blocking programs have been widely used in multiprocessor
systems. In this paper, we combine separation logic and projection tem-
poral logic to reason about non-blocking concurrency. To this end, we
use separation logic as state assertions and projection temporal logic
as interval assertions to specify the spatial and temporal properties.
Then we extend the MSVL language with atomic blocks, the pointer
assignment and the interleaving operator to simulate various of non-
blocking programs. Further, we give a sound axiomatic system for the
new extended MSVL and prove the lock-free property of Treiber’s stack
using the axiomatic system.

1 Introduction

Parallelism has become a challenging domain for processor architectures, pro-
gramming, and formal methods [1]. Based on the multiprocessor systems, threads
communicate via shared memory, which employs some kind of synchronization
mechanisms to coordinate access to a shared memory location. Verification of
such synchronization mechanisms is the key to assure the correctness of shared-
memory programs.

There are two main forms of synchronization in software systems: one is
blocking synchronization and the other is non-blocking synchronization. Block-
ing synchronization uses mutual exclusion locks to protect a data structure such
that only one thread may access the data structure at any time. This app-
roach severely limits parallelism, negating some of the benefits of multicore and
multiprocessor systems, Nowadays, nonblocking synchronization has become an
important basis for multiprocessor programming. However, nonblocking concur-
rency is rather complicated and error-prone. Its correctness is usually far from
obvious and is hard to verify. Deciding how to efficiently verify nonblocking con-
currency in multicore systems has received more and more attention from both
academic and industrial communities.
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However, most existing verification techniques such as invariants [2], reduction
[3,4] and ownership [5,6] do not enable to deal with nonblocking concurrency.
More advanced techniques such as simulation [7,8] are too general and compli-
cated to readily verify nonblocking programs. Rely-guarantee compositional
method is an efficient verification technique, which has been widely used in concur-
rency [9–12]. However, different from the thought of modular method, we will do
the verification in a unified framework such that programs and properties can be
written in one notation. This can reduce the burden of verification that transform
between different formal notations and to some extent improve the efficiency.

Temporal logic has proved very useful in specifying and verifying concurrent
programs [13] and has seen particular success in the temporal logic programming
model, where both algorithms and their properties can be specified in the same
language [14]. Indeed, a number of temporal logic programming languages have
been developed for the purpose of simulation and verification of software and
hardware systems, such as Temporal Logic of Actions (TLA) [15], Cactus [16],
Tempura [17], MSVL [18,19], etc. All these make a good foundation for apply-
ing temporal logic to implement and verify concurrent algorithms. Particularly,
Modeling Simulation and Verification Language (MSVL) is an executable sub-
set of projection temporal logic (PTL) [20,21]. It could facilitate specifying,
verifying and developing reactive systems in a more efficient and uniform way.
Furthermore, in practice, the framing operators and minimal model semantics
in MSVL enable us to narrow the gap between temporal logic and programming
languages in a realistic way.

As a specification language, separation logic (SL) [22] is an extension of Hoare
logic [23], where the program state in a precondition and postcondition consists of
a stack and a heap. Its main application so far has been the reasoning about pointer
programs that keep track of the memory. SL provides a series of useful concepts
such as the separating conjunction and the frame rule to support local reasoning of
programs. In addition, O’Hearn has proposed Concurrent Separation Logic (CSL)
[24] by using invariants to reason about concurrent pointer programs.

Therefore, in the paper, we are motivated to extend the projection temporal
logic with the thought of resource separation in separation logic to specify var-
ious temporal properties in nonblocking concurrency with dynamic data struc-
tures with pointers. To formalize the non-blocking algorithms, we introduce the
pointer assignment, atomic blocks and the interleaving operator into MSVL [25,
26]. Atomic blocks can be used to model architecture-supported atomic instruc-
tions, such as compare-and-swap (CAS), or to model high-level transactions imple-
mented by software transactional memory (STM). Interleaving operator enforces
that access to shared memory locations must be done in atomic blocks, otherwise
the formulas can result in false. We define the pointer operators like &x and ∗Zv

and the atomic blocks as the primitive terms and formulas in PTL. The interleav-
ing operator can be directly derived from the PTL basic formulas. Furthermore,
in order to verify non-blocking programs in a unified framework, we augment the
axiomatic system of MSVL [27] with new axioms (e.g. A17−A22, Atom) and the
inference rules (e.g.Rule − Atom,Rule − PointerI ,Rule − PointerII ), and prove
that the new extended axiomatic system is sound. Moreover, we take the Treiber’s
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stack as an example to illustrate that the new extended MSVL can be well used
to formalize the non-blocking operations pop and push. Finally, we prove that the
Treiber’s stack satisfies the lock-free property within the axiomatic system.

The paper is organized as follows: in Sect. 2, we define an interval-based
assertion language that combines separation logic and projection temporal logic.
We also define the atomic blocks and the pointer assignment as the basics of
PTL. In Sect. 3, we give an extended MSVL and a sound axiomatic system with
new axioms and inference rules. In Sect. 4, an example is presented to illustrate
how the MSVL and the axiomatic system can be used to specify and verify the
non-blocking concurrency. Section 5 draws the conclusion.

2 Interval-Based Assertion Language

2.1 Syntax and Semantics

The assertion language we use includes state assertions and interval assertions.
We employ a subset of separation logic as state assertions for specifying shared
mutable data structures. State assertions is defined as follows.

Q : := emph | emps | E1 �→ E2 | Q1 � Q2

where emph denotes an empty heap and emps an empty stack, E1 �→ E2 is
a singleton heap, where E1, E2 are expressions (i.e., terms), Q1 � Q2 is the
separating conjunction.

Figure 1 defines the program states and intervals, where a state is a pair of stack
and heap, i.e., δ = (s, h), an interval is a finite or infinite sequence of states. Let
dom denote the domain of heap and stack, which is defined as dom : heap → 2Nat

or dom : stack → 2Var. The semantics of the selected separation logic assertions
is given in Fig. 2, where I[E] means the evaluation of expression E.

Fig. 1. Program states and intervals

Fig. 2. Semantics for state assertions.
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In the following, we discuss the interval assertions αPTL, which augments
PTL with the reference operator (&) and the dereference operator (∗) and atomic
blocks (〈〉). We follow the thought of [26] that gives the formal definitions of
reference and dereference operations based on names. However, for clarity, we
have some conventions of variables. Let Var = {x, y, z . . .} be a set of variables
that is defined as Var

def= IntVar ∪ PVar, where IntVar is a set of integer variables
denoted by sx, sy, sz . . ., of which the values are integers, and PVar is a set of
pointer variables X,Y,Z, . . ., of which the values are addresses. Further, Pointers
consists of PVar and PConst, where PConst denotes pointer constants like the
form of &x. We use Xv, Yv, Zv . . . to denote Pointers. In this paper, we regard
variable names as the addresses of memory cells. We therefore define function
γ : PVar → Var, which is a mapping from pointer variables to addresses.

αPTL terms and formulas are defined by the following grammar:

αPTL terms: e, e1, . . . , em : := sx | Z | &x | ∗Zv | f(e1, . . . , em) | ©e | �e
αPTL formulas: p, q, p1, pm : := π | e1 = e2 | Pred(e1, . . . , em) | ¬p | p ∧ q | Q | 〈p〉

©p | (p1, . . . , pm)prj q | ∃x.p | p+

where sx is an integer variable, Z is a pointer variable, &x is a reference
operation and ∗Zv is a dereference operation. As usual, f ranges over a predefined
set of function symbols, ©e and 
e indicate that term e is evaluated on the
next and previous states respectively; π ranges over a predefined set of atomic
propositions, and Pred(e1, . . . , em) represents a predefined predicate constructed
with e1, . . . , em; operators next(©), projection operator ( prj ) and chop plus (+)
are temporal operators; Q is state assertions defined in Fig. 2 and 〈p〉 denotes
atomic blocks.

An interval σ = 〈δ0, δ1, . . .〉 is a non-empty sequence of states. An interpre-
tation over intervals is I = (σ, i, j), where i is non-negative integers, and j is
an integer or ω, such that i ≤ j ≤ |σ|. We use (σ, i, j) to mean that a formula
is interpreted over a subinterval σ(i..j). Especially, θi = (si, γi) denotes the ith

state. The length of σ, denoted by |σ|, is defined as follows.

|σ| =
{

n if σ = 〈δ0, ...δn〉
ω if σ is infinite

The semantics of αPTL terms and formulas are shown in Figs. 3 and 4 respec-
tively. For a variable x, we will denote σ′ x= σ whenever σ′ is an interval which is
the same as σ except that different values can be assigned to x, and we call σ and
σ′ are x-equivalent. Other structures such as projection ( prj ) and atomic blocks
(〈〉) are well defined in [20,25]. In the following, we will focus on explaining the
definition of atomic blocks in αPTL.

2.2 Framing Issue and Atomic Blocks

Framing concerns how the value of a variable can be carried from one state to
the next. Within ITL community, Duan and Maciej [20] proposed a framing
technique through an explicit operator (frame(x)), which enables us to establish
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Fig. 3. Interpretation of αPTL terms.

Fig. 4. Semantics for αPTL formulas.

a flexible framed environment where framed and non-framed variables can be
mixed, with frame operators being used in sequential, conjunctive and parallel
manner, and an executable version of framed temporal logic programming lan-
guage is developed [18,19]. The key characteristic of the frame operator can be
stated as: frame(x) means that variable x keeps its old value over an interval if
no assignment to x has been encountered.

The framing technique defines a primitive proposition px for each variable
x: intuitively px denotes an assignment of a new value to x—whenever such an
assignment occurs, px must be true; however, if there is no assignment to x, px

is unspecified, and in this case, we will use a minimal model [18,20] to force it
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to be false. We also call px an assignment flag. Formally, frame(x) is defined as
follows:

frame(x) def= �(more → © lbf(x)), where lbf(x) def= ¬px → ∃ b : (
x = b ∧ x = b)

Intuitively, lbf(x) (looking back framing) means that, when a variable is framed
at a state, its value remains unchanged (same as at the previous state) if no
assignment occurs at that state. We say a program is framed if it contains lbf(x)
or frame(x).

The essence of atomic execution is twofold: first, the concrete execution of
the code block inside an atomic wrapper can take multiple state transitions;
second, nobody out of the atomic block can see the internal states. This leads to
an interpretation of atomic interval formulas based on two levels of intervals—at
the outer level an atomic interval formula 〈p〉 always specify a single transi-
tion between two consecutive states, which the formula p will be interpreted at
another interval (the inner level), which we call an atomic interval and must be
finite, with only the first and final states being exported to the outer level. The
key point of such a two-level interval based interpretation is the exportation
of values which are computed inside atomic blocks. We shall show how fram-
ing technique helps at this aspect. A few notations are introduced to support
formalizing the semantics of atomic interval formulas.

– Given a formula p, let Vp be the set of free variables of p. we define formula FRM(Vp)
as follows:

FRM(Vp)
def
=

{∧
x∈Vp

frame(x) if Vp �= ∅
True otherwise

FRM(Vp) says that each variable in the set Vp is a framing variable that allows to
inherit the old value from previous states. FRM(Vp) is essentially used to apply the
framing technique within atomic blocks, and allows values to be carried throughout
an atomic block to its final state, which will be exported.

– Interval concatenation is defined by

σ · σ′ =

⎧⎨
⎩

σ if |σ| = ω or σ′ = ε
σ′ if σ = ε
〈s0, ..., si, si+1, ...〉 if σ = 〈s0, ..., si〉 and σ′ = 〈si+1, ...〉

– If s = (Ivar , Iprop) is a state, we write s|I′
prop

for the state (Ivar , I
′
prop), which has the

same interpretation for normal variables as s but a different interpretation I ′
prop for

propositions.

In Fig. 5, we present some useful αPTL formulas that are frequently used
in the rest of the paper. ε specifies intervals whose current state is the final
state; an interval satisfying more requires that the current state not be the final
state; The semantics of p1 ; p2 says that computation p2 follows p1, and the
intervals for p1 and p2 share a common state. Note that chop (;) formula can be
defined directly by the projection operator. ♦p says that p holds eventually in
the future; �p means p holds at every state after (including) the current state;
len(n) means that the distance from the current state to the final state is n; skip
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specifies intervals with the length 1. x := e means that at the next state x = e
holds and the length of the interval over which the assignment takes place is 1.
p� means either chop plus p+ or ε. Further, p ≡ q (strong equivalence ) means
p and q have the same truth value in all states of every model, whereas p ⊃ q
(strong implication) refers to p → q always holds in all states of every model.

Fig. 5. Abbreviations for αPTL formulas.

Theorem 1. The following logic laws are valid.

Law1 ©p ⊃ more Law2 ©(p ∧ q) ≡ ©p ∧ ©q

Law3 ©(p ∨ q) ≡ ©p ∨ ©q Law4 ©(∃x : p) ≡ ∃x : ©p

Law5 �p ∧ ε ≡ p ∧ ε Law6 �p ∧ more ≡ p ∧ ©�p

Law7 w ; (p ∨ q) ≡ (w ; p) ∨ (w ; q) Law8 (p ∨ q) ; w ≡ (p ; w) ∨ (q ; w)

Law9 (w ∧ p) ; q ≡ w ∧ (p ; q) Law10 ©p ; q ≡ ©(p ; q)

Law11 ε ; q ≡ q Law12 ∃x : p(x) ≡ ∃y : p(y)

Law13 ∃x : (p(x) ∨ q(x)) ≡ ∃x : p(x) ∨ ∃x : q(x) Law14 p� ; p ⊃ p+

Law15 ε ≡ emph ∧ emps Law16 ε prj q ≡ q

Law17 p1 ∧ 〈p〉 ≡ p2 ∧ 〈p〉, if p1 ≡ p2 Law18 〈p1 ∨ p2〉 ≡ 〈p1〉 ∨ 〈p2〉

Proof. The proof can be found in [25].

3 Modeling Simulation and Verification Language MSVL

3.1 Extended MSVL for Non-blocking Concurrency

MSVL is used for modeling simulation and verification of hardware and software
systems. To describe non-blocking programs, we extend MSVL with the pointer
operators, atomic blocks and interleaving operator. The pointer operators and
atomic blocks are defined as primitive terms and formulas in αPTL, whereas
interleaving operator can be derived from the basics of αPTL. In the following,
we present expressions and statements in the extended MSVL.

Expressions. αPTL provides permissible arithmetic expressions and boolean
expressions and both are basic terms of αPTL.

Arithmetic expressions: e : := n | x | &x | ∗Zv | ©x | �x | e0 op e1
Boolean expressions: b : := True | False | ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1

where n is an integer, x is a program variable including the integer variables and
pointer variables, &x and ∗Zv are pointer operations, op represents common
arithmetic operations, ©x and 
x mean that x is evaluated over the next and
previous state respectively.
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Statements. Figure 6 shows the statements of αPTL, where p, q, . . . are αPTL for-
mulas. ε means termination on the current state; x = e represents unification
over the current state or boolean conditions; x ⇐ e, lbf(x) and frame(x) support
framing mechanism; the assignment x := e is as defined in Fig. 5;

Fig. 6. Statements in αPTL.

p ∧ q means that the processes p and q are executed concurrently and they
share all the states and variables during the execution; p∨ q represents selection
statements; ©p means that p holds at the next state; p ; q means that p holds
at every state from the current one till some state in the future and from that
state on p holds. p ∧ q, p ∨ q, ©p, p ; q have the straightforward meaning as in
the logic. The conditional and while statements are defined as below:

if b then p else q
def
= (b ∧ p) ∨ (¬b ∧ q), while b do p

def
= (p ∧ b)∗ ∧ �(ε → ¬b)

We use a renaming method [19] to eliminate the existential quantification for
∃x : p(x). Pointer assignment ∗Zv = e means that the value of e will be assigned
to the value (i.e., address) of the pointer variable Z.

p ||| q executes programs p and q in parallel and we distinguish it from the
standard concurrent programs by defining a novel interleaving semantics which
tracks only the interleaving between atomic blocks. Intuitively, p and q must
be executed at independent processors or computing units, and when neither of
them contains atomic blocks, the program can immediately reduce to p∧q, which
indicates that the two programs are executed in a truly concurrent manner. The
formal definition of the interleaving semantics will be given in [25]. However, the
new interpretation of parallel operator will force programs running at different
processors to execute synchronously as if there is a global clock, which is certainly
not true in reality. For instance, consider the program

(x := x + 1; y := y + 1) ||| (y := y + 2;x := x + 2).

In practice, if the two programs run on different processors, there will be data
race between them, when we intend to interpret such program as a false formula
and indicate a programming fault. But with the new parallel operator |||, since
there is no atomic blocks, the program is equivalent to

(©x = x + 1 ∧ ©(©y = y + 1)) ∧ (©y = y + 2 ∧ ©(©x = x + 2)),

which can still evaluate to true.
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3.2 An Axiom System for MSVL

In [27], the axiomatic system of MSVL is formalized in two parts : one for
state deduction and the other for interval deduction. In state deduction, state
axioms and state inference rules are given. In interval deduction, a variation
of Hoare’s triple that is {σk, A} p {σh, B} is proposed as correctness assertion.
In this section, we add some new axioms and inference rules to specify the
pointer assignment, atomic blocks and parallel statements, and prove that the
axiomatic system is sound as well. With this axiomatic, a non-blocking system
is modeled using MSVL language. Then, properties of the system are specified
by the interval-based assertion language defined in Sect. 1. Hence, the model and
property of a system can be written in one logic αPTL.

Axioms and Inference Rules Within a State. We first give the state axioms
and state inference rule for the extended MSVL. Particularly, state axioms
(A9), (A12), (A17 − A22) and (Atom) are new ones for the parallel statement
and atomic blocks. For convenience, we abbreviate � �(p ↔ q) as p ∼= q.

State formulas ps and extended state formulas Qs are defined as follows:

ps : := x = e | x ⇐ e | ps ∧ ps | lbf(x) | True
Qs : := ps | 〈p〉 | Qs ∧ Qs

Definition 1 (Semi-Normal Form). An MSVL program is semi-normal form
if it has the following form

q ∼= (
n1∨

i=1

Qsci ∧ ©pfi) ∨ (
n2∨

j=1

Qsej ∧ ε)

where Qsci and Qsej are extended state formulas for all i, j, pfi is an MSVL pro-
gram, n1 + n2 ≥ 1.

Definition 2 (Normal Form). The normal form of program q is defined as

q ∼=
k∨

i=1

(qei ∧ ε) ∨
h∨

j=1

(qcj ∧ ©qfj)

where k + h ≥ 1, qfj is a general program in MSVL while qei and qcj are true
or all state formulas of the form : (x1 = e1) ∧ . . . ∧ (xl = e1) ∧ ṗx1 ∧ . . . ∧ ṗxl

,
where ek ∈ D (1 ≤ k ≤ D), ṗx denotes px or ¬px.

Normal Form. plays an important role for deducing programs in MSVL. To
deduce a program to its normal form, a set of state axioms and state inference
rules is given in Tables 1, 2 and 3. In Tables 2, ps1 and ps2 are state formulas,
Qs1 ≡ ps1 ∧ ∧l1

i=1〈qi〉 and Qs2 ≡ ps2 ∧ ∧l2
i=1〈q′

i〉 are extended state formulas
(l1, l2 ≥ 0), Ti denotes ©pi or ε (i = 1, 2).

Lemma 2. Semi-normal form can be deduced into its normal form by the state
axioms.
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Table 1. State axioms.

(A1) lbf(x) ∧ x = e ∼= x = e ∧ px (where � x �= e)

(A2) lbf(x) ∧ x ⇐ e ∼= x = e ∧ px

(A3) �p ∧ more ∼= p ∧ ©�p

(A4) �p ∧ ε ∼= p ∧ ε

(A5) frame(x) ∧ more ∼= ©(lbf(x) ∧ frame(x))

(A6) frame(x) ∧ ε ∼= ε

(A7) ©p ; q ∼= ©(p ; q)

(A8) ε ; q ∼= q

(A9) (Qs ∧ p) ; q ∼= Qs ∧ (p ; q)

(A10) (p1 ∨ p2) ; q ∼= (p1 ; q) ∨ (p2 ; q)

(A11) ©p ∧ q ∼= ©p ∧ q ∧ more

(A12) 〈p1 ∨ p2〉 ∼= 〈p1〉 ∨ 〈p2〉
(A13) x := e ∼= ©(x = e ∧ ε)

(A14) if b then p else q ∼= (b ∧ p) ∨ (¬b ∧ q)

(A15) while b do p ∼= if b then (p ∧ more ; while b do p) else ε

(A16) � P, where P is a substitution instance of all valid formulas.

Proof. Let Qs ∧©q be a semi-normal form, where Qs
def= ps∧

l∧

i=1

〈qi〉. The proof

can be done in the following two cases.

1. If l = 0, i.e., Qs does not contain atomic blocks, then the semi-normal form
Qs ∧ ©q is in normal form.

2. If l �= 0, then by state axioms, we have

Qs ∧ ©q

∼= ps ∧
l∧

i=1

〈qi〉 ∧ ©q

∼= ps ∧ (ps′ ∧ ©p′) ∧ ©q (Axiom − Atm)

��
Theorem 3. Any MSVL program with atomic blocks can be deduced to its nor-
mal form by the state axioms and state inference rules.

Proof. The proof proceeds by induction on the structure of the statements in
MSVL with atomic blocks. Here we only prove the new extended statements
that are parallel statement p ||| q, atomic block 〈p〉, pointer assignment ∗Zv = e
and unit assignment x := e. The proofs of other statements are the same as
in [27].

1. If the program is the parallel statement p ||| q, by axioms (A17-A22), we have
p ||| q can be deduced into its semi-normal form. Further, by Lemma 2, any
semi-normal form can be deduced into its normal form. Thus, we know that
p ||| q has its normal form.
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2. If the program is the atomic block 〈p〉, by axiom (Axiom − Atm), we can
deduce 〈p〉 into its normal form.

3. If the program is the pointer assignment ∗Zv = e, we have

∗Zv = e ∼= ∗Zv = e ∧ True (A16,R3)
∼= ∗Zv = e ∧ (ε ∨ ©True) (A16,R3)
∼= (∗Zv = e ∧ ε) ∨ (∗Zv = e ∧ ©True) (A16,R3)

4. If the program is the unit assignment x := e, by axiom (A13), we have
x := e ∼= ©(x = e ∧ ε)

��

Table 2. State axioms for the parallel statement and atomic blocks.

(A17) (Qs1∧©p1) ||| (Qs2∧©p2) ∼= (Qs1∧Qs2)∧©(p1 ||| p2), if Vqi
∩ Vq′

i
= ∅

(A18) (Qs1∧©p1) ||| (Qs2∧©p2) ∼= (Qs1∧ps2)∧©(p1 ||| (
l2∧

i=1
〈q′

i〉∧©p2))

∨(Qs2 ∧ ps1) ∧ ©(p2 ||| (
l1∧

i=1
〈qi〉 ∧ ©p1)), if Vqi

∩ Vq′
i

�= ∅

(A19) (Qs1∧ε) ||| (Qs2∧T2) ∼= (Qs1∧Qs2)∧T2, if (l1= l2=0) or (l1=0 and l2 >0 and T2=©p2)

(A20) (Qs1∧ε) ||| (Qs2∧T2) ∼= Qs1∧ε, if (l2 >0 and T2=ε)

(A21) (Qs1∧ε) ||| (Qs2∧T2) ∼= Qs2∧T2, if (l1 �= 0)

(A22) (Qs1 ∧ T1) ||| (Qs2 ∧ ε) ∼= (Qs2∧ε) ||| (Qs1∧T1)

(Atom) 〈p〉 ∼= ps ∧ ©(psn |Iprop ), where ps, psn
def
=

n∧

i=1
((xi = ei ∧ ṗxi

)

if p ∼= ps ∧ ©p1, p1 ∼= ps1 ∧ ©p2, · · · pn−1 ∼= psn−1 ∧ ©pn, pn ∼= psn ∧ ε

Table 3. State inference rules.

(R1) p ∼= q =⇒ prog[p] ∼= prog[q/p]

(R2) p(x) ∼= (pe(x) ∧ ε) ∨ (pc(x) ∧ ©pf (x))

=⇒ ∃x : p(x) ∼= (∃x : pe(x) ∧ ε) ∨ (∃x : pc(x) ∧ ©∃x : pf (x))

(R3) � P =⇒ � �P, where P is a substitution instance of all valid formulas.

Axioms and Inference Rules Over Intervals. In order to deduce programs
over intervals, the correctness assertion for specifying and verifying properties is
given in [27]. In the paper, we formalize (Rule − Atom), (Rule − PointerI ), and
(Rule − PointerII ) for the atomic blocks and the pointer assignment.

Definition 3. The correctness assertion is defined as follows.

{σk, A} p {σh, B}
where p is an MSVL program, σk and σh are intervals, and σk is a prefix of σh

(k, h ∈ Nω, 0 ≤ k ≤ h), A and B are assertions that can be used in the following
manner:
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(1) For partial correctness properties, A and B are required to be state formulas
and state assertions.

(2) For run-time properties such as eventually (♦), always (�), A is a temporal
formula, and B a state formula.

(3) If p is non-terminating, B should be True.

Particularly, when k = 0, {σ0, A} p {σh, B} is an initial triple, in which program
p is deduced over interval σh starting from initial state s0. For convenience, in
the axiomatic system, we abbreviate {σ0, A} p {σh, B} as {A} p {B} and use
(σh, k) to denote σ(k...h).

Table 4. Selected interval inference rules.

(ISR) {σk, A}prog[p]{σh, B} and p ∼= q

⇐⇒ {σk, A}prog[q/p]{σh, B} and p ∼= q

(AAS) {σk, A} x = m ∧ ps(y) ∧ p {σh, B}
⇐⇒ {σk, A} x = m ∧ ps(y)[x �→ m] ∧ p {σh, B}
where lbf(y) and lbf(x) does not occur in p.

(LBF) {σk, A} lbf(x) ∧ p {σh, B}
⇐⇒ {σk, A} x = σk−1(x) ∧ p {σh, B}
where x = e and x ⇐ e does not occur in p.

(ANext) {σk, A} pc ∧ ©pf {σh, B}

⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{σk[pc] · 〈sk+1〉, Af} pf {σh, B}
and {σk, Ac} pc {σk, Ac}, if pc → Ac

{σk,False} pc ∧ ©pf {σh, B}
otherwise

where A ≡ (Ac ∧ ©Af ) ∨ (Ae ∧ ε)

Definition 4. Let Σ be a set of all intervals, and (σh, k) = 〈δk, . . . , δh〉 be a
subinterval of σh starting from state δk (0 ≤ k ≤ h), where σh = σk ◦ (σh, k).
We say that:

– {σk, A} p {σh, B} is satisfied over σh starting from δk, denoted by

(σh, k) |= {σk, A} p {σh, B}

if (σh, 0, k, h) |= p, then (σh, 0, k, h) |= A and (σh, 0, h, h) |= B.
– If for all σh ∈ Σ, (σh, k) |= {σk, A} p {σh, B}, then {σk, A} p {σh, B} is

valid, denoted by |= {σk, A} p {σh, B}.
– {A} p {B} is satisfiable, denoted by (σh, 0) |= {A} p {B}, if (σh, 0) |=

{σ0, A} p {σh, B}.
– If for all σh ∈ Σ, (σh, 0) |= {A} p {B}, then {A} p {B} is valid, denoted by

|= {A} p {B}.
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Table 5. Interval rule for the atomic blocks and the pointer assignment.

(Rule-Atom) {σk, A} x = m ∧ 〈Q〉 ∧ ps(y) ∧ p {σh, B}
⇐⇒ {σk, A} x = m ∧ 〈Q[x �→ m]〉 ∧ ps(y)[x �→ m] ∧ p {σh, B}

(Rule-PointerI) {σk, A} ∗ Zv = e {σh, B}

⇐⇒
{

{σk, A} γ(Z) = e {σh, B} if Zv = Z ∈ PVar

{σk, A} y = e {σh, B} if Zv = &y ∈ PConst

(Rule-PointerII) {σk, A} x = Zv {σh, B}

⇐⇒
{

{σk, A} x = γ(Z) {σh, B} if Zv = Z ∈ PVar

{σk, A} x = y {σh, B} if Zv = &y ∈ PConst

Table 4 regards to some of selected interval inference rules, where rule (ISR)
is a congruence rule; rules (AAS) and (LBF) focus on evaluating arithmetic
expressions; rule (ANext) is about the progress of normal form.

Table 5 presents a series of interval inference rules for atomic blocks and
pointer operations. (Rule − Atom) evaluates the variables inside the atomic
blocks; (Rule − PointerI) and (Rule − PointerII) are used to evaluate the
pointer assignment. There are two cases need to be discussed: one is for Zv ∈
PVar and the other is for Zv ∈ PConst. Both of them can be deduced according
to their definitions.

Definition 5. Some notations are given as follows.

(1) ps(y)[x �→ m] def=

⎧
⎪⎪⎨

⎪⎪⎩

b(x)[x �→ m] if ps(y) is b(x)
y = e(x)[x �→ m] if ps(y) is y = e(x)
y = e(x)[x �→ m] ∧ py if ps(y) is y ⇐ e(x)
ps(y) if x does not occur in ps(y).

(2) 〈Q〉[x �→ m] def= 〈ps(y)[x �→ m] ∧ p〉, ifQ ∼= ps(y) ∧ p

(3)
n∧

i=1

((xi = ei ∧ ṗxi
) |Iprop) def=

n∧

i=1

(xi = ei)

Theorem 4. The axiom system is soundness.

Let A be an axiom or an inference rule in the axiomatic systems. We need to
prove � A → |= A. The proof can proceed by proving each axiom and inference
rule valid in the model semantics. The details of the proof is omitted here.

4 Verification of Treiber’s Lock-Free Stack

Treiber’s stack is a non-blocking stack including two operations pop() and push(x),
which is implemented as a linked list pointed by the Top pointer. It allows
simultaneous read and write of Top, and the conflict detection is done by the
CAS (compare-and-swap) command. The codes of Treiber’s stack are presented
in Table 6.
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Fine-grained concurrency algorithms are usually implemented with basic
machine primitives, whose atomicity is enforced by the hardware. For instance,
the machine primitive CAS(x, old, new; ret) can be defined in αPTL as follows,
which has the meaning : if the value of the shared variable x is equivalent to
old then to update it with new and return 1, otherwise keep x unchanged and
return 0.

Table 6. Treiber’s stack.

In real systems, the atomicity of CAS is enforced by the hardware. Note that,
in our logic, we use the atomic interval formula (〈p〉) to assure the atomicity.
CAS primitive can be defined in MSVL as follows:

CAS(x, old, new; ret)
def
= 〈 if (x = old) then x := new ∧ ret :=1) else ret := 0 〉
≡ 〈(x = old ∧ x := new ∧ ret := 1) ∨ (¬(x = old ) ∧ ret := 0)〉
≡ 〈(x = old ∧ ©(x = new ∧ ret = 1 ∧ ε)) ∨ (¬(x = old ) ∧ ©(ret = 0 ∧ ε)〉

Each node in the linked list can be presented as a list, like nodei =
〈item,&nodei+1〉. For example, node1 = 〈6,&node2〉. Null pointer is described
by −1. We use symbol [ ] to get the elements of nodes. That is, nodei[0] = item
and nodei[1] = &nodei+1.

Therefore, we can now specify the Treiber’s stack using MSVL, which is
shown in Fig. 7. Operations pop and push(x) in Table 6 are described by the popi

and pushi(arg) respectively, where arg is a parameter of the push operation and
i denotes the thread id. Both of popi and pushi(arg) are implemented based on
the non-blocking synchronization. Treiber’s stack has a lock-free property that
means some method call finishes in a finite number of steps. We will take Prog in
Fig. 7 as an example to illustrate when two operations push ||| push implement
concurrently, the Prog satisfies the lock-free property.

The lock-free property can be specified in our logic as �♦(done1 = 1∨done2 =
1), which means that some thread can finish the operation push(x) in finite steps.
Let A = �♦(done1 = 1 ∨ done2 = 1) and B = True. In the following we will
prove that Prog satisfies A in our axiomatic system {σ0, A} Prog {σ,B}.

The outline of the proof proceed by induction on the number of states. How-
ever, in the paper, we will focus mainly on how to use the axioms and inference
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Fig. 7. Treiber’s stack in MSVL.

rules of atomic blocks, the parallel statement and the pointer assignment to
reason about programs.

(1) Firstly, by the state axioms (A1−A16) and state inference rules (R1−R3),
we deduce the pushi(arg) into its semi-normal form as follows.

pushi(arg) ∼= (donei = 0) ∧ (ti = Top ∧ arg[1] = ti)∧
CAS(Top, ti, &arg; donei) ∧ ©push′

i(arg)
where
push′

i(arg) ∼= frame(ti, donei, arg[1], reti) ∧ lbf(ti, donei, arg[1], reti)∧
((donei = 1 ∧ reti := 1 ∨ donei = 0 ∧ reti := 0) ; while (¬donei) do P1

(2) Secondly, let arg be x and y respectively. Using state axioms (A17−A22),
we deduce push1(x) ||| push2(y) into its semi-normal forms as follows.

push1(x) ||| push2(y) ∼= (done1 = 0) ∧ (done2 = 0) ∧ (t1 = Top ∧ x[1] = t1)∧
(t2 = Top ∧ y[1] = t2) ∧ CAS(Top, t1,&x; done1)∧
©(push′

1(x) ||| CAS(Top, t2,&y; done2) ∧ ©push′
2(y))

∨
(done1 = 0) ∧ (done2 = 0) ∧ (t1 = Top ∧ x[1] = t1)∧
(t2 = Top ∧ y[1] = t2) ∧ CAS(Top, t1,&x; done1)∧
©(push′

2(y) ||| CAS(Top, t1,&x; done1) ∧ ©push′
1(x))

(3) Finally, let us go back to the proof framework {σ0, A} Prog {σh, B}. By
Lemma 2 and Theorem 3, we can deduce Prog into its semi-normal form and
normal form, which are denoted by SNF (Prog) and NF (Prog) respectively.
That is, we have,

{σ0, A} Prog {σh, B}
∼= {σ0, A} SNF (Prog) {σh, B}
∼= {σ0, A} NF (Prog) {σh, B}

where SNF (Prog) can be deduced from Prog by state axioms and state inference
rules. Some of deduction steps are shown as follows.
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Prog
def
= frame(Top) ∧ Top = −1 ∧ while(True) do {push1(x) ∧ push2(y)}∼= frame(Top) ∧ Top = −1 ∧ (push1(x) ||| push2(y) ∧ more ;

while (True) do {push1(x) ∧ push2(y)})
.
.
.
∼= (Top = −1) ∧ (done1 = 0) ∧ (done2 = 0) ∧ (t1 = Top ∧ x[1] = t1)∧

(t2 = Top ∧ y[1] = t2) ∧ CAS(Top, t1,&x; done1) ∧ ©Prog1
∨ (Top = −1) ∧ (done1 = 0) ∧ (done2 = 0) ∧ (t1 = Top ∧ x[1] = t1)∧

(t2 = Top ∧ y[1] = t2) ∧ CAS(Top, t2,&y; done2) ∧ ©Prog2
where

Prog1
def
= ©(frame(Top) ∧ lbf(Top) ∧ (push′

1(x) ||| CAS(Top, t2,&y; done2) ∧ ©push′
2(y)) ;

while (True) do {push1(x) ∧ push2(y)})
Prog2

def
= ©(frame(Top) ∧ lbf(Top) ∧ (push′

2(y) ||| CAS(Top, t1,&x; done1) ∧ ©push′
1(x)) ;

while (True) do {push1(x) ∧ push2(y)})

Thus, we obtain the semi-normal form of Prog. Furthermore, by axiom
(Atom), we can unfold CAS into the form like ps∧©ps′, which results in the nor-
mal form of Prog. By rule (ANext), we can rewrite the program from the current
state to the next one and meanwhile verify whether the current state satisfies A.
The process can be done in the semi-automatical verification tool PVS [27]. We
do not present the details in the paper due to the limited space.

5 Conclusion

This paper proposes an interval-based assertion language that combines sep-
aration logic and projection temporal logic to reason about the non-blocking
programs with shared mutable data structures. We employ MSVL as the model
language and the interval-based assertion language as the specification language
such that the algorithms and properties can be specified in one notation. To well
write the non-blocking algorithms in MSVL, we also investigate a new concurrent
temporal logic model that extends MSVL with the atomic blocks, the parallel
statement and the pointer assignment. Furthermore, we augment our axiomatic
system with the axioms and inference rules for these new structures in MSVL.
In addition, we use Treiber’s stack as an example to illustrate both the MSVL
and the axiomatic system can be well used. However, in the paper, we do not
particularly investigate the correctness of the pointer programs. In the future, we
will focus on this problem and verify the issues such as the alias name in pointer
programs by means of our assertion language. In addition, the completed proof
of Theorem 4 and the Treiber’s stack will be found in our technical report.
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Abstract. Concurrency is ubiquitous today. Orc provides four powerful
combinators (parallel combinator, sequential combinator, pruning combi-
nator and otherwise combinator), used to structured concurrent program-
ming in a simple and hierarchical manner. In order to extend concurrent
mechanism in our abstract sequential programming language, called Apla,
we have already done some research about Orc. The paper takes a step
towards this goal by presenting formal semantics of Orc based on TLA+

language. Compared with other semantics of Orc, our major concern is
Orc expression’s next-state relation/action, which is ideal for expressing
behavior of a sequence of states. And liveness properties of Orc expres-
sion are also elaborated by using TLA+ weak fairness. After analysis and
comparison, our proposal could be simpler to illustrate specification of
Orc program via the well known dining philosophers problem.
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1 Introduction

Concurrency has become an essential characteristics of programming with the
advent of multi-core system and the widespread applications of Internet. Unfor-
tunately, concurrency contributes mightily to complexity in programming [1],
and it is difficult for programmer. Compared with some typically abstract con-
current language (such as RSL, Circus, and SCOOP+Effiel), we discovered that
Orc theory [1–4] and its practical applications [5] could express orchestrations
and wide-area computations in a simple and constructed manner. The major
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aspect of Orc is on its insistence on concurrency in orchestration of components,
including web services. Its initial goal is to use sequential components at the
lowest-level, and orchestrate them, possibly, concurrently [1].

Orc was originally presented as a process calculus, it has now evolved into
Orc theory, consists of Orc calculus and Orc programming language. Besides of
simplicity, Orc has powerful expression ability, because it could solve all known
synchronization and communication problems, and solve all known forms of real-
time and periodic computations [6]. Orc provides four powerful combinators
(parallel combinator, sequential combinator, pruning combinator and otherwise
combinator) that define the structure of a concurrent computation. These com-
binators, which are inherently concurrent, support sequential and concurrent
execution, concurrent execution with blocking and termination.

Logic is particularly important because it is the mathematics basis of soft-
ware: it is used to formalized the semantics of programming language and the
specification of programs and to verify the correctness of programs [7]. Temporal
logic with feature of reasoning and specifying behaviors of both hardware and
software components, is firstly introduced by Amir Pnueli in 1977 [8]. In order
to describing more properties of systems, Leslie Lamport invented TLA [9,10],
the Temporal Logic of Actions – a simple variant of Pnueli’s original logic. And
then he refined TLA+ [11] language to writing specifications of program inter-
faces (APIs), distributed systems and asynchronous systems. Besides providing
a mathematical foundation for describing systems, TLA+ also provides a nice
way to formalize the style of reasoning about systems [12] that has proved to be
most effective in practice – a style known as assertional reasoning.

Based on our original research results – abstraction sequential programming
language Apla [13] from PAR method and PAR platform [14–16], our main
research work at present is to implement Orc concurrent mechanism in Apla Lan-
guage, so that it becomes a sequential and concurrent language, called Apla+.
In order to achieve this goal, we have done some research on Orc theory and its
concurrent combinators. In this paper, we proposed formal semantics of Orc’s
four combinators based on TLA+ language, and the semantics would be eas-
ier to be modeled, simulated and verified using MSVL language [17–19] and its
toolkit MSV. Difference from other Orc’s operational or denotational semantics
[20–24], our major contribution is Orc expression’s next-state relation/action
and its liveness properties by using TLA+ language.

Why TLA+ notations were selected for describing semantics of Orc combina-
tors? TLA+ is a logic that combines temporal logic and logic of actions, which
can be used to specify and reason about concurrent features of Orc expressions
(combined by Orc combinators), and specify their safety and liveness properties.
On the other hand, TLA+ has structural concepts, such as modular decomposi-
tion and refinement of specifications. Thirdly, there are some useful supporting
tools, including model-checker TLC, prover TLAPS.

Thepaper is structured as follows: Sect. 2 reviews some foundational knowledge
about Orc theory and TLA+ language. Our original research work is elaborated in
Sect. 3, where each sub-section presents TLA+ semantics of Orc combinator. Then
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we give a case study–classical dining philosophers problem in Sect. 4. Some related
works are demonstrated and compared in Sect. 5. Finally, conclusion is discussed
in last Section.

2 Background Knowledge

2.1 Orc Theory

A theory of programming, called Orc, developed by Professor Jayadev Misra
and his collaborators. Orc introduced three important concepts, which are site ,
expression and combinator .

A site [1] is an even more general notion. It includes any program components
that can be embedded in a larger program, some cyber-physical device and
human being. A site is a service that is called like a traditional procedure and
it responds with some number of values, called publications.

An Orc program is an expression. An expression [1] is either (1) a site call,
(2) two constituent expressions combined using a combinator, or (3) a site defi-
nition followed by an expression. The expression following all the definitions in
a program is called its goal expression. A program execution starts by executing
its goal expression.

Orc has four combinators: parallel (|), sequential (>>), pruning (<<), and
otherwise (;). A combinator forms an expression from two component expres-
sions. Each combinator captures a different aspect of concurrency. Syntactically,
the combinators are written infix, and have lower precedence than operators or
calls, but higher precedence than other expression forms [25].

Combinator Precedence Level: sequential > parallel > pruning > oth-
erwise

2.2 TLA+ Language

Temporal logic has tow unary prefix basic operators: always, denoted �, and
eventually, denoted ♦. The semantics of the logic is defined in terms of states,
where a state is an assignment of values to program variables; and an infinite
sequence of states is called a behavior ; it represents en execution of the program
[12]. An action is a boolean-valued expression consisting of variables, primed
variables, and constant symbols, and it defines a relation between on old and a
new state.

TLA+ specification is writhen to an abstract program, which consists of three
things: (1) a set of possible initial states; (2) a next-state relation describing
the states that may be reached in a single step from any given state; and (3)
some fairness requirement [12].

Init ∧ �[Next ]vars ∧ Liveness

where Init is the initial predicate, used to describe all possible initial states.
Next is the next-state action, used to describe the disjunction of all possible
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moves, and vars is the tuple of all variable. Liveness properties, described
as temporal formulas, is the conjunction of formulas of the form weak fairness
WFvars(Next) and/or strong fairness SFvars(Next), for Action Next .

Some fundamental definitions and operators of TLA+ [11] needed in this
paper are given as follows.

� e′ [The value of e in the final state of a step]
� [A]e [A ∨ (e′ = e)]
� 〈A〉e [A ∧ (e′ �= e)]
� ENABLED A [An A step is possible]
� CHOOSE x : p [An x satisfying p]
� CHOOSE x ∈ S : p [An x in S satisfying p]
� CASE p1 → e1� . . .�pn → en [Some ei such that pi true. In order to

distinguish with always, we use � in CASE expression.]
� CASE p1 → e1� . . .�pn → en�OTHER → e [Some ei such that pi true,

or e if all pi are false]
� WFe(A) � �(�ENABLED〈A〉S ⇒ ♦〈A〉S) [A step must eventually occur

if A is continuously enabled, continuously means without interruption.]
� SFe(A) � �♦ENABLED〈A〉S ⇒ �♦〈A〉S [A step must eventually occur if

A is continually enabled, continually means repeatedly, possibly with inter-
ruptions.]

� Module Sequences: ◦ Append Head Tail Len Seq SubSeq SelectSeq

3 Formal Semantics of Orc Combinators

In order to explore concurrent-feature of four combinators, their formal semantics
expressed using TLA+ language are defined in this section.

3.1 Semantics of Parallel Combinator

Syntax of parallel combinator is described as:

Parallel ::= Expression|Expression

F | G means execution of expression F | G occurs by executing F and G
immediately and concurrently. Each publication of F or G is published by F | G.
Executions of F and G are interleaved arbitrarily in the execution of F | G. When
both F and G have halted, F | G halts [25]. There is no direct communication
between F and G during the execution [1].

Example 3.1. Expression add(1,2)|sub(6,1) calls the sites add(1,2) and sub(6,1)
simultaneously. Since each of these sites publishes the corresponding value, expres-
sion add(1,2)|sub(6,1) publishes 3 and 5 immediately, in either order.

Supposing publications of F | G are stored in a sequence S , we write an
initial predicate Init1 that specified the possible initial value of S .

Init1 � S = ∅ (1)
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A step of the execution F | G either sends a value of F or sends a value of G.
The next-state relation N1 is defined that appending one value VF or VG at the
end of sequence S .

N1 � S′ = S ◦ 〈VF 〉 ∨ S′ = S ◦ 〈VG〉 (2)

To express liveness L1, the specification is strengthened to the form, which
means that a step must eventually occur if N1 is continuously enabled.

L1 � WFS(N1) = �(�ENABLED 〈N1〉S ⇒ ♦〈N1〉S) (3)

According to the formulas (1)–(3), it’s easier to take as our formal specifica-
tion of parallel expression F | G. Hence, its semantics Par defined by

Par : Init1 ∧ �[N1]S ∧ L1 Semantics 1

3.2 Semantics of Sequential Combinator

Syntax of sequential combinator is described as:

Sequence ::= Expression > [V ariable/Pattern] > Expression

There are three types of sequential expression:

F > x > G [where x is a variable]
F > P > G [where P is a pattern]
F >> G

Those semantics are defined as following.

• F >x> G

In F >x> G, first the execution of F is started. Whenever F publishes a
value, a new execution of G begins in parallel. The values published by F are
consumed by the variable binding [1]. Each value published by F initiates a
separate execution of G wherein x is bound to that published value. At the end,
any value published by any executions of G is published by the whole expression
F >x> G [25].

Example 3.2. In expression add(1,2)|sub(6,1)>x> power(x), since sites add(1,2)
and sub(6,1) execute simultaneously, it publishes 3 and 5 in either order. Site power
is called twice with parameter x bound to 3 and 5, Therefore, the entire expression
published 9 and 25 in either order.

Supposing publications of F >x> G are stored in a sequence S , the initial
predicate Init2.1 is straightforward.

Init2.1 � S = ∅ (4)

The next-relation N2.1 that specifies how the value of S would be changed in
a step of execution of G, which obtained the publication of expression F. Each
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F’s publication VF is bound to variable x, and do G with the value of x, then
append this publication VG(x) at the end of sequence S .

N2.1 � S ′ = S ◦ 〈VG(x)〉 ∧ x = VF (5)

To express liveness L2.1, the specification is strengthened to the form, which
means that a step must eventually occur if N2.1 is continuously enabled.

L2.1 � WFS(N2.1) = �(�ENABLED 〈N2.1〉S ⇒ ♦〈N2.1〉S) (6)

Mixing up the formulas (4)–(6), we get formal specification of sequential
expression F >x> G. Hence, its semantics Seq1 defined by

Seq1 : Init2.1 ∧ �[N2.1]S ∧ L2.1 Semantics 2.1

• F >P> G

The sequential combinator may be written as F >P> G, where P is a pattern
instead of just a variable name. Any value published by F is matched against
the pattern P. If this match is successful, a new execution of G begins, with all
of the bindings from the match [25].

Example 3.3. In expression ((false,1)|(true,2)|(true,3)|(false,4)) >(true,y)>
power(y), two expressions (true,2) and (true,3) can be successfully matched
with pattern (true,y), then the variable y could be bound to 2 and 3 in ether
order. Therefore, the entire expression published 4 and 9 in either order.

Supposing publications of F >P> G are stored in a sequence S , the initial
predicate Init2.2 is straightforward.

Init2.2 � S = ∅ (7)

The next-relation N2.2 that specifies how the value of S would be changed in
a step of execution of G, which obtained the successfully matched publication of
expression F. If match is successful P (VF ) = TRUE, and do G with this value
VF , then append this publication VG(VF ) at the end of sequence S . On the other
hand, if P (VF ) = FALSE, sequence S is not changed.

N2.2 � CASE P (VF ) = FALSE → S ′ = S

�P (VF ) = TRUE → S ′ = S ◦ 〈VG(VF )〉 (8)

To express liveness L2.2, the specification is strengthened to the form, which
means that a step must eventually occur if N2.2 is continuously enabled.

L2.2 � WFS(N2.2) = �(�ENABLED 〈N2.2〉S ⇒ ♦〈N2.2〉S) (9)

Mixing up the formulas (7)–(9), we get formal specification of sequential
expression F >P> G. Hence, its semantics Seq2 defined by
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Seq2 : Init2.2 ∧ �[N2.2]S ∧ L2.2 Semantics 2.2

• F >> G

This is equivalent to using a wildcard pattern: F > − > G. Every publica-
tion of F will match the wildcard pattern “−”, causing an execution of G for
every individual publication of F. No bindings will be made in G from these
publications [25].

Example 3.4. Expression (add(1,2)|sub(6,1)) >> power(10) published 100
twice.

Supposing publications of F >> G are stored in a sequence S , the initial
predicate Init2.3 is straightforward.

Init2.3 � S = ∅ (10)

The next-relation N2.3 specifies appending value of G at the end of S after
getting every publication from expression F, which is described by using
isPub(VF ) = TRUE.

N2.3 � CASE isPub(VF ) = TRUE → S ′ = S ◦ 〈VG〉 (11)

To express liveness L2.3, the specification is strengthened to the form, which
means that a step must eventually occur if N2.3 is continuously enabled.

L2.3 � WFS(N2.3) = �(�ENABLED 〈N2.3〉S ⇒ ♦〈N2.3〉S) (12)

Mixing up the formulas (10)–(12), we get formal specification of sequential
expression F >> G. Hence, its semantics Seq3 defined by

Seq3 : Init2.3 ∧ �[N2.3]S ∧ L2.3 Semantics 2.3

3.3 Semantics of Pruning Combinator

Parallel and sequential combinators described above can only spawn new com-
putations, but never terminate an executing computation. Pruning combinator
allows us to do just that. Syntax of pruning combinator is described as:

Prune ::= Expression < [V ariable/Pattern] < Expression

Like the sequential combinator, there are also three types of pruning expres-
sions.

F < x < G [where x is a variable]
F < P < G [where P is a pattern]
F << G
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Those semantics are defined as following.

• F <x< G

In F <x< G, both F and G are started concurrently. Site calls are lenient in
Orc programming language, which means a site call is running even when some
of its parameters are not bound to values [1]. So, the site calls in F that have
x as a parameters can proceed even though x is not bound to a value. When G
publishes its first value, that value is bound to x in F, and then the execution of
G is immediately killed. A killed expression cannot call any sites or publish any
values. During the execution of F, any part of the execution that depends on x
will be blocked until x is bound (to the first value published by G). If G never
publishes a value, those parts remain blocked forever. The publications of F is
the values published by the entire execution of expression F <x< G [25].

Example 3.5. In expression power(x)<x<(add(1,2)|sub(6,1)), the site call
power(x) is made even though x is bound to a value, and the execution of
power(x) would be suspend until x is bound. Both sites call of add(1,2) and
sub(6,1) execute simultaneously. As soon as a value is received from either sites
call, the value 3 or 5 is bound to x, the execution of add(1,2)|sub(6,1) is termi-
nated, and power(x)’s execution resumes. Therefore, the entire expression pub-
lished 9 or 25.

Supposing publications of F <x< G are stored in a sequence S , the initial
predicate Init3.1 is straightforward.

Init3.1 � S = ∅ (13)

The next-relation N3.1 that specifies how the value of S would be changed in
a step of execution. The first G’s publication VG is bound to variable x, and do
F with the value of x, then append this publication VF (x) at the end of sequence
S . If S is not empty, terminate expression G and F.

N3.1 � CASE S = ∅ → S ′ = S ◦ 〈VF (x)〉 ∧ x = VG

�S �= ∅ → isTerminal(G) = TRUE

∧isTerminal(F ) = TRUE (14)

To express liveness L3.1, the specification is strengthened to the form, which
means that a step must eventually occur if N3.1 is continuously enabled.

L3.1 � WFS(N3.1) = �(�ENABLED 〈N3.1〉S ⇒ ♦〈N3.1〉S) (15)

Mixing up the formulas (13)–(15), we get formal specification of pruning
expression F <x< G. Hence, its semantics Pru1 defined by

Pru1 : Init3.1 ∧ �[N3.1]S ∧ L3.1 Semantics 3.1

• F <P< G
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The pruning combinator may include a full pattern P instead of just a variable
name. Any value published by G is matched against the pattern P. If this match
is successful, then G is killed and all of the bindings of pattern P are made in F.
Otherwise, the published value is simply ignored and G continues to execute [25].

Example 3.6. In power(y) <(true,y)< ((false,1)|(true,2)|(true,3)|(false,4)), two
expressions (true,2) and (true,3) canbe successfullymatchedwithpattern (true,y),
but site call power(y) only use the first publication 2 or 3. Therefore, the entire
expression published 4 or 9.

Supposing publications of F <P< G are stored in a sequence S , the initial
predicate Init3.2 is straightforward.

Init3.2 � S = ∅ (16)

The next-relation N3.2 that specifies how the value of S would be changed in a
step of execution of F, which obtained the first successfully matched publication
of expression G, expressed by P (VG) = TRUE. The first successfully matched
publication VG is bound to variable x, and do F with the value of x, then append
this publication VF (x) at the end of sequence S . If S is not empty, terminate
expression G and F.

N3.2 � CASE S = ∅ ∧ P (VG) = FALSE → S ′ = S

�S = ∅ ∧ P (VG) = TRUE → S ′ = S ◦ 〈VF (VG)〉
�S �= ∅ → isTerminal(G) = TRUE

∧isTerminal(F ) = TRUE (17)

To express liveness L3.2, the specification is strengthened to the form, which
means that a step must eventually occur if N3.2 is continuously enabled.

L3.2 � WFS(N3.2) = �(�ENABLED 〈N3.2〉S ⇒ ♦〈N3.2〉S) (18)

Mixing up the formulas (16)–(18), we get formal specification of pruning
expression F <P< G. Hence, its semantics Pru2 defined by

Pru2 : Init3.2 ∧ �[N3.2]S ∧ L3.2 Semantics 3.2

• F << G

This is equivalent to using a wildcard pattern, F < < G. G continues to
execute until it publishes a value. Any value published by G will match the
wildcard pattern “ ”. After the successful match, G is killed, but no bindings are
made in F. No part of execution of F is suspended by the pruning combinator
since there is no variable to be bound [25].

Example 3.7. Expression power(10) << (add(1,2)|sub(6,1)) published one
value 100.

Supposing publications of F << G are stored in a sequence S , the initial
predicate Init3.3 is straightforward.

Init3.3 � S = ∅ (19)
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The next-relation N3.3 that specifies specifies appending value of F at the
end of S after getting first publication from expression G. If S is not empty,
terminate expression G and F.

N3.3 � CASE S = ∅ ∧ isPub(VG) = TRUE → S ′ = S ◦ 〈VF 〉
�S �= ∅ → isTerminal(G) = TRUE

∧isTerminal(F ) = TRUE (20)

To express liveness L3.3, the specification is strengthened to the form, which
means that a step must eventually occur if N3.3 is continuously enabled.

L3.3 � WFS(N3.3) = �(�ENABLED 〈N3.3〉S ⇒ ♦〈N3.3〉S) (21)

Mixing up the formulas (19)–(21), we get formal specification of pruning
expression F << G. Hence, its semantics Pru3 defined by

Pru3 : Init3.3 ∧ �[N3.3]S ∧ L3.3 Semantics 3.3

3.4 Semantics of Otherwise Combinator

Syntax of otherwise combinator is described as:

Otherwise ::= Expression;Expression

Otherwise combinator exploits halting of expressions. In F ; G, execution of
F is first started. If F halts, and has not published any value, then G executes.
If F publishes one or more values, then G is ignored. The publications of F ; G
are those of F if F publishes, or those of G if F is silent [25].

Let us introduce an auxiliary sequence SF , storing the publications of F, and
a sequence SG, storing the publications of G. Supposing publications of F ; G
are stored in a sequence S , we defined its initialization.

Init4 � S = ∅ ∧ SF = ∅ ∧ SG = ∅ (22)

The next-relation N4 that specifies that how the value of S would be changed
in a step of execution of F or G. If SF is not empty, S store publication of F,
otherwise, it store publication of G.

N4 � CASE SF �= ∅ ∧ isTerminal(F ) = TRUE → S ′ = SF

� SF = ∅ ∧ isTerminal(F ) = TRUE → S ′ = SG (23)

To express liveness L4, the specification is strengthened to the form, which
means that a step must eventually occur if N4 is continuously enabled.

L4 � WFS(N4) = �(�ENABLED 〈N4〉S ⇒ ♦〈N4〉S) (24)

Mixing up the formulas (22)–(24), we get formal specification of otherwise
expression F ; G. Hence, its semantics Oth defined by

Oth : Init4 ∧ �[N4]S ∧ L4 Semantics 4
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4 Dining Philosophers Problem

Dining Philosophers Problem was originally introduced for a ring topology by
Dijkstra [26]. Five philosophers are sitting around a circular table. Each philoso-
pher has his own place, a single fork between each pair of adjacent philosophers.
Any philosopher may decide to eat at any time and requires both of his forks to
do so. Orc program [27] of dining philosophers problem is given as following.

1: def shuffle(a,b) = if (Random(2) = 1) then (a,b) else (b,a)
– Randomly swap two elements

2: def take((a,b)) = a.acquire() >> b.acquireD() ; a.release() >> take(shuffle(a,b))
– Acquire two forks in the order given

3: def drop(a,b) = (a.release(), b.release()) >> signal
– Release two forks

4: def phil(a,b,name) =
def thinking() = Rwait(Random(1000))
def hungry() = take((a,b))
def eating() = Println(name + ”is eating.”) >>

Rwait(Random(1000)) >>
Println(name + ”has finished eating.”) >> drop(a,b)

thinking() >> hungry() >> eating() >> phil(a,b,name)
– Start a philosopher process with forks a and b

5: def dining(n) =
val forks = Table(n+1, lambda( ) = Semaphore(1))
def phils(0) = stop
def phils(i) = phil(forks(i), forks((i+1)% n), ”Philosopher” + i) | phils(i-1)
phils(n)

– Start n philosophers dining in a ring
6: Let( dining(5) | Rwait(10000) ) >> Println(”Simulation stopped.”) >> stop

– Simulate 5 philosophers for 10 seconds before halting

4.1 Semantics of Take Expression

Firstly, let us define specification of the 2nd definition in above program by using
our semantics. take((a,b)) is defined as the following expression TakeExp.

• TakeExp: a.acquire() >> b.acquireD() ; a.release() >> take(shuffle(a,b))

According Combinator Precedence Level, given in Sect. 2.1, sequential com-
binator has higher precedence over otherwise combinator. The above expression
can be divided into two subexpressions, TakeSubExp1 and TakeSubExp2 .

• TakeSubExp1 : a.acquire() >> b.acquireD()
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Supposing sequence S1 is used to store the publication of TakeSubExp1 ,
so its initial predicate is S1= ∅, and the next-relation NTakeSubExp1 is defined.

NTakeSubExp1 � CASE isPub(Va.acquire()) = TRUE →
S ′

1 = S1 ◦ 〈Vb.acquireD()〉 (25)

• TakeSubExp2 : a.release() >> take(shuffle(a,b))

Similarly, supposing sequence S2 is used to store the publication of Take-
SubExp2 , so its initial predicate is S2= ∅, and the next-relation NTakeSubExp2

is defined.

NTakeSubExp2 � CASE isPub(Va.release()) = TRUE →
S ′

2 = S2 ◦ 〈Vtake(shuffle(a,b))〉 (26)

• TakeExp: TakeSubExp1 ; TakeSubExp2

Supposing publications of TakeExp are stored in a sequence S , we write an
initial predicate InitTakeExp.

InitTakeExp � S1 = ∅ ∧ S2 = ∅ ∧ S = ∅ (27)

The next-relation NTakeExp is defined.

NTakeExp � CASE S1 �= ∅ ∧ isTerminal(TakeSubExp1) = TRUE → S ′ = S1

� S1 = ∅ ∧ isTerminal(TakeSubExp2) = TRUE → S ′ = S2

(28)

4.2 Semantics of Philosopher Expression

Then we define specification of each philosopher using our semantics. phil(a,b,
name) is defined as the following expression PhilExp.

• PhilExp: thinking() >> hungry() >> eating() >> phil(a,b,name)

This recursive expression can be divided into two subexpressions, PhilSub-
Exp1 and PhilSubExp2 .

• PhilSubExp1 : thinking() >> hungry()

Supposing sequence R1 is used to store the publication of PhilSubExp1 , so
its initial predicate is R1= ∅, and the next-relation NPhilSubExp1 is defined.

NPhilSubExp1 � CASE isPub(Vthing()) = TRUE →
R′

1 = R1 ◦ 〈Vhungry()〉 (29)

• PhilSubExp2 : PhilSubExp1 >> eating()
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Similarly, supposing sequence R2 is used to store the publication of PhilSub-
Exp2 , so its initial predicate is R2= ∅, and the next-relation NPhilSubExp2 is
defined.

NPhilSubExp2 � CASE R1 �= ∅ → R′
2 = R2 ◦ 〈Veating()〉 (30)

PhilExp is recursive expression, so it can be rewrote like this.

• PhilExp: PhilSubExp2 >> PhilExp

Supposing publications of PhilExp are stored in a sequence R, and the
number of PhilExp’s publications are stored in a integer variable num , and its
initial state is R = ∅ ∧ num = 0. We defined its next-relation NPhilExp.

NPhilExp � CASE R2 �= ∅ → R′ = R ◦ R2 ∧ num′ = num + 1 (31)

4.3 Safety

In the verification of concurrent programs two kinds of properties are of primary
importance: safety properties, asserting that something bad never happens, and
liveness properties asserting that something goodwill eventually happen.Twopop-
ular safety properties are generally considered: invariance and deadlock freedom.

According to the above Orc program of dining philosophers, we know the ith

philosophers has two forks forki and fork(i+1)%n. Supposing Phil0 is equal to
Philn, the ith fork shared by two philosophers Phili and Phili−1.

An invariance property is expressed by a TLA+ formula �P , where P is
a predicate. In expression forks = Table(n + 1, lambda( ) = Semaphore(1)),
each fork is defined by using semaphore with initial value one. So it implies the
following invariant property: “Every fork can’t be used by two philosophers”, and
it is defined as ForkSpe .

ForkSpe � �(∀i : 1 ≤ i ≤ n : ¬((forki ∈ Phili) ∧ (forki ∈ Phili−1)) (32)

Each philosopher could be eating only when he (or she) is hungry, and has
successfully got both forks. This condition can be expressed as following.

((forki ∈ Phili) ∧ (fork(i+1)%n ∈ Phili)) ⇒ isEating(Phili) (33)

So, let us consider the second invariant property: “Two neighbor philosophers
not eat simultaneously”, and it is defined as PhilMutual .

PhilMutual � ForkSpe ⇒ �(∀i : 1 ≤ i ≤ n :
¬(isEating(Phili) ∧ isEating(Phil(i+1)%n)) (34)

Deadlock occurs when two or more philosophers in a system are blocked
forever, because of requirements that can never be satisfied. There is a deadlock
when each philosopher got left fork, and is waiting right fork. But it is free of
deadlock in this program.
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Expressions shuffle(a,b) and take((a,b)) could effectively avoid deadlock.
If Random(2) = 1, the return tuple of expression shuffle(a,b) is (a, b), which
means firstly getting a, then getting b; otherwise, its return tuple is (b, a), which
means firstly getting b, then getting a. If a philosopher got one fork, but failed
to get another fork in a given period of time, the program entered into a mediate
state, called GotOneFork = (forki ∈ Phili) ⊕ (fork(i+1)%n ∈ Phili), where
⊕ is XOR operator. At the moment, the philosopher release this fork, and try
to get two forks in the same order or different order, depending on the value of
Random(2) = 1.

Supposing a sequence Pi is storing the order of fork for ith philosophers. The
specification of philosopher PhilSpe is expressed as follows.

PhilSpe � �(∀i : 1 < i < 5 : CASE Random(2) = 1 ∧ (forki ∈ Phili)
∧(fork(i+1)%n ∈ Phili) → Pi = 〈i, (i + 1)%n〉

�Random(2) �= 1 ∧ (fork(i+1)%n ∈ Phili)
∧(forki ∈ Phili) → Pi = 〈(i + 1)%n, i〉

�(forki ∈ Phili) ⊕ (fork(i+1)%n ∈ Phili) →
repeat(take(shuffle(forki, fork(i+1)%n)))

(35)

Mixing up the above specifications, it’s easier to express free-deadlock Dead-
lockFree in the following property.

DeadlockFree � ForkSpe ∧ PhilMutual ∧ PhilSpe (36)

4.4 Liveness

A liveness property is that if a philosopher thinks and want to eat, he (or she)
eventually would eat. Let us remark a expression PhilSubExp2 : PhilSubExp1
>> eating(), where PhilSubExp1 : thinking() >> hungry(). Its next-relation
formula NTakeSubExp2 is discussed in Sect. 4.2. Hence, we enhance this formula
by a weak fairness condition for PhilSubExp2 expression.

WF〈R1,R2〉(NPhilSubExp2) = �(�ENABLED 〈NPhilSubExp2〉〈R1,R2〉
⇒ ♦〈NPhilSubExp2〉〈R1,R2〉), (37)

where sequences R1 and R2 are also defined in Sect. 4.2.
The weak fairness WF〈R1,R2〉(NPhilSubExp2) means that a step must eventu-

ally occur if NPhilSubExp2 is continuously enabled, so hungry philosopher would
eat eventually.

4.5 Comparison

A new TLA-based model for specifying and verifying concurrent programs is
proposed in paper [28], it combinated ADT and TLA, and illustrated dining
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philosophers problem. In Palmer’s doctoral-dissertation [29], he give a TLA+

specification of the classic dining philosophers problem, it defined formula about
three states (including “Thinking”, “Got One Fork” and “Eating”) in the life of a
philosopher. Compared with them, our semantics of program, and our description
of safety and liveness could be simpler.

5 Related Works

Theretofore, several attempts have been made to find semantics of Orc. In 2004,
a tree semantics of three combinators (parallel, sequential and pruning combina-
tor) has been defined by Tony Hoare and Jayadev Misra [20], its main achieve-
ment is to permit simple proofs of familiar algebraic identities that hold between
programs with different syntactic forms. Based on labeled transaction system,
Misra and Cook also defined an operational semantics for three kinds of com-
binators [2]. Trace-based denotational semantics model without time has also
been demonstrated in [21], this model induced a congruence on Orc programs
and facilitates reasoning about them. A partial-order semantics [22] was defined
using heaps, which are then easily translated into asymmetric event structures.
A timed operational semantics of Orc reasoning about delays, and a denotational
semantics of Orc program with a set of traces, was presented in paper [23]; and
authors also showed the two semantics are equivalent. A denotational semantical
model for Orc language is proposed by Jifeng He [24], and this model gives the
same semantical interpretation to the implementations and specifications of Orc
program. In the latest Jayadev Misra’s book [1], he summarized two parts of
Orc semantics, one is asynchronous semantics without the notion of real time,
another is synchronous semantics with real time.

Compared with the above semantics of Orc, our formal semantics of Orc
combinators pay more attention to its behavior, expressed by next-state relation,
and its liveness properties demonstrated by using weak fairness of TLA+.

6 Conclusions

Concurrency will continue to permeate many areas, including client-service sys-
tems, transaction processing system and web services. Orc theory, consists of Orc
calculus and Orc language, provide high-level constructs suitable for structured
concurrent programming. Its four powerful combinators is inherently concurrent,
which means each combinator captures a different feature of concurrency.

The motivation of the paper is to extend Orc concurrent mechanism in our
abstract sequential programming language, called Apla. Hence, we have pre-
sented formal semantics for Orc expression, combined by combinators. Our main
work is to elaborate behavior and liveness property of Orc combinators by using
TLA+ specification, consisting of initial states, next-state relation, and fairness
requirement. Finally, a typical dining philosophers problem is illustrated appli-
cation of our semantics.
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After understanding the semantics of Orc combinators, we will continue
research on implementation of Orc concurrent mechanism in our Apla language,
so that it becomes sequential and concurrent language Apla+; and then its sup-
porting toolkit Apla+ToJava generator, automatically translating abstract con-
current Apla+ program into Java concurrent program, will be designed in the
near future.

Acknowledgments. The authors thanks Professor Jayadev Misra, inventor of Orc
theory, for discussion about Orc combinators and his tutorial lessons in FACS2013.
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Abstract. Points-to analysis is a static analysis technique which com-
putes the relationships between the program variables and the heap
references. It has been widely used in program optimization, program
understanding, and error detection. Inclusion-based points-to analysis
computes the points-to sets in a program by translating the program
into a set of inclusion constraints on the points-to sets and then solv-
ing them to yield the desired results. Yet the analysis faces a difficulty
in that a program can be frequently changed in its development, and
great efforts may be exhausted to re-generate the inclusion constraints
and re-solve them. In this paper, we extend the inclusion-based points-to
analysis to an incremental one called Inc-PTA. The essential idea of Inc-
PTA is to sum up the program changes into an editscript of a sequence
of successive edits, and then to propagate the edits to the constraints
followed by taking a demand-driven points-to analysis of the program.
We also discuss about the correctness of Inc-PTA, and believe that Inc-
PTA can provide with a cost-effective solution to incremental points-to
analysis.

Keywords: Constraint solving · Incremental Points-to Analysis · Edit
propagation

1 Introduction

Points-to analysis is a static analysis technique which computes the relationships
between the program variables and the heap references [1,2]. Inclusion-based
points-to analysis (i.e., Andersen-style points-to analysis [2]) is a classical points-
to analysis technique. It advocates an idea of translating a program into a set
of inclusion constraints on the points-to sets and then iteratively solving these
constraints to yield the results [2–4].

Inclusion-based points-to analysis has been widely used in program optimiza-
tion, program optimization, program understanding, and error detection [5].
Meanwhile its efficiency is always a concern in practice. One main obstacle is that
a large number of strongly-coupled constraints may be produced during analy-
sis, solving of which are usually iterated, and at each iteration most, if not all,
c© Springer International Publishing Switzerland 2015
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constraints need to participate in the solving [3,4]. In addition, some system and/or
user libraries are usually included in the analysis, which requires the massive resou-
rces be consumed during analysis because the reachable objects and methods can
be numerous [6]. Although it is often conducted to ease the difficulty by performing
the sparse analysis or reducing the domains of variables of interest [7,8], resource-
intensive remains to be the natural instincts of points-to analysis.

On the other side, a software system in development can be frequently changed,
making points-to analysis tedious. Efforts must be made in order to alleviate the
difficulty and take the points-to analysis in an incremental style, which refrains the
points-to information from being recomputed from scratch, but achieves them by
updating the points-to sets that have been previously solved. Although some solu-
tions (e.g., [9]) have been proposed to seek to perform efficient incremental points-
to analysis, they do not harmonize well with the commonly-used inclusion-based
analysis algorithms in that the inclusion constraints may not be updated and re-
solved. One key to these solutions is to focus on “ reachability” [10], which requires
the engineers scrupulously identify the change points in the program to be ana-
lyzed and then update the points-to sets of the variables that are reachable to the
change points. A path tracing technique (e.g., slicing) is usually adopted to derive
the reachability information from the program.

In this paper, we extend the inclusion-based points-to analysis for Java to
an incremental one called Inc-PTA (Incremental Points-to Analysis). Inc-PTA is
motivated by an insight of “reusing and re-solving the constraints”. Let Prog and
Prog’ be the versions of a Java program before and after change, respectively. Let
the sets of inclusion constraints for Prog and Prog’ be ConsProg and ConsProg′,
respectively. An observation can inevitably help find a fact that most inclusion
constraints on Prog are repeated in those on Prog’, and solving of ConsProg′ also
benefits from the process of solving of ConsProg in that they endure the similar
iterative computations.

1.1 Basic Approach

Inclusion-based points-to analysis defines and solves a set of inclusion constraints
on the points-to relations. During analysis, a Java program Prog is at first trans-
formed into the Jimple’s three-address code [11]. After that, a PAG (Pointer
Assignment Graph) is constructed to represent the inclusion constraints on Prog
and the points-to sets are propagated throughout the graph until a fixed point
is reached.

Inc-PTA is an incremental and change-adaptive approach to points-to analy-
sis. It advocates the idea of reducing the efforts of re-generating and re-solving the
constraints on Prog’ by reusing and editing those on Prog. As Fig. 1 shows, once
Prog is slightly changed to Prog’, an editscript describing how Prog is changed
into Prog’ is produced and then propagated to the points-to sets of Prog. We
focus on two main issues in regard to the incremental points-to analysis for Java:

1. The intermediate representations of the program to be analyzed. We intro-
duce two kinds of intermediate representations for supporting the incremen-
tal points-to analysis: Inc-3AC (Incremental Jimple’s Three-Address Code)
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Fig. 1. Edit propagation during the incremental analysis.

representing the Jimple’s code of a program along with all changes to the
code, and Inc-PAG (Incremental Pointer Assignment Graph) representing
the points-to relations given by a program along with all changes to them;

2. The edits and their propagations. We believe that edit propagation can be
a key to incremental analysis: when the program is changed, the engineer
summarizes the program changes into an editscript of a sequence of successive
primitive edits followed by the propagation of the edits to the PAG. The
points-to sets of the program can also be efficiently computed on the basis of
the PAG and the edits on it.

1.2 Contributions

The paper makes two contributions:

1. We provide a lightweight solution to incremental points-to analysis which does
not only hold the instincts for the traditional inclusion-based points-to analy-
sis, but also adapt to the program changes in that it allows the program changes
to be transferred throughout the analysis in an edit propagation manner.

2. We present three crucial activities of the incremental points-to analysis. The
three activities focus on how the edits on the program are propagated to the
Jimple’s code, to the PAG, and to the points-to sets of the program, respec-
tively. These activities supplement each other so that the points-to results for
Prog’ can be efficiently computed.

This paper is organized as follows: Sect. 2 briefly introduces the main idea
of inclusion-based points-to analysis, Sect. 3 introduces the principle of Inc-PTA
and make a discussion, Sect. 4 describes the related work, and Sect. 5 draws the
conclusions and points out the future research directions.

2 Background

Inclusion-based points-to analysis defines and solves a set of inclusion constraints
on thepoints-to relations.Lhotákhas introducedPAG(PointerAssignmentGraph)
as the internal representation of the program being analyzed [12]. A PAG is defined
as a directed graph < V,E > where
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– V contains a set of vertices. A PAG uses four types of vertices (allocation
vertices, variable vertices, filed reference vertices, and concrete field vertices)
to represent the memory locations.

– E contains a set of edges. A PAG uses four types of edges, as next shows.
Each edge (say v1 → v2) represents an assignment of pointers from a source
vertex v1 to a sink one v2, and is associated with an inclusion constraint on
the points-to set of v1 and that of v2.
1. An allocation edge (L1:a = new C() for example) is from an allocation

vertex to a variable vertex. It represents an assignment of pointers to the
objects represented by an allocation vertex to the location of the variable
a. The inclusion constraint represented by the edge is {L1} ⊆ pt(a), where
pt returns the points-to set of a.

2. An assignment edge (a = b for example) is from a variable vertex to
another one. It represents an assignment of pointers from the location of b
to the location of a. A constraint represented by the edge is pt(b) ⊆ pt(a).

3. A load edge (a = b.f for example) is an edge from a field reference vertex
to a variable vertex. It represents a load of the appropriate field of some
object (i.e., b.f) to the location of a. A constraint represented by the edge
is pt(o.f) ⊆ pt(a) where o∈ pt(b).

4. A store edge (b.f = a for example) is from a variable vertex to a field
reference vertex. It represents a store of a to the appropriate field reference.
A constraint represented by the edge is pt(a) ⊆ pt(o.f) where o∈ pt(b).

A PAG can be built by iterating through the Jimple input of the program and
then creating the appropriate vertices and edges in the graph. For facilitating the
incremental analysis, we assign each edge with a label list representing which lines
of Jimple’s code can contribute to the creation of the edge. For example, v1 →0,1 v2
denotes that v1 → v2 is created due to the instructions at lines 0 and 1.

After analysis, each vertex is assigned with a points-to set denoting the heap
references pointed by the variable or the field represented by the vertex. The
points-to analysis is performed by propagating the points-to sets throughout the
PAG, i.e., solving the inclusion constraints on the points-to sets. The propagation
is usually iterated along with the inclusion of the newly-discovered reachable
methods and heap references into the PAG until a fixed point can be reached,
i.e., the constraints are usually iteratively solved.

3 Principle of Inc-PTA

Inc-PTA advocates the idea of analyzing the points-to sets of Prog’ by propagat-
ing the edits to the process of constraint solving and patching up the point-to
sets of Prog. Some research questions may be raised during the incremental
analysis, which will be answered in the remaining part of this section.

1. How is an edit be defined on a Java program to be analyzed?
2. For each edit on Prog, what kinds of edits need to be generated on its Jimple’s

code and PAG?
3. How are the constraints re-solved?
4. How is the correctness of the analysis guaranteed?
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Listing 1.1. A BubbleSort program

1 import java . u t i l . ArrayList ;

2 import java . u t i l .Random ;

3

4 public class Bubblesort {
5 public ArrayList<Integer> array ;

6 public I n t eg e r sum ;

7

8 public Bubblesort ( ) {
9 array = new ArrayList<Integer >() ;

10 Random random = new Random() ;

11 for ( int i = 0 ; i < 10 ; i++)

12 array . add (new I n t ege r ( random . nextInt (100) ) ) ;

13 //+ sum0=new In t e g e r (0 ) ;

14 }
15

16 public int s o r t (boolean ascending ) {
17 int k = 0 ;

18 while ( k < array . s i z e ( ) ) {
19 int t = k ;

20 while ( t > 0 && ( ascending && array . get ( t − 1) >˜array . get ( t ) | |
21 ! ascending && array . get ( t − 1) < array . get ( t ) ) ) {
22 swap ( t − 1 , t ) ;

23 t = t − 1 ;

24 }
25 //+ sum1=new In t e g e r ( sum2+array . g e t ( k ) ) ;

26 k = k + 1 ;

27 }
28 return array . s i z e ( ) ;

29 }
30

31 private void swap ( int index1 , int index2 ) {
32 I n t eg e r temp = array . get ( index1 ) ;

33 array . s e t ( index1 , array . get ( index2 ) ) ;

34 array . s e t ( index2 , temp) ;

35 }
36

37 public stat ic void main ( St r ing [ ] a rgs ) {
38 Bubblesort bubblesor t = new Bubblesort ( ) ;

39 bubblesor t . s o r t ( fa l se ) ;

40 }
41 }

3.1 An Example

For facilitating the discussion, we take a Java program BubbleSort (see List-
ing 1.1) as an example. The program stores a set of random integers to an object
of the ArrayList type, and then adopts the bubblesort algorithm to sort the inte-
gers in either an ascending or a descending order. BubbleSort’ is an updated
version of BubbleSort in that two statements (see lines 13 and 25) are inserted
into the program for summing up all the integers in the array. In Listing 1.1 we
take sum as the variable of interest and use sumi to denote the ith appearance
of sum.

For quickly moving into the essential idea of Inc-PTA, we omit the details of
performing the inclusion-based points-to analysis of BubbleSort, but emphasize
on how to perform the incremental analysis of BubbleSort’. Any engineer can
use the SOOT’s Spark points-to analysis framework [12] to construct the PAG
of BubbleSort and compute the points-to sets.
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3.2 Editscript

As an initial step, we summarize the program changes into an editscript. An
editscript is composed of a sequence of primitive edits that are successively com-
mitted to the program. Some common types of primitive edits are enumerated
as follows:

1. Insert(Prog,s1,s2): insert a statement s1 at a position after s2;
2. Delete(Prog,s): delete s from Prog;
3. Update(Prog,s1,s2): update s1 to s2;
4. Move(Prog,s1,s2): move s1 to a position after s2. The edit is functionally

equivalent to Delete(Prog,s)•Insert(Prog,s1,s2);
5. Align(Prog,s1,s2): exchange the positions of s1 and s2;
6. NOP(Prog): no operation on Prog.

An editscript is composed of a sequence of primitive edits. Here we use “•” to
concatenate the primitive edits to form an editscript. For example, the changes of
BubbleSort are summarized into an editscript EditScriptBubbleSort of two prim-
itive edits: an insertion of an initialization of the variable sum into BubbleSort(),
and an insertion of a statement into the method sort(boolean) for summing up
the elements in the array. Notice that in each edit we use the method signature
(e.g., sort(boolean)) to indicate which method a statement is inserted into.

EditScriptBubbleSort:
Insert(BubbleSort(),"13: sum0=new Integer(0);")
• Insert(sort(boolean),"25: sum1=new Integer(sum2+

array.get(k));").

In the study, we use ChangeDistiller, a fine-grained source code change
extraction tool [13,14], to recognize the edits on the programs to be analyzed.
ChangeDistiller differs the ASTs (Abstract Syntax Trees) of Prog and Prog’,
and produces an editscript that contains a minimal number of tree edit opera-
tions with which the AST of Prog can be edited into that of Prog’. The edits
are formed into an editscript which provide us with precise information about
the source code changes and as well the locations of the changes.

3.3 Edits on Jimple’s Three Address Code

Points-to analysis is usually performed on the intermediate code of a program.
Thus we also perform the incremental analysis of a program on its Jimple’s three
address code, but mark up in the Jimple’s code the change information. Notice that
although the SOOT optimization framework [15] can be used to generate the
Jimple’s code for Prog’, the traceability between the code and that of Prog is not
easy to maintain since the programs may use different temporary variables and
labels in their Jimple’s code. Thus we take some extra steps to weave the edits
on Prog into its Jimple’s code (say JimpleProg) so that the resulting code (say
JimpleProg′) can be traceable back to Jimple Prog.
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Fig. 2. Generation of the Jimple’s code with change information for Prog’.

As Fig. 2 shows, we at first use the SOOT framework to generate the Jimple’s
code for both Prog and Prog’. Let the SOOT-generated Jimple’s code of Prog
and Prog’ be SJimpleProg (same as JimpleProg) and SJimpleProg′, respectively.
We follow the next steps to generate JimpleProg′ that is traceable to JimpleProg:

– Print in SJimpleProg and SJimpleProg′ a variety of tags to denote the relation-
ships between the program constructs and the code segments. Each tag shows
a program statement that contributes to the generation of an instruction, and
it is printed on the line succeeding the instruction that it is attached to. With
the tags, an engineer can determine the program statement that contributes to
an instruction and, given a program statement, also seek the lines of Jimple’s
code it generates.

– Eliminate the labels and the goto instructions in the Jimple’s code. Since the
creation of a PAG edge relies on the existence of one or more instructions
which hold the points-to relation of the edge but not their positions or the
control flows in the code, we eliminate in the code the instruction labels and
the goto instructions.

– Translate the editscript on Prog into an editscript on SJimpleProg. We trans-
late each edit on Prog to one or more edits on the Jimple’s code. The patterns
for translating the edits are given as follows.
• Insert(Prog,s1,s2) is transformed into insertion of SJimples1 into SJim-
ple Prog. SJimples1 represents the Jimple’s code for s1, and is obtained by
seeking in SJimpleProg′ the Jimple’s instructions generated for s1;

• Delete(Prog,s) is transformed into deletion of SJimples from SJim-
pleProg. SJimples is obtained by seeking in SJimpleProg the Jimple’s instr-
uctions generated for s;

• Update(Prog,s1,s2) is transformed into deletion of SJimples1 followed by
insertion of SJimples2. Here SJimples1 and SJimples2 are obtained from
SJimpleProg and SJimpleProg′ , respectively;

• Move(Prog,s1,s2) is transformed into moving SJimples1 to a position after
SJimples2. Both SJimples1 and SJimples2 are obtained from SJimpleProg;
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1. Insert(BubbleSort(), "13: sum0=new Integer(0);")⇒
Insert(BubbleSort(), "+k0: $t0 = new java.lang.Integer;")
•Insert( , "+k1: specialinvoke $t0.<init>(0);")
•Insert( , "+k2: this.sum = $t0;")

2. Insert(sort(boolean),"25: sum1=new Integer(sum2 +array.get
(k));")⇒
Insert(sort(boolean), "+k3: $t0 = this.<Bubblesort:
java.lang.Integer sum>;")
•Insert( , "+k4: $t1 = virtualinvoke $t0.<java.lang.Integer:
int intValue()>();")
•Insert( , "+k5: $t2 = this.<Bubblesort: java.util.ArrayList
array>;")
•Insert( , "+k6: $t3 = virtualinvoke $t2.<java.util.ArrayList:
java.lang.Object get(int)>(k);")
•Insert( , "+k7: $t4 = (java.lang.Integer) $t3;")
•Insert( , "+k8: $t5 = virtualinvoke $t4.<java.lang.Integer:
int intValue()>();")
•Insert( , "+k9: $t6 = $t1 + $t5;")
•Insert( , "+k10: $t7 = new java.lang.Integer;")
•Insert( , "+k11: specialinvoke $t7.<java.lang.Integer: void
<init>(int)>($t6);")
•Insert( , "+k12: this.<Bubblesort: java.lang.Integer sum> =
$t7;")

Fig. 3. Transformation of the edits on BubbleSort into the edits on its Jimple’s code.

• Align(Prog,s1,s2) is transformed into exchanging the positions of SJim-
ples1 and SJimples2. Both SJimples1 and SJimples2 are obtained from
SJimpleProg.

– Commit the edits and update the dataflows. Committing the translated edits
on SJimpleProg can produce JimpleProg′ , which is equivalent to SJimpleProg′
with respect to the points-to relations. Since the temporary variables used in
the changed instructions may conflict with those in SJimpleProg, we update
them in JimpleProg′ . Specifically, any temporary variable introduced into an
updated segment needs to be assigned with a new name such that it does not
conflict with the variables outside the segment.

– Mark up the change information in JimpleProg′ . The change information can
be summarized by comparing JimpleProg and JimpleProg′ : an instruction is
marked with a label “+” if it exists in JimpleProg′ but not in JimpleProg, or
marked with “–” on the contrary.

For example, Fig. 3 shows the transformation of the edits on BubbleSort to
those on its Jimple’s code. The first edit is transformed into three insertion edits,
each of which inserts an instruction into the constructor (i.e., BubbleSort()).
The second edit is transformed into ten insertion edits which insert instructions
into the method sort(boolean). Here ki represents an identification number of
an inserted instruction, $ti represents a temporary variable, and represents
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an intermediate method resulting from the commitment of the preceding edit.
Notice that the resulting Jimple’s code is incomplete in that the control flows are
omitted, while it is sufficient to use the code to produce the inclusion constraints
and solve them.

3.4 Construction of Inc-PAG

Our analysis computes the annotated points-to graph called Inc-PAG. A PAG
describes the points-to relations in the program being analyzed. We extend PAG
to Inc-PAG in that (1) each edge or vertex holds a flag stating whether it has
been changed or not; and (2) the label list on each edge records the changes of
the lines of Jimple’s code. An Inc-PAG is defined as a labelled directed graph
< V,E > where

– V contains a set of vertices representing the memory locations;
– E contains a set of edges representing the points-to relations;
– Each vertex is associated with a points-to set;
– Each edge is attached with a list of labels denoting the lines of Jimple’s code

that may contribute to the edge and the change information. For example,
v1→0,−1,+2v2 indicates that the lines of code for v1 → v2 are changed from
{0, 1} to {0, 2};

– Each vertex or edge is assigned with a flag “+” (or “−”) if it is newly inserted
into (or deleted from) the graph.

Let Prog be changed to Prog’. Let PAGProg be the pointer assignment graph
of Prog. Inc-PAGProg′ is constructed by propagating the edits in the editscript
to PAGProg, as next shows:

1. Inc-PAGProg′ = PAGProg;
2. Iterating through JimpleProg′ with change information and updating Inc-

PAGProg′ .
(a) For a Jimple’s instruction L having a label “+”, create an edge (say

a→ b) representing the points-to relation introduced by L, and either
add “+L” to the label list of a→b if Inc-PAGProg′ contains it, or add
a →+L b into Inc-PAGProg′ otherwise.

(b) For an instruction L having a label “–”, identify its edge in Inc-PAGProg′ ,
and change the label “L” to “−L”.

3. Assign a flag “+” (or “–”) to an edge or a vertex if it is newly inserted into
(or deleted from) the points-to graph. Specifically, a vertex is assigned with
“–” if it is not connected by the others in the graph, and an edge is assigned
with “–” if its label list only contains the labels with the prefix “–”.

Figure 4 shows a simplified Inc-PAG of BubbleSort’, where an abstract rep-
resentation of the PAG of BubbleSort is shown in the top part, the bottom
part contains a set of vertices and edges introduced by the Jimple’s instructions
shown in Fig. 3, the vertices (e.g., L13 and L25) represent the heap references
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Fig. 4. An Inc-PAG of Prog’.

at lines 13 and 25, respectively, the vertices (e.g., array, sum, and t0) represent
the variables used in the program, and the other vertices represent the filed ref-
erences and the concrete fields, respectively. Note that in Fig. 4, (1) each edge in
the incremental part is assigned with a label denoting the inserted instruction;
(2) since all of the edges and vertices in the incremental part are newly inserted,
we omit their flags (“+”) in the figure; and (3) some dashes are used to repre-
sent the edges between a vertex in the incremental part and some vertices in the
original PAG.

When the Inc-PAG of BubbleSort’ is constructed, an insertion edit on the
Jimple’s instruction is translated to an insertion edit on the graph. For example,
we have

Insert(BubbleSort(),"+k0: $t0 = new java.lang.
Integer;")⇒

Insert(Inc-PAGBubbleSort′, k0: L13→$t0)

3.5 Solving of Points-to Sets

Given PAGProg with solved points-to sets, Inc-PAGProg′ can be re-solved by
patching up the points-to sets in PAGProg. Furthermore, any patch to Inc-
PAGProg′ (increment or decrement) needs to be propagated throughout the
graph. The process of re-solving of inclusion constraints is given as follows:

– Traverse Inc-PAGProg′ and initialize the points-to sets in Inc-PAGProg′ . For
each vertex v in Inc-PAGProg′ , we let

pt(v) =

{
pt(matching(v)) when v is matched with a vertex in PAGProg;
∅ when v has a flag “+”.
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Here matching(v) returns the vertex in PAGProg matched with v;
– For each edge v1 → v2 having a flag “+”, propagate an increment of the

points-to set of v1 to that of v2. Let e ∈ pt(v1). The propagation adds e+ to
the points-to set of v2 if e /∈ pt(v2) (or e+ /∈ pt(v2)).

– For each edge v1 → v2 having a flag “–”, propagate a decrement of the points-
to set of v1 to that of v2. Let e ∈ pt(v1). The propagation adds e− to the
points-to set of v2.

– Iterate the next two steps until the points-to sets in Inc-PAGProg′ are
unchanged, i.e., a fixed point is reached.
1. For each vertex, if its points-to set is incremented or decremented, propa-

gate the increments or the decrements along all of its out-edges.
• Let v1 → v2 and e+ ∈ pt(v1). The propagation adds e+ to the points-to

set of v2 if e /∈ pt(v2).
• Let v1 → v2 and e− ∈ pt(v1). The propagation adds e− to the points-to

set of v2.
2. Commit the increments and decrements on the points-to sets. Specifically,

a decrement e− is committed on the points-to set of v if e cannot reach v,
i.e., none of the sources of the in-edges can point to e.

Figure 4 also shows the propagation of the points-to sets throughout the
graph. After propagation, sum0 points to the heap reference(s) at line 13, sum1

points to that (those) at line 25, and sum2 can either point to the heap refer-
ence(s) created at line 13 or that (those) at line 25.

We can also take the above activity as a process of translating the edits in
EditScriptBubbleSort into the edits on the points-to sets, as next shows. The first
edit is translated into adding {sum0 →L13} into the points-to sets of the pro-
gram. The second edit is translated into adding {sum1 →L13,sum2 →L13, sum2 →
L25} into the points-to sets.

1. Insert(BubbleSort(),"13: sum0=new Integer(0);")⇒
Points-to-Set = Points-to-Set∪{sum0 → L13}

2. Insert(sort(boolean),"25: sum1=new Integer(sum2+ array.
get(k));")⇒
Points-to-Set = Points-to-Set∪{sum1 → L13,sum2 →L13, sum2 →L25}

3.6 Discussion

An engineer who wants to use Inc-PTA may concern about the correctness of
the approach and its complexity. By saying that the approach is correct we
mean that the final result computed by using Inc-PTA needs to be same as that
computed by using any traditional points-to analysis algorithm. Let PAGProg′ be
the pointer assignment graph of Prog’ that is obtained in the Andersen-style
points-to analysis. The correctness of Inc-PTA is guaranteed by two respects:
(1) Inc-PAGProg′ is isomorphic with PAGProg′, which means that the incremental
analysis process does not introduce any inclusion constraints besides those in
PAGProg′, except that we may assign different names to the temporary variables;
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(2) Inc-PTA solves the constraints in an incremental or decremental manner,
which does not alter the natural intrinsics of constraint solving in that the final
result meets all of the constraints.

Inc-PTA is an approach to incremental points-to analysis, which reduces
the cost of analysis in that we do not need to rebuild the PAG for the pro-
gram from scratch and re-solve all of the constraints but only patch up them
in accordance with the edits on the program. Although the costs that can be
reduced are different case by case, an investigation indicates that Inc-PTA pro-
vides with a lightweight solution to points-to analysis. In our case study (i.e.,
the BubbleSort program), only about 10.4 percent of the Jimple’s code are
changed, which implies that a similar proportion of the PAG is edited and of the
constraints are re-solved. However, an experiment still needs to be conducted to
evaluate the correctness and complexity of Inc-PTA, which will be remained as
one of our future work.

4 Related Work

Efforts have been conducted to improve the precision and efficiency of points-
to analysis. Flow Sensitive Points-to Analysis (FSPA) can help achieve precise
points-to relations by distinguishing the variables at different program points,
while the analysis suffers a shortcoming of its low efficiency when used to ana-
lyze large-scale software systems or software with libraries [6]. Hardekopf and Lin
have introduced the lazy and the eager techniques for inclusion-based pointer
analysis which improve the efficiency of the analysis without reducing preci-
sion [16]. They have also adopted partial SSA form to increase the efficiency of
FSPA [17,18], and used a less precise auxiliary pointer analysis to create the
def-use chains, which enables the sparsity of FSPA [8]. Gulwani, Srivastava, and
Venkatesan performs points-to analysis by solving of constraints on the points-
to relations. In an analysis run a program is translated into constraints that
are solved using some off-the-shelf constraint solvers to yield desired result [19].
Visser and Dwyer have developed a Green solver which reduces constraints to a
simple form, allowing for reusing constraint solutions either within an analysis
run or in other runs [20].

Meanwhile researchers have been exploring the algorithms for incremental
data flow analysis for over three decades. ACINCF and ACINCB were the early
incremental update algorithms for forward and backward data flow analysis,
respectively [21]. Pollock and Soffa have presented a technique to incrementally
update solutions to both union and intersection data flow problems [22]. Spe-
cially, for such problems, some program changes are incrementally incorporated
into the data flow sets, while others are handled by a two phase strategy: the
first phase updates the data flow sets to overestimate the effects of the program
changes, and the second one incrementally updates the affected data flow sets to
reflect the changes. Burke and Ryder have presented a model of data flow analy-
sis and fixed point iteration solution procedures, and then summarized some
incremental data flow analysis techniques [23]. Carroll and Polychronopoulos
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have presented an algorithm for incremental inter-procedural data flow analysis,
where the strongly connected component (SCC) ordering is used to determine
which functions need to be re-evaluated [24,25].

Some incremental points-to analysis algorithms have been developed in the
last decade. Yur, Ryder, and Landi have proposed an approach to incremental
approximation of a flow- and context-sensitive alias analysis, which falsifies the
aliases affected by the changes [26]. Vivien and Rinard have observed that the
incremental analysis of a small region of a program can provide with the bene-
fit of a whole-program analysis, and then presented a pointer and escape analy-
sis that incrementally analyzes only some parts of the program for delivering the
results [27]. Saha and Ramakrishnan [28] have devloped practical implementa-
tions of incremental program analyzers. Kodumal and Aiken [29] have developed
the Banshee toolkit, which allows constraint systems to be rolled back to some
previous state for a code change and re-analyze the program from that state. Lu
and Xue have taken the incremental points-to analysis with CFL reachability [9].
By tracing some CFL-reachable paths, the engineers can precisely identify and
recompute on demand the points-to sets affected by the program changes.

Compared with the above related work, Inc-PTA provides with an approach
to incremental points-to analysis, but takes a trade-off between the efficiency and
the easiness of implementation. The principle of Inc-PTA is consistent with the
traditional iterative algorithm, and thus it is more intuitive for the engineers to
implement the algorithm. Inc-PTA also does not require to identify the program
paths and the points-to relations related to the program changes. Thus it refrains
from adopting some slicing or path-tracing techniques and further refrains from
the precision loss caused by some conserved algorithms.

5 Conclusions and Future Work

Inclusion-based points-to analysis is extremely inefficient in both the time and
space, especially when the objective programs are frequently changed. In this
paper we have proposed an approach Inc-PTA to incremental points-to analysis.
By using Inc-PTA, an engineer solves the points-to constraints on a program
in an edit propagation style, which makes the analysis adapt to the program
changes and as well reduce the cost of re-generating the constraints when the
program is frequently changed.

A potential extension to Inc-PTA is to paralleling the points-to analysis
approach. It is noteworthy that some constraints may be independent from the
others and can be solved individually, which makes it believed that the principle
of Inc-PTA can be applied, with slight modifications, in support of paralleling
the points-to analysis. In addition, we would adopt some heuristic algorithms to
solve the constraints such that the points-to sets may be quickly guessed and
used in the analysis process in order to reduce the total number of iterations.
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Abstract. This paper presents a memory management mechanism for
programs of Modeling, Simulation and Verification Language (MSVL)
which is a subset of Projection Temporal Logic (PTL) with framing
technique. Framing operator is defined in MSVL and is concerned with
the persistence of the values of variables from one state to another. Based
on framing technique, we implement a memory management mechanism
for MSVL programs. In short, memory can be allocated and released
dynamically according to the framing operator. As a result, the efficiency
can be improved and the memory can be used more effectively when
MSVL programs are executed in MSV which is a toolkit developed for
the purpose of modeling, simulation and verification of MSVL programs.

Keywords: Temporal logic · MSVL · Framing technique · Memory
management

1 Introduction

Modeling, Simulation and Verification Language (MSVL) is a subset of Projec-
tion Temporal Logic (PTL) with framing technique [5,6,9]. It can be used to
simulate, model and verify software and hardware systems [4,7]. A toolkit named
MSV has been developed in C++ for the purpose of modeling, simulation and
verification of MSVL programs. Further, MSVL programs are executed by inter-
preting in MSV. Symbol table is a key module in MSV, which is employed to
simulate the stack and heap in a compiler, namely, saving information of vari-
ables during the execution of an MSVL program. What we care about is how to
keep the size of the symbol table as small as possible to save memory.

Memory management is a technique caring about the memory of a computer
when a system is running. It focuses on how to allocate and release memory
resource efficiently [10,15,16]. In a program, the compiler or interpreter must be
told explicitly or implicitly when a memory cell should be allocated or released.
A good memory management mechanism is vital for a practical programming
language.

In a conventional programming language such as C or JAVA [2,11–13], as
we all know, the system will allocate a memory cell for a dynamic variable
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when it is declared and maintain the cell within the scope of the variable. If a
variable has not been assigned a new value, the current value of the variable
is kept. However, the situation is different in a temporal logic programming
language such as MSVL. A temporal logic program is executed over a sequence
of states and the values of variables do not inherit their old values automatically.
Therefore, a framing technique is introduced to deal with this problem. Framing
is concerned with how the value of a variable from one state can be carried to
the next one.

Introduction of framing technique to temporal logic programming is moti-
vated by both practical and theoretical aspects: improving the efficiency of a pro-
gram and synchronizing communication for parallel processes [3,6,17]. A variable
in a MSVL program can be framed, non-framed or framed over a subinterval.
Intuitively, if a variable is framed, it always keeps its old value over an interval
if no assignment to it is encountered. Otherwise, the value of the variable will be
nil (not defined) if no assignment to it is encountered. Obviously, if a variable is
non-framed, its value in the history will not be referenced and MSV needs not
maintain a memory cell for it to save memory.

In our algorithm, in brief, MSV allocates and releases memory according
to variables’ scopes similar to other programming languages. To this end, the
scopes of framed dynamic variables and non-framed dynamic variables are given
respectively in our method. Obviously, the scope of a static variable is the whole
interval, hence, static variables will be kept in the symbol table from the begin-
ning to the end of the execution. MSV allocates memory unit for a dynamic
variable (adding the variable to the symbol table) framed or non-framed at the
beginning of the its scope and releases the memory unit (removing the variable
from the symbol table) of it when its scope ends. Through our method, MSV will
release the memory of a useless variable timely and as a consequent the memory
will be saved.

The remainder of this paper is organized as follows. In Sect. 2, the framing
technique in temporal logic programming is briefly introduced. The syntax and
semantics of the MSVL and normal form of a MSVL program are given in Sect. 3.
Section 4 presents a memory management algorithm for MSVL programs. A case
study is given in Sect. 5 and conclusion is drawn in Sect. 6.

2 Framing Techniques

Framing is concerned with whether or not the value of a variable should be
persisted over an interval. Intuitively, if a variable x is framed in an interval,
the value of x in the previous will be inherited over an interval if there are
no new assignments to x are encountered. There are state framing (lbf) and
interval framing (frame) operators. Specifically, when a variable is framed at a
state, its value remains unchanged if no assignment is encountered at that state.
A variable is framed over an interval if it is framed at every state over the
interval. The following are the definitions of lbf and frame.
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lbf(x)
def= ¬px → ∃b : ( -©x = b ∧ x = b)

frame(x)
def= �(more → ©lbf(x))

frame(x1, ..., xn)
def= frame(x1) ∧ ... ∧ frame(xn)

where b is a static variable and px an atomic proposition associated with state
(dynamic) variable x. px holds if x is assigned a new value at the current state,
otherwise ¬px holds. In addition, px cannot be used for other purpose. Here, ¬,
∧ and → are defined as usual. -©x denotes the value of x at the previous state.
For an MSVL program p, �p means that p holds at every state over the whole
interval and ©p indicates that p holds at the next state. In addition, more means
that the current state is not the final state of the interval.

3 Modeling, Simulation and Verification Language

The arithmetic expression e and boolean expression b of MSVL are inductively
defined as follows:

e ::= n | x | © x | -©x | e0 op e1 (op ::= +| − | ∗ | \ |mod)
b ::= true | fasle | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is an integer and x a variable. Some elementary statements in MSVL
that are used in this paper are presented as follows. Please refer to [7] for the
definition of all statements in MSVL.

Termination : empty Assignment : x = e
P − I − Assignment : x ⇐ e Conjunction : p ∧ q
Selection : p ∨ q Next : ©p
Always : �p Sequence : p; q

Conditional : if b then p else q
def=(b → p) ∧ (¬b → q)

While : while b do p
def=(p ∧ b)∗ ∧ �(empty → ¬b)

where x denotes a variable, e an arbitrary arithmetic expression, b a boolean
expression, and p and q programs of MSVL.

The termination statement empty means that the current state is the final
state of the interval over which the program is executed. The assignment x = e
denotes that the value of variable x is equal to the value of expression e. Positive
immediate assignment x ⇐ e indicates that the value of x is equal to the value
of e and the assignment flag px for variable x is true. The conjunction statement
p∧q denotes that p and q are executed in a concurrent manner and share all the
variables during the execution, and p and q have the same interval lengths. p∨ q
means p or q is selected randomly to execute. The next statement ©p means
that p holds at the next state. Intuitively, the sequence statement p; q means that
program p is executed from the current state until its termination, then program
q is executed. The conditional statement if b then p else q, as in the conventional
programming language, means that if the condition b is evaluated true then
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process p is executed, otherwise process q is executed. Statement while b do p
is the loop statement which denotes that process p will be repeatedly executed
until condition b becomes false.

3.1 Normal Form of MSVL Programs

Definition 1 (Normal Form of MSVL Programs). An MSVL program q
is in its Normal Form if q has been rewritten in the following form:

q
def=

k∨

i=1

qei ∧ empty ∨
h∨

j=1

qcj ∧ ©qfj

where k, h ≥ 0 (k + h ≥ 1), and

• qfj is a general MSVL program;
• each qei and qcj is either true or a state formula of the form (x1 = e1) ∧ . . .∧

(xl = el)∧ ṗx1 ∧ . . .∧ ṗxm
where ei ∈ D (1 ≤ i ≤ l), and ṗx denotes px or ¬px,

l ≥ 0, m ≥ 0, and l + m ≥ 1.

Specially, we call qcj the present component, qfj the future component, and qei
the termination component in a normal form.

The following theorem has been proved in [7].

Theorem 1. Any MSVL program p can be rewritten into its normal form.

Theorem 1 tells us that for any MSVL program p there is a program q in the normal
form such that p ≡ q.

4 Memory Management for MSVL

As known to all, every variable has its scope in a conventional program. For
instance, in a C program, for an dynamic variable declared at the beginning of
a block, the scope is the block in which the name is declared. The compiler or
interpreter allocates and releases memory according to the scope of a variable.
When a dynamic variable is declared, the compiler will allocate a memory unit
for it in the variable stack for it and maintain the memory unit until the end of
the variable’s scope. Throughout it, the value of the variable may be modified
by a process. In other words, the current value of the variable remains until a
new assignment to it is encountered.

In order to implement memory management for MSVL programs, the scopes
of variables (all variables are dynamic variables if not specified specially) in
MSVL programs also need to be specified. Because the value of a framed variable
will be kept in the framed interval while the value of a non-framed variable will
not be taken to the next state. Informally, the scope of a framed variable is the
framed interval associated with it and the scope of a non-framed variable is the
state in which it is assigned.
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Although there are difference among scopes, memory management for framed
and non-framed variables can be dealt with in the same way with our method.
Formally, the state memory management algorithm and interval memory man-
agement algorithm for MSVL programs are given as StateMM and IntervalMM.
As their names show, StateMM deals with the memory allocation and release at
a state while IntervalMM cares about the memory allocation and release over a
whole interval. Further, considering efficiency, a symbol table in MSV is imple-
mented with the data structure map in STL of C++ [14].

Algorithm 1. StateMM(q, ST)
Input:

q is a disjunct in NF (P ) where P is the program to be executed at the current
state ST is the symbol table

Output:
ST

1: if !ST.empty() then
2: for each variable x in ST do
3: if px is not in the present component of q then
4: if ¬px is not in the present component of q then
5: ST.erase(x);
6: end if
7: end if
8: end for
9: end if

10: for each state formula x = e in the present component of q do
11: if !ST.find(x) then
12: ST.insert(x);
13: Assign(x, e);
14: else
15: Assign(x, e);
16: end if
17: end for

In Algorithm StateMM, NF is an algorithm defined in [8] for translating a
preprocessed MSVL to its normal form. Assign(x, e) assigns value e to variable x.

To execute an MSVL program, at the beginning of each state, MSV translates
the program to its normal form and then one of the disjuncts in the normal form
will be selected randomly to execute. Before the present component of the selected
disjunct is executed, MSV checks the variables whose life cycles have ended at
this state and the memory space of these variables will be released. Specifically,
for each variable x in the symbol table (if the symbol table is not empty), MSV
checks if there is px or ¬px in the present component firstly. If no, MSV removes
variable x from the symbol table. Then the assignment statements in present com-
ponent will be executed. For instance, when x = 3 is to be executed, MSV will
add variable x to the symbol table and then assign 3 to x if the variable x is not
in the symbol table.
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Algorithm 2. IntervalMM(P , ST)
Input:

P is the program to be executed
ST is the symbol table

Output:
ST

1: ST=∅;
2: if existing a next state in P and the program to be executed at next state is q then

3: NF(q);

4: StateMM(q, ST);

5: else

6: ST.clear();
7: end if

It is known from the definition of frame(x) that for a framed variable x,
starting from the second state of the framed interval, there must be px in the
present component if x is assigned a new value at current state, or ¬px in the
present component otherwise. As a consequence, in our method, the memory cell
of variable x will be maintained until the interval of frame(x) is terminated.
It is trivially correct for non-framed variables. For a non-framed variable x, if x
is not assigned at the current state, px and ¬px will not appear in the present
component and the memory space of variable x will be released in this case.

The following is a MSVL program called GCD which computes the greatest
common divisor of x and y with the result saved in variable g. The program is
an implementation of Euclid’s well known algorithm [1].

frame(x, y) and (

x <== 6 and y <== 4 and empty;

while(x ! = y) {
if(x > y) then {x := x − y}
else {y := y − x}

};

g := x

)

In the above program, x and y are framed dynamic variables while g is a non-
framed dynamic variable. Variable g is not assigned until the last state (state 3).
Hence, its value is unspecified at state 0, 1 and 2. The computation which gives
the values of the variables of each state in the program is depicted in Fig. 1. The
mark (?) means that the value of the variable is unknown at the state.

According to algorithm IntervalMM, the symbol table is empty initially.
Firstly, we translate the program to its normal form and obtain the present
and future component of each state. Only the present components are given
here because we do not care about the future components in our algorithm. p0c
stands for the present component of state 0 and so on. p3e denotes the termina-
tion component of state 3. The left hand side of Fig. 2 shows the symbol table
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Fig. 1. Computation of GCD Fig. 2. Symbol tables of GCD

before the present component of state i is executed and the right hand side of
Fig. 2 shows the symbol table after the present component of state i is executed.
The types of the variables are ignored here for clarity (all variables are integers
actually).

p0c ≡ x = 6 ∧ px ∧ y = 4 ∧ py

p1c ≡ x = 2 ∧ px ∧ y = 4 ∧ ¬py
p2c ≡ x = 2 ∧ ¬px ∧ y = 2 ∧ py

p3e ≡ x = 2 ∧ ¬px ∧ y = 2 ∧ ¬py ∧ g = 2 ∧ pg

Furthermore, frame statements that are sequential and nested in a MSVL
program can be dealt with in our method. The latter is more complex and we
use the following example called LCM to illustrate this case. Firstly, the program
computes the greatest common divisor of x and y with the result eventually
saved in g. Then g is used to compute the least common multiple of x and y.
The eventual result is saved in variable l.

frame(x, y) and (

x <== 6 and y <== 4 and empty;

frame(x1, y1) and (

x1 := x and y1 := y;

while(x ! = y) {
if(x > y) then {x := x − y}
else {y := y − x}};

frame(g) and (

g := x;

x := (x1 ∗ y1)/g));

l := x

)

The computation and symbol table of each state are given in Figs. 3 and 4
respectively. In the program, variables x and y are framed at the overall interval
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while variables x1 and y1 are framed at a subinterval of the interval frame(x, y)
is executed, and variable g is framed at a subinterval of the interval frame(x1, y1)
is executed. Initially, the symbol table is empty at state 0. Variables x and y are
added to the symbol table at state 0. Similarly, variables x1 and y1 are added to
the symbol table at state 1, and variable g is added to the symbol table at state 4.
Considering their scopes, variables x and y are kept in the symbol table over the
whole interval. Variables x1, y1, and g are removed from the symbol table at
state 6 because the intervals associated with frame(x1, y1) and frame(g) are
terminated at this state.

Fig. 3. Computation of LCM

Fig. 4. Symbol tables of LCM

5 A Case Study

Matrix operation is important in digital image processing. Using a matrix to
store a large image always takes up a lot of memory space. We implement an
algorithm for calculating the product matrix C of two matrices A and B and
the transpose matrix D of the product matrix C in MSVL. Part of the execution
result in MSV is shown in Fig. 5. In the program, four two-dimensional arrays
A, B, C and D are used to denote the matrices A, B, C and D respectively.
Variable C is framed over the whole interval while A and B are framed in a
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Fig. 5. Matrix operation

subinterval of the interval where frame(C) is executed, D is framed at another
subinterval of the interval where frame(C) is executed. In the algorithm, after
getting the product matrix of A and B, matrices A and B will be useless and we
do not need to maintain them in the memory of for saving memory. Furthermore,
the larger the size of A or B the more the memory will be saved. This is of great
importance for processing large matrix in practice. Table 1 shows the memory
that the symbol tables takes (in the old version of MSV and the new version of
MSV) and the memory saved for different sizes of matrices.

Table 1. Comparison of memory usage

Size Old (Mb) New (Mb) Memory saved (Mb)

A B

300*200 200*400 1.52 1.04 0.48

600*400 400*800 6.08 4.16 1.92

900*600 600*1200 13.68 9.36 4.32

1200*800 800*1600 24.32 16.64 7.68

6 Conclusion

This paper presents a memory management mechanism for MSVL programs
based on the framing technique. With our method, the memory can be saved
and the efficiency can be improved to execute an MSVL program in MSV. In
the future, the memory management of dynamic variables in functions will be
considered. Besides, MSV toolkit will be further improved.
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