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Preface

“Formal epistemology” is a term coined in the late 1990s for a new constellation
of interests in philosophy, merging traditional epistemological concerns with new
influences from surrounding disciplines like linguistics, game theory, and computer
science. Of course, this movement did not spring to life just then. Formal epistemo-
logical studies may be found in the classic works of Carnap, Hintikka, Levi, Lewis,
Kripke, Putnam, Quine, and many others.

Formal epistemology addresses a growing agenda of problems concerning
knowledge, belief, certainty, rationality, deliberation, decision, strategy, action, and
agent interaction — and it does so using methods from logic, probability theory,
computability theory, decision theory, game theory, and elsewhere. The use of these
formal tools is to rigorously formulate, analyze, and sometimes solve important
issues of interest to philosophers but also to researchers in other disciplines, from the
natural sciences and humanities to the social and cognitive sciences and sometimes
even the realm of technology. This makes formal epistemology an interdisciplinary
endeavor practiced by philosophers, logicians, mathematicians, computer scientists,
theoretical economists, social scientists, cognitive psychologists, etc.

Although a relative newcomer, formal epistemology is already establishing
itself in research environments and university curricula. There are conferences,
workshops, centers, and jobs in formal epistemology, and several institutions offer
courses or seminars in the field.

Yet no volume is in existence comprising canonical texts that define the field
by exemplars. Lecturers and students are forced to collect influential classics
and seminal contemporary papers from uneven sources, some of them hard to
obtain even for university libraries. There are excellent anthologies in mainstream
epistemology, but these are not tuned to new fruitful interactions between the
mainstream and a wider spectrum of formal approaches.

Readings in Formal Epistemology is intended to remedy this situation by
presenting some three dozen key texts, divided into five subsections: Bayesian
Epistemology, Belief Change, Decision Theory, Logics of Knowledge and Belief,
and Interactive Epistemology. The selection made is by no means complete but
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hopefully representative enough for an accurate picture of the landscape. This
collection will hopefully serve as a study and research companion while also helping
shape and stimulate a flourishing new field in philosophy and its broader intellectual
environment.

Pittsburgh, PA, USA Horacio Arl6-Costa
Copenhagen, Denmark Vincent F. Hendricks
Amsterdam, The Netherlands Johan van Benthem
Copenhagen, Denmark Henrik Boensvang

Lund, Sweden Rasmus K. Rendsvig



Acknowledgments

On the way to compiling this volume, we have been assisted by many people. Jeffrey
Helzner and Gregory Wheeler gave us valuable suggestions for texts to include. We
are grateful for their assistance in the selection process. Many authors represented
in this volume provided us with essential copies of their papers while also giving
important input on the organization of this collection. We thank them for their kind
help. We would have liked to have included even more seminal papers, but due
to limitations of space, and the fact that some copyrights were either impossible
trace or too expensive to obtain, we ended up with the current selection. We are
furthermore indebted to Springer Science and Business Media for taking on this
project, especially Ties Nijssen, Christi Lue, and Werner Hermens. The editors
also acknowledge the generous funding provided by the Elite Research Prize from
the Danish Ministry of Science, Technology, and Innovation awarded to Vincent F.
Hendricks in 2008.

Finally, this volume would not have seen the light of day without the constant
efforts of Henrik Boensvang and Rasmus K. Rendsvig in communicating with
relevant parties, collecting the required permissions, and compiling all the papers
patiently and efficiently while paying painstaking attention to detail. In the process,
they have more than earned the right to the title of assistant editors of Readings in
Formal Epistemology.

ix






Copyright Acknowledgments

We would like to thank authors, editors, publishers, copyright holders, permissions
officers, and other parties who allowed us to reprint the papers found in this volume.

Helzner, J. and Hendricks, V.F. (2010). “Agency and Interaction: What we are and what we do in
formal epistemology,” Journal for the Indian Council of Philosophical Research, vol. XXVII:2,
2010: 44-71, special issue on Logic and Philosophy Today, guest edited by Amitabha Gupta
and Johan van Benthem.

Part L. Bayesian Epistemology

Ramsey, F.P. (1926) “Truth and Probability,” in Ramsey, FP. (1931), The Foundations of Math-
ematics and other Logical Essays, Ch. VII, p.156-198, edited by R.B. Braithwaite, London:
Kegan, Paul, Trench, Trubner & Co., New York: Harcourt, Brace and Company.

Jeffrey, R.C. (1968), “Probable Knowledge,” in The Problem of Inductive Logic, ed. 1. Lakatos,
166-180, Amsterdam: North-Holland. Courtesy of Edith Jeffrey.

Van Fraassen, B.C. (1995) “Fine-Grained Opinion, Probability, and the Logic of Full Belief.”
Journal of Philosophical Logic 24 (4).

Gaifman, H. (1986) “A theory of higher order probabilities,” in Theoretical Aspects of Reasoning
About Knowledge: Proceedings of the 1986 conference on Theoretical aspects of reasoning
about knowledge, pp. 275—292, Morgan Kaufmann Publishers Inc. (Monterey, California).

Levi, 1. (1974), “On Indeterminate Probabilities,” The Journal of Philosophy, 71, 391-418.

Glymour, C. (1981) “Why I'm not a Bayesian,” excerpt from Glymour, C. (1981) Theory and
Evidence, Chicago University Press, 63-93.

Skyrms, B. (1993) “A Mistake in Dynamic Coherence Arguments — Discussion.” Philosophy of
Science, 60(2):320-328.

Arntzenius, F. (2003), “Some problems for conditionalization and reflection,” The Journal of
Philosophy, Vol. C, No. 7, 356-371.

M. J. Schervish, T. Seidenfeld and J. B. Kadane (2004) “Stopping to Reflect,” The Journal of
Philosophy, Vol. 101, No. 6, 315-322.

Part II. Belief Change

Alchourron, C.E., Gardenfors, P., and Makinson, D. (1985) “On the Logic of Theory Change:
Partial Meet Contraction and Revision Functions.” Journal of Symbolic Logic, 50(2): 510-530.
Reprinted with the permission of the copyright holders, the Association of Symbolic Logic.

xi



xii Copyright Acknowledgments

Hansson, S.0. (1993) “Theory Contraction and Base Contraction Unified.” Journal of Symbolic
Logic, 58(2): 602—-625. Reprinted with the permission of the copyright holders, the Association
of Symbolic Logic.

Levi, I. How Infallible but Corrigible Full Belief is Possible, hitherto unpublished.

Rott, H. (1993) “Belief Contraction in the Context of the General Theory of Rational Choice.”
Journal of Symbolic Logic, 58(4): 1426-1450. Reprinted with the permission of the copyright
holders, the Association of Symbolic Logic.

Spohn, W. (2009) “A Survey of Ranking Theory.” In Franz Huber and Christoph Schmidt-Petri
(eds.). Degrees of Belief. Dordrecht: Springer.

Part III. Decision Theory

Savage, L. (1972) “Allais’s Paradox” The Foundations of Statistics, Dover Publications, Inc., New
York, 101-103.

Seidenfeld, T. (1988), “Decision Theory without ‘Independence’ or without ‘Ordering’: What is
the Difference,” Economics and Philosophy, 4: 267-290.

Gilboa, I. and M. Marinacci (forthcoming) “Ambiguity and the Bayesian Paradigm,” Advances
in Economics and Econometrics: Theory and Applications, Tenth World Congress of the
Econometric Society.

Schervish, M.J., Seidenfeld, T. and Kadane, J.B. (1990) “State-Dependent Utilities,” Journal of
the American Statistical Association, Vol. 85, No. 411, 840-847.

Gibbard, A. and Joyce, J.M. (1998) “Causal Decision Theory.” In Salvador Barbera, Peter J.
Hammond, and Christian Seidl, eds., Handbook of Utility Theory, Vol. 1: Principles, pp. 701-
740. Dordrecht & Boston: Kluwer.

Tversky, A. and Kahneman, D. (1992). “Advances in prospect theory: Cumulative representation
of uncertainty.” Journal of Risk and Uncertainty 5: 297-323.

Part IV. Logics of Knowledge and Belief

Hintikka, J. (2007) “Epistemology without Knowledge and without Belief” in Socratic Epistemol-
ogy: Explorations of Knowledge-Seeking by Questioning, Cambridge University Press.

Dretske, FI. (1970) “Epistemic Operators.” The Journal of Philosophy, Vol. 67, No. 24, 1007-
1023.

Lewis, D. (1996) “Elusive Knowledge,” Australasian Journal of Philosophy, Vol. 74(4), 549-567.
Courtesy of Stephanie Lewis.

Nozick, R. (1981) “Knowledge and Skepticism” In Philosophical Explanations, Harvard Univer-
sity Press, 167-169, 172-179, 197-211, 679-690. Reprinted by permission of the publisher
from “Knowledge and Skepticism,” in PHILOSOPHICAL EXPLANATIONS by Robert
Nozick, pp. 167-169, 172-179, 197-211, 679—-690, Cambridge, Mass.: The Belknap Press of
Harvard University Press, Copyright © 1981 by Robert Nozick.

Stalnaker, R. (2006) “On Logics of Knowledge and Belief,” Philosophical Studies 120, 169—199.

Parikh, R. (2008) “Sentences, Belief and Logical Omniscience, or What Does Deduction Tell Us?.”
The Review of Symbolic Logic, 1(4). Reprinted with the permission of the copyright holders,
the Association of Symbolic Logic.

Artemov, S.N. (2008) “The logic of justification.” The Review of Symbolic Logic, 1(4):477-513.
Reprinted with the permission of the copyright holders, the Association of Symbolic Logic.
Kelly, K. (2004) “Learning Theory and Epistemology” in Handbook of Epistemology, 1. Niiniluoto,

M. Sintonen, and J. Smolenski (eds.), Dordrecht: Kluwer.

Williamson, T. (2004) “Some Computational Constraints in Epistemic Logic,” in Logic, Epistemol-
ogy and the Unity of Science, S. Rahman et al (eds). Dordrecht: Kluwer Academic Publishers:
437-456.



Copyright Acknowledgments xiii

Part V. Interactive Epistemology

Lewis, D. (1969) Convention: A Philosophical Study, Harvard University Press, 24-42 (excerpt).
Courtesy of Stephanie Lewis.

Barwise, J. (1988) “Three Views of Common Knowledge.” In Proc. TARK’88: 365-379, Morgan
Kaufmann Publishers.

Baltag, A. and Smets, S. (2008) “A Qualitative Theory of Dynamic Interactive Belief Revision,”
in G. Bonanno, W. van der Hoek, M. Wooldridge (eds.), Logic and the Foundations of Game
and Decision Theory, Texts in Logic and Games, Vol 3, 9-58, Amsterdam University Press.

Aumann, R. (1976) “Agreeing to Disagree,” Annals of Statistics 4, 1236—1239.

Aumann, R. and Brandenburger, A. (1995) “Epistemic Conditions for Nash Equilibrium,” Econo-
metrica, Vol. 63, No. 5,1161-1180.

Stalnaker, R. (1996), “Knowledge, belief and counterfactual reasoning in games,” Economics and
Philosophy 12: 133-163

Halpern, 1.Y., (2001) “Substantive Rationality and Backward Induction,” Games and Economic
Behavior, Elsevier, vol. 37(2), 425-435.






Contents

1

Agency and Interaction What We Are and What We Do
in Formal Epistemology.............ccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiians 1
Jeffrey Helzner and Vincent F. Hendricks

PartI Bayesian Epistemology

2

10

11

Introduction ...... ... .. .. 15
Horacio Arlo-Costa, Vincent F. Hendricks,
and Johan van Benthem

Truth and Probability ................... 21
Frank P. Ramsey

Probable Knowledge ............. ... 47
Richard C. Jeffrey

Fine-Grained Opinion, Probability, and the Logic of Full Belief...... 67
Bas C. van Fraassen

A Theory of Higher Order Probabilities ................................. 91
Haim Gaifman

On Indeterminate Probabilities ... 107
Isaac Levi

Why IlamnotaBayesian .................coooiiiiiiiiiiiiiiiiiiiiiies 131
Clark Glymour

Discussion: A Mistake in Dynamic Coherence Arguments?........... 153
Brian Skyrms

Some Problems for Conditionalization and Reflection ................. 163

Frank Arntzenius

Stopping to Reflect. ... 177
Mark J. Schervish, Teddy Seidenfeld, and Joseph B. Kadane

XV



XVi

Contents

PartII Belief Change

12

13

14

15

16

17

Introduction ... ... ... i 189
Horacio Arl6-Costa, Vincent F. Hendricks,
and Johan van Benthem

On the Logic of Theory Change: Partial Meet Contraction
and Revision Functions .................. .. i 195
Carlos E. Alchourrén, Peter Giardenfors, and David Makinson

Theory Contraction and Base Contraction Unified..................... 219
Sven Ove Hansson

How Infallible but Corrigible Full Belief Is Possible ................... 247
Isaac Levi

Belief Contraction in the Context of the General Theory

of Rational Choice ... 269
Hans Rott

A Survey of Ranking Theory .....................ooiiii.. 303
Wolfgang Spohn

Part III Decision Theory

18

19

20

21

22

23

24

Introduction ... ... ...t 351
Horacio Arl6-Costa, Vincent F. Hendricks,
and Johan van Benthem

Allais’s Paradox..........cooooiiiii i 357
Leonard Savage

Decision Theory Without “Independence’ or Without “Ordering” .. 361
Teddy Seidenfeld

Ambiguity and the Bayesian Paradigm .................................. 385
Itzhak Gilboa and Massimo Marinacci

State-Dependent Utilities ..................ccooiiiiiiiiiiiiiiiiiiiiiins 441
Mark J. Schervish, Teddy Seidenfeld, and Joseph B. Kadane

Causal Decision Theory ... 457

James M. Joyce and Allan Gibbard

Advances in Prospect Theory: Cumulative Representation
of Uncertainty ... 493
Amos Tversky and Daniel Kahneman



Contents

Part IV Logics of Knowledge and Belief

25 Introduction ..............oiiiiiiiiiii
Horacio Arl6-Costa, Vincent F. Hendricks,
and Johan van Benthem

26 Epistemology Without Knowledge and Without Belief ................
Jaakko Hintikka

27 Epistemic OPerators ..............cooiuiiiiiiiiiiiiiiii e,
Fred I. Dretske

28 Elusive Knowledge..............oooiiiiiiiiii i
David Lewis

29 Knowledge and Scepticism ...
Robert Nozick

30 On Logics of Knowledge and Belief ......................................
Robert Stalnaker

31 Sentences, Belief and Logical Omniscience, or What Does
Deduction Tell Us?..........ooiiiiiiiiii i
Rohit Parikh

32 The Logic of Justification .............................
Sergei Artemov

33 Learning Theory and Epistemology ......................................
Kevin T. Kelly

34 Some Computational Constraints in Epistemic Logic..................
Timothy Williamson

Part V Interactive Epistemology

35 Introduction ..............coiiiuiiiiiii i
Horacio Arl6-Costa, Vincent F. Hendricks,
and Johan van Benthem

36 Convention (An Excerpt on Coordination
and Higher-Order Expectations) ....................c.oocoiii.
David Lewis

37 Three Views of Common Knowledge...............................ouL
Jon Barwise

38 The Logic of Public Announcements, Common
Knowledge, and Private Suspicions.......................cooi
Alexandru Baltag, Lawrence S. Moss, and Stawomir Solecki

XVvii

627



XViii

39

40

41

42

43

Contents

A Qualitative Theory of Dynamic Interactive Belief
Revision ... 813
Alexandru Baltag and Sonja Smets

Agreeing to Disagree ..............cooiiiiiiiiiii 859
Robert J. Aumann

Epistemic Conditions for Nash Equilibrium ............................ 863
Robert J. Aumann and Adam Brandenburger

Knowledge, Belief and Counterfactual Reasoning in Games........... 895
Robert Stalnaker

Substantive Rationality and Backward Induction ...................... 923

Joseph Y. Halpern



Contributors

Carlos E. Alchourron (deceased) Universidad de Buenos Aires, Buenos Aires,
Argentina

Horacio Arlo-Costa (deceased) Carnegie Mellon University, Pittsburgh, PA, USA
Frank Arntzenius University of Oxford, Oxford, UK
Sergei Artemov Graduate Center CUNY, New York, NY, USA

Robert J. Aumann Federmann Center for the Study of Rationality, The Hebrew
University of Jerusalem, Jerusalem, Israel

Alexandru Baltag ILLC, University of Amsterdam, The Netherlands
Jon Barwise (deceased) Stanford University, Stanford, CA, USA
Henrik Boensvang University of Copenhagen, Copenhagen, Denmark

Adam Brandenburger Stern School of Business, Tandon School of Engineering,
NYU Shanghai, New York University, New York, NY, USA

Fred I. Dretske (deceased) University of Wisconsin, Madison, WI, USA
Haim Gaifman Columbia University, New York, NY, USA

Peter Giardenfors Lund University, Lund, Sweden

Allan Gibbard University of Michigan, Ann Arbor, MI, USA

Itzhak Gilboa HEC, Paris, France

Tel-Aviv University, Tel Aviv, Israel

Clark Glymour Carnegie Mellon University, Pittsburgh, PA, USA

Joseph Y. Halpern Computer Science Department, Cornell University, Ithaca, NY,
USA

Sven Ove Hansson Division of Philosophy, KTH, Stockholm, Sweden

Xix



XX Contributors

Jeffrey Helzner AIG, New York, NY, USA

Vincent F. Hendricks Center for Information and Bubble Studies, University of
Copenhagen, Copenhagen, Denmark

Jaakko Hintikka (deceased) Boston University, Helsinki, Finland
Richard C. Jeffrey (deceased) Princeton University, Boston, MA, USA
James M. Joyce University of Michigan, Ann Arbor, MI, USA

Joseph B. Kadane Departments of Statistics and Social and Decision Sciences,
Carnegie Mellon University, Pittsburgh, PA, USA

Daniel Kahneman Princeton University, Princeton, NJ, USA
Kevin T. Kelly Carnegie Mellon University, Pittsburgh, PA, USA
Isaac Levi Columbia University, New York, NY, USA

David Lewis (deceased) Princeton University, Princeton, NJ, USA
David Makinson London School of Economics, London, UK
Massimo Marinacci Universita Bocconi, Milano, Italy

Lawrence S. Moss Mathematics Department, Indiana University, Bloomington,
IN, USA

Robert Nozick (deceased) Harvard University, Boston, MA, USA
Rohit Parikh City University of New York, New York, NY, USA
Frank P. Ramsey (deceased) University of Cambridge, Cambridge, UK
Rasmus K. Rendsvig Lund University, Lund, Sweden

Center for Information and Bubble Studies, University of Copenhagen, Copen-
hagen, Denmark

Hans Rott Department of Philosophy, University of Regensburg, Regensburg,
Germany

Leonard Savage (deceased) Princeton University, New York, NY, USA

Mark J. Schervish Department of Statistics, Carnegie Mellon University, Pitts-
burgh, PA, USA

Teddy Seidenfeld Departments of Philosophy and Statistics, Carnegie Mellon
University, Pittsburgh, PA, USA

Brian Skyrms Department of Philosophy, University of California, Irvine, CA,
USA

Sonja Smets ILLC, University of Amsterdam, The Netherlands



Contributors XXi

Stawomir Solecki Mathematics Department, Indiana University, Bloomington, IN,
USA

Wolfgang Spohn Fachbereich Philosophie, Universitit Konstanz, Konstanz,
Germany

Robert Stalnaker Department of Linguistics and Philosophy, MIT, Cambridge,
MA, USA

Johan van Benthem University of Amsterdam, Amsterdam, The Netherlands
Stanford University, Stanford, United States

Bas C. van Fraassen San Francisco State University, San Francisco, CA, USA
Amos Tversky (deceased) Stanford University, Stanford, CA, USA

Timothy Williamson University of Oxford, Oxford, UK






About the Editors

The late Horacio Arlé-Costa was Professor of Philosophy at Carnegie Mellon
University, Pennsylvania. Arl6-Costa served as editor for the Review of Symbolic
Logic, as area editor in epistemology for Synthese, and as member of the editorial
board for the Journal of Philosophical Logic.

Vincent F. Hendricks is Professor of Formal Philosophy at the University of
Copenhagen and Director of the Center for Information and Bubble Studies (CIBS).
His recent publications include Handbook of Formal Philosophy (2015), Infostorms
(2014), Mainstream and Formal Epistemology (2007), and The Convergence of
Scientific Knowledge (2001). He served as editor-in-chief of Synthese from 2005
to 2015.

Johan van Benthem is University Professor of Logic at Amsterdam University,
Henry Waldgrave Stuart Professor of Philosophy at Stanford University, and Dis-
tinguished Foreign Expert at Tsinghua University, Beijing. His recent publications
include Logical Dynamics of Information and Interaction (2011), Modal Logic for
Open Minds (2010), Exploring Logical Dynamics (1996), and Language in Action
(1995). Van Benthem is coeditor, with Alice ter Meulen, of the Handbook of Logic
and Language (1997).

XXiii



Chapter 1
Agency and Interaction What We Are and What
We Do in Formal Epistemology

Jeffrey Helzner and Vincent F. Hendricks

Introduction

Formal epistemology is a recent field of study in formal philosophy dating back
only a couple of decades or so (Helzner and Hendricks 2011; Hendricks 2006). The
point of departure of this essay is rooted in two philosophically fundamental and
interrelated notions central to formal epistemology;

* agency — what agents are, and
* interaction — what agents do.

Agents may be individuals, or they may be groups of individuals working
together. In each of the sections that follow, assumptions are made concerning the
relevant features of the agents at issue. For example, such relevant features may
include the agent’s beliefs about its environment, its desires concerning various
possibilities, the methods it employs in learning about its environment, and the
strategies it adopts in its interactions with other agents in its environment. Fixing
these features serves to bound investigations concerning interactions between the
agent and its environment. The agent’s beliefs and desires are assumed to inform its
decisions. Methods employed by the agent for the purposes of learning are assumed
to track or approximate or converge upon the facts of the agent’s environment.
Strategies adopted by the agent are assumed to be effective in some sense.

J. Helzner (P<)
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e-mail: jeffreyhelzner @yahoo.com

V.E. Hendricks
Center for Information and Bubble Studies, University of Copenhagen, Copenhagen, Denmark
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2 J. Helzner and V.F. Hendricks

In what follows is an attempt to locate predominant paradigms in formal
epistemology — e.g., probability theory, belief revision theory, decision theory,
logics of knowledge and belief and finally interactive epistemology — within the
framework of agency and interaction.

Probability

Probabilities are very useful in formal epistemology. They are used to measure key
epistemic components like belief and degrees thereof, the strength of expectations
and predictions, may be used to describe actual occurrent frequencies in nature or in
the agent’s environment and of course probabilities play a paramount in accounting
for notions of (Bayesian) confirmation (Earman 1992). Current cognitive models
apply probabilities to represent aggregated experience in tasks involving language
acquisition, problem solving and inductive learning, conditionalization and updating
beliefs and scientific hypotheses.

What sorts of internal states are essential to the agent’s representation of its
environment? Various doxastic notions e.g., according to which the agent simply
believes or is certain of propositions, in contrast to believing the proposition to
some degree, are a traditional interest within mainstream epistemology. Some
philosophers, e.g. Jeffrey (1992), have argued in favor of a doctrine known as radical
probabilism. A central tenet of this doctrine is that various propositional attitudes
of epistemic interest, especially full belief, are reducible to credal judgments. There
are several ways that one might attempt such a reduction. Perhaps the most obvious
is to identify full belief with maximal partial belief. For example, if it is assumed
that the agent’s credal state can be represented by a probability measure, then such
a reduction would identify those propositions that are fully believed by the agent
with those propositions that have maximal probability according to this representing
measure. Following this proposal, it would seem that a proposition counts as a
serious possibility for the agent just in case its negation is not assigned maximal
probability according to the probability measure representing the agent’s credal
judgments. Hence, by the probability axioms, a proposition counts as seriously
possible for the agent just in case it has nonzero probability under the representing
measure. This leads to certain difficulties. For example, if the agent is concerned
to estimate the height of an object that is sufficiently distant, then the agent might
regard a continuum of values as possible — e.g., the height of the object is judged
to be between three and four feet. According to the suggested reduction, such a
continuum of possible values for the height of the object could not serve as a set of
serious possibilities, since it is a mathematical fact that no probability measure can
distribute positive probability to each element of such a continuum. The interested
reader is urged to consult van Fraassen (1995) and Arlo-Costa (2001) for more
sophisticated versions of probabilism.

Following Levi (1980), one may assume that the agent is, at each point in time,
committed to full belief in some set of propositions concerning its environment.
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Where the agent is not committed to full belief in a given proposition, the negation
of that proposition is a serious possibility for the agent. The agent may judge some
serious possibilities to be more probable than others. What can be said about these
judgments? The received view, following a tradition that goes back to the work of
Ramsey (1931), maintains that such credal judgments ought to be representable by
a probability measure. This view has been criticized as being too weak and as being
too strong. As for being too weak, the simple requirement that such judgments be
representable by a probability measure says little about the extent to which these
subjective probabilities should approximate objective probabilities, e.g., limiting
frequencies in the sense of von Mises (1957) or perhaps even propensities in the
sense of Popper (1959). Various principles have been offered in order to require
that the subjective probabilities of a rational agent are informed by that agent’s
knowledge of objective probabilities (Kyburg 1974; Levi 1978; Lewis 1980). As
for being too strong, requiring credal judgments to be representable by a probability
measure implies, among other things, that such credal judgments are complete. A
consequence of such a requirement is that, for any given pair of serious possibilities,
the agent either judges one of the possibilities to be more probable than the other or
the agent regards the possibilities as being equally probable. Thus, the requirement
bars situations in which the agent, because of a lack of information, is unable to
supply such a judgment. Such considerations, which to some extent echo earlier,
related concerns of Keynes (1921) and Knight (1921), have motivated some —
e.g., Kyburg (1968), Levi (1974) and Walley (1990) — to consider indeterminate
probabilities, either in the form of interval-valued measures or sets of traditional
measures, in representing rational credences.

Belief Change

As already hinted, some probability theorists tend to think that belief, as opposed
to knowledge, may be good enough for action, deliberation and decision. Thus
beliefs may suffice as they can serve important epistemic purposes while holding the
information, expectations and conjectures that agents act on. Beliefs may be used
for making creative leaps beyond what is logically implied by available information,
evidence or knowledge and are crucial in agent interaction models representing what
agents think about moves, strategies, payoffs and beliefs of other agents and what
agent rationality amounts to Finally, beliefs and belief revision are prime vehicles
for understanding the mechanism of learning by trial-and-error, one of the main
motors of scientific inquiry in general.

Initially, an agent has beliefs about the environment with which it interacts.
Sometimes these interactions are such that the agent, on pain of irrationality, must
revise its beliefs. The classic example is that of a scientific agent who has beliefs
about the world that might need to be revised in light of new data. The study
of this sort of example has a long history in the philosophy of science, where
it is often discussed at a relatively informal level in connection with topics such
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as underdetermination. In the context of formal epistemology, the study of belief
revision has been generalized to include various sorts of epistemic agents. Questions
such as the following suggest the range of theoretical options that are available in
connection with such investigations:

How are the potential belief states to be interpreted? One might take the belief
states to represent partial beliefs; e.g., the agent has a certain degree of belief
in proposition P. Alternatively, one might be interested in states of full belief,
expectation or plain belief; e.g., the agent fully believes P, expects P, etc. Further
refinements have been considered. For example, one might consider those full
beliefs with respect to which the agent manifests some level of awareness; e.g., I
am aware of my belief that I am presently writing the words of this sentence. In
contrast to a focus on conscious beliefs, one might consider those propositions that
the agent is committed to fully believing; e.g., all of those propositions that are
deducible from my conscious beliefs.

How are the potential belief states to be represented? The answers to this
question depend, at least to some extent, on how the previous question is answered.
For example, if partial beliefs are the issue, then probability distributions might be
taken as the basis for the representation so that a potential belief state is represented
as a probability measure over the possible states of nature. On the other hand,
if the problem is the representation of commitments to full belief (expectation,
plain belief), then one might specify a suitably formalized language and represent
each potential belief state as a theory formulated over the given language so that
membership in the theory indicates full belief.

How are revisions interpreted? If credal states are the concern, then mod-
ifications of the credal state might be understood in terms of something like
conditionalization. The interested reader is urged to consult (Halpern 2003) for a
survey of various proposals concerning the representation and modification of credal
states. What about revising or contracting states of full belief? When an instance of
belief contraction concerning full beliefs is the result of the agent selecting from a
set of (full) belief states that the agent recognizes as potential alternatives, then such
an instance may be regarded as the resolution of a decision problem. Isaac Levi has
developed a decision-theoretic approach to belief change; important discussions of
Levi’s approach include (1980), which considers belief change in the context Levi’s
general approach to epistemology, and Arlo-Costa and Levi (2006), Arlo-Costa and
Liu (2011) which gives greater emphasis to the formal details concerning Levi’s
approach. Different connections between choice and belief revision are emphasized
in Rott (1993). Rott demonstrates an important correspondence between the “AGM”
account of belief revision offered in Alchourron et al. (1985) and the economists’
study of rational choice functions. Finally, it is worth noting that where both partial
and full beliefs are considered, there may be significant dependencies between
the modification of these two sorts of belief states. For example, if the credal
judgments of rational agents are a function of their judgments of full belief, as some
philosophers assume, then changes to the latter may result in changes to the former.

There are other alternative interpretations of doxastic change. Spohn have
considered change from the point of view of entire epistemic states rather than mere
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beliefs in terms of ranking functions and plausibility representations (Spohn 2009)
while Hansson have considered change from the point of belief bases as finite sets
of sentences that likewise are possible axiomatic bases for a given theory (Hansson
1993).

Decision Theory

An agent interacts with its environment through the choices it makes. Choice
presupposes alternatives, and a theory of rational choice should, at least, distinguish
some of the available alternatives as admissible. As an example, consider those
accounts of rational choice that are built on the concept of preference. One such
account assumes that the agent has complete and transitive preferences over the
set of available alternatives. Those alternatives that are optimal with respect to the
given preference ranking are taken as admissible. This abstract preference-based
account says nothing about the way in which preferences are informed by the agent’s
beliefs about its environment. Subjective expected utility theory [SEU], which is at
the center of modern-day decision theory, provides significantly more detail than
the abstract theory of preference optimization. SEU assumes that alternatives are
acts, which, following Savage’s classic formulation of SEU in Savage (1972), are
functions from states to consequences. Drawing upon the earlier work of Ramsey
(1931) on subjective probability and the work of von Neumann and Morgenstern
(1947) on utility, Savage provides conditions on the agent’s preferences over acts
that guarantee the existence of a probability measure p and a utility function u such
that the agent’s preferences can be regarded as if they were the result of maximizing
utility u with respect to probability p. According to the intended interpretation,
the probability measure p represents the agent’s degrees of belief concerning the
possible states and the utility function u represents the extent to which the agent
values the possible consequences.

The assumptions of SEU may be questioned in various ways. We focus on
two ways that have generated significant interest among philosophers. First, why
should it be that the rational agent’s degrees of belief can be represented by a
probability distribution p? As already noted, it is not clear why such an assumption
should obtain in cases where the agent has very little information concerning the
possible states. Second, in SEU it is assumed that the agent’s subjective probability
concerning the states is independent of the act that is chosen. Some question this
assumption and offer examples in which a modification of SEU that provides for
such dependencies, through the use of conditional probabilities, is supposed to give
an irrational recommendation. The first line of questioning has led some — e.g.,
Ellsberg (1961), Levi (1974, 1977), and Gardenfors and Sahlin (1982) — to use
indeterminate probabilities in their normative accounts of decision making under
uncertainty. The second line of questioning has led some — e.g., Gibbard and Harper
(1978), Lewis (1981), and Joyce (1999) — to investigate causal decision theory.
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Logics of Knowledge and Belief

What is now known as epistemic logic started with the study of proper axioma-
tizations for knowledge, belief, certainty and other epistemic attitudes. Hintikka
inaugurated the field with his seminal book Hintikka (1962) which focuses on
axiomatizing knowledge and belief in mainly mono-agent systems. Agents are syn-
tactically represented as indices on epistemic operators in a formal logical language.
From the semantic perspective, to be an agent is to be an index on an accessibility
relation between possible worlds representing the epistemic alternatives over which
the agent has to succeed in order to know some proposition (interesting alternative
semantics to Kripke semantics have been developed by Arlo-Costa and Pacuit 2006,
Baltag and Moss 2004 and others). Like many other philosophical logics in their
infancy, interesting axiomatizations governing the logics of knowledge and belief
took center stage in the beginning together with nailing down important logical
properties for these new logics. The field was living a somewhat isolated life remote
from the general concerns of mainstream epistemology. Hintikka himself (and a
few others like Lenzen 1978) was a notable exception and insisted on telling a
better story, not about what agents are in the logical language, but about what
they do and the meaning of epistemic axioms for epistemology (Stalnaker 2006).
Accordingly, Hintikka took axioms of epistemic logic to describe a certain kind
of strong rationality much in sync with the autoepistemological tradition of G.E.
Moore and especially Norman Malcolm. Axioms of epistemic logic are really
prescriptions of rationality in mono-agent systems. Epistemic logic has since been
used address a number of important philosophical problems including for instance
the Fitch Paradox (Brogaard and Salerno 2009), the problem of logical omniscience
(Duc 1997; Parikh 2005), and various conceptual characterizations of knowledge
and other epistemic attitudes (Kraus and Lehmann 1988).!

But rationality considerations are not only central to the singular agent acting
in some environment, call it nature, but likewise, and perhaps especially, central
to agents when in presence of other agents and interacting with these. Thus mono-
agent systems had to be extended to multi-modal systems in order to get both agency
and interaction off the epistemological ground for real. A sea-change took place in
epistemic logic in the late 1980s and the beginning of the 1990s especially due to the
work of Joseph Halpern and his collaborators (Fagin et al. 1995) and others (Meyer
and Hoek 1995). Multiple agents were introduced into the logical language which,
along with multiple epistemic accessibility relations on the semantic level, gave rise
to a precise and adequate representation of the flow of information through an agent
system, together with the nature of various protocols governing such systems. In
this setting, possible worlds are to be understood as the states of the system taken as
a whole, or sometimes the possible histories or consecutive runs of the system as a

!For solid overviews refer to De Bruin (2008) and Gochet and Gribomont (2006).
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whole, that are compatible with the state transition directives which rule the system.
Stalnaker has recently summarized the consequences of this sea-change precisely:

The general lesson I drew from this work was that it was useful for epistemology to think
of communities of knowers, exchanging information and interacting with the world, as
(analogous to) distributed computer systems. (Hendricks and Roy 2010: 78)

Agent systems can now be thought of as encompassing everything from a group
of robots on an assembly line to a group of poker players in Texas Hold ‘Em.
In turn, there is much more to what agents are nowadays, but also much more to
what they do dynamically (as opposed to statically in terms of, say, (van Ditmarsch
et al. 2008) epistemic axioms describing the rationality of single agents). Dynamic
epistemic logic is a rich blend of studies ranging multi-agent axiomatizations
of knowledge, belief, common knowledge and belief (Barwise 1988) certainty,
uncertainty, doubt, ignorance and a host of other epistemic attitudes; models of the
interplay between knowledge and games (Benthem 2001, 2007), knowledge and jus-
tification in mainstream epistemology (Artemov and Nogina 2005), social software
(Parikh 2002), knowledge and public announcement of information (Baltag et al.
2002), knowledge intertwined with preferences, actions and decisions (Liu 2011);
knowledge acquisition in light of formal learning theory, logical reliability, methods
of scientific inquiry and computability studies (Gierasimczuk 2009; Hendricks
2001; Kelly 1996, 2004), belief revision (Baltag and Smets 2008), models of agent
interaction in multi-agent systems; combined multi-agent and multi-modal systems
in which for instance the development of knowledge over time may be scrutinized
(Kraus and Lehmann 1988), relations between knowledge and deontic commitments
investigated, divisions of cognitive labor modeled and so forth (for epistemic logic
paired up with mainstream epistemological concerns, refer to Williamson (2006),
Hendricks (2006) and Hendricks and Pritchard (2007)).

Interactive Epistemology

Theoretical economics is to a significant extent about understanding, anticipating
and modeling phenomena like trading, stock speculation, real-estate dealing, hostile
company take-overs, shareholding, convention and so forth. Obviously, agency and
interaction play a paramount role here and seen from this perspective economics is
about multi-individual and collective action balancing information and utility.
Independently, but informed by the developments in epistemic logic, economists
have used game theory to scrutinize an extensive spread of the mentioned phenom-
ena. By way of example, in 1976 the later Nobel Prize Laureate Robert Aumann
published his famous Agreement Theorem in “Agreeing to Disagree” in which
he describes conditions under which two “like minded” agents or players cannot
“agree to disagree” in the sense that if the two players’ posteriors of some event are
common knowledge then they must coincide. In other words, in order to make trade
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possible, agents have to agree to disagree (Aumann 1976). That is agency in terms
of players, interaction in terms of games.

On the way to this result Aumann made a host of assumptions about the
nature knowledge much in tune with what is to be found in epistemic logic like
the axiomatic strength of knowledge in order to infer the backwards induction
equilibrium and assumptions about what is common knowledge among the players
(Halpern 2001). In 1999, Aumann coined a term for these kinds of study in
theoretical economics: “Interactive epistemology” (Aumann 1999). It denotes an
epistemic program studying shared knowledge and belief given more than one
agent or player in an environment and has, as already suggested, strong ties to
game theoretic reasoning and questions of common knowledge and belief, backward
induction, various forms of game equilibria and strategies in games, (im)perfect
information games, (bounded) rationality etc (Aumann and Brandenburger 1995;
Stalnaker 1996, 2006).

Given its inauguration with Aumann, the program was in the beginning dom-
inated by scholars drawn from theoretical economics and computer science rather
than philosophy and logic, but recently philosophers and logicians have begun to pay
close attention to what is going on in this striving program of formal epistemology.
And for good reason too; social epistemology focuses on knowledge acquisition
and justification in groups or institutions (Goldman 1999) and the extent to which
exactly institutions may be viewed as genuine agents (List and Pettit 2011) while
the interactive epistemological approach to agency and interaction also have close
shaves with the major new focal points in dynamic epistemic logic (Benthem 2011)
and much of the technical machinery is a common toolbox for both paradigms
(Brandenburger 2007).

Formal Epistemology

Formal epistemology is the study of crucial concepts in mainstream epistemology
including knowledge, belief (-change), certainty, rationality, reasoning, decision,
justification, learning, agent interaction and information processing using formal
tools from three streams; probability, logic and computability. In particular, the tools
may come from tool boxes like modal logic, probability calculus, game theory, deci-
sion theory, formal learning theory, computability theory and distributed computing.
Practitioners of formal epistemology include philosophers, computer scientists,
social scientists, cognitive psychologists, theoretical economists, mathematicians,
and theoretical linguists but also scholars from the empirical sciences like cognitive
science, engineering and biology are onboard. This mixed bag of practitioners is
surely a witness to the thoroughly interdisciplinary nature of formal epistemology
and its wide range of applications in natural science, social science, humanities and
the technical sciences.

Formal epistemology is right in the middle; between mainstream epistemology’s
fairly abstract theories on the one hand and the more concrete cognitive sciences
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devoted to the empirical reality of agency and interaction on the other. In formal
epistemology we are walking the fine line between theory and reality. This is as it
should be: The hallmark of a progressive research program.

This is an edited and reorganized version of the paper “Agency and Interaction: What
We Are and What We Do in Formal Epistemology”, Journal for the Indian Council
of Philosophical Research, nr. 2, vol. XXVII, 2010: 44-71, special issue on Logic and
Philosophy Today, guest edited by Amitabha Gupta and Johan van Benthem.
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Part I
Bayesian Epistemology



Chapter 2
Introduction

Horacio Arlé-Costa, Vincent F. Hendricks, and Johan van Benthem

There are various possible ways of articulating what Bayesian epistemology is and
how it relates to other branches of formal and mainstream epistemology. Following
the steps of Ramsey, Richard Jeffrey outlines in his article “Probable Knowledge” a
possible way of constructing an epistemology grounded on Bayesian theory. While
knowledge is a central notion in traditional epistemology (and in various branches of
formal epistemology) Jeffrey suggests an epistemology where knowledge does not
have the importance generally attributed to it. The idea is “[...] to try to make
the concept of belief do the work that philosophers have generally assigned to
the grander concept” (knowledge). Moreover the notion of belief is pragmatically
analyzed along the lines proposed by Ramsey: “the kind of measurement of belief
with which probability is concerned is .... a measurement of belief qua basis of
action”. The result of this move is to conceive the logic of partial belief as a branch
of decision theory. So, the first two essays in this section are also quite relevant for
the section of decision theory presented below (Ramsey’s essay contains the first
axiomatic presentation of decision theory). Both Jeffrey and Ramsey present the
foundations of an epistemology which is deeply intertwined with a theory of action.
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This move has a behaviorist pedigree but perhaps the behavioral inspiration is not
an essential ingredient of an interpretation of the formal theory that thus arises.

The notion of certainty or full belief does not play a central role in Jeffrey’s
epistemology either. According to him we are only certain of mathematical and
logical truths and the truths related immediately to experience. The rest is the
domain of probable knowledge. To be coherent with this view Jeffrey has to propose
a modification of the classical notion of learning by conditioning on data (which
occupies a central role in various versions of Bayesian Epistemology as used in the
social sciences like economics or psychology). In fact, according to conditioning
when one learns a new piece of evidence this information acquires measure one in
spite of being based on perfectly fallible evidence. A modification of conditioning
that permits to update on uncertain evidence is presented in ‘“Probable Knowledge”.
The version of Jeffrey’s article reprinted here contains as well comments by L.
Hurwicz and P. Suppes and responses by Jeffrey. Some of Suppes’ comments point
in the direction of constructing a theory of rationality that is sensible to our cognitive
limitations. The possibility of constructing a “bounded” theory of rationality only
started with the seminal work of Herb Simon (Rational choice and the structure of
the environment, Psychological Review, Vol. 63 No. 2, 129—138. 1956) and is today
an active area of investigation in economics, psychology and philosophy.

The uses of Bayesianism in epistemology are usually dismissed by realist
philosophers for delivering a subjective picture of rationality that is not sufficiently
sensible to the way in which the behavior of rational agents is connected with
the structure of the environment. Simon’s work was certainly sensible nevertheless
to ecological considerations. And Ramsey’s essay ends with programmatic ideas
differentiating what he called “the logic of consistency” from the “logic of truth”.
Even Bruno de Finetti who is usually presented as a precursor of Jeffrey’s radical
probabilism, had philosophical ideas about certainty that clashed with this view
(he thought that certainty has to be assumed as a primitive alongside probability,
and that we can be certain of more than mere tautologies). Moreover his mature
philosophical work veered towards a more objective point of view. For example he
dismissed the use of Dutch Book arguments and embraced the use of foundational
arguments in terms of scoring rules, a methodological move favored today by
many “objective” Bayesians (a presentation of de Finetti’s mature views appear in:
Philosophical Lectures on Probability: collected, edited, and annotated by Alberto
Mura, Synthese Library, Springer, 2008).

Van Fraassen introduces in his essay a version of radical probabilism (the term
was coined by Jeffrey) where the only epistemological primitive is a notion of
conditional probability. Van Fraassen sees this notion as encoding a notion of
supposition from which he derives a non-trivial notion of full belief. According
to this view it is perfectly possible to be sure of the contingent propositions of
science and everyday knowledge. One can see van Fraassen’s theory as introducing
paradox-free acceptance rules that link probability and belief (some of the usual
acceptance rules of this type like high probability rules are known to be the victim
of various forms of paradoxes, like the paradox of the lottery first proposed by
Henry Kyburg (Probability and the Logic of Rational Belief, Wesleyan University
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Press, 1961)). Jeffrey renounced to the use of any form of acceptance rules of this
type and therefore proposed to eliminate any notion of qualitative belief without
a probabilistic origin. Van Fraassen has exactly the opposite intention: namely to
tend bridges between traditional and Bayesian epistemology via the use of novel
acceptance rules.

Most of the models of probability update considered above deal with synchronic
or suppositional change. Is it possible to extend these models to cover cases of
genuine changes of probabilistic belief? David Lewis, Bas van Fraassen and Paul
Teller provided in the 1970s various dynamic coherence arguments showing that
one should update diachronically via conditioning on pain of incoherence (see
references in the section on “Further reading” below). If we denote by P(B|A)
the conditional probability of B given A at time t and by Pi(.) the monadic
probability P at time t, we can denote by Py the monadic probability at time t’
where the total evidence gathered between these two times is A. Then the idea that
one should update diachronically via conditioning can be expressed formally by:
Py (B) = P(B|A). These arguments in favor of this diachronic principle are dynamic
versions of the static Dutch Book arguments first proposed in Ramsey’s essay.
Unfortunately these arguments are considerably more controversial than the well
know static Dutch Book argument. The article by Brian Skyrms summarizes almost
30 years of arguments pro and con dynamic book arguments and offers a temperate
and more modest version of these arguments that he thinks is valid. This debate is
nevertheless still open.

Levi’s essay is embedded on his own version of Bayesian epistemology where
the notion of full belief is taken as a primitive alongside probability. But the
central goal of the article reprinted here is to study the case where probabilities
are indeterminate, imprecise or vague. Levi also thinks that a theory of partial
belief (precise or imprecise) should be conceived as a branch of decision theory and
therefore proposes rules for deciding in conditions of uncertainty. Currently there
is a fair amount of work in this area not only in philosophy but also in statistics,
computer science and economics.

Gaifman’s article focuses on characterizing the structure of higher order prob-
ability. In particular he investigates a form of the so-called Miller’s principle
by which a rational agent adjusts his or her probabilities in accordance to the
probabilities of an expert. So, we have a principle of this form:

(Miller’s Principle) Pyou(A | Pexpert(A) =1) =1'
van Fraassen proposed a diachronic version of this principle for a single agent:

(Reflection) Prow(A | Praer(A) =1) =T

! Actually Gaifman’s formulation of the principle is formally cleaner. He defines PR(A, r) = {x in
W | px (A) =r}, where py is an expert function at world x, i.e. the distribution chosen by the expert
at that world. Then he formulates the principle as follows: P(A | PR(A, 1)) =T.
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Arntzenius’ article presents five puzzles showing that rational people can update

their degrees of belief in manners that violate Bayesian conditioning and Reflection.
But the article by M.J. Schervish, T. Seidenfeld and J. Kadane disputes that
Arntzenius’ examples impose any new restrictions or challenges to conditioning
or Reflection beyond what is already familiar about these principles.

Suggested Further Reading

An excellent introduction to Ramsey’s philosophy in general and to the essay reprinted here
in particular can be found in the corresponding chapters of: The Philosophy of F.P. Ramsey,
by Nils-Eric Sahlin, Cambridge University Press, 2008. The classical introduction to Richard
Jeffrey’s decision theory is his: The Logic of Decision, University Of Chicago Press: 2nd edition
(July 15, 1990). A detailed articulation of radical probabilism can be found in Probability and
the Art of Judgment, Cambridge Studies in Probability, Induction and Decision Theory (Mar.
27, 1992). The theory of probability cores presented in van Fraassen’s article has been slightly
modified and extended in a paper by Horacio Arlo-Costa and Rohit Parikh: “Conditional
Probability and Defeasible Inference,” Journal of Philosophical Logic 34, 97-119, 2005. The
best axiomatic presentation of primitive conditional probability is given by Lester E. Dubins in
his article Finitely Additive Conditional Probabilities, Conglomerability and Disintegrations,
The Annals of Probability, 3(1):89-99, 1975. Teddy Seidenfeld wrote an accessible note
presenting recent results in this area in: Remarks on the theory of conditional probability: Some
issues of finite versus countable additivity, Probability Theory, V.F. Hendricks et al. (eds.) 2001,
pp. 167-178. Alan Héjek articulated a philosophical defense of the use of primitive conditional
probability in: What Conditional Probability Could Not Be, Synthese, Vol. 137, No. 3, Dec.,
2003. Finally there is an interesting article by David Makinson linking conditional probability
and central issues in belief change: Conditional probability in the light of qualitative belief
change, to appear in a 2011 issue of the Journal of Philosophical Logic marking 25 years of
AGM. References to other classical articles in this area by Karl Popper, Alfred Renyi and Bruno
de Finetti appear in the aforementioned articles.

Brian Skyrms has also contributed to the theory of higher order probability. One accessible
article is: “Higher Order Degrees of Belief,” in D. H. Mellor (ed.), Prospects for Pragmatism.
Cambridge: Cambridge University Press, 109—13. Isaac Levi has articulated his theory of
indeterminate probabilities in various books and articles. One of the classical sources is: The
Enterprise of Knowledge, MIT Press, Cambridge, 1983. More information about Levi’s version
of decision theory under uncertainty appears in section 7 on Decision Theory below.

There are two classical sources for the formulation of dynamic Dutch books. One is: Teller,
P. (1973), “Conditionalization and Observation”, Synthese 26: 218-258. The other is: van
Fraassen, Bas (1984), “Belief and the Will,” Journal of Philosophy 81: 235-256. The second
piece introduces also a theory of second order probability that complements the writings of
Skyrms and Gaifman. Van Fraassen introduces there the Reflection Principle. The original
formulation of some of the puzzles discussed by Arntzenius and Seidenfeld is a brief piece
by Adam Elga: “Self-Locating Belief and the Sleeping Beauty problem, Analysis, 60(2): 143-
147, 2000. More detailed reference to the work by Carnap on induction and confirmation can
be found in the bibliography of Maher’s paper. The so-called Raven’s Paradox appeared for
the first time in a seminal article by Carl Hempel: “Studies in the Logic of Confirmation
(1.),” Mind, New Series, Vol. 54, No. 213 (Jan., 1945), pp. 1-26. Branden Fitelson and James
Hawthorne offer an alternative and interesting Bayesian account of the paradox in: “How
Bayesian Confirmation Theory Handles the Paradox of the Ravens,” in E. Eels and J. Fetzer
(eds.), The Place of Probability in Science, Chicago: Open Court. Further information about
confirmation theory can be found in a classical book by John Earman: Bayes or Bust? A Critical


http://sites.google.com/site/davidcmakinson/cp-br16nov2009.pdf?attredirects=0
http://www.jstor.org/stable/i20118362
http://www.jstor.org/action/showPublication?journalCode=synthese
http://www.hss.cmu.edu/philosophy/arlocosta/coresnm.pdf
http://www.amazon.com/Probability-Judgment-Cambridge-Induction-Decision/dp/0521397707/ref=sr_1_1?ie=UTF8&s=books&qid=1305326549&sr=1-1
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Examination of Bayesian Confirmation Theory, MIT Press, 1992. Another classical source is:
Scientific Reasoning: The Bayesian Approach, by Colin Howson and Peter Urbach, Open Court;
3rd edition, 2005. A interesting book touching a cluster of issues recently discussed in this area
like coherence and the use of Bayesian networks in epistemology is: Bayesian Epistemology
by Luc Bovens and Stephan Hartmann, Oxford University Press,. 2004.

* Another important formal epistemological issue is investigated by Timothy Williamson in his
paper, “Conditionalizing on Knowledge”, British Journal for the Philosophy of Science 49 (1),
1998: 89-121, which intends to integrate the theory of probability and probability kinematics,
with other epistemological notions like the notion of knowledge. The theory of evidential
probability that thus arises is based on two central ideas: (1) the evidential probability of
a proposition is its probability conditional on the total evidence (or conditional on evidence
propositions); (2) one’s total evidence is one’s total knowledge. The tools of epistemic logic
are used in order to represent the relevant notion of knowledge.

» Jeffrey does not adopt (1) but according to his modified notion of updating once a proposition
has evidential probability 1, it keeps it thereafter (monotony). This is a feature shared by
Jeffrey’s updating and the classical notion of updating. Williamson does embrace (1) but
develops a model of updating that abandons monotony. This seems a very promising strategy
given the limited applicability of a cumulative model of growth of knowledge. Similarly
motivated models (that are nevertheless formally quite different) have been proposed by Isaac
Levi, Peter Gérdenfors. Gérdenfors’ model appears in his book Knowledge in Flux (see the
corresponding reference in the bibliographical references of chapter 6). Levi presents his
account in The Enterprise of Knowledge (the reference appears in the bibliographical section
below). Both models appeal directly not only to qualitative belief but also to models of belief
change (contraction and revision - see chapter 6).

» Philosophers of science have traditionally appealed to Bayesian theory in order to provide
a Carnapian explication of the notoriously vague, elusive and paradox-prone notion of
confirmation or partial justification in science. Patrick Maher revives in his article, “Probability
Captures the Logic of Scientific Confirmation,” in Contemporary Debates in the Philosophy of
Science, ed. Christopher Hitchcock, Blackwell, 69-93, the Carnapian program of inductive
inference in order to provide one of these explications. In contrast Clark Glymour and Kevin
Kelly argue in their article, “Why Probability Does Not Capture the Logic of Scientific
Justification”, in Christopher Hitchcock, ed., Contemporary Debates in the Philosophy of
Science, London: Blackwell, 2004, that Bayesian confirmation cannot deliver the right kind
of account of the logic of scientific confirmation. One of the reasons for this skepticism is that
they think that scientific justification should reflect how intrinsically difficult is to find the truth
and how efficient one’s methods are at finding it. So, their skepticism arises because they think
that Bayesian confirmation captures neither aspect of scientific justification. While deploying
their arguments the two articles discuss the well-known paradox of confirmation first proposed
by Hempel, Carnap’s research program on the philosophy of probability and induction and the
possible application of learning theory in order to offer a non-Bayesian account of scientific
justification. The article by Glymour and Kelly continues Glymour’s eatlier critique of the
applications of Bayesianism in philosophy of science (also reprinted here). This earlier piece
contains the original versions of some influential and much-discussed conundra engendered by
Bayesian confirmation (like the problem of Old Evidence).


http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Peter%20Urbach
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Chapter 3
Truth and Probability

Frank P. Ramsey

To say of what is that it is not, or of what is not that it is, is false, while to say of what is
that it is and of what is not that it is not is true.
— Aristotle.

When several hypotheses are presented to our mind which we believe to be mutually
exclusive and exhaustive, but about which we know nothing further, we distribute our belief
equally among them .. .. This being admitted as an account of the way in which we actually
do distribute our belief in simple cases, the whole of the subsequent theory follows as
a deduction of the way in which we must distribute it in complex cases if we would be
consistent.

— W. F. Donckits.

The object of reasoning is to find out, from the consideration of what we already know,
something else which we do not know. Consequently, reasoning is good if it be such as to
give a true conclusion from true premises, and not otherwise.

—C. S. Peirce.

Truth can never be told so as to be understood, and not be believed.
— W. Blake.

Foreword

In this essay the Theory of Probability is taken as a branch of logic, the logic
of partial belief and inconclusive argument; but there is no intention of implying
that this is the only or even the most important aspect of the subject. Probability
is of fundamental importance not only in logic but also in statistical and physical
science, and we cannot be sure beforehand that the most useful interpretation of it
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in logic will be appropriate in physics also. Indeed the general difference of opinion
between statisticians who for the most part adopt the frequency theory of probability
and logicians who mostly reject it renders it likely that the two schools are really
discussing different things, and that the word ‘probability’ is used by logicians in
one sense and by statisticians in another. The conclusions we shall come to as to
the meaning of probability in logic must not, therefore, be taken as prejudging its
meaning in physics.

The Frequency Theory

In the hope of avoiding some purely verbal controversies, I propose to begin by
making some admissions in favour of the frequency theory. In the first place this
theory must be conceded to have a firm basis in ordinary language, which often
uses ‘probability’ practically as a synonym for proportion; for example, if we say
that the probability of recovery from smallpox is three-quarters, we mean, I think,
simply that that is the proportion of smallpox cases which recover. Secondly, if
we start with what is called the calculus of probabilities, regarding it first as a
branch of pure mathematics, and then looking round for some interpretation of
the formulae which shall show that our axioms are consistent and our subject not
entirely useless, then much the simplest and least controversial interpretation of
the calculus is one in terms of frequencies. This is true not only of the ordinary
mathematics of probability, but also of the symbolic calculus developed by Mr.
Keynes; for if in his ;, @ and & are taken to be not propositions but propositional
functions or class-concepts which define finite classes, and j is taken to mean the
proportion of members of 4 which are also members of a, then all his propositions
become arithmetical truisms.

Besides these two inevitable admissions, there is a third and more important
one, which I am prepared to make temporarily although it does not express my real
opinion. It is this. Suppose we start with the mathematical calculus, and ask, not as
before what interpretation of it is most convenient to the pure mathematicism, but
what interpretation gives results of greatest value to science in general, then it may
be that the answer is again an interpretation in terms of frequency; that probability
as it is used in statistical theories, especially in statistical mechanics — the kind of
probability whose logarithm is the entropy — is really a ratio between the numbers,
of two classes, or the limit of such a ratio. I do not myself believe this, but I am
willing for the present to concede to the frequency theory that probability as used in
modern science is really the same as frequency.

But, supposing all this admitted, it still remains the case that we have the
authority both of ordinary language and of many great thinkers for discussing under
the heading of probability what appears to be quite a different subject, the logic
of partial belief. It may be that, as some supporters of the frequency theory have
maintained, the logic of partial belief will be found in the end to be merely the study
of frequencies, either because partial belief is definable as, or by reference to, some
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sort of frequency, or because it can only be the subject of logical treatment when it
is grounded on experienced frequencies. Whether these contentions are valid can,
however, only be decided as a result of our investigation into partial belief, so that
I propose to ignore the frequency theory for the present and begin an inquiry into
the logic of partial belief. In this, I think, it will be most convenient if, instead of
straight away developing my own theory, I begin by examining the views of Mr
Keynes, which are so well known and in essentials so widely accepted that readers
probably feel that there is no ground for re-opening the subject de novo until they
have been disposed of.

Mr. Keynes’ Theory

Mr Keynes! starts from the supposition that we make probable inferences for which
we claim objective validity; we proceed from full belief in one proposition to partial
belief in another, and we claim that this procedure is objectively right, so that if
another man in similar circumstances entertained a different degree of belief, he
would be wrong in doing so. Mr Keynes accounts for this by supposing that between
any two propositions, taken as premiss and conclusion, there holds one and only one
relation of a certain sort called probability relations; and that if, in any given case,
the relation is that of degree a, from full belief in the premiss, we should, if we were
rational, proceed to a belief of degree o in the conclusion.

Before criticising this view, [ may perhaps be allowed to point out an obvious and
easily corrected defect in the statement of it. When it is said that the degree of the
probability relation is the same as the degree of belief which it justifies, it seems
to be presupposed that both probability relations, on the one hand, and degrees
of belief on the other can be naturally expressed in terms of numbers, and then
that the number expressing or measuring the probability relation is the same as that
expressing the appropriate degree of belief. But if, as Mr. Keynes holds, these things
are not always expressible by numbers, then we cannot give his statement that the
degree of the one is the same as the degree of the other such a simple interpretation,
but must suppose him to mean only that there is a one-one correspondence
between probability relations and the degrees of belief which they justify. This
correspondence must clearly preserve the relations of greater and less, and so make
the manifold of probability relations and that of degrees of belief similar in Mr
Russell’s sense. I think it is a pity that Mr Keynes did not see this clearly, because
the exactitude of this correspondence would have provided quite as worthy material
scepticism as did the numerical measurement of probability relations. Indeed some
of his arguments against their numerical measurement appear to apply quite equally
well against their exact correspondence with degrees of belief; for instance, he
argues that if rates of insurance correspond to subjective, i.e. actual, degrees of

17 M. Keynes, A Treatise on Probability (1921).
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belief, these are not rationally determined, and we cannot infer that probability
relations can be similarly measured. It might be argued that the true conclusion in
such a case was not that, as Mr Keynes thinks, to the non-numerical probability
relation corresponds a non-numerical degree of rational belief, but that degrees
of belief, which were always numerical, did not correspond one to one with the
probability relations justifying them. For it is, I suppose, conceivable that degrees
of belief could be measured by a psychogalvanometer or some such instrument, and
Mr Keynes would hardly wish it to follow that probability relations could all be
derivatively measured with the measures of the beliefs which they justify.

But let us now return to a more fundamental criticism of Mr Keynes’ views,
which is the obvious one that there really do not seem to be any such things as the
probability relations he describes. He supposes that, at any rate in certain cases, they
can be perceived; but speaking for myself I feel confident that this is not true. I do
not perceive them, and if I am to be persuaded that they exist it must be by argument;
moreover I shrewdly suspect that others do not perceive them either, because they
are able to come to so very little agreement as to which of them relates any two
given propositions.

All we appear to know about them are certain general propositions, the laws of
addition and multiplication; it is as if everyone knew the laws of geometry but no
one could tell whether any given object were round or square; and I find it hard
to imagine how so large a body of general knowledge can be combined with so
slender a stock of particular facts. It is true that about some particular cases there
is agreement, but these somehow paradoxically are always immensely complicated;
we all agree that the probability of a coin coming down heads is é, but we can none
of us say exactly what is the evidence which forms the other term for the probability
relation about which we are then judging. If, on the other hand, we take the simplest
possible pairs of propositions such as ‘This is red’ and ‘That is blue’ or ‘This is
red’ and ‘That is red’, whose logical relations should surely be easiest to see, no
one, I think, pretends to be sure what is the probability relation which connects
them. Or, perhaps, they may claim to see the relation but they will not be able to
say anything about it with certainty, to state if it is more or less than é, or so on.
They may, of course, say that it is incomparable with any numerical relation, but a
relation about which so little can be truly said will be of little scientific use and it
will be hard to convince a sceptic of its existence. Besides this view is really rather
paradoxical; for any believer in induction must admit that between ‘This is red” as
conclusion and ‘This is round’, together with a billion propositions of the form ‘a
is round and red’ as evidence, there is a finite probability relation; and it is hard
to suppose that as we accumulate instances there is suddenly a point, say after 233
instances, at which the probability relation becomes finite and so comparable with
some numerical relations.

It seems to me that if we take the two propositions ‘a is red’, ‘b is red’, we
cannot really discern more than four simple logical relations between them; namely
identity of form, identity of predicate, diversity of subject, and logical independence
of import. If anyone were to ask me what probability one gave to the other, I should
not try to answer by contemplating the propositions and trying to discern a logical
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relation between them, I should, rather, try to imagine that one of them was all that
I knew, and to guess what degree of confidence I should then have in the other. If
I were able to do this, I might no doubt still not be content with it, but might say
“This is what I should think, but, of course, I am only a fool” and proceed to consider
what a wise man would think and call that the degree of probability. This kind of
self-criticism I shall discuss later when developing my own theory; all that I want to
remark here is that no one estimating a degree of probability simply contemplates
the two propositions supposed to be related by it; he always considers infer alia his
own actual or hypothetical degree of belief. This remark seems to me to be borne out
by observation of my own behaviour; and to be the only way of accounting for the
fact that we can all give estimates of probability in cases taken from actual life, but
are quite unable to do so in the logically simplest cases in which, were probability a
logical relation, it would be easiest to discern.

Another argument against Mr Keynes’ theory can, I think, be drawn from his
inability to adhere to it consistently even in discussing first principles. There is a
passage in his chapter on the measurement of probabilities which reads as follows: —

Probability is, vide Chapter 11 (§12), relative in a sense to the principles of human reason.
The degree of probability, which it is rational for us to entertain, does not presume perfect
logical insight, and is relative in part to the secondary propositions which we in fact know;
and it is not dependent upon whether more perfect logical insight is or is not conceivable.
It is the degree of probability to which those logical processes lead, of which our minds
are capable; or, in the language of Chapter II, which those secondary propositions justify,
which we in fact know. If we do not take this view of probability, if we do not limit it
in this way and make it, to this extent, relative to human powers, we are altogether adrift
in the unknown; for we cannot ever know what degree of probability would be justified
by the perception of logical relations which we are, and must always be, incapable of
comprehending.”

This passage seems to me quite unreconcilable with the view which Mr Keynes
adopts everywhere except in this and another similar passage. For he generally holds
that the degree of belief which we are justified in placing in the conclusion of an
argument is determined by what relation of probability unites that conclusion to
our premisses, There is only one such relation and consequently only one relevant
true secondary proposition, which, of course, we may or may not know, but which
is necessarily independent of the human mind. If we do not know it, we do not
know it and cannot tell how far we ought to believe the conclusion. But often, he
supposes, we do know it; probability relations are not ones which we are incapable
of comprehending. But on this view of the matter the passage quoted above has no
meaning: the relations which justify probable beliefs are probability relations, and
it is nonsense to speak of them being justified by logical relations which we are, and
must always be, incapable of comprehending. The significance of the passage for
our present purpose lies in the fact that it seems to presuppose a different view of
probability, in which indefinable probability relations play no part, but in which the
degree of rational belief depends on a variety of logical relations. For instance, there

2p. 32, his italics.



26 F.P. Ramsey

might be between the premiss and conclusion the relation that the premiss was the
logical product of a thousand instances of a generalization of which the conclusion
was one other instance, and this relation, which is not an indefinable probability
relation but definable in terms of ordinary logic and so easily recognizable, might
justify a certain degree of belief in the conclusion on the part of one who believed
the premiss. We should thus have a variety of ordinary logical relations justifying
the same or different degrees of belief. To say that the probability of a given h was
such-and-such would mean that between a and /4 was some relation justifying such-
and-such a degree of belief. And on this view it would be a real point that the relation
in question must not be one which the human mind is incapable of comprehending.

This second view of probability as depending on logical relations but not itself
a new logical relation seems to me more plausible than Mr Keynes’ usual theory;
but this does not mean that I feel at all inclined to agree with it. It requires the
somewhat obscure idea of a logical relation justifying a degree of belief, which I
should not like to accept as indefinable because it does not seem to be at all a clear
or simple notion. Also it is hard to say what logical relations justify what degrees of
belief, and why; any decision as to this would be arbitrary, and would lead to a logic
of probability consisting of a host of so-called ‘necessary’ facts, like formal logic
on Mr Chadwick’s view of logical constants.> Whereas I think it far better to seek
an explanation of this ‘necessity’ after the model of the work of Mr Wittgenstein,
which enables us to see clearly in what precise sense and why logical propositions
are necessary, and in a general way why the system of formal logic consists of
the propositions it does consist of, and what is their common characteristic. Just as
natural science tries to explain and account for the facts of nature, so philosophy
should try, in a sense, to explain and account for the facts of logic; a task ignored
by the philosophy which dismisses these facts as being unaccountably and in an
indefinable sense ‘necessary’.

Here I propose to conclude this criticism of Mr Keynes’ theory, not because there
are not other respects in which it seems open to objection, but because I hope that
what I have already said is enough to show that it is not so completely satisfactory as
to render futile any attempt to treat the subject from a rather different point of view.

Degrees of Belief

The subject of our inquiry is the logic of partial belief, and I do not think we can
carry it far unless we have at least an approximate notion of what partial belief is,
and how, if at all, it can be measured. It will not be very enlightening to be told
that in such circumstances it would be rational to believe a proposition to the extent
of g, unless we know what sort of a belief in it that means. We must therefore try
to develop a purely psychological method of measuring belief. It is not enough to

3“Logical Constants”, Mind, 1927.
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measure probability; in order to apportion correctly our belief to the probability we
must also be able to measure our belief.

It is a common view that belief and other psychological variables are not mea-
surable, and if this is true our inquiry will be vain; and so will the whole theory of
probability conceived as a logic of partial belief; for if the phrase ‘a belief two-thirds
of certainty’ is meaningless, a calculus whose sole object is to enjoin such beliefs
will be meaningless also. Therefore unless we are prepared to give up the whole
thing as a bad job we are bound to hold that beliefs can to some extent be measured.
If we were to follow the analogy of Mr Keynes’ treatment of probabilities we should
say that some beliefs were measurable and some not; but this does not seem to me
likely to be a correct account of the matter: I do not see how we can sharply divide
beliefs into those which have a position in the numerical scale and those which
have not. But I think beliefs do differ in measurability in the following two ways.
First, some beliefs can be measured more accurately than others; and, secondly,
the measurement of beliefs is almost certainly an ambiguous process leading to
a variable answer depending on how exactly the measurement is conducted. The
degree of a belief is in this respect like the time interval between two events; before
Einstein it was supposed that all the ordinary ways of measuring a time interval
would lead to the same result if properly performed. Einstein showed that this was
not the case; and time interval can no longer be regarded as an exact notion, but
must be discarded in all precise investigations. Nevertheless, time interval and the
Newtonian system are sufficiently accurate for many purposes and easier to apply.

I shall try to argue later that the degree of a belief is just like a time interval; it has
no precise meaning unless we specify more exactly how it is to be measured. But for
many purposes we can assume that the alternative ways of measuring it lead to the
same result, although this is only approximately true. The resulting discrepancies
are more glaring in connection with some beliefs than with others, and these
therefore appear less measurable. Both these types of deficiency in measurability,
due respectively to the difficulty in getting an exact enough measurement and to
an important ambiguity in the definition of the measurement process, occur also in
physics and so are not difficulties peculiar to our problem; what is peculiar is that it
is difficult to form any idea of how the measurement is to be conducted, how a unit
is to be obtained, and so on.

Let us then consider what is implied in the measurement of beliefs. A satisfactory
system must in the first place assign to any belief a magnitude or degree having a
definite position in an order of magnitudes; beliefs which are of the same degree as
the same belief must be of the same degree as one another, and so on. Of course
this cannot be accomplished without introducing a certain amount of hypothesis or
fiction. Even in physics we cannot maintain that things that are equal to the same
thing are equal to one another unless we take ‘equal’ not as meaning ‘sensibly equal’
but a fictitious or hypothetical relation. I do not want to discuss the metaphysics or
epistemology of this process, but merely to remark that if it is allowable in physics it
is allowable in psychology also. The logical simplicity characteristic of the relations
dealt with in a science is never attained by nature alone without any admixture of
fiction.
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But to construct such an ordered series of degrees is not the whole of our task; we
have also to assign numbers to these degrees in some intelligible manner. We can of
course easily explain that we denote full belief by 1, full belief in the contradictory
by 0, and equal beliefs in the proposition and its contradictory by é But it is not so
easy to say what is meant by a belief % of certainty, or a belief in the proposition
being twice as strong as that in its contiradictory. This is the harder part of the task,
but it is absolutely necessary; for we do calculate numerical probabilities, and if
they are to correspond to degrees of belief we must discover some definite way
of attaching numbers to degrees of belief. In physics we often attach numbers by
discovering a physical process of addition*: the measure-numbers of lengths are not
assigned arbitrarily subject only to the proviso that the greater length shall have
the greater measure; we determine them further by deciding on a physical meaning
for addition; the length got by putting together two given lengths must have for its
measure the sum of their measures. A system of measurement in which there is
nothing corresponding to this is immediately recognized as arbitrary, for instance
Mohs’ scale of hardness® in which 10 is arbitrarily assigned to diamond, the hardest
known material, 9 to the next hardest, and so on. We have therefore to find a process
of addition for degrees of belief, or some substitute for this which will be equally
adequate to determine a numerical scale.

Such is our problem; how are we to solve it? There are, I think, two ways in
which we can begin. We can, in the first place, suppose that the degree of a belief is
something perceptible by its owner; for instance that beliefs differ in the intensity of
a feeling by which they are accompanied, which might be called a belief-feeling or
feeling of conviction, and that by the degree of belief we mean the intensity of this
feeling. This view would be very inconvenient, for it is not easy to ascribe numbers
to the intensities of feelings; but apart from this it seems to me observably false, for
the beliefs which we hold most strongly are often accompanied by practically no
feeling at all; no one feels strongly about things he takes for granted.

We are driven therefore to the second supposition that the degree of a belief is
a causal property of it, which we can express vaguely as the extent to which we
are prepared to act on it. This is a generalization of the well-known view, that the
differentia of belief lies in its causal efficacy, which is discussed by Mr Russell
in his Analysis of Mind. He there dismisses it for two reasons, one of which seems
entirely to miss the point. He argues that in the course of trains of thought we believe
many things which do not lead to action. This objection is however beside the mark,
because it is not asserted that a belief is an idea which does actually lead to action,
but one which would lead to action in suitable circumstances; just as a lump of
arsenic is called poisonous not because it actually has killed or will kill anyone, but
because it would kill anyone if he ate it. Mr Russell’s second argument is, however,
more formidable. He points out that it is not possible to suppose that beliefs differ
from other ideas only in their effects, for if they were otherwise identical their effects

4See N. Campbell, Physics The Elements (1920), p.277.
SIbid., p.271.
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would be identical also. This is perfectly true, but it may still remain the case that
the nature of the difference between the causes is entirely unknown or very vaguely
known, and that what we want to talk about is the difference between the effects,
which is readily observable and important.

As soon as we regard belief quantitatively, this seems to me the only view we
can take of it. It could well be held that the difference between believing and not
believing lies in the presence or absence of introspectible feelings. But when we
seek to know what is the difference between believing more firmly and believing
less firmly, we can no longer regard it as consisting in having more or less of certain
observable feelings; at least I personally cannot recognize any such feelings. The
difference seems to me to lie in how far we should act on these beliefs: this may
depend on the degree of some feeling or feelings, but I do not know exactly what
feelings and I do not see that it is indispensable that we should know. Just the same
thing is found in physics; men found that a wire connecting plates of zinc and copper
standing in acid deflected a magnetic needle in its neighbourhood. Accordingly as
the needle was more or less deflected the wire was said to carry a larger or a smaller
current. The nature of this ‘current’ could only be conjectured: what were observed
and measured were simply its effects. It will no doubt be objected that we know
how strongly we believe things, and that we can only know this if we can measure
our belief by introspection. This does not seem to me necessarily true; in many
cases, I think, our judgment about the strength of our belief is really about how
we should act in hypothetical circumstances. It will be answered that we can only
tell how we should act by observing the present belief-feeling which determines
how we should act; but again I doubt the cogency of the argument. It is possible
that what determines how we should act determines us also directly or indirectly
to have a correct opinion as to how we should act, without its ever coming into
consciousness.

Suppose, however, I am wrong about this and that we can decide by introspection
the nature of belief, and measure its degree; still, I shall argue, the kind of measure-
ment of belief with which probability is concerned is not this kind but is a measure-
ment of belief qua basis of action. This can I think be shown in two ways. First, by
considering the scale of probabilities between 0 and 1, and the sort of way we use
it, we shall find that it is very appropriate to the measurement of belief as a basis of
action, but in no way related to the measurement of an introspected feeling. For the
units in terms of which such feelings or sensations are measured are always, I think,
differences which are just perceptible: there is no other way of obtaining units. But
I see no ground for supposing that the interval between a belief of degree ; and one
of degree ; consists of as many just perceptible changes as does that between one of
% and one of 2, or that a scale based on just perceptible differences would have any
simple relation to the theory of probability. On the other hand the probability of ;
is clearly related to the kind of belief which would lead to a bet of 2 to 1, and it will
be shown below how to generalize this relation so as to apply to action in general.
Secondly, the quantitative aspects of beliefs as the basis of action are evidently more
important than the intensities of belief-feelings. The latter are no doubt interesting,
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but may be very variable from individual to individual, and their practical interest is
entirely due to their position as the hypothetical causes of beliefs gua bases of action.

It is possible that some one will say that the extent to which we should act on a
belief in suitable circumstances is a hypothetical thing, and therefore not capable of
measurement. But to say this is merely to reveal ignorance of the physical sciences
which constantly deal with and measure hypothetical quantities; for instance, the
electric intensity at a given point is the force which would act on a unit charge if it
were placed at the point.

Let us now try to find a method of measuring beliefs as bases of possible actions.
It is clear that we are concerned with dispositional rather than with actualized
beliefs; that is to say, not with beliefs at the moment when we are thinking of them,
but with beliefs like my belief that the earth is round, which I rarely think of, but
which would guide my action in any case to which it was relevant.

The old-established way of measuring a person’s belief is to propose a bet,
and see what are the lowest odds which he will accept. This method I regard as
fundamentally sound; but it suffers from being insufficiently general, and from being
necessarily inexact. It is inexact partly because of the diminishing marginal utility
of money, partly because the person may have a special eagerness or reluctance to
bet, because he either enjoys or dislikes excitement or for any other reason, e.g.
to make a book. The difficulty is like that of separating two different co-operating
forces. Besides, the proposal of a bet may inevitably alter his state of opinion; just as
we could not always measure electric intensity by actually introducing a charge and
seeing what force it was subject to, because the introduction of the charge would
change the distribution to be measured.

In order therefore to construct a theory of quantities of belief which shall be
both general and more exact, I propose to take as a basis a general psychological
theory, which is now universally discarded, but nevertheless comes, I think, fairly
close to the truth in the sort of cases with which we are most concerned. I mean
the theory that we act in the way we think most likely to realize the objects of our
desires, so that a person’s actions are completely determined by his desires and
opinions. This theory cannot be made adequate to all the facts, but it seems to me
a useful approximation to the truth particularly in the case of our self-conscious
or professional life, and it is presupposed in a great deal of our thought. It is a
simple theory and one which many psychologists would obviously like to preserve
by introducing unconscious desires and unconscious opinions in order to bring it
more into harmony with the facts. How far such fictions can achieve the required
result I do not attempt to judge: I only claim for what follows approximate truth,
or truth in relation to this artificial system of psychology, which like Newtonian
mechanics can, I think, still be profitably used even though it is known to be false.

It must be observed that this theory is not to be identified with the psychology of
the Utilitarians, in which pleasure had a dominating position. The theory I propose
to adopt is that we seek things which we want, which may be our own or other
people’s pleasure, or anything else whatever, and our actions are such as we think
most likely to realize these goods. But this is not a precise statement, for a precise
statement of the theory can only be made after we have introduced the notion of
quantity of belief.
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Let us call the things a person ultimately desires ‘goods’, and let us at first
assume that they are numerically measurable and additive. That is to say that if
he prefers for its own sake an hour’s swimming to an hour’s reading, he will prefer
two hours’ swimming to one hour’s swimming and one hour’s reading. This is of
course absurd in the given case but this may only be because swimming and reading
are not ultimate goods, and because we cannot imagine a second hour’s swimming
precisely similar to the first, owing to fatigue, etc.

Let us begin by supposing that our subject has no doubts about anything, but
certain opinions about all propositions. Then we can say that he will always choose
the course of action which will lead in his opinion to the greatest sum of good.

It should be emphasized that in this essay good and bad are never to be
understood in any ethical sense but simply as denoting that to which a given person
feels desire and aversion.

The question then arises how we are to modify this simple system to take account
of varying degrees of certainty in his beliefs. I suggest that we introduce as a law
of psychology that his behaviour is governed by what is called the mathematical
expectation; that is to say that, if p is a proposition about which he is doubtful,
any goods or bads for whose realization p is in his view a necessary and sufficient
condition enter into his calculations multiplied by the same fraction, which is called
the ‘degree of his belief in p’. We thus define degree of belief in a way which
presupposes the use of the mathematical expectation.

We can put this in a different way. Suppose his degree of belief in p is '; then his
action is such as he would choose it to be if he had to repeat it exactly n times, in m
of which p was true, and in the others false. [Here it may be necessary to suppose
that in each of the n times he had no memory of the previous ones.]

This can also be taken as a definition of the degree of belief, and can easily be
seen to be equivalent to the previous definition. Let us give an instance of the sort
of case which might occur. I am at a cross-roads and do not know the way; but I
rather think one of the two ways is right. I propose therefore to go that way but keep
my eyes open for someone to ask; if now I see someone half a mile away over the
fields, whether I turn aside to ask him will depend on the relative inconvenience of
going out of my way to cross the fields or of continuing on the wrong road if it is
the wrong road. But it will also depend on how confident I am that I am right; and
clearly the more confident I am of this the less distance I should be willing to go
from the road to check my opinion. I propose therefore to use the distance I would
be prepared to go to ask, as a measure of the confidence of my opinion; and what I
have said above explains how this is to be done. We can set it out as follows: suppose
the disadvantage of going x yards to ask is f(x), the advantage of arriving at the right
destination is r, that of arriving at the wrong one w. Then if I should just be willing to
go a distance d to ask, the degree of my belief that I am on the right road is given by

@

r—w

p=1

For such an action is one it would just pay me to take, if I had to act in the same
way n times, in np of which I was on the right way but in the others not.
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For the total good resulting from not asking each time

=npr+n(l—p)w
=nw+np(r—w)

that resulting from asking at distance x each time
= nr — nf(x). [I now always go right.]
This is greater than the preceding expression, provided

f@) <@r=w)(1=p),

.". the critical distance d is connected with p, the degree of belief, by the relation

fld)y=(r—w)(1-p)
f(d)

or p=1-— as asserted above.
r—w

Itis easy to see that this way of measuring belief gives results agreeing with ordinary
ideas; at any rate to the extent that full belief is denoted by 1, full belief in the contra-
dictory by 0, and equal belief in the two by ; Further, it allows validity to betting as
means of measuring beliefs. By proposing a bet on p we give the subject a possible
course of action from which so much extra good will result to him if p is true and so
much extra bad if p is false. Supposing, the bet to be in goods and bads instead of in
money, he will take a bet at any better odds than those corresponding to his state of
belief; in fact his state of belief is measured by the odds he will just take; but this is
vitiated, as already explained, by love or hatred of excitement, and by the fact that
the bet is in money and not in goods and bads. Since it is universally agreed that
money has a diminishing marginal utility, if money bets are to be used, it is evident
that they should be for as small stakes as possible. But then again the measurement
is spoiled by introducing the new factor of reluctance to bother about trifles.

Let us now discard the assumption that goods are additive and immediately
measurable, and try to work out a system with as few assumptions as possible. To
begin with we shall suppose, as before, that our subject has certain beliefs about
everything; then he will act so that what he believes to be the total consequences
of his action will be the best possible. If then we had the power of the Almighty,
and could persuade our subject of our power, we could, by offering him options,
discover how he placed in order of merit all possible courses of the world. In this
way all possible worlds would be put in an order of value, but we should have
no definite way of representing them by numbers. There would be no meaning
in the assertion that the difference in value between o and B was equal to that
between y and 8. [Here and elsewhere we use Greek letters to represent the different
possible totalities of events between which our subject chooses — the ultimate
organic unities. ]
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Suppose next that the subject is capable of doubt; then we could test his degree of
belief in different propositions by making him offers of the following kind. Would
you rather have world « in any event; or world p if p is true, and world vy if p is false?
If, then, he were certain that p was true, simply compare o and f and choose between
them as if no conditions were attached; but if he were doubtful his choice would not
be decided so simply. I propose to lay down axioms and definitions concerning
the principles governing choices of this kind. This is, of course, a very schematic
version of the situation in real life, but it is, I think, easier to consider it in this
form.

There is first a difficulty which must be dealt with; the propositions like p in
the above case which are used as conditions in the options offered may be such
that their truth or falsity is an object of desire to the subject. This will be found
to complicate the problem, and we have to assume that there are propositions for
which this is not the case, which we shall call ethically neutral. More precisely
an atomic proposition p is called ethically neutral if two possible worlds differing
only in regard to the truth of p are always of equal value; and a non-atomic
proposition p is called ethically neutral if all its atomic truth-arguments® are
ethically neutral.

We begin by defining belief of degree é in an ethically neutral proposition. The
subject is said to have belief of degree ; in such a proposition p if he has no
preference between the options (1) o if p is true, § if p is false, and (2) « if p
is false, P if p is true, but has a preference between o and f simply. We suppose
by an axiom that if this is true of any one pair a, B, it is true of all such pairs.’
This comes roughly to defining belief of degree ; as such a degree of belief as
leads to indifference between betting one way and betting the other for the same
stakes.

Belief of degree ; as thus defined can be used to measure values numerically
in the following way. We have to explain what is meant by the difference in value
between o and P being equal to that between y and §; and we define this to mean
that, if p is an ethically neutral proposition believed to degree ;, the subject has no
preference between the options (1) a if p is true, § if p is false, and (2) B if p is true,
vy if p is false.

This definition can form the basis of a system of measuring values in the
following way:—

Let us call any set of all worlds equally preferable to a given world a value: we
suppose that if world « is preferable to § any world with the same value as o is
preferable to any world with the same value as p and shall say that the value of « is
greater than that of B. This relation ‘greater than’ orders values in a series. We shall
use o henceforth both for the world and its value.

ST assume here Wittgenstein’s theory of propositions; it would probably be possible to give an
equivalent definition in terms of any other theory.

7o and P must be supposed so far undefined as to be compatible with both p and not-p.
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Axioms

(1) There is an ethically neutral proposition p believed to degree ;
(2) If p, q are such propositions and the option

a if p, 8 if not-p is equivalent to B if p, vy if not-p
then «a if ¢, § if not-q is equivalent to B if ¢, y if not-q.
Def. In the above case we say aff = 8.

Theorems If aff =3,
then Ba = 8y, ay = B8, yo = 8.

(2a) If ap =83, then a>p is equivalent to y > 3§
and o = f is equivalent to y = 8.

(3) If option A is equivalent to option B and B to C, then A to C.

Theorem If aff =8 and fn ="y,
then an = 3.

@) If ap =3, y8 =nl, then af =nt.

(5) (o, B, ). El(wx) (oax = Py)

(6) (o, B). El(wx) (ox = xP)

(7) Axiom of continuity: — Any progression has a limit (ordinal).
(8) Axiom of Archimedes.

These axioms enable the values to be correlated one-one with real numbers so
that if o! corresponds to a, etc.

ap =v8. = .al =l =y 5.

Henceforth we use o for the correlated real number ! also.

Having thus defined a way of measuring value we can now derive a way of
measuring belief in general. If the option of a for certain is indifferent with that
of B if p is true and vy if p is false,® we can define the subject’s degree of belief
in p as the ratio of the difference between o and vy to that between § and y; which
we must suppose the same for all a’s, B’s and y’s that satisfy the conditions. This
amounts roughly to defining the degree of belief in p by the odds at which the subject
would bet on p, the bet being conducted in terms of differences of value as defined.
The definition only applies to partial belief and does not include certain beliefs; for
belief of degree 1 in p, o for certain is indifferent with « if p and any f if not-p.

We are also able to define a very useful new idea — the ‘degree of belief in p given
q’. This does not mean the degree of belief in ‘If p then ¢’, or that in ‘p entails g, or
that which the subject would have in p if he knew ¢, or that which he ought to have.

8Here B must include the truth of p, y its falsity; p need no longer be ethically neutral. But we have
to assume that there is a wolrd with any assigned value in which p is true, and one in which p is
false.
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It roughly expresses the odds at which he would now bet on p, the bet only to be
valid if ¢ is true. Such conditional bets were often made in the eighteenth century.
The degree of belief in p given g is measured thus. Suppose the subject indifferent
between the options (1) « if ¢ true, B if g false, (2) y if p true and g true, 8 if p false
and ¢ true, B if ¢ false. Then the degree of his belief in p given ¢ is the ratio of the
difference between o and 8 to that between y and §, which we must suppose the
same for any a, B, v, 8§ which satisfy the given conditions. This is not the same as
the degree to which he would believe p, if he believed g for certain; for knowledge
of ¢ might for psychological reasons profoundly alter his whole system of beliefs.
Each of our definitions has been accompanied by an axiom of consistency, and
in so far as this is false, the notion of the corresponding degree of belief becomes
invalid. This bears some analogy to the situation in regard to simultaneity discussed
above.
I have not worked out the mathematical logic of this in detail, because this would,
I think, be rather like working out to seven places of decimals a result only valid to
two. My logic cannot be regarded as giving more than the sort of way it might work.
From these definitions and axioms it is possible to prove the fundamental laws
of probable belief (degrees of belief lie between 0 and 1):

(1) Degree of belief in p + degree of belief inp = 1
(2) Degree of belief in p given g + degree of belief in p giveng =1.
(3) Degree of belief in (p and g) = degree of belief in p x degree of belief in g given

p.
(4) Degree of belief in (p and g) + degree of belief in (p and g) = degree of belief
in p.
The first two are immediate. (3) is proved as follows.
Let degree of belief in p = x, that in g given p =y.
Then £ for certain = & + (1—x)t if p true, § — xt if p false for any z.

§+ (1 —x)tif p true =

E+(1—x)r+ (1 —y)uif ‘pand ¢ true,
€ + (1 —x)r—yu if p true ¢ false; for any u.

Choose u so that § + (1 —x) t —yu=£§& —xt,
ie. letu=1t/y(y #0)
Then £ for certain =

E+(1—x)t+ (1 —y)t/y if p and g true
& — xt otherwise,

.". degree of belief in ‘p and ¢° = H_(li’y)t/y =xy. (t#0)
Ify=0, take t=0.
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Then £ for certain = § if p true, & ifp false
=& 4 u ifp true, g true; £ if p false,q false, £ if p false
=& + u,pq true; &, pg false

.". degree of belief in pg = 0.

(4) follows from (2), (3) as follows: —

Degree of belief in pg = that in p X that in g given p, by (3). Similarly degree of
belief in pg = that in p X that in g given p

.". sum = degree of belief in p, by (2).

These are the laws of probability, which we have proved to be necessarily true of
any consistent set of degrees of belief. Any definite set of degrees of belief which
broke them would be inconsistent in the sense that it violated the laws of preference
between options, such as that preferability is a transitive asymmetrical relation, and
that if o is preferable to B, B for certain cannot be preferable to « if p, p if not-p.
If anyone’s mental condition violated these laws, his choice would depend on the
precise form in which the options were offered him, which would be absurd. He
could have a book made against him by a cunning better and would then stand to
lose in any event.

We find, therefore, that a precise account of the nature of partial belief reveals
that the laws of probability are laws of consistency, an extension to partial beliefs of
formal logic, the logic of consistency. They do not depend for their meaning on any
degree of belief in a proposition being uniquely determined as the rational one; they
merely distinguish those sets of beliefs which obey them as consistent ones.

Having any definite degree of belief implies a certain measure of consistency,
namely willingness to bet on a given proposition at the same odds for any stake,
the stakes being measured in terms of ultimate values. Having degrees of belief
obeying the laws of probability implies a further measure of consistency, namely
such a consistency between the odds acceptable on different propositions as shall
prevent a book being made against you.

Some concluding remarks on this section may not be out of place. First, it is based
fundamentally on betting, but this will not seem unreasonable when it is seen that
all our lives we are in a sense betting. Whenever we go to the station we are betting
that a train will really run, and if we had not a sufficient degree of belief in this
we should decline the bet and stay at home. The options God gives us are always
conditional on our guessing whether a certain proposition is true. Secondly, it is
based throughout on the idea of mathematical expectation; the dissatisfaction often
felt with this idea is due mainly to the inaccurate measurement of goods. Clearly
mathematical expectations in terms of money are not proper guides to conduct. It
should be remembered, in judging my system, that in it value is actually defined by
means of mathematical expectation in the case of beliefs of degree é, and so may be
expected to be scaled suitably for the valid application in the case of other degrees
of belief also.
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Thirdly, nothing has been said about degrees of belief when the number of
alternatives is infinite. About this I have nothing useful to say, except that I doubt
if the mind is capable of contemplating more than a finite number of alternatives.
It can consider questions to which an infinite number of answers are possible, but
in order to consider the answers it must lump them into a finite number of groups.
The difficulty becomes practically relevant when discussing induction, but even then
there seems to me no need to introduce it. We can discuss whether past experience
gives a high probability to the sun’s rising to-morrow without bothering about what
probability it gives to the sun’s rising each morning for evermore. For this reason I
cannot but feel that Mr Ritchie’s discussion of the problem’ is unsatisfactorys; it is
true that we can agree that inductive generalizations need have no finite probability,
but particular expectations entertained on inductive grounds undoubtedly do have
a high numerical probability in the minds of all of us. We all are more certain that
the sun will rise to-morrow than that I shall not throw 12 with two dice first time,
i.e. we have a belief of higher degree than ;2 in it. If induction ever needs a logical
justification it is in connection with the probability of an event like this.

The Logic of Consistency

We may agree that in some sense it is the business of logic to tell us what we ought
to think; but the interpretation of this statement raises considerable difficulties. It
may be said that we ought to think what is true, but in that sense we are told what
to think by the whole of science and not merely by logic. Nor, in this sense, can
any justification be found for partial belief; the ideally best thing is that we should
have beliefs of degree 1 in all true propositions and beliefs of degree 0 in all false
propositions. But this is too high a standard to expect of mortal men, and we must
agree that some degree of doubt or even of error may be humanly speaking justified.

Many logicians, I suppose, would accept as an account of their science the
opening words of Mr Keynes’ Treatise on Probability: “Part of our knowledge we
obtain direct; and part by argument. The Theory of Probability is concerned with
that part which we obtain by argument, and it treats of the different degrees in which
the results so obtained are conclusive or inconclusive.” Where Mr Keynes says ‘the
Theory of Probability’, others would say Logic. It is held, that is to say, that our
opinions can be divided into those we hold immediately as a result of perception or

A. D. Ritchie, “Induction and Probability.” Mind, 1926. p. 318. ‘The conclusion of the foregoing
discussion may be simply put. If the problem of induction be stated to be “How can inductive
generalizations acquire a large numerical probability?” then this is a pseudo-problem, because the
answer is “They cannot”. This answer is not, however, a denial of the validity of induction but
is a direct consequence of the nature of probability. It still leaves untouched the real problem of
induction which is “How can the probability of an induction be increased?” and it leaves standing
the whole of Keynes’ discussion on this point.’
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memory, and those which we derive from the former by argument. It is the business
of Logic to accept the former class and criticize merely the derivation of the second
class from them.

Logic as the science of argument and inference is traditionally and rightly divided
into deductive and inductive; but the difference and relation between these two
divisions of the subject can be conceived in extremely different ways. According
to Mr Keynes valid deductive and inductive arguments are fundamentally alike;
both are justified by logical relations between premiss and conclusion which differ
only in degree. This position, as I have already explained, I cannot accept. I do not
see what these inconclusive logical relations can be or how they can justify partial
beliefs. In the case of conclusive logical arguments I can accept the account of their
validity which has been given by many authorities, and can be found substantially
the same in Kant, De Morgan, Peirce and Wittgenstein. All these authors agree that
the conclusion of a formally valid argument is contained in its premisses; that to
deny the conclusion while accepting the premisses would be self-contradictory; that
a formal deduction does not increase our knowledge, but only brings out clearly
what we already know in another form; and that we are bound to accept its validity
on pain of being inconsistent with ourselves. The logical relation which justifies the
inference is that the sense or import of the conclusion is contained in that of the
premisses.

But in the case of an inductive argument this does not happen in the least;
it is impossible to represent it as resembling a deductive argument and merely
weaker in degree; it is absurd to say that the sense of the conclusion is partially
contained in that of the premisses. We could accept the premisses and utterly reject
the conclusion without any sort of inconsistency or contradiction.

It seems to me, therefore, that we can divide arguments into two radically
different kinds, which we can distinguish in the words of Peirce as (1) ‘explicative,
analytic, or deductive’ and (2) ‘amplifiative, synthetic, or (loosely speaking) induc-
tive’.!9 Arguments of the second type are from an important point of view much
closer to memories and perceptions than to deductive arguments. We can regard
perception, memory and induction as the three fundamental ways of acquiring
knowledge; deduction on the other hand is merely a method of arranging our
knowledge and eliminating inconsistencies or contradictions.

Logic must then fall very definitely into two parts: (excluding analytic logic, the
theory of terms and propositions) we have the lesser logic, which is the logic of
consistency, or formal logic; and the larger logic, which is the logic of discovery, or
inductive logic.

What we have now to observe is that this distinction in no way coincides with
the distinction between certain and partial beliefs; we have seen that there is a
theory of consistency in partial beliefs just as much as of consistency in certain
beliefs, although for various reasons the former is not so important as the latter. The
theory of probability is in fact a generalization of formal logic; but in the process

10C.S. Peirce Change Love and Logic, p. 92.
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of generalization one of the most important aspects of formal logic is destroyed.
If p and g are inconsistent so that g follows logically from p, that p implies g is
what is called by Wittgenstein a ‘tautology’ and can be regarded as a degenerate
case of a true proposition not involving the idea of consistency. This enables us to
regard (not altogether correctly) formal logic including mathematics as an objective
science consisting of objectively necessary propositions. It thus gives us not merely
the avaykn Aéyelv, that if we assert p we are bound in consistency to assert g
also, but also the avaykn ivadt, that is p is true, so must g be. But when we extend
formal logic to include partial beliefs this direct objective interpretation is lost; if we
believe pqg to the extent of !, and pq to the extent of é, we are bound in consistency
to believe p also to the extent of é This is the avaykn Aéyelv; but we cannot
say that if pq is ; true and pgq ; true, p also must be ; true, for such a statement
would be sheer nonsense. There is no corresponding avaykm eivat. Hence, unlike
the calculus of consistent full belief, the calculus of objective partial belief cannot
be immediately interpreted as a body of objective tautology.

This is, however, possible in a roundabout way; we saw at the beginning of
this essay that the calculus of probabilities could be interpreted in terms of class-
ratios; we have now found that it can also be interpreted as a calculus of consistent
partial belief. It is natural, therefore, that we should expect some intimate connection
between these two interpretations, some explanation of the possibility of applying
the same mathematical calculus to two such different sets of phenomena. Nor is
an explanation difficult to find; there are many connections between partial beliefs
and frequencies. For instance, experienced frequencies often lead to corresponding
partial beliefs, and partial beliefs lead to the expectation of corresponding frequen-
cies in accordance with Bernouilli’s Theorem. But neither of these is exactly the
connection we want; a partial belief cannot in general be connected uniquely with
any actual frequency, for the connection is always made by taking the proposition
in question as an instance of a propositional function. What propositional function
we choose is to some extent arbitrary and the corresponding frequency will vary
considerably with our choice. . The pretensions of some exponents of the frequency
theory that partial belief means full belief in a frequency proposition cannot be
sustained. But we found that the very idea of partial belief involves reference to
a hypothetical or ideal frequency; supposing goods to be additive, belief of degree
™ is the sort of belief which leads to the action which would be best if repeated
n times in m of which the proposition is true; or we can say more briefly that it is
the kind of belief most appropriate to a number of hypothetical occasions otherwise
identical in a proportion ' of which the proposition in question is true. It is this
connection between partial belief and frequency which enables us to use the calculus
of frequencies as a calculus of consistent partial belief. And in a sense we may say
that the two interpretations are the objective and subjective aspects of the same inner
meaning, just as formal logic can be interpreted objectively as a body of tautology
and subjectively as the laws of consistent thought.

We shall, I think, find that this view of the calculus of probability removes
various difficulties that have hitherto been found perplexing. In the first place it
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gives us a clear justification for the axioms of the calculus, which on such a system
as Mr Keynes’ is entirely wanting. For now it is easily seen that if partial beliefs
are consistent they will obey these axioms, but it is utterly obscure why Mr Keynes’
mysterious logical relations should obey them.!! We should be so curiously ignorant
of the instances of these relations, and so curiously knowledgeable about their
general laws.

Secondly, the Principle of Indifference can now be altogether dispensed with;
we do not regard it as belonging to formal logic to say what should be a man’s
expectation of drawing a white or a black ball from an urn; his original expectations
may within the limits of consistency be any he likes; all we have to point out is
that if he has certain expectations he is bound in consistency to have certain others.
This is simply bringing probability into line with ordinary formal logic, which does
not criticize premisses but merely declares that certain conclusions are the only
ones consistent with them. To be able to turn the Principle of Indifference out of
formal logic is a great advantage; for it is fairly clearly impossible to lay down
purely logical conditions for its validity, as is attempted by Mr Keynes. I do not
want to discuss this question in detail, because it leads to hair-splitting and arbitrary
distinctions which could be discussed for ever. But anyone who tries to decide by
Mr Keynes’ methods what are the proper alternatives to regard as equally probable
in molecular mechanics, e.g. in Gibbs’ phase-space, will soon be convinced that it is
a matter of physics rather than pure logic. By using the multiplication formula, as it
is used in inverse probability, we can on Mr Keynes’ theory reduce all probabilities
to quotients of a priori probabilities; it is therefore in regard to these latter that the
Principle of Indifference is of primary importance; but here the question is obviously
not one of formal logic. How can we on merely logical grounds divide the spectrum
into equally probable bands?

A third difficulty which is removed by our theory is the one which is presented to
Mr Keynes’ theory by the following case. I think I perceive or remember something
but am not sure; this would seem to give me some ground for believing it, contrary to
Mr Keynes’ theory, by which the degree belief in it which it would be rational for me
to have is that given by the probability relation between the proposition in question
and the things I know for certain. He cannot justify a probable belief founded not on
argument but on direct inspection. In our view there would be nothing contrary to
formal logic in such a belief; whether it would be reasonable would depend on what
I have called the larger logic which will be the subject of the next section; we shall
there see that there is no objection to such a possibility, with which Mr Keynes’
method of justifying probable belief solely by relation to certain knowledge is quite
unable to cope.

"t appears in Mr Keynes’ system as if the principal axioms — the laws of addition and
multiplication — were nothing but definitions. This is merely a logical mistake; his definitions are
formally invalid unless corresponding axioms are presupposed. Thus his definition of multiplica-
tion presupposes the law that if the probability of a given bh is equal to that of ¢ given dh, and the
probability of b given h is equal to that of d given A, then will the probabilities of ab given h and
of cd given h be equal.
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The Logic of Truth

The validity of the distinction between the logic of consistency and the logic of
truth has been often disputed; it has been contended on the one hand that logical
consistency is only a kind of factual consistency; that if a belief in p is inconsistent
with one in ¢, that simply means that p and ¢ are not both true, and that this
is a necessary or logical fact. I believe myself that this difficulty can be met by
Wittgenstein’s theory of tautology, according to which if a belief in p is inconsistent
with one in g, that p and g are not both true is not a fact but a tautology. But I do not
propose to discuss this question further here.

From the other side it is contended that formal logic or the logic of consistency is
the whole of logic, and inductive logic either nonsense or part of natural science.
This contention, which would I suppose be made by Wittgenstein, I feel more
difficulty in meeting. But I think it would be a pity, out of deference to authority, to
give up trying to say anything useful about induction.

Let us therefore go back to the general conception of logic as the science of
rational thought. We found that the most generally accepted parts of logic, namely,
formal logic, mathematics and the calculus of probabilities, are all concerned simply
to ensure that our beliefs are not self-contradictory. We put before ourselves the
standard of consistency and construct these elaborate rules to ensure its observance.
But this is obviously not enough; we want our beliefs to be consistent not merely
with one another but also with the facts!?: nor is it even clear that consistency is
always advantageous; it may well be better to be sometimes right than never right.
Nor when we wish to be consistent are we always able to be: there are mathematical
propositions whose truth or falsity cannot as yet be decided. Yet it may humanly
speaking be right to entertain a certain degree of belief in them on inductive or other
grounds: a logic which proposes to justify such a degree of belief must be prepared
actually to go against formal logic; for to a formal truth formal logic can only assign
a belief of degree 1. We could prove in Mr Keynes’ system that its probability is
1 on any evidence. This point seems to me to show particularly clearly that human
logic or the logic of truth, which tells men how they should think, is not merely
independent of but sometimes actually incompatible with formal logic.

In spite of this nearly all philosophical thought about human logic and especially
induction has tried to reduce it in some way to formal logic. Not that it is supposed,
except by a very few, that consistency will of itself lead to truth; but consistency
combined with observation and memory is frequently credited with this power.

Since an observation changes (in degree at least) my opinion about the fact
observed, some of my degrees of belief after the observation are necessarily

12Cf. Kant: ‘Denn obgleich eine Erkenntnis der logischen Form vollig gemiss sein mochte, dass
ist sich selbst nicht widerspriche, so kann sie doch noch immer dem Gegenstande widersprechen.’
Kritik der reinen Vernunft, First Edition. p. 59.
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inconsistent with those I had before. We have therefore to explain how exactly the
observation should modify my degrees of belief; obviously if p is the fact observed,
my degree of belief in g after the observation should be equal to my degree of belief
in g given p before, or by the multiplication law to the quotient of my degree of
belief in pg by my degree of belief in p. When my degrees of belief change in this
way we can say that they have been changed consistently by my observation.

By using this definition, or on Mr Keynes’ system simply by using the multi-
plication law, we can take my present degrees of belief, and by considering the
totality of my observations, discover from what initial degrees of belief my present
ones would have arisen by this process of consistent change. My present degrees of
belief can then be considered logically justified if the corresponding initial degrees
of belief are logically justified. But to ask what initial degrees of belief are justified,
or in Mr Keynes’ system what are the absolutely a priori probabilities, seems to me
a meaningless question; and even if it had a meaning I do not see how it could be
answered.

If we actually applied this process to a human being, found out, that is to say, on
what a prior probabilities his present opinions could be based, we should obviously
find them to be ones determined by natural selection, with a general tendency to
give a higher probability to the simpler alternatives. But, as I say, I cannot see
what could be meant by asking whether these degrees of belief were logically
justified. Obviously the best thing would be to know for certain in advance what
was true and what false, and therefore if any one system of initial beliefs is to
receive the philosopher’s approbation it should be this one. But clearly this would
not be accepted by thinkers of the school I am criticising. Another alternative
is to apportion initial probabilities on the purely formal system expounded by
Wittgenstein, but as this gives no justification for induction it cannot give us the
human logic which we are looking for.

Let us therefore try to get an idea of a human logic which shall not attempt to
be reducible to formal logic. Logic, we may agree, is concerned not with what men
actually believe, but what they ought to believe, or what it would be reasonable to
believe. What then, we must ask, is meant by saying that it is reasonable for a man
to have such and such a degree of belief in a proposition? Let us consider possible
alternatives.

First, it sometimes means something explicable in terms of formal logic: this
possibility for reasons already explained we may dismiss. Secondly, it sometimes
means simply that were I in his place (and not e.g. drunk) I should have such a
degree of belief. Thirdly, it sometimes means that if his mind worked according to
certain rules, which we may roughly call ‘scientific method’, he would have such
a degree of belief. But fourthly it need mean none of these things for men have
not always believed in scientific method, and just as we ask ‘But am I necessarily
reasonable,” we can also ask ‘But is the scientist necessarily reasonable?’ In this
ultimate meaning it seems to me that we can identify reasonable opinion with the
opinion of an ideal person in similar circumstances. What, however, would this ideal
person’s opinion be? As has previously been remarked, the highest ideal would be



3 Truth and Probability 43

always to have a true opinion and be certain of it; but this ideal is more suited to
God than to man.'?

We have therefore to consider the human mind and what is the most we can
ask of it."* The human mind works essentially according to general rules or habits;
a process of thought not proceeding according to some rule would simply be a
random sequence of ideas; whenever we infer A from B we do so in virtue of some
relation between them. We can therefore state the problem of the ideal as “What
habits in a general sense would it be best for the human mind to have?” This is a
large and vague question which could hardly be answered unless the possibilities
were first limited by a fairly definite conception of human nature. We could imagine
some very useful habits unlike those possessed by any men. [It must be explained
that I use habit in the most general possible sense to mean simply rule or law of
behaviour, including instinct: I do not wish to distinguish acquired rules or habits in
the narrow sense from innate rules or instincts, but propose to call them all habits
alike.] A completely general criticism of the human mind is therefore bound to
be vague and futile, but something useful can be said if we limit the subject in
the following way.

Let us take a habit of forming opinion in a certain way; e.g. the habit of
proceeding from the opinion that a toadstool is yellow to the opinion that it is
unwholesome. Then we can accept the fact that the person has a habit of this sort,
and ask merely what degree of opinion that the toadstool is unwholesome it would
be best for him to entertain when he sees it; i.e. granting that he is going to think
always in the same way about all yellow toadstools, we can ask what degree of
confidence it would be best for him to have that they are unwholesome. And the
answer is that it will in general be best for his degree of belief that a yellow toadstool
is unwholesome to be equal to the proportion of yellow toadstools which are in fact

13[Earlier draft of matter of preceding paragraph in some ways better. - FPR.

What is meant by saying that a degree of belief is reasonable? First and often that it is what I
should entertain if I had the opinions of the person in question at the time but was otherwise as I
am now, e.g. not drunk. But sometimes we go beyond this and ask: ‘Am I reasonable?’ This may
mean, do I conform to certain enumerable standards which we call scientific method, and which
we value on account of those who practise them and the success they achieve. In this sense to be
reasonable means to think like a scientist, or to be guided only by ratiocination and induction or
something of the sort (i.e. reasonable means reflective). Thirdly, we may go to the root of why we
admire the scientist and criticize not primarily an individual opinion but a mental habit as being
conducive or otherwise to the discovery of truth or to entertaining such degrees of belief as will
be most useful. (To include habits of doubt or partial belief.) Then we can criticize an opinion
according to the habit which produced it. This is clearly right because it all depends on this habit;
it would not be reasonable to get the right conclusion to a syllogism by remembering vaguely that
you leave out a term which is common to both premisses.

We use reasonable in sense 1 when we say of an argument of a scientist this does not seem to
me reasonable; in sense 2 when we contrast reason and superstition or instinct; in sense 3 when
we estimate the value of new methods of thought such as soothsaying.].

“What follows to the end of the section is almost entirely based on the writings of C. S. Peirce.
[Especially his “Illustrations of the Logic of Science”, Popular Science Monthly, 1877 and 1878,
reprinted in Chance Love and Logic (1923).].



44 EP. Ramsey

unwholesome. (This follows from the meaning of degree of belief.) This conclusion
is necessarily vague in regard to the spatio-temporal range of toadstools which it
includes, but hardly vaguer than the question which it answers. (Cf. density at a
point of gas composed of molecules.)

Let us put it in another way: whenever I make an inference, I do so according
to some rule or habit. An inference is not completely given when we are given the
premiss and conclusion; we require also to be given the relation between them in
virtue of which the inference is made. The mind works by general laws; therefore
if it infers g from p, this will generally be because ¢ is an instance of a function @x
and p the corresponding instance of a function {x such that the mind would always
infer @x from {yx. When therefore we criticize not opinions but the processes by
which they are formed, the rule of the inference determines for us a range to which
the frequency theory can be applied. The rule of the inference may be narrow, as
when seeing lightning I expect thunder, or wide, as when considering 99 instances
of a generalization which I have observed to be true I conclude that the 100th is
true also. In the first case the habit which determines the process is ‘After lightning
expect thunder’; the degree of expectation which it would be best for this habit to
produce is equal to the proportion of cases of lightning which are actually followed
by thunder. In the second case the habit is the more general one of inferring from 99
observed instances of a certain sort of generalization that the 100th instance is true
also; the degree of belief it would be best for this habit to produce is equal to the
proportion of all cases of 99 instances of a generalization being true, in which the
100th is true also.

Thus given a single opinion, we can only praise or blame it on the ground of truth
or falsity: given a habit of a certain form, we can praise or blame it accordingly as
the degree of belief it produces is near or far from the actual proportion in which
the habit leads to truth. We can then praise or blame opinions derivatively from our
praise or blame of the habits that produce them.

This account can be applied not only to habits of inference but also to habits
of observation and memory; when we have a certain feeling in connection with an
image we think the image represents something which actually happened to us, but
we may not be sure about it; the degree of direct confidence in our memory varies.
If we ask what is the best degree of confidence to place in a certain specific memory
feeling, the answer must depend on how often when that feeling occurs the event
whose image it attaches to has actually taken place.

Among the habits of the human mind a position of peculiar importance is
occupied by induction. Since the time of Hume a great deal has been written
about the justification for inductive inference. Hume showed that it could not be
reduced to deductive inference or justified by formal logic. So far as it goes his
demonstration seems to me final; and the suggestion of Mr Keynes that it can be got
round by regarding induction as a form of probable inference cannot in my view be
maintained. But to suppose that the situation which results from this is a scandal to
philosophy is, I think, a mistake.

We are all convinced by inductive arguments, and our conviction is reasonable
because the world is so constituted that inductive arguments lead on the whole to
true opinions. We are not, therefore, able to help trusting induction, nor if we could
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help it do we see any reason why we should, because we believe it to be a reliable
process. It is true that if any one has not the habit of induction, we cannot prove
to him that he is wrong; but there is nothing peculiar in that. If a man doubts his
memory or his perception we cannot prove to him that they are trustworthy; to ask
for such a thing to be proved is to cry for the moon, and the same is true of induction.
It is one of the ultimate sources of knowledge just as memory is: no one regards it
as a scandal to philosophy that there is no proof that the world did not begin two
minutes ago and that all our memories are not illusory.

We all agree that a man who did not make inductions would be unreasonable: the
question is only what this means. In my view it does not mean that the man would
in any way sin against formal logic or formal probability; but that he had not got a
very useful habit, without which he would be very much worse off, in the sense of
being much less likely'> to have true opinions.

This is a kind of pragmatism: we judge mental habits by whether they work, i.e.
whether the opinions they lead to are for the most part true, or more often true than
those which alternative habits would lead to.

Induction is such a useful habit, and so to adopt it is reasonable. All that
philosophy can do is to analyse it, determine the degree of its utility, and find on what
characteristics of nature this depends. An indispensable means for investigating
these problems is induction itself, without which we should be helpless. In this
circle lies nothing vicious. It is only through memory that we can determine the
degree of accuracy of memory; for if we make experiments to determine this effect,
they will be useless unless we remember them.

Let us consider in the light of the preceding discussion what sort of subject is
inductive or human logic — the logic of truth. Its business is to consider methods
of thought, and discover what degree of confidence should be placed in them, i.e.
in what proportion of cases they lead to truth. In this investigation it can only be
distinguished from the natural sciences by the greater generality of its problems. It
has to consider the relative validity of different types of scientific procedure, such
as the search for a causal law by Mill’s Methods, and the modern mathematical
methods like the a priori arguments used in discovering the Theory of Relativity.
The proper plan of such a subject is to be found in Mill'®; I do not mean the
details of his Methods or even his use of the Law of Causality. But his way of
treating the subject as a body of inductions about inductions, the Law of Causality
governing lesser laws and being itself proved by induction by simple enumeration.
The different scientific methods that can be used are in the last resort judged by
induction by simple enumeration; we choose the simplest law that fits the facts, but
unless we found that laws so obtained also fitted facts other than those they were
made to fit, we should discard this procedure for some other.

15¢Likely” here simply means that I am not sure of this, but only have a certain degree of belief in
it.

16Cf. also the account of ‘general rules’ in the Chapter ‘Of Unphilosophical Probability’ in Hume’s
Treatise.



Chapter 4
Probable Knowledge

Richard C. Jeffrey

The central problem of epistemology is often taken to be that of explaining how we
can know what we do, but the content of this problem changes from age to age with
the scope of what we take ourselves to know; and philosophers who are impressed
with this flux sometimes set themselves the problem of explaining how we can get
along, knowing as little as we do. For knowledge is sure, and there seems to be little
we can be sure of outside logic and mathematics and truths related immediately to
experience. It is as if there were some propositions — that this paper is white, that
two and two are four — on which we have a firm grip, while the rest, including most
of the theses of science, are slippery or insubstantial or somehow inaccessible to
us. Outside the realm of what we are sure of lies the puzzling region of probable
knowledge — puzzling in part because the sense of the noun seems to be cancelled
by that of the adjective. The obvious move is to deny that the notion of knowledge
has the importance generally attributed to it, and to try to make the concept of belief
do the work that philosophers have generally assigned the grander concept. I shall
argue that this is the right move.

A Pragmatic Analysis of Belief

To begin, we must get clear about the relevant sense of ‘belief’. Here I follow
Ramsey: ‘the kind of measurement of belief with which probability is concerned
is ... a measurement of belief gua basis of action’.!

'Frank P. Ramsey, ‘Truth and probability’, in The Foundations of Mathematics and Other Logical
Essays, R. B. Braithwaite, ed., London and New York, 1931, p. 171.
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Ramsey’s basic idea was that the desirability of a gamble G is a weighted
average of the desirabilities of winning and of losing in which the weights are the
probabilities of winning and of losing. If the proposition gambled upon is A, if the
prize for winning is the truth of a proposition W, and if the penalty for losing is the
truth of a proposition L, we then have

des G —des L

. “4.1)
des W —des L

prob A =

Thus, if the desirabilities of losing and of winning happen to be 0 and 1, we have
prob A =des G, as illustrated in Fig. 4.1, for the case in which the probability of
winning is thought to be 3.

On this basis, Ramsey% is able to give rules for deriving the gambler’s subjective
probability and desirability functions from his preference ranking of gambles,
provided the preference ranking satisfies certain conditions of consistency. The
probability function obtained in this way is a probability measure in the technical
sense that, given any finite set of pairwise incompatible propositions which together
exhaust all possibilities, their probabilities are non-negative real numbers that add up
to 1. And in an obvious sense, probability so construed is a measure of the subject’s
willingness to act on his beliefs in propositions: it is a measure of degree of belief.

I propose to use what I take to be an improvement of Ramsey’s scheme, in
which the work that Ramsey does with the operation of forming gambles is done
with the usual truth-functional operations on propositions.> The basic move is to
restrict attention to certain ‘natural’ gambles, in which the prize for winning is the
truth of the proposition gambled upon, and the penalty for losing is the falsity of
that proposition. In general, the situation in which the gambler takes himself to be
gambling on A with prize W and loss L is one in which he believes the proposition

2“Truth and probability’, F. P. Ramsey, op. cit.

3See Richard C. Jeffrey, The Logic of Decision, McGraw-Hill, 1965, the mathematical basis
for which can be found in Ethan Bolker, Functions Resembling Quotients of Measures, Ph. D.
Dissertation, Harvard University, 1965, and Trans. Am. Math. Soc., 124, 1966, pp. 293-312.
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G =AW VAL

If G is a natural gamble we have W =A and L = A, so that G is the necessary
proposition, 7 = A V A:

G=AAVAA=T.

Now if A is a proposition which the subject thinks good (or bad) in the sense that he
places it above T (or below 7)) in his preference ranking, we have

des T —des A

, “4.2)
des A —des A

prob A =

corresponding to Ramsey’s formula (4.1).

Here the basic idea is thatif A;, A,, ..., A, are an exhaustive set of incompatible
ways in which the proposition A can come true, the desirability of A must be a
weighted average of the desirabilities of the ways in which it can come true:

desA =w;desA; +wydesA, +---+w, des A,, “4.3)
where the weights are the conditional probabilities,
w; = prob  A;/prob A. 4.4)

Let us call a function des which attributes real numbers to propositions a Bayesian
desirability function if there is a probability measure prob relative to which (4.3)
holds for all suitable A, A;, Az,..., A,. And let us call a preference ranking of
propositions coherent if there is a Bayesian desirability function which ranks those
propositions in order of magnitude exactly as they are ranked in order of preference.
One can show* that if certain weak conditions are met by a coherent preference
ranking, the underlying desirability function is determined up to a fractional linear
transformation, i.e., if des and DES both rank propositions in order of magnitude
exactly as they are ranked in order of preference, there must be real numbers a, b, c,
d such that for any proposition A in the ranking we have

desA + b
DES A = 44esATD (4.5)
cdesA+d

The probability measure prob is then determined by (4.2) up to a certain quantiza-
tion. In particular, if des is Bayesian relative to prob, then DES will be Bayesian
relative to PROB, where

4Jeffrey, op. cit., chs. 6, 8.
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PROBA = prob A (cdesA + d). (4.6)

Under further plausible conditions, (4.5) and (4.6) are given either exactly (as in
Ramsey’s theory) or approximately by

DESA =adesA+ b, @7

PROB A = prob A. (4.8)

I take the principal advantage of the present theory over Ramsey’s to be that here
we work with the subject’s actual beliefs, whereas Ramsey needs to know what
the subject’s preference ranking of relevant propositions would be if his views of
what the world is were to be changed by virtue of his having come to believe that
various arbitrary and sometimes bizarre causal relationships had been established
via gambles.’

To see more directly how preferences may reflect beliefs in the present system,
observe that by (4.2) we must have prob A > prob B if the relevant portion of the
preference ranking is

In particular, suppose that A and B are the propositions that the subject will get job 1
and that he will get job 2, respectively. Pay, working conditions, etc., are the same,
so that he ranks A and B together. Now if he thinks himself more likely to get job
1 than job 2, he will prefer a guarantee of (B) not getting job 2 to a guarantee of
(A) not getting job 1; for he thinks that an assurance of not getting job 2 leaves him
more likely to get one or the other of the equally liked jobs than would an assurance
of not getting job 1.

Probabilistic Acts and Observations

We might call a proposition observational for a certain person at a certain time if
at that time he can make an observation of which the direct effect will be that his
degree of belief in the proposition will change to 0 or to 1. Similarly, we might call a
proposition actual for a certain person at a certain time if at that time he can perform
an act of which the direct effect will be that his degree of belief in the proposition

SJeffrey, op. cit., pp. 145-150.
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will change to 0 or to 1. Under ordinary circumstances, the proposition that the
sun is shining is observational and the proposition that the agent blows his nose is
actual. Performance of an act may give the agent what Anscombe calls® ‘knowledge
without observation’ of the truth of an appropriate actual proposition. Apparently,
a proposition can be actual or observational without the agent’s knowing that it is;
and the agent can be mistaken in thinking a proposition actual or observational.

The point and meaning of the requirement that the effect be ‘direct’, in the
definitions of ‘actual’ and ‘observational’, can be illustrated by considering the case
of a sleeper who awakens and sees that the sun is shining. Then one might take the
observation to have shown him, directly that the sun is shining, and to have shown
him indirectly that it is daytime. In general, an observation will cause numerous
changes in the observer’s belief function, but many of these can be construed as
consequences of others. If there is a proposition E such that the direct effect of
the observation is to change the observer’s degree of belief in E to 1, then for any
proposition A in the observer’s preference ranking, his degree of belief in A after the
observation will be the conditional probability

probg A = prob (A/E) = prob AE/prob E, 4.9)

where prob is the observer’s belief function before the observation. And conversely,
if the observer’s belief function after the observation is probg and probg is not
identical with prob, then the direct effect of the observation will be to change the
observer’s degree of belief in E to 1. This completes a definition of direct.

But from a certain strict point of view, it is rarely or never that there is a
proposition for which the direct effect of an observation is to change the observer’s
degree of belief in that proposition to 1; and from that point of view, the classes of
propositions that count as observational or actual in the senses defined above are
either empty or as good as empty for practical purposes. For if we care seriously to
distinguish between 0.999 999 and 1.000 000 as degrees of belief, we may find that,
after looking out the window, the observer’s degree of belief in the proposition that
the sun is shining is not quite 1, perhaps because he thinks there is one chance in a
million that he is deluded or deceived in some way; and similarly for acts where we
can generally take ourselves to be at best trying (perhaps with very high probability
of success) to make a certain proposition true.

One way in which philosophers have tried to resolve this difficulty is to postulate
a phenomenalistic language in which an appropriate proposition E can always be
expressed, as a report on the immediate content of experience; but for excellent
reasons, this move is now in low repute.” The crucial point is not that 0.999 999 is
so close to 1.000 000 as to make no odds, practically speaking, for situations abound
in which the gap is more like one half than one millionth. Thus, in examining a
piece of cloth by candlelight one might come to attribute probabilities 0.6 and 0.4

6G. E. M. Anscombe, Intention, § 8, Oxford, 1957; 2nd ed., Ithaca, N.Y., 1963.
7See, e.g.,J. L. Austin, Sense and Sensibilia, Oxford, 1962.
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to the propositions G that the cloth is green and B that it is blue, without there
being any proposition E for which the direct effect of the observation is anything
near changing the observer’s degree of belief in E to 1. One might think of some
such proposition as that (E) the cloth looks green or possibly blue, but this is far
too vague to yield prob ($) = 0.6 and prob (%) = 0.4. Certainly, there is something
about what the observer sees that leads him to have the indicated degrees of belief
in G and in B, but there is no reason to think the observer can express this something
by a statement in his language. And physicalistically, there is some perfectly definite
pattern of stimulation of the rods and cones of the observer’s retina which prompts
his belief, but there is no reason to expect him to be able to describe that pattern or
to recognize a true description of it, should it be suggested.

As Austin® points out, the crucial mistake is to speak seriously of the evidence of
the senses. Indeed the relevant experiences have perfectly definite characteristics by
virtue of which the observer comes to believe as he does, and by virtue of which in
our example he comes to have degree of belief 0.6 in G. But it does not follow that
there is a proposition E of which the observer is certain after the observation and for
which we have prob ($) = 0.6, prob (£) =0.4, etc.

In part, the quest for such phenomenological certainty seems to have been
prompted by an inability to see how uncertain evidence can be used. Thus C. L.
Lewis:

If anything is to be probable, then something must be certain. The data which themselves
support a genuine probability, must themselves be certainties. We do have such absolute
certainties, in the sense data initiating belief and in those passages of experience which later
may confirm it. But neither such initial data nor such later verifying passages of experience
can be phrased in the language of objective statement — because what can be so phrased is
never more than probable. Our sense certainties can only be formulated by the expressive
use of language, in which what is signified is a content of experience and what is asserted
is the givenness of this content.’

But this motive for the quest is easily disposed of.!” Thus, in the example of
observation by candlelight, we may take the direct result of the observation (in a
modified sense of ‘direct’) to be, that the observer’s degrees of belief in G and
B change to 0.6 and 0.4. Then his degree of belief in any proposition A in his
preference ranking will change from prob A to

PROB A = 0.6 prob (A/G) + 0.4 prob (A/B).

In general, suppose that there are propositions E;, Ej, ..., E,, in which the
observer’s degrees of belief after the observation are pj, ps, ..., p,; where the E’s
are pairwise incompatible and collectively exhaustive; where for each i, prob E; is

8 Austin, op. cit., ch. 10
9C. 1. Lewis, An Analysis of Knowledge and Valuation, La Salle, Illinois, 1946, p- 186.
10Jeffrey, op. cit., ch. 11.
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neither O nor 1; and where for each proposition A in the preference ranking and for
each i the conditional probability of A on E; is unaffected by the observation:

PROB (A/E;) = prob (A/E)). (4.10)
Then the belief function after the observation may be taken to be PROB, where
PROB A = pi prob (A/E\) + p2 prob (A/E>) +---+ p, prob(A/E,), (4.11)

if the observer’s preference rankings before and after the observation are both
coherent. Where these conditions are met, the propositions E;, E, ..., E,, may
be said to form a basis for the observation; and the notion of a basis will play the
role vacated by the notion of directness.

The situation is similar in the case of acts. A marksman may have a fairly definite
idea of his chances of hitting a distant target, e.g. he may have degree of belief 0.3 in
the proposition H that he will hit it. The basis for this belief may be his impressions
of wind conditions, quality of the rifle, etc.; but there need be no reason to suppose
that the marksman can express the relevant data; nor need there be any proposition
E in his preference ranking in which the marksman’s degree of belief changes to 1
upon deciding to fire at the target, and for which we have prob () =0.3. But the

pair H, H may constitute a basis for the act, in the sense that for any proposition A
in the marksman’s preference ranking, his degree of belief after his decision is

PROB A = 0.3 prob (A/H) + 0.7 prob (A/H) .

It is correct to describe the marksman as #rying to hit the target; but the proposition
that he is trying to hit the target can not play the role of E above. Similarly, it was
correct to describe the cloth as looking green or possibly blue; but the proposition
that the cloth looks green or possibly blue does not satisfy the conditions for
directness.

The notion of directness is useful as well for the resolution of unphilosophical
posers about probabilities, in which the puzzling element sometimes consists in
failure to think of an appropriate proposition E such that the direct effect of an
observation is to change degree of belief in E to 1, e.g. in the following problem
reported by Mosteller.!!

Three prisoners, a, b, and ¢, with apparently equally good records have applied for
parole. The parole board has decided to release two of the three, and the prisoners know this
but not which two. A warder friend of prisoner a knows who are to be released. Prisoner
a realizes that it would be unethical to ask the warder if he, a, is to be released, but thinks
of asking for the name of one prisoner other than himself who is to be released. He thinks
that before he asks, his chances of release are g He thinks that if the warder says ‘b will

be released,” his own chances have now gone down to é, because either a and b or b and
c are to be released. And so a decides not to reduce his chances by asking. However, a is

mistaken in his calculations. Explain.

Problem 13 of Frederick Mosteller, Fifty Challenging Problems in Probability, Reading, Mass.,
Palo Alto, and London, 1965.
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Here indeed the possible cases (in a self-explanatory notation) are
AB, AC, BC,

and these are viewed by a as equiprobable. Then prob A is % but
prob (’;) = prob (2) = ;, and, since the warder must answer either ‘b’ or ‘c’
to a’s question, it looks as if the direct result of the ‘observation’ will be that
a comes to attribute probability 1 either to the proposition B that b will be
released, or to the proposition C that ¢ will be released. But this is incorrect.
The relevant evidence-proposition would be more like the proposition that the
warder says, ‘b’, or that the warder says, ‘c’, even though neither of these will
quite do. For it is only in cases AB and AC that the warder’s reply is dictated
by the facts: in case BC, where b and ¢ are both to be released, the warder
must somehow choose one of the two true answers. If a expects the warder to
make the choice by some such random device as tossing a coin, then we have
prob (A/the warder says, ‘b’) = prob (A/the warder says, ‘c’) =prob A = %; while if
a is sure that the warder will say ‘b’ if he can, we have prob (A/the warder says ‘b’)
= ; but prob (A/the warder says ‘c’) = 1.

3. Belief: reasons vs. causes. Indeed it is desirable, where possible, to incorporate
the results of observation into the structure of one’s beliefs via a basis of form
E, E where the probability of E after the observation is nearly 1. For practical
purposes, E then satisfies the conditions of directness, and the ‘direct’ effect
of the observation can be described as informing the observer of the truth of
E. Where this is possible, the relevant passage of sense experience causes the
observer to believe E; and if prob (’2) is high, his belief in E may be a reason
for his believing A, and E may be spoken of as (inconclusive) evidence for
A. But the sense experience is evidence neither for E nor for A. Nor does the
situation change when we speak physicalistically in terms of patterns of irritation
of our sensory surfaces, instead of in terms of sense experience: such patterns
of irritation cause us to believe various propositions to various degrees; and
sometimes the situation can be helpfully analyzed into one in which we are
caused to believe E;, E;, ..., E,, to degrees p;, p2, ..., pn, Whereupon those
beliefs provide reasons for believing other propositions to other degrees. But
patterns of irritation of our sensory surfaces are not reasons or evidence for any
of our beliefs, any more than irritation of the mucous membrane of the nose is a
reason for sneezing.

When I stand blinking in bright sunlight, I can no more believe that the hour
is midnight than I can fly. My degree of belief in the proposition that the sun is
shining has two distinct characteristics, (a) It is 1, as close as makes no odds. (b) It
is compulsory. Here I want to emphasize the second characteristic, which is most
often found in conjunction with the first, but not always. Thus, if I examine a normal
coin at great length, and experiment with it at length, my degree of belief in the
proposition that the next toss will yield a head will have two characteristics, (a) It



4 Probable Knowledge 55

is ; (b) It is compulsory. In the case of the coin as in the case of the sun, I cannot
decide to have a different degree of belief in the proposition, any more than I can
decide to walk on air.

In my scientific and practical undertakings I must make use of such compulsory
beliefs. In attempting to understand or to affect the world, I cannot escape the fact
that I am part of it: I must rather make use of that fact as best I can. Now where
epistemologists have spoken of observation as a source of knowledge, I want to
speak of observation as a source of compulsory belief to one or another degree. [
do not propose to identify a very high degree of belief with knowledge, any more
than I propose to identify the property of being near 1 with the property of being
compulsory.

Nor do I postulate any general positive or negative connection between the char-
acteristic of being compulsory and the characteristic of being sound or appropriate in
the light of the believer’s experience. Nor, finally, do I take a compulsory belief to be
necessarily a permanent one: new experience or new reflection (perhaps, prompted
by the arguments of others) may loosen the bonds of compulsion, and may then
establish new bonds; and the effect may be that the new state of belief is sounder
than the old. or less sound.

Then why should we trust our beliefs? According to K. R. Popper,

... the decision to accept a basic statement, and to be satisfied with it, is causally connected

with our experiences — especially with our perceptual experiences. But we do not attempt
to justify basic statements by these experiences. Experiences can motivate a decision, and
hence an acceptance or a rejection of a statement, but a basic statement cannot be justified
by them — no more than by thumping the table.'?

I take this objection to be defective, principally in attempting to deal with basic
statements (observation reports) in terms of decisions to accept or to reject them.
Here acceptance parallels belief, rejection parallels disbelief (belief in the denial),
and tentativeness or reversibility of the decision parallels degree of belief. Because
logical relations hold between statements, but not between events and statements,
the relationship between a perceptual experience (an event of a certain sort) and a
basic statement cannot be a logical one, and therefore, Popper believes, cannot be
of a sort that would justify the statement:

Basic statements are accepted as the result of a decision or agreement; and to that extent
they are conventions.'

But in the absence of a positive account of the nature of acceptance and rejection,
parallel to the account of partial belief given in section 1, it is impossible to evaluate
this view. Acceptance and rejection are apparently acts undertaken as results of
decisions; but somehow the decisions are conventional — perhaps only in the sense
that they may be motivated by experience, but not adequately motivated, if adequacy
entails justification.

12K. R. Popper, The Logic of Scientific Discovery, London, 1959, p. 105.
13Popper, op. cit., p. 106.
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To return to the question, “Why should we trust our beliefs?” one must ask what
would be involved in not trusting one’s beliefs, if belief is analyzed as in section 1
in terms of one’s preference structure. One way of mistrusting a belief is declining
to act on it, but this appears to consist merely in lowering the degree of that belief:
to mistrust a partial belief is then to alter its degree to a new, more suitable value.

A more hopeful analysis of such mistrust might introduce the notion of sensitivity
to further evidence or experience. Thus, agents 1 and 2 might have the same degree
of belief — ; — in the proposition H; that the first toss of a certain coin will yield
a head, but agent 1 might have this degree of belief because he is convinced that
the coin is normal, while agent 2 is convinced that it is either two-headed or two-
tailed, he knows not which.'* There is no question here of agent 2’s expressing his
mistrust of the figure ; by lowering or raising it, but he can express that mistrust
quite handily by aspects of his belief function. Thus, if H; is the proposition that
the coin lands head up the ith time it is tossed, agent 2’s beliefs about the coin are
accurately expressed by the function prob, where

1
prob, H; = 5 prob; (H,-/Hj) =1,
while agent 1’s beliefs are equally accurately expressed by the function prob; where

proby (H;,, Hi,,....H;)=27",

10 IR

if ij<ip < ... <i,. In an obvious sense, agent 1’s beliefs are firm in the sense that
he will not change them in the light of further evidence, since we have

1

>

while agent 2’s beliefs are quite tentative and in that sense, mistrusted by their
holder. Still, prob; H; = prob, H; = .

After these defensive remarks, let me say how and why I take compulsive belief
to be sound, under appropriate circumstances. Bemused with syntax, the early
logical positivists were chary of the notion of truth; and then, bemused with Tarski’s
account of truth, analytic philosophers neglected to inquire how we come to believe
or disbelieve simple propositions. Quite simply put, the point is: coming to have
suitable degrees of belief in response to experience is a matter of training — a skill
which we begin acquiring in early childhood, and are never quite done polishing.
The skill consists not only in coming to have appropriate degrees of belief in
appropriate propositions under paradigmatically good conditions of observation, but
also in coming to have appropriate degrees of belief between zero and one when
conditions are less than ideal.

Thus, in learning to use English color words correctly, a child not only learns to
acquire degree of belief 1 in the proposition that the cloth is blue, when in bright
sunlight he observes a piece of cloth of uniform hue, the hue being squarely in

probl (Hn+l/Hlv Hz, ey Hn) = pVObl Hn+l =

14This is a simplified version of ‘the paradox of ideal evidence’, Popper, op. cit., pp. 407-409.
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the middle of the blue interval of the color spectrum: he also learns to acquire
appropriate degrees of belief between 0 and 1 in response to observation under bad
lighting conditions, and when the hue is near one or the other end of the blue region.
Furthermore, his understanding of the English color words will not be complete
until he understands, in effect, that blue is between green and violet in the color
spectrum: his understanding of this point or his lack of it will be evinced in the sorts
of mistakes he does and does not make, e.g. in mistaking green for violet he may be
evincing confusion between the meanings of ‘blue’ and of ‘violet’, in the sense that
his mistake is linguistic, not perceptual.

Clearly, the borderline between factual and linguistic error becomes cloudy, here:
but cloudy in a perfectly realistic way, corresponding to the intimate connection
between the ways in which we experience the world and the ways in which we
speak. It is for this sort of reason that having the right language can be as important
as (and can be in part identical with) having the right theory.

Then learning to use a language properly is in large part like learning such skills
as riding bicycles and flying aeroplanes. One must train oneself to have the right
sorts of responses to various sorts of experiences, where the responses are degrees
of belief in propositions. This may, but need not, show itself in willingness to utter
or assent to corresponding sentences. Need not, because e.g. my cat is quite capable
of showing that it thinks it is about to be fed, just as it is capable of showing what
its preference ranking is, for hamburger, tuna fish, and oat meal, without saying or
understanding a word. With people as with cats, evidence for belief and preference
is behavioral; and speech is far from exhausting behavior.!?

Our degrees of beliefs in various propositions are determined jointly by our
training and our experience, in complicated ways that I cannot hope to describe.
And similarly for conditional subjective probabilities, which are certain ratios of
degrees of belief: to some extent, these are what they are because of our training —
because we speak the languages we speak. And to this extent, conditional subjective
probabilities reflect meanings. And in this sense, there can be a theory of degree of
confirmation which is based on analysis of meanings of sentences. Confirmation
theory is therefore semantical and, if you like, logical.'®

Discussion

L. HURWICZ: Richard Jeffrey on the Three Prisoners.

I would like to make a comment which I think is along the lines of Professor
Jeffrey’s discussion of the three prisoners. I would like to make the situation a little

BTeffrey, op. cit., pp. 57-59.

16Support of U.S. Air Force Office of Scientific Research is acknowledged, under Grant AF—
AFOSR-529-65.
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more explicit than it was earlier, although I shall not contradict anything that has
been said: I think this will help us to see to what extent, if any, there is anything
surprising or paradoxical in the situation.

First of all let me say this: there were three possible decisions by the warden —
AB, BC and AC; then, as against that, there was also the question of what the warden
would say to a who asked the question who else was being freed, and clearly the
warden could only answer ‘b’ or ‘c’. What I'm going to put down here is simply
the bivariate or two-way probability distribution, and it doesn’t matter at all at this
stage whether we interpret it as a frequency or as a subjective probability, because
it’s just a matter of applying the mechanics of the Bayes theorem.

One other remark I’d like to make is this: the case that was considered by
Professor Jeffrey was one where the a priori probabilities of AB, BC and AC were
each one-third. This actually does not at all affect the reasoning, and I will stick with
it just because it is close to my limitations in arithmetic.

So the marginal frequencies or probabilities are all equal to one-third. If the
decision had been AB, then of course the warden could only answer ‘b’, and
similarly if the decision had been AC, he could only answer ‘c’. So the joint
frequency or probability of the following event is one-third: the people chosen for
freeing are a and b, and when the warden is asked, “Who is the person other than a
who is about to be freed?’, his answer is ‘b’. The joint probability is also one-third
that the choice was AC and that the warden answered ‘c’.

We now come to the only case where the warden has a choice of what he will
say, namely, the case where the decision was BC. The question was raised, quite
properly, of how he goes about making this choice.

Let me here say the following. In a sense what I’'m doing here is a sally into
enemy territory, because I personally am not particularly Bayesian in my approach
to decision theory, so I would not myself assert that the only method is to describe
the warden’s decision, the warden’s principle of choice, as a probabilistic one.
However, if it is not probabilistic, then of course the prisoner, our a, would have
to be using some other principle of choice on his part in order to decide what to
do. Being an unrepentant conservative on this, I might choose, or A might choose,
the minimax principle. However, in order to follow the spirit of the discussion
here, I will assume that the whole thing is being done in a completely Bayesian
or probabilistic way; in this case, to compute the remaining joint distribution we
must make some probabilistic assumption about how the warden will behave when
asked the question.

So let the principle be this, that he has a certain random device such that if the
people to be freed are b and c, his answer to the question will be ‘b’ with probability
B and ‘¢’ with of course probability 1 — 8. All I will assume for the moment about 3
is that it is between zero and one, and that’s probably one of the few uncontroversial
points so far.

It is clear that the sum of the two joint probabilities (BC and ‘b’, and BC and ‘c’)
will be one-third; so the first will be ; B, and the second é (1 — B). The marginal (or
absolute) probabilities of ‘b’ and ‘c’ will be i (1+ B) and é (2 — B) respectively.
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Inf. —
Dec. ‘D’ ‘c’ Marginal
\
1 1
AB N 0 3
BC B/3 a=py3 i
1 1
AC 0 3 3
Marginal a+py3 | 2—=8)3 1

Now what are the probabilities after the warden has given his answer? Suppose that
the answer that the warden gave is ‘b’: the problem now is, what is the probability
that a is to be freed, given that the warden said that b is to be freed? This probability,
which I will denote by ‘w;’, I obtain in the following way using what I hope is a
self-explanatory notation:

7, =p(A/D)
_p@A-b)
p (‘D)
3 p(AB-“b’) + p (AC-*D’)
p (AB=D’) 4+ p (AC-“b’) + p (BC-*b’)
140
L 4+0+8/3

=1/(1+8).
Similarly I get 7. (the probability that a is to be freed, given that the warden said
that b is to be freed) as follows:
me =p(A/c’)
_p(Aie)
p(c)
_ p(AB-‘c’) + p (AC-“¢”)
pAB-c’) + p(AC-c’) + p (BC-¢”)

_ 0+,
S0+ l+(1-p/3
=1/2-8).

Now the question which we now have to ask is this: are these conditional probabili-
ties, 7, different from the marginal (absolute) probability that a is to be freed, p(a)?
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And the answer is that they are except when 8 happens to be equal to one-half, in
which case the probability remains at its marginal value of two-thirds. But except in
this special case the probabilities 7, and 7. can vary from one-half to one.'”

As Iindicated before, there is no quarrel between us, but I do want to explore just
one step further, and that is this. You remember when we were told this anecdote
there was a wave of laughter and I now want to see what it was that was so funny.
It is that this prisoner became doubtful about asking for this extra information,
because he thought his probability of being released would go down after getting
it. So it seemed that having this extra information would make him less happy,
even though he didn’t have to pay for it. That really was the paradox, not the fact
that the probabilities changed. Clearly, the change in probabilities is itself not at all
surprising; for example, if the warden had told a the names of two people other than
himself who would be freed, his optimism would have gone down very drastically.'®

What is surprising is that a thought he would be less happy with the prospect
of having the extra piece of information than without this prospect. What I want to
show now is that a was just wrong to think this; in other words, if this information
was free, he should have been prepared to hear it.

Suppose for instance § is different from one-half: I think it is implicit in this little
anecdote that the probability of a’s being released either before or after getting the
information, in some sense corresponds to his level of satisfaction. If his chances are
good he is happys; if his chances are bad he is miserable. So these 7’s, though they
happen to have been obtained as probabilities, may at the same time be interpreted
as utilities or what Professor Jeffrey called desirabilities. Good. Now if a proceeds
in the Bayesian way he has to do the following: he has to look at all these numbers,
because before he asks for the information he does not know whether the answer
will be ‘b’ or ‘c’. Then he must ask himself the following: How happy will I be if
he says ‘b’? How happy will I be if he says ‘c’? And then in the Bayesian (or de
Finetti or Ramsey) spirit he multiplies the utilities, say u(‘b’) and u(‘c’) associated
with hearing the warden say ‘b’ or ‘c’ by the respective probabilities, say p(‘b’) and
p(‘c’), of hearing these answers. He thus obtains an expression for his expected!”
utility associated with getting the extra information, say

Euw=p(b)-u(bt)y+p()-u(c).

17In the problem as reported by Mosteller, it might be reasonable to take 8 = é In that case, let
us note, 7, = 1/ (l + ;) = g (not ; as suggested in the statement of the problem!) and also
rn=1/2-8=1/(2- ;) = % Hence (for § = é) a was wrong to expect the probabilities
to change. But, on the other hand, the warden’s reply would give him no additional information.
80r suppose, that 8 = 1 (and a knows this). Then if a hears the warden tell him that c is one of the
persons to be released, he will have good reason to feel happy. For when = 1, the warden will
tell @ about having selected c only if the selected pair was AC. On the other hand, still with § =1,
if the warden says that b is one of the persons to be released, this means (with equal probabilities)
that either AB or BC has been chosen, but not AC. Hence, with the latter piece of information,
a will be justifiably less optimistic about his chances of release. (With B close to one, a similar
situation prevails.)

1%Tn the sense of the mathematical expectation of a random variable.
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Now the required probabilities are the marginal probabilities at the bottom of the
table, i.e.,

1+8 2-p
/b/ — , r ./ — .
p(¥)=" " p(d)=",
As for utilities, it is implicit in the argument that they are linear® functions of the
probabilities that a will be released given the warden’s answer. So
1 . 1
= ,u\c)=mn. = .
1+ 8 (<) 2-P

Hence the (expected) utility associated with getting the extra information from the
warden is

u (/b/) = p

1 1 2— 1
Eu* = +h . + p . = .
3 1+8 3 2-8 3
On the other hand, the expected utility Eu°, associated with not asking the warden
for extra information is simply equal to the original probability p(a) that a will be
released,

o 2
Eu® = p(a) = 3

Hence it so happens that (for a utility function linear in probabilities of release)
Eu* = Eu°,

i.e., the expected utility with extra information (Eu*) is the same as without
extra information (Eu°). Thus a should be willing (but not eager) to ask for extra
information (if it is free of charge). ‘On the average’?', it won’t do him any harm;
nor will it help him.??

P. SUPPES: Rational Changes of Belief.

I am generally very much in agreement with Professor Jeffrey’s viewpoint on
belief and knowledge as expressed in his paper. The focus of my brief remarks
is to point out how central and difficult are the problems concerning changes of
belief. Jeffrey remarks that the familiar method of changing probable beliefs by
explicitly conditionalizing the relevant probability measure is not adequate in many

20See footnote 22 on the next page.

21On the average’ expresses the fact that the decision is made on the basis of mathematical
expectation. It need not imply a frequency interpretation of probabilities.

22When utilities are non-linear with respect to probabilities of release, the prospect of additional
information may be helpful or harmful.
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situations — in fact, in all those situations that involve a change in the probability
assigned to evidence, but a change that does not make the probability of possible
evidence O or 1.

My point is that once we acknowledge this fact about the probable character of
evidence we open Pandora’s box of puzzles for any theory of rational behavior. 1
would like to mention three problems. These problems are not dealt with explicitly
by Jeffrey, but the focus I place on them is certainly consistent with his own
expressed views.

Attention and Selection

I begin with the problem of characterizing how a man attempting to behave
rationally is to go about selecting and attending to what seems to be the right
kind of evidence. Formulations of the problem of evidence within a logically
well-defined language or sample space have already passed over the problem of
evaluating their appropriateness. Any man has highly limited capacities for attention
and observation. Given a characterization of his powers and limitations what is
a rational way to behave? Consider the familiar coin-flipping example. When
is it appropriate to stop concentrating on the outcomes of the flips and to start
observing closely the behavior of the gambler doing the flipping? To take another
sort of example, how do we characterize the behavior of detectives who act on
subthreshold cues and conjectures that can scarcely even be verbalized, let alone
supported by explicit evidence? Put more generally, what is the rational way to
go about discovering facts as opposed to verifying them? It is easy to claim that
for a wide variety of situations rational discovery is considerably more important
than rational verification. In these cases of discovery we need to understand much
better the information-processing capacities of human beings in order to be able
to characterize in a serious way rational information-processing. Above all, it is
certainly not clear to me what proportion of rational information-processing should
be verbalized or is even verbalizable.

Finite Memory

The second problem concerns the rational use of our inevitably restricted memory
capacities. A full-blown theory of rationality should furnish guidelines for the kinds
of things that should be remembered and the kind that should not. Again a solution,
but certainly not a solution whose optimality can be seriously defended, is at least
partly given by the choice of a language or a sample space for dealing with a given
set of phenomena. But the amount of information impinging on any man in a day
or a week or a month is phenomenal and what is accessible if he chooses to make it
so is even more so. What tiny fraction of this vast potential should be absorbed and
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stored for ready access and use? Within the highly limited context of mathematical
statistics, certain answers have been proposed. For example, information about the
outcome of an experiment can be stored efficiently and with little loss of information
in the form of the likelihood function or some other sufficient statistic, but this
approach is not of much use in most situations, although elements of the approach
can perhaps be generalized to less restricted circumstances. Perhaps even more
importantly, it is not clear what logical structure is the most rational to impose
on memory. The attempts at constructing associative computer memories, as they
are often called, show how little we are able as yet to characterize explicitly a
memory with the power and flexibility of a normal man’s, not to speak of the
memory of a normal man who is using his powers with utmost efficiency. Perhaps
one of the most important weaknesses of confirmation theory and the Ramsey-sort
of theory developed by Jeffrey and others is that little is said about imposing a
logical structure on evidence. Part of the reason for this is that the treatment of
evidence is fundamentally static rather than dynamic and temporal. In real life,
evidence accumulates over time and we tend to pay more attention to later than
earlier data, but the appropriate logical mechanisms for storing, organizing and
compressing temporally ordered data are as yet far from being understood.

Concept Formation

The most fundamental and the most far-reaching cognitive changes in belief
undoubtedly take place when a new concept is introduced. The history of science
and technology is replete with examples ranging from the wheel to the computer,
and from arithmetic to quantum mechanics. Perhaps the deepest problem of rational
behavior, at least from a cognitive or epistemological standpoint, is to characterize
when a man should turn from using the concepts he has available to solve a
given problem to the search not just for new evidence but for new concepts with
which to analyze the evidence. Perhaps the best current example of the difficulty
of characterizing the kinds of concepts we apply to the solution of problems is
the floundering and vain searching as yet typical of the literature on artificial
intelligence. We cannot program a computer to think conceptually because we do
not understand how men think conceptually, and the problem seems too difficult
to conceive of highly nonhuman approaches. For those of us interested in rational
behavior the lesson to be learned from the tantalizing yet unsatisfactory literature on
artificial intelligence is that we are a long way from being able to say what a rational
set of concepts for dealing with a given body of experience should be like, for we
do not have a clear idea of what conceptual apparatus we actually use in any real
sense.

To the problems about rationality I have raised in these remarks there is the pat
answer that these are not problems of the theory of rational behavior but only of
the theory of actual behavior. This I deny. A theory of rationality that does not
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take account of the specific human powers and limitations of attention, memory and
conceptualization may have interesting things to say but not about human rationality.

R. C. JEFFREY: Reply.

Suppes’ and Hurwicz’ comments are interesting and instructive, and I find I have
little to add to them. But perhaps a brief postscript is in order, in response to Suppes’
closing remark:

A theory of rationality that does not take account of the specific human powers and
limitations of attention may have interesting things to say, but not about human rationality.

It may be that there is no real issue between us here, but the emphasis makes me
uncomfortable. In my view, the logic of partial belief is a branch of decision theory,
and I take decision theory to have the same sort of relevance to human rationality
that (say) quantification theory has: the relevance is there, even though neither
theory is directly about human rationality, and neither theory takes any account of
the specific powers and limitations of human beings.

For definiteness, consider the following preference ranking of four sentences s,
s', t, ¥, where s and s are logically inconsistent, as are ¢ and ¢.
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This ranking is incoherent: it violates at least one of the following two requirements,
(a) Logically equivalent sentences are ranked together. (b) The disjunction of two
logically incompatible sentences is ranked somewhere in the interval between them,
endpoints included. Requirements (a) and (b) are part of (or anyway, implied by) a
definition of ‘incoherent’. To see that the given ranking is incoherent, notice that (a)
implies that the disjunction of the sentences s, s’ is ranked with the disjunction of
the sentences ¢, ¢, while (b) implies that in the given ranking, the first disjunction
is higher than the second. In my view, the point of classifying this ranking as
incoherent is much like the point of classifying the pair s, s’ as logically inconsistent:
the two classifications have the same sort of relevance to human rationality. In
the two cases, a rational man who made the classification would therefore decline
to own the incoherent preference ranking or to believe both of the inconsistent
sentences. (For simplicity I speak of belief here as an all-or-none affair.)

True enough: since there is no effective decision procedure for quantificational
consistency there is no routine procedure a man can use — be he ever so rational — to
correctly classify arbitrary rankings of sentences as incoherent or arbitrary sets of
sentences as inconsistent. The relevance of incoherence and inconsistency to human
rationality is rather that a rational man, once he comes to see that his preferences
are incoherent or that his beliefs are inconsistent, will proceed to revise them. In
carrying out the revision he may use decision theory or quantification theory as an
aid; but neither theory fully determines how the revision shall go.
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In fine, 1 take Bayesian decision theory to comprise a sort of logic of decision:
the notion of coherence has much the same sort of relationship to human ideals of
rationality that the notion of consistency has. But this is not to deny Suppes’ point.
The Bayesian theory is rather like a book of rules for chess which tells the reader
what constitutes winning: there remains the question of ways and means.



Chapter 5
Fine-Grained Opinion, Probability,
and the Logic of Full Belief

Bas C. van Fraassen

Personal or subjective probability entered epistemology as a cure for certain
perceived inadequacies in the traditional notion of belief. But there are severe strains
in the relationship between probability and belief. They seem too intimately related
to exist as separate but equal; yet if either is taken as the more basic, the other may
suffer.

After explaining the difficulties in some detail I will propose a single unified
account which takes conditional personal probability as basic. Full belief is therefore
a defined, derivative notion. Yet it is easiest to explain the resulting picture of
opinion as follows: my subjective probability is only a grading of the possibilities
left open by my beliefs. My conditional probabilities generally derive from the
strongest belief I can maintain when admitting the relevant condition. Appendices
will survey the literature.

Full Belief and Personal Probability

The most forceful answer I can give if asked for my opinion, is to say what I
fully believe. The point of having beliefs is to construct a single (though in general
incomplete) picture of what things are like. One obvious model of this part of my
opinion is a set of propositions.! Their intersection is the proposition which captures

I'This was essentially the model provided in Hintikka’s book Knowledge and Belief. By proposi-
tions I mean the semantic content of statements; the same proposition can be expressed by many
statements. I am not addressing how opinion is stored or communicated.
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exactly that single picture of the world which has my full assent. Clearly a person’s
full beliefs leave open many alternatives. Alternatives left open by belief are then
also represented by (sets of) propositions, namely ones that imply my beliefs. But
these alternatives do not all have the same status for me, though they are all “possible
for all I [know or] believe.” Some seem more or less likely than others: enter
personal (subjective) probability, as a grading of the possibilities left open by one’s
beliefs.

I will take for granted that the probability of a proposition is a real number in the
interval [0, 1], with the empty proposition A (self-contradiction) receiving 0 and the
universal proposition U (tautology) receiving 1. The assignment is a measure, that
is, it is additive and continuous (equivalently, countably additive). It follows from
this that the assignment of probabilities respects the ordering by logical implication:

If A C B then P(A) < P(B)

though we must be careful in any extrapolation from propositions to sets of
propositions unless they are countable. That is essentially because at most countably
many disjoint propositions can receive finite positive probability. (Reason: at most
one can receive probability greater than 1/2, at most two can receive more than 1/3,

. etc. The question of infinitesimal positive probability will be taken up in an
Appendix.)

The so-called lottery paradox shows that we cannot equate belief with probabil-
ity > p, if p< 1. For example, suppose p = 0.99 and a lottery which I believe to be
fair has 1000 tickets, then my probability that the k" ticket will not win the (single)
prize equals 0.999. Hence for each k=1, ..., 1000, I would believe that the Kt
ticket will not win. My beliefs would then entail that all tickets will fail to win,
which conflicts with my original belief that the lottery is fair. This argument is more
important for what it presupposes than for what it shows. It is clearly based on the
assumed role of full belief: to form a single, unequivocally endorsed picture of what
things are like.?

In fact, the thesis that probabilities grade exactly the alternatives left open by full
belief guarantees that all full beliefs have maximal personal probability.

So what if we simply set p=1, that is, identify our full beliefs with the
propositions which are maximally likely to us? The first problem with this is that we
seem to be treating full beliefs as on a par with tautologies. Are there no distinctions
to be drawn among the maximally likely propositions? There is a second problem
for this proposal as well. In science we deal with continuous quantities. Therefore,
in general, if we let science guide our opinion, the maximally likely propositions
will not form a single picture — they will just give us a family of rival maximally
likely pictures.

Example 5.1 Consider the mass of the moon reckoned in kilograms, and suppose 1
am sure that it is a number in the interval [a, b]. If my probability follows Lebesgue

2This has been denied, e.g. by Henry Kyburg, and doubted, e.g. by Richard Foley (1993, Ch. 4).
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measure then my probability is zero that the number equals x, for a <x <b. Hence
my probability equals 100 % that the number lies in the set [a, b] — {x}, for each
such number x. Yet no real number belongs to all these sets — their intersection
is empty. Probability measures of this sort (deriving from continuous probability
densities) are ubiquitous in science, and informed opinion must be allowed to let
itself be guided by them. We have here a transfinite lottery paradox, and we can’t
get out of it in the way that worked for the finite case (see Maher 1990).

Supposition and Two-Place Probability

There is a third aspect of opinion, besides belief and subjective grading, namely
supposition. Much of our opinion can be elicited only by asking us to suppose
something, which we may or may not believe. The respondent imaginatively puts
himself in the position of someone for whom the supposition has some privileged
epistemic status. But if his answer is to express his present opinion — which is surely
what is requested — then this “momentary” shift in status must be guided by what
his present opinion is. How does this guidance work?

One suggestion is that the respondent moves to a state of opinion derived from
his own in two steps: (1) discarding beliefs so that the supposition receives more
than minimal likelihood; (2) then (without further change in beliefs) regrading the
alternatives left open so as to give the supposition maximal likelihood. This makes
sense only if both steps are unambiguous. We can imagine a simple case. Suppose
Peter has as “primary” beliefs A and B, and believes exactly what they jointly entail;
he is asked to entertain the supposition C — A. In response he imaginatively moves
into the epistemic position in which (1) B is the only primary belief, and (2) he
assigns O to all alternatives left open by B which conflict with (C —A) and then
regrades the others in the same proportions as they had but with the maximum
assigned to (BN C — A).

This simple case already hinges on a certain hierarchical structure in Peter’s
opinion. Moreover it presupposes that those alternatives which were left open by
B, but which conflict with his initial equally primary belief that A, had been graded
proportionately as well. Even more structure must be present to guide the two steps
in less simple cases. What if the beliefs had been, say, A, B, and D, and their
joint consequences, and the supposition was compatible with each but not with the
conjunction of any two? The discarding process can then be guided only if some
hierarchy among the beliefs determines the selection.

Let us consider conditional personal probability as a possible means for describ-
ing structure of this sort. The intuitive Example 5.1 above about the mass of the
moon is the sort often given to argue for the irreducibility of conditional probability.
I could continue the example with: the mass of the moon seems to me to equally
likely to be x as (x 4 b)/2, on the supposition that it is one of those two numbers.
The two possibilities at issue here are represented by the degenerate intervals [x],
[(x 4+ b)/2], so both they and the supposition that one or other is the case (represented
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by set {x, (x4 b)/2} their union) receive probability 0. The usual calculation of
conditional probability, which would set P(B | A) equal to P (B N C|A) divided
by P (C|A N C), can therefore not be carried out. The suggestion that conditional
probability is irreducible means that two-place probability P( | ) — probability of one
thing given (on supposition of ) another — is autonomous and cannot be defined in
terms of the usual one-place (“absolute”) probability. Rather the reverse: we should
define P( ) = P( | U), probability conditional on the tautology.

There is a good deal of literature on two-place (“irreducible conditional”)
probability (see Appendix). Despite many individual differences, general agreement
concerning two-place probability extends to:

I. If P is a 2-place probability function then P(— | A) is “normally” a (1-place)
probability function with P(A | A) = 1.
II. These derivative 1-place probability functions [described in I.] are related at least
by the Multiplication Axiom:

P(BNCJA) = P(BJA)P(CJANC)

where A, B, C, ... are assumed to be in the domain and co-domain of the function.
The “normally” restriction (eliminating at least A = A) is to be discussed below.

New non-trivial relationships between propositions are now definable. De Finetti
suggested relations of local comparison of the following type:

A is superior toB iff P(A|JA+ B) =1

where ‘4’ marks exclusive disjunction: A + B = (A —B) U (B — A).?

Example 5.2 Given any probability measure P it is easy to produce a 2-place
function that has that character:

define P (A|B) = P (A N B) /P(B) if P(B) > 0
=1ifP(B)=0

That is a trivial 2-place function since it is definable from a 1-place function.

3De Finetti (1936). T want to thank John M. Vickers for bringing this to my attention; De Finetti’s
idea is developed considerably further, with special reference to zero relative frequency, in Vickers
(1988), Sections 3.6 and 5.4. The relation here defined is slightly different from the so-named one
in my (1979) — to which the name was somewhat better suited — for convenience in some of the
proofs.
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Example 5.3 Let U be the set of natural number {0, 1,2, ... }. Forindexn =0, 1, 2,
... let p, be the probability measure defined on all subsets of U by the condition that
it assigns 0.1 to {x} if x is in the set {10n, ..., 10n + 9}, and 0 otherwise. Define:

P(A|B) = p, (AN B) /p,(B) for the first index n
such that
pn(B) > 0, if there is any such index; = 1 otherwise.

To verify the Multiplication Axiom note for instance that if A NC is not empty, and
P(A | C)>0 then the first index n for which p,(A NC)>0 is the same as the first
index m such that p,,(C) > 0. The “otherwise” clause will apply here only if B= A.

These examples are instances of the “lexicographic” probability models which
I will discuss at some length below. We make the ideas of one- and two-place
probability precise as follows.

A space is a couple S = (U, F) with U a non-empty set (the worlds) and F (the
family of propositions) a sigma-field on U, that is:

(a) UeF
(b) ifA,B € FthenA—B €eF
(¢) if{A;:i=1,2, ...} CFthenU{A;} € F

A (1-place) probability measure P on space S = (U, F) is a function mapping F
into the real numbers, subject to

1.0=P(A) <=PA)<PU)=1

2. P(AUB) + P(ANB) = P(A) + P(B) (finite additivity)

3.IfE\CE, C...C E, C... has union E, then P(E) =sup{P(E,):n=1,2, ...}
(continuity)

Property 3 is in this context equivalent to countable additivity:

4. If {E,;: n=1, 2, ...} are disjoint, with union E, then P(E) = X{P(E,):
n=12,...}

and also to the dual continuity condition for countable intersection. The general
class of two-place probability measures to be defined now will below be seen to
contain a rich variety of non-trivial examples.

A 2-place probability measure P(— | —) on space S = (U, F) isamap of F x F
into real numbers such that

I. (Reduction Axiom) The function P(— | A) is either a probability measure on S
or else has constant value = 1.
II. (Multiplication Axiom)
P(BNCJA) =P (BJA)P(C|IBNA)

forallA,B, C, in F.
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If P(| A) is a (1-place) probability measure, I shall call A normal (for P), and
otherwise abnormal. (‘“Absurd” might have been a better name; it is clearly a notion
allied to self-contradiction.) The definition of 2-place probability allows for the
totally abnormal state of opinion (P(A | B) =1 for all A and B). It should not be
excluded formally, but I shall tacitly exclude it during informal discussion. Here
are some initial consequences of the definition. The variables range of course over
propositions (members of family F in space S = (U, F)).

[T2.1] P(X|A) =P(XNA|A)

[T2.2] If A is normal, so are its supersets

[T2.3] If A is abnormal, so are its subsets

[T2.4] B is abnormal iff P(—B | B) = 1; iff P(B | A) =0 for all normal A.

Let us call the case in which only A is abnormal the “Very Fine” case; that there
are Very Fine 2-place probability measures on infinite fields will follow from results
below.

We add one consequence which is related to De Finetti’s notion of conglomer-
ability:

[T2.5] Condition Continuity: If {E,} is a countable increasing chain —i.e. E,
part of E, 1 — with union E, and P(E, | E)>0 for all n, then P(X | E)
is the limit of the numbers {P (X|E,)}.

To prove this: P (X|E,) = P(X N E,|E) /P (E, N E), so since E is normal, this
follows from the principle of condition continuity which can be demonstrated for
(one-place) probability measures.*

The Idea of the A Priori

In any conception of our epistemic state there will be propositions which are not
epistemically distinguishable from the tautology U — let us say these are a priori for
the person. This notion is the opposite of the idea of abnormality:

A'is a priori for P iff P(A|X) = 1 for all X,iff U — A is abnormal for P.
What is a priori for a person is therefore exactly what is certain for him or her
on any supposition whatsoever. This notion generalizes unconditional certainty,

i.e. P(A) = 1. The strongest unconditional probability equivalence relation between
A and B is that their symmetric difference (A 4+ B) has measure zero. We can

4See B. De Finetti (1972), Section 5.22.
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generalize this similarly. As our strictest epistemic equivalence relation between
two propositions we have a priori equivalence (their symmetric difference has
probability O on all normal suppositions):

A(P)B iff A+ B is abnormal.’

The abnormal propositions are the ones a priori equivalent to the empty set (the
self-contradiction) and the a prioris are the ones a priori equivalent to the tautology.
(Of course these are subjective notions: we are speaking of what is a priori for the
person with this state of opinion.)

Note now that A(P)B iff P(A | A+ B)=1 and P(B | A 4+ B) = 1, since additivity
would not allow that if A 4+ B were normal. We can divide this equivalence relation
into its two conjuncts:

Definition A P>Biff PA|A+B)=1.

This is the relationship of “superiority” mentioned above.
[T3.1] If A logically implies B then B P>A.

It follows from the definition that A P>A. In a later section I shall also show
that P>is transitive. Clearly if A 4 B is normal, then A P>B means that A is
comparatively superior to B, in the sense that A is certainly true and B certainly
false, on the supposition that one but not both are the case. But if A + B is abnormal
then the relationship A P>B amounts to A(P)B. The right reading for “P >” is
therefore “is superior to or a priori equivalent to”. To be brief, however, I'll just say
“A is superior to B” for “A P> B”, and ask you to keep the qualifications in mind.

Full Belief Revisited

The beliefs I hold so strongly that they are a priori for me are those whose contraries
are all abnormal. There is a weaker condition a proposition K can satisfy: namely
that any normal proposition which implies K is superior to any that are contrary to
K. Consider the following conditions and definitions:

(Al) Normality: K is normal
(A2) Superiority:  If A is a non-empty subset of K while B and K are disjoint,
then A P>B

(A3) Contingency: The complement U — K of K is normal.
We can restate the “Superiority” condition informally as follows:

SFrom this point on I shall drop the ubiquitous “for P” unless confusion threatens, and just write “a

RTINS

priori”, “abnormal”, etc. leaving the context to specify the relevant 2-place probability measure.
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Superiority: the alternatives K leaves open are all superior to any alternative that K
excludes.

We can deduce from these conditions something reminiscent of Carnap’s

9o 6

“regularity” (or Shimony’s “strict coherence”):

(A4) Finesse: all non-empty subsets of K are normal.
Definition K is a belief core (for P) iff K satisfies (A1)—(A3).

Note that the a priori propositions satisfy (A1) and (A2), though definitely not
(A3), but rather its opposite. However, the following elementary results show that
all the a prioris are among the propositions implied by belief cores.

[T4.1] IfKis a belief core then P(K | U) = 1.
[T4.2] If Kis a belief core then A P> K iff K implies A.
[T4.3] 1If Kis a belief core and A is a priori then K is a subset of A.

To characterize the full beliefs we need take into account the extreme possibility
of there being no belief cores; in that case we still want the a prioris to be full
beliefs of course. (This corresponds to what I have elsewhere called “Zen minds”:
states of opinion in which nothing is fully believed if it is subjectively possible to
withhold belief.) In view of the above we have several equivalent candidates for this
characterization, of which we can choose one as definition:

Definition A is a full belief (for P) iff (i) there is a belief core, and A P>K for
some belief core K; or (ii) there is no belief core, and A is a priori.

[T4.4] The following conditions are equivalent:
(a) A is a full belief (for P).
(b) Some proposition J which is either a priori or a full belief core is
such thatA P> J.
(c) A is implied either by an a priori or by a belief core (for P).

Very little in this discussion of full belief hinges on the peculiarities of proba-
bility. Indeed, (conditional) probability enters here only to give us intelligible, non-
trivial resources for defining the notions of subjective superiority and a-prioricity
(equivalently, [ab]normality). If those notions could be acceptably primitive, the
account of full belief here would just take the following form:

A belief core is a proposition K such that:

(a) K and its complement are both normal; (b) K does not leave open any
abnormal alternatives; (c) any alternatives left open by K are superior to any
alternatives K excludes.

A belief is any proposition implied by a belief core (or a priori).

As before, a proposition is here called an alternative left open by K exactly if it
is non-empty and implies K.
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Identification of Full Beliefs

By the definition I gave of full belief, beliefs are clustered: each belongs to a family
{A: A P>K]} for some belief core K (if there are any at all), which by [T4.2] sums
up that cluster exactly:

K is the intersection of {A:A P > K}
{A:A P> K} ={A:K implies A}.

We can now prove that these clusters form a chain, linearly ordered by set inclusion
(implication).

[T5.1] IfK, K’ are belief cores, then either K
is a subset of K’ or K’ is a subset of K.

For the proof let A=K — K’ and B= K’ — K. Each is normal if non-empty, by
(A4). If B is not empty then, since A is disjoint from K’, it follows by (A2) that
B P>A. By parity of reasoning, if A is not empty, then A P> B. But we cannot
have both unless A 4 B is abnormal, and hence empty by [T2.2] and (A4). So we
conclude that either A or B or both are empty; hence at least one of K and K’ is a
subset of the other.

This result is crucial for the characterization of full belief. It is therefore
worthwhile to note that the only ingredients needed for the proof were the features
of Superiority and Finesse of belief cores, plus the following characteristic of the
superiority relationship: if A P>B and B P>A then A 4+ B is abnormal. Here is an
illustrative example:

Example 5.4 For the center of mass of the remains of Noah’s ark, Petra has
subjective probability 1 for each of the following three propositions: that it lies in
the Northern Hemisphere (which part of the earth includes the Equator), that it lies
in the Western Hemisphere, and thirdly that it lies North of the Equator. But only
the first two of these propositions are among her full beliefs; the third is not. On the
supposition that one but only one of these beliefs is true, she gives 100 % probability
to the first proposition, that it lies in the Northern Hemisphere.

Note that the last sentence implies that the first proposition is superior to the
second, although both are full beliefs. I will give a formal reconstruction of this
example later on.

Writing K* for the intersection of all the belief cores, we conclude that if A is
a full belief, then K* implies A. But is K* itself a belief core? Does it have 100 %
probability? Is it even non-empty? This is the problem of transfinite consistency of
full belief in our new setting.

[T5.2] The intersection of a non-empty countable family of belief cores is a
belief core.
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For proof, assume there is at least one belief core; call it K. Assume also that
the belief cores are countable and form a chain (the latter by [T5.1]), and call the
intersection K*. Countable additivity of the ordinary probability measure P() = P(|
U) is equivalent to just the right continuity condition needed here: the probabilities
of the members of a countable chain of sets converge to the probability of its
intersection. Since in our case all those numbers equal 1, so does P(K*). Therefore
also K* is not empty, and thus normal because it is a subset of at least one belief core.
Moreover, so are its non-empty subsets, so that they are normal too. Its complement
U — K* includes U — K, and is therefore also normal.

We have now seen that K* satisfies conditions (A1), (A3), and (A4), and need
still to establish (A2). If A is a normal subset of K*, and hence of all belief cores,
and B is disjoint of K*, we have P(A | A + (B—K')) = 1 for all belief cores K’. But
the sets B — K’ form an increasing chain whose union is B — K* = B. Hence also the
sets A + (B —K") here form such a chain with union A + B. To conclude now that
P(A | A+ B) =1, we appeal to [T2.5], the principle of Condition Continuity. This
ends the proof.

The significance of this result may be challenged by noting that the intersection
of countably many sets of measure 1 also has measure 1. So how have we made
progress with the transfinite lottery paradox? In four ways. The first is that in
the representation of opinion we may have a “small” family of belief cores even
if probability is continuous and there are uncountably many propositions with
probability 1. The second is that no matter how large a chain is, its intersection
is one of its members if it has a first (= “smallest”) element. The third is that the
following is a condition typically met in spaces on which probabilities are defined
even in the most scientifically sophisticated applications:

*) Any chain of propositions, linearly ordered by set inclusion, has a
countable subchain with the same intersection.

[T5.3] If (*) holds and there is at least one belief core, then the intersection of
all belief cores is also a belief core.

This is a corollary to [T5.2].

Fourthly, farther below I will also describe an especially nice class of models
of fine-grained opinion for which we can prove that the intersection of the belief
cores, if any, is always also a belief core (“lexicographic probability”’). There are no
countability restrictions there.

To What Extent Does Belief Guide Opinion?

It is not to be expected that every two-place probability function is admissible as
a representation of (possible) opinion. If we want to use this theory in descriptive
epistemology, it is necessary to look for kinds of probability functions that have
interesting structure. There are models in which there are no belief cores at all.
Combining our previous Examples 5.1 and 5.2, take Lebesgue measure m on the
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unit interval, and trivially extend it to a two-place function by P(A | B)=m(A N
B)/m(B) if defined and P(A | B) = 1 if not (though A, B in domain of m). Then every
unit set {x} is in the domain and is abnormal. Therefore there is no set all of whose
subsets are normal, and hence no belief cores. (The absence of belief cores in our
present example derives from its triviality, and not from the continuity.) Obviously
then, if this represents someone’s opinion, his opinions are not guided or constrained
by his beliefs (which include only the a priori).°

At the other extreme from this example, there is the Very Fine case of a
probability function P for which every non-empty set is normal.

Definition P is belief covered if the union of the belief cores equals U.

In that case, P is Very Fine. For let A be any non-empty proposition; there will
be some belief core K such that K NA is not empty, hence normal, thus making A
normal.

Example 5.3 furnishes us with a relatively simple example of this sort. Recall that
P is there constructed from the series pg, pi. ..., Pn, ... where the whole probability
mass of p, is concentrated (and evenly distributed) on the natural numbers {10n,
..., 10n + 9}. In this example, the belief cores are exactly the sets

Ko=10,....9},K; = {0,...,19},
K, =10,...,29},...Ki = 1{0,...,10i + 9}

Clearly K; is normal, since P (-|K;) = P (-|Ky) = Py. The complement of K; is
normal too, for

P(U—-K)=P({10G+1),...}) = piyi.

If A is a non-empty subset of K; and B is disjoint from K;, then A is superior to B.
Specifically, the first n such that p,(A) >0 can be no higher than i in that case, while
the first m such that p,,(B) >0 can be no lower than i + 1. Therefore, the first k£ such
that pr(A 4+ B) >0 will assign a positive probability to A and zero to B.

These belief cores clearly cover U; P is belief covered and Very Fine. Indeed, the
belief cores are well-ordered,

Define the belief remnants

Ry =Ky
R =K1 —K(G=0.1.2,...).

%Could a person’s opinion be devoid of belief cores? Our definitions allow this, and it seems to
me this case is related to the idea of a “Zen mind” which I have explored elsewhere (van Fraassen
1988).
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Clearly p; = P(| R;); for example, p; = P(] {10, ..., 19}). Probabilities condi-
tional on belief remnants (beliefs remaining upon retrenchment to a weaker core)
determine all probabilities in this case:

P (—-|A) = P (-|A N R;) for the first i such that P (A|R;) > 0.

This says quite clearly that (in this case) belief guides opinion, for probabilities
conditional on belief remnants are, so to speak, all the conditional probabilities
there are.

The Multiplication Axiom Visualized

In the basic theory of two-place probability, the Multiplication Axiom places the
only constraint on how the one-place functions P(| A), P(| B), ... are related to each
other. It entails that the proposition A — B is irrelevant to the value of P(B | A) — that
this value is the same as P(A N B | A) — and that the usual ratio-formula calculates
the conditional probability when applicable. Indeed, the ratio formula applies in the
generalized form summarized in the following:

If X is a subset of A which is a subset of B, then:

[T7.1] if P(A|B)>0then P (X|A) = P(X|B) : P(A|B)
[T7.2] if X is normal, then P (X|B) < P (X|A).

There is another way to sum up how the Multiplication Axiom constrains the
relation between P(| A) and P(| B) in general. When we consider the two conditional
probabilities thus assigned to any proposition that implies both A and B, we find a
proportionality factor, which is constant when defined.

[T7.3] If P(A | B)>0 then there is a constant k > 0 such that for all subsets X
of AN B, P(X|A) = kP (X|B). The constant k = k (A, B) = [P (B|A) /
P (A|B)], defined provided P(A | B)>0.

Equivalence Relations on Propositions

In the main literature on two-place probability we find an equivalence relationship
other than a priori equivalence, which I shall call surface equivalence:’

7In earlier treatments of two-place probability this relationship has appeared as a special axiom: If
P(A| B)y=P(B | A)=1then P(- | A)=P(- | B).
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[T8.1] The following conditions are equivalent:
(@) P(-|A) = P(:|B)
(b) P (A + BJA U B) = 0 or else both A, B are abnormal
(c) P(A|IB) = P(B|A) = 1.

(T use the dot for function notation: (a) means that P (X|A) = P (X|B) for all X.)
It is easy to prove that (a) implies (b), for if (a) and either A or B is normal then
both are normal. Secondly suppose (b). If A, B abnormal then (c) follows. Suppose
then that one of A, B is normal, so A U B is normal. Then either P (A|A U B) or
P (BJA U B) is positive; suppose the first. Since AN B € A € A U B it follows by
[T7.1] that P(B| A)=P(BNA|AUB): PA|AUB).ButP(A—BJAUB) =0
so PANB|AUB) = P(AJAUB) > 0; hence we conclude that P(B | A)=1.
Accordingly, B too is normal and P (B|A U B) is positive; the same argument leads
mutatis mutandis to P(A | B) = 1. Therefore (b) implies (c).

Finally suppose (c). If A is abnormal, then so is B and (a) follows at once.
If A is normal, then B and A U B are also normal. But then P(ANB|JAUB) =
P(A|JAUB) = P(BJAUB) = 1, using (c) and the Multiplication Axioms. Hence
PXNANBJAUB) = P(XNAJAUB) = P(X|A) and by similar reasoning
P(X NANB|AUB) = P (X|B). Therefore (c) implies (a).

The relationship of a priori equivalence is much “deeper”. As prelude let us
introduce another operation on probability functions which is something like “deep
conditionalization”. Instead of raising a proposition to the status of subjective
certainty it raises it to subjective aprioricity. To prevent confusion, I shall call this

“relativization”.?

Definition The relativization of P to A is the function P//A defined by P//A(X |
Y)=P(X|Y NA)forall X, Y.

[T8.2] The following are equivalent:
(i) P (A]-) = P (B[")

(ii) P (-] - NA) = P (-] - NB) (i.e. P//A = PIIB)
(iii) P(A|[A + B) = P(BJA+ B) = 1 (a priori equivalence)
(iv) A + B is abnormal (i.e. A(P)B)

(For proof that (ii) implies (iv), use the Lemma: if A, B are disjoint and abnormal
then A U B is abnormal.).

[T8.3] A priori equivalence implies surface equivalence.

8As T have argued elsewhere (van Fraassen 1981a) this construction provides us with the “right”
clue to the treatment of quantification and of intuitionistic implication in so-called probabilistic (or
generally, subjective) semantics.

°In my (1981a), P/A was designated as P* and called “P conditioned on A.” T now think this
terminology likely to result in confusion, and prefer “P relativized to A.”



80 B.C. van Fraassen

The converse does not hold, as can be seen from our Example 5.3 in Section 2.1,
where U is the set of natural numbers, and is surface equivalent, but not a priori
equivalent, to {0, 1, ..., 9}. For P({0, 1, ..., 9} | {10, ..., 19}) =0 there.

Implication Relations; Superiority Is Transitive

We are representing propositions by means of a field of sets, whose elements are
thought of as alternative possible situations or worlds. Accordingly, “A implies B”
can be equated only with “A C B.” But when two propositions are a priori equivalent
for P then they are not distinguishable as far as P is concerned. Therefore we can
introduce a less sensitive partial ordering as a “coarser” implication relationship
with respect to a given two-place probability measure.

[T9.1] The following are equivalent:
(a) A P-implies B: P(A|-)<P(B|-)
(b) A — B is abnormal
(c)forall X,if P(A | X)=1then P(B| X)=1.

The superiority relation is not a (converse) implication relationship, despite
formal similarities. If A is superior to B, A may still have probability zero conditional
on B, for example. It is just that the supposition that A has to be given up — in fact,
denied — before B comes into play in our thinking. The hierarchy so indicated John
Vickers (loc. cit.) calls the De Finetti hierarchy. As he points out, it is crucial to this
role that we can describe the comparison in terms of a transitive relationship.

In fact, only one further point needs to be made concerning normality to
show that the propositions form a partially ordered set under superiority (with
the abnormal propositions forming an equivalence class at the bottom of this
p.o.set).

[T9.2] If X is a subset of Y and Y a subset of normal set E, and P(Y | E)>0,
then P(X | Y)=0iff P(X | E) =0.
[T9.3] P>is transitive.

Let it be given that A P>B and B P> C; we need to prove that A P>C. To
visualize the proof, think of a Venn Diagram with the following labels for relevant
propositions:

1=A-B-C), 2=(AB-C),3=B—-A—-C,
4=AC—-B

5=BC—-A,6=C—-B-A
E=A+BUB+C)=A+B)UB+C)UA+O)
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I will denote unions by concatenation of the labels; thus E = 123456 and
A — C = 12. We now consider all possible cases.

(1) A+ Cis abnormal. Then PA |A+C)=1
(2) A+ C is normal; then also E is normal.

Hence P(A+ B | E) or P(B+ C | E) or both are positive; we proceed to the
possible subcases:

(2.1) P(A + B | E)>0. By the given and [T9.2] it follows that P(B—A | E) =0, i.e.
PGB |E)=PG5|E)=0.

(2.11) Assume P(B+ C | E)>0. By [T9.2], and the given, also P(C — B | E) =0, so
P4 | E)y=P(6 | E)=0. Altogether, P(3456 | E) =0 hence P(12 | Ey=P(A—-C
| E)=1. It follows that P(A+ C | E)>0, so by [T9.2] P(56 | A+ C)=P(C |
A+ C) =0, and therefore P(A |A+ C) = 1.

(2.12) Assume P(B+ C | E)=0. Then P(2346 | E) =0, so altogether P(23456 |
E)=0.Hence P(1 | E)=1. It follows that P(A + C | E)> 0, therefore by [T9.2]
again P(56 | A+ C) =0. It follows then that P(A | A+ C) = 1.

(22) PA+B | E)=0 and P(B+ C | E)>0. The former entails that P(1345 |
E) =0. The latter entails by [T9.2] that P(C — B | E) = P(46 | E) = 0. Altogether
therefore P(13456 | E) =0 and P(2 | E) = 1. Therefore P(A + C | E)>0, and so
P(C—A | A+ C)=0by [T9.2]; therefore P(A | A + C) = 1. This ends the proof.

Adding this to the fact that P>is reflexive, we conclude that P>is a partial
ordering of the field of propositions. The abnormal propositions form a (P)
equivalence class at the very bottom of this partial ordering.

A Large Class of Models

I will define a class of models such that P satisfies principles I-II iff P can be
represented by one of these models, in the way to be explained. The class will
be chosen large; a special subclass (“lexicographic models”) will yield nontrivial,
easily constructed examples to be used in illustrations and refutations. (The term
“lexicographic” is used similarly in decision theory literature; see Blume et al.
1991a, b.)

A model begins with a sample space S = (U, F), where U is a non-empty set
(the universe of possibilities) and F a sigma-field of sets on U (the propositions).
We define the subfields:

if AisinF thenFA ={ENA:E inF};

thus FA is a field on A. For each such field designate as PA the set of probability
measures defined on FA. (When A is empty, FA ={A} and PA is empty.) The
restriction of a member p of PA to a subfield FB, with B a subset of A, will be
designed p | FB. Finally let PS be the union of all the sets PA, A in F.
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A model M will consist of a sample space S as above, and a function ¥ defined
on a subset of F, with range in PS. That is, 1 associates some probability measure
on some subfield with certain propositions. (These will be the normal propositions.)
I will abbreviate “y(A)” to “y¥A”, and when p is in FB I will also designate B as
Up (the universe of p). Thus B = UyA means that { associates with A a probability
measure defined on the measurable subsets of B, i.e. on the propositions which imply
B, i.e. on FB. The function v is subject to the following conditions:

(M1) vA(A) is defined and positive.

(M2) If ¥B(A) is defined and positive, then A is defined

(M3) If ¥B(A) is defined and positive, then YA | F(A N B) is proportional to
VB | F(AN B).

This does not entail that if ¥B(A N B)>0 then YA(A N B)>0, because the
proportionality constant can be O (in which case YA gives 0 to all members of F(A N
B) — see further the discussion of [T7.3] which suggested this condition). It is easy
to see what the constant of proportionality has to be:

[T10.1] If ¥B(A) is defined and positive, then
7wA|F(ANB): wB|F(ANB)
=n7A(ANB):7B(ANB).

Finally we define what it means for one of these functions to represent a two-
place function:

Definition Model M = (S, =) with § = (U, F) represents binary function P iff
the domain of P is F and for all A, Bin F, P (A|B) = nB (A N B) /7 B(B) if defined,
and = 1 otherwise.

It is easy to prove that:

[T10.2] If P is represented by a model, then P is a two-place probability measure.

Conversely, suppose that P is a two-place probability measure in the sense of
satisfying I-1I, defined on F in space S = (U, F). For all normal sets A of P define
WA on FA by:

VA(B) = P (B|A).

That (M1) and (M2) are satisfied by M = (S, ) follows at once from the facts
about normal sets. Suppose now, equivalently to the antecedent of (M3) that A and
B are normal sets with 7(B)>0. To prove that (M3) holds, suppose that 7B(A) is
defined and positive, so that B and A are normal sets, P(A | B) >0. Then according to
[T10.3], for each subset X of A N B we have P (X|A) = [P (B|A) /P (A|B)] P (X|B).
Therefore here wA(X) = [P(B | A)/P(A | B)]xB(X). In conclusion:
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[T10.3] If Pis a two-place probability measure satisfying the principles I-1II,
then P is represented by a model.

Having established this representation result, we now look for easily constructed
models, for illustration, refutation of conjectures, and exploration of examples.

Definition Model M = (S,7) with S = (U, F) is lexicographic iff there is a
sequence (well-ordered class) SEQ of 1-place probability measures defined on the
whole of F, such that 7B(A) = ¢ (A N B)/q(B) for the first member g of the
sequence SEQ such that g(B)>0; B is undefined when there is no such gq.

The members of SEQ correspond to the probabilities conditional on belief
remnants (see discussion in Section 6 of Example 5.3). We will say that A comes
before 7B in SEQ exactly when the first g in SEQ such that g(A) >0 comes before
the first ¢ in SEQ such that g(B) > 0. It is easily checked that M = (S, ) is a model.
Specifically, if A is a subset of B then 7w B will not come after wA, since whatever
measure assigns a positive value to A will then assign one to B. Neither can wA
come after B if wB(A) > 0; in that case mA = w B. Consequently condition (M3) is
easily verified: the proportionality constant = 1.

It is now very easy to make up examples of 2-place probability measures. Just
take two or three or indeed any number, finite or infinite, of ordinary probability
measures and well-order them. A special example, whose existence depends on the
axiom of choice is this: let SEQ contain all one-place probability measures defined
on given domain F. In that case, the only abnormal proposition is the empty set
(the self-contradiction). Also the only a priori is the tautology. Short of this, we
could of course have a sequence which does not contain literally all the definable
probability measures, but contains all those which give 1 to a given set A. In that
case, all propositions other than A that imply A are normal. Let us call P Very Fine
on A in such a case. (The case of P Very Fine on U was already called “Very Fine”
above.) Note that one of the defining conditions of a belief core K was that P had to
be Very Fine on K.

Belief in a Lexicographic Model

I will first show that in a lexicographic model, the intersection of all belief cores,
if any, is always a belief core too. Since this does not depend on cardinality or
the character of the sample space, the result adds significantly to the previous
theorems. Then I will construct a lexicographic model to show that in general not all
propositions with probability 1 are full beliefs. This model will be a reconstruction
of Example 5.4 (Petra and Noah’s Arc).
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[T11.1] If Pis represented by lexicographic model M = (S, p) defined by w.o.
sequence SEQ, and A, B are disjoint normal sets for P, then the
following are equivalent:

(i)AP>BandnotB P>A
(i) wA comes before 7B in SEQ.

[T11.2] If Pis represented by lexicographic model M = (S, ) defined by w.o.
sequence SEQ, and K, K1, K2 are belief cores with K a proper subset
of K1 and K1 a proper subset of K2 then = (K1 — K) comes before
(K2 —K1) in SEQ

For proof note that K1 —K and K2—K1 are disjoint normal sets (belief
remnants), so [T11.1] applies.

[T11.3] If Pisrepresented by lexicographic model M = (S, ) defined by w.o.
sequence SEQ, then the intersection of all its belief cores is also a
belief core.

For convenience in the proof, call 7(K” — K’) a marker of K’ when both are
belief cores and K’ is a proper subset of K”. This measure exists in the model since
the set is normal. If no superset of K is a core, call Y(U — K) its marker. We now
consider the whole class of markers; it must have a first member in SEQ. Let that
be p* = m (K2 — K1). It remains to prove that K1 is the intersection of all the belief
cores. Suppose to the contrary that core K is a proper subset of K1. Then by [T11.2]
marker p (K1 — K) comes before p* in SEQ — contra the hypothesis. This ends the
proof.

At this point we know enough about lexicographic models in general to exploit
their illustrative uses. Recall Example 5.4. Petra has subjective probability 1 for
N: the center of mass of Noah’s Ark lies in the Northern Hemisphere and also for
W: that it lies in the Western Hemisphere. I shall take it here that the Equator is
part of the Northern Hemisphere; she has probability 1 that —EQ: it does not lie on
the Equator. Let me add here that she also has probability 1 that —GR: it does not
lie on the Greenwich Meridian (which I shall here take to be part of the Western
Hemisphere). But she has probability 1 that it lies in Northern Hemisphere on the
supposition that N 4 W: it lies either in the Northern or in he Western Hemisphere
but not both (which supposition has O probability for her).

For the sample space, let U be the entire surface are of the Earth, and let F be the
family of measurable subsets of U in the usual sense, so we can speak of area and
length where appropriate. Let us first define some measures and classes of measures:

mA(X) = areaof X N A : areaof A
1A(X) = length of X N A : length of A

where XX is a subset of F
M (XX) = the class of all measures on F

which give 1 to a member of XX.
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The sequence SEQ is now pieced together from some other well ordered
sequences as follows:

SEQ = m (NN W),I(GRNN),I(EQNW),SI,S2,mN,mW,mU,S3,S4

where the indicated subsequences are:

S1: a well-ordering of {1A: A is a subset of N N W with 0 area but positive length},

S2: a well-ordering of M{A in F: A is a non-empty subset of N N W with 0 area and
0 length},

S3: a well-ordering of {1A: A is has 0 area but positive length},

S4: a well-ordering of M{A in F: A is a non-empty and has 0 area and O length}.

Let us call the so constructed lexicographic model PETRA, in her honor. The
construction is a little redundant: we would be constructing a Very Fine measure
already if we just took the tail end mU, S3, S4. Preceding them with the others
has the effect of establishing desired superiority relationships. For example, N + W
first receives a positive value from mN, which gives 0 to W — N, so that P(N |
N + W) = 1. I made GReenwich similarly superior to EQuator.

[T11.4] N N W is a belief core in PETRA.
[T11.5] No proper subset of N N W — GR is a belief core.

For let X be such a subset; to be a belief core it must have probability 1 tout court,
so its area equals that of N N W. Let X’ be one of its non-empty subsets with 0 area.
Then X’ as well as X itself are disjoint of N N W N GR =Y. The first measure to
assign positive value to X’ + Y is the second member of SEQ, namely m(GR N N),
which assigns 1 to ¥ (because GR is part of W) and 0 to X'. Therefore X’ is not
superior to Y, and so X is not a belief core.

[T11.6] InPETRA some propositions not among its full beliefs have probability 1.

In view of the preceding, it suffices to reflect that N N W — GR has proper subsets
with probability 1; for example N N W — GR —EQ.

Appendix

Al. Previous Literature

The basic theory of two-place probability functions is a common part of a number
of theories. Such probability functions have been called Popper functions because
Popper’s axioms originally presented in his The Logic of Scientific Discovery (1959)
were adopted by other writers (see Harper 1976; Field 1977; van Fraassen 1979,
1981a, b). Carnap used essentially the same axioms for his “c-functions”, but



86 B.C. van Fraassen

concentrated his research on those which derive trivially from one-place probability
functions (“m-functions”). Reichenbach’s probability was also irreducibly two-
place. I have mentioned De Finetti’s paper (1936) which introduced the idea
of local comparisons (like my “superior”; Vickers’ “thinner”); see also Section
4.18 in his Theory of Probability, vol. 1. The most extensive work on two-place
probability theory is by Renyi (1955, 1970a,b). The theory of two-place probability
here presented is essentially as explored in my (1979), but with considerable
improvement in the characterization of the described classes of models. Finally,
the discussion of supposition in section “Supposition and two-place probability” is
related to work on belief revision, much of it indebted to ideas of Isaac Levi; see
Gardenfors 1988 for a qualitative version.

A2. Transfinite Consistency

The ordering P(A) < P(B) extends the partial ordering of logical implication: if
A C B then P(A) < P(B). Unfortunately, the ordering P(A) < P(B) does not extend
in general the partial ordering of proper implication: P(A)= P(B) is possible
even when A # B. Indeed, this is inevitable if there are more than countably
many disjoint propositions. As a corollary, the intersection of all propositions of
maximal probability may itself even be empty. Kolmogoroff himself reacted to
this problem by suggesting that we focus on probability algebras: algebras of
propositions reduced by the relation of equivalence modulo differences of measure
zero: P(A 4 B) = 0. (See Birkhoff (1967), XI, 5 and Kappos (1969), 11, 4 and 111, 3.)

The difficulty with this approach is that a probability algebra does not have the
structure usually demanded of an algebra of propositions. For the latter, the notion of
truth is relevant, so it should be possible to map the algebra homomorphically into
{0, 1}. As example take the unit interval with Lebesgue measure, reduced by the
above equivalence relation. This is a probability (sigma-)algebra. Let T be the class
of elements designated as true, i.e. mapped into 1, and let A with measure x be in 7.
Then A is the join of two disjoint elements of measure x/2 each. Since the mapping
is a homomorphism, one of these is in 7. We conclude that 7" contains a countable
downward chain Aj, A,, ... with the measures converging to zero. Therefore its
meet is the zero element of the algebra. The meet should be in T because it is the
countable meet of a family of “true” propositions; but it can’t be in 7, since the zero
element is mapped into 0.

This “transfinite inconsistency” of the propositions which have probability one,
was forcefully advanced by Patrick Maher (1990) as a difficulty for the integration
of subjective probability and belief. My conclusion, contrary to Maher’s, is that the
role of subjective probability is to grade the alternatives left open by full belief. That
automatically bestows maximal probability on the full beliefs, but allows for other
propositions to also be maximally probable. The question became then: how are the
two classes of maximally probable propositions to be distinguished?
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A3. Rejection of the Bayesian Paradigm?

While I hold to the probabilist conviction that our opinion is to be represented
by means of probability models, I reject many features associated with so-called
“Bayesian” views in epistemology. In the present context, a main difference
concerns the status of probability one. Conditionalization of an absolute (one-place)
probability function cannot lower probability from one nor raise it from zero. As
a result, such changes have often been relegated to epistemological catastrophes
or irrational shifts of opinion. This is definitely not so in all probabilist work in
epistemology (Isaac Levi and William Harper provide notable exceptions). In my
view, probability one is easily bestowed, and as easily retracted, especially when it
is only maximal unconditional probability (conditional on the tautology).

Obviously, then, I reject the naive Pascalian equation that a bet on A, with any
payoff whatsoever, is worth to me my probability for A times that payoff. I think that
Pascal’s equation holds under restricted circumstances, with relevant assumptions
kept fixed and in place. I mean this roughly in the sense of the “constructivist”
view of subjective probability suggested in various ways by Glenn Shafer and Dick
Jeffrey (and possibly meant by Dan Garber when he talks about the Bayesian hand-
held calculator). In a given context I have a number of full beliefs which delimit
the presently contemplated range of possibilities; it is the latter which I grade with
respect to their comparative likelihood. The context may be anchored to a problem
or type of problem, for which I go to this trouble. Some of the beliefs will indeed be
“deepseated”, and to some I subscribe so strongly that they would survive most any
change of context. They are part of what I fall back on especially if I try to specify
the context in which I am presently operating — for this involves seeing myself in a
“larger” perspective.

A4. Infinitesimals ?'°

There is another solution on offer for most problems which two-place probability
solves. That is to stick with one-place probability, but introduce infinitesimals. Any
non-self-contradictory proposition can then receive a non-zero probability, though
often it is infinitesimal (greater than zero but smaller than any rational fraction).
The infinitesimals solution is to say that all the non-self-contradictory propo-
sitions (that are not contrary to my full beliefs) receive not zero probability but
an infinitesimal number as probability [in a non-standard model]. There is an
important result, due to Vann McGee (1994) which shows that every finitely additive
2-place probability function P(A | B) is the standard part of p(ANB)/p(B) for
some non-standard 1-place probability function p (and conversely). Despite this I
see advantages to the present approach to conditional probability which eschews
infinitesimals. First of all, there is really no such thing as “the” infinitesimals

10For related critiques of the ‘infinitesimals’ gambit, see Skyrms (1983), Hajek (1992).
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solution. If you go to non-standard models, there will in principle be many ways
to generalize the old or ordinary concept of measure so as to keep agreement with
measure in the embedded standard models. You don’t have a specific solution till
you specify exactly which reconstruction you prefer, and what its properties are.

In addition, in the present approach it is very easy to see how you can have
“layering” of the following sort. Task: produce a two-place probability measure P
such that for given A, B, C, the following is the case:

P(A) =1,P(BJA)=0,P(C|A) =0
A, B, C are normal
If P(X|C) = P(X|B) = P (X|A) = 0 then X is abnormal

It is easy to construct a small lexicographic model in which this is the case. Let C
be a subset of B and B a subset of A; let p; give 1 to A but 0 to B and to C; p; give
1 to Bbut 0 to C; and p3 give 1 to C. If these are all the measures in the sequence,
then subsets of C which receive probability 0 conditional on C are all abnormal.
Intuitively it would seem that in the infinitesimal approach this would require the
construction in which there are exactly two layers L and M of infinitesimals: x in
L is infinitesimal in comparison to standard numbers, Y in M is infinitesimal in
comparison (even) to any number in L, and no numbers at all are infinitesimal in
comparison to numbers in M. I leave this as an exercise for the reader.

As to the problem of belief, I wonder if the nonstandard reconstruction would
have the desirable features for which we naturally turn to infinitesimals. Suppose for
example that I choose a model in which each non-empty set has a positive (possibly
infinitesimal) probability. Then my full beliefs are not just those which have
probability 1, since that includes the tautology only. On the other hand, I can’t make
it a requirement that my full beliefs have probability > 1 — d, for any infinitesimal
d one could choose. For the intersection of the sets with probability > 1 —d will
generally have a lower probability. Hence the lottery paradox comes back to haunt
us. We would again face the trilemma of either restricting full beliefs to the
tautology, or specifying them in terms of some factor foreign to the degrees-of-
belief framework, or banishing them from epistemology altogether.
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Chapter 6
A Theory of Higher Order Probabilities

Haim Gaifman

Introduction

The assignment of probabilities is the most established way of measuring uncer-
tainties on a quantitative scale. In the framework of subjective probability, the
probabilities are interpreted as someone’s (the agent’s) degrees of belief. Since
justified belief amounts to knowledge, the assignment of probabilities, in as much as
it can be justified, expresses knowledge. Indeed, knowledge of probabilities, appears
to be the basic kind of knowledge that is provided by the experimental sciences
today.

This is knowledge of a partial, or incomplete, nature, but not in the usual
sense of “partial”. Usually we mean by “partial knowledge” knowledge of some,
but not all, of the facts in a certain domain. But knowing that a given coin is
unbiased does not enable one to deduce any non-tautological Boolean combination
of propositions which describe outcomes in the next, say 50 tosses. And yet it
constitutes very valuable knowledge about these very same outcomes. What is
the objective content of this knowledge? What kind of fact is the fact that the
true probability of “heads” is 0.5, i.e., that the coin is unbiased? I shall not enter
here into these classical problems'. I take it for granted that, among probability
assignments, some are more successful, or better tuned to the actual world, than

A part of this paper has been included in a talk given in a NSF symposium on foundations of
probability and causality, organized by W. Harper and B. Skyrms at UC Irvine, July 1985. I wish
to thank the organizers for the opportunity to discuss and clarify some of these ideas.

"My Salzburg paper (1983) has been devoted to these questions. The upshot of the analysis there
has been that even a “purely subjective” probability implies a kind of factual claim, for one can
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others. Consequently probability assignments are themselves subject to judgement
and evaluation. Having, for example, to estimate the possibility of rain I might give
it, going by the sky’s appearance, 70 %. But I shall be highly uncertain about my
estimate and will adopt the different value given, five minutes later, in the weather
forecast.

Thus we have two levels of uncertainty:

1. Uncertainty concerning the occurrence of a certain event — expressed through the
assignment of probabilities.
2. Uncertainty concerning the probability values assigned in 1.

When this second level is itself expressed by assigning probabilities we get
second order probabilities. An example of a second order probability is furnished
by a cartoon in “The New Yorker” showing a forecaster making the following
announcement:

There is now 60 % chance of rain tomorrow, but, there is 70 % chance that later this evening
the chance of rain tomorrow will be 80 %.

Just as we can iterate modal or epistemic operators, so in the system to be
presented here we can iterate the probability-assignment operator to any depth.
The goal of this paper is to present a general and adequate semantics for higher
order probabilities and to obtain, via representation theorems, nice easily understood
structures which give us a handle on the situation.

The basic structure to be defined here is a HOP (Higher Order Probability space).
A simple HOP is based on a field of events, F, and on a binary operator PR(,) which
associates with every event A and every real closed interval A an event PR(A,A) in
F. The intended meaning is that PR(A, A) is the event that A’s true probability lies
in the interval A.

“True probability” can be understood here as the probability assigned by an
ideal expert or by someone fully informed. It is however up to us (or to the agent)
to decide what in the given context constitutes an “ideal expert” or “someone fully
informed”. If “full information” means knowing all the facts then, of course, the
true (unknown to us) probability has only two values 0 and 1; this will make the
HOP trivial in a certain sense. In the other extreme, the agent may regard himself
as being already fully informed and this leads to the “opposite” trivialization of
the HOP. Generally, the agent will regard the expert as being more knowledgeable
than himself, but not omniscient; e.g., the expert might know the true bias of a coin
but not the outcomes of future tossings, or he might have statistical information for
estimating the bias, which the agent lacks.

The agent himself at some future time can be cast in the role of being “fully
informed”. Thus, if P is the forecaster’s present probability function and if PR

asses its success in the actual world. Rather than two different kinds, subjective and objective
probabilities are better to be regarded as two extremes of a spectrum.
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represents his state of knowledge later in the evening, then his announcement in
“The New Yorker” cartoon can be summed up as follows, where A = ‘tomorrow it
will rain’:

P(A) = .6 P(PR(A, [8,.8]) = .7

In order to represent knowledge at different stages, we make PR into a 3-
place operator: PR(A, t, A) is the event that the probability of A at stage ¢ lies in A.
The stages can be time-points, in which case ¢ ranges over some ordered set. More
generally, the set of stages is only partially ordered, where s <t if the knowledge at
stage t includes the knowledge at stage s. (Different agents may thus be represented
in the structure.) This is how a HOP is defined in general. We shall first establish
the properties of simple HOPs, then use them to derive those of the more general
spaces.

We shall also define, in a separate section, a formal logical calculus, to be
called probability logic, which is naturally associated with simple HOPs. Various
modalities can be reconstructed within this calculus. The general HOPs give rise to
stage-dependent modalities whose calculus will be outlined at the end of the paper.

The import of the subject for various branches of philosophy and for the foun-
dations of probability is obvious. Also obvious should be its bearing upon applied
probabilistic reasoning in distributed networks, or upon efforts to incorporate such
reasoning in Al systems. Mathematically, most of this paper is rather easy. Our goal
has not been to prove difficult theorems, but to clarify some basic concepts and to
outline a general, conceptually “clean”, framework within which one can use freely
and to good effect statements such as: ‘With probability 0.7 Adam will know at
stage 3 Bob’s probability for the event A, with error <0.01° (where Adam and Bob
are either people or processors). Statements of this form express intuitive thinking
which may underly involved technical proofs; to use them openly and precisely can
help us as a guide for finding and organizing our arguments.

A theoretic framework for higher order probabilities may also yield insights into
systems of reasoning which employ non-probabilistic certainty measures. For when
probability is itself treated like a random variable, we can use various methods
of “safe” estimation which do not necessarily yield a probability measure. For
example, define the certainty measure of an event A to be the largest o such that,
with probability 1, the probability of A is > a. This is only one, apparently the most
conservative, measure among various measures that can be used.

Higher order probabilities have been considered by De-Finetti, but rejected by
him owing to his extreme subjectivist views. Savage considered the possibility but
did not take it up, fearing that the higher order probabilities will reflect back on
the ground level, leading to inconsistencies. Instances of higher order probabilities
figure in works of Good (1965) and Jaynes (1958). More recent philosophical works
are by Domotor (1981), Gardenfors (1975) (for qualitative probabilities), Miller
(1966), Skyrms (1980a, b) — who did much to clarify matters, van-Frassen (1984),
and others.
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Due to limitations of space and deadline I have not entered into details of various
proofs. Some of the material has been abridged; I have included some illustrative
examples of simple HOPs, but not the more interesting ones of general HOPs (which
arise naturally in distributed systems). Also the bibliography is far from complete.

Simple HOPs

Definition and Basic Properties

As in Kolmogoroff’s framework (1933) we interpret propositions as subsets of some
universal set, say W, and we refer to them as events. We can regard W as the set of
all possible worlds. Thus we have X = set of all worlds in which X is true and we
get the following standard correspondence:

V (disjunction) — U (union)
A (conjunction) — N (intersection)
— (negation) — — (complementation)

Terminology A Boolean Algebra (of sets) is a class of sets closed under finite
unions (and intersections) and under complementation (with respect to some
presupposed universal set, in our case — W). A field is a Boolean algebra closed
under countable unions (what is known also as a o-algebra). The field (Boolean
algebra) generated by a class S of sets is the smallest field (Boolean algebra) which
contains § as a subclass. Note that in generating a Boolean algebra we apply finitary
operations only, whereas in generating a field infinitary countable operations are
used. A field is countably generated if it has a countable set of generators. All
probabilities are assumed here to be countably additive.

A HOP is a 4-tuple (W, E, P, PR), where F is a field of subsets of W, to be called
events, P is a probability over F and PR is a mapping associating with every A € F
and every real closed interval A an event PR(A,A),

PR : F x set of closed intervals — F

As explained in the introduction PR(A, A) is the event that the true (or the eventual,
or the expert-assigned) probability of A lies in A. P is the agent’s current subjective
probability.

Among the closed intervals, we include also the empty interval, &. The minimal
and maximal elements of F are, respectively, 0 and 1; that is: 0 = empty subset of
W = False, 1 = W = True.

In the explanations I shall use “probability” both for the agent’s current
subjective probability as well as for the true, or eventual one; the contexts indicate
the intended reading.
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The following axioms are postulated for a HOP:

(D PR(A, [0,1]) =1 (For every A, the event that A’s probability lies in [0,1] is W,
i.e., true.)
(II) PR[A, @]=0 (That A’s probability lies in the empty interval is the empty
event, i.e., false.)
(ITI) If A{UA; is aninterval then PR (A, Ay U A;) = PR(A, A}))UPR (A, A;) (A’s
probability lies in the interval AjUA, iff it lies either in A orin A»)

In the following two axioms “n” is a running index ranging over {/,2, ... }.

av) n,PR(A,A,) = PR(A,N,A,) (A’s probability lies in every A, iff it lies in
their intersecton).

(V) If, foralln#m, A, N A, = @, then N, PR (A, [, B,]) C PR (U,A,, [Z,,,
¥,6,]) (For pairwise disjoint A,s, if A,’s probability lies in [, Bnl,
n=1,2,..., then the probability of U, (A4,) lies in [X, o, X,58,])).)

Note that axioms (I)-(V) involve only W, F and PR. The crucial axiom which
connects PR with P will be stated later.

Theorem 6.1 For every HOP, H=(W, F, P, PR) there is a mapping p which
associates with every x in W a probability, P,, over F such that

PR(A,A) = {x:p:(A) € A} 6.1)
The mapping p is uniquely determined by (6.1) and can be defined by:
px(A) =inf{a :x € PR(A,[0,])} (6.2)
as well as by:
pi(A) = sup{a :x € PR(A, [a,1])}. (6.2

Vice versa, if, for every x € W, Py is a probability over F such that {x : p.(A) € A}
isin F for all A € F and all real closed, A, and if we use (6.1) as a definition of PR
then Axioms (I)—-(V) are satisfied.

We call p the kernel of the HOP.

The proof of Theorem 6.1 is nothing more than a straight-forward derivation of
all the required details from the axioms, using (6.2) as the definition of p,. (The
“vice versa” part is even more immediate than the first part.)

We can now extend PR and define PR(A, &), for arbitrary subsets & of reals, as
{x:p.,(A) e E}. If E is a Borel set then PR(A, Z) is in F.

The meaning of p, is obvious: itis the probability which corresponds to
the maximal state of knowledge in world x —the distribution chosen by the expert of
that world.

Notation Fora € [0,1], PR (A, @) =4PR (A, [, @]) .
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The picture is considerably simpler in the discrete case, where W is countable.
Assuming with no loss of generality that {x} € F for every x € W, the probability of
some A C W is simply the sum of the probabilities of the worlds in A. In that case,
we can eliminate the closed intervals and consider only the special cases PR(A, )
where « ranges over [0,1]; also our 5 axioms can be replaced by 3 simpler ones.
Discrete cases arise in many situations and are very useful as illustrative examples.
But to consider only the discrete case is highly restrictive.

Notation Forx,y € W, A €F, put: p(x,A) =gt p+(A) and (assuming {y}eF) p(x,y) =4t
p(x{y}) and P(y) =ar P({y}).

In the discrete case P is obviously determined by the values P(x), xe W. Thus,
ordering W, we can represent P as a probability vector (a countable vector of
non-negative entries which sum up to 1). Similarly the kernel p becomes a
probability matrix (a countable square matrix in which every row is a probability
vector). Examples (i) and (ii) in the Examples subsection can serve to illustrate the
situation (the discussion there presupposes however the next subsection).

Mathematically, what we have got is a Markov process (with initial probability P
and transition probabilities p(x, ), x€W). But the interpretation is altogether different
from the usual interpretation of such a structure. The connection between P and the
kernel p is established in the sixth axiom.

Axiom (VI) and Its Consequences

Let P(A|B) be the conditional probability of A, given B. It is defined in the case that
P(B) # 0 as P(ANB)/P(B). It is what the agent’s probability for A should be had he
known B.

Axiom (V1) If P(PR(A, [, B1)) # 0 then o < P (A | PR (A, [, B])) < B.

Axiom (V1) (the weak form of the forthcoming Axiom (VI)) is a generalization
of Miller’s Principle to the case of interval-based events. Rewritten in our notation,
Miller’s Principle is: P(A | PR(A,«)) = a. Axiom (V1) appears to be the following
rule: My probability for A should be no less than a and no more than §, were I to
know that in a more informed state my probability for A will be within these bounds.
Plausible as it sounds, the use of the hypothetical “were I to know that...” needs
in this context some clarification. Now a well-known way of explicating conditional
probabilities is through conditional bets. Using such bets van-Frassen (1984) gives
a Dutch-book argument for the Principle: Its violation makes possible a system of
bets (with odds in accordance with the agent’s probabilities) in which the agent will
incur a net loss in all circumstances. In this argument PR(A,) is interpreted as the
event that the agent’s probability for A at a certain future time will be o, in which
case he should accept at that time bets with odds a. The same kind of Dutch-book
can be constructed if Axiom (VI,) is violated. (Here it is crucial that we use an
interval, the argument fails if we replace [a,8] by a non-convex Borel set.)
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Axiom (VI) is the interval-based form of the stronger version of Miller’s
Principle which was suggested by Skyrms (1980a).

Axiom (V]) If C is a finite intersection of events of the form PR(B, A), and if P(C
N PR(A,[a,B])) # O, then

a<P (A)c N PR (A, [a,ﬂ])) <8

The same intuition which prescribes (VI,) prescribes (VI); also here the violation of
the axiom makes possible a Dutch-book against the agent. What is essential is that
events of the form PR(B,A) be, in principle, knowable to the agent, i.e., be known

(if true) in the maximal states of knowledge as defined by our structure.’
In what follows integrating a function f(#) with respect to a probability m is
written as [ f(7) - m(dr).

Lemma 6.1 Axiom (V1) implies that the following holds for all A € F:

PA) = /p (x,A) - P(dx) (6.3)

The proof consists in applying the formula P(A) = X;P(A | B;) - P (B;), where the
B;’s form a partition, passing to the limit and using the definition of an integral.

The implication (6.3) = (V1) is not true in general. Note that in the discrete
case (6.3) becomes:

P =} p(xy) PG) (6.30)

which means that the probability vector is an eigen-vector of the kernel.

Definition Call Two worlds x,y € W epistimically equivalent, (or, for short,
equivalent) and denote it by x >y, if P, =P, * For S — a class of events, define
K[S] to be the field generated by all events of the form PR(A,A), A€S, A — a real
closed interval.

Epistemic equivalence means having the same maximal knowledge. Evidently
x =~y iff, for all A and all A, xePR(A,A) < yePR(A,A). This is equivalent to: for
all CeK[F], xeC < yeC. If K[F] is generated by the countably many generators
X,,n=20,1, ... then the equivalence classes are exactly all non-empty intersections
N, X,” where each X,,’ is either X,, or its complement. Hence the equivalence classes
are themselves in K[F], they are exactly the atoms of this field. The next lemma

21t is important to restrict C in Axiom (VI) to an intersection of such events. The removal of this
restriction will cause the p,’s to be two-valued functions, meaning that all facts are known in the
maximal knowledge states.
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shows that the condition that K[F] be countably generated is rather mild, for it
holds whenever F itself is countably generated (which is the common state of
affairs):

Lemma 6.2 If S is either countable or a countably generated field, then K[S] is
countably generated.

(As generators for K[S] one can take all PR(A,A), A€S, A — a rational closed
interval; the second claim is proved by showing that if S’ is a Boolean algebra that
generates the field S then K[S’] = K[S].)

Terminology A O-set is a set of probability 0. Something is said to hold for
almost all x if it holds for all x except for a 0-set. The probability in question is
P, unless specified otherwise.

Theorem 6.2 If F is countably generated then axiom (V1) is equivalent to each of
the following conditions:

(A) (6.3) holds (for all A) and the following is true: Let C, be the epistemic
equivalence class to which x belongs, then

px (Cy) =1 for almost all x.

(B) (6.3) holds and, for almost all x, for all A:

o) = / py(A)-pi(dy) (64)

The proof that axiom (VI) is equivalent to (A) and implies (B) uses only basic
measure theory. The present proof of (B) = (A) relies on advanced ergodic theory?
and I do not know if this can be avoided. Fortunately the rest of this paper does
not rely on this implication (except the corresponding implication in Theorem 6.3).
Note that in the discrete case (6.4) is equivalent to:

P =3 pEy) p(.2) (40)

(44) means that the kernel, as a matrix, is equal to its square.

Let {E, : u € U} be the family of epistemic equivalence classes, with different
indices attached to different classes. Let P, be the common p, for x € E,; let m be
the probability, defined for all V C U such that U,eyE, € F, by:

m(V) = P (UuevE,)

3T am thankful to my colleagues at the Hebrew University H. Furstenberg, I. Katzenelson and B.
Weiss for their help in this item. Needless to say that errors, if any, are my sole responsibility.
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Then (A) is equivalent to the following condition:

(C) ForallAin F

P = [ Pu) - mctn
U
and for almost all (with respect to m) u
P, (E) =1

The first equality in (C) is a recasting of (6.3); it can be equivalently described by
saying that P is a mixture of the P,’s with weight function m. Altogether (C) means
that we have here what is known as the disintegration of the probability space. It
makes for a rather transparent structure.

For W — countable the disintegration means the following: After deleting from
the kernel-matrix rows and columns which correspond to some set of probability O,
the rest decomposes into submatrices around the main diagonal in each of which
all rows are equal, with 0’s in all other places; P itself is a mixture of these
rows. Such HOPs are exactly those that can be constructed as follows (hence
this is the method for setting up higher order probabilities which avoid a Dutch
book):

e Chose a partition {E, : ucU} of W into non-empty disjoint sets, with different u’s
marking different sets.

* Chose for each u in U a probability, P,y on W such that P,(E,) =1 forallu € U,
where U' is some non-empty susbset of U.

* Chose a probability, m, on U such that m(U') = 1, and let P be the mixture of the
P,’s with weight function m.

e For each u € U and each x € E, put p, = P, and define PR(A,A) to be{x :
Pr(A)EA}.

The construction is essentially the same for a general W (with a countably
generated F); some additional stipulations of measurability should be included in
order to make possible the formation of the mixture and to ensure that the PR(A,A)’s
arein F.

Definition Call P, and its corresponding equivalence class, E,, ontological if
P,E,) =1, call it and its corresponding class coherent if P, is a mixture of
ontological P,’s. Call a world ontological (coherent) if it belongs to an ontological
(coherent) equivalence class.

An ontological class is of course coherent. A coherent class which is not
ontological must get the value O under its own P,,. It represents a state of knowledge
in which the agent knows for sure that his eventual probability function will be
different from his current one (and that it will be an ontological one).
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The set of ontological worlds gets the value 1 under P and under each p, where
x is coherent. It is referred to as the ontological part of the HOP. Together with the
structure induced by the original HOP it forms by itself a simple HOP. Similarly we
define the coherent part of the HOP as the set of all coherent worlds (together with
the induced structure). As far as calculating probabilities goes, only the ontological
part matters. Coherent non-ontological worlds are useful as representatives of
transitory states of knowledge.

Examples

Example 6.1 W ={wl, w2, w3} P=(1/3, 1/3, 1/3) and the kernel matrix is:

wm O W
S W
h i ©

The agent’s current probability assigns each world the value 1/3. Eventually, in
world w1l he will know that he is not in w3 and he will assign each of the worlds wl,
w2 the value 0.5. This is the meaning of the first row. The other rows are similarly
interpreted.

By direct checking one can verify that (VIy) is satisfied. (The checking of
all cases in this example is easy because PR(A,a) # & only for a =0.5,1.)
However the matrix is not equal to its square, hence Axiom (VI) is violated, as
indeed the following case shows: Put A={wl}, C=PR({w2},0.5). Then C =
{x:px,w2) =05} = {wl,w2} and similarly PR(A,0.5)={wli, w3}. Hence
A =PR(A,0.5) N C implying P(A | PR(A,0.5) N C)=1%0.5. This can be used
to construct a Dutch book against the agent.

Note also that the epistemic equivalence classes are {w/},{w2} and {w3} and that
non is ontological; hence also there are no coherent worlds here.

Example 6.2 W ={wlw2,... w8}, Pis: (.1, .2, .2, .1, 4,0, 0, 0} and the kernel
matrix is:

o oo
N NS
NN NS

—

0522052500
211 2.1.1.1.1

where all undisplayed entries are 0. The sets {wi, w2, w3}, {w4,w5} and {w6} are
equivalence classes which are ontological. P is a mixture of these 3 types of rows,
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with weights 0.5, 0.5, 0, respectively. Hence condition (C) is satisfied, therefore
also Axiom (VI). w7 is a coherent non-ontological world, because the 7th row is a
mixture of the first three types (with weights .25, .25, .5) w8 is not coherent. The
ontological part consists of the upper left 6 x 6 matrix and the coherent part of the
7 x7 one.

The example can be made more concrete by the following scenario. A number is
to be chosen from {/,2,3}. For i = 1,2, 3, the number chosen in wi is i, but in each of
these 3 worlds the maximal knowledge consists in assigning probabilities 0.2, 0.4,
0.4 to the 3 possibilities. In w4 the number chosen is / and in w5 it is 2; in either of
these worlds the maximal knowledge consists in assigning the probabilities 0.2, 0.8.
In w6 the number is 2 and it is also assigned probability 1. In the agent’s current state
he assigns probability O to finding himself eventually in the third state of maximal
knowledge, and equal probabilities to the first and second states. World w7 represent
a similar situation but with different weights. We can imagine 3 lotteries for chosing
the number; in each equivalence class the maximal knowledge is knowledge of the
chosen lottery.

Example 6.3 Let H be the probability of “heads” of some given coin of unknown
bias. Treat H as a random variable. The agent’s knowledge is represented by a
probability distribution for H. Say it is the uniform distribution over [0,1]. The
expert does not know the value of H but he has some additional information. Say his
additional information is the value of N — the number of “heads” in 50 independent
tosses. Then our worlds can be regarded as pairs (h,n), such that in (h,n) the event
H = hNN =n is true; here A is a real number in [0,1] and n an integer between 0
and 50. The field F is generated by the sets [o, 8] X {n},0 <a < B <1, n =
0,...,50.

Given H = h, we get the binomial distribution by, 5o for N. This fact, together with
the agent’s uniform distribution for H, determines his probability P over F. The
expert’s probability in world (%,n) is obtained by conditioning on his information, it
is P( [N = n). There are 51 equivalence classes which correspond to the 51 possible
values of N and all worlds are ontological.

As is well known, different values of N give rise to different conditional
distributions of H. Therefore the events N =n are in the field generated by the
events? PR(He[a,B], A). The whole field F is therefore generated by events
which are either of the form He[w,B] or obtained from these by applying the
operator PR. Consequently we can give an abstract description of this HOP which
does not mention the fifty tosses. The only function of the tosses is to affect
the distribution of H; in our framework such changes in distribution constitute
themselves events which can be treated directly, without having to bring in their
causes.

4 Actually there are 51 real numbers o, such that the event N = n is the same as PR(H < 1/2, a,)).
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The Case of a General Field

The restriction that F be countably generated is a mild one. The probability spaces
which commonly appear in theory, or in applications, are essentially of this nature’.
Usually we are interested in properties that involve only countably many generators.
We will first show that for studying such properties we can always restrict ourselves
to the case where the underlying field is countably generated.

Definition Given a simple HOP (W, F, P, PR) and given S C F, define H[S] as the
smallest field containing S and closed under PR (i.e., A € H[S] = PR(A,A) €
H [S] for every real closed interval A).

H[S], together with the restrictions of P and PR to it, forms a subHOP, where this
notion is defined in the obvious way.

Lemma 6.3 If S is a Boolean algebra and, for every A in S and every rational
closed interval A, PR(A, A) is in S, then H[S] is the field generated by S.

This means that, once we have a Boolean algebra closed under PR(,A) for all A
with rational endpoints, we get all the rest by countable Boolean operations without
using PR.

Corollary If S is either countable, or a countably generated field, then H[S] is
countably generated.

Using this we can derive from Theorem 6.2 an analogous result for general fields:
Theorem 6.3 Axiom (V) is equivalent to each of the following conditions:

(A") (3) holds and for every C in K[F), for almost all x: p.(C) =1 if x€C, p.(C) =0
otherwise.
(B) (3) holds and for every A in F (4) is true for almost all x.
(B’) differs from the analogous (B) of Theorem 6.2 in that the exceptional O-set for
(4) can depend on A

Say that A is equal a.e. to B if A-B and B-A are 0-sets. Say that two classes of sets
are equal modulo 0-sets if every member of one is equal a.e. to some member of the
other.

Assuming Axiom (VI) we get:

Corollary If SCE then: (i) The fields K[S], K[K[S]] and K[H[S]] are equal
modulo 0-sets. (ii) If S is a boolean algebra then H[S] is equal modulo 0-sets to
the field generated by S U K[S].

(To show, for example, that K[S] = K[K[S]] modulo O-sets, consider CeK[S]; by
Theorem 6.3, {x : p,(C)eA} is equal a.e. to C if A =[/,1], is equal a.e. to W-C if

SThey are seperable, i.e., for some countably generated field every event in the space differs from
a set in the field by a 0-set.
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A =[0,0], and is a O-set if 0,1 ¢ A. Hence, for all A, PR(C,A) is equal a.e. to one
of: C, W-C, W, &. Since K[K[S]] is generated by such sets, the claim follows.)

Roughly speaking, (ii) means that, modulo O-sets, nested applications of PR
reduce to non-nested applications. A stronger, syntactical version of this is given
in the next section.

Probability Logic

Let 2 be a set of reals such that 0,/ € &. Call an interval with end-points in Z a
E-interval.

Let PRLz be the calculus obtained by adjoining sentential operants, PR(,A), to
the propositional calculus, where A ranges over all closed Z-intervals. Here, for
the sake of convenience, I use ‘PR’ for the syntactical operant, as well as for the
operation in HOPs. Given some class {X;: i €I} of sentential variables, the class of
all wifs (well formed formulas) of PRLz is the smallest such that:

* Every sentential variable is a wff

* If ¢ and ¢ are wifs, so are —¢ and ¢ * iy where * is any of the standard binary
connectives.

o If¢isawffand A is a closed Z-interval then PR(¢,A) is a wif.

Let H= (W EP, PR) be a simple HOP and let » be a mapping which maps each
sentential variable to a member of F. Then the value |¢|n , of the wif ¢ is defined
by interpreting the sentential connectives as the corresponding Boolean operations
and each syntactic operant PR(,A) as the operation PR(, A) of the HOP.

Definition A wif ¢, is p-valid, to be denoted |=,¢, if, for every simple HOP H
which satisfies Axiom (VI) and every r, the probability of |¢|u; is 1. Two wifs ¢,
Y are p-equivalent if ¢ <> ¥ is p-valid.

Call ¢ a PC-formula if it is a wif of the propositional calculus, i.e., does not
contain any PR.

Theorem 6.4 Every wff of PRLg is p-equivalent to a Boolean combination of PC-
formulas and formulas of the form PR(o,A) in which o ranges over PC-formulas.

This means that as far as probabilities are concerned (i.e., if we disregard 0-sets)
we need not use nested PR’s.

Theorem 6.5 Translate into PRLgz the wffs of propositional modal logic with
the necessity oprant N, by replacing each N(y) by PR(y, [1,I]). Let ¢* be the
translation of ¢. Then

S5F ¢ iff l=p ¢x

Thus S5 becomes a fragment of PRLz. This relation becomes more explicit if
we rewrite ‘PR(Y,A)” as ‘Na(¥)’.
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It can be shown that for = = set of rationals the set of p-valid wffs is recursive.
Also PRL g can be provided with a natural set of formal axioms so that, with modus
ponens as derivation rule, p-validity coincides with provability.

Some Questions

Other validity notions can be considered (e.g., that |@|y. always contains all
coherent worlds in the HOP), as well as other interpretations of the necessity operant
(e.g., as ¢ APR(¢,[1,11)). What modal logics are thereby obtained?

General HOPs

In general, a HOP is a structure of the form:
(W,F,P,T,PR)

where, as before, (W E P) is a probability space, T = (7, <) is a partially ordered set
and where

PR : F X T x set of closed intervals — F

PR(A, 1, A) is the event that the probability of A at stage ¢ lies in A. If the stages
coincide with time points then the partial ordering of T is total. As before, P is
the current subjective probability; here “current” is earlier (i.e., less than or equally
informative) than the stages in 7. Put:

PRt (Av A) :dfPR (Av L, A)

The first five axioms (I*)—-(V*) in this setting are the obvious generalizations of our
previous axioms (I)—(V). Namely, we replace ‘PR’ by ‘PR, and require that the
condition hold for all 7 in 7.

Theorem 6.1 generalizes in the obvious way and we get, for each t €
T and each x € W, a probability P,, which determines PR,; it represents
the maximal state of knowledge at stage ¢ in world x.

The “correct” generalization of Axiom (VI) is not as obvious, but is not difficult
to find:

Axiom (VI*) For each t€T the following holds: If C is a finite intersection of
events of the form PRy(B,A) where every s is <t, and P (C N PR, (A, [, B])) # O,
then

o < P(AlcnPR (. BD) =B
The argument for this axiom is the same as the argument for Axiom (VI). The

essential point is that if s <7 then true events of the form PR;(B,A) are known at
stage t. The same Dutch book argument works for Axiom (VI*).
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As before, we consider fields generated by knowable events and define epistemic
equivalence; but now these concepts depend on the stage parameter, to be displayed
here as an additional subscript. Thus we put:

.x:ry < dfP[,X - P['y

Then x >~y iff x€A & y€A, for all AeK,[F].

Theorem 6.6 Assume F to be countably generated, then Axiom (VI¥) is equivalent
to the conjunction of:

(D) Foreacht € T the simple HOP (W, F, P, PR,) satisfies Axiom (V1).
and

(E) For each s <t, x >,y = x =y, for almost all x,y (i.e., for all x,y € W’ where
PW)=1).

(E) means that, as we pass to more progressive stages, almost everywhere epis-
temic equivalence is the same or becomes stronger; the partition into equivalence
classes can change only by becoming more refined.

Like Theorem 6.2 the last theorem has a version that applies to general fields but
I shall not enter here into it. In the following theorem F is assumed to be countably
generated.

Theorem 6.7 Assume Axiom (VI*). Let s <t. Then, for almost all x, p; x is a mixture
of piy’s (Where y ranges over W). Consequently, for almost all x, (W, F, ps v PR;) is
a simple HOP satisfying Axiom (VI).

Logic of HOPs and Stage Dependent Modalities

Fix a partially ordered set T = (T, <). The logic PRLz r (which corresponds to
HOPs with set of stages T) is defined in the same way as PRLz, except that PR
has an additional argument ranging over 7. As before we employ a systematically
ambiguous notation. Define ¢ to be p-valid if it gets probability 1 in all HOPs in
which the set of stages is 7.

Now consider a propositional modal language, M7, in which we have, instead
of a single necessity operant, an indexed family N,, t € T. N,¢ states that ¢
is necessary at stage ¢, i.e., necessary by virtue of the maximal knowledge available
at that stage.

For ¢ My, let ¢* be the wif obtained by replacing each N,y by PR,(y, [1,1]). It
can be shown that the set of all ¢ in M7 such that ¢* is p-valid is exactly the set of
wifs derivable, by modus ponens and the rule: if - ¢ then - N, ¢, from the following
axioms:

(i) All tautologies. (ii) For each ¢ € T, the axiom schemas of S5, with N replaced
by N, and

(iii) Ny¢ — N,¢, for each s <t.
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Note that (iii) accords well with the intended meaning of the N,’s: If something is
necessary at stage s it is also necessary at later stages. On the other hand, something
not necessary at stage s can be necessary later.
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Chapter 7
On Indeterminate Probabilities

Isaac Levi

SOME men disclaim certainty about anything. I am certain that they deceive
themselves. Be that as it may, only the arrogant and foolish maintain that they are
certain about everything. It is appropriate, therefore, to consider how judgments of
uncertainty discriminate between hypotheses with respect to grades of uncertainty,
probability, belief, or credence. Discriminations of this sort are relevant to the
conduct of deliberations aimed at making choices between rival policies not only
in the context of games of chance, but in moral, political, economic, or scientific
decision making. If agent X wishes to promote some aim or system of values, he
will (ceteris paribus) favor a policy that guarantees him against failure over a policy
that does not. Where no guarantee is to be obtained, he will (or should) favor a policy
that reduces the probability of failure to the greatest degree feasible. At any rate, this
is so when X is engaged in deliberate decision making (as opposed to habitual or
routine choice).
Two problems suggest themselves, therefore, for philosophical consideration:

The Problem of Rational Credence: Suppose that an ideally rational agent X is
committed at time ¢ to adopting as certain a given system of sentences Kx, (in
a suitably regimented L) and to assigning to sentences in L that are not in Kx;,
various degrees of (personal) probability, belief, or credence. The problem is to
specify conditions that X’s “corpus of knowledge” Kx,, and his “credal state” By,
(i.e., his system of judgments of probability or credence) should satisfy in order
to be reasonable.

The Problem of Rational Choice: Given a corpus Kx, and a credal state By, at t,
how should X make decisions between alternative policies from which he must
choose one at ¢?
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Consideration of these two problems should lead to examination of a third. A
rational agent X is entitled to count as certain at 7 not only logical, mathematical, and
set-theoretical truths supplemented by suitably produced testimony of the senses,
but theories, laws, and statistical claims as well. At the same time, the revisability of
X’s corpus at ¢ should be recognized not only by others but by X himself. Moreover,
just as X’s judgments of certainty are liable to revision, so too are his judgments
of probability or credence. Indeed, the two types of modification are apparently
interdependent, and this interdependence itself deserves examination. The third
problem, therefore, is as follows:

The Problem of Revision: Under what conditions should X modify his corpus Ky,
or his credal state By, and, if he should do so, how should he choose between
alternative ways of making revisions?

In this essay, I shall not attempt to solve the problem of revision. However, I shall
indicate how a prima facie obstacle to offering anything other than a dogmatic or
antirationalistic answer to the question can be eliminated.

The obstacle is a serious one; for it derives from a very attractive system of
answers to the problem of rational credence and the problem of rational choice.
I allude to what is called the “bayesian” view. Bayesians do not agree with one
another in their answers to these questions in all respects. The views of Harold
Jeffreys and the early views of Rudolf Carnap are not consonant in important ways
with the ideas of Bruno de Finetti and Leonard J. Savage (or the later Carnap).
Nonetheless, the answers these and a host of other authors offer to the first two
questions share certain important ramifications for the problem of revision. One of
these implications is the commitment to either dogmatism or antirationalism.

Of course, identifying an objectionable consequence of bayesianism, where the
objection is grounded on a question of philosophical principle, is in itself unlikely
to persuade devoted bayesians to abandon their position. Such authors will be
tempted to modify philosophical principle so as to disarm the objection; and they
will have good reasons for doing so. Bayesian doctrine does offer answers to the
first two questions. These answers are derivable from a system of principles which
are precise and simple. Even the disputes between bayesians can be formulated
with considerable precision. Furthermore, the prescriptions bayesians recommend
for making choices appear to conform to presystematic judgment at least in some
contexts of decision. Rival attempts to answer the problems of rational credence and
rational choice seem either eclectic or patently inadequate when compared with the
bayesian approach.

Thus, it is not enough to complain of the defects of bayesianism. The serious
challenge is to construct an alternative system of answers to the problems of rational
credence and choice which preserves the virtues of bayesianism without its vices—
in particular, the defects it exhibits relevant to the problem of revision.

In this paper, I shall outline just such a rival view.
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X’s corpus of knowledge Ky, at ¢ identifies a set of options A}, Ay, ..., A, as the
options from which he will choose (at ¢’ identical with or later than 7) at least and at
most one. In addition, Kx, implies that at least and at most one of the hypotheses 4,
ha, ..., hyis true and that each of the A;’s is consistent with K ;. Finally, Kx ; implies
that, if X chooses A; when #; is true, the hypothesis o;; asserting the occurrence of
some “possible consequence” of A; is true.

The problem of rational choice is to specify criteria for evaluating various choices
of A;s from among those feasible for X according to what he knows at ¢. Such
criteria may be construed as specifying conditions for “admissibility.” Option A; is
admissible if and only if X is permitted as a rational agent to choose A; from among
the feasible options. If A; is uniquely admissible, X is obliged, as a rational agent,
to choose it. In general, however, unique admissibility cannot be guaranteed, and no
theory of rational choice pretends to guarantee it.

Bayesians begin their answer to the problem of rational choice by assuming that
X is an ideally rational agent in the following sense:

(i) X has a system of evaluations for the possible consequences (the o;s) rep-
resentable by a real-valued “utility” function u(0;) unique up to a linear
transformation (i.e., where utility assignments are nonarbitrary once a 0 point
and a unit are chosen—as in the case of measuring temperature).

(ii) X has a system of assignments of degrees of credence to the o;s, given the
choice of A; representable by a real-valued function Q(o;;, A;) conforming to
the requirements of the calculus of probabilities. Often X will assign credence
values to the “states of nature” hy, ho, .. ., h, so that the A;s are probabilistically
independent of the option chosen. When this is so, Q(o;, A;) equals the
unconditional credence (given Kx,) Q(h;). In the sequel, I shall suppose that
we are dealing with situations of this kind.

Given such a utility function u(o;) and Q-function Q(h;), let E(A;) =

m
Z u (oij) (0] (hj) E(A;) is the expected utility of the option A;.

=1
! Bayesians adopt as their fundamental principle of rational choice the principle
that an option is admissible only if it bears maximum expected utility among all the
feasible options.

Very few serious writers on the topic of rational choice object to the principle of
maximizing expected utility in those cases where X’s values and credal state can be
represented by a utility function unique up to a linear transformation and a unique
probability function. The doubts typically registered concern the applicability of
this principle. That is to say, critics doubt that ordinary men have the ability under
normal circumstances to satisfy the conditions of ideal rationality stipulated by strict
bayesians even to a modest degree of approximation.

The bayesian riposte to doubts about applicability is to insist that rational men
should meet the requirements for applying the principle of maximizing expected
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utility and that, appearances to the contrary notwithstanding, men are quite capable
of meeting these requirements and often do so.

I am not concerned to speculate on our capacities for meeting strict bayesian
requirements for credal (and value) rationality. But even if men have, at least to a
good degree of approximation, the abilities bayesians attribute to them, there are
many situations where, in my opinion, rational men ought not to have precise utility
functions and precise probability judgments. That is to say, on some occasions,
we should avoid satisfying the conditions for applying the principle of maximizing
expected utility even if we have the ability to satisfy them.

In this essay, reference to the question of utility will be made from time to
time. I shall not, however, attempt to explain why I think it is sometimes (indeed,
often) irrational to evaluate consequences by means of a utility function unique up
to a linear transformation. My chief concern is to argue that rational men should
sometimes avoid adopting numerically precise probability judgments.

The bayesian answer to the problem of rational choice presupposes at least part of
an answer to the problem of rational credence. For a strict bayesian, a rational agent
has a credal state representable by a numerically precise function on sentences (or
pairs of sentences when conditional probability is considered) obeying the dictates
of the calculus of probabilities.

There are, to be sure, serious disputes among bayesians concerning credal
rationality. In his early writings, Carnap believed that principles of “inductive
logic” could be formulated so that, given X’s corpus Kx;, X’s credal state at
t would be required by the principles of inductive logic to be represented by
a specific Q-function that would be the same for anyone having that corpus.!
Others (including the later Carnap?®) despair of identifying such strong principles.
Nonetheless, bayesian critics of the early Carnap’s program for inductive logic
continue to insist that ideally rational agents should assign precise probabilities to
hypotheses.

I

X’s corpus of knowledge Ky, shall be construed to be the set of sentences (in L)
to whose certain truth X is committed at 7. I am not suggesting that X is explicitly
or consciously certain of the truth of every sentence in Ky, but only that he is
committed to being certain. X might be certain at ¢ of the truth of 4 and, hence, be
committed to being certain of i Vv g, without actually being certain. Should it be
brought to X’s attention, however, that 4 Vv g is a deductive consequence of &, he
would be obliged as a rational agent either to cease being certain of 4 or to take &
V g to be certain. The latter alternative amounts to retaining his commitment; the
former to abandoning it.

! Logical Foundations of Probability (Chicago: University Press, 2nd ed., 1962), pp. 219-241.

2«Ipductive Logic and Rational Decisions,” in Carnap and R. C. Jeffrey, eds., Studies in Inductive
Logic and Probability (Berkeley: UCLA Press, 1971), p. 27.
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In this sense, X’s corpus of knowledge at 7 should be a deductively closed set of
sentences. Insofar as we restrict our attention to changes in knowledge and credence
which are changes in commitments, modifications of corpora of knowledge are
shifts from deductively closed sets of sentences to other deductively closed sets
of sentences. Such modifications come in three varieties:

1. Expansions, where X strengthens his corpus by adding new items. Some
examples of expansion are acquiring new items via observation, from the
testimony of others and through inductive or nondeductive inference leading to
the “acceptance” of statistical claims, laws, or theories into the corpus.

2. Contractions, where X weakens his corpus by removing items. This can happen
when X detects an inconsistency in his corpus due to his having added at
some previous expansion step an observation report that contradicts assumptions
already in his corpus, or when X finds himself in disagreement with ¥ (whose
views he respects on the point at issue) and wishes to resolve the dispute without
begging the question.

3. Replacements, where X shifts from a theory containing one assumption to
another containing an assumption contradicting the first. This can happen when
X substitutes one theory for another in his corpus.

No matter which kind of modification is made, I shall suppose that there is a
“weakest” potential corpus UK (the “urcorpus”) of sentences in L such that no
rational agent should contract that corpus. UK is the deductively closed set of
sentences in L such that every potential corpus in L is an expansion of UK (or is
UK itself). I shall suppose that UK contains logical truths, set-theoretical truths,
mathematical truths, and whatever else might be granted immunity from removal
from the status of knowledge. (The items in UK are in this sense incorrigible.)

Replacement poses special problems for an account of the revision of knowledge.
At t when X’s corpus is Kx;, why should he shift to a corpus K* which is obtained
by deleting items from Ky, and replacing them with other items inconsistent with
the first? From X’s point of view, at ¢, he is replacing a theory which he is certain is
true by another which he is certain is false.

The puzzle can be avoided by regarding replacements for purposes of analysis
as involving two steps: (a) contraction to a corpus relative to which no question
is begged concerning the rival theories, and (b) subsequent expansion based on the
information available in the contracted corpus, supplemented, perhaps, by the results
of experiments conducted in the interim.

Those who insist on attempting to justify replacements without decomposing
them into contractions followed by expansions confront the predicament that
they cannot justify such shifts without begging questions. Such justification is no
justification. The conclusion that beckons is that all replacements are forms of
“conversion” to which men are subjected under revolutionary stress. This is the
view which Thomas Kuhn has made so popular and which stands opposed to views
that look to the formulation of objective criteria for the evaluation of proposed
modifications of knowledge.
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How does all this relate to bayesian views about the revision of credal states?

Consider X’s corpus of knowledge K, at t. X’s credal state By, at ¢ is, according
to strict bayesians, determined by Kx,. Strict bayesians disagree among themselves
concerning the appropriate way in which to formulate this determination. The
following characterization captures the orthodox view in all its essentials.

Let K be any potential corpus (i.e., let it be UK or an expansion thereof).
Let Cx(K) be X’s judgment at ¢ as to what his credal state should be were he
to adopt K as his corpus of knowledge. I shall suppose that X is committed to
judgments of this sort for every feasible K in L. The resulting function from potential
corpora of knowledge to potential credal states shall be called X’s “confirmational
commitment” at .

According to strict bayesians, no matter what corpus K is (provided it is
consistent), Cx ,(K) is representable by a probability function where all sentences
in K receive probability 1. In particular, Cx,(UK) is representable by a function
P(x;y)—which I shall call a P-function, to contrast it with a Q-function representing
Cx(K) where K is an expansion of UK.

Strict bayesians adopt the following principle, which imposes restrictions upon
confirmational commitments:

Confirmational Conditionalization: If K is obtained from UK by adding e (con-
sistent with UK) to UK and forming the deductive closure, P(x;y) represents
C,(UK) and Q(x;y) represents Cy (K), Q(h;f) = P(h;f&e)

In virtue of this principle, X’s confirmational commitment is defined by specify-
ing Cyx,(UK) = Cx, and employing confirmational conditionalization.> X’s credal
state at #, Bx,, is then determined by Kx, and Cx, according to the following
principle:

Total Knowledge: Cy (K ;) = By,

Notice that the principle of confirmational conditionalization, even when taken
together with the principle of total knowledge, does not prescribe how X should
modify his credal state given a change in his corpus of knowledge.

To see this, suppose that at #; X’s corpus is K; and that at #, his corpus K,
is obtained from K; by adding e (consistent with K;) and forming the deductive

3Confirmational commitments built on the principle of confirmational conditionalization are called
“credibilities” by Carnap (ibid., pp. 17-19). The analogy is not quite perfect. According to Carnap,
a credibility function represents a permanent disposition of X to modify his credal states in the
light of changes in his corpus of knowledge. When credibility is rational, it can be represented by
a “confirmation function.” Since I wish to allow for modifications of confirmational commitments
as well as bodies of knowledge and credal states, I assign dates to confirmational commitments.
Throughout 1 gloss over Carnap’s distinction between credibility functions and confirmation
functions (ibid., pp. 24-27).
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closure. From confirmational conditionalization and total knowledge, we can
conclude that if X does not alter his confirmational commitment in the interim from
1 to ty, then, if Q) represents By, and Q, represents By, Qx(h;f) = Q1(h;f&e).
Should X renege at #, on the confirmational commitment he adopted at ¢, the change
in knowledge just described need not and will not, in general, lead to a modification
of credal state of the sort indicated.

Nonetheless, strict bayesians unanimously suppose that a rational agent will, save
under unusual circumstances, modify his credal state in the fashion indicated. This
mode of revising credal states is often called “conditionalization”; to distinguish it
from confirmational conditionalization and other types of conditionalization, I shall
call it “intertemporal credal conditionalization.” I contend that the strict bayesian
endorsement of intertemporal credal conditionalization presupposes commitment to
the following principle:

Confirmational Tenacity: For every X, t, and ¥, Cy, = Cy.y

Thus, strict bayesians have an answer to the problem of revising credal states.
X’s confirmational commitment is to be held fixed over time. Given such a fixed
commitment, the credal state he should adopt is determined for each possible
modification of his corpus of knowledge which is a consistent expansion of UK.
The problem of revising credal states reduces, therefore, to the problem of revising
corpora of knowledge.

Is this answer to the problem of revision satisfactory? It would be, in my opinion,
if the program for inductive logic envisaged by Carnap in his early writings on the
subject could be realized. Inductive logic would then be strong enough to single out
a standard P-function that all rational agents should adopt as their confirmational
commitment. A fortiori, all such agents should hold that commitment fast at all
times.

Few bayesians now think an inductive logic of the requisite power can be
constructed. Their reasons (which, in my opinion, are sound) need not detain us. In
response to this skepticism, most bayesians no longer require that all rational agents
endorse a single standard confirmational commitment. They hold that rational X is
perfectly free to pick any confirmational commitment consonant with the principles
of inductive logic. Rational Y is quite free to pick a different commitment. However,
bayesians tend to insist that, once X and Y have chosen their respective commit-
ments, they should hold them fixed. To do this is to follow the probabilistic analogue
of the method of tenacity so justly criticized by Peirce in “Fixation of Belief.”

In the spirit of Peirce, it would have been far better to say that a rational X should
not modify his confirmational commitment capriciously—i.e., without justification.
To follow this approach, however, demands consideration of criteria for justified
modifications of confirmational commitments. Bayesians not only fail to do this,
but, as I shall now argue, they cannot do so without great difficulty. Given the
bayesian answer to the problem of rational credence, no shift can be justified. If
I am right, for bayesians, either tenacity should be obeyed, or, if not, justification is
gratuitous. I think this implication of bayesian doctrine is to be deplored and should
lead to scrutiny of other approaches.
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Modifying a confirmational commitment is not quite the same as modifying a
corpus of knowledge. Yet, shifting from a confirmational commitment represented
by a precise probability function to another confirmational commitment represented
by a different precise probability function seems analogous to replacement in the
following sense: The shift from confirmational commitment C; to confirmational
commitment C, involves a shift to a confirmational commitment conflicting with
C| in the sense that the P-function X uses to determine his credal state relative to his
corpus when C| is adopted yields different precise subjective probability or credence
assignments for hypotheses from those which X would make were he to adopt C;
(and keep his corpus constant).

From X’s vantage point at  when he endorses Cj, C; is illegitimate. He cannot
justify shifting to C,. At least, he cannot justify a direct shift. Can he do so indirectly
by first performing a shift analogous to contraction from C; to C;, which begs no
questions concerning the merits of C; and C,? Not from a strict bayesian point of
view; for C3z would, like C and C,, have to be representable by a precise P-function.
The shift from C; to C3 would be as problematic as the shift from C; to C,.

Thus, from a bayesian point of view, no shift from one confirmational commit-
ment to another can be justified. A rational man should conform to confirmational
tenacity so that no justification is needed or else hold that some shifts are permitted
without justification. Carnap sometimes seems to recognize shifts in confirmational
commitments as a result of conceptual change.* Alternatively, one might allow shifts
in confirmational commitment due to conversion under revolutionary stress. Except
for the minimal requirement that the shift be to a commitment obeying requirements
of inductive logic, no critical control is to be exercised. Bayesians are committed to
being dogmatically tenacious or arbitrarily capricious.

The source of the difficulty should be apparent. Bayesians restrict the con-
firmational commitments a rational agent may adopt to those representable by
numerically precise probability functions. This precludes shifting from a confirma-
tional commitment C; to a confirmational commitment C; that begs no questions
as to the merits of C; and another commitment C, that conflicts with C;. My
thesis is that not only are rational men allowed to make shifts to non-question-
begging commitments but that on many occasions they ought to do so. That is
to say, it is sometimes appropriate for a rational agent to adopt a confirmational
commitment that is indeterminate in the sense that it cannot be represented by
a numerically precise probability function. If we relax the stringent requirements
imposed by bayesians on confirmational commitments and credal states so as to
allow for such shifts, there is at least some hope that we can avoid endorsement of
tenacity or capriciousness. Within the strict bayesian framework, we cannot expect
to do so except by clinging desperately to Carnap’s early program for constructing

4«A Basic System of Inductive Logic,” in Carnap and Jeffrey, op. cit., pp. 51-52.
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an inductive logic so strong as to single out a standard P-function to represent the
uniquely rational confirmational commitment (for a given language).

I propose to explore one way of relaxing strict bayesian requirements. The
basic idea is to represent a credal state (confirmational commitment) by a set
of O-functions (P-functions). When the set is single-membered, the credal state
(confirmational commitment) will be indistinguishable in all relevant respects from
a strict bayesian credal state (confirmational commitment).

On this view, if X starts at r with the precise (i.e., single-membered) confir-
mational commitment C;, he can then shift to a confirmational commitment that
has as members all the P-functions in C; as well as the P-functions in some other
confirmational commitment C,. (As the technical formulation will indicate, other
P-functions will be members of C3 as well.)

C; will be “weaker” than C; or C, in that it will allow more P-functions to
be “permissible” than either of the other two confirmational commitments alone
does. It will allow as permissible all P-functions recognized as such according to
C; and according to C,. In this sense, the shift to C3 will beg no questions as to the
permissibility of the P-functions in the other two confirmational commitments.

Of course, the notion of a permissible P-function (and the correlative notion of a
permissible Q-function according to a credal state) require elucidation. I shall offer
only an indirect clarification. The account of rational credence (and confirmational
commitment) based on the new proposal will be supplemented by criteria for
rational choice which indicate how permissibility determines the admissibility of
options. By indicating the connections between permissibility and rational choice,
permissibility will have been characterized indirectly.

\Y%

To simplify the technical details, I shall restrict the discussion to characterizing
credal states and confirmational commitments for sentences in a given language
L which belong to a set M generated as follows: Let iy, A, ..., h, be a finite set of
sentences in L all consistent with the urcorpus UK for L and such that UK logically
implies the truth of at least and at most one /;. M is the set of sentences in L which
are equivalent, given UK, to a disjunction of zero or more distinct /;s. (A disjunction
of zero h;s is, as usual, a sentence inconsistent with UK.)

With this understanding, X’s credal state at ¢ will be a set By, of functions Q(x,y)
where the sentences substituted for ‘x* are in M and the sentences substituted for
‘y> are in M and are consistent with Ky ,. When the sentence substituted for y’ is a
member of Ky, I shall write Q(x) = Q(x;y).

The set By, must satisfy the following three conditions:

. Nonemptiness: By, is nonempty.

. Convexity: By, is a convex set—i.e., every weighted average of Q-functions in
BX,, is in BX,r-

3. Coherence: Every Q-function in By, is a probability measure where Q(h,e) =1

if and only if 4 is deductively implied by e and Ky ,.

N —
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Every Q-function in By is “permissible” according to By,.

As before, X’s confirmational commitment Cx ,(K) is a function from feasible
corpora of knowledge to potential credal states that X at # considers to be the credal
states he should adopt were he to adopt K as his corpus of knowledge. The value
of the function for given K, therefore, is a nonempty, convex set of Q-functions
relative to K. Cx,(UK) = Cx, is, therefore, a nonempty convex set of P-functions.
The principle of confirmational conditionalization introduced previously must now
be modified to conform to the new characterization of confirmational commitments
and credal states:

Confirmational Conditionalization: Let K be obtained from UK by adding e
(consistent with UK) to UK and forming the deductive closure. C,,(K) is the
set of Q-functions such that Q(h;f) = P(h;f&e) for some permissible P-function
in Cy; = Cy,(UK).

By, can be determined, as before, as follows:
Total Knowledge: B, = C,(K,,)

Thus, X’s confirmational commitment is defined by specifying the value of
Cx(UK).

A strict bayesian confirmational commitment, of course, allows a single P-
function to be uniquely permissible. However, confirmational commitments are
possible which contain more than one P-function. In general, I shall say that one
confirmational commitment is stronger than another if the set of its P-functions is a
subset of the set of P-functions in the other commitment.

On this view, the weakest confirmational commitment possible is that which
contains all the P-functions that meet the requirements of inductive logic. I shall
continue to follow Carnap in understanding inductive logic to be a system of
principles that impose constraints on probability functions eligible for membership
in confirmational commitments.

In contrast, the strongest confirmational commitment would be the empty one—
which is inconsistent with our first requirement of nonemptiness. A strongest
“consistent” confirmational commitment is single-membered.

We can, by the way, extend the notion of a confirmational commitment so as
to define it for an inconsistent corpus. We can require that Cx,(K) where K is
inconsistent, be empty. This means that our previous requirement that a credal state
be nonempty is to be restricted to cases where K is consistent. Thus, X might adopt a
consistent confirmational commitment (i.e., one that is nonempty). Yet, if he should,
unfortunately, endorse an inconsistent K, his credal state should be empty.

As noted previously, strict bayesians have differed among themselves as to what
constitutes a complete system of principles of inductive logic. These differences
persist on the view I am now proposing. They may be viewed, however, in a new
light. The disagreements over inductive logic turn out to be disagreements over what
constitutes the “weakest” possible confirmational commitment—which I shall call
“CIL(UK).”
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“Coherentists” like de Finetti and Savage claim that the principle of coherence
constitutes a complete inductive logic. On their view, CIL(UK) is the set of all P-
functions obeying the calculus of probabilities defined over M.

Some authors are prepared to add a further principle to the principle of coherence.
This principle determines permissible Q-values for hypotheses about the outcome
of a specific experiment on a chance device, given suitable knowledge about the
experiment to be performed and the chances of possible outcomes of experiments
of that type.

There is considerable controversy concerning the formulation of such a principle
of “direct inference.” In large measure, the controversy reflects disagreements
over the interpretation of “chance” or “statistical probability,” concerning the so-
called “problem of the reference class” and random sampling. Indeed, the reason
coherentists do not endorse a principle linking objective chance with credence is
that they either deny the intelligibility of the notion of objective chance or argue in
favor of dispensing with that notion.

Setting these controversies to one side, I shall call anyone who holds that a
complete inductive logic consists of the coherence principle and an additional
principle of direct inference from knowledge of chance to outcomes of random
experiments an “objectivist.”

There are many authors who are neither coherentists nor objectivists because they
wish to supplement the principles of coherence and direct inference with additional
principles. Some follow J. M. Keynes, Jeffreys, and Carnap in adding principles
of symmetry of various kinds. Others, like I. Hacking,’ introduce principles of
irrelevance or other criteria which attempt to utilize knowledge about chances in
a manner different from that employed in direct inference. Approaches of this
sort stem by and large from the work of R. A. Fisher. I lack a good tag for this
somewhat heterogeneous group of viewpoints. They all agree, however, in denying
that objectivist inductive logic is a complete inductive logic.

Attempting to classify the views of historically given authors concerning induc-
tive logic is fraught with risk. I shall not undertake a tedious and thankless task
of textual analysis in the vain hope of convincing the reader that many eminent
authors have been committed to an inductive logic whether they have said so or not.
Yet much critical insight into controversies concerning probability, induction, and
statistical inference can be obtained by reading the parties to the discussion as if they
were committed to some form of inductive logic. If I am right, far from being a dead
issue, inductive logic remains very much alive and debated (at least implicitly) not
only by bayesians of the Keynes-Jeffreys-Carnap persuasion but by objectivists (to
whose number I think J. Neyman, H. Reichenbach, and, with some qualifications,
H. Kyburg belong) and the many authors, like Hacking, who are associated with the
tradition of Fisher in various ways.

Assuming, for the sake of the argument, that the debate concerning what
constitutes a complete set of principles of inductive logic is settled (I, for one, would

3Logic and Statistical Inference (New York: Cambridge, 1965), p. 135.
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defend and will defend elsewhere adopting a variant of an objectivist inductive
logic), there is yet another dimension to debates among students of probability,
induction, and statistical inference.

Some authors seem to endorse the view that a rational agent should adopt the
weakest confirmational commitment, CIL, consonant with inductive logic and hold
it fast. They are, in effect, advocating confirmational tenacity. They do so, however,
on the grounds that one should not venture to endorse a confirmational commitment
stronger than the weakest allowed by inductive logic. (Their view is analogous to
one that would require adopting the weakest corpus of knowledge UK and holding
it fast.) I shall call advocates of such a view “necessitarians.”

Again, classifying historically given authors is a risky business. However,
Keynes, Jeffreys, and Carnap (in his early work) seem to be clear examples
of necessitarians. What is more interesting is the implication that anyone is a
necessitarian who insists that the only conditions under which a numerically
precise probability can be assigned to a statement (other than a statement that is
certainly true or false) are those derivable via direct inference from knowledge of
chances. Such authors, on my view, are committed to saying that, when numerical
probabilities are not assignable in this way, any numerical value is a permissible
assignment provided that it is derived from Q-functions allowed by inductive logic.

To illustrate, suppose that X knows that a given coin has a 4 or a
.6 chance of landing heads on a toss. Let s be the first hypothesis that
the chance is .4, and h, the second hypothesis. Let g be the hypothesis
that the coin will land heads on the next toss. By direct inference, every
permissible Q-function in X’s credal state must be such that Q(g;h;)=.4 and
QO(g;hp) = .6. By coherence, every Q-function in his credal state must be such
that Q(hy) = 1— Q(h;), where Q(h) is some real number between 0 and 1 and
0(8) = Q(g:h1)Q(h1) + O(g;12)Q(h2) = A4Q(hy) + .6(1 — Q(hy)).

According to the authors I have in mind, there is no unique numerical value that a
rational X should adopt as uniquely permissible for Q(%;). As I am interpreting such
authors as Kyburg, Neyman, Reichenbach, and Salmon, they mean to say that X’s
credal state should consist of all Q-functions meeting the conditions specified. The
upshot is that the set of permissible Q-values for g should consist of all Q-values
in the interval from .4 to .6. If I am reading them right, they endorse an objectivist
logic and, at the same time, insist that X should adopt CIL as his confirmational
commitment. They are “objectivist necessitarians.”

The early Carnap, as noted previously, had hoped to identify an inductive logic
that singled out a unique P-function as eligible for membership in confirmational
commitments. Had his hope been realized, a rational agent would perforce have
had to be a necessitarian. The weakest confirmational commitment would have
been the strongest consistent one as well. Confirmational tenacity would have been
necessitated by the principles of inductive logic.

But if Carnap’s program is abandoned, necessitarianism is by no means the only
response that one can make. Indeed, it seems to be of doubtful tenability, if for no
other reason than that credal states formed on a necessitarian basis seem to be too
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weak for use in practical decision making or statistical inference. (Many objectivist
necessitarians seem to deny this; but the matter is much too complicated to discuss
here.)

Personalists, like de Finetti and Savage, abandon necessitarianism but continue
to endorse confirmational tenacity—at least during normal periods free from
revolutionary stress. It is this position that I contended earlier leads to dogmatism or
capriciousness with respect to confirmational commitment.

The view I favor is revisionism. This view agrees with the personalist position
in allowing rational men to adopt confirmational commitments stronger than CIL.
It insists, however, that such commitments are open to revision. It sees as a
fundamental epistemological problem the task of providing an account of the
conditions under which such revision is appropriate and criteria for evaluating
proposed changes in confirmational commitment on those occasions when such
shifts are needed.

I shall not offer an account of the revision of confirmational commitments.
The point I wish to emphasize here is that, once one abandons the strict bayesian
approach to credal rationality and allows credal states to contain more than one
permissible Q-function in the manner I am suggesting, the revisionist position can
be seriously entertained. The strict bayesian view precludes it and leaves us with
the dubious alternatives of necessitarianism and personalism. By relaxing the strict
bayesian requirements on credal rationality, we can at least ask a question about
revision which could not be asked before.

VI

According to the approach I am proposing, X’s credal state at ¢ is characterized
by a set of Q-functions defined over sentences in a set M. Such a representation
describes X’s credal state globally. Nothing has been said thus far as to how
individual sentences in M are to be assigned grades of credence or how the degrees
of credence assigned to two or more sentences are to be compared with one another.
The following definitions seem to qualify for this purpose:

Def. 1: Cry(h;e) is the set of real numbers r such that there is a Q-function in By,
according to which Q(h;e) =r.

Def. 2: c,,(hse) is the set of real numbers r such that there is a P-function in Cy,
according to which P(h;e) =r.

In virtue of the convexity requirement, both the credence function Cry,(h;e)
and the confirmation function c,,(h;e) will take sets of values that are subin-
tervals of the unit line—i.e., the interval from O to 1. The lower and upper
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bounds of such intervals have properties which have been investigated by I. J.
Good,® C. A. B. Smith,” and A. P. Dempster.®

A partial ordering with respect to comparative credence or with respect to
comparative confirmation can be defined as follows:

Cryy
Def. 3: (h;e) < (W:;€) if and only if, for every Q-function in B,
O(h;e) < Q(I';€').
Cyt
Def. 4: (h;e) < (W;¢')if and only if, for every P-function in Cy;, P(h;e) < P(W';¢’).

The partial orderings induced by credal states and confirmational commitments
conform to the requirements of B. O. Koopman’s axioms for comparative probabil-
ity.” Koopman pioneered in efforts to relax the stringent requirements imposed by
bayesians on rational credence. Within the framework of his system, he was able
not only to specify conditions of rational comparative probability judgment but to
identify ways of generating interval-valued credence functions.

According to Koopman’s approach, however, any two credal states (confirma-
tional commitments) represented by the same partial ordering of the elements of M
are indistinguishable. My proposal allows for important differences. Several distinct
convex sets of probability distributions over the elements of M can induce the same
partial ordering on the elements of M according to definitions 3 and 4.

Dempster, Good, Kyburg, Smith, and F. Schick, have all proposed modify-
ing bayesian doctrine by allowing credal states and confirmational commitments
to be represented by interval-valued probability functions.'” Good, Smith, and
Dempster have also explored the representation of credal states defined by interval-
valued credence functions by means of sets of probability measures. Smith and
Dempster explicitly consider convex sets of measures. Nonetheless, all these
authors, including Dempster and Smith, seem to regard credal states (and con-
firmational commitments) represented by the same interval-valued function as
indistinguishable. In contrast, my proposal recognizes credal states as different

5“Subjective Probability as the Measure of a Non-measurable Set,” in P. Suppes, E. Nagel, and A.
Tarski, Logic, Methodology, and the Philosophy of Science (Stanford: University Press, 1962), pp.
319-329.

7“Consistency in Statistical Inference and Decision” (with discussion), Journal of the Royal
Statistical Society, series B, XXIII (1961): 1-25.

8«Upper and Lower Probabilities Induced by a mutivalued Mapping,” Annals of Mathematical
Statistics, XXXVIII (1967): 325-339.

9“The Bases of Probability,” Bulletin of the American Mathematical Society, XLVI (1940): 763—
774.

°Dempster, op. cit.; Good, op. cit.; Kyburg, Probability and the Logic of Rational Belief
(Middletown, Conn.: Wesleyan Univ. Press, 1961): Smith, op. cit.; Schick, Explication and
Inductive Logic, doctoral dissertation, Columbia University, 1958.
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even though they generate the identical interval-valued function—provided they are
different convex sets of Q-functions.!!

Thus, the chief difference between my proposal and other efforts to come to
grips with “indeterminate” probability judgments is that my proposal recognizes
significant differences between credal states (confirmational commitments) where
other proposals recognize none. Is this a virtue, or are the fine distinctions allowed
by my proposal so much excess conceptual baggage?

I think that the distinctions between credal states recognized by the proposals
introduced here are significant. Agents X and Y, who confront the same set of
feasible options and evaluate the possible consequences in the same way may,
nonetheless, be obliged as rational agents to choose different options if their
credal states are different, even though their credal states define the same interval-
valued credence function. That is to say, according to the decision theory that
supplements the account of rational credence just introduced, differences in credal
states recognized by my theory but not by Dempster’s or Smith’s, do warrant
different choices in otherwise similar contexts of choice.

To explain this claim, we must turn to a consideration of rational choice. We
would have to do so anyhow. One of the demands that can fairly be made of those
who propose theories rival to bayesianism is that they furnish answers not only to the
problems of rational credence and revision but to the questions about rational choice.
Furthermore, the motivation for requiring credal states to be non-empty, convex
sets of probability measures and the explanation of the notion of a permissible Q-
function are best understood within the context of an account of rational choice. For
all these reasons, therefore, it is time to discuss rational choice.

VII

Consider, once more, a situation where X faces a decision problem of the type
described in section “I”. No longer, however, will it be supposed that X’s credal
state for the “states of nature” hy, hy, ..., h, and for the possible consequences 0;;
o, ..., 0iy conditional on X choosing A; are representable by a single Q-function.
Instead, the credal state will be required only to be a nonempty convex set of Q-
functions.'?

'The difference between my approach and Smith’s was drawn to my attention by Howard Stein. To
all intents and purposes, both Dempster and Smith represent credal states by the largest convex sets
that generate the interval-valued functions characterizing those credal states. Dempster (332/3) is
actually more restrictive than Smith. Dempster, by the way, wrongly attributes to Smith the position
I adopt. To my knowledge, Dempster is the first to consider this position in print—even if only to
misattribute it to Smith.

12As in section “I”, T am supposing that “states of nature” are “independent” of options in the
sense that, for every permissible Q-function, Q(h;) = Q(0;;;A;). I have done this to facilitate the
exposition. No question of fundamental importance is, in my opinion, thereby seriously altered.
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Although I have not focused attention here on the dubiety of requiring X’s
evaluations of the o;s to be representable by a utility function unique up to a linear
transformation, I do believe that rational men can have indeterminate preferences
and will, for the sake of generality, relax the bayesian requirement as follows: X’s
system of evaluations of the possible consequences of the feasible options is to be
represented by a set G of “permissible” u-functions defined over the o;s which is
(a) nonempty, (b) convex, and such that all linear transformations of u-functions in
G are also in G. A bayesian G is, in effect, such that all u-functions in it are linear
transformations of one another. It is this latter requirement that I am abandoning.

In those situations where X satisfies strict bayesian conditions so that his credal
state contains only a single Q-function and G contains all and only those u-functions
which are linear transformations of some specific u-function u;, an admissible
option A; is, according to the principle of maximizing expected utility, an option

m

that bears maximum expected utility E (4;) = Z O () uy (04). Notice that, if
any linear transformation of u; is substituted for ul 1 iln the computation of expected
utility, the ranking of options with respect to expected utility remains unaltered.
Hence we can say that, according to strict bayesians, an option is admissible if it
bears maximum expected utility relative to the uniquely permissible Q-function and
to any of the permissible u-functions in G (all of which are linear transformations
of Ml).

There is an obvious generalization of this idea applicable to situations where By ;
contains more than one permissible Q-function and G contains u-functions that are
not linear transformations of one another. I shall say that A; is E-admissible if and
only if there is at least one Q-function in By, and one u-function in G such that
E(A;) defined relative to that Q-function and u-function is a maximum among all
the feasible options. The generalization I propose is the following:

E-admissibility: All admissible options are E-admissible.

The principle of E-admissibility is by no means novel. I. J. Good, for example,
endorsed it at one time. Indeed, Good went further than this. He endorsed the
converse principle that all E-admissible options are admissible as well.'?

I disagree with Good’s view on this. When X’s credal state and goals select
more than one option as E-admissible, there may be and sometimes are other
considerations than E-admissibility which X, as a rational agent, should employ
in choosing between them.

There are occasions where X identifies two or more options as E-admissible
and where, in addition, he has the opportunity to defer decision between them.
If that opportunity is itself E-admissible, he should as a rational agent “keep his
options open.” Notice that in making this claim I am not saying that the option
of deferring choice between the other E-admissible options is “better” than the

13«Rational Decisions,” Journal of the Royal Statistical Society, Ser. B, XIV (1952): 114.
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other E-admissible options relative to X’s credence and values and the assessments
of expected utility based thereon. In general, E-admissible options will not be
comparable with respect to expected utility (although sometimes they will be). The
injunction to keep one’s options open is a criterion of choice that is based not on
appraisals of expected utility but on the “option-preserving” features of options.
Deferring choice is better than the other E-admissible options in this respect, but
not with respect to expected utility.

Thus, a P-admissible option is an option that is (a) E-admissible and (b) “best”
with respect to E-admissible option preservation among all E-admissible options.
I shall not attempt to provide an adequate explication of clause (b) here. In the
subsequent discussion, I shall consider situations where there are no opportunities to
defer choice. Nonetheless, it is important to notice that, given a suitably formulated
surrogate for (b), the following principle holds:

P-admissibility: All admissible options are P-admissible.

My disagreement with Good goes still further than this; for I reject not only the
converse of E-admissibility but that of P-admissibility as well.

To illustrate, consider a situation that satisfies strict bayesian requirements. X
knows that a coin with a .5 chance of landing heads is to be tossed once. g is the
hypothesis that the coin will land heads. Under the circumstances, we might say that
X’s credal state is such that all permissible Q-functions assign g the value Q(g) = .5.
Suppose that X is offered a gamble on g where X gains a dollar if g is true and loses
one if g is false. (I shall assume that X has neither a taste for nor an aversion to
gambling and that, for such small sums, money is linear with utility). He has two
options: to accept the gamble and to reject it. If he rejects it, he neither gains nor
loses.

Under the circumstances described, the principle of maximizing expected utility
may be invoked. It indicates that both options are optimal and, hence, in my terms
E-admissible. Since there are no opportunities for delaying choice, both options (on
a suitably formulated version of P-admissibility) become P-admissible.

Bayesians—and Good would agree with this—tend to hold that rational X is
free to choose either way. Not only are both options E-admissible. They are both
admissible. Yet, in my opinion, rational X should refuse the gamble. The reason is
not that refusal is better in the sense that it has higher expected utility than accepting
the gamble. The options come out equal on this kind of appraisal. Refusing the
gamble is “better,” however, with respect to the security against loss it furnishes
X. If X refuses the gamble, he loses nothing. If he accepts the gamble, he might
lose something. This appeal to security does not carry weight, in my opinion, when
accepting the gamble bears higher expected utility than refusing it. However, in that
absurdly hypothetical situation where they bear precisely the same expected utility,
the question of security does become critical.

These considerations can be brought to bear on the more general situation where
two or more options are E-admissible (even though they are not equal with respect
to expected utility) and where the principle of P-admissibility does not weed out
any options.
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An S-admissible option (i.e., option admissible with respect to security) is an
option that is P-admissible and such that there is a permissible u-function in G
relative to which the minimum u-value assigned a possible consequence o;; of option
A, is a maximum among all P-admissible options.'*

S-admissibility: All admissible options are S-admissible.

I cannot think of additional criteria for admissibility which seem adequate. (But
then I have no precise conditions of adequacy.) I think, perhaps, we should keep an
open mind on this matter. Nonetheless, for the present, I shall tentatively assume
that the converse of S-admissibility holds. This assumption will not alter the main
course of the subsequent argument.

Even without detailed exploration of the ramifications of this decision theory,
some of its main features are immediately apparent. It conforms to the strict
bayesian injunction to maximize expected utility in those situations where X has
a precise credal state and G contains u-functions that are all linear transformations
of one another. In this sense, bayesian decision theory is a special case of mine.

Similarly, the proposed decision theory identifies situations where the well-
known maximin criterion is applied legitimately. Customarily maximin is used to
select that option from among all the feasible options which maximizes the mini-
mum gain. This recommendation is legitimate, according to my theory, provided (1)
G contains all and only u-functions that are linear transformations of one another,
and (2) all feasible options are P-admissible. But even if condition (1) is satisfied, it
can be the case that the maximin solution from among all the feasible options is not
itself E-admissible and so cannot be considered to be S-admissible.

Finally, my proposal is able to discriminate between and cover a wider variety
of situations where neither maximizing expected utility nor maximining can be
invoked with much plausibility. Moreover, it does so with the aid of a unified system
of criteria of rational credence and rational choice. Thus, it does offer answers to just
those questions which Bayesian theory purports to solve. Move rover, it escapes the
bayesian commitment to the dubious doctrines of necessitarianism or personalism.

14The possible consequences of a “mixed act” constructed by choosing between “pure options”
A; and A; with the aid of a chance device with known chance probability of selecting one or the
other option is the set of possible consequences of either A; or A;. Consequently, the security level
of such a mixed option for a given u-function is the lowest of the security levels belonging to A;
and A;. Thus, my conception of security levels for mixed acts differs from that employed by von
Neumann and Morgenstern and by Wald in formulating maximin (or minimax) principles. For this
reason, starting with a set of P-admissible pure options, one cannot increase the security level by
forming mixtures of them. In any case, mixtures of E-admissible options are not always themselves
E-admissible. I shall leave mixed options out of account in the subsequent discussion. See D. Luce
and H. Raiffa, Games and Decisions (New York: Wiley, 1958), pp. 68-71, 74-76, 278-280.
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VIII

Some elementary properties of credal states as nonempty convex sets will be
illustrated and explained by applying the decision theory just outlined to simple
gambling situations. Suppose X knows that a coin is to be tossed and has either a
4 or .6 chance of landing heads. g is the hypothesis that the coin will land heads. 1
shall suppose that X has neither a taste for nor an aversion to gambling and that X’s
values are such that G is a set of u-functions that are linear transformations of the
monetary payoffs of the gambles to be considered.

Case 1: X is offered a gamble on a take-it-or-leave-it basis where he receives S — P
dollars if g is true and loses P dollars if g is false. (Both S and P are positive.)
Case 2: X is offered a gamble on a take-it-or-leave-it basis where he loses P dollars
if g is true and receives S — P dollars if g is false. (§ and P have the same values

asin case 1.)

h is the hypothesis that the chance of heads is .4, and #; is the hypothesis that the
chance of heads is .6. By the reasoning of page 455, every permissible Q-function
in X’s credal state should be such that Q(g) = .4Q(h;) + .6[1 — Q(hy)].

According to strict bayesians, X should, therefore, adopt a credal state that selects
a single such Q-function as permissible. This can be done by selecting a single value
for Q(hy). If that value is r, Q(g) = 4r + .6(1 —r) =.6— 2r.

Hence, the bayesian will find that accepting the case 1 gamble is uniquely admis-
sible if and only if Q(g)> P/S, and will find accepting the case 2 gamble uniquely
admissible if and only if Q( g) > P/S. (Otherwise rejecting the gamble for the appro-
priate case is uniquely admissible, assuming that ties in expected utility are settled
in favor of rejection.) Hence, if P/S is less than .5, a bayesian must preclude the
possibility of accepting the gamble being inadmissible both in case 1 and in case 2.

Suppose, however, that Cry,(h;) takes a nondegenerate interval as a value. For
simplicity, let that interval be [0, 1]. The set of permissible Q-values for g must be
all values of .6 — .2r where r takes any value from O to 1. Hence, Crx ,(g) = [.4, .6].

Under these conditions, my proposal holds that, when P/S falls in the interval
from .4 to .6, both options are E-admissible (and P-admissible) in case 1. The same
is true in case 2. But in both case 1 and case 2, rejecting the gamble is uniquely S-
admissible. Hence, in both cases, X should reject the gamble. This is true even when
P/S is less than .5. In this case, my proposal allows a rational agent a system of
choices that a strict bayesian would forbid. In adopting this position, I am following
the analysis advocated by C. A. B. Smith for handling pairwise choices between
accepting and rejecting gambles. Smith’s procedure, in brief, is to characterize X’s
degree of credence for g by a pair of numbers (the “lower pignic probability” and
the “upper pignic probability” for g) as follows: The lower pignic probability s
represents the least upper bound of betting quotients P/S for which X is prepared
to accept gambles on g for positive S. The upper pignic probability s for g is 1 —¢,
where ¢ is the least upper bound of betting quotients P/S for which X is prepared to
accept gambles on ~ g for positive S. Smith requires that s < s, but does not insist
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on equality as bayesians do. Given Smith’s definitions of upper and lower pignic
probabilities, it should be fairly clear that, in case 1 and case 2 where Cry ,(g) =[.4,
.6], Smith’s analysis and mine coincide.'

Before leaving cases 1 and 2, it should be noted that, if X’s credal state were
empty, no option in case 1 would be admissible and no option in case 2 would be
admissible either. If X is confronted with a case 1 predicament and an empty credal
state, he would be constrained to act and yet as a rational agent enjoined not to
act. The untenability of this result is to be blamed on adopting an empty credal
state. Only when X’s corpus is inconsistent, should a rational agent have an empty
credal state. But, of course, if X finds his corpus inconsistent, he should contract to
a consistent one.

Case 3: A; is accepting both the case 1 and the case 2 gamble jointly with a net
payoff if g is true or false of S —2P.

This is an example of decision making under certainty. Everyone agrees that if P
is greater than 2§ the gamble should be rejected; for it leads to certain loss. If P is
less than 25 X should accept the gamble; for it leads to a certain gain. These results,
by the way, are implied by the criteria proposed here as well as by the strict bayesian
view.

Strict bayesians often defend requiring that Q-functions conform to the require-
ments of the calculus of probabilities by an appeal to the fact that, when credal states
contain but a single Q-function, a necessary and sufficient condition for having
credal states that do not license sure losses (Dutch books) is having a Q-function
obeying the calculus of probabilities. The arguments also support the conclusion
that, even when more than one Q-function is permissible according to a credal
state, if all permissible Q-functions obey the coherence principle, no Dutch book
can become E-admissible and, hence, admissible.

Case 4: B is accepting the case 1 gamble, B, is accepting the case 2 gamble, and
Bj; is rejecting both gambles.

15Smith, op. cit, pp. 3-5, 6~7. The agreement applies only to pairwise choices where one option is a
gamble in which there are two possible payoffs and the other is refusing to gamble with 0 gain and 0
loss. In this kind of situation, it is clear that Smith endorses the principle of E-admissibility, but not
its converse. However, in the later sections of his paper where Smith considers decision problems
with three or more options or where the possible consequences of an option to be considered
are greater than 2, Smith seems (but I am not clear about this) to endorse the converse of the
principle of E-admissibility—counter to the analysis on the basis of which he defines lower and
upper pignic probabilities. Thus, it seems to me that either Smith has contradicted himself or (as
is more likely) he simply does not have a general theory of rational choice. The latter sections
of the paper may then be read as interesting explorations of technical matters pertaining to the
construction of such a theory, but not as actually advocating the converse of E-admissibility. At
any rate, since it is the theory Smith propounds in the first part of his seminal essay which interests
me, [ shall interpret him in the subsequent discussion as having no general theory of rational choice
beyond that governing the simple gambling situations just described.
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Let the credal state be such that all values between 0 and 1 are permissible Q-
values for /; and, hence, all values between .4 and .6 are permissible for g.

If P/S is greater than .6, B3 is uniquely E-admissible and, hence, admissible. If
P/S is less than .4, B is E-inadmissible. The other two options are E-admissible and
admissible.

If P/S is greater than or equal to .4 and less than .5, B3 remains inadmissible and
the other two admissible.

If P/S is greater than or equal to .5 and less than .6, all three options are E-
admissible; but B3 is uniquely S-admissible. Hence, B3 should be chosen when P/S
is greater than or equal to .5.

Three comments are worth making about these results.

(i) I am not sure what analysis Smith would propose of situations like case 4. At
any rate, his theory does not seem to cover it (but see footnote 15).

(i) When P/S is between .4 and .5, my theory recommends rejecting the gamble
in case 1, rejecting the gamble in case 2, and yet recommends accepting one or
the other of these gambles in case 4. This violates the so-called “principle of
independence of irrelevant alternatives.” !

(iii) If the convexity requirement for credal states were violated by removing as
permissible values for g all values from (S — P)/S to P/S, where P/S is greater
than .5 and less than .6, but leaving all other values from .4 to .6, then—counter
to the analysis given previously, Bz would not be E-admissible in case 4. The
peculiarity of that result is that B is E-admissible because, for permissible
Q-values from .6 down to P/S, it bears maximum expected utility, with B3 a
close second. B; is E-admissible because, for Q-values from .4 to (S — P)/S,
B is optimal, with B3 again a close second. If the values between (S — P)/S
and P/S are also permissible, B3 is E-admissible because it is optimal for those
values. To eliminate such intermediate values and allow the surrounding values
to retain their permissibility seems objectionable. Convexity guarantees against
this.

Case 5: X is offered a gamble on a take-it-or-leave-it basis in which he wins 15 cents
if f1 is true, loses 30 cents if f; is true, and wins 40 cents if f; is true.

16See Luce and Raiffa, op. cit., pp. 288/9. Because the analysis offered by Smith and me for cases
1 and 2 seems perfectly appropriate and the analysis for case 4 also appears impeccable, I conclude
that there is something wrong with the principle of independence of irrelevant alternatives.

A hint as to the source of the trouble can be obtained by noting that if ‘E-admissible’ is
substituted for ‘optimal’ in the various formulations of the principle cited by Luce and Raifta,
p- 289, the principle of independence of irrelevant alternatives stands. The principle fails because
S-admissibility is used to supplement E-admissibility in weeding out options from the admissible
set.

Mention should be made in passing that even when ‘E-admissible’ is substituted for ‘optimal’
in Axiom 9 of Luce and Raiffa, p. 292, the axiom is falsified. Thus, when .5 < P/S < .6 in case 4,
all three options are E-admissible, yet some mixtures of B; and B, will not be.
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Suppose X’s corpus of knowledge contains the following information:

Situation a: X knows that the ratios of red, white, and blue balls in the urn are either
(1) 1/8, 3/8, 4/8 respectively; (ii) 1/8, 4/8, 3/8; (iii) 2/8, 4/8, 2/8; or (iv) 4/8, 3/8,
1/8.

X’s credal state for the f;s is determined by his credal state for the four hypotheses
about the contents of the urn according to a more complex variant of the arguments
used to obtain credence values for g in the first four cases. If we allow all Q-
functions compatible with inductive logic of an objectivist kind to be permissible,
X’s credal state for the fs is the convex set of all weighted averages of the four
triples of ratios. Cry,(fi) = (1/8, 4/8), Crx,(f2) = (3/8, 4/8), and Crx(f3) = (1/8,
4/8). Both accepting and rejecting the gamble are E-admissible. Rejecting the
gamble, however, is uniquely S-admissible. X should reject the gamble.

Situation b: X knows that the ratios of red, white, and blue balls is correctly
described by (i), (ii), or (iv), but not by (iii). Calculation reveals that the interval-
valued credence function is the same as in situation a. Yet it can be shown that
accepting the gamble is uniquely E-admissible and, hence, admissible. X should
accept the gamble.

Now we can imagine situations that are related as a and b are to one another
except that the credal states do not reflect differences in statistical knowledge.
Then, from the point of view of Dempster and Smith, the credal states would
be indistinguishable. Because the set of permissible Q-distributions over the fis
would remain different for situations a and b, my view would recognize differences
and recommend different choices. If the answer to the problem of rational choice
proposed here is acceptable, the capacity of the account of credal rationality to
make fine distinctions is a virtue rather than a gratuitous piece of pedantry.

The point has its ramifications for an account of the improvement of confir-
mational commitments; the variety of discriminations that can be made between
confirmational commitments generates a variety of potential shifts in confirmational
commitments subject to critical review. For intervalists, a shift from situation a to b
is no shift at all. On the view proposed here, it is significant.

The examples used in this section may be used to illustrate one final point. The
objective or statistical or chance probability distributions figuring in chance state-
ments can be viewed as assumptions or hypotheses. Probabilities in this sense can be
unknown. We can talk of a set of simple or precise chance distributions among which
X suspends judgment. Such possible probability distributions represent hypotheses
which are possibly true and which are themselves objects of appraisal with respect to
credal probability. Permissible probability distributions which, in our examples, are
defined over such possible probability distributions (like the hypotheses /; and &,
of cases 1, 2, 3, and 4) are not themselves possibly true hypotheses. No probability
distributions of a still higher type can be denned over them.!”

7T mention this because L. J. Good, whose seminal ideas have been an important influence on the
proposals made in this essay, confuses permissible with possible probabilities. As a consequence,
he introduces a hierarchy of types of probability (Good, op. cit., p. 327). For criticism of such
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I have scratched the surface of some of the questions raised by the proposals
made in this essay. Much more needs to be done. I do believe, however, that these
proposals offer fertile soil for cultivation not only by statisticians and decision
theorists but by philosophers interested in what, in my opinion, ought to be the
main problem for epistemology—to wit, the improvement (and, hence, revision) of
human knowledge and belief.
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views, see Savage, The Foundations of Statistics (New York: Wiley, 1954), p. 58. In fairness to
Good, it should be mentioned that his possible credal probabilities are interpreted not as possibly
true statistical hypotheses but as hypotheses entertained by X about his own unknown strictly
bayesian credal state. Good is concerned with situations where strict bayesian agents having precise
probability judgments cannot identify their credal states before decision and must make choices
on the basis of partial information about themselves. [In Decision and Value (New York: Wiley,
1964), P. G. Fishburn devotes himself to the same question.] My proposals do not deal with this
problem. I reject Good’s and Fishburn’s view that every rational agent is at bottom a strict bayesian
limited only by his lack of self-knowledge, computational facility, and memory. To the contrary, I
claim that, even without such limitations, rational agents should not have precise bayesian credal
states. The difference in problem under consideration and presuppositions about rational agents
has substantial technical ramifications which cannot be developed here.



Chapter 8
Why I am not a Bayesian

Clark Glymour

The aim of confirmation theory is to provide a true account of the principles
that guide scientific argument in so far as that argument is not, and does not
purport to be, of a deductive kind. A confirmation theory should serve as a critical
and explanatory instrument quite as much as do theories of deductive inference.
Any successful confirmation theory should, for example, reveal the structure and
fallacies, if any, in Newton’s argument for universal gravitation, in nineteenth-
century arguments for and against the atomic theory, in Freud’s arguments for
psychoanalytic generalizations. Where scientific judgements are widely shared,
and sociological factors cannot explain their ubiquity, and analysis through the
lens provided by confirmation theory reveals no good explicit arguments for
the judgements, confirmation theory ought at least sometimes to suggest some
good arguments that may have been lurking misperceived. Theories of deductive
inference do that much for scientific reasoning in so far as that reasoning is supposed
to be demonstrative. We can apply quantification theory to assess the validity of
scientific arguments, and although we must almost always treat such arguments
as enthymematic, the premisses we interpolate are not arbitrary; in many cases,
as when the same subject-matter is under discussion, there is a common set of
suppressed premisses. Again, there may be differences about the correct logical
form of scientific claims; differences of this kind result in (or from) different
formalizations, for example, of classical mechanics. But such differences often
make no difference for the assessment of validity in actual arguments. Confirmation
theory should do as well in its own domain. If it fails, then it may still be of interest
for many purposes, but not for the purpose of understanding scientific reasoning.

Who cares whether a pig-farmer is a Bayesian?—R. C. Jeffrey.
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The aim of confirmation theory ought not to be simply to provide precise
replacements for informal methodological notions, that is, explications of them.
It ought to do more; in particular, confirmation theory ought to explain both
methodological truisms and particular judgements that have occurred within the
history of science. By ‘explain’ I mean at least that confirmation theory ought to
provide a rationale for methodological truisms, and ought to reveal some systematic
connections among them and, further, ought, without arbitrary or question-begging
assumptions, to reveal particular historical judgements as in conformity with its
principles.

Almost everyone interested in confirmation theory today believes that confirma-
tion relations ought to be analysed in terms of probability relations. Confirmation
theory is the theory of probability plus introductions and appendices. Moreover,
almost everyone believes that confirmation proceeds through the formation of
conditional probabilities of hypotheses on evidence. The basic tasks facing con-
firmation theory are thus just those of explicating and showing how to determine
the probabilities that confirmation involves, developing explications of such meta-
scientific notions as ‘confirmation’, ‘explanatory power’, ‘simplicity’, and so on
in terms of functions of probabilities and conditional probabilities, and showing
that the canons and patterns of scientific inference result. It was not always so.
Probabilistic accounts of confirmation really became dominant only after the publi-
cation of Carnap’s Logical Foundations of Probability (1950), although of course
many probabilistic accounts had preceded Carnap’s. An eminent contemporary
philosopher (Putnam 1967) has compared Carnap’s achievement in inductive logic
with Frege’s in deductive logic: just as before Frege there was only a small and
theoretically uninteresting collection of principles of deductive inference, but after
him the foundation of a systematic and profound theory of demonstrative reasoning,
so with Carnap and inductive reasoning. After Carnap’s Logical Foundations,
debates over confirmation theory seem to have focused chiefly on the interpre-
tation of probability and on the appropriate probabilistic explications of various
meta-scientific notions. The meta-scientific notions remain controversial, as does
the interpretation of probability, although, increasingly, logical interpretations of
probability are giving way to the doctrine that probability is degree of belief.! In
very recent years a few philosophers have attempted to apply probabilistic analyses
to derive and to explain particular methodological practices and precepts, and even
to elucidate some historical cases.

I believe these efforts, ingenious and admirable as many of them are, are none
the less misguided. For one thing, probabilistic analyses remain at too great a
distance from the history of scientific practice to be really informative about that
practice, and in part they do so exactly because they are probabilistic. Although
considerations of probability have played an important part in the history of science,
until very recently, explicit probabilistic arguments for the confirmation of various

A third view, that probabilities are to be understood exclusively as frequencies, has been most
ably defended by Wesley Salmon (1969).
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theories, or probabilistic analyses of data, have been great rarities in the history of
science. In the physical sciences at any rate, probabilistic arguments have rarely
occurred. Copernicus, Newton, Kepler, none of them give probabilistic arguments
for their theories; nor does Maxwell or Kelvin or Lavoisier or Dalton or Einstein or
Schrodinger or ... There are exceptions. Jon Dorling has discussed a seventeenth-
century Ptolemaic astronomer who apparently made an extended comparison of
Ptolemaic and Copernican theories in probabilistic terms; Laplace, of course, gave
Bayesian arguments for astronomical theories. And there are people—Maxwell, for
example—who scarcely give a probabilistic argument when making a case for or
against scientific hypotheses but who discuss methodology in probabilistic terms.
This is not to deny that there are many areas of contemporary physical science where
probability figures large in confirmation; regression analysis is not uncommon in
discussions of the origins of cosmic rays, correlation and analysis of variance in
experimental searches for gravitational waves, and so on. It is to say that, explicitly,
probability is a distinctly minor note in the history of scientific argument.

The rarity of probability considerations in the history of science is more an
embarrassment for some accounts of probability than for others. Logical theories,
whether Carnap’s or those developed by Hintikka and his students, seem to lie at
a great distance from the history of science. Still, some of the people working in
this tradition have made interesting steps towards accounting for methodological
truisms. My own inclination is to believe that the interest such investigations
have stems more from the insights they obtain into syntactic versions of structural
connections among evidence and hypotheses than to the probability measures they
mesh with these insights. Frequency interpretations suppose that for each hypothesis
to be assessed there is an appropriate reference class of hypotheses to which
to assign it, and the prior probability of the hypothesis is the frequency of true
hypotheses in this reference class. The same is true for statements of evidence,
whether they be singular or general. The matter of how such reference classes are to
be determined, and determined so that the frequencies involved do not come out to
be zero, is a question that has only been touched upon by frequentist writers. More to
the point, for many of the suggested features that might determine reference classes,
we have no statistics, and cannot plausibly imagine those who figure in the history of
our sciences to have had them. So conceived, the history of scientific argument must
turn out to be largely a history of fanciful guesses. Further, some of the properties
that seem natural candidates for determining reference classes for hypotheses—
simplicity, for example—seem likely to give perverse results. We prefer hypotheses
that posit simple relations among observed quantities, and so on a frequentist view
should give them high prior probabilities. Yet simple hypotheses, although often
very useful approximations, have most often turned out to be literally false.

At present, perhaps the most philosophically influential view of probability
understands it to be degree of belief. The subjectivist Bayesian (hereafter, for
brevity, simply Bayesian) view of probability has a growing number of advocates
who understand it to provide a general framework for understanding scientific
reasoning. They are singularly unembarrassed by the rarity of explicit probabilistic
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arguments in the history of science, for scientific reasoning need not be explicitly
probabilistic in order to be probabilistic in the Bayesian sense. Indeed, a number
of Bayesians have discussed historical cases within their framework. Because of
its influence and its apparent applicability, in what follows it is to the subjective
Bayesian account that I shall give my full attention.

My thesis is several-fold. First, there are a number of attempts to demonstrate
a priori the rationality of the restrictions on belief and inference that Bayesians
advocate. These arguments are altogether admirable, but ought, I shall maintain,
to be unconvincing. My thesis in this instance is not a new one, and I think many
Bayesians do regard these a priori arguments as insufficient. Second, there are a
variety of methodological notions that an account of confirmation ought to explicate
and methodological truisms involving these notions that a confirmation theory ought
to explain: for example, variety of evidence and why we desire it, ad hoc hypotheses
and why we eschew them, what separates a hypothesis integral to a theory from
one ‘tacked on’ to the theory, simplicity and why it is so often admired, why
‘de-Occamized’ theories are so often disdained, what determines when a piece of
evidence is relevant to a hypothesis, and what, if anything, makes the confirmation
of one bit of theory by one bit of evidence stronger than the confirmation of
another bit of theory (or possibly the same bit) by another (or possibly the same)
bit of evidence. Although there are plausible Bayesian explications of some of
these notions, there are not plausible Bayesian explications of others. Bayesian
accounts of methodological truisms and of particular historical cases are of one
of two kinds: either they depend on general principles restricting prior probabilities,
or they don’t. My claim is that many of the principles proposed by the first kind of
Bayesian are either implausible or incoherent, and that, for want of such principles,
the explanations the second kind of Bayesians provide for particular historical cases
and for truisms of method are chimeras. Finally, I claim that there are elementary but
perfectly common features of the relation of theory and evidence that the Bayesian
scheme cannot capture at all without serious—and perhaps not very plausible—
revision.

It is not that I think the Bayesian scheme or related probabilistic accounts capture
nothing. On the contrary, they are clearly pertinent where the reasoning involved
is explicitly statistical. Further, the accounts developed by Carnap, his predeces-
sors, and his successors are impressive systematizations and generalizations, in
a probabilistic framework, of certain principles of ordinary reasoning. But so far
as understanding scientific reasoning goes, I think it is very wrong to consider
our situation to be analogous to that of post-Fregean logicians, our subject-matter
transformed from a hotchpotch of principles by a powerful theory whose outlines
are clear. We flatter ourselves that we possess even the hotchpotch. My opinions are
outlandish, I know; few of the arguments I shall present in their favour are new, and
perhaps none of them is decisive. Even so, they seem sufficient to warrant taking
seriously entirely different approaches to the analysis of scientific reasoning.

The theories I shall consider share the following framework, more or less. There
is a class of sentences that express all hypotheses and all actual or possible evidence



8 Why I am not a Bayesian 135

of interest; the class is closed under Boolean operations. For each ideally rational
agent, there is a function defined on all sentences such that, under the relation
of logical equivalence, the function is a probability measure on the collection
of equivalence classes. The probability of any proposition represents the agent’s
degree of belief in that proposition. As new evidence accumulates, the probability
of a proposition changes according to Bayes’s rule: the posterior probability of
a hypothesis on the new evidence is equal to the prior conditional probability of
the hypothesis on the evidence. This is a scheme shared by diverse accounts of
confirmation. I call such theories ‘Bayesian’, or sometimes ‘personalist’.

We certainly have grades of belief. Some claims I more or less believe, some
I find plausible and tend to believe, others I am agnostic about, some I find
implausible and far-fetched, still others I regard as positively absurd. I think
everyone admits some such gradations, although descriptions of them might be
finer or cruder. The personalist school of probability theorists claim that we also
have degrees of belief, degrees that can have any value between 0 and 1 and that
ought, if we are rational, to be representable by a probability function. Presumably,
the degrees of belief are to co-vary with everyday gradations of belief, so that one
regards a proposition as preposterous and absurd just if his degree of belief in it is
somewhere near zero, and he is agnostic just if his degree of belief is somewhere
near a half, and so on. According to personalists, then, an ideally rational agent
always has his degrees of belief distributed so as to satisfy the axioms of probability,
and when he comes to accept a new belief, he also forms new degrees of belief by
conditionalizing on the newly accepted belief. There are any number of refinements,
of course; but that is the basic view.

Why should we think that we really do have degrees of belief? Personalists have
an ingenious answer: people have them because we can measure the degrees of
belief that people have. Assume that no one (rational) will accept a wager on which
he expects a loss, but anyone (rational) will accept any wager on which he expects a
gain. Then we can measure a person’s degree of belief in proposition P by finding,
for fixed amount v, the highest amount u such that the person will pay u in order
to receive u + v if P is true, but receive nothing if P is not true. If u is the greatest
amount the agent is willing to pay for the wager, his expected gain on paying u# must
be zero. The agent’s gain if P is the case is v; his gain if P is not the case is —u.
Thus

v - prob(P) + (—u) - prob (~ P) = 0.
Since prob (~P) =1 — prob(P), we have
prob(P) = u/ (u + v) .

The reasoning is clear: any sensible person will act so as to maximize his expected
gain; thus, presented with a decision whether or not to purchase a bet, he will make
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the purchase just if his expected gain is greater than zero. So the betting odds he
will accept determine his degree of belief.

I think that this device really does provide evidence that we have, or can produce,
degrees of belief, in at least some propositions, but at the same time it is evident that
betting odds are not an unobjectionable device for the measurement of degrees of
belief. Betting odds could fail to measure degrees of belief for a variety of reasons:
the subject may not believe that the bet will be paid off if he wins, or he may doubt
that it is clear what constitutes winning, even though it is clear what constitutes
losing. Things he values other than monetary gain (or whatever) may enter into his
determination of the expected utility of purchasing the bet: for example, he may
place either a positive or a negative value on risk itself. And the very fact that he is
offered a wager on P may somehow change his degree of belief in P.

Let us suppose, then, that we do have degrees of belief in at least some
propositions, and that in some cases they can be at least approximately measured
on an interval from O to 1. There are two questions: why should we think that, for
rationality, one’s degrees of belief must satisfy the axioms of probability, and why
should we think that, again for rationality, changes in degrees of belief ought to
proceed by conditionalization? One question at a time. In using betting quotients
to measure degrees of belief, it was assumed that the subject would act so as to
maximize expected gain. The betting quotient determined the degree of belief by
determining the coefficient by which the gain is multiplied in case that P is true in
the expression for the expected gain. So the betting quotient determines a degree of
belief, as it were, in the role of a probability. But why should the things, degrees
of belief, that play this role be probabilities? Supposing that we do choose those
actions that maximize the sum of the product of our degrees of belief in each
possible outcome of the action and the gain (or loss) to us of that outcome. Why
must the degrees of belief that enter into this sum be probabilities? Again, there is an
ingenious argument: if one acts so as to maximize his expected gain using a degree-
of-belief function that is not a probability function, and if for every proposition
there were a possible wager (which, if it is offered, one believes will be paid off
if it is accepted and won), then there is a circumstance, a combination of wagers,
that one would enter into if they were offered, and in which one would suffer a net
loss whatever the outcome. That is what the Dutch-book argument shows; what it
counsels is prudence.

Some of the reasons why it is not clear that betting quotients are accurate
measures of degrees of belief are also reasons why the Dutch-book argument is
not conclusive: there are many cases of propositions in which we may have degrees
of belief, but on which, we may be sure, no acceptable wager will be offered us;

2More detailed accounts of means for determining degrees of belief may be found in Jeffrey (1965).
It is a curious fact that the procedures that Bayesians use for determining subjective degrees of
belief empirically are an instance of the general strategy described in Glymour 1981, ch. 5. Indeed,
the strategy typically used to determine whether or not actual people behave as rational Bayesians
involves the bootstrap strategy described in that chapter.
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again, we may have values other than the value we place on the stakes, and these
other values may enter into our determination whether or not to gamble; and we
may not have adopted the policy of acting so as to maximize our expected gain or
our expected utility: that is, we may save ourselves from having book made against
us by refusing to make certain wagers, or combinations of wagers, even though we
judge the odds to be in our favour.

The Dutch-book argument does not succeed in showing that in order to avoid
absurd commitments, or even the possibility of such commitments, one must have
degrees of belief that are probabilities. But it does provide a kind of justification
for the personalist viewpoint, for it shows that if one’s degrees of belief are
probabilities, then a certain kind of absurdity is avoided. There are other ways of
avoiding that kind of absurdity, but at least the personalist way is one such.?

One of the common objections to Bayesian theory is that it fails to provide any
connection between what is inferred and what is the case. The Bayesian reply is
that the method guarantees that, in the long run, everyone will agree on the truth.
Suppose that B; are a set of mutually exclusive, jointly exhaustive hypotheses, each
with probability B(i). Let x, be a sequence of random variables with a finite set
B,-) =t (x, B,-); then
we can think of the values x, as the outcomes of experiments, each hypothesis
determining a likelihood for each outcome. Suppose that no two hypotheses have
the same likelihood distribution; that is, for i # it is not the case that for all values
X, of x,., e(x;|B;) = e(x,|B;), where the &’s are defined as above. Let x denote the first
n of these variables, where x is a value of x. Now imagine an observation of these n
random variables. In Savage’s words:

Before the observation, the probability that the probability given x of whichever
element of the partition actually obtains will be greater than « is

Zi:B(i)P (P (B,-)x) > oc‘B,-) ,

where summation is confined to those i’s for which B(i) # 0. (1972: 49)

In the limit as n approaches infinity, the probability that the probability given x
of whichever element of the partition actually obtains is greater than « is 1. That is
the theorem. What is its significance? According to Savage, ‘With the observation
of an abundance of relevant data, the person is almost certain to become highly
convinced of the truth, and it has also been shown that he himself knows this to
be the case’ (p. 50). That is a little misleading. The result involves second-order
probabilities, but these too, according to personalists, are degrees of belief. So what
has been shown seems to be this: in the limit as n approaches infinity, an ideally
rational Bayesian has degree of belief 1 that an ideally rational Bayesian (with
degrees of belief as in the theorem) has degree of belief, given x, greater than o

of values and conditional distribution given by P (x, =X

3For further criticisms of the Dutch-book argument see Kyburg 1978.
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in whichever element of the partition actually obtains. The theorem does not tell us
that in the limit any rational Bayesian will assign probability 1 to the true hypothesis
and probability O to the rest; it only tells us that rational Bayesians are certain that
he will. It may reassure those who are already Bayesians, but it is hardly grounds
for conversion. Even the reassurance is slim. Mary Hesse points out (1974: 117-19),
entirely correctly I believe, that the assumptions of the theorem do not seem to apply
even approximately in actual scientific contexts. Finally, some of the assumptions of
stable estimation theorems can be dispensed with if one assumes instead that all of
the initial distributions considered must agree regarding which evidence is relevant
to which hypotheses. But there is no evident a priori reason why there should be
such agreement.

I think relatively few Bayesians are actually persuaded of the correctness of
Bayesian doctrine by Dutch-book arguments, stable estimation theorems, or other a
priori arguments. Their frailty is too palpable. I think that the appeal of Bayesian
doctrine derives from two other features. First, with only very weak or very
natural assumptions about prior probabilities, or none at all, the Bayesian scheme
generates principles that seem to accord well with common sense. Thus, with minor
restrictions, one obtains the principle that hypotheses are confirmed by positive
instances of them; and, again, one obtains the result that if an event that actually
occurs is, on some hypothesis, very unlikely to occur, then that occurrence renders
the hypothesis less likely than it would otherwise have been. These principles, and
others, can claim something like the authority of common sense, and Bayesian
doctrine provides a systematic explication of them. Second, the restrictions placed
a priori on rational degrees of belief are so mild, and the device of probability
theory at once so precise and so flexible, that Bayesian philosophers of science may
reasonably hope to explain the subtleties and vagaries of scientific reasoning and
inference by applying their scheme together with plausible assumptions about the
distribution of degrees of belief. This seems, for instance, to be Professor Hesse’s
line of argument. After admitting the insufficiency of the standard arguments for
Bayesianism, she sets out to show that the view can account for a host of alleged
features of scientific reasoning and inference. My own view is different: particular
inferences can almost always be brought into accord with the Bayesian scheme
by assigning degrees of belief more or less ad hoc, but we learn nothing from
this agreement. What we want is an explanation of scientific argument; what the
Bayesians give us is a theory of learning—indeed, a theory of personal learning.
But arguments are more or less impersonal; I make an argument to persuade
anyone informed of the premisses, and in doing so I am not reporting any bit of
autobiography. To ascribe to me degrees of belief that make my slide from my
premisses to my conclusion a plausible one fails to explain anything, not only
because the ascription may be arbitrary, but also because, even if it is a correct
assignment of my degrees of belief, it does not explain why what I am doing is
arguing—why, that is, what I say should have the least influence on others, or why
I might hope that it should. Now, Bayesians might bridge the gap between personal
inference and argument in either of two ways. In the first place, one might give
arguments in order to change others’ beliefs because of the respect they have for his
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opinion. This is not very plausible; if that were the point of giving arguments, one
would not bother with them, but would simply state one’s opinion. Alternatively,
and more hopefully, Bayesians may suggest that we give arguments exactly because
there are general principles restricting belief, principles that are widely subscribed
to, and in giving arguments we are attempting to show that, supposing our audience
has certain beliefs, they must in view of these principles have other beliefs, those
we are trying to establish. There is nothing controversial about this suggestion, and I
endorse it. What is controversial is that the general principles required for argument
can best be understood as conditions restricting prior probabilities in a Bayesian
framework. Sometimes they can, perhaps; but I think that when arguments turn on
relating evidence to theory, it is very difficult to explicate them in a plausible way
within the Bayesian framework. At any rate, it is worth seeing in more detail what
the difficulties may be.

There is very little Bayesian literature about the hotchpotch of claims and notions
that are usually canonized as scientific method; very little seems to have been
written, from a Bayesian point of view, about what makes a hypothesis ad hoc, about
what makes one body of evidence more various than another body of evidence, and
why we should prefer a variety of evidence, about why, in some circumstances,
we should prefer simpler theories, and what it is that we are preferring when we
do. And so on. There is little to nothing of this in Carnap, and more recent, and
more personalist, statements of the Bayesian position are almost as disappointing.
In a lengthy discussion of what he calls ‘tempered personalism’, Abner Shimony
(1970) discusses only how his version of Bayesianism generalizes and qualifies
hypothetico-deductive arguments. (Shimony does discuss simplicity, but only to
argue that it is overvalued.) Mary Hesse devotes the later chapters of her book to
an attempt to show that certain features of scientific method do result when the
Bayesian scheme is supplemented with a postulate that restricts assignments of prior
probabilities. Unfortunately, as we shall see, her restrictive principle is incoherent.*

One aspect of the demand for a variety of evidence arises when there is some
definite set of alternative hypotheses between which we are trying to decide. In
such cases we naturally prefer the body of evidence that will be most helpful in
eliminating false competitors. This aspect of variety is an easy and natural one
for Bayesians to take account of, and within an account such as Shimony’s it is
taken care of so directly as hardly to require comment. But there is more to variety.
In some situations we have some reason to suspect that if a theory is false, its
falsity will show up when evidence of certain kinds is obtained and compared. For
example, given the tradition of Aristotelian distinctions, there was some reason to
demand both terrestrial and celestial evidence for seventeenth-century theories of
motion that subjected all matter to the same dynamical laws. Once again, I see no
special reason why this kind of demand for a variety of evidence cannot be fitted
into the Bayesian scheme. But there is still more. A complex theory may contain

“Moreover, I believe that much of her discussion of methodological principles has only the loosest
relation to Bayesian principles.
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a great many logically independent hypotheses, and particular bodies of evidence
may provide grounds for some of those hypotheses but not for others. Surely part of
the demand for a variety of evidence, and an important part, derives from a desire to
see to it that the various independent parts of our theories are tested. Taking account
of this aspect of the demand for a variety of evidence is just taking account of the
relevance of evidence to pieces of theory. How Bayesians may do this we shall
consider later.

Simplicity is another feature of scientific method for which some Bayesians have
attempted to account. There is one aspect of the scientific preference for the simple
that seems beyond Bayesian capacities, and that is the disdain for ‘de-Occamized’
hypotheses, for theories that postulate the operation of a number of properties,
determinable only in combination, when a single property would do. Such theories
can be generated by taking any ordinary theory and replacing some single quantity,
wherever it occurs in the statement of the theory, by an algebraic combination of
new quantities. If the original quantity was not one that occurs in the statement of
some body of evidence for the theory, then the new, de-Occamized theory will have
the same entailment relations with that body of evidence as did the original theory.
If the old theory entailed the evidence, so will the new, de-Occamized one. Now, it
follows from Bayesian principles that if two theories both entail e, then (provided
the prior probability of each hypothesis is neither 1 nor 0), if e confirms one of
them, it confirms the other. How then is the fact (for so I take it to be) that pieces of
evidence just don’t seem to count for de-Occamized theories to be explained? Not
by supposing that de-Occamized theories have lower prior probabilities than un-de-
Occamized theories, for being ‘de-Occamized’ is a feature that a theory has only
with respect to a certain body of evidence, and it is not hard to imagine artificially
restricted bodies of evidence with respect to which perfectly good theories might
count as de-Occamized. Having extra wheels is a feature a theory has only in
relation to a body of evidence; the only Bayesian relation that appears available
and relevant to scientific preference is the likelihood of the evidence on the theory,
and unfortunately the likelihood is the same for a theory and for its de-Occamized
counterparts whenever the theory entails the evidence.

It is common practice in fitting curves to experimental data, in the absence of an
established theory relating the quantities measured, to choose the ‘simplest’ curve
that will fit the data. Thus linear relations are preferred to polynomial relations
of higher degree, and exponential functions of measured quantities are preferred
to exponential functions of algebraic combinations of measured quantities, and so
on. The problem is to account for this preference. Harold Jeffreys, a Bayesian
of sorts, offered an explanation (1979) along the following lines. Algebraic and
differential equations may be ordered by simplicity; the simpler the hypothetical
relation between two or more quantities, the greater is its prior probability. If
measurement error has a known probability distribution, we can then compute the
likelihood of any set of measurement results given an equation relating the measured
quantities. It should be clear, then, that with these priors and likelihoods, ratios
of posterior probabilities may be computed from measurement results. Jeffreys
constructed a Bayesian significance test for the introduction of higher-degree terms
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in the equation relating the measured quantities. Roughly, if one’s equation fits
the data roo well, then the equation has too many terms and too many arbitrary
parameters; and if the equation does not fit the data well enough, then one has not
included enough terms and parameters in the equation. The whole business depends,
of course, entirely on the ordering of prior probabilities. In his Theory of Probability
Jeffreys (1967) proposed that the prior probability of a hypothesis decreases as the
number of arbitrary parameters increases, but hypotheses having the same number
of arbitrary parameters have the same prior probability. This leads immediately to
the conclusion that the prior probability of every hypothesis is zero. Earlier, Jeffreys
proposed a slightly more complex assignment of priors that did not suffer from this
difficulty. The problem is not really one of finding a way to assign finite probabilities
to an infinite number of incompatible hypotheses, for there are plenty of ways to do
that. The trouble is that it is just very implausible that scientists typically have their
prior degrees of belief distributed according to any plausible simplicity ordering,
and still less plausible that they would be rational to do so. I can think of very few
simple relations between experimentally determined quantities that have with-stood
continued investigation, and often simple relations are replaced by relations that
are infinitely complex: consider the fate of Kepler’s laws. Surely it would be naive
for anyone to suppose that a set of newly measured quantities will truly stand in a
simple relation, especially in the absence of a well-confirmed theory of the matter.
Jeffreys’ strategy requires that we proceed in ignorance of our scientific experience,
and that can hardly be a rational requirement (Jeffreys 1973).

Consider another Bayesian attempt, this one due to Mary Hesse. Hesse puts a
‘clustering’ constraint on prior probabilities: for any positive 7, the conjunction
of r+ 1 positive instances of a hypothesis is more probable than a conjunction
of r positive instances with one negative instance. This postulate, she claims, will
lead us to choose, ceteris, paribus, the most economical, the simplest, hypotheses
compatible with the evidence. Here is the argument:

Consider first evidence consisting of individuals aj,as, ...,a,, all of which
have properties P and Q. Now consider an individual a,+; with property P. Does
an+1 have Q or not? If nothing else is known, the clustering postulate will direct
us to predict Qy4 since, ceteris paribus, the universe is to be postulated to be
as homogeneous as possible consistently with the data... But this is also the
prediction that would be made by taking the most economical general law which
is both confirmed by the data and of sufficient content to make a prediction about
the application of Q to a,+;. For h= ‘All P are Q’ is certainly more economical
than the ‘gruified’ conflicting hypothesis of equal content #’: ‘All x up to a, that are
P are Q, and all other x that are P are Q.’

If follows in the [case] considered that if a rule is adopted to choose the prediction
resulting from the most probable hypothesis on grounds of content, or, in case of a
tie in content, the most economical hypothesis on those of equal content, this rule
will yield the same predictions as the clustering postulate.

Here is the argument applied to curve-fitting:

Let f be the assertion that two data points (x;, y;,), (x2, y2) are obtained from
experiments... The two points are consistent with the hypothesis y =a + bx,
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and also of course with an indefinite number of other hypotheses of the form
y = ap + a; + --- + a,x;, where the values of ay, ...,a, are not determined
by (x1, ¥1), (x2, ¥2). What is the most economical prediction of the y-value of a
further point g, where the x-value of g is x3? Clearly it is the prediction which uses
only the information already contained in f, that is, the calculable values of a, b
rather than a prediction which assigns arbitrary values to the parameters of a higher-
order hypothesis. Hence the most economical prediction is about the point g = (x3,
a + bx3), which is also the prediction given by the ‘simplest’ hypothesis on almost
all accounts of the simplicity of curves. Translated into probabilistic language, this
is to say that to conform to intuitions about economy we should assign higher initial
probability to the assertion that points (x|, a + bx;), (x2, a + bxy), (x3, a + bx3) are
satisfied by the experiment than to that in which the third point is inexpressible in
terms of @ and b alone. In this formulation economy is a function of finite descriptive
lists of points rather than general hypotheses, and the relevant initial probability is
that of a universe containing these particular points rather than that of a universe in
which the corresponding general law is true .. . Description in terms of a minimum
number of parameters may therefore be regarded as another aspect of homogeneity
or clustering of the universe. (Hesse 1974: 230-2)

Hesse’s clustering postulate applies directly to the curve-fitting case, for her
clustering postulate then requires that if two paired values of x and y satisfy the
predicate y = ax + b, then it is more probable than not that a third pair of values will
satisfy the predicate. So the preference for the linear hypothesis in the next instance
results from Hesse’s clustering postulate and the probability axioms. Unfortunately,
with trivial additional assumptions, everything results. For, surely, if y=a + bx is a
legitimate predicate, then so is y = &y + b1x%, for any definite values of a; and b;.
Now Hesse’s first two data points can be equally well described by (x;, a; + b1x?})
and (xp, aj + b1x3), where

b V1= . 2( V1=
1 = 2 2 al_yl_xl 2 2 ’
AL =X X=X

Hence her first two data points satisfy both the predicate y=a+ bx and the
predicate y=a; + b;x*. So, by the clustering postulate, the probability that the
third point satisfies the quadratic expression must be greater than one-half, and the
probability that the third point satisfies the linear expression must also be greater
than one-half, which is impossible.

Another Bayesian account of our preference for simple theories has recently
been offered by Roger Rosencrantz (1976). Suppose that we have some criterion
for ‘goodness of fit’ of a hypothesis to data—for example, confidence regions
based on the y? distribution for categorical data, or in curve-fitting perhaps that the
average sum of squared deviations is less than some figure. Where the number of
possible outcomes is finite, we can compare the number of such possible outcomes
that meet the goodness-of-fit criterion with the number that do not. This ratio
Rosencrantz calls the ‘observed sample coverage’ of the hypothesis. Where the
possible outcomes are infinite, if the region of possible outcomes meeting the
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goodness-of-fit criterion is always bounded for all relevant hypotheses, we can
compare the volumes of such regions for different hypotheses, and thus obtain a
measure of comparative sample coverage.

It seems plausible enough that the smaller the observed sample coverage of a
hypothesis, the more severely it is tested by observing outcomes. Rosencrantz’s
first proposal is this: the smaller the observed sample coverage, the simpler the
hypothesis. But further, he proves the following for hypotheses about categorical
data: if H; and H, are hypotheses with parameters, and H; is a special case of
H, obtained by letting a free parameter in H, take its maximum likelihood value,
then if we average the likelihood of getting evidence that fits each hypothesis well
enough over all the possible parameter values, the average likelihood of H; will
be greater than the average likelihood of H, The conclusion Rosencrantz suggests
is that the simpler the theory, the greater the average likelihood of data that fit
it sufficiently well. Hence, even if a simple theory has a lower prior probability
than more complex theories, because the average likelihood is higher for the simple
theory, its posterior probability will increase more rapidly than that of more complex
theories. When sufficient evidence has accumulated, the simple theory will be
preferred. Rosencrantz proposes to identify average likelihood with support.

Rosencrantz’s approach has many virtues; I shall concentrate on its vices. First,
observed sample coverage does not correlate neatly with simplicity. If H is a
hypothesis, 7' another utterly irrelevant to H and to the phenomena about which
H makes predictions, then H & T will have the same observed sample coverage as
does H. Further, if H* is a de-Occamization of H, then H* and H will have the same
observed sample coverage. Second, Rosencrantz’s theorem does not establish nearly
enough. It does not establish, for example, that in curve-fitting the average likelihood
of a linear hypothesis is greater than the average likelihood of a quadratic or higher-
degree hypothesis. We cannot explicate support in terms of average likelihood unless
we are willing to allow that evidence supports a de-Occamized hypothesis as much
as un-de-Occamized ones, and a hypothesis with tacked-on parts as much as one
without such superfluous parts.

Finally, we come to the question of the relevance of evidence to theory. When
does a piece of evidence confirm a hypothesis according to the Bayesian scheme of
things? The natural answer is that it does so when the posterior probability of the
hypothesis is greater than its prior probability, that is, if the conditional probability
of the hypothesis on the evidence is greater than the probability of the hypothesis.
That is what the condition of positive relevance requires, and that condition is
the one most commonly advanced by philosophical Bayesians. The picture is a
kinematic one: a Bayesian agent moves along in time having at each moment a
coherent set of degrees of belief; at discrete intervals he learns new facts, and each
time he learns a new fact, e, he revises his degrees of belief by conditionalizing on e.
The discovery that e is the case has confirmed those hypotheses whose probability
after the discovery is higher than their probability before. For several reasons, I think
this account is unsatisfactory; moreover, I doubt that its difficulties are remediable
without considerable changes in the theory.
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The first difficulty is a familiar one. Let us suppose that we can divide the
consequences of a theory into sentences consisting of reports of actual or possible
observations, and simple generalizations of such observations, on the one hand;
and on the other hand, sentences that are theoretical. Then the collection of
‘observational’ consequences of the theory will always be at least as probable as
the theory itself; generally, the theory will be less probable than its observational
consequences. A theory is never any better established than is the collection of
its observational consequences. Why, then, should we entertain theories at all?
On the probabilist view, it seems, they are a gratuitous risk. The natural answer
is that theories have some special function that their collection of observational
consequences cannot serve; the function most frequently suggested is explanation—
theories explain; their collection of observational consequences do not. But however
sage this suggestion may be, it only makes more vivid the difficulty of the Bayesian
way of seeing things. For whatever explanatory power may be, we should certainly
expect that goodness of explanation will go hand in hand with warrant for belief; yet,
if theories explain, and their observational consequences do not, the Bayesian must
deny the linkage. The difficulty has to do both with the assumption that rational
degrees of belief are generated by probability measures and with the Bayesian
account of evidential relevance. Making degrees of belief probability measures in
the Bayesian way already guarantees that a theory can be no more credible than
any collection of its consequences. The Bayesian account of confirmation makes it
impossible for a piece of evidence to give us more total credence in a theory than in
its observational consequences. The Bayesian way of setting things up is a natural
one, but it is not inevitable, and wherever a distinction between theory and evidence
is plausible, it leads to trouble.

A second difficulty has to do with how praise and blame are distributed among
the hypotheses of a theory. Recall the case of Kepler’s laws (discussed in Glymour
1981, ch. 2). It seems that observations of a single planet (and, of course, the
sun) might provide evidence for or against Kepler’s first law (all planets move on
ellipses) and for or against Kepler’s second law (all planets move according to the
area rule), but no observations of a single planet would constitute evidence for or
against Kepler’s third law (for any two planets, the ratio of their periods equals the

3 /2 power of the ratio of their distances). Earlier [in Ch. 2 of Glymour’s Theory
and Evidence] we saw that hypothetico-deductive accounts of confirmation have
great difficulty explaining this elementary judgement. Can the Bayesians do any
better? One thing that Bayesians can say (and some have said) is that our degrees of
belief are distributed—and historically were distributed—so that conditionalizing
on evidence about one planet may change our degrees of belief in the first and
second laws, but not our degree of belief in the third law.® I don’t see that this is
an explanation for our intuition at all; on the contrary, it seems merely to restate
(with some additional claims) what it is that we want to be explained. Are there any
reasons why people had their degrees of belief so distributed? If their beliefs had

SThis is the account suggested by Horwich (1978).
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been different, would it have been equally rational for them to view observations
of Mars as a test of the third law, but not of the first? It seems to me that we never
succeed in explaining a widely shared judgement about the relevance or irrelevance
of some piece of evidence merely by asserting that degrees of belief happened to be
so distributed as to generate those judgements according to the Bayesian scheme.
Bayesians may instead try to explain the case by appeal to some structural difference
among the hypotheses; the only gadget that appears to be available is the likelihood
of the evidence about a single planet on various combinations of hypotheses. If it
is supposed that the observations are such that Kepler’s first and second laws entail
their description, but Kepler’s third law does not, then it follows that the likelihood
of the evidence on the first and second laws—that is, the conditional probability of
the evidence given those hypotheses—is unity, but the likelihood of the evidence on
the third law may be less than unity. But any attempt to found an account of the case
on these facts alone is simply an attempt at a hypothetico-deductive account. The
problem is reduced to one already unsolved. What is needed to provide a genuine
Bayesian explanation of the case in question (as well as of many others that could
be adduced) is a general principle restricting conditional probabilities and having
the effect that the distinctions about the bearing of evidence that have been noted
here do result. Presumably, any such principles will have to make use of relations
of content or structure between evidence and hypothesis. The case does nothing to
establish that no such principles exist; it does, I believe, make it plain that without
them the Bayesian scheme does not explain even very elementary features of the
bearing of evidence on theory.

A third difficulty has to do with Bayesian kinematics. Scientists commonly argue
for their theories from evidence known long before the theories were introduced.
Copernicus argued for his theory using observations made over the course of
millennia, not on the basis of any startling new predictions derived from the theory,
and presumably it was on the basis of such arguments that he won the adherence of
his early disciples. Newton argued for universal gravitation using Kepler’s second
and third laws, established before the Principia was published. The argument that
Einstein gave in 1915 for his gravitational field equations was that they explained
the anomalous advance of the perihelion of Mercury, established more than half a
century earlier. Other physicists found the argument enormously forceful, and it is a
fair conjecture that without it the British would not have mounted the famous eclipse
expedition of 1919. Old evidence can in fact confirm new theory, but according to
Bayesian kinematics, it cannot. For let us suppose that evidence e is known before
theory 7T is introduced at time ¢. Because e is known at ¢, prob,(e) = 1. Further,
because prob,(e) =1, the likelihood of e given T, prob,(e, T), is also 1. We then
have

prob,(T) x prob, (e, T)

b, (T, =
prob, (7 ¢) b (0

= prob,(T).

The conditional probability of T on e is therefore the same as the prior probability
of T: e cannot constitute evidence for T in virtue of the positive relevance condition
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nor in virtue of the likelihood of e on 7. None of the Bayesian mechanisms apply,
and if we are strictly limited to them, we have the absurdity that old evidence cannot
confirm new theory. The result is fairly stable. If the probability of e is very high
but not unity, prob,(e, T) will still be unity if 7 entails e, and so prob,(7, e) will be
very close to prob,(7). How might Bayesians deal with the old evidence/new theory
problem?® Red herrings abound. The prior probability of the evidence, Bayesians
may object, is not really unity; when the evidence is stated as measured or observed
values, the theory does not really entail that those exact values obtain; an ideal
Bayesian would never suffer the embarrassment of a novel theory. None of these
replies will do: the acceptance of old evidence may make the degree of belief in it
as close to unity as our degree of belief in some bit of evidence ever is; although
the exact measured value (of, e.g., the perihelion advance) may not be entailed by
the theory and known initial conditions, that the value of the measured quantity lies
in a certain interval may very well be entailed, and that is what is believed anyways;
and, finally, it is beside the point that an ideal Bayesian would never face a novel
theory, for the idea of Bayesian confirmation theory is to explain scientific inference
and argument by means of the assumption that good scientists are, about science at
least, approximately ideal Bayesians, and we have before us a feature of scientific
argument that seems incompatible with that assumption.

A natural line of defence lies through the introduction of counterfactual degrees
of belief. When using Bayes’s rule to determine the posterior probability of a new
theory on old evidence, one ought not to use one’s actual degree of belief in the old
evidence, which is unity or nearly so; one ought instead to use the degree of belief
one would have had in e if . .. The problem is to fill in the blanks in such a way that
it is both plausible that we have the needed counterfactual degrees of belief, and that
they do serve to determine how old evidence bears on new theory. I tend to doubt
that there is such a completion. We cannot merely throw e and whatever entails e out
of the body of accepted beliefs; we need some rule for determining a counterfactual
degree of belief in e and a counterfactual likelihood of e on 7. To simplify, let us
suppose that 7' does logically entail e, so that the likelihood is fixed.

If one flips a coin three times and it turns up heads twice and tails once, in
using this evidence to confirm hypotheses (e.g. of the fairness of the coin), one
does not take the probability of two heads and one tail to be what it is after the
flipping—namely, unity—but what it was before the flipping. In this case there is an
immediate and natural counterfactual degree of belief that is used in conditionalizing
by Bayes’s rule. The trouble with the scientific cases is that no such immediate and
natural alternative distribution of degree of belief is available. Consider someone
trying, in a Bayesian way, to determine in 1915 how much Einstein’s derivation

SAll of the defences sketched below were suggested to me by one or another philosopher
sympathetic to the Bayesian view; I have not attributed the arguments to anyone for fear of
misrepresenting them. None the less, I thank Jon Dorling, Paul Teller, Daniel Garber, Ian
Hacking, Patrick Suppes, Richard Jeffrey, and Roger Rosencrantz for valuable discussions and
correspondence on the point at issue.
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of the perihelion advance confirmed general relativity. There is no single event,
like the coin flipping, that makes the perihelion anomaly virtually certain. Rather,
Leverrier first computed the anomaly in the middle of the nineteenth-century; Simon
Newcomb calculated it again around 1890, using Leverrier’s method but new values
for planetary masses, and obtained a substantially higher value than had Leverrier.
Both Newcomb and Leverrier had, in their calculations, approximated an infinite
series by its first terms without any proof of convergence, thus leaving open the
possibility that the entire anomaly was the result of a mathematical error. In 1912
Eric Doolittle calculated the anomaly by a wholly different method, free of any
such assumption, and obtained virtually the same value as had Newcomb.” For
actual historical cases, unlike the coin-flipping case, there is no single counterfactual
degree of belief in the evidence ready to hand, for belief in the evidence sentence
may have grown gradually—in some cases, it may have even waxed, waned, and
waxed again. So the old evidence/new theory problem cannot be assimilated to coin
flipping.

The suggestion that what is required is a counterfactual degree of belief is
tempting, none the less; but there are other problems with it besides the absence
of any unique historical degree of belief. A chief one is that various ways of
manufacturing counterfactual degrees of belief in the evidence threaten us with
incoherence. One suggestion, for example, is the following, used implicitly by some
Bayesian writers. At about the time T is introduced, there will be a number of
alternative competing theories available; call them T}, T, ..., Ty, and suppose that
they are mutually exclusive of T and of each other. Then P(e) is equal to

P(T)P(e.T\) + P(Ty)P(e.T2) + -+ P(T) P(e.Ty) + P(~ (Ty v --- vV Tx)
xXP(e,~T,V---VTy),

and we may try to use this formula to evaluate the counterfactual degree of belief
in e. The problem is with the last term. Of course, one could suggest that this term
just be ignored when evaluating P(e), but it is difficult to see within a Bayesian
framework any rationale at all for doing so. For if one does ignore this term, then the
collection of prior probabilities used to evaluate the posterior probability of T will
not be coherent unless either the likelihood of e on T is zero or the prior probability
of T is zero. One could remedy this objection by replacing the last term by

P(T)P (e, T),
but this will not do either, for if one’s degree of belief in
P(TyvT,v---vTIyVvT)
"The actual history is still more complicated. Newcomb and Doolittle obtained values for the

anomaly differing by about 2 s of are per century. Early in the 1920s. Grossmann discovered that
Newcomb had made an error in calculation of about that magnitude.
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is not unity, then the set of prior degrees of belief will still be incoherent. Moreover,
not only will it be the case that if the actual degree of belief in e is replaced by
a counterfactual degree of belief in e according to either of these proposals, then
the resulting set of priors will be incoherent, it will further be the case that if we
conditionalize on e the resulting conditional probabilities will be incoherent. For
example, if we simply delete the last term, one readily calculates that

P(TyVv---VTy) Ple, Ty V---VTy) _

P(TyVv---Vv Ty, = =
(T B = b vV T P(T V-V T

17

and further that

P(T. ¢) = P(T)P(e, T) .
P, Tyv---VTy) P(TyV---VTy)

But because T is supposed inconsistent with 77 Vv --- Vv Ty and P(T, e) is not zero,
this is incoherent.

Let us return to the proposal that when new theory confronts old evidence,
we should look backwards to the time when the old evidence e had not yet been
established and use for the prior probability of e whatever degree of belief we would
have had at that time. We cannot just stick in such a counterfactual value for the
prior probability of e and change nothing else without, as before, often making both
prior and conditionalized probabilities incoherent. If we give all of our sentences
the degree of belief they would have had in the relevant historical period (supposing
we somehow know what period that is) and then conditionalize on e, incoherence
presumably will not arise; but it is not at all clear how to combine the resulting
completely counterfactual conditional probabilities with our actual degrees of belief.
It does seem to me that the following rather elaborate procedure will work when a
new theory is introduced. Starting with your actual degree of belief function P,
consider the degree of belief you would have had in e in the relevant historical
period, call it H(e). Now change P by regarding H(e) as an arbitrary change in
degree of belief in e and using Richard Jeffrey’s (1965) rule,

P'(S) = H(e)P (S, e) + (1 — H(e)) P (S, ~ ).

Jeffrey’s rule guarantees that P’ is a probability function. Finally, conditionalize on
e:

P'(S) =P (S,e),

and let P” be your new actual degree of belief function. (Alternatively, P” can be
formed by using Jeffrey’s rule a second time.)

There remain a number of objections to the historical proposal. It is not obvious
that there are, for each of us, degrees of belief we personally would have had in
some historical period. It is not at all clear which historical period is the relevant
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one. Suppose, for example, that the gravitational deflection of sunlight had been
determined experimentally around 1900, well before the introduction of general
relativity.® In trying to assess the confirmation of general relativity, how far back
in time should a twentieth-century physicist go under this supposition? If only to
the nineteenth, then if he would have shared the theoretical prejudices of the period,
gravitational deflection of light would have seemed quite probable. Where ought
he to stop, and why? But laying aside these difficulties, it is implausible indeed that
such a historical Bayesianism, however intriguing a proposal, is an accurate account
of the principles by which scientific judgements of confirmation are made. For if it
were, then we should have to condemn a great mass of scientific judgements on the
grounds that those making them had not studied the history of science with sufficient
closeness to make a judgement as to what their degrees of belief would have been
in relevant historical periods. Combined with the delicacy that is required to make
counterfactual degrees of belief fit coherently with actual ones, these considerations
make me doubt that we should look to counterfactual degrees of belief for a plausible
Bayesian account of how old evidence bears on new theory.

Finally, consider a quite different Bayesian response to the old evidence/new
theory problem. Whereas the ideal Bayesian agent is a perfect logician, none of us
are, and there are always consequences of our hypotheses that we do not know to
be consequences. In the situation in which old evidence is taken to confirm a new
theory, it may be argued that there is something new that is learned, and typically,
what is learned is that the old evidence is entailed by the new theory. Some old
anomalous result is lying about, and it is not this old result that confirms a new
theory, but rather the new discovery that the new theory entails (and thus explains)
the old anomaly. If we suppose that semi-rational agents have degrees of belief about
the entailment relations among sentences in their language, and that

P(h) —e) =1 implies P(e,h) =1,

this makes a certain amount of sense. We imagine the semi-rational Bayesian
changing his degree of belief in hypothesis / in light of his new discovery that &
entails e by moving from his prior degree of belief in % to his conditional degree of
belief in & given that e, that 2 | e, and whatever background beliefs there may be.
Old evidence can, in this vicarious way, confirm a new theory, then, provided that

8 Around 1900 is fanciful, before general relativity is not. In 1914 E. Freundlich mounted an
expedition to Russia to photograph the eclipse of that year in order to determine the gravitational
deflection of starlight. At that time, Einstein had predicted an angular deflection for light passing
near the limb of the sun that was equal in value to that derived from Newtonian principles by
Soldner in 1801. Einstein did not obtain the field equations that imply a value for the deflection
equal to twice the Newtonian value until late in 1915. Freundlich was caught in Russia by the
outbreak of World War I, and was interned there. Measurement of the deflection had to wait until
1919.
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P (h b&e& (h) - e)) > P (h, b&e).

Now, in a sense, I believe this solution to the old evidence/new theory problem to
be the correct one; what matters is the discovery of a certain logical or structural
connection between a piece of evidence and a piece of theory, and it is in virtue of
that connection that the evidence, if believed to be true, is thought to be evidence for
the bit of theory. What I do not believe is that the relation that matters is simply the
entailment relation between the theory, on the one hand, and the evidence, on the
other. The reasons that the relation cannot be simply that of entailment are exactly
the reasons why the hypothetico-deductive account (see Glymour 1981, ch. 2)
is inaccurate; but the suggestion is at least correct in sensing that our judgement
of the relevance of evidence to theory depends on the perception of a structural
connection between the two, and that degree of belief is, at best, epiphenomenal. In
the determination of the bearing of evidence on theory, there seem to be mechanisms
and stratagems that have no apparent connection with degrees of belief, which are
shared alike by people advocating different theories. Save for the most radical
innovations, scientists seem to be in close agreement regarding what would or
would not be evidence relevant to a novel theory; claims as to the relevance to
some hypothesis of some observation or experiment are frequently buttressed by
detailed calculations and arguments. All of these features of the determination
of evidential relevance suggest that that relation depends somehow on structural,
objective features connecting statements of evidence and statements of theory. But if
that is correct, what is really important and really interesting is what these structural
features may be. The condition of positive relevance, even if it were correct, would
simply be the least interesting part of what makes evidence relevant to theory.
None of these arguments is decisive against the Bayesian scheme of things, nor
should they be; for in important respects that scheme is undoubtedly correct. But
taken together, I think they do at least strongly suggest that there must be relations
between evidence and hypotheses that are important to scientific argument and to
confirmation but to which the Bayesian scheme has not yet penetrated.

References

Carnap, R. (1950). The logical foundations of probability. Chicago: University of Chicago Press.

Glymour, C. (1981). Theory and evidence. Chicago: University of Chicago Press.

Hesse, M. (1974). The structure of scientific inference. Berkeley: University of California Press.

Horwich, P. (1978). An appraisal of Glymour’s confirmation theory. Journal of Philosophy, 75,
98-113.

Jeffrey, R. (1965). The logic of decision. New York: McGraw-Hill.

Jeffreys, H. (1967). Theory of probability. Oxford: Clarendon.

Jeffreys, H. (1973). Scientific inference. Cambridge: Cambridge University Press.

Kyburg, H. (1978). Subjective probability: Criticisms, reflections and problems. Journal of
Philosophical Logic, 7, 157-180.



8 Why I am not a Bayesian 151

Putnam, H. (1967). Probability and confirmation. In S. Morgenbesser (Ed.), Philosophy of science
today. New York: Basic Books.

Rosencrantz, R. (1976). Simplicity. In W. Harper & C. Hooker (Eds.), Foundations and philosophy
of statistical inference. Boston: Reidel.

Salmon, W. C. (1969). Foundations of scientific inference. Pittsburgh: University of Pittsburgh
Press.

Savage, L. (1972). The foundations of statistics. New York: Dover.

Shimony, A. (1970). Scientific inference. In R. G. Colodny (Ed.), The nature and function of
scientific theories (pp. 79-179). Pittsburgh: University of Pittsburgh Press.



Chapter 9
Discussion: A Mistake in Dynamic Coherence
Arguments?

Brian Skyrms

Static Coherence of Degrees of Belief

The person whose degrees of belief are being tested for coherence acts as a bookie.
She posts her fair prices for wagers corresponding to her degrees of belief. Her
degrees of belief are incoherent if a cunning bettor can make a Dutch book against
her with a finite system of wagers—that is, there is a finite set of wagers individually
perceived as fair, whose net payoff is a loss in every possible future. Otherwise
her degrees of belief are coherent. De Finetti ([1937] 1980) proved the following
theorem: Degrees of belief are coherent if and only if they are finitely additive
probabilities.

Obviously, if a Dutch book can be made with a finite number of fair transactions,
it can be made with a finite number of uniformly favorable transactions. The bettor
pays some small transaction premium ¢ to the bookie for each of the n transactions
where ne is less than the guaranteed profit that the bettor gets under the Dutch book
based on fair prices. Let us bear in mind that this point applies equally well in what
follows.
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Dynamic Coherence for Updating Rules

The epistemologist acts as bookie. Her updating rule is public knowledge. Today she
posts her fair prices, and does business. Tomorrow she makes an observation (with
a finite number of possible outcomes each of which has positive prior probability)
and updates her fair prices according to her updating rule. The updating rule is thus
a function from possible observations to revised fair prices. The day after tomorrow
she posts prices again, and does business. The pair consisting of the (1) her fair
prices for today and (2) her updating function will be called the bookie’s epistemic
strategy.

The bookie’s epistemic strategy is coherent if there is no possible bettor’s
strategy which makes a Dutch book against him (the bettor’s strategy being
a pair consisting of (1) a finite number of transactions today at the bookie’s
posted prices and (2) a function taking possible observations into a finite number
of transactions the day after tomorrow at the prices that the bookie will post
according to her epistemic strategy). Lewis (reported in Teller 1973) proves that the
epistemologist’s strategy is coherent only if her degrees of belief today are finitely
additive probabilities and her updating rule is Bayes’s rule of conditioning. The
“only if” can be strengthened to “if and only if” (see section “The converse”). (For
generalizations of this theorem see van Fraassen 1984 and Skyrms 1987, 1990.)

Notice that the relevant notions of coherence and incoherence here apply not just
to the pair of degrees of belief for today and the day after tomorrow, but rather to an
epistemic strategy, which is a more complicated object. A focus on the former notion
leads understandably to skepticism regarding dynamic coherence, as in Hacking
(1967), Kyburg (1978), and Christensen (1991).

The Dynamic Dutch Book

Coherence of degrees of belief today is the static case. It remains to show that for
any non-Bayes updating rule, there is a bettor’s strategy which makes a Dutch book.
Let the conditional probability of A on e, that is Pr(A & e)/Pr(e), be symbolized as
usual, as Pr(A|e), and let the probability that the updating rule gives A if e is observed
be Pr.(A). If the predictor’s rule disagrees with conditioning, then for some possible
evidential result e and some A, Pr.(A) is not Pr(A|e). Suppose that Pr(A|e) > Pr.(A).
(The other case is similar.) Let the discrepancy be § = Pr(A|e) — Pr.(A). Here is a
bettor’s strategy which makes a Dutch book:

TODAY: Offer to sell the bookie at her fair price:

1: [$1if A & e, 0 otherwise]
2: [$Pr(A|e) if not-e, O otherwise]
3: [$8 if e, O otherwise]
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DAY AFTER TOMORROW:
If e was observed, offer to buy [$1 if A, O otherwise] for its current fair price, Pr,
(A)=Pr(Ale)—3.

Then in every possible situation, the bookie loses $5 Pr(e).

The Converse

If the bookie has the strategy of updating by Bayes’s rule of conditioning, then every
payoff that a bettor’s strategy can achieve can be achieved by betting only today (see
Skyrms 1987). This reduces our case to the static case. Thus, by de Finetti’s result,
if the epistemologist’s prior degrees of belief are finitely additive probabilities and
her updating rule is Bayes’s rules of conditioning, then she is dynamically coherent.

Sequential Analysis 1: A Mistake in the Dynamic Coherence
Argument?

Maher’s (1992b) objection is that the bookie will see it coming and refuse to bet.
This is made precise by modeling the bookie’s situation as a sequential choice
problem, as shown in Fig. 9.1. The bookie sees that if she bets today and e occurs,
then at decision node 2, she will find the cunning bettor’s offer fair according to
her revised probability, Pr.(A). Thus she sees that betting today leads to a sure loss.
Since she prefers net gain of zero to a sure loss, she refuses to bet today—frustrating
the cunning bettor who goes home unable to execute his plan.

The first thing that must be said about “Maher’s objection” is that it is misleading
to represent it as showing a “mistake” in the dynamic coherence theorem. Under the
conditions of the theorem the bookie posts her fair prices for today and honors them.
There is no provision for changing one’s mind when approached by a cunning bettor
who discloses his strategy, nor indeed any mention of a requirement that the cunning
bettor disclose his strategy prior to the initial transaction. But Maher might be read
as suggesting a different conception of dynamic coherence in this setting:

The epistemologist acts as bookie. Her updating rule is public knowledge. Today she posts
her tentative fair prices, but in fact does business only with bettors who disclose their
strategies in advance, and does so on the basis of sequential decision analysis. Tomorrow
she makes an observation (with a finite number of possible outcomes each of which has
positive prior probability) and updates her probabilities according to her updating rule. The
day after tomorrow she posts prices again, and does business according to those prices.

She is coherent if there is no possible bettor’s strategy which makes a Dutch book
against her.

This is an interesting modification of the usual notion of dynamic coherence, and
it merits investigation. Is it a better motivated conception of dynamic coherence?
What differences does it make?
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Sequential Analysis 2: A Mistake in the Mistake?

A natural reaction to Maher’s line might be to say that the redefinition unfairly
prejudices the case against dynamic coherence arguments. It is therefore of some
interest to see that the dynamic Dutch book still goes through under the revised
scenario.

There is a gratuitous assumption in the analysis presented in Fig. 9.1. Why is it
assumed that the cunning bettor will just go home if the bookie refuses to bet today?
The bettor’s strategy which I presented says otherwise. The bettor will make an offer
the day after tomorrow if e was observed. So the branch of the decision tree where
the bookie refuses transactions today cannot simply be assumed to have payoff of
zero, but requires further analysis. This is done in Fig. 9.2.

$-6 Pr(e)
sell b,
not-4
$-6 Pr(e)
e
A
buy b,-b, don't sell
$-6 Pr(e) not-4
not-e
E:l i 55 PY(E)
don’t buy

$0

Fig. 9.1 Maher-Levi sequential analysis
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sell b,

not-A
A
buy b,-b, don’t sell
$-6 Pr(e) not-A
not-¢
E] $-5 Pr(e)
A
sell b,
1 $-5 not-A
A
e
e L
§-6 A
don’t buy don't sell
$-5 Pr(e) —

not-¢

S0

Fig. 9.2 Full sequential analysis

3-8 Pr(e)

$-5 Pr(e)

Pr(Ale)-6-1

Pr(Ale)-§

157



158 B. Skyrms

Note that the bookie knows that if e is observed, she will accept the offer the day
after tomorrow for the same reason on the lower path as on the upper. Deciding now
not to bet ever is not an option. If the offer the day after tomorrow is accepted but
the offer today was not and e and A both happen, then the net payoff is the price the
cunning bettor paid, $Pr(A|e) —§, less the lost bet, $ — 1, as shown. If e occurs but
A does not, the net payoff is just $Pr(A|e) — 8. For the bookie’s current analysis of
this decision tree, to get the relevant expectation over A occurring or not we average
using as weights her current conditional probabilities, Pr(A|e) and Pr(—A|e). Thus
the value at the node where the bookie refused to bet today and where e is observed
tomorrow is

Pr (A)e) 5[ {Pr (A)e) — 8= 1]+ [1-Pr (A)e)] s [Pr (A)e) ~8]=s-6.

Then the value at the node where the bookie refused to bet today is not O but rather
$ — & Pr(e). This is just the same as the value at the node where the bookie agrees to
bet today.

In fact, if we consider the version of the Dutch-book strategy where the bettor
adds an ¢ premium for each transaction, the upper branch involves four transactions
and the lower branch involves only one, so the upper branch has a higher payoff
than the lower branch. Even though the bookie sees it coming, she will prefer the
sure loss of the upper branch because doing so looks strictly better to her than the
alternative.

Sequential Analysis 3: What Makes the Cunning Bettor Tick?

Why did the cunning bettor adopt a strategy of staying around if the bookie decided
not to bet today? The official answer in sections “Dynamic coherence for updating
rules” and “The dynamic Dutch book™ is “Don’t ask”. Any bettor’s strategy which
makes a Dutch book will prove incoherence. But, as Levi (1991) points out, that sort
of analysis proceeds in strategic normal form rather than in extensive form. Might
it be that the cunning bettor’s strategy described would have to be sequentially
irrational? That is to say, might it not be that staying around and betting the day
after tomorrow if the bookie decided not to bet today would not maximize expected
utility for the cunning bettor in the belief state he would have in that case the day
after tomorrow? If this could be shown, then the cunning bettor’s strategy that I
have described would have to rest on a noncredible threat, and the significance of
the analysis of the previous section would be called into question. (For discussion
of such noncredible threats in extensive form games and of sequential rationality,
see Selten 1975 and Kreps and Wilson 1982.)

But such is not the case. Suppose that the bettor is a Bayesian; that he starts
out with exactly the same degrees of belief as the bookie; and that he updates by
conditioning. If e is observed tomorrow—whether or not the bookie accepted the
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bet today—he conditions on e and the day after tomorrow his fair price for b4 is $
pr(Ale). But his strategy only commits him to offering to pay the bookie’s fair price,
$ pr(Ale) — &, to buy back b4 for what he perceives as a net gain in expected utility
of $5. This bettor’s threat to stick around and bet the day after tomorrow if e, even if
the bookie declines to bet today, is perfectly credible and consistent with sequential
rationality. If he is called upon to carry out the threat, he maximizes expected utility
by doing so.

Strategic Rationality

Let us explicitly model the bookie’s choice of an updating strategy. The bookie and
the bettor start out with identical priors. The bettor updates by conditioning. First
the bookie chooses an updating strategy. Then the bettor bets, the evidence comes
in, the bookie updates according to her updating rule, and the bettor bets again. The
bookie’s initial strategy is either to choose updating by conditioning or not.

If the bookie chooses the strategy of updating by conditioning, then the fair
prices of the bookie and bettor agree at all times. Thus either no transactions are
made, or any transactions have net change in expected utility of O for both players.
The bookie’s expected utility of choosing the strategy of updating by conditioning
is zero. If, however, the bookie chooses an updating strategy at variance with
conditioning then, for the bettor, the expected utility of betting is greater than that of
not betting (section “Sequential analysis 3: what makes the cunning bettor tick?”)
and the net expected utility for the bookie is negative (section “Sequential analysis
2: a mistake in the mistake?”). At the first choice point the bookie is strictly better
off by choosing the rule of updating by conditioning.

Thus the strategy combination in which the bookie updates by conditioning and
the bettor does not bet at all is an equilibrium in the sense that no player will
perceive it in his or her interest at any decision node to deviate from that strategy.
But no strategy combination in which the bookie chooses a strategy at variance with
conditioning is such an equilibrium.

The Bottom Line

Two ways of strengthening the requirements for a dynamic Dutch book were
suggested by the discussions of Levi (1987) and Maher: (1) We require the cunning
bettor to disclose his strategy, and allow the bookie to use knowledge of that
strategy in a sequential analysis when deciding whether to bet today or not, and
(2) we require that the cunning bettor’s strategy itself be sequentially rational. The
somewhat surprising result is that the additional restrictions made no difference.
The bookie whose epistemic strategy is at odds with conditioning is also subject
to a Dutch book in this stronger sense. “Seeing it coming” does not help. It is at
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the very least a noteworthy property of the rule of conditioning that in this sort of
epistemic situation, it alone is immune from a Dutch book under either the original
or strengthened requirements.

Postscript: Conditioning, Coherence and Rationality

Many of the concerns of Levi and Maher have not been addressed in the foregoing.
Levi is concerned to resist the doctrine of “confirmational tenacity”, according to
which the only legitimate way in which to update is by conditioning. Maher wishes
to resist the doctrine that rationality requires dynamic coherence at all costs. Does
the foregoing show that conditioning is the only coherent way to ever update one’s
probabilities? Does it show that rationality requires coherence at all costs?

I agree with Levi and Maher in answering “no” to both questions. With regard to
the first, let me emphasize that the Lewis proof takes place within the structure of a
very special epistemic model. In that context it shows that the rule of conditioning
is the unique dynamically coherent updating rule. It does not show that one must
have an updating rule. It does not apply to other epistemic situations which should
be modeled differently. The modeling of a variety of epistemic situations and the
investigation of varieties of dynamic coherence in such situations is an ongoing
enterprise (in which I take it that both Levi and I are engaged; see Skyrms 1990 for
further discussion).

Maher is concerned that an uncritical doctrine of “dynamic coherence at all
costs” could lead one to crazy belief changes and disastrous actions. Should Ulysses
have changed to 1 his prior probability of safe sailing conditional on hearing
the Sirens’ song so that subsequently his belief change would be in accordance
with the rule of conditioning? Nothing in the foregoing implies that he should.
In the first place, there is something a little odd in thinking that one achieves
dynamic coherence by changing the original prior pr; to the revised prior pr, so
that the change to pr; will agree with conditioning. What about the change from
pri to pr,? But, more fundamentally, I would agree with Maher that rationality
definitely does not require coherence at all costs. Where costs occur they need to
be weighed against benefits. There are lucid discussions of this matter in Maher
(1992a, b). These things said, it remains that in the Lewis epistemic model under
the “sequentialized” notion of dynamic coherence, the unique coherent updating
rule is the rule of conditioning.

Acknowledgement I would like to thank Brad Armendt, Ellery Eells, Isaac Levi, Patrick Maher
and an anonymous referee for helpful comments on an earlier draft of this note. I believe that
Mabher, Levi and I are now in substantial agreement on the issues discussed here, although
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Chapter 10
Some Problems for Conditionalization
and Reflection

Frank Arntzenius

I will present five puzzles which show that rational people can update their degrees
of belief in manners that violate Bayesian Conditionalization and van Fraassen’s
Reflection Principle. I will then argue that these violations of Conditionalization
and Reflection are due to the fact that there are two, as yet unrecognized, ways in
which the degrees of belief of rational people can develop.

Two Roads to Shangri La

Every now and then the guardians to Shangri La will allow a mere mortal to enter
that hallowed ground. You have been chosen because you are a fan of the Los
Angeles Clippers. But there is an ancient law about entry into Shangri La: you are
only allowed to enter, if, once you have entered, you no longer know by what path
you entered. Together with the guardians you have devised a plan that satisfies this
law. There are two paths to Shangri La, the Path by the Mountains, and the Path
by the Sea. A fair coin will be tossed by the guardians to determine which path
you will take: if heads you go by the Mountains, if tails you go by the Sea. If you
go by the Mountains, nothing strange will happen: while traveling you will see the
glorious Mountains, and even after you enter Shangri La you will forever retain your
memories of that Magnificent Journey. If you go by the Sea, you will revel in the
Beauty of the Misty Ocean. But, just as you enter Shangri La, your memory of this
Beauteous Journey will be erased and be replaced by a memory of the Journey by
the Mountains.
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Suppose that in fact you travel by the Mountains. How will your degrees of belief
develop? Before you set out your degree of belief in heads will be %2. Then, as you
travel along the Mountains and you gaze upon them, your degree of belief in heads
will be 1. But then, once you have arrived, you will revert to having degree of belief
2 in heads. For you will know that you would have had the memories that you have
either way, and hence you know that the only relevant information that you have is
that the coin was fair.

This seems a bizarre development of degrees of belief. For as you are traveling
along the Mountains, you know that your degree of belief in heads is going to go
down from 1 to 2. You do not have the least inclination to trust those future degrees
of belief. Those future degrees of belief will not arise because you will acquire
any evidence, at least not in any straightforward sense of “acquiring evidence”.
Nonetheless you think you will behave in a fully rational manner when you acquire
those future degrees of belief. Moreover, you know that the development of your
memories will be completely normal. It is only because something strange would
have happened to your memories had the coin landed tails, that you are compelled
to change your degrees of belief to 2 when that counterfactual possibility would
have occurred.

The Prisoner

You have just been returned to your cell on death row, after your last supper. You are
to be executed tomorrow. You have made a last minute appeal to President George
W. Bush for clemency. Since Dick Cheney is in hospital and can not be consulted,
George W. will decide by flipping a coin: heads you die, tails you live. His decision
will be made known to the prison staff before midnight. You are friends with the
prison officer that will take over the guard of your cell at midnight. He is not allowed
to talk to you, but he will tell you of Bush’s decision by switching the light in your
cell off at the stroke of midnight if it was heads. He will leave it on if it was tails.
Unfortunately you don’t have a clock or a watch. All you know is that it is now
6 pm since that is when prisoners are returned to their cells after supper. You start
to reminisce and think fondly of your previous career as a Bayesian. You suddenly
get excited when you notice that there is going to be something funny about the
development of your degrees of belief. Like anybody else, you don’t have a perfect
internal clock. At the moment you are certain that it is 6 pm, but as time passes your
degrees of belief are going to be spread out over a range of times. What rules should
such developments satisfy?

Let us start on this problem by focusing on one particularly puzzling feature of
such developments. When in fact it is just before midnight, say 11.59 pm, you are
going to have a certain, non-zero, degree of belief that it is now later than midnight.
Of course, at 11.59 pm the light in your cell is still going to be on. Given that at
this time you will have a non-zero degree of belief that it is after midnight, and
given that in fact you will see that the light is still on, you will presumably take it



10 Some Problems for Conditionalization and Reflection 165

that the light provides some evidence that the outcome was tails. Indeed, it seems
clear that as it gets closer to midnight, you will monotonically increase your degree
of belief in tails. Moreover you know in advance that this will happen. This seems
puzzling. Of course, after midnight, your degree of belief in tails will either keep
on increasing, or it will flip to O at midnight and stay there after midnight. But that
does not diminish the puzzlement about the predictable and inevitable increase in
your degree of belief in tails prior to midnight. In fact, it seems that this increase is
not merely puzzling, it seems patently irrational. For since this increase is entirely
predictable, surely you could be made to lose money in a sequence of bets. At 6 pm
you will be willing to accept a bet on heads at even odds, and at 11.59 pm you will,
almost certainly, be willing to accept a bet on tails at worse than even odds. And
that adds up to a sure loss. And surely that means you are irrational.

Now, one might think that this last argument shows that your degree of belief
in tails in fact should not go up prior to midnight. One might indeed claim that
since your degree of belief in heads should remain %2 until midnight, you should
adjust your idea of what time it is when you see that the light is still on, rather than
adjust your degree of belief in tails as time passes. But of course, this suggestion is
impossible to carry out. Armed with an imperfect internal clock, you simply can not
make sure that your degree of belief in heads stays %2 until midnight, while allowing
it to go down after midnight. So how should they develop?

Let us start with a much simpler case. Let us suppose that there is no coin toss
and no light switching (and that you know this). You go into you cell at 6 pm. As
time goes by there will be some development of your degrees of belief as to what
time it is. Let us suppose that your degrees of belief in possible times develop as
pictured in the top half of Fig. 10.1.

Next, let us ask how your degrees of belief should develop were you to know
with certainty that the guard will switch the light off at 12 pm. It should be clear
that then at 11.59 pm your degree of belief distribution should be entirely confined

DEVELOPMENT OF YOUR DEGREES OF BELIEF WHEN THERE IS NO EVIDENCE REGARDING THE TIME

AT 7.30 PM
AT 9 PM
/\ A AT 11.59 PM
6 PM 7.30PM POSSIBLE TIMES __ 10.30PM 12PM
DEVELOPMENT OF YOUR DEGREES OF BELIEF WHEN YOU KNOW THE LIGHT WILL BE TURNED OFF 12PM
AT 7.30 PM AT 11.59 PM

6P 7.30 PM POSSIBLE TIMES  10.30PM 12 PM

Fig. 10.1 Prisoner without evidence
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to the left of 12 pm, as depicted in the bottom half of Fig. 10.1. For at 11.59 pm
the light will still be on, so that you know that it must be before 12 pm. But other
than that it should be entirely confined to the left of 12 pm, it is not immediately
clear exactly what you degree of belief distribution should be at 11.59 pm. It is not
even obvious that there should be a unique answer to this question. However, a very
simple consideration leads to a unique answer.

Suppose that, even though the guard is going to switch the light off at 12 pm,
you were not told that the guard is going to switch the light off at 12 pm. Then
the development of your degrees of belief would be as pictured in the top half of
Fig. 10.1. Next, suppose that at 11.59 pm your are told that the guard will switch
the light off at 12 pm, but you are not told that it is now 11.59 pm. Obviously,
since the light is still on you can infer that it is prior to 12 pm. Surely you should
update your degrees of belief by conditionalization: you should erase that part of
your degree of belief distribution that is to the right of 12 pm, and re-normalize
the remaining part (increase the remaining part proportionally). Now it is clear that
this is also the degree of belief distribution that you should have arrived at had
you known all along that the guard would turn the light off at 12 pm. For either
way you have accumulated exactly the same relevant information and experience by
11.59 pm. This uniquely determines how your degree of belief distribution should
develop when you know all along that the guard will turn the light off at 12 pm. At
any time this (constrained) distribution should be the distribution that you arrive at
by conditionalizing the distribution that you have if you have no evidence regarding
the time, on the fact that it is now before 12 pm. One can picture this development
in the following way. One takes the development of the top part of Fig. 10.1. As this
distribution starts to pass through the 12 pm boundary, the part that passes through
this boundary gets erased, and, in a continuous manner, it gets proportionally added
to the part that is to the left of the 12 pm boundary.

Now we are ready to solve the original puzzle. Your degrees of belief in that case
can be pictured as being distributed over possible times in two possible worlds: see
Fig. 10.2. The development is now such that when the bottom part of the degree
of belief distribution hits midnight, it gets snuffed out to the right of midnight,
and the rest of the degree of belief distribution is continuously re-normalized, i.e.
the top part of the degree of belief distribution and the remaining bottom part
are continuously proportionally increased as time passes. Note that Fig. 10.2 is
essentially different from Fig. 10.1. In Fig. 10.2 the top distribution starts to increase
its absolute size once the leading edge of the bottom distribution hits midnight. This
does not happen in Fig. 10.1, since there the degree of belief distributions each
were total degree of belief distributions in separate scenarios. Also, in Fig. 10.2 the
bottom distribution starts to increase in size once its leading edge hits midnight, but
it only increases half as much as it does in Fig. 10.1, since half of the “gains” is
being diverted to the top degree of belief distribution.

Thus, at the very least until it actually is midnight, the top and the bottom
degree of belief distribution will always be identical to each other, in terms of
shape and size, to the left of midnight. Prior to midnight, your degrees of belief
will be such that conditional upon it being prior to midnight, it is equally likely to
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THE DEVELOPMENT OF YOUR DEGREES OF BELIEF WITHIN THE TAILS WORLD

AT 8 PM
/\ ﬂ AT 11.59 PM
6 PM POSSIBLE TIMES 12PM

THE DEVELOPMENT OF YOUR DEGREES OF BELIEF WITHIN THE HEADS WORLD

AT 8 PM
AT10PM AT 11.59 PM

6 PM POSSIBLE TIMES 12 PM

Fig. 10.2 Prisoner with evidence

be heads as tails. Your unconditional degree of belief in tails, however, will increase
monotonically as you approach midnight.

After midnight there are two possible ways in which your degree of belief
distribution can develop. If the light is switched off your degree of belief distribution
collapses completely onto midnight and onto the heads world. If in fact it is not
switched off your degree of belief distribution continues to move to the right in both
worlds, and it continues to be snuffed out in the heads world to the right of midnight,
and the remaining degrees of belief keep being proportionally increased.'

Now I can answer the questions that I started with. It is true, as I surmised, that
your degree of belief in tails will have increased by 11.59 pm. You will take your
internal sense of the passing of time, and combine it with the fact that the light is
still on, and you will take this as providing some evidence that the outcome is tails.
It is also true, as I surmised, that the light still being on will be taken by you as
providing some evidence that it is not yet midnight. For at 11.59 pm your degree
of belief distribution over possible times (averaged over the heads and tails worlds)
will be further to the left that it would have been had you believed that the light
would stay on no matter what. More generally, we have found a unique solution

IThus, for instance, if the light is not switched off, there must be a moment (which could be before
or after midnight) such that you have equal degree of belief in each of the 3 possibilities: heads and
it is before midnight, tails and it is before midnight, tails and its after midnight.
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to the puzzle of how a rational person’s sense of time must interact with evidence,
given how that person’s sense of time works in the absence of evidence.

Rather surprisingly, this interaction can be such, as it is in my example, that
you know in advance that at some specified later time you will, almost certainly,
have increased your degree of belief in tails, and that you could not possibly have
decreased your degree of belief in tails.? It is also interesting to note that nothing
essential changes in this example if one assumes that the coin toss will take place
exactly at midnight. Thus it can be the case that one knows in advance that one will
increase one’s degrees of belief that a coin toss, which is yet to occur, will land tails.
Of course, at the time that one has this increased degree of belief one does not know
that this coin toss is yet to occur. Nonetheless, such predictable increases in degrees
of belief seem very strange.

John Collins’ Prisoner

John Collins has come up with the following variation of the case of the prisoner
that was described in the previous section. In Collins’s variation the prisoner has 2
clocks in his cell, both of which run perfectly accurately. However, clock A initially
reads 6 pm, clock B initially reads 7 pm. The prisoner knows that one of the clocks
is set accurately, the other one is one hour off. The prisoner has no idea which one
is set accurately; indeed he initially has degree of belief 2 that A is set accurately,
and degree of belief %2 that B is set accurately. As in the original case, if the coin
lands heads the light in his cell will be turned off at midnight, and it will stay on if it
lands tails. So initially the prisoner has degree of belief 1/4 in each of the following
4 possible worlds:

W,: Heads and clock A is correct
W,: Heads and clock B is correct
W3 Tails and clock A is correct
W,: Tails and clock B is correct.

20One might wonder why I inserted the phrase “almost certainly” in this sentence. The reason for
this is that there is a subtlety as to whether you know at 6 pm that you will have an increased degree
of belief in tails at 11.59 pm. There is an incoherence in assuming that at 6 pm you know with
certainty what your degree of belief distribution over possible times will be at 11.59 pm. For if you
knew that you could simply wait until your degree of belief distribution is exactly like that. (You
can presumably establish by introspection what your degree of belief distribution is.) And when
you reach that distribution, you would know that it has to be 11.59 pm. So when that happens you
should then collapse your degree of belief distribution completely on it being 11.59 pm. But this is
incoherent. Thus, the fact that you do not have a perfect internal clock also implies that you can not
know in advance what your degree of belief distribution is going to look like after it has developed
(guided only by your internal clock). Thus you can not in advance be certain how your degree of
belief distribution over possible times will develop. Nonetheless you can be certain at 6 pm that
your degree of belief in tails will not decrease prior to midnight, and that it is extremely likely to
have increased by 11.59 pm. At 6 pm your expectation for you degree of belief in tails at 11.59 pm
will be substantially greater than 0.5.
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When in fact it is 11.30 pm the light, for sure, will still be on. What will the
prisoner’s degrees of belief then be? Well, if the actual world is Wy, then, when it
actually is 11.30 pm clock A will read 11.30 pm and clock B will read 12.30 am.
In that case, since the prisoner sees that the light is still on, he will know that it can
not be that the coin landed heads and clock B is correct. L.e. his degree of belief in
W, will be 0, and his degrees of belief in the three remaining options will be 1/3
each. Similarly if the actual world is W3 then at 11.30 pm prisoner will have degree
of belief 0 in W, and degree of belief in 1/3 each of the remaining options. On the
other hand if the actual world is W, or W4, then when it is actually 11.30 pm, the
clock readings will be 10.30 pm and 11.30 pm, and the prisoner will still have the
degrees of belief that he started with, namely 1/4 in each of the 4 possibilities. The
prisoner, moreover, knows all of this in advance.

This is rather bizarre, to say the least. For, in the first place, at 6 pm the prisoner
knows that at 11.30 pm his degrees of belief in heads will be less or equal to what
they now are, and can not be greater. So his current expectation of what his degrees
of belief in heads will be at 11.30 pm, is less than his current degree of belief in
heads. Secondly, there is a clear sense in which he does not trust his future degrees
of belief, even though he does not think that he is, or will be, irrational, and even
though he can acquire new evidence (the light being on or off). Let D, denote the
prisoner’s degrees of belief at time t. Then, e.g., D¢ go(clock B is correct/Dy; 3p(clock
B is correct) = 1/3) = 0. For Dy 3p(clock B is correct) = 1/3 only occurs in worlds
W, and W3, and in each of those worlds clock B is not correct, and the prisoner
knows this. Thus his current degrees of belief conditional upon his future degrees of
belief do not equal those future degrees of belief. So he systematically distrusts his
future degrees of belief. Strange indeed.

Sleeping Beauty

Some researchers are going to put Sleeping Beauty, SB, to sleep on Sunday night.
During the two days that her sleep will last the researchers will wake her up either
once, on Monday morning, or twice, on Monday morning and Tuesday morning.
They will toss a fair coin Sunday night in order to determine whether she will be
woken up once or twice: if it lands heads she will be woken upon Monday only, if
it lands tails she will be woken up on Monday and Tuesday. After each waking, she
will be asked what her degree of belief is that the outcome of the coin toss is heads.
After she has given her answer she will be given a drug that erases her memory of
the waking up, indeed it resets her mental state to the state that it was in on Sunday
just before she was put to sleep. Then she is put to sleep again. The question now is:
when she wakes up what should her degree of belief be that the outcome was heads?

Answer 1: Her degree of belief in heads should be 1/2. It was a fair coin and she
learned nothing relevant by waking up.



170 E. Arntzenius

Answer 2: Her degree of belief in heads should be 1/3. If this experiment is repeated
many times, approximately 1/3 of the awakenings will be heads-awakenings, i.e.
awakenings that happen on trials in which the coin landed heads.

Adam Elga?® has argued for the second answer. I agree with him, and I agree with
his argument. But let me amplify this view by giving a different argument for the
same conclusion. Suppose that SB is a frequent and rational dreamer. Suppose in
fact that every morning if SB is not woken up at 9 am, she dreams at 9 am that
she is woken up at 9 am. Suppose that the dream and reality indistinguishable in
terms of her experience, except that if SB pinched herself and she are dreaming,
it does not hurt (and she doesn’t wake up), while if she does this while she is
awake it does hurt. And let us suppose that SB always remembers to pinch herself
a few minutes after she experiences waking up (whether for real, or in a dream.)
What should her degrees of belief when she experiences waking up? It seems
obvious she should consider the 4 possibilities equally likely (the 4 possibilities
being: Monday&Tails&Awake, Monday&Heads& Awake, Tuesday&Tails& Awake,
Tuesday&Heads&Dreaming). If SB then pinches herself and finds herself to be
awake, she should conditionalize and then have degree of belief 1/3 in each of
the remaining 3 possibilities (Monday&Tails&Awake, Monday&Heads& Awake,
Tuesday&Tails& Awake). Suppose now that at some point in her life SB loses the
habit of dreaming. She no longer needs to pinch herself; directly upon waking she
knows that she is not asleep. However, it seems clear that this lack of dreaming
should make no difference as to her degrees of belief upon realizing that she is
awake. The process now occurs immediately, without the need for a pinch, but the
end result ought to be the same.

Here again the crucial assumption is commutativity: if the relevant evidence and
experience collected is the same, then the order of collection should not matter for
the final degrees of belief.* But there is clearly something very puzzling about such
foreseeable changes in degrees of belief.

Duplication

Scenario 1 While you are at the beach, Vishnu tells you that, contrary to appear-
ances, you have existed only for one month: Brahma created you one month ago,
complete with all your memories, habits, bad back, and everything. What’s more,
says Vishnu, one month ago Brahma in fact created two human beings like you
(you are one of them), in exactly the same environment, at two different ends of

3Elga, A. (2000): “Self-locating belief and the Sleeping Beauty problem”, Analysis 60, pp 143—
147.

“Cian Dorr has independently arrived at the idea of using commutativity in order to argue for the
degrees of belief that Elga advocates in the Sleeping Beauty case. See Dorr, C.: “Sleeping Beauty:
in defence of Elga”, forthcoming, Analysis.
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the universe: one on earth, one on twin earth. Unfortunately, Vishnu has a further
surprise for you: one month ago Shiva tossed a coin. If it landed heads Shiva will
destroy the human being that is on twin earth one month from now. If it landed tails
Shiva will do nothing. Vishnu does no tell you whether you are to be destroyed,
but recommends that if you want to know, you should go check your mail at
home. If there is a letter from president Bush for you, then you will be destroyed.
Before running home, what degree of belief should you have in the 4 possibilities:
Earth&Heads, Earth&Tails, Twin Earth&Heads, Twin Earth&Tails? It seems clear
that you should have degree of belief 1/4 in each, or at the very least, that it is
not irrational to have degree of belief 1/4 in each. You run home, and find no letter
from Bush. What should your degrees of belief now be? Well, by conditionalization,
they should now be 1/3 in each of the remaining possibilities (Earth&Tails, Twin
Earth&Heads, Twin Earth&Tails). Consequently you should now have degree of
belief 1/3 that the toss landed heads and 2/3 that it landed tails.

Scenario 2 same as scenario 1, except that Vishnu tells you that if the toss came
heads, your identical twin was destroyed by Shiva one week ago. Since you were
obviously not destroyed, you do not need to rush home to look for a letter from Bush.
In essence you have learned the same as you learned in the previous scenario when
you found you had no letter from Bush, and hence you should now have degree of
belief 1/3 that the toss landed heads.

Scenario 3 same as scenario 2, except that Vishnu tells you that rather than that 2
beings were created one month ago by Brahma, one of them already existed and had
the exactly the life you remember having had. This makes no relevant difference and
you should now have degree of belief 1/3 that the coin landed heads.

Scenario 4 same as scenario 3, except that Vishnu tells you that if the die landed
heads one month ago Shiva immediately prevented Brahma from creating the
additional human being one month ago. The upshot is that only if the coin landed
tails Brahma will have created the additional human being. Since the timing of the
destruction/prevention makes no relevant difference you should again have degree
of belief 1/3 that the coin landed heads.

Scenario 5° You are on earth, and you know it. Vishnu tells you that one month
from now Brahma will toss a coin. If it lands tails Brahma will create, at the other
end of the universe, another human being identical to you, in the same state as you
will then be, and in an identical environment as you will then be. What do you now
think that your degrees of belief should be in one month time? The answer is that
they should be the same as they are in scenario 5, since in one month time you will
be in exactly the epistemic situation that is described in scenario 5. Of course, it
is plausible to claim that your future self will actually be on earth, since it is only
your future continuation on earth that can plausibly be called “your future self”.
However, that does not mean that your future self can be sure that he is on earth. For
your future self will know that he will have the same experiences and memories,

5This scenario is similar to the “Dr Evil scenario” in Elga, A. (manuscript): “Defeating Dr. Evil
with self-locating belief”.
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whether or not he is on earth or on twin earth, and thus he will not know whether he
can trust his memories. Thus you now have degree of belief 2 in heads, and yet you
know that in one month time, you will have degree of belief 1/3. This is bizarre, to
say the least.

Yet again, the crucial assumption in this reasoning is commutativity: your final
degrees of belief should not depend on the order in which you receive all the relevant
experience and evidence. You should end up with the same degrees of belief, namely
degree of belief 2 in heads, whether you all along knew you were on Earth, or
whether you only later found out that you were on Earth. But that can only be so if
you had degree of belief 1/3 in heads prior to discovering that you were on Earth.

Diagnosis

Bas van Fraassen’s Reflection Principle® says that one should trust one’s future
degrees belief in the sense that one’s current degree of belief Dy in any proposition
X, given that one’s future degree of belief D; in X equals p, should be p:
Dy(X/Dy(X) = p) = p. Given that one is sure that one will have precise degrees of
belief at time t, the Reflection Principle entails that one’s current degrees of belief
equal the expectations of one’s future degrees of belief: Do(X) = Y pDo(D(X) = p).
The Reflection Principle is violated in each of the 5 puzzles that I have presented,
for in each case there is a time at which one’s expectation of one’s future degree
of belief in Heads differs from one’s current degree of belief in Heads. This is
presumably why we find these cases, prima facie, so worrying and strange.

The source of the problem, I claim, is that the degrees of belief of perfectly
rational people, people who are not subject to memory loss or any other cognitive
defect, can develop in ways that are as yet unrecognized, and indeed are not
allowed according to standard Bayesian lore. Standard Bayesian lore has it that
rational people satisfy the Principle of Conditionalization: rational people alter
their degrees of belief only by strict conditionalization on the evidence that they
acquire.” Strict conditionalization of one’s degrees of belief upon proposition X
can be pictured in the following manner. One’s degrees of belief are a function on
the set of possibilities that one entertains. Since this function satisfies the axioms
of probability theory it is normalized: it integrates (over all possibilities) to 1.

6See van Fraassen (1995): “Belief and the problem of Ulysses and the sirens”, Philosophical
Studies 77: 7-317.

7Strict conditionalization: when one learns proposition X at t, one’s new degrees of belief D; equals
one’s old degrees of belief Dy conditional upon X: Dy(Y) = Dy (Y/X). One might also allow Jeffrey
conditionalization. It matters not for our purposes.
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Conditionalizing such a function on proposition X then amounts to the following:
the function is set to 0 over those possibilities that are inconsistent with X, while the
remaining non-zero part of the function is boosted (by the same factor) everywhere
so that it integrates to 1 once again. Thus, without being too rigorous about it, it is
clear that conditionalization can only serve to ‘narrow down’ one’s degree of belief
distribution (one really learns by conditionalization). In particular a degree of belief
distribution that becomes more ‘spread out’ as time passes can not be developing by
conditionalization, and a degree of belief distribution that exactly retains its shape,
but is shifted as a whole over the space of possibilities, can not be developing by
conditionalization. However, such spreading out and shifting is exactly what occurs
in the 5 puzzles that I presented.

The reasons for such spreading and shifting are very simple. First let us consider
shifting. Suppose that one knows exactly what the history of the world that one
inhabits is like. And suppose that one is constantly looking at a clock one knows to
be perfect. One’s degrees of belief will then be entirely concentrated on one possible
world, and at any given moment one’s degrees of belief within that world will be
entirely concentrated on one temporal location, namely the one that correspond to
the clock reading that one is then seeing. And that of course means that the location
that one’s degree of belief distribution is concentrated at is constantly moving.
That is to say, one’s degree of belief distribution is constantly shifting, and such a
constant shifting is simply not a case of Conditionalization. Self-locating beliefs will
therefore genetically develop in ways that violate Conditionalization. John Collins’s
prisoner case involves exactly such a shifting of one’s self-locating degrees of belief.
The only difference is that in his case one additionally has an initial uncertainty as
to which clock is accurate, i.e. one is initially uncertain whether one is in a world in
which clock A is correct or one in which clock B is correct. It is somewhat surprising
that this kind of violation of Conditionalization can be parlayed into a violation of
Reflection. But Collins’ prisoner case shows exactly how one can do this.

Next let us consider spreading. The simplest case of spreading is the case of the
traveller that takes the path by the Mountains to Shangri La. His degrees of belief
become more spread out when he arrives in Shangri La: at that time he goes from
degrees of belief 1 in Heads and O in Tails, to degrees of belief %2 in Heads and
V5 in Tails.® The reason why this happens is that there are two distinct possible

8Bas van Fraassen has, in conversation with me, has suggested that in such situations Condition-
alization indeed should be violated, but Reflection should not. In particular he suggested that the
degrees of belief of the traveler should become completely vague, upon arrival in Shangri La. This
does not strike me as plausible. Surely upon arrival in Shangri La our traveler is effectively in
the same epistemic situation as someone who simply knows that a fair coin has been tossed. One
can make this vivid by considering two travelers, A and B. Traveler A never looks out of the
window of the car, and hence maintains degree of belief Y2 in heads all the way. (The memory
replacement device does not operate on travelers who never look out of the window.) Traveler A,
even by van Fraassen’s lights, upon arrival in Shangri La, should still have degree of belief %2 in
Heads. However, traveler B, does look out of the window during the trip. Upon arrival, by van
Fraassen’s lights, B’s degrees of belief should become completely vague. But it seems odd to me
that traveler B is epistemically penalized, i.e. is forced to acquire completely vague degrees of
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experiential paths that end up in the same experiential state. That is to say the
traveler’s experiences earlier on determine whether possibility A is the case (Path by
the Mountain), or whether possibility B is the case (Path by the Ocean). But because
of the memory replacement that occurs if possibility B is the case, those different
experiential paths merge into the same experience, so that that experience is not
sufficient to tell which path was taken. Our traveler therefore has an unfortunate
loss of information, due to the loss of the discriminating power of his experience.
What is somewhat surprising is that this loss of discriminating power is not due to
any loss of memory or any cognitive defect on his part: it is due to the fact that
something strange would have happened to him had he taken the other path! This
loss of discriminatory power of experience, and consequent spreading out of degrees
of belief here does not involve self-locating degrees of belief. Suppose, e.g., that our
traveler is the only person ever to travel along either paths. Then our traveler initially
is unsure whether he is in a world in which path A is never taken or whether he is in
a world in which path B is never taken. He then becomes sure that he is in a world
in which path B is never taken. Even later, upon arrival, he again becomes unsure as
to which world he is in. None of this has anything to do with self-locating beliefs.’

The source of the Sleeping Beauty and Duplication problems is exactly the
same. In the case of Sleeping Beauty the possibility of memory erasure ensures
that the self-locating degrees of belief of Sleeping Beauty, even on Monday when
she has suffered no memory erasure, become spread out over two days. In the
Duplication case, yet again, the possible duplication of experiences forces one to
become uncertain as to where (or who) one is. The cause of the spreading of degrees
of belief in both cases is “experience duplication”, and has nothing to do with the
self-locating nature of these beliefs.'?

It is not very surprising that the spreading of degrees of belief can bring about
a violation of Reflection. For instance, in the non-self locating case a predictable
reduction from degree of belief 1 in some proposition X to anything less than 1 will

belief, just because he looked out of the window during the trip, when it seems clear that he ends
up in exactly the same epistemic position as his companion, who did not look out of the window.

°Tt is obvious how to generalize this case to a case in which there are memory replacement devices
at the end of both roads, where these memory replacement devices are indeterministic, i.e. when
it is the case that for each possible path there are certain objective chances for certain memories
upon arrival in Shangri La. For, given such chances (and the Principal Principle), one can easily
calculate the degrees of belief that one should have (in heads and tails) given the memory state that
one ends up with. And, generically, one will still violate Conditionalization and Reflection.

19Some people will balk at some of the degrees of belief that I have argued for in this paper, in
particular in the self-locating cases. For instance, some people will insist that tomorrow one should
still be certain that one is on Earth, even when one now knows (for sure) that a perfect duplicate of
oneself will be created on Mars at midnight tonight. I beg to differ. However, even if in this case,
and other cases, one disagrees with me as to which degrees of belief are rationally mandated, the
main claim of this paper still stands. The main claim is that in such cases of possible experience
duplication, it is at the very least rationally permissible that one’s degrees of belief become
more spread out as time progresses, and hence rational people can violate Conditionalization and
Reflection.
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immediately violate Reflection: now you know it, now you don’t. The argument
is slightly less straightforward in the self-locating case. Consider, e.g., a case in
which one is on Earth and one knows that at midnight a duplicate of oneself will
be created on Mars. One might claim that since one now is certain that one is on
Earth, and at midnight one will be uncertain as to whether one is on Earth, that
one has a clear violation of Reflection. However, this is too quick. To have a clear
violation of Reflection it has to be the very same “content of belief” such that one’s
current degree of belief differs from one’s expectation of one’s future degree of
belief. Depending on what one takes to be the contents of belief when it concerns
self-locating beliefs (propositions? maps from locations to propositions? .....7), one
might argue that the contents of belief are not the same at the two different times,
and hence there is no violation of Reflection. However the arguments of sections IV
and V show that one can in any case parlay such spreading of self-locating degrees
of belief into violations of Reflection concerning such ordinary beliefs as to whether
a coin lands Heads or Tails. So Reflection is suckered anyhow.

Finally, the original case of the prisoner involves both a spreading of degrees of
belief and a shifting of degrees of belief. The shifting is due simply to the passage
of time and the self-locating nature of the beliefs. The spreading is due to the fact
that our prisoner does not have experiences that are discriminating enough to pick
out a unique location in time.!" The analysis of section II shows, yet again, that
such a spreading and shifting of self-locating degrees of belief can be parlayed into
a violation of Reflection concerning such ordinary beliefs as to whether a coin lands
Heads or Tails.

Conclusions

The degrees of belief of rational people can undergo two as yet unrecognized types
of development. Such degrees of belief can become more spread out due to the
duplication of experiences, or more generally, due to the loss of discriminating
power of experiences, and thereby violate Conditionalization. In addition self-
locating degrees of belief will generically be shifted over the space of possible

"1One might model the prisoner here as having unique distinct experiences at each distinct, external
clock, time, and as initially having precise degrees of belief over the possible ways in which those
experiences could correlate to the actual, external clock, time. If one were to do so then the prisoner
would merely be initially uncertain as to which world he was in (where worlds are distinguished
by how his experiences line up with the actual, external clock, time), but for each such possible
world would be always certain as to where he was located in it. And, if one were to do so, then the
original prisoner case would be essentially the same case as Collins’s prisoner case: no uncertainty
of location in any given world, merely an initial uncertainty as to which world one is in, and
a subsequent shifting of the locally concentrated degrees of belief within each of the possible
worlds. However, there is no need to represent the original prisoner case that way. Indeed it seems
psychologically somewhat implausible to do so. More importantly, the arguments and conclusions
of this paper do not depend on how one models this case.
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locations, due to the passage of time, and thereby violate Conditionalization. Such
violations of Conditionalization can be parlayed into violations of Reflection, and
lead to a distrust of one’s future degrees of belief. Strange, but not irrational.

Acknowledgements I would like to thank John Collins, Adam Elga, John Hawthorne, Isaac Levi,
Barry Loewer, and Tim Maudlin for extensive and crucial comments and discussions on earlier
versions of this paper.



Chapter 11
Stopping to Reflect

Mark J. Schervish, Teddy Seidenfeld, and Joseph B. Kadane

Our note is prompted by a recent article by Frank Arntzenius, “Some Problems for
Conditionalization and Reflection”.! Through a sequence of examples, that article
purports to show limitations for a combination of two inductive principles that
relate current and future rational degrees of belief: Temporal Conditionalization and
Reflection:

(i) Temporal Conditionalization is the rule that, when a rational agent’s corpus
of knowledge changes between now and later solely by learning the (new)
evidence, B, then coherent degrees of belief are updated using conditional
probability according the formula, for each event A,

Plater(A) = Piater (A|B) = Puow (A|B)

(i) Reflection® between now and later is the rule that current conditional degrees
of belief defer to future ones according to the formula that, for each event A,>

Pnow (AIPlater(A) = r) =Tr.

'The Journal of Philosophy Vol C, Number 7 (2003), 356-370.

2See B.van Frasseen’s “Belief and the Will,” this Journal, 81 (1984), 235-256. van Fraassen’s
Reflection has an antecedent in M.Goldstein’s “Prevision of a Prevision,” JASA 78 (1983): 817—
819.

3Here and through the rest of this note ‘7’ is a standard designator for a real number — this in order
to avoid Miller-styled problems. See, D.Miller’s “A Paradox of Information,” Brit. J. Phil. Sci. 17
(1966):144-147.
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We will use the expression “Reflection holds with respect to the event A.” to apply
to this equality for a specific event A.

It is our view that neither of these principles is mandatory for a rational agent.*
However, we do not agree with Arntzenius that, in the examples in his article, either
of these two is subject to new restrictions or limitations beyond what is already
assumed as familiar in problems of stochastic prediction.

To the extent that a rational person does not know now exactly what she or he
will know in the future, anticipating one’s future beliefs involves predicting the
outcome of a stochastic process. The literature on stochastic prediction relies on two
additional assumptions regarding states of information and the temporal variables
that index them?:

(iii)) When £, >t are two fixed times, then the information the agent has at #,
includes all the information that she or he had at time #,.% This is expressed
mathematically by requiring that the collection of information sets at all times
through the future form what is called a filtration.

Second, since the agent may not know now the precise time at which some
specific information may become known in the future, then future times are treated
as stopping times. That is:

(iv) For each time T (random or otherwise) when a prediction is to be made, the
truth or falsity of the event {7 <t} is known at time ¢, for all fixed r. Such
(random) times T are called stopping times.

In this note, we apply the following three results’ to the examples in Arntzenius’
article. These results, we believe, help to explain why the examples at first appear
puzzling and why they do not challenge either Temporal Conditionalization or
Reflection. Result 11.1 covers the ordinary case, where Reflection holds. Results
11.2 and 11.3 establish that Reflection will fail when one or the other of the

“We have argued, for example, that when (subjective) probability is finitely but not countably
additive, then there are simple problems where (i) is reasonable, but where (i) precludes (ii).
See our “Reasoning to a Foregone Conclusion,” JASA 91 (1996): 1228-1236. Also, Levi argues
successfully, we think, that (i) is not an unconditional requirement for a rational agent. See his
“The Demons of Decision, ” The Monist 70 (1987): 193-211.

5See, for example, section 35 of P.Billingsley, Probability and Measure 3rd edition, J.Wiley, 1995.

%Here and through the rest of this note ‘¢’ is a standard designator for a real number for time.
More precisely, we use the subscripted variable, e.g. ‘t;’ to denote a specific time as the agent of
the problem is able to measure it. We presume that the agent has some real-valued “clock” that
quantifies a transitive relation of “is later than.” Subtleties about the differences between how time
is so indexed for different observers is relevant to one of Arntzenius’ puzzles, to wit, the Prisoner’s
Problem.

"Proofs for these three are given in the “Appendix”. In this note, we assume that all probability is
countably additive.
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two additional assumptions, (iii) and (iv) fail. It is not hard to locate where these
assumptions are violated in the examples that Arntzenius presents.

Result 11.1 When “later” is a stopping time, when the information sets of future
times form a filtration, and assuming that degrees of belief are updated by Temporal
Conditionalization, then Reflection between now and later follows.

Result 11.2 When the information known to the agent over time fails to form
a filtration, not only is Temporal Conditionalization vacuously satisfied (as its
antecedent fails), but then Reflection fails unless what is forgotten in the failure
of filtration becomes practically certain (its probability becomes O or 1) in time for
future predictions, later.

Result 11.3 However, if the information known to the agent over time forms
a filtration and Temporal Conditionalization holds, but “later” is not a stopping
time, then Reflection between now and later holds for the specific event A, i.e.,
Pow (A|Piaer(A) = r) = r, subject to the necessary and sufficient condition, (11.1),
below.

Let H, be the event “¢ = later.” When later is not a stopping time, the event H,
is news to the agent making the forecasts. The question at hand is whether this
news is relevant to the forecasts expressed by Reflection. To answer that question,
concerning such forecasts about the event A, define the quantity y,(A) by

Pm)w (Htlpt(A) = V&A)
yi(A) = P _
wow (Hi|Pi(A) = 1)
The quantity y,(A) is an index of the current conditional dependence between A
and H,, given that P;,(A) =r. For example, y,(A) =1 if and only if A and H, are
conditionally independent for the agent, now, given that P,(A) = r. In other words,
by symmetry of conditional independence, y,(A) =1 if and only if the agent’s
current conditional probability of A given that P.(A) =r is unchanged by the
added information H,.
Reflection holds for A between now and later, P, (A|Puer(A) = r) = rif and
only if, given Pj4.-(A) = 1, the conditional expected value yr(A) = 1. Specifically, if
and only if

1= 3 A)Puoy (HilPraser (A) = 1) (1L1)

Thus, Reflection is satisfied between now and later if and only if (11.1) holds for
each A.

Next, we illustrate the second and third results with examples that show how
Reflection may fail.
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Example 11.1 (Illustrating Result 11.2)

Suppose that the agent will observe a sequence of coin tosses, one at a time at a
known rate, e.g. one toss per minute. Let X,, = 1 if the coin lands heads up on toss
n, and let X,, = 0 otherwise. The agent does not know how the coin is loaded, but
believes that it is fair (event A) with personal probability %2, and that with personal
probability Y2 it is biased with a chance of % for landing tails (event A°). Also, he
believes that tosses are conditionally independent given the loading, i.e., given that
the coin is fair or given that it is biased 3 for tails.

Time is indexed for the agent by the number of the most recent coin toss. The time
“now” occurs after the first toss (f =n =1), and “later” denotes the time (t =n=72)
just after the second toss. Unfortunately, at each time 7, the agent knows that he can
remember only the most recent flip, X;, though he knows which numbered toss it is
because, e.g., he can see a clock. Suppose that the first toss lands heads up, which
is the event C = {X; = 1}. The information that will be available to the forgetful
agent later (at t=2) will be only that either B; ={X; =1} or By ={X, =0}. He
will not recall C because of his predictable memory lapse, and he knows all this. It
is straightforward to compute:

Piater (AIBI) = 2/3 and Pjyer (A|BO) = 2/5

However, at t = 1, the agent’s conditional probability for A, given event B; occurring
at t =2, satisfies P,,,(A | B;) =4/5. Similarly, if now he conditions on event By
occurring at t = 2, his conditional probability will satisfy P,,.(A | Bg) = 4/7.

Of course, Temporal Conditionalization holds vacuously at the later time, since
the information sets available to the agent do not form a filtration. Reflection fails in
this setting, as the agent does not remember at the later time what happened now,
and he knows this all along. If B; occurs then Py, (A) = Puer (A|B1) = 2/3, and
if By occurs then Py, (A) = Piayer (A|Bo) = 2/5. Hence,

Pnow (AIPlater(A) = 2/3) = 4/5

and Pow (A|Plater(A) = 2/5) = 4/7 0

Example 11.2 (Illustrating Result 11.3 when condition (11.1) fails and then Reflec-
tion fails too)

Modify Example 11.1 so that the agent has no memory failures and updates his
degrees of belief by Temporal Conditionalization. Also, change the time “now” to
denote the minute prior to the first toss, i.e., now is t = n = 0. Define the time “later”
to be the random time, T, just prior to the first toss that lands heads up. From the
point of view of the agent, the quantity 7 is not an observable random variable up
to and including time 7, and it is not a stopping time either. It is observable to the
agent starting with time 7' 41, of course, as by then he will have seen when the first
head occurs.

With probability 1 the possible values for 7 are 7=0, 1, 2, ... . It is
straightforward to verify that: Py, (A) =[1 + 3/2)"17", when T =n, forn=0, 1, 2,



11 Stopping to Reflect 181

... . Notice that Pj,,,(A) <2, no matter when T occurs, and Py, (A) <¥2 for T >0,
since if T >0, the initial sequence of tosses that the agent observes all land tails
up. However, from the value of Py, (A) and knowing it is this quantity, one may
calculate T exactly and thus know the outcome of the n + 1st toss, which is a heads.
But when the agent computes Pj,,(A) at the time later, he does not then know that
later has arrived. Thus, later, he is not in a position to use the extra information that
he would get from knowing when T occurs to learn the outcome of the n + 1st toss.
To repeat the central point, T is not a stopping variable.

It is evident that Reflection fails, Py, (A | Piger(A) =7) # Piaer(A). The extra
information, namely that Pj,,,(A) = r rather than merely that P,(A) = r where ? is
the time on the agent’s clock, is information that is relevant to his current probability
of A, since it reveals the outcome of the next toss. Even now, prior to any coin tosses,
when he computes P, (A | Piger(A) = r), the conditioning event reveals to him the
value of 7, since n is a function of r. In this case, the conditioning event entails the
information of n and when the first heads occurs, namely, on the n + 1st toss. Then
Reflection fails as

Puow (AlPuer(d) = [+ 3/2'T) = (14 3/27%) "

It remains only to see that (11.1) fails as well. Consider the quantity y,(A) used in
condition (11.1). y,(A) = P ;,f’”'(ff;llﬂ’lﬂf();;‘g:f). Given P,(A) = r, the added information
that A obtains is relevant to the agent’s current probability when later occurs.

Specifically, as P,(A) = [1 + (3/2)"]"" entails that t = n,

Paow (HiPH(A) = [1 + 3/2"T") = P (X1 = 11P(4) = [1 + 3/2)T")
= (/2 [1+G/2T" + (/9 G/2" [+ /2T <,
= Paon (X1 = 1Pi(A) = [1 + (3/2)']'&4)

= Poow (FLIPA(A) = [1+ (3/2)'T'&A)

Thus, y; > 1.
Hence, 1 < Ztyt(A)Pnow (Ht| Plater(A) = r)- O

Example 11.3 (Illustrating Result 11.3 when (11.1) obtains and Reflection holds
even though later is not a stopping time)

In this example, consider a sequence of three times, t =0, 1, and 2. Now is
time ¢t = (. The available information increases with time, so that the information
sets form a filtration, and the agent updates his degrees of belief by Temporal
Conditionalization. Let the random time later be one of the two times =1, or
t =2, chosen at random, but which one is not revealed to the agent. Let the event
H; be that later =i, (i=1, 2) and suppose that the occurrence of H; (or its failure)
while not known to the agent at any of the three times is independent of all else
that the agent does know at all three times. In this case, for each event A (even for
A =H;) Eq. (11.1) is satisfied. That is, by the assumptions of the problem, either



182 M.J. Schervish et al.

— Pnaw(Htlyt(A)zr&A) — : — . — Prow(Hi |Plarer (A)=r) —
y(A) = "5 ipay=n = 1. orif A=Hithen y(4) = "pnle phy_y = 1.
Thus, Puow(A | Piuer(A) = r) =r. That is, even though later is not a stopping time,
Reflection holds in this case since, given that P, (A) = r no new (relevant) evidence

about A is conveyed through knowing that /ater has arrived, H;. |

We note that Result 11.2 applies to the Sleeping Beauty® Shangri La, and
Duplication examples of Arntzenius’ article, where known failures of memory are
explicit to the puzzles. Result 11.3 applies to explain the failure of Reflection in
the two versions of the “Prisoner” example where the local time in the story, as
measured by an ordinary clock (e.g., “11:30 PM” in John Collins’s example) is not
a stopping time for the Prisoner.

It is our impression of Collins’s Prisoner example that the reader is easily
mistaken into thinking that the local time, as measured by an ordinary clock in
the story, is a stopping time for all the characters in the story. Then Reflection holds
for each of them, in accord with Result 11.1. In Collins’ example, the local time,
e.g., 11:30 PM, is a stopping time for the Jailor (and also for the reader), but not
for the Prisoner. For the Prisoner, time is measured by real-valued increments over
the starting point, denoted by “now.” Increments of local time are stopping times
for the Prisoner. This is because the Prisoner does not know at the start of the story
which of two local times equals his time now. For subsequent times, he does know
how much local time has elapsed since now. But that information is not equivalent
to knowing the local time. That difference in what is a stopping time for different
characters is what makes this a clever puzzle, we think.

Acknowledgements Our research was carried out under NSF Grant DMS 0139911. We thank
Joseph Halpern for alerting one of us (7.S.) to the Sleeping Beauty problem, independent of
Arntzenius’ article.

8See also J.Y.Halpern’s “Sleeping Beauty Reconsidered: Conditioning and Reflection in Asyn-
chronous Systems,” Dept. of Computer Science, Cornell University. September, 2003. We agree
with Halpern that, in our words, coherence of a sequence of previsions does not require that
they will be well calibrated — in a frequency sense of “well calibrated.” That is, we think it is
reasonable for Sleeping Beauty to give a prevision of %2 to the event that the known fair coin
landed heads on the flip in question, each time she is woken up. What complicates the analysis
is that the repeated trials in Sleeping Beauty’s game do not form an independent sequence, and
her mandated forgetfulness precludes any “feedback™ about the outcome of past previsions. When
repeated trials are dependent and there is no learning about past previsions, coherent previsions
may be very badly calibrated in the frequency sense. For other examples and related discussion of
this point see, e.g., Seidenfeld, T. (1985) “Calibration, Coherence, and Scoring Rules,” Philosophy
of Science 52: 274-294.
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Appendix

Proof of Result 11.1° Assume that when X is a random variable and C is an event,
the agent’s expected value Ep(X) and conditional expected value Ep(X| C) exist
with respect to the probability P. Let A be an event and let X = P(A|Y) be a random
variable, a function of the random variable Y. Then, as a consequence of the law of
total probability, with C also a function of Y,

P (A|C) = Ep [X|C]. (11.2)

Assume that the agent’s degrees of belief now include his later degrees of belief as
objects of uncertainty. That is, future events such as “Pj,(A) =r” and “Pjy..(A |
C) = g” are proper subjects, now, of the agent’s current degrees of belief. Suppose
that, now, the agent anticipates using (i) Temporal Conditionalization in responding
to the new evidence Y =y that he knows he will learn at the stopping time, later.
For example, ¥ might be the result of a meter reading made at the later time,
with a sample space of m many possible values Y ={yj, ..., ym}. Thus, by (i),
for whichever value y of Y that results,

Plater(A) = Piarer (AlY = y) = Puow (AlY =y). (11.3)

Then, by (i) and (11.2), for C also a function of Y, the agent now believes that
Puow (A|C) = Ep,,,, [Piarer(A)|C] . (11.4)
Let C be the event, “Pj4,(A) = r,” which we presume is a possible value for P,,,(A)
from the agent’s current point of view. (This C is function of Y.) Then, because later

is a stopping time,

Pnow (AIPlater(A) = r) = EP,,W [Plater(A)IPlater(A) = }")] (115)

EP,,OW [Plater(A)lplater(A) = r)] =r, (116)

9van Fraassen (1995) “Belief and the Problem of Ulysses and the Sirens,” Phil. Studies 77: 7-37,
argues (pp. 17-19) that Temporal Conditionalization implies Reflection. His argument (pp. 18-19)
has an additional, tacit assumption that the time ¢ at which conditioning applies for Reflection is a
stopping time.
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therefore
Prow (Alplater(A) = V) =r, (117)

i.e., then Reflection holds as well. O

Proof of Result 11.2 To show that Reflection fails, consider two times #; <t,. Call
an event forgotten if its truth or falsity is known at time #; but not at time #,. From
the assumption that these times do not form a filtration, let E be forgotten between
t; and 1, and allow that at #; this is known to happen at #,. Since P, (E) € {0, 1},
conditioning will not change this value, i.e.,

P (E) = P, (E|P,(E) =) (11.8)

for a set of r-values of probability 1 under P;,. But, since it is known at #; that E
will be forgotten at t,, P, (0 < P,,(E) < 1) = 1. Hence Reflection fails as 0 <r<1
in (11.8). O

Proof of Result 11.3 Assume that the agent’s information sets form a filtration over
time and that Temporal Conditionalization holds between now and later but that
later is not a stopping time for the agent. Let H; be the event “later = ¢’ for the
specific time 7. That is, assume that 0 < Py, (H;) < 1, when later occurs at t.

Later is the future time we will focus on in calculating whether Reflection holds,
i.e. we will inquire whether for each event A, Py, (A | Piyer(A) = r) =r, or not. We
calculate as follows.

Pnow (Alplater(A) = V)

= Zer)W (A&Hl‘lplater(A) = V)
by the law of total probability.
= erm)w (A|Plater(A) = r&HI‘) Pm)w (Hl‘lplater(A) = V)

by the multiplication theorem

Pnow (Htlpt(A) = V&A)
= Zt

Pnow (HtIPt(A) — r) Pnow (Alpt(A) = V) Pnow (HI‘|Plater(A) = r)

by Bayes’ theorem and the equivalence of

(Plarer(A) = r&H,) and (P,(A) = r&H,)
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= Z P””W (Ht|Pt(A) = r&A)Pnow (Ht|Plater(A) = }")

¢ Pm)w (Htlpt(A) = V)
as Pm)w (A|P1(A) = r) = rby Result 11.1.
= rZryT(A)Pnow (Htlplater(A) = V).

by the definition of y,(A)
Hence, Puow (A|Puer(A) =r) = rif and only if ) y(4)Puow (Hi| Prarer (4) =1)
= 1, which is condition (11.1). O



Part I1
Belief Change



Chapter 12
Introduction

Horacio Arlé-Costa, Vincent F. Hendricks, and Johan van Benthem

It is well known that the usual versions of probability kinematics have serious
limitations. According to the classical notion of conditioning when one learns
a piece of information A its probability raises to its maximum (one). Moreover
no further instance of learning will be capable of defeating A. Once a piece
of information is learned one should be maximally confident about it and this
confidence should remain unaltered forever. It is clear that there are many instances
of learning that cannot be accommodated in this Procrustean bed. There are various
ways of amending this limited picture by enriching the Bayesian machinery. For
example, one can appeal to a notion of primitive conditional probability capable of
making sense of conditioning on zero measure events. But the detailed consideration
of this alternative leads to similar limitations: the picture of learning that thus
arises continues to be cumulative. There are many ways of overcoming these
important limitations. Williamson considers one possible way of doing so in his
essay reprinted in the section on Bayesian epistemology. One of the lessons that
have been learned in recent years is that there is no apparent way of circumventing
this rigidity of Bayesianism without introducing in some way a qualitative doxastic
or epistemic notion as a primitive alongside probability. Here are two examples:
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Williamson proposes a model where knowledge is a primitive, while Levi appeals
to a primitive notion of full belief.

The traditional work in belief revision has followed Levi in adopting some
doxastic notion as a primitive (which does not need to be full belief, it could be
Spohn’s plain belief, etc). But if such a qualitative notion should be introduced
primitively how should one go about representing it? And how one would go
about characterizing changes of the represented notion? There are many possible
options from sentential representations (that can be finite or not) to propositional
representations that can, in turn, incorporate more fine-grained non-probabilistic
structure than mere beliefs (entrenchment or some notion of plausibility, for
example).

The traditional approach derived from the seminal work of Carlos Alchourrén,
Peter Girdenfors and David Makinson (AGM) opted for a sentential representation.
They were ambivalent between using finite representations (usually called belief
bases) and using more structured representations of belief (theories in logical
parlance or belief sets). Isaac Levi proposed a philosophical justification for the
use of theories: they are supposed to represent not belief but commitments to
belief.

So, how should one go about contracting a sentence A from a theory K? Merely
deleting A will not do, given that the sentence might be entailed by other sentences
in K. The AGM solution to the problem is simple. Enter the remainder set of K with
A (denoted K_LA). This is the set of all maximal subsets of K that fail to entail A.
One then makes a selection from the members of this set via the use of a selection
function y. This gives us y(K_LA). Finally one takes the intersection of the resulting
set. This is usually called a partial meet contraction. Of course there are many
possible selection functions that can be used in the previous account. AGM would
in turn require that the selection can be rationalized in the usual sense common in
rational choice, i.e. by assuming that the selection function selects the best elements
of K_LA (with respect to an underlying transitive preference relation). Then AGM
manage to offer a set of rationality postulates that completely characterizes this
operation. This is the main result presented in the article reprinted here. This article
single handedly created an entire field of research by combining ideas from rational
choice and classical proof techniques from philosophical logic.

If one reads the original AGM article carefully one sees that much of the inspira-
tion from the use of selection functions in their model comes from the seminal work
of Amartya Sen in rational choice. Exploiting results from the theory of choice
Hans Rott (and previously Sten Lindstrom) systematically studies the relationship
between functional constraints placed on selection functions and postulates of belief
change. Among other things, Rott shows that certain functional constraints placed
on propositional selection functions correspond in a one-to-one fashion to postulates
of belief change. Rott’s results forge a useful bridge between the mathematical
theories of belief change and rational choice.

Still one might inquire why the feasible set from which one chooses rationally
via a selection function should be limited to KA. One common defense of this
idea is in terms of minimizing information loss. The elements of KA, usually
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called maxi-choice sets, do satisfy this requirement. But then if they are optimal
until this point of view why not to use a selection function that picks singletons
from K_LA? AGM showed that this type of contraction is badly behaved. So is the
opposite idea of taking directly the intersection of the entire K_LA. So, partial meet
appears as an Aristotelian middle ground that happens to satisfy a set of intuitive
postulates. Or so argued AGM. Nevertheless the subsequent discussion focused on
some controversial AGM postulates like recovery (requiring that if one contracts K
with A and then adds A to the result of this contraction one returns to K). There
are many putative counterexamples to recovery and this generated the interest in
defining notions of contraction that fail to satisfy recovery. Isaac Levi is a well-
known defender of this line of thought and in his article he characterizes a notion
of contractions that does fail to satisfy recovery. The central idea he proposes is that
what is minimized in contraction is not information loss but loss of informational
value. The notion of information value is some sort of epistemic utility obeying
basic structural postulates like:

(Weak Monotony) If X C Y, then V(X) < V(Y).

This is an intuitive principle that makes permissible that two sets carry equal
informational value even when one the sets carries more information than the other.
The additional information might not be valuable at all and therefore the level of
informational value of the larger set might remain equal to the informational value
of the smaller set. What other constraints one should impose on information value?
In the article reprinted here Levi presents a very specific form of information value
that he uses to characterize a particular notion of withdrawal (some rational notion of
contraction where recovery fails) that he calls mild contraction. Rott and Pagnucco
offered an alternative model of the same notion that they call severe withdrawal.
It is clear that when epistemic utility satisfies the constraints proposed by Levi
this particular form of contraction obtains. What seems to be missing is a pre-
systematic explanation of why epistemic utility should satisfy these constraints or a
justification of some controversial properties of severe withdrawal (like the postulate
of antitony). It is A true thought that the introduction of epistemic utility in models
of belief change opens up an insightful research strategy that at the moment remains
relatively unexplored.

Sven Ove Hansson offers another account of contraction that fails to obey
recovery. Nevertheless he arrives at this conclusion in a completely different way.
In fact, Hansson is one of the most prominent defenders of finite models of belief
in terms of belief bases (finite sets of sentences that are one of the possible
axiomatic bases of a given theory). It is easy to characterize a version of partial meet
contraction for bases by using the obvious variant of the definition used for theories.
Then one can proceed as follows: an operation of contraction on a belief set K is
generated by a partial meet base contraction if and only if there is a belief base B
for K and an operator ~ of partial meet contraction for B such that the contraction
of K with A yields the logical consequences of (B ~A) for all sentences A in the
underlying language. Hansson shows that if an operation on a belief set is generated
by some partial meet base contraction, then it satisfies the classical AGM postulates
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for contraction except recovery. In addition the operation satisfies other postulates
encoding a specific notion of conservativity.

The article by Spohn articulates an important epistemological idea, namely that
one should focus on changes of entire epistemic states endowed with more structure
than mere belief. This approach, in a more general setting, is also independently
pursued by Adnan Darwiche and Judea Pearl in Darwiche and Pearl (1996). Spohn
focuses on a particular type of epistemic state that now is usually called a ranking
function. Roughly a ranking function is a function from the set of propositions
(= sets of possible worlds) to the set of natural, real, or ordinal numbers, similar to
a probability measure. Epistemologically one can see such functions as numerical
(but non-probabilistic) representations of a notion of plausibility. In the presence
of a new input the current ranking is mapped to a new ranking incorporating the
incoming information (in revision). This is an ideal setting to study the structure of
iterated changes of view and as a matter of fact both articles offer the best existing
articulation of principles regulating iterated change. This is an important area of
research in this field that still remains relatively open.

Suggested Further Reading

There are a number of recent surveys and books that complement the reprinted papers appearing
here. Regarding surveys the two most recent surveys are: Logic of Belief Revision, in Stanford
Encyclopedia of Philosophy, 2006, by Sven Ove Hansson; and: Belief Revision in The Continuum
Companion to Philosophical Logic, (eds.) L. Hornsten and R. Pettigrew, by Horacio Arlo-Costa
and Paul Pedersen. These surveys contain references to previous surveys in the field. A classic
book in this area that continues to be useful is Peter Girdenfors’s monograph: Knowledge in Flux:
Modeling the Dynamic of Epistemic States, College Publications (June 2, 2008). A very useful
textbook presentation of some of the main results in the theory of belief change is: A Textbook of
Belief Dynamics: Theory Change and Database Updating, Springer 2010, by Sven Ove Hansson.
The book focuses mainly on syntactic presentations of belief change and it contains a very detailed
presentation of belief base updating. Some more recent topics like iterated belief change are not
treated in detail though.

Decision theoretic foundations for belief change are provided in various books by Hans
Rott and Isaac Levi (independently). A book-length argument articulating Rott’s account (and
extending the content of the article reprinted here) appears in: Change, Choice and Inference:
A Study of Belief Revision and Non-monotonic Reasoning, Oxford Logic Guides, 2001. Some
challenges to this type of foundational strategy are considered by Arlo-Costa and Pedersen in:
“Social Norms, Rational Choice and Belief Change,” in Belief Revision Meets Philosophy of
Science, (eds.) E.J. Olsson and S. Enqvist, Springer, 2011. Isaac Levi has also published various
essays where he presents decision theoretic foundations for belief change (but his account is rather
different than Rott’s). The most recent book presenting Levi’s current views about belief change
is: Mild Contraction: Evaluating Loss of Information Due to Loss of Belief, Oxford, 2004. Further
references to his work can be found in this book.

The previous accounts tried to justify principles of belief change in the broader context of
Bayesian or neo-Bayesian theory. An almost orthogonal view consists in deriving principles of
belief change by taking some form of formal learning theory as an epistemological primitive. While
all the previous accounts focused on justifying the next step of inquiry (or a finite and proximate
sequence of steps) this second strategy focuses on selecting belief change methods capable of
learning the truth in the long run. One important paper in this tradition is Kevin Kelly’s: Iterated
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Belief Revision, Reliability, and Inductive Amnesia, Erkenntnis, 50, 1998 pp. 11-58. Daniel
Osherson and Eric Martin present a similarly motivated account that nevertheless is formally quite
different from Kelly’s theory in: Elements of Scientific Inquiry, MIT, 1998.

There are various attempts to extend the theory of belief revision to the multi-agent case
and to present a theory of belief change as some form of dynamic epistemic logic. The idea in
this case is to use traditional formal tools in epistemic logic to represent the process of belief
change. Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi have recently published a
textbook with some basic results in this area: Dynamic Epistemic Logic, Springer, 2011. Krister
Segerberg has developed his own brand of dynamic doxastic logic in a series of articles since at
least the mid 1990’s. One recent paper including rather comprehensive results in this area is: “Some
Completeness Theorems in the Dynamic Doxastic Logic of Iterated Belief Revision,” Review of
Symbolic Logic, 3(2):228-246, 2010.

The notion of relevance is quite central for a representation of belief and belief change. In a
Bayesian setting there are standard ways of articulating relevance. But there is recent work that has
used proof theoretic techniques to deal with relevance rather than probability theory. Rohit Parikh
initiated this area of research with an article published in 1999: Beliefs, belief revision, and splitting
languages, Logic, language, and computation (Stanford, California) (Lawrence Moss, Jonathan
Ginzburg, and Maarten de Rijke, editors), vol. 2, CSLI Publications, pp. 266-278. Recently David
Makinson has contributed as well an important article in collaboration with George Kourousias,:
Parallel interpolation, splitting, and relevance in belief change, Journal of Symbolic Logic 72
September 2007 994-1002. This article contains a detailed bibliography of recent work in this
area.

One recent paper including rather comprehensive results in this area is: “Some completeness
theorems in the dynamic doxastic logic of iterated belief revision,” Review of Symbolic Logic, 3,
02, 2010. For more on iterated belief revision please refer to: Darwiche and Pearl (Darwiche, A., &
Pearl, J. (1996). On the logic of iterated belief revision. Artificial Intelligence, 89, 1-29) appears
in: Change, choice and inference: A study of belief revision and non-monotonic reasoning, Oxford
Logic Guides, 2001.

And there is also more to be found in Pagnucco and Rott (Pagnucco, M., & Rott, H. (1999).
Severe withdrawal — and recovery. Journal of Philosophical Logic, 28, 501-547. See publisher’s
“Erratum” (2000), Journal of Philosophical Logic, 29, 121) and Lindstrom (Lindstrém, S. (1991).
A semantic approach to nonmonotonic reasoning: Inference operations and choice. Uppsala Prints
and Preprints in Philosophy, no. 6/1991, University of Uppsala).


https://docs.google.com/fileview?id=0B-gWi8__vkMNM2Y0NWIyYzItMGIyNS00MGM3LWI4ZDItZDUwMWFhNmM3MzBh&hl=en
http://www.hss.cmu.edu/philosophy/kelly/papers/amnesia.pdf

Chapter 13
On the Logic of Theory Change: Partial Meet
Contraction and Revision Functions

Carlos E. Alchourrén, Peter Girdenfors, and David Makinson

1 Background

The simplest and best known form of theory change is expansion, where a new
proposition (axiom), hopefully consistent with a given theory A, is set-theoretically
added to A, and this expanded set is then closed under logical consequence.
There are, however, other kinds of theory change, the logic of which is less well
understood. One form is theory contraction, where a proposition x, which was
earlier in a theory A, is rejected. When A is a code of norms, this process is
known among legal theorists as the derogation of x from A. The central problem
is to determine which propositions should be rejected along with x so that the
contracted theory will be closed under logical consequence. Another kind of change
is revision, where a proposition x, inconsistent with a given theory A, is added to
A under the requirement that the revised theory be consistent and closed under
logical consequence. In normative contexts this kind of change is also known as
amendment.
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A basic formal problem for the processes of contraction and revision is to
give a characterization of ideal forms of such change. In (Girdenfors 1978) and
(Gérdenfors 1982), Girdenfors developed postulates of a more or less equational
nature to capture the basic properties of these processes. It was also argued there
that the process of revision can be reduced to that of contraction via the so-called
Levi identity: if A — x denotes the contraction of A by x, then the revision of A
by x, denoted A + x, can be defined as Cn((A —~ —x) U {x}), where Cn is a given
consequence operation.

In (Alchourron and Makinson 1982b), Alchourrén and Makinson tried to give a
more explicit construction of the contraction process, and hence also of the revision
process via the Levi identity. Their basic idea was to choose A — x as a maximal
subset of A that fails to imply x. Contraction functions defined in this way were
called “choice contractions” in (Alchourron and Makinson 1982b), but will here be
more graphically referred to as “maxichoice contractions”.

As was observed in (Alchourron and Makinson 1982b), the maxichoice functions
have, however, some rather disconcerting properties. In particular, maxichoice
revision +, defined from maxichoice contraction as above, has the property that
for every theory A, whether complete or not, A + x will be complete whenever
X is a proposition inconsistent with A. Underlying this is the fact, also noted in
(Alchourron and Makinson 1982b), that when A is a theory with x € A, then for
every proposition y, either (x V y) € A — x or (x V —y) € A — x, where — is
maxichoice contraction. The significance of these formal results is discussed briefly
in (Alchourron and Makinson 1982b), and in more detail in Gidrdenfors (1984) and
Makinson (1985).

The “inflation properties” that ensue from applying the maxichoice operations
bring out the interest of looking at other formal operations that yield smaller
sets as values. In this paper, we will start out from the assumption that there is
a selection function y that picks out a class of the “most important” maximal
subsets of A that fail to imply x. The contraction A — x is then defined as the
intersection of all the maximal subsets selected by y. Functions defined in this
way will be called partial meet contraction functions, and their corresponding
revision functions will be called partial meet revision functions. It will be shown that
they satisfy Girdenfors’ postulates, and indeed provide a representation theorem
for those postulates. When constrained in suitable ways, by relations or, more
restrictedly, by transitive relations, they also satisfy his “supplementary postulates”,
and provide another representation theorem for the entire collection of “basic” plus
“supplementary” postulates.

Acquaintance with (Makinson 1985) will help the reader with overall perspec-
tive, but it is not necessary for technical details.

Some background terminology and notation: By a consequence operation we
mean, as is customary, an operation Cn that takes sets of propositions to sets
of propositions, such that three conditions are satisfied, for any sets X and Y of
propositions: X € Cn(X), Cn(X) = Cn(Cn(X)), and Cn(X) < Cn(Y) whenever X C Y.
To simplify notation, we write Cn(x) for Cn({x}), where x is any individual
proposition, and we also sometimes write y € Cn(X) as X F y. By a theory, we
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mean, as is customary, a set A of propositions that is closed under Cn; that is, such
that A = Cn(A), or, equivalently, such that A = Cn(B) for some set B of propositions.
As in (Alchourron and Makinson 1982b), we assume that Cn includes classical
tautological implication, is compact (that is, y € Cn(X’) for some finite subset X’
of X whenever y € Cn(X)), and satisfies the rule of “introduction of disjunctions in
the premises” (that is, y € Cn(X U {x; V x;}) whenevery € Cn(X U {x;}) and y €
Cn(X U {x,})). We say that a set X of propositions is consistent (modulo Cn) iff for
no proposition y do we have y &—y € Cn(X).

2 Partial Meet Contraction

Let Cn be any consequence operation over a language, satisfying the conditions
mentioned at the end of the preceding section, and let A be any set of propositions.
As in (Alchourron and Makinson 1982a) and (Alchourron and Makinson 1982b),
we define A L x to be the set of all maximal subsets B of A such that B J* x. The
maxichoice contraction functions — studied in (Alchourron and Makinson 1982b)
put A — x to be an arbitrary element of A 1 x whenever the latter is nonempty,
and to be A itself in the limiting case that A L x is empty. In the search for suitable
functions with smaller values, it is tempting to try the operation A ~ x defined as N(A
1 x) when A | x is nonempty, and as A itself in the limiting case that A L x is empty.
But as shown in Observation 2.1 of (Alchourron and Makinson 1982b), this set is in
general far too small. In particular, when A is a theory with x € A, then A~x=A
N Cn(—x). In other words, the only propositions left in A ~x when A is a theory
containing x are those which are already consequences of —x considered alone. And
thus, as noted in Observation 2.2 of (Alchourron and Makinson 1982b), if revision
is introduced as usual via the Levi identity as Cn((A ~—x) U {x}), it reduces to
Cn((A N Cn(x)) U {x})=Cn(x), for any theory A and proposition x inconsistent
with A. In other words, if we revise a theory A in this way to bring in a proposition
x inconsistent with A, we get no more than the set of consequences of x considered
alone—a set which is far too small in general to represent the result of an intuitive
process of revision of A so as to bring in x.

Nevertheless, the operation of meet contraction, as we shall call ~, is very
useful as a point of reference. It serves as a natural lower bound on any reasonable
contraction operation: any contraction operation — worthy of the name should surely
have A ~x CA = x forall A, x, and a function — satisfying this condition for a given
A will be called bounded over A.

Following this lead, let A be any set of propositions and let y be any function such
that for every proposition x, y(A L x) is a nonempty subset of A L x, if the latter is
nonempty, and y(A L x) = {A} in the limiting case that A L x is empty. We call such
a function a selection function for A. Then the operation — defined by putting A —
x=Ny(A L x) for all x is called the partial meet contraction over A determined by
y. The intuitive idea is that the selection function y picks out those elements in A L
x which are “most important” (for a discussion of this notion cf. Girdenfors (1984))
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and then the contraction A — x contains the propositions which are common to the
selected elements of A L x. Partial meet revision is defined via the Levi identity as
A + x=Cn((A = —x) U {x}). Note that the identity of A = x and A 4 x depends on
the choice function y, as well, of course, as on the underlying consequence operation
Cn. Note also that the concept of partial meet contraction includes, as special cases,
those of maxichoice contraction and (full) meet contraction. The former is partial
meet contraction with y(A L x) a singleton; the latter is partial meet contraction with
Y(A L x) the entire set A L x. We use the same symbols — and + here as for the
maxichoice operations in (Alchourron and Makinson 1982b); this should not cause
any confusion.

Our first task is to show that all partial meet contraction and revision func-
tions satisfy Gérdenfors’ postulates for contraction and revision. We recall (cf.
(Alchourron and Makinson 1982b) and (Makinson 1985)) that these postulates may
conveniently be formulated as follows:

(—=1) A — x is a theory whenever A is a theory (closure).

(=2) A = x C A (inclusion).

(=3)If x € Cn(A), then A = x = A (vacuity).

(=4) If x € Cn(D), then x & Cn(A — x) (success).

(=5) If Cn(x) =Cn(y), then A — x=A — y (preservation).
(=6) A € Cn((A = x) U {x}) whenever A is a theory (recovery).

The Girdenfors postulates for revision may likewise be conveniently formulated
as follows:

(+1) A + x is always a theory.

(+2)xeA+x.

(+3) If =x & Cn(A), then A + x=Cn (A U {x}).

(44) If ~x & Cn(D), then A + x is consistent under Cn.
(+5) If Cn(x) =Cn(y), thenA + x=A + y.

(4+6) (A + x) N A=A = —x, whenever A is a theory.

Our first lemma tells us that even the very weak operation of (full) meet
contraction satisfies recovery.

Lemma 2.1 Let A be any theory. Then A C Cn((A ~x) U {x}).

Proof In the limiting case that x ¢ A we have A ~x = A and we are done. Suppose
x € A. Then, by Observation 2.1 of (Alchourron and Makinson 1982b), we have
A~x=A N Cn(—x) so it will suffice to show A C Cn((A N Cn(—x)) U {x}). Let a
€ A. Then since A is a theory, —x V a € A. Also =x V a € Cn(—x),so ~x Va € A
N Cn(—x), so since Cn includes tautological implication, a € Cn((A N Cn(—x)) U

). O

Corollary 2.2 Let — be any function on pairs A, x. Let A be any theory. If — is
bounded over A, then — satisfies recovery over A.

Observation 2.3 Every partial meet contraction function — satisfies the Gdrden-
fors postulates for contraction, and its associated partial meet revision function
satisfies the Gdrdenfors postulates for revision.
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Proof 1t is easy to show (cf. (Girdenfors 1978) and (Girdenfors 1982)) that the
postulates for revision can all be derived from those for contraction via the Levi
identity. So we need only verify the postulates for contraction. Closure holds,
because when A is a theory, so too is each B € A L x, and the intersection of
theories is a theory; inclusion is immediate; vacuity holds because when x ¢ Cn(A)
then A L x={A} so y(A L x) ={A}; success holds because when x ¢ Cn(&) then
by compactness, as noted in Observation 2.2 of (Alchourron and Makinson 1982a),
A 1 xis nonempty and so A — x=Ny(A L x) ¥ x; and preservation holds because
the choice function is defined on families A L x rather than simply on pairs A, x,
so that when Cn(x) =Cn(y) we have A L. x=A 1 y,sothat y{A L x)=y (A L
y). Finally, partial meet contraction is clearly bounded over any set A, and so by
Corollary 2.2 satisfies recovery. O

In fact, we can also prove a converse to Observation 2.3, and show that for
theories, the Gérdenfors postulates for contraction fully characterize the class of
partial meet contraction functions. To do this we first establish a useful general
lemma related to 7.2 of (Alchourron and Makinson 1982b).

Lemma 2.4 Let A be a theory and x a proposition. If Be A 1 x,then B€ A L y for
all y € A such that B ¥ y.

Proof Suppose B€ A L xand B *y,y € A. To show that B € A L y it will suffice
to show that whenever BC B’ CA,then B'Fy.Let BCB CA.Since B€ A L x we
have B’ - x. But also, since B€ A 1 x, A L xis nonempty,so A ~x=N(A L x) CB;
s0, using Lemma 2.1, A € Cn(B U {x}) S Cn(B’ U {x}) =Cn(B’), so since y € A we
have B’ Fy. O

Observation 2.5 Let — be a function defined for sets A of propositions and
propositions x. For every theory A, — is a partial meet contraction operation over A
iff — satisfies the Gdrdenfors postulates (—1) — (—6) for contraction over A.

Proof We have left to right by Observation 2.3. For the converse, suppose that
— satisfies the Gérdenfors postulates over A. To show that — is a partial meet
contraction operation, it will suffice to find a function such that:

(1) y(A L x)={A} in the limiting case that A | x is empty,
(i) y(A L x)is a nonempty subset of A L x when A L x is nonempty, and
(iii) A=-x={\y@A Lx).

Put y(A L x) to be {A} when A | xis empty,andtobe {Be A 1 x: A - xCB}
otherwise. Then (i) holds immediately. When A L x is nonempty, then x ¢ Cn(@) so
by the postulate of success A — x ¥ x, so, using compactness, y(A L x) is nonempty,
and clearly y(A L x) CA L x, so (ii) also holds. For (iii) we have the inclusion
A = xC()y(A L x) immediately from the definition of y. So it remains only to
show that (y(4A L x) CA — x.

In the case that x € A we have by the postulate of vacuity that A = x = A, so the
desired conclusion holds trivially. Suppose then that x € A, and suppose a € A — x;
we want to show that a &€ Ny(A L x). In the case a & A, this holds trivially, so we
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suppose that a € A. Weneed to finda Be€ A L x with A = xC B and a ¢ B. Since
= satisfies the postulate of recovery, and a € A, we have (A = x) U {x} I a. But, by
hypothesis, a € A — x = Cn(A = x) by the postulate of closure, so since Cn includes
tautological implication and satisfies disjunction of premises, (A — x) U {—x} ¥ a,
s0A = x ¥ x vV a. Hence by compactness thereisaB€ A L (x vV a) withA = xCB.
Since Be A L (x vV a) we have B V¥ x VV a, s0 a € B. And also since B ¥ x V a we
have B ¥ x, so, by Lemma 2.4, and the hypothesis that x € A, we have B€ A | x,
and the proof is complete. [J

A corollary of Observation 2.5 is that whenever — satisfies the Gérdenfors
postulates for contraction over a theory A, then it is bounded over A. However,
this consequence can also be obtained, under slightly weaker conditions, by a more
direct argument. We first note the following partial converse of Lemma 2.1.

Lemma 2.6 Let A be any theory. Then for every set B and every x € A, if A C Cn(B
U {x}), then A ~ x C Cn(B).

Proof Suppose x € A, ACCn(B U {x}), and a € A ~x; we want to show that a €
Cn(B). Since A is a theory and x € A we have A ~ x = Cn(—x) N A by Observation
2.1 of (Alchourron and Makinson 1982b); so —x - a, so B U {—x}I- a. But also since
ac€A~xCTACCn(B U {x}) we have B U {x} |- a, so by disjunction of premises
and the fact that Cn includes tautological implication, we have a € Cn(B). O

Observation 2.7 Let — be any function on pairs A, x. Let A be a theory. If —
satisfies closure, vacuity and recovery over A, then — is bounded over A.

Proof Suppose — satisfies closure, vacuity and recovery over A. Let x be any
proposition; we need to show A ~xCA — x. In the case x € A we have trivially
A~x=A = x by vacuity. In the case x € A we have AC Cn((A — x) U {x}) by
recovery, so A ~x C Cn(A — x) =A — x by Lemma 2.6 and closure. O

3 Supplementary Postulates for Contraction and Revision

Girdenfors (1984) has suggested that revision should also satisfy two further
“supplementary postulates”, namely:

(+7)A + (x & y) € Cn((A + x) U {y}) for any theory A, and its conditional converse:
(4+8) Cn((A 4+ x) U {y}) CA + (x & y) for any theory A, provided that —y ¢ A + x.

Given the presence of the postulates (1) — (=6) and (41) — (+6), these two
supplementary postulates for + can be shown to be equivalent to various conditions
on —. Some such conditions are given in (Girdenfors 1984); these can however
be simplified, and one particularly simple pair, equivalent respectively to (4-7) and
(+38), are:

(=7)(A=x)N(A-y)SA— (x & y) for any theory A.
(-8)A = (x & y) CA ~ x whenever x ¢ A — (x & y), for any theory A.
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Observation 3.1 Let — be any partial meet contraction operation over a theory A.
Then it satisfies (=7) iff it satisfies (+7).

Proof We recall that 4 is defined by the Levi identity A 4+ x = Cn((A ~ —x) U {x}).
Let A be any theory and suppose that (—7) holds for all x and y. We want to show
that (-+7) holds for all x and y. Let

we A+ (x&y) = Cn (A== (x&y)) U {x&y}) .
We need to show that

w € Cn ((A+x) U {y}) = Cn (Cn ((A=—x) U {x}) U {y})
= Cn ((A—x) U {x&y})

by general properties of consequence operations. Noting that
Cn (—x) = Cn (= (x&y) & (=x V y)) .
it will suffice by condition (—7) to show that
w € Cn (A== (x&y)) U {x&y}) and w € Cn (A= (—x V y)) U {x&y}) .

But the former is given by hypothesis, so we need only verify the latter. Now by the
former, we have w € Cn(A U {x & y}), so it will suffice to show that

AU {x&y} © Cn (A= (—x v y) U {x&y}) .

But clearly x & y € RHS, and moreover since x & y - y = —x v y we have by
recovery that A € RHS, and we are done.

For the converse, suppose that (+7) holds for all x, y. Leta € (A = x) N (A = y);
we need to show thata € A — (x & y). Noting that

Cn(x) = Cn (= ((—x VvV —y) &),
we have

ac€ A= ((—xV —y) &x) C A+ ((—xV —y) &—x)
C Cn ((A+ (=x v —y)) U {=x}).
A similar reasoning gives us also a € Cn((A + (—x v —y)) U {—y}). So applying
disjunction of premises and the fact that Cn includes tautological implication, we

have

a€Cn(A+ (—xVv—y) =4+ (mxV-y) = Cn((A- (x&y)) U {— (x&y)}) .
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But by recovery we also have a € Cn((A = (x & y)) U {x & y}), so, again using
disjunction of premises,

a € Cn (A= (x&y)) = A= (x&y)

by closure, and we are done. O

Observation 3.2 Let — be any partial meet contraction function over a theory A.
Then it satisfies (=8) iff it satisfies (+8).

Proof Let A be a theory and suppose that (—8) holds for all x and y. We want to
show that (+8) holds for all x and y. Noting that Cn(—x) = Cn((—x V —y) & —x) we
have A -~ —x=A = ((—x V —y) & —x). But also, supposing for (4-8) that =y ¢ A +
x=Cn((A = —x) U {x}), we have —=x V =y € A = —x. We may thus apply (=8) to
get

A——x =A-((—x VvV =) &x) CA-(—xV —y) = A—— (x&y) .

This inclusion justifies the inclusion in the following chain, whose other steps are
trivial:

Cn ((A+4x) U {y}) = Cn (Cn ((A~—x) U {x}) U {y})
= Cn ((A-—x) U {x&y}) € Cn (A= (x&)) U {x&y})
= A+ (x&y).

For the converse, suppose (4-8) holds for all x and y, and suppose x ¢ A = (x & ).
Then clearly

x ¢ Cn (A~ (x&y) U {—x vV —y}) = A + = (x&y) ,
so we may apply (+8) to get

Cn (A= (x&y)) U {=x}) € A+ (= (x&y) &—x) = A+—x
= Cn ((A<x) U {—x}).

Thus, since A — (x & y) is included in the leftmost term of this series, we have
A= (x&y) € Cn ((A=x) U {—x}).

But using recovery we also have A — (x & y) SACCn((A - x) U {x}), so by
disjunction of premises and the fact that Cn includes tautological implication, we
have A - (x & y) S Cn(A — x) = A — x by closure, as desired. [

We end this section with some further observations on the powers of (—7) and
(—8). Now postulate (—7) does not tell us that A — x and A — y, considered
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separately, are included in A — (x & y). But it goes close to it, for it does yield
the following “partial antitony” property.

Observation 3.3 Let — be any partial meet contraction function over a theory A.
Then — satisfies (—7) iff it satisfies the condition

P A=x)NCnx)CA = (x &y)forall xandy.

Proof Suppose (—7) is satisfied. Suppose w € A= x and x - w; we want to show
thatwe A= (x&y).lffxdAory €A, then triviallyA — (x & y)=A,sow e A =
(x & y). So suppose that x € A and y € A. Now

A= (x&y) = A= ((—xVy) &),

so by (=7) it will suffice to show thatw € A = (—x Vv y) and w € A — x. We have the
latter by supposition. As for the former, recovery gives us A = (—x V y) U {—=x V y)
Fx,s0A - (—xVvy)U{—x}Fx,s0A=-(—xVy)FxFwsoweA=(—xVy).

For the converse, suppose (—P) is satisfied, and suppose w € (A — x) N (A = y);
we want to show that w € A — (x & y). Sincew € A — x, we havex V w € A — x,
and so since x - x vV w, (=P) givesusx Vw € A = (x & y). Similarly,y Vvw e A =~
(x&y).Hencew Vv x&y)=xVw &((yVw eA-=(x &y). But by recovery,
A-(x&yyU{x &yl Fw,sowV —(x &y) € A = (x & y). Putting these together
givesus w € A — (x & y) as desired. O

Condition (—8) is related to another condition, which we shall call the covering
condition:

(—C) For any propositionsx, y,A — (x & y) CA —xorA—-(x & y)SA —y.

Observation 3.4 Let — be any partial meet contraction function over a theory A. If
— satisfies (—8) over A, then it satisfies the covering condition (—C) over A.

Proof Let x and y be propositions. In the case x & y € Cn(Q) we have, say, x €
Cn(@); s0 A = (x & yy=A=A = x and we are done. In the case x & y & Cn(Q),
then by success we havex & y ¢ A — (x & y), soeitherx A - (x & y)ory € A =
(x & y),soby (=8)eitherA —(x & y) CA —xorA—-(x&y)CTA—y.O

Howeyver, the converse of Observation 3.4 fails. For as we shall show at the end of
the next section, there is a theory, finite modulo Cn, with a partial meet contraction
over A that satisfies the covering condition (and indeed also supplementary postulate
(=7)), but that does not satisfy (—8). Using Observation 3.4, it is easy to show that
when A is a theory and — satisfies postulates (—1) — (—6), then (—8) can equivalently
be formulated as A — (x & y) CA — x whenever x ¢ A — y.

In (Alchourron and Makinson 1982b), it was shown that whilst the maxichoice
operations do not in general satisfy (—7) and (—8), they do so when constrained by
a relational condition of “orderliness”. Indeed, it was shown that for the maxichoice
operations, the conditions (—5—7), (4—8), and orderliness are mutually equivalent, and
also equivalent to various other conditions. Now as we have just remarked, in the
general context of partial meet contraction, (—7) does not imply (—8), and it can
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also be shown by an example (briefly described at the end of next section) that the
converse implication likewise fails. The question nevertheless remains whether there
are relational constraints on the partial meet operations that correspond, perfectly or
in part, to the supplementary postulates (—7) and (—8). That is the principal theme
of the next section.

4 Partial Meet Contraction with Relational Constraints

Let A be a set of propositions and y a selection function for A. We say that y is
relational over A iff there is a relation < over 24 such that for all x & Cn(@), < marks
off y(A L x) in the sense that the following identity, which we call the marking off
identity, holds:

y(ALx)={BeALx:B < BforallB' €A Lx}.

Roughly speaking, y is relational over A iff there is some relation that marks off
the elements of y(A L x) as the best elements of A L x, whenever the latter is
nonempty. Note that in this definition, < is required to be fixed for all choices of x;
otherwise all partial meet contraction functions would be trivially relational. Note
also that the definition does not require any special properties of < apart from being
a relation; if there is a transitive relation < such that for all x & Cn(&) the marking
off identity holds, then y is said to be transitively relational over A. Finally, we say
that a partial meet contraction function — is relational (transitively relational) over
A iff it is determined by some selection function that is so. “Some”, because a single
partial meet contraction function may, in the infinite case, be determined by two
distinct selection functions. In the finite case, however, this cannot happen, as we
shall show in Observation 4.6.

Relationality is linked with supplementary postulate (—7), and transitive relation-
ality even more closely linked with the conjunction of (—7) and (—8). Indeed, we
shall show, in the first group of results of this section, that a partial meet contraction
function — is transitively relational iff (—7) and (—8) are both satisfied. In the later
part of this section we shall describe the rather more complex relationship between
relationality and (—7) considered alone. It will be useful to consider various further
conditions, and two that are of immediate assistance are:

yDHyALx&y)Sy(ALx)UyA Ly)forall x and y.
(y8) y(A Lx)Cy(A L x&y) wheneverA LxNyA Lx&y) #3.

As with (=8), it is easy to show that when A is a theory and vy is a selection
function over A, then (y8) can equivalently be formulated as

yALx)Sy(ALx&y) wheneverA L xNy(A Ly) # @.

The following lemma will also be needed throughout the section.
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Lemma 4.1 Let A be any theory and x,y € A. ThenA L (x & y)=A L xUA Ly.

Proof We apply Lemma 2.4. WhenBc€ A 1 (x &y),then B ¥ x & ysoB V¥ xor B
¥y, soby2.4eitherBeA L xorBeA Ly Conversely,if B€eA LxorBeA L
y,then B ¥ x & y so, by 2.4 again,Be A L (x & y). O

Observation 4.2 Let A be a theory and — a partial meet contraction function over
A determined by a selection function y. If y satisfies the condition (y7), then —
satisfies (—7), and if it satisfies (y8), then — satisfies (—8).

Proof Suppose (y7) holds. Then we have:
A=x)N (A~y) = ﬂ y(ALx)N ﬂ y (A L y)since y determines —
= ﬂ (y (A Lx)Uy (AL y)) by general set theory

- ﬂ y (A L (x&y)) using condition (y7)
=A- (x&y).

Suppose now that (y8) holds, and suppose x ¢ A =~ (x & y); that is, x & (|y(A L x
& y). We need to show that A = (x & y) CA = x. In the case x € A we have A = (x
& y)=A=A - x.So suppose x € A. Since x & [ |y(A L x & y) thereis a B € y(A
1 x & y) with B ¥ x, so, by Lemma 2.4, B€ A L xandthusBe A LxNy(A Lx
& y). Applying (y8) we have y(A L x) Cy(A Lx & y),s0A =~ (x & y)=(\y(A L
x&Y) Sy Lx)=A = xas desired. O

Observation 4.3 Let A be any theory and y a selection function for A. If y is
relational over A then y satisfies the condition (y7), and if y is transitively relational
over A, then y satisfies the condition (y8).

Proof In the cases that x € Cn(@), y € Cn(@), x € A and y € A, both (y7) and (y8)
hold trivially, so we may suppose that x ¢ Cn(2), y &€ Cn(D), x ¢ A and y € A.

Suppose y is relational over A, and suppose B € y(A L x & y). Now y(A L x &
WCALlx&y=AL1lxUA Ly soBeA lLxorBeA L y;consider the former
case, as the latter is similar. Let B € A L x. ThenB' € A LxUA Ly=A 1 x &
y, and so B’ <B since B € y (A L x & y) and y is relational over A; and thus, by
relationality again, B' € (A L x) Cy(A L x) U y(A L y) as desired.

Suppose now that y is transitively relational over A, and suppose A L x N y(A L
x & y) # @. Suppose for reductio ad absurdum that there is a B € y (A L x) with B
Zy(ALx&y).SinceBey(ALx)CTALxZA L xd&ybyLemmad.1, whilst B
€y (A L x &y), we have by relationality that thereisa B’ € A 1 x & y with B’ <B.
Now by the hypothesis A L x Ny (A L x & y) # &, thereis a B” € A L x with B”
€ y(A L x & y). Hence by relationality B’ < B” and also B” < B. Transitivity gives
us B’ < B and thus a contradiction. [J

When A is a theory and y is a selection function for A, we define y*, the
completion of vy, by putting y*(A L x)={Be€ A L x: (y(A L x) C B} for all x
Z Cn(@), and y*A L x)=y(A L x)={A} in the limiting case that x € Cn(2).
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It is easily verified that y* is also a selection function for A, and determines the
same partial meet contraction function as y does. Moreover, we clearly have y (A
1L x)Cy*A L x)=y**A L x) for all x. This notion is useful in the formulation of
the following statement:

Observation 4.4 Let A be any theory, and — a partial meet contraction function
over A, determined by a selection function y. If — satisfies the conditions (—7) and
(=8) then y* is transitively relational over A.

Proof Define the relation < over 2* as follows: for all B, B’ € 24, B’ < B iff either
B = B =A, or the following three all hold:

(i) B’ € A 1 xforsome x € A.
(ii)) BeA 1L xand A — x C B for some x € A.
(iii) Forallx,if B,B€ A 1L xandA —xC B’ thenA —xCB.

We need to show that the relation is transitive, and that it satisfies the marking
off identity y*(A L x)={B€ A L x: B <Bforall B € A L x} for all x ¢ Cn(Q).

For the identity, suppose first that B € y*(A L x) CA L x since x &€ Cn(2). Let B’
€ A L x; we need to show that B’ < B. If x & A then B'= B =A so B’ < B. Suppose
that x € A. Then clearly conditions (i) and (ii) are satisfied. Let y be any proposition,
and suppose B, B€ A | y and A~ y C B’; we need to show that A — y C B. Now by
covering, which we have seen to follow from (—8), either A — (x & y) CA —xor A
~(x&y)CA -y Andin the latter case A - (x & ) CA - yCB €A L xsox ¢
A = (x & y); so by (—8) again A — (x & y) CA — x. Thus in either case A — (x &
¥) €A — x. Now suppose for reductio ad absurdum that thereisaw € A — y with w
ZB.Theny VvV w e A = yand so since y -y vV w we have by (=7) using Observation
33thatyvweA - (x&y)SA-x=( y*(A L x)CB;s0y Vv w e B.Butalso
sinceBe A Lyandw ¢ Bandw € A, we have BU {w} Iy, so —=w V y € B. Putting
these together gives us (y V w) & (y V —w) € B, soy € B, contradicting B€ A L y.

For the converse, suppose B € y*(A L x)and B€ A | x; weneedtofindaB' € A
1 x with B' £ B. Clearly the supposition implies that x € A, so B# A. Since B € A
L x, the latter is nonempty, so y*(A L x) is nonempty; let B’ be one of its elements.
Noting that B, B€ A L x, B' € y*(A 1 x),but B € y*(A L x), we see that condition
(iii) fails, so that B’ £ B, as desired.

Finally, we check out transitivity. Suppose B” < B’ and B’ < B; we want to show
that B” < B. In the case that B=A then clearly since B’ <B we have B =B = A,
and thus since B” < B’ we have B =B’ =A, so B =B =A and B” < B. Suppose
for the principal case that B # A. Then since B’ < B, clearly B’ # A. Since B’ <B we
have Be A L wand A — w C B for some w € A, so (ii) is satisfied. Since B’ < B’
we have B” € A 1 w for some w € A, so (i) is satisfied. It remains to verify (iii).
Suppose B”, B€ A 1 yand A — y C B”; we need to show that A = y C B. First, note
that since B # A by the condition of the case, we have y € A. Also, since B” <B’
and B’ # A, thereisan x € Awith B € A L xand A = x C B’. Since x, y € A we have
by Lemma 4.1 that A L x & y=A L xUA Ly, soB’",B,BeA L x &y. Now
by covering, either A — (x & Y) CA —yorA — (x & y) CA — x. The former case
givesus A — (x & y) CB”, so since B’ <B' and B #A We have A — (x & y) C B/,
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so again since B’ < B and B # A we have A = (x & y) C B. Likewise, the latter case
givesus A — (x & y) C B/, so since B’ < B and B # A we have A — (x & y) C B. Thus
in either case, A — (x & y) CB. Now let w € A — y we need to show that w € B.
Sincew € A —y we have y V w € A —y; so by (=7) and Observation 3.3, since y V
w € Cn(y), we havey Vw € A = (x & y) € B. Hence BU {— y} - w. But since B €
A 1L yandw € A, we also have B U {y} - w, so B w and thus w € B as desired. [J

Corollary 4.5 Let A be any theory, and — a partial meet contraction function over
A determined by a selection function y. Then — is transitively relational over A iff
— satisfies both (—7) and (=8).

Proof If — satisfies (—7) and (—8) then, by 4.4, y* is transitively relational, so
since y* determines —, the latter is transitively relational. Conversely, if — is
transitively relational, then ' is transitively relational for some y’ that determines
=, s0, by 4.3, y’ satisfies (y7) and (y8); so, by 4.2, — satisfies (—7) and (-8).
|

This result is the promised representation theorem for the collection of “basic”
plus “supplementary” postulates. Since this collection of postulates can be inde-
pendently motivated (cf. Girdenfors (1978)), there is strong reason to focus on
transitively relational partial meet contraction functions as an ideal representation
of the intuitive process of contraction.

Note that Observation 4.4 and its corollary give us a sufficient condition for the
transitive relationality of y*, and thus of —, rather than of y itself. The question
thus arises: when can we get the latter? We shall show that in the finite case the
passage from y to — is injective, so that y = y*, where y is any selection function
that determines —. By the finite case, we mean the case where A is finite modulo
Cn; that is, where the equivalence relation defined by Cn(x) = Cn(y) partitions A
into finitely many cells.

Observation 4.6 Let A be any theory finite modulo Cn, and let y and y' be selection
Sfunctions for A. For every proposition x, if y (A L x)#y’ (A L x), then (y(A L
x)Z Ny (A L x).

Sketch of Proof Suppose B € y(A L x),but B¢ y’(A L x). Then clearly x € A and x
¢ Cn(2). Since A is finite (we identify A with its quotient structure), so is B; put b to
be the conjunction of its elements. Then it is easy to check that b € Bbut b & B’ for
all B €y’ (A L x). Put c =—b Vv x: then it is easy to check that c ¢ BD(y(A L x),
but ¢ € B’ forall B’ € y'(A L x); thatis, c € (y'(A L x). O

Corollary 4.7 Let A be any theory finite modulo Cn, and — a partial meet
contraction function over A determined by a selection function y. If — satisfies
conditions (—7) and (=8), then y is transitively relational over A.

Proof Immediate from 4.4 and 4.6. OJ

We turn now to the question of the relation of condition (—7), considered alone, to
relationality; and here the situation is rather more complex and less satisfying. Now
we have from Observation 4.2 that when — is determined by y, then if y satisfies



208 C.E. Alchourrén et al.

(y7), then — satisfies (—7), and it is not difficult to show, by an argument similar to
that of 4.6, that:

Observation 4.8 If A is a theory finite modulo Cn, and — a partial meet contraction
function over A determined by a selection function y, then — satisfies (=7) iff y
satisfies (y7). Also, — satisfies (—8) iff y satisfies (y8).

But on the other hand, even in the finite case, (y7) does not imply the relationality
of y orof —:

Observation 4.9 There is a theory A, finite modulo Cn, with a partial meet
contraction function — over A, determined by a selection function y, such that —
satisfies (y7), but — is not relational over A.

Sketch of Proof Take the sixteen-element Boolean algebra, take an atom ay of this
algebra, and put A to be the principal filter determined by ay. This will be an eight-
element structure, lattice-isomorphic to the Boolean algebra of eight elements. We
take Cn in the natural way, putting Cn(X) = {x: AX < x}. We label the eight elements
of A as aop, . . ., a7, where qag is already defined, a;, a,, as are the three atoms
of A (not of the entire Boolean algebra), a4, as, ag are the three dual atoms of A,
and a7 is the greatest element of A (i.e. the unit of the Boolean algebra). For each
i <7, we write la; for {a; € A: a; <a;}. We define y by putting y(A L a7)=y(A
1 Cn(@)) ={A} = lag as required in this limiting case, y(A L ap) =A L g; for all
j with 1 <j<7, and y(A L ag) ={la;}. Then it is easy to verify that for all a; &
Cn(@), y(A L a;) is a nonempty subset of A L a;, so y is a selection function for
A. By considering cases we easily verify (y7) (and thus also by 4.2 (=7)); and by
considering the role of la; it is easy to verify that y (and hence by 4.6, — itself) is
not relational over A. [

The question thus arises whether there is a condition on — or on y that is
equivalent to the relationality of — or of y respectively. We do not know of any
such condition for —, but there is one for y, of an infinitistic nature. It is convenient,
in this connection, to consider a descending series of conditions, as follows:

(yT:00) A Lx N (Nier{y(@A Ly} S y(A L x), whenever A L x C | Jies{A L yj}.

YT NYALxNnyALy)Nn---NyA Ly, Cy(A Lx), wheneverA L xCTA Ly
U---UA Ly, foralln>1.

yY72) ALxNnyALy)NyALy)ZyA Lx),wheneverA LxCA Ly UA
J_yz.

yT:H)ALxNyALy)Zy(ALx),wheneverA L x C A Ly

Observation 4.10 Let A be any theory and y a selection function over A. Then y is
relational over A iff (y7: 00) is satisfied. Moreover, we have (y7:00) — (y7T:N) <
(y7:2) > (y7:1) <> (y7). On the other hand, (y7:1) does not imply (y7:2), even in
the finite case; although in the finite case, (y7:N) is equivalent to (y7: 00).

Sketch of Proof Writing (yR) for “y is relational over A”, we show first that
(yR) = (y7:00). Suppose (yR), and suppose A L x C | Jie;{A L y;}. Suppose B € A
L x N Ner{y(A L y)}. We need to show that B € y(A L x). Since B € y(A Ly;)
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for all i € I, we have by relationality that B’ <B forall B € A L y;, foralli € I, so,
by the supposition, B’ < B for all B € A L x. Hence, since B € A L x, so that also
x € Cn(@), we have by relationality that B € y(A L x). To show the converse (y7:
00) — (yR), suppose (y7: o0) holds, and define < over 24 by putting B’ < B iff there
isanx with B € y(A L x) and B'€ A L x; we need to verify the marking off identity.
The left to right inclusion of the marking off identity is immediate. For the right to
left, suppose B € A L x and for all B € A L x, B' <B. Then by the definition of <,
for all B; € {B;}ie; =A L xthereisay; withB € y(A L y;) and B; € A L y;. Since B;
€A Ly, forall B;€ A L x, we have A L x C | Jie/{A Ly;}, so we may apply (y7:
00). Butclearly B€ A L x N (ier{y(A L y;)}. Hence by (y7:00) we have B € y(A
1 x), as desired.

The implications (y7:00)— (y7:N)— (y7:2) — (y7:1) are trivial, as is the
equivalence of (y7:00) to (y7:N) in the finite case. To show that (y7:2) implies
the more general (y7:N), it suffices to show that for all n > 2, (y7:n) = (y7:n+ 1):
this can be done using the fact that when y,, y,+1 € A, A Ly, UA Ly, +1=A L
n & Yu+1) by Lemma4.1.

To show that (y7:1) — (y7), recall from 4.1 that when x, y € A, then A L x &
y=AlxUALy;so0ALxCALx&y,andso, by (y7:1),(ALx) Ny ALx
& y) S y(A L x). Similarly (A Ly) N y(A L x & y) S y(A L y). Forming unions on
left and right, distributing on the left, and applying 4.1 givesus y(A L x & y) S y(A
1 x) Uy(A Ly)asdesired.

To show conversely that (y7) — (y7:1), suppose (y7) is satisfied, suppose A L
xCA 1 yand consider the principal case that x, y € A. Then using compactness we
have y I x, so Cn(y) = Cn(x & (—x V y)), so by (y7)

yALy) Cy(ALx)UyAL-xVy),

sOALxNyALy)Cy(ALx)Uy(A L-xVy). The verification is then completed
by showing that A | x is disjoint from y (A L—x V y).

Finally, to show that (y7:1) does not imply (y7:2), even in the finite case,
consider the same example as in the proof of Observation 4.9. We know from that
proof that this example satisfies (y7) and thus also (y7:1), but that y is not relational
over A, so by earlier parts of this proof, (y7:00) fails, so by finiteness (y7:N) fails,
so (y7:2) fails. Alternatively, a direct counterinstance to (y7:2) in this example can
be obtained by putting x = ag, y1 = a;, and y; = a,. I

5 Remarks on Connectivity

It is natural to ask what the consequences are of imposing connectivity as well as
transitivity on the relation that determines a selection function. Perhaps surprisingly,
it turns out that in the infinite case it adds very little, and in the finite case nothing
at all. This is the subject of the present section.
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Let A be a set of propositions and y a selection function for A. We say that y is
connectively relational over A iff there is a relation that is connected over 24 such
that for all x & Cn(@), the marking off identity of Sect. 4 holds. And a partial meet
contraction function is called connectively relational iff it is determined by some
selection function that is so.

We note as a preliminary that it suffices to require connectivity over the much
smaller set Uy = | Jyeaf{A L x}. For suppose that <is connected over Uy. Put <
to be the restriction of <to Uy; then < will still be connected over Uy. Then put
< to be <o U ((2* — Uy) x 24). Clearly <; will be connected over 24. Moreover,
if < satisfies the marking off identity, so does <.

Indeed, when < is transitive, it suffices to require connectivity on the even smaller
set Uy = J{y(A L x):x € A, x ¢ Cn(D)}. For here likewise we can define < as the
restriction of < to U,, and then define <j, to be <o U ((2* — U,) x 24). Then clearly
<, is connected over 24, and is transitive if < is transitive; and we can easily check,

using the transitivity of <, that if < satisfies the marking off identity for y, so does
<
<L

Observation 5.1 Let A be any theory and — a partial meet contraction function
over A. Then — is transitively relational iff it is transitively and connectively
relational.

Proof Suppose that — is determined by the transitively relational selection function
y. Then by 4.2 and 4.3, — satisfies the conditions (—7) and (—8), so the conditions of
Observation 4.4 hold and the relation < defined in its proof is transitive and satisfies
the marking off identity for y*. By the above remarks, to show that — is transitively
and connectively relational it suffices to show that <is connected over the set U, .

Let B', B € U« and suppose B’ £ B. Since B', B € U, conditions (i) and (ii)
of the definition of < in the proof of 4.4 are satisfied for both B’ and B. Hence since
B’ < B we have by (iii) that there is an x with B, B€ A L x, A~ xC B andA ~x €
B. But since A —~ xC B’ € A L x we have by the definition of y* that B’ € y*(A L
x), so by the marking off identity for y*, < as verified in the proof of 4.4, since B €
A | x we have B< B’ as desired. O

In the case that A is finite modulo Cn, this result can be both broadened
and sharpened: Broadened to apply to relationality in general rather than only to
transitive relationality, and sharpened to guarantee connectivity over U, of any
given relation under which the selection function y is relational, rather than merely
connectivity, as above, of a specially constructed relation under which the closure
y* of y is relational.

Observation 5.2 Let A be a theory finite modulo Cn, and let — be a partial meet
contraction function over A, determined by a selection function y. Suppose that
y is relational, with the relation < satisfying the marking off identity. Then <is
connected over Uy.

Proof LetB', B € Uy =|Jreaf{A L x} - Since A is finite modulo Cn, there are &', b €
AwithA L b’ ={B'} and A 1 b = {B}—for example, put b to be the disjunction of
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all (up to equivalence modulo Cn) the elements a € A such that B ¥ a. Now A L b'&
b=A 1LV UA_Lb={B, B} by Lemma4.1, and so since y is a selection function,
y(A L V' & b) is a nonempty subset of {B’, B}, which implies that either B’ or B is
in y(A L b’ & b). In the former case we have B < B’, and in the latter case we have
the converse. [

Corollary 5.3 Let A be a theory finite modulo Cn, and let — be a partial meet
contraction function over A. Then — is relational iff it is connectively relational.

Proof Immediate from 5.2. O

6 Maxichoice Contraction Functions and Factoring
Conditionson A — (x & y)

The first topic of this section will be a brief investigation of the consequences of the
following rather strong fullness condition:

(“F)IfyeAandy €A = x, then -y vV x € A = x, for any theory A.

From the results in Girdenfors (1982), it follows that if — is a partial meet
contraction function, then this condition (there called (—6)) is equivalent with the
following condition (called (21) in Gérdenfors (1982)) on partial meet revision
functions:

(+F)IfycAandy ¢ A + x, then —y € A + x, for any theory A.

The strength of the condition (—F) is shown by the following simple representa-
tion theorem:

Observation 6.1 Let — be any partial meet contraction function over a theory A.
Then — satisfies (—F) iff — is a maxichoice contraction function.

Proof Suppose — satisfies (—F). Suppose B, B € y(A L x) and assume for
contradiction that B # B’. There is then some v € B’ such that y ¢ B. Hence y ¢
A — x and since y € A it follows from (—=F) that =y v x € A — x. Hence =y Vv x
€ B', but since y € B’ it follows that x € B’, which contradicts the assumption that
B’ € A L x. We conclude that B= B’ and hence that — is a maxichoice contraction
function.

For the converse, suppose that — is a maxichoice contraction function and
suppose thaty e Aandy € A — x. Since A — x =B for some B € A L x, it follows
that y ¢ B. So by the definition of A L x, x € Cn(B U {y}). By the properties of
the consequence operation we conclude that —y V x € B=A — x, and thus (—F) is
satisfied.

In addition to this representation theorem for maxichoice contraction functions,
we can also prove another one based on the following primeness condition.
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(—=Q)Forally,ze Aandforall x,ify Vz€ A = x, theneithery€ A —xorz€ A —x.

Observation 6.2 Let — be any partial meet contraction function over a theory A.
Then — satisfies (—Q) iff — is a maxichoice contraction function.

Proof Suppose first that — is a maxichoice function and suppose y, z € A, y ¢ A =
x and z ¢ A = x. Then by maximality, A —~x U {y} FxandA ——x U {z} -, s0 A =
xU{yV z} x. Butsincesay y € Aand y ¢ A = x, we have x ¢ Cn(@), sox € A =
x. Thus y vV z ¢ A = x, which shows that (—Q) is satisfied.

For the converse, suppose that (—Q) is satisfied. By Observation 6.1, it suffices
to derive (—F). Suppose y € A and y ¢ A — x. We need to show that =y Vx € A = x.
Now (y V =y) V x € Cn(@), and so (y V —y) Vx=y V (y V x) € A = x. Also by
hypothesis y € A, and since y ¢ A — x we have x € A, so =y V x € A. We can now
apply the primeness condition (—Q) and get eithery € A —xor —y Vx € A — x. By
hypothesis, the former fails, so the latter holds and (—F) is verified.

With the aid of these results we shall now look at three “factoring” conditions on
the contraction of a conjunction from a theory A. They are

Decomposition (=D). Forallxand y,A = (x & y)=A —xorA - (x & y)=A —y.

Intersection (—I). Forallxand yinA,A - (x & y)=A-xNA -y

Ventilation (=V). Forallxandy, A -~ (x & y)=A —xorA - (x&y)=A-yorA
~“(x&y)y=A=-xNA-=y.

These bear some analogy to the very processes of maxichoice, full meet, and
partial meet contraction respectively, and the analogy is even more apparent if we
express the factoring conditions in their equivalent n-ary forms:

A= (x1& - &x,;) = A~x; for some i < n;
A= (& &x,) = () {A=x;} whenever xq,...,x, € A;

i<n
AL (01 &+ &x,) = (V{A=x;} for some I, where @ #1C {l,...n}.

i€l

This analogy of formulation corresponds indeed to quite close relationships between
the three kinds of contraction process, on the one hand, and the three kinds of
factorization on the other. We shall state the essential relationships first, to give a
clear overall picture, and group the proofs together afterwards.

First, the relationship between maxichoice contraction and decomposition. In
(Alchourron and Makinson 1982b) it was shown that if A is a theory and — is a
maxichoice contraction function over A, then decomposition is equivalent to each
of (=7) and (—=8). In the more general context of partial meet contraction functions
these equivalences between the conditions break down, and it is decomposition
(—D) that emerges as the strongest among them:

Observation 6.3 Let A be a theory and — a partial meet contraction function over
A. Then the following conditions are equivalent:

(a) = satisfies (D).
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(b) — is a maxichoice contraction function and satisfies at least one of (—7) and
(=8).

(c) = is a maxichoice contraction function and satisfies both of (=7) and (=8).

(d) = satisfies (—WD).

(e) — is a maxichoice contraction function and satisfies (—C).

Here (—=WD) is the weak decomposition condition: for all x and y, A — xC
A-x&yorA=-—yCA-x&y.

The relationship of full meet contraction to the intersection condition (—I) is even
more direct. This is essentially because a full meet contraction function, as defined
at the beginning of Sect. 2, is always transitively relational, and so always satisfies
(=7) and (-8). For since y(A L x) =A L x for all x ¢ Cn(@), y is determined via
the marking off identity by the total relation over 24 or over [ Jx{A L x}.

Observation 6.4 Let A be a theory and — a partial meet contraction function over
A. Then the following conditions are equivalent:

(a) = satisfies (—I).
(b) = satisfies (—M).

(c) = is afull meet contraction function.

Here (=M) is the monotony condition: for all x € A, if x -y then A ~ xCA
— y. This result gives us a representation theorem for full meet contraction. Note,
as a point of detail, that whereas decomposition and ventilation are formulated
for arbitrary propositions x and y, the intersection and monotony conditions are
formulated under the restriction that x and y (respectively, x) are in A. For if x & A,
thenx &y A, 50A -~ (x & y)=AwhilstA “xNA-y=ANA-y=A-y#A
ify € Aand y ¢ Cn(@).

Of the three factoring conditions, ventilation (—V) is clearly the most “general”
and the weakest. But it is still strong enough to imply the “supplementary postu-
lates” (=7) and (—8):

Observation 6.5 Let A be a theory and — a partial meet contraction function over
A. Then = satisfies (—V) iff — satisfies both (=7) and (=8).

Proof of Observation 6.3 We know by the chain of equivalences in §8 of Alchour-
ron and Makinson (1982b) that if — is a maxichoice contraction function then
the conditions (—7), (—8) and (—D) are mutually equivalent. This already shows
the equivalence of (b) and (c), and also shows that they imply (a). (d) is a trivial
consequence of (a). To prove the equivalence of (a)—(d) it remains to show that (d)
implies (b).

Suppose that — satisfies (—WD). Clearly it then satisfies (—7), so we need only
verify that — is a maxichoice function, for which it suffices by Observation 6.1 to
verify (=F); that is, that whenevery e Aand y ¢ A — x then -y Vv x € A = x.
Suppose for reductio ad absurdum thaty € A, y ¢ A~ xand =y vV x ¢ A = x. Note
that this implies that x € A. Now Cn(x) = Cn((x V y) & (x V = y)), so by (WD) we
have A - (x Vy)CA—-xorA = (xV —y)CA — x. Inthe former case, ~y Vx €A
= (xVy). ButbyrecoveryA = (x Vy) U{xVy}Fx,s0A = (xVy U{y}txso



214 C.E. Alchourrén et al.

—yVx€A-=(xVy), giving a contradiction. And in the latter case, y ¢ A — (x V
— ), whereas by recovery A = (x V= y)U{xV = y}Fy,s0A = (xV =y)U{—y}
Fy,soy €A = (x Vv —y), again giving a contradiction.

Finally, it must be shown that (e) is equivalent with (a)—(d). First note that it
follows immediately from Observation 3.4 that (c) entails (e). To complete the proof
we show that (e) entails (b). In the light of Observation 6.1 it suffices to show that
(=F) and (=C) together entail (=8). To do this assume that x ¢ A — x & y. We want
to show that A = x & y CA = x. In the case when x ¢ A, this holds trivially; so
suppose that x € A. It then follows from (—F) that = x vV (x & y) € A —x & y, so
“xVyeA-(x&y)=A=-(—xVvy)&xBy(-0),A-x&y=A=-(—xVYy)
&xCA-xVvyorA-x&y=A—-(—xVy) &xZA — x. Since the second case
is the desired inclusion, it will suffice to show that the first case implies the second.
Suppose A ~x & yC A -—xVy. Then,since—~xVyeA-x&y wehave—xVy
€A = xVy,s0by(-4) = x Vye Cn(D). But this means that Cn(x & y) = Cn(x),
sOA —x & y=A - xby (-5), and we are done. J

The last part of this proof shows that for maxichoice contraction functions the
converse of Observation 3.4 also holds.

Proof of Observation 6.4 Suppose first that — is a full meet contraction function.
We show that (1) is satisfied. If x € Cn(@) or y € Cn(@) then the desired equation
holds trivially. Suppose that x, y & Cn(2), and suppose that x, y € A. Then we may
apply Observation 4.1 to get

A~ (x&y) = A Lx&y} = (A LxUA Ly} = A Lxpn[ ALy}

=A-xNA->y,

so that — satisfies the intersection condition.

Trivially, intersection implies monotony. Suppose that — satisfies monotony; to
prove (c) we need to show that A — x = A ~x, for which it clearly suffices to show
that A — x CA ~x in the light of Observation 2.7. In the case x ¢ A this holds
trivially. In the case x € A we have by Observation 2.1 of (Alchourron and Makinson
1982b) that A ~ x =A N Cn(— x), so we need only show A — x € Cn(— x). Suppose
y € A = x. Then by (M), sincex€e Aand xx Vv y, wehavey € A - (x V y), so x
Vy€eA = (xVy);so, by the postulate (—4), x V y € Cn(Q), so that y € Cn(— x) as
desired. O

Proof of Observation 6.5 For the left to right implication, suppose — satisfies (—V).
Then (—7) holds immediately. For (—8), let x and y be propositions and suppose x &
A = (x & y); we need to show that A — (x & y) CA — x. In the case that x ¢ A this
holds trivially, so we suppose x € A. Now Cn(x & y) =Cn(x & (— x V y)), so by
(=V) A = (x & y) is identical with one of A —x, A = (—mx V y;)or(A —x) N (A —
(= x Vv y)). In the first and last cases we have the desired inclusion, so we need only
show that the middle case is impossible. Now by recovery,A — (—xV y) U {—=x V
yiFx80A=(—=xVy U{=x}Fxsoxe€A-=(—xVy).Butby hypothesis, x ¢
A-(x&y),s0A=-(x&y)#A = (—xVy),as desired.
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The converse can be proven via the representation theorem (Observation 4.4),
but it can also be given a direct verification as follows. Suppose that — satisfies (—7)
and (—8), and suppose that A — (x & y) #A —xand A — (x & y) #A — y; we want
to show that A — (x & y)=A — x N A — y. By (-7) it suffices to show that A —
(x&y)CA - xNA-=y,so it suffices to show that A ~ (x & y)C -~ xand A — (x
& y) CA — y. By (—C), which we know by 3.4 to be an immediate consequence of
(=8), we have at least one of these inclusions. So it remains to show that under our
hypotheses either inclusion implies the other. We prove one; the other is similar.

Suppose for reductio ad absurdum that A — (x & y) S~ xbutA ~ (x & y) Z A
— y. Since by hypothesis A — (x & y) #A — x, we have A “x L A = (x & y), so
thereisana € A ~x witha ¢ A = (x & y). Since A = (x & y) £ A = y, we have
by (—8) thaty € A — (x & y). Hence sincea ¢ A — (x & yywehave ~yVvVagA =
(x & y). Hence by (=7), - yVagA-xor—yVagA -y Butsinceac A ~x
the former alternative is impossible. And the second alternative is also impossible,
since by recovery A —y U {y} Fa,sothat m=yvaecA =~y O

7 A Diagram for the Implications

To end the paper, we summarize the “implication results” of Sects. 4 and 6 in a
diagram. The conditions are as named in previous pages with in addition (—R) and
(=TR), meaning that — is relational, respectively transitively relational, over A, and
(yR) and (yTR), meaning that y is. (—C) is the covering condition of Observation
3.4;(yCQ)isits analogue y(A Lx) Cy(A Lx & y)ory(ALyY)Cy(ALx&y).(=P)
is the partial antitony condition of 3.3; and (yP) is its obvious analogue y(A L x &
y)NA_LxCy(A L x). Conditions are understood to be formulated for an arbitrary
theory A, selection function y for A, and partial meet contraction function — over A
determined by y. Arrows are of course for implications, and conditions grouped into
the same box are mutually equivalent in the finite case. Conversely, conditions in
separate boxes are known to be nonequivalent, even for the finite case. The diagram
should be read as a map of an ordering, but not as a lattice: a ““v”” alignment does
not necessarily mean that the bottom condition is equivalent to the conjunction of
the other two. In some cases, it is—for example (—=TR) =(=7) & (=8) = (=V),
as proven in Corollary 4.5 and Observation 6.5; and again (—D) = (=F) & (=8), as
shown in Observation 6.3. But (—7) & (—C) is known not to be equivalent to (—TR),
and (yR) & (—TR) may perhaps not be equivalent to (yTR). Finally, implications
and nonimplications that follow from others by transitivity have not been written
into the diagram, but are left as understood. Implications concerning connectivity
from Sect. 5 have been omitted from the diagram, to avoid overcluttering.

All the general implications (arrows) have been proven in the text, or are imme-
diate. The finite case equivalences issue from the injection result of Observation 4.6,
and several were noted in Observation 4.10. Of the finite case non-equivalences, a
first example serving to separate (y7) from (—R) was given in Observation 4.9, from
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which it follows immediately that (y7) does not in the finite case imply (=TR). The
other nonequivalences need other examples, which we briefly sketch.

For the second example, take A to be the eight-element theory of Observation
4.9, but define y as follows: In the limiting case of a7, we put y(A L ay) ={lap} as
required by the fact that a7 € Cn(@); put y(A L aj) =A L g for all j with 2 <j <7,
put y(A L a;) ={las}; and put y(A L ag) = {!ai, !as}. Then it can be verified that
the partial meet contraction function — determined by y satisfies (—C), and so by
finiteness also (yC), but not (—8) and so a fortiori not (—TR).

For the third example, take A as before, and put y(A L a7) ={lap} as always;
put y(A L a)) ={lay}; and put y(A L a;) =A L g for all other g; It is then easy to
check that this example satisfies (—8) but not (—7), and so a fortiori not (—R) and
not (=TR).

For the fourth and last example, take A as before, and put <to be the least
reflexive relation over 24 such that la; <las, las <las, laz <la, and las <la;.
Define y from < via the marking off identity, and put A = x=(") y(A L x). Then it
is easy to check that y is a selection function for A, so that (—R) holds. But (—C)
fails; in particular when x =a; and y =a, we can easily verify that A — (x & y)
ZA-xand A - (x & y) £ A = y. Hence, a fortiori, (—8) and (=TR) also fail.
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8 Added in Proof

The authors have obtained two refinements: the arrow (—D)— (=TR) of the
diagram on page 528 can be strengthened to (—D)— (yTR); the implication
(y7:00) = (y7:N) of Observation 4.10 can be strengthened to an equivalence. The
former refinement is easily verified using the fact that any maxichoice contraction
function over a theory is determined by a unique selection function over that theory.
The latter refinement can be established by persistent use of the compactness of Cn.

Observation 4.10 so refined implies that for a theory A and selection function
y over A, y is relational over A iff (y7:2) holds. This raises an interesting open
question, a positive answer to which would give a representation theorem for
relational partial meet contraction, complementing Corollary 4.5: Can condition
(y7:2) be expressed as a condition on the contraction operation — determined by
y?

We note that a rather different approach to contraction has been developed by
Alchourrén and Makinson in On the logic of theory change: safe contraction, to
appear in Studia Logica, vol. 44 (1985), the issue dedicated to Alfred Tarski; the
relationship between the two approaches is studied by the same authors in Maps
between some different kinds of contraction function: the finite case, also to appear
in Studia Logica, vol. 44 (1985).
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Chapter 14
Theory Contraction and Base Contraction
Unified

Sven Ove Hansson

General Introduction

The AGM (Alchourrén-Gérdenfors-Makinson) model of belief change has acquired
the status of a standard model. In that model, a belief state is represented by a
set of sentences that is closed under logical consequence, the belief set or theory.
(Alchourrén et al. 1985); (Géardenfors 1988) Among the major rivals are models in
which a belief state is represented by a belief base, a set that is not (except in a
limiting case) closed under consequence. (Fuhrmann 1991); (Hansson 1989; 1991;
1992; 1993); (Nebel 1992) Obviously, the logical closure of a belief base is a belief
set, and each non-trivial belief set can be represented by several different belief
bases. It has been argued that different belief bases for one and the same belief set
represent different ways of holding the same beliefs. Roughly, the elements of the
belief base represent “basic”, or independently grounded beliefs, in contrast to the
“merely derived” beliefs that form the rest of the belief set. (Fuhrmann 1991, pp.
183-184); (Hansson 1989; 1992)

As has been accurately pointed out by Fuhrmann (1991), operations on a belief
base generate operations on the corresponding belief set. In particular, if a belief
base for a belief set K is contracted by a sentence o, then the logical closure of the
contracted belief base is a belief set from which o has been contracted.

The purpose of this paper is to characterize the operators of contraction on
a belief set K that can be obtained by assigning to it (1) a belief base, and
(2) an operator of partial meet contraction for that belief base. The section
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“Partial meet contraction” contains introductory material. In the section “The new
postulates”, the postulates that will be used for the characterizations are introduced,
and in the section “Axiomatic characterizations” axiomatic characterizations of
various types of base-generated theory contractions are given. The section “Proofs”
provides proofs of the results reported in the section “Axiomatic characterizations”.

Partial Meet Contraction

We will assume a language L that is closed under truth-functional operations
and a consequence operator Cn for L. Cn satisfies the standard conditions for a
consequence operator, namely inclusion (A € Cn(A)), monotony (if A € B, then
Cn(A) C Cn(B)), and iteration (Cn(A) = Cn(Cn(A))). Furthermore, it satisfies the
properties of supraclassicality (if a follows by classical truth-functional logic from
A, then a € Cn(A)), deduction (if p € Cn (A U {a})), then (0« — B) € Cn(A)) and
compactness (if a € Cn(A), then a € Cn (A’) for some finite set A" C A). A F o will
be used as an alternative notation for a € Cn(A).

A belief set is a subset K of the language such that K= Cn(K). An operator
of contraction for K is an operator -~ from @®L) x L to ®(L) such that for all
sentences o, K+~ o € K, and if o ¢ Cn (@), then o ¢ Cn (K + o). A particularly
interesting type of contraction is partial meet contraction, which was introduced by
Alchourrén, Girdenfors, and Makinson (1985). (Gérdenfors 1984) It is defined by
the identity:

K+oa=()yKLa.

where K L o denotes the set of inclusion-maximal subsets of K that do not have
o as a logical consequence. y is a selection function, such that y(K L o) is a non-
empty subset of K L «, unless the latter is empty, in which case y(K L o) = {K}.

Let y be a selection function for K. Then the completion of vy is the function y*
suchthat y*(K L o) = {X e K L a|[y(K L @) € X}, unless K L a is empty, in
which case y*(K L o) = {K}. y* is a selection function for K, and gives rise to
the same operator of partial meet contraction as y. (Alchourrén et al. 1985, p. 519)
It is in some contexts convenient to make the technical assumption that a selection
function is completed, i.e. identical to its own completion.

Full meet contraction is the limiting case when y(K L o) = K L « for all non-
empty K L a. In the other limiting case, when y(K L o) is a singleton for all a,
= is an operator of maxichoice contraction. An operator of partial meet contraction
is relational if and only if it is based on a selection function y for which there is a
relation « such that for all non-empty K L o we have

y(KJ_oc):{K’eKJ_a‘K”«K’ for all K”EKJ_OL}

If this condition holds for a transitive relation «, then the operator is transitively
relational.
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Partial meet contraction derives much of its attractiveness from a representation
theorem by Alchourrén et al. (1985): An operation < on a logically closed set K is
a partial meet contraction if and only if it satisfies the following six postulates, the
basic Gdrdenfors postulates:

(G=1) K + ais a theory if K is a theory (closure)

(G+2) K + a C K (inclusion)

(G=3) If a ¢ Cn (K) then K +— o = K (vacuity)

(G4 Ifa ¢ Cn (D) thena ¢ Cn (K = a) (success)

(G5 If Cn (o) = Cn(B) then K +~ o = K + B (preservation)
(G+6)K C Cn((K =+ o) U {a}) whenever K is a theory (recovery).

Furthermore, an operator of partial meet contraction on a logically closed set is
transitively relational if and only if it also satisfies:

G+ (K+a)N(K=+B) € K= (a&P) (intersection)
(G=8)Ifa ¢ K — (a&P) then K + (a&B) € K = a (conjunction).

A belief base for K is a set B such that K= Cn(B). Partial meet contraction for
belief bases is defined in the same way as for belief sets, i.e., by the identity
B+a = () y(B L ). Full meet, maxichoice, relational, and transitively relational
contraction is also defined in the same way as for belief sets. Furthermore, an
operator of partial meet contraction is transitively, maximizingly relational (TMR)
if and only if it is relational by a transitive relation « such that, for its strict
counterpart «, if A C B, then A«B.!

Contractions on belief bases may be studied in their own right.? In this paper,
however, they will be treated as means for contractions on belief sets.

Definition An operation -+~ on a belief set K is generated by a partial meet base
contraction if and only if there is a belief base B for K and an operator ~,, of partial
meet contraction for B such that K - o = Cn (B ~ yoc) foralla € L.

We will see directly that if an operation on a belief set is generated by some
partial meet base contraction, then it satisfies the first five of the basic Girdenfors
postulates, (G-+1)—(G=5), but it does not, in general, satisfy recovery (G+6).3

'The maximizing property may be interpreted as saying that all elements of the belief base have
positive epistemic value. This property might at first hand seem superfluous. If K’ C K”, then K’
€ Klo and K” € KL« cannot both be true, so that K/ and K"/ cannot be candidates between
which the selection function has to choose. However, when more than one contraction is taken
into account, the property need not be superfluous. If K; C K5, and K3 is neither a subset nor a
superset of either K or K;, then y({K,K3}) = {K;} and y({K;,K3}) = {K3} may both hold for a
transitively relational selection function vy, but not if it is in addition required to be maximizing.

2See (Hansson 1993) for some results, including an axiomatic characterization of the partial meet
contractions on a belief base.

3In Makinson’s (1987) terminology, an operation that satisfies (G-1)-(G=-5) but not necessarily
(G=+6) is a “withdrawal”. However, I will use “contraction” in the wide sense indicated above, thus
including Makinson’s withdrawals.
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Recovery is the most controversial of the six postulates, and has been seriously ques-
tioned by several authors. See (Hansson 1991); (Makinson 1987); (Niederée 1991).

The New Postulates

It has often been remarked that the only realistic belief sets are those that have a
finite representation. (Gédrdenfors and Makinson 1988) We are going to assume that
both the original belief set and the belief sets that are obtained through contraction
have finite representations (belief bases); thus for every o, there is some finite set
A such that K = a = Cn(A). Furthermore, we will assume that although there
may be infinitely many sentences by which the belief set can be contracted, there
is only a finite number of belief sets that can be obtained through contraction, i.e.
{K'| @a)(K' = K =+ )} is finite. These two finiteness properties can be combined
into the following:

There is a finite set A such that for every a, there is some A’ C A such that K + o =
Cn(A"). (finitude)

In the presence of vacuity (G=-3), finitude implies that there is some finite set A such
that K= Cn(A).

If = is a contraction operator for K, and « is not a logical theorem, then K = o
does not contain o. However, to contract K by a is not the only way to exclude o
from the belief set. Typically, there are several p distinct from o such that o ¢ K.
This must be the case if o logically implies f, and it can be true in other cases as
well. A contraction K =  such that o ¢ K = B will be called an a-removal.

Two different beliefs may have exactly the same justification(s). As an example, I
believe that either Paris or Oslo is the capital of France (). I also believe that either
Paris or Stockholm is the capital of France (8). Both these beliefs are entirely based
on my belief that Paris is the capital of France. Therefore, a contraction by some
sentence § removes « if and only if it removes B (namely if and only if it removes
the common justification of these two beliefs). There is no contraction by which I
can retract o without retracting f or vice versa. It is not unreasonable to require that
if two beliefs in a belief set stand or fall together in this way, then their contractions
are identical. In other words, if all a-removals are B-removals and vice versa, then
K = a = K = f. In the formal language:

IfK+-8 F o iff K=8 F pforall§, then K = a = K+ B. (symmetry)

An a-removal K = § will be called a preservative a-removal if and only if K+ o C
K =+ B, and a strictly preservative a-removal if and only if K - o C K+ f. A
strictly preservative a-removal is an operation that removes a, and does this in a
more economical way than what is done by the contraction by a.

Often, a belief can be removed more economically if more specified information
is obtained. As an example, I believe that Albert Schweitzer was a German
Missionary (o). Let o; denote that he was a German and o, that he was a Missionary,
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so that @ = a;&a,. If I have to contract my belief set by a, then the contracted
belief set will contain neither o) nor a;. Admittedly it would be logically sufficient
to withdraw one of them. However, they are both equally entrenched, so that I do
not know which to choose in preference over the other. Therefore, both will have
to go. On the other hand, if I have to contract my belief set by a;, then I have no
reason to let go of a,.* To contract by o is, given the structure of my belief state, a
more specified way to remove . Thus we may expect that K +a C K+ «y, so that
K = q is a strictly preservative a-removal.

Let § denote that Albert Schweitzer was a Swede, and let us consider the
contraction of K by a; Vv 8, “Albert Schweitzer was a German or a Swede.” Since [
believe in a; V § only as a consequence of my belief in o, I can only retract oy Vv §
by retracting o;. Therefore, K=+ (a; V 8) is not a proper superset of K=-ay, i.e., it is
not a more conservative a-withdrawal than K =+ o. Indeed, the way my beliefs are
structured, a; cannot be further subdivided in the way that o was subdivided into
a; and ay. There is no part of o that stands on its own and can be retracted from
K without the rest of a; being lost as well. In this sense, no a-removal can be more
conservative than K + a.

More generally, K = B is a maximally preservative a-removal if and only if it is
a preservative a-removal and there is no a-removal K =8 such that K+ € K+ 8.
Intuitively, to perform a maximally preservative a-removal is to make the belief set
not imply o, making use of information that is sufficiently specified to allow one to
remove a part of a so small that no smaller part of it can be removed alone.

Contraction should be conservative in the sense that every element of K is
retained in K + o unless there is some good reason to exclude it. As was noted in
(Hansson 1991), (G=-1)-(G=5) do not ensure this property, since they are satisfied
by the operation + such that if o ¢ Cn (K), then K = o = K, and otherwise
K-+-o = KNCn (). The same applies if symmetry is added to the list of postulates.
We need some further postulate to prevent elements of K from being lost for no
reason in operations of contraction.

One way to achieve this is to require that what is lost in the contraction by o must
be incompatible with some reasonable way to remove o. In other words, if a unit of
belief is lost in contraction by a, then there should be at least one preservative o-
removal to which the lost unit cannot be added without o being implied. However,
it would be too far-reaching to require this to hold for units of belief that cannot
stand on their own (such as a1 Vv § in our Albert Schweizer example). Such a unit
of belief can be lost merely due to loss of the larger, self-sustained unit(s) of which
itis a part. Thus, our principle of conservativity should refer only to units of belief
that can stand on their own.

In order to formulate a conservativity principle, we therefore need a formal
criterion that excludes non-self-sustained units of belief. In our example, there
can be no sentence p such that K = p consists exactly of a; Vv § and its logical
consequences, since o} V § cannot stand on its own without o;. Admittedly, this is a

It is here assumed that o; = o, is less entrenched than «; and o5.
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weak criterion, and it can be strengthened in various ways.> However, it turns out to
be sufficient for our present purposes, and it will therefore be used in our postulate
of conservativity:

If K=+ ¢ K =+ a, then there is some 8 such that K+ o € K+ § /¥ o and
K=+=pB)U(K=38) F a. (conservativity)

An obvious way to strengthen conservativity is to require that if a unit of belief is
lost in contraction by a, then o will be implied if it is added to K =+-o (and not merely
if it is added to some preservative a-removal):

If K-fZK=+a then K+-alF o and (K+-P)UEK=0ao)Fa (strong
conservativity)

Strong conservativity is much less plausible than conservativity. This can be seen
from our Albert Schweitzer example. In that example, it may reasonably be assumed
that a; ¢ K = (01&ap), oy ¢ K+ (a1&an), a1 € K+, 0 € K+ ap, K+
(1 &) € K+ 0, and K + (a;&a;) © K =+ o, However, this is incompatible
with strong conservativity. Since K + a1 € K + (a1 &ay), this postulate requires
that K = a; UK =+ (a; &) F (a;&ay), contrary to our assumptions for this case.
More generally, strong conservativity is implausible since it precludes the removal
of two or more sentences (in this case a; and o), when it would have been logically
sufficient to remove only one of them. Such epistemic behaviour is rational enough
when the beliefs in question are equally entrenched, or have equal epistemic utility.

The concepts of epistemic entrenchment and epistemic utility refer to extra-
logical reasons that one may have for preferring one way to remove a sentence
a rather than another. It is conceivable for an epistemic agent to make no use of
such extra-logical information. Such an agent is indecisive in the sense of not being
able to make a choice among different ways to remove a belief, if these are on an
equal footing from a logical point of view. Formally, this is close to a reversal of
conservativity: If a (self-sustained) unit of belief conflicts with some way to remove
a from K, then it is not a part of K = a:

If there is some § such that K+ 8§ /¥ aand (K+B) U(K+8) Fa,then K+~ &
K = a. (indecisiveness)

Non-logical considerations play an important role in actual human epistemic
behaviour. Arguably, it would in many cases be irrational not to let them do
so. Therefore, indecisiveness is not a plausible general property of rational belief
change.

3Two such strengthened versions should be mentioned: (1) = can be extended to contraction by
sets (multiple contraction), such that if A N Cn(&) = &, then K—+A is a logically closed subset of
K that does not imply any element of A. It a unit of belief cannot stand on its own, then it should
not be equal to K—+A for any set A. (2) Iterated contraction can be used for the same purpose: If
a unit of belief cannot stand on its own, then it should not be equal to K=+, +f, ... -=f, for any
series By ... P, of sentences.
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The next postulate will again be concerned with maximally preservative
removals, and thus with the smallest units of belief that can be removed from a
belief set. In an orderly and coherent belief state, one would expect the identities
and the relations of entrenchment of these units to be constant, i.e. they should be
the same independently of what sentence we are contracting by.

As an illustration, let us extend the Albert Schweitzer example. Let o; denote
that Schweitzer was a German, o, that he was a missionary and a3 that he was a
physician. Let us assume that K + o) is a maximally preservative o & oy & o3-
removal, i.e. a maximally economical way to remove o; & oy & a3 from the belief
set. Since K + «; is also an o; & ap-removal, and since the oy & a;-removals are
a subset of the a; & oy & az-removals, it should also be maximally preservative
among these. Furthermore, if K =+ a; is equally economical as K = o in the context
of removing a; & o, (i.e., if it is also a maximaly preservative o; & op-removal),
then it should also be equally economical as K =+ a; in the context of removing
o & oy & as (i.e., it should also be a maximally preservative o & oy & az-removal).
In general:

If H o — P and the set of B-removals that are also maximally preservative o-
removals is non-empty, then it coincides with the set of maximally preservative
B-removals. (regularity)

It may be convenient to divide regularity into two parts®:

If - ¢ — P and some maximally preservative a-removal is also a p-removal, then
all maximally preservative B-removals are maximally preservative a-removals.
(regularity 1)

If - @ — B and K-8 is both a f-removal and a maximally preservative a-removal,
then it is a maximally preservative B-removal. (regularity 2)

Clearly, regularity holds if and only if both regularity 1 and regularity 2 hold.

It does not follow from regularity that if, in our example, K =+ (o) &op&a3) is an
oy & ap-removal, then K + (o &ar&a3) = K + (o &a;). To see why this would
not be plausible as a general principle, let us modify the example and assume that o,
and a3 are equally entrenched, whereas a; is more entrenched than both o, and a3.
Then we should expect a3 ¢ K = (a;&a,&a3) but a3 € K =+ (a1 &a,). However,
as a limiting case, we can imagine an epistemic agent who is never indifferent
between different ways to remove a belief from her belief set. Such an agent will
always, when contracting by o, remove one of the smallest removable parts of
a. Thus, the contraction by a will itself be the only maximally preservative o-
removal. In our example, when contracting by o} & o, & a3, this agent will remove
exactly one of oy, oy, and a3, and when contracting by o &a,, she will remove
exactly one of a; and ap. Assuming that the relative entrenchment of her beliefs is
context-independent, if she removes o when contracting by o) & oy & a3, then o is

SRegularity 1 is closely related to Amartya Sen’s P property for rational choice behaviour, and
regularity 2 to his a property. (Sen 1970).
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also the removed unit of belief when a; & o, is contracted. In general, her epistemic
behaviour should satisfy the following postulate:

If-o — Band K+ a ¥ B, then K +~ § = K =+ a. (hyperregularity)

Hyperregularity implies that for all o and p, K + (a&f) = K+ a or K =+ (a&p) =
K --B. This condition has also been called “decomposition” (Alchourrén et al. 1985,
p- 525) As was noted by Gérdenfors (1988, p. 66), it is too strong a principle.
Thus, hyperregularity is a limiting case of some interest, but not a plausible
criterion of rational belief change. The same applies to strong conservativity and
indecisiveness, whereas symmetry, conservativity, and regularity are proposed as
reasonable postulates for rational belief change.

Axiomatic Characterizations

Symmetry and conservativity are sufficient to characterize, together with (G+1)-
(G=-5) and finitude, the contractions of belief sets that are generated by partial meet
base contraction. Since these are all fairly plausible postulates, this result adds to
the credibility of theory contraction through partial meet base contraction.

Theorem 14.1 An operation =+ on a belief set K is generated by partial meet
contraction of a finite base for K iff + satisfies (G+1), (G=2), (G=3), (G+4),
(G=5), finitude, symmetry and conservativity.

If conservativity is strengthened to the (much less plausible) postulate of strong
conservativity, then a characterization is obtained of operations that are generated
by maxichoice contractions of finite bases.

Theorem 14.2 An operation - on a belief set K is generated by maxichoice partial
meet contraction of a finite base for K iff + satisfies (G+1), (G=2), (G=3), (G+-4),
(G=5), finitude, symmetry, and strong conservativity.

Indecisiveness, in combination with conservativity, is a characteristic postulate for
operations based on full meet base contraction.

Theorem 14.3 An operation = on a belief set K is generated by full meet
contraction of a finite base for K iff — satisfies (G+1), (G=2), (G=3), (G+4),
(G=5), finitude, conservativity, and indecisiveness.

Regularity ensures that the partial meet base contraction that generates + is
transitively, maximizingly relational (cf. the section “Partial meet contraction”).

Theorem 14.4 An operation = on a belief set K is generated by transitively,
maximizingly relational partial meet contraction of a finite base for K, by a
completed selection function,” iff = satisfies (G+1), (G=2), (G+3), (G+4),
(G=5), finitude, symmetry, conservativity, and regularity.

"The completeness of y is used in the proof. I do not know if it can be dispensed with.
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For maxichoice operations that are transitively, maximizingly relational, the follow-
ing axiomatic characterization has been obtained:

Theorem 14.5 An operation < on a belief set K is generated by a transitively,
maximizingly relational maxichoice contraction of a finite base for K iff + satisfies
(G=1), (G=2), (G=3), (G+4), (G=5), finitude, symmetry, strong conservativity,
and hyperregularity.

Some of the postulates used in Theorems 14.2, 14.3, and 14.5 were shown in
the section “The new postulates” to be quite implausible. Indeed, maxichoice and
full meet contraction are of interest only as limiting cases. In contrast, Theorems
14.1 and 14.4 only employ fairly plausible postulates of rational belief change. It
is proposed that the classes of base-generated contractions of belief sets that are
characterized in these theorems represent reasonable types of belief contraction.
Two further important properties have been obtained for the class of operations
that were referred to in Theorem 14.4, namely contractions of belief sets that are
generated by transitively, maximizingly relational partial meet base contractions:

Theorem 14.6 Let the operation <+ on the belief set K be generated by some
transitively, maximizingly relational partial meet contraction of a finite base for K.
Then:

1) FK+8§ < (K+a)N(K=8),then K+ 8§ C K=+ (a&p). (weak intersection)
2) Ifa ¢ K+ (a&p), then K + (a&p) € K =+ a. (conjunction)

Weak intersection is a weaker form of Gérdenfors’s (G+7) postulate, namely that
“the beliefs that are both in K + o and K =+ § are also in K + (a&p)” (Gérdenfors
1988, p. 64).% It differs from Girdenfors’s original postulate in being restricted to
beliefs that are self-sustained in the sense that was accounted for in section “The
new postulates”. To see that this is a reasonable restriction, let o and B be self-
sustained beliefs that have the same degree of entrenchment, and such that o Vv f is
believed only as a logical consequence of o and . For a plausible practical example,
let o denote that Algiers is a capital and § that Bern is a capital. I have both these
beliefs, and they are equally entrenched. If I contract my belief set by o, then f is
unperturbed, so that € K + «, and as a consequence of that, a vV f € K + a. For
symmetrical reasons, a V f € K =+ B. However, if I contract my belief set by a & f,
then since o and B are equally entrenched I cannot choose between them, so that
they must both go. Since neither o nor § is in K + (a&p), and o v p was believed
only as a consequence of (each of) these two beliefs, a v § will be lost as well.
Thus,avpe (K+a)N(K=p)butaVvp ¢ K=+ (a&p), contrary to (G=7) but
in accordance with weak intersection.

Conjunction is Girdenfors’s (G=-8) postulate. To motivate it, the Algiers and
Bern example may again be used. In that case, to remove a is a way to remove a
specified part of a&p. In general, the removal of a part of a certain belief is at least

8The formulas of the quotation have been adapted to the notational convention used here.
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as economical (conservative, retentive of the original belief set) as the removal of
that belief in in entirely. Therefore, if K-+ (a&f) is an a-removal, then K <o should
be at least as economical as K + (a&f).

In conclusion, with base-generated theory contraction we can avoid the problem-
atic recovery postulate (G=-6) of the AGM framework, but still have the plausible
basic postulates (G=+1)-(G-+5) and the additional postulates (G=-7) (in a weakened
but credibilized form) and (G+8) (in its original form).’

Proofs

A set A is finite-based iff there is some finite set A" such that Cn(A") = Cn(A). For
any non-empty, finite-based set A, &A denotes the conjunction of all elements of
some finite base of A. For any finite, non-empty set A, 1{A) denotes the disjunction
of the elements of A.

The following lemmas will be needed for the proofs:

Lemma 14.1 B L (a&B) SB L a UB L .

Proof of Lemma 14.1 LetW € B 1 (a&p). Then either W * a or W }~ . It follows
from W F aand W € B L (a&P) that W € B L «, and in the same way from W ¥
Band W e B L (a&P) that W € B L B.

Lemma 142 If XY Z Xforall X e B L aandY € B L B,then B L (a&P) =
BloaUB 1.

We will mostly use a special case of the lemma. Namely if {X} = B 1 « and
{Y}=BLlB,andXZY ZX then{X,Y} =B L (a&P).

Proof of Lemma 14.2 One direction follows from lemma 14.1. For the other
direction, let X € B L a. Then X ¥ (a&f). In order to prove that X € B L (a&P),
suppose to the contrary that there is some W such that X C W € B and W ¥
(0&P). From X C W it follows that W = o. With W F* (a&P) this yields W ¥
B, from which it follows that W C Y for some Y € B L P. We therefore have
X C W C Y, contradicting the assumption that X € ¥ € X. We may conclude that
X eB 1 (a&p).

In the same way it follows thatif Y € B L B then Y € B L (a&p).

Lemma 14.3 If X € B L o and B is finite, then there is some p such that - o — f
and {X} =B L f.

Proof of Lemma 14.3 1If X = B, then let p = a. Otherwise, let B\X = {€,...£,},
andletpbeaVvE V---VE, Firstsuppose that X F aVvEg Vv-.-VvE, Itfollows
fromX € B 1 o thatthat X F £; — a forall £ € B\X. We therefore have X +

°I do not know if weak intersection and conjunction can replace regularity in theorem 14.4.
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a, contrary to the conditions. It may be concluded that X ¥ a vV & Vv --- Vv §,,. Since
XU} F oa,andthus XU {&} F aVvE v---VE, holds forall £ € B\X, it
followsthat X e B L (a VE V- -V E,).

Next,letZe€ B L (aVE Vv---VE,). Since all elements of B\X imply o v €, v
---VE,, wehave Z C X. Fromthisand X e B L (a Vv & v ---V E,) it follows that
{X}=B L (aVvE V---VE,).

Lemma 14.4 Let B be a finite set. If B # Z € B L o for some o, then {Z} = B L
UB\Z). (MAA) is the disjunction of all elements of A.)

Proof of Lemma 14.4 Let B\Z = {§,, ... €,}. It followsby Z € B | « that for each
€&.Z F E&r — o. It follows from this and Z ¥* a that Z F* (§, v --- Vv &,) Since
every Z' such that Z C Z' C B contains one of €, ... &,, we can conclude that
ZeB 1l (E;Vv---VE.

Next, suppose that W € B L (§, v ---V &,). Since all elements of B\Z imply
Eiv---VE,WN(B\Z) =g,i.e. WC Z FromthisandZe B 1 (§, v---VE,)
it follows that W = Z. We may conclude that {Z} =B L (§; v ---V &,).

Lemma 14.5 Let B be a finite belief base and B” its closure under conjunction.
(B” consists of the sentences that are elements of B or conjunctions of elements of
B.) If an operation = on Cn(B) is generated by a partial meet contraction on B, then
it is generated by a partial meet contraction on B”.

Definitions for the Proof of Lemma 14.5

1. Let A and B be sets of sentences. Then A is B-closed iff Cn(A) N B C A.
2. N(B) is the set of B-closed subsets of B (Hansson 1991).

Proof of Lemma 14.5 Let f be the function such that for each element A of R(B),
f(A) is the closure under conjunction of A.

We first need to show that f is a one-to-one correspondence. Suppose that it is
not. Then there are two elements A and A’ of Si(B) such that A £ A’ and f(A) =f(A).
We may, without loss of generality, assume that there is then some o such thata € A
and o ¢ A’. If follows from a € A and Cn(A) = Cn(f(A)) = Cn(f(A’)) = Cn(A") that
a € Cn(A"). Since A’ is B-closed, it follows froma € Cn (A’) anda € Bthata € A'.
We may conclude from this contradiction that f is a one-to-one correspondence.

In order to prove the lemma, suppose that the operation < on Cn(B) is based on
the partial meet contraction ~, on B. Let y” be the function such that:

(1) IfB” Lo # &, theny” (B” Lo) ={XeB” La|lf'(X) ey(B La)}
(2) fB” L a =@, theny” (B” L a) = {B"}.

We need to prove (1) that y” is a selection function for B”, and (2) that for all a,
K=+a=Cn(Ny" (B” La)).

Part I: In order to prove that y” is a selection function for B” we have to show
thatif B” L o # @, theny” (B” L o) # @.LetB” L a # &. ThenB L a # &,
from which follows that y(B L a) is nonempty. Let X € y(B L a). It follows from
Cn(f(X)) = Cn(X) that £(X) ¥ a.
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Suppose that there is some ¥ € B” such that f(X) C Y ¥ a. There is then a set Y
with this property that is closed under conjunction. It follows that X C f~1(Y) ¥ «
and f~'(Y) C B, contrary to X € B L a. We may conclude from this contradiction
that there is no Y € B” such that f(X) C Y ¥ a. Since f(X) ¥ a it follows that
f(X) e B” L a.Since f~' (f(X)) = X € y(B L ), it follows from the construction
of y” thaty” (B” L o) # @.

Part 2: Since, by the assumptions, (Cn(B)) - a = Cn((y(B L a)), it is
sufficient to prove that Cn () y” (B” L «)) = Cn (" y(B L )). Since B” L o #
@ifandonlyif B | a # &, and Cn(B") = Cn(B), only the case when B” 1 o # @
requires further consideration.

For one direction, let § € (| y(B L a). Then § € Z for every Z € y(B L ).
By the construction of y”, 8 € Z” for every Z € y”(B” La). It follows
that 8 € (y”(B” La). Thus, y(B La) S (y”(B” La); from which
Cn(Ny(B La) S Cn(Ny” (B” L a)) can be concluded.

For the other direction, suppose that ¢ € () y” (B” L «). It follows from ¢ € B”
that there are elements g, ... g, of Bsuchthate = ¢/ & ... &s,. Let W € y(B L ).
By the construction of y”, f(W) € y” (B” L ). It follows from f(W) € B” L a
that f(W) is B”-closed. We may conclude from {e1, ... &e,} € B”, ¢ € f(W) and
the B”-closure of f(W) that {g1, ... &e,} C f(W).

It follows from W € B L « that W is B-closed. Since Cn(W) = Cn(f(W))
and {e;,...&e,} < B, we may conclude from {ej,...&e,} < f(W) that
{e1,...&e,} € W. Since this holds for all W € y(B L a), we have {ei,...&e,} C
(N v(B L a). Thus, e € Cn ([ y(B L a)). We have proved that (\y” (B” L a) €
Cn (N y(B L a)), from which Cn (N y” (B” L a)) € Cn (N y(B L a)) follows as
desired.

Lemma 14.6 Let the operation <+ on the belief set K be generated by the partial
meet contraction~, on the finite base B for K. Then K + f is a maximally
preservative a-removal iff BN (K+-a) SBN (K+B) € B L a.

Proof of Lemma 14.6 For the non-trivial direction, suppose that K = B is a
maximally preservative a-removal and that BN (K = ) is not an element of B L a.
Then there must be some X € B suchthat BN (K+f) C X € B L «a and that
there is no § for which Cn(X) = K = §. However, this is impossible since by lemma
14.3 there is some 8 such that {X} = B L §, and by the definition of partial meet
contraction B~,8 = X, so that K + 8§ = Cn(X).

Lemma 14.7 Let =+ be an operator on K that satisfies closure (G=-1) and finitude,
andlet B = {&X| (@)X =K+ a)}. ThenCn (BN (K +a)) = K+ a.

Proof of Lemma 14.7 By the construction, &(K = a) € B. By closure (G+1),
&(K + a) € K = a. It follows that &(K +~ o) € (BN (K + a)), so that

Cn({&(K =+ a)}) C Cn(B N (K = a)).

We also have K + a C Cn({&(K + a)}), so that K+ o € Cn(B N (K = a)). The
other direction follows directly from closure (G=-1).
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Lemma 14.8 Let = be an operator on the belief set K that satisfies closure (G=+1),
success (G+-4), finitude and conservativity, and let

B = {&X| (Fa)X = K=+ a)}.
Then:
If {X}=B L3, thenX =BN(K-=23).

Proof of Lemma 14.8 Let {X} = B L 8. It follows by success (G+4) that B N
(K = 8) € X. Suppose that X € B N (K = §). Then, by the construction of B, there
is some ¢ such that &(K +~ ¢) € X and &(K = ¢) ¢ B N (K = 8). By closure
(G=+1), (K+¢) € (K=39).

It follows by conservativity that there is some { such that K —~ 8§ € K + s ¥ §
and (K + ¢) U (K =+ ) - 8. However, it follows from K+~ }* § and {X} =B 1 §
that B N (K =+ {r) € X. Since both BN (K =+ ¢) and B N (K + 1) are subsets of X,
it follows by lemma 14.7 that (K <+ ¢) U (K = 1) ¥ §. We may conclude from this
contradiction that X = B N (K = 3).

Lemma 14.9 Let = be an operation on the belief set K that satisfies closure
(G=1), success (G=+4), finitude, symmetry, conservativity and regularity 2. Let
B = {&X|(Fw)(X = K+ a)}. Then, if {X,Y} € B L fand K+ B < Cn(X),
there is some B’ such that {X,Y} = B 1L p’ and K = p’' € Cn(X).

Proof of Lemma 14.9 LetB L p ={X,Y,Z,...Z,}, and suppose that
K =B C Cn(X).

Then BN (K +B) € BN Cn(X) = X.

It follows from X € B L B, by lemma 14.3, that {X} = B L § for some §
such that - § — 8. By lemma 14.8, X = B N (K = §), so that by closure (G+1)
and lemma 14.7, K = § = Cn(X). Similarly, there are ¢ and (;, ... {, such that
{Y} =B Leand K=+¢=Cn(Y),and that {Z;} = B L {; and K +~ {; = Cn (%)
for all k.

By repeated applications of lemma 142, B L § = B 1 (8&e&l;&...&L,).
Thus, for all , BN (K + ¢) F Biff BN (K= ¢) F §&e&l & ... &L,,. By lemma
147, K+-¢ FBiff K+ ¢ F 8&e&l1&...&L,. By symmetry, K -8 = K =+
(8&e&l & ... &L,).

We have assumed that K +— € Cn(X), i.e., K ~ (8&e&{;& ... &(,) € K+ 8.
Suppose that K = § is not a maximally preservative § & e & {; & ... &{,-removal.
Then there is some ¢ such that K =8 C K+ ¢4 8&e&{1& . .. &L,,. By lemma 14.7,
Cn(BN(K=39)) Cc Cn(BN (K= ¢)),so that

BN (K =38) CBN K= ) ¥ §&&L &. .. &Ly,

contrary to BN (K +-8) € B 1 (8&e&{;& ... &L,). We may conclude that K-8
is a maximally preservative § & e & {; & ... &,-removal. By success (G=4), it is
also a 8&e-removal. It follows by regularity 2 that K-8 is a maximally preservative
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8&e-removal, so that K = (8§ +~¢) € K =+ 8. By lemma 14.2, B 1 (8&e¢) = {X,Y}.
Since Cn(X) = K =+ 8 we therefore have {X,Y} = B L (8&e) and K + (8&e) C
K = § = Cn(X) as desired.

Proof of Theorem 14.1, Left-to-Right Let = be an operation on K that is generated
by an operator ~, of partial meet contraction on a finite belief base B for K. It
should be obvious that + satifies (G=-1)-(G=-5) and finitude.

Symmetry: We use the converse form of symmetry. Suppose that K+~ o # K=+,
i.e., that Cn ((y(B L @) # Cn((\y(B LP)). Then B L o # B L B. Without
loss of generality we may assume that there is some X € B L a suchthatX ¢ B |
B. There are two cases:

Case 1, X - B: By lemma 14.3 there is some 8 such that {X} = B L 8. By the
definition of partial meet contraction, B~,8 = X, so that K+ 3§ = Cn(X). It follows
that K — 8o and K = § |- .

Case 2, X¥B: Then there is some X’ such that X C X’ € B L B. Lemma 14.3
can be used in the same way as in case 1 to show that there is some § such that
K+ 8 =Cn(X). It follows that K =~ § ¥ B and K + § |- a..

Conservativity: By lemma 14.5, we may assume that B is closed under conjunc-
tion.

Suppose that K +~ B & K =+ a. Then & (K<) ¢ B~,a It follows by the
definition of partial meet contraction that there is some X € y(B L a) such that
& (K= B) ¢ X. By lemma 14.3, there is some § such that {X} = B L §. By the
definition of partial meet contraction, X = B~, 8. Since B is, by assumption, closed
under conjunction, it follows from B~,f C B that & (B~YB) € B. We also have
& (K =+ B) = & (B~,B), and it therefore follows from & (K = B) ¢ B~,8 € B L
a that (B~y8) U{& (K =)} F a, from which (K+8) U (K= ) - « can be
concluded. It follows from B~,8 € y (B L a) that B~,a C B~, 3} a, from which
we may conclude that K +— o € K =+ §Fa.

Proof of Theorem 14.1, Right-to-Left Let B = {&X| (3a)(X = K + a)}, and let y
be is defined as follows:

(1) B La# g, theny(BLa)={XecBlal(K=+a)<CnX)}
2) fBLa=g,theny(B L o) ={B}

We need to show (1) that B is a finite base for K, (2) that y is a function, (3) that y
is a selection function for B, and (4) that forall a: K =~ a = Cn (| y(B L a)).
Part I: It follows from vacuity (G=-3) and finitude that &K € B. Thus, K C
Cn (B). It follows from inclusion (G=-2) that B C K. Thus, Cn(B) = K. By finitude,
B is finite.
Part 2: Suppose that y is not a function over the given domain. Then there are o
and f suchthatB L o = B L f§ and

(XeBla|(K+a)SCn(X)} #{XeB Lal(K=+p)CCnX)}.

It follows that K+ o # K- f. However, from B L o = B L § it follows that for all
8, BN(K =+ 8) Faiff BN(K = §) - p. By lemma 14.7,Cn (B N (K =+ 8)) = K=38.
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Thus, K =+ 8§ F a iff K = § F B. By symmetry, K - o = K = B, contrary to what
was just shown. This contradiction concludes part (2) of the proof.

Part 3: In order to prove that y is a selection function for B, it remains to be
shown that if B L o is non-empty, then so is y (B L o). If B L « is non-empty,
then « is not a logical truth. By success (G+4), K+o ¥ o. Thus BN (K +~ «) ¥
o, so that there is some X with BN (K+«) € X € B L «. By lemma 14.7,
Cn(BN (K +a)) = K+oa. It follows that K+ o € Cn(X). Then by the definition
of y, y (B L «) is nonempty.

Part 4: If « is a logical theorem, then let p ¢ K. It follows by vacuity (G=3)
that K-+ = K. By conservativity, if K ~ B € K + «, then there is some § such
that K-8 ¥ a. By closure (G-=1), this is impossible. Thus K+ CK-+q, i.e. K C
K =+ «. With inclusion (G=-2), this yields K= K-<a. By the definition of partial
meet contraction, |y (B L @) = B. Using the result of part 1 of the present proof,
weobtain Cn (Y (B La)) =Cn(B) = K=K +a.

If o is not a logical theorem, then we use the construction of B to obtain
&(K=+a) € B. By closure (G+1), & (K+ «) € K + «. The construction of y
yields & (K + @) € [y (B L ). It follows that K=a C Cn([|y(BL)).

For the other direction, suppose that ¢ ¢ B N (K + «). If there is no p such
that e = &(K=+-f), then ¢ € B so that ¢ ¢ [y (B L a). If ¢ = &(K=f) for some
B, then it follows from by closure (G+1) from & (K~ ) ¢ B N (K + «) that
K =+ B € K + «. By conservativity there is some § such that K - o € K+ §
aand (K+B)U (K=+38) - «. By lemma 14.7, Cn (BN (K +8)) = K+ 8§, so
that (B N (K +38)) U {& (K =+ B)} I «. It follows from this and (B N (K +~ «)) C
(BN (K= 38)) ¥ «thatthereis some Y such that BN(K - o) CBN(K +8) C Y e
B | o and &(K=+P) & Y. By lemma 14.7 and the definition of y, Y € y (B L ).
Since &(K+B) ¢ Y, wehave & (K+B) ¢ (\y (B La),ie.e ¢y (B L ).

Thus if ¢ ¢ BN (K+a), then ¢ ¢ [y (B L «). We may conclude that
Ay B La) BN (K= a).ltfollows by lemma 14.7 that Cn (Y (B L «)) C
K-+o.

Proof of Theorem 14.2, Left-to-Right Let <+ be an operation on K that is generated
by an operator ~, of maxichoice partial meet contraction on a finite belief base B
for K. We can make use of the corresponding part of the proof of Theorem 14.1, so
that it only remains to prove that strong conservativity holds.

By lemma 14.5, we may assume that B is closed under conjunction. Suppose that
K-+B € K+a. Then B ~,p & B ~,a. It follows that a is not a logical theorem, so
that B ~,a ¥ o, ie. K=o F a.

Since B is closed under conjunction, &(B ~,f) € B. Since ~, is maxichoice,
B ~ ,0 € B 1 «a. Since & (B“’VB) ¢ B~,a, we may conclude that B ~, o U
{& (BwyB)} F «, from which it follows that K -+ B UK +~ o - .

Proof of Theorem 14.2, Right-to-Left B and y are constructed in the same way as
in the proof of Theorem 14.1. We have to prove: (1) that B is a finite base for K,
(2) that vy is a function, (3) that y is a selection function for B, (4) that for all a:
K=o =Cn(y (B L)), and (5) that y is maxichoice. Parts 1-3 coincide with
the corresponding parts of the proof of Theorem 14.1. Since strong conservativity
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implies conservativity, the proof of part 4 of Theorem 14.1 is also a proof of part 4
of the present proof.

Part 5: Let § € B\(B ~,a). By the construction of B, 8§ = &(K=-f) for some
B. Since &(K=-B) € B and B ~,a is B-closed (cf. the definition for lemma 14.5),
it follows from & (K =) ¢ ((y (B L «) that & (K+) ¢ Cn(y (B L a)),
thus by the result of part 4, &(K-+f) ¢ K-+a. By closure (G=1), K+ € K=-a. By
strong conservativity, K+ U K=+a - a. Thus, B ~,0 U {&(K+p)} - a,ie., B~,a
U {8} - a. Since this holds for all 8 € B\(B ~,a), we can conclude that B ~,a €
B_la.

Proof of Theorem 14.3, Left-to-Right Let = be the operation on K that is generated
by the operator ~ of full meet contraction on a finite belief base B for K. Making
use of the corresponding part of the proof of Theorem 14.1, it only remains for us
to prove that indecisiveness holds. Just as in Theorem 14.1 we may, due to lemma
14.5, assume that B is closed under conjunction.

Suppose that K-8 ¥ o and (K=B)U(K=+38) - a. Then B~8§ ¥ o and (B~f) U
(B~8) I a. Since B~p and B~ are both subsets of B there is some subset X of B
such that B~8 € X € Bl o and B~ < X. By the definition of full meet contraction,
B~a C X. Suppose that B~ € B~a. It would then follow from (B~f) U (B~8) -
o, B~8 C X and B~a C X that X - a, contrary to X € B_La. We may conclude that
B~ € B~aq.

Since all elements of B_La are B-closed (cf. the definition for lemma 14.5), their
intersection B~a is also B-closed. Similarly, B~f is B-closed. It therefore follows
from B~f Z B~a. that Cn(B~f) € Cn(B~a), i.e. K=p € K=a.

Proof of Theorem 14.3, Right-to-Left Let B = {&X| (J0)(X = K =+ a)}. We need
to show that (1) B is a finite base for K, (2) forall a, Cn () (B L a)) € K+ a, and
(3) forall o, K+ a € Cn([) (B L a)). The proof of part 1 coincides with that of
part 1 of Theorem 14.1.

Part 2: We are going to prove that [J(B La) € K+ o. Let{ ¢ K+ a. If
there is no B such that { = K =+ B, then it follows by the construction of B that
C ¢ () (B L a).Inthe principal case, { = & (K + B).

It follows from & (K = B) ¢ K =+ a and closure (G=1) that K+f £ K-+a. By
conservativity, there is some 8§ such that K—~a € K+8 ¥ aand (K+-p) U
(K+98) F a. By lemma 14.7, (BN (K =+ B)) U (BN (K =+ 8)) F a. Thus, there is
some X suchthat & (BN (K+P)) ¢ XeB La,ie &(K+-p)¢XeB Lalt
follows that{ = & (K =) ¢ (| (B L a).

Thus, if { ¢ K=o, thenl ¢ ((B La).ie. [\ (B La) € K= a. By closure
(G=1), we can conclude that Cn () (B L a)) € K = a.

Part 3: We are going to show that BN(K ~a) € [\ (B L a).Let§ ¢ [ (B L o).
If there is no B such that § = & (K + f), then clearly § ¢ B N (K =+ ). In the
principal case, let § = & (K = f). It follows from & (K= f) ¢ () (B L ) that
there is some X such that & (K - p) ¢ X € B L a.

By lemma 14.3,{X} = B L ¢ for some ¢. By lemma 14.8, X = BN (K = ¢).
By lemma 14.7, Cn(X) = K + ¢. Therefore, it follows from & (K= f) ¢ BN
K+-¢)eB LathatK=¢ ¥ aand (K -+ f)U (K + ¢) F «. By indecisiveness,
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K-+p & K+a. By closure (G+1), &(K+p) ¢ K+ a,sothat § = & (K+p) ¢
BN (K -+ a).

We may conclude from this that B N (K +«) C (B L «). By lemma 14.7,
K=o CCn(((BLa)).

Proof of Theorem 14.4, Left-to-Right Let y be a complete selection function
such that~, is an operator of transitively, maximizingly, relational partial meet
contraction on a finite belief base B for K, and that ~, generates the operation =~ on
K. We can make use of the corresponding part of the proof of Theorem 14.1, so that
it only remains to prove that regularity I and regularity 2 hold.

Regularity I: Suppose that - « — f and that there is some ¢ such that K + ¢ is
both a B-removal and a maximally preservative a-removal. Let Z = B N (K = ¢).
By lemma 146, BN (K+a) S ZeB 1 a.

We are first going to show that B N (K + a) = B~,«. It follows from K + o =
Cn (Bwya) that BN (K +«a) =BNCn (Bwya). Since each element of y (B L «)
is B-closed (cf. the definition for lemma 14.5), so is (| y (B L «) = B~,«a, thus
BNCn (Bwya) =B~,a,ie. BN (K+a) =B~,0.

We now have B~,a C Z € B L « so that, by the completeness of y, Z €
y (B L a). It follows fromZ ¥ Band o — Bthat Ze B L f.

Next, we are going to show that y (B L ) C y (B L @)

Let X € y(B LB). Supposethat X ¢ y(BLa).If X €¢ B L o, thenZ €
y(B L ) yields X « Z.If X ¢ B L a, then there is some X’ such that X C X’ €
B L «. It follows by the maximizing property that X « X’ and by Z € y(B_La) that
X' « Z. Transitivity yields X « Z, in this case as well.

FromX «ZandZ € B | Bitfollowsthat X ¢ y (B L B). From this contradiction
we may conclude thatif X € y (B LB)then X € y (B L «),i.e,thaty (B LB) C
y (B L ).

Now let K-8 be a m