
Vicenç Torra
Tu

to
ria

l
LN

CS
 9

98
0

An Introduction to the Programming Language

Scala: From a Functional
Programming Perspective

 123

Lecture Notes in Computer Science 9980

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Vicenç Torra

Scala: From a Functional
Programming Perspective
An Introduction to the Programming Language

123

Vicenç Torra
University of Skövde
Skovde
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46480-0 ISBN 978-3-319-46481-7 (eBook)
DOI 10.1007/978-3-319-46481-7

Library of Congress Control Number: 2016952527

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my mother and grandmother

Una tarde parda y fría
de invierno. Los colegiales
estudian. Monotonía
de lluvia tras los cristales.
(Antonio Machado)

Que jo mateixa, si no fos tan llega,
en lletra clara contaria el fet
(Pere Quart, Bestiari)

Preface

I started learning functional programming with LISP, and then I learnt Standard ML.
I used LISP for several years as my programming language for research, exploiting its
functional programming characteristics, and Standard ML for teaching functional
programming. This greatly influenced the way I program.

Programming languages are a matter of taste. I like functional programming,
recursivity, and immutable objects. I think that this makes programming simpler and
fun. In addition, I like LISP for its syntactic simplicity, both for programming and for
structuring data. I used LISP regularly in the past, and although I am not using it
regularly now, I still use it when I need to make a simple program quickly. I also
consider Standard ML a nice language. I like its conciseness, its type inference system,
and that it is simple to define algebraic data types.

Later I met other functional programming languages. Haskell, with lazy evaluation
and lazy lists, and Scheme, with its continuations.

I have included in my personal list of programming languages Scala, which inte-
grates functional programming into the object-oriented paradigm. It also permits the
use of functional programming constructions in the context of big data, with its inte-
gration with Spark. In addition, it includes actors as one of its parallel mechanisms.
Actors are a high level model that integrates well with object-oriented programming.

This book is an introduction to Scala from this functional programming perspective.
The origin of this book is in the notes of a course on Advanced Programming we
started in 2015–2016 at the University of Skövde. The course belongs to the Master on
Data Science and focuses on functional programming using Scala.

I see Scala as an object-oriented programming language that supports rather
effectively functional programming. This introduction presents Scala, focusing on this
functional programming part. Nevertheless, in order to make concepts clear, and
because it is a crucial part of the language, I also include some description of the
object-oriented aspect of Scala.

This focus makes me ignore or give less importance to some other characteristics
of the language. All programmers know that some problems can be solved from
different perspectives. For example, we can define stacks (or lists) by means of an
algebraic data type, but also by means of linked cells in memory with pointers. The
former follows a functional programming style while the latter a more imperative style.
In this book, stressing functional programming, I focus on the definition of abstract
data types, recursion, and the like. Less importance is given to variables and to iter-
ation. For a more imperative approach, [9] is a nice alternative.

In the same way, functions are first declared by means of val, and our discussion
on method declaration def is deferred to a latter section. This differs from other books
as e.g., [3], (a book that presents Scala as a functional language). For Scala from the
object-oriented paradigm, you can consider [8].

The book is by no means a complete description of the language. That is, it does not
provide information on all constructions and functions of the language. The Internet
offers enough material on line for this. So, I have not written the book with this
purpose. Its goal is to provide an introduction (a concise one) of the language from this
functional programming perspective. Nevertheless, I believe that the book is
self-contained and contains enough material to enable readers to use it to learn the
language and eventually use it also as a reference. An index is included for this
purpose.

In addition, this text having been prepared for a course on advanced programming
and for master students, I discuss and compare Scala’s approach with those of other
languages. I think that it is good for any programmer, and naturally for any computer
engineer, to know different languages and ways to tackle programming problems. It is
well known that while some languages are better in some aspects, they are not the
simplest for all purposes. In the book, I mention and compare Scala with e.g., Java,
Standard ML (SML), and Prolog. The most detailed comparison is in the chapter
devoted to algebraic data types. I consider that SML offers a simpler way to define
them and this is explained in the text in some detail.

Organization of the Book

The book is divided into eight chapters. The first one is an introduction to functional
programming, its main characteristics and languages. The second one presents the
basics of the Scala language. The most important concepts seen there are the functions.
We also give an overview of lists as well as other types of sequences. We introduce
pattern matching. Chapter 3 presents lazy evaluation, which permits us to define infinite
lists. At this point we introduce (Chapter 4) the main concepts and definitions related to
Scala as an object-oriented programming language. We show how to define classes and
methods. We also see traits and packages. Chapter 5 focuses on classes with poly-
morphic types. Functional programming tries to define functions as generally as pos-
sible. Because of that, polymorphism plays an important role. Chapter 6 focuses again
on object-oriented aspects. The chapter explains how the object-oriented and the
functional elements in Scala interact. We discuss tail-recursive functions that permit an
efficient implementation (compilation) of recursive functions into an imperative lan-
guage. Chapter 7 is devoted to algebraic data types. These types are characteristic of
functional programming languages. We explain how to define them in Scala. We also
compare their definition with the one offered by Standard ML. The book finishes in
Chapter 8 with parallelism in Scala. We focus on two models: parallel collections and
actors.

VIII Preface

How to Use This book

We expect readers to be programmers using imperative/object-oriented languages.
Knowledge of functional programming is not a prerequisite.

As I explained above, this book has been used in our course on advanced pro-
gramming at the University of Skövde. The content has been used in 10 sessions of 2
hours each. We explained the main concepts (except Chapter 8) and did most of the
exercises.

The book has been prepared with examples, exercises, and solutions to permit
self-study. We have a web page for this book available under the following URL:
http://www.mdai.cat/scala.

Programming and programming languages can only be learnt by doing. Therefore it
is expected that readers install the language, test the examples, and program themselves
in Scala.

Acknowledgments

My first acknowledgment goes to Ulises Cortés, who introduced me to the functional
programming paradigm with the LISP programming language around 1990. Then, to
the SAIL research group at the University of Skövde, in which I am integrated and
which launched the Master on Data Science where this material has been used. Special
thanks go to Elio Ventocilla, who read this material in its previous version and gave me
useful comments. Last and not least, to the students of the master that used the first
version of this material while I was producing it. All errors are, of course, my own.

August 2016 Vicenç Torra

Preface IX

http://www.mdai.cat/scala

Contents

1 An Introduction to Functional Programming Languages 1
1.1 Main Characteristics of Functional Programming Languages 2
1.2 Some Functional Programming Languages 3

1.2.1 LISP . 3
1.2.2 FP. 3
1.2.3 Standard ML (SML) . 4
1.2.4 Haskell . 4

1.3 Scala . 4
1.4 Running Scala . 4

2 The Basics of the Language . 7
2.1 Data Types . 7

2.1.1 Strings . 9
2.2 Statements and Expressions . 11
2.3 Statement Separator and Blocks . 11
2.4 Comments . 12
2.5 Declarations . 12

2.5.1 Composite Types: Cartesian Products 13
2.5.2 Nested Declarations . 13

2.6 Functions . 13
2.6.1 Alternative Ways to Define Types in Functions 15
2.6.2 Type Inference in Scala . 15
2.6.3 Signature . 16
2.6.4 Referentially Transparent . 17
2.6.5 Higher-Order Functions . 18
2.6.6 Currification . 19
2.6.7 Recursive Functions . 20
2.6.8 Functions and Non Functional Programming 22

2.7 Lists . 22
2.7.1 Recursion on Lists . 24

2.8 Pattern Matching. 26
2.8.1 Pattern Matching on Lists . 27

2.9 Collections and Their Higher Order Functions 29
2.9.1 Mutable and Immutable Data Structures 29
2.9.2 Mutable and Immutable Collections. 30
2.9.3 Some Imperative Construction on Collections 31
2.9.4 Higher-Order Functions for Collections 32

2.10 List Comprehension . 36

3 Lazy and Eager Evaluation . 37
3.1 Parameter Passing . 39
3.2 Lazy Val . 40

http://dx.doi.org/10.1007/978-3-319-46481-7_1
http://dx.doi.org/10.1007/978-3-319-46481-7_1
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec9
http://dx.doi.org/10.1007/978-3-319-46481-7_1#Sec9
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec9
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec9
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec10
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec11
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec12
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec12
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec12
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec13
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec13
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec13
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec14
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec14
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec14
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec15
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec15
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec15
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec16
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec16
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec16
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec17
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec17
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec17
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec18
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec18
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec18
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec19
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec19
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec20
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec20
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec20
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec20
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec21
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec21
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec22
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec22
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec22
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec22
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec22
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec23
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec23
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec24
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec24
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec24
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec24
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec25
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec25
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec25
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec25
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec26
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec26
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec26
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec26
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec27
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec27
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec27
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec27
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec28
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec28
http://dx.doi.org/10.1007/978-3-319-46481-7_2#Sec28
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec3

3.3 Streams and Other Infinite Data Structures 41
3.4 Stream of Even Numbers . 44
3.5 Stream of Odd Numbers . 45
3.6 The Fibonacci Numbers . 46
3.7 The Prime Numbers . 46
3.8 Exercises with Streams . 47

4 Object-Oriented Programming in Scala . 51
4.1 Class Hierarchy . 53
4.2 Definition of a Class . 54

4.2.1 Notation. 57
4.3 Value Classes . 58
4.4 Case Classes . 59
4.5 Abstract Classes . 59
4.6 Singleton Objects . 60
4.7 Companion Objects . 61
4.8 Traits . 63

4.8.1 Inheritance . 63
4.8.2 Multiple Inheritance. 64
4.8.3 Name Clashes in Traits . 65

4.9 Packages . 66
4.10 Some Additional Issues . 67

5 Types and Classes Revisited: Polymorphism 69
5.1 Classes with Polymorphic Types. 70
5.2 Monoids, Functors, and Monads . 72

5.2.1 Monoids . 73
5.2.2 Functors. 73
5.2.3 Monads . 74

6 Scala: OOL and FP . 77
6.1 Tail-Recursive Functions . 77

6.1.1 Some Scala Technicalities . 79
6.1.2 Additional Examples of Tail-Recursive Functions 80

6.2 Functions in Scala and Object-Oriented Programming 81
6.3 Defining Functions Revisited: val and def 83
6.4 Data Types and Efficiency . 84

7 Algebraic Data Types . 87
7.1 Definition of Algebraic Data Types in Standard ML 87
7.2 Algebraic Data Types in Scala . 90
7.3 Data Types and Efficiency Revisited . 92

8 Parallelism . 93
8.1 Collections . 94
8.2 Actors . 97

XII Contents

http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec9
http://dx.doi.org/10.1007/978-3-319-46481-7_3#Sec9
http://dx.doi.org/10.1007/978-3-319-46481-7_4
http://dx.doi.org/10.1007/978-3-319-46481-7_4
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec1
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec1
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec9
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec9
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec10
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec10
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec10
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec10
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec11
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec11
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec11
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec11
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec12
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec12
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec12
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec12
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec13
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec13
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec14
http://dx.doi.org/10.1007/978-3-319-46481-7_4#Sec14
http://dx.doi.org/10.1007/978-3-319-46481-7_5
http://dx.doi.org/10.1007/978-3-319-46481-7_5
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_5#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_6
http://dx.doi.org/10.1007/978-3-319-46481-7_6
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec1
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec1
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_6#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_7
http://dx.doi.org/10.1007/978-3-319-46481-7_7
http://dx.doi.org/10.1007/978-3-319-46481-7_7#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_7#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_7#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_7#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_7#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_7#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_8
http://dx.doi.org/10.1007/978-3-319-46481-7_8
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec2
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec3
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec3

8.2.1 Definition . 98
8.2.2 Receive and React, ! and !? . 103
8.2.3 Futures and !!. 105
8.2.4 Others . 107
8.2.5 Akka’s Actor Model . 107

9 Solutions . 111

References. 119

Index . 121

Contents XIII

http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec4
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec5
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec6
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec7
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_8#Sec8
http://dx.doi.org/10.1007/978-3-319-46481-7_9
http://dx.doi.org/10.1007/978-3-319-46481-7_9

Chapter 1
An Introduction to Functional Programming
Languages

Functional programming is a programming paradigm that has one of its roots in the
programming language LISP. LISP, which stands for LISt Processing, was created
in 1958 by John McCarthy. Its main characteristic is that computation is in terms of
functions and recursion. Syntaxis in LISP is based on the use of a prefix notation
and the parenthesis, no much syntactic sugar is used. For example, the function to
compute the factorial can be written as follows in LISP:

(defun factorial (n) (if (= n 0) 1 (* n (factorial (- n 1)))))

The theoretical basis of functional programming is λ-calculus, developed by A.
Church in the 30s. The development of λ-calculus was parallel (or a little earlier [16,
29]) to the development of Turing machines by A. Turing. Both were developed
as computational models and were proven equivalent from the point of view of the
functions they can compute. They were independently used to prove the Entschei-
dungsprobleme1 (decision problem). While Turing machines rely on the concept
of state and transition functions between states, λ-calculus relies on the concept of
rewriting.

Functional programming sees programs as functions, and functions are decom-
posed into other functions. In pure functional programming the only value that the
function computes is what it returns, there are not side effects, and the input values
are not modified.

For example, a typical implementation of the factorial in an imperative language
is as follows.

function factorial (var n: integer) return integer is
result := 1;
for i=1 to n loop

result := result*i;

1Entscheidungsproblem is one of Hilbert’s mathematical problems.

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_1

1

2 1 An Introduction to Functional Programming Languages

end for
return (result);

end function

Observe that variables i and result change their values while the loop is exe-
cuted. Compare that with the variable n in the recursive definition of factorial. Note
that the value n does not change.

So, a main difference between functional programming and imperative program-
ming is that in the latter, programming is achieved by means of a modification of the
variables in the program. This corresponds to changing the states, as in the Turing
machine.

1.1 Main Characteristics of Functional Programming
Languages

We have underlined above that functional programming has as its main characteristic
in that programs are based on the definition of functions. Functions are the main
elements in programs. The main properties of functional programming languages
include the following (we include the section were these concepts are studied).

• Expressions without side effects (Sect. 2.6.4)
• First-class functions (Sect. 2.6). This includes

– Pass functions as arguments
– Return functions
– Assign them to variables and to data structures
– Anonymous functions

• Higher-order functions (Sect. 2.6.5)
• Recursion (Sect. 2.6.7)
• Immutable data structures (Sect. 2.9.1)
• Lazy evaluation (Chap. 3)
• Do not require tail-recursive optimization (Sect. 6.1)

This compares with the main characteristics of imperative programming lan-
guages.

• Commands are the main components of the language
• Functions and procedures
• Iteration and loops
• Mutable objects
• Eager evaluation
• Recursion is not supported

Table1.1 compares functional programming and imperative programming. The
table also includes the logic programming paradigm.

http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_6

1.2 Some Functional Programming Languages 3

Table 1.1 Differences between the functional, logic and imperative paradigms.

Functional Logic Imperative

A program as a Function Relationship Command

Building blocks Expressions
(evaluation)

Horn clauses
(true/false?)

Assignment
(execution)

Program Composing Defining Sequences of

Construction functions facts and rules commands

Variables Immutable Immutable Mutable

(let x be) (let x be) (memory cell)

Repetition Recursion Recursion Loop

1.2 Some Functional Programming Languages

In this section we review briefly four functional languages that have had a strong
influence in the development of this type of languages. The list of functional pro-
gramming languages is, however, very large and includes e.g. Miranda, Hope, and
Erlang.

1.2.1 LISP

This is the classical functional programming language. It was created by J.McCarthy
1958 and described in [12]. See [13] for details on its creation. It received influence
from the Information Processing Language (a language created between 1955 and
1956), which already implemented concepts as recursion and list-processing. This
language is still alive and used today and has influenced indirectly most functional
programming languages and directly the language Scheme.

1.2.2 FP

This language was proposed by J. Backus and it is a kind of Extreme Functional
Programming language, with no variables. The internal product IP of two vectors is
defined as follows.

Def IP ≡ /+ o α x o trans
Here, Trans is the transpose of the two vectors of the input (seen as a matrix).

Then, we apply the product to all pairs of numbers and finally we add them2.
Another example is the product of two matrices. Their definition is as follows.
Def MM ≡ (α α IP) o (α distl) o distr o [1, trans o 2]

2This definition is similar to the solution of Exercise2.8, the internal product in Scala. In this case,
Trans is translated to Scala in zip, α x corresponds to a map of the product, and /+ that extends
the addition for a pair of numbers to a sequence can be translated to Scala by fold.

http://dx.doi.org/10.1007/978-3-319-46481-7_2

4 1 An Introduction to Functional Programming Languages

The language FP is described by Backus (well known for the development of the
language FORTRAN and the BNF - Backus-Naur form) in [2]. Dijkstra presented
in 1979 (see [5]) a critic of the paper by Backus [2].

1.2.3 Standard ML (SML)

This is a strongly (statically) typed functional programming language. This language
is able to deduce the type of objects and functions. SML permits to define algebraic
data types easily. This is discussed in Sect. 7.1 (examples in SML will be given).

1.2.4 Haskell

One of its main characteristics is that includes lazy evaluation, which made it more
popular. For example, Standard ML did not include lazy evaluation, but most lan-
guages since Haskell include it. We will see lazy evaluation in Sect. 3.

1.3 Scala

Scala was created by Martin Odersky. It combines the features of functional pro-
gramming languages and object oriented programming. I would say that it is an
object oriented programming that incorporates functional programming concepts
and paradigms. It is implemented using the Java programming language and its vir-
tual machine (JVM). Because of that, some of the types, classes, and methods in Java
are available when we program in Scala.

1.4 Running Scala

The language can be installed from the official language webpage:
http://www.scala-lang.org

The language can be used as an interpreted language. In this case, you need to
call scala from the computer prompt. With this command, you start the interpreter
and can begin your programming. For example, you can test it by printing "Hello,
World!" and doing the operations 2+2 and -5. In this case you will get something
similar to the following.

http://dx.doi.org/10.1007/978-3-319-46481-7_7
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://www.scala-lang.org

1.4 Running Scala 5

computer@user ˜
$ scala
Welcome to Scala version 2.11.6

(Java HotSpot(TM) Client VM, Java 1.8.0_45).
Type in expressions to have them evaluated.
Type :help for more information.

scala> println("Hello, World!")
Hello, World!

scala> 2+2
res1: Int = 4

scala> -5
res2: Int = -5

The term REPL for Read-Execute-Print Loop corresponds to the execution of the
interpreter in this way. That is, the interpreter reads a definition, executes it and prints
the result.

We can also load (text) files with commands and definitions into the interpreter.
Let us edit the (text) file MyFirstFile.scala and write the following text.

println("Hello, World!")
2+2
-2

We can load this file in the interpreter using

:load MyFirstFile.scala

The file is interpreted by the interpreter (REPL) and we obtain the following
results on the screen.

scala> :load MyFirstFile.scala
Loading MyFirstFile.scala...
Hello, World!
res1: Int = 4
res2: Int = -2

The file can naturally include more elaborate definitions and computations.
An alternative is to write the programs in files, compile them and then execute the

resulting compiled file. Scala programs are compiled for the Java Virtual Machine.
Let us illustrate this approach editing a file with name MyFirstProgram.scala
that includes the following definition.

object MyFirstProgram {
def main (args: Array[String]): Unit = {

println("Hello, World!")
}

}

6 1 An Introduction to Functional Programming Languages

This text defines an object called MyFirstProgramwith a method called main
that prints "Hello, World!". Details on the definition of an object in this way
can be found in Sect. 4.6. At this point notice that instead of the println command
we can include other expressions and definitions.

We can compile this file with the command scalac and then execute it with
the command scala. In this way we execute the method main of the object
MyFirstProgram.

computer@user ˜
$ scalac MyFirstProgram.scala

computer@user ˜
$ scala MyFirstProgram.scala
Hello, World!

Scala documentation gives guidelines for the content of a file. They are the fol-
lowing.

As a rule, files should contain a single logical compilation unit. By logical I mean a class,
trait or object. One exception to this guideline is for classes or traits which have companion
objects. Companion objects should be grouped with their corresponding class or trait in the
same file. These files should be named according to the class, trait or object they contain
(Scala documentation, Style guide, Files [23])

In addition, we can also use an Integrated Development Environment (IDE), as
ECLIPSE / ScalaIDE [27], for programming in Scala, or tools like Jupyter Note-
book [26].

http://dx.doi.org/10.1007/978-3-319-46481-7_4

Chapter 2
The Basics of the Language

Ordo autem qui in verbis attenditur est
illud per quod verba tam in loquente
quam in audientibus virtutem et
efficaciam sortiuntur.
Ramon Llull, Rethorica nova [VII].

In this chapter we give a quick review of the most basic elements of the language.
We begin reviewing the data types that the language provides by default. Then, we
review the syntaxis for statements and declarations (e.g. conditional and loops). We
also discuss definition of functions, higher-order functions and the use of pattern
recognition in functions. Our discussion on functions include also recursion. The
chapter includes also definitions of lists and other types of collections predefined in
Scala which can be naturally processed using recursive functions.

2.1 Data Types

Java provides the usual types that implement integers, and real numbers, Boolean
and characters. They are the basic types. Class names and precisions of the basic
data types in Scala are given in Table2.1. Usual functions are defined for objects in
these classes.

Scala and Java. As explained above, Scala is based on Java. That is why
we have in Scala the same types we have in Java with the same precision.
Nevertheless, there are some differences due to a different structure in
the system of classes. In Java, the primitive data types (byte, short, int,
long, char, float, double and boolean) are not classes, and, thus, do not
belong to the hierarchy of objects. In addition to these primitive data
types, Java have the classes as e.g. Integer, Long which have some methods
implemented. In Scala there is no such distinction. These types are classes,
and methods are directly implemented on the classes. Therefore, there is
also a difference on how some methods are called/applied in Scala and
Java.

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_2

7

8 2 The Basics of the Language

Table 2.1 Basic data types in Scala: Type names and precision. Byte, Short, Int, Long, Float,
Double and Char are numeric types. All of them are signed except Char that is an unsigned inte-
ger. Boolean and Unit are non-numeric types. For details on the actual implementation see Scala
documentation.

Type name Precision

Byte 8 bit signed integer. [Byte.MinValue=−128, Byte.MaxValue=127]

Short 16 bit signed integer. [Short.MinValue=−32768, Short.MaxValue=32767]

Int 32 bit signed integer. [−2147483648, 2147483647]

Long 64 bit signed integer. [−9223372036854775808, 9223372036854775807]

Float 32 bit IEEE-754 floating point number

Double 64 bit IEEE-754 floating point number

Char 16 bit unsigned integer (Unicode char). Range [U+0000,U+FFFF]

Boolean Values true and false

Unit There is only one value of type Unit ()

The classes of these types are value classes. Value classes are a par-
ticular type of classes that are implemented in a more efficient way. Details on value
classes as well as an explanation on how to define new ones are given in Sect. 4.3.
At this point, the fact of being value classes or not is not relevant.

We review below some of the basic operations defined for basic data types.

• Value class Int. Usual operations are implemented in Scala. For example, the
following ones.

– Arithmetic. Addition (+), subtraction (−), product (*), quotient (/), reminder
(%)

–Comparison (<, >, ==, <=, >=, !=), shifts (>>, <<), bitwise operations
(| for OR, & for AND, ˆ for XOR), absolute value (abs as e.g. x.abs for an
integer value x), maximum (x.max), minimum (x.min).

–Transformation toString.+ (binary operatorwith a string in its first argument).

Examples of valid expressions:

2+2 3<4 5>=6
2|10 1|10 3|11
3.abs 1.max(3) 3.min(5)

• Value class Double. Similar operations exist for Double (including reminder). In
addition we have the following (functionality is as expected):

– floor, ceil, isInfinite(), isNan()

• Value class Boolean.

– Comparison (==).
–Logical connectives.And (&,&&), or (|,||), xor (ˆ), negation (!, this operator is
prefix so used as!true).& and| evaluate the two arguments (eager evaluation).
&& and || do not necessarily evaluate both (i.e., they use lazy evaluation).

http://dx.doi.org/10.1007/978-3-319-46481-7_4

2.1 Data Types 9

Scala Language Specification (Version 2.11): Section 6.12.1. Prefix oper-
ations
A prefix operation op; e consists of a prefix operator op, which must be one of the
identifiers +, -, ! or . The expression op; e is equivalent to the postfix method
application e.unary op.
Prefix operators are different from normal function applications in that their
operand expression need not be atomic. For instance, the input sequence -
sin(x) is read as -(sin(x)), whereas the function application negate sin(x) would
be parsed as the application of the infix operator sin to the operands negate and (x).

Fig. 2.1 Prefix operators in Scala according to Scala Language Specification (Version 2.11).

For a discussion of prefix and infix operators, and on precedence of operators see
Figs. 2.1 and 2.2.

Prefix and infix. We have an infix operator when it goes between its ar-
guments. In mathematics, addition and substraction are usually expressed
by the infix operators + and − as e.g. in 2 + 2 and 2 − 1. We have a prefix
operator when it goes before the arguments. The expression −2 has a prefix
operator −.
It is usual to mix prefix and infix operators, but there are languages where
all operations are prefix. This is the case of LISP where we have the name
of the function always first. So, an expression as 2 + 3 ∗ 3 + sqrt(5 + 4) is
expressed in LISP as follows:
(+ 2 (* 3 3) (sqrt (+ 5 4)))

2.1.1 Strings

Among the predefined types of Scala we find Strings. They are defined as inmost lan-
guages by double quotes. We can determine the length of a string (with length),
concatenate them (with concat and with +), compare them (with ==), and se-
lect the element at a given position (with charAt(position)). Other methods
from java.lang.String can also be used in Scala (e.g., toUpperCase, and
compareToIgnoreCase). So, the following are valid operations with strings:

"a, b, c; alpha beta gamma; 1, 2, and 3"
"one" + "two" + "three"
"one".concat("two") == "one" + "two"
"one".compareToIgnoreCase("ONE")
"one".charAt(0)+"one".charAt(1)+"one".charAt(2)

Note that the last expression returns 322 because charAt returns a char that is a
16 bit unsigned integer (Unicode char)! Also note that the initial character of a string
is at position zero.

10 2 The Basics of the Language

Scala Language Specification (Version 2.11): 6.12.3 Infix operations
An infix operator can be an arbitrary identifier. Infix operators have precedence
and associativity defined as follows:
The precedence of an infix operator is determined by the operator’s first character.
Characters are listed below in increasing order of precedence, with characters on
the same line having the same precedence.

(all letters)
|
^
&
= !
< >
:
+ -
* / \%
(all other special characters)

That is, operators starting with a letter have lowest precedence, followed by
operators starting with |, etc.
There’s one exception to this rule, which concerns assignment operators. The
precedence of an assignment operator is the same as the one of simple assignment
(=). That is, it is lower than the precedence of any other operator.
The associativity of an operator is determined by the operator’s last character.
Operators ending in a colon ‘:’ are right-associative. All other operators are
left-associative.

Fig. 2.2 Infix operators in Scala according to Scala Language Specification (Version 2.11).

It is important to know that strings are immutable1 objects.
Scala includes three types of interpolators for strings. Interpolators permit us

to include in a string expressions that need to be evaluated (e.g. variables to be
replaced by their value). The three types are s, t, and raw interpolation. s permits
to evaluate expressions, t is similar to printf in the C language, and raw does
not scape the \ characters. We do not go into details of this, but just consider the
following examples that permit to replace an expression by its computation, and
prints \n without replacing it by a new line.

println(s"The maximum between 1 and 8 is ${1.max(8)}")
println(raw"\n 1 \n 2 \n 3")

The output in Scala is as follows.

scala> println(s"The maximum between 1 and 8 is ${1.max(8)}")
The maximum between 1 and 8 is 8

scala> println(raw"\n 1 \n 2 \n 3")
\n 1 \n 2 \n 3

1Immutable objects are discussed in Sect. 2.9.1

2.3 Statement Separator and Blocks 11

2.2 Statements and Expressions

We review in this section some of the basic constructions in Scala.

• Conditional. It is similar to conditional in most languages. We have the following

if(BooleanExpression) { Expression }

if(BooleanExpression) { ExpressionTrue }
else { ExpressionFalse }

We use here expressions for the then and the else branches. In fact, being Scala an
object oriented language, we can use commands (and sequences of commands) in
both then and else branches. When we have single expressions, we can remove
the curly brackets.

• Loops. As we focus on functional programming, we will avoid loops as much as
possible in our programs. Nevertheless, they are explained here for the sake of
completeness. We have while and do-while loops that can be used as follows.

while (BooleanExpression) { Expression }

do { Expression } while (BooleanExpression)

There are also for loops in Scala. We will discuss them later in Sect. 2.9.3, but
for the time being, they can be used as in the following example.

for (i <- 1 to 10) { statement }

Then, we will execute the statement ten times and the variable i will take values
1, 2, 3, …, 10, as expected, in the 10 consecutive executions of the statement.

2.3 Statement Separator and Blocks

Newline separates statements in Scala. Alternatively we can use semicolon “;” to
separate statements, when needed. Published code usually do not have much semi-
colons. So, the code

statement1
statement2

is equivalent to the following:

statement1; statement2

Blocks of statements use curly brackets. For example,

{ statement; statement }

12 2 The Basics of the Language

2.4 Comments

We can include comments in the following two ways.

/* Multiple
line
comment */

// One line comment

2.5 Declarations

We can associate values to identifiers using val and var. We use them as follows

val nameConstant: Type = expression
var nameVariable: Type = expression

With val we are defining a constant, and we associate it with a value. This
association can no longer be changed. With var we are defining a variable (in an
imperative sense) and associate it to a value that can be later changed. We will revisit
the difference between both val and var in Sect. 2.9 when discussing mutable and
immutable data structures.

To change the value of a variable defined with var, we just assign another value
to it. Observe the following.

val a1 = 2*5
var a3 = 4*6
a3 = 8484

In the interpreter, constants defined with val can be redeclared, but they cannot
be really overwritten. Observe the following.

scala> val a1 = 2*5
a1: Int = 10
scala> a1 = 54
<console>:8: error: reassignment to val

a1 = 54
ˆ

scala> val a1 = 54
a1: Int = 54

Note that a1 cannot be redefined, but we can declare the same name again. This
is, in fact, as defining a new constant which can be seen as hiding the scope of the
previous definition.

2.5 Declarations 13

Declarations in functional programming. We will mainly use in this
text val because we understand variables in a mathematical way (as in
mathematical expressions Let X be ...). That is, as constants that do not
change their values. We do not see them as positions of memory whose
value can be changed.

2.5.1 Composite Types: Cartesian Products

We can use basic types and compose them. We can also define variables as the carte-
sian product of two or more types. For example, the following is a valid declaration
in Scala.

val a1 = (2*5,"ten")

We can access the elements of the products by means of ._1, ._2, etc. So,
a1._1 will return 10.

2.5.2 Nested Declarations

We can include declarations inside other declarations. That is, nested declarations
are possible in Scala. This can help on the calculation of a value. Note that the
declarations inside another declarations are not accessible from outside.

In the following example, a1 and a2 are local to the definition of a.

val a = {
val a1 = 10
val a2 = "In text:"+a1+"is ten"
(a1, a2)
}

Check that the values of a1 and a2 are not available once the declaration of a is
completed. So, the scope of a1 and a2 is only within a.

2.6 Functions

The declaration of a function can be done by means of code with the following
structure: list of arguments between parenthesis, the symbol “=>”, and the body of
the function. The following are simple examples of functions.

14 2 The Basics of the Language

(a:Int) => 2*a
(a:Int, b:Int) => a+b
(a:Int, f:Int=>Int) => f(a)

The first function has a single integer parameter (with name a and type Int) and
multiplies it by two. The second function has two integer parameters (with names a
and b and types Int) and adds them.

The third function has two parameters. The first parameter is an integer (parameter
a) and the second one is a function (parameter f) that given an integer computes
another integer. The body of the third function shows that applies f to a. Note that
the type of the parameter a is Int. The type of the function f is Int => Int
because it receives an Int and returns => another Int.

In general, the type of a function with n arguments has the following structure.

Type1, Type2, ..., TypeN => OutputType

The functions we have seen are anonymous. That is, they have no name. Nev-
ertheless, they can be applied and passed to other functions. For example, we can
apply the first function to 3 as follows:

((a:Int)=>2*a)(3)

and we can pass the first anonymous function to the third anonymous functions as
follows (together with the integer 3 as the latter needs two parameters. This is done
as follows.

((a:Int, f:Int=>Int) => f(a))(3,((a:Int)=>2*a))

Exercise 2.1. Given the three parameters of a 2nd degree equation

ax2 + bx + c = 0

write an anonymous function that returns its two solutions.Use a nested declaration to
compute the discriminant of the solutions only once. Apply the anonymous function
to find the solution of x2 − 3 = 0.

Anonymous functions are useful in functional programming, but it is of course
also necessary to have functions with names.

In Scala, all functions are objects. Therefore, we can declare/assign them using
val. For example, we can declare previous functions (i.e., give them a name!!) as
follows2.

val f1 = (a:Int) => 2*a
val f2 = (a:Int, b:Int) => a+b
val f3 = (a:Int, f:Int=>Int) => f(a)

2 This is not the only way used in Scala to define functions. We can use def. Both ways are not
exactly the same and def is not properly speaking a way to define functions. That is why we start
defining functions with val. This is further explained in Sect. 6.3.

http://dx.doi.org/10.1007/978-3-319-46481-7_6

2.6 Functions 15

Now, we can apply these functions to objects in a more usual way. E.g., we can
compute

f1(3)
f2(5,8)
f3(10,f1)

As a summary, we have that the definition of a function follows this structure:

val name = <anonymous-function-definition>

2.6.1 Alternative Ways to Define Types in Functions

When we use a definition of the form above, the information on the types of involved
parameters is in the anonymous function.

We can also give the information about the type on the name of the function. For
example, function f1 receives an Int and returns an Int. This is expressed in Scala
as (Int => Int). The following three definitions are all valid in Scala for f1.
Note that the third one contains redundant information, as the type of parameter a is
given twice.

val f1 = (a:Int) => 2*a
val f1:(Int => Int) = a => 2*a
val f1:(Int => Int) = (a:Int) => 2*a

Similarly, we can define functions f2 and f3 above as follows:

val f2:((Int,Int)=>Int) = (a:Int, b:Int) => a+b
val f2:((Int,Int)=>Int) = (a, b) => a+b
val f3:((Int,Int=>Int)=>Int) = (a:Int, f:Int=>Int) => f(a)
val f3:((Int,Int=>Int)=>Int) = (a, f) => f(a)

Type definition in functions. Scala permits different ways to express
the type of a function. It is usually more convenient to associate types to
functions than to their parameters. That is, among the alternatives seen,
the most convenient way to define a function is to follow this pattern:
val name: FunctionType = <anonymous-function-definition>

2.6.2 Type Inference in Scala

A type inference system permits to conclude the types of objects and functions from
their definition. There are languages as StandardMLwhere the type inference system
is very advanced.

16 2 The Basics of the Language

Scala has a limited type inference system. For example, the following definition
without types is valid (because Scala infers the type of f4 from the type of f1).

val f4 = a => f1(a)

Nevertheless, the following two definitions return an error because the type is not
given.

val f5 = a => 3*a
val f6 = a => 2*f1(a)

Type inference in Standard ML. Standard ML (SML) has a more
elaborated type inference system than Scala. It accepts the following two
definitions for f5 and f6, and infers correct types for them. If we type in
the SML interpreter
fun f5(a) = 3*a;
fun f6(a,f1) = 2*f1(a);

We obtain:
val f5 = fn: int -> int
val f6 = fn: ’a * (’a -> int) -> int

where ’a means that any type is valid.
Observe that Scala needs type declarations here.

2.6.3 Signature

The signature of a function corresponds to a description of the types involved in the
inputs and output of the function. That is, the types of its arguments (inputs) and its
result (output).

Signature of a function. In general, the type of a function is
Type1, Type2, ..., TypeN => OutputType

However, note that TypeI and OutputType can correspond to types of
functions.

To illustrate that in the signature we may need to express that some parameters
are functions, we can consider the following signature.

((Int,Int)=>(Int => Int),(Int=>Int),Int,Int,Int)=>Int

This is valid for a function type. For example, the following function f7 has this
type.

2.6 Functions 17

val f7:((Int,Int)=>(Int=>Int),(Int=>Int),Int,Int,Int)=>Int=

(f:(Int,Int)=>(Int => Int),g:(Int=>Int),a:Int,b:Int,c:Int)=>

f(g(a),g(b))(c)

Note that this function has five arguments, two of them are functions, and three
are integers. We apply f7 below to two functions (one defined with name ff and
the other anonymous) and three integers.

val ff:((Int,Int)=>(Int => Int)) = (a,b) => (x:Int) => a+b+x

f7 (ff, (x:Int) =>2*x, 1,2,3)

Note that in Scala we need to declare the types.

Inference in Standard ML. In Standard ML it suffices to define:
fun f7Then(f,g,a,b,c)=f(g(a),g(b))(c);

Standard ML infers for f7 the following type:
val f7 = fn : (’a * ’a -> ’b -> ’c) * (’d -> ’a) *

’d * ’d * ’b -> ’c
The computation of the expression above in Standard ML is:
fun ff(a,b)= (fn x => a+b+x);
f7 (ff,fn x => 2*x, 1, 2, 3);

2.6.4 Referentially Transparent

Given an expression e, we say that e is referentially transparentwhen we can replace
the expression e by its value in all occurrences of e in the program without affecting
the result of the program.

A pure function is a function that given the same input values, the output value is
always the same, and there are no side effects.

Side effect. An expression has side effects when in addition to its eval-
uation it modifies somehow the state of the machine (e.g., update global
variables, print values in the screen or to a file).

Note that this is not always the case in imperative languages, as functions can
have a state, and then the output of the function can change even if we do not change
the input.

Random number generators are typical examples of non pure functions. For
example, in Java, the functions nextInt() and nextInt(int n) of class
java.util.Random are not pure. Note that different applications of these func-

18 2 The Basics of the Language

tions may result into different results. Precisely, this is the goal of the random genera-
tor function, that different values are obtained. Functions and methods applied to ob-
jects with internal states are usually not pure (as the state is not explicitly stated in the
function). An explicit random state as e.g. in the call randomState.nextInt()
could return a new random state and the random number, being a pure function.

The expression println in Scala is also not pure. Although its result is always
of typeUnit3, it has a side effect. That is, the expression prints a string onto the screen.

Referentially transparent. An expression satisfies this property when
it can be replaced by its evaluation without modifying the outcome of the
program. Expressions with side effects are not referentially transparent.

2.6.5 Higher-Order Functions

We have a higher-order function when one of its parameter is another function. This
is the case of function f3 above. Recall that it requires a function with signature
(Int=>Int) as a parameter.

For example, the arithmetic mean of two values a and b corresponds to

(a + b)/2

and the quasi-arithmetic mean is defined for a function f with inverse f −1 as

f −1((f (a) + f (b))/2).

We can implement the quasi-arithmetic mean [18] as a higher-order function qam
with parameters a and b and two functions f and f −1. We call this later function
fm1 in the definition below.

val qam:((Double,Double,Double=>Double,Double=>Double)=>Double) =
(a,b,f,fm1) => fm1((f(a)+f(b))/2)

Then, we can compute the quasi-arithmetic mean of 1 and 2 with f (x) = x and
f −1(x) = x as follows4.

qam(1,2,(x:Double) => x,(x:Double) => x)

Similarly, the quasi-arithmeticmean of 1 and 2with f (x) = x2 and f −1(x) = √
x

is computed by5:

qam(1,2,(x:Double) => x*x,(x:Double) => math.sqrt(x))

3Check the value of pln after declaring
val pln = println("println is pure?") .
4The quasi-arithmetic mean with f (x) = x is just the arithmetic mean.
5The quasi-arithmetic mean with f (x) = x2 is the geometric mean.

2.6 Functions 19

We use higher-order functions when we need some generality in our definition.
For example, if we want to order the elements of a database but we do not want
to establish how to compare pairs of elements we can use a higher-order function
where the comparison (e.g., lessThan) is one of the parameters of the ordering
method. We will then be able to compare and order in different ways. For example,
by surname, or by city.

2.6.6 Currification

Any function of n parameters can be seen as a function that has a single parameter,
and given it, it returns a function with n − 1 parameters.

Currification is the technique for making this transformation.
As an example of Currification, observe that we can define the arithmetic mean

as a function of two arguments as follows:

val am: ((Double, Double) => Double) = (a,b) => (a+b)/2

but also as a function of one argument that returns another function that given one
argument it computes the mean of this argument with the previous one. That is,

val curryAm: (Double => (Double => Double)) =
(a) => { (b) => (a+b)/2 }

The way to call these functions will be different. We will use:

am(2,5)
curryAm(2)(5)

The main and important difference between currified and non currified is that we
can call the latter with only some of the first arguments. For example, the following
call is valid:

curryAm(2)

This call returns a function that computes the mean of any number with 2. We can
thus define

val meanWith2 = curryAm(2)

and then apply this function to any other number as e.g.

meanWith2(10)

Let us consider a function to calculate the compound interest of a sum. The
expressionof the total accumulatedvaluewhen the initial amountwas P (the principal
sum) and the total is to be computed for t years at a i nominal interest rate compounded
annually is the following:

20 2 The Basics of the Language

P(1 + i)t

We can write this function in Scala as follows.

val compoundInterest: ((Double, Double, Double) => Double) =
(i,t,p) => p*Math.pow(1+i,t)

Then, if we want to compute the balance after 5years of 1000 Euros at 2.5% of
annual interest, we can call this function as:

compoundInterest(0.025, 5, 1000)

We give now the function in currified form and give also an example of its appli-
cation.

val compoundInterest:
(Double => (Double => (Double => Double))) =

(i) => { (t) => { (p) => { p*Math.pow(1+i,t) } } }
compoundInterest(0.025)(5)(1000)

When the function is currified we can define a new function that computes the
compound for any value when the interest and the number of years are known. For
example, let us consider that today we have a 3% interest and 4years. Then, we
can define a function compound interest to any principal sum. We give an example
below and its application to 1000 euros. Naturally, once we have this function, we
can apply it to any amount of money.

val ourBankInterestTodayAt4Years = compoundInterest(0.03)(4)
ourBankInterestTodayAt4Years(1000)

Currified functions are helpful to us because we can apply them only partially,
which gives us additional flexibility.

2.6.7 Recursive Functions

In functional programming repetition is usually implemented by means of recursion.
Recall that a function is recursive when it calls to itself.

Iteration and loops are avoided in functional programming because they rely on
variables that change their state. Let us compare the definition of the factorial using
loops and using recursion.

Recall that the factorial of zero is defined as 1, and then in general the factorial
of an integer number n > 0 is defined as n multiplied by the factorial of n − 1. The
mathematical expression for the factorial is, therefore.

f act (n) =
{

1 if n = 0
n · f act (n − 1) if n > 0

2.6 Functions 21

Using this definition, it is straightforward to define the recursive form of the
factorial.

In Scala, when we define a function recursively we need to declare its type.
Because of that, in the definition of factorial we express that this function receives
an Int and computes another Int. Recall that this is expressed as (Int => Int).
Then, the body of the function distinguishes by means of an if the base case (i.e.,
when n = 0) that directly returns the value of the factorial (i.e., f act (0) = 1) and
the recursive case that computes n · f act (n − 1). The corresponding code in Scala
is, thus, as follows.

val fact:(Int=>Int) =
(n:Int) => { if (n==0) {1} else {n*fact(n-1)}}

or, equivalently, without giving the type of n:

val fact:(Int=>Int) =
(n) => { if (n==0) {1} else {n*fact(n-1)}}

It is well known that the factorial is equivalently defined by the following
expression.

f act (n) =
n∏

i=1

i

That both expressions are equivalent is proven by induction but this is out of the
scope of this text. See e.g. [17] and [14] for a reference on induction and proofs by
induction.

This later expression is used in most imperative versions of the factorial function.
In this case, we have a variable that takes values from 1 to n, and a variable that
stores the partial results.

We can implement this version in Scala as follows.

val fact: (Int=>Int) = (n) => {
var res = 1
for (i <- 1 to n) {

res = res*i
}
res

}

We can compare this definition with the iterative version studied in Chap.1. Note
that the function in Scala does not need a return statement as the last expression
computed in the function is the one returned.

http://dx.doi.org/10.1007/978-3-319-46481-7_1

22 2 The Basics of the Language

Recursive functions. They are functions that call themselves. Recall that
recursive functions need to consider: (a) a base case, that is not recursive
and that returns a value; (b) a recursive case, in which the function is
applied recursively to an object that is simpler than the one received by
the function. Simpler means that is more similar to the base case.
For example, the factorial has 0 as its base case, and the recursive case
applies the factorial function to a simpler object (the original value less
one, naturally n − 1 is more similar to zero than n).

Other typical examples of recursive functions are the function Fibonacci, and
the function to solve the problem of towers of Hanoi. The straightforward imple-
mentation of the Fibonacci function is quite inefficient but it is useful to illustrate
recursion.

Exercise 2.2. Define recursively the function Fibonacci and the towers of Hanoi.
Use a pure functional implementation for the former. You can use some imperative
(as e.g. sequences of println) for the later.

Recall that the Fibonacci series are defined as follows. F0 = 0, F1 = 1 and
Fi = Fi−1 + Fi−2 (for i > 1).

2.6.8 Functions and Non Functional Programming

When we define a function, we can include in its body any valid Scala expression.
This naturally includes loops and blocks (with sequences of statements). We have
seen an example above of the iterative version of the factorial function. When we
have a sequence of expressions, the function returns the last one (we do not need an
explicit return statement).

2.7 Lists

Scala implements lists. In a list, all objects should be of the same type. So, if we have
a list of integers, formally it will be of type List[Int]. Lists have two constructors.
Nil, which establishes an empty list, and ::, which adds an element to a list.

The following are valid expressions.

val exampleEmptyList = Nil
val exampleListOne = 1::Nil
val exampleListThree = 1::2::3::Nil

2.7 Lists 23

The constructor :: is right associative, so, 1::2::3::Nil is equivalent to
1::(2::(3::Nil)). We can also use the function List that can receive an
arbitrary number of arguments to define a list. This is used as follows:

List(objects between commas)

Consider for example the following list.

val anotherExampleListThree = List(1,2,3)

These examples defined lists of integers. Similarly, we can make lists of strings
as follows.

"First"::"Second"::"Third"::"Fourth"::Nil

In fact we can even mix the type of the objects when we construct a list. We can
define, for example,

"First"::2::"Third"::4::Nil

Nevertheless, as all the elements of the list should have the same type, in this case,
the type of the list wil be List[Any] because of the hierarchy of objects in Scala
(see Sect. 4.1).

There are a few functions defined for lists. Some of them follow.

• head returns the first element of the list. E.g., exampleListThree.head
returns 1.

• tail returns the tail of the list (the list without the first element). E.g.,
example ListThree.tail returns the list 2::3::Nil

• isEmpty returns true if the list is Nil. E.g., exampleListThree.isEmpty
returns false.

• == compares two lists. E.g.,

scala> anotherExampleListThree == exampleListThree
res24: Boolean = true

scala> anotherExampleListThree == exampleListOne
res25: Boolean = false

Note that in these exampleswe call the functionfunctionName for a listaList
using aList.functionName. This is because aList is an object of the type
List andwe are calling themethodfunctionName for this object (i.e., sending
a message to the object using object oriented terminology). In the last case, the
notation

anotherExampleListThree.==(exampleListOne)

is also correct. In Sect. 4.2.1 we discuss with some details different alternative
notations in Scala.

• Other functions include: reverse, length, ::: (that concatenates two lists),
last, and sorted.

http://dx.doi.org/10.1007/978-3-319-46481-7_4
http://dx.doi.org/10.1007/978-3-319-46481-7_4

24 2 The Basics of the Language

2.7.1 Recursion on Lists

It is usual to process the elements of a list to find one (or all) that satisfies a property,
to count them, etc. We have seen some of these functions above. We will show how
to implement them here.

Most algorithms can be classified as either as a traversal or as a search on a data
structure. We have search when we are looking for an object with a certain property.
Once the object is found, the search is stopped. We have traversal, when we need to
visit all the objects in the data structure. The same applies to lists.

• Examples traversing lists.We give below a few examples that need to traverse a
list. They are the functions length, sum, and prod. The first one computes the
length of the list. Then, sum and prod compute the sum and the product of the
elements of the list. In all cases we need to check all the elements either to count
them or to operate them. All of them are defined by means of recursion.
As we need to traverse the whole list, the base case is always the empty list

(Nil), and the general recursive case is applied to the list without the head. Note
that when we remove the head, the list contains one element less and, thus, it is
simpler and more similar to the empty list.
The definitions follow.

val length: (List[Int]=>Int) = (l) => {
if (l==Nil) { 0 } else { 1+length(l.tail)} }

val sum: (List[Int] => Int) = (l) => {
if (l==Nil) { 0 } else { l.head+sum(l.tail) } }

val prod: (List[Int] => Int) = (l) => {
if (l==Nil) { 1 } else { l.head*prod(l.tail) } }

Check that these functions work properly testing e.g.

sum(exampleListThree)
prod(exampleListThree)

• Examples searching in lists. Let us consider two examples of searching. One
that looks for a particular integer in a list of integers, and another that given a test
function returns the first integer that satisfies the test function. For simplicity, this
latter function will return -1 if the object is not found. We call these functions,
respectively, thereIs and thereIsOneSatisfyingP.
The signature of the first function is ((Int,List[Int]) => Boolean) as
it receives an integer and the list and returns a Boolean. The signature of the second
function is ((Int => Boolean, List[Int])=> Int). In this case the
function requires the function p and the list, and returns the integer found (or −1).
In order to test the function thereIsOneSatisfyingP, we define two addi-
tional functions. They are the predicates is2 and is3multiple that receive an
integer and return true when it is 2, or a multiple of 3, respectively.

2.7 Lists 25

val thereIs: ((Int,List[Int]) => Boolean) = (e, l) => {
if (l==Nil) { false } else {

if (e==l.head) { true } else {
thereIs(e, l.tail) }}}

val thereIsOneSatisfyingP: ((Int => Boolean, List[Int])=> Int) =
(p, l) => {

if (l==Nil) { -1 } else {
if (p(l.head)) { l.head } else {

thereIsOneSatisfyingP(p,l.tail) }}}
val is2: (Int => Boolean) = (x) => { x==2 }
val is3multiple: (Int => Boolean) = (x) => { x % 3 == 0 }

We illustrate now the application of these functions with the following calls.

thereIs(2,exampleListThree)
thereIs(5,exampleListThree)
thereIsOneSatisfyingP(is2, 1::2::3::4::Nil)
thereIsOneSatisfyingP(is3multiple, 2::5::8::9::Nil)
thereIsOneSatisfyingP(is3multiple, 2::5::Nil)

Predicate. We use the term predicate in this book as equivalent to a
function that given an object returns a Boolean.

In a search problem, one base case typically corresponds to finding the element we
are looking for. This is the element e in the first function (condition e==l.head)
and an element that makes the test functionp true in the second function (condition
p(l.head)). In the case that the condition is true we return true in the first
function and the element in the second.
The general case typically consists on a recursive application of the function to the
tail of the list. When we are not sure to find the element, these functions have an
extra base case to finish the traversal of the list. Usually, this is to check whether
the list is empty. The first function returns false for this base case (there is no such
element e) and the second function returns −1.

We give below another version of the function product. This function traverses
the list multiplying the elements but at the same time searches for a zero, and if the
zero is found it returns zero directly.

val prodV2: (List[Int] => Int) = (l) => {
if (l==Nil) { 1 } else {

if (l.head==0) { 0 }
else { l.head*prodV2(l.tail) }} }

// Test of function prodV2
prodV2(1::2::0::4::Nil)

26 2 The Basics of the Language

Recursive functions on lists. There are mainly two types of functions:
traversal and search.

• In traversal, it is usual that the base case corresponds to the empty list,
and the general case applies recursively the function to the tail of the
list.

• In search, it is usual that the base case corresponds to the case of
finding the element (and also to the empty list if it may happen that
the element is not found), and the general case applies recusively the
function to the tail of the list.

2.8 Pattern Matching

Functional programming languages often include pattern matching. Pattern match-
ing permits us to differentiate easily among different cases of a given structure. In
addition, it permits us to associate some of the elements of the structure to variables.
This is obtained making two structures equal. In Scala, we use match for pattern
matching. The general structure is as follows:

variable match {
case FirstCaseExpression => FirstExpression
case SecondCaseExpression => SecondExpression
}

It is important to underline that in Scala, the variable should be instantiated. This
means that it should be linked to a value.

When variable matches a case, the corresponding expression is evaluated.
Pattern matching permits us to use variables in the case conditions. Then, if matching
takes place, variables are bounded to subexpressions. These variables can then be
used in the corresponding expression on the right hand side of the case.

To illustrate how this works, let us redefine the factorial function using match.

val fact:(Int=>Int) = (n) => { n match {
case 0 => 1
case m => m*fact(m-1)

}}
// Test
fact(5)

When we compute fact(5), first, n is associated to 5. Then, as we have n
match the value of n i.e. 5 is compared with each of the case expressions. That is,
first, we compare n=5 and the case 0. As the two values are different, this case
fails. Then, we compare n=5 and the case m. As m is a variable, both expressions
can be made equal when m is 5. Thus, we apply the right hand side of this case with
m=5. That is, we compute 5*fact(4). In this way, we will obtain the result of the
function.

2.8 Pattern Matching 27

2.8.1 Pattern Matching on Lists

Pattern matching is usually applied to structures. For example, to define functions
for lists. In this case it is usual to distinguish between the empty list and the list
with at least one element. In the examples given in the previous section, we used the
conditional to distinguish between these two cases. We can use pattern matching for
the same purpose. In this case, we can directly associate variables to the appropriate
elements of the list.

For example, the following definition computes the length of a list using pattern
matching. As in the previous section, we distinguish between two cases: the empty
list and the case of at least one element. The first case checks whether the list l can
be made equal to Nil. This is only possible if l is empty. The second case checks
whether l can be made equal to a list hd::tl. Here, hd and tl are two variables
and we will have that hd will be associated with the head of the list and tl to the
tail. This association will only be possible if l has at least one element. The names
of variables l, hd, and tl are all arbitrary.

val lengthMatching: (List[Int]=>Int) = (l) => l match {
case Nil => 0
case hd::tl => 1+lengthMatching(tl)

}

Note that in this definition hd is not used. Because of that we can just replace
hd by the symbol _ which corresponds to an unnamed variable. The alternative
definition is as follows.

val lengthMatching: (List[Int] => Int) = (l) => l match {
case Nil => 0
case _::tl => 1+lengthMatching(tl)

}

We redefine below the examples of sum and prod.

val sumMatching: (List[Int] => Int) = (l) => l match {
case Nil => 0
case hd::tl => hd+sumMatching(tl)

}

val prodMatching: (List[Int] => Int) = (l) => l match {
case Nil => 1
case 0::_ => 0
case hd::tl => hd*prodMatching(tl)

}

28 2 The Basics of the Language

Exercise 2.3. Use lists to implement a multiset. A multiset is similar to a set but in
which elements can appear more than once. For example, {a, a, b, b, b} is a multiset.
Implement the functionsunion,intersection, andcount formultisets. Given
a multiset and an element, the function count returns how many times this element
is in the multiset.

Pattern matching in Prolog. In Scala when we consider variable
match { list of cases } we need that the variable is instantiated (i.e.,
its value is known). This is not the case in all languages. Prolog is an
example of a language in which variables to be matched do not need to
be instantiated. For example, we can build a predicate that delivers a list
of N elements. This predicate compares the variable List which is not
instantiated with the empty list [] when N is zero, and with a list with
at least one element [|Tail] when N is larger than zero.

listOfN(List,0):-List=[].
listOfN(List,N):-N>0, List=[|Tail], N1 is N-1, listOfN(Tail,N1).

We can test this code writing the following
listOfN(AListWith5Elems,5).

The execution of this code will return a list of 5 arbitrary elements (see
below). That is, the five elements are in fact not instantiated and can be
associated to any value later. In Prolog, variables starting with denote
that they have no value associated.
?- listOfN(AListWith5Elems,5).
AListWith5Elems = [G2984, G2987, G2990, G2993, G2996] ;
true.

In Scala’s pattern matching the variables within match are considered as new.
Because of that, if we are using hd in the match part and we have a hd as one
of the parameters of the function, they are considered as different variables. In the
solution of the following example we illustrate that this may cause problems if used
incorrectly.

Exercise 2.4. Define a recursive version of the function from(n,m) with n and
m integers. The function returns the list of integers from n to m. Assume n ≤ m.
Consider the use of pattern matching in the definition.

Exercise 2.5. Define the function quicksort that given a list of integers, returns
the list of integers ordered (from lower to large). Give a recursive version using
pattern matching.

2.9 Collections and Their Higher Order Functions 29

2.9 Collections and Their Higher Order Functions

We have studied lists in Sect. 2.7. There are other types of collections in Scala. Some
of them are mutable and some of them are immutable. We will review some of them
here. We start, however, reviewing what mutable and immutable data structures are.

2.9.1 Mutable and Immutable Data Structures

Wehave an immutable data structurewhenwe cannotmodify its values.Modification
is achieved by means of constructing a new data structure. This is the case of lists
in Scala. In Scala, we cannot access the i th element of the list and change its value.
We proceed defining a new list with a different value in the ith position.

For example, if we want to change the 2nd position of the list (1,2,3,4) by 20, we
do as follows (check values of x and y after the following code):

val x = 1::2::3::4::Nil
val y = x.head::20::x.tail.tail

In this case x is the original list and y is the new list. We define y as the elements
of x from the 3rd element and adding to the front the first one of x and the number 20.

Note that the same type of definition is valid if we use var instead of val (we
can check the values of variables x and y after the following code):

var x = 1::2::3::4::Nil
var y = x
x = x.head::20::x.tail.tail

We have mutable data collections when we can access and modify the original
structure. In Scala Array is a mutable data structure. That is, we can access a given
position and modify its value. The following code permits to visualize that the array
is mutable.

val x = Array(1,2,3,4)
val y = x
x(1)=20

If we check the values of Arrays x and y after the execution of this code, we see
that both contain Array[Int] = Array(1, 20, 3, 4). Note that this was
not the case with Lists.

In functional programmingwe prefer immutable objects, for the same reasons that
we prefer constants to variables, and that we avoid loops. We consider that they are
safer for programming and of a higher-level.Wewill discuss in Sect. 6.4 efficiency of
immutable objects. Although at a first glance it seems that we need to copy the whole
structure in order that a function returns an immutable object, this is not always so.

http://dx.doi.org/10.1007/978-3-319-46481-7_6

30 2 The Basics of the Language

Note also that the way we modify a list and an array in the previous examples
is different. The modification of an array was an assignment (and thus, imperative-
like) while to update the list what we did was to build one with the first element, the
number 20, and the remaining part. If x is a list, it is not allowed to do x(1)=20

Mutable and immutable objects. An object is mutable when we can
modify (via assignment) one of its components. An object is immutable if
no modifications are allowed.

2.9.2 Mutable and Immutable Collections

We list below some of the collections that exist in Scala.Wewill review them together
with some of their methods. The language offers a large number of other collections
and functions that wewill not describe here. Aspects related to collections are defined
and implemented in different places (including classes, traits6 and modules). We will
not go into these details. See Scala documentation for details.

• List. As we have seen above, we create them with Nil, ::, List. Recall from
the discussion above that they are immutable.

• Array. We can have arrays of any type. Recall from the above description that they
are mutable. The following code illustrates this type.

var myArray:Array[String] = new Array[String](10)
var my2ndArray = Array("Reus","Paris","London")
myArray(0)="This is the first position"
myArray(1)="This is the second position"

• Range. It represents a sequence of integers from a given number to another one
(not included) with a given positive integer step. The construction n to m for
integers n and m generates the sequence of integers between n an m both included.
The construction n until m for integers n and m generate a similar sequence
but with m not included. We illustrate below the answer of the system for to and
until7

scala> val oneToTen = 1 to 10
oneToTen: scala.collection.immutable.Range.Inclusive =

Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
scala> val oneToNine = 1 until 10
oneToNine: scala.collection.immutable.Range =

Range(1, 2, 3, 4, 5, 6, 7, 8, 9)

6Traits are discussed in Sect. 4.8.
7Properly speaking, to and until are methods of the class integer that receive a single parameter.
So, 4.to(16) is also a valid construction. See Sect. 4.2.1 for details. There are functions to and
untilwith two parameters, the first one is the limit and the second the step. Thus, 4.to(16,2)
returns the range with values (4, 6, 8, 10, 12, 14, 16).

http://dx.doi.org/10.1007/978-3-319-46481-7_4
http://dx.doi.org/10.1007/978-3-319-46481-7_4

2.9 Collections and Their Higher Order Functions 31

• Set. We can define sets of any type of objects. See e.g. Set(1,2,3). Elements
can only be once in a set. We can add elements to the set by means of + and
remove elements by means of −. In addition we have union and intersect
to compute, respectively the union and intersection of two sets.

val s1 = Set(1,2,3,4)
val s2 = Set(3,4,5,6)
s1.intersect(s2)
s2.union(s2)

• Map. It defines a mapping from values of type A to values of type B. That is, a
map returns an object of type B given one of type A. The following operations are
defined get (which corresponds to the application of the mapping), + (to add an
additional element to the map) and − (to remove one of the elements). Consider
the following examples.

val map1:Map[String,Int]= Map("one"->1,"two"->2,
"three"->3,"four"->4,"five"->5)

map1.get("one")
map1 + ("six" -> 6)
map1 - ("one")

For these collections we can compute their head, tail and whether they are
empty using isEmpty. For example, we can compute map1.head.

For each collection with name NameOfCollectionwe can create an object of
this type from a set of elements by means of calling NameOfCollectionwith the
elements as their parameters. We have already seen some examples above for lists,
arrays, sets and maps. Details on why the code List(1,2,3), Set(1,2,3), or
even Iterator(1,2,3) works correctly can be found in [22].

Exercise 2.6. Define a currified version of the function curryF that returns

a ∗ (b + c)2

The definition should be done so that the following two expressions work correctly.

curryF (2)(3)(1)
List(1.0,2.0,3.0).map(curryF(2)(3))

2.9.3 Some Imperative Construction on Collections

Given a collection, there are ways to process their elements in an imperative way.
For example, foreach applies a function to each of the elements. The function is
expected to have side effects, as foreach always returns an object of type Unit.
For example, check that

32 2 The Basics of the Language

val result = list1 foreach ((a)=>1)

is a Unit.
Test also the following, and observe that after the execution variable r1 is Unit

whiler2 is 6 as the block returnstotal instead of returning the output offoreach.

val list1 = List(1,2,3)
val array1 = Array(1,2,3)
val range1 = 1 to 3
val set1 = Set(1,2,3)
val map1:Map[String,Int]= Map("one"->1,"two"->2,

"three"->3,"four"->4,"five"->5)
val r1 = {var total = 0; list1 foreach {

(i)=>{ total = total + i }}}
array1 foreach {(i)=>{ println(i+2) }}
val r2 = {var total = 0;

range1 foreach {(i)=>{ total = total + i }}; total}
set1 foreach println
map1 foreach println

We have seen in Sect. 2.2 that we can do a for in Scala using the following code.

for (i <- 1 to 10) { statement }

Again, we need here that the statement has some side effects.
In fact, we can use for (i <- sequence) {statement} to iterate on

the elements of any collection. In the expression i is a variable that takes values in
all the elements of the sequence. We use this construction with different types of
collections in the following expressions.

for (i <- List("alpha","beta","gamma")) { println(i) }
for (i <- Array(("one",1),("two",2))) { println(i) }
for (i <- Set(1,4,2,4).union(Set(4,3))) { println(i) }
for (i <- Map("one"->1,"two"->2,"three"->3,

"four"->4,"five"->5)) {
println(i) }

for (i <- 1 to 5 by 2) {
print(Map(1->"one",2->"two",3->"three",

4->"four",5->"five")(i)) }

2.9.4 Higher-Order Functions for Collections

There exist a few important functions defined on collections that help us to apply
functions on their elements. We review some of them below. For simplicity, we will
focus on lists, and examples are mainly on lists and ranges, but they exist for the
other types of collections.

2.9 Collections and Their Higher Order Functions 33

• map. This higher-order function permits to apply a function to all the elements of
the list. Given the list l and the function fwe apply the function to all the elements
of the list using l.map(f). For example, we can compute the factorial of all the
elements of a list of integers as follows.

val fact:(Int=>Int) =
(n) => { if (n==0) { 1 } else { n * fact(n-1) }}

(0::1::2::3::4::Nil).map(fact)

If the function has type A => B, the given list needs elements of type A and map
returns a list of elements of type B.
We can also use map to apply a map to a list. For example, using the map map1
seen in Sect. 2.9.3 we can compute:

val map1:Map[String,Int]= Map("one"->1,"two"->2,
"three"->3,"four"->4,"five"->5)

List("one","one","two","five","two","one").map(map1)

• filter. It selects the elements of a list that satisfy a given function. Therefore, one
of the parameters is a function that returns a Boolean. Let us denote the original
list by L and this function by f , then filter returns a list with the elements that
make f true. I.e., {l ∈ L| f (l) = true}.
val notMultiplesOf3:(Int=>Boolean) = (n) => {

n % 3 != 0 }
(1::2::3::4::5::6::7::8::9::10::Nil).filter(notMultiplesOf3)

This returns List(1, 2, 4, 5, 7, 8, 10).
Note that we can use in filter any anonymous function. For example, to select
the multiples of 5 in the range 1 .. 300 that are also multiple of 3 we can proceed
as follows.

(1 to 300).filter((n) => { n % 3 == 0 & n % 5 == 0 })

• take. Given n, it selects the first n elements of the list.

scala> (1 to 10).take(5)
res8: scala.collection.immutable.Range = Range(1, 2, 3, 4, 5)

• zip. It combines the values of two lists building a list of pairs or tuples (each pair
contains an element of each list). For example,

(1::2::3::4::5::Nil).zip(0::1::2::3::4::Nil)

This expression returns the following:

List[(Int, Int)] = List((1,0), (2,1), (3,2), (4,3), (5,4))

When the two lists are of different length, the resulting function has the length of
the shortest one.

34 2 The Basics of the Language

• zipped. It is similar to zip. In this case, given a pair of two lists, returns a list of
pairs. For example, the following expression combines two lists.

(1::2::3::4::5::Nil,0::1::2::3::4::Nil).zipped

Compare this expression with the one above for zip.
We cannot visualize the whole structure, but we can see individual elements with
head and tail and we can see the following. With

(1::2::3::4::5::Nil,0::1::2::3::4::Nil).zipped.head

we obtain

res81: (Int, Int) = (1,0)

and with

(1::2::3::4::5::Nil,0::1::2::3::4::Nil).zipped.tail.head

we obtain

res82: (Int, Int) = (2,1)

• partition. This function returns a pair of two lists on the basis of a predicate. The
first list contains all elements that make true the predicate, and the second list
contains the elements that make false the predicate. For example, the following
code

val notMultiplesOf3:(Int=>Boolean) = (n) => { n % 3 != 0 }
(1::2::3::4::5::6::7::8::9::10::Nil).partition(notMultiplesOf3)

returns

(List(1, 2, 4, 5, 7, 8, 10),List(3, 6, 9))

• find. It returns the first element of the list that satisfies a given predicate. For
example, the following code returns 1 (as it is the first element of the list which
satisfies notMultiplesOf3).

val notMultiplesOf3:(Int=>Boolean) = (n) => { n % 3 != 0 }
(1::2::3::4::5::6::7::8::9::10::Nil).find(notMultiplesOf3)

The following example finds the first multiple of 7 and 5 among the integers below
100. It returns, of course, 35.

(1 to 100).find((n) => { n % 7==0 && n % 5==0})

• drop. This function returns the collectionwithout the first n elements. For example,

scala> (1 to 10).drop(5)
res87: scala.collection.immutable.Range = Range(6, 7, 8, 9, 10)

• dropWhile. This function is similar to the previous one, but with a Boolean func-
tion. Elements are removed until the function becomes false.

2.9 Collections and Their Higher Order Functions 35

scala> (1 to 10).dropWhile((a)=> a%5 != 0)
res89: scala.collection.immutable.Range =

Range(5, 6, 7, 8, 9, 10)

• foldLeft. This function is used to combine the values of a list according to a
given function. Let [x1, x2, x3, x4 . . . , xn] be the list, then given a value e0 and the
function f the function foldLeft computes

f (. . . f (f (f (f (e0, x1), x2), x3), x4) . . . , xn).

In the following exampleweuse foldLeft to define a function to add all the elements
of a list.

val sum:(List[Int]=>Int) = (l) => l.foldLeft(0)((a,b) => a+b)

we call this function with List(0,1,2,3,4).sum. Note that we can just use
foldLeft to compute the sumof elements of any list without defining sum explicitly.
This is done as follows.

List(0,1,2,3,4).foldLeft(0)((a,b)=>a+b)

Let us consider the signature of the elements involved in foldLeft. Let us first
assume that the elements of the list are of type A. Then, we have that f is a function
whose second element is of type A. Then, note that the result of the function does
not necessarily require to be also of type A. Let us use B for the type of the output
of the function. Then, note that the first argument of f should also be of type B.
Therefore f: (B, A) => B. Because of this, e0 is also of type B and the output
of foldLeft is also of type B.
Taking into account this fact we use foldLeft to transform a list of integers into
a string with the numbers in characters:

List(1,2,3).foldLeft("")((a,b)=>a+
Map(1->"one",2->"two",3->"three",4->"four",5->"five",

6->"six",7->"seven",8->"eight",9->"nine",0->"zero")(b)+"")

• foldRight. Similar to foldLeft but elements are associated on the right. In the
case of the sum, both foldLeft and foldRight are equally valid to define the
sum.

val sum:(List[Int]=>Int) = (l) => l.foldRight(0)((a,b) => a+b)

• reduceLeft. It is similar to foldLeft but without the initial value e0. So, it computes:

f (. . . f (f (f (x1, x2), x3), x4 . . . , xn).

For example, we can compute the factorial of 10 as follows.

(1 to 10).reduceLeft((a,b)=>a*b)

• reduceRight. This is also similar to foldRight without e0.

36 2 The Basics of the Language

Scala permits to use wildcards in the anonymous function we pass to these higher-
order functions. For example, we can replace (a)=>(x%5 != 0) by _%5 != 0,
and (a,b)=>a+b by _+_. Note that in the first case we replace one variable, and in
the second case two. The following expressions are valid in Scala and are equivalent
to two expressions above.

val sum:(List[Int]=>Int) = (l) => l.foldLeft(0)(_+_)

(1 to 10).dropWhile(_%5 != 0)

Observe that the use of wildcards here is different to their use in pattern matching,
were the value associated to a wildcard was not considered.

Exercise 2.7. Given a list of natural numbers, add the positive ones (and ignore the
negative ones).

Exercise 2.8. Implement the internal product of two vectors using some of these
higher-order functions.

Exercise 2.9. Implement recursively first without pattern matching and later using
it the higher-order functions discussed in this section.

2.10 List Comprehension

List comprehensions are expressions that roughly correspond to the description
of sets in terms of the properties of their elements. For example, we write in
mathematics:

{y|x ∈ N , x > 0, x < 10, y = x2}.

The general expression for comprehensions in Scala is:

for (enums) yield { expressionOnEnums }

In enumswe describe which elements are considered, and then we generate them
with expressionOnEnums. For example, the following expression generates the
elements in the previous set.

scala> for (i<-1 to 9) yield { i*i }
res9: scala.collection.immutable.IndexedSeq[Int] =

Vector(1, 4, 9, 16, 25, 36, 49, 64, 81)

In a comprehension, we can have multiple generators. The following example
adapted from [25] generates pairs.

for (i <- Iterator.range(0, 20);
j <- Iterator.range(i + 1, 20) if i + j == 32)

println("(" + i + "," + j + ")")

Chapter 3
Lazy and Eager Evaluation

Vita, si uti scias, longa est. alium insatiabilis tenet
auaritia; alium in superuacuis laboribus operosa
sedulitas.
Seneca, De brevitate vitae II.I.

When we call a function with a few parameters, we are used to the fact that each
parameter is evaluated before the function is called. This is knownas eager evaluation.
We can also say that such type of function is strict.

We can define formally strict functions introducing the concept of bottom
(denoted by ⊥). We say that an expression evaluates to ⊥ when its evaluation does
not terminate, or throws an error. For example, an infinite recursion or a division by
zero corresponds to ⊥.

Formally, we say that a function is strict when any of its parameters evaluate to
⊥ the function also evaluates to ⊥. For example, + is strict in Scala. The following
expressions all lead to ⊥
(2/0) + 2
2 + (2/0)
(2/0) + (2/0)

A typical example of a non-strict function is the conditional. Let us consider the
conditional expression as follows.

if condition { thenBranch } else { elseBranch }

Note that this function is not strict. When we have 5/0 in e.g. the thenBranch,
we only have an error of the conditional when the condition is true. Try,

if (n==0) { 5/0 } else { 2+2 }

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_3

37

38 3 Lazy and Eager Evaluation

for n = 0 and for n = 1. Of course, in one case the expression fails and in one does
not.

This is so because the branches are only evaluated when needed. Note that if
we implement the conditional as a (eager) function with three arguments, all three
argumentswill be evaluated before the execution of the function and then the function
returns an error independently of the value of the condition. Let us try the following:

val conditional:((Boolean,Int,Int) => Int) =
(condition, thenBranch, elseBranch) => {

if (condition) { thenBranch } else { elseBranch }
}
val n=0; conditional(n==0, 5/0, 2/2)
val n=1; conditional(n==0, 5/0, 2/2)

Observe that now both calls to conditional lead to an error. In Scala we can define
functions with arguments that are only evaluated when needed. So, if one argument
is not needed, it will not be evaluated. This corresponds to the definition of non-strict
functions. When an evaluation is not done because it is not needed, we say that we
have a lazy evaluation.

Lazy evaluation. The evaluation of an expression is delayed until we need its
value. Lazy evaluation is used to

• defer expensive computations, and to
• define infinite structures.

In functions, we can defer the evaluation of an argument using the symbol =>
when we establish its type (placing => before the type). For example, we can define
the conditional above with lazy evaluation for the branches as follows.

val lazyConditional: ((Boolean, => Int, => Int) => Int) =
(condition, thenBranch, elseBranch) => {

if (condition) { thenBranch } else { elseBranch }
}
var n=0; lazyConditional(n==0, () => 5/0, => 2/2)
var n=1; lazyConditional(n==0, 5/0, 2/2)

Important.Laziness can only be expressed as associated to the name of the function.
It gives an error if we place => in the parameters of the anonymous function1. See
e.g.
val lazyConditional: ((Boolean, => Int, => Int) => Int) =
(condition: Boolean, thenBranch: => Int, elseBranch: => Int) => {
if (condition) { thenBranch } else { elseBranch }

}
<console>:2: error: identifier expected but ’=>’ found.

(condition: Boolean, thenBranch: => Int, elseBranch: => Int) => {
ˆ

1This is one of the reasons why we stated in Sect. 2.6.1 that it is more convenient to associate the
types to the function and not to the arguments.

http://dx.doi.org/10.1007/978-3-319-46481-7_2

3.1 Parameter Passing 39

Exercise 3.1. Define a function switch with lazy evaluation that given an integer
that can be either one, two or three, and three expressions selects the first expression
when the integer is one, the second when the integer is two, and the third when the
integer is three.

3.1 Parameter Passing

Parameters in Scala are usually passed by value. In this case, the function receives
the values but the variable that contains this value cannot be modified. Observe the
following error.

scala> val plusOne: (Int => Int) = (n) => {
| n = n + 1; println(n); n }

<console>:8: error: reassignment to val
n = n + 1; println(n); n }

ˆ

Pass by value. We have pass by value when the function gets a copy of the
parameter, or the value cannot bemodified. In any case, any change the function
could apply to the value is not reflected outside the function.

This is in contrast to parameters passed by reference. In pass by reference, the
function can change the values of the variable. Instead of receiving the value, func-
tions receive the address of the variable where the value is.

When parameters are passed by reference, we do not enforce referential trans-
parency, because functions may have side effects. Functions not only return a value
but can modify as a side effect the values of some variables passed as parameters.

Pass by reference. We have pass by reference when the function can change
the values of the variable. This is usually implemented giving the address of
the variable to the function.

A parameter is passed by need when the corresponding expression is only evalu-
ated when its value is needed. In addition, in case that the value of the expression is
needed several times, it is only evaluated once. That is, the first time an expression
is evaluated, its value is stored (catched/memorized), and if the expression is needed
again, this stored value is retrieved.

40 3 Lazy and Eager Evaluation

Pass by need.We have pass by need when the function evaluates an expression
only when needed. So, if it is not needed, the expression is not evaluated. In
addition, once the expression is evaluated, its value is catched and reused if
needed again. That is, parameters are at most evaluated once.

When the parameter is evaluated when needed, but every time is needed it is
evaluated again, we say that we have pass by name. Scala uses pass by name to
implement lazy evaluation in functions2.

To see that this is the case, let us consider the definition of a function that takes
an integer and multiplies this integer by itself and again by itself. Let this function
be lazy in this parameter. Then, let us combine this function with another that takes
a number and returns it after printing a message as a side effect. If we combine this
two functions, we see that the message is printed three times in the screen. One for
each appearance in the expression.

val passByName:((=>Int) => Int) = (a) => { a*a*a}
val printAndReturnInt: (Int => Int) = (num) => {

println("We evaluate the expression");
num

}
passByName(printAndReturnInt(5))

We evaluate the expression
We evaluate the expression
We evaluate the expression
res127: Int = 125

Pass by name. We have pass by name when expressions are only evaluated
when needed, and each time the expression is needed, it is computed again.

3.2 Lazy Val

Lazy val is a lazy version of val, in which the expression is only evaluated when
needed. To illustrate this we consider the definition of xEager and xLazy, one

2Personal comment. From a user perspective, I would have preferred pass by need in Scala. If
you program in a functional way with no side effects it is unnecessary to reevaluate an expression
everytime you find it. Of course, in case of side effects pass by need and pass by name can lead to
different results.

3.2 Lazy Val 41

using eager evaluation and the other using lazy evaluation, and then their use. That
is, we execute the following code.

val xEager =
{ println ("Evaluation of the expression"); 1 }

lazy val xLazy =
{ println ("Evaluation of the expression"); 1 }

xEager + xEager
xLazy + xLazy
xLazy

The interpreter (REPL) gives use the following.

scala> val xEager =
| { println ("Evaluation of the expression"); 1 }

Evaluation of the expression
xEager: Int = 1

scala> lazy val xLazy =
| { println ("Evaluation of the expression"); 1 }

xLazy: Int = <lazy>

scala> xEager + xEager
res0: Int = 2

scala> xLazy + xLazy
Evaluation of the expression
res1: Int = 2

scala> xLazy
res2: Int = 1

We can see that the definition of xEager executes the code as Evaluation
of the expression is printed just after val. In contrast, this does not occur with
xLazy. This is only printed when we are using xLazy in the expression xLazy +
xLazy.We can also observe that the code of the definition ofxLazy is only executed
once.

3.3 Streams and Other Infinite Data Structures

The language Scala includes an implementation of streams which is a class similar
to lists but where the concatenation of an element to the stream is lazy. The two
constructors of streams are expressed by #:: and Stream.empty. They have,
respectively, the same role as :: and Nil. Streams have implemented both head and
tail methods.

42 3 Lazy and Eager Evaluation

As streams use a lazy concatenation we have that only the expression of the head
of the stream is computed. All other computations are pending until they are needed.

Consider the following expressions and their evaluation.

1 #:: 2 #:: 3 #:: Stream.empty
1 #:: (2/0) #:: 3 #:: Stream.empty
(1 #:: 2 #:: 3 #:: Stream.empty).head
(1 #:: 2 #:: 3 #:: Stream.empty).tail

Note that the second expression does not evaluate to error, because (2/0) is
not computed. Consider and compare the following two expressions sLazy and
lEager. The first one sLazy corresponds to the definition of a stream and as such
we have that the concatenation is lazy and (2/0) is not evaluated. We have a correct
assignment. The second one lEager corresponds to the definition of a list, and thus
the concatenation is eager. This forces the evaluation of the three integers in the list.
As the second one is 2/0 the evaluation of the expression leads to an error.

val sLazy = 1 #:: (2/0) #:: 3 #:: Stream.empty
val lEager = 1 :: (2/0) :: 3 :: Nil

Using streams, we can easily define all the integers from a given number. We
define this recursively as follows.

val from: (Int => Stream[Int]) = (n) => { n #:: from (n+1) }

Of course, we could have defined similarly

val fromList: (Int => List[Int]) = (n) => { n :: fromList (n+1) }

But the difference is that while we can compute

val naturalNumbers = from(0)
from(0).tail.tail.tail.head
from(5).tail.tail.tail.tail

we cannot compute the following.

val naturalNumbersEager = fromList(0)
fromList(0).tail.tail.tail.head
fromList(5).tail.tail.tail.tail

Note that these expressions lead to error because the evaluation of the list, which
is infinite, does not finish until the stack is full. Therefore, the functions tail and head
cannot be applied.

Let us consider the definition of a stream containing all factorials. We can use our
definition of natural numbers as input for this purpose. The definition follows.

val allFactorials: (Stream[Int] => Stream[Int]) = (nats) => {
fact(nats.head) #:: allFactorials(nats.tail)
}

3.3 Streams and Other Infinite Data Structures 43

Then, we can compute all factorials with

scala> allFactorials(from(0))
res31: Stream[Int] = Stream(1, ?)

However, as this is a streamwith lazy evaluation only the first one (i.e., the factorial
of zero was shown). To visualize the first 5 factorials we can proceed as follows.

scala> allFactorials(from(0)).take(5) foreach println
1
1
2
6
24

Nevertheless, the implementation above for the function allFactorials is
quite inefficient (we are multiplying and multiplying again the same terms). That is,
when we compute the factorial of the first natural in the stream we are not using any
previous factorial. We can write a more optimal code reusing our results.

We use a local function called allFactRec that given the pair (n, n!) builds
all factorials from n!. Note that we can apply recursively this function obtaining all
factorials from (n+1)!. If factN is the variable equal n!, all factorials from (n+1)!
can be computed as follows:

allFactsRec (n+1, (n+1)*factN)

Then, the list of all factorials from n! are
factN #:: allFactsRec (n+1, (n+1)*factN)

Because of that, we define allFactFrom0 as follows.

val allFactsFrom0 = {
lazy val allFactsRec:((Int,Int)=>Stream[Int]) = (n, factN) => {

factN #:: allFactsRec (n+1, (n+1)*factN)
}
allFactsRec(0,1)

}

The following exercise illustrates the application of two other constructions we
have seen for sequences to streams. However, as the streams are infinite, they can
cause the system crash (caused e.g. by the garbage collector).

Exercise 3.2. Let us consider printing on the screen the stream of all natural num-
bers, and the computation of the last natural number. Warning: note that this can
cause the system crash.

44 3 Lazy and Eager Evaluation

3.4 Stream of Even Numbers

Let us consider another example. Let us define the streamof even numbers. Following
our previous definition of natural numbers, we can define this as:

val from2: (Int => Stream[Int]) = (n) => { n #:: from2 (n+2) }
val even = from2(0)

We can test this definition as follows.

even.take(10) foreach println

Let us consider an alternative way to face this problem. Let us consider our
previous definition for natural numbers. Let us denote this stream nats. Then, we
can define the stream of even numbers adding nats to itself. I.e., with an abuse of
notation that is

nats + nats

Note that the following is true:

0 1 2 3 4 5 6
+ 0 1 2 3 4 5 6

0 2 4 6 8 10 12

We can do this defining a function ssum that is a sum for streams, and use it to
sum the two streams of numbers. This solution follows.

val ssum: ((Stream[Int],Stream[Int])=>Stream[Int]) =
(s1, s2) => { (s1,s2) match {

case (hd1#::tl1, hd2#::tl2) => (hd1+hd2)#::ssum(tl1,tl2)
}}
val from: (Int => Stream[Int]) = (n) => { n #:: from (n+1) }
val nats = from(0)
val evenV1 = ssum(nats,nats)

We can visualize some elements of the stream using.

evenV1.take(10) foreach println

We can give a more compact solution if we observe that given two streams

< x1, x2, x3, · · · >

< y1, y2, y3, · · · >

we can build a new stream

<< x1, y1 >,< x2, y2 >,< x3, y3 >, · · · >

3.5 Stream of Odd Numbers 45

using the function zip. Recall that the function zip was introduced for lists and
sequences in Sect. 2.9.4. If we construct these pairs from the list of natural numbers,
and we add the two values in each pair, we will obtain the list < 0, 2, 4, 6, · · · >.

To complete this, we also need a function to add the two values in each pair. We
call this function addPair3. We call evenV2 the second version of our stream of
evens.

val addPair: (((Int,Int))=>Int) = (a) => a._1 + a._2
val evenV2 = nats.zip(nats).map(addPair)

We can test these functions with:

evenV2.take(10) foreach println

Note that we can simplify this definition using an anonymous function.

val evenV3 = nats.zip(nats).map((a) => a._1 + a._2)

3.5 Stream of Odd Numbers

Let us now consider the stream of odd numbers. Note now that the following holds:

0 1 2 3 4 5 6
+ 1 2 3 4 5 6 ...

1 3 5 7 9 11 ...

So, we can use approaches similar to the ones of the stream of even numbers. In this
case we combine (or add) nats with the tail of the same stream. This results into
the following definition.

val odd = nats.zip(nats.tail).map((a) => a._1 + a._2)

3In the example we use the following definition for addPair:
val addPair: (((Int,Int))=>Int) = (a) => a._1 + a._2

Note that here, a is a pair, and a._1 is an expression that returns the first element of the pair, and
a._2 is an expression that returns the second one. An alternative way is to define
val addPair: (((Int,Int))=>Int) = (a) =>

a match case (a1,a2) => a1+a2
In this case we decompose the object a by means of match in the two components and add
them. Unfortunately Scala does not permit the following to directly destructure the pair in the two
components.
val addPair: (((Int,Int))=>Int) = ((a,b)) => a+b

For comparison, Standard ML permits this type of structure in the pattern matching. Observe the
following valid code in Standard ML:
val addPair = fn (a,b) => a+b;
addPair (2,3);
val addPairOfPair = fn ((a,b),(c,d)) => a+b+c+d;
addPairOfPair ((4,3),(3,1));

http://dx.doi.org/10.1007/978-3-319-46481-7_2

46 3 Lazy and Eager Evaluation

3.6 The Fibonacci Numbers

Let us now define the infinite stream with the Fibonacci numbers. To solve this
problem we start assuming that we already have this list. Note that this assumption
is usual when we define recursive functions!!

So, if the list is available let us call it F. Then, it is easy to see that we can add
F with itself but shifting the elements one position. Let represent the elements of F
(the Fibonacci numbers) by <f0, f1, f2, f3, . . .>. Then, we have that the
following holds:

f0 f1 f2 f3 f4 f5 f6
+ f1 f2 f3 f4 f5 f6 ...

f2 f3 f4 f5 f6 f7 ...

So, it is clear that we have to add F and the tail of F. As the addition of F and tail
of F is the Fibonacci serie from the second position (i.e., f2), we need to add the
first two elements. Therefore, using an abuse of notation, our solution is:

defF = 0# :: 1# :: (F + tail(F)).

However, we need to translate this definition to Scala. Pairing the elements with
zip and using the function addPair above, we can give the following definition.

val fib: (Stream[Int]) = {
0 #:: 1 #:: (fib.zip(fib.tail)).map(addPair) }

Note that this problem is very similar to the list of odd numbers. In this case, the
definition is recursive. As before we can replace addPair by the corresponding
anonymous function.

Exercise 3.3. Define the infinite lists of even and odd numbers by means of filtering
the list of naturals.

3.7 The Prime Numbers

We define now a stream with all prime numbers. Our solution is based in the Sieve
of Eratosthenes. The function will receive a list of integers. We presume that the first
element of the list is a prime number, and that the list contains the numbers that has
passed the Sieve for values smaller than the first one. That is, that if we receive the
list < x1, x2, x3, x4, · · · > we have that x1 is prime, and that xi for i > 1 are not
multiples of any value x smaller than x1 (i.e., x < x1).

Then, given this list, the list of primes from x1 consists of x1, and then all the
numbers that are not multiples neither of x1, nor from numbers larger than x1.

3.7 The Prime Numbers 47

Now, if we take the tail of the list (i.e., < x2, x3, x4, · · · >) and we remove all
multiples of x1, we will have that the resulting list has a prime at the first position
(becausewe do not havemultiples of numbers x such that x ≤ x1). As a consequence,
we will have a list with the same structure that the one received in the function
primeFrom. We use this approach to define the function primeFrom recursively.
Informally, it is defined as follows:

primeFrom(< x1, x2, ... >) = x1 :: primeFrom(sieveO f (x1, tail(list)))

Now we define it formally in Scala. The function receives a stream of integers to
build primes from them. We call this list pf. The first (i.e., pf.head) is the first
prime. Then, we apply the function recursively once we have removed all multiples
of the first. This filtering is done as follows:pf.tail.filter (_ % pf.head
!= 0). Putting all together the function defined is as follows.

val primeFrom: (Stream[Int] => Stream[Int]) = (pf) => {
pf.head #:: primeFrom (pf.tail.filter (_ % pf.head != 0))}

val primes = primeFrom(from(2))

3.8 Exercises with Streams

We close this chapter with some exercises on streams.

Exercise 3.4. We divide this exercise in two parts.

1. Given a row of Pascal’s triangle (or Tartaglia’s triangle) define a function to build
a new row. Give a recursive version and a version using higher-order functions
(i.e., using map, reduce like functions).
Recall that given the row

[a1, a2, a3, . . . an−1, an]

the new row of the triangle will be

[1, (a1 + a2), (a2 + a3), (a3 + a4), . . . (an−1 + an), 1].

2. Define Pascal’s triangle with all the rows.

Exercise 3.5. Different ways have been found to compute approximations of the
number π . Several of them use an infinite series where the addition of its terms
tend to π . That is, the more elements we add, the better approximation we have of
the number π . In this excercise we consider two of these series, and compare their
approximations.

48 3 Lazy and Eager Evaluation

Define the following series (an infinite sequence)

sk = (−1)k

2k + 1
.

This is known as the Leibniz, Madhava-Leibniz or Gregory Leibniz series.
Define a function that computes

πn = 4
n∑

k=0

sk

Define the following series (another Madhava-Leibniz series)

tk =
(−11

3

)k
2k + 1

and the function that computes

π ′
n = √

12
n∑

k=0

tn

Define the following functions

• a function that returns the (infinite) series that compare the values of πn with π

(i.e., that computes the serie rn = |πn−π |, where |a| represents the absolute value
of a).

• a function that returns the maximum error for a given value of n. That is,

maxError = n
max
k=0

|πn − π |

• a function that returns the difference of the two expressions for π . That is, the
series |πn − π ′

n|.
Exercise 3.6. Consider the Hofstadter’s Q-Sequence, which is defined as Q(1) =
Q(2) = 1 and for n > 2 as follows:

Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2))

As an example, observe the following computation:

scala> qn.take(10) foreach println
scala> qn
res90: Stream[Int] = Stream(1, 1, 2, 3, 3, 4, 5, 5, 6, ?)

3.8 Exercises with Streams 49

Define this infinite series.
Consider the sequence Q(1) = Q(2) = 1 and for all n > 2

D(n) = D(D(n − 1)) + D(n − 1 − D(n − 2))

Define a recursive function dr:Int-> Int that given a value n returns the value
of the sequence (in this case without using the infinite series).

Define this infinite series using higher-order functions. We call this function dn.

Exercise 3.7. Define the function interleave that given two streams s1 and s2
returns another stream with the elements of s1 and s2 interleaved. E.g., if we call

interleave(Stream(1,2,3,4),Stream(10,20,30,40))

we should get the stream (1,10,2,20,3,30,4,40).

Exercise 3.8. Define the infinite sequence seqSin defined by

xi = sin(i/2)

for i = 1, 2, . . . and seqSinE defined by

xi = sin(i/2) + ε

for i = 1, 2, . . . where ε is a random number in [0,0.1].
For this you can use scala.util.Random() and nextDouble.

Exercise 3.9. A time series can be represented as a sequence of data x1, x2, x3, . . .
for given times t1, t2, t3, A moving average is a method for smoothing time
series.

For example, a moving average of order 3 is the time series defined by

x ′
i = 1

3
(xi−1 + xi + xi+1) .

A weighted moving average is similar to a moving average but in this case terms
are weighted. For example, the weighted moving average of order 5 with weights
w = (w1, w2, w3, w4, w5) is defined by:

x ′
i = w1xi−2 + w2xi−1 + w3xi + w4xi+1 + w5xi+2.

We can then define the weighted moving average with respect to the weights
w = (1/14, 2/14, 4/7, 2/14, 1/14).

50 3 Lazy and Eager Evaluation

For a given (infinite) sequence, define (i) its moving average of order 3 and (ii)
its weighted moving average of order 5. The weighted average should be a currified
function with two arguments: the weighting vector and the original series.

Apply these functions to the sequence seqSinE and compare it with seqSin
(both defined in Exercise3.8).

Note.Youwill need to define the first elements of the sequences (when expressions
for x ′

i cannot be applied in an appropriate way).

Chapter 4
Object-Oriented Programming in Scala

Omnia quae in notitiam nostram cadunt aut
cadere possunt mundus complectitur.
Seneca, Naturales quaestiones II.III[1].

As we have already stated before, Scala is an object-oriented language. In my opin-
ion, Scala is an object-oriented language that incorporates functional programming
concepts, and provides them in the object-oriented paradigm.

In this section we review the major aspects of object-oriented programming
in Scala. For a more detailed discussion of object-oriented programming see e.g.
[8, 11] and for the particular case of object-oriented programming inScala see e.g. [8].

In this section we mainly ignore the functional programming aspects we have
discussed so far. In Chap. 6 wewill discuss how these object-oriented aspects interact
with the functional programming elements.

Standard definitions of class and instance (as in any other object-oriented lan-
guage) apply to Scala. A class can be seen as a schema or template for instances.
In other words, an instance is generated from a class following the structure defined
in such class. In object-oriented programming, all classes and instances are com-
monly referred as objects, and in a pure object-oriented language all that appears in
a program are objects1.

A class is defined in terms of fields (instance variables or properties), andmethods
(or functions). The creation of an object of a given class is known as instantiation.

We also have relationships of subclass and superclass between classes. When we
define a class κ , we need to relate it to some existing class. We state that this new
class κ extends another one κ ′. Then, this means that κ ′ is the superclass of κ , and,
equivalently, κ is a subclass of κ ′. This defines the relationships of “subclass-of” and
“superclass-of”. We also say that κ has a “is a” relationship with κ ′. For example, we
can define first the class person, and then the class student as a subclass of person.
In this case, student is a person.

1Note that e.g. the language Java is not pure as basic types are not objects and they are not in the
hierarchy of classes.
© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_4

51

http://dx.doi.org/10.1007/978-3-319-46481-7_6

52 4 Object-Oriented Programming in Scala

These relationships are important because subclasses inherit the properties and
methods of superclasses. That is, if κ ′ is the superclass of κ , then the properties and
methods of κ ′ are available to class κ unless κ overwrites them. Similarly, if k is an
instance of class κ , k has available all methods available for κ .

I.f()

Any

AnyRef

Class−A

Class−B

Class−C

Class−D Class−E

Class−F

Instance Instance−I

Fig. 4.1 Selection of a method via single inheritance

In a pure object-oriented programming, all actions are achieved by means of
applying an appropriate method of one of the classes of the language. This is so,
including e.g. the process of creating objects (instantiation).

Scala does only permit single inheritance for classes. That is, a class can only
have another superclass. Because of that the set of definitions for classes define a
hierarchy of classes, and this hierarchy has the shape of a tree.

Note that this is not always the case for object-oriented programming languages.
In some languages multiple inheritance is permitted. In this case (observe C++), the
relationships between classes define a directed graph instead of a tree.

Recall that in object-oriented programming it is usual to use the term message
to denote the call of a function (or a method) from an instance of a class. We
thus say, send a message f to an object o when we are applying method f of
object o. This is usually writen as o. f . If the method has arguments a1, . . . , an
we would use o. f (a1, . . . , an). Note that this was the reason why we have been

4.1 Class Hierarchy 53

using ourList.hd to select the head of a list in our previous examples. Additional
discussion on notation for methods is given in Sect. 4.2.1.

4.1 Class Hierarchy

Figure4.1 represents the path Scala uses to find the suitable method when we call a
function f of an instance I of class E . First, as methods are in classes, Scala will
check whether f is present in class E . If it is there, this method will be used. If it
is not there, using the inheritance relationships, a definition is looked for in another
class. In general, as Scala uses single inheritance, if the function is not found in a
class κ , Scala looks for the function in the superclass of class κ . The process stops
in the class Any as this is the most general class. If there is no function in any of the
classes looked, it means that there is no available definition of f for instance I .

In the hierarchy of Scala, the most general class, the one that encompasses all
objects in Scala, is precisely this class Any. This can be observed if, for example,
we consider the list with an integer and a string. Scala returns a list of Any.

scala> List(1,"string")
res11: List[Any] = List(1, string)

This is so because Any is the type of object that is superclass of both Int and
String (and the less general of all superclasses of both). Then, there are two other
general classes. They are AnyVal and AnyRef. AnyVal is the class that is the
supertype of all value classes, which are the classes of the data types we have seen
in Sect. 2.1 (i.e., Byte, Short, Int, Long, Float, Double, Char, Boolean, Unit) as well
as other classes that can be defined by the programmer in an efficient way. The
definition of new value classes is discussed in Sect. 4.3. AnyRef is the class that is
the supertype of reference classes. Reference classes are all classes that are not value
classes. The majority of classes are reference classes.

Two other special classes are Nothing and Null. Nothing is a subtype of
all classes. It does not have any instance. Null is a subtype of all reference classes
(subtype of all AnyRef subclasses).

Table4.1 summarizes this information.

Table 4.1 Top and bottom classes of the hierarchy of Scala classes.

Any The supertype of any type. Any object is of type Any

AnyRef The supertype of reference classes

AnyVal The supertype of value classes

Nothing Subtype of every other type

Null Subtype of reference types but not of value types

http://dx.doi.org/10.1007/978-3-319-46481-7_2

54 4 Object-Oriented Programming in Scala

As we have seen in the example of a list with an integer and a string, it is useful to
have the hierarchy of classes in mind. For example, in the next example, 1::awhere
a is a list of Nothing leads to a list of integers because the class Nothing is a
subclass of Int. In contrast, as Null is not a subclass of class Int, the expression
1::b where b is a list of Null is a list of Any.

scala> val a:List[Nothing] = Nil
a: List[Nothing] = List()
scala> 1::a
res0: List[Int] = List(1)
scala> val b:List[Null] = Nil
b: List[Null] = List()
scala> 1::b
res1: List[Any] = List(1)

Note that if we add an object of type1 to a list of objects of type2, the list
will be of type3 where type3 is the minimum generalization of both type1 and
type2.

Observe, for example,

scala> val a = 1::2.2::Nil
a: List[AnyVal] = List(1, 2.2)

scala> val a = "zero"::1::2.2::Nil
a: List[Any] = List(zero, 1, 2.2)

4.2 Definition of a Class

As we have stated above, classes in Scala are defined in terms of fields and methods.
Fields correspond to instance variables. This means that each instance will have

its own copy of the variables we define in the class containing its own value. Methods
define how to operate the fields.

Class variables. Recall that class variables are variables that are shared by all
instances of a class. That is, all instances can read and modify its value. There
are not class variables in Scala, a difference from other language as e.g., Java.
You can use companion objects to have a similar functionality. Companion
objects are described in Sect. 4.7.

The definition of a class establishes fields and methods, the superclass that is
extended with the new class, and the parameters required by the constructor.

4.2 Definition of a Class 55

Constructors are the methods that are used to create instances, and each class in
Scala has at least one (the primary constructor). The class establishes the parameters
of this constructor including them between parenthesis in the class definition2.

To define a class we use the following structure.

class NameOfClass [(parameters for constructor)]
[extends AnotherClass] {

bodyOfTheClass }

In this structureextends AnotherClass,whichmeans thatNameOfClass
is a subclass of AnotherClass, is optional, that is why we have written this within
square brackets. If nothing is included, the class extends AnyRef. The parameters
are also optional.

The parameters of the constructor are expressed, in general, as follows.

var parameterName1: type1,
var parameterName2: type2, ...,
var parameterNameN: typeN

If no parameter is required, the list of parameters is empty. We have used here
var, but both var and val can be used. As usual, they permit to define variables
that are mutable or immutable. The following code illustrates this use. The code
gives a first version of the definition of class computer and creates the object
myComputer and modifies its fields. The class is a subclass of AnyRef as we do
not include extends in its definition.

We can use private with a variable if we want to avoid its access from outside
the class. In the example we only fix yearBuilt as private. It is well known that
it is preferable to define variables as private to avoid missuse.

class ComputerV1 {
private val yearBuilt = 2014
var processor = ""
var yearProcessor = -1

}

We can create a new instance of the class with new ComputerV1. In this case,
the constructor has no parameter (and new ComputerV1() is also possible).

val myComputer = new ComputerV1
myComputer.processor =

"Intel(R) Core(TM) i7-4510U CPU@2.00GHz 2.60 GHz"
myComputer.yearProcessor = 2014

We give now a second version of the definition of this class using parameters
for the constructor. In this way, we can give values to the fields when the object is
created. We can also use private in this definition.

2Auxiliary constructors are also allowed. They are methods implemented in the class with the name
this. We include an example below.

56 4 Object-Oriented Programming in Scala

class ComputerV2 (private val yearBuilt: Int,
var processor: String,
var yearProcessor: Int) { }

val myComp = new ComputerV2(2014,
"Intel(R) Core(TM) i7-4510U CPU@2.00GHz 2.60 GHz",
2014)

The following example defines the class Real. As no extends keyword is
included, this class extends AnyRef. The class has a single variable re that the
constructor will assign. We have implemented three methods. We have two methods
to add and substract the object and another object received as a parameter. We have
also implemented the method dist0 with no arguments. It computes the distance
of the current object to zero. This is defined as the absolute value of the variable re.
We also define the method toString, which is used to print an object of this type.
As this method is already defined in the AnyRef class, we need to specify that we
are overriding it. This is done with the keyword override.

class Real (val re: Double) {
override def toString = "r"+re.toString
def +(r2: Real): Real = new Real (re + r2.re)
def -(r2: Real): Real = new Real (re - r2.re)
def dist0: Real = new Real (re.abs)

}

We can observe that the definition of methods follows the pattern:

def name [(list of arguments)]: type = expression

In the methods, new Real (expression) creates a new real, that in our
case are the output of the methods.

We have used re in the body of both + and -. This refers to object’s variable re.
We could also use this.re. Within the implementation of a class, this refers to
the object that receives the call of the method.

With this definition we can create new numbers of type Real and operate them
as follows.

val a = new Real(2.3)
val b = new Real(5.3)
a.+(b)

In a.+(b), we are applying the method + of the object a with the argument b.
Let us now consider the implementation of numbers of type Complex as an

extension of real numbers. We include below its definition and two examples of its
use.

The class includes a primary constructor and an auxiliary one. Secundary con-
structors are methods with the name this. In this case if we create a Complex

4.2 Definition of a Class 57

with only one Doublewe will understand that this Double is the real part and that
the other is zero.

class Complex (override val re: Double, val im: Double) extends
Real (re) {

def this (r: Double) = this(r, 0)
override def toString = "c"+re.toString+"+"+im.toString
def +(c2: Complex): Complex =

new Complex (re + c2.re, im + c2.im)
def -(c2: Complex): Complex =

new Complex (re - c2.re, im - c2.im)
}
val b = new Complex(-2.3,4.4)
b.dist0
val c = new Complex(2)

We can observe that this definition inherits dist0 from Real. We could redefine
dist0 if that was preferable.

Exercise 4.1. Redefine the class Complex so that dist0 returns
√
re2 + im2.

Scala provides functions to find the class and superclass of an object. They
are getClass and getSuperclass. We give an example below (the function
getAllSuperclasses is based on [28]).

val a = new Real(2.3)
a.getClass
def getAllSuperclasses(cl: Class[_]): List[Class[_]] = {

if (cl == null) Nil
else { cl :: getAllSuperclasses(cl.getSuperclass) }

}
val b = new Complex(3)
getAllSuperclasses(b.getClass)

4.2.1 Notation

Methods can be called using the usual standard notation in object-oriented program-
ming.

Object.MethodName(arg1, arg2, ..., argN)

However, the dot is optional, and the parenthesis is also optional in the case of a
single or no argument. Because of that we can also use the following notation.

Object MethodName(arg1, arg2, ..., argN)
Object MethodName arg1

58 4 Object-Oriented Programming in Scala

For example, the following pairs of expressions are equivalent in Scala. Note that
we have been using the one on the right. The one on the left is the one with an
object-oriented flavour. Note that the object to which the method is applied is clearly
specified with the dot notation.

2.+(3) 2 + 3
2.==(3) 2==3

4.3 Value Classes

This type of classes have special properties.

1. They are extensions of the abstract class AnyVal (instead of being extensions
of AnyRef). This is from Scala 2.10 (in previous versions they were a type of
Trait, see Sect. 4.8 for traits).

2. Value classes are final, that is, they can not be further extended.
3. They consist only on a single value, and the value is directly held by a variable

(instead of being accessed through a reference to the value). Because of that, the
implementation of objects of these classes is more efficient.

Scala offers the following subclasses of AnyVal: Unit, Boolean, Double,
Float, Long, Int, Char, Short, and Byte. The last seven ones are numerical.
The first two ones are not.

Some examples of value classes follow3. First, an example for integers modulo 5.

class Mod5 (val intVal: Int) extends AnyVal {
def +(m5: Mod5): Mod5 = new Mod5 ((intVal + m5.intVal) % 5)
def -(m5: Mod5): Mod5 = new Mod5 ((intVal - m5.intVal) % 5)
def *(m5: Mod5): Mod5 = new Mod5 ((intVal * m5.intVal) % 5)
def ==(m5: Mod5): Boolean = (intVal % 5) == (m5.intVal % 5)

}

This definition permits us to define the values n1, n2, and n3 and compare them
as follows.

val n1 = new Mod5(4)
val n2 = new Mod5(10)
val n3 = new Mod5(1)
(n1 + n3)==n2

Another example defining a class of real numbers follows. It is similar to the
previous one in Sect. 4.2 but now we state that the class extends AnyVal. This
makes its implementation more efficient.

3Recall that they are for Scala from version 2.10.

4.4 Case Classes 59

class Real (val re: Double) extends AnyVal {
def +(r2: Real): Real = new Real (re + r2.re)
def -(r2: Real): Real = new Real (re - r2.re)
def negi: Real = new Real (-re)

}

However, as this class of real numbers is a subclass of AnyVal, it is final and we
cannot define the class of complex numbers as an extension of the class Real. For
example, if we prepare the following definition.

class Complex (val re: Double, val im: Double) extends Real {
def +(c2: Complex): Complex =

new Complex (re + c2.re, im + c2.im)
def -(c2: Complex): Complex =

new Complex (re - c2.re, im - c2.im)
}

Scala returns the following error.

<console>:9: error: illegal inheritance from final class Real
class Complex (val re: Double, val im: Double) extends Real {

4.4 Case Classes

Case classes is a type of classes with some specific characteristics. They provide by
default comparison that can be used in pattern matching. We will discuss their use
in Chap.7 (Sect. 7.2).

4.5 Abstract Classes

Abstract classes are to encapsulate properties that are common to several subclasses.
Methods in abstract classes do not need to be fully defined. This permits us to use
abstract classes to force subclasses to provide certain functionalities.

In the following example we define an abstract class Number. We require that any
Number has at least addition and substraction, and provides a type.

abstract class Number {
type Self
def + (r2: Self): Self
def - (r2: Self): Self

}

Now we consider an implementation of the class Real that is a subclass of
Number and later a class Complex that is also a subclass of Number. We provide

http://dx.doi.org/10.1007/978-3-319-46481-7_7
http://dx.doi.org/10.1007/978-3-319-46481-7_7

60 4 Object-Oriented Programming in Scala

examples defining objects and operating them. The classes provide the implementa-
tion of the object with appropriate variables, define the typeSelf, and implementing
the methods required by Number (as well as other ones).

class Real (num: Double) extends Number {
var re: Double = num
type Self = Real
override def toString = "r"+re.toString
def + (r2: Real): Real = new Real (this.re + r2.re)
def - (r2: Real): Real = new Real (this.re - r2.re)
def - : Real = new Real (-this.re)

}

With this definition we can define and add two numbers.

val r1 = new Real(2.0)
val r2 = new Real(3.0)
r1 + r2

Another example of a numeric class follows. It defines Complex, also based on
the abstract class Number.

class Complex (numRe: Double, numIm: Double) extends Number {
var re: Double = numRe
var im: Double = numIm
type Self = Complex
override def toString = if (im >= 0) {

"c"+re.toString+"+"+im.toString+"i" }
else { "c"+re.toString+im.toString+"i" }
def + (r2: Complex): Complex = {

new Complex (this.re + r2.re, this.im + r2.im) }
def - (r2: Complex): Complex = {

new Complex (this.re - r2.re, this.im - r2.im) }
}

Similarly, we can define and add two numbers as follows.

val c1 = new Complex(2.0,3.0)
val c2 = new Complex(2.2,1.4)
c1 + c2

4.6 Singleton Objects

This is to define directly an object without defining previously a class. Alternatively,
it can be seen as creating the class and its single instance. They are defined in the
same way as a class but using the keyword object instead of class. The name
of the object is the name of a variable containing this object.

4.6 Singleton Objects 61

Singleton objects permit us to organize functions (encapsulate them, make mod-
ules) when there are no variables in the object. It is equivalent to high level modu-
larization. When variables exist in the module, a singleton can be seen as somehow
equivalent to the use of static variables or class variables (or can be used for this
purpose).

We can name a singleton object with the name of a class. Such objects are used
to define companion objects. See Sect. 4.7.

4.7 Companion Objects

A companion object has the same name of a class. We can use them to implement
functions to operate with objects of such class but that are not a direct application of
a method to a given object. Note that when we define a class, methods are need to
be applied to instances of the class. In the case of an object, we apply the methods
to the object themselves.

We typically use companion objects to create objects of the class and to encapsu-
late functions that operate with objects of the class (but that are not directly applied
to any particular object).

Consider the case of the class Complex, and a companion object of the same
class. Then, if we consider a particular number c of type complex and functions f
of the class and of the companion object, we will use c.f to apply the function f of
the class Complex to the number c and Complex.f to apply the function of the
companion object.

Wemust define a companion object together with the class, either in a file or using
the :paste option in the interpreter. If we do not do so, we get a warning. Observe
the following definition in the interpreter and the message obtained (we need to have
defined already the class Complex).

object Complex {
def sum (c1: Complex, c2: Complex): Complex =

new Complex(c1.re+c2.re,c1.im+c2.im)
}

The output of Scala for this definition is as follows.

defined object Complex
warning: previously defined object Complex is not a companion

to class Complex.
Companions must be defined together; you may wish to use

:paste mode for this.

Entering the following text to the interpreter (and adding a ˆd at the end of the
text) we can define correctly the companion object. Note that in the code we define,
one after the other, the class Complex and its companion object Complex. We can
also put the definitions in a file (without :paste) and then load (or compile) the file.
Note that these definition require the abstract class Number.

62 4 Object-Oriented Programming in Scala

:paste
class Complex (numRe: Double, numIm: Double) extends Number {

var re: Double = numRe
var im: Double = numIm
type Self = Complex
override def toString = if (im >= 0) {

"c"+re.toString+"+"+im.toString+"i" }
else { "c"+re.toString+im.toString+"i" }
def + (r2: Complex): Complex = {

new Complex (this.re + r2.re, this.im + r2.im) }
def - (r2: Complex): Complex = {

new Complex (this.re - r2.re, this.im - r2.im) }
}

object Complex {
def sum (c1: Complex, c2: Complex): Complex =

new Complex(c1.re+c2.re,c1.im+c2.im)
def Eq. 2degree (a: Double, b: Double, c: Double):

List[Complex] = {
val d = b*b-4*a*c
if (d<0) {

return(
(new Complex(-b/(2*a), - Math.sqrt(-d)/(2*a)))::
(new Complex(-b/(2*a), + Math.sqrt(-d)/(2*a)))::
Nil)

}
else {

if (d==0) {
return(new Complex((-b)/(2*a),0)::

new Complex((-b)/(2*a),0)::Nil)
}
else {

return(new Complex((-b - Math.sqrt(d))/(2*a),0)::
new Complex((-b + Math.sqrt(d))/(2*a),0)::Nil)

}
}

}
}

The companion object in this example defines two functions. One that adds two
complex numbers and returns this addition and another that returns the two solutions
of an equation of second degree. Recall that these two solutions can be either real or
complex numbers. Our solution returns a list of two complex numbers. Note that we
cannot define this method within the class Complex as none of its parameters is of
type Complex.

The examples below show that we call this second method in the following way:
Complex.eq2degree. Note that it is a method of the object Complex.

val c1 = new Complex(2.0,3.0)
val c2 = new Complex(2.2,1.4)
c1 + c2
Complex.eq2degree(3,2,1)
Complex.eq2degree(3,4,2)

4.7 Companion Objects 63

Staticmethods and variables in Java. In Java static methods of a class cannot
access to object variables, and they cannot call to dynamic methods. Static
variables belong to the class and not to each object (there is only one copy of
the variable and not one copy for each instance of the class).
Methods in a companion object can be seen as equivalent to Java’s static meth-
ods.When companion objects include variables, they can be seen as equivalent
to static variables. There is only a single copy of the variable, the one in the
companion object.
In Scala Java’s constraints naturally follow from the way companion objects
are defined.

4.8 Traits

Traits are an alternative to classes. They can be used to define the signature of a set
of methods and, in addition, to give a partial implementation of them.

In Scala classes have only one superclass. Traits can be seen as away of permitting
multiple inheritance, as we can define a class using several traits, and the properties
of these traits will be inferred by the elements of the new class.

A difference between classes and traits is that no constructor parameters are
permited in traits.

We give an example below. We define the trait Similarity. It requires that
any object implementing this trait provides a type and two functions. The function
isSimilar is expected to compare two objects of the corresponding type returning
a Boolean. The trait also implements the function NotSimilar in terms of the
function isSimilar.

trait Similarity {
type Self
def isSimilar (x: Self): Boolean
def isNotSimilar (x: Self): Boolean = !isSimilar(x)

}

4.8.1 Inheritance

Inheritance is permitted in traits, but only from other traits. For example, we can
define the following trait that extends the trait Similarity.

trait SimilarityWithDegree extends Similarity {
def isSimilarEnough (x: Self): Boolean

64 4 Object-Oriented Programming in Scala

def isNotSimilarEnough (x: Self): Boolean = !isSimilarEnough(x)
def degreeOfSimilarity (x: Self): Double
def selectSimilarEnough (L: List[Self]): List[Self] =

L.filter(isSimilarEnough)
}

4.8.2 Multiple Inheritance

As we have stated above, we may have multiple inheritance of traits (in classes or
in other traits). This is achieved adding traits after the extends with the keyword
with. In the next example we define the class Point and the class Point3D
that extends Point and is forced to define the methods described in the trait
SimilarityWithDegree. Therefore, we have multiple inheritance.

The class Point3D uses three doubles to denote a point in the 3D space (x, y, z)
and avalue epsilon thatwill be used to implement the functionisSimilarEnough.

class Point (val x:Double, val y:Double) {
override def toString = "("+x+","+y+")"

}

class Point3D (override val x: Double,
override val y: Double,
val z: Double,
val epsilon: Double) extends

Point(x,y) with SimilarityWithDegree {
type Self = Point3D
def isSimilar (x: Point3D): Boolean = {

return(x.x == this.x && x.y == this.y && x.z == this.z)
}
def degreeOfSimilarity (p2: Point3D): Double = {

math.sqrt((this.x-p2.x)*(this.x-p2.x) +
(this.y-p2.y)*(this.y-p2.y) +
(this.z-p2.z)*(this.z-p2.z))

}
def isSimilarEnough (x: Point3D): Boolean = {

return(degreeOfSimilarity(x)<this.epsilon)
}

}

In this example,Point3D inherits themethodtoString fromPoint and then
needs to implement the types and methods required by the trait SimilarityWith
Degree. Italsoinheritsthemethodsfromthetraitase.g.selectSimilarEnough.
In the next example we test these classes.

First, we define some points.

val p1 = new Point(2, 4)
val p2 = new Point3D(2, 4, 3, 0.001)
val p3 = new Point3D(5, 9, 3, 0.001)
val p4 = new Point3D(2.00001, 4.0001, 3.000001, 0.001)

4.8 Traits 65

The following expressions show that we can display the point p3 using the
method toString inherited from Point. Similarly, we can use the method
selectSimilarEnough from the trait SimilarityWithDegree. We have
also expressions to test the other methods.

p1.toString()
p3.toString()
p2.isSimilar(p3)
p2.isSimilarEnough (p3)
p2.degreeOfSimilarity (p3)
p2.isSimilarEnough (p4)

p2.isNotSimilarEnough (p3)
p2.selectSimilarEnough (List(p2,p3,p4))

4.8.3 Name Clashes in Traits

When two or more traits define the same method and we extend all of them we have
a name clash. Observe that if we type the following code

trait First {
def methodNameClash = 1

}
trait Second {

def methodNameClash = 2
}
class NewClass extends First with Second

we obtain the following error.

<console>:9: error: class NewClass inherits conflicting members:
method methodNameClash in trait First of type => Int and
method methodNameClash in trait Second of type => Int

(Note: this can be resolved by declaring an override in class NewClass.)
class NewClass extends First with Second

ˆ

We can solve the name clash explicitly overriding the method.

class NewClass extends First with Second {
override def methodNameClash = super[Second].methodNameClash
}

For completeness, we give the same example but using class for the first definition.
The execution of this code will lead also to an error.

66 4 Object-Oriented Programming in Scala

class First {
def methodNameClash = 1

}
trait Second {

def methodNameClash = 2
}
class NewClass extends First with Second {

override def methodNameClash = super[Second].methodNameClash
}

Recall that Scala does not permit multiple inheritance for classes, so it is not
allowed that both are classes. If you test with two classes you will get an error.

4.9 Packages

Scala permits to define packages, which are only away to encapsulate objects, classes
and other packages. It is not possible to define objects with val or def within a
package.

Given a package with some definitions, we can access these definitions using the
notation packageName.definitionName. We can import all such definitions
to avoid using the package name with import packageName._.

Packages are not first class objects in Scala.
The following example illustrates the use of packages. We have one package that

contains a class, an object and another package. Then, we have an object that uses
objects in this package. Let us paste this text4 to the Scala interpreter (recall that we
need to finish the text with ˆd).

:paste -raw
package pName {

class c1 {
def print = { println("c1") }

}
object o1 {

def print = { println("c2") }
}
package p2Name {

object o2 {
def print = { println("o2") }

}
}

}
object MyThirdFile {

def test = {

4The keyword used below -raw is only available from Scala 2.11.

4.9 Packages 67

pName.p2Name.o2.print
0

}
}

Then, we can execute the following code. This accesses the object o2 of package
p2Name and uses its print method.

val a:Int = MyThirdFile.test

The output we obtain from the system is the following one.

o2
a: Int = 0

4.10 Some Additional Issues

As we have stated several times in this book, Scala is based on the Java Virtual
Machine. Classes in Java can be accessed through Scala. Because of that, we have
at our disposal a set of classes that can be useful when writting Scala programs.

For example, if we ask Scala about the class Math we obtain that the following
methods are implemented. Note that we type Math. below but in order to get the
output from the system we need also to press the <tab>.

scala> Math.
E ceil hypot nextDown subtractExact
IEEEremainder copySign incrementExact nextUp tan
PI cos isInstanceOf pow tanh
abs cosh log random toDegrees
acos decrementExact log10 rint toIntExact
addExact exp log1p round toRadians
asInstanceOf expm1 max scalb toString
asin floor min signum ulp
atan floorDiv multiplyExact sin
atan2 floorMod negateExact sinh
cbrt getExponent nextAfter sqrt

This output was obtained for a Scala version 2.11.6 and Java 1.8.0_91. Other
versions may lead to different functions.

Chapter 5
Types and Classes Revisited: Polymorphism

We can define polymorphic methods using type variables. Polymorphic functions are
those that can be applied to data of different types. Polymorphism is different from
overloading that corresponds to have different functions with different types but with
the same name. For example, addition+ inReal andComplex are not polymorphic
because we have two different functions with different implementations.

Type variables are added after the name of the method (in square brackets and in
capital letters). Then, we can use these type variables when we define the types of
the parameters.

The following example returns the third element of a list. We use A to denote the
type of the elements in the list. Thus, the function receives a list of elements of typeA.
That is, List[A]. The function returns an element of type A. Our construction can
be used for lists of any type. For example, lists of integers. In such case, we will have
that A corresponds to Int.

def third[A] (l: List[A]): A = { l.tail.tail.head }

We can test this function with two different types of list as follows.

third(List(1,2,3,4))
third(List("one","two","three","four"))

Another example follows. It is a higher-order functioncurry that given a function
with two parameters it currifies it. The most general case is when the two parameters
of the function received by curry (say f) are of different and arbitrary types (say
A and B) and the output is of a third arbitrary type (say C). We define the function
below.

def curry[A,B,C] (f:(A,B)=>C): A=>(B=>C) = {
(x) => (y) => f(x,y) }

We give examples of the application of this function. The first two definitions are
equivalent. They differ in the way we inform Scala about the types involved in the

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_5

69

70 5 Types and Classes Revisited: Polymorphism

function. Note that although the definition of curry uses three different types A, B,
and C, we can have A=B=C=Int, as in the third example below.

val fc1 = curry[Int,Double,String]((a,b) => { "output string" })
val fc2 = curry((a:Int,b:Double) => { "output string" })
val fc3 = curry((a:Int,b:Int) => { a+b })

As the functions are now currified, we can call these functions with the two
arguments or with only one. See e.g.

fc2(3)
fc2(3)(5.3)
fc3(2)
fc3(2)(4)

Exercise 5.1. Define a recursive version of themethodfrom(vFrom,vTo,gen)
which generates a list of elements where the first one is vFrom and the last one is
vTo. These two elements are of an arbitrary type. Then, gen is a function that given
an element of this arbitrary type generates a new one.

The function from starts with vFrom and generates elements with gen until
vTo is reached.

Give examples of its application to generate lists of integers from 3 to 10, even
numbers from 2 to 10, characters from a to k, and powers of 2 from 16 to 256.

Note.As from is polymorfic, because we can define it for an arbitrary type, we need
to define it using def.

Exercise 5.2. Define the function quicksort with two arguments. The first one
is a list of elements of an arbitrary type, and the second a function that given two
elements of this type returns true when the first is smaller than the second. Then,
quicksort returns the list of elements ordered (from lowest to largest according to the
function).

5.1 Classes with Polymorphic Types

We can define classes that depend on types. This is done in a similar way as we do
with methods. That is, adding a parameter to the definition of the class with its type.

In the following example we show how this can be used to solve problems with
types in classes. We can proceed similarly with traits.

Consider the following problem. Let us add amethod to the abstract classNumber
that when applied to a given Number adds this number to all the elements of a list
and substracts another number. The signature of the method is:

def addThisSubstThat (a: Self, l: List[Self]): List[Self]

5.1 Classes with Polymorphic Types 71

and we expect to apply it as follows

n.addThisSubstThat(a,[x1,...,xn])

obtaining the list

[n+x1-a,...,n+xn-a]

A first incorrect approximation to solve this problem is to define a class Number
implementing this method and two additional methods + and −.

abstract class Number {
type Self
def + (r2: Self): Self
def - (r2: Self): Self
def addThisSubstThat (a: Self, l: List[Self]): List[Self] = {

if (l==Nil) { Nil } else
{ ((this+l.head)-a)::addThisSubstThat(a,l.tail) }

}
}

Nevertheless this definition does not work because there is a conflict with the
types in the expression ((this+l.head)-a). This is so because a and l.head
are of type Self while this is a Number. Observe the output of Scala for this
definition.

<console>:13: error: value - is not a member of Number.this.Self
{ ((this+l.head)-a)::addThisSubstThat(a,l.tail) }

ˆ

This problem can be solved adding a type in the definition of the class. That is,
the class depends on a type. We call this type Self, and we require with the code
<: Number [Self] that this type is a subtype of Number. Now, we do not need
to declare type Self as it is already known (because it is in the header). Then,
we use Self to declare that the object (i.e., this) is of type Self. We need also
to add => in this definition.

abstract class Number[Self <: Number [Self]] {
this: Self =>
// type Self: This is not needed now.
def + (r2: Self): Self
def - (r2: Self): Self
def addThisSubstThat (a: Self, l: List[Self]): List[Self] = {

if (l==Nil) { Nil } else
{ ((this+l.head)-a)::addThisSubstThat(a,l.tail) }

}
}

Nowwe redefineReal extending this type ofNumber.Weneed tomake explicit that
Real extends Number when Self is Real. So, we use Real ... extends
Number[Real] in the definition below. If we compare this definition with the

72 5 Types and Classes Revisited: Polymorphism

previous one for real we also observe that we do not need to state now that Self
is Real.

class Real (num: Double) extends Number[Real] {
var re: Double = num
// type Self = Real: This is not needed now.
override def toString = "r"+re.toString
def + (r2: Real): Real = new Real (this.re + r2.re)
def - (r2: Real): Real = new Real (this.re - r2.re)
def - : Real = new Real (-this.re)

}

We give an example of the application of these definitions.

(new Real(2)).addThisSubstThat(new Real(4),
List(new Real(1),new Real(2),new Real(3)))

We can proceed in the same way to implement Complex as an extension of
Number.

class Complex (numRe: Double, numIm: Double) extends
Number[Complex] {

var re: Double = numRe
var im: Double = numIm
// type Self = Complex
def this (r: Double) = this(r, 0)
override def toString = if (im >= 0) {

"c"+re.toString+"+"+im.toString+"i" }
else { "c"+re.toString+im.toString+"i" }
def + (r2: Complex): Complex =

new Complex (this.re + r2.re, this.im + r2.im)
def - (r2: Complex): Complex =

new Complex (this.re - r2.re, this.im - r2.im)
}

We also provide an example for this class.

(new Complex(2,3)).addThisSubstThat(new Complex(4,2),
List(new Complex(1,1),new Complex(2,6),new Complex(3,5)))

5.2 Monoids, Functors, and Monads

In the way of greater genericity a few types of data have emerged as useful. We can
see them as generic types with operations satisfying some properties. In Scala, we
can define these generic types as (abstract) classes, objects or traits. Then, we can
define higher-order functions on them, and thus apply them to actual objects.

The definition of these generic types can be seen as a scheleton of the type, because
not all properties can always be explicitly stated in Scala. For example, we see below

5.2 Monoids, Functors, and Monads 73

that a monoid is based on an associative function. However, if we define a trait for
monoids we can require that there is a function for the type, but we cannot require
that the function is associative. So, the satisfaction of this requirement is left to the
programmer.

5.2.1 Monoids

This name comes from category theory [10], and in such context they correspond to
a type of algebra.

In the context of object-oriented programming and Scala, they are types that in-
clude abinary associative function and an identity element for this function.Examples
of monoids include:

• Integers, with the sum and zero.
• Integers, with the product and one.
• Strings, with the concatenation (“+”) and the empty string.
• Lists, with the concatenation of lists (“++”) and the empty list.
• Positive numbers, with min and zero.

Monoids are important because given a sequence of the elements of the type, we
can combine them with the function in any order. This is because of the associativ-
ity of the function. Therefore, we can use the higher-order functions foldLeft,
foldRight, fold, and aggregate1 with any monoid. The result will be always
the same.

5.2.2 Functors

We have seen in previous sections that one may define functions and classes that
are parametric with respect to one or more types. This type of generalization can be
pushed even forward.

Let us consider types asList[Int],Array[String], andSomething[A]
all containing different elements of a basic type (i.e., Int, String, and A) and im-
plementing the function map. The function map given a function from the basic type
to another (i.e., f: A=>B) transforms a Something[A] into Something[B].
We say that such type is a functor.

When applying functors from a set A to a set B, we expect that if on the set A
there is an identity i A and a function f A : (A, A) → A, and if on the set B there is
an identity iB and a function fB : (B, B) → B, then

1We will see fold and aggregate in Chap.8.

http://dx.doi.org/10.1007/978-3-319-46481-7_8

74 5 Types and Classes Revisited: Polymorphism

• f (i A) = iB ,
• f (f A(a, b)) = fB(f (a), f (b)) for all a in A and b in B.

Wegive an example of the definition of functor in termsof a trait, and two examples
of objects satisfying the requirement of this trait.

trait Functor[GenericTypeOf[_]] {
def map[A,B](gtype: GenericTypeOf[A])(f: A=>B): GenericTypeOf[B]

}
object ListFunctor extends Functor[List] {

def map[A,B](list: List[A])(f: A=>B): List[B] = list.map(f)
}
object SetFunctor extends Functor[Set] {

def map[A,B](s: Set[A])(f: A=>B): Set[B] = s.map(f)
}

Then, naturally, we can apply SetFunctor.map as follows (the map
fromStringToNum was defined in Sect. 2.9.2).

val fromStringToNum:Map[String,Int]= Map(
"one"->1,"two"->2,"three"->3,"four"->4,"five"->5)

SetFunctor.map(Set("one","two","five"))(fromStringToNum)

We can also extend Functor with new methods defined from the map. See e.g.
the following

trait FunctorExtension[GenericTypeOf[_]] extends
Functor[GenericTypeOf] {

def composeMaps[A,B,C](gtype: GenericTypeOf[A])
(fA: A=>C)(fC: C=>B): GenericTypeOf[B] = {

map(map(gtype)(fA))(fC)
}

}

This can then be used by any object or class that extends FunctorExtension
once we define map. See e.g. the following example

object ListFunctorExtension extends FunctorExtension[List] {
def map[A,B](list: List[A])(f: A=>B): List[B] = list.map(f)

}

Which can be applied as follows.

ListFunctorExtension.composeMaps(
List("one","two","three","four","five")

)(fromStringToNum)((i:Int)=>i*i)

5.2.3 Monads

A monad is another type that is useful in functional programming. The term also
comes from category theory. Monads can be seen as an abstraction of the following
example.

http://dx.doi.org/10.1007/978-3-319-46481-7_2

5.2 Monoids, Functors, and Monads 75

Let us consider a list of integers, its decomposition into prime numbers, and then
the list of all primes. We will have something like:

List(2,10,15,45) => List(List(2),List(2,5),List(3,5),List(3,3,5))
=> List(2,2,5,3,5,3,3,5)

We can see this computation in terms of a function f that given an integer returns
the list of factors, and then a function flatten that given a list of lists of elements
returns just a list of elements. If we generalize these types we have that we can use
any type M[A] instead of the original list of integers, and the output can be any type
M[B]. We use two types A and B as the function f could transform the type of the
elements.

Amonad is a generalization of this process considering the typeM[A] (in our case
aList[Int]), a functionf fromA toM[B] (in our case fromInt toList[Int],
and then the function flatten that given a M[M[B]] returns a M[B].

A monad can be seen as a combination of a functor (we have M[A] with a map
that permits to apply f to each element in M[A] and obtain M[M[B]]) and a monoid
(that permits to flatten M[M[B]] into M[B] by means of the associative operator:
e.g., concatenation in the case of lists).

In practice, monads are not defined in these terms but it is customary to define
them in terms of the following two functions.

• unit. A function that given an element of type A returns an element of M[A].
• flatMap. A higher-order function that given a M[A] and a function from A to
M[B] returns the data transformed into M[B]. That is,

flatMap: M[A] => (A => M[B]) => M[B]

The function flatMap is also known by bind. Scala has this function imple-
mented. We could just apply

List(2,10,15,45).flatMap(decomposeNumberInPrimes)

if we havedecomposeNumberInPrimes to decompose a number into its factors.
Monads are expected to satisfy a few properties. They are known as the Kleisli

laws. For example that flatMap of mwith a function (x)=>unit(x) returns the
same m. However, we cannot force these properties into Scala.

Chapter 6
Scala: OOL and FP

In this Chapter we discuss a few issues related to the interaction between object-
oriented aspects in Scala and functional programming ones. We also discuss some
aspects related to efficiency in computation.

6.1 Tail-Recursive Functions

A recursive function is tail-recursive when the last action done by the function is a
call to itself. Let us recall the recursive definition of the factorial.

val fact:(Int=>Int) = (n:Int) => {
if (n==0) {1} else {n*fact(n-1)}}

This example is not tail-recursive because when n �= 0, the function calls itself,
but after doing so and obtaining the corresponding result it multiplies this result by
n. We give below an alternative that is tail-recursive.

The solution computes the factorial bymeans of a tail-recursive auxiliary function.
Let us focus on the auxiliary function.We call it facttr. The auxiliary function has
two parameters. One that accumulates partial results. We call this parameter acc.
We will proceed multiplying n by n − 1, by n − 2 and so on.

The other parameter is n1. It indicates what is still missing in the computation.
We have that acc accumulates the products from n1 + 1 to n and what is missing
corresponds to the factorial of n1. In other words,

acc =
n∏

i=n1+1

i

and, thus, for any n1 the following holds (this is an invariant of the function as it
holds for any n1)

n! = acc ∗ n1!. (6.1)

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_6

77

78 6 Scala: OOL and FP

Taking this into account, the function facttr(n1,acc) will call recursively
to itself as follows facttr(n1-1,n1*fact). Note that

facttr(n1,acc) = acc ∗ n1! = n1! ∗
n∏

i=n1+1

i

= facttr(n1 − 1,n1 ∗ acc) = (n1 − 1)! ∗
n∏

i=n1

i = n!

Loop and recursion invariant A loop invariant is a logi-
cal/mathematical expression that is true in each iteration. Similarly, a re-
cursion invariant is a logical/mathematical expression that is true in each
call. Invariants permits us to reason on the correctness of programs.

In addition to the recursive call, the tail recursive function needs a base case. The
base case is when n1 = 0 (this case means that no computation is pending) and in
this case we have that

acc =
n∏

i=n1+1

i =
n∏

i=1

i = n!.

Therefore, the base case returns acc.
Writing all together, we have the following definition.

val facttr:((Int,Int)=>Int) = (n1:Int, acc:Int) => {
if (n1==0) { acc } else { facttr (n1-1, n1*acc) }

}

We can use this function to compute the factorial of any number n. We just need
to call it as facttr(n,1). Nevertheless, in order to avoid any misuse, we define
a function fact that calls the tail recursive function, and make this tail recursive
function local. The complete definition is therefore.

val fact:(Int=>Int) = (n:Int) => {
lazy val facttr:((Int,Int)=>Int) = (n1:Int, acc:Int) => {

if (n1==0) { acc } else { facttr (n1-1, n1*acc) }
}
facttr(n,1)

}

Note that in this definition we have added lazy to the local definition facttr.
We need to use lazy otherwise the interpreter gives us an error as the function is local
and recursive.

The importance of tail-recursive functions is that they can be optimized very
easily replacing recursion by a loop. That is, the compiler does not need to allocate

6.1 Tail-Recursive Functions 79

space for the stack (for the variables involved in the call). See e.g. [15] for a detailed
discussion on tail-recursion.

6.1.1 Some Scala Technicalities

We can inform Scala that a function is tail-recursive using an annotation. We should
use @annotation.tailrec before the function. Then, the compiler issues an
error if Scala cannot transform your function using a loop.

However, if we add @annotation.tailrec in the definition above, Scala
gives us an error because “lazy vals are not tailcall transformed”. At the same time,
as stated above, without a lazy eval, the local definition does work.

A way to solve this problem is that our local definition is a method instead of a
function. The definition follows.

val fact:(Int=>Int) = (n:Int) => {
@annotation.tailrec
def facttr (n1: Int, acc:Int):Int = {

if (n1==0) { acc } else { facttr (n1-1, n1*acc) }
}
facttr(n,1)

}

If you want to know execution times to compare implementations, you can use
the function System.nanoTime and define e.g. function executionTime (that
returns the execution time of a function f in seconds) and meanET (i.e., mean
execution time of n executions of a function f) as follows.

def executionTime[A](f: => A) = {
val s = System.nanoTime
val ret = f
val et = (System.nanoTime-s)/1e6
(ret,et)

}

def meanET[A](n:Int, f: => A) = {
(((1 to n).map((i)=>executionTime(f)._2)).

foldLeft(0.0)((a:Double,b:Double)=>a+b))/n
}

With these functions we can compare different alternative definitions for the fac-
torial. For this comparison we use BigInt so that we can compute larger factorials.
The first one is with def. The second and third are with val and recursive (not
tail-recursive). Difference is in the brackets. The last one uses tail recursion.

80 6 Scala: OOL and FP

def factBId (n:BigInt): BigInt =
if (n==0) 1 else n*factBId(n-1)

val factBIv: (BigInt => BigInt) =
(n) => if (n==0) 1 else n*factBIv(n-1)

val factBIvc:(BigInt => BigInt) =
(n) => { if (n==0) 1 else n*factBIvc(n-1) }

val factBItr:(BigInt=>BigInt) = (n:BigInt) => {
@annotation.tailrec
def facttr (n1: BigInt, acc:BigInt):BigInt = {

if (n1==0) { acc } else { facttr (n1-1, n1*acc) }
}
facttr(n,1)

}

We can obtain their average execution time of 1000 executions for the factorial
of 2000 using the following code.

meanET(1000,factBId(2000))
meanET(1000,factBIv(2000))
meanET(1000,factBIvc(2000))
meanET(1000,factBItr(2000))

6.1.2 Additional Examples of Tail-Recursive Functions

The following definition gives an implementation of the greatest common divisor
(gcd) using Euclid’s algorithm, which is recursive. As you can see, this definition is
tail-recursive because the last actions done in the call is the recursive call. You can
test the function calling e.g. gcd(10,20).

val gcd:((Int, Int)=>Int) = (a,b) => {
if (a == b) { a }
else { if (a > b) { gcd(a-b, b) }

else { gcd(a, b-a) }
}}

Let us consider again the Fibonacci series (see Exercise 2.2 and Sect. 3.6). Recall
that F0 = 0, F1 = 1 and that Fi = Fi−1+Fi−2. However, instead of using a recursive
definition using this last expression (which results into a rather inefficient and not
tail-recursive implementation – Exercise 2.2), we will give a tail-recursive version.

To do so, we will use an auxiliary function that receives two consecutive elements
of the series (f1 and f2 below), in each call if we have not yet reached the desired
one, we build a new one and discard the smallest one.

You can see that this function is tail-recursive because the last action in the function
is the recursive call. You can test this function using e.g. fib(6).

http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_2

6.1 Tail-Recursive Functions 81

val fib:(Int=>Int) = (n) => {
def fibtr (n:Int, f1:Int, f2:Int):Int = {

if (n==0) { f1 }
else { fibtr (n-1, f2, f1+f2) }}

fibtr(n,0,1)
}

Exercise 6.1. Compare the execution times of the tail recursive and the straightfor-
ward recursive versions of Fibonacci.

6.2 Functions in Scala and Object-Oriented Programming

We have stated that in Scala functions are objects. In fact, functions are a particular
type of objects which have implemented the method apply. The application of
a function to an object corresponds to the execution of the method apply of this
object.

See for example the following definition (ignoring for the moment the meaning of
Function2). This expression creates an object that implements themethodapply
that given two integers returns another one.

val sum2 = new Function2[Int,Int,Int] {
def apply(a:Int, b:Int) = a+b
}

Then, we can call the method apply of this object as follows.

sum2.apply(2,2)

As we have stated, the application of a function corresponds to the application of
the method apply, and that such objects can be understood as a function. Therefore,
sum2 can be used as follows.

sum2(2,2)

Scala documentation describes [24] that anonymous functions are a shorthand of
the creation of a new function following the above example. In particular, it states
that (x: Int) => x + 1 is a shorthand of the following

new Function1[Int, Int] {
def apply(x: Int): Int = x + 1

}

All objects are instances of a class. In Scala, functions are instances of anony-
mous classes. In particular, they are instances of anonymous classes which ex-
tend FunctionN traits, where N is a number. There are traits Function1,

82 6 Scala: OOL and FP

Function2, …, Function22. Function1 is for functions with one parameter,
Function2 with two parameters, and so on till functions with 22 parameters.

See e.g. that the following anonymous function leads to an error because it has
too many arguments.

(a01:Int, a02:Int, a03:Int, a04:Int, a05:Int,
a06:Int, a07:Int, a08:Int, a09:Int, a10:Int,
a11:Int, a12:Int, a13:Int, a14:Int, a15:Int,
a16:Int, a17:Int, a18:Int, a19:Int, a20:Int,
a21:Int, a22:Int, a23:Int) => a01+a022

Therefore, as a summary, if we create an object as an instance of FunctionN
and it has implemented apply, it will be a function and behave like a function. If
we try to create an instance of FunctionN but without a method apply, it will
not work because the trait FunctionN requires that this method is implemented.
E.g., the following code

val sum2 = new Function2[Int,Int,Int] {
def other(a:Int, b:Int) = a+b
}

gives an error

<console>:9: error: object creation impossible,
since method apply in trait Function2 of type
(v1: Int, v2: Int)Int is not defined

val sum2 = new Function2[Int,Int,Int] {
ˆ

Alternatively, we can consider just the definition of a class with the method apply.
See e.g.

class something {
var ourVar = 10
def apply (i:Int) = 2*i
def aMethod (i:Int) = i*ourVar
def changeOurVar (i:Int) = { ourVar = i}

}

In this case we can have objects that can be called function-like but are just
objects. See e.g. the following code. If we execute this code, the expression
fakeFunction(2) returns 4.

val fakeFunction = new something
fakeFunction(2)
fakeFunction.aMethod(5)

6.3 Defining Functions Revisited: val and def 83

6.3 Defining Functions Revisited: val and def

We have seen that both val and def are for declarations. We have seen that def
permits us to define methods. First, it is important to underline that methods are not
functions. Nevertheless, methods can be used as functions when needed. See, for
example, their use in the higher-order function map below.

def add1 (n: Int) = n+1
(1 to 10).map(add1)

When we use def, the expression assigned with def is executed every time the
definition is invoked. We can show that this is the case with the following definition.

def ffdef = { println("execution"); (x: Int) => x }

This definition has a side-effect. When we make the declaration, the Scala in-
terpreter only returns the type of ffdef but the side-effect is not seen. The string
execution is not printed. Then, every time we apply the method, the expression
is evaluated and this causes that the string is printed on the screen. Observe the
following.

scala> def ffdef = { println("execution"); (x: Int) => x }
ffdef: Int => Int

scala> ffdef(2)
execution
res8: Int = 2

scala> ffdef(2)
execution
res9: Int = 2

val permits us to assign an object to an identifier. As functions are objects
(instance of a particular type of class), we can assign them by means of val. This is
the approach we have followed in this text as it has a functional programming flavor.
Recall that when we assign with val, values cannot be changed. We can use var
instead if we want to change the value.

When an expression is associated by means of val to an identifier, the expression
is evaluated. We need to underline that the expression is only evaluated once, and
this evaluation is at the time we establish the binding. In fact, we already saw this
issue when discussing lazy evaluation (see Sect. 3.2).

Let us define the following, analogous to ffdef above.

val ffval = { println("execution"); (x: Int) => x }

In this case, when we declare ffval, the expression

{ println("execution"); (x: Int) => x }

http://dx.doi.org/10.1007/978-3-319-46481-7_3

84 6 Scala: OOL and FP

is evaluated, which implies that (as a side-effect) execution is printed on the
screen, and then the object function (x: Int) => x is associated to ffval.
When we apply this function, there are no (more) side-effects, as the function solely
consists of (x: Int) => x. Observe the following execution, and compare it
with the one above with def.

scala> val ffval = { println("execution"); (x: Int) => x }
execution
ffval: Int => Int = <function1>

scala> ffval(2)
res10: Int = 2

scala> ffval(2)
res11: Int = 2

6.4 Data Types and Efficiency

Wehave seen in Sect. 2.9 that Scala implements bothmutable and immutable classes.
In particular, we have seen lists as an example of immutable objects and arrays as an
example of mutable objects.

Fig. 6.1 Array(1,2,3,4)
assigned to variables x and y
(top) and the same variables
after executing x(1)=20
(bottom).

y

x

1 2 3 4

y

x

1 20 3 4

First, let us recall that it is common to implement1 lists by means of linked cells.
Each cell contains an element and points to the next cell in the list. In the previous
example, x will point to the first cell of the list (the one that contains the number 1).
In contrast, arrays are usually implemented by means of contiguous positions of
memory. We provide an illustration for the examples for both lists and arrays.

1Details on the implementation of lists are outside of the scope of this course. It is explained in books
related to data structures (e.g. [1] and [4]). Look for topics on linked lists and linked structures.

http://dx.doi.org/10.1007/978-3-319-46481-7_2

6.4 Data Types and Efficiency 85

Now, we will give two examples. One for lists and another for arrays. We start
with the one for arrays. We will show the difference between mutable and immutable
implementation, and discuss the issue of efficiency for immutable.

We consider the definition of an array, and its assignment to another variable.
Then, we will update one position of the original array. This is expressed in the
following code. Note that when we ask for the values of x and y after the execution
of this code both contain the same array Array(1,20,3,4).

val x = Array(1,2,3,4)
val y = x
x(1)=20

When we define that y is equal to x, we make y and x share the same position of
memory (i.e., x and y contain the same pointer). See Fig. 6.1 (top). When we apply
the statement x(1)=20, we are modifying the second position of this shared array.
Because of that, if we ask for the values of x and y both will contain a value of 20 in
the second position. See Fig. 6.1 (bottom).

Note, in addition, that the fact of assigning x(1)=20 to x does not cause any
problem even having defined x by val. This is so because the value of x is not really
modified!! (recall that x is in fact, a pointer). It is only the content of the position
what changes!

Let us now consider the case of lists. We proceed in a similar way, defining first
a list, then assigning it to another variable, and finally redefining the original one.
This is expressed in the following code.

var x = 1::2::3::4::Nil
var y = x
x = x.head::20::x.tail.tail

If we ask for the values of x and y after the execution of this code, we have that x
corresponds to List(1, 20, 3, 4) and y corresponds to List(1, 2, 3,
4). Figure6.2 (top) illustrates the result of the two first lines of code. We have that
both variables share the list.

Figure6.2 (bottom) illustrates the result after the third line. We have that x and y
refer to different lists.

Nevertheless, although x and y are different, it is not completely inefficient to
proceed in this way. The usual implementation is that a list (when defined from
another one) share elements. Note that we are building the new list x from the
original x. More specifically, we add x.head::20 to x.tail.tail. So, we can
create the new list in a way that shares the elements in x.tail.tail and only
the first two elements are new. In this way we do not need to copy the tail of the list
when creating the new one.

In this example, we have that, after the execution of the code, variable y corre-
sponds to the old list and variable x corresponds to the new list. At this point all cells
are accessible from either one or the other variable. Nevertheless, it may happen
that processing in this way some cells are no longer accessible. We can force such

86 6 Scala: OOL and FP

Fig. 6.2 List(1,2,3,4)
assigned to variables x and y
(top) and the same variables
after executing
x.head::20::x.tail.tail
(bottom).

y

x

1 2 3 4

1 3 4

1

2

20

y

x

situation if we set y = x again. Now cells containing 1 and 2 cannot be reached
because there is no pointer to the cell containing 1.

Note that once we have non accessible cells, there is no way to access them again.
Scala does not offer a way to explicitly release these cells and let memory use them
again. This is done by the language itself by means of garbage collection. Garbage
collection2 is themechanism that is run by the language to find cells that are no longer
accessible and made them available for reusing them later. In Scala, the garbage
collection is done by the JVM.

Garbage collection. Is the process of locating positions in memory that
are no longer used so that we can use them again.

We will discuss the issue of data types and efficiency again in Sect. 7.3 with
algebraic data types.

2Algorithms for garbage collection are explained in references and books on data structures. See
e.g. the classical book of Aho et al. [1]. The first algorithm for garbage collection was implemented
by McCarthy for Lisp and is described in [12].

http://dx.doi.org/10.1007/978-3-319-46481-7_7

Chapter 7
Algebraic Data Types

Algebraic data types are a concise representation of types permitted in some func-
tional languages as Standard ML and Haskell. They can also be defined in Scala, and
although their definition is more cumbersome, they are useful.

Formally, an algebraic data type defines a new type as a composition of other
types or a set of possible constants.

In the definition of the type, we can enumerate the set of alternatives, some of
them can be recursive. For example, we can define a type for the four suits in playing
cards (spades, hearts, diamonds, clubs), the days of the week, the values in Boolean
or in Kleene’s trivalued logic.

We can also consider the product of these types. For example, to form a deck we
have e.g. 13 cards per suit (Ace, King, Queen, Jack, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), and
two jokers.

An advantage of algebraic definitions is that they permit to define functions by
means of pattern matching.

7.1 Definition of Algebraic Data Types in Standard ML

The definition of algebraic data types in Standard ML is simpler and more concise
that the same definitions in Scala. We give a few examples below using this other
language. We will see how this works in Scala in the next section. The first example
is the definition of the datatype suit. It just consists of four options.

(* code in SML *)
datatype suit = spade | heart | diamond | club

The next example is the definition of the type shape. It is based on the definition
in [19] (p. 233). This definition corresponds to the definition of a composite type in
terms of a disjoint union. There are three types of shapes: a point, a circle, and a box.

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_7

87

88 7 Algebraic Data Types

(* code in SML *)
datatype shape = point | circle of real | box of real * real;

Then, we can define the area of a shape using pattern matching with these three
same cases.

(* code in SML *)
fun area (point) = 0.0
| area (circle(r)) = 3.1415 * r * r
| area (box(w,h)) = w*h;

Then, we create objects and compute their area as follows.

(* code in SML *)
area(point);
area(circle(2.0));
area(box(2.3,6.9));

Exercise 7.1 Expand this type with a position where the shape is located, and rede-
fine the function area.

Another type of definition iswhenwedefine types recursively.A classical example
is the definition of the type list. If we consider a list ignoring implementation details,
we observe that we can distinguish two major cases:

• the empty list,
• a list with at least one element, so the list is an element added to another (shorter)
list.

Using this distinction, we can define lists recursively. We give their definition in
StandardML. The definition in Scala is in Sect. 7.2. As stated above, the list can either
be empty (emptyList denotes an empty list) or a list with at least one element. In
the latter case, a list of this form is composed adding an element of a certain type ’a
to a list of elements of the same type (i.e., an’a list using StandardML notation).
We add this element using the keyword add. Accordingly, the type is expressed as
follows.

(* code in SML *)
datatype’a list = emptyList | add of’a *’a list;

The list with elements 2 and 6 is defined as follows:

add(2,add(6,emptyList));

Binary trees are another example of recursive data types. We can also represent
trees by means of two cases, the case of an empty tree, and the case of a node with
two subtrees (which can be empty or containing elements). In this latter case, the
node contains an element of the given type. In StandardMLwe can use the following
definition.

7.1 Definition of Algebraic Data Types in Standard ML 89

Fig. 7.1 Example of a
binary tree. 2

1

3

3

(* code in SML *)
datatype’a tree = emptyTree | node of’a *’a tree *’a tree;

We can represent the tree in Fig. 7.1 as follows.

(* code in SML *)
val tree1 = node(2,node(1,emptyTree,emptyTree),

node(3,emptyTree,node(3,emptyTree,emptyTree)));

We can see that these definitions for lists and trees do not focus on the imple-
mentation of the type. In addition, they consider the instantiations of the type as
immutable. This, of course, does not hinder that we can operate with algebraic data
types e.g. adding or removing elements of a list. Nevertheless, a function that removes
an element of a list returns a different list.

For example, let us consider the following definition of removing an element from
a list.

(* code in SML *)
fun remove e emptyList = emptyList
| remove e (add(a,L)) = if (a=e) then

(remove e L) else add(a,remove e L);

If we consider the list x with elements 2 and 6, after removing 6, the list x will
be not modified, and still contains 6. That is, if we execute this code:

(* code in SML *)
val x = add(2,add(6,emptyList));
val y = remove 6 x;
x;

Standard ML will return the list add(2,add(6,emptyList)).

90 7 Algebraic Data Types

Scala Documentation: Glossary [21]. Algebraic data types
A type defined by providing several alternatives, each of which comes with its
own constructor. It usually comes with a way to decompose the type through
pattern matching. The concept is found in specification languages and functional
programming languages. Algebraic data types can be emulated in Scala with case
classes.

Fig. 7.2 Algebraic data types according to Scala Documentation.

7.2 Algebraic Data Types in Scala

In Scala, we use traits, case objects and classes to implement algebraic data types
(see Fig. 7.2). We use case objects to represent constant terms. In the case that we
need to supply an object of another type, we would use case classes.

When we define an algebraic data type by enumeration, we need to use the fol-
lowing structure in Scala

trait NameOfADT
case object Name1 extends NameOfADT
case object Name2 extends NameOfADT
....
case object NameN extends NameOfADT

For example, we can define suits for cards as follows (note that the first line is a
comment that just gives the definition in Standard ML and, thus, it can be omitted).

// (SML) datatype suit = spade | heart | diamond | club
trait Suit
case object Spade extends Suit
case object Heart extends Suit
case object Diamond extends Suit
case object Club extends Suit

When we need that the type is defined in terms of a parametric element, we need
to use case class that extends the trait.

case class Name1 (arguments) extends NameOfADT
case class Name2 (arguments) extends NameOfADT

So the implementation of the type shape discussed above is as follows

// (SML) datatype shape = point | circle of real
// | box of real * real;
trait Shape
case object Point extends Shape
case class Circle (rad: Double) extends Shape
case class Box (w: Double, r: Double) extends Shape

7.2 Algebraic Data Types in Scala 91

These definitions permit us to implement functions using pattern matching. We im-
plement now in Scala the functionarea discussed above that for each type ofshape
returns its area.

def area (s: Shape): Double = s match {
case Point => 0.0
case Circle(r) => 3.1415 * r * r
case Box(w,h) => w*h

}

We have seen that lists were defined as a recursive type with elements of an
arbitrary type. This is expressed in Scala as follows.

// (SML) datatype ’a list = emptyList | add of ’a * ’a list;
trait ListOfA[+A]
case object EmptyList extends ListOfA[Nothing]
case class Add[A](head: A, tail: ListOfA[A]) extends ListOfA[A]

In this definition we need to establish that this is a list of elements of type A. We
have the constant EmptyList (which is of type ListOfA) and the constructor
Add that adds an element of type A (the head of the list) to another list (the tail) of
elements of type A (i.e., this other list is of type ListOfA[A]).

We can define a list as follows:

val x = Add(2, Add(6, EmptyList))

The definition of algebraic data types bymeans of case objects and classes permits
us to define functions by means of pattern matching, also for recursive types. In this
case, we will need to consider the base case and the recursive case that follows
naturally from the type. As an example we give the implementation in Scala of the
function remove that makes a new list without all appearances of a given element.
We have seen before its implementation in Standard ML.

def remove[A] (e:A, l: ListOfA[A]):ListOfA[A] = l match {
case EmptyList => EmptyList
case Add(a,tl) => if (a==e) remove(e,tl)

else Add(a,remove(e,tl))
}

The application of this function can be done as follows.

val x = Add(2, Add(6, EmptyList))
val y = remove(2,Add(2,x))

As in the case of Standard ML, the application of the function remove does not
modify the original list x. Observe the following:

scala> x
res12: Add[Int] = Add(2,Add(6,EmptyList))

scala> y
res13: ListOfA[Int] = Add(6,EmptyList)

92 7 Algebraic Data Types

We give now another example of a stack. It is similar to the list. It uses an empty
stack and a constructor that adds an element to the stack:

trait Stack[+A]
case object EmptyStack extends Stack[Nothing]
case class Push[A](top: A, rest: Stack[A]) extends Stack[A]

We can create a stack as follows.

Push(2, Push("a",EmptyStack))

We give now the function pop that returns the element in the top (if any). Note
that the function is partial because it is only defined for non empty stacks.

def pop[A] (s: Stack[A]): A = s match {
case Push(a,s1) => a

}

Observe the application of the function pop.

pop(Push(2,Push(3,EmptyStack)))

We finish this section giving the algebraic data type of a binary tree, and an
example of these trees.

trait TreeOfA[+A]
case object EmptyBinaryTree extends TreeOfA[Nothing]
case class Node[A](value: A, left: TreeOfA[A],

right: TreeOfA[A]) extends TreeOfA[A]

val tree1 = Node(2,Node(1,EmptyBinaryTree,EmptyBinaryTree),
Node(3,EmptyBinaryTree,Node(3,

EmptyBinaryTree,EmptyBinaryTree)));

Exercise 7.2 Given a tree defined using the algebraic data type above, define func-
tions to visit the nodes in preorder and postorder. The output is expected to be a
list.

7.3 Data Types and Efficiency Revisited

We have seen in Sect. 6.4 that Scala implements immutable data structures sharing
substructures. In this way we do not need to copy all the structure each time we only
change part of it. This reduces the time required to update the data structure and the
memory needed. To do so, however, Scala needs to provide garbage collection.

Algebraic data types are defined as immutable objects. The way we access and
modify them is similar to the way we access and modify lists.

http://dx.doi.org/10.1007/978-3-319-46481-7_6

Chapter 8
Parallelism

Mercurium iussi me continuo consequi,
Si quid uellem imperare.
Plautus, Amphitruo, Act. III. 880.

Scala offers different alternatives for parallelism and multithreading.
The first one is based on threads and synchronization. Scala has a trait Thread

that we can use to create a thread with a computation to do. This thread requires an
object of classRunnable (which needs themethodrun implemented). An example
that generates two threads of the class loopToN is given below. First we implement
the class with a method run which prints the numbers from 1 to a given value N.
Objects of this class can be created with new and then executed with run. Done in
this way, we do not have parallelism. The code below creates and runs two instances
and we can see on the screen that they are executed sequentially.

class loopToN (n: Int) extends Runnable {
def run() = {

(1 to n).map((i)=>print(""+i))
}

}
(new loopToN(10)).run
(new loopToN(10)).run

We can create the threads creating a new Thread with an instantiation of the
class. Then, threads are run with start. The execution of the threads print on the
screen the numbers from 1 to 100. The two threads created in the code are executed
in parallel.

val thread1 = new Thread(new loopToN(100))
val thread2 = new Thread(new loopToN(100))
thread1.start; thread2.start

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_8

93

94 8 Parallelism

With multiple threads, Scala offers synchronized to avoid different threads
accessing the same data.

The second alternative for computing in parallel is based on collections. Scala
includes several types of collections that include efficient built-in functions to process
them. We discuss them in Sect. 8.1.

The third alternative are actors. Scala offers support for them, which has some
advantages over dealing explicitly with threads and synchronization. We present
them in Sect. 8.2.

Finally, Scala combines with Spark and can be used for implementing the map-
reduce paradigm. We do not discuss this approach here. Note however that the map-
reduce paradigm is based on the operations on sequences that we have studied in this
book. Recall map, reduceLeft, and reduceRight from Sect. 2.9.4. We will
see in Sect. 8.1 still two other higher-order functions: fold and aggregate.

8.1 Collections

We saw in Sect. 2.9.2 some of the basic collections provided by Scala, including
lists, arrays, and ranges. In addition to them, Scala offers some additional collections
which have already built-in methods exploiting parallelism.

We can say that the main difference between the two types of collections is that
while in the former access to elements is expected in a sequential order (and accessed
in a single thread), this is not longer the case for the parallel ones.

The type and classification of parallel collections mimics the one we have already
seen. We have both mutable and immutable, and several of the collections have a
parallel counterpart.We have e.g. parallel arrays and ranges.We do not have however
parallel lists.

The type of parallel collections is prefixed by Par and thus, we have ParArray,
and ParRange. To create a parallel collection from a non parallel one we use par,
and to transform a parallel collection into a standard (non-parallel) one, we use seq.
For example, we create a parallel array with 5 numbers by Array(1,2,3,4,5).
par. Similarly, we can transform this parallel sequence into a sequential one by
Array(1,2,3,4,5).par.seq.

In a way similar to what we did with sequential collections (see again Sect. 2.9.4),
we can process all the elements of a parallel sequence using e.g. foreach, map,
filter. Recall that foreach is used only for its side effects.

To illustrate how we can use them with parallel sequences, and to show that the
elements are not processed in order, we give the following code.

val resultForEach = Array(1,2,3,4,5).par foreach println
val resultMap = (1 until 10).par.map(

(i)=>{println(i); String.valueOf(i)})
val resultFilter = (1 until 10).par.filter(

(i)=>{println(i); i % 3 != 1})

http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2

8.1 Collections 95

If this is typed into the interpreter, we can see (by means of the function with side
effects println) that elements are not processed in order. For example, the code
corresponding to map returns (in my execution):

scala> val resultMap = (1 until 10).par.map(
| (i)=>{println(i); String.valueOf(i)})

1
2
3
4
7
8
9
5
6
resultMap: scala.collection.parallel.immutable.ParSeq[String] =

ParVector(1, 2, 3, 4, 5, 6, 7, 8, 9)

Scala also provides to these parallel structures with the two higher-order functions
foldLeft and foldRight. Nevertheless, they are defined in such a way that the
elements are forced to be processed either from the beginning to the end (i.e., the
case of foldLeft) or from the last to the first (i.e., the case of foldRight). The
execution of the following code will illustrate this process.

val resultFoldL = (1 until 10).par.foldLeft("")(
(a,b)=>{println(b); "("+a+","+b+")"})

val resultFoldR = (1 until 10).par.foldRight("")(
(a,b)=>{println(a); "("+a+","+b+")"})

For example, in the case of foldRight we obtain:

scala> val resultFoldR = (1 until 10).par.foldRight("")(
| (a,b)=>{println(a); "("+a+","+b+")"})

9
8
7
6
5
4
3
2
1
resultFoldR: String = (1,(2,(3,(4,(5,(6,(7,(8,(9,)))))))))

In order to exploit the fact that the sequence is a parallel one, we can use two
alternative functions: fold and aggregate.

• Fold. It is similar to foldLeft and foldRight in the sense that combines data
and an initial element e0 bymeans of a function f . Nevertheless, infold, the order
of application of the function is unknown. The sequence is divided into pieces, and
then the partial results are combined. Each time we start to process a subsequence
we use the element e0. Then, given a sequence of e.g. 3 elements < e1, e2, e3 >

96 8 Parallelism

there are different ways to combine them. For example, the following alternatives
are possible:

1. f (f (e0, e1), f (f (e0, e2), e3))
2. f (f (f (e0, e1), e2), f (e0, e3))

Because of that, the function f needs the type of all objects involved to be the
same. So, the signature of the function is f: (A, A) => A. Compare this with
the signature of foldLeft in Sect. 2.9.4 (i.e., f: (B, A) => B).
As explained above, fold requires an initial element e0 to combine. This element
needs to be also of the same type.
We can use this function, for example, to multiply all the elements of a parallel
array as follows.
(1 to 100).par.fold(1)((a,b)=>a*b)
We can use this expression to define a factorial function for any Int as follows.

val fact: (Int=>Int) =
(n) => {(1 to n).par.fold(1)((a,b)=>a*b)}

We give another example using fold. The expression is similar to the ones seen
above. It permits to visualize that the order of execution is neither from left to
right, nor from right to left. In addition, each execution may lead to a different
result.

val resultFold = (1 until 15).par.fold("0")(
(a,b)=>{ "("+a+","+b+")" })

Two different executions led to the following different results. That is, elements
were combined differently. Observe also the use of the element e0 (in this case
zero).

scala> val resultFold = (1 until 15).par.fold("0")(
| (a,b)=>{ "("+a+","+b+")" })

resultFold: Any = ((((0,1),((0,2),(0,3))),(((0,4),(0,5)),
((0,6),7))),(((0,8),((0,9),10)),((((0,11),12),13),14)))

scala> val resultFold = (1 until 15).par.fold("0")(
| (a,b)=>{ "("+a+","+b+")" })

resultFold: Any = ((((0,1),((0,2),3)),(((0,4),(0,5)),
((0,6),7))),(((0,8),((0,9),10)),((((0,11),12),13),14)))

• Aggregate. This function is similar to fold, but considering two functions instead
of one. This is to allow that the type of the elements in the sequence (say A) and
the type of the output (say B) is different. We have one function that combines
partial results (say c: (B, B) => B) and another that applies to partial results
and elements of the initial sequence (say f: (B, A) => B). In addition, we
have the initial element e0 of type B. We call aggregate as follows

http://dx.doi.org/10.1007/978-3-319-46481-7_2

8.1 Collections 97

aggregate(e0)(c, f)

For example, we can use this function to define a function similar to the previous
one. However, in this case the combination of a string and an integer will be done
with one function, and the combination of two strings (i.e., combination of partial
results) will be done with another one.

val resultAggregate = (1 until 15).par.aggregate("_")(
(a,b) => { "("+a+","+String.valueOf(b)+")" },
(a,b) => { "["+a+","+b+"]" })

Different applications of this code will lead to different results as the order in
which the elements are combined is not determined before hand. We give below
the result of two different executions.

scala> val resultAggregate = (1 until 15).par.aggregate("_")(
| (a,b) => { "("+a+","+String.valueOf(b)+")" },
| (a,b) => { "["+a+","+b+"]" })

resultAggregate: String = [[[(_,1),((_,2),3)],((((_,4),5),6),
7)],[[(_,8),((_,9),10)],((((_,11),12),13),14)]]

scala> val resultAggregate = (1 until 15).par.aggregate("_")(
| (a,b) => { "("+a+","+String.valueOf(b)+")" },
| (a,b) => { "["+a+","+b+"]" })

resultAggregate: String = [[[(_,1),((_,2),3)],[[(_,4),(_,5)],
((_,6),7)]],[[(_,8),((_,9),10)],((((_,11),12),13),14)]]

8.2 Actors

Themost important model for parallelism in Scala are actors. Actors have their origin
in a paper by C. Hewitt et al. [7] in 1973. We can see this model as a higher-level
model, avoiding to deal explicitly with threads and synchronization. This model is
well integrated into the object-oriented paradigm, and can be used to implement
multi-agent systems [20] (in the context of artificial intelligence).

Actors help to develop software with less errors. As [6] points out, the difference
is between shared-state concurrency and message passing. In the former we can have
data races (i.e., when different concurrent threads access and modify the same data)
which can cause errors. This is avoided with message passing at the cost of a higher
communication overhead. In actors, we have that variables are (or are expected to
be) local.

This section gives a short overview of actors in Scala. For a more detailed de-
scription we refer the reader to [6]. This reference also includes a discussion on the
advantages and inconveniences of this model in contrast to shared-state concurrency.
Actors in the context of object-oriented programming are discussed in detail in [11]
(a book that was written well before Scala was defined).

98 8 Parallelism

8.2.1 Definition

Actors can be seen as objects that are executed independently, that have their own
variables and knowledge, and that communicate between each other with message
passing.

It is important to remark that in this model, message passing is the only way to
communicate, and that all variables are local to the actors. Actors will send messages
to other actors and will react to messages they receive. We describe below how
actors are defined in Scala. We will also give an example of their use to illustrate the
description.

The example implements a supermarket. The supermarket has several people that
has selected a list of products and wants to pay them, and a cashier that informs about
the price of each selected product and receives the payment. The implementation
assumes that all people behave in a correct way and that we can trust the people to
do the addition of their products.

Wewill implement the supermarket having two types of actors. One for the cashier
and the other for the customers. Then, we assume that there is a single cashier but
we can have as many customers as required.

Let us consider now the different components that define a program with actors.
We start defining the messages to be transmitted. Then, we explain how to define
actors, and discuss the implementation of the method act that is the one that imple-
ments actors’ behavior.

• Definition of the messages. Messages are defined by means of case classes. Be-
cause of that we need to distinguish between messages with parameters and those
without. The former will be defined by means of case objects and the latter by
means of case classes.
In our example, we will consider different types of messages. We will have three
messages that corresponds to three types of products. These messages will be used
by the customers to inform the cashier about what they have selected.We have con-
sidered the products Newspaper, Chocolates, and Cheese. We define all of
them as extensions of Product. We consider Newspaper as a non-parametric
product and the other as parametric. For Chocolates we include the grams
bought (a Double), and for Cheese the type of the cheese (a String) and the
grams bought (also a Double).
We will have three additional messages. The customer will send information of
the product to the cashier, and the cashier will respond with the price. This is
therefore a message with a parameter of type Double. The name of the message
is Price. Then, once the price of all products are known, the customer will send
to the cashier a message with the total to be paid. This message, with name Total
has also a parameter that is of type Double. To finish the transaction we have a
message Thanks with no parameter.
So, as a summary, we have two messages with no parameters and four with para-
meters. The declaration we need to do is the following one.

8.2 Actors 99

private case object Newspaper extends Product
private case object Thanks
private case class Total (p: Double)
private case class Chocolates (grams:

Double) extends Product
private case class Cheese (t: String,

grams: Double) extends Product
private case class Price (euros: Double)

• Definition of each actor. Actors are defined in terms of a class that extends the
actors.Actor class. Importing actors._ we can simplify the notation.

import actors._
class ourActor extends Actor {

// code for our actor
}

• Implementation of the method act. Each actor requires a method act that im-
plements the behavior of the actor. A typical structure for this method is to loop
forever and only react when messages are received (using receive). loop is
provided for this purpose. Therefore, the method act may have a structure as the
following one.

def act () = {
loop {

receive {
case ...

}
}

}

In our example we will implement two type of actors. One is the class Cashier
and the other is the class Customer. Both classes will extend actors.Actor.
They will implement the method act.
Both classes have parameters. The Cashier has a Double corresponding to the
initial amount of money (i.e., variable Cash) the Cashier has. The Customer
has three parameters, one is the list of products to be bought (or paid), the second
one is the name of this customer. We use names to print them on the screen in
order to track what customers are doing. The third parameter is the actor to whom
the customer sends the messages. When we instantiate the class customer to
create particular customers, all will receive the same cashier as argument.

class Cashier (private[this] var cash: Double)
extends Actor {

def act () = {
println ("Cashier")
//

}

100 8 Parallelism

}
class Customer (private[this] var products: List[Product],

cashier: Actor, var name: String)
extends Actor {

def act () = {
println ("Customer’s name:"+name)
// missing code

}
}

– Sending messages. Messages are sent with the notation

message-receiver ! message

Here, message-receiver should be the name of an actor. This can be an
explicit name, but it can also be sender. sender is a method of the class
Actor that returns the actor that sent the last received message. For example,
when the cashier receives a message Totalwith the total amount received,
we will reply with

sender ! Thanks

and the customer will send to the cashier a message for each of the products
to be paid with (recall that cashier is a variable of the class that denotes an
Actor) the following line of code

products.map((x) => cashier ! x)

We have seen that we can send messages with !. However, this is not the only
way to send messages. We can also use !? which is for synchronous messages.
That is, the thread is blocked until the message is sent and a reply is received.
We will give an example below using !? in Sect. 8.2.2. A third alternative is !!
which corresponds to futures. They can be used to launch computations that
return a (future) result, and then when we need the value, if the value is still not
available, the thread is blocked until it is available.
When we want to send a message as a reply to a message we have received,
we can also use the method reply. This method has a parameter that is the
message to be transmitted.
We will give below (see Sect. 8.2.3) an example using futures. The example also
uses reply. We will have an actor that launches a future with name future
and then prints its result. This is done printing the value future() (as the
future is a function). The other actor sends its result (the value to be printed)
with reply.

– Receiving messages. We can express that we are waiting for messages to be
replied with receive. We will then consider a set of cases for each type of
message. We use pattern matching with case to distinguish the cases.
In our example, the cashier is waiting for messages about products (i.e.,
Newspaper, Chocolates, and Cheese) and about the total (i.e., the mes-
sage Total). So, there are four cases. Each type of message is considered

8.2 Actors 101

separately. For the three products we compute their price (that may depend on
the type and the weight) and send the price to the sender. For the total, we accu-
mulate the amount to the cashiers’ cash and reply the sender with Thanks. The
code includes some println that provide lateral effects in order to visualize
how data is processed.

receive {
case Total (p) => {

cash = cash + p
println ("Cashier.Thanks. Total cash:"+cash)
sender ! Thanks }

case Newspaper => {
println ("Cashier.Newspaper");
sender ! Price (2.5) }

case Chocolates (grams) => {
println ("Cashier.Chocolate");
sender ! Price (grams * 0.015) }

case Cheese (t, grams) => {
println ("Cashier.Cheese");
if (t=="Camembert") {

sender ! Price (grams * 0.01) }
else { sender ! Price (grams * 0.02) }

}
}

Each customer receives the prices of all the products bought. This is imple-
mented by means of a loop that is repeated as many times as the number of
products, and each time we receive a message of type Price. The amounts
received are accumulated in the variable total.

while (toReceive!=0) {
receive {

case Price (euros) => {
println (name+".Price:"+euros);
total = total + euros
toReceive = toReceive-1

}
}

}

When all prices are received, the customer sends the total to the cashier,
and waits until the cashier sends a Thanks. This means that customer has
completed the payment. We include below this part of code.

cashier ! Total(total);
receive {

case Thanks => { println (name+".finish") }

– Instantiation and execution of the actors. Once the classes are created, we
need to instantiate the actors and start them. We can instantiate the actors with

102 8 Parallelism

new (as we do with classes) with appropriate parameters. Then, we start them
by applying start to the actor.
In our example, we put all these definitions in the object supermarket,
which includes a method called run that instantiates a cashier and two
customers. The method also starts these actors. The code includes also some
printing messages to inform that the calls have been done. The code follows.

def run () = {
println("supermarket")
val cashier = new Cashier(0)
val customer1 = new Customer(

List(Newspaper,Newspaper,Newspaper),
"Customer-1", cashier)

val customer2 = new Customer(
List(Newspaper,Chocolates(1000),

Cheese("Cabrales",1000)),
"Customer-2", cashier)

cashier.start
println("cashier started")
customer1.start
println("customer-1 started")
customer2.start
println("customer-2 started")

}

We give the complete code of this example below. If we execute the example (run-
ningsupermarket.run) wewill see in the screenwhat is printedwithprintln.
You will notice that different executions will lead to the appearance of the messages
in (slightly) different order. While there are some constraints in our program (e.g.,
Thanks follows the Total payment, and this follows the correct reception of all
messages corresponding to all products of a customer), there is some freedom in the
order of the other messages.

object supermarket {
import actors._

private case object Newspaper extends Product
private case object Thanks
private case class Total (p: Double)
private case class Chocolates (grams: Double) extends Product
private case class Cheese (t: String,

grams: Double) extends Product
private case class Price (euros: Double)

class Cashier (private[this] var cash: Double) extends Actor {
def act () = {

println ("Cashier")
loop {

receive {
case Total (p) => {

cash = cash + p
println ("Cashier.Thanks. Total cash:"+cash)

8.2 Actors 103

sender ! Thanks }
case Newspaper => {

println ("Cashier.Newspaper"); sender ! Price (2.5) }
case Chocolates (grams) => {

println ("Cashier.Chocolate");
sender ! Price (grams * 0.015) }

case Cheese (t, grams) => {
println ("Cashier.Cheese");
if (t=="Camembert") { sender ! Price (grams * 0.01) }
else { sender ! Price (grams * 0.02) }

}
}

}
}

}
class Customer (private[this] var products: List[Product],

var name: String,
cashier: Actor)

extends Actor {
def act () = {

println ("Customer’s name:"+name)
var total: Double = 0
var toReceive = products.length
products.map((x) => cashier ! x)
while (toReceive!=0) {

receive {
case Price (euros) => {

println (name+".Price:"+euros);
total = total + euros
toReceive = toReceive-1

}
}

}
println (name+".pay total:"+total)
cashier ! Total(total);
receive {

case Thanks => { println (name+".finish") }
}

}
}
def run () = {

println("supermarket")
val cashier = new Cashier(0)
val customer1 = new Customer(List(Newspaper,Newspaper,Newspaper),

"Customer-1", cashier)
val customer2 = new Customer(List(Newspaper,Chocolates(1000),

Cheese("Cabrales",1000)),
"Customer-2", cashier)

cashier.start
println("cashier started")
customer1.start
println("customer-1 started")
customer2.start
println("customer-2 started")

}
}

8.2.2 Receive and React, ! and !?

Wehave explained that we can usereceive to force the actor to listen and deal with
messages. With receive the thread that runs the actor is blocked until a message
arrives.

104 8 Parallelism

An alternative to receive is react, which does not block the thread. In fact,
the event handler is launched (to wait the arrival of messages) and then the thread
is released. This implies that the code following a react will never be executed,
and, thus, react is the last thing an actor has to do. We cannot use react within a
while, butwithin aloop itworks as expected (i.e., severalmessages are processed).
We say that actors with react are event-based as all their actions are caused by
events. The others are thread-based. The new Scala actor model (the Akka’s actor
model) is event-based.

So, in the example, if we replace receive by react in the Cashier the
program of the supermarked will work correctly. Nevertheless, if we make the same
replacement in the first react of the Customer the program does not work cor-
rectly. This is so because the event handler for case Price (euros) will be
launched, but when this message arrives, the code of this handler is executed (i.e.,
we see in the screen Customer-1.Price:2.5) but only one of these messages
is handled and the remaining part of the code is never executed. In order to wait for
all prices, we can define a recursive function to deal with the appropriate number of
prices (i.e., toReceive) and calls itself within the react. So, when the message is
handled, the last thing to be done is to call the function again. The function accu-
mulates all the prices and when there is no other message to wait, it sends the total
to the cashier. The new implementation of Customer given below follows this
approach.

As we have stated above, we can use !? to send messages in a synchronous way.
That is, when the message is sent, the thread is blocked until is read and replied. In
our revised version of the example, we will use !? when the customer sends the
Total to the cashier. Then, we block the thread until the cashier replies. As
this synchronous way of sending returns the reply, in our code we assign this reply
to the variable reply. Then, we can use it to distinguish about possible replies by
means of a matchwith the alternative cases. In this particular example, there is only
one possible reply, which is Thanks. These particular lines of code are as follows:

val reply = cashier !? Total(total)
reply match {

case Thanks => println(name+"received thanks")
}

The full code of the actorCustomerwith the twomajor changes described above
follows.

class Customer (private[this] var products: List[Product],
var name: String,
cashier: Actor)

extends actors.Actor {
def allPrices (toReceive: Int, total: Double):Unit = {

if (toReceive==0) {
println (name+".pay total:"+total)
val reply = cashier !? Total(total)
reply match {

case Thanks => println(name+"received thanks")

8.2 Actors 105

}
}
else {

react {
case Price (euros) => {

println (name+".Price:"+euros)
allPrices(toReceive-1, total + euros)

}
}

}
}
def act () = {

println ("Customer’s name:"+name)
var total: Double = 0
var toReceive = products.length
products.map((x) => cashier ! x)
allPrices (toReceive, total)
receive {

case Thanks => { println (name+".finish") }
}

}
}

8.2.3 Futures and !!

In this section we revise the last version of the implementation of supermarket
using futures. We will use the future for the Total (after all prices are already
obtained). Using a future we expect that the cashier will give us a result, which
is stored in a variable. We call this variable future. After creating this future, the
actor can do any other computation and then, when the value of the future is needed
we access it with future(). In our case, we just print the value. So, the code for
the customer is as follows see Sect. 8.2.5:

val future = cashier !! Total(total)
// do other computations
println("Future:"+future())

In order for the program to work properly, we need that the customer sends the
result of the future when the message Total is processed. In our simple example
we just reply with a string. This is done with the following code for the cashier

case Total (p) => {
cash = cash + p
println ("Cashier.Thanks. Total cash:"+cash)
reply("Cashier replies thanks!!") }

106 8 Parallelism

We give below the full code of this version of supermarket with futures.

// Version with futures
object supermarket {

import actors._
private case object Newspaper extends Product
private case object Thanks
private case class Total (p: Double)
private case class Chocolates (grams: Double) extends Product
private case class Cheese (t: String,

grams: Double) extends Product
private case class Price (euros: Double)

class Cashier (private[this] var cash: Double) extends Actor {
def act () = {

println ("Cashier")
loop {
react {

case Total (p) => {
cash = cash + p
println ("Cashier.Thanks. Total cash:"+cash)
reply("Cashier replies thanks!!") }

case Newspaper => {
println ("Cashier.Newspaper"); sender ! Price (2.5) }

case Chocolates (grams) => {
println ("Cashier.Chocolate");
sender ! Price (grams * 0.015) }
case Cheese (t, grams) => {

println ("Cashier.Cheese");
if (t=="Camembert") { sender ! Price (grams * 0.01) }
else { sender ! Price (grams * 0.02) }

}
}}
println ("Cashier. Code after react")

}
}
class Customer (private[this] var products: List[Product],

var name: String,
cashier: Actor)

extends actors.Actor {
def allPrices (toReceive: Int, total: Double):Unit = {

if (toReceive==0) {
println (name+".pay total:"+total)
val future = cashier !! Total(total)
// do other computations
println("Future:"+future())

}
else {

react {
case Price (euros) => {

println (name+".Price:"+euros)
allPrices(toReceive-1, total + euros)

}
}

}
}
def act () = {

println ("Customer’s name:"+name)
var total: Double = 0
var toReceive = products.length
products.map((x) => cashier ! x)
allPrices (toReceive, total)
receive {

case Thanks => { println (name+".finish") }
}

}
}

8.2 Actors 107

def run () = {
println("supermarket")
val cashier = new Cashier(0)
val customer1 = new Customer(

List(Newspaper,Newspaper,Newspaper),
"Customer-1", cashier)

val customer2 = new Customer(
List(Newspaper,Chocolates(1000),

Cheese("Cabrales",1000)),
"Customer-2", cashier)

cashier.start
println("cashier started")
customer1.start
println("customer-1 started")
customer2.start
println("customer-2 started")
println("customer2.getState="+customer2.getState)

}
}

8.2.4 Others

There are other control structures and methods for implementing actors. For ex-
ample, they include exit to terminate the execution of an actor, and the method
getState that when applied to an actor informs of its state. E.g., we can call
customer2.getState.

8.2.5 Akka’s Actor Model

From Scala 2.10.0 the default actor library is Akka. It follows an event-based ap-
proach. There are differences between both actor models. We illustrate the definition
of the actors in Akka revisiting the example of the supermarket.

Actors require a main method receive to process all incoming messages. In
addition, if we need some initializations, we implement the method preStart and
if we need to do some work when the actor is terminated we implement postStop.
The methods preStart and postStop will be defined with override as there
are default versions.

In our example, the actor Customer will have a preStartmethod that will send
all the messages with all the products bought. In contrast, the cashier only contains
the method receive. Variables to be used by the actor (and these methods) will be
defined as local to the actor.

The method receive consists on a set of cases, one for each message, describing
how to proceed with each one. We do not need to loop here. In this event-based
approach, we have a reactive actor that just reacts to arriving messages.

For sending messages, we have two options in Akka. The first one ! sends a
message asynchronously and is equivalent to ! in the other actor model. The second
option is ? that also sends a message asynchronously but in this case it returns

108 8 Parallelism

a future. In this case, if we want to wait the result of this future we need to make
explicit thiswaiting (withresult) andweneed to supply a timout.resultbelongs
to the object Await. This object includes also a method ready. ? is in package
akka.pattern.ask.

In our example, we use Await.result to implement the Customer as we
decided to use a future when sending the message Total.

Due to the fact that the actor is event-based, and there is only a single method
receive to deal all messages, the implementation is slightly different from the one
given in the previous sections. In this case the actor will process any message at any
time, including Thanks. Nevertheless, Thanks will only terminate the actor when
all Prices have been received.

The Akka actor system is started with ActorSystem and actors are created
with actorOf with Props. Props is to specify the options for creating actors,
including the arguments of the actors. In our case, we have parameters in the two
type of actors. We can terminate an actor with context.stop(self).

The code of the agents using Akka follows. We can execute this code using
supermarket.run (as before).

object supermarket {
import akka.actor._
import akka.pattern.ask
import akka.util._
import scala.concurrent.duration._
import scala.concurrent.Await
private case object Newspaper extends Product
private case object Thanks
private case class Total (p: Double)
private case class Chocolates (grams: Double) extends Product
private case class Cheese (t: String, grams: Double) extends Product
private case class Price (euros: Double)
class Cashier (private[this] var cash: Double) extends Actor {

def receive = {
case Total (p) => {

cash = cash + p
println ("Cashier.Thanks. Total cash:"+cash)
sender ! "Cashier replies thanks!!" }

case Newspaper => {
println ("Cashier.Newspaper"); sender ! Price (2.5) }

case Chocolates (grams) => {
println ("Cashier.Chocolate");
sender ! Price (grams * 0.015) }

case Cheese (t, grams) => {
println ("Cashier.Cheese");
if (t=="Camembert") { sender ! Price (grams * 0.01) }
else { sender ! Price (grams * 0.02) }

}
}

}
class Customer (private[this] var products: List[Product],

var name: String,
cashier: ActorRef)

extends Actor {
private var total: Double = 0
private var toReceive = products.length
override def preStart():Unit = {

println ("Customer’s name:"+name)
products.map((x) => cashier ! x)

}
def receive = {

8.2 Actors 109

case Price (euros) => {
println (name+".Price:"+euros)
toReceive = toReceive-1
total = total + euros
if (toReceive==0) {

println (name+".pay total:"+total)
implicit val timeout = Timeout(5 seconds)
val future = cashier ? Total(total)
// do other computations
val result = Await.result(future,

timeout.duration).asInstanceOf[String]
println("Future:"+result)
}

}
case Thanks => {

if (toReceive==0) {
println (name+".finish"); context.stop(self) }

else { println (name+".not yet finished"); }
}
case _ => { println ("Other messages"); }

}
}
def run () = {

println("supermarket")
val system = ActorSystem("Supermarket")
val cashier = system.actorOf(Props(new Cashier(0)),

name="Cashier")
val customer1 = system.actorOf(Props(new Customer(

List(Newspaper,Newspaper,Newspaper), "Customer-1", cashier)))
val customer2 = system.actorOf(Props(new Customer(

List(Newspaper,Chocolates(1000),Cheese("Cabrales",1000)),
"Customer-2", cashier)))

}
}

Chapter 9
Solutions

Problems of Chapter2

2.1 The following solution solves the problem, but only for the cases that the solutions
are real. I.e., the case that the discriminant is zero or positive. In Sect. 4.7 we give
another definition with complex numbers.

(a: Double, b: Double, c: Double) => {
val d = b*b-4*a*c

((-b - Math.sqrt(d))/(2*a),
(-b + Math.sqrt(d))/(2*a))

}

To find the solution of x2 − 3 = 0 we would apply the function as follows.

((a: Double, b: Double, c: Double) => {
val d = b*b-4*a*c

((-b - Math.sqrt(d))/(2*a),
(-b + Math.sqrt(d))/(2*a))

})(1,0,-3)

2.2 The function to compute the Fibonacci series is given below. We can use it to
compute F5 with fib(5).

val fib: (Int=>Int) = (n) => {
if (n==0) { 1 }
else if (n==1) { 1 }
else { fib(n-1) + fib(n-2) }

}

The function to solve the problem of the towers of Hanoi is given below. We use a
String to denote the pegs. We can call the function using
hanoi(2,"Peg Origin", "Peg Final", "Peg Other").

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7_9

111

http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_4
http://dx.doi.org/10.1007/978-3-319-46481-7_2

112 9 Solutions

val hanoi: ((Int, String, String, String)=>Unit) =
(n, origin, dest, using) => {

if (n==1) {
println("Move disk"+1+"from"+origin+"to"+dest)}

else if (n > 1) {
hanoi(n-1,origin,using,dest)
println("Move disk"+n+"from"+origin+"to"+dest)
hanoi(n-1,using,dest,origin)
}

}

2.4 We give two solutions. The first one is recursive but not using pattern matching
and the second uses pattern mathing.

// Recursive version
val from: ((Int,Int) => List[Int]) = (n,m) => {

if (n==m) { List(m) }
else n::from(n+1,m)

}
// Recursive version using pattern matching
val from: ((Int,Int) => List[Int]) = (n,m) => {

(n-m) match {
case 0 => List(n)
case _ => (n)::from(n+1,m)

}
}

Note also that the following solution using patternmatching does notwork. Scala con-
siders mwithin the match as a new variable and then n can always be matched with
this (new)m. Scala gives awarning, informing that the following line_ is unreachable
(which is true) but does not inform that there is another variable m in the function.

val from: ((Int,Int) => List[Int]) = (n,m) => {
n match {

case m => List(n)
case _ => (n)::from(n+1,m)

}
}

2.5 We can solve quicksort as follows.

val quicksort: (List[Int]=>List[Int]) = (l) => {
l match {

case Nil => Nil
case hd::tl => quicksort(tl.filter(_<=hd)) ::: hd ::

quicksort(tl.filter(_>hd))
}

}

http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2

9 Solutions 113

We can call it using

quicksort(List(5,6,8,3,2,5,6))

2.6 We can define curryF as follows.

val curryF:(Double => (Double => (Double => Double))) =
(a) => {

(b) => {
(c) => {

a*(b+c)*(b+c)
}}}

This definition works properly with the following two calls

curryF (2)(3)(1)
List(1.0,2.0,3.0).map(curryF(2)(3))

2.7 A function to add only the positive elements of a list can be defined as follows.

val sumPos: (List[Int]=>Int) = (l) => {
l.filter(n=>(n>0)).foldLeft(0)((a,b)=>a+b) }

sumPos(List(1,-2,5,-3))

2.8 The solution of the internal product is as follows.

val prod:(((Int,Int))=>Int) =
(a) => a match { case (a1,a2) => a1*a2 }

((1 to 5).zip(0 to 4).map(prod)).foldLeft(0)((a,b)=>a+b)
val intProd:((List[Int],List[Int])=>Int) = (vec1,vec2) => {

(vec1.zip(vec2).map(prod)).foldLeft(0)((a,b)=>a+b) }
intProd(List(1,2,3,4,5),List(0,1,2,3,4))

Problems of Chapter3

3.1 The solution of this exercise is similar to the function lazyConditional

val switch:((Int, => Int, => Int, => Int) => Int) =
(x,case1,case2,case3) => {

x match {
case 1 => case1
case 2 => case2
case 3 => case3

}
}

We can test this function with

switch(1,100,200/0,300/0)
switch(2,100,200,300)

http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_2
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_3

114 9 Solutions

3.2 We can print the numbers using the for construction as
for (i <- naturalNumbers) println(i)
However, as the stream is infinite, the systemwill give an error and can crash after

printing a large set of numbers. In a similar way, we can apply the function last to
a stream, and, naturally, also to naturalNumbers. Nevertheless, as the stream is
infinite this will also cause an error and, eventually, a system crash.

3.3 We can solve this problem as follows.

val evenFilter = nats.filter((a) => a % 2 == 0)
val oddFilter = nats.filter((a) => a % 2 != 0)

3.4 We give two solutions of this problem. One with a local definition, and the other
using map.

val newRow: (List[Int] => List[Int]) = (row) => {
lazy val newRowR: (List[Int] => List[Int]) =

(row) => row match {
case Nil => List(1)
case hd::Nil => 1::Nil
case hd::tl => hd+tl.head::newRowR(tl)

}
1::newRowR(row)

}
val newRow: (List[Int] => List[Int]) = (row) => {

1::row.zip(row.tail:::List(0)).map((a)=>(a._1+a._2))
}

We can call newRow as follows:

newRow(List(1))
newRow(List(1,4,6,4,1))

The second part can be solved as follows.

val buildAllRows: (List[Int] => Stream[List[Int]]) =
(l) => l #:: buildAllRows(newRow(l))

val allPascal = buildAllRows(List(1))

3.6We give the solution of the three functions of the exercise. They are the functions
qn, dr, and dn below.

val nats: (Stream[Int]) = 1#:: (nats.map((a)=>a+1))
val qn: (Stream[Int]) = {

1#::1#::
((nats.tail).zip(qn.tail)).map((a)=>a._1-a._2).map(

(a)=>qn(a)).zip(((nats.tail).zip(qn)).map(
(a)=>a._1-a._2).map((a)=>qn(a))).map((a)=>a._1+a._2)

}
\\ to test:
qn.take(10) foreach println

http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_3

9 Solutions 115

val dr: (Int => Int) = (n) => {
if (n==1) { 1 }
else {if (n==2) { 1 }

else { dr(dr(n-1))+dr(n-1-dr(n-2)) }
}

}
// to test:
dr(4)

val nats: (Stream[Int]) = 1#:: (nats.map((a)=>a+1))
val dn: (Stream[Int]) = {

0#::1#::1#::
(dn.tail.tail).map(

(a)=>dn(a)).zip(((nats.tail).zip(dn.tail)).map(
(a)=>a._1-a._2).map((a)=>dn(a))).map((a)=>a._1+a._2)

}
// to test:
dn.take(10) foreach println

3.7 We define the function interleave as follows.

val interleave: (Stream[Int],Stream[Int])=>Stream[Int] =
(s1,s2) => {

s1.head#::s2.head#::interleave(s1.tail,s2.tail) }

3.8

val nats: (Stream[Int]) = 1#:: (nats.map((a)=>a+1))
val r = new scala.util.Random()
val seqSin = nats.map((n)=>Math.sin(n*1.0/2))
val seqSinE =

nats.map((n)=>Math.sin(n*1.0/2)+0.1*r.nextDouble())

To visualize some elements of the list we can call the following function

seqSinE.take(10) foreach println

3.9 We divide the solution into three parts. The first part is the moving average of
order 3.

// From pair-pair ((a,b),c) to 3-tuple
def fromPPto3T[A](pp: ((A,A),A)) =

(pp._1._1, pp._1._2, pp._2)

val ma: (Stream[Double] => Stream[Double]) = (x) => {
x(0)#::(x zip x.tail zip x.tail.tail).map(fromPPto3T).map(

(a)=>((a._1+a._2+a._3)/3.0))
}

We can test this function with

ma(seqSinE).take(10) foreach println

http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_3
http://dx.doi.org/10.1007/978-3-319-46481-7_3

116 9 Solutions

The second part is the weighted moving average of order 5.

// From pair-of-pairs ((((a,b),c),d),e) to List of 5 elements
def fromPofPtoList[A](pp: ((((A,A),A),A),A)) = List(

pp._1._1._1._1, pp._1._1._1._2,
pp._1._1._2, pp._1._2, pp._2)

// currified internal product of two vectors \sum_i w_i x_i
def ip(w: List[Double]): List[Double] => Double = (x) => {

w.zip(x).map((a)=>a._1*a._2).foldLeft(0.0)((a,b) => a+b)}
// Test with: ip(List(0.1,0.2))(List(10,5))

val wa: (List[Double] => (Stream[Double] => Stream[Double])) =
(w) => {
(x) => {
x(0)#::x(1)#::
(x zip x.tail
zip x.tail.tail zip x.tail.tail.tail zip
x.tail.tail.tail.tail).map(fromPofPtoList).map(ip(w))

}
}

We can test this function with

wa(List(0.2,0.2,0.2,0.2,0.2))
wa(List(0.2,0.2,0.2,0.2,0.2))(seqSinE)
wa(List(1.0/14,2.0/14,4.0/7,2.0/14,1.0/14))
wa(List(1.0/14,2.0/14,4.0/7,2.0/14,1.0/14))(seqSinE)

The third part is the comparison between two sequences. We substract them and
then compute the maximum difference between the first n terms.

def subst(s1:Stream[Double],
s2:Stream[Double]): Stream[Double] = {

s1.zip(s2).map((a)=>a._1-a._2)
}

val difSeqWA = subst(seqSin,
wa(List(1.0/14,2.0/14,4.0/7,2.0/14,1.0/14))(seqSinE))

val difSeqSE = subst(seqSin,seqSinE)

difSeqSE.take(100).foldLeft(100.0)(Math.min)
difSeqWA.take(100).foldLeft(100.0)(Math.min)

Problems of Chapter4

4.1 To solve this problem we redefine the method dist0 using override.

class Complex (override val re: Double, val im: Double) extends
Real (re) {

def this (r: Double) = this(r, 0)

http://dx.doi.org/10.1007/978-3-319-46481-7_4
http://dx.doi.org/10.1007/978-3-319-46481-7_4

9 Solutions 117

override def toString = "c"+re.toString+"+"+im.toString
def +(c2: Complex): Complex =

new Complex (re + c2.re, im + c2.im)
def -(c2: Complex): Complex =

new Complex (re - c2.re, im - c2.im)
override def dist0: Real = new Real (Math.sqrt(re*re+im*im))

}

Problems of Chapter5

5.1 We give the definition and examples of their use.

def from[A] (vFrom:A,vTo:A,gen:A=>A):List[A] = {
if (vFrom==vTo) { List(vTo) }
else vFrom::from(gen(vFrom),vTo,gen)

}
from(3,10,(n:Int)=>(n+1))
from(2,10,(n:Int)=>(n+2))
from("a","k",(s:String)=>(s.head + 1).toChar.toString)
from(16,256,(n:Int)=>(n*2))

5.2 We can define quicksort for arbitrary types and a function lt on these types as
follows

def quicksort[A] (l:List[A],lt:(A,A)=>Boolean):List[A] = {
l match {

case Nil => Nil
case hd::tl =>

quicksort(tl.filter((e)=>(lt(e,hd))),lt) ::: hd ::
quicksort(tl.filter((e)=>(!(lt(e,hd)))),lt)

}
}

We can test this function with:

quicksort[Int](List(5,6,8,3,2,5,6),(a:Int,b:Int)=>(a<b))
quicksort(List(5,6,8,3,2,5,6),(a:Int,b:Int)=>(a<b))

Problems of Chapter6

6.1 We will use the solution of Exercise2.2 for the tail recursive version of the
Fibonacci and the code in this chapter for the straightforward solution. That is,

http://dx.doi.org/10.1007/978-3-319-46481-7_5
http://dx.doi.org/10.1007/978-3-319-46481-7_5
http://dx.doi.org/10.1007/978-3-319-46481-7_5
http://dx.doi.org/10.1007/978-3-319-46481-7_6
http://dx.doi.org/10.1007/978-3-319-46481-7_6
http://dx.doi.org/10.1007/978-3-319-46481-7_2

118 9 Solutions

val fibTR:(Int=>Int) = (n) => {
def fibtr (n:Int, f1:Int, f2:Int):Int = {

if (n==0) { f1 }
else { fibtr (n-1, f2, f1+f2) }}

fibtr(n,0,1)
}

val fibSR: (Int=>Int) = (n) => {
if (n==0) { 1 }
else if (n==1) { 1 }
else { fib(n-1) + fib(n-2) }

}

Mean execution times can be computed then as follows.

meanET(1000,fibTR(40))
meanET(1000,fibSR(40))

References

1. Aho, A.V., Ullman, J.D., Hopcroft, J.E.: Data Structures and Algorithms. Pearson (1983)
2. Backus, J.: Can programming be liberated from the von Neumann Style? A functional style

and its algebra of programs. Commun. ACM 21(8), 613–641 (1978)
3. Chiusano, P., Bjarnason, R.: Functional Programming in Scala. Manning Publications, New

York (2015)
4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT

Press, Cambridge (2001)
5. Dijkstra, E.W.: A review of the 1977 Turing Award lecture by John Backus (1979). https://

www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
6. Haller, P., Sommers, F.: Actors in Scala. Artima Press, Walnut Creek (2011)
7. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelli-

gence. In: Proceedings of IJCAI (1973)
8. Hunt, J.: A Beginner’s Guide to Scala, Object Orientation and Functional Programming.

Springer, Switzerland (2014)
9. Lewis, M.C.: Introduction to the Art of Programming Using Scala. CRC Press, Boca Raton

(2013)
10. Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1991)
11. Masini, G., Napoli, A., Colnet, D., Léonard, D., Tombre, K.: Les langages à objets. InterEdi-

tions, Paris (1989). 2nd edn. (1997)
12. McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine.

Part I. Commun. ACM 3(4), 184–195 (1960)
13. McCarthy, J.: History of LISP. In: Wexelblat, R.L. History of Programming Languages. Aca-

demic Press, New York (1981). http://www-formal.stanford.edu/jmc/history/lisp.ps
14. Rosen, K.H.: DiscreteMathematics and Its Applications, 7th edn.McGrawHill, Boston (2012)
15. Scott, M.L.: Programming Language Pragmatics. Elsevier, Amsterdam (2011)
16. Seldin, J.P.: The logic of Curry and Church. In: Handbook of the History of Logic, vol. 5, pp.

819–874. North-Holland (2006)
17. Smith, G.C.: Algebra and Analysis. Springer, London (1998)
18. Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators.

Springer, New York (2007)
19. Watt, D.A.: Programming Language Concepts and Paradigms. Prentice Hall, New York (1990)
20. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2002)

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7

119

https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
https://www.cs.utexas.edu/users/EWD/ewd06xx/EWD692.PDF
http://www-formal.stanford.edu/jmc/history/lisp.ps

120 References

URLs and Web pages

21. http://docs.scala-lang.org/glossary/
22. http://docs.scala-lang.org/overviews/collections/creating-collections-from-scratch.html
23. http://docs.scala-lang.org/style/files.html
24. http://docs.scala-lang.org/tutorials/tour/anonymous-function-syntax.html
25. http://www.scala-lang.org/old/node/111
26. https://jupyter.org/index.html
27. http://scala-ide.org/
28. http://stackoverflow.com/questions/8316406/get-superclasses-function-in-scala
29. http://cstheory.stackexchange.com/questions/625/relationship-between-turing-machine-and-

lambda-calculus

http://docs.scala-lang.org/glossary/
http://docs.scala-lang.org/overviews/collections/creating-collections-from-scratch.html
http://docs.scala-lang.org/style/files.html
http://docs.scala-lang.org/tutorials/tour/anonymous-function-syntax.html
http://www.scala-lang.org/old/node/111
https://jupyter.org/index.html
http://scala-ide.org/
http://stackoverflow.com/questions/8316406/get-superclasses-function-in-scala
http://cstheory.stackexchange.com/questions/625/relationship-between-turing-machine-and-lambda-calculus
http://cstheory.stackexchange.com/questions/625/relationship-between-turing-machine-and-lambda-calculus

Index

Symbols
⊥, 37
λ-calculus, 1

A
Abstract classes, 59
ActorOf, 108
Actors, 94, 97

definition, 98
event-based, 104

ActorSystem, 108
Aggregate, 96
Akka’s actor model, 104, 107
Algebraic data types, 87, 90

case classes, 59
efficiency, 92
list, 91
tree, 92

Annotation, 79
AnyRef, 53
AnyVal, 53, 58
Apply, 81
Array, 30

mutable data structure, 29

B
Backus, J., 3
Base case, 21
Blocks, 11
BNF

Backus-Naur form, 4
Boolean, 8, 58
Byte, 8, 58

C
C++, 52
Case classes, 59, 90, 98
Case objects, 90, 98
Catched, 40
Char, 8, 58
Church, A., 1
Class, 51

constructor, 55
auxiliary, 56
primary, 56

definition, 54
type

variables, 70
variables

private, 55
Class variables, 54, 61
Classes

abstract, 59
case, 59

Collections
for, 32
higher-order functions, 29, 32
immutable, 30
imperative constructions, 31
mutable, 30
parallel, 94

Comments, 12
Companion objects, 61
Concurrency

shared-state, 97
Conditional, 11
Constructor, 55, 56
Currification, 19, 69

© Springer International Publishing AG 2016
V. Torra, Scala: From a Functional Programming Perspective, LNCS 9980
DOI: 10.1007/978-3-319-46481-7

121

122 Index

D
Data races, 97
Declarations, 12

def, 56
vs. val, 83

val, 12
vs. def, 83

var, 12
Double, 8, 58
Drop, 34
Dropwhile, 34

E
Eager, 37
Efficiency, 84, 92
Evaluation

eager, 37
lazy, 37, 38
strict, 37

Event-based model, 107
Exit, 107
Extends, 55

F
Factorial

BigInt, 79
functional, 1
imperative, 1
infinite list, 43
parallel, 96
pattern matching, 26
stream, 43
tail-recursive, 78

Fibonacci
stream, 46
tail-recursive, 80

Field, 51, 54
Filter, 33, 94
Find, 34
FlatMap, 75
Float, 8, 58
Fold, 95
FoldLeft, 35, 95
FoldRight, 35, 95
Foreach, 32, 94
FORTRAN, 4
FP, 3
Function22, 82
Functional programming, 2

characteristics, 2
FunctionN, 81

Functions, 13
anonymous, 14, 81
apply method, 81
polymorphic, 69
recursive, 20
signature, 16
tail-recursive, 77
type, 14, 15

Functors, 73
Future, 100, 105

G
Garbage collection, 92
GetClass, 57
GetState, 107
GetSuperclass, 57

H
Haskell, 4
Hewitt, C., 97
Hierarchy of classes, 51, 53
Higher-order functions, 18, 29

I
Immutable data structures, 29
Imperative programming, 2
Infinite data structures, 41
Information Processing Language, 3
Inheritance, 53, 63

multiple, 52, 63, 64
name clash, 65

single, 52, 53
Instance, 51, 54
Instantiation, 51, 52
Int, 8, 58
Is a, 51

J
Java, 4, 17, 51, 54

classes, 67
JVM, 4, 67
Math, 67
static methods, 63
static variables, 63

K
Kleisi laws, 75

Index 123

L
Lazy, 37

val, 40
LISP, 1, 3
List, 22, 29, 30

algebraic data types, 91
comprehension, 36
immutable data structure, 29
pattern matching, 27
recursion, 24

Lists
lazy (streams), 41

Logic programming, 2
Long, 8, 58
Loop, 99
Loops, 11

do while, 11
for, 11, 32
while, 11

M
Map, 94

collection, 31
higher-order function, 33

Match, 26
McCarthy, J., 1, 3
Message, 52
Message passing, 97
Method, 51, 54

override, 56
polymorphic, 69
ways to call, 57

Monads, 74
Monoids, 73
Multi-agent systems, 97
Mutable data structures, 29

N
Name clash, 65
Notation, 53, 57

companion objects, 61
Nothing, 53
Null, 53

O
Object

companion, 61
singleton, 60

Object-oriented, 51
Odersky, M., 4
Operations

associativity, 73
functors, 73
monads, 74
precedence, 9

Overloading, 69
Override, 56

P
Package, 66
Pair, 45
Par

parallel collections, 94
Parallel collections, 94
Parameter passing, 39
ParArray, 94
ParRange, 94
Partition, 34
Pass by name, 40
Pass by need, 39
Pass by reference, 39
Pass by value, 39
Pattern matching, 26

lists, 27
Polymorphism, 69, 70
PostStop, 107
Predicate, 25
PreStart, 107
Private

variables, 55
Props, 108

R
Random number generators, 17
Range, 30
React, 104
Receive, 99, 103, 107
Recursion, 20

base case, 21
lists, 24
search, 24
tail-recursion, 77
traversal, 24

ReduceLeft, 35
ReduceRight, 35
Reference classes, 53
Referential transparency, 39
Referentially transparent, 17
REPL, 5
Reply, 100
Run, 102, 108
Runnable, 93

124 Index

S
Scala

compilation, 6
Scalac, 6
Scheme, 3
Sender, 100
Separator, 11
Seq

parallel collection, 94
Set, 31
Shared-state concurrency, 97
Short, 8, 58
Side effect, 17
Signature, 16
Singleton objects, 60
Spark, 94
Standard ML, 4

algebraic data types, 87
Static methods, 63
Static variables, 61, 63
Streams, 41
Strict, 37
String, 9
Subclass, 51
Superclass, 51, 57
Synchronization, 93
Synchronized, 94
Synchronous

messages, 104

T
Tail-recursion, 77
Take, 33

Thread-based model, 104
Threads, 93
Traits, 63

name clash, 65
type

variables, 70
Tree

algebraic data types, 92
Tuple, 45
Turing

machines, 1
Turing, A., 1
Type inference, 15
Type variables, 69, 70
Types

composite
cartesian product, 13

U
Unit, 8, 58, 75

V
Value classes, 8, 53, 58
Variable

type, 69
Variables

class, 54

Z
Zip, 33
Zipped, 34

	Preface
	Organization of the Book
	How to Use This book
	Acknowledgments

	Contents
	1 An Introduction to Functional Programming Languages
	1.1 Main Characteristics of Functional Programming Languages
	1.2 Some Functional Programming Languages
	1.2.1 LISP
	1.2.2 FP
	1.2.3 Standard ML (SML)
	1.2.4 Haskell

	1.3 Scala
	1.4 Running Scala

	2 The Basics of the Language
	2.1 Data Types
	2.1.1 Strings

	2.2 Statements and Expressions
	2.3 Statement Separator and Blocks
	2.4 Comments
	2.5 Declarations
	2.5.1 Composite Types: Cartesian Products
	2.5.2 Nested Declarations

	2.6 Functions
	2.6.1 Alternative Ways to Define Types in Functions
	2.6.2 Type Inference in Scala
	2.6.3 Signature
	2.6.4 Referentially Transparent
	2.6.5 Higher-Order Functions
	2.6.6 Currification
	2.6.7 Recursive Functions
	2.6.8 Functions and Non Functional Programming

	2.7 Lists
	2.7.1 Recursion on Lists

	2.8 Pattern Matching
	2.8.1 Pattern Matching on Lists

	2.9 Collections and Their Higher Order Functions
	2.9.1 Mutable and Immutable Data Structures
	2.9.2 Mutable and Immutable Collections
	2.9.3 Some Imperative Construction on Collections
	2.9.4 Higher-Order Functions for Collections

	2.10 List Comprehension

	3 Lazy and Eager Evaluation
	3.1 Parameter Passing
	3.2 Lazy Val
	3.3 Streams and Other Infinite Data Structures
	3.4 Stream of Even Numbers
	3.5 Stream of Odd Numbers
	3.6 The Fibonacci Numbers
	3.7 The Prime Numbers
	3.8 Exercises with Streams

	4 Object-Oriented Programming in Scala
	4.1 Class Hierarchy
	4.2 Definition of a Class
	4.2.1 Notation

	4.3 Value Classes
	4.4 Case Classes
	4.5 Abstract Classes
	4.6 Singleton Objects
	4.7 Companion Objects
	4.8 Traits
	4.8.1 Inheritance
	4.8.2 Multiple Inheritance
	4.8.3 Name Clashes in Traits

	4.9 Packages
	4.10 Some Additional Issues

	5 Types and Classes Revisited: Polymorphism
	5.1 Classes with Polymorphic Types
	5.2 Monoids, Functors, and Monads
	5.2.1 Monoids
	5.2.2 Functors
	5.2.3 Monads

	6 Scala: OOL and FP
	6.1 Tail-Recursive Functions
	6.1.1 Some Scala Technicalities
	6.1.2 Additional Examples of Tail-Recursive Functions

	6.2 Functions in Scala and Object-Oriented Programming
	6.3 Defining Functions Revisited: val and def
	6.4 Data Types and Efficiency

	7 Algebraic Data Types
	7.1 Definition of Algebraic Data Types in Standard ML
	7.2 Algebraic Data Types in Scala
	7.3 Data Types and Efficiency Revisited

	8 Parallelism
	8.1 Collections
	8.2 Actors
	8.2.1 Definition
	8.2.2 Receive and React, ! and !?
	8.2.3 Futures and !!
	8.2.4 Others
	8.2.5 Akka's Actor Model

	9 Solutions
	References
	Index

