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Preface

The 21st edition of the International Conference on Reliable Software Technologies
(Ada-Europe 2016) took place in the city of Pisa, hosted by Scuola Superiore
Sant’Anna, an internationally renowned university school. This was the return of the
conference to Italy, after Venice in 2008. Previous editions of the conference were held
in Spain (Santander, 1999, Palma de Mallorca, 2004, Valencia, 2010, and Madrid,
2015), France (Toulouse, 2003, Brest, 2009, and Paris, 2014), the UK (London, 1997,
York, 2005, and Edinburgh, 2011), Switzerland (Montreux, 1996, and Geneva, 2007),
Sweden (Uppsala, 1998, and Stockholm 2012), Germany (Potsdam, 2000, and Berlin,
2013), Belgium (Leuven, 2001), Austria (Vienna, 2002), and Portugal (Porto, 2006).
The conference series is run and sponsored by Ada-Europe, in collaboration with local
organizations. This year Scuola Superiore Sant’Anna led the organization, with the
support of a truly international team.

The conference took place during June 13–17, 2016, with a rich program on both
the technical and social sides. The scientific part of the conference program featured 12
presentations selected among 28 peer-reviewed papers, which were grouped into four
regular sessions spread out on the central days of the conference, on topics ranging
from concurrency and parallelism to real-time systems via testing and verification and
program correctness and robustness. The program also included eight industrial pre-
sentations, split across two industrial sessions. A session featuring presentations from
students of the ITS EASY post-graduate school, which co-located its meeting with the
conference, a poster session, and one vendor session with an accompanying vendor
exhibition completed the core program. In addition to this rich set of contents, eight
tutorials for the equivalent of 10 half-day sessions were scheduled on Monday and
Friday. Also on Friday, the week featured the third edition of the Challenges and New
Approaches for Dependable and Cyber-Physical Systems Engineering Workshop.

The submissions to scientific and industrial tracks of the conference program came
from 25 countries and 96 distinct authors, from Europe, Asia, North and South
America, and Africa. The final result was a truly international program with contri-
butions from Australia, Austria, Canada, France, Germany, Italy, Portugal, Spain,
Sweden, Tunisia, UK, and USA.

Each day of the core conference program opened with a keynote talk centered on
topics of high interest within conference focus:

– “Why the Expressive Power of Languages Such as Ada Is Needed for Future Cyber
Physical Systems.” Alan Burns, from the University of York, UK, presented the
challenges put forward to the developer of cyber physical systems to fully exploit
the wealth of real-time systems theory, and how these are addressed with the high-
level programming abstractions of Ada.

– “Challenges for the Automotive Platform of the Future.” Valerio Giorgetta, from
Magneti Marelli, Italy, presented how the concept of a car will be impacted by the



challenges put forward such as autonomous vehicles and functional safety and
reliability.

– “The HiPEAC Vision.” Marc Duranton, from CEA, France, presented an overview
of the HiPEAC vision, a bi-annual document produced by the HiPEAC network of
excellence, with the upcoming challenges in computing systems.

The proceedings contained in this volume cover the opening keynote talk and the
full set of peer-reviewed papers. The remainder of the conference contributions are
published, in successive instalments, in the Ada User Journal, the quarterly magazine
of Ada-Europe.

The tutorial program covered a wide range of topics in the scope of the central
themes of the conference, as follows:

– “A Semi-formal Approach to Software Development,” William Bail, The MITRE
Corporation, USA

– “Software Test and Verification Techniques for Dependable Systems,” William
Bail, The MITRE Corporation, USA

– “Embedded ARM Programming with Ada 2012,” Patrick Rogers, AdaCore, USA
– “Ada 2012 (Sub)types and Subprogram Contracts in Practice,” Jacob Sparre

Andersen, JSA Research & Innovation, Denmark
– “Towards Energy Awareness and Predictability in the Linux Kernel,” J. Lelli, ARM

Ltd., Italy
– “Access Types and Memory Management in Ada 2012,” J.P. Rosen, Adalog,

France
– “Using Gnoga for Desktop/Mobile GUI and Web Development in Ada,” J.P. Rosen,

Adalog, France
– “Parallelism in Ada, C, Java and C#, Today and Tomorrow,” Brad Moore, General

Dynamics Canada, and Stephen Michell, Maurya Software, Canada

The industrial sessions featured eight presentations centered on various aspects of
reliable software development:

– “What Has the ARG Been up to? — Recent and Future Changes to Ada 2012,” Jeff
Cousins, ARG Rapporteur, UK

– “Using Ada’s Visibility Rules and Static Analysis to Enforce Segregation of Safety
Critical Components,” Jean-Pierre Rosen and Jean-Christophe Van-Den-Hende,
Adalog and Alstom-Transport, France

– “Automated Testing of SPARK Ada Contracts (AUTOSAC),“ Christopher Bryan,
Rapita Systems, UK

– “Ada Usage in HMI for Onboard Safety Critical Applications,” Clara Maria
Arcones-Gabriel, Enrique Chicharro-Lopez and Ismael Lafoz-Pastor, Airbus
Defence and Space, Spain

– “An Update on Programming Language Vulnerabilities,” Stephen Michell, WG23
Convenor, Canada

– “Middleware for Distributed and Redundant Software,” Vincent Monfort, Systerel,
France

VI Preface



– “Model-Based Design and Schedulability Analysis for Avionic Applications on
Multicore Platforms,” Wenceslas Godard and Geoffrey Nelissen, Airbus Group
SAS, France and CISTER/ISEP, Portugal

– “Fitting the CONCERTO Component Model Approach to AUTOSAR Develop-
ment Flow,” Andrea Russino, Stefano Puri and Alessandro Zovi, Intecs and
Università di Padova, Italy

This edition of the conference featured a focused topic on “Safe and Predictable
Parallel Software Technologies.” Ada has been a language that has always excelled
with its advanced high-level concurrency support. In the last 20 years, Ada has steadily
extended its wealth of concurrency features and capabilities to a considerable extent,
yet within the bounds of a sequential task reasoning. With the advances in processor
architectures, and in particular the move into a parallel world, it is time to discuss how
Ada should be evolved into supporting in the language the notion of fine-grained
parallelism. The program included a special session on “Ada and Parallelism,” which
discussed the design choices and evolutions of the language to support fine-grained
parallel programs. The session included both presentations from experts in the fol-
lowing topics as well as an open discussion to the floor:

– “Paraffin: A Parallelism Library for Ada,” Brad Moore, Gran Dynamics, Canada
– “Ada Container Iterators for Parallelism and Map/Reduce,” S. Tucker Taft, Ada-

Core, USA

We would like to acknowledge the work of all the people who contributed, with
various responsibilities and official functions, to the making of the conference program.
First of all, the authors of the contributions, who were largely responsible for the
success of the conference. Then the members of the Program and Industrial Com-
mittees, who worked hard to review and select a high-quality set of papers, both for the
Springer LNCS volume in the case of peer-reviewed papers and the Ada User Journal
in the case of the industrial presentations, the special session papers, and the workshop.

Finally, the group of organizers who made the conference program a reality: Giorgio
Buttazzo (Conference Chair); Ettore Ricciardi (Local Chair); Marco Di Natale and
Tullio Vardanega (Industrial Co-chairs); Jorge Real (Tutorial and Workshop Chair);
Geoffrey Nelissen (Publication Chair); Mauro Marinoni and Dirk Craeynest (Publicity
Co-chairs); Paolo Gai and Ahlan Marriott (Exhibition Chair). They all deserve our
gratitude for their effort.

We hope that the attendees enjoyed the conference, both its technical and social
program, as much as we did in organizing it.

June 2016 Marko Bertogna
Luís Miguel Pinho
Eduardo Quiñones
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Why the Expressive Power of Programming
Languages Such as Ada Is Needed for Future

Cyber Physical Systems

Alan Burns(B)

Department of Computer Science, University of York, York, UK
alan.burns@york.ac.uk

Abstract. If Cyber Physical Systems (CPS) are to be built with effi-
cient resource utilisation it is imperative that they exploit the wealth of
scheduling theory available. Many forms of real-time scheduling, and its
associated analysis, are applicable to CPS, but it is not clear how the sys-
tem developer/programmer can gain access to this theory when real CPS
are being constructed. This short paper gives the background to the asso-
ciated presentation where the facilities available in the Ada programming
language are highlighted and reviewed. The aim of the presentation is to
show that Ada provides most of the programming abstractions needed
to deliver future CPS.

1 Introduction

The design and implementation of reliable and cost-effective Cyber-Physical Sys-
tems (CPS) incorporates many issues in both the hardware and software aspects
of the system. For reliability (and for many CPS, safety), timing constraints such
as deadlines must be satisfied, and in many applications evidence for such compli-
ance must be provided (perhaps in a safety-case to be used during certification).
For cost-effectiveness, resources must be used effectively and sparingly. Resources
in this context being platform hardware and run-time energy consumption.

The branch of Computer Science that deals with resource usage in this con-
text is real-time scheduling. Scheduling protocols promote efficient (and at times
optimal) resource utilisation. And scheduling analysis provides the means of ver-
ifying that, even in the worst-case, deadlines will be met.

Over the last 50 years a considerable body of knowledge and volume of results
in the field of real-time scheduling have been produced. These results can, poten-
tially, have a significant impact on how further CPS are developed. But to realise
this potential it must be possible for software developers to exploit this theory;
they must be able to apply the scheduling protocols and to subject their software
to the relevant forms of scheduling analysis.

The means of exploiting scheduling theory is via the programming languages
(PLs) and operating systems (OSs) available to the developer. PLs provide
abstractions, such as tasks with priorities and priority based processor schedul-
ing, whilst OSs provide interfaces that can support, for example, threads, prior-
ities and priority-based dispatching.
c© Springer International Publishing Switzerland 2016
M. Bertogna et al. (Eds.): Ada-Europe 2016, LNCS 9695, pp. 3–11, 2016.
DOI: 10.1007/978-3-319-39083-3 1



4 A. Burns

In this paper and talk I want to give a somewhat high level, and neces-
sarily brief, review of the many scheduling results that may be of utility to
CPS development. I then want to see to what extent these results are avail-
able to developers via OSs and programming languages. I shall argue that for
all but the most basic level of support, OSs (and certainly OS Standards) lack
the expressive power required. However, programming language abstractions do
exist that give access to many (but of course not all) forms of scheduling pro-
tocols and analysis. And the programming language that implements/supports
most of these abstractions is Ada. Therefore the expressive power of the Ada
programming language will form the main focus of this keynote.

2 Scheduling Results

Here some of the major results from scheduling theory, which could be employed
in CPS development are outlined. Requirements are linked to applicable schedul-
ing protocols. Of course not all requirements are needed for all CPS, but each
one has the potential to be useful. We looks at this work under four headings,
uniprocessor systems, multiprocessor systems, mixed criticality systems and then
a catch all section.

2.1 Uniprocessor Theories

We start with some very basic requirements

– Interactions with the parallel world – requires concurrency (tasks, threads,
processes etc.).

– Safe Sharing between distinct software components – synchronisation controls
(semaphores, mutexes, monitors etc.).

– Synchronisation with external real-time – clock abstractions and delay primi-
tives.

– Synchronisation with external events – interrupt handling.

Concurrency allows tasks to execute non-deterministically. Basic scheduling
allows this freedom to be constrained so that the possibility of meeting timing
requirements is optimised (and verified if the appropriate analysis is applied):

– Predicable task ordering – (static) priority attributes for tasks, priority ceilings
for monitors.

– Deadline aware task execution – deadline attributes for tasks, protocols for
effective sharing.

– Deterministic execution order – Non-preemptive scheduling (with static pri-
orities).

Building upon these basic schemes there are a wealth of protocols that aim
to improve resource utilisation, for example:
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– Deferred preemption [18].
– Dual priorities [13].
– Dynamic priorities (which can be used to program a wide variety of protocols).

or support more general computational models:

– Logical Execution Time (LET) [20,21,27].
– Anytime or imprecise algorithms (where following the production of an adequate

result, further processing will improve the result up to the point when the result
must be output).

– Dynamic periods and deadlines (elastic task model) [16].
– N in M constraints (only N out of every M jobs need meet their deadlines) [6].
– Multiframe Tasks (tasks execute through a series of frames with different

resource requirements) [28].
– Generalised Task Model (where tasks are related by DAG models) [5].
– Open Systems with admission control (dynamic task creation) [12,24].

Many CPS have to demonstrate resilience as well as functional correctness;
for this, fault tolerance behaviour needs to be supported. This takes the form
of error recognition, firewall protection and various forms of adaptive resource
management. For example,

– Deadline miss detection
– Budget monitoring
– Budget overrun detection
– Budget enforcement
– Watchdog timers
– Aborting rogue computation
– Budget management per task
– Budget management per group of tasks
– Early task termination identification

Aborting rogue computation is needed at the task/thread level and at the
functional code level. It must be possible to undertake this abandonment without
leaving shared data in an undefined state.

2.2 Multiprocessor Theories

Once the execution platform changes from uniprocessor to one with multiple
processors (or cores) then other requirements have to be addressed by the
scheduling theory. The basic features that must be supported are:

– Partitioned scheduling – managing the static assignment of tasks/threads to
processors/cores.

– Global scheduling – managing the run-time migration of tasks/threads to fol-
low the rules of the scheduling protocol.

– Semi-partitioned scheduling – managing the controlled migration of individual
tasks/threads at run-time [9,10,22].
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– Sharing – controlling the sharing of resources between potentially parallel
executing tasks/threads (this is a major open problem, in that effective general
purpose protocols are not yet available).

On top of these basic protocols there are more advanced schemes that again
deliver more efficient execution or support more general models of computation:

– TkC, and DkC (global schemes with priority-based scheduling then non-
preemptive) [2,19].

– tasklets to model parallelism within a task/thread [25].
– barriers to efficiently synchronise tasks/threads on multiprocessor platforms.

Finally there is the need to support heterogeneous as well as homogeneous
hardware platforms.

2.3 Mixed Criticality Theories

Mixed criticality system introduce new scheduling protocols that aim to increase
the resilience of such systems but keep their resource usage as low as possi-
ble. Most of the proposed protocols involve forms of change management. For
example:

– task/thread parameter modification (extend period and deadlines),
– suspending tasks/threads,
– modifying scheduling attributes: priorities and deadlines,
– resume tasks/threads.

Also important is the means of supporting partitioning; in particular the allo-
cation of processor time – the overrun of one subsystem must not impact on
the resources available to another subsystem. This is especially true if the sub-
systems are of different levels of criticality. However, the complete separation
of subsystems can lead to the over provisioning of resources as the certification
of safety-critical software requires very conservative resource-usage estimates.
Mixed criticality research has focused on scheduling protocols that provide man-
aged sharing as well as adequate separation [8].

2.4 Others Requirements and Scheduling Features

Here we note some other issues:

– Control of when tasks/threads that preform I/O execute (e.g. minimising input
and output jitter).

– Control of memory used by tasks/threads.
– Control of power used by tasks/threads.
– Control over the speed of variable rate processors.
– Control over placement on FPGA type hardware
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3 Required Abstractions and/or Interfaces

To satisfy the above extensive list of requirements and protocols, one can either
provide a (large) set of high-level abstractions/models, or aim to support primi-
tives from which these abstractions can be programmed. For example, the notion
of a periodic task could be provided in a model-based development scheme. Such
a concept would have a defined period and deadline; but to give an elastic task
it will be necessary to allow period and deadline to change – will the abstraction
allow this? Also when executed by a priority based dispatcher how are the prior-
ity changes managed? Alternatively, the more general notion of a task or event
handler, supported by clocks, a delay statement and a dynamic priority routine
will allow any form of time-triggered computation to be programmed. In general
a high-level abstraction is easier to use if it is exactly what is required; but lacks
the expressive power to allow variants to be derived. Lower-level abstractions,
however, present the programmer with more challenges.

Another problem with high level abstractions come from composition. (e.g.
how to obtain a periodic tasks with deadline overrun protection, budget enforce-
ment and an N in M execution requirement). Will the three or four high level
models work together? Yes programming the required behaviour from lower level
abstractions is more effort (and hence is potentially more error prone). But it
does allow the actual necessary semantics to be delivered as long as the low-level
abstractions are adequate and themselves provide the necessary expressive power.

The interfaces provided by a modern Real-Time operating system, such as
one based on POSIX or Linux, give a good level of support for the protocols
defined above. Threads have priorities, there are mutexes and priority ceiling
protocols, priorities can by modified, budgets can be monitored, signals sent from
one thread to another, and mappings to processors can be managed at run-time
via affinities. But not all the requirements can be satisfied by OS standards.
And composition via library APIs is error-prone and lacks the usability one
would hope to have in a programming environment. Programming languages
can however embed the protocols within the syntax as well as provide standard
library routines, and this allows programmers to directly address the needs of
CPS. But of course the programming language must be up to this challenge. In
the following section I will look at what Ada provides and argue that it does
indeed have (mostly) the required expressive power. Ada is chosen as it provides
more low-level abstractions than any other programming language.

4 Ada’s Provisions

For those very familiar with Ada they will find nothing new in this brief overview,
but for others I hope to at least remind you of what is now supported in the
full Ada language. The Ravenscar profile is an important technology for simple
real-time scheduling. But for the schemes likely to be needed in future CPS the
expressive power of the full language is required. Again I will do this in the form
of lists. So first basic concurrency, Ada supports
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– Calendar and real-time clocks.
– Static and dynamic creation of tasks.
– Delay mechanisms.
– Priority assignment.
– Protected objects with requeue to give controlled sharing.
– Dynamic task priorities and dynamic priority ceilings.

The requeue facility allows the full expressive power of a monitor to be pro-
vided without the need for very low level condition variables.

By supporting dynamic priorities and flexible delay mechanisms many differ-
ent forms of behaviour can be programmed (such as an elastic task that changes
its period).

To support scheduling protocols directly Ada supports:

– Priority based dispatching with priority ceiling protocol.
– EDF scheduling with the Stack Resource Protcol (SRP) [3,4] (and possibly in

the future the Deadline Floor Protocol, DFP [1,11]).
– Round Robin and non-preemptive dispatching.
– Hierarchical scheduling (for example, combined priority-based and EDF).
– Primitives to allow tasks to suspend themselves and other tasks.
– Timing events – code that executes at a specified time (can be used to control

input and output jitter).
– Group budget monitoring and control that allows standard execution time

servers such as the Periodic Server, Sporadic Server and Deferrable Server to
be constructed [7,14,15,17,26].

To support more resilient software Ada supports:

– Budget clocks that monitor task execution time, and can signal when specified
levels of usage have been reached.

– Task aborting, and the ability to abandon computation at the sub-task level
(ATC – select then abort))

– Timing events – that are only execute in error conditions, i.e. programmed
watchdog timers.

– Signaling when a task terminates (useful when the task should not!).

The ATC (Asynchronous Task Control) facility is not only of use in error
handling for it also allows anytime algorithms to be easily programmed – set the
ATC at a deadline, loop through some code to improve quality of computation,
storing result in a protected object, abandon when deadline is reacted.

Timing events are another language feature with multiple usages. They can
be used positively to control when I/O operations occur, but they can be ‘not
used’ for watchdog timers. Here the ‘alarm’ is programmed to occur at some
future event. The ‘I’m alive’ signal simple pushes the alarm time further into
the future.

To support multiprocessor execution, Ada provides:
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– Affinities that can control where a task executes; a task can be restricted to
just one CPU, a groups of CPUs or be allowed to execute on any CPU.

– Dynamic affinities to allow semi-partitioned schemes to be programmed.

Other features that are potential important in CPS:

– Use of memory pools to control this important resource.

Having introduced a wide range of important features currently supported
by Ada it is only fair to consider some that are missing:

– Support for parallel execution within a task – a plan for including the notion
of tasklet into the language is currently under consideration [23].

– Support for energy aware programming – API to whatever is supported by
the underlying hardware/run-time is the only current approach available –
I would like to execute a loop within a bound determined by energy available.

– Support for an effective synchronisation scheme for multiprocessor execution –
many schemes have been proposed in the literature but there is not yet con-
sensus on which Ada can build.

To illustrate the expressive power of Ada a couple of illustrative examples
will be included in the presentation.

5 Conclusions

A brief introduction to the scheduling requirements for future Cyber Physical
Systems has been given. The list of requirements has been mapped against the
provisions of the Ada programming language. In general, Ada provides a rich
set of facilities from which higher level abstractions can be built.

The alternative to the use of a facilitating programming language is to rely
upon the provisions of the operating systems upon which the software executes.
Unfortunately the APIs provided by real-time operating systems (RTOSs) are
not flexible enough to deal with the emerging approaches to scheduling resources
that are being considered for cost-effective future systems.

Clearly Ada is not a static finished language, it has proved itself to be adapt-
able and to be able to embrace new ideas and programming styles. New chal-
lenges will continue to emerge, such as support for fine grain parallelism, and
Ada must be as adaptable going forward as it has been in the past.
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Abstract. Data flow graphs are widely used for modeling and analysis
of real-time streaming applications in which having a predictable and
reliable implementation is an essential requirement. In this paper, we
consider scheduling a set of data flow graphs such that liveness and
boundedness properties are guaranteed, which leads to a predictable and
correct behavior of the application. A formal translation method is pro-
posed to map a given set of data flow graphs to a set of graph-based real-
time tasks. Additionally, sufficient conditions are derived under which the
obtained task set provides a semantically correct implementation of the
given data flow graphs. It is shown that the proposed approach provides a
higher level of design flexibility compared to the existing methods which
use a simpler, i.e. periodic, task model.

Keywords: Data flow graphs · Real-time task models · Buffer bound-
edness · Schedulability analysis

1 Introduction

During the past decades, data flow graphs [1,2] have been extensively used for
modeling and analysis of real-time streaming and signal processing applications.
A number of prominent measures of these applications, including throughput,
timeliness, liveness, and processing latency have been analyzed based on this
formalism. Such analyses help the designers to have a predictable and reliable
implementation of the mentioned applications.

Recently, increasing attention has been paid to study data flow graphs from
a real-time scheduling point of view [3–8]. A popular approach is mapping each
actor in a given data flow graph to an independent real-time task. Then, the
problem is to specify the real-time tasks parameters such that the timing behav-
ior of the data flow is correctly reflected by the task set. The advantage of this
approach is that it makes it possible to reuse the existing analysis frameworks
developed for real-time systems in the scheduling of a set of data flow graphs. For
instance, using this approach, the interfering effect of different data flow appli-
cations on each other can be analyzed based on the existing theory of real-time
task models.

In spite of the relatively extensive studies in this context, only a limited num-
ber of real-time task models have been explored by the researchers. In particular,
c© Springer International Publishing Switzerland 2016
M. Bertogna et al. (Eds.): Ada-Europe 2016, LNCS 9695, pp. 15–29, 2016.
DOI: 10.1007/978-3-319-39083-3 2
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the work has been mainly focused on the periodic task model. Nonetheless, more
expressive models can provide more flexibility to the designers which can lead
to better solutions.

In this paper, we propose to use one of the most expressive yet efficiently
analyzable real-time task models, namely the Digraph Real-Time (DRT) model
[9], to specify data flow graphs. We present a translation method and discuss the
potential benefits and the restrictions of this approach. The proposed method
guarantees both boundedness and liveness properties of a data flow graph.

The rest of this paper is organized as follows: Sect. 2 describes the system
model by presenting a brief review on the syntax and semantics of a data flow
graph. The Digraph Real-Time task model is reviewed in Sect. 3. We present
our translation method in Sect. 4. The proposed method is evaluated through
the model of an MP3 playback application in Sect. 5. The work related to the
current study is reviewed in Sect. 6. The paper is concluded in Sect. 7.

2 System and Application Model

In this paper, we consider a uniprocessor system which runs a number of appli-
cations modeled as a set of static data flow graphs. Formally, a static data flow
is a directed graph (V,E), where V and E represent the set of vertices and
edges, respectively. Each vertex represents an actor. Each edge denotes a FIFO
channel (also called a buffer), connecting the input port and the output port of
two (not necessarily different) actors. A channel c may contain an initial number
of tokens, denoted by c̄, at the system start time. Further, each channel c has
a maximum capacity of c̃. This means that the number of tokens existing in c
should never exceed c̃.

Any release of one instance (job) of an actor is called a firing. An actor can
be fired only when the required number of tokens are available on its input
ports. During its execution, an actor consumes the required tokens from the
input ports, and generates some tokens to its output ports. The number of
tokens which are produced (consumed) at each firing of an actor is called the
production (consumption) rate. Static data flows are classified according to the
variability of an actor behavior and its production/consumption rate in different
firings. In the following, three major classes, namely synchronous, homogeneous,
and cyclo-static data flows [2], are reviewed.

– Synchronous Data Flow (SDF): In an SDF, the execution time as well as the
production/consumption rate of each actor is fixed.

– Homogeneous Synchronous Data Flow (HSDF): An SDF is homogeneous if all
production/consumption rates are equal to one.

– Cyclo-Static Data Flow (CSDF): The cyclo-static data flow (CSDF) model
is a generalization of SDF, in which each actor a has a sequence of differ-
ent behaviors, affecting its execution time and the production/consumption
rates, which repeats cyclically [3]. Let na be the length of this sequence.
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Then, [fa(1), fa(2), . . . , fa(na)] represents the execution sequence of an actor
a ∈ V . This means that in its ith firing, the actor execution time is given by

fa (((i − 1) mod na) + 1) . (1)

Similarly, the production and consumption rates are specified by sequences of
length na. More specifically, for an actor a, and considering a specific buffer,

• [ga(1), ga(2), . . . , ga(na)] denotes the sequence of production rates;
• [ha(1), ha(2), . . . , ha(na)] denotes the sequence of consumption rates.

In the current work, our focus is on the CSDF model.

Example 1. Figure 1 shows the CSDF graph of an MP3 playback application
[10]. This application consists of four tasks, including MP3, Sample Rate Con-
verter (SRC), Audio Post-Processing (APP), and Digital to Analogue Converter
(DAC).

MP3 SRC APP DAC
[0 0 576 0 576]

480

441

1

1

1

Fig. 1. A CSDF graph for the MP3 playback application [10]. Production and con-
sumption rates are shown on the edges.

An implementation of a data flow graph is supposed to provide liveness and
boundedness properties. Intuitively, liveness means that each actor will be exe-
cuted infinitely many times. In contrast, boundedness necessitates the existence
of a bound on the maximum size of each buffer which is never exceeded by the
writing actors during the system execution.

3 Digraph Real-Time Task Model

In this section, we review the digraph real-time (DRT) task model [9]. This task
model will be used in the next section for modeling CSDF graphs.

A DRT task T is specified by a directed graph G(T ) = (V (T ), E(T )), where
V (T ) and E(T ) denote the graph vertices and edges, respectively. Each vertex
of the graph represents a job type. A vertex v ∈ V (T ) is labeled by a pair
〈e(v), d(v)〉, where e(v) and d(v) denote the worst-case execution time (WCET)
and relative deadline of the corresponding job, respectively. Further, each edge
(u, v) ∈ E(T ) is labeled with a positive number, p(u, v), denoting the inter-
release time between the two jobs u and v1.

Each path in the graph denotes a possible sequence of jobs which may be
generated by the respective task. If the outgoing degree of each vertex in a
1 In the original definition of DRT, an edge label determines the minimum inter-release

time. Nonetheless, the DRT schedulability analyses [9,11] are valid for the modified
version which we use here.
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v1

1, 3

v2

1, 2
5

4

(a) A DRT task with two job types

v3 v4

0, 3 2, 10

3
10

(b) A periodic task with an initial phase of
3 modeled as a DRT task

Fig. 2. Two sample DRT tasks.

task graph is restricted by one, that is, no branching is allowed, then the model
reduces to the Generalized Multiframe task model [12].

The focus of this paper is on the constrained deadline DRT tasks. Hence,
given a DRT task T , it is assumed that for each u ∈ V (T ), we have d(u) ≤ p(u, v)
for all (u, v) ∈ E(T ).

Example 2. A sample DRT task with two job types with inter-release times of
5 and 4 is shown in Fig. 2a. Further, Fig. 2b depicts a DRT task which models a
periodic task with an initial phase.

The inherent capability of the DRT model to represent non-fixed and non-
periodic behavior of a component makes it suitable for modeling CSDF graphs.
In the next section, we present our method for representing CSDF graphs using
set of DRT tasks.

4 Translation Method

In this section, we describe our translation method for transforming a given data
flow graph to a set of DRT tasks. The method maps each actor to a real-time
task. In the following, the details of the translation method and the criteria for
determining the real-time task set parameters are provided.

Consider two actors a and b in a given CSDF graph. In addition, let c be
a FIFO channel between them with an initial number of tokens of c̄ and a
maximum capacity of c̃. Let na be the size of the sequence which specifies the
cyclically variable behavior of the actor a (as defined in the previous section). We
associate a DRT task with na + 1 vertices, v0, . . . , vna

, to a. The starting vertex
denotes a job type with the WCET of zero, which is used to enforce a phase (an
initial phase before the release time of the first job) in the task. Additionally, for
each i, 0 ≤ i < na, an edge is added from vi to vi+1. Also, we consider an edge
from vna

to v1. This set of edges enforce the cyclically repeating pattern of the
given actor’s behavior. The WCET associated with each vertex vi, 0 < i ≤ na,
is set to be the WCET of the ith firing of the actor, which is specified by fa(i).

As described, the DRT task corresponding to an actor a contains na + 1
vertices and na + 1 edges. Edge (v0, v1), which represents the phase of the task,
is labeled by φa. Further, let the label of the other edges (vi, vi+1), 1 ≤ i < na,
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v0 v1 v2

v3

v4

v5

0, φMP3 fMP3 (1), d(v1)

fMP3 (2), d(v2)

fMP3 (3), d(v3)

fMP3 (4), d(v4)

fMP3 (5), d(v5)

φMP3 p1

p2

p3p4

p5

Fig. 3. DRT task for the actor MP3 of the CSDF graph presented in Fig. 1.

be denoted by pi
2 (also, the edge (vna

, v1) is labeled by pna
). The edge labels are

parameters which should be determined such that the liveness and boundedness
properties are achieved.

Example 3. Consider the data flow graph of the MP3 player application shown
in Fig. 1. According to the specified translation method, the first actor (MP3)
will be modeled as a DRT task with six vertices, as shown in Fig. 3. Given a
sequence of execution times [fMP3 (1), . . . , fMP3 (5)] for this actor, we can assign
the WCET of the job types of the DRT task as e(vi) = fMP3 (i), for 1 ≤ i ≤ 5.
Additionally, the other actors will be represented by a DRT task expressing a
periodic behavior, in a similar way as shown in Fig. 2b.

For a complete translation, we need to determine the timing parameters of
the DRT tasks. These parameters include the relative deadline of each job type,
and the edge labels which represent the inter-release time between the jobs.
The timing parameters should be assigned in such a way that the correctness
conditions of the implementation are satisfied.

We use the correctness criteria in terms of the Kahn semantics [13] for a
Kahn process network. As shown in [10], these criteria imply a live and bounded
behavior of the system specified by a data flow graph. For this purpose, it must be
guaranteed that the system never leads to a buffer overflow or buffer underflow.
An overflow happens when writing to a buffer exceeds its maximum capacity. In
turn, an underflow occurs whenever an actor tries to read from an empty buffer.
In the following, we formalize these correctness requirements. To this end, we
first need to determine the number of released and finished instances of each job
(actor) up to each time instant.

2 Please notice that, pi is an actor-specific parameter. However, for brevity reasons, it
is not explicitly indicated in the notation.



20 M. Mohaqeqi et al.

4.1 Number of Released/Finished Jobs

For an actor a, define Rela(v, t) and Fina(v, t) as follows:

Rela(v, t) ≡ the number of instances of job type v released up to and
including time t,

Fina(v, t) ≡ the number of instances of job type v finished up to and
including time t.

According to the translation model, the release and completion of a job cor-
responding to an actor firing are governed by the associated DRT tasks. As a
result, Rela(v, t) and Fina(v, t) depend on the timing parameters of the derived
DRT tasks. Here, we formally specify the relation between function Rela(v, t)
(also Fina(v, t)) and these parameters. First, it is noted that, for t < φ, we have
Rela(v, t) = 0 and Fina(v, t) = 0. Thus, in the following, we assume that t ≥ φ.

According to the defined notations, we can specify Rela(v, t) as

Rela(vi, t) = 1 +

⌊
t − φa − ∑i−1

j=1 pj

πa

⌋
. (2)

where πa =
∑na

j=1 pj is the super-period of the DRT task. In words, πa denotes
the amount of time that it takes for the DRT to have a complete cycle, through
which, each job (except the first job which represents the initial phase) is released
exactly once. Also, a lower bound for Fina(v, t) can be obtained by

Fina(vi, t) ≥ 1 +

⌊
t − φa − ∑i−1

j=1 pj − d(vi)
πa

⌋
. (3)

It is worth noting that the equality does not necessarily hold. This is because
that, depending on the scheduling approach, a job may be completed before
its deadline, leading to a possibly higher number of finished jobs up to time t
compared to the case in which the job finishes exactly at its deadline.

4.2 Underflow Analysis

Based on the semantics of a data flow graph, an actor may produce (consume)
the output (input) tokens at any time during its execution. As a result, for
the underflow analysis, we employ a pessimistic approach [10], in which, we
consider the minimum possible number of tokens that may be buffered at each
instant. Based on this approach, it is assumed that each actor writes to the
output buffer(s) as late as possible. In other words, the tokens are assumed to be
written to the buffer when the actor completes its execution. On the other hand,
we suppose that each actor reads from its input buffer(s) as soon as possible,
namely at its release instant.
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t

tokens

1×576

2×576

3×576

4×576

5×576 GU
a (t)

3π 5π 8π 10π 13π

GL
a (t)

Fig. 4. Upper and lower bound on the number of produced tokens for the MP3 actor.

Regarding the abovementioned pessimistic assumptions, a lower bound for
the total number of tokens written to the channel c by an actor a up to (and
including) time t can be calculated as

GL
a (t) =

na∑
i=1

ga(i) × Fina(vi, t). (4)

As an example, the dashed line in Fig. 4 depicts the function GL
a (t) for the MP3

actor of the CSDF graph specified in Example 1. In this example, it is assumed
that any two successive firings are identically separated by a time interval of
length π. Further, an implicit deadline has been considered (i.e. d(vi) = π).

In addition, an upper bound for the total number of tokens read from a
channel c by an other actor b up to and including time t is given by

HU
b (t) =

nb∑
i=1

hb(i) × Relb(vi, t). (5)

According to these relations, a sufficient condition for the underflow avoid-
ance of channel c is formulated by

∀t ≥ 0 : c̄ + GL
a (t) − HU

b (t) ≥ 0, (6)

where c̄ denotes the initial number of tokens of c.

4.3 Overflow Analysis

Based on an approach similar to the one presented for the underflow, we can
specify a sufficient condition for overflow avoidance. In this case, the pessimistic
assumptions are stated as follows:

– Each actor writes to the output buffer(s) as soon as possible (namely at its
release time);

– Each actor reads from its input buffer(s) as late as possible (namely at its
finish time).
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Consequently, the maximum number of tokens written to a buffer c by an actor
a up to time t can be specified as

GU
a (t) =

na∑
i=1

ga(i) × Rela(vi, t). (7)

Figure 4 partly shows the variation of GU
a (t) for the MP3 CSDF graph, under

the previously mentioned assumptions.
Additionally, the minimum number of tokens read from a buffer c by an actor

b up to time t is given by

HL
b (t) =

nb∑
i=1

hb(i) × Finb(vi, t). (8)

Regarding the defined notations, no overflow happens if the following condition
holds (recall that c̃ denotes the maximum buffer capacity)

∀t ≥ 0 : c̄ + GU
a (t) − HL

b (t) ≤ c̃. (9)

4.4 Design Space Exploration

Relations (6) and (9) provide sufficient conditions for the correctness of an imple-
mentation of a data flow graph. Then, the problem is to assign suitable values
to the DRT tasks parameters, namely their inter-release times, pi, and relative
deadlines, d(vi), such that, while the mentioned conditions are satisfied, some
design objective, e.g. the application throughput, is optimized. Furthermore,
from a schedulability point of view, these values must be selected such that the
obtained task set is schedulable, i.e., each job can complete its execution no later
than its deadline. This can be checked using efficient methods proposed in [9,11]
for static-priority and dynamic-priority schedulability analysis of DRT task sets.

Here, we discuss a simplifying technique for improving the efficiency of the
state-space exploration. First, it is observed that the correctness criteria derived
in the previous sections are independent of the worst-case execution time of
the actors. In other words, they deal only with the release times and completion
times. As a result, the problem of finding an appropriate value assignment to the
timing parameters can be first solved irrespective of the schedulability concerns.
Afterwards, we have to consider the schedulability of the system. If the system
with the derived value assignments is not schedulable, one can easily scale up
the timing parameters such that the obtained task set becomes schedulable.

It is worth noting that scaling up all the parameters by the same amount does
not affect the correctness of the system, i.e. the validity of (6) and (9). This is
because that, in this situation, the numerator and denominator of the respective
fractions in (2) and (3) are scaled with the same factor, and the value of the
fraction remains unchanged. It should be noted that a similar approach, called
abstraction-refinement, has been previously used for the periodic task model
[6] to overcome the complexity of the problem. In addition to this technique,
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another simplification can be made by a linear approximation, which is specified
in the following.

Linear Approximation: Based on Relations (2) and (3), it is observed that
the functions Rela(vi, t) and Fina(vi, t), respectively, can be over-approximated
and under-approximated by some linear functions. These approximations are
constructed on the basis of the inequality x < 1 + 	x
 ≤ 1 + x, which holds
for any real number x [14]. Using this, we specify an overapproximation for the
function Rela(vi, t) as

RelUApp
a (vi, t) = 1 +

t − φa − ∑i−1
j=1 pj

πa
. (10)

In fact, for any t ≥ 0, we have Rela(vi, t) ≤ RelUApp
a (vi, t). In addition, we can

obtain an under-approximation for the function Fina(vi, t) as

FinLApp
a (vi, t) =

t − φa − ∑i−1
j=1 pj − d(vi)
πa

. (11)

These approximate functions can be used in calculating GL
a (t), HU

b (t), GU
a (t),

and HL
b (t), defined in Eqs. (4), (5), (7), and (8). Then, we can rewrite the

underflow and overflow avoidance conditions, presented in (6) and (9), based on
these approximations. In the following, we elaborate the underflow condition;
the procedure for the overflow condition can be done in a similar manner.

Using the provided approximations, we can rewrite the underflow avoidance
condition as

∀t ≥ 0 : c̄ +
na∑
i=1

ga(i) × FinLApp
a (vi, t) −

nb∑
i=1

hb(i) × RelUApp
b (vi, t) ≥ 0.

Moreover, by replacing FinLApp
a (vi, t) and RelUApp

a (vi, t) from (11) and (10), we
will get

∀t ≥ 0 : (12)

c̄+
∑na

i=1 ga(i)
(

t−φa−∑i−1
j=1 pj−d(vi)

πa

)
− ∑nb

i=1 hb(i)
(

1 +
t−φb−∑i−1

j=1 pj

πb

)
≥ 0

From [10], it is known that, as a necessary condition for overflow and under-
flow avoidance, the average production rate for any buffer must be equal to its
average consumption rate, namely∑na

i=1 ga(i)
πa

=
∑nb

i=1 hb(i)
πb

. (13)

Based on this fact, we can simplify the inequality specified in (12) as

∀t ≥ 0 :

c̄+
na∑
i=1

ga(i)

(
−φa − ∑i−1

j=1 pj − d(vi)
πa

)
−

nb∑
i=1

hb(i)

(
1 +

−φb − ∑i−1
j=1 pj

πb

)
≥ 0.
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Also, from (13), we can write πb as a linear function of πa, that is, πb = γπa for
some constant γ. Hence, we have

∀t ≥ 0 :

c̄πa +

na∑

i=1

ga(i)

(
−φa −

i−1∑

j=1

pj − d(vi)

)
−

nb∑

i=1

hb(i)

(
πa +

−φb −∑i−1
j=1 pj

γ

)
≥ 0.

As seen, the obtained relation specifies a linear constraint on the problem
parameters, which significantly reduces the complexity of the problem.

5 Evaluation

In this section, we evaluate the effectiveness of the proposed approach compared to
a previously proposed method which employs a periodic task model for the analy-
sis of CSDF graphs [6,10]. We compare the two methods in terms of the through-
put [15] and the buffer size requirements [16]. The throughput of a dataflow graph
measures how often the application is executed in a unit of time. We assume the
preemptive EDF algorithm for scheduling the obtained real-time tasks.

For the evaluation purpose, we apply the mentioned methods to the MP3
playback application shown in Fig. 1. According to [10], the execution time of the
MP3 actor is specified as the sequence fMP3 (.) = [670, 2700, 720, 2700, 720]μs.
Further, the execution time of SRC, APP, and DAC are specified as 2500μs,
22μs, and 22μs, respectively.

The primary objective is to specify the timing parameters of the task set
so as to minimize the total required buffer sizes, while the correctness criteria
specified in (6) and (9) are respected and the task set is EDF-schedulable. As
well, it is desired to increase the application throughput. In the following, we first
present the obtained task sets for each approach. Then, the buffer requirement
and the throughput achieved by each method are reported and discussed.

5.1 Obtained Task Sets

In this section, we first specify the periodic task set obtained in [10] for the MP3
playback application. Next, the corresponding DRT task set is described.

Periodic Task Model: According to the approach utilized in [10], a periodic
task is considered for each actor. In order to have a safe analysis, one needs to
consider the maximum execution time of each actor as the WCET of the corre-
sponding periodic task. As a result, a WCET of max{670, 2700, 720, 2700, 720} =
2700μs is considered for the task associated to the MP3 actor. As the other
actors have a fixed execution time, WCET of the respective tasks are simply set
to those fixed values. The periods and phases assigned to the tasks according to
this method are shown in Table 1 [10]. This parameter assignment leads to the
system utilization of 99.96%, which reveals the schedulability of the task set.

DRT Task Model: As pointed out before, the MP3 application can be modeled
by four DRT tasks. When constructing the tasks, in order to decrease the number
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Table 1. Task set parameters obtained for the periodic tasks [10]

Period ( μs) Phase ( μs)

MP3 13219.416 0

SRC 27540.45 66647.889

APP 62.45 121760.014

DAC 62.45 121916.139

of design parameters, we assume that the relative deadline of each job type is
set to be equal to the inter-release time between that job and the next one.
As noted in Example 3, for the actors SRC, APP, and DAC we can use the
DRT task structure which models a periodic task with a specific phase. This
is because these actors have a periodically repeating behavior. On the other
hand, the MP3 actor is modeled by a DRT task with six different job types, as
shown in Fig. 3. It is worth noting that, here, as opposed to the periodic task
model, we can consider the actual pattern of the execution times for the MP3
actor, instead of using one conservative maximum value. The goal is to assign
the relative deadline of each job such that the problem objective is optimized.

Initially, we use the same values reported in Table 1 for the DRT tasks asso-
ciated to SRC, APP, and DAC. Additionally, for the DRT task related to MP3,
we assume that the inter-release times, in the average, are equal to the period
specified for the corresponding periodic task. As a result, the super-period of
this task is πMP3 = 5 × 13219.416. Now, we attempt to determine the concrete
value of the inter-release times for each pair of job types of this task. In order to
decrease the utilization of the task (and hence, increase the schedulability of the
task set), we assign the relative deadline of each job (or equivalently, the inter-
release time between that job and the next one) in proportion to its execution
time. Since in the DRT task, we can consider the actual pattern of execution
times instead of a fixed and pessimistic value (which is done in the periodic task
model), the total utilization is lower than that of the periodic task. As a result,
we can scale down the timing parameters, namely the phases and inter-release
times, so as to increase the application throughput, while the task set is still
schedulable. The results of this approach are shown in Table 2 and Fig. 5.

Table 2. Task set parameters for the DRT tasks ( μs)

Period Phase

SRC 25061.809 60649.578

APP 56.829 110801.612

DAC 56.829 110943.686
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v0 v1 v2

v3

v4

v5

0, 0 670, 5366.09

2700, 21624.57

720, 5766.552

2700, 21624.570

720, 5766.552

0 5366.09

21624.57

5766.55221624.570

5766.552

Fig. 5. Parameters for the DRT task which models the MP3 actor (μs).

5.2 Evaluation Results

The total buffer requirement and the throughput which is achieved by the two
approaches are reported in Table 3. As seen, the DRT-based method outper-
forms the other one in terms of both the buffer requirement and the application
throughput.

Table 3. Total buffer requirement and throughput for each method

Buffer requirement Throughput (s−1)

Periodic task set 2273 16013

DRT task set 2155 17596

Improvement 5% 9.8%

As a conclusion, it is seen that the DRT-based approach provides a higher
degree of flexibility in the design of data flow graphs which can lead to better
solutions. Of course, this advantage is achieved at the cost of treating more
parameters, which means a larger state-space which must be explored.

6 Related Work

Synchronous Data Flow (SDF) [1] and Cyclo-Static Data Flow (CSDF) [2] are
two very basic data flow models. In the past, several variants of these models
have been proposed to provide more expressiveness and flexibility in the design
of streaming applications. For instance, the parametric extensions of the SDF
have been developed [17–19] which allow the data flow graph properties, such as
the production and consumption rates, to be changed at runtime. In particular,
Boolean Parametric Data Flow (BPDF) [18] is a parametric model in which the
graph topology can be changed as well as the production and consumption rates
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of the actors. In this model, an edge can be labeled with a boolean expression
which is modified by some actor. At runtime, according to the actual value of the
boolean expression, an edge may be enabled or disabled, determining whether
the edge should be considered in the firing of the actors at that moment. An
assumption made in the related stuies, such as [18–20], is that each actor runs in
a dedicated core. Hence, when analyzing the data flow graph, one does not need
to take into account the interference of the actors (caused by resource contention)
on each other. While this approach provides a high degree of predictability for a
single data flow, it is not easily extendible to incorporate the impact of multiple
data flows on each other when they are running on the same processing platform
with possible resource contention.

Meanwhile, due to the increasing use of real-time operating systems in complex
embedded systems which work in dynamic environments, using dynamic schedul-
ing policies, such as rate-monotonic and earliest-deadline first (EDF), for SDFs
has been considered recent studies. The advantage of this approach is that the
already existing analyses for different scheduling algorithms can be used in this
context. This provides the possibility of running multiple applications on the same
processing resource, while the interfering effects is considered. One approach to
utilize this facility is to use a set of independent real-time tasks to reflect the tim-
ing behavior of data flow graphs. One of the basic studies which use periodic real-
time task model for data flow graphs is presented by Bmakhra and Stefanov [3].
They explore that how the execution of actors can be parallelized to achieve a
maximum throughput. In the same realm, Ali et al. [8] consider the problem of
assigning parameters of periodic tasks modeling an HSDF. They suppose a given
set of applications each one modeled as an HSDF graph. Each application exhibits
two kinds of requirements: a minimum throughput, which is the minimum output
data rate (or iteration rate of the whole graph); and one or multiple latency con-
straints put on a number of pairs of actors. A latency constraint is a timing con-
straint between firing of two actors located on a path. While they consider more
constraints compared to the model considered in this paper, their work is specific
to HSDF, which is less expressive compared to the CSDF.

Moreover, Bouakaz et al. considered a more general category of data flow
graphs. They extended the CSDF model by introducing ultimately periodic
CSDF [10] in which the system behavior becomes repetitive after a finite inter-
val, but it is not needed to be periodic from the beginning. They define the affine
firing relation which specifies the condition under which a data flow implemen-
tation can satisfy the correctness criteria. They investigate the correctness of
the implementation based on the periodic task model. In their work, the cor-
rectness conditions of an implementation, including boundedness, completeness,
and soundness, are obtained based on the Kahn process network semantics [13].

The work presented in [6] can be regarded as one of the most related work
to the current study. They consider a CSDF model with a set of buffer size con-
straints. The goal is to construct a set of periodic tasks reflecting the execution
of the given SDFs. The main difference of that work compared to our approach
is that we use a more expressive real-time task model, which suggests more flex-
ibility, and thus, a higher degree of schedulability. This, in turn, allows to look
for more efficient solutions.
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7 Conclusion

In this paper, we proposed a formal translation method for converting a given
set of data flow graphs to a graph-based real-time task model. We focused on
cyclo-static data flow graphs in which an actor behavior, including its worst-case
execution time, consumption rate, and production rate, is not necessarily fixed
in different firings. We presented sufficient conditions for a correct translation
in terms of liveness and boundedness of data flow graphs. The proposed method
provides the opportunity of exploring a larger state-space for finding optimal
or near optimal solutions for the design of corresponding applications. Based on
the translated task model, one can easily perform analyses such as schedulability
tests, while taking into account the interfering of the applications running on
the same processing core.

The proposed approach can be extended by employing efficient optimization
methods for finding task set parameters such that, while the design constraints
are met, design objectives like the total buffer size or the application throughput
are optimized. In addition, when the DRT tasks exhibit a restricted structure in
which only a single cycle is contained, they can be modeled as a set of General-
ized Multiframe (GMF) Tasks [12]. In this case, one may employ more efficient
analysis methods specific to this task model for schedulability test of the trans-
lated tasks.
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Abstract. Embedded systems commonly use state to synchronize con-
current programs. This state-based synchronization avoids serious errors
like data races and can supersede other means of synchronization like
locks and global disabling of interrupts. However, it makes reasoning dif-
ficult and static analysis tools struggle to comprehend it. In this paper
we explain how we model C programs conservatively using static analysis
and then use CSP refinement checkers to analyse synchronization. This
paper demonstrates how this process aids program understanding and
leads to the dismissal of data race warnings in industrial systems. We
examine real-world synchronisation schemes and explain how and why
they work.

Keywords: Data race · Race condition · Static analysis · Embedded
systems · CSP · Refinement checker · Software verification

1 Introduction

Data races form a major class of errors in concurrent programs. A program is
said to contain a data race if two concurrently running threads access the same
variable (or piece of memory), one of the accesses is a write, and there is no
synchronization that guarantees the accesses are not simultaneous. This is a
common definition of a data race [5,10,12].

In most languages, programs that contain data races have undefined behav-
iour. It is therefore of utmost importance for safety-critical embedded systems
to be free of data races.

Even thorough testing can miss data races because the erroneous behaviour
may occur only sporadically under rare timing conditions. Data races can, how-
ever, cause errors that lead to catastrophic failures of software components or
expensive recalls.

The development of tools that can help find data races and thereby mitigate
their risks is thus a long-standing research problem. Vaziri et al. [12] (also Raza
et al. [9] and others) have proposed using static analysis to find data races.
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The data race problem is generally undecidable. So analysis tools must choose
between being optimistic (missing some actual races) or conservative (producing
some false positive warnings).

Savage et al. [10] have built an optimistic tool. The Bauhaus data race detec-
tion tool developed by our research group errs on the conservative side. We
believe conservative tools are more appropriate in the realm of safety-critical
systems because of their ability to prove the absence of such synchronization
errors.

Attemps have been made to help software engineers cope with the sometimes
vast numbers of false positive warnings conservative tools suffer from. Keul [6]
was able to reduce their number. Degiorgi and Wittiger [1] prioritize warnings
based on heuristics and Koutsopoulos et al. [7] visualize data race situations.

Concurrent systems employ different types of synchronization when access-
ing shared resources. Commercial desktop software mostly relies on mutexes and
monitors while embedded systems avoid these two patterns. Almost all embed-
ded systems we have encountered use global disabling of interrupts to achieve
synchronization of concurrent tasks. Additionally, state-based synchronization is
used. It is often hand-crafted to fit a specific system and typically relies heavily
on scheduling properties such as task priorities.

When using state-based synchronization concurrent tasks verify the system is
in a specific state before they access shared resources. This works well, when the
task’s predicates on state are mutually exclusive and state cannot change spon-
taneously. State-based synchronization is commonly implemented in the form of
explicit state machines.

Static analysis tools can handle disable interrupt patterns easily and efficiently.
State-based synchronization, on the other hand, is generally more difficult.

Keul [6] performs an analysis step called a simple path exclusion that recog-
nizes state machines used for synchronization. Schwarz et al. [11] use the term
flag-based synchronization to denote essentially the same idea. Both approaches
only recognize state machines that follow simple, syntactic patterns. They have
very strong requirements on variables storing state. Both models forbid the
assignment of non-constant values to state variables and they either exclude
variables that have their address taken altogether or capitulate when they are
assigned through dereferencing a pointer.

Building upon previously described ideas [13], we substantially reduced the
requirements on state variables. This enables us to find, not only simple and obvi-
ously correct synchronization patterns, but also complex and unintuitive ones.

For the approach presented in this paper we automatically extract a conser-
vative model of the actual system from the source code through static analysis.

CSP (Communicating Sequential Processes) is a mathematical language to
formally describe the behaviour of concurrent communicating processes. It was
developed by Hoare [4]. We translate the model into CSPM (machine-readable
CSP), which is understood by CSP refinement checkers. Finally, we use those
refinement checkers to test whether specific data race situations are reachable in
the model—and if they are not, eliminate them from the list of warnings.
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In doing this, we accept an increase in the computational complexity to
reduce the number of false positive warnings whilst maintaining practicality for
industry-sized systems. We were able to recognize a previously undetected, state-
machine-like pattern in a real-world industrial embedded system and use it to
dismiss data race warnings.

2 Integration of CSP into the Data Race Detector

Bauhaus is a collection of static analysis tools. The tools are written in Ada and
analyse C, C++ and Java. This collection includes the data race detector we
build upon. It parses C code to obtain an AST. It then performs static analysis
to turn the AST into a concurrency-aware intermediate representation. Among
the analyses performed are pointer analysis and control flow analysis. The latter
relies on an extra input specifying tasks, start routines and scheduling-related
information. Care is taken to use a pointer analysis that is correct in a concurrent
setup and conservative—like all our methods.

Further analyses augment the intermediate representation. Escape analysis,
for example, categorizes variables according to their reach as local, thread-local,
or communicative1 and helps to increase the precision of pointer analysis. Lockset
analysis deals not only with mutexes (should they be used) but also with global
disabling/enabling of interrupts.

2.1 Constant Propagation and Constant Folding

Data race analysis can function without information about integer values. Our
new approach, however, depends upon integer constants as they form the basis of
our model. To handle them efficiently we have implemented a combined constant
propagation and constant folding analysis.

Aside from literals, the only true constants in C are macros that, when
expanded, become literals. In Fig. 1, C is an example of this. The preproces-
sor of our C frontend expands these macro constants allowing us to treat them
like literals.

Some systems we have encountered extensively use const to declare de facto
constants (like D and E in Fig. 1). When a variable is declared const, but not
volatile and is immediately initialized to a constant expression, we consider
it—somewhat optimistically—a constant and propagate its value to its uses.

The third type of constant we recognize are enums. Our propagation algo-
rithm treats them like other constants.

We found that many constant expressions exist in embedded systems, pre-
sumably due to configuration. Simple constant folding has therefore increased
the number of expression resolved to constant values considerably: in one exam-
ined system by approximately 88 %.

1 Actually, the analysis provides finer results with several grades in between those
mentioned. We refer the reader to Keul [6] for more details.
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Fig. 1. A section of C code declaring a true constant, de facto constants and an enum.
Our constant propagation considers C–H constants with values 1–6, but not R–T.

Our analysis is context and flow-insensitive. We could add a copy propagation
analysis with limited context sensitivity and flow sensitivity. While this would
increase precision at moderate cost, we are content with our current analysis
because it has worked well in our experiments.

2.2 Model Extraction

Our intermediate representation is a threaded call/control flow graph. This graph
is disconnected because thread-sensitivity ensures control flow does not switch
between threads. If a specific method is called in multiple threads, multiple
copies show up in the intermediate representation. We avoid actual duplication
in memory by using lean adaptors for the actual representation of program code.

Some methods are marked as entry points of tasks. One of those tasks is the
main task, which does global initialization and calls the main method.

To create a model of our system, we first choose state variables. These state
variables must satisfy the properties of atomicity and consistency.

The effects of an assignment to an atomic variable become visible in one
indivisible step. No intermediate or partial assignments may ever be observable.

In C, atomicity can be achieved by declaring variables atomic. The compiler
guarantees that reading and writing such a variable happens in a single CPU
instruction. Just ensuring variables have memory bus size (typically int) is
not quite enough. One can, however, achieve atomicity by additionally avoiding
awkward alignment and disabling certain compiler optimizations.

A variable behaves consistently if a newly assigned value is visible by all
future reads until another assignment occurs (sequential consistency). C program-
mers often declare variables volatile to achieve consistency. This is—strictly
speaking—not covered by the C99 standard. In practice, however, compilers pro-
vide stronger promises than required by the C standard. System engineers from
the embedded systems domain have assured us that with the compiler settings
used for the systems examined, assignments to volatile variables will become vis-
ible to other tasks immediately and in a sequentially consistent manner.

When all the conditions listed above are met, we consider variables declared
as volatile int to be suitable state variables for synchronization.

State variables are subject to race warnings themselves. Because system
developers consider concurrent assignments to volatile ints to be safe, they do
not typically surround them with protection and our general race detector will
flag those accesses unless they are coincidentally protected by some mechanism.
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Some heuristics should be applied when choosing state variables:

– Any state variable must be compared to a constant in a path predicate at least
once. While variables can in principle help synchronization without appearing
in path predicates, it is impossible in our conservative approximation for them
to help us eliminate a warning.

– A variable that is never assigned a constant is probably of no use.
– A state variable should have an escape status greater than thread-local. We

restrict ourselves to such variables because only communication variables con-
tribute to synchronization directly.

Our tool lists variables that match those properties and fulfil the requirements
for state variables. For typical real-world systems this list is too long. Therfore,
we rely currently on a manual selection of one or more variables from that list.

Once a set of state variables is chosen, we project our intermediate represen-
tation on those variables. We retain the call graph and the control flow within
methods but replace the statements in basic blocks and the flow predicates.

All expressions are examined for side effects such as function calls and assign-
ments. If constant folding has not reduced them to a constant, they are consid-
ered to be of indeterminable value (written as IND). We assume a left-to-right
evaluation order (see Fig. 2).

Fig. 2. This example shows how we model side effects. The left-hand side C fragment
is modelled like the right-hand side shows. Variables are assigned constants or IND only.

Assignment statements are conservatively approximated. It follows from the
approximation of expressions that the assigned value is either a known constant
or indeterminable. In general, targets are not known with certainty and have
to be approximated as well. Imprecision occurs, for instance, when assigning
to dereferences of pointers (like *p = 7) or indexed arrays (like a[x] = 9). We
distinguish three different cases for the targets of the assignment:

1. If it can be shown the assignment may not influence any state variable, it is
simply omitted.

2. If the assignment targets a state variable (or even multiple ones) but may
also write to other variables, we emit a weak update on the state variable.
A weak update is an assignment that may change the value or leave its pre-
vious value in place.

3. If the assignment targets exactly one state variable, we emit a strong update.
This is an assignment that will change the variable’s value.



Eliminating Data Race Warnings Using CSP 35

Note that a weak update with indeterminable value has the same effect as a
strong update with indeterminable value: Both leave the variable in its least
defined state. Strong updates are cheaper than weak updates. In Fig. 3, line 1,
we could thus place a strong update to get better output.

Further improvement is possible: Placing two consecutive weak updates in
line 2 is overly conservative. In this situation we ensure that either a or b is
indeed assigned. We thus allow neither skipping both assignments nor assigning
both variables.

Care has to be taken to ensure variables do not overlap. Casting an int
variable to an array of char, for instance, and then assigning to the first index is
different from assigning to the original variable. Similar issues arise with union
types and structs (records).

Fig. 3. This table shows how assignments to dereferenced pointers are treated. Here,
a and b are state variables, x and y are not. The middle column shows the points-to
set of p.

Similar principles govern the translation of path predicates. In our interme-
diate representation, basic blocks either have an unconditional successor or they
have a predicate, a then and an else successor. Unconditional successors stay as
they are. We conservatively approximate conditions by leaving boolean opera-
tions intact and focussing on the atoms of those operations. These are either
comparisons of state variables with constants, boolean constants (both of which
can easily be modelled), or considered indeterminable (again written as IND). We
thus allow partially determinable conditions. This, in essence, leads to separate
conditions for then and else branches that may overlap. Figure 4 shows examples
of how this works.

2.3 CSPM Generation

We write the extracted model to a text file, which is used for debug purposes and
the generation of CSPM output. It enables an (almost) line-for-line translation
into CSPM.

The world of CSP, put very briefly, consists of processes and signals.
Processes send signals to their environment and follow a non-deterministic finite
automaton-like specification where they move from state to state by emitting sig-
nals. In the CSPM-definition “P = a -> Q |~| b -> R” P is a process that
can send signal a to become process Q and send signal b to become process R.
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Fig. 4. This table shows predicates being translated into the model and the implied
conditions for the then and else branch. Again, a and b are state variables, x is not. If
a condition for a branch is true, it does not mean the branch will be taken. It simply
means that it can be taken.

Processes are also allowed to change states quietly with so-called τ -transitions
(Fig. 5, line 4) or successfully terminate (Fig. 5, line 6).

They can undergo sequential composition—meaning a second process springs
into life as soon as the first process terminates successfully—and be synced—
meaning they act in parallel but have to agree on some or all the signals they
send.

Fig. 5. Comparison of a C procedure and the CSPM output (interrupts omitted). In
this Example a is a state variable and the condition of the if statement is considered
indeterminable in the model. As required in CSPM signals have lower-case and processes
upper-case identifiers.

With these instruments we build processes that realize the behaviour of our
model. These processes send signals setting variables to values and checking
whether variables are at certain values.

Each variable is also translated to a process. These variable processes are
then synced with the other processes. This ensures that variable-related signals
occur only in semantically reasonable order.

In Fig. 5 we explore how a small C procedure is translated into CSPM. Later
we will see how refinement checkers process this output. Yields to preemp-
tions are omitted in this figure. After each operation on a state variable visi-
ble to the environment, the process offers to yield to a preemption. A separate
logic ensures only preemptions allowed by the scheduling actually take place.
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This means tasks can only be preempted to run tasks with a higher priority
whenever we use priority-based scheduling.

Lastly, we mark the position of accesses causing data race warnings and emit
the question whether the data race situation is reachable. For this question a
denotational CSP model must be chosen. We have chosen the traces model,
which is typically used for safety concerns (showing nothing bad happens) and
is the simplest and cheapest model. Other models available include stable fail-
ures typically used to show freedom from deadlock (something will always hap-
pen) and failures-divergences used to treat liveness concerns (showing eventually
progress will be made). We create a separate file for each data race warning under
consideration.

2.4 CSP Refinement Checker

There are several refinement checkers available for CSPM. FDR2 [2], developed
at the University of Oxford, has been used by many projects. Recently, a new
version was released called FDR3 [3]. The University of Düsseldorf has presented
a tool called ProB [8]. It works with CSPM as well as B and LTL models and
can even mix specifications written in different languages.

During the work on this project we have used all three refinement checkers.
We found ProB to be suitable for smaller specifications but preferred FDR2 for
larger systems. The creators of FDR3 plan to make use of parallel computations
and we deem it likely that FDR3 will become an interesting option in the future.

The way FDR3 (and FDR2) tackle CSPM is quite instructive. They evaluate
CSPM expressions into generalised labelled transition systems (GLTS) resem-
bling non-deterministic finite automata.

Figure 6(a) shows the GLTS derived from the output shown in Fig. 5. While
semantically correct, this transition system is unnecessarily large. FDR3 can
apply compression functions that reduce or even minimise the size of transition
systems. Normalization is a strong compression function yielding transition sys-
tems free of τ -transitions. Figure 6(b) shows its result, which inescapably allows
for exactly the same traces as the original.

Some of the traces of P are incongruous with variable semantics. The system
in Fig. 6(b) clearly allows a isnot 1 to immediately follow a to 1 and a isnot 1
to follow a is 1 without an assignment in between. To force the adherence to
variable semantics we sync P with the process A. The result (in normalised form)
is shown in Fig. 6(c).

2.5 CSP Preprocessing

The generated output can be fed directly into the refinement checkers—and this
is what we do for small examples. For larger systems two different issues arise.

FDR2’s as well as FDR3’s manuals forbid empty μ-statements (a set of mutu-
ally recursive processes that cannot perform any visible signals). While they are
usually unproblematic, their presence sometimes causes irregular behaviour of
the refinement checkers.
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Fig. 6. GLTS produced by FDR3 for the CSPM-code from Fig. 5. The unlabelled dashed
edges are silent τ -transitions; the black nodes can successfully terminate. From left to
right: The system generated from P. The compressed, minimally sized system for P.
The compressed system resulting from syncing P with A.

Our automatically generated CSPM code is rather verbose. It significantly
differs from handwritten code. All refinement checkers we have used have trouble
parsing it—in part just because of its sheer size.

Preprocessing the CSPM output solves both problems for us. This preprocess-
ing is done by parsing the original file and then applying sound transformations
to enhance the suitability for the refinement checkers. This includes elimina-
tion of unused/unreachable definitions, shortening of identifiers, and algebraic
transformations. This shrinks the CSPM-code to about 2 % of its original size.

3 Illustrative Examples

We will now explore how our implementation behaves in practice. Our first
example is shown in Fig. 7. It features a system with two tasks and three global
variables. Our data race detector prints warnings for both x and y. The variable
state fulfils the requirements for state variables: So, can our new implementation
rule out those warnings?

First, let us consider x. It seems as if the low-priority task (task low) will
only access x when the system is in STARTUP state, whereas the high-priority
task (task high) will only access x when the system is in any other state.

To our surprise, the refinement checker refuses to rule out this warning,
and this trace shows why: Just after task low has set state to STARTUP,
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Fig. 7. A small example system with data race warnings on x and y.

it is interrupted by task high. y is incremented, and then the indeterminable
condition from the last if statement is assumed to be true, and state is thus set
to SHUTDOWN. When the low-priority task resumes its work and initializes x to
1, the system is no longer in STARTUP state and a second interruption by the
high-priority task leads to the data race situation.

Now we consider y. A first examination shows that the low-priority task
accesses y only when the system is not in RUN state. The high-priority task
accesses y only when the system is not in SHUTDOWN state. These two conditions
can both be satisfied by putting the system in STARTUP state2.

This, however, cannot happen since no such definition reaches the code posi-
tion in question. FDR2 agrees with our finding and does indeed eliminate the
warning.

Fig. 8. The normalized GLTS. For this figure, we have restored the enum values, which
are normally replaced by their implementation values.

2 The variable state could also have an ill-defined value, like the one it has before
initialization. Our approach is aware of such other values.
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To further our inspection of this example, we will look at transition systems.
FDR2 effortlessly plots the whole transition system of this example but the
result is too large to be informative. CSPM allows the hiding of signals. This
turns a normal, externally visible signal into an internal τ -transition. To obtain
the graph shown in Fig. 8 we have hidden all signals of the system process except
those modifying the variable state.

When examining the graph, we notice a few things. We see immediately that
the system state can go from STARTUP to SHUTDOWN state and then back to RUN
state—which is likely unwanted behaviour. In fact, the state variable itself is
subject to a possible race condition that breaks the abstraction. We can also
notice how normalisation blurs the lines between tasks. Lastly, we can spot that
the system never terminates successfully. This is, of course, expected since the
low-priority task enters an infinite loop and accordingly never terminates.

We observe how, even though the state-based synchronization pattern is bro-
ken, it can still be used to dismiss data race warnings on the variable y. Also,
if this were a real system, one ought not to jump to the conclusion that it is
broken. Maybe the indeterminable condition in the high-priority task can only
be satisfied after the system has switched to RUN state. If this is the case, there
is no data race and there are no suspicious changes of state.

Fig. 9. Pattern observed in an industrial embedded system.
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We will now look at a pattern observed in an actual industrial embedded
system where our approach eliminates data race warnings (Fig. 9). We have
changed identifier names and cut irrelevant portions of the original source code.

The system reads a message byte-by-byte that was previously received, pre-
sumably from a hardware bus. Two tasks call the method read and it accesses
global variables, here represented by a single variable x, without disabling inter-
rupts first. Our data race detector therefore prints warnings for the variable x.

There is also a state variable involved: A high-priority task does most of the
reading while state is 1, and a low-priority task finishes the job after state
is set to 2. The variable state can also be set to 0, which seems to cancel the
current operation.

Using our implementation and FDR2 we have shown that the warning about
a data race on x can be eliminated. We argue as follows: task high will only
call read if state is 1 when it starts to execute. task low on the other hand
will call read only after observing that state has the value 2. There are several
statements changing the state. There is even one that assigns 1. But despite all
that, there is no trace allowing for a sudden switch of state to 1.

Figure 10 confirms this reasoning. The transition system shows how the data
race position (marked DRW) is only reached when the state is 1 and that the
task method only terminates after having verified that state is not 1.

Fig. 10. The GLTS resulting from normalizing task high.
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When we examined the actual system we had to overcome two complications;
there is a task of very high priority, which cancels the operation occasionally by
setting state to 0. This sudden change of state is no cause for concern, at least
not for the data race warning in question.

There are two more tasks with high priority, which seem to predicate some
of their work on state being not 1 or state being not 2. Both tasks read state
multiple times but do not write to it. This caused us problems: The complexity
those reading accesses added to the system caused FDR2 to run for a long time
without producing an answer. To solve this, we used FDR2 to verify the absence
of writing accesses in a separate step and then removed those tasks from the
CSPM-file. Only then did FDR2 complete its run. The only manual steps required
in the analysis of the system were this seperate removal and the choosing of state
variables from a list of candidates. All other steps are automated.

The synchronization system we have discovered is convoluted. A tool looking
for specific patterns would not take it into account. We do not know whether
it was designed to be state-based synchronization. We only found it works for
the variable x. In fact, at the source point where read accesses x, the original
system touches several variables. We thus had a number of virtually identical
CSPM-files that all led to the exclusion of a data race warning.

4 Conclusion and Future Work

We have successfully implemented a tool that uses static analysis to extract a
conservative model of state-based synchronization from industry-sized embedded
systems. We demonstrated how, by translating this model into CSPM, we can
use refinement checkers to abstractly interpret the original system. Our descrip-
tion shows how this can provide a rigorous understanding of concurrent actions
in a complex system and recognize not only simple but also complicated and
obfuscated state based synchronization.

It is very difficult to reason correctly about concurrent systems. Our tool
helps understand what may happen. The capability to provide traces that work
as counter-examples for schemes that are broken adds to this understanding. Our
work takes us further beyond obstacles such as indirect assignments, variable
values, or even partial deviation from the state machine pattern.

Our approach scales to the size of real systems and we have been able to
eliminate actual warnings.

There are two measures that may help to overcome manual selection of vari-
ables. Improving CSPM generation could reduce the state space the refinement
checkers have to cope with and enable them to either run faster or allow for
more variables to be used in each file.

Changing and improving heuristics would allow us to focus on the most
important state variables.

We plan to address both issues in the future. Our vision is to build a system
that automatically screens all data race warnings and eliminates some of them,
thereby reducing the number of false positive warnings.
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Abstract. This paper presents a streaming data framework for the
Real-Time Specification for Java, with the goal of levering as much
as possible the Java 8 Stream processing framework whilst delivering
bounded latency. Our approach is to buffer the incoming streaming data
into micro batches which are then converted to collections for processing
by the Java 8 infrastructure which is configured with a real-time ForkJoin
thread pool. Deferrable servers are used to limit the impact of stream
processing activity on hard real-time activities.

1 Introduction

A stream processing system consists of a collection of modules that compute
in parallel and communicate via channels [16]. Modules can be either source
capturing (that pass data from a source into the system), filters (that perform
atomic operations on the data) and sinks (that either consume the data or pass
it out of the system). Real-time stream processing systems are stream processing
systems that have time constraints associated with the processing of data as it
flows through the system from its source to its sink. Typically, the sources of
streaming data may originate from an embedded system (for example, the Large
Hadron Collider can output a raw data stream of approximately 1PB/s [17]) or
from a variety of internet locations (e.g., Twitter’s global stream of Tweet data).
In the context of this work, we assume stream processing is computationally
intensive and is a soft real-time activity. Hence, we are interested in the latency
of processing each element in the stream and bounding the impact that stream
processing has on other hard real-time activities that might be sharing the same
computing platform.

The most recent version of Java (Java 8) has introduced Streams and lambda
expressions to support the efficient processing of in-memory stream sources (e.g.,
a Java Collection) in parallel, with functional-style code. One of the primary
goals is “to accelerate operations upon large amounts of data by dividing the
task between multiple threads (processors)” [5]. The parallel implementation
builds upon the java.util.concurrent ForkJoin framework introduced in Java
7. The Java 8 Stream processing infrastructure is based on three assumptions:
its data source has been populated into memory before processing, the size of
data source will not change, and the goal is to process the data as fast as possible
using all of the available processors. Hence it is targeted at batched streams.
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Previously we have evaluated the efficacy of Java 8 Streams as a framework
for processing real-time batched streams and have found it inadequate [14] even
when used in conjunction with the Real-Time Specification for Java (RTSJ).
The essence of the problem is that using the ForkJoin framework introduces
priority inversions, as it is not possible to construct the worker threads as real-
time threads. (By definition, all standard Java threads have a lower priority
than all real-time Java threads.) We have suggested changes to JSR 2821 to
circumvent this problem, which have now been adopted. We have also presented
a real-time stream processing framework for batched data, which includes a real-
time ForkJoin pool [14]. In this paper, we consider how real-time streaming data
sources can be handled, and propose an extended framework. We assume the
presence of a multicore platform hosting version 2.0 of the RTSJ. Our goal is to,
where possible, use the proposed Java 8 Streams and evaluate their adequacy
for a real-time environment.

The paper is structured as follows. Section 2 introduces Java 8 Streams.
Related work is considered in Sect. 3. In Sect. 4, our overall approach is discussed.
This is followed in Sect. 5 by a description of our implementation. Section 6 then
evaluates our approach by comparing its performance against the regular Java
concurrency framework. Finally we present our conclusions.

2 Java 8 Streams

Streams and Lambda expressions are the most notable features that have been
added in Java SE 8. The Stream API and lambda expressions are designed
to facilitate simple and efficient processing of data sources (such as from Java
collections) in a way which can be easily pipelined and parallelised.

A lambda expression is an anonymous method, which consists of arguments
and corresponding processing statements for these arguments. For example,
(a,b)->a+b defines a Lambda expression that sums two arguments. Lambda
expressions make code more concise, and extend Java with functional program-
ming languages concepts. Internally, a lambda expression will be compiled into a
functional interface by the Java compiler. Functional interfaces were introduced
by Java 8, and are interfaces which contain only one method, which cannot have
a default implementation.

A sequence of operations with a data source forms a pipeline. Streams make
use of lambda expressions to enable passing different methods into each oper-
ation in the pipeline if required. A pipeline consists of a source, zero or more
intermediate operations, and a terminal operation. An intermediate operation
always returns a new stream, rather than perform methods on the data source.
One example of intermediate operations is map, which maps each data elements
in the stream into a new element in the new stream. A terminal operation forces
the evaluation of the pipeline, consumes the stream, and returns a result. Thus,
streams are lazily evaluated. An example of terminal operations is reduce, which
1 The JCP Expert Group are due to release a new version of the RTSJ (Version 2.0)

in early 2016. This version will be compatible with Java 8.
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performs a reduction on the data elements using an accumulation function.
A simple word count example can be described by the following code using
the Stream API and Lambda Expressions:

Collection<String> dataToProcess = WordsToCount;

Map<Object, Long> result = dataToProcess.parallelStream()

.flatMap(line->Stream.of(Pattern.compile("\\s+").split(line)))

.collect(Collectors.groupingBy(

w -> w,TreeMap::new,Collectors.counting()));

One of the main advantages of streams is that they can be either sequentially
evaluated, or evaluated in parallel. Sequential evaluation is carried out by per-
forming all the operations in the pipeline on each data element sequentially by
the thread which invoked the terminal operation of the stream. When a stream
is evaluated in parallel, it uses a special kind of iterator called a Spliterator to
partition the processing, and all the created parts will be evaluated in paral-
lel with the help of a ForkJoin thread pool. Efficiency is achieved by the work
stealing algorithm that is used by the ForkJoin pool.

3 Related Work

The StreamIt [7] language is specifically designed for processing data streams on
platforms ranging from embedded systems to large scale and high performance
system. StreamIt defines several data flow abstractions for stream processing,
such as filter (similar to the filter() method in Java 8 Streams), and a
Java-like high-level API to access these abstractions. StreamIt uses the synchro-
nous data-flow model and allows thus very aggressive compiler optimisations.
Borealis [8] focuses on distributed stream processing, and defines a set of stream
operations, e.g., map, join etc., written in the Java API. Neither StreamIt nor
Borealis provide real-time support.

Storm [3], Heron [11], and Samza [2] are distributed stream processing
frameworks. Computation graphs (typically directed acyclic graphs) can be
constructed to represents the stream processing logic, where edges represent
data flow and vertexes represent computation. A data push model is employed
for stream dispatching. Spark Streaming [6] is a distributed stream processing
library that is built on top of Spark [1]. Spark Streaming periodically groups
the received data in streams into a micro batch, and processes it with the Spark
engine. However, none of the above are integrated into a real-time environment.

Inspired by StreamIt and the RTSJ, StreamFlex [15] is a stream process-
ing framework which provides bounded latency. StreamFlex provides a set of
classes, such as filters, which are used to construct computation graphs for
stream processing. The processing latency is bounded by changing the virtual
machine to support real-time periodic execution of threads, computational activ-
ities isolation, and a memory model that avoids the use of garbage collectors.
However as a result, StreamFlex is a very different programming model to more
standard languages and is not compatible with Java 8 Streams. Also it does not
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support priority assignment to limit the impact of soft real-time streaming work
on hard real-time activities.

AdaStreams [10] is a stream processing library with a run-time system that
targets at multiprocessor platforms. Filter that is similar to the one in StreamIt,
Splitter and Joiner are created as stream processing abstracts, and a process-
ing graph can be constructed by connecting them together. However, it does not
support real-time constraints.

Mattheis [13] proposed a framework that uses work-stealing algorithms in
parallel stream processing in soft real-time systems. This work investigated the
variance of latency when using work stealing algorithms with different strategies.
It determined that latency is reduced by using FIFO ordering when stealing from
the global queue, and when using LIFO ordering for stealing from the local queue.
This is the approach adopted by Java 8, which we use unchanged.

Extending Storm to provide real-time support is proposed in [9], which
defines a real-time processing stack including a real-time OS, a real-time
JavaVM, and real-time versions of Storm’s classes. Two core concepts in Storm:
the Spout (source of streams) and the Bolt (computation logic in the data flow
graph) are extended to be sporadic activities, so that these activities can be
configured with minimum interval times, computation times, and priorities. In
addition, a fixed-priority scheduler is provided. A drawback of Storm is that it
uses an eager computation model which does not provide all of the optimisation
opportunities of the lazy model of Java 8.

4 A RTSJ-Based Real-Time Stream Processing
Framework

The overall goal of the work is to leverage as much as possible the Java 8 Stream
processing framework within an RTSJ environment. The fundamental problem
that must be addressed is how to map a streaming data source into batched
data so that it can be processed with our current real-time stream processing
framework. The proposed approach is to group the streaming data into micro
batches, each of which can be treated as a static data source. Then a stream can
be created to process each micro batch. The overview of this approach is shown
in Fig. 1.

The size of each micro batch is determined by two factors: the input data vol-
ume – incoming data is buffered up to an application-defined maximum amount
and once the buffer is full the batch is processed; and time – individual data
elements of the input data stream have an application-defined maximum latency
for their processing, so a micro batch must be released early if the processing
time of the batch is such that a data item may miss its deadline. Figure 2 illus-
trates the approach. The handler turns the buffer into a collection, which can
then be processed using the stream processing framework. Note that, when the
batch is processed in the case of a full buffer, the next timeout will be reset to
be timenow + timeout. The micro batch will be processed using the real-time
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Fig. 1. The overview of real-time processing streaming data.

Fig. 2. The Real-Time Micro Batching approach.

stream processing framework, and the underlying work is performed by a real-
time ForkJoin thread pool at a desired priority. The approach is described using
the Real-Time Specification for Java (RTSJ). Three classes are defined:

Receiver: Maintains a dedicated real-time thread which is used to receive data
from a source, e.g., a TCP/IP socket. It also maintains a buffer that stores the
received data, and when enough data has arrived it notifies the Handler. Users
can define their own receivers; for example, to receive data from different data
flow sources.

Timer: Manages when the next timeout occurs. When fired, the next fire time
is automatically reset.

Handler: Contains the user-defined processing logic for each micro batch using
Java 8 Streams. Once notified, it retrieves data from the receiver as a Collection
and performs the processing logic.

4.1 The Real-Time Micro Batching Stream API

The approach described above is implemented in a new framework called
BatchedStreams. BatchedStreams adopts the described micro batching app-
roach to provide real-time behaviour.

This overall approach is quite straightforward and allows the data flow
behaviour to be captured well. However, the micro batching approach is dif-
ficult to implement in a way which allows user code to be as concise as when
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using standard Java 8 Streams. This is because a Java 8 Stream pipeline (e.g.,
.map().filter().forEach()) cannot be created outside of the context of a
Stream, and a Stream can only have a single source of input data.

To address this problem, defined as part of BatchedStreams are ReusableSt-
reams. ReusableStreams implement the standard Java Streams API, but also
allow their processing pipeline to be reused over different input Collections (i.e.,
to apply to multiple batches) once its terminal operation has been invoked.
ReusableStreams also allow more concise code through the use of Java 8 lambda
expressions to specify the processing logic, as detailed in the follow sections.

ReusableReferencePipeline implements the ReusableStream interface,
and represents a reusable stream of Java objects. In addition, we have imple-
mented the equivalent classes for Java’s primitive types.

The Structure of BatchedStream BatchedStreams maintain instances of
Receiver, Timer and Handler. The instance of ReusableStream that is used
to represent processing logic is also maintained by the BatchedStream. The
BatchedStream starts the timer and the receiver, and sets their handler. Once
a micro batch is released, the handler processes it using the ReusableStream,
and optionally, using the BatchedStreamCallback to further process (e.g., to
accumulate) the result. The BatchedStreamCallback is a functional interface,
the method of which is invoked by the ReusableStream once its terminal oper-
ation returns, and acquires the returned result. The reusable pipeline must be
initialised before processing any micro batch. A reusable pipeline can either
be initialised then passed to the constructor of the BatchedStream, or be ini-
tialised by a functional interface named ReferencePipelineInitialiser, which
is required by the constructor. Functional interfaces enable the BatchedStream
to take the advantage of Java’s lambda expressions to make code more con-
cise. An example, which calculates how many words have been received from a
TCP/IP socket, is described as follows:

long count = 0;

BatchedStream<String> textStreaming = new BatchedStream<>(

new StringSocketRealtimeReceiver(...),

p -> p.flatMap(line -> Stream.of(line.split("\\W+"))).count());

textStreaming.setCallback( r -> count += (long) r );

textStreaming.start();

The pipeline here counts how many words are within a micro batch, and is the
same as it would be with normal Java 8 Streams. The pipeline is initialised using
a lambda, and the callback that accumulates all the local results is set.

The BatchedStream cannot extend the ReusableReferencePipeline class
because several terminal operations that are defined in the Stream interface are
required to return a result. Applying terminal operations, such as reduce, on
a BatchedStream represents a reduction of all the data elements from the data
source. However, the BatchedStream generates one local result for every micro
batch release.
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Stream Processing in Real-Time To evaluate a Stream under real-time
constraints requires the use of a real-time ForkJoin thread pool. The standard
Java thread pool is insufficient because all standard Java 8 Streams execute
using the same system-wide ForkJoin pool. This pool consists of standard Java
threads which do not support real-time properties [14]. Furthermore, standard
Java streams are defined to have a lower priority than all real-time (RTSJ) threads.

The real-time constraints are met by BatchedStreams that submit each micro
batch and its corresponding reusable pipeline to a real-time ForkJoin thread pool
[14]. This is a pool in which each worker thread is an aperiodic real-time thread
and the priority of each worker thread is assigned when the pool is created.

Bounding the Impact of BatchedStream Typically stream data processing
is computationally-intensive, and the unpredictability of data flows makes the cor-
responding CPU demand unpredictable. In an RTSJ runtime environment, we
assume that stream processing occurs within a soft real-time task. With all such
soft real-time activities, there is tension between achieving a short response time
without jeopardising any hard real-time activities. Running stream data process-
ing at the lowest priority in the system will not give good response times, but run-
ning it at too high a priority might cause critical activities to miss their deadlines.
Hence, an appropriate priority level must be found, and any spare CPU capacity
that becomes available must be made available as soon as practical.

The impact of stream data processing can be bounded by associating servers
that are described in [14] with real-time thread pools. Performing the previous
example with real-time constraints requires the server and the priority to be
configured. A real-time ForkJoin thread pool with the desired priority associated
is created to process each micro batch using the given pipeline.

long count = 0;

BatchedStream<String> textStreaming = new BatchedStream<>(

new StringSocketRealtimeReceiver(...), new PriorityParameters(26),

new DeferrableServer(...),

p -> p.flatMap(line -> Stream.of(line.split("\\W+"))).count());

textStreaming.setCallback( r -> count += (long) r );

textStreaming.start();

5 Implementation

The real-time stream processing framework is implemented in the RTSJ. The
RTSJ execution environment used in this work was JamaicaVM [4]. JamaicaVM
provides support for multiprocessor applications including affinity sets. Timers
are implemented using the RTSJ’s PeriodicTimer class. Handlers are imple-
mented using the RTSJ AsyncEventHandler, which submits a micro batch to
be processed when either the event buffer is full or the next timeout occurs.
The processing infrastructure uses our real-time ForkJoin thread pool, which is
described in [14]. Repeatedly applying the same pipeline on each micro batch is
achieved by using our ReusableStream framework, described below.
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5.1 The ReusableStream Pipeline

Recall that the purpose of ReusableStreams is to create a pipeline of operations
which may be repeatedly applied to different data collections. In addition, the
ReusableStream must remain compatible with the existing Java Stream API.

ReusableStreams were defined as an interface that extends the Java Stream
interface. They define a method named processData which takes a reference to
a data source (Java Collection) to be processed, and optionally a callback which
is called to present the result.

In a ReusableStream, operation pipelining uses a linked list. Each node
maintains one intermediate operation and its arguments, and each intermediate
operation returns a new node that will be appended to the tail of the linked list.
When the terminal operation is invoked, the execution thread travels through
the pipeline, and performs each operation on each data element. In order to
make a pipeline reusable, the terminal operation is added to the linked list as
well, rather than forcing stream evaluation. This is the only difference between
the use of standard Java streams and ReusableStreams.

5.2 Real-Time Stream Processing

The stream is processed using BatchedStreams at different priority levels by
submitting the ReusableStream that is used to process each micro batch to a
real-time ForkJoin pool at the desired priority. In a globally scheduled system,
each worker thread within the real-time ForkJoin thread pool can execute on,
or migrate to any available processor. No CPU affinity is applied. In a fully-
partitioned system, each worker thread within the real-time ForkJoin thread
pool is constrained to execute on one processor, and task migration is forbidden
using CPU affinity. The implementation uses javax.realtime.AffinitySet to
pin each worker thread within a real-time ForkJoin pool to different processors.
A semi-partitioned system is a mix of these two schemes. The semi-partitioned
system extends the fully partitioned system, so that a certain number of tasks
can migrate to a set of allowed processors. In a semi-partitioned system, different
worker threads are allocated with different affinity sets, which determine the set
of processors the task can migrate to.

6 Evaluation

The main goal of the evaluation is to determine the latency of stream process-
ing and its impact on other real-time activities. First, we compare the latency of
processing each data element in a stream using BatchedStream and the real-time
stream processing framework (described in Sect. 4.1) with the standard Java 8
Stream processing framework. The experiments were performed on a 3.7 GHz
Intel Core i7 processor (with 4 physical cores) platform, running Debian 7 Linux
with a 3.2.0-4-rt-amd64 real-time kernel. Three physical cores were selected to
be used by experiments using the Linux “taskset” shell command, and hyper-
threading was turned off. The RTSJ VM uses the aicas JamaicaVM version 6.5.
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6.1 Latency of Stream Processing

This experiment considers stream processing activities using a BatchedStream
running on one processor (Processor 2). The same processor also hosts three
periodic real-time threads at the same time. The experiment demonstrates that
bounded latency can be provided when using BatchedStreams to process stream-
ing data.

The underlying real-time stream processing framework that is used by Batch-
edStreams and the real-time thread employed by the receiver have medium pri-
ority. The experimental data flow is simulated using a real-time thread running
on Processor 1 which sends one pre-generated string text per random interval at
a low rate (minimum inter-arrival time (MIT) = 200 ms, maximum inter-arrival
time (MAT) = 400 ms). The execution time for processing each string is set to
34 ms, and the deadline is 60 ms, thereby illustrating the computationally inten-
sive nature of the processing required. We set the period of micro batching in
the BatchedStream to be 10 ms. These values have been chosen to highlight the
impact of a varying data arrival rate on our framework. In addition, the buffer
size of the receiver is set to be 1024 elements, which ensures that storing all the
elements within the data flow in this experiment will not trigger the early release
of the micro batch. The other real-time threads have the real-time characteristics
shown in Table 1, all times are in milliseconds.

Table 1. Periodic Real-time Threads Characteristics

Name Priority WCET First Release Period Deadline Processor ID

T1 Low 28 0 100 100 2

T2 Low 28 130 200 200 2

T3 Low 28 50 400 400 2

We start the stream processing at time 0, and real-time threads accord-
ing to their release characteristics. The thread’s first release times are offset to
ensure a more balanced background load. The data flow starts 400 ms after the
stream processing and generates 100 strings. The latency of each data element
is measured, and illustrated in Fig. 3. As we can see, the latency of each data
element in the data flow varies significantly when using the Java Stream frame-
work as the processing infrastructure. As a consequence, some of data elements
miss their deadlines. This is because the processing suffers from priority inver-
sion on Processor 2, where all the periodic real-time threads will pre-empt the
worker threads in the standard Java ForkJoin pool. The variance of the latency
is notably reduced when using the real-time stream processing framework, as
shown by the black line in Fig. 3. Priority inversion is avoided, and all data ele-
ments meet their deadlines. Note that, the variance of the latency when using
the real-time stream processing framework is due to the variation of the time
waiting in the buffer, as data can arrive at any time within the micro batching
interval.



Real-Time Stream Processing in Java 53

Fig. 3. The Latency of Data Elements In Data Streams.

We repeat each experiment 30 times and with different intervals of micro
batching (10, 20, 40, and 60 ms). The distribution of latency of using the dif-
ferent frameworks are illustrated in Fig. 4a. This shows that the latency is well
bounded when employing the BatchedStream with the help of the real-time
stream processing infrastructure. As expected, the larger the micro batching
interval, the larger the variance in the latency. With standard Java, the pattern
is the same, only with much larger variance in the response times.

6.2 Different Data Rates

The experiments presented in Sect. 6.1 had an inter-arrival time between strings
in the range of 200–400 ms. This represents a low load on the system. The exper-
iments reported in this section consider the impact of varying this arrival rate
to represent medium (M), high (H) and overload (O) workloads. The experi-
ments and the streams investigated and their underlying processing frameworks
are described in Table 2. The configuration of processors, and interference from
real-time threads are the same as the previous experiment. The buffer size is
1024 elements, and the interval of micro batching is 100 ms. Each stream under
this experiment contains 100 data elements, and the sequence of arrival times of
each data element was generated before the experiment.

Again, each experiment was repeated 30 times, and the results are shown in
Fig. 4b. The latency of streams at the medium and high rate is well bounded
by employing BatchedStreams with the real-time processing framework. How-
ever, there are few deadline misses when the stream is bursty, and there are
many deadline misses when the rate is very high (and therefore results in system
overload). These issues are discussed in the following sections, and proposed
solutions will be given. For all the cases, the latency of using standard Java
frameworks cannot be guaranteed to meet the deadline because of the priority
inversion issue.
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Fig. 4. Latency Distribution Experiment Results.

Table 2. Streams And Their Processing Frameworks, MIT and MAT Represents The
Minimum and Maximum Interval. Times Are In Milliseconds.

Name Processing Framework MIT MAT Burst Size WCET Deadline

RT(M) Real-Time 100 200 0 28 150

Java(M) Java 100 200 0 28 150

RT(H) Real-Time 50 100 0 28 150

Java(H) Java 50 100 0 28 150

RT(O) Real-Time 20 40 0 28 150

Java(O) Java 20 40 0 28 150

RT(B) Real-Time 200 400 4 28 150

Java(B) Java 200 400 4 28 150

6.3 Burst Handling

With a bursty stream, there were deadline misses when releases of each micro
batch within the BatchedStream was purely triggered by timeouts. The rea-
son is that the waiting time of a data element can result in deadline misses.



Real-Time Stream Processing in Java 55

For example, consider 4 data elements (d1, d2, d3, d4) that arrive in the system
at time t when a burst occurs, while the next timeout is t+90, thus, the latency
of the last data element Latencyd4 = 90 + ResponseT imed4 .

The minimum latency of d4 in this case is determined when the response
time of each data element equals their execution time (28 ms) and when there
is no preemption or blocking.

Min(Latencyd4) = 90 + WCETd1 + WCETd2 + WCETd3 + WCETd4

Thus, the best-case latency of d4 in this case is 202 ms, therefore missing its
deadline.

One possible solution to this problem is to reduce the interval of micro batch-
ing, i.e., the timeout, so that the latency is within the deadline even when bursts
occur. In this experiment, the maximum interval is deadline − (WCETd1 +
WCETd2 +WCETd3 +WCETd4), i.e., 150− (28 + 28 + 28 + 28) = 38 ms. How-
ever, as the stream rate in this experiment is generally slow, bursts only occur
infrequently. Hence, using this interval to handle this stream is not efficient,
because this introduces many releases of the handler where there is no data in
the buffer.

An alternative approach, and the one we adopt, is to vary the buffer size to
enable data to be processed immediately when bursts occur. The waiting time
will be reduced, and therefore, the data within bursts can meet their deadlines.
In this experiment, the buffer size of the BatchedStream is configured to be 4
elements, i.e., the burst size. Redoing the experiments for the bursty stream,
the results are illustrated in Fig. 4c. The latency is reduced so that all the data
elements now meet their deadlines, which is shown in the first plot in Fig. 4c.
The second and the forth plots are taken from from the last experiment for
easy comparison. The third plot represents the latency distribution of employing
standard Java framework.

The interval of micro batching, i.e., the timeout, the maximum count of
data arrived during this interval, and the execution time of each data determine
the maximum latency of a stream. For example, assuming the maximum data
arrival during the interval is N , the maximum latency can be represented by the
following formula when there is no preemption from higher priority activity.

Max(Latency) = Interval +
N∑
i=1

WCETdi

When the maximum latency equals the deadline, N can be calculated. Thus,
in the bursty case where the burst size is unknown, the buffer size should be
configured to be at most N in order to provide bounded latency for bursts. Note
that, this is based on the assumption that there are always enough computation
resources so that even a very large burst can be processed within the deadline.

6.4 Parallel Stream Processing

With the experiments presented in Sect. 6.2, a stream whose MIT is 20 and
MAT is 40 ms cannot be guaranteed to meet the deadline because the system
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is overloaded. The computation of each data element may require more time
than the data arriving interval (minimum interval is 20 ms, but the execution
time is 28 ms). The experiment reported in the section investigates the latency
of parallel stream processing, by allocating another processor (Processor 3) to
the BatchedStream’s underlying processing infrastructure, for both the real-time
and standard Java versions. The rest of the configuration remains unchanged.
The results are illustrated in Fig. 4d, where the first two plots are taken from
the original experiment (see Sect. 6.2). The last two plots represent the latency
distributions for the stream that was processed in parallel using the real-time and
standard Java infrastructure. Each data element in the stream meets its deadline
when using the parallel real-time processing infrastructure. Deadline misses still
occur when using standard Java infrastructure because of the priority inversion
occurring on Processor 2.

7 Conclusion and Future Work

This work has proposed an efficient general purpose real-time stream processing
framework, based on a standard programming language which targets shared
memory, multiprocessor platforms. The BatchedStream API, that uses the Java
8 Streams framework has been defined. With the help of ReusableStreams,
BatchedStreams enable a real-time stream processing job to be defined with
concise code. BatchedStreams provide bounded latency, using a real-time micro-
batching model in conjunction with an underlying processing infrastructure that
utilises a real-time ForkJoin thread pool to avoid priority inversion issues. Con-
figuring the affinity sets of worker threads in a real-time ForkJoin thread pool
allows different scheduling schemes, including global, fully partitioned, and semi-
partitioned, to be supported.

Whilst BatchedStreams provide real-time stream processing facilities, its
latency analysis for multiprocessors is subject to future work. Maia et al. [12]
have proposed an approach for response time analysis of a BatchedStream-like
processing model, i.e., ForkJoin pool, on a fixed priority global scheduling sys-
tem. We will use this approach as a starting point for the analysis of the waiting
time of each data element in a stream.

BatchedStreams currently only provide pipeline-style stream processing. Our
current work is addressing how BatchedStreams can provides DAG-style com-
putation logic when processing streams in real-time. This requires the cur-
rent pipeline evaluation model to be augmented with extra operations (such
as shuffle, and collect).
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9. Basanta-Val, P., Fernández-Garćıa, N., Wellings, A., Audsley, N.: Improving the
predictability of distributed stream processors. Future. Gener. Comput. Syst.
52(C), 22–36 (2015)

10. Hong, G., Hong, K., Burgstaller, B., Blieberger, J.: Adastreams: a type-based
programming extension for stream-parallelism with Ada. In: Proceedings of Reli-
able Software Technologiey - Ada-Europpe 2010, 15th Ada-Europe International
Conference on Reliable Software Technologies, Valencia, Spain, 14–18 June 2010,
pp. 208–221 (2005)

11. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel,
J.M., Ramasamy, K., Taneja, S.: Twitter heron: Stream processing at scale. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2015, pp. 239–250. ACM, New York, NY, USA (2015)

12. Maia, C., Nogueira, L.M., Pinho, L.M., Bertogna, M.: Response-time analysis of
fork/join tasks in multiprocessor systems. In: 25th Euromicro Conference on Real-
Time Systems (2013)

13. Mattheis, S., Schuele, T., Raabe, A., Henties, T., Gleim, U.: Work stealing strate-
gies for parallel stream processing in soft real-time systems. In: Herkersdorf, A.,
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Abstract. The regression test selection problem—selecting a subset of a test-
suite given a change—has been studied widely over the past two decades. How-
ever, the problem has seen little attention when constrained to high-criticality
developments and where a “safe” selection of tests need to be chosen. Further,
no practical approaches have been presented for the programming language Ada.
In this paper, we introduce an approach to solving the selection problem given
a combination of both static and dynamic data for a program and a change-set.
We present a change impact analysis for Ada that selects the safe set of tests
that need to be re-executed to ensure no regressions. We have implemented the
approach in the commercial, unit-testing tool VectorCAST, and validated it on
a number of open-source examples. On an example of a fully-functioning Ada
implementation of a DNS server (IRONSIDES), the experimental results show a
97% reduction in test-case execution.

Keywords: Ada · Change impact analysis · Regression testing · Unit testing ·
Test-case selection · Code coverage · Change-based testing · Safety-critical soft-
ware

1 Introduction

In their seminal work of 1988 [5], Harrold and Soffa introduced a dataflow-based app-
roach for minimising the regression test effort in the context of Pascal. Since then, the
problem of regression test execution has seen considerable attention [3,12,22].

Furthermore, and given the recent emergence of agile processes [24], which pro-
mote test-driven development as well as continuous integration [9], there is now a desire
from developers to be able to re-test modified software rapidly. However, in the con-
text of Ada, there are few articles (to the best of our knowledge, there only exists one
paper [13] from 1997 that investigates change impact analysis for Ada) discussing how
to solve the problem, without reverting to “retest all” [17].

Consequently, this paper considers the test-case selection problem [3]:

“determine which test-cases need to be re-executed [. . .] in order to verify the
behaviour of modified software”

c© Springer International Publishing Switzerland 2016
M. Bertogna et al. (Eds.): Ada-Europe 2016, LNCS 9695, pp. 61–77, 2016.
DOI: 10.1007/978-3-319-39083-3 5
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when applied to systems developed using Ada. It follows that we aim to investigate
the plausibility of applying change impact analysis to regression testing of Ada source
code. To this end, we seek to minimise the number of tests a developer needs to re-
execute to determine if the behaviour of their software has been affected after making a
change.

Our approach for change-based testing (CBT) of Ada is as follows. We begin by
assuming the existence of a test baseline T of regression tests associated with a set of
Ada source files, as well as access to both the original and modified source code. The
analysis then proceeds as follows:

1. The difference between the original and modified source code is assessed to con-
struct a change-set A. This change-set encapsulates changes at the interface, pack-
age and subprogram1 levels.

2. An intermediate representation of the program is constructed, based on both static
data (derived without executing the program) and dynamic data (collected by exe-
cuting the existing test baseline T ). This intermediate representation forms the basis
of a dependency graph of the Ada source code.

3. Given the change-set A and the intermediate representation, we determine a set of
tests T ′ ⊆ T that is affected by the changes in A. We use the internals of the test
automation tool VectorCAST to calculate the correspondence between changes in A
and the dependency graph.

In Step 1, we are concerned with the calculation of the subset of packages and sub-
programs that were modified by a given change-set. Step 2 is focused on establishing
the set of interdependencies in the software. Finally, Step 3 is concerned with the iden-
tification of those tests whose behaviour was affected from the data in Step 1. As we
demonstrate later, we consider the locality (i.e., specification vs. body vs. subprogram)
of the change to allow us to accurately understand its change-impact.

To-date, approaches to performing a change impact analysis for object-oriented
languages either consider a static or a dynamic-derived dependency graph [3,12,22].
Uniquely, we consider a hybrid approach, using data from both static and dynamic
analyses. Our change impact analysis calculates three types of dependency:

• Statically:
1. Type and Ada specification dependencies – where Package A depends on Pack-

age B as part of A’s specification
2. Uses and Ada body dependencies – where Package A depends on Package B as

part of A’s body
• Dynamically:

3. Subprogram invocation and coupling – where a subprogram Foo in Package A
calls a subprogram Bar in Package B

1 In this paper, we use the term “subprogram”, without introducing ambiguity, to refer to either
a function or a procedure inside of an Ada package.
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Considering dependency data that is derived both statically and dynamically results in a
technique that is not exclusively tied to subprogram-level analysis [16]. That is, we can
consider the change impact at different levels of the software architecture. For example,
it can support changes that occur at package-scope or to the object hierarchy.

Approaches based on static slicing [10] of the program are often overly-
conservative, while maintaining “safety” [11]. When developing safety-critical systems,
it can be accepted that this conservatism is of benefit, as it accounts for all possible
behaviours of the system. However, this can lead to a change impact analysis that results
in the (undesirable) “retest all” answer, which can be of little use to developers wishing
to verify their day-to-day work.

Conversely, dynamic slicing (e.g., an analysis based on collected code coverage),
considers only the behaviours and impacts that have been observed as part of previous
system executions. An analysis based purely on dynamic data will potentially lead to
“unsafe” conclusions [11].

We describe our approach as safe – by this, we mean that any test contained within
“impact set” is at least necessary to exercise all of the impacts of the changes in a
given change-set. Our work also aims for minimality, but not the minimal test-case
set. Minimality cannot be achieved without a heavier approach to the change-impact
process. For example, a finer-grained analysis could be based on modifications to the
def-use chains [7] for package-level variables, and subsequently only execute those tests
that depend on those variables.

We note that, basing the analysis (partly) on code coverage allows us to avoid
complications when it comes to Ada 83 features such as generics, or Ada 95 features
such as dynamic binding [1]. If the internals of a subprogram change invoke another
(late-bound) subprogram, this would be detected as a subprogram-level change. Conse-
quently, all tests executing that subprogram would be re-executed, invoking the newly
added dynamic call. As such, there is no need to adopt a heavier approach that needs to
consider polymorphism [17]. We discuss this further in Sect. 3.5.

Structure of the Paper. The rest of the paper is structured as follows. In the immediate
subsection (Sect. 1.1), we provide an overview of the relevant literature to the regres-
sion test problem. The subsequent section (Sect. 2) provides a brief introduction to soft-
ware change impact analysis and VectorCAST. In Sect. 3, we introduce our approach to
impact analysis for Ada. We then provide an experimental evaluation (Sect. 4), based
on a selection of open-source examples. In the final section (Sect. 5), we conclude.

1.1 Related Work

In 1988, Harrold and Saffa [5] introduced an incremental testing methodology for Pas-
cal. To achieve this, they associated a test with the path taken through a module. The
“incremental tester” would then try to re-use test-cases by identifying the tests that
exercise the changes, or those which had their execution path modified by the change.
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Loyall et al. [13], implemented a prototype impact analyser that presents the static
dependency graph in a hyperlinked form to allow for easy navigation. While their tool
does support Ada, it does not actually calculate the impact of a change in the source
code – it is designed to support a “what if” approach to potential changes. A user can
select an entity that might be modified, and then see the effects of this modification.

In [20], Ren et al. introduce the tool Chianti, which is able to calculate the set
of affecting changes in a Java program that can lead to the behaviour of a test being
modified. They consider two approaches: one based on static call graphs, and one based
on dynamic call graphs. However, they do not consider the combination of static and
dynamic data for a more precise analysis.

The theoretical underpinnings of Chianti were presented in [21], where the classifi-
cation of types of (atomic) changes in Java programs was introduced. An approach was
then designed to calculate the impact on other areas of the system, given a collection of
atomic changes.

Law and Rothermel [11] consider the application of dynamic program slicing to
the change impact process. Their approach is focused on the affect of program modifi-
cations on other parts of the program, rather than the test-case minimisation problem.
They present the algorithm PathImpact that decides if a change in procedure p of a pro-
gram P has a potential impact on other procedures reachable from p in the call graph G
of P. PathImpact then calculates a forward and backwards slice through the program,
as well as tracking function calls and returns, such that a backwards analysis is accu-
rately scoped. In [15], Orso et al. present the CoverageImpact algorithm, which walks
the execution data in combination with a forward slice of the variables in the program
to calculate the impacted set. This set is then used to identify the tests that should be
re-executed.

2 Background

We briefly introduce change impact analysis (Sect. 2.1) and VectorCAST (Sect. 2.2).

2.1 Software Change Impact Analysis

Simply put, software change impact analysis [19] is a family of techniques for determin-
ing the effects and outcomes of a source code modification, and for improving developer
productivity in the context of such a change. We refer the interested reader to [3,12].

We illustrate the outcome of a potential change in Fig. 1. For example, consider a
change to Package C in the source tree shown. We will have two types of impact:

Upstream changes – this is where Package A calls into Package C. A modification to
either the internal behaviour or external interface to Package C can cause a potential
change in Package A.
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Downstream changes – this is where Package C calls into Package F. While the inter-
nal behaviour of Package F cannot be affected by this change (Package F can be
oblivious to Package C), Package F may now be used in a different way.

In the context of this paper, we are interested in identifying the set of tests that must
be re-run in the presence of a change to Package C. To elucidate, any tests that execute
directly on C would have to be re-run (depending on the scope of the change) and any
tests associated with units (e.g., A) that have code coverage on the modified parts of C
should also be re-run. We exclude re-executing the tests for Package F, as the tests on
Package C, which collect coverage on F already, will validate this modified use of F.

Fig. 1. How changes can propagate through the source tree

2.2 VectorCAST

VectorCAST/Ada2 is a commercial, dynamic unit testing and code coverage tool for
Ada. To construct automatically unit testing environments for Ada source code, Vec-
torCAST parses the provided Ada program, extracts the relevant Ada types/packages,
and then presents a “test-case designer” that allows a user to specify tests without the
need to write tests in Ada directly. Crucially, VectorCAST is also able to instrument the
source code to obtain code coverage from test case execution.

Following [18], we note that unit testing environments can be constructed in two
ways:

• A “unit test” mode, where testing is performed on an individual unit, where all of its
external dependants have been automatically mocked [18].

2 www.vectorcast.com; in what follows, we write VectorCAST to mean VectorCAST/Ada.

www.vectorcast.com
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• An “integration test” mode, where testing can be performed across multiple units,
and where the external dependants have been brought into VectorCAST and can be
instrumented for code coverage. In this mode, the behaviour of the external inter-
faces (via expected call and return values) can also be tested.

With the exception of a change to a dependant specification, change-based testing in
unit testing mode is limited to selecting the tests to re-run inside of a single unit. Change
impact analysis is more complex when you consider integration-style tests, as there
will be dependencies between the units contained inside the testing project. The test
selection problem is then to minimise the re-test effort, in the context of changes in any
dependants.

3 Change-Based Testing for Ada

We now present our approach for performing impact analysis and solving the test-case
selection problem for Ada.

We consider a “safe” approach to change impact analysis at the expense of false
negatives: in the context of a safety-critical software development, we consider it more
appropriate to have an overzealous change impact, rather than exclude a test erroneously
(false positives).

3.1 Dynamic Impact Analysis

The high-level of a typical dynamic-only impact analysis [12] is shown in Fig. 2. In this
figure, we see that the “core” of a dynamic impact analysis approach is the ability to
map test data to run-time data, therefore allowing us to calculate those tests effected. To
support processing the change set into an impact set, we assumed that the relationship
between this data is stored internally in the tool: the intermediate representation.

Test Data

Executable
Software

Runtime
Data

Intermediate
Representation

Impact SetChange Set

Fig. 2. Strictly dynamic change impact analysis

The intermediate representation can take a number of forms when considering a
dynamic analysis. When considering code coverage-based analyses with information
derived from test execution, such information can be stored as a dynamic dependency
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(a) A trivial Ada program

(b) Dynamic dependencies

Fig. 3. Example dependencies.

tree. For the Ada program shown in Fig. 3a, we exemplify its dynamic-only dependency
tree in Fig. 3b. A change in either Zero or Succ may affect the behaviour of One.

We presume the existence of an original program P and a modified program P′,
which has been derived from P. Furthermore, it is also assumed that both P and P′ are
both syntactically and semantically correct (i.e., compilable). The analysis places no
restriction beyond these on the nature of the changes.

In the context of what follows, we assume that the intermediate representation con-
tains both static and dynamic data, and the availability of information about the pack-
ages (specifications and bodies) and subprograms that have been altered.

3.2 Intermediate Representation for Ada

We now introduce the data structures used to construct our analysis for Ada. As we are
developing a hybrid approach using both static and dynamic data, we introduce both
separately.

Static Data. For the data we wish to extract statically from the Ada program, we
consider the following data-types:

Contains : Package → Subprogram∗

Uses : Package×{Body,Spec} → Package∗

The data structure Contains is used to map Ada Packages to zero-or-more Sub-
programs contained within that Package. Similarly, Uses creates a dependency map
between Package body and specifications, to the package specifications that they
“with”.
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We use the relation Contains to find all affected subprograms given either a speci-
fication or a package body-level change; Uses allows us to track when a dependant has
been modified (e.g., if Package A with B, and if B changes, we know that we need to
re-execute any test covering Package A).

For the presentation that follows, we assume that it is possible to compute the
inverse of Contains and Uses.

Dynamic Data. We now consider the dynamic data we require for our analysis:

Covers : Test → Subprogram∗

which maps test-cases in the test baseline, T , to the subprograms covered when a given
test is executed. We note that, unlike [11,16], we are not concerned with the ordering
of subprogram calls/returns for a given test.

It is clear that, when combining these tree-like data structures, it is possible to con-
struct a combined, static/dynamic dependency tree. Such a tree could be unfolded to
construct a directed, acyclic dependency graph of the program. This is because depen-
dency relationships between entities are transitive. That is, if A depends on B and B
depends on C in one or more dependency relationships, then A depends on C.

3.3 Example

Before presenting the approach to solve the test-case selection problem, we exemplify
the technique when applied to Ada source code. We illustrate the process using the
small Ada program shown in Fig. 4.

In this example, we have two Packages (A and B), each containing a single function.
In the body of Package A, we have an external dependency on the specification of B, via
the use of the “with” directive. It is clear that there is an implicit dependency between
each package and its specification (i.e., that the body of A depends on the specification
of A). It follows that we have A×Body → B in Uses, and A → Foo in Contains.

For the Ada example illustrated in Fig. 4, we show the static-only dependencies
(i.e., those excluding subprogram calls) in Fig. 5a. As we can see, when we do not
consider subprogram invocations between packages, there is no statically-determined
dependency between A’s package body and B’s package body.

We now consider that a test-case t has been created that exercises the subprogram
Foo. In this instance, dynamically executing a test-case for the function Foo will then
obtain code coverage on both Foo and Bar. After t has executed, we can see that
there is a (dynamic) dependency between Foo and Bar (Fig. 5b). That is, we have
t → {Foo,Bar} in Covers.

Finally, the combined dependencies are show in Fig. 5c. As we can see, this is the
union of the dependencies from the static and the dynamic data. As shown in Fig. 5c,
there now exists an implied dependency between Foo and the body of B (the dashed
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(a) Package Specification for A

(b) Package Body for A

(c) Package Specification for B

(d) Package Body for B

Fig. 4. An exemplary Ada program

Fig. 5. Types of dependency
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arrow between Foo and B). This is because we have a traversal through the dependency
graph of:

Foo → Bar → B

Consequently, it can be calculated3 that a change the body of B will impact test-cases
that are associated with the subprogram Foo.

3.4 Calculating the Selection

To solve the test-case selection problem, we introduce an ancillary algorithm AFFECT-
EDSUBPROGRAMS (Algorithm 1). The algorithm is a classic work-list algorithm, used
to calculate the transitive closure of the dependency tree. For ease, we use entity to refer
to a specification, body or subprogram.

Algorithm 1. AFFECTEDSUBPROGRAMS

Input: change : entity # change entity
Input: static dependencies : entity → entity∗ # static dependencies
Output: impacted subprograms # set of affected subprograms

1: impacted subprograms ← /0
2: found ← /0
3: new ← {change}
4: while new �= /0 do
5: next ← new.pop() # pops and removes
6: found ← found∪{next}
7: if next is subprogram then
8: impacted subprograms ← impacted subprograms∪{next}
9: end if

10: successors ← static dependencies(next)
11: unprocessed ← successors\ found
12: new ← new∪unprocessed
13: end while
14: return impacted subprograms

Our algorithm for solving the test-case selection problem is shown in
Algorithm 2. The algorithm takes a given Ada program P, a baseline set of tests
T , the data stored in Covers and changed entity c, and returns the set of tests
to be re-executed. Once the set of affected subprograms has been computed by
AFFECTEDSUBPROGRAMS, AFFECTEDTESTS iterates over these subprograms and
selects all tests covering them. These selected tests represent our solution to the test-
case selection problem.

We note that AFFECTEDTESTS relies on an external procedure STATICDEP, which
calculates the transitive closure of Contains and Uses.

3 where “impact” is the inverse relation of dependency.
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Algorithm 2. AFFECTEDTESTS

Input: P # an Ada program
Input: T # a set of tests
Input: Covers : T → Subprograms∗ # test coverage
Input: c : entity # a change in P
Output: impacted tests ⊆ T # set of affected tests

1: impacted tests ← /0
2: impacted subprograms ← AFFECTEDSUBPROGRAMS (c,STATICDEP (P))
3: for all t ∈ T do
4: for all m ∈ impacted subprograms do
5: if m ∈ Covers(t) then
6: impacted tests ← impacted tests∪{t}
7: break
8: end if
9: end for

10: end for
11: return impacted tests

Given a change-set comprising of a number of modifications to the program (e.g.,
multiple package body or subprogram changes), it is possible to encapsulate AFFECT-
EDTESTS in a higher-level procedure that iterates over each change and collects the
aggregate set of affected tests (c.f., ImpactAnalysis in [15]).

3.5 On Change Impact for Polymorphic Programs

There has been a lot of consideration in literature [6,19,21] applied to the intricacies
of change impact pertaining to object oriented programming. However, in the context
of the framework presented, the use of object oriented techniques within Ada does not
introduce any further difficulties.

For example, consider a change C that affects the dynamic call tree in a given pro-
gram P. We will consider the addition or removal of a specialised subprogram in a
derived package. If a specialised subprogram is added/removed from a derived pack-
age, then the derived specification (upon which P depends) will change, leading to all
tests for P, which have code coverage on the derived package, to be re-executed.

If a package body member is changed in the base package, then this will invali-
date all tests that have associated code coverage on the derived package, if the derived
package has any static/dynamic calls to its parent. If there are no tests that generate any
coverage on the base package via calls from the derived package, then a modification
to the package global in the base package will have no effect on the derived package’s
behaviour, and so no tests will be impacted.
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Example. Consider two packages Base and Derived, where the specification of
Base has two subprograms Alpha and Beta, and that Derived only specialises the
subprogram Alpha. We further assume a program P, and associated test, that calls
Derived.Alpha, and Derived.Alpha calls Base.Beta. This will create a com-
bined dependency tree as shown in Fig. 6 (we use a dashed line to show dynamic
dependencies).

Fig. 6. A polymorphic dependency tree

If we now extended Derived such that it contains a specialised version of Beta,
this would then cause a change in the specification and body of Derived, and so we
would re-execute any tests that have coverage on the subprogram Alpha.

Alternatively, consider a change to a package body member in Base. Via the depen-
dency tree from Fig. 6, this would then cause any tests with coverage on Base.Alpha
and Base.Beta to be invalidated. Consequently, our test on Derived.Alpha would
therefore be affected, as per the dynamic coverage collected.

4 Experimental Evaluation

To validate the effectiveness of the technique presented in reducing the number of test-
cases to be re-executed, we performed an empirical evaluation comparing VectorCAST
with and without change impact analysis.

4.1 Experimental Setup

We considered examples from two sources: “Malaise” and IRONSIDES; we summarise
these below. A high-level overview of the packages selected is shown in Table 1.
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Table 1. Example specifics

Metric Malaise IRONSIDES

Number of files 9 9

Number of lines (incl. comments/whitespace) 654 4,745

Number of non-empty Ada lines 468 3,441

Number of subprograms 46 97

Aggregate complexity metric [25] 94 492

Total number of tests 228 573

Coverage (statement/branch) 68%/68% 47%/36%

Malaise. We considered a selection of 9 files taken from [14] – a copy-left reposi-
tory of Unix-based utilities written in Ada. Some of the packages selected included:
ada words.adb, which provides “basic Ada parsing of delimiters, separators and
reserved words”; conditions.adb that supports “several tasks to wait until unblocked
all together or one by one”; and forker.adb, an “API to a standalone forker process”.

IRONSIDES. The Internet Domain Name System—or DNS—is an infrastructure whose
responsibility it is to translate domain names (e.g., www.vectorcast.com) into their
corresponding IP addresses (e.g., 67.225.168.102). IRONSIDES [4], an open-source
and freely-available DNS server implemented in SPARK Ada. Via the use of SPARK,
the code of IRONSIDES is mathematically proven to be free of defects via the use of
formal methods. For the purposes of this evaluation, we consider a subset of 9 files
taken from the IRONSIDES “authoritative” (2015-04-15) branch [2].

Testing Methodology. To support the empirical evaluation of the presented change-
based testing approach, we used VectorCAST to generate automatically three types of
test:

• “empty tests” – these are default test-cases generated by VectorCAST that provide
empty parameter values to every function;

• “min-mid-max tests” – these call each test with the min, mid and maximum value
for each parameter;

• “basis path tests” – we used VectorCAST’s ability to generate automatically basis
path tests according to McCabe’s complexity metric [25].

For Malaise, we generated all three types of test; however, to produce a manageable
test-suite size, we only generated empty and basis path tests for IRONSIDES (i.e., we
did not consider min-mid-max tests). The size of the test-suite and the coverage attained
from its execution are presented in Table 1.

For each of the examples, we used VectorCAST to capture the initial state
of the software, and then applied modifications to each of the files: namely, we
added a “null;” statement to the beginning of a number of subprograms, such that

http://www.vectorcast.com
http://www.vectorcast.com
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VectorCAST would detect a subprogram-level change. An example of an automated
change—highlighted with a box—to the package Ada Words from Malaise is shown in
Listing 1.1.

Listing 1.1. An example modification in the package Ada Words

1 function Is_Delimiter (C : Character) return Boolean is
2 begin

3 null;

4 case C is
5 when '&' | '’' | '(' | ')' | '*' | '+' |
6 ',' | '-' | '.' | '/' | ':' | ';' |
7 '<' | '=' | '>' | '|' =>
8 return True;
9 when others =>

10 return False;
11 end case;
12 end Is_Delimiter;

After applying each change, we then performed an “incremental build and execute”
inside of VectorCAST, to analyse the code-base and then only re-test the code that
changed. To validate the effectiveness of the proposed approach, we executed the same
process but without passing the incremental flag to VectorCAST. The version of Vector-
CAST used for both the incremental and non-incremental runs was the official release
of 6.4d (released 2016-02-29).

All of the Ada sources for both of the examples (reproduced under a copy-left
licence from both [14] and [2]), the VectorCAST artefacts (e.g., the auto-generated
tests) and an “evaluation runner” script are available from [8].

4.2 Results

We performed our evaluation on a 32-bit Linux machine running Fedora 21, with 8 GiB
of RAM and a 6-core Intel Xeon clocked at 2.50GHz. The compiler used was “GNAT
4.9.2 20150212 (Red Hat 4.9.2-6)”.

Table 2. Experimental results

Example Mode Units Subprograms # Tests Build + exec.

changed changed executed time (s)

Malaise
Without CBT

9 21
4,788 1,002.48

With CBT 165 165.85

IRONSIDES
Without CBT

9 93
53,289 6,986.17

With CBT 1,347 1,147.14

The results of our evaluation can be seen in Table 2. The column “# Tests Executed”
represents the total number of tests re-executed after performing the individual subpro-
gram change, with each change processed separately. Similarly, “Build + Exec. Time”
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is the total time (in seconds) that VectorCAST took to re-build the test environment,
incorporating the current change-set, and to re-run the affected tests.

As we can see, using the change impact analysis presented in this paper, the total
number of tests needing to be executed for Malaise was reduced from 4,788 (running
all 228 test-cases for each of the 21 changes) to only 165 (re-running only the impacted
tests). Similarly, for IRONSIDES, the number of tests required to be re-executed to
ensure that no regressions were introduced in the software was reduced by 97%.

We observe that the final column (time) does not scale accordingly, as the auto-
generated tests are quick to execute, compared to the higher-cost environment construc-
tion. Nonetheless, across both examples, we see an 84% reduction in time to re-test.

Given the size and real-world applicability of IRONSIDES (with its higher perfor-
mance than commercial DNS servers [4]), we feel that the results obtained would be
representative of the benefits achievable in an industrial Ada project.

5 Conclusions

In this paper, we have introduced the first practical approach to applying change impact
analysis to the test-case selection problem for Ada. To the best of our knowledge
(c.f., [3,12]), ours is the first approach that explicitly uses a combination of both sta-
tically derived data and dynamic data from test execution. In safety-critical markets
(see, e.g., DO-178C [23] for aeronautics), it is commonplace for there to be a require-
ment to demonstrate “test completeness” via a code coverage mandate. Consequently,
linking a change-impact analysis to data that engineers will already be collecting is
advantageous.

We also considered the affect of object oriented techniques when identifying those
tests to be re-executed. Considering exclusively static data has previously been investi-
gated [21] and lead to a number of “heavy-weight” frameworks [20]. While simplistic,
our approach can also handle changes introduced in the polymorphic hierarchy.

We performed an empirical evaluation of our technique as part of an experimental
extension to VectorCAST. Our results on a modest-sized example are promising, but
further evaluation is needed.

5.1 Further Work

We have identified a number of additional avenues that could improve on the test-case
selection process (at the expense of a heavier technique). The most immediate area
to tackle is on the change impact process at a lower level than just subprograms. For
example, if the change is constrained to a particular branch of a conditional, then it
would be plausible, without a loss of safety, to select only those tests that previously
entered the same block.
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Our presentation of AffectedSubprograms, and calculating the transitive closure of
StaticDep (Sect. 3.4), leads us to invalidate all tests when the change is associated to
a package specification or a body. When we consider a body-level change that, e.g.,
changes or introduced a new body-level member variable, this leads us to re-execute
more tests than necessary. If we considered only those subprograms that referred to
each member variable, we could then be more selective with those that we invalidate.

We leave consideration of how to efficiently handle type modifications at the speci-
fication level for further work.

5.2 Closing Remarks

In this paper, we presented, to the best of our knowledge, the first approach for consider-
ing change impact analysis for Ada applied to regression testing (outside of [13], which
did not consider the test case selection problem). As highlighted above, there are a num-
ber of improvements to this technique to further reduce the scope of selected changes.
We position this work as the first footing in this direction, and are not discouraged by
the modest framework presented.
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Abstract. The rapid evolution of software necessitates effective fault
detection within increasingly restricted execution times. To improve the
effectiveness of the regression testing required for extensive fault detec-
tion, test cases have to be prioritized. The test cases with the higher
chance of capturing faults are executed earlier in the series. This prior-
itization enables faster feedback for fixing more faults earlier. Various
prioritization techniques have been proposed based on the information
provided by offline (static) test execution history on previous versions of
the software. In this paper, we propose a family of new test case prioriti-
zation techniques, which utilize online (dynamic) information about the
locations of previously revealed faults in the detection of other faults.
Our empirical studies demonstrate that the new techniques are more
effective than the existing traditional test case prioritization techniques.

Keywords: Software testing · Regression testing · Test case
prioritization · Online test prioritization

1 Introduction

Software testing is an essential part of the software development process, which
can be challenging as well as time and cost consuming in its own right. Myers
et al. [14] asserted that about 50 % of the time and cost of software development
is related to the testing of the software. To hasten the software release, the prac-
tice of continuous integration was proposed [2]. According to this practice, every
software developer needs to submit locally tested code to a mainstream repos-
itory, and each developer should submit their code at least several times daily.
The mainstream repository is an independent server which re-builds, integrates
and re-runs test cases after each submission from the developer. The process of
re-running test cases after each iteration of software development is referred to
as regression testing. It is crucial that regression testing is executed in the min-
imal possible time to obtain feedback for the software developer to fix the bugs
before the submission of their code to the main repository. However, re-running
the test cases is time-consuming and may sometimes take a day or occasionally
more than a week. This might be even more complicated when each developer
needs to submit their code multiple times in a day.
c© Springer International Publishing Switzerland 2016
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To make the regression testing more effective, several techniques have been
proposed in the past including test suite minimization (TSM), test case selection
(TCS) and test case prioritization (TCP). For the first two techniques, a subset
of test cases from a test pool is selected to be run against the software. In
TCS, test cases are selected based on the modifications created between two
different versions of the software, and they are then extracted from the test
pool temporarily for a specific version the software [16]. In TSM, on the other
hand, test cases are selected based on an execution path in the same version of
the software [21], and they are then permanently excluded test cases from the
test pool. In contrast, TCP does not exclude test cases from the test pool but
orders them based on the likelihood of capturing faults. The goal of the TCP
technique is to reveal possible existing faults at an early stage of the execution
of the test case. Early detection of the faults during test case executions enables
software developers to be notified of a fault in the software in a shorter time
in comparison to not prioritizing the test cases. Therefore software developers
can fix the software faults faster and ultimately reduce the processing time of
developing software.

A classic approach for TCP techniques is based on offline information (e.g.,
a study by Zhou [26]), i.e., the static knowledge about the test case and the
program to prioritize the test cases before their main execution. In our approach,
we recommend using the online information for these purposes, i.e., the dynamic
knowledge about the test case and the program execution. This idea follows the
continuous integration practice and enables speeding up the testing process.

Many approaches rely on the assumption that faults are distributed evenly
through out the program and are based on the number of program statements.
However, the research on Microsoft Windows and Office programs showed that
80 % of faults occur in 20 % of the program code [17,25], which is referred to as
80-20 rule also known as the Pareto principle [15]. Moreover, in the same study
by Microsoft researchers, it was found out that 50 % of the crashes come from
only 1 % of the program code. These findings indicate that the previous assump-
tions of the even distribution of faults are not always valid, and further highlight
the importance of historical information on the previously identified faults to be
used for the detection of new faults. Therefore, using online information about
previous execution of test cases could enhance the effectiveness of detecting new
faults in the software. Particularly, online information about the previous loca-
tion of detected fault in the software could help to identify new faults close to
the previous fault location. In this study, the locations of previously identified
faults from executed test cases are captured to prioritize unordered test cases
based on their coverage close to the captured locations.

Contributions: In this paper, we present a new online test case prioritization
approach, which utilizes the location of previously identified faults to prioritize
the test cases. This approach is evaluated by a number of empirical techniques,
which significantly out-perform previous approaches.

Outline: The rest of the paper is organized as follows: in Sect. 2, we discuss the
related work on TCP techniques. In Sect. 3, we introduce the TCP baselines and
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how they can be adapted using our approach, which is presented in Sect. 4. We
further describe the experimental design of this study in Sect. 5, followed by the
evaluation of the approach in Sect. 6. Section 7 presents future work directions
and concludes the paper.

2 Related Work

A number of different offline prioritization techniques have been proposed [19].
In previous studies, two greedy approaches, namely ‘Total’ and ‘Additional’ TCP
are the most studied techniques [24]. For example, the ‘Total-Statement’ (TS)
TCP orders test cases based on the number of statements in the program that
each test case could cover. On the other hand, the ‘Additional-Statement’ (AS)
TCP uses the same metric to order test cases; however, it excludes the state-
ments covered by the test cases that have already been selected. Zhang et al. [24]
recommended a new TCP technique which delivers performance results between
the classic approaches. This technique relies on the offline information about test
cases and programs. The researchers applied static parameters that were manu-
ally set based on experimental studies. By contrast, our study utilizes dynamic
parameters that are systematically adjusted throughout testing process.

Kim and Porter [11] argued that historical information about previous exe-
cutions of tests was ignored by researchers but it could be potentially useful.
They employed historical information about the previous execution of test cases
to improve the effectiveness of TCP for a system with a resource constraint. The
approach introduced by Kim et al. also relies on offline information. Our work
can be seen as an extension of this approach, as we rely on the testing history,
but use the dynamic version of it and base the test case prioritisation on the
online information.

The risk of faults occurring in a particular section of the code could poten-
tially help to improve TCP techniques by focusing on the error prone part of the
software, which is referred to as the risky part of the software. Thus, the test
cases covering the risky parts of code are assigned a higher rank in prioritiza-
tion results. Rothermel et al. [19] introduced a metric to measure faults exposed
by the potential of test cases. They used this measurement to built new TCP
techniques which have better overall effectiveness in comparison to traditional
coverage based techniques. Yoon and Choi [22] also measured the risks in code
by asking human experts during the risk assessment stage to propose a new
TCP technique. In our approach, we measure the risk in code by analysis of the
previously selected and executed test cases that detect a fault.

There are a number of approaches aiming at estimating the probable location
of a fault in the program, e.g., [9,23], as this could potentially save the time of the
developer to find the faults. Jiang et al. [8] recommended integrating TCP with
statistical fault localization to facilitate the identification of fault locations for
developers. They claimed that existing prioritization techniques did not consider
the fact that identifying the location of the fault is as important as detecting
the faults; whereas, existing techniques aimed at detecting a higher number of
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faults even at the expense of interrupting the execution of test cases. To address
this gap, researchers have discovered that statistical fault localization techniques
cannot be degraded even by executing fewer test cases using prioritization tech-
niques. In contrast, our approach looks at the effect of location of faults on the
effectiveness of TCP techniques.

3 Preliminary-Baseline Techniques for TCP

As introduced in Sect. 1, a TCP function is mainly based on an iterative selection
process. We model this main selection process in an equation which chooses a test
case for prioritization in each iteration. This iteration ends after selecting all test
cases for prioritization. The selection equation can be implemented in different
ways depending on which TCP technique is used. The differences between the
techniques are explained in the specification of the selection equations in the rest
of this paper. A set of notions is used to explain the specification of equations.
P and t represent a program and a test case. NST is a set of Not Selected
Test cases, where from this set, a test case would be selected and added to the
Selected Test cases (ST ) in each iteration of the TCP function. Test cases are run
against partial parts of the corresponding program P . These parts are usually
referred to as the coverage of the test cases. To measure test case coverage,
two main metrics, known as statement coverage and branch coverage, have been
proposed previously. The statement coverage counts all executed statements of
the program; whereas, the branch coverage criterion indicates what fraction of
control branch statements have been executed while running a test case against
the program. If there is complete coverage, the metrics are referred to as full
branch coverage, and full statement coverage.

Random (R) TCP: R TCP is the simplest approach to perform prioritization
over test cases. This technique employs test cases which are randomly ordered,
i.e., the selection equation in this case is a simple random selection. Compared
to other TCP techniques, this method represents the lower bound of least effec-
tiveness.

Optimal (O) TCP: This method represents an optimal solution for the TCP
problem. It orders test cases based on decreasing numbers of detected faults. For
this purpose, this technique runs each test case against the program to identify
the number of captured faults. However, executing test cases before prioritization
defeats the purpose of TCP. The goal of using the TCP technique is to order test
cases by the maximum number of faults so that the test case can be identified
without having to execute the test case itself. This technique represents the upper
bound of the TCP effectiveness. In the optimal TCP, the selection equation can
be specified as follows, where FD denotes a Fault Detector that identifies a set
of faults that can be captured by each test case.

t ∈ NST and |FD(t, P )| is maximum ⇒ return t (1)
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Total-Statement (TS)/Total-Branch (TB) TCP: The TS TCP technique
prioritises the test case which examines the larger portion of the program. To
measure the portion of the program under test, the coverage of test cases over
the program is used. In TS TCP and TB TCP, test cases are ordered based on
the number of covered statements or branches respective to the TCP technique.
Test cases with equal statement coverage are randomly ordered. In the TS TCP,
we specify the selection equation as follows, where SC denotes a Statement
Coverage function which calculates a set of statement covered by a test case.
Another variant (TB TCP) can implemented by replacing SC with BC which
returns a set of branch coverage statements.

t ∈ NST and |SC(t, P )| is maximum ⇒ return t (2)

Additional-Statement (AS)/Additional-Branch (AB) TCP: The aim of
the ‘Additional’ techniques are to obtain a full test coverage of the program by
executing test cases in the shortest amount of time. These types of TCP tech-
niques select a test case which covers the highest number of program parts that
have not been covered by other already selected test cases. This is contrary to
‘Total’ techniques, where the covered part of program through executing previous
selected test cases can also be counted for selecting new test cases. Based on the
statement or branch coverage criteria uses in ‘Additional’ TCP, two techniques
of AS and AB TCP techniques were proposed. In the AS TCP, we specify the
selection equation by Eq. 3, where already covered statements set (CS ) is defined
in Eq. 4.

t ∈ NST and |SC(t, P ) − CS(ST, P )| is maximum ⇒ return t (3)

CS(ST, P ) = ∪t∈ST ∪S∈SC(t,P ) S (4)

4 The Proposed Approach-Online TCP

‘Additional’ and ‘Total’ coverage methods are limited in terms of capturing
faults. ‘Total’ coverage techniques select a test case that covers the largest por-
tion of the program in each iteration of prioritization. This type of technique
assumes that every covered unit of the program has an equal chance of capturing
faults. Therefore, test cases with higher coverage are more qualified to capture
faults. However, the qualified test cases might miss faults located in rarely cov-
ered parts of the program by a few test cases, which might not have the coverage
for a large portion of the program. On the other hand, the ‘Additional’ tech-
niques aim to reach full coverage of the program in the fastest possible time.
With this aim, the ‘Additional’ techniques place a higher priority on a test case
which covers part of the program that has not yet been covered by other test
cases. This could potentially address the limitation of the ‘Total’ techniques that
only focus on a test case with a higher coverage, regardless of achieving the full
coverage of the program. However, test cases with full coverage of the program
might not necessarily reveal all faults in the program [13]. In other words, it is
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Algorithm 1. Line of Code Weight
1: function W(s,ST, NST,P)
2: CoveredStatements = CS(ST,P)
3: if s ∈ CoveredStatements then
4: return CoveredW(s,ST,P)
5: else
6: return UCW
7: end if
8: end function

s: statement, UCW: UnCovered unit

Weight, W: weight for statement

Algorithm 2. Covered Statements Weight
1: function CoveredW(s,ST,P)
2: AF = ∪

t∈NST
DF (t)

3: CW =
∑

(t∈NST )&(s∈SC(t,P )
|DF (t, P )|/AF

4: return CW
5: end function

AF: a set of All detected Faults, CW: Covered

unit Weight

possible that only a specific test case could find existing faults in a particular line
of the program, even though that line might be covered several times by other
test cases. This limitation of the ‘Additional’ techniques could be addressed by
the strategy in ‘Total’ techniques, which would give another chance to statements
already covered to be covered again.

It appears that both ‘Total’ and ‘Additional’ types of techniques have their own
limitations, which could each be addressed by the strengths of the other technique.
This suggests that a solution to these limitations should take advantage of both
techniques. Our proposed approach addresses the mentioned limitations, and is
inspired by the 80-20 rule [15]. This principal is interpreted by the software engi-
neering community as 80 % of faults exist in only 20 % of the program. Our app-
roach, online TCP, initially works in a similar way to the ‘Additional’ techniques
which try to rapidly reach full code coverage of the program. This could poten-
tially help reach a faulty part of the program (20 % faulty portion of the code). By
revealing more faults, our online techniques gradually become similar to the ‘Total’
coverage strategy especially in the area of the already revealed faults. This enables
new faults to be found clustered near the previously clustered detected faults.

Online techniques prioritize test cases based on a weight assigned to their own
covered units. Here, we abstract two coverage metrics (statement and branch)
introduced in Sect. 3 as a generic coverage unit. Our technique assigns a weight
to the covered unit of the program, and the test case that obtains the higher
total weight is given a higher priority to be selected, which is represented in the
selection Eq. 5. The weight of uncovered and covered statements in the previous
selected test case is calculated using the W() function in Algorithm 1. The way
of calculating the weight of covered units would differ depending on whether
that unit has already been covered or not (i.e., uncovered) by selected test cases.
UnCovered Weight (UCW) in Algorithm1 is a constant value, either 0 or 1 based
on variant of online TCP for uncovered statements. The covered unit weight
(CW) is the ratio of revealing the fault detected by test cases that previously
covered the same unit, over all faults that have been found, which is explained
in Algorithm 2. This ratio is always between zero and one. In Algorithm 2, AF
(All Covered Faults) holds all these faults that are retrieved by already selected
the test cases. For explaining these online TCP techniques, the same notions in
Sect. 3 were used.
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t ∈ NST and
∑

s∈SC(t,P )

W (s, ST,NST, P ) is maximum ⇒ return t (5)

As more faults are discovered in a particular area of code, the weight of cov-
ered unit in the same area approaches one, which makes the online prioritization
techniques behave similarly to the TS technique. However, the weight of cov-
ered units in an area with no or a few faults would be zero or near to zero
respectively. Around this area of the program, our online TCP techniques work
similarly to the ‘Additional’ types of techniques. The uncovered unit receives
a constant weight (UCW). UCW with a zero value makes online TCP to act
similarly to ‘Total’ TCP, while online TCP with UCW equal to one is similar to
‘Additional’ techniques. The above explanation is based on statement coverage
for their calculation and form two variants OS0 and OS1 based on UCW zero
and one respectively. Branch based online TCP (i.e., OB0 and OB1) use the
same algorithm but with branch based covered units and using UCW zero and
one constant for each of them. Let us discuss our online TCP technique using
the example of a sample program presented in Fig. 1. We denote the program
statements (si) by nodes of a tree, where the path of executing statements is
represented by the corresponding edges. Those edges that are labeled as bi are
representative of branch statements. In total, there are 11 statements and 8
branches. The execution of the program begins from the root node (s1) to the
leaf nodes (s5, s6, s8, s9, s10). Assume that there are also five test cases to test
this program (t1, t2, ..., t5), which are to be executed from the start to the end
of the program. For simplicity we also assume that running test cases against the
program will not break in the middle of execution. Given the notions described in
Fig. 1, the statement and branch coverage of the test cases are shown in Table 1.
For example, t2 covers statements s1, s2, s5 and branches b1 and b4. This Table
also presents the faults captured by each test case. We assume that our provided
program has 10 faults which are shown in the fault column fi. For example, t1
captures faults f1, f6 and f10.

s1

s3

s7

s10s9

b7 b8
s6

b5 b6
s2

s5s4

s8

b3 b4

b1 b2

Fig. 1. A sample program, rep-
resented as a tree structure (si:
statement, bi: branch)

Table 1. Fault (fi), statement coverage (si) and
branch coverage (bi) from executing test case (ti)
against the sample program in Fig. 1.

si t1 t2 t3 t4 t5 bi t1 t2 t3 t4 t5 fi t1 t2 t3 t4 t5

s1 � � � � � b1 � � f1 � �
s2 � � b2 � � � f2 � �
s3 � � � b3 � f3 �
s4 � b4 � f4 �
s5 � b5 � f5 �
s6 � b6 � � f6 � �
s7 � � b7 � f7 � �
s8 � b8 � f8 �
s9 � f9 � � �
s10 � f10 �
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Our approach is illustrated using the sample test cases in Table 1. For the
sake of simplicity, we only illustrate the statement based online technique with
uncovered statement weight equal to one (OS1). The initial selected test case
would be the one with the highest coverage which could be any of t1, t4 or t5
from the test cases shown in Table 1. Since the initial weight for test cases t1,
t4 and t5 is equal, a random test case is selected. Assuming that the test case
t1 is randomly selected, the execution of test case t1 would reveal three faults
(f1, f6 and f10). The statements that are covered by t1 are s1, s2, s4, and s8, which
would result in the covered weight of 3/3, as the ratio of discovered faults over the
total number of detected faults at the current stage of the algorithm execution.
In the next iteration, the weights of t4 and t5 are equal again. Assuming that t5 is
randomly selected and executed, faults f3 and f9 would be detected. The covered
statement weight for t4 (s3, s7 and s10 except s1) would be 2/5. Finding new
faults would also impact on the weight of covered statements of t1, and therefore
the weight of statement would be changed from 1 to 3/5. Both t1 and t5 cover
s1, and therefore, the weight of s1 would be the sum of both weights, equal to
1 (2/5 + 3/5). The weight for remaining test cases t2, t3, and t4 would be 2.6
(1 + 0.6 + 1), 2.4 (1 + 0.4 + 1), and 2.8 (1 + 0.4 + 0.4 + 1) respectively. Therefore,
in the next step, test case t4 would be selected. Continuation of this algorithm
selects test cases t3 and t2 respectively. Using our algorithm, the final order of
test cases is t1, t5, t4, t3, and t2, which is different from orders obtained by
other existing techniques, which were explained in Sect. 3.

5 Empirical Study

This experimental study first investigates the effectiveness of online techniques
in comparison to baseline techniques for TCP, and next the impact of factors,
such as different test cases coverage, are examined. The research questions of
this study are given as follows:

– RQ1: Can a test case prioritization technique be improved using the location
of previously detected faults?

– RQ2: How can different coverage criteria affect the effectiveness of test case
prioritization based on the location of previously detected faults?

Independent Variables: In the design of this experimental study, first we
explain a set of independent variables. Two coverage criteria, statement and
branch coverage, are used in this study. Statement coverage is mainly used in
our test prioritization techniques; however branch coverage is used not only for
the TCP, but also to form the test pool for this research. Moreover, ten different
TCP techniques are used in this research. Six of them form baseline methods to
compare against the four methods proposed in this paper. The baseline methods
include ‘Additional’ and ‘Total’ TCP with each of the two different coverage
criteria (4 in total), in addition to the optimal and the lower bound effectiveness
techniques (the further two methods). These techniques were discussed in Sect. 3.
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The proposed techniques in this study (Sect. 4) are based on two main methods,
which are further extended using the introduced coverage criteria, leading to a
total of 4 techniques.

Dependent Variables: There is one dependent variable in this study, which
is referred to as APFD (Average Precision Fault Detection). APFD is the main
metric for comparing TCP techniques. In a study by Elbaum et al. [5], the
effectiveness of a TCP technique is defined using the following formula:

APFD = 1 −

m∑

i=1
TFi

nm
+

1

2n

In the above formula, n is the number of test cases in a test suite, and m is
the number of faults that are revealed by the execution of the test suite. Given
different orders of test cases in the test suite, TFi returns the index of first test
case with which the Fault i has been detected for the first time [5].

Experimental Object Programs, Test Cases, Faults and Test Suites:
Seven C programs are used in our experimental study, which were initially used
by Siemens engineering researchers [6]. The researchers explored how effective
dataflow and controlflow-based techniques can be selecting the number of test
cases that are adequate for detecting faults. These programs have been exten-
sively used by the software testing research community, particularly in the TCP
(e.g., the study by Rothermel et al. [18], Li et al. [12] and Jiang et al. [7]). Each
of these seven programs has an oracle version and multiple faulty versions, in
addition to the test cases and an input file. As described in Sect. 3, running all
test cases is not practical or feasible in real-world applications; therefore, we
select a subset of test cases from the test pool to form a test suite. In this study,
the test suite must have full branch coverage of the oracle version, in addition
to having the coverage of detecting all faulty versions. The branch coverage is
selected because it is more complete compared to statement coverage, in terms
of the number of possible different coverage criteria produced by the test cases,
as used in the literature.

The experiments in this study are repeated 1000 times to make the results
independent from a specific generation of test pools. The average size of the
test suite, the number of test cases in the test pool, and the number of Lines
of Code (LoC) in our experimental object programs are presented in Table 2.
The explanation of experimental object could be found in the study by Hutchins
et al. [6].

Threats to Validity: A set of risks has been previously identified in validating
research projects and consists of internal, external, construct and conclusion
threats.

The internal threats are related to errors that could occur within the devel-
opment of the research project. In our study, the implementation of the pri-
oritization technique, and also the APFD metric can be at the risk of internal
threats. In order to reduce these risks, the implementation of this study has been
reviewed multiple times.
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Table 2. Experimental object program specification in a study by Do et al. [3].

Program LoC Number of faulty versions Number of test cases Test suite avg. size†

print-tokens 726 7 4130 21.061

print-tokens2 570 10 4115 17.066

replace 564 32 5542 38.223

schedule 412 9 2650 15.341

schedule2 374 10 2710 16.049

tcas 173 41 1608 30.8

tot-info 565 23 1052 14.523
†Avg. size is constructed from our experimental study.

External threats come from the errors of other research projects that have
been used for the current study. The external threat for our study is related
to the experimental object of the program, the Siemens program [6], and their
faulty versions. The Siemens program is implemented in C language and cannot
be generalized to all other programming languages. This limitation has also
been highlighted in past research [4], which requires further investigations on
the TCP for different programming languages, which are beyond the scope of
this study and we plan to explore in future work. Another external threat to
this study might come from the faulty versions of the object program, as they
might not be representative of the real-world faults. The use of the Siemens
program reduces this type of risk, as Software-artifact Infrastructure Repository
(SIR) [1] has stated that Siemens engineers seed faults manually to the faulty
versions in such a way as to simulate faults in real-world applications. Moreover,
the Siemens object program has been broadly used in software testing research.
Just et al. [10] reported that about 1,400 papers in Google Scholar have used
the Siemens program in their research, and over 677 papers have been published
by using the SIR repository for their empirical study [1].

The construct threats are related to the evaluation measures of the research.
In this study, we use APFD as an evaluation metric, and therefore, this can
be considered as the construct risk. Although some limitations of using APFD
have been mentioned in past research (e.g., a study by Elbaum et al. [5] found
that APFD does not differentiate between the cost for detecting faults and test
cases), it is still the main metric for comparing TCP techniques.

The conclusion threat refers to errors in the interpretation of the experimental
results. In this study, this risk was controlled by running experiments multiple
times, and further using statistical tests for significant interpretations of the
results.

6 Experimental Results

There are multiple runs and techniques involved in this experiment. To bet-
ter illustrate the results for each object program, the statistical analyses are
explained in this Section. A detailed illustration of results is also provided for a
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sample object program (tcas) in Fig. 2 using boxplots. In this figure, the x-axis
represents different prioritization techniques, and the y-axis demonstrates the
APFD score for each of the techniques. The test prioritization techniques are
shown by abbreviations explained in Sects. 3 and 4. Every technique has a box
plot which shows the mean (�), median (−), 90th and 10th percentile and also
any outlier (+). The actual APFD average of each technique is reported on top
of each whisker. This way of presentation has been previously used by other
studies [24]. The rest of detailed results are available online1.

Statistical tests were run for techniques in the same experimental object pro-
gram to indicate the significant differences between the techniques using ANOVA
test followed by a post-hoc analysis. The results of the ANOVA test indicate sig-
nificant differences (p-value < 0.0001) for all groups of techniques in each exper-
imental object program. Following ANOVA in order to identify which pairs of
techniques are significantly different, a post-hoc test, LSD, was employed which
has been previously used in a similar study by Zhang et al. [24]. The results of
the LSD test for each object programs in Table 2 are shown in the top part of
Table 3, where statistically different techniques are assigned different grouping
labels and are ordered from left to right with their mean values. For example,
technique O achieved the highest mean value, whereas technique R is in the
lowest rank for object print-tokens.

The labels could have two different signals based on the commonalities in
the letters of the labels: (1) The labels are different, which means that they are
statistically different from each other: for example in print-tokens, techniques O
and OS1 have different labels ‘a’ and ‘b’ respectively. (2) On the other hand,
the labels are the same or share common parts of the label, which means that
the techniques are not statistically significant and are independent: for example,
OB1 and OB0 have taken the same label of ‘cd’, likewise OS1 and OS0 share
the letter ‘b’ in their labels (‘b’ and ‘bc’ respectively), which shows that they
are not statistically different.

Comparisons Between Statement-Based Techniques: As mentioned
before in Sects. 3 and 4, statement-based techniques consist of OS0, OS1, AS
and TS. APFD scores for the statement-based techniques indicate that at least
one of our proposed techniques (OS0 and OS1) could significantly improve both
statement-based baselines (AS and TS). However, note that statistical results of
APFD score for two programs of replace and print-tokens2 indicate that there
are no significant differences between proposed or baseline techniques.

Our observation indicates that the APFD score for OS0 is always significantly
better than for the AS technique in all experimental object programs. The APFD
score of OS0 is also always better than or at least similar to that for TS with
the exception of print-tokens2, where the APFD score of AS significantly out-
performs OS0. Similar to OS0, the APFD score of OS1 is always significantly
better than for AS. In comparing the APFD scores for OS1 against TS, it appears
that OS1 is significantly better than TS in most of the cases, and there is no
case where TS outperforms OS1 significantly. Our proposed techniques in most
1 http://tinyurl.com/detailed-graphs

http://tinyurl.com/detailed-graphs
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of the programs did not outperform each other significantly except in schedule2
and print-tokens2, where OS1 is significantly better than OS0 in terms of the
APFD score.

Comparisons Among Branch-Based Techniques: Recall from Sects. 3
and 4, branch-based methods consist of OB0, OB1, AB and TB. Similar to
the statement-based techniques, our proposed branch-based techniques (OB1
and OB0) either out-perform baselines (AS and TS) significantly, or there is
no significant difference in effectiveness. However in contrast to the proposed
statement-based techniques, which out-perform baselines significantly in most
cases, our branch-based techniques are among the best performing group of
techniques, which are not significantly different. The only exception is for tcas,
where both of our branch-based techniques performed significantly better than
the baselines. In terms of APFD score, OB0 performs significantly better than
AB in all cases, except for one case of print-tokens2, where both techniques are
not significantly different. On the other hand, comparing OB0 with TB shows
that these techniques are not significantly different except in two cases where TB
performs significantly better than OB0 (print-tokens2 and totinfo), and there is
one case where OB0 out-performs TB(tcas).

Summary and Implications: The statistical analysis of techniques is sum-
marized in the bottom part of Table 3. In this part of the table, the rows are
filled with proposed techniques while the columns are dedicated to the baseline
techniques. The statement-based and branch-based techniques are illustrated on
the left and right hand sides of the bottom table respectively. The numbers in
the summary table represent how many times our proposed techniques are sig-
nificantly different from corresponding baselines. In addition to the numbers,
there are two notions of > and < which denote whether the mean score of
our technique is either greater than or smaller than the corresponding baselines.

Fig. 2. Techniques comparisons based on 1000 test runs on program tcas
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Table 3. Statistical comparison between techniques (top: details and bottom:
summary).

Method O OS1 OS0 TS OB1 OB0 TB AS AB R print-tokens
Grouping a b bc cd cd cd d e f g
Method O TS OS1 TB OB1 OS0 AB AS OB0 R print-tokens2
Grouping a b b c c c d d d e
Method O TB OB1 OB0 OS0 OS1 TS AB AS R totInfo
Grouping a b bc c d d e f g h
Method O OB1 OB0 TB OS1 OS0 TS AS AB R schedule
Grouping a b bc bc c c d d e e
Method O OB1 TB OB0 OS1 TS OS0 AS R AB schedule2
Grouping a b b bc c d d e f g
Method O OB1 TB OS1 TS OB0 OS0 AB R AS replace
Grouping a b b b b b b c d e
Method O OB0 OB1 OS0 AB OS1 AS TB R TS tcas
Grouping a b b c cd cd de e f g

Statement AS TS Branch AB TB
OS1 6 (>) 0 (<) 5 (>) 0 (<) OB1 7 (>) 0 (<) 1 (>) 0 (<)
OS0 7 (>) 0 (<) 3 (>) 1 (<) OB0 6 (>) 0 (<) 1 (>) 2 (<)

For example, from the left side of the summary Table 3, OS0 has a mean score sig-
nificantly greater than TS in three object programs, whereas TS is significantly
greater in one object program. It can be seen that in this table, the two baselines
of random and optimal were not considered, since they are representative of the
upper and lower bounds of the prioritization techniques respectively. Given the
above summarized results on differences between our proposed techniques and
the baselines, we draw the following conclusions for the research questions of this
study. The first research question in Sect. 5 is regarding the effect of using online
information about the location of faults, and how it could affect the TCP tech-
niques. The results summarized in bottom Table 3 indicate that using the fault
location can outperform the baseline techniques. As can be seen in this table,
the average APFD score of the proposed new techniques are always among the
leading group, and mostly they outperform the baselines significantly (53 out of
56 cases, i.e., 4 ‘pairs of comparison’ × 2 ‘coverage criteria’ × 7 ‘programs’ = 56),
while there are only a few cases where baselines statistically outperform the
proposed techniques.

The second research question (RQ2) relates to the effect of different cov-
erage criteria on the performance of proposed techniques compared to the base
line. The summarized results indicate that the proposed branch-based techniques
have overall better performance over the statement-based techniques. Statisti-
cally speaking, proposed statement-based techniques, most of the time, outper-
form the statement baselines; however, the number of significant differences for
proposed branch-based techniques that outperform the branch baselines are not
as large as that for the statement based techniques, particularly for TB tech-
niques. Our proposed branch-based techniques outperform the branch baselines
in most of the cases as can be seen in the summary part of Table 3. An underlying
reason for the lower performance of our statement-based techniques in compar-
ison to branch-based techniques could be due to the more fine-grained coverage
of branch-based techniques, which makes the effectiveness of the techniques less
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distinctive. Another observation from the results is that the order of TB and AB
coverage is similar to the order of the proposed techniques with uncovered unit
weights of 0 and 1 respectively for each coverage criterion. For example, in the
replace object program, Table 3, TB works better than the AB, and similarly
OB1 is better than OB0. On the other hand, for tcas, AB is better than TB, and
likewise OB0 works better than OB1. This is in line with what we assumed in
Sect. 4 that the uncovered unit with 0 and 1 values make our proposed techniques
work similarly to the ‘Total’ and ‘Additional’ baselines respectively.

Overall, this paper has provided several contributions towards improving
the effectiveness of current TCP techniques: (a) online branch-based techniques
outperform branch-based baselines (b) online statement-based techniques out-
perform statement-based baselines; and (c) online branch-based techniques out-
perform both branch and statement-based baselines.

7 Conclusions and Future Work

In this paper we proposed a family of TCP techniques based on online informa-
tion about the previously executed test cases, to further improve the prioritiza-
tion of the remaining test cases. The approach relies on covering the location
and area around previously identified faults, which is motivated by the 80-20
rule, where 80 % of faults in a program are related to only 20 % of its code. How-
ever, most of traditional TCP techniques only used greedy information in the
coverage of test cases. To measure the effectiveness of the proposed approach,
we performed an empirical study. The results of the study showed that in most
cases, the suggested techniques significantly outperform baselines. These tech-
niques were categorized in two subcategories based on the coverage of statements
or branches of the program. The statement-based techniques mostly improve
existing baselines, which utilize the statement coverage. However, in comparing
branch-based techniques with the corresponding baselines, it appeared that this
type of technique was not as effective as the statement-based results. This may
suggest that branch-based techniques have a broader coverage in comparison to
the statement-based techniques, and it is more likely that faults can be captured
after a few times of covering code branches.

Our current approach is based on the assumption that each statement or
branch near the location of previously identified faults has even probability of
encountering a new fault. However, it is also likely that some particular types
of statements or branches have higher chance of having faults. It is also likely
that some types of statements or branches have higher chance of having faults.
Another possible future work direction is to integrate the presented approach
with the analysis of human factors in software reliability engineering [20]. We
plan to study the behaviours of developers to further distinguish the likelihood
of faults occurring in different statements and branches.
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Abstract. Even if multicore architectures are nowadays extremely
wide-spread, the exploitation of this easily available degree of parallelism
is not always straightforward. In this paper we describe the experience
gained in our ongoing effort to parallelise the model checking engine of
a family of model checkers (KandISTI) developed at ISTI. The main
focus of our experimentation is the evaluation of the minimal efforts
needed to take advantage of our everyday multicore hardware for model
checking purposes. Our early results relative to an initial fragment of
the logic show a speedup factor of about 2.5 when 4 physical cores are
available. This result, however, can only be achieved by complementing
the initial high level Ada design with a second round of code fine-tuning
which exploits nonstandard low level features in the implementation of
the needed thread-safe data structures.

Keywords: Model checking · Parallel programming · Multicore proces-
sor architectures · Ada programming language

1 Introduction

KandISTI [4], is a family of model checkers being developed at ISTI in the
last ten years aimed to the experimentation of innovative formal verification
techniques. The family is constituted by four model checkers each of which is
oriented to a particular system design approach, but all of which share the
same underlying abstract model and verification engine. The basic underlying
idea behind KandISTI is that the evolution in time of the system behaviour
can be seen as a graph where both edges and states are associated with sets
of (composite) labels [9]. Labels on the states represent basic state properties,
and labels on the edges represent properties of system transitions. The different
flavours of the various tools have to do with the choice of one of the supported
specifications languages, which range from process algebras to sets of UML-like
statecharts.

The properties that can be verified on such a graph are expressed in a branch-
ing time, state and action based, temporal logic [8] which includes both the basic
fix point operators and the more friendly (A)CTL-like [7] operators. The verifica-
tion of a formula and the generation of the relevant part of the system evolutions
c© Springer International Publishing Switzerland 2016
M. Bertogna et al. (Eds.): Ada-Europe 2016, LNCS 9695, pp. 94–109, 2016.
DOI: 10.1007/978-3-319-39083-3 7
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graph occur on the fly. Given an initial system state and a top-level formula,
only the actually needed subformulas of the initial formula are analysed, and
only the actually needed next states of the current state are generated. The
graph generation is driven on demand from the ongoing formula verification. All
the various tools of the KandISTI framework are programmed in Ada, and are
freely usable online through a public web interface.1 These tools are being used
mainly for didactic and academic research purposes, and have not yet reached
the engineering level actually needed for full-scale industrial use.

All these tools are usually executed upon consumer level hardware that nor-
mally supports at least 4 cores. The current version of KandISTI is however not
able to exploit this easily available degree of parallelism. We are therefore inter-
ested to observe which degree of redesign is needed and to measure the amount
of benefits that could be gained by the exploitation of the multicore structure
of our systems. The parallelisation effort is still ongoing, but the early results
already show a reasonable picture of the situation and of the novel design.

In Sect. 2 we describe the overall structure of the original sequential version
of the tools, while in Sect. 3 we describe two possible approaches for introducing
some parallelism during the verification. In Sect. 4 we describe a recent case
study to which our KandISTI framework has been applied and we show the
results of the parallelisation efforts. In Sect. 5 we draw some final conclusions.

2 The Basic Sequential Approach

In the following we will consider just a few operators of the logic supported by
KandISTI, which are however sufficient to illustrate the overall structure of the
verification mechanism. One of these is the EX (Exists neXt) operator.

The formula: EX{action}subform holds on a state s if and only if there exists
an outgoing transition from s whose edge labels satisfy the transition predicate
action and which leads to a target state s′ in which the formula subform holds.
A second operator we consider is the AG (Always Globally) operator.

The formula: AG subform holds on a state s if and only if for all the states
reachable (in any number of steps) from s, the formula subform holds. We also
make use of the True formula which holds in any state, and the true action
predicate which holds for any transition.

The skeleton of the sequential verification algorithm is quite simple: we have
an EvalFormula function which, depending on the kind of formula passed to
it, dispatches to the appropriate specific version returning a TT or FF value
according to the validity of the formula on the given state. When the formula to
be evaluated is of the EX kind, the evaluation has the following structure:

1: function EvalEX(Formula, State) return Computation Status is

2: Result: Computation_Status;

3: begin

1 http://fmt.isti.cnr.it/kandisti.

http://fmt.isti.cnr.it/kandisti
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4: Result = Computations DB.CheckComputation (Formula, State)

5: if Result = NOT YET STARTED then

6: Result := FF;

7: for E of GetEvolutions(State) loop

8: if E.Labels satisfy Formula.Action then

9: Result := EvalFormula(Formula.Subformula,E.TargetState);

10: if Result = TT then

11: exit;

12: end if;

13: end if;

14: end loop;

15: Computations DB.Set_Status(Formula,State,Result);

16: end if;

17: return Result; -- either TT or FF

18: end EvalEX;

We assume the existence of a Computations DB, i.e. a global container keeping
track of all partial or completed subcomputations being performed. By calling
CheckComputation (Line 4), each time a new subcomputation (i.e. a pair [for-
mula, state]) is needed we check whether that computation has already been per-
formed. In the positive case we can return the already known result, otherwise
we return a NOT YET STARTED value. This global container is essentially a
large global hashed set. The Computations DB is not the unique global struc-
ture: also the graph representing the possible system evolutions, which is dynami-
cally generated as the evaluation proceeds, needs to be saved and recorded as some
kind of hashed map from nodes to edges (Configurations DB). Both these global
data structures are in our case programmed using custom hash tables, which
allow easier monitoring and ad hoc optimisations of the code (e.g. deletions are
never needed). In the previous example of EvalEX code, the call of GetEvolutions
(Line 7) interacts with the underlying Configurations DB potentially triggering
the analysis of a new node and the expansion of the system evolutions graph. The
case of recursive operations like the AG formula is a little more complex especially
in the case of cyclic models. In this case the evaluation has the following structure:

1: function EvalAG(Formula, State) return Computation Status is

2: Result: Computation Status;

3: begin

4: Result = Computations DB.CheckComputation (Formula, State)

5: if Result = NOT YET STARTED then

6: Result := EvalFormula(Formula.Subformula, State);

7: if Result = TT then

8: Computations DB.Set_Status(Formula,State, TT);

9: for E in GetEvolutions(State) loop

10: Result := EvalAG(Formula, E.TargetState);

11: if Result = FF then

12: Computations DB. DB.Set_Status(Formula, State,FF);

13: exit;
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14: end if;

15: end loop;

16: else

17: Computations DB. DB.Set_Status(Formula, State,FF);

18: end if;

19: end if;

20: return Result;

21: end EvalAG

As in the previous case we first check whether a result is already known (Line 4).
If the result is not known we first evaluate whether the AG subformula actually
holds in the current state (Line 6). If it does not, the evaluation is completed
and the FF value is saved and returned (Lines 17, 20). If the subformula holds
in the current state we save this initial partial result (Line 8) and proceed with
the recursive evaluation on all the successor states. If for the some successor the
AG formula does not hold we save the FF status, and exit the loop. If the AG
formula holds for all successors we finally return the already saved TT result.
If during the evaluation of AG we meet a nested recursive evaluation of AG
(because of loops in the graph) we take its already saved TT value and continue
the analysis, according to the maximum fix point semantics of AG.

The above verification structure is actually a simplification of the real sequen-
tial algorithm used in the KandISTI framework. In particular we have not shown
the overhead needed to save the information required to generate a counter-
example (or the proof) for the formula together with the final result. More-
over, we have not shown the possibility to truncate the recursive evaluations
at increasing levels of depth (bounded model checking) in order to search for
counter-examples or proofs smaller than those otherwise generated by a purely
depth first evaluation approach.

3 Towards a Parallel Approach

The introduction of parallelism in the verification process has to successfully
overcome three difficulties.

– Memory model: A sequential program may usually rely on a flat view of the
available memory; it is a compiler/hardware task to optimise the performance
by keeping data inside registers, local caches or physical RAM in a way is
completely transparent to the programmer. In the case of parallel programs
the programmer has to apply Volatile/Atomic aspects to the shared objects
and types, and apply the appropriate synchronisations mechanisms to serialise
the accesses to the shared objects, in order to preserve a coherent inter task
view of the memory. This also implies hardware/compiler efforts that may
greatly reduce the overall performance of the program.

– Synchronisations: The executions of operations over shared data (hash
tables/queues) need to be properly synchronised, and this requires additional
overhead in the execution of otherwise simple operations.
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– Parallel design: Finally, the parallelisation of the evaluation algorithm may
introduce additional complexities and overhead with respect to the plain
sequential depth-first approach.

These problems do not have a known unique solution, as the most effective choice
may actually depend on the details of the hardware, on the structure of the state-
space, on the structure of the formula, on the desired degree of parallelism, and
on the overall structure of the parallel design. Some experimentation is therefore
needed. In the following we describe two possible approaches that differ in the
amount of redesign they require, and in the reasonable benefits that we can
expect from them.

3.1 Parallel Graph Generation

In many cases the complexity of generating the needed fragment of state-space
can be higher than the complexity of evaluating a formula over it. A first exper-
iment that could be done is therefore letting the sequential verification program
to proceed in parallel with one or more other tasks that simply speedup the evo-
lutions graph traversal and state-space generation. Since the evaluation task and
the additional model-generating tasks both work upon the shared hash tables
used to elaborate the nodes and to store the representation of the graph, we
still need to use a thread safe implementation for these tables. Clearly it is not
possible to model the whole hash table as a single protected object, but we need
to synchronise the accesses to the data in a more fine-grained way. We can do
that, for example, by partitioning the table and associating locks to the vari-
ous regions so that accesses to different parts need not to get synchronised. In
Ada, the classical abstract, portable way to implement a semaphore requires
the use of a protected object; however if we choose this implementation we see
that the choice has pernicious effects on the program performance (specific data
is shown in Sect. 4). The problem lies on the high overhead introduced by pro-
tected objects for synchronising very small operations. Indeed, these may require
expensive context switching each time a task not allowed to immediately pro-
ceed with its operations. An alternative solution is that of using custom, system
dependent, implementations of spinlocks, exploiting the compiler built-in lock-
free primitives,2 based on atomic compare-and-swap and memory fence proces-
sor operations. Using these lightweight non context switching (busy waiting)
primitives our parallel version of the program actually shows some significant
speedups, especially in the case of verification of simple properties requiring the
full state space analysis. The advantage of this approach is that, since we do
not touch the evaluation algorithm, only rather small modifications have to be
done to the model checker code. However, since the model generation is now
separated and independent from the evaluation algorithm we completely lose
the advantages of the on-the-fly model generation.

2 In our case we use the GNAT run-time component System.Atomic Primitives.



An Experience in Ada Multicore Programming 99

3.2 Parallel Formula Evaluation

The above considerations suggested to further investigating how to introduce
the parallelism directly inside the evaluation algorithm. Our scenario is that we
have only a limited number of cores on a single processor, therefore it might
not be necessary to push the parallelism of the evaluation to its limits. As a
first approach we plan to introduce the parallelism only into the recursive AG
operators. The worst-case complexity of the verification (which for the CTL-
like fragment of the logic is linear w.r.t. the number of states, number of edges
and size of the subformula) is only obtained when recursive operators (like AG)
need to explore the whole state-space before producing a result. Therefore our
approach directly targets this worst case of evaluation.

Handling of Non-recursive Operators. In the sequential case the evaluation
proceeded by constructing (in a depth first mode) a graph of subcomputations.
Our goal is now to build that same structure in a concurrent way. We start
by associating to each logical subcomputation, corresponding to a pair [formula,
state], an evaluation fragment. All evaluation fragments are stored inside a global
shared container implemented as a thread-safe hashed set. Each evaluation frag-
ment has references to the set of fragments on which it depends, and references
to the set of fragments that depend on it. In this way we have a graph structure
modelling the ongoing evaluation process.

From the point of view of this data type, the main difference with respect
to the sequential case is that now evaluation fragments must synchronise the
operations working upon them, and that also the shared global hashed set of all
fragments must synchronise all operations of insertion and retrieval. We suppose
to have a pool of worker tasks, where each task performs a cycle in which the
task takes one item from a shared container of needed fragments and elaborates
the fragment, until the whole verification is completed. The parallel evaluation
process begins with the insertion in the shared container of the initial fragment
corresponding to the top-level formula and the initial system state.

The precise effect of the elaboration of a fragment associated to a pair [for-
mula, state] depends on the kind of the formula, on the possible evolutions of
the state, and on several design choices to be performed (like the amount of
parallelism we want to introduce or the order of analysis of subfragments). The
overall structure of the evaluation process for a fragment comprises the following
steps:

– The fragment internal structure is initialised. In particular, the current system
state is analysed and its next successors states (and edge labels) are computed
(if not yet known). This is the point that may trigger the evaluation-driven
model generation step. The eventually needed subfragments are identified,
and if not already existing they are created and added to the global shared
container.

– We start the check of the status of the needed subfragments. The status of a
fragment can be one of: JUST CREATED, NEEDED, TT, FF.
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• If the status of a subfragment is JUST CREATED, then a reference to
the current fragment is recorded inside the subfragment parents’ list.
Moreover the subfragment is introduced into the global shared container
of needed fragments (to be eventually elaborated by some worker task).
The status of the subfragment is also changed to NEEDED.

• If the status of the subfragment is already NEEDED, then just the record-
ing of a reference to the current fragment inside the parents’ list of the
subfragment is sufficient.

• If the status of a subfragment is TT, or FF, we take care of this informa-
tion deciding if is it sufficient or not in order to complete the evaluation of
the current fragment. For example, in the case of an or formula, an early
TT result is sufficient to establish the TT status of the current fragment
without any further evaluation.

If during the elaboration of a fragment we can establish its definitive TT or FF
status, this information is recorded (if not already present) inside the fragment
data and the same information is notified back to all the registered parents so
that they can handle it.

If a fragment is intended to be elaborated in a sequential way (e.g. as in the
case of fragments associated to EX, operators) the evaluation of subfragments
proceeds as long as the previous subfragments have an already computed TT
or FF value. As soon as a subfragment is found with no definitive value (i.e. a
JUST CREATED or NEEDED value), the elaboration of the current fragment
is temporarily abandoned after the recording of the current fragment in the par-
ents’ list of the subfragment. When a notification from the subfragment arrives,
depending on the delivered TT or FF value, either a final result is established
(and notified back to the parents), or the elaboration of the remaining list of
subfragments is resumed.

The operations working over fragments must behave in an atomic way, guar-
anteeing that the semantics of a set of parallel invocations is the same as if they
were executed in some sequential order. This can be achieved by implementing
fragments as Ada protected objects, or by implementing them as plain records
and manually encoding the needed synchronisations of the calls using spinlocks
or semaphores. We have experimented with both approaches and the results are
illustrated in the Sect. 4.

Handling of Recursive Operators. The above description describes well the
behaviour of the evaluation for all the fragments referring to non-recursive logical
operators (e.g. and, or, not, EX, AX, <>, [] operators). In the case of recursive
parallel operators (like AG,) the situation is more complex.

Handling cycles in the state space: Let us consider a system having just three
states, as shown in Fig. 1.

The evaluation of the initial fragment F1 leads to the creation of the two
other fragments F2 and F3, which are evaluated in parallel. The evaluation of
F2 finds the fragment F3 in the NEEDED state, and just registers itself as a
parent fragment depending on F3. The same happens during the evaluation of
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Fig. 1. Mutually dependent fragments in the evaluation of AG true

F3: fragment F2 is found as already NEEDED and therefore F3 just registers
itself in the F2 parents list. Now all the possible elaborations are completed
(there are no more fragments to elaborate) but no result has been produced. If
the evaluation of an AG operator completes (in the sense that there is nothing
more to compute) without producing any result, then the TT result is the correct
result to be returned. The situation is partly similar to the sequential case when
the discovery of a still in progress subcomputation was treated as if a TT result
was found. The difference is that we can discover these cases only when the full
exploration of the AG formula is ended.

Handling Early Completions: The evaluation of an AG fragment spreads the
parallel elaboration of its subfragments. If formula subform is eventually found
to be FF in some state, then the corresponding parent AG subform, and all its
ancestor fragments up to the root AG formula, must be set to the state FF. This
is already done by the backward notification procedures. However we must also
stop all the still ongoing parallel spreading of AG fragments. The specific evalu-
ation procedure for AG fragments aborts its elaboration when the status of the
root AG formula is found to be FF (another global shared variable AGSTATUS is
used for this purpose), therefore stopping the further spreading of subfragments.
When an AG fragment is aborted, its status is reset to JUST CREATED, and
the same happens recursively to all its not yet resolved ancestors. Done that, the
remaining still unresolved AG fragments can instead be set to the TT status,
as they are related to isolated loops in the graph, not affected by the nodes for
which the formula is false.

Dealing with Parallel Root Evaluations: Another limitation of the evaluation of
AG formulas is that we cannot start two parallel evaluations from two different
root states. If that happened the two evaluations could interfere. For example,
it would become particularly difficult to understand which fragments to abort
when an FF result if found in some state (we should not abort fragments being
used also by other root AG evaluations). Therefore, we decide to concentrate
all parallel efforts to the recursive evaluation of one AG formula at a time.
Considering our relatively limited degree of expected hardware parallelism, this
is in practice not a big limitation. While the evaluation of some AG formula is in
progress, we enqueue all the concurrently arising evaluation requests for the same
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root AG formula, and when one evaluation completes we just resume another
root evaluation from that queue. Notice that we do not prevent different AG
formulas to be evaluated in parallel. For example, let us consider the formula:

AG ((not EX{b} True) or AG EX{a} True)3

In this case we would have a parallel evaluation of the outer AG (searching for
nodes which have outgoing {b} transitions), and a set of root AG evaluations
looking for {a} transitions that would happen to be serialised and executed one at
the time. The full implementation of the parallel version of our model checkers is
still in progress. We have to support further recursive and not recursive CTL-like
operators, the parameterisation of formulas, and to understand how to deal with
fix points. Nevertheless we can already experiment with the current framework
to evaluate the current design strategies and to optimise the implementation of
the shared data types. In the next section we will show a case study that we
have adopted as an initial benchmark to evaluate our progress.

4 Case Study

In order to have an early feedback about the performed design choices, we have
tested our parallel approach with a case study recently analysed within our
KandISTI framework. The case study is taken from the railway domain, and is
related to the verification of a deadlock avoidance technique implemented inside
the software which controls the movements of (driverless) trains inside a given
yard [12,13]. In that case study we had a formal model of the system based on
the railway layout shown in Fig. 2, including a certain number of trains moving
inside the yard according with their predefined set of missions. The purpose of
the verification of the formal model is to verify that the deadlock avoidance
kernel of the control system is actually able to dispatch the trains on the layout
without ever causing situations of deadlock, even in presence of arbitrary delays
with respect to the planned timetable. Several models of different complexity
can be built, depending on layout region in which the trains are moving, on the
number of trains considered and on the length of their missions.

The whole model has been described by a UML statechart and the verification
is carried out with the UMC model checker [5]. We have considered three models
of growing complexity as illustrated in Table 1.

Table 24 shows the evaluation time for an exhaustive deadlock analysis per-
formed by verifying the formula AG EX {true} True (which simply states that all

3 For all reachable nodes it is true that either the node has no outgoing {b} transitions,
or the node and all its successors have at least one outgoing {a} transition.

4 The data in the following tables are taken on a MacBook Pro early 2013, with
a quad-core Intel Core i7-3740QM @ 2.70 GHz CPU, 16 GB RAM, running OS X
El Capitan Version 10.11.3. The code has been compiled with GNAT GPL 2015
(20150428-49). Execution times computed by performing calls to Calendar.Time at
the beginning/end of each evaluation. Sources, executables, models and test data
are available from http://fmt.isti.cnr.it/WEBPAPER/AE2016-data.zip.

http://fmt.isti.cnr.it/WEBPAPER/AE2016-data.zip
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Fig. 2. The yard layout and the missions for the trains of the green, red, yellow and
blue lines (Color figure online)

Table 1. The three reference models

M1: 7 trains moving with short missions
(one way traversal of the yard)

(323,195 states)

M2: 8 trains moving with short missions
(one way traversal of the yard)

(1,636,538 states)

M3: 8 trains moving with long missions
(one way traversal of the yard)

(8,878,643 states)

reachable states do have at least one successor), using the original purely sequen-
tial version of the tool UMC (with and without all compile time optimisations
turned on).

Table 2. Sequential evaluation times for AG EX{true} True

Model Evaluation time -O3 (optimized version)

M1: 21 s 11 s

M2: 110 s 57 s

M3: 660 s 371 s

In Tables 3 and 4, instead, we show the evaluation times resulting from the
first approach in which the sequential evaluation of the formula is helped by
the parallel model generation by 1, 2 or 3 worker tasks. We show two data sets,
one for the case in which data synchronisation is achieved using semaphores
implemented by protected objects (Table 3), and one in which semaphores are
implemented by custom (busy waiting) spinlocks (Table 4).

The data in Table 3 shows clearly that, when protected types are used for
implementing semaphores, the presence of worker tasks instead of improving the
overall performance of the model checker, drastically reduces it. In particular,
the introduction of a second worker has the immediate effect of more than dou-
bling the execution time. Moreover we can see that the execution times of the
parallel version with zero worker tasks (i.e. still using thread-safe global con-
tainers, but running only the sequential evaluator task), suffers only a small
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Table 3. Parallel graph generation (using protected objects)

Model +1 task + 2 tasks +3 tasks

M1: 22 s 49 s 72 s 84 s

M1(-O3) 14 s 42 s 65 s 73 s

M2: 121 s 259 s 382 s 446 s

M2 (-O3) 75 s 220 s 349 s 394 s

reduction of performance w.r.t. the original purely sequential version when no
optimisation is performed on the compiled code. This small reduction is caused
by the presence of atomic/volatile aspects in the shared data types and by the
overhead introduced by the calling of the semaphore primitives (which however
never happen to block the executing task). The negative effect of the presence
of atomic/volatile data is more evident when optimisations are turned on, since
this aspect directly prevents many memory based optimisations.

Table 4. Parallel graph generation (using spinlocks) - times and speedups

Model +1 task + 2 tasks +3 tasks

M1: 22 s 15 s (1.46) 13 s (1.69) 15 s (1.46)

M1 (-O3) 14 s 9.8 s (1.42) 9 s (1.55) 8 s (1.75)

M2: 116 s 79 s (1.46) 69 s (1.68) 82 s (1.43)

M2 (-O3) 72 s 48 s (1.50) 45 s (1.60) 50 s (1.44)

M3: 701 s 480 s (1.46) 408 s (1.71) 485 s (1.43)

M3 (-O3) 452 s 294 s (1.53) 265 s (1.70) 296 s (1.52)

With the use of spinlocks instead of protected objects we see some gains in the
exploitation of the multicore architecture. As shown in Table 4, the evaluation
time in this case decreases of a percentage varying from 35 % to 42 % when +2
worker tasks are activated. However the big gain is obtained by the activation
of the first worker, the second and other workers have a much smaller effect.
This effect can be explained by the fact that the more worker tasks we create,
the sooner the generation of the full model completes (while the inter-tasks
interferences grow): once the model is fully generated no more gains are given
by the parallelism. We can see that these gain are mostly preserved also in the
case of compilations with full optimisations turned on.

Finally, let us see what happens with our parallel evaluation approach, when
both the model generation and the fragment evaluation are being carried out in
parallel by several evaluator tasks. Also in this case we take into consideration
the possibility of achieving mutual exclusion in the fragment data manipulation
either using a protected type or by using custom spinlocks (Table 5). In both
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Table 5. Parallel formula evaluation

Model Using protected objects Using spinlocks

1 task 2 tasks 3 tasks 4 tasks 1 task 2 tasks 3 tasks 4 tasks

M1 (-O3)
speedup

12.7 s 7.4 s
1.71

5.9 s
2.13

5.4 s
2.32

12.5 s 7.2 s
1.73

5.4 s
2.31

4.5 s
2.77

M2 (-O3)
speedup

66 s 37 s
1.78

29 s
2.27

28 s
2.35

65 s 36 s
1.8

27 s
2.4

24 s
2.7

M3 (-O3)
speedup

437 s 265 s
1.64

207 s
2.15

189 s
2.31

414 s 251 s
1.64

192 s
2.15

164 s
2.5

Table 6. Parallel formula evaluation, using spinlocks, on eight-core workstation

Model 1 task 2 tasks 3 tasks 4 tasks 5 task 6 tasks 7 tasks 8 tasks

M1 (-O3)
speedup

10.9 s 6.61 s
1.64

5.10 s
2.13

4.42 s
2.46

3.94 s
2.76

3.67 s
2.97

3.51 s
3.10

3.45 s
3.15

M2 (-O3)
speedup

55.1 s 34.2 s
1.61

25.9 s
2.12

21.9 s
2.51

19.7 s
2.79

19.1 s
2.88

18.4 s
3.01

17.9 s
3.07

M3 (-O3)
speedup

346 s 207 s
1.67

153 s
2.26

146 s
2.36

131 s
2.64

124 s
2.79

120 s
2.88

124 s
2.79

cases we use custom spinlocks for the synchronisation of the accesses to the
shared global containers.

In this case the differences between the two implementations of thread-safe
fragments are smaller, but there is still an advantage is using a handmade locking
mechanism rather than a protected type implementation of these objects. This
is especially true if we consider that the current locking mechanism is very
trivial (we just model full mutual exclusion between state-changing operations)
and could be much improved by a more careful design. On the other side, the
protected type based implementation is more abstract and less error prone, and
we are happy with the choice of having selected it as our first implementation,
leaving to a possible second round of optimisations the task of replacing it with
something more fine-tuned with the actual optimisation needs.

The version that makes use of spinlocks for synchronising the accesses to
fragment data and shared containers has been tested also on an 8-core Linux
workstation. We want to observe the program behaviour when the number of
available physical cores is increased. The results are shown in Table 6,5 and a
graphical comparison with the speedups reported in the right side of Table 5 is
shown in Fig. 3.

Overall, when the number of parallel tasks passes from 1 to 4, but even more
when it passes from 4 to 8, the speedup factor grows much less than in the

5 Test executed on a eight-core workstation with a Intel(R) Xeon(R) E5-2630 v3
@ 2.40 GHz CPU, 64G RAM, running Ubuntu 14.04.4 LTS (GNULinux 3.13.0-83-
generic x86 64), GNAT GPL 2015 Compiler.
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Fig. 3. Best speedups on a 4-core and 8-core processors

optimal linear scale. Surely much work can, and has to be done, in reducing
the conflicts on the shared data, e.g. with more careful designs of the shared
containers and of the overall parallelisation strategy.

5 Related Work

The definition of highly efficient thread-safe containers is surely one of the key
factors for an efficient multicore programming. Many suggestions in this sense
are available in the literature. Indeed the use of distributed/lock-free hash tables,
both in the case of single processors multicore and in the case of multiprocessors
with local and shared memory, has been widely studied (e.g. for parallel state
space generation) and several solutions have been illustrated which allow a linear
speedup w.r.t the degree of available parallelism [2,3,10,14].

Also the parallelisation of model checking algorithms is a widely investigated
field. Most of the studies, however, are related to the parallelisation of linear
time logics (LTL), or to global model checking approaches, where the whole state
space is generated and available before the beginning of the evaluation process,
or to symbolic (e.g. BDD based) approaches to model checking were the state
space is finite and all states have the same size. A survey of the currently adopted
LTL approaches can be found in [1,11].

In our case, instead, we want to deal with potentially infinite state spaces,
where the states may have an unbounded size (e.g. because of the presence
of unbounded data structures like queues). Moreover we want to deal with a
CTL-like branching time logic (as initial fragment of the logic supported by our
KandISTI framework). Finally, we want to preserve our explicit, local (i.e. on-
the-fly), approach on which the sequential versions of our model checkers are
based.

From this point of view we have several points in common with the
approaches in [6,15]. The main difference w.r.t them is that we are more focused
on multicore single processor architectures while these other works are more
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oriented towards highly parallel/distributed architectures. It is interesting to
observe that the speedup factor of about 2.5 that we obtain for our worst eval-
uation case when all our 4 cores are used, is obtained in [6] only on parallel
architectures with at least 10 processors. Cleary the difference is that, in their
case, they can reach speedup factors of 14 with 50 processors, while we are con-
strained to our small number of cores. However, since single processors with 16
cores are already on the market it would be interesting to see how our app-
roach behaves on such more powerful systems. Another major difference with
respect to the approach in [15] is that the logic taken into consideration by those
authors is constrained to a fragment of the CTL logic where state subformulas
are restricted to atomic propositions. That simplification rules out all the com-
plexities related to existence of multiple concurrent root evaluations of recursive
operators.

6 Conclusions

We have presented some early experiences gained from an ongoing process of
code rewriting relative to the multicore parallelisation of a sequential model
checking Ada program. In our case we have initially constrained the parallelism
inside the AG operator (to be followed by all the other recursive operators), as
this directly allows to target our worst-case execution times for finite systems.
It is however reasonable (and will be the target of future studies) to introduce
the parallelism in a much more widespread way. In that case the target would
not much be the reduction of the worst case execution time, rather than to
open the path towards a fully parallel breadth-first evaluation strategy which
would allow to capture the shortest counter-examples and would allow to better
deal also with potentially infinite-state systems (in presence of a finite proof or
counter-example).

Computationally intensive programs making heavy use of shared data must
employ highly optimised thread-safe data structures. Unfortunately this kind of
abstractions are not currently available in the standard Ada container libraries,
therefore we must resort to some manual implementation of them. In doing that
we cannot make use of the Ada standard synchronisation mechanisms like pro-
tected types, but we need to make use of compiler-dependent, system dependent
libraries providing access to low-level lock free atomic primitives. It is indeed a
pity that these basic building blocks for multicore programming are not made
immediately available by the language definition.

It is well known that debugging a parallel program is much harder than
debugging a sequential program. However, when dealing with a shared memory
architecture, just missing the volatile/atomic aspect over an object would give
raise to spurious errors extremely difficult to find. The situation is worsened
when the programmer is forced to use handcrafted versions of thread-safe data
types and containers, and handcrafted synchronisation primitives. The result is
that debugging a parallel program might easily become a nightmare. Definitely,
the aid of a tool from this point of view would be extremely desirable (especially
for the analysis of the volatile/atomic variables).
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One of the confirmed strong points of Ada, however, is that it allows a
nice, abstract design of the parallel algorithms using the language-defined,
concurrency-oriented constructs. The optimisations needed for the best exploita-
tion of the underlying hardware can be added at second round of code fine-
tuning, with a relatively little effort.

In the design of a parallel system it is also quite easy to introduce logical
design errors caused by unexpected thread interactions. From this point of view
the construction of a formal model of the system and the exhaustive verification
of the robustness the design might become an almost necessary help. Indeed
this is another direction in which our project intends to move, with the goal of
having a fully validated parallel evaluation engine. In spite of all difficulties and
of the incompleteness of the experiment, the introduction of just a limited form
of parallelism (e.g., 4 cores) allows us to obtain a performance speedup factor
around 2.5, and this is surely a satisfactory initial result.
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Abstract. This paper discusses lessons learned in the attempt to apply the
long-known principles of correct-by-construction (CbyC) first promoted by
Dijkstra, to modern model-based development practices. We recall the intent
and scrutinize the outcomes of a string of research projects that focused explic‐
itly on the pursuit of CbyC by means of model-driven methods and technolo‐
gies. The lessons learned show that when CbyC extends from the algorithmic
and functional dimension to extra-functional concerns, some of the strength of
original CbyC concept and its pull dilute. One of the possible causes of that
phenomenon, is that – in some situation – the assertive style of algorithm
refinement gives way to more tentative exploration of an unknown solution
space where the known truths are insufficient to steer the development.

Keywords: Model-based development · Model transformation · Correctness by
construction · Formal methods · Contract refinement

1 Background

1.1 On the Origin of the Quest for Correct by Construction

In formulating some of his early ideas about programming as a discipline [12], Dijkstra
pointed out that software productivity is closely related to rigor in design, which is a
sound and predictable method to eliminate software bugs at an early stage, before they
creep in actual software products. The approach to be pursued is not, as common practice
had it (and, sadly, still continues to) to first write a program and then test it, but rather
to provide a mathematical proof of correctness before committing the corresponding
algorithm to code.

Dijkstra promoted a program derivation method, which can be summarized in the
engagement to “develop proof and program hand in hand”. One starts with a mathe‐
matical specification of what a program is supposed to do and applies successive math‐
ematical transformations to the specification until it equates to a program that can be
executed (passed to a compiler, that is). The program that results from that process can
then be claimed correct by construction. Testing is still performed on it, but only to
validate the correct-by-construction process rather than to find bugs in the program.

© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-39083-3_8



The work of Dijkstra has been furthered by other authors, for example Kurie and
Watson in [2], essentially with the goal of detecting and removing as early as possible
any errors that may occur in the development of the program, as close as possible to the
point at which they were introduced. The approaches by the followers of Dijkstra essen‐
tially concentrated on nailing down a formal specification of the problem at hand, leaving
the solution open for successive refinements. The central tenet of those methods was to
capture, formulate and valuate specification constraints expressed in terms of pre- and
post-conditions and invariants, to associate them to subprograms, and to prove them
locally on them. Not surprisingly, therefore, the ambit where the concept of Correct by
Construction development (shortened by CbyC in the sequel) subsequently flourished
was in Formal Methods, as in [15, 29]. In those initiatives, the main carrier of specifi‐
cation information was the formal language of choice, with program artefacts seen as a
derivative product, though not necessarily via automated transformation.

However, while mainstream software production methods and practices embraced
model-based development techniques, and started using UML and its derivatives, they
never went the full way toward formal methods, which caused CbyC to retreat to the
periphery of their vision, not quite what its originator had hoped.

Researchers who attempted to cast CbyC to the model-based development practice
(which in this work we refer by extension as MDE, for model-driven engineering [11]),
assumed the program specifications to correspond to models, and consequently sought
to devise appropriate transformation techniques to apply to them. The authors of [16],
for example, reported: “[…] in some simple cases, we may be able to specify a trans‐
formation using a sequence of declarative specified steps, and provide an argument for
its correctness by construction. However, we do not yet have a model transformation
tool that can take a purely declarative specification and produce an automated transfor‐
mation”. In the quoted passage, an MDE transposal of CbyC would take more abstract
program specifications than classic CbyC did. In fact, in the view of the cited authors,
this would be the essential power of being model-driven, thus closer to conceptual
thought than to algorithm formulation. Yet, the ultimate operation and product of the
CbyC process would be entirely the same, that is, an implementation artefact that could
be deemed correct by construction, by virtue of the sequence of transformative steps
that eventually produced it.

Pursuing the CbyC principles to the furthest extent, and adhering with the MDE
paradigm, leads to an ideal process of automated software production where CbyC is
achieved through a sequence of model transformations – whose correctness is proven
by some algebra – that start from the initial input of a formal specification of the solution
and finally produce a correct implementation. The final product of this implementation
process is guaranteed to be correct by construction, owing to the provable correctness
of the applied transformations.

This kind of approach is elegant and “clean” conceptually, but it requires highly
sophisticated formal language for the problem specification and complex software
development for the transformations. It therefore entails considerable effort from theo‐
retical computer scientists for both developing the transformations and expressing the
program specification in the chosen formal language(s). The resulting investment may
not pay sufficient dividends in the development of specific software products, especially
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when much of it is highly specialized, thoroughly dedicated, scarcely factorized and ill
fit for re-use. Indeed, this one factor arguably hampered the effort reported in [16].

The quest of CbyC was revived by the late Peter Amey, when at Praxis High-Integrity
Systems, who argued that the ambitious goals of CbyC can be attained by the combined
application of the following six principles [9]:

1. (Specialization) use of formal and precise tools and notations for any product of the
development cycle, it being a design document or a piece of source code.

2. (Automated step-wise validation) use of tool support to validate the product of each
step: since formal tools have been used to develop every artefact (cf. point 1), it is
possible to constructively reason on their correctness.

3. (Divide-and-conquer) break the development down in smaller steps to defeat error
persistence: products of every step must be verified against their formal specification
as soon as possible.

4. (Dryness) say things only once, to avoid any contradictions and repetitions.
5. (Beware of complexity) design software that is easy to validate, for example using

safer language subset or explicit coding and design patterns
6. (Rigor and discipline) do the hard things first: this includes thorough requirement

analysis and the development of early prototypes.

Amey’s concept approached the nature of a CbyC process, which extended the
programmer’s scenery to mightier software engineering concerns, to include user
requirements, as the semi-formal starting point that leads to the high-level design and
test specifications, and the need to break software down to master complexity. Yet,
Amey’s approach was still “code-centric”, in that it concentrates on the programming
perspective, thereby on the production of program artefacts.

We are not satisfied with this interpretation of CbyC, which we deem too narrow for
satisfactory exploitation in MDE. Fortunately, a significant boost to the “engineering”
of CbyC and its promotion into the embedded real-time systems domain, arrived from
the work of Sifakis in [3], with the promotion of the concept of (software) components
and the associated qualifying properties of composability and compositionality. The
former ensure the stability of component properties across integration, which is a vital
principle to software integration. The latter facilitate inferring system properties from
individual properties of constituent components, which is vital to ascertaining the feasi‐
bility, the viability, the quality, the performance of the overall system.

Since we consider pursuing this line of reflection wholly beneficial to good software
engineering, we have devoted considerable effort in the last few years, to arrive at the
definition and experimentation of “an MDE way to CbyC”. In this work, we report and
discuss the principal lessons we have learned in the attempt.

1.2 A Modeling Approach to Correct by Construction

In our view, an effective CbyC approach, ultimately geared to making it increasingly
difficult to introduce errors in the software development process, would have two main
ingredients: one, the adoption of MDE to manipulate more malleable and yet powerful
abstractions than program artefacts; the other, rigor at each development step, to enable
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(possibly automated) formal reasoning or analysis of the correctness of the step, and
(possibly automated) derivation, whenever possible, of correct base input for the subse‐
quent step.

We advocate that using models in most of the development steps, supported by
adequate MDE techniques and tooling (far more productive today than in the early age
of CbyC), makes it easier to define correct requirements, to design a system that meets
the requirements, and to develop an implementation that preserves the desired correct‐
ness properties.

The concept of “stepwise refinement” is naturally related to a CbyC process. In
formal methods, program refinement is the verifiable, possibly multi-staged, transfor‐
mation of a high-level, hence more abstract, formal specification into a low-level, hence
more concrete, artefact of implementation. Following a stepwise refinement process,
one may progress from a high level of abstraction, with the solution’s specification,
gradually across lower levels of abstraction, in a systematic (and provably correct)
manner, while preserving (and possibly enriching) the properties that characterize the
specified solution.

Components are a fitting abstraction of software construction: associating formalized
contracts – broadly speaking, pairs of assume/guarantee statements – to model compo‐
nents (primarily to their interfaces, in the quest for encapsulation and information hiding)
across the development phases provides solid background to enable the selective use of
formal methods for the verification of the stepwise refinement process.

Contract based-design [8] allows focusing on the specification of entities in isolation,
so it naturally fits component-based development well, where components are designed
in isolation and only their provided and required interfaces are published to the outside,
for binding and assembly.

Contracts also allow deriving system-level properties by composing the properties
sustained by individual components, thereby earning the guarantee that the properties
derived from them at system level, hold as long as the contracts stipulated by the indi‐
vidual components hold after composition.

As Amey noted in [1], “CbyC combines the best parts of two superficially unlikely
bedfellows: formal methods and agile development. For example, we take from the
former precise notations, and from the latter incremental development”. The adoption
of contracts is a further important enabler for CbyC: with it, the system and its compo‐
nents are characterized by formally defined contracts, and the designer iteratively envis‐
ages suitable system/contract decompositions and refinements, converging towards the
identification of qualified lower-level components. The system development is thus
incremental in nature, and each refinement step in it can in principle be formally verified,
provided that the system and component contracts are formally described.

The remainder of this paper is organized as follows: Sect. 2 describes the initial steps
of this work; Sects. 3 and 4 discuss the immediate extensions of it, which were consistent
for intent and equally successful in outcome; Sect. 5 examines the hurdles in the latest
and more recent effort to extend the reach and coverage of the approach. Section 6,
finally, presents the principal lessons learned in the whole endeavour.
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2 Pursuing CbyC in Model-Driven Engineering: The ASSERT
Experience

The ASSERT project [4, 5], led by the European Space Agency under funding from the
6th Framework Program of the European Commission, was a first attempt to realize a
model-driven methodology for embedded software system development with dedicated
component model, explicitly focused on CbyC.

The primary goal that the ASSERT project set itself was to assure the prevention of
errors in the model space, in particular in the specification of real-time attributes and in
the derivation of claims of real-time properties for individual software components and
of their assembly.

ASSERT pursued that goal by defining a specialized metamodel, enriched with
extra-functional attributes crafted for the specification of component interfaces. Using
the ASSERT metamodel for modeling, the user would be able to attach sound properties
to the concurrent structure of the system, require and verify the safeness of the interaction
protocols involved in the system operation, and ascertain the timing feasibility of the
system overall.

Interestingly, in the traditional development style of real-time embedded systems,
the above concerns were verified “a posteriori”, predominantly by testing, and usually
without guarantees on exact correspondence between the intended design (on which
certain properties were claimed) and the actual implementation (which may have
considerably deflected from the designer’s intent).

With ASSERT’s MDE methodology instead, correctness can be ensured either by
construction (as the user is enabled to stipulate binding assertions on individual model
components and on their assembly, which can be attached to sound proofs) or by static
verification of properties anticipated in the implementation artefacts yielded by the
model, and by automated generation of implementation artefacts that provably produce
the (concurrency and real-time) semantics captured in the verified model.

Ultimately, the essence of the ASSERT approach relied on the adoption of a meth‐
odology that:

1. Allows the user to express functional and timing properties for component interfaces
using a restricted, sound and coherent set of annotations and constraints (for all
respects and purposes, precursor of contracts), to facilitate the specification of func‐
tional and timing requirements of components in a manner amenable to rigorous
verification.

2. Allows the user to model components at a level of abstraction higher than actual,
target-specific, implementation, hence easier to verify as correct and reuse for intent,
as well as to attach to clear and distinct obligations on the part of the subsequent
implementation. The concrete form of this model was called Platform Independent
Model (PIM) in the MDE literature of the time.

3. Provides a suite of automated model transformations capable of converting the user
PIM into a refined model, closer to implementation concerns (and called Platform
Specific Model, PSM, in MDE jargon) that:
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(a) Assures conformance to the concurrent model of computation sanctioned in the
Ravenscar Profile [13], which causes the system to exhibit well-formed seman‐
tics for its concurrent and real-time behaviour;

(b) Makes its resulting run-time behaviour amenable to sound, advanced, compos‐
able and tight feasibility analysis, by construction;

(c) Ensures that a semantic-preserving implementation of it can be produced with
state-of-the-art industrial-quality technology, and be bound to a property-
preserving run-time environment, i.e., one that can be proven to correctly, effi‐
ciently and accurately implement the corresponding concurrency semantics.

The results from the ASSERT project have enabled important progress in narrowing
the earlier divide between CbyC and MDE, and have since become terms of reference
for the subsequent industrial research work. One particularly important contribution of
ASSERT was in providing initial evidence that the incorporation of CbyC in MDE needs
a dedicated component model to enable architectural (i.e., rule-based) composition, as
an essential enabler to the compositional assembly of locally asserted attributes into
system-level properties.

3 CHESS: Bringing ASSERT to the Next Level

The CHESS project [18] started off from the foundations of the ASSERT research, with
the goal to promote a disciplined approach to mastering complexity by enforcing sepa‐
ration of concerns [10] between the functional and the extra-functional dimensions, the
latter regarded as the value-adding pillars for the next software generation and the basis
for a mature model-based development.

Indeed, the motivation behind CHESS was that, for a given component, the func‐
tional and the extra-functional properties can and should be specified separately, through
distinct views of one and the same the development problem. Functional attributes and
properties can be provided first (largely in a reusable and platform-independent way),
before timing and failure-propagation attributes (specified) and properties (verified) can
be attached on top of them, facilitating the reuse of the same functionality in different
extra-functional scenarios.

Consider for example a component C that exposes an operation Op1 in its provided
interface. Component C can be instantiated multiple times in the same system or even
in different systems. For each individual instance of it, the user should be able to decide
whether the implementation of Op1 should be attached to a dedicated thread, so that
Op1 would be executed solely and exclusively by that thread, or else to a procedure, so
that any flow-of-control on the caller side with a required interface that matched Op1,
would be able to execute it. In the former case, Op1 would be labelled “active”; in the
latter, “passive”. Obviously, the latter is free of data races only when Op1 should not
persist local state across calls; otherwise the correct attribute would be “protected”,
which would require the implementation to provide appropriate synchronization proto‐
cols to warrant absence of data races and boundedness of priority inversion.

CHESS sought and promoted separation of concerns first by the adoption of a multi-
view approach, where the system is designed as a single model via the use of dedicated
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views, each representing a specialized projection of the system with respect to a partic‐
ular and cohesive set of development concerns (e.g., Requirements, System, Software,
Deployment, and Analysis).

CHESS enforced its most manifest form of separation of concerns by promoting
separation between the functional aspects of the system (which address the local, internal
behavior of individual components, assuming that external needs are satisfied) from the
extra-functional aspects (such as, for example, real-time constraints). To this end,
CHESS built around a component model [6] that resolves all of a component’s functional
properties in the component internals (so that they can be implemented only considering
local concerns), and delegates the implementation of all extra-functional properties to
the component’s infrastructure, outside of the component itself (that is, the run-time
environment that sustains the existence, interaction, persistence, and resilience seman‐
tics stipulated in extra-functional attributes). The component internals are bound to the
component infrastructure by means of platform-specific containers: such containers are
responsible for the realization of all the extra-functional properties that are specified for
the components that they embed. Components are bound to one another (via matching
required and provided interfaces) by connectors: such connectors are also artefacts of
the component infrastructure and realize the interaction between components as a medi‐
ated communication between containers.

Consistent with the principles of component-based software engineering [25], the
adopted component model is characterized by the definition of “strong interfaces” that
are the basis for structural composability, and precursors of contracts.

In CHESS, the user model is a PIM artefact that can be automatically transformed
into a PSM artefact. The transformations that map the attributes of component interfaces
to containers and those of component-to-component bindings to connectors, can be
claimed correct by construction as the run-time entities that implement containers and
connectors provably conform to the semantics assumed in the interface specifications.
Thanks to that important quality, the PSM that corresponds, by transformation, to the
user PIM is amenable to mathematical evaluation in the dimensions of interest. For
example, the real-time feasibility of the user model expressed with CHESS, can be
ascertained by transforming its PSM into a model artefact fit for input to MAST [21],
an open-source tool to perform schedulability analysis in accord with state-of-the-art
scheduling theory. That very same PSM is also used to generate code that provably
conforms to the run-time semantics assumed in schedulability analysis, which is another
important obligation required to claim correctness by construction in the eventual
implementation product.

The CHESS method is enacted by a tool-chain that implements the sought extent of
CbyC by supporting:

• Automated analysis of extra-functional properties (e.g., predictability and dependa‐
bility) claimed for assemblies of components;

• Direct propagation of the analysis results back to the user model (by backward
traversal of the transformation chain from the analysed artefact to the originating
PIM artefacts) so that the user would have all elements to iterate the model to satis‐
faction, before committing it [5];
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• Automated generation of implementation code and deployment on the target platform
provably consistent to the PSM submitted to analysis, and transitively, to the user
model in the PIM space.

3.1 Modelling Extra-Functional Properties

Real-time Concerns. The component model and model annotation concept needed to
pursue CbyC in a component-based approach, first sketched in the ASSERT project,
was refined, extended and consolidated in CHESS. The intent was to support the defi‐
nition of software building blocks (i.e., components) owning pure functional and reus‐
able behaviour, using UML, and the annotation of model elements with extra-functional
(especially, real-time) attributes, using MARTE [14].

Every individual operation that appears in the provided interface of a component
instance (hence, candidate to become part of a deployable system) must be decorated
with real-time attributes that specify the guarantees that other components using that
provided operation may assume for its real-time behaviour. For a real-time embedded
system, those attributes are determined assuming a particular allocation of the compo‐
nent instance to a given executing platform, inclusive the component infrastructure, the
real-time operating system, the communication drivers, and the board support package
for the target processor.

Interestingly, using UML and MARTE for the specification of those interface attrib‐
utes undermined our quest for CbyC in subtle yet important ways. For one thing, UML
and MARTE offer different constructs to convey the same meaning: this freedom is a
source of confusion for the user and may cause inconsistency to creep in the model if
not prevented by dedicated tool support (in the model editor, in the model representation,
in the model repository). The solution to this kind of problem is to define specific UML
and MARTE profiles, which set appropriate constraints to avoid unwanted specification
overlaps. In fact, profiles are also essential to fix the semantic variation points intrinsi‐
cally available in the original specifications for UML and MARTE.

The CHESS profile chose to augment the UML component model with MARTE, so
as to provide the user model with the ability to express rich component interfaces and
ports, decorated with real-time attributes. The alternative would have been to use low-
level extra-functional resources like schedulable or protected resources directly in the
user model, but that would have caused mixing multiple levels of abstraction in a single
modelling space, which is obviously undesirable.

CHESS followed the OMG model-driven architecture approach, using elements of
MARTE in the high-level, more abstract, platform-independent model, solely MARTE
in the low-level, implementation-oriented, platform-specific model, and automated
transformations capable of deriving the MARTE representation of the PSM starting from
the information contents present in the PIM.

Dependability Concerns. Dependability was a further dimension of interest to
CHESS, in the exploration of extending CbyC to extra-functional concerns. A technique
called Failure Logic Analysis (FLA) was developed to this end, to enable the
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specification of safety contracts, in the form of failure-propagation rules (i.e., stipulated
mechanisms) between input and output ports of specific components. The assumption/
guarantee relations determined for safety contracts by binding required interfaces to
provides interfaces was expressed in CHESS with the Fault Propagation and Transfor‐
mation Calculus (FPTC) formalism [22]. FPTC analysis analyses system-level behav‐
iour, reasoning compositionally on the behaviour of individual components considered
in isolation (in fact, on the safety contracts expressed on their provided interfaces). With
that provision, CHESS enables the reuse of safety artefacts within safety-critical systems
[23], an interesting ramification of CbyC in the realm of reuse.

4 SafeCer: Adding Contract-Based Refinements

To allow experimenting with contract-based development processes, which was the
focus of the SafeCer project [19], we augmented the CHESS toolset with OCRA (Othello
Contracts Refinement Analysis) [20]. OCRA supports checking the refinement of
contracts specified in a linear-time temporal logic. The OCRA specification language
allows expressing discrete as well as metric real-time constraints. The underlying
reasoning engine allows checking whether the contract refinement (on the guarantee
side of the assume/guarantee pair) is correct.

Contract-based refinement enables compositional reasoning that strengthens the
verification of components. When used in conjunction with hierarchical decomposition
of architectural components, the contracts set on the parent component are refined with
contracts set on the child components: if the refinement steps are proven correct, any
implementation of the leaf components that satisfies the leaf component contracts can
be used to implement the system. The verification is therefore compositional and condu‐
cive to early verification of incomplete (partial) architecture specifications.

The integration of OCRA in the CHESS toolset [7] provides a framework that assists
the user throughout the entire development process: starting from the description of the
system and its hierarchical decomposition, the definition of requirements associated to
components and the formalization of requirements as contracts, through a stepwise
refinement process with explicit verification of contract refinements and of component
implementations.

However, no automation or wizard tool or method currently exists, which is capable
of devising a feasible system decomposition and contract refinement, where feasibility
is one (arguably essential) dimension of correctness when extra-functional concerns
enter the picture: at the present state of the art, this depends entirely on human engi‐
neering experience. All that technology aids can offer in this regard for now is to measure
the goodness (i.e., fitness for purpose) of a proposed solution against given criteria, and
consequently rank alternative decompositions and refinements. The deficient part is an
efficient method for proposing solutions, which one might perhaps conjecture as the
analogous of genetic algorithms [28] applied to this problem domain.

A system development process normally crosses multiple levels of abstraction (e.g.,
between system and software), each expressed with its own conceptual model(s). Classic
examples of this progression include the functional architecture at the high level, and

Lessons Learned in a Journey 121



the physical architecture at the low level, with software specification and deployment
configuration to unite the two.

Formally-verified stepwise refinement may in principle be performed at each level
of abstraction. On the transition from one level of abstraction to the next (e.g. from
system to software architecture), however, entirely new models may have to be created,
using the formalisms, the concepts and the notations proper of that level. When that
happens, the trace relation in place between corresponding entities at different concep‐
tual levels become the sole link that contract refinement can traverse. Unfortunately,
establishing the link that relates corresponding model entities of different conceptual
levels is the responsibility of the user: no automated formal verification can be applied
(at the present state of the art) to ascertain correctness without semantic knowledge of
the respective conceptual models. This is a tremendously complex problem, which
reveals a break in desired continuity of the CbyC connotation of the development
process.

Interestingly, when applied in the face of the re-use of existing qualified components,
the formally-verified stepwise refinement process just evoked may take on a correct‐
ness-by-correction connotation (less pure and attractive than Dijkstra’s CbyC), as a
result of verification failures. This is generally the case when the development process
is not a mere top-down progression, but involves iterations and re-work prompted by
bottom-up feedback. The important aspect, however, is that, with the CbyC-geared
provisions discussed so far, the re-work is limited to the models and the relevant
contracts, without involving costly human retries of the implementation.

5 Further Challenges

The CONCERTO project [17], funded by the ARTEMIS JU, extended the CHESS
model-based methodology and language to:

• Allow the user to include multi-core processors among the possible target platforms,
with the same level of CbyC guarantees as had for traditional single-core processor
targets;

• Widen the coverage of industrial application domain needs.

In the following, we briefly review some of the challenges that those goals presented,
and the main results that were achieved in the regard of the CbyC focus of this work.

5.1 Addressing Multi-Core Processor Platforms

One distinctive character that CONCERTO inherited from CHESS is strong emphasis
on supporting model-based feasibility analysis and back propagation of the analysis
results to the user model [26]. The intent of the former is to allow consolidation of the
user model by advancing feasibility analysis (as part of the real-time concerns) so that
the implementation product to be deployed on the target platform is assuredly satisfac‐
tory. The intent of the latter was to mend the divide between the way analysis results
are conveyed by specialized analysis tools (which use their own concepts) and their

122 L. Baracchi et al.



meaning on the individual constituents of the user model. Back propagation walks
backward the transformation relations between the implementation model (PSM) and
the user model (PIM), and attaches analysis findings (such as the response time for the
operations and the utilization percentage of the HW component instances) obtained for
PSM artefacts to the PIM artefacts from which they originate. In that manner, the user
has a more direct perception of what needs to be fixed in the model to achieve feasibility
and the costs of the correctness-by-correction distortion of CbyC are lowered.

CONCERTO extends CHESS in these two respects by supporting a wider range of
advanced feasibility analysis (including of course for multi-core processor targets) and
by enriching back-propagation with observation data obtained from the run-time envi‐
ronment. The latter feature aims to aid the user in the timing characterisation of appli‐
cations run on novel multi-core processors, for which the real-time systems community
acknowledges as necessary to refine the (otherwise poor) accuracy of state-of-the-art
timing analysis techniques [27].

Worst-case execution time (WCET) analysis for multi-core processors is an open
research problem, with numerous research actions investigating it. CONCERTO does
not perform WCET research, but rather approaches the timing verification problem from
the angle of feasibility analysis, which is the next level up in the verification process.
Schedulability analysis for multi-core processors is challenged in several respects:

1. The need to get WCET bounds for individual application programs, capable of
accounting, soundly and tightly, for the contention overhead resulting from parallel
execution on multiple cores, which is a research topic of unprecedented difficulty.
The obvious (but highly penalizing) countermeasure to this problem is to schedule
the system so that only one core is active at any one time, losing m − 1 of the m
available cores.

2. The need to determine a sound and tight bound on the run-time overhead
incurred from the extent of task migration caused by non-strictly-partitioned
scheduling algorithms, and by the repercussion that migration has on the WCET
bounds of the migrating task, e.g., by losing warm caches across the memory
hierarchy. The obvious (but highly penalizing) countermeasure to this problem
is to use strictly partitioned scheduling for the system, losing much (> 50%) in
schedulable utilization.

The ideal CbyC progression of system development breaks in front of challenges of
this hardness, whereby correctness-by-correction becomes the only way forward.
Acknowledging this predicament in the multi-core processor domain, CONCERTO
adopts a “round-trip analysis methodology”. It uses run-time data (drawn from obser‐
vation of the actual application execution in its run-time environment and the compar‐
ison with the initial model assumptions and analysis results) to increase the confidence
in the prediction of model-based analysis; and run-time monitoring to ensure that
possible violations are detected and – where possible – mitigated. Design failures
(specifically, solutions that do not meet their extra-functional requirements) continue to
be possible, but they are detected early enough, and managed accordingly.

Figure 1 captures the main steps of the CONCERTO methodology, which we also
itemize below in narrative.

Lessons Learned in a Journey 123



Fig. 1. The CONCERTO process

1. Define the PIM to represent the solution, independent of any specific platform
implementation;

2. Complement the PIM with information on the target platform and on the deployment
plan: this is a feature-rich specification space for multi-core HW;

3. Apply automated model transformation to produce a PSM from the PIM. The PSM
is read-only and the implementation product is guaranteed to be deterministic;

4. Perform relevant real-time analysis on the PSM;
5. Back propagate analysis results to the PSM and to the PIM;
6. Iterate steps 1 to 5 as many times as needed, until a satisfactory solution is achieved;
7. Deploy the implementation on the target hardware;
8. Activate run-time monitoring to grab live data that is back propagated to the PSM

and to the PIM (as in 5).

By accompanying the developer through every step of the way, from presenting
clean, uncluttered, single-concern design spaces to providing constant, informative
verification feedback to the modelling actions, CONCERTO promotes a disciplined,
productive development experience, which yields concrete, platform-specific imple‐
mentations with high-integrity runtime guarantees.

5.2 Cross-Domain Extensions: Automotive

While CHESS set the foundation of a cross-domain model-driven development method
and language centred on CbyC, the experience made in CONCERTO revealed how
difficult it is to keep a controlled balance between core (hence, transversal) elements,
and domain-specific extensions in the quest for larger domain coverage. The problem
one soon faces in that endeavour is that each domain is likely to have its own baggage
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of “preferred” ingredient (languages, methods, practices, conventions) whose presence
is seen as a mandatory element in any solutions candidate for industrial adoption.

A clear manifestation of this problem occurred to us while investigating the viability
of fitting CONCERTO to the automotive domain practices. In that effort, we attempted
to parallel the AUTOSAR [24] and the CONCERTO development approaches, for
methodology and component model, with focus on functional and real-time concerns.

We first mapped the entities defined in the CONCERTO component model to
semantically equivalent entities available in AUTOSAR. Out of that, we were able to
devise sound model transformations from CONCERTO to AUTOSAR. The opposite
direction was a problem, however, as the AUTOSAR component model is considerably
richer in constructs and in “modelling freedom” than CONCERTO. The net consequence
is that not all AUTOSAR models find correspondence in a legal CONCERTO models,
for syntax and for semantics. This taught us that AUTOSAR has less attention than
CONCERTO in fostering CbyC by means of constraints placed on what to model, how
to model it, and when in the development flow. One particular exemplar of this difference
in intent is worth recalling here. CONCERTO sets restrictions on the component model
(directly in the modelling language and modelling actions availed to the user) to ensure
that the chosen forms of feasibility analysis can always be performed soundly on the
user model that is decorated with sufficient information attributes. This is necessary to
ensure that the model transformation that uses the user model to feed the analysis can
be proven correct by construction, i.e., such that the semantic meaning of each analysis
artefact and analysis operation corresponds to the semantic meaning of the modelling
artefact and decoration attribute in the user model. For instance, in CONCERTO, a
provided operation that is attached to a thread at run time, can only receive release events
from a single source (a clock, an external interrupt, another thread, etc.). This restriction
causes the run-time semantics of that operation to conform to the abstraction of thread
in feasibility analysis. AUTOSAR lifts that restriction, so that the run-time semantics
of operations specified in the user model is not guaranteed, by construction, to be stat‐
ically analysable for feasibility.

The bottom line of the experiment is that a complete (for process coverage and for
automation) bi-directional integration between CONCERTO and AUTOSAR is pres‐
ently not possible without unsatisfactory compromises. This is product of the confron‐
tation between the rigidity of seeking adhesion to the CbyC principles (manifest in
CONCERTO), and the permissiveness of wanting to assist without imposing too much
perceived burden on the user (manifest in AUTOSAR).

6 Lessons Learned and Conclusions

The ASSERT and the CHESS development processes and modelling steps had a strong
connotation of CbyC ingrained in them. This trait manifested in a number of constraints
being applied to remove (i.e., statically resolve) semantic variation points originally
present in the language substrate used to express model artefacts (i.e., UML and
MARTE), and to propagate those constraints upward into the model editor, so that the
user is actively guided into “doing the right thing”.
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SafeCer augmented the CHESS heritage with a rigorous stepwise contract refinement
approach for system and software design. This effort however showed that decomposi‐
tions and refinements may occasionally have a more tentative nature than assertive (as
presumed in CbyC, where the refinement is guided by the need for conformance), which
may therefore fail and require backtracks, as in correctness-by-correction.

In CONCERTO, we observed two phenomena of interest. First, the wider the sought
coverage of non-contiguous industrial domains, the more difficult the application of
CbyC, in accord with its original intent and course. Second, when what determines
correctness in a particular dimension of concern (e.g., feasibility on a multi-core
processor platform) is not solid enough in the state of the art, the verification of correct‐
ness can only be done retrospectively: not enough prescriptions (design and implemen‐
tation recipes, if you will) are known to causally warrant correctness, to guide devel‐
opment in a top-down fashion.

In CONCERTO the satisfaction of some (modelling and semantic) constraints had
to be deferred to later stages, enabled by ad-hoc transformations toward specialized
analyses (e.g., for dependability, conformance to given restrictions, feasibility in the
time domain), with consequent deflection of CbyC into correctness-by-correction. When
a model transformation needs to take place to enable verification, then the modelling
infrastructure defers to the user for explicit action and for discipline of method. The act
of requesting a verification is up to the user. Hence, the method no longer is a tool-
assisted (in fact, enforced) traversal of design steps that follow a rigid ordering with
CbyC guarantees.
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Abstract. Replication is a reliability technique that involves redun-
dancy of software or hardware components to guarantee availability for
fault tolerance purposes. Several studies focused on modelling fault toler-
ance of real-time embedded systems using replication of AADL (Archi-
tecture Analysis & Design Language) components. Manual replication
with AADL is a tedious task, error-prone and increases design time.

To support the automatic replication of AADL components, we pro-
pose in this paper an extension of the AADL Ocarina tool suite. For that,
based on a set of transformation rules, we assist the designer to auto-
matically generate standard AADL models enriched with variants and
adjudicators. This is based on a three-step model driven approach. First,
we enable the designer to model his or her core application using AADL.
Second, the designer enriches the model with a property set that we
defined to describe replication concepts. Finally, applying a set of trans-
formation rules, we generate an intermediate AADL model enriched with
different replicas using Ocarina. This generated model can be analysed,
formally verified, used for application code generation or even replica-
tion of other components. To illustrate our approach, we apply an active
replication to a robot system chosen as a case study.

Keywords: Fault-tolerance · Replication · AADL modelling · Ocarina ·
Active replication · Passive replication

1 Introduction

With the evolution of distributed real-time embedded systems, new requirements
for high dependability and fault tolerance are emerging. These requirements have
to be satisfied at design time since that systems can address critical domains like
avionics, space and medicine. Such systems must be highly dependable in order
to increase their performance, effectiveness and reliability. In this context, some
work [13,14] provide design supports of fault tolerance techniques dedicated to
such systems such as model weaving or passive replication applied to AADL
models. But such techniques do not offer neither automatic code generation of
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fault tolerance elements nor reuse of such techniques which may help to avoid
significant number of failures for dependability purposes.

We proposed in previous work [4], a development process for the design and the
implementation of fault tolerant reconfigurable real-time systems. In our work, we
ensured separation of concerns at the model level as well as generated code level.
We used AADLv2 (Architecture Analysis & Design Language, version 2) to
model the core system and its Error Model Annex [17] to model fault tolerance
requirements. This annex not only allows designers to model different kinds of
faults, but also fault propagation affecting related components, fault behaviour,
fault detection as well as fault recovery mechanisms. This annex provides strong
support for fault tolerance elements and more general dependability requirements.
However, it does not support automatic redundancy, a well-known technique used
to achieve fault tolerance in distributed real-time embedded systems. It relies on
manually-specified redundancy of AADL components, connections, and behav-
iours. However, the more the replicas or the replicated components we have, the
more complex and error prone the model is. Thus, supporting automatic repli-
cation of AADL components would be an important contribution and very con-
siderable to assist the designer modelling the fault tolerant system by integrating
replication techniques from the design phase.

In this paper, we present an approach relying on automatic replication of
AADL components since the design level. We propose a model driven approach
based on an AADL model extension and automatic code generation of both
active and passive replication. Therefore, the workload of the designer is mini-
mized to only indicating the original component subject to replication, specifying
the replication style (active or passive) and setting the number of variants. In
addition, the designer has to define the consensus algorithm for each replicated
component. These concepts have to be set by the designer through a set of
properties. After specifying all properties, the designer validates them before
automatically generating an intermediate AADL model enriched with different
variants and adjudicators. To ensure the model generation process, we define
a set of transformation rules, in order to map between the basic AADL model
and its extended version with replication concepts. The mapping process con-
cerns the generation of either new components (like variants and adjudicators)
or connections between original and generated ones. It treats also the behav-
iours of the variants and adjudicators relying on user defined properties. These
rules are first manually established and then translated into algorithms that we
implemented to ensure model transformation. We implemented these rules as an
extension of the Ocarina tool suite [10] as it is dedicated to perform analysis and
verification on AADL models. Therefore, we ensure the separation of concerns
at design level as well as at application level. We provide better code quality
and modularity. This separation also enables the validation of either model or
code application without affecting each other. Using Ocarina, we ensure model
analysis, verification of the resulting AADL model, and generation of its corre-
sponding application code (into Ada, C or RTSJ). Thus, we benefit from the
reusable aspects of our extension.
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The remainder of this paper is structured as follows: Sect. 2 discusses the
related work. Section 3 provides then background concepts related to AADL
language, Ocarina tool suite and finally replication. In Sect. 4, we introduce our
replication-based fault tolerance approach and we give details about the defined
property set, the transformation rules and the extension of the Ocarina tool suite.
Then, we validate our approach by a case study in Sect. 5. Finally, conclusions
and a road-map for future work are given in Sect. 6.

2 Related Work

A survey of software techniques to handle software faults developed in the fault
tolerance and the autonomic computing domains was given in [2]. As these tech-
niques are all practically exploiting some form of redundancy, they considered
the impact of replication on the software architecture.

In particular, authors in [7], extended the framework FT-CORBA (Fault-
Tolerant CORBA) with support of fault-tolerance mechanisms such as fault
detection and redundancy. They also proposed a modelling process, based on
UML with CCM (CORBA Component Model) as well as the QoS& FT (Qual-
ity of Service and Fault Tolerance) profile, in order to be able to design fault
tolerance components and generate their corresponding code. After that, this
model is deployed and executed by means of CCM descriptor files. Yet, this
approach is not well adapted to dynamically reconfigurable systems. Also, the
authors restricted their tests to a unique replication style that is the active
replication with voting.

Authors in [3] applied redundancy patterns in the architecture design level
using Aspect Oriented Paradigm. They focused on weaving an original archi-
tecture model with redundancy related design patterns. This approach aims at
separating functional and non-functional design. The base model is designed
using UML. Then, an aspect model is integrated within the base one using a
model weaver. Thus, reusable fault tolerance and redundancy management mech-
anisms together with their specific analysis sub-models were available in the form
of a design pattern library. Based also on UML designs, authors in [1] propose
MARTE-DAM (MARTE-Dependability Analysis and Modelling): a profile which
extends the MARTE (UML Modeling and Analysis of Real-Time and Embed-
ded systems profile) to support the dependability modelling and quantitative
analysis. Unlike several works aiming at extending UML models with depend-
ability annotations, this profile covers different dependability aspects through
rich domain models. The defined domain concepts are then mapped to elements
of the UML profile. In particular, a redundancy model introduces fault tol-
erant components which can provide a redundant structure such as variants,
adjudicators, and FT strategies. For performance and dependability analysis
and assessment purposes, authors translated the annotated MARTE-DAM into
DSPN (Deterministic and Stochastic Petri Nets) models. They highlighted model
refinement and dependability assessment but they did not support code genera-
tion for MARTE-DAM.
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While UML, without using the MARTE profile, is not well adapted to design
real-time embedded systems and AADL has sufficiently proved its power in this
domain, a significant number of works have been proposed as solutions for design-
ing replication with AADL. In [13], authors proposed an approach to model and to
formally verify replication patterns in the AADL language and then analyse poten-
tially unintendedbehaviours.This approach is based ondesigning twoAADLmod-
els. The first defines the intended behaviour in synchronous call sequences and
the second describes the replication architecture. This approach supports only the
primary-backup replication using AADL based on modes and mode transitions. It
limits also the number of variants. It proposes only two replicas: one primary and
one backup unlike our approach which does not fix the number of replicas. The
designer can vary this number when needed. In [9], authors gave an example of a
manual primary-backup replication strategy designed with AADL and its Behav-
ioural Annex (AADL-BA). They modelled the core system using AADL compo-
nents and their connections through features.Threads in this case are synchronized
using dispatched events. Then, based on AADL-BA, they modelled the automa-
ton showing different states where the application can be blocked to describe the
executed call sequences of different threads. They proved also that AADL-BA
provides an interesting additional strategy to define critical regions.

The difference between this approach and ours is that it focuses only on
passive replication while we support both replication styles. In addition, this
work challenges resides in the modelling of complex synchronization mecha-
nisms commonly used in distributed system design such as mutual exclusion.
Besides, designers who applied this approach must manually specify both their
core system and the replication pattern. There are no automatic tasks to help
them generate a consistent model contrary to our approach that facilitates the
replication design through automatic generation of variants and adjudicators.

Most of the stated work deal with manual replication addressing only one
style (active or passive replication). However, manually modelling replication
not only can increase the risk of errors on the design time but also needs con-
siderable efforts especially when it introduces a significant number of variants
and/or replicated components. Using our extension of the Ocarina tool suite
based on properties, designers can significantly reduce design time and risk of
errors especially in case of large number of replicas or replicated components.
Besides, the designer benefits from the variable number of variants and the two
supported replication styles.

3 Background

3.1 Overview of AADL

AADL [16] is a standard consisting of both textual and graphical representations
with precise execution semantics for embedded software systems. AADL is a
typed language providing formal modeling concepts to design the runtime archi-
tectures of complex embedded real-time systems and the map of software compo-
nents onto hardware ones. All hardware (device, processor, memory and bus),
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software (process, thread, subprogram and data) or hybrid (system) AADL
components correspond to concrete entities, which is why AADL is a concrete
language. Each of these components can be connected to others through features.
These features contain event and data ports, subprogram access, data access and
bus access, among others. Moreover, AADL can be extended with properties to
specify characteristics of a component within its architectural context. AADL
annex libraries enable a designer to extend and customize the AADL core specifi-
cation with other concepts specified in a language other than AADL. For exam-
ple, we enrich an AADL model with clauses from Error Model Annex [17] to
describe dependability requirements or from Behavioral Annex [15] to express
components behavior. Besides, AADL provides a support to describe opera-
tional modes of a system and then manages dynamic reconfiguration. Modes
and mode transitions describe the reconfiguration processes of existing com-
ponents. A mode represents an operational state, which manifests itself as a
configuration of contained components, connections, and mode-specific property
value associations. However, a configuration is statically defined and consists of
a set of components linked with connections.

3.2 Ocarina

Ocarina [10] is an open source tool suite of the AADL language written in Ada. In
addition to the lexical, syntactic and semantic analysis of AADL models, Ocarina
allows the code generation into different languages such as Ada and C. Besides,
this tool supports scheduling analysis of AADL models with Cheddar [18] based
on both real-time scheduling theory and queuing system theory. Ocarina offers
also the transformation of AADL models into LNT language [12]. The Ocarina
compiler can be easily extended thanks to its well organized architecture as
shown in Fig. 1. It is composed of three main parts:

– A central library used to build and manipulate syntactic trees. It consists of a
set of builder and finder routines. This part allows the frontends and backends
to manipulate and analyse syntactic trees of any supported language.

– A set of frontends that analyse the syntax and semantics of AADL models
extended with annexes. Each of these annexes is related to a frontend part.
The output of frontends is an abstract syntactic tree generated using routines
defined in the central library.

– A set of backends dedicated to automatically produce code. Their inputs are
AADL trees obtained from the frontends. This part enriches received trees
and produces more structured and richer trees to generate appropriate code.

3.3 Replication

Replication is a well-known technique to achieve fault tolerance [6]. It is defined
as the redundancy of software, hardware or both parts. This technique involves
repetition and multiplicity of different or identical components or behaviors in
order to mitigate the effects of component failures and then create a system
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Fig. 1. Architecture of OCARINA [10]

more reliable than a single component. Thus, critical hardware or software com-
ponents, or even entire systems, can be replicated. Three main replication tech-
niques are distinguished in the literature [14]:

1. Active replication: all replicas have the same input, keeping their internal
state synchronized and voting all on the same output. In this case, we must
have a voting algorithm to choose one between all outputs.

2. Passive or primary-backup replication: Only one replica, called primary copy,
can handle the input. When the primary copy fails, one of the others, called
backup copies, is elected to take its place to provide the same functionality.

3. Semi-Active replication: It consists of a replica group containing a leader
replica (primary copy) and one or more follower replicas (backup copies).
Similar to the active one, all replicas receive the same input and can treat
them. However, similar to the passive replication, only the leader is respon-
sible for processing a request and taking decisions. The leader processes a
request as soon as it receives it, whereas backup copies must wait for notifi-
cation from the leader to handle a request.

There is a trade-off between active and passive replication techniques [11].
Each of them has its own advantages and drawbacks. In active replication, all
the copies should process the request, so it costs more system resource than
passive replication. But a crash of the primary copy in passive replication, may
significantly increase the latency of an invocation. Moreover, passive replication
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Fig. 2. Replication design process

requires additional support for the primary copy to update the state of the other
copies. Furthermore, passive replication provides a less predictable and generally
slower response time than the active one. Finally, the passive replication is more
flexible as it does not require the synchronisation between the replicas.

4 Overview of the Approach

We propose in this section a model driven approach based on model trans-
formation to ensure replication-based fault tolerance for distributed real-time
embedded systems. Our idea is to assist the designer modelling his or her sys-
tem by automation of the replication design. This is by encapsulating the needed
replication parameters into a property set and then integrating it in the base
model through a model transformation. Doing so, the designer has to model
the core system with AADL and then set the parameters needed to automati-
cally generate the replication such as the replication style, the replica number
and the agreement algorithm using a property set. Then, a model transforma-
tion is performed in order to generate a new model enriched with variants and
adjudicators. As shown in Fig. 2, we propose a design process to produce an
extension of an existing tool to support replication of AADL components based
on our defined property set baptised Replication Properties. The steps of the
proposed process are described in the following.

We start from a core AADL specification model describing an embedded sys-
tem. The designer models the core application using AADL and enriches her/his
model with properties and annexes. For example, the designer can extend his
model with clauses from the Error Model Annex [17] to describe fault tolerance
requirements. This annex lets us design all kinds of faults, fault behaviour, fault
propagation, fault detection and also fault recovery mechanisms. Nevertheless,
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this annex does not support replication. At this level, the designer also enriches
his model with our property set defined to integrate replication concepts.

After specifying the set of replication properties, we apply a model trans-
formation on the core model to get an intermediate one enriched with replicas.
It consists in a direct-manipulation M2M (Model To Model) transformation to
integrate replication policies to the core model in order to save efforts and reduce
errors. Based on an automatic build and modification of models when possible,
we aim at applying a set of transformation rules to get a new enriched model
that has to be itself consistent and coherent.

The model transformation is ensured by a set of transformation rules defined
and implemented within an existing tool. We propose, in this paper, the exten-
sion of the Ocarina tool suite to support the analysis and the generation of the
replication properties. As we have already mentioned in Sect. 3.2, Ocarina is a
powerful tool supporting analysis and verification of AADL models. In addition,
the Ocarina tool is designed and implemented around a modular architecture
that can be easily extended to support analysis of the replication properties as
well as replication code generation. For that, we extended Ocarina in order to
automatically generate replicas. We enriched the existing compiler with a back-
end part to expand the original model with variants, adjudicators and establish
necessary connections. Finally, once the intermediate model is automatically
generated by Ocarina, the designer can then apply different analyses. On one
hand, the designer can use Ocarina again either to formally verify or analyse
the generated model using its Petri nets backend or to produce the applica-
tion code into Ada or C. On the other hand, the designer can in turn use
Replication Properties to specify the replication of another hardware, soft-
ware or hybrid component of the system. Thus, we enable the designer to have
the benefit of all analysis and verification tools offered by Ocarina to manipulate
AADL models especially the fault tolerant ones.

In the following, we detail the description of the replication property set and
the extension of the Ocarina tool suite to support it.

4.1 Description of the Property Set

To set replication requirements, we defined an AADL property set baptised
Replication Properties [5]. We help the user to simply express the replica-
tion expect using a set of properties in order to specify the desired replicated
architecture as explained above:

– Description. The designer gives details about the purpose of replication, its
manner or its requirements. This property provides information about the
context of replication without any impact on the replication policies.

– Our approach allows supporting several replicated components even in a single
model through the defined property Replica Number applied to a given
replicated component. This property represents the number of replicas that
we intend to model.
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– We defined a property named Replica Identifiers in order to identify each
of the generated replicas.

– We are interested in our context in both active and passive replication of
hardware, software and even hybrid components. For that, we have defined a
property called Replica Type to describe the adopted style of replication.
Such a property specifies the associated replication type to a given replicated
component. The value of this property may be either PASSIVE or ACTIVE.

– Consensus (agreement) algorithm: It is required in two cases related to
the replication style. The first is to elect from one or more secondary copies a
new primary copy in case of failure of the current one. This is in the context of
passive replication unlike the active one. The latter consists in voting between
the different replicas. In both cases, this algorithm can be described via an
AADL subprogram component. This subprogram can describe an existing
algorithm within the base model or define a new one through a source code
file. We can support predefined consensus algorithms like majority voters as
well as personalized ones.

All of these properties are required to establish replication mechanisms. They
have no default values and have to be explicitly set.

4.2 Model Transformation

As mentioned previously, we propose in this paper a replication-based fault toler-
ance approach for distributed real-time systems relying on replication at design
level. Our idea is to help the designer modelling its system by automation of
the replication design using a selective approach. It means that the designer
has to encapsulate the needed replication parameters (replication style, replica
number, agreement algorithm...) into a property set and then integrate it in the
core model. Then, through an automatic model transformation we generate a
new AADL model enriched with variants and adjudicators. Then, this model
can be subject to model checking, model analysis, code generation or replication
of other components.

Regarding the model transformation, it consists in a direct-manipulation
M2M transformation to integrate replication policies into the core model. Based
on automatic generation, we apply a set of transformation rules to get a new
enriched model that has to be itself consistent and coherent. The transformation
rules, to map the replication concepts into the enriched AADL model, depend
on various constraints listed hereafter.

Supported AADL Components: The objective of our research work is to
meet dependability requirements and to cope with faults since the design level.
Numerous research work are carried out to model fault tolerance techniques using
AADL. AADL components correspond to concrete software and hardware enti-
ties. FT communities (for example in [8]) assert that software and hardware fault
tolerance architectures and even implementations are not similarly applicable. In
particular, replication of software components is quite different from hardware
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components. This difference is due to the specific characteristics of each AADL
component including their possible features and then the prospective connec-
tions that can be established, the containment hierarchy of these components,
the modes clauses that can be or cannot be declared and finally the coordination
with the adjudicator regarding the AADL hierarchy.

For that, we conducted an in-depth study to explore all possible situations
even the complex cases. Then, we have applied the property declarations defined
in the Replication Properties property set into only a subset of the AADL
components that we find necessary and consistent. For software components, we
support the replication of threads and processes unlike data and subprogram
components as we require in this case to apply diversity concepts and not repli-
cation ones [2]. In fact, the diversity, specifically developed to tolerate design
faults in software arising out of wrong specifications and incorrect coding, aims at
providing the same service through a distinct model and/or implementation. The
most popular techniques which are based on the design diversity are the Recovery
Blocks (RB), the Distributed Recovery Blocks (DRB) and the N-Version Pro-
gramming (NVP). The second strategy is the distributed nature of the first one
which is based on rollback recovery. While the third strategy is based on masking
errors and the majority voting to select the correct response. In this case, repli-
cation of identical subprograms does not guarantee better reliability from the
treatment viewpoint. For that, we do not support replication of subprogram nor
data components. As for hardware components, we support the replication of
processors and devices. We also ensure replication of the hybrid component
(system). Moreover, the type of features of the replicated component (ports,
data access or subprogram access) affects the assumed replication policies.
For each feature of replicated component of type in out, out port or data
access, we specify its corresponding voter subprogram. That means that the
consensus algorithm property is applied to each feature of the replicated com-
ponent and not to the component itself in the case of active replication contrary
to the passive one.

Replication Style: The generated intermediate AADL model enriched by vari-
ants and adjudicators strongly depends on the type of replication defined by
the property Replication Properties::Replica Type. The adopted replica-
tion policies are not the same in the case of primary-backup or active replication.

– Active Replication: The generated model contains Replica Number replicas
generated inside the same containment hierarchy of the replicated component.
Each of them is then connected directly or remotely to a generated or called
adjudicator (voter in this case) depending on the property used to specify
the consensus algorithm and the type of the replicated component. Active
replication type treats differently all types of components (hardware, software
and system).

– Passive Replication: Unlike active replication, primary-backup approach
does not differentiate between types of component subject to replication.
This type of replication, based on the migration between two or more con-
figurations, imposes the generation of Replica Number identical components
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supporting the dynamic reconfiguration to obey the adaptation needs. To
describe the dynamic behaviour of the runtime architecture, we used the modes
and mode transitions concepts provided by the AADL standard.

Consensus Algorithm: we defined a set of properties describing the consensus
algorithm which has in turn a significant impact on the generated model. Among
a number of variants, the consensus problem (adjudicator) requires agreement for
a single data value. Some of the variants may fail or be unreliable in other ways.
One approach to generate consensus for all variants, is majority voting. In our
case, the consensus algorithm property specifies the way that connects variants to
adjudicators even by remote connection in the case of hardware components. For
that, we discussed all possible cases of AADL components replication to tolerate
both software and hardware faults. The description of the consensus algorithm
is set through one of the three properties that we have already defined. This
property, applied to the replicated component or to each of its features, is then
transformed to an AADL subprogram. To be executed, this subprogram must
be called by an already existing or a generated thread. Deployment and tim-
ing properties of the generated software components (like Dispatch Protocol,
Period and Deadline) are also considered when applying the transformation
rules. Due to space limitation, the issue of the replication overhead that may
have on timeliness is not addressed in this paper.

The different transformation algorithms are implemented as an extension of
the Ocarina tool suite to support replication mechanisms.

4.3 Extension of the Ocarina Tool Suite

Our approach is developed as an extension of the Ocarina tool suite. Not only,
Ocarina can analyze and verify the use of the replication properties but also
generate the intermediate AADL model enriched with different variants and
adjudicators. This generation process includes:

1. The validation of the properties use. In this part, we check the validity of
the use of our property set items using Ocarina. The designer must specify
the replica number, which must be bounded between the minimal and the
maximal number of replicas. The designer must also specify the type of the
replication which is either active or passive.Then, we check the consensus
algorithm that must be specified to decide about replicas. All these properties
have to be coherent and not redundant.

2. The extraction of the list of properties for each replicated component if all
properties are validated. This is ensured by collecting all replication proper-
ties specified to one replicated component as a record and then invoking the
suitable transformation.

3. The expansion of the base AADL model with replicas. We are able in this case
to expand the AADL model with replicas based on transformation rules. This
is done by manipulating AADL tree retrieved from the base model. Depending
on the type of replicated component and on the selected replication strategy,
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a replication algorithm is applied to extend the model by the replication
mechanisms. For that we have defined and implemented the transformation
rules for each supported component in the replication.

4. The generation of the enriched AADL model (.aadl file) from the expanded
AADL tree.

We have implemented the different transformation algorithms as an exten-
sion of the Ocarina tool suite to support replication mechanisms. We have vali-
dated the developed parts by a set of examples. We verified manually if (1) all
requirements are satisfied for each generated component and (2) the performed
extensions do not violate the structure and behaviour of the core AADL model.
If either a requirement was not met or an extension was not mapped to Oca-
rina, we went back to the previous step in order to refine it. This activity enabled
both the completeness and the consistency checking of the replication extensions
mapped into the Ocarina tool suite.

5 Case Study

Several case studies have been performed to validate our development process
and to verify the correctness and consistency of our tool suite extension1.

Fig. 3. AADL core model of the robot system

1 More details about this case study, the textual description of its core AADL model
as well as generated intermediate models are available at http://goo.gl/QeXJMr.
The description of the property set Replication Properties, the transformation
algorithms and other case studies are also given at the same link.

http://goo.gl/QeXJMr
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Listing 1.1. Replication of process components in the robot system
system implementation robot . i
. . .
p r op e r t i e s

Rep l i c a t i o n P rop e r t i e s : : Desc r ip t i on => ” Rep l i c a t i on o f the proce s s
component p r o c s e n s o r r i g h t ” app l i e s to p r o c s e n s o r r i g h t ;

Rep l i c a t i o n P rop e r t i e s : : Replica Number => 2 app l i e s to
p r o c s e n s o r r i g h t ;

Rep l i c a t i o n P rop e r t i e s : : Repl ica Type => ACTIVE app l i e s to
p r o c s e n s o r r i g h t ;

Rep l i c a t i o n P rop e r t i e s : : R e p l i c a I d e n t i f i e r s => ( ” p r o c s e n s o r r i g h t 1 ” ,
” p r o c s e n s o r r i g h t 2 ” ) app l i e s to p r o c s e n s o r r i g h t ;

Rep l i c a t i o n P rop e r t i e s : : Consensus Algor ithm Source Text => ” robot .
Do Vote” app l i e s to p r o c s e n s o r r i g h t . evenement ;

Rep l i c a t i o n P rop e r t i e s : : Desc r ip t i on => ” Rep l i c a t i on o f the proce s s
component p r o c s e n s o r l e f t ” app l i e s to p r o c s e n s o r l e f t ;

R ep l i c a t i o n P rop e r t i e s : : Replica Number => 2 app l i e s to
p r o c s e n s o r l e f t ;

R ep l i c a t i o n P rop e r t i e s : : Repl ica Type => ACTIVE app l i e s to
p r o c s e n s o r l e f t ;

R ep l i c a t i o n P rop e r t i e s : : R e p l i c a I d e n t i f i e r s => ( ” p r o c s e n s o r l e f t 1 ” , ”
p r o c s e n s o r l e f t 2 ” ) app l i e s to p r o c s e n s o r l e f t ;

R ep l i c a t i o n P rop e r t i e s : : Consensus Algor ithm Source Text => ” robot .
Do Vote” app l i e s to p r o c s e n s o r l e f t . evenement ;

end robot . i ;

To illustrate the effectiveness of our approach, we choose as a case study a
robot system. This system has a symmetrical architecture for both right and
left sides. It is composed of a set of processes responsible for collecting data
(position) from sensors, treating them by a control unit and finally reacting
with movements applied by the servomotor. This system is composed of five
processes. proc sensor left and proc sensor right are two processes respon-
sible for collecting data from sensors respectively for the left and right sides of the
robot. They send the position of the robot to the proc control process which is
in turn responsible for treating received data. After analysing the possible move-
ments of the robot, the proc control sends orders to the proc servomotor left
and proc servomotor right to move respectively left and right servomotors of
the system. Figure 3 illustrates the core AADL model of the robot system in a
graphical representation.

To avoid the false detection of the position of the robot and then its
movement in an undesired direction, we apply an active replication to both
proc sensor left and proc sensor right components to be sure about the
motor action. Each of these processes is dually replicated to vote on the collected
data (positon) of the robot. Besides, we replicate three times sensor left and
sensor right device components. (We consider in the Fig. 4 only the replication
of processes due to the lack of space).

Listing 1.1 shows the replication properties clauses that we added to the core
AADL model of the robot system to replicate processes and devices respectively.

When applying the automatic generation of the intermediate model through
our developed backend, Ocarina generates an AADL model enriched with repli-
cas like depicted in Fig. 4. It consists of two similar processes generated inside
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Fig. 4. Generated AADL model of the robot system integrating replicas

the system component connected to a voter process generated also inside the sys-
tem component. The voter thread calls two subprograms Map Spg and Vote Spg.
The first is to construct an array of collected data that will be the input of the
second which calculates the average of all detected positions. This is to have
both algorithms independent from the replica number.

We deduce from this case study how much the generated model is complicated
with respect to the initial one even that we have applied dual replication only
to two components. Thus, we help the designer to generate it while reducing the
risk of errors and decreasing the number of lines of code in a meaningful way
(up to 50 %). In case of replication of several components with various number of
replicas, this generated model will be certainly more complicated. Our approach
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helps the designers save efforts, reduce the design time and the risk of errors
that may appear due to the significant number of components and connections.
This is through an automatic generation of replicas and adjudicators by ensuring
automatic model transformation using our extension of the Ocarina tool suite.

Finally, to validate the consistency of the generated intermediate model, we
used Ocarina again to parse it and to generate Ada code using the PolyORB-HI
middleware. The automatic code generation using Ocarina, its compilation with
GNATforLEON, its simulation using TSIM were performed successfully.

6 Conclusion and Future Work

As replication is a well-known technique used to ensure fault tolerance, a wide
range of studies aims at designing and implementing fault tolerance for distrib-
uted real-time systems based on replication. Most of these work deal with only
one replication style and limited number of variants. In addition, they perform
manual redundancy. In case of a large number of variants and/or replicated com-
ponents, the replication design can cause significant increase of the design time
and the risk of errors. For that, to assist the designer when modelling his or her
fault tolerant application, we proposed a new approach based on automation of
the replication of AADL components. Our approach supports also active and
passive replication. Besides, it enables the designer to choose different number
of variants even in a single model to overcome limits of existing approaches.

Accordingly, we defined a replication property set consisting on a group of
properties encapsulating the replication parameters set by the designer to reach
desired replicated architecture. We described, in this paper, how AADL and our
defined property set are used for automated generation of a replication-based
fault tolerant AADL model. An extension of an existing tool suite to create
AADL system architecture has been implemented to transform the base model
enriched with replication properties into an intermediate model rich with variants
and adjudicators. An application to a robot system was finally provided as a case
study.

After accomplishing the extension of this tool by passive replication, we plan
in the future to extend the POLYORB-HI middleware with fault tolerant con-
cepts. To benefit from its support, we aim at enriching it with various consensus
algorithms that are well used to ensure software fault tolerance including all
agreement, weak validity, strong validity and termination [19].
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Abstract. Kronecker algebra until now has been applied to concurrent
programs that use semaphores and protected objects for synchronization.
Like many other programming languages, Ada uses barriers, too. In this
paper, we present a new synchronization construct for barriers. By apply-
ing this, we are able to statically analyze Ada multi-tasking programs
that employ barriers for synchronization issues. It turns out that we can
use our existing Kronecker algebra implementation completely unmod-
ified for concurrent program graphs using such barrier synchronization
primitives.

Keywords: Static program analysis · Ada tasking · Synchronization
primitives · Thread synchronization · Barriers · Kronecker algebra

1 Introduction

Since multi-core processors even for safety-critical applications increasingly
become a state-of-the-art technology, scientific and industrial research focuses
on analysis and verification of multi-threaded programs. It is widely agreed that
such concurrent systems are hard to understand and that it is difficult to prove
properties.

At this point Kronecker algebra comes into play. It has proven to be an ele-
gant and adequate vehicle in that field and was already used to model stochastic
automata [20] and calculate reachable sets [4]. In order to model shared memory
concurrent systems the ordinary Kronecker algebra was extended by additional
operations in [17]. An adapted version of the Kronecker product is introduced
and important properties of the generated models are proved. The operations of
that extended Kronecker algebra are used to generate concurrent program graphs
(CPGs) out of the control flow graphs (CFGs) of the threads and synchronization
primitives. Until now this approach was applied to multi-threaded concurrent
programs synchronized via semaphores [17,18] and higher level synchronization
primitives like Ada’s protected objects (POs) [5]. Applying Kronecker algebra
to Ada’s barriers is novel in this area. The contributions of this paper are as
follows.
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1. We show how to model Ada’s barriers such that Kronecker algebra can be
employed for static analysis. This is done by introducing a novel synchroniza-
tion primitive modeling the semantics of barriers.

2. We compare our barrier synchronization primitive with a barrier implemen-
tation based on semaphores. As a byproduct, we show how our CPG-based
approach can be used as a basis for proving such implementations correct.
It turns out that our barrier construct is better suited for program analysis
because it fully can be analyzed by static analysis1, while the implementations
using semaphores, in order to omit dead paths, require advanced techniques
(e.g. symbolic analysis [6]).

The outline of the paper is as follows: In Sect. 2, after presenting basic defini-
tions and extending Kronecker algebra such that it can be used for modeling and
analysis of concurrent systems, we show how semaphores can be incorporated
into our approach. In Sect. 3, we introduce novel synchronization primitives for
modeling the semantics of barriers. We compare our barrier construct with bar-
riers modeled by semaphores. Related work is discussed in Sect. 4 before we draw
our conclusion in Sect. 5.

2 Preliminaries

The preliminaries described in this section can be found in more detail in [5,18].
In contrast to these papers, we give just a brief overview and introduce initially
locked and unlocked semaphores.

We represent Ada tasks and synchronization primitives (e.g. semaphores [8])
by slightly adapted control flow graphs (CFGs). Each of the CFGs is stored
in form of an adjacency matrix. We assume that the CFG edges are labeled
by elements of a semiring. Definitions and properties of the semiring can be
found in [14,18]. Our semiring consists of a set of labels L which is defined by
L = LV ∪ LS, where LV is the set of non-synchronization labels and LS is the
set of labels representing calls to synchronization primitives (LV and LS are
disjoint). From now on, we use matrices out of M = {M = (mi,j) |mi,j ∈ L}
only.

Sometimes we find it convenient to refer to CFGs as automata, both of which
are represented by matrices. To keep things simple, we refer to edges, their labels
and the corresponding entries of the adjacency matrices synonymously. Since our
matrix calculus processes on the matrix entries (which correspond to edges on
CFG-level), we require that the basic blocks are situated on the (incoming)
edges. The matrices have entries which are referred to as labels l ∈ L as defined
in [5,18]. The labels refer to a certain basic block. A basic block consists of
multiple consecutive statements without jumps. For our purpose, we need a finer
granularity which we achieve by edge splitting. Especially for synchronization

1 Programs using our barrier synchronization primitive from within loops or condi-
tional statements will still require advanced techniques.
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primitive calls (e.g. p- and v-calls to semaphores [8]) edge splitting is required.
Such calls have to be the only statement on the corresponding (split) edge.

Formally, the system model (see, e.g., [18]) consists of the tuple 〈T ,S,L〉,
where T is the finite set of CFG adjacency matrices describing tasks, S refers to
the finite set of CFG adjacency matrices describing synchronization primitives
(e.g. semaphores), and the labels in T ∈ T and S ∈ S are elements of L and LS,
respectively.

A Concurrent Program Graph (CPG) is a graph C = 〈V,E, ne〉 with a set of
nodes V , a set of directed edges E ⊆ V ×V , and a so-called entry node ne ∈ V .
The sets V and E are constructed out of the elements of 〈T ,S,L〉. Details on
how we generate the sets V and E follow below. Similar to CFGs, the edges of
CPGs are labeled by l ∈ L.

Kronecker product (⊗) and Kronecker sum (⊕) form Kronecker algebra [18].
Proofs, properties, and examples can be found in e.g. [2,7,11,17]. In the follow-
ing, we equip the ordinary Kronecker algebra with additional operations. With
this what we call extended Kronecker algebra, we will be able to state a for-
mula calculating the adjacency matrix of a CPG representing the corresponding
multi-threaded program.

Let T (i) ∈ T and S(j) ∈ S refer to the matrices representing thread i and
synchronization primitive j, respectively. We obtain matrix T representing k
interleaved tasks and matrix S representing r interleaved synchronization prim-
itives by

T =
k⊕

i=1

T (i), where T (i) ∈ T and S =
r⊕

j=1

S(j), where S(j) ∈ S.

Because the operations ⊗ and ⊕ are associative (cf. [17]), the corresponding
n-fold versions are well defined. In the following, we define the selective Kronecker
product which we denote by 	L. This operator limits synchronization of the
operands to labels l ∈ L ⊆ L.

Definition 1 (Selective Kronecker Product). Given an m-by-n matrix A
and a p-by-q matrix B, we call A 	L B their selective Kronecker product. For
all l ∈ L ⊆ L let A 	L B = (ai,j) 	L (br,s) = (ct,u), where

c(i−1)·p+r,(j−1)·q+s =
{
l if ai,j = br,s = l, l ∈ L,
0 otherwise.

The selective Kronecker product ensures that, e.g., a semaphore p-call in the left
operand is paired with the p-operation in the right operand and not with any
other operation in the right operand. In practice, we usually constrain L ⊆ LS.

In the remainder of this section, we refer to the identity matrix of order n
as In. Furthermore we write o(M) to denote the order of matrix M .

Definition 2 (Filtered Matrix). We call ML a filtered matrix and define it
as a matrix of order o(M) containing entries of L ⊆ L of M = (mi,j) and zeros
elsewhere:
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Fig. 1. Semaphores (synchronization primitives)

ML = (mL;i,j), where mL;i,j =
{
mi,j if mi,j ∈ L,
0 otherwise.

We refer to the ordinary Kronecker algebra equipped with the operations defined
above as extended Kronecker algebra.

The adjacency matrix representing program P is referred to as P . In [17] it
is shown that P can be efficiently computed by

P = T 	LS
S + TLV

⊗ Io(S). (1)

Intuitively, the selective Kronecker product term on the left allows for synchro-
nization between the tasks represented by T and the synchronization primitives S.
Both T and S are Kronecker sums of the involved tasks and synchronization prim-
itives, respectively, in order to represent all possible interleavings of the concur-
rently executing tasks. The right term allows the tasks to perform steps that
are not involved in synchronization. Summarizing, the tasks (represented by T )
may perform their steps concurrently, where all interleavings are allowed, except
when they call synchronization primitives. In the latter case the synchronization
primitives (represented by S) together with Kronecker product ensure that these
calls are executed in the order prescribed by the (incomplete) deterministic finite
automata (DFA) of the synchronization primitives.

So, for example, a task cannot do semaphore calls in the order v followed by
p when the semaphore DFA only allows a p-call before a v-call (this would be
the case when we remove the self-loop at node 1 in Fig. 1a). The CPG of such
an erroneous program will contain a node from which the final node of the CPG
cannot be reached. This node is the one preceding the v-call. Such nodes can
easily be found by traversing CPGs. Thus deadlocks of concurrent systems can
be detected with little effort.

In Fig. 1 an initially unlocked (a) and locked (b), respectively, binary and a
counting semaphore (c) are depicted. The latter allows two threads to enter at
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the same time. In a similar way it is possible to construct semaphores allowing
n non-blocking p-calls (n ∈ N, n ≥ 1).

Figure 2 shows a small example. The program in Fig. 2a has two branches.
The left one employs calls p and v to an initially unlocked semaphore (Fig. 1a)
in the correct order, the second one contains two p-calls. Applying Kronecker
algebra (cf. (1) and Fig. 2b) we obtain the CPG in Fig. 2c. Node 6 shows that
there is a self-deadlock in the underlying program.

In general, a thread’s CPG may have several final nodes. We refer to a node
without outgoing edges as a sink node. A sink node appears as zero line in
the corresponding adjacency matrix. A CPG’s final node may also be a sink
node (if the program terminates). However, CPG sink nodes and final nodes
can be distinguished as follows. We use a vector determining the final nodes
of thread i, namely F (i). In addition, vector G(j) determines the final node of
synchronization primitive j. Both have ones at places q, when node q is a final
node, zeros elsewhere. Then the vector

⊗k
i=1 F

(i) ⊗ ⊗r
j=1 G

(j) determines the
final nodes of the CPG. Again, a one in the resulting vector states that the
corresponding node is a final node. In the remainder of this paper, we assume
that all threads do have only one single final node. Our results, however, can be
generalized easily to an arbitrary number of final nodes.

In [17] it is shown that CPGs have at most nk nodes and at most 2k nk edges,
if k is the number of threads and each thread has n nodes in its CFG. CPGs have
sparse adjacency matrices (|E| = O

(|V |)). Hence, memory saving data structures
and efficient algorithms suggest themselves. However, in the worst-case (i.e. no
synchronization used), the number of CPG nodes increases exponentially in k.

3 Barriers

Kronecker algebra until now has only been applied to concurrent programs that use
semaphores andAda’s protected objects (POs) for synchronization. In this section,
we propose a new synchronization primitive modeling the behavior of barriers.
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Fig. 2. (a) An example program with a correct (left path) and incorrect (right path)
use of a binary semaphore that is initially unlocked; (b) Kronecker matrix operation;
(c) CPG after Kronecker analysis with the self-deadlock in CPG-node 6
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Fig. 3. CFGs of tasks T1, T2, and T3 using a barrier

We will give examples and we will compare our solution with the barrier imple-
mentation found in [8]. Several other implementations of barriers can be found
in [12].

A barrier is a synchronization construct available in most modern program-
ming languages (e.g. Ada and Java). It is used when threads have to wait for
each other. Thus a barrier is used to synchronize a set of n threads. The first
thread(s) reaching the barrier will be blocked. When the nth thread reaches
the barrier all the threads are released and continue their work. A barrier is
called reusable, when it can be re-used after the threads are released. In general,
dynamic and static barriers are distinguished. Static barriers have a statically
fixed number of participating tasks/threads, while the number of threads can
vary at runtime for dynamic barriers.

In Ada, barriers are available in form of synchronous barriers [3, D.10.1]
available in the package Ada.Synchronous Barriers. Tasks calling its procedure
Wait For Release will be blocked until the Release Threshold is reached. Java
supports barriers in form of the class CyclicBarrier [10]. The method await is
called when the barrier is reached. Also a dynamic barrier (i.e. Phaser [10]) is
supported in Java. Both, Ada’s synchronous barrier and Java’s CyclicBarrier
are reusable. With the class CountDownLatch, Java has also some sort of a non-
reusable barrier, where one or more threads can wait until a set of operations
being performed in other threads completes. The approach presented in this
paper works for both, Ada’s and Java’s static barriers. Anyway, in the remainder
of this paper we elaborate on Ada’s barrier in more detail.

We model a call of the barrier operation Wait For Release with label i. This
indicates that the counter within the barrier implementation is incremented by
one during such a call. In order to set the current counter to zero all the tasks
call d (decrements counter). Both labels i and d ∈ LS. We require that the
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Fig. 4. CPG for the program consisting of T1 and T2

barrier labels have to be unique, i.e., the labels of two different barriers have to
be different (the same applies for all synchronization primitives e.g. semaphores)
thus the jth barrier uses the labels ij and dj . Because the examples in this paper
use at most one barrier, we do not have to pay much attention to this fact.

Similar to the semaphore synchronization primitives, we now model our bar-
rier synchronization primitive. A barrier construct includes n subsequent edges
labeled by i followed by n subsequent edges labeled by d. Examples for such
barrier constructs are depicted in Fig. 3a,b. These barriers synchronize two and
three threads, respectively. In a similar way it is possible to model barriers syn-
chronizing any number of threads. After releasing the tasks, each of them, before
allowed to continue, calls the barrier’s d-operation. This sets the counter back
to zero and ensures that the barrier is reusable.

During CFG construction each call of the procedure Wait For Release is
being replaced such that i and d of the corresponding barrier synchronization
primitive are called. This replacement implies that the actually used barrier
implementation has to be provably correct. Otherwise, a proof could state cor-
rectness while abstracting away from a faulty implementation. This proof can
be done independently from proving a barrier usage scenario correct. From a
certain point of view, our barrier construct is based on the semantics of bar-
riers. A different approach is to use any implementation of a barrier based on
semaphores to verify a barrier usage scenario together with the barrier’s imple-
mentation. As we will see in the following examples, the verification of programs
using our barrier synchronization primitive will be easier compared to barriers
implemented using semaphores.

3.1 Examples

As an example consider the CFGs of the tasks T1, T2, and T3 shown in Fig. 3.
The CPG of a program consisting of the two tasks T1 and T2 is depicted in
Fig. 4 whereas the CPG of the program consisting of the three tasks T1, T2, and
T3 is shown in Fig. 5. The first program uses the barrier construct presented in
Fig. 3a whereas the second program uses the barrier depicted in Fig. 3b. Note
that these graphs are generated with our standard CPG generating software.
The input programs just use our new barrier synchronization primitive. It can
easily be seen that the barrier synchronizes the tasks correctly.
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Fig. 5. CPG for the program consisting of T1, T2, and T3

Figure 6 presents an example program consisting of two tasks TL1 and TL2.
Each task contains a loop and a Wait For Release inside the loop. If the num-
ber of loop iterations is the same in both tasks, the final node 61 is reached;
otherwise, the program stalls at nodes 30 or 54. The number of loop iterations
cannot be calculated by the Kronecker approach. For this purpose e.g. some sort
of symbolic analysis [6] is needed. In the simplest case, only lower and upper
bounds of for-loops have to be compared.

3.2 Comparison to a Barrier Implementation
Using Semaphores

In the following, we compare our barrier construct with the barrier implemen-
tation on page 41 in [8]. The pseudo code of this example is as follows.
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Fig. 6. CPG for the program consisting of TL1 and TL2

Listing 1.1. Reusable Barrier Solution using Semaphores

# rendezvous

mutex.wait() # ps
count += 1 # i
if count == n:

turnstile2.wait() # pb2 , lock the second
turnstile.signal() # vb1 , unlock the first

else # empty # T1.a; T2.e
mutex.signal() # vs

turnstile.wait() # pb1 , first turnstile
turnstile.signal() # vb1

# critical point # T1.b; T2.f

mutex.wait() # ps
count -= 1 # d
if count == 0:

turnstile.wait() # pb1 , lock the first
turnstile2.signal() # vb2 , unlock the second

else # empty # T1.c; T2.g
mutex.signal() # vs

turnstile2.wait() # pb2 , second turnstile
turnstile2.signal() # vb2

Three semaphores, namely mutex, turnstile and turnstile2, are used
in order to implement the barrier functionality. Two of them, mutex and
turnstile2 are initially unlocked semaphores as shown in Fig. 1a. The
semaphore turnstile is an initially locked one as depicted in Fig. 1b. We assume
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that the two threads T1 and T2 execute the code. Some lines are modeled by the
same labels for both threads (e.g. both threads use ps in order to get access to
the variable count). Other lines are modeled by different labels (e.g. T1 and T2
execute b and f, respectively, as their critical point). The CPG of the reusable
barrier solution is depicted in Fig. 7. The graph contains the potential deadlock
nodes 681, 761, 1774, 1790, 1961 and 2030. The dotted edges are dead paths
which can be ruled out by a value-sensitive (e.g. symbolic) analysis (cf. [6]). Due
to these edges some nodes are unreachable which are filled light gray. As an effect
of this, it is easy to see, that all the potential deadlock nodes are unreachable.
We can conclude that the implementation using three semaphores is correct but
it is obviously more complex than our solution (cf. Fig. 4) and thus it is harder to
prove its correctness. In addition, to exclude the dead paths in Fig. 7, advanced
approaches like symbolic analysis are needed.

Similar to the reusable barrier solution above, we discuss the non-reusable
barrier solution, which can be found on page 29 in [8], in the following.

Listing 1.2. Non-reusable Barrier Solution using Semaphores

# rendezvous

mutex.wait() # ps
count = count + 1 # c

mutex.signal() # vs

if count == n: barrier.signal() # T1.v, T1.a; T2.v, T2.x
else # empty # T1.b; T2.y

barrier.wait() # p
barrier.signal() # v

# critical point

Two semaphores, namely mutex and barrier, are used in order to imple-
ment the barrier’s functionality. The first (i.e. mutex) is an initially unlocked
semaphore as shown in Fig. 1a. The second semaphore (i.e. barrier) is an ini-
tially locked semaphore as depicted in Fig. 1b. The CPG of the non-reusable
barrier solution is depicted in Fig. 8. Again there are dead paths (the corre-
sponding edges are dotted) in the resulting CPG. This graph includes also a
deadlock node (i.e. node 181). Again, the paths to this node can be revealed as
dead paths by e.g. symbolic analysis. Thus the node 181 is filled light gray which
states that this node is unreachable (as several other nodes). In contrast to that,
our approach does not generate any deadlock nodes nor dead paths.

Theoretical results such as [21] state that synchronization-sensitive and
context-sensitive analysis (similar to the halting problem) is undecidable even
for the simplest analysis problems. Our system model differs in that it supports
subprograms (e.g. procedures) only via inlining and recursions are not allowed.
Given this restriction, we can state that our approach is sound i.e. it finds all
possible deadlocks. Stated the other way round, our approach proves a program
deadlock free when no deadlock nodes (i.e. nodes without successors which are
no final nodes) are found. On the other hand, our static approach may find
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Fig. 7. CPG of the reusable barrier solution using semaphores
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Fig. 8. CPG of the non-reusable barrier solution using semaphores

false positives. Advanced techniques may be used in order to reveal that the
corresponding deadlock nodes are unreachable.

We can conclude this section by stating that we introduced a technique for
formally and automatically analyze barrier implementations and programs using
barriers. Thus, the informal proof of barriers, which is mentioned in [8], can be
replaced by an automatic and a more reliable one.

4 Related Work

Barriers can be employed in various parallel programming models, such as single
program multiple data (SPMD, e.g. OpenMP), fork/join, and shared memory
interleaving semantics based models. In the following we compare some of the
work done in these areas to our work.

In [1] the concept of structural correctness is defined to ensure that all threads
execute the same number of barriers. Static analysis is used to determine if or
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not a program is structural correct. Combining this approach with ours, a large
number of programs can be automatically verified.

In [13,24] the focus is on determining which portions of the program may exe-
cute in parallel. However, such analyses do not verify the correctness of barrier
synchronization. Our approach delivers whether or not a statement is concur-
rently executed via the structure of the CPG.

Paper [23] generalizes [1] by introducing barrier matching which allows to
prove a larger set of barrier scenarios correct. Our approach combined with
symbolic analysis [6], however, is capable to verify an even larger set of such
scenarios.

In [15] a bounded permission system and a concurrent separation logic are
presented for verifying fork/join programs with static and dynamic barriers.
Since Ada supports static barriers only, our approach can only be compared to
that part of [15]. We are sure, that our approach via symbolic analysis can verify
the same set of scenarios.

In [16] several barrier scenarios are verified. It will be interesting future work
to see whether these proofs have counterparts in our graph-based model.

Although not related directly, we note that our Kronecker algebra model is
also used in the railway domain. The adaptations required for railway systems
were done in [19] and it was extended in several publications (e.g. [22]).

5 Conclusions

We have shown how Kronecker algebra can be employed for static analysis of
concurrent Ada programs that use reusable static barriers for synchronization.
The implementation of our novel barrier synchronization primitive has to be
provably correct. Otherwise, a proof could state correctness while abstracting
away from a faulty implementation. This proof can be done independently from
proving a barrier usage scenario correct.

In addition, we have compared our novel barrier synchronization primitive
with a barrier implementation based on semaphores. As a byproduct we have
shown how our CPG-based approach can be used as a basis for proving such
implementations correct. In fact it is possible to use any implementation of a
barrier based on semaphores to verify a barrier usage scenario together with the
barrier’s implementation.

Our barrier construct is better suited for program analysis because it fully
can be analyzed by static analysis, while the implementations using semaphores,
in order to omit dead paths, require advanced techniques (e.g. symbolic analysis).
Anyway, programs using our barrier synchronization primitive from within loops
or conditional statements will still require advanced techniques.

Since Kronecker algebra is based on the theory of finite automata, dynam-
ically allocated tasks and dynamically allocated protected objects cannot be
modeled by our approach. As our analysis targets safety related systems, we do
not consider this a severe limitation.
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The usefulness of our approach has been proved by a lazy implementation
of extended Kronecker algebra done in Ada. The implementation is very mem-
ory efficient and has been parallelized to exploit modern many-core hardware
architectures [17]. Generating CFGs for Ada programs is based on [9].
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Abstract. Global limited preemptive real-time scheduling in multi-
processor systems using Fixed Preemption Points (FPP) brings in an
additional challenge with respect to the choice of the task to be pre-
empted in order to maximize schedulability. Two principal choices with
respect to the preemption approach exist (1) the scheduler waits for the
lowest priority job to become preemptible, (2) the scheduler preempts
the first job, among the lower priority ones, that becomes preemptible.
We refer to the former as the Lazy Preemption Approach (LPA) and the
latter as the Eager Preemption Approach (EPA). Each of these choice
has a different effect on the actual number of preemptions in the sched-
ule, that in turn determine the runtime overheads.

In this paper, we perform an empirical comparison of the run-time pre-
emptive behavior of Global Preemptive Scheduling and Global Limited
Preemptive Scheduling with EPA and LPA, under both Earliest Dead-
line First (EDF) and Fixed Priority Scheduling (FPS) paradigms. Our
experiments reveal interesting observations some of which are counter-
intuitive. We then analyse the counter-intuitive observations and identify
the associated reasons. The observations presented facilitate the choice
of appropriate strategies when using limited preemptive schedulers on
multiprocessor systems.

1 Introduction

Real-time computing systems are increasingly being used in modern mission and
safety critical systems. In a real-time system, the events occurring in the envi-
ronment are typically handled by a set of real-time tasks, with the requirement
that the task executions must complete by their respective deadlines. A real-
time scheduling algorithm ensures the timely execution of these real-time tasks.
Real-time scheduling theory has traditionally focused on fully preemptive and
fully non-preemptive scheduling of real-time tasks on uniprocessor [8] and multi-
processor platforms [1]. However, both these paradigms can become prohibitively
expensive when considering the effects of preemption related overheads and
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blocking. Preemptively scheduling real-time tasks implies context switch over-
heads, cache related preemption and migration delays, increased bus contention
and pipeline delays. Non-preemptive scheduling, on the other hand, can be infea-
sible at arbitrarily small utilizations [19].

The multi-core revolution has revived the interest among researchers and
practitioners, particularly in the field of real-time embedded systems, to lever-
age on the ability of multiprocessing platforms to provide higher performance. In
this paper, we focus on global scheduling on a multiprocessor platform that can
be broadly classified into fixed task priority, fixed job priority and dynamic job
priority scheduling algorithms. Note that preemptive scheduling on multiproces-
sor platforms using the global approach also implies that resuming tasks may
be migrated to other processors. In this paper, we consider Global Preemptive
Fixed Priority Scheduling (G-P-FPS) which is a fixed task priority scheduling
paradigm, and Global Preemptive Earliest Deadline First (G-P-EDF) schedul-
ing which is a fixed job priority scheduling paradigm. In general, EDF incurs
less preemptions than FPS since EDF assigns priorities according to absolute
deadlines, because of which preemptions occurring towards the end of the task
executions, specifically due to higher priority tasks having later deadlines, are
avoided (and no new ones occur) [9].

High preemption and migration related overheads are an emerging issue in
many real-time applications [2]. Recent experiments show that, among the vari-
ous operating system data structures, the stack is the most susceptible to faults
[4], and that preemptive scheduling makes the system significantly susceptible
to faults [19]. Moreover, there is a clear link between the run-time preemptions
on higher criticality tasks and the associated actual execution times that in
turn decide the scheduling of lower criticality tasks in mixed criticality systems
(see [7] for an overview). The foundation of mixed-criticality systems is based
on the premises that tasks have different levels of assurances on their WCETs
depending on their criticality [7]. Higher criticality tasks which have/require
high levels of assurances, typically have over-approximated WCETs to account
for the different unpredictable overheads, a significant one being the overhead
associated with preemptions. At any given time instant the system is assumed
to be executing at a criticality level L, which is given by the criticality of the
currently executing lowest criticality tasks. Every task in the system has a bud-
geted time for the criticality level L, the overrun of which triggers a criticality
switch during which all tasks with criticality L or lower are discarded. It is clear
that the schedulability of lower criticality tasks depends on the actual execution
time of higher criticality tasks [7]. If the higher criticality tasks are preempted
very often, the probability of the system switching to a higher criticality level
is high since there is a greater chance for the higher criticality tasks to overrun
their budgeted time for that criticality level because of the associated preemption
related overheads.

One way of minimizing preemption overheads while controlling the effects of
blocking is to limit preemptions to predefined locations in the tasks (see [10] for
a survey). Among the different methods to limit preemptions, fixed preemption
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points [6] enable offline analysis since the points of preemptions are known before-
hand. Limited preemptive scheduling on multiprocessor platforms presents an
additional problem with respect to the choice of the running lower priority tasks
to be preempted. The scheduler can choose to wait for the lowest priority task
to become preemptible or preempt the first lower priority running task that
becomes preemptible. The former is a Lazy Preemption Approach (LPA) and
the later is an Eager Preemption Approach (EPA).

Each approach may have a different effect on the actual number of pre-
emptions at run-time, that in turn determines the overheads in the schedule.
Consequently, there is a need for a thorough study of the preemptive behavior
of the different approaches. Note that we consider tasksets in which the optimal
fixed preemption points are already known. Consequently, the overheads depend
on whether or not a preemption actually occurs at these points. In other words,
since preemptions are possible only at these optimal preemption points, the
system performance will depend on the actual number of preemptions instead.
In this paper, we investigate (1) Which approach among EPA and LPA gener-
ates fewer number of preemptions at run-time? (2) Which scheduling paradigm
among G-LP-FPS and G-LP-EDF generates fewer number of preemptions at
run-time? We make several observations, and in particular show that limited
preemptive scheduling on multiprocessors may generate more preemptions than
fully preemptive scheduling.

The rest of the paper contains the system model in Sect. 2, some background
in Sect. 3 experiments in Sect. 4, and analysis of results in Sect. 5. Finally, we
present the conclusions in Sect. 6.

2 System Model

We consider a set of n sporadic real-time tasks Γ= {τ1, τ2, . . . τn} scheduled on
m identical processors. Each task τi is characterized by a minimum inter-arrival
time Ti, and a relative deadline Di ≤ Ti, and is assumed to contain qi ≥ 0
optimal preemption points specified by the designer/programmer [18]. Let bi,j ,
j = 1 . . . (qi + 1) denote the worst case execution time of task τi between its
(j − 1)th and jth preemption points. We use the notation bi,j to also refer to the
corresponding Non-Preemptive Region (NPR). The Worst Case Execution Time
(WCET) of each task τi can be calculated as Ci =

∑qi+1
j=1 bi,j .

3 Global Limited Preemptive Scheduling

In this section, we describe the two approaches to preemption under global LP
scheduling viz. the eager and lazy preemption approaches. Please note that in
all the figures in this paper an up arrow represents the release time and a down
arrow represents the deadline of the associated task.
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3.1 Lazy Preemption Approach

In the Lazy Preemption Approach (LPA), if a higher priority task is released
and all lower priority jobs are executing their NPRs, the scheduler waits for
the lowest priority job to complete its NPR (i.e., to become preemptible) before
allowing the higher priority job to preempt [3,5]. We illustrate this approach
using the following example illustrated in Fig. 1.

Fig. 1. Example for lazy preemption approach.

Example 1. Consider four tasks τ1, τ2, τ3 and τ4, where τ1 has the highest pri-
ority and τ4 has the lowest, scheduled on 2 processors P1 and P2. Consider
the scenario in Fig. 1 in which τ1 and τ2 are released during the execution of
NPRs of τ3 and τ4 as shown. If the scheduling algorithm used is G-LP-FPS with
lazy preemptions, τ1 and τ2 will be blocked until τ4 finishes executing its NPR,
after which τ1 is scheduled on P2. However, τ2 cannot be scheduled because τ3
has already started executing its NPR at this point. Once τ3 completes execution
of its NPR, τ2 is allowed to execute on P1. Although we have considered tasks
with fixed priorities, it can be easily seen from the example that the same con-
clusions can be made about the preemptive behavior under G-LP-EDF with lazy
preemption.

3.2 Eager Preemption Approach

Under the Eager Preemption Approach (EPA), if a higher priority task is released
and all lower priority executing jobs are executing their NPRs, the scheduler
preempts the first lower priority that becomes preemptible. We illustrate this
approach using the following example that is illustrated in Fig. 2.
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Fig. 2. Example for eager preemption approach.

Example 2. Consider the same four tasks τ1, τ2, τ3 and τ4 presented in
Example 1, and the same scenario in which τ1 and τ2 are released during the
execution of NPRs of τ3 and τ4. If the scheduling algorithm used is G-LP-FPS
with eager preemptions, the scheduler will allow τ1 to preempt τ3 rather than wait
for τ4 since it is the first available opportunity to preempt (see Fig. 2). Once τ4
completes its NPR, τ2 is scheduled on P2.

Although we have considered tasks with fixed priorities, the same conclu-
sions can be made about the preemptive behavior under G-LP-EDF with lazy
preemption.

3.3 Related Works

All of the major works on multiprocessor limited preemptive scheduling [3,11,
12,14,16,20,21] focused on schedulability and not the preemptive behavior. We
clarify that in our previous work [21] we considered schedulability under (only)
limited preemptive FPS with Fixed Preemption Points (FPP). In this paper,
we instead consider the “preemptive behavior” of both limited preemptive EDF
and FPS under FPP. Marinho [15] presented some observations regarding the
preemptive behavior under EPA and LPA; however he did not present detailed
empirical comparisons. Previously, a preliminary study of the preemptive behav-
ior of G-LP-FPS [17] and that of G-LP-EDF [23] was conducted with respect
to the number of preemptions under both EPA and LPA. In this paper, we per-
form a comprehensive comparison of the preemptive behavior using a weighted
metric similar to weighted schedulability [2] and vary different parameters that
may have an impact on the number of preemptions. To our knowledge, this is
the first such effort towards investigating the runtime preemptive behavior of
limited preemptive scheduling on multiprocessors.
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4 Empirical Investigation of the Preemptive Behavior

In this paper, we investigate how the decision of choosing a scheduling par-
adigm viz. EDF and FPS, and the preemption approach viz. EPA and LPA
affect the number of preemptions at run-time. The number of run-time preemp-
tions influence the preemption overheads in the schedule, which in turn influ-
ence, among others, schedulability of lower criticality tasks in mixed criticality
systems and resource contention. Note that the performance of different com-
binations of schedulers and the approaches to preemption differ based on the
underlying hardware and the specific application (task parameters, cache access
patterns etc.). As an exhaustive study on real cases that allows us to sufficiently
generalize our results is resource and time demanding, we had to restrict the
current experiments to the use of synthetic tasksets. A more detailed version of
this paper can be found online at [22].

Method for the Experimental Design: The experimental methodology is
similar to the one adopted by Buttazzo [9]. In order to perform the experiments,
due to the very limited availability of simulators implementing limited preemp-
tive scheduling under eager and lazy preemption approaches, we developed a
simulator that takes as input the task parameters and generate the different
schedules for a user defined time duration. The task parameters were generated
using well accepted techniques and is described in the following: We used the
UUnifast-discard algorithm [13] to generate individual task utilizations that were
varied between Umin and Umax. For the case of FPS, we adopted the deadline-
monotonic priority assignment – note that we are interested in the number of
preemptions and not deadline misses. The scheduling algorithms, whose pre-
emption behaviors we want to compare are in fact incomparable with respect to
schedulability [14]. Therefore, to investigate the preemptive behavior, building
on the speed-up bounds [1] and schedulability experiments, e.g., [5], that indi-
cate high schedulability for tasksets that utilize up to 50 % of the platform under
both preemptive EDF and FPS, we set, Umax = m

2 . Note that a fully preemp-
tive schedule can be obtained using a limited preemptive scheduler by enabling
preemptions after every unit of execution, therefore, if a taskset is preemptively
schedulable, it is also LP schedulable. However, in one set of the experiments,
we consider tasksets with utilization up to 100 % of the processing platform in
order to investigate the preemptive behavior for high utilization tasksets. The
task periods were randomly generated between Tmin = 5 and Tmax = 500 (this
represents tasks with periods 5-500 ms as found in many typical real-time sys-
tems), and execution times were computed using the generated utilizations. We
assumed deadlines to be equal to periods; note that this assumption does not
affect the generality of the results since we consider the preemptive behavior
and not schedulability. The largest NPR of each task was generated as a per-
centage of its execution time, with the ceiling function applied to obtain integer
values (i.e., in case of a decimal NPR we approximate it to the smallest inte-
ger greater than the decimal number)– in our experiments, this was set to 10 %
(i.e., each task has no more than 9 preemption points). Note that we also vary



An Empirical Investigation of Eager and Lazy Preemption Approaches 169

the NPR lengths in one of the experiments. We counted the number of preemp-
tions generated for one hundred tasksets under each of the following paradigms:
(1) G-P-FPS (2) G-P-EDF (3) G-LP-FPS with eager preemptions (EPA-FPS)
(4) G-LP-FPS with lazy preemptions (LPA-FPS) (5) G-LP-EDF with eager
preemptions (EPA-EDF) (6) G-LP-EDF with lazy preemptions (LPA-EDF), by
simulating the respective schedules for a duration of 10000 time units.

Weighted Metric: In order to understand how the number of preemptions vary
with a second parameter, e.g., number of tasks, in addition to utilization, we
adopted a weighted measure similar to weighted schedulability [2]. We weighted
the number of preemptions Ni, for a taskset Γi with respect to a parameter p
over a simulation run for Δ time units, with the taskset utilization Ui as follows:

Wp =

∑
∀Γi

UiNi

∑
∀Γi

Ui

We investigated how the number of preemptions in the actual schedule varies
with (1) total utilization (2) number of processors (3) number of tasks and
(4) length of the NPR.

4.1 Varying the Total Utilization

In this set of experiments, we investigated the preemptive behavior of the
scheduling algorithms for increasing utilizations. We considered a 4 processor
platform and generated tasksets with 25 tasks and utilizations ranging from 1
to 4. We calculated the average number of preemptions per 100 time units, after
simulating the schedule for a duration of 10000 time units – the results are
reported in Fig. 3. We observe that G-LP-EDF with EPA generates the maxi-
mum number of preemptions that is greater than G-LP-FPS with eager preemp-
tions. Perhaps surprisingly, G-P-EDF and G-P-FPS generate fewer preemptions
than their limited preemptive counterparts with eager preemptions. Moreover,
we observed that the uniprocessor behavior of EDF with respect to generating
fewer number of preemptions than FPS [9] generalizes to the multiprocessor
case; G-P-EDF generated less preemptions than G-P-FPS. The least number of
preemptions is generated by G-LP-FPS with LPA that generated slightly fewer
number of preemptions even when compared to G-LP-EDF with LPA.

In the following, we conduct experiments with varying number of processors
after adopting the weighted metric described above.

4.2 Varying Number of Processors

We generated tasksets with 25 tasks having utilizations ranging from 1 to
Umax = m/2 for m = 4 to m = 20 in steps of 2. The results of the experiments
are reported in Fig. 4. We can see that the number of preemptions, in general,
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Fig. 3. Average number of preemptions per 100 time units under varying utilizations
for NPR length=10 % of WCET.

decreases with increasing number of processors (since more processors for the
same number of tasks imply a reduced need for preemption). The interesting
observation here is that G-LP-EDF with EPA generated more preemptions than
G-LP-FPS with EPA. The fully preemptive variants of EDF and FPS generated
fewer preemptions than their limited preemptive counterparts with EPA. The
least number of preemptions are generated by G-LP-EDF and G-LP-FPS; both
under LPA. Here again, G-LP-FPS with LPA generates slightly fewer number of
preemptions compared to G-LP-EDF with LPA. The use of the weighted metric
described above makes it less visible from the graph (note: G-LP-EDF with EPA
generates significantly more preemptions than G-LP-FPS with EPA).

4.3 Varying Number of Tasks

We varied the number of tasks per taskset from n = 6 to n = 26 in steps of 2
and counted the number of preemptions for tasksets with utilizations between 1
and Umax = m/2. The results are reported in Fig. 5. We observed a similar trend
observed by Buttazzo [9]. The fully preemptive variant of EDF generated fewer
preemptions than G-P-FPS. Moreover, the number of preemptions increased
with increasing number of tasks. We expect that increasing the number of tasks
further will lead to a decrease in the number of preemptions because individual
task execution times will decrease to keep the utilization constant as noted by
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Fig. 4. Weighted number of preemptions under varying number of processors.

Buttazzo [9]– the decreasing trend is observable when number of tasks change
from 22 to 26.

We can see trends that are similar to the one observed in the previous experi-
ments reported in this paper: G-LP-EDF with EPA generated most preemptions
while G-LP-FPS (together with G-LP-EDF) with LPA generated the least. Here
again G-LP-FPS with LPA generated slightly fewer number of preemptions than
G-LP-EDF with LPA (not visible due to scaling issues– see appendix of [22]).
Also, note that G-LP-FPS with EPA generated significantly fewer preemptions
than G-LP-EDF with EPA.

4.4 Varying Length of Non-preemptive Regions

Lastly, we wanted to investigate if the preemption behavior would be any differ-
ent if we had chosen a different size for the non-preemptive regions. We consid-
ered a 4 processor platform and counted the number of preemptions generated
when the NPR lengths changed from 5% to 100% of the task WCETs (no.
of tasks per taskset = 25). The experimental results are reported in Fig. 6. The
graph indicates that when using EPA (under EDF or FPS), the number of pre-
emptions increases if the length of the NPRs increase without decreasing the
number of preemptions points. This is observed by the increased number of pre-
emptions when the NPR lengths increase from 35% to 40% (the number of
preemptions remains unchanged at 2) and from 50% to 80% (when the number
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Fig. 5. Weighted number of preemptions under varying number of tasks.

of preemptions remains unchanged at 1). Once past 80%, most of the tasks
become non-preemptive since we apply the ceiling function, and hence there is a
decrease in the number of preemptions. Similar trends are also observed in the
case of EPA although less pronounced.

In all the cases, LPA outperformed all the other variants of the scheduling
algorithms. Moreover, G-LP-EDF with EPA continued to have the highest num-
ber of preemptions for shorter NPR lengths, but showed similar performance as
G-LP-FPS with EPA for larger NPR lengths (from around 45% as seen from
Fig. 6). Notably, for NPR lengths larger than 20%, EPA (under both EDF and
FPS) generated fewer preemptions than the fully preemptive counterparts. An
enlarged version of the above graph available in the Appendix of [22] illustrates
that for shorter NPR lengths, G-LP-FPS generated fewer preemptions than G-
LP-EDF with both EPA and LPA, while for larger NPR lengths EDF fares
better. However, we would like to clarify that this is observed only for NPR
lengths larger than 50 % (i.e., for tasks with a single preemption point). If there
are more preemption points, then clearly FPS outperforms EDF. Moreover, note
that very large NPR lengths may imply unschedulability due to the “long task
problem” [19].

Note that graphs Figs. 4, 5 and 6 shows the weighted number of preemptions
as described above, instead of directly showing the number of preemptions.
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Fig. 6. Weighted number of preemptions under varying NPRs.

5 Analysis of the Experimental Results

In this section, we discuss the (counter-intuitive) experimental results in detail
and identify reasons behind the observed behaviors.

5.1 Preemptive Scheduling Vs. Limited Preemptive Scheduling
with EPA and LPA

As seen from the evaluations presented in Sect. 4, global LP scheduling with
eager preemptions generates more preemptions than global fully preemptive
scheduling. This is because more preemptions are required to resolve the priority
inversions occurring due to the eager preemption of the lower priority executing
task (not necessarily the lowest) that first completes executing its NPR. This is
detailed in the following.

When using the eager preemption approach, if the first executing lower pri-
ority task that becomes preemptible is preempted by a higher priority job, what
essentially happens is that the higher priority task transfers the priority inver-
sion to the preempted task if it is not the lowest priority one (since there are
lower priority tasks still executing on other processors). The preempted task,
which is in the ready queue, may preempt another lower priority task that first
completes its NPR (again not necessarily the lowest priority one) thereby trans-
ferring priority inversion. This could potentially continue like a domino effect
until no more priority inversion exists in the system. In order to resolve priority
inversion for each task, there is a need for preemption, consequently increasing
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Fig. 7. Preemptions under eager preemption approach.

the number of preemptions. The absence of the above described domino effect
explains the better performance of global LP scheduling with lazy preemptions
when compared to eager preemptions. These are clarified in the following using
a simple example.

Example 3. Consider the scenario presented in Fig. 7 in which 3 tasks τ1, τ2 and
τ3, with priorities in the order τ1 > τ2 > τ3 , are executing on 3 processors. Sup-
pose a higher priority task τ0 is released. If the scheduler used is a fully preemptive
scheduler, τ0 will preempt τ3 resulting in only a single preemption. On the other
hand, under LP scheduling with eager preemptions, τ0 will preempt the first task
that becomes preemptible, in this case τ1 (as seen from Fig. 7). Note that τ1, has
the highest priority among the executing ones. Consequently, there is a priority
inversion on τ1 since the other processors are executing lower priority tasks. The
task τ1 will wait for one of the lower priority tasks to become preemptible. In our
scenario, τ2 is the next task that becomes preemptible first. Consequently, τ2 will
be preempted by τ1. However, the priority inversion persists because τ2, which
was preempted, has a higher priority than τ3 that is still executing on P3, and
hence there is one more preemption. Note that the number of preemptions in this
case is 3 instead of 1 under fully preemptive scheduling. In the same scenario,
under global LP scheduling with lazy preemption, the scheduler will preempt the
lowest priority job τ3 and hence the domino effect described earlier will not occur
(as seen from Fig. 8). Global LP scheduling with lazy preemption performs better
than fully preemptive scheduling since the upper-bound on the number of preemp-
tions in a task is determined by the number of preemption points instead of the
number of higher priority task releases (that can be significantly larger).

The consequences of such a domino effect under EPA on the total num-
ber of observed preemptions can be severe on platforms with large number of
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Fig. 8. Preemptions under lazy preemption approach.

processors since in the worst case m such priority inversions need to be resolved
per high priority release which can be potentially very large especially in many-
core systems.

5.2 Global Limited Preemptive FPS Vs. EDF

In general, preemptive EDF generates fewer number of preemptions than pre-
emptive FPS [9]. This is because, many of the preemptions necessitated by
the fixed priority task assignment, do not occur under EDF. The preemptions
required by task releases that may have a higher priority under an FPS scheme,
towards the end of the execution of tasks, that may have a lower priority under
an FPS scheme, are avoided under EDF because of the deadline based priority
ordering. On the other hand, in this scenario under FPS, a preemption occurs.
Similarly, it is easily seen that uniprocessor limited preemptive EDF generates
fewer preemptions than limited preemptive FPS. As seen from the experiments,
similar to the uniprocessor case, G-P-EDF performs better in reducing the actual
number of preemptions at run-time when compared to G-P-FPS.

However, under limited preemptive scheduling on multiprocessors, G-LP-EDF
generates more preemptions than G-LP-FPS (under both EPA and LPA). The
reason is that, EDF priority ordering generates more priority inversions conse-
quently “forcing” eager preemptions. For example, under G-LP-FPS with LPA,
higher priority tasks released during the execution of the final NPR of the lowest
priority task wait for it to complete. This does not happen under EDF since at
least one of the executing jobs may have a larger absolute deadline and hence
can be preempted. We clarify the reason for the relatively poor performance of
G-LP-EDF using the following example.
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Fig. 9. Preemptive behavior of G-LP-EDF.

Fig. 10. Preemptive behavior of G-LP-FPS.

Example 4. In this example, consider three tasks τ2, τ3 and τ4 that are currently
executing on 3 processors and another task τ1 that is released during their execu-
tion as illustrated in Fig. 9. Assume that τ4 has started executing its final NPR
and the tasks have time periods T1 < T2 < T3 < T4. Under G-LP-EDF using
lazy preemptions, when τ1 is released, τ2 is the task with the latest deadline and
hence has the lowest priority; therefore τ1 preempts τ2. On the other hand under
G-LP-FPS with lazy preemptions (as shown in Fig. 10), assuming rate monotonic
priority ordering, τ4 has the lowest priority and hence the scheduler waits for the
final NPR of τ4 to complete instead of preempting τ2 (and hence requiring no pre-
emption). When considering EPA, under G-LP-EDF with EPA, τ1 will preempt
τ3 since it is the first preemption point available. Now since τ3 has an earlier
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absolute deadline than τ2, τ3 will preempt τ2 at the next preemption point of τ2.
On the other hand, under G-LP-FPS with EPA, τ1 preempts τ3, but τ3 does not
preempt τ2 due to its fixed (higher) priority when compared to τ3.

Therefore, for applications in which run-time preemptions are directly or
indirectly harmful, such as in the case of safety-critical system or energy con-
strained systems, it is best to use G-LP-FPS since it generates fewer number of
preemptions than G-LP-EDF at runtime.

6 Conclusions and Future Work

In this paper, we empirically investigated the preemptive behavior of G-LP-
EDF and G-LP-FPS under eager and lazy preemption approaches, along with
G-P-FPS and G-P-EDF, varying a wide range of parameters. Our investigations
reveal a number of interesting observations with respect to the observed number
of preemptions under the different paradigms. In particular:

1. Limited preemptive scheduling on multiprocessors does not necessarily reduce
the number of preemptions; in fact with an eager preemption approach, the
number of preemptions could be larger than in the case of fully preemptive
scheduling, as well as global LP scheduling with LPA.

2. We show that the well known observation regarding the preemptive behavior
of EDF on uniprocessors generalizes to multiprocessors; G-P-EDF generates
fewer preemptions than G-P-FPS.

3. We also show that the reduction in preemptions observed with EDF on uni-
and multiprocessors, however, does not generalize to global limited preemp-
tive scheduling; G-LP-EDF suffers from more preemptions than G-LP-FPS.

4. Our experiments show that G-LP-FPS with LPA suffers from the least num-
ber of preemptions.

Future work include studies on a real hardware and trade-offs involving preemp-
tion point placement, schedulability and approach to preemption viz. EPA and
LPA.
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Abstract. The usage of polling tasks continues to be quite common in today’s
distributed real-time systems, despite the availability of event-driven software
mechanisms and response time analysis techniques that can be applied to this
kind of systems. This paper proposes a model for polling tasks that allows
current response time analysis techniques for event-driven distributed systems to
be applied, and it also studies the impact that polling has in the schedulability of
a distributed system, using analytic results. A performance evaluation on an
Ada-based platform is also provided. As expected, polling produces response
times much higher than a pure event-driven alternative. The analysis techniques
and the evaluation presented in the paper allows engineers to assess the negative
effect of polling on the schedulability of distributed real-time systems.

Keywords: Distributed systems � Real-time � Schedulability analysis �
Embedded systems � Polling

1 Introduction

Schedulability analysis techniques for fixed-priority distributed systems have notably
evolved in the last three decades [1]. However, in real systems engineers continue to
use periodic polling to check for the arrival of events that trigger activities such as the
execution of tasks or the transmission of messages through real-time networks. An
example can be found in the aerial vehicle tracking system proposed in [2]. In the
context of our work, a polling task is defined as a task that periodically polls for the
arrival of its triggering event, thus executing its regular code only when detecting that
the event had arrived. When the event is not present the detection code is executed
anyhow, therefore causing overhead.

In some cases the use of polling may be justified, such as when using data coming
from a sensor where there may be no concept of event that must be managed, and it is
enough to deal with the latest available data. However, in many other cases what is
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sought with the use of polling is to decouple different subsystems avoiding the
dependencies implied by handling events. This is the case of multi-rate real-time
systems in the automotive industry [3, 4]. Under this decoupling technique it is possible
to apply schedulability analysis to each processor or network separately. Such sim-
plification practices are commonly used in industry, with the consequence that the real
capabilities of the systems are wasted.

Generally, distributed systems provide communication primitives with blocking or
non-blocking services for the reception of messages that allow tasks both to poll for the
arrival of a message, or to wait until a message arrives at the reception queue. This
behavior can also be found in distribution middleware, e.g., the DDS (Data Distribution
Service for Real-Time Systems) standard [5] allows subscribers to receive data from a
topic through (1) polling, (2) listeners to asynchronously access the data, or (3) wait-sets
for synchronous access to the data. There are other standards for specific domains like
ARINC 653 [6] on avionics, which establishes the communication between processes
throughout special ports: (1) sampling ports where the arriving message overwrites the
current message stored in the buffer with a freshness indication, thus allowing recipients
to be designed to cope with intermittent loss of data; and (2) queuing ports where the
arriving message is appended to a FIFO queue, and a process can be blocked on a
receiving process queue. These concepts in ARINC 653 are also extended to the
communications among processors using the AFDX network [7].

As we have shown, it is easy to find software in different domains that allows
blocking on communications or data events, and thus a pure event-driven behavior in a
distributed system can be conceived. In this work, we want to quantify the effect of
polling tasks on the performance of real-time distributed systems when they are used in
an event-driven architecture. To analyze polling tasks, we will propose an equivalent
model based on periodic tasks that allows using current response time analysis tech-
niques. We will quantify the effects of polling in two ways: (1) by applying the
proposed analysis technique to a representative example looking at the worst-case
response times, and (2) by the implementation of the example in a real platform to
evaluate whether the average response times follow the same behavior or not. This
work is focused on polling tasks that are used in event-driven distributed systems
where clock synchronization is not required.

The document is organized as follows. Section 2 presents the event-driven model
for the distributed system and the response time analysis techniques that can be applied
to this model. In Sect. 3, a motivating example as well as the representative scenarios
for evaluation are introduced. A new method for modeling and analyzing polling tasks
is presented in Sect. 4. Section 5 deals with the application of the new analysis tech-
nique to the proposed scenarios, under different conditions. An experimental evaluation
of average performance is presented in Sect. 6 using an Ada-based platform that
implements some of the scenarios with synthetic workloads. Finally, Sect. 7 draws the
conclusions.
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2 The System Model and Current Schedulability Analysis
Techniques

Our system model assumes a real-time distributed system with multiple processing
resources, i.e., CPUs and communication networks, scheduled by a fixed-priority
preemptive policy. We will use the system model called MAST (Modeling and
Analysis Suite for Real Time Applications) [8], which is aligned with the MARTE
(Modeling and Analysis of Real-Time Embedded systems) standard [9]. The MAST
model considers a system composed of distributed end-to-end flows with periodic or
sporadic activations. Sporadic activations are treated as periodics, using a period equal
to the minimum interarrival time. Each end-to-end flow Γi is released by a periodic
sequence of external events with period Ti, and contains a set of steps that model tasks
and messages. We assume that all event sequences that arrive at the system and their
worst-case rates are known in advance, and we also assume that tasks and messages are
statically assigned to processors and networks respectively (migration is not allowed).
The relative phasing of the activations of different end-to-end flows is assumed to be
arbitrary.

When schedulability analysis techniques for distributed systems are applied to this
model, it is assumed that each periodic release of an end-to-end flow causes the
execution of the set of steps, each step being released when the preceding one finishes
its execution. This behavior represents a coupled execution of the steps in which all the
events have to be processed assuming the existence of buffers between steps with
enough size to ensure that events are not lost. However, as we mentioned in the
introduction, real applications and standards for middleware, runtimes, or networks,
can follow other communication paradigms that decouple the execution of the steps,
allowing the loss of events. A classification in different scenarios according to the
activation of steps and the kind of buffer used will be discussed in Sect. 3.

Figure 1 shows an example of one of these end-to-end flows, with just three steps,
each executing in a different processing resource (twoCPUs and one network in this case).

Fig. 1. System model
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The arrival of the external event that releases the end-to-end flow is represented by a
vertical arrow and has a period of Ti. The horizontal arrows represent the release of the
following step in the end-to-end flow. The j-th step of end-to-end flow Γi, is identified as
τij. It has a worst-case execution time (WCET) or worst-case transmission time ofCij. The
non-preemptability of a network packet causing a delay for the transmission of a step is
modeled through a blocking time which alternatively accommodates blocking due to
mutual exclusion synchronization in the processors.

The timing requirements that we consider are end-to-end deadlines, Di, that start at
the end-to-end flow instance’s period, and must be met by the final step. We allow
deadlines to be larger than the periods, and thus at each time there may be several
instances of the same end-to-end flow pending. For each step τij we define its response
time as the difference between its completion time and the instant at which the period of
the end-to-end flow instance started. The worst-case response time, WCRT, or an
estimation of an upper bound on it, will be called Rij.

We allow the external event that triggers an end-to-end flow to have a maximum
release jitter Ji1 in relation to the nominal start of the instance’s period. Other steps τij
may also have an initial release jitter Jij causing the actual release to have an arbitrary
delay between zero and Jij, relative to the nominal release. Despite this jitter, global
deadlines and response times always refer to the nominal start of the instance’s period,
not to the actual release of the end-to-end flow. Each step τij may also have an asso-
ciated initial offset, Φij, which is the minimum release time for the step, relative to the
nominal start of the instance’s period. We assume that Jij and Φij may be larger than the
period of their end-to-end flow, Ti.

The MAST model is integrated in the suite of tools with the same name [10], which
implements schedulability analysis techniques for distributed systems. In particular, the
main techniques are (1) an offset-base technique by Mäki-Turja and Nolin [11] that
exploits the interdependencies among the steps of the same end-to-end flow through the
use of task offsets; and (2) another offset-based technique by Palencia and González
[12] that exploits the precedence relations among the steps. The former is called
Offset_Based_Slanted in MAST and it is the one used in this work.

3 Motivating Example and Definition of Evaluation Scenarios

In order to illustrate the evaluation of the polling mechanism we have selected the
architecture of an interesting example presented by Di Natale et al. in Sect. 3 of [13].
This simple example illustrates the drawbacks associated with the two activation
models present in common automotive systems. Figure 2 shows an adaptation of this
example in which 3 end-to-end flows composed by 8 tasks and 5 messages are allo-
cated to three CPUs and one packet-based network (like the CAN bus in [13]).
According to the model defined in Sect. 2, horizontal arrows represent the precedence
relations of the steps in the end-to-end flow. We initially assume the same priority
assignment than in [13], i.e., the priorities are assigned to steps in deadline monotonic
order according to the end-to-end deadline of the end-to-end flow, and they are
assigned in decreasing order from each external event to its subsequent steps located in
the same processing resource.
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We will consider the following scenarios, taking into account the different ways in
which the steps can be activated by the previous ones in the end-to-end flow:

• Scenario 1 (Scn1): independent task model. All the steps are activated periodically
as if they were independent. The first step in the end-to-end-flow is activated by an
external event, and the subsequent steps execute always the same code indepen-
dently of whether the triggering event has arrived or not. This is the scenario
implied by sampling ports in ARINC 653 where tasks always work with the last
available data. The notion of processing a particular event is lost, as it is not
possible to determine which data is being processed.

• Scenario 2 (Scn2): polling model. All the steps poll periodically for the arrival of an
event, except the first step in the end-to-end-flow which is activated by the external
event. In this case, the notion of processing a particular event is still valid, as the
event is only processed when it arrives. This behavior occurs in a polling task
implementing a data reader in DDS.

• Scenario 3 (Scn3): event-driven model. Each step in the end-to-end-flow is trig-
gered by the completion of the previous one, except the first one that is activated by
an external event. This is a common behavior of tasks sending messages asyn-
chronously to the network, and tasks waiting for incoming data, e.g., in the context
of Ada a task executing the remote part of an RPC can wait for the reception of the
call directly in the network driver.

• Scenario 4 (Scn4): polling tasks and asynchronous messages. A different behavior is
considered for task and messages. All the tasks poll periodically for the arrival of
the event, except the first one in the end-to-end-flow that is activated by an external
event, and all the messages are triggered by the completion of the previous task.

Fig. 2. Reference example of a distributed system (times in ms)
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The scenarios presented here are representative of different architectures of real
systems and can be analyzed with current response time analysis techniques under
certain conditions. Scn1 can be analyzed with the classic response time analysis
technique for uniprocessors with arbitrary deadlines and jitter [14]. End-to-end dead-
lines could be compared to the response time of the last step in the end-to-end flow,
which is obtained by adding the individual response times of the steps. In this Scn1, the
notion of response to the external event is lost and the end-to-end flow can be seen as a
directed graph that relates certain activities.

Di Natale et al. [13] show how to perform an alternative response time analysis for
Scn2 by calculating the response time of each individual step as if it were independent
(as it would be done for Scn1) and then adding a polling period to this time. The
polling period is restricted to being equal to the period of the external event. The
response time of the end-to-end flow is obtained by adding the individual response
times of the steps. To remove these restrictions, a new analysis technique is needed to
analyze the general case of Scn2, in which the polling periods can be different than the
period of the external event. A new technique addressing these requirements is pre-
sented in the next section.

Any of the response time analysis techniques available for event-driven end-to-end
flows can be applied to Scn3, and a combination of these techniques with the new one
for polling steps introduced in the next section will allow the analysis of Scn4.

4 Modelling and Analysis Technique for Polling Tasks

When a task is scheduled under the polling policy it is activated periodically to test for
the arrival of its triggering event. When this triggering event is periodic itself, obvi-
ously the polling period (Tpoll) must be less than or equal to the event period (T);
otherwise the task would not be able to catch up with the workload that it is servicing
and response times would be unbounded.

The selection of the polling period has an important impact on both the response
times and the overhead. In the worst case it is possible that a triggering event arrives
just after the polling task has negatively tested for its arrival. The polling mechanism
will therefore introduce a delay that is up to Tpoll in the worst case, thus making the
task’s worst-case response time (WCRT) larger than in the case of direct event pro-
cessing. One would be tempted to use a small Tpoll to minimize this delay, but it is
necessary to balance it with the overhead introduced by the polling mechanism. Each
time the task tests for the arrival of an event that has not yet arrived there is an
execution using the computing resource for some time: Cover in the worst case.
Obviously this overhead is incurred more frequently as Tpoll becomes smaller.
A compromise between response times and overhead has to be made at design time by
tuning the polling period [2].

In this section we will show that an upper bound to the effects of executing the
polling task and its overhead can be modeled as two separate periodic tasks with jitter.
This model is very convenient because it allows us to analyze a system with polling
tasks using the regular schedulability analysis techniques for periodic tasks. We pay
attention to three main issues that can influence the analysis: the analysis of the own
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polling task, the effect of polling on the analysis of lower priority tasks, and the
overhead effects. We distinguish three cases as a function of the relation between T and
Tpoll. Figure 3 shows the three cases considered for analysis.

Case 1: Tpoll < T

Analysis of the own task: The response time is calculated using the selected analysis
technique, but an additional value of Tpoll should be added to account for the delay
introduced by polling in the worst case.

Rpoll ¼ Rperiodic þ Tpoll ð1Þ

Analysis of lower priority tasks: An equivalent task is created to model the task exe-
cution using the parameters described in Lemma 1.

Lemma 1: Assume a task with WCET C, period T and release jitter J executed under
the polling policy with a polling period Tpoll<T and no overhead. Its interference on
lower priority tasks is no larger than the interference of an equivalent periodic task with
the same WCET and period as the original task, but using an additional jitter of

Jadditional ¼ Tpoll ð2Þ

Proof: In the analysis of periodic tasks with jitter the interference of a task on lower
priority tasks in the time interval [0,t] is [15]:

IðtÞ ¼ tþ J
T

� �
C ð3Þ

Fig. 3. Cases in the analysis of polling for periodic events
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We now need to add the effects of the polling policy. The number of whole polling
periods that are found in the interval [0, t] is t=Tpoll

� �
. In the worst case we must

accumulate the most work at the beginning of the busy period [15] which can be
accomplished if the first event arrived at time -Tpoll and just missed the execution by the
polling mechanism. The interval during which events that are processed inside the busy
period may arrive is therefore [-Tpoll, t]. The interference on lower priority tasks is the
number of events arriving in that interval multiplied by the WCET:

IðtÞ ¼ tþ Tpoll þ J
T

� �
C ð4Þ

Therefore, an additional jitter value of Tpoll must be added to the original jitter of
the event. □

This equivalent task is pessimistic, as it introduces additional interference specially
for short response times. However it approaches the exact case as response times
increase.

In addition to modeling the effects of the execution of events, we need to model the
overhead with the inclusion of a new independent periodic task.

Lemma 2: Assume a task with WCET C, period T and release jitter J executed under
the polling policy with a polling period Tpoll<T. The interference of its overhead (i.e.,
the execution when no event is processed) on lower priority tasks is no larger than the
interference of an equivalent periodic task with WCET=Cover, period Tover and release
jitter Jover according to:

Tover ¼ ðT � TpollÞ
T � Tpoll

Jover ¼ Tover ð5Þ

Proof: Since Cover<C we assume the worst case scenario in which the polling task
executes an event just at the beginning of the busy period. The number of activations of
the polling task between 0 and t, either to execute the full task to service an incoming
event or just to execute the overhead, is t=Tpoll

� �
. From these executions we need to

subtract the minimum number of arrivals of the event, because these will result in the
execution of the full task and not the overhead. A lower bound on the number of
arrivals of the event between 0 and t is t=Tb c. Under the conditions used for the
worst-case analysis presented in Lemma 1 the release jitter has no influence on this
lower bound, because it is used to concentrate the most work at the beginning of the
critical instant, not to distribute it during a longer time.

The number of releases of the polling overhead is therefore not less than

t
Tpoll

� �
� t

T

j k
¼ t

Tpoll

� �
þ �t

T

l m
ð6Þ

and then we get
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t
Tpoll

l m
þ �t

T

� �� t
Tpoll

� t
T

l m
þ 1 ¼ t

Tpoll
� t

T þ 1
l m

¼ t 1
Tpoll

� 1
T

� 	
þ 1

l m
¼

tþ 1=ð1=Tpoll�1=TÞ
1=ð1=Tpoll�1=TÞ

l m
¼ tþðT �TpollÞ=ðT�TpollÞ

ðT �TpollÞ=ðT�TpollÞ
l m

¼ tþ Tover
Tover

l m ð7Þ

where we have used the following properties of ceiling and floor functions [16]:
xb c ¼ � �xd e and xd eþ yd e � 1� xþ yd e� xd eþ yd e. The last expression in Eq. (7)
is the number of releases of the proposed equivalent task with period Tover and the same
release jitter. □

This equivalent model allows us to obtain an upper bound on the overhead. It is
pessimistic as it could add an extra Cover, but this pessimism remains constant with time
so that as response times become larger its relative effect is smaller.

Case 2: Tpoll = Ti

Analysis of the own task: as in case 1 the response time is calculated by using the
selected analysis technique and then Tpoll should be added to account for the delay
introduced by the polling mechanism.

Analysis of lower priority tasks: The polling task executes periodically with period T,
and therefore the equivalent task has WCET = C and period = T without any additional
jitter. There is no overhead caused by polling.

Case 3: Tpoll > Ti

Analysis of the own task: As mentioned above, the response time is unbounded in this
case.

Analysis of lower priority tasks: The polling task executes periodically with WCET = C
and period = Tpoll without additional jitter. There is no overhead caused by polling as
the polling task always has events to process.

5 Analytic Evaluation of Different Scenarios

This section provides the evaluation of the example with the architecture presented in
Fig. 2 under the four scenarios defined in Sect. 3. The objective of this section is to
quantify the effect of polling in the worst-case response times of steps, by applying the
analysis technique proposed in Sect. 4. We have implemented the analysis technique
for polling tasks in the MAST tools. The effect of polling is modeled in MAST as a
priority-based scheduling policy with extra attributes: the polling period, and the
minimum, average and maximum overheads. We apply the schedulability analysis
techniques to the different scenarios as follows:

• The technique called Offset_Based_Slanted [11] in MAST is applied to all scenarios.
• For Scn1, the response time reported for the last step in the end-to-end flow is the

sum of the response times of all the steps.
• The scenarios with polling steps (Scn2 and Scn4) are evaluated for different values

of the polling period, in particular for ratios Tpoll/T equal to 1, 3/4, 1/2, and 1/4. We
denote these cases with the name of the scenario followed by the corresponding
ratio in brackets.
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Table 1 shows the worst-case response times of the end-to-end flows and the
system slack for the different scenarios and conditions tested using the priorities
specified in [13]. The system slack is an estimation of the sensitivity of the system and
is defined in MAST as the percentage by which the execution times of all the steps in
the system may be increased while still keeping the system schedulable, if positive, and
the percentage by which they have to be decreased to make the system schedulable, if
negative. Slack cannot be calculated for Scn1 as task and messages are modelled as
independent steps and there are no individual deadlines associated to them. Bold face is
used for numbers representing schedulable end-to-end flows, and shaded columns for
schedulable systems, i.e., those in which all end-to-end flows are schedulable.

In Table 1, we can see that only Scn1 in which all the steps are independent can be
scheduled. However, in this scenario there may be loss of events, which means that its
results cannot be compared to those of the other three scenarios where no events are
lost. In any case this is a possible implementation and therefore we leave this scenario
as a reference. In this case none of the other scenarios are schedulable, although the
following conclusions can be drawn:

• Polling adversely affects system schedulability. Scn2, in which all steps do polling,
is the one with higher response times and thus it is more distant in general from
schedulability (lower values of slack). In Scn4, with less polling steps, lower
response times and systems closer to schedulability are obtained. Scn3, the pure
event-driven scenario, is the one with the best real-time performance.

• Schedulability is improved by reducing the polling period, as expected. This can be
seen in the slacks obtained for Scn2 and Scn4. It is also noted that this improved
schedulability produces lower response times for the higher priority tasks to the
detriment of those with lower priority.

The disadvantage of polling had been observed for a system like Scn2(1) in [13].
That work proposed mixing polling and event-driven activation to improve the system
schedulability. Another work [17], noted that the periodic activation of messages
(called polling-based output management) is not the right choice for real-time systems.

The priorities specified in [13] may be optimal considering the system as a set of
uniprocessors with independent steps (such as in Scn1), but they can be optimized for
an event-driven distributed system [18]. In order to better assess the impact of polling

Table 1. Response times for the reference example with the priorities proposed in [13] (times in
ms), and system slack (%)

E2E 

FLOW SCN1
SCN2

(1)
SCN2
(3/4)

SCN2
(1/2)

SCN2
(1/4) SCN3

SCN4
(1)

SCN4
(3/4)

SCN4
(1/2)

SCN4
(1/4)

Γ1 32 92 77 64 47 32 62 54.5 47 38.75

Γ2 52 152 164 132 102 72 112 120 102 92

Γ3 104 452 820 654 490 332 392 545 486 425

SLACK -100.00 -78.91 -59.77 -39.45 -16.80 -37.50 -45.70 -35.16 -28.13
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on distributed systems, we repeat the experiments in Table 1 optimizing the priority
assignment with the HOSPA algorithm [19] available in MAST. The priorities assigned
to the steps for the different scenarios are depicted in the Appendix. From the results
shown in Table 2, we can draw the following conclusions1:

• All scenarios can be better scheduled, except Scn1 that cannot be optimized because
it is treated as a set of uniprocessor systems, as we already mentioned.

• Polling continues to show a negative effect on schedulability, although response
times are closer to deadlines and slacks are higher with optimized priorities.

• Again, improved response times are observed when reducing polling periods.
A scenario using polling is now schedulable.

• Scn3 with pure event-driven activation remains the one with the best response times
and slacks.

As we can see, the availability of response time analysis techniques allows us to
assess the schedulability under different conditions. We have seen that reducing the
polling period can decrease response times, but this reduction may take an associated
overhead. Our final test is devoted to studying the effects of overhead in Scn4, as it is a
scenario using polling where a schedulable solution has been found when optimizing
priorities. Table 3 shows the response times assuming that the polling overhead is a
realistic value of 0.2 ms for any of the polling tasks. Results for the priority assignment
proposed in [13], and for the priority assignment obtained with MAST are shown
(details for the assignments can be found in the Appendix). The increases in the
utilization of the processing resources due to the polling overhead are shown in Table 4
for Scn4. These results show that polling overhead should be also taken into account as
it could have a serious impact on the system schedulability.

Table 2. Response times for the reference example with the priorities assigned by MAST (times
in ms), and system slack (%)

E2E 

FLOW SCN1
SCN2

(1)
SCN2
(3/4)

SCN2
(1/2)

SCN2
(1/4) SCN3

SCN4
(1)

SCN4
(3/4)

SCN4
(1/2)

SCN4
(1/4)

Γ1 32 110 128 102 77 58 84 84.5 79 67.5

Γ2 52 148 154 124 82 52 98 104 72 62

Γ3 104 200 219 168 119 96 138 133 122 111

SLACK -100.00 -59.77 -35.55 -9.77 4.69 -23.44 -21.09 -11.33 2.73

1 In the application of the HOSPA algorithm the following configurations parameters have been used
in the MAST tool 1.5.1.0: (1) Ka = (0.25, 2.00, 3.00) and Kr = (1.50, 2.00, 3.00) for Scn3, and
(2) Ka = (1.50, 2.00, 3.00) and Kr = (0.50, 2.00, 3.00) for Scn2 and Scn4.
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6 Average Performance Evaluation on an Ada-Based
Distributed Platform

The implementation and evaluation of the whole set of scenarios previously described
in Sect. 3 would be too extensive to be included in this paper. Instead, this section
presents the most representative scenarios to evaluate the performance impact of using
polling in a distributed real-time platform. In particular, scenarios Scn3 and Scn4 with
ratios Tpoll/T equal to 1 and 1/4 will be implemented in a real distributed system,
evaluated for the two priority assignments analysed, and then discussed. Our objective
is to quantify the effect of polling on the average response times by implementing some
of the scenarios in a real platform.

The hardware platform used for this evaluation consists of three single core
800 MHz embedded nodes that are interconnected through a CAN bus. For the CAN
messages we have used 11-bit identifiers with a bit rate of 62.5 Kbit/s, and messages
with 7 bytes of data. According to this configuration, the maximum transmission time
of each message is 2 ms, assuming worst-case bit stuffing [20]. The message identifiers
also determine the CAN bus transmission priorities.

The software platform consists of a distributed Ada application running on top of
MaRTE OS v1.9 [21], a real-time kernel for embedded systems that follows the
Minimal Real-Time POSIX.13 subset. The task workloads are synthetic and take
random values in the range [C/5, C]. They are implemented using execution-time
clocks in Ada. Furthermore, polling tasks have been implemented using an Ada con-
ditional entry call in a protected object.

Table 3. Response times for Scn4 with polling overheads (times in ms), and system slack (%)

E2E FLOW PRIORITIES SPECIFIED IN [13] PRIORITIES ASSIGNED BY MAST

SCN4 (3/4) SCN4 (1/2) SCN4 (1/4) SCN4 (3/4) SCN4 (1/2) SCN4 (1/4)

Γ1 55.30 47.8 39.35 88.9 78.4 66.3

Γ2 129.0 111.2 102.6 104.8 95 81.6

Γ3 589.8 491.4 458.4 140.4 122.4 113.6

SLACK -47.27 -36.72 -31.64 -23.05 -10.94 0.00

Table 4. Processing resource utilizations for Scn4 with polling overhead (in %)

Processing resource Scn4 (1) Scn4 (3/4) Scn4 (1/2) Scn4 (1/4)

CPU1 95.00 95.17 95.50 96.50
CPU2 88.33 89.00 90.33 94.33
CPU3 66.67 67.33 68.67 72.67

Network 45.00 45.00 45.00 45.00
System (AVG.) 73.74 74.13 74.88 77.13

190 H. Pérez et al.



The Phillips SJA1000 CAN controller chip has been used in this evaluation. As part
of the development, we have implemented a set of Ada functions to configure the bus
speed and the acceptance filter associated with each chip. Furthermore, the SJA1000
chip presents a transmission buffer with capacity to store a single CAN message for
transmission over the network. This feature can lead to unbounded priority inversion
problem, as messages with higher priority can be waiting while a low-priority message
is taking part of the bus arbitration process. To address this issue, the implemented
driver replaces the message stored in the transmission buffer whenever a message with
higher priority is ready to be transmitted, except when the transmission of the message
currently in the buffer is already in progress.

There is a lack of a common clock to make temporal measurements in this distributed
system. To address this issue, the response times have been obtained using an oscilloscope
to measure the delay between two digital signals that are set/cleared in different nodes.
Then, the samples obtained are sent and processed in a PC. The oscilloscope provides a
sampling rate of 50 kHz and each simulation has been run enough time to allow a
minimum of 2000 activations for the end-to-end flow under evaluation.

From the results shown in Table 5, it can be observed that the measured results are
far from reaching the worst-case response time computed by the schedulability analysis
tool. This is expected as real execution for a limited time does not guarantee hitting
worst-case activation and execution patterns. In any case, the results provide a glimpse
of the tendency of the evaluated scenarios. Hence, the average response times obtained
in Scn3 are lower than in Scn4 for both priority assignments. Regarding Scn3, the
priorities obtained with MAST cause a higher response time for the first end-to-end
flow, whereas the two remaining end-to-end flows present lower response times than
with the priorities specified in [13]. The results obtained in Scn4 for both priority
assignments show how reducing the polling period can also decrease the average
response times. Again, the priorities obtained with MAST cause a higher response time
for the first end-to-end flow as a trade-off to decreasing the response time of the
remaining end-to-end flows, thus increasing the system slack. The general behavior is
consistent with the analytic results presented in Sect. 5, showing that polling has a
negative effect on the schedulability of the system, thus producing higher response
times than the event-driven approach.

Table 5. Average response times measured in the distributed platform (times in ms)

E2E flow Priorities proposed in [13] Priorities assigned by MAST
Scn3 Scn4 (1) Scn4 (1/4) Scn3 Scn4 (1) Scn4 (1/4)

Γ1 16.9 34.9 20.5 19.9 51.5 22.8
Γ2 20.5 41.8 23.8 19.2 37.6 21.9
Γ3 27.3 90.8 33.4 22.0 79.7 26.3
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7 Conclusions

Polling on the arrival of events or messages coming from a network is a common
practice followed by engineers in the development of distributed real-time systems. We
can find mechanisms in software that allow waiting directly on events or messages, thus
allowing us to avoid polling. In this paper we have shown the negative effects of using
polling. We have also shown that optimizing the assignment of priorities significantly
enhances the real-time performance of the system when polling cannot be avoided.

This paper also provides a modeling and analysis technique that allows calculating
worst-case response times for polling tasks, by using the current response time analysis
techniques for distributed systems. The analysis technique takes into account overheads
in those cases when the polling period is lower than the period of the event. We have
implemented this new technique in the MAST tools and we have also evaluated its
analytical results, which are completed with an average performance evaluation on a
real distributed platform with synthetic workloads. As expected, waiting directly on
events, which is supported by standard programming languages, distribution middle-
ware, communication software, and operating systems, should be the preferred option
in order to increase the schedulability of distributed real-time systems, thus advising the
use of polling only for imperative cases. Even in those cases the analysis techniques
presented in this paper allow engineers to assess the schedulability of their designs.

Appendix

The priority assignments used in the different scenarios are depicted in Tables 6 and 7.
A priority range between 1 and 13 has been used for the assignment in each processing
resource. The higher the number the higher the priority.

Table 6. Priorities assigned in [13] used in all scenarios, and priorities assigned by MAST for
Scn1, Scn2 and Scn3

Step Priorities in [13] Scn1 Scn2
(1)

Scn2
(3/4)

Scn2
(1/2)

Scn2
(1/4)

Scn3

τ11 13 9 5 5 5 5 9
τ12 12 11 8 8 8 8 6
τ13 11 9 1 1 1 1 1
τ14 10 8 6 3 3 1 3
τ15 9 7 7 7 7 7 7
τ21 8 5 9 9 9 9 9
τ22 7 6 1 1 1 3 11
τ23 6 5 1 1 1 1 1

(Continued)
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Abstract. Time-triggered and concurrent priority-based scheduling are
the two major approaches in use for real-time and embedded systems.
Both approaches have their own advantages and drawbacks. On the one
hand, priority-based systems facilitate separation of concerns between
functional and timing requirements by relying on an underlying real-
time operating system that takes all scheduling decisions at run time.
But this is at the cost of indeterminism in the exact timing pattern of
execution of activities, namely variable release jitter. On the other hand,
time-triggered schedules are more intricate to design since all schedul-
ing decisions must be taken beforehand in the design phase, but their
advantage is determinism and more chances for minimisation of release
jitter. In this paper we propose a software architecture that enables the
combined and controlled execution of time-triggered plans and priority-
scheduled tasks. We also describe the implementation of an Ada library
supporting it. Our aim is to take advantage of the best of both approaches
by providing jitter-controlled execution of time-triggered tasks (e.g., con-
trol tasks), coexisting with a set of priority-scheduled tasks, with less
demanding jitter requirements.

Keywords: Real-time systems · Jitter · Time-triggered scheduling ·
Ada

1 Introduction

Using concurrent tasks in real-time systems software allows designers to clearly
separate functional from timing requirements, letting them focus on functionality
and delegating the scheduling of activities on the underlying real-time operating
system (RTOS). The RTOS uses a priority scheme to select which task (or tasks,
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in multiprocessor systems) can execute at a given time [1]. This approach is
backed by extensive research results that define the conditions under which this
type of systems can be guaranteed to comply with their deadlines at run time.

However, priority scheduling introduces a fundamental issue in tasks with
strict release jitter requirements. Release jitter is the difference in time between
the theoretical and actual release time of a task. In major application areas,
such as automatic control or synchronised distributed communications, exces-
sive release jitter causes performance degradation that needs be avoided. Some
amount of jitter is in practice unavoidable, since scheduling decisions take time
and that translates into scheduler’s overhead that ultimately interferes the whole
task set. But in priority scheduled systems, all but the highest-priority task may
be additionally interfered by other higher-priority tasks. When this interference
straddles a task’s theoretical release time, then the task will suffer release jitter
until all higher-priority levels become idle.

On the other hand, time-triggered scheduling is based on an offline prede-
fined schedule (a plan) in which the designer identifies the exact points in time
when every planned activity must start. From that release time, the activity is
granted a time slot to execute, whose duration is, by design, sufficiently large to
accommodate its computational needs. No other activity is scheduled until the
end of the previous slot. This property translates into small and bounded jitter,
because time-triggered activities do not interfere each other and they are solely
affected by the scheduler’s overhead. In addition, a time-triggered scheduler is
comparatively simple, since all scheduling decisions are taken at well-defined
points dictated by the static plan. This means small overhead, and therefore,
less jitter. The main drawback attributed to time-triggered scheduling is that
plans may become difficult to design, specially when they are large and involve
a large number of activities.

In this paper we explore an alternative that combines both schemes for the
same application. Activities imposing strict jitter requirements are scheduled
according to a time-triggered plan, whereas the rest of tasks are scheduled by
a priority-based scheduler. The whole set of tasks (time-triggered and priority-
scheduled tasks) will be running under the same preemptive, priority scheduler,
but time-triggered activities will do it at the highest priority of the whole set.
This is in order to ensure minimal latency in their activations, given that they
don’t suffer interference from (non-existent) higher-priority tasks, and hence
their release jitter can be kept controlled and short. The rest of tasks execute
at lower priority levels under the same dispatching policy (preemptive, non-
preemptive, EDF) or under a combination of several dispatching policies, e.g.
by making use of Ada’s priority specific dispatching. The Ada programming
language is very well suited for our purpose and we will be using it to illustrate
our proposal.

Our approach also pays attention to providing temporal isolation to time-
triggered activities. A well-designed time-triggered plan guarantees, by construc-
tion, temporal isolation among activities. However, run-time guarantees must
be provided to cater for potential overruns (execution of an activity could take



Combining Time-Triggered Plans with Priority Scheduled Task Sets 197

longer than assumed due to underestimation of its actual worst-case execution
time). We want to guarantee that an overrunning time-triggered activity will
not jeopardise temporal isolation by executing beyond its allocated slot. This
would increase its interference on priority-scheduled tasks and could even make
it enter the slot of another time-triggered task and delay its release. There are
several ways to handle overruns, their appropriateness being dependent on the
application. One possibility is to abort the offending activity, although this may
not be an option for some applications. Another way is to take the system to a
degraded mode. Our proposed model and implementation support mode changes
at the time-triggered level, hence this is always a possibility. But more specific
to the overrun issue, our proposal also supports handling overruns by allowing
the offending activity to continue executing at a harmless, lower priority level.
At that priority level, they may find time to complete by the start of their
next allocated time slot, without interfering higher-priority levels. Our approach
therefore supports these three models. Which option to take is not imposed by
our proposed scheduler, but enforced by the particular pattern implementing the
activity. We propose several such patterns in this paper.

Although we confine most of our discussion to uniprocessor platforms, noth-
ing prevents our model to be applied on multiprocessors. This paper, however,
focuses on showing how the approach performs in terms of granting a reduced
upper bound to the release jitter of time-triggered activities, limiting our study to
a uniprocessor example. General considerations for application on multiprocessor
systems are given in Sect. 8.

The rest of this paper is organised as follows. Section 2 presents related
work. Section 3 explains our system model for the time-triggered plan. Section 4
describes an interface for the time-triggered scheduler and in Sect. 5 we propose
several patterns for time-triggered activities that make use of the scheduler func-
tionalities. Implementation details are discussed in Sect. 6. We have conducted
several experiments and obtained jitter measurements that are presented and
discussed in Sect. 7. Finally, in Sect. 8 we give our conclusions and pointers to
further work.

2 Related Work

The issue of jitter in control and communication systems has been tackled from
different angles. From a Control Engineering perspective, the work in [2] proposes
to dynamically adjust the controller’s parameters to compensate for the presence
of jitter. Our perspective is different, albeit complementary, since our focus is on
the minimisation of jitter at run time (while preserving the benefits of priority
scheduling for tasks that are more tolerant to variable jitter).

From a scheduling perspective, [3] proposes methods to transform an off-
line schedule into an equivalent fixed-priority task set that matches its runtime
behaviour. This transformation is however not always possible, in which case
the original task set needs be modified by splitting tasks into instances, hence
generating a new task set. Our approach does not impose any transformations
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to the original task set, hence avoiding the need for scheduling artefacts. In [4],
the focus is on the control-scheduling co-design of the system. A so called Control
Server uses feedback from execution-time measurements and dynamically mod-
ifies the sampling periods to optimise control performance. In our proposal, the
workload does not need to go through period modifications. Instead, control tasks
preserve their timing parameters because they always run at the highest priority,
irrespective of lower-priority events, hence experiencing minimal release jitter.
Changes to the workload are however possible in our approach by dynamically
changing the whole time-triggered plan. In [5], the authors propose to decompose
control tasks in three parts: initial, mandatory and final (the IMF model). This
decomposition is then used to assign higher priority to the parts that are most
sensitive to jitter (initial and final) which in turn reduces the amount of interfer-
ence they suffer and therefore contributes to reducing their jitter and improving
the control performance. In [6], a method is proposed to reduce delay variations
caused by overload perturbations. Their task model includes both IMF and non
decomposed tasks and their method is to adjust their deadlines dynamically,
according to a heuristic algorithm, so that tasks incur less delay. The algorithm
is however non trivial and it introduces additional runtime overhead. In our pro-
posed approach, control tasks are scheduled according to a time-triggered plan,
hence their release times are clearly identified and deviation from the planned
release points can only be caused by the scheduler’s overhead, but not from
higher-priority interference.

In summary, existing methods that tackle the jitter issue from a scheduling
perspective, assume the system uses a priority scheduler and try to minimise
the release jitter of selected tasks by finding clever priority assignments and
timing parameters for them and by decomposing them into smaller parts. To
the best of our knowledge, there is no previous work that tackles this issue by
combining the predictability and controlled jitter of time-triggered schedules for
jitter-sensitive tasks, with the flexibility of priority scheduling for the rest of
tasks, all running under the same priority scheduler but granting the highest
priority to the time-triggered plan.

3 System Model

In our system model, an offline, static time-triggered plan coexists with a set of
concurrent, priority scheduled tasks. The priority scheme for these tasks can be
either fixed per task (e.g., deadline monotonic, DM) or dynamic per task, fixed
per job (e.g., earliest deadline first, EDF). These priority-based models have
been extensively described in the literature and are fully supported in Ada [7].
Ada also supports the concept of priority-specific dispatching, which makes it
possible to have a combination of dispatching policies conveniently spread over
priority bands. In the following subsections we describe the system model for
the static time-triggered plan, both in regard to what defines a plan and what
are the actions taken by the time-triggered scheduler, and when those actions
are executed. By assigning the time-triggered plan the highest priority, the set
of priority scheduled tasks does not interfere the execution of the plan.
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3.1 The Time-Triggered Plan

A time-triggered plan is described by an ordered sequence of time slots. Figure 1
shows a 6-slot example plan. Each slot has its own sequence number (a natural
number), and is characterised by two parameters: a work identifier, (Work Id),
an integer value ultimately referring to either a piece of user-provided application
code or a predefined scheduler action; the slot duration, a time interval after
which the next slot starts. All scheduling decisions are made exclusively at the
beginning of each slot. When designing the plan, the slot duration should be
made large enough to accommodate the execution of the work denoted by the
slot’s work identifier

For example, Slot 2 in Fig. 1 allocates 300 time units for the execution of
Work 3. The whole plan sequence starts at a given time (identified here as
time 0) and each slot starts right after the end of its predecessor in the plan. In
the absence of mode changes (see later), the plan is repeated cyclically. In some
cases, and for some types of slot, the slot duration may be zero. We consider
three types of slots, depending on the kind of activity that must be executed
during the slot duration:

– A regular slot defines a time interval for the execution of an application-
specific activity. It is denoted by a regular Work Id and a strictly positive
slot duration. For regular Work Id we mean a positive integer corresponding
to a regular work identifier, i.e. one that ultimately refers to a piece of user-
supplied application code. The duration of a regular slot must be, by design,
sufficient to accommodate the worst-case execution time of that work – we
will consider overrun handling in Subsect. 3.2. In Fig. 1, slots 0, 1, 2 and 4 are
regular.

The following two types of slots correspond to scheduler actions exclusively
and they have no associated application-specific activity.

– An empty slot defines a time interval during which no user activity is
planned. This is useful for inserting gaps in the plan where they are needed,
making the CPU available to priority scheduled tasks. Note that, even though
there is no application-specific activity to execute during an empty slot, there
will be scheduler actions executed at the beginning of the slot, as described
in Subsect. 3.2. Empty slots use the special value zero as Work Id. Slot 5 in
Fig. 1 is an empty slot.

– A mode-change slot defines a point in time where it is possible to substitute
the current plan with a new one. This polling approach is consistent with the
nature of time-triggered scheduling, although the definition of mode-change
slot provides an extra degree of flexibility, since the designer can place these
polling points wherever the system can admit a mode change. At the start
of a mode-change slot, the scheduler will check whether there is a pending
mode-change request to process. If there is one, then the new plan will start
executing at the end of the mode-change slot. The change will be immediate
if the mode-change slot duration is defined to be zero. The ability to change
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Fig. 1. A time-triggered plan. For each slot, the first number is the work identifier and the
second is the slot duration. Slot 3 is a mode change slot. Slot 5 is an empty slot.

mode (substitute the current plan with a new one at run time) introduces a
degree of flexibility that off-line, static schedules do not possess by nature. The
inclusion of mode change slots provides a flexible means to specify in which
points of the plan a mode change can be enforced. Mode change slots (such
as Slot 3 in Fig. 1) are identified by Work Id = −1.

Note that each slot can accommodate at most one application-specific activ-
ity, as opposed to the classic cyclic executive [8,9]. This has several advantages:
one is that we want to have the highest possible control over release jitter, which
cannot be accomplished if several activities of varying execution times share the
same slot; another reason is that, with only one activity per slot, the scheduler
only needs to check one activity at a time for potential overrun (see next subsec-
tion), which helps keep the scheduler simple, and consequently helps keep release
jitter small. Another substantial difference is that each slot may have a different
duration, as opposed to the fixed duration of minor frames in the classic cyclic
executive.

3.2 The Time-Triggered Scheduler

The time-triggered scheduler is the element of the system that enforces the
timely execution of the time-triggered plan. This includes not only releasing the
activities at their predefined release times, but also controlling that all activities
behave as per the plan’s design. In particular, the scheduler must check and take
correcting actions for possible overruns, i.e., activities whose actual execution
time may exceed their allocated slot duration. The scheduler must also give
support to mode changes, as described in the previous subsection. Contrary
to the case of priority-based schedulers, where scheduling decisions are taken
at arbitrary points in time, all the decisions and actions of the time-triggered
scheduler must be taken and executed at predefined points in time; in our case,
at the start of each slot. Note that this is not necessarily a periodic event, since
slots may have different durations.

At the start of any slot, the scheduler checks whether there is still pending
work from the previous slot. Since the slot duration must accommodate, by
design, the worst-case execution time of its work, continued execution of an
activity from the previous slot constitutes an overrun. There are several possible
ways to treat this situation. One possibility is to lead the system to a fail-safe
state (as in [10]), which can be achieved by means of a mode change as we
will show later. For the rest of this paper, we take a less drastic approach and
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allow the offending activity to continue executing at a lower priority, so that it
only affects a particular set of tasks in the system (including an empty set, if
the overrunning activity is set to background priority). The particular demoted
priority can be specified for each activity as will be shown in the following
sections. After this overrun check, the scheduler takes different actions depending
on the type of slot:

Regular slot: The scheduler releases the execution of the slot’s activity, denoted
by its regular Work Id, and assigns it the time-triggered level priority.

Empty slot: No time-triggered activity needs be executed until the arrival of the
next slot. During an empty slot, time is fully available for priority scheduled
tasks.

Mode change slot: The scheduler checks whether there is a pending mode
change request. If there is one, then the current plan is substituted with the
new mode plan (which may be totally different) and the next slot will be the
first slot of the new plan. Otherwise, the slot duration is also available for
priority scheduled tasks.

The actual implementation details of mode changes depend on the concrete
platform. Ideally, the hardware includes enough memory resources to allocate
all the required time-triggered tasks for all modes. On platforms with scarce
resources however, it may be necessary to delete old-mode tasks and load new-
mode tasks to memory. The time needed for these operations, as well as any
additional overhead incurred to enforce the mode change, can be absorbed by
the mode-change slot duration.

4 API for Time-Triggered Plans

We propose an Application Program Interface (API) for Ada programs to use
time-triggered plans, possibly in combination with other concurrent, priority
scheduled tasks. The API for time-triggered plans is provided via the Ada
package Time Triggered Scheduling. Listing 1 shows the most relevant aspects of its
specification.

The type Any Work Id refers to work identifiers in general, including regular and
special work identifiers (such as empty slots and mode change slots, as described
in Subsect. 3.1). Subtype Special Work Id covers the negative range of Any Work Id, plus
the value zero, whereas subtype Regular Work Id refers to strictly positive numbers
that correspond to regular work identifiers. Constants Empty Slot and Mode Change Slot

(assigned in the private part of the package) identify their corresponding special
work identifiers.

The record type Time Slot encapsulates the two defining elements of time slots:
their duration and the work identifier for that slot. Additionally, we include
the record field Next Slot Separation , whose value is to be supplied at design time,
indicating the time separation between the start of the current slot and the next
slot in the plan allocated to the same work. The use of this piece of information
is further explained in Sect. 5.
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A time-triggered plan is an ordered sequence of time slots, as represented by
the array type Time Triggered Plan. Additionally, the access type Time Triggered Plan Access

provides access to time-triggered plans, so that plans can be efficiently passed
as parameters to subprograms.

Listing 1. Time-triggered API (incomplete)

−− Context clauses omitted
package Time Triggered Scheduling is

type Any Work Id is new Integer;
subtype Special Work Id is Any Work Id range Any Work Id’First .. 0;
subtype Regular Work Id is Any Work Id range 1 .. Any Work Id’Last;
Empty Slot : constant Special Work Id ;
Mode Change Slot : constant Special Work Id;

type Time Slot is record
Slot Duration : Time Span;
Work Id : Any Work Id;
Next Slot Separation : Time Span; −− Distance to next slot of same Work Id

end record;
type Time Triggered Plan is array (Natural range <>) of Time Slot;
type Time Triggered Plan Access is access all Time Triggered Plan;

protected type Time Triggered Scheduler (Nr Of Work Ids: Regular Work Id)
with Priority => System. Interrupt Priority ’Last is
−− Setting a new time−triggered plan
procedure Set Plan (TTP : in Time Triggered Plan Access; At Time : in Time);
procedure Set Plan (TTP : in Time Triggered Plan Access; In Time : in Time Span);
−− Time−triggered tasks wait here for their activation
entry Wait For Activation (Work Id : Regular Work Id);

−− Features for composed task patterns
−− Continue TT task at default or given demoted priority
procedure Leave TT Level (Work Id : Regular Work Id);
procedure Leave TT Level (Work Id : Regular Work Id; Prio : System. Priority );
−− Release time of the last slot of a given Work Id
function Get Last Release (Work Id : Regular Work Id) return Time;
−− Duration of the last slot of a given Work Id
function Get Last Slot Duration (Work Id : Regular Work Id) return Time Span;
−− Separation between the start of the last slot and the next slot of a given Work Id
function Get Next Slot Separation (Work Id : Regular Work Id) return Time Span;

private
−− ... Further details in listing 4

end Time Triggered Scheduler;

private
Empty Slot : constant Special Work Id := 0;
Mode Change Slot : constant Special Work Id := −1;
−− ... Further details in listing 4

end Time Triggered Scheduling;

Listing 1 continues with the definition of protected type Time Triggered Scheduler,
which encapsulates all data and subprograms used to implement the time-
triggered scheduler. The type has a discriminant (Nr Of Work Ids) to specify the
number of regular work identifiers used by all plans in all modes. Based on this
number, we define bounded data structures (in the private part of the protected
type, not shown here) that are needed for the scheduler’s operation. The prior-
ity of the time-triggered scheduler is set to the maximum to prevent interference
from other parts of the system with its operations. Care has been taken to imple-
ment all the provided operations using constant cost subprograms. The protected
procedure Set Plan sets a new plan (given by parameter TTP) to be started after
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a given point in time – the two versions of Set Plan differ only in using a rela-
tive or an absolute value for that starting time. A plan set by means of Set Plan

will start executing immediately after that starting time if there was no plan
running (it was the first plan to be set) or at the end of the next mode change
slot otherwise. The entry Wait For Activation suspends the calling task until the work
corresponding to its Work Id must be released, according to the current plan.

The rest of protected subprograms are useful for composed task patterns such
as those described in Sect. 5. With Leave TT Level, a time-triggered work requests to
continue executing at a default demoted priority, or a particular priority for each
invocation. This is useful for works with an optional part that cannot be granted
by the plan due to an excessive or unbounded worst-case execution time. The
optional part can continue executing in competition with priority scheduled task
and calculate the best possible response in the available time, without interfering
other planned activities. The three getter functions provide the indicated values:
the time when the calling work was last released (Get Last Release); the duration of
the slot in which the work was last released (Get Last Slot Duration); and the time
distance between the work’s current slot and the next slot in the plan that is
allocated to that work (Get Next Slot Separation). The following Section shows how
different patterns can take advantage of these functions.

5 Patterns for Time-Triggered Tasks

Common practice in time-triggered systems is to have all activities implemented
by subprograms that are directly called from the scheduler. We have taken a
different approach, whereby every activity (work) is executed by its own asso-
ciated Ada task: there is one task behind each work. Before we justify this
implementation decision, note that we are considering time-triggered schedules
as part of a more complex system that includes also other priority-scheduled
tasks. Hence we are not imposing here a special requirement on the operating
system or runtime support: a priority-based, preemptive scheduler is given for
granted. Our approach is to implement each time-triggered work with a high-
priority task and let the RTOS decide which task to execute at a given time,
be it a time-triggered task or a priority-scheduled task. In addition, the imple-
mentation must also be prepared for demoting overrunning time-triggered tasks,
as explained in Sect. 3. This feature alone requires that works must be exe-
cuted by tasks whose priorities can be changed by the scheduler at run time.
Hence we use task types to define patterns. We observe however that commu-
nication between works requires protected objects (not just shared memory) if
we allow overrunning time-triggered tasks to continue executing at a demoted
priority beyond their allocated slot, concurrently with other tasks. Using pro-
tected objects ensures that priority demotion of overrunning tasks occurs only
when data integrity is not compromised ([7], D.5.1).

The API described in Sect. 4 may be used for implementing time-triggered
works of different complexity. Listing 2 shows the simplest pattern for time-
triggered tasks we can think of, implemented by task type Simple Worker. The task
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first calls the scheduler’s entry Wait For Activation. The scheduler will then keep the
calling task blocked until a slot arrives in which its work identifier is planned to
execute. Upon completion of the call to Wait For Activation, the task then executes
its specific work actions. This is repeated in an infinite loop. Worker tasks are
created by instantiation of this task type.1 Each instance must use a different
value for the discriminant Work Id – this is checked at runtime by the scheduler
and the exception Program Error is raised if a task tries to use another task’s work
identifier. The discriminant Prio specifies the default demoted priority, i.e., the
priority to which the task will be demoted in case of overrun or when it calls
Leave TT Level without specifying a demoted priority value. We use the CPU aspect
here to set the affinity of all time-triggered tasks to the same processor, although
this is not compulsory. On a multiprocessor platform, each processor may be
running a different plan and each work task must be confined to its respective
CPU.

Listing 2. Simple pattern for time-triggered tasks

TTS: Time Triggered Scheduler(3); −− A scheduler for 3 different works ( arbitrary )

task type Simple Worker (Work Id: Regular Work Id; Prio : System. Priority )
with Priority => Prio, −− Demoted priority in case of overrun

CPU => 1; −− Set task’s affinity
task body Simple Worker is
begin

loop
TTS.Wait For Activation (Work Id); −− Block here until my slot arrives
Do My Work (...); −− Specific work actions

end loop;
end Simple Worker;

More elaborated task patterns are also supported by the scheduler described
in Sect. 4. In particular, we propose the following additional patterns:

Worker With Cancellation. Before causing an overrun, a task following this
pattern will cancel its activity, instead of following the default behaviour of
continuing its execution at a demoted priority level. This pattern is intended
for tasks that cannot contribute any value after their allocated slot duration,
for example because their result must be applied to a system output imme-
diately.
The pattern modifies the Simpe Worker by enclosing the Do My Work sentence in
the abortable part of an Ada asynchronous transfer of control statement.
The triggering alternative is an absolute delay until the end of the cur-
rent slot, hence the work will be aborted before incurring overrun.2 This
time is obtained by adding the slot duration to its corresponding start time
(Get Last Slot Duration + Get Last Release).

1 Note that, for general application of the pattern, the actions represented by
Do My Work are different for each work. We have kept the patterns simple, but in
actual systems the task’s actions should be determined more flexibly (e.g. by using
access to subprogram or generic packages for task patterns).

2 To be on the safe side, we should subtract the worst-case duration of abort-deferred
operations in the work’s code. This would avoid the work to cross a slot barrier while
executing an abort-deferred operation.
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Worker With Initial Final. This pattern is conceived for works that require
controlled and short jitter both at the beginning and towards the end of their
activity. The work is said to have an initial part (e.g., sensing a physical
environment variable) and a final part (e.g., the actuation phase of a control
algorithm).
This pattern is a simple duplication of the loop actions of Simple Pattern: there are
two calls to Wait For Activation, one preceding the initial part and one preceding
the final part of the work. Note that the same effect can in principle be
obtained by two works, one for the initial part and one for the final. Using
this pattern, however, the advantage is that all communication between the
initial and the final part is immediate since both parts share the common
task’s stack (no inter-task communication is needed).

Worker With Initial Optional Final. This pattern is for activities with ini-
tial and final parts with strict jitter restrictions, plus an optional part
between them. The optional part may implement an optimisation algorithm
for improving a quick and dirty result obtained during the time allocated to
the initial part. The execution time of optimisation algorithms may be quite
disperse, and hence it is not easy to define their required slot duration: too
large a duration would impose delays to other activities; too short and the
potential for run-rime overruns increases.
This pattern executes first the initial part until completion. After calling pro-
cedure Leave TT Level, the task continues with the optional part at a demoted
priority. When the optional part is completed, the task will wait again for
activation until the arrival of the next slot corresponding to its work identi-
fier. In that slot, the work’s task executes the final part using the best result
obtained during the optional part. If the optional part has not finished by
the time when starting the final part is due, then the optional part is aborted
(as in the Worker With Cancellation pattern). Listing 3 gives the implementation of
pattern Worker With Initial Optional Final .

Listing 3. Pattern for works with initial, optional and final parts

task body Worker With Initial Optional Final is
−− Common data to all parts goes here

begin
loop

TTS.Wait For Activation(Work Id);
Initial Work ; −− Do initial part
TTS.Leave TT Level(Work Id,Optional Part Prio); −− Prepare to start optional part
select

delay until TTS.Get Last Release(Work Id) + TTS.Get Next Slot Separation(Work Id);
then abort

Optional Work; −− Do optional part
end select ;
TTS.Wait For Activation(Work Id);
Final Work; −− Do final part

end loop;
end Worker With Initial Optional Final ;

Figure 2 shows the execution of an example plan with three time-triggered
tasks (work tasks 1, 2 and 3) and two priority-based tasks (T4 and T5). Work
1 is a Simple Worker, work 2 is a Worker With Initial Final and work 3 uses the more
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elaborated Worker With Initial Optional Final pattern. T4 and T5 execute at their lower
priorities, using the time made available by empty slots and early completion
of work tasks. Work 3 starts executing the initial part (marked 3I), which gets
completed before the end of the allocated slot duration. It then calls Leave TT Level

to continue the execution of the optional part (marked 3O) at a given priority, in
competition with the rest of priority- or time-triggered-scheduled tasks. In this
case, the demoted priority is half way between the priorities of T4 and T5. When
the optional part completes, it calls Wait For Activation to wait for the arrival of the
final part slot (marked 3F ). Note that the optional part is abortable, hence it
can be forced to not cause overrun. All we need to do is set the delay of the
triggering statement to the right value: by the arrival of the next slot allocated
to this work. We obtain our last activation time by using the above mentioned
extension Get Last Release. To this time, we need to add the duration of all slots in
between the current slot and the next slot for the current Work Id. This imposes
a time cost (traversing the plan) that we do not want to charge on the scheduler
at run time. To avoid this overhead on the scheduler, we use the Next Slot Separation

field of Slot Type record. The separation to my next slot can be easily calculated
at design time and stored in the plan using this field, where the scheduler can
read it immediately. The API function Get Next Slot Separation returns precisely this
value for a given Work Id.

Fig. 2. Execution of a Worker With Initial Optional Final pattern.

6 Implementation Details

A thorough description of all implementation details is not possible here due to
space limitations. We will limit ourselves to the most relevant details in terms of
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their impact on jitter, i.e., the actions taken by the scheduler to timely enforce the
plan. We will omit discussing the implementation details of (much less frequent)
mode changes.

As shown in Sect. 4, a time-triggered scheduler is enclosed in a protected
object with the highest priority. This grants mutually exclusive access to it. List-
ing 4 shows the private parts of package Time Triggered Scheduling and protected type
Time Triggered Scheduler, which were omitted in Listing 1. They include all required
types and state variables needed for the time-triggered scheduler to enforce the
execution of the plan according to the model described so far.

Listing 4 shows the private details of the time-triggered scheduler. The private
part of the protected type includes the entry family Wait Until Released, with as many
members as work identifiers used in the system (across all modes). When a worker
task calls the scheduler’s entry Wait For Activation, it is ultimately requeued to its
corresponding entry family member, where it waits until its specific barrier is
open by the scheduler. All barriers are simple Booleans stored in Work Control, one
per work identifier – more specifically, the field Allow Release of the record type
Work Info.

Registration of work tasks in the plan is automatically handled by the sched-
uler the first time a task calls Wait For Activation. Registration consists in taking note
of the caller’s Task Id and its default demoted priority, taken from the caller’s base
priority. Additional checks are enforced by the scheduler to make sure the calling
task is the one that registered for the specified work identifier. Program error is
raised otherwise.

Listing 4. Private parts of scheduler package and protected type

package Time Triggered Scheduling is
... −− Types for storing runtime information
type Work Info is private ;
type Work Info Array is array (Regular Work Id range <>) of Work Info;

protected type Time Triggered Scheduler (Nr Of Work Ids: Regular Work Id) ... is
−− See full spec in Listing 1

private −− Of protected type
entry Wait Until Released (1 .. Nr Of Work Ids); −− Entry family: one entry per work
procedure MC Handler (Event : in out Timing Event); −− Handler for mode change timing event
procedure NS Handler (Event : in out Timing Event); −− Handler for new slot timing event
procedure Change Plan (At Time : Time); −− Enforce plan change
procedure Update Slot Info ; −− Update indexes and times to new slot
Current Plan, Next Plan : Time Triggered Plan Access := null ; −− Current and next plans
NS Event, MC Event : Timing Event; −− New Slot and Mode Change TEs
Current Slot Index , Next Slot Index : Natural:= 0; −− Relevant indexes and times
Next Mode Release, Next Slot Release : Time := Time Last;
Work Control : Work Info Array (1.. Nr Of Work Ids); −− Runtime work info

end Time Triggered Scheduler;
private −− Of package

...
type Work Info is record

Is Running: Boolean:= False; Demoted Priority: System. Priority := System. Priority ’ First ;
Work Task Id: Task Id:= Null Task Id ; Allow Release : Boolean:= False;
Last Release : Time:= Time Last; Last Slot Index : Natural:= 0;

end record;
end Time Triggered Scheduling;
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Listing 5. Handler for the new slot timing event

procedure NS Handler (Event : in out Timing Event) is
Current Work Id : Any Work Id; Now : Time;

begin
−− Check for overrun (Current Slot Index refers to the just expired slot )
if Current Slot Index in Current Plan’Range then

Current Work Id := Current Plan ( Current Slot Index ).Work Id;
if Current Work Id in Regular Work Id and then −− Regular work

Work Control(Current Work Id).Is Running then −− Still running => demote
Set Priority (Work Control(Current Work Id).Demoted Priority,

Work Control(Current Work Id).Work Task Id);
end if ;

end if ;
−− Prepare to process current slot
Now := Next Slot Release; −− Start time of current slot
Update Slot Info ; −− Update Current Slot Index and Next Slot Release
Current Work Id := Current Plan( Current Slot Index ).Work Id; −− Obtain current Work Id
case Current Work Id is −− Process current slot actions

when Mode Change Slot =>
if Next Plan /= null and then Next Mode Release <= Now then

Change Plan (Next Slot Release ); −− Enforce new plan at the end of MC slot
else

NS Event.Set Handler (Next Slot Release , NS Handler’Access); −− Reprogram NS Event
end if ;

when Empty Slot =>
NS Event.Set Handler (Next Slot Release , NS Handler’Access); −− Reprogram NS Event

when Regular Work Id’Range => −− It’s a regular slot
Work Control(Current Work Id).Allow Release := True; −− Release the work’s task
NS Event.Set Handler (Next Slot Release , NS Handler’Access); −− Reprogram NS Event

when others =>
raise Program Error with "Undefined Work Id";

end case;
end NS Handler;

The scheduler may be triggered by two possible timing events: NS Event, which
signals the arrival of a new slot, and MC Event for mode change events. Their
handlers are, respectively, NS Handler and MC Handler. As justified above, here we
describe only the handling of the new slot event, implemented by protected
procedure NS Handler.

Other objects declared in the private part of protected object
Time Triggered Scheduler include Change Plan, which assigns control variables and pro-
grams the NS Event timing event for the first slot of the next plan to switch to;
Update Slot Info, also a simple procedure that updates control variables when a new
slot starts; eight control variables used by the scheduler; and Work Control, the array
of work control blocks.

Listing 5 shows the handler for the timing event signalling the arrival of a new
slot (NS Handler). According to the model described in Sect. 3, there are different
checks to make at the start of every slot. The first one is to detect overrunning
work from the just expired slot. The two nested if statements check that the
task associated to the previous slot is still running, in which case it is demoted
to its Demoted Priority, which is retrieved from its corresponding work control block.
The task will continue at a non-disturbing priority level, where its interference
is bounded to what is acceptable by the rest of application tasks.

The handler then goes on with processing the just started slot. After updating
some indexes and times, the new slot is processed in a case statement. If it is
a mode change slot and there is a pending mode change request (a revious



Combining Time-Triggered Plans with Priority Scheduled Task Sets 209

call to Set Plan has set a non null value for the Next Plan control variable), then
the new mode is enforced at the end of the current slot if the starting time of
the new plan is not in the future – if it happens to be in the future, then the
mode change handler (not described here) will take care of changing the plan.
If there is no pending plan change to process, then the new slot timing event is
reprogrammed for the start time of next slot. In the case of an empty slot, we
just need to reprogram the next slot timing event. If it is a regular slot, then
the scheduler opens the barrier for the work task, which will be released at the
highest priority immediately after completion of the handler, and reprograms
the new slot timing event. In the body of each member of Wait Until Released, where
works wait to be released by the scheduler, the task’s priority is set to the time-
triggered level (it could have been demoted due to a previous overrun, or a call
to Leave TT Level, or it could be the first activation of the task). The other two
simple operations in Wait Until Released are to close again its barrier and to mark
the work as running in its work control block.

We note that all the required scheduler functionality can be implemented
using three types of sentences: simple assignments, setting one task’s priority,
and setting one timing event. How efficiently these two last operations operations
are supported by the runtime is of crucial importance to keep the scheduler’s
overhead small and hence to cause minimal jitter to work tasks. The time needed
to release a work task contributes also to the scheduler’s overhead; but that
would be the only blocked task in its corresponding Wait Until Released member,
which contributes to shorten the completion of that protected action.

7 Experimental Results and Discussion

In order to evaluate the performance of the proposed approach, we have con-
ducted experiments to measure release jitter of a combined set of tasks: three
time-triggered tasks plus two deadline monotonic tasks. The system matches the
one depicted in Fig. 2.

The two deadline monotonic tasks, T4 and T5, execute at lower priorities 6
and 4, and have periods of 325 and 500 ms, respectively. The total plan duration
is 1200 ms and it contains the following sequence of 7 slots: 100 ms for W1; 200
ms for WI2; an empty slot of 300 ms; 100 ms for WI3; an empty slot of 200 ms;
another 200 ms for WF2; and finally 100 ms for WF3.

We compiled this system for MaRTE OS [11] in bare machine configuration
and executed it on two hardware platforms, one using a Celeron CPU at 1.8 GHz
and the other using an older Pentium III at 800 MHz. Figure 3 shows cumulative
frequency histograms of release jitter measured on both platforms for all tasks
in the system. Note that the X axes are pseudo-logarithmic and cover the range
from 0 to 1 second.

On both platforms the results are comparable in terms of trend. Priority
scheduled tasks T4 and T5 experience a wide range of jitter values. In 50 to 60 %
of the cases, jitter is comparable to that of time triggered tasks, but then there
is a slowly growing trend with release jitters up to 140 ms of T5 on the Celeron
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Fig. 3. Cumulative frequency histograms of jitter, measured in ms.

and 395 ms on the slower Pentium III. This makes T4 and T5 inappropriate
for implementing control algorithms or precisely synchronised communications.
Time-triggered tasks experience a maximum jitter of 272 µs on the Celeron
and 702 µs on Pentium III. Furthermore, in 98.5 % of the cases, jitter on time-
triggered tasks was below 30 µs on the Celeron and 80 µs on the Pentium III.
Even considering the totality of cases, the results on maximum jitter are 3 orders
of magnitude apart between time-triggered and priority-scheduled tasks.

Looking at minimum jitter values, we observe (more clearly in the Pentium
case) that priority-scheduled tasks experience shorter minimum jitter than time-
triggered tasks. This occurs when they are released at idle times, when they
are free from higher-priority interference. This was expected because releas-
ing a time-triggered task has the additional overhead of the timing event, plus
priority promotion, plus completing the protected action implemented by the
Wait Until Released entry.
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8 Conclusions and Future Work

This paper has proposed and explored an approach that allows a time-triggered
plan to run under the same priority scheduler where other priority-scheduled
tasks are running. By using the highest priority level for the time-triggered
schedule, and controlling the scheduler by means of a timing event, the effect
is a two-level scheduler that ensures precedence of time-triggered activities over
priority-scheduled tasks, which is essential to keep release jitter low for time-
triggered activities.

We have also proposed several programming patterns for task time-triggered
activities, from the simplest cyclic pattern, to patterns accommodating the struc-
ture of decomposed tasks, an approach proposed for control tasks that can also
be used for other purposes such as handling communications in networks requir-
ing strict synchronisation (e.g., the CAN bus).

Experimental data indicate that all time-triggered tasks are subject to similar
interference, bounded to values that are, in the vast majority of cases, orders of
magnitude lower than the release jitter experienced by priority-scheduled tasks.
Our approach naturally accepts previously designed time-triggered plans, and
facilitates the extension of those plans with additional priority-scheduled tasks.
There are other aspects of the proposal, not covered in this paper, that are the
subject of current and future work. They include:

Use on multiprocessor platforms: Although we have limited our experi-
ments to a single CPU, the approach presented in this paper is applicable
to multiprocessor platforms. In a fully partitioned system, each processor
executes its own plan and work tasks have their affinity statically assigned.
A certain amount of migration is also possible, whereby work tasks can alter-
nate slots of plans supported by different processors, to balance the overall
time-triggered workload. Global scheduling of work tasks (i.e. allowing them
to migrate at arbitrary points in time) seems not appropriate in this case,
since plans assign slots to one and only one work task.

Schedulability analysis: A schedulability analysis is needed to assess the fea-
sibility of the full task set, including both the time-triggered plan and the
priority-based scheduling levels. The plan can be guaranteed by construction,
since it executes at the highest priority level and suffers no interference from
priority-based tasks. But the analysis of priority-based tasks needs to take
into account the interference caused by the execution of the higher-priority
plan. One possibility is to consider the whole plan as a real-time transaction,
as defined in the computational model of [12]. The period of the transaction
would be the length of the plan and each time slot can be considered as a
task of the transaction with a static offset equal to its release time. Adjacent
time slots can be considered as a single task in the equivalent transaction.
This transaction has the highest priority and the interference introduced in
lower priority levels can be computed as described in [12].

Tools and integration with real-time framework: Designing a plan can
be a difficult task, especially for multiprocessors and with a certain degree
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of migration. Development of software tools to ease building and analysing
these combined systems would be of great value. Additionally, the integration
of this approach with existing real-time frameworks (such as those proposed
in [13–15]) would facilitate the use of pre-designed periodic tasks patterns,
and the independent handling of modes at the two different levels, priority-
based and time-triggered. We want to explore the feasibility and properties
derived from such integration effort.
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