
 123

LN
CS

 9
89

9

10th International Workshop, RP 2016
Aalborg, Denmark, September 19–21, 2016
Proceedings

Reachability Problems

Kim Guldstrand Larsen
Igor Potapov
Jirí Srba (Eds.)

Lecture Notes in Computer Science 9899

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Kim Guldstrand Larsen • Igor Potapov
Jiří Srba (Eds.)

Reachability Problems
10th International Workshop, RP 2016
Aalborg, Denmark, September 19–21, 2016
Proceedings

123

Editors
Kim Guldstrand Larsen
Aalborg University
Aalborg
Denmark

Igor Potapov
University of Liverpool
Liverpool
UK

Jiří Srba
Aalborg University
Aalborg
Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-45993-6 ISBN 978-3-319-45994-3 (eBook)
DOI 10.1007/978-3-319-45994-3

Library of Congress Control Number: 2016949624

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the papers presented at the 10th International Workshop on
Reachability Problems (RP), held on September 19–21, 2016, at Aalborg University,
Denmark. Previous workshops in the series were located at: the University of Warsaw
(2015), the University of Oxford (2014), Uppsala University (2013), the University of
Bordeaux (2012), the University of Genoa (2011), Masaryk University Brno (2010),
École Polytechnique (2009), the University of Liverpool (2008), and Turku University
(2007).

The aim of the conference is to bring together scholars from diverse fields with a
shared interest in reachability problems, and to promote the exploration of new
approaches for the modelling and analysis of computational processes by combining
mathematical, algorithmic, and computational techniques. Topics of interest include
(but are not limited to): reachability for infinite state systems; rewriting systems;
reachability analysis in counter/timed/cellular/communicating automata; Petri nets;
computational aspects of semigroups, groups, and rings; reachability in dynamical and
hybrid systems; frontiers between decidable and undecidable reachability problems;
complexity and decidability aspects; predictability in iterative maps, and new com-
putational paradigms. The invited speakers at the 2016 workshop were:

– Alain Finkel, ENS de Cachan, France
– Axel Legay, INRIA, Rennes Cedex, France
– Jaco van de Pol, University of Twente, Netherlands.

The workshop received 18 submissions. Each submission was reviewed by three
Program Committee (PC) members. The members of the PC and the list of external
reviewers can be found on the next two pages. The PC is grateful for the high quality
work produced by these external reviewers. Based on these reviews, the PC decided to
accept 11 papers, in addition to the three invited talks. Overall this volume contains 11
contributed papers and 2 papers by invited speakers. The workshop also provided the
opportunity to researchers to give informal presentations, prepared shortly before the
event, informing the participants about current research and work in progress.

We gratefully acknowledge the help of Rikke W. Uhrenholt in organizing the event,
as well as CISS (Center for Embedded Software Systems) for the financial support. It is
also a pleasure to thank the team behind the EasyChair system and the Lecture Notes in
Computer Science team at Springer, who together made the production of this volume
possible in time for the workshop. Finally, we thank all the authors for their
high-quality contributions, and the participants for making RP 2016 a success.

September 2016 Kim Guldstrand Larsen
Igor Potapov

Jiří Srba

Organization

Program Committee

Filippo Bonchi University of Pisa, Italy
Tomas Brazdil Masaryk University, Czech Republic
Thomas Brihaye Université de Mons, France
Krishnendu Chatterjee Institute of Science and Technology (IST), Austria
Javier Esparza Technical University of Munich, Germany
Kousha Etessami University of Edinburgh, UK
Gilles Geeraerts Université libre de Bruxelles, Belgium
Kim Guldstrand Larsen Aalborg University, Denmark
Stefan Göller LSV, CNRS & ENS Cachan, France
Tero Harju University of Turku, Finland
Petr Jancar Technical University of Ostrava, Czech Republic
Sławomir Lasota Warsaw University, Poland
Oded Maler CNRS-VERIMAG, France
Nicolas Markey LSV, CNRS & ENS Cachan, France
Richard Mayr University of Edinburgh, UK
Pierre McKenzie Université de Montréal, Canada
Igor Potapov The University of Liverpool, UK
Alexander Rabinovich Tel Aviv University, Israel
Jiří Srba Aalborg University, Denmark
Igor Walukiewicz CNRS, LaBRI, France
James Worrell Oxford University, UK
Lijun Zhang Institute of Software, Chinese Academy of Sciences, China

Additional Reviewers

Della Monica, Dario
Ferrère, Thomas
Habermehl, Peter
Hahn, Ernst Moritz
Kopczynski, Eryk
Kuperberg, Denis

Kurganskyy, Oleksiy
Lin, Anthony Widjaja
Manuel, Amaldev
Mazowiecki, Filip
Mélot, Hadrien
Semukhin, Pavel

Sproston, Jeremy
Totzke, Patrick
Trivedi, Ashutosh
Turrini, Andrea

Abstracts of Invited Talks

The Ideal Theory for WSTS

Alain Finkel

LSV, ENS Cachan and CNRS, Université Paris-Saclay, Cachan, France
finkel@lsv.ens-cachan.fr

Abstract. We begin with a survey on well structured transition systems and, in
particular, we present the ideal framework which was recently used to obtain
new deep results on Petri nets and extensions. We argue that the theory of ideals
prompts a renewal of the theory of WSTS by providing a way to define a new
class of monotonic systems, the so-called Well Behaved Transition Systems,
which properly contains WSTS, and for which coverability is still decidable by a
forward algorithm. We then recall the completion of WSTS which leads to
defining a conceptual Karp-Miller procedure that terminates in more cases than
the generalized Karp-Miller procedure on extensions of Petri nets.

Rare Events for Statistical Model Checking:
An Overview

Axel Legay, Sean Sedwards, and Louis-Marie Traonouez

Inria Rennes – Bretagne Atlantique, Rennes, France

Abstract. This invited paper surveys several simulation-based approaches to
compute the probability of rare bugs in complex systems. The paper also
describes how those techniques can be implemented in the professional toolset
Plasma.

High Performance Reachability
Algorithms – Extensions – Interface

Jaco van de Pol

University of Twente, Enschede, The Netherlands

Abstract. Reachability analysis is heavily used in the verification of complex
systems with discrete dynamics. Due to the combinatorial nature of data and
processes, the graphs corresponding to their state space become very large.
Algorithmic improvements can lead to exponential gains, as witnessed by BDD
technology (binary decision diagrams) and POR (partial order reduction).
Implementing these algorithms on massively parallel hardware can yield several
extra orders of speedup. However, parallelising graph analysis applications is
notoriously hard.

This invited lecture will address the many challenges in designing parallel
graph algorithms and discuss the intricacies of symbolic verification algorithms
for reachability and liveness. We will also address the required effort to develop
prototypes that demonstrate actual speedup on distributed and multi-core
computers. We will share the experience we gained with the LTSmin toolset1.

LTSmin offers distributed and parallel algorithms for explicit-state model
checking (with POR) and symbolic reachability analysis (with BDDs). It offers
LTL model checking (linear-time liveness properties) and mu-calculus model
checking (a powerful branching time logic). At the same time, it provides this
functionality to a wide variety of specification formalisms, including process
algebras, timed automata, Petri nets, and languages in the Promela and
B-families.

The key to this generality is an interface that abstracts from language details
on the one hand, but exposes sufficient model structure on the other hand.
Our PINS interface is based on state vectors and disjunctive transition groups,
and equipped with static information on transitions, like their read/write
dependencies on variables, and their mutual independence.

We will also shortly discuss the limitations and future perspectives of
integrating more analysis algorithms, or more specification formalisms, or verify
software directly, and of exploiting heterogeneous hardware, for instance GPU
clusters.

1 http://fmt.cs.utwente.nl/tools/ltsmin

http://fmt.cs.utwente.nl/tools/ltsmin

Contents

The Ideal Theory for WSTS . 1
Alain Finkel

Rare Events for Statistical Model Checking an Overview 23
Axel Legay, Sean Sedwards, and Louis-Marie Traonouez

On the Complexity of Resource-Bounded Logics . 36
Natasha Alechina, Nils Bulling, Stephane Demri, and Brian Logan

Plain, Bounded, Reversible, Persistent, and k-marked Petri Nets
Have Marked Graph Reachability Graphs. 51

Eike Best and Harro Wimmel

Reachability Predicates for Graph Assertions . 63
Giorgio Delzanno

Occam’s Razor Applied to the Petri Net Coverability Problem 77
Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre

Safety Property-Driven Stubborn Sets . 90
Henri Hansen and Antti Valmari

Characterizing Word Problems of Groups. 104
Sam A.M. Jones and Richard M. Thomas

Distributed Synthesis of State-Dependent Switching Control 119
Adrien Le Coënt, Laurent Fribourg, Nicolas Markey, Florian De Vuyst,
and Ludovic Chamoin

Compositional Analysis of Boolean Networks Using Local
Fixed-Point Iterations. 134

Adrien Le Coënt, Laurent Fribourg, and Romain Soulat

Decidable Models of Integer-Manipulating Programs
with Recursive Parallelism . 148

Matthew Hague and Anthony Widjaja Lin

Robot Games with States in Dimension One . 163
Reino Niskanen

http://dx.doi.org/10.1007/978-3-319-45994-3_1
http://dx.doi.org/10.1007/978-3-319-45994-3_2
http://dx.doi.org/10.1007/978-3-319-45994-3_3
http://dx.doi.org/10.1007/978-3-319-45994-3_4
http://dx.doi.org/10.1007/978-3-319-45994-3_4
http://dx.doi.org/10.1007/978-3-319-45994-3_5
http://dx.doi.org/10.1007/978-3-319-45994-3_6
http://dx.doi.org/10.1007/978-3-319-45994-3_7
http://dx.doi.org/10.1007/978-3-319-45994-3_8
http://dx.doi.org/10.1007/978-3-319-45994-3_9
http://dx.doi.org/10.1007/978-3-319-45994-3_10
http://dx.doi.org/10.1007/978-3-319-45994-3_10
http://dx.doi.org/10.1007/978-3-319-45994-3_11
http://dx.doi.org/10.1007/978-3-319-45994-3_11
http://dx.doi.org/10.1007/978-3-319-45994-3_12

Insertion-Deletion Systems over Relational Words. 177
Igor Potapov, Olena Prianychnykova, and Sergey Verlan

Author Index . 193

XIV Contents

http://dx.doi.org/10.1007/978-3-319-45994-3_13

The Ideal Theory for WSTS

Alain Finkel(B)

LSV, ENS Cachan and CNRS, Université Paris-Saclay, Cachan, France
finkel@lsv.ens-cachan.fr

Abstract. We begin with a survey on well structured transition sys-
tems and, in particular, we present the ideal framework [FG09a,BFM14]
which was recently used to obtain new deep results on Petri nets and
extensions. We argue that the theory of ideals prompts a renewal of the
theory of WSTS by providing a way to define a new class of monotonic
systems, the so-called Well Behaved Transition Systems, which properly
contains WSTS, and for which coverability is still decidable by a forward
algorithm. We then recall the completion of WSTS which leads to defin-
ing a conceptual Karp-Miller procedure that terminates in more cases
than the generalized Karp-Miller procedure on extensions of Petri nets.

1 Introduction

Context. “The concept of a well-structured transition system (WSTS) arose
thirty years ago, in 1987 precisely [Fin87,Fin90], where such systems were ini-
tially called structured transition systems and shown to have decidable termina-
tion and boundedness problems. WSTS were developed for the purpose of cap-
turing properties common to a wide range of formal models (generating infinite-
state systems) used in model-checking, system verification and concurrent pro-
gramming. The coverability for such systems — given states s, t, decide whether
s →∗ t1 ≥ t for some t1 – was shown decidable in 1996 [AČJYK96,AČJT00], thus
generalizing the decidability of coverability for lossy channel systems [AJ93] but
also generalizing a much older result by Arnold and Latteux [AL78, Theorem 5,
p. 391], published in French and thus less accessible, stating that coverability for
vector addition systems with resets is decidable. It is interesting to note that the
algorithm used by Arnold and Latteux in 1979 is an instance of the backward
algorithm presented in [AČJYK96] and applied to N

n.”1

Ideals Everywhere? We believe that we have only now begun to understand that
all (?) existing forward coverability algorithms were based on the use of ideals,
i.e., directed downward closed sets, and on the fact that the cover , ↓ Post∗(s),

This paper contains results and parts of texts of the following published papers
[FG09a,FG09b,FG12,BFM14,BFM16b] and also some results from a paper “Well
Behaved Transition Systems” [BFM16a], in preparation with Michael Blondin and
Pierre McKenzie.

1 This citation is drawn from our paper [BFM16a].

c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 1–22, 2016.
DOI: 10.1007/978-3-319-45994-3 1

2 A. Finkel

i.e., the downward closure of the reachability set from s, is equal to a finite
union of ideals. Indeed, we may say now that the algorithm of Karp and Miller
[KM69], for coverability in Petri nets, computes a finite set of ideals whose union
is equal to the cover . Finkel introduced the framework of WSTS [Fin87,Fin90]
and generalized the Karp-Miller procedure to a class of complete WSTS by
building a non-effective completion of the set of states (the completion is done
by quotienting equivalent increasing sequences of states; this construction is
equivalent to the ideals completion), and replacing ω-accelerations of strictly
increasing sequences of states (in Petri nets) by least upper bounds.

Emerson and Namjoshi [EN98] take into account the labeling of WSTS and
consequently adapt the generalized Karp-Miller algorithm to model-checking.
They assume the existence of a compatible dcpo (a dcpo is a directed complete
partial ordering), and generalize the Karp-Miller procedure to the case of broad-
cast protocols. However, termination is then not guaranteed [EFM99], and in
fact neither is the existence of a finite representation of the cover. This problem
was solved latter in [FG09a].

Abdulla, Collomb-Annichini, Bouajjani and Jonsson proposed a forward pro-
cedure for lossy channel systems [ACABJ04a] using downward-closed regular
languages as symbolic representations. We realize now that these symbolic rep-
resentations were the ideals! In [GRvB06b,GRvB06a], Ganty, Geeraerts, Raskin
and Van Begin proposed the first forward procedure for solving the coverability
problem for general WSTS equipped with an effective adequate domain of lim-
its, or equipped with a finite set D used as a parameter to tune the precision
of an abstract domain. Both solutions ensure that every downward-closed set
has a finite representation and still ideals were implicit but they were not seen
as the crucial mathematical object. Abdulla, Deneux, Mahata and Nylén also
proposed a symbolic framework for dealing with downward-closed sets for Timed
Petri nets [ADMN04] and this was still a story of ideals.

The starting point of the series of papers entitled Forward analysis for WSTS,
part I: Completions [FG09a], and Forward analysis for WSTS, part II: Complete
WSTS [FG09b,FG12], both written with Jean Goubault-Larrecq, came from our
desire to derive similar general algorithms working forwards, namely algorithms
computing the cover of any WSTS (and not for a particular class of WSTS).
Our initial completion (of the set of states) was originally based on topology
(the completion by sobrification), orderings (the completion by ideals) and the
strong connection between both; after some years, we may now only work with
the ideals completion [BFM16b] which is quite simple. While computing the
cover allows one to decide coverability, by testing whether t ∈ ↓Post∗(s), it also
allows to decide whether the reachability set, Post∗(s), is finite (the bounded-
ness problem). No backward algorithm can decide this. In fact, boundedness is
undecidable in general, e.g., on reset Petri nets [DFS98]. So computing the cover
is not possible for general WSTS. Despite this, the known forward algorithms
are felt to be more efficient than backward procedures in general: e.g., for lossy
channel systems, although the backward procedure always terminates, only a
(necessarily non-terminating) forward procedure is implemented in the TREX

The Ideal Theory for WSTS 3

tool [ABJ98]. Another argument in favor of forward procedures is the following:
for depth-bounded processes, a fragment of the π-calculus, the backward algo-
rithm of [AČJT00] is not applicable when the maximal depth of configurations
is not known in advance because, in this case, the predecessor configurations
are not effectively computable [WZH10]. But the forward Expand, Enlarge and
Check algorithm of [GRvB07], which operates on complete WSTS, solves cover-
ability even though the depth of the process is not known a priori [WZH10].

Our Contribution. Most of the material in Sects. 2, 5 and 6 of this paper is
not original and appeared in previous papers [FG09a,FG09b,FG12,BFM14,
BFM16b]. Section 3 is a survey on WSTS. Section 4 presents the ideals frame-
work and some recent and deep results using ideals. Section 4 also recalls the
Erdös and Tarsky Theorem that says that a quasi-ordered set X is without
infinite antichain if and only if every downward closed subset of X is equal to
a finite union of ideals. This Theorem paves the way to the new definition of
Well Behaved Transition System (WBTS), more general than WSTS, with its
decidability of coverability [BFM16a] by a forward coverability algorithm.

In Sect. 5, we introduce the completion of a WSTS and building on our own
theory of completions [FG09a,BFM16b], we recall that ω2-WSTS are the right
class of WSTS to consider: the completion ̂S of a WSTS S is a WSTS if and only
if S is an ω2-WSTS. All naturally occurring WSTS are in fact ω2-WSTS. Despite
the fact that CloverS cannot terminate on all inputs, that S is an ω2-WSTS
will ensure progress, i.e., will ensure that every opportunity of accelerating a
loop will eventually be taken by CloverS.

In Sect. 6, we recall complete WSTS which are functional WSTS S = (S,
F→,

≤) where (S,≤) is a wqo and a continuous dcpo and every function in F is partial
ω-continuous. This allows us to design a conceptual procedure CloverS that
looks for a finite representation (we say now, a finite set of ideals) of the cover.
Our procedure also terminates in more cases than the well-known (generalized)
Karp-Miller procedure [EN98,Fin90].

2 Preliminaries

2.1 Orderings

We borrow from theories of order, as used in model-checking [EN98,FS01], and
also from domain theory [AJ94,GHK+03].

Let X be a set and let ≤ ⊆ X × X. The relation ≤ is a quasi-ordering if it
is reflexive and transitive. If ≤ is additionally antisymmetric, then ≤ is a partial
order. We write ≥ for the converse quasi-ordering, < for the associated strict
ordering (≤ \ ≥). There is also an associated equivalence relation ≡, defined as
≤ ∩ ≥. A set X with a partial ordering ≤ is a poset (X,≤), or just X when ≤ is
clear. If X is merely quasi-ordered by ≤, then the quotient X/≡ is ordered by
the relation induced by ≤ on equivalence classes. So there is not much difference
in dealing with quasi-orderings or partial orderings, and we shall essentially be
concerned with the latter.

4 A. Finkel

The set X is well-founded (under ≤) if there is no infinite strictly decreasing
sequence x0 > x1 > . . . of elements of X. An antichain (under ≤) is a subset
A ⊆ X of pairwise incomparable elements, i.e. for every a, b ∈ A, a
≤ b and
b
≤ a. We say that a quasi-ordering ≤ is a well-quasi-ordering for X if X is
well-founded and contains no infinite antichain under ≤.

Let A ⊆ X, we define the downward closure and upward closure of A respec-
tively as ↑ A

def= {x ∈ X : x ≥ a for some a ∈ A} and ↓ A
def= {x ∈ X : x ≤

a for some a ∈ A}. A subset A ⊆ X is said to be downward closed if A =↓ A
and upward closed if A = ↑ A. An ideal is a downward closed subset I ⊆ X
that is also directed, i.e. it is nonempty and for every a, b ∈ I, there exists
c ∈ I such that a ≤ c and b ≤ c. Chains, i.e., totally ordered subsets, and one-
element sets are examples of directed subsets. The set of ideals of X is denoted
Ideals(X) def= {I ⊆ X : I =↓ I and I is directed}.

An upper bound x ∈ X of E ⊆ X is such that y ≤ x for every y ∈ E. The
least upper bound (lub) of a set E, if it exists, is written lub(E). An element x
of E is maximal (resp. minimal) iff ↑ x ∩ E = {x} (resp. ↓ x ∩ E = {x}). Write
Max E (resp. MinE) for the set of maximal (resp. minimal) elements of E.

A dcpo is a poset in which every directed subset has a least upper bound.
For any subset E of a dcpo X, let Lub(E) = {lub(D) | D directed subset of E}.
Clearly, E ⊆ Lub(E); Lub(E) can be thought of E plus all limits from elements
of E. When ≤ is a well partial ordering that also turns X into a dcpo, we say
that X is a directed complete well order , or dcwo.

3 A Survey on Well-Structured Transition Systems

The theory of WSTS has now been used for 30 years as a foundation for verifica-
tion in various models, such as (monotonic extensions of) Petri nets, broadcast
protocols, fragments of the pi-calculus, rewriting systems, lossy systems, timed
Petri nets, etc. Two journal papers synthesise the known results and show the
possible applications [AČJT00,FS01].

3.1 Monotonic Transition Systems

A transition system is a pair S = (S,→) of a set S, whose elements are called
states, and a transition relation → ⊆ S × S. We write s → s′ for (s, s′) ∈
→. Let ∗→ be the transitive and reflexive closure of the relation →. We write
PostS(s) = {s′ ∈ S | s → s′} for the set of immediate successors of the state
s. The reachability set of a transition system S = (S,→) from an initial state
s0 is Post∗S(s0) = {s ∈ S | s0

∗→ s}. The reachability tree RT (S,→, s0) of a
transition system (S,→) with an initial state s0 is defined as follows: the root is
labeled by s0 and there is an arc between two nodes n, n′ labeled by the states
s, s′ iff s → s′.

We shall be interested in effective transition systems. Intuitively, a transition
system (S,→) is effective iff one can compute the set of successors PostS(s) of

The Ideal Theory for WSTS 5

any state s. We shall take this to imply that PostS(s) is finite (for simplicity,
transition systems are supposed to be finitely banching), and each of its elements
is computable. Formally, one would need to find a representation of the states
s ∈ S. For reasons of readability, we shall make an abuse of language, and say
that the pair (S,→) is itself an effective transition system in this case, leaving
the representation of states and the post function implicit (see [FG12] for more
precise definitions).

We say that an ordered transition system S = (S,→,≤), where ≤ is a quasi
ordering, is monotonic (resp. strictly monotonic) iff for all s, s′, s1 ∈ S such that
s → s′ and s1 ≥ s (resp. s1 > s), there exists an s′

1 ∈ S such that s1
∗→ s′

1 and
s′
1 ≥ s′ (resp. s′

1 > s′). S is transitive monotonic iff for all s, s′, s1 ∈ S such that
s → s′ and s1 ≥ s, there exists an s′

1 ∈ S such that s1
+→ s′

1 and s′
1 ≥ s′. S is

strongly monotonic iff for all s, s′, s1 ∈ S such that s → s′ and s1 ≥ s, there exists
an s′

1 ∈ S such that s1 → s′
1 and s′

1 ≥ s′. These variations on monotonicity were
studied in [Fin87,FS01]. Originally, three different definitions of monotonicity
(hence six definitions with the strict variant) were given in [Fin87] and four with
the stuttering variant (resp. eight) were studied in [FS01].

3.2 The Properties

Finite representations of Post∗S(s), e.g., as Presburger formulae or finite
automata, usually don’t exist even for monotonic transition systems (not
even speaking of being computable). However, the cover set CoverS(s) =
↓ Post∗S(↓ s) (= ↓ Post∗S(s) when S is monotonic) will be much better behaved.
Note that being able to compute the cover allows one to decide coverability
(t ∈ CoverS(s)?), and boundedness (is Post∗S(s) finite?). Let us recall that the
control-state reachability problem (when the set S of states is S = Q×X with Q a
finite set of control states) can be reduced to coverability. However, the repeated
control state reachability problem (does there exist an infinite computation that
visits infinitely often a control state q?) cannot be reduced to coverability.

The eventuality property for a given upward closed set I, is the following
property: EG I is true in a state s0 iff there is a computation from s0 in which
all states are in I. Given two labeled transition systems S1 = (S1,→1) and
S2 = (S2,→2), on the same alphabet Σ, the relation R ⊆ S1×S2 is a simulation
of S1 by S2 if for each (s1, s2) ∈ R, s′

1 ∈ S1 and a ∈ Σ, if s1
a→ s′

1 then there
exists s′

2 ∈ S2 such that s2
a→ s′

2 and (s′
1, s

′
2) ∈ R. We say that s1 ∈ S1 is

simulated by s2 ∈ S2 if there is a simulation R of S1 by S2 such that (s1, s2) ∈ R.

3.3 Well-Structured Transition Systems

WSTS were originally thought of as generalizations of Petri nets (and classes
of FIFO nets) in which the set of states (called markings) of a Petri net with
n places, N

n, is abstracted into a set X equipped with a wqo ≤; the Petri
net transitions (which are particular affine translations from N

n into N
n) are

abstracted to general recursive monotonic relations in X. WSTS were defined

6 A. Finkel

and studied in the author’s PhD thesis in 1986, the results were presented at
ICALP’87 [Fin87] and published in the journal “information and computation”
[Fin90].

Definition 1 [Fin87,Fin90]. A Well Structured Transition System (WSTS)
S = (S,→,≤) is a monotonic transition system such that (S,≤) is wqo.

We will need effective WSTS S = (S,→,≤), i.e., (S,→) is effective and ≤ is
decidable. Generally WSTS are finitely banching. Some of the decidability results
[BFM14] do not require this but, for simplicity, we will make this assumption.
A WSTS (or more generally, an ordered transition system) S = (S,→,≤) has
the effective PredBasis property if there exists an algorithm which computes
↑ Pre(↑ s) for each s ∈ S; S is intersection effective if there is an algorithm
which computes a finite basis of ↑ s∩ ↑ s′, for all states s, s′ ∈ S.

We now summarize the main decidability results on WSTS till the year 2000.

Theorem 1. The following are decidable:

– Termination, for effective transitive monotonic WSTS [Fin87,FS01].
– Boundedness, for effective strictly monotonic transitive WSTS [Fin87,FS01].
– Coverability (hence control-state reachability), for effective WSTS with effec-

tive PredBasis ([AČJYK96], extended in [FS01]).
– Eventuality, for effective strongly monotonic finitely branching WSTS (see

[KS96,AČJT00], extended in [FS01]).
– Simulation of a labeled WSTS by a finite automaton, for intersection effective

and effective strongly monotonic WSTS with effective PredBasis [AČJYK96].
– Simulation of a finite automaton by a labeled WSTS, for effective strongly

monotonic WSTS [AČJYK96].

The following are undecidable:

– Reachability, for effective strongly strictly monotonic WSTS (Transfer Petri
nets, [DFS98]).

– Repeated control-state reachability (hence LTL), for effective strongly strictly
monotonic WSTS (Transfer Petri nets, [DFS98]). �

To prove these decidability results we alternatively use forward and backward
algorithms. Termination, boundedness, eventuality and one part of simulation
can be proved by using a forward algorithm that builds the so-called Finite
Reachability Tree (FRT) [Fin87]: we develop the reachability tree until a state
larger than or equal to one of its ancestors is encountered, in which case the
current branch is definitely closed. The place-boundedness problem (to decide
whether a place can contain an unbounded number of tokens) is undecidable for
transfer Petri nets [DFS98], although they are strongly and strictly monotonic
WSTS. It is decidable for Petri nets. This requires a richer structure than the
FRT, the Karp-Miller tree. The set of labels of the Karp-Miller tree is a finite
representation of the cover.

Almost all the assumptions used above are necessary:

The Ideal Theory for WSTS 7

Theorem 2. The following are undecidable:

– Termination,for transitive monotonic WSTS.
– Boundedness,for effective strongly monotonic WSTS.
– Coverability,for effective strongly strictly monotonic WSTS. �

For termination, Turing machines are transitive WSTS for which the termination
ordering ≤termination is undecidable [FS01]. For the second claim, Reset Petri
nets have an undecidable bounded problem, and are effective strongly monotonic
WSTS; but they are not strictly monotonic [DFS98]. For the last claim, there are
WSTS composed of two recursive strictly monotonic functions from N

2 into N
2

that are not recursive on N
2
ω hence there are no algorithm computing a PredBasis

[FMP04].
The status of eventuality and simulation is open: for each of these proper-

ties, we know of no natural class of WSTS for which this property would be
undecidable.

3.4 WSTS Everywhere2

Here are some (this is not an exhaustive list) of the papers that introduced new
points of view, in our opinion:

Forward Coverability Algorithm and Forward Analysis for WSTS
Ganty, Geeraerts, Raskin and Van Begin proposed a new forward proce-
dure for deciding the coverability problem [GRB04,GRvB06a,GRvB06b].
This was the first forward procedure for this problem in the general frame-
work of WSTS (to which they explicitly added, to the set of states, an
Adequate Domain of Limits). Their procedure computes a sufficient part
(to decide coverability) of a finite representation of the cover.
Goubault-Larrecq and I began in 2009 a series entitled “Forward analy-
sis for WSTS, Part I: Completions” [FG09a] and “Forward Analysis for
WSTS, Part II: Complete WSTS” [FG09b] in which we provide the miss-
ing theoretical fundations of finite representations of downward closed
sets. Most of used ordering in WSTS are ω2-ordering and in fact also
better quasi ordering. This allows to extend the wqo to the completion of
a WSTS and the completed system is still a WSTS. An ω2-ordering that
is extended on downward closed sets is also a wqo [FG09a,FG09b,AN00].
This work, based on both order and topology, allowed us to design a con-
ceptual coverability set procedure for all WSTS. Bounded WSTS [CFS11]
are a particular recursive class of WSTS for which our coverability set
procedure terminates.

Expressive Power of WSTS
In [ADB07,GRB07], Abdulla, Delzanno, Geeraerts, Raskin and Van
Begin studied the expressive power of WSTS by means of the set of
coverability languages which are well-adapted to WSTS.Bonnet, Finkel,

2 “WSTS Everywhere” was the title of our survey with Philippe Schnoebelen [FS01].

8 A. Finkel

Haddad and Rosa-Velardo proposed in [BFHR11] to use a new tool, the
order type of posets, to prove, for example, that the class of all WSTS
with set of states of type N

n are less expressive than WSTS with set of
states of type N

n+1. This strategy unifies the previous proofs and allows
to compare models of different natures, such as lossy channel systems and
timed Petrinets.

Petri Net Extensions and Complexity of WSTS
Affine Petri nets extensions were studied a long time ago by Valk
[Val78] under the name self modified nets; more recently, many Petri nets
extensions were studied like recursive Petri nets [HP07], PRS [May00],
Reset/Transfer Petri nets [DFS98,DJS99] and affine well-structured
nets [FMP04]. More recently, since the first paper on Petri nets with
data (which extend affine nets) by Lazić, Newcomb, Ouaknine, Roscoe
and Worrell [LNO+07], many authors like Rosa-Velardo, Frutos-Escrig
[RdF07,RMdF11], Lazić, Haddad, Schmitz and Schnoebelen have began
to study the complexity for many classes of Petri net extensions where
tokens carry data: data nets, Petri data nets, ν-Petri nets, ordered and
unordered data Petri nets. D. Figueira, S. Figueira, Schmitz and Sch-
noebelen began the study of the ordinal-recusive complexity of general
WSTS. They characterized the ordinal length of bad sequences of vec-
tors of integers [FFSS11] (using the Dickson lemma) and of words [SS11]
(using the Higman lemma). Haddad, Schmitz and Schnoebelen showed
“how to reliably compute fast-growing functions with timed-arc Petri nets
and data nets. They provided ordinal-recursive lower bounds on the com-
plexity of the main decidable properties (safety, termination, regular sim-
ulation, etc.) of these models. Since these new lower bounds match the
upper bounds that one can derive from wqo theory, they precisely char-
acterise the computational power of these so-called” enriched “nets” in
[HSS12].
In [BHM15], Badouel, Hélouët and Morvan addressed a WSTS extension
of Petri Nets whose transitions manipulate structured data via patterns
and queries. Very recently, Hofman, Lasota, Lazić, Leroux, Schmitz and
Totzke extended the construction of coverability trees to Petri Nets with
Unordered Data [HLL+16] and Lazić and Schmitz proved that coverabil-
ity for ν-Petri nets is complete for “double Ackermann” time [LS16a].

Pushdown VASS and Well-Structured Pushdown Systems
Mixing pushdown and counters is possible even if one reaches undecidabil-
ity or high complexity. Cai, Ogawa, Lazić, Leroux, Sutre, Totzke studied
reachability and coverability for VASS with a stack and subclasses of
Pushdown WSTS. Coverability is decidable for one dimensional Push-
down VASS but it is Tower-hard (while Boundedness is in exponential
time) and its decidability is an open problem for general Pushdown VASS
[Laz13,LST15b,LST15a,BLP15].

We could also quote other applications and use of the WSTS theory to: Well-
Structured Graph Transformation Systems [BDK+12,KS14,BG14]; to decide

The Ideal Theory for WSTS 9

properties in the pi-Calculus [Mey08,ZWH12,HMM14,BG14]; and we could
also mention the recent paper from Lasota [Las16] who proposes an interesting
“WQO Dichotomy Conjecture: under a mild assumption, either a data domain
exhibits a well quasi-order (in which case one can apply the general setting of
well-structured transition systems to solve problems like coverability or bounded-
ness), or essentially all the decision problems are undecidable for Petri nets over
that data domain.”.

4 The Ideal Framework of Ideals

Recall that an ideal is a downward closed subset I ⊆ X that is also directed,
i.e. it is nonempty and for every a, b ∈ I, there exists c ∈ I such that a ≤ c

and b ≤ c. The set of ideals of X is denoted Ideals(X) def= {I ⊆ X : I =↓
I and I is directed}.

The two following examples come from [BFM16b].

Example 1. Let us consider the ideals of N
d. It can be shown that

Ideals(Nd) = Ideals(N) × Ideals(N) × · · · × Ideals(N)
︸ ︷︷ ︸

d times

and that I ∈ Ideals(N) is either N or of the form ↓ x for some x ∈ N. Therefore,
any ideal I ∈ Ideals(Nd) may be represented by some x ∈ N

d
ω where xi = ω

represents N and xi = y represents ↓ y. Consider the following downward closed
set

X = {(x1, x2) ∈ N
2 : (x1 ≤ 4) ∨ (x1 ≤ 8 ∧ x2 ≤ 10) ∨ (x2 ≤ 5)}.

As illustrated in Fig. 1, it is possible to write X as the following finite union of
ideals:

0 2 4 6 8 10 12 14
0

5

10

15

x1

x
2

Fig. 1. Decomposition of X = {(x1, x2) ∈ N
2 : (x1 ≤ 4) ∨ (x1 ≤ 8 ∧ x2 ≤ 10) ∨

(x2 ≤ 5)} into finitely many ideals. The three ideals ↓ 4 × N, ↓ 8 × ↓ 10 and N × ↓ 5
appear respectively in blue, orange and green. (Color figure online)

10 A. Finkel

↓ 4 × N ∪ ↓ 8× ↓ 10 ∪ N× ↓ 5

which can be represented by {(4, ω), (8, 10), (ω, 5)}.

Example 2. It has been recently shown that downward closed languages (under
the subword ordering) coincide with the class of strictly piecewise-testable lan-
guages [RHB+10]. Previously, downward closed languages were studied and used
in [ACABJ04a] for representing infinite reachability subsets of lossy channel sys-
tems; it is proved that every downward closed language on Σ∗, where Σ is a finite
alphabet, is a finite union of products P1P2 · · · Pm where each Pi is either {ε, σ}
for some σ ∈ Σ, or A∗ for some A ⊆ Σ. It has been remarked in [FG09a]
that every ideal I ∈ Ideals(Σ∗), is exactly a product I = P1P2 · · · Pm like in
[ACABJ04a]. Following [FG09a], the previous result on downward closed lan-
guages is then a particular instance of a more general result: every downward
closed set (here a downward closed language on Σ∗), in a wqo, is a finite union
of ideals.

For example, consider the language of words over Σ = {a, b, c} where the
first letter does not reappear, i.e., let

L = {w ∈ Σ+ : wi
= w1 for 1 < i ≤ |w|}

= a{b, c}∗ ∪ b{a, c}∗ ∪ c{a, b}∗.

It can be shown that

↓ L = L ∪ {w ∈ Σ∗ : |w|σ = 0 for some σ ∈ Σ}

= L ∪ {a, b}∗ ∪ {a, c}∗ ∪ {b, c}∗

= {a, ε}{b, c}∗ ∪ {b, ε}{a, c}∗ ∪ {c, ε}{a, b}∗.

Hence, ↓ L decomposes into finitely many ideals.

It was observed in [FG09a,BFM14] that any downward closed subset of a
well-quasi-ordered set is equal to a finite union of ideals, which led to further
applications in the study of WSTS.

4.1 Recent Use of Ideals

– Leroux et Schmitz used in Demystifying Reachability in Vector Addition
Systems [LS15b] and in Ideal Decompositions for Vector Addition Systems
[LS16b] the decomposition of downward closed sets into finite many ideals
on runs (instead classically on states) with the natural embedding relation
between runs to give the first upper bound for the complexity of the reachabil-
ity problem in Petri nets. They established that the decomposition produced
by the complex reachability algorithm is, in fact, “the ideal decomposition
of the set of runs, using the natural embedding relation between runs as well
quasi ordering. In a second part, we apply recent results on the complexity
of termination thanks to well quasi orders and well orders to obtain a cubic
Ackermann upper bound for the decomposition algorithms, thus providing the
first known upper bounds for general VAS reachability.”

The Ideal Theory for WSTS 11

– Lazić and Schmitz studied in The Ideal View on Rackoff’s Coverability Tech-
nique [LS15a,BLP15] the well-known Rackoff coverability algorithm and they
renewed the study by using the ideals framework: We take a dual view on the
backward coverability algorithm, by considering successively the sets of con-
figurations that do not cover y in 0, 1, 2, . . . or fewer steps. Such sets are
downwards-closed, and enjoy a (usually effective) canonical representation as
finite unions of ideals. We show that, in the case of VAS, this dual view
exhibits an additional structural property of ω -monotonicity, which allows to
derive the desired doubly-exponential bound.

– Lazić and Schmitz proved in The Complexity of Coverability in ν-Petri Nets
[LS16a] that coverability for ν-Petri nets is complete for “double Ackermann”
time by using the ideals framework with the multiset ordering. They proved
that the ν-Petri nets are ideally effective and they studied the length of con-
trolled descending chains of downwards-closed sets which are finite unions of
ideals. The proof deeply relies on ideals.

– Hofman, Lasota, Lazić, Leroux, Schmitz and Totzke studied in Coverability
Trees for Petri Nets with Unordered Data [HLL+16]“an extension of classical
Petri nets where tokens carry values from a countable data domain, that can
be tested for equality upon firing transitions. These Unordered Data Petri Nets
(UDPN) are well-structured and therefore allow generic decision procedures
for several verification problems including coverability and boundedness. We
show how to construct a finite representation of the coverability set in terms
of its ideal decomposition.”.

– Blondin, Finkel and McKenzie studied in Handling Infinitely Branching Well-
structured Transition Systems [BFM14,BFM16b] coverability, termination
and boundedness for infinitely branching WSTS. “Here we develop tools to
handle infinitely branching WSTS by exploiting the crucial property that in
the (ideal) completion of a well-quasi-ordered set, downward-closed sets are
finite unions of ideals. Then, using these tools, we derive decidability results
and we delineate the undecidability frontier in the case of the termination, the
maintainability and the coverability problems. Coverability and boundedness
under new effectiveness conditions are shown decidable.”

Other applications of ideals arrive: Goubault-Larrecq and Schmitz showed
using effective representations for tree ideals that it entails the decidability of
piecewise testable separability when the input languages are regular [GLS16].

4.2 Decomposition of Downward Closed Sets into Ideals

Even if it was observed that any downward closed subset of a well-quasi-ordered
set is equal to a finite union of ideals, here, we stress the fact that such finite
decompositions also exist in quasi-ordered sets with no infinite antichain. The
existence of such a decomposition has been proved numerous times (for partial
orderings instead of quasi-orderings) in the order theory community under dif-
ferent terminologies, and is a particular case of a more general result of Erdös &
Tarski [ET43]. But, to the best of our knowledge, this has never been remarked
neither used in the verification community.

12 A. Finkel

Theorem 3 [ET43,Bon75,Fra86,BFM16a]. A countable quasi-ordered set X
contains no infinite antichain if, and only if, every downward closed subset of X
is equal to a finite union of ideals.

We give a self-contained proof of this result in [BFM16a].

Theorem 3 allows us, as in [BFM14], to define a canonical finite decomposition
of a downward closed subset D ⊆ X, that is, the (finite) set IdealDecomp(D) of
maximal ideals contained in D under inclusion.

4.3 Well Behaved Transition Systems

Since downward closed sets decompose in finitely ideals, we may use the for-
ward coverability algorithm and then we are motivated to define a new class of
monotonic transition systems.

Definition 2 [BFM16a]. A Well Behaved Transition System (WBTS) is a
monotonic transition system S = (S,−→,≤) such that (S,≤) contains no infinite
antichain.

Every WSTS is trivially a WBTS but, for example, a one counter automaton
on Z is a WBTS but it is not a WSTS, for the usual ordering.

We describe effectiveness hypotheses that allow manipulating downward
closed sets in WBTS.

Definition 3 [BFM16a]. A class C of WBTS S is ideally effective if

– the function mapping the encoding of a state s of an ordered transition system
to the encoding of the ideal ↓ s is computable;

– inclusion of ideals is decidable;
– the downward closure ↓ post(I) expressed as a finite union of ideals is com-

putable from the ideal I.

Let us emphasize that an ideally effective WBTS is effective and post-
effective: S embeds into Ideals(S) hence S is also decidable; the inequation s ≤ t
is equivalent to ↓ s ⊆↓ t hence it is decidable; and computing post(s) boils down
to computing post(↓ s).

Remark 1. Enforcing WBTS to be ideally effective is not an issue for virtually
all useful models. Indeed, a large scope of WBTS are ideally effective [FG09a]:
ideally effective WSTS, Petri nets, VASS and their extensions (with resets, trans-
fers, affine functions), lossy channel systems and extensions with data.

We recently proved in [BFM16a] that coverability is decidable for ideally
effective Well Behaved Transition Systems.

Theorem 4 [BFM16a]. Coverability is decidable for ideally effective Well
Behaved Transition Systems.

The Ideal Theory for WSTS 13

5 Completion of WSTS and Accelerations3

5.1 Completion of a WSTS

The ideal completion of a WSTS is useful to define lub-accelerations (that are
defined in the completed set of states, i.e., in the set S completed with lubs)
; then one may design coverability set procedures like abstracted Karp Miller
procedures working on states and lubs, i.e., “limits of states”. Let us recall that
S is canonically included in Ideals(S), that Ideals(S) is a continuous dcpo, and
in the case of continuous dcpos, the set S with its set of lubs, is isomorphic
to Ideals(S). The following definition extends [FG09b] to non-functional WSTS
and uses the ideal completion instead of the more complex sober topological
completion.

Definition 4 [BFM14,FG09b]. The completion ̂S of a WSTS S = (S,−→,≤)
is the ordered transition system ̂S = (̂S,�,⊆) where ̂S = Ideals(S) and I�J if
J ∈ idealdecomp(↓ Post

̂S(I)).

It would seem clear that the construction of the completion ̂S = (̂S,�,⊆)
of a WSTS S = (S,−→,≤) be, again, a WSTS. We shall recall that this is not
the case. The only missing ingredient to show that ̂S is a WSTS is to check that
̂S is well-ordered by inclusion. And this is not the case, the Rado wqo is a well
known example.

When is ̂X well-ordered by inclusion? We shall see that there is a definite
answer: when X is ω2-wqo. Hence, when the original wqo ≤ is also a ω2-wqo,
the ordered set (Ideals(S),⊆) is also a wqo and then the completion of a such
WSTS would be still a WSTS.

In fact, the completion can be extended to WBTS since the completion only
needs a quasi ordering without infinite antichains.

Definition 5 [BFM16a]. The completion ̂S of a WBTS S = (S,−→,≤) is the
ordered transition system ̂S = (̂S,�,⊆) where ̂S = Ideals(S) and I�J if J ∈
IdealDecomp(↓ Post

̂S(I)).

Let us remark that the completion of a WBTS is not necessarly a WBTS.
Take X to be Rado’s structure XRado [Rad54], i.e., {(m,n) ∈ N

2 | m < n},
ordered by ≤Rado: (m,n) ≤Rado (m′, n′) iff m = m′ and n ≤ n′, or n < m′. It is
well-known that ≤Rado is a well quasi-ordering, hence without infinite antichains.
Since the completion of the Rado ordering contains the infinite set of the ωi

[Sect. 5.3, Lemma 1], which is an infinite antichain, we conclude that the com-
pletion of a WBTS is not necessarly a WBTS.

3 The text of Sects. 5.2, 5.3, 5.4 and 5.5 is drawn from the paper [FG12].

14 A. Finkel

5.2 Lub-Accelerations

A subset U of a dcpo X is (Scott-)open iff U is upward-closed, and for any
directed subset D of X such that lub(D) ∈ U , some element of D is already
in U . A partial ω-continuous map f : X → X, where (X,≤) is a dcpo, is
a partial map whose domain dom f is upward-closed, and such that for every
directed subset D in dom f , lub(f(D)) = f(lub(D)). The composition of two
partial ω-continuous maps again yields a partial ω-continuous map. This is all
we require when we define accelerations. The closed sets are the complements of
open sets. Every closed set is downward-closed. On a dcpo, the closed subsets
are the subsets B that are both downward-closed and inductive, i.e., such that
Lub(B) = B. An inductive subset of X is none other than a sub-dcpo of X.
The closure cl(A) of A ⊆ X is the smallest closed set containing A. This should
not be confused with the inductive closure Ind(A) of A, which is obtained as
the smallest inductive subset B containing A. In general, ↓ A ⊆ Lub(↓ A) ⊆
Ind(↓ A) ⊆ cl(A), and all inclusions can be strict. All this nitpicking is irrelevant
when X is a continuous dcpo, and A is downward-closed in X. In this case indeed,
Lub(A) = Ind(A) = cl(A). This is well-known, see e.g., [FG09a, Proposition 3.5],
and will play an important role in our constructions. As a matter in fact, the fact
that Lub(A) = cl(A), in the particular case of continuous dcpos, is required for
lub-accelerations to ever reach the closure of the set of states that are reachable
in a transition system.

In [FG12], we illustrate that ω2-wqo are crucial to establish a progress prop-
erty that consists to make infinitely often lub-accelerations.

The reasons why the original Karp-Miller procedure terminates on (ordinary)
Petri nets are two-fold. First, when ̂X = N

k
ω, one cannot lub-accelerate more than

k times, because each lub-acceleration introduces a new ω component to the label
of the produced state, which will not disappear in later node extensions. This is
specific to Petri nets, and already fails for reset Petri nets, where ω components
do disappear. The second reason is of more general applicability: ̂X = N

k
ω is wpo,

and this implies that along every infinite branch of the tree thus constructed,
case (*) will eventually happen, and in fact will happen infinitely many times.
Call this progress: along any infinite path, one will lub-accelerate infinitely often.
In the original Karp-Miller procedure for Petri nets, this will entail termination.

As we have already announced, for WSTS other than Petri nets, termination
cannot be ensured. But at least we would like to ensure progress. The argument
above shows that progress is obtained provided ̂X is wqo. This is our main
motivation in characterizing those wqos X such that ̂X is wqo again.

5.3 The Rado Structure

We now return to the purpose of this section: showing that ̂X is well-ordered
iff X is ω2-wqo. We start by showing that, in some cases, ̂X is indeed not well-
ordered.

Recall that X is Rado’s structure XRado [Rad54], i.e., {(m,n) ∈ N
2 | m < n},

ordered by ≤Rado: (m,n) ≤Rado (m′, n′) iff m = m′ and n ≤ n′, or n < m′. It is

The Ideal Theory for WSTS 15

well-known that ≤Rado is a well quasi-ordering, and that P(XRado) is not well-
quasi-ordered by ≤�

Rado, defined as A ≤�
Rado B iff for every y ∈ B, there is a

x ∈ A such that x ≤Rado y [Jan99]. (Equivalently, A ≤�
Rado B iff ↑ B ⊆ ↑A.)

Consider indeed ωi = {(i, n) | n ≥ i + 1} ∪ {(m,n) ∈ XRado | n ≤ i − 1}, for
each i ∈ N. This is pictured as the dark blue (or dark grey) region in Fig. 2, and
arises naturally in Lemma 1 below. Note that ωi is downward-closed in ≤Rado.
Consider the complement ωi of ωi, and note that ωi ≤�

Rado ωj iff ↑ ωj ⊆ ↑ωi, iff
ωj ⊆ ωi (since ωi is upward-closed), iff ωi ⊆ ωj . However, when i < j, (i, j) is in
ωi but not in ωj , so ωi
≤�

Rado ωj . So (ωi)i∈N
is an infinite sequence of P(XRado)

from which one cannot extract any infinite ascending chain. Hence P(XRado) is
indeed not wqo. Since X̂Rado = Ideals(XRado), let us examine the structure of
directed subsets of XRado.

Lemma 1 [FG12]. The downward-closed directed subsets of XRado, apart from
those of the form ↓(m,n), are of the form ωi = {(i, n) | n ≥ i + 1} ∪ {(m,n) ∈
XRado | n ≤ i − 1}, or ω = XRado.

See Fig. 2 for a pictorial representation of ωi.

Fig. 2. Ideals in Rado’s structure

5.4 ω2-WSTS

Recall here the working definition in [Jan99]: a well-quasi-order X is ω2-wqo
if and only if it does not contain an (isomorphic copy of) XRado; here we use
Jančar’s definition, as it is more tractable than the complex definition of [Mar94].
Jančar proved that X is ω2-wqo iff (P(X),≤�) is wqo (where A ≤� B iff for every

16 A. Finkel

b ∈ B, there is an a ∈ A such that a ≤ b or equivalently iff ↑ B ⊆↑ A iff B ⊆↑ A).
We have shown that the above is the only case that can go bad:

Proposition 1 [FG09b]. Let S be a well-quasi-order. Then ̂S is well-quasi-
ordered by inclusion iff S is ω2-wqo.

Let an ω2-WSTS be any WSTS whose underlying poset is ω2-wqo. It follows:

Theorem 5 [FG09b]. Let S = (S,→,≤) be a WSTS. Then ̂S is a WSTS iff
S is an ω2-WSTS. �

Note that ̂S = Ideals(S) is an algebraic dcpo [AJ94], whence ̂S is a continuous
dcwo as soon as S is ω2-wqo.

5.5 Are ω2-wqos Ubiquitous?

XRado is an example of a wqo that is not ω2-wqo. It is natural to ask whether
this is the norm or an exception. We claim that all wqos used in the verification
literature are in fact ω2-wpo.

Consider the following grammar of datatypes, which extends that of [FG09a,
Sect. 5] with the case of finite trees (last line):

D ::= N natural numbers
| A≤ finite set A, ordered by ≤
| D1 × . . . × Dk finite product
| D1 + . . . + Dk finite, disjoint sum
| D∗ finite words
| D� finite multisets
| T (D) finite trees

(1)

Proposition 2 [FG09a,FG09b]. Every datatype defined in (1) is ω2-wqo, and
in fact bqo.

In fact, all naturally occurring wqos are bqos, perhaps to the notable excep-
tion of finite graphs quasi-ordered by the graph minor relation, which are wqo
[RS04] but not known to be bqo.

6 A Conceptual Karp-Miller Procedure4

An argument in favor of computing clovers is Emerson and Namjoshi’s [EN98]
approach to model-checking liveness properties of WSTS, which uses a finite
(coverability) graph based on the clover. Since WSTS enjoy the finite path prop-
erty ([EN98], Definition 7), model-checking liveness properties is decidable for
WSTS for which the clover is computable. This motivate us to try to compute
the clover for classes of WSTS, even though it is not computable in general. The
4 The content of Sect. 6 is mainly drawn from the paper [FG12].

The Ideal Theory for WSTS 17

key to designing some form of a Karp-Miller procedure, such as the CloverS
procedure below is being able to compute lub-accelerations. To define and to
compute lub-accelerations, one will use functional WSTS and one will acceler-
ate compositions of functions. Complete WSTS is the framework to define and
compute lub-accelerations.

Definition 6 (Complete WSTS [FG12]). A complete transition system is a
functional transition system S = (S,

F→,≤) where (S,≤) is a continuous dcwo
and every function in F is partial ω-continuous. A complete WSTS is a func-
tional WSTS that is complete as a functional transition system.

Let us remark that complete WSTS are strongly monotonic and that ̂S =
Ideals(S) is always a continuous dcpo [AJ94, Proposition 2.2.22], hence the com-
pletion of a WSTS (resp. a WBTS) is a complete WSTS (resp. a WBTS).

The point in complete WSTS is that one can accelerate loops:

Definition 7 (Lub-Acceleration [FG12]). Let (X,≤) be a dcpo, f : X →
X be partial ω-continuous. The lub-acceleration f∞ : X → X is defined by:
dom f∞ = dom f , and for any x ∈ dom f , if x < f(x) then f∞(x) = lub{fn(x) |
n ∈ N}, else f∞(x) = f(x).

Note that if x ≤ f(x), then f(x) ∈ dom f , and f(x) ≤ f2(x). By induction,
we can show that {fn(x) | n ∈ N} is an increasing sequence, so that the definition
makes sense.

Remark 2. In [FG09b], we define, only for complete WSTS, the clover as the
finite set (not necessarily computable) of maximal elements of the least upper
bounds of the cover: more precisely, the clover CloverS(s0) of the state s0 ∈ S
is Max Lub(CoverS(s0)). Now we may extend the previous definition of Clover
to any WBTS as follows: CloverS(s0)

def= IdealDecomp(CoverS(s0)) where
IdealDecomp(CoverS(s0)) is the canonical ideal decomposi-

tion of CoverS(s0). Then each maximal element in Lub(CoverS(s0)) can be
identified with a maximal ideal in IdealDecomp(CoverS(s0)). Lub-accelerations
in WBTS could be defined for functional complete WBTS.

Definition 8 (∞-Effective [FG12]). An effective complete functional WSTS
S = (S,

F→,≤) is ∞-effective iff every function g∞ is computable, for every
g ∈ F ∗, where F ∗ is the set of all compositions of maps in F .

E.g., the completion of a Petri net is ∞-effective: not only is N
k
ω a wpo, but

every composition of transitions g ∈ F ∗ is of the form g(x) = x + δ, where
δ ∈ Z

k. If x < g(x) then δ ∈ N
k \ {0}. Write xi the ith component of x, it

follows that g∞(x) is the tuple whose ith component is xi if δi = 0, ω otherwise.
Let S be an ∞-effective WSTS, and write A ≤� B iff ↓ A ⊆ ↓B, i.e., iff every

element of A is below some element of B. The following is a simple procedure
which computes the clover of its input s0 ∈ S (when it terminates):

18 A. Finkel

Procedure CloverS(s0) :

1. A ← {s0};
2. while PostS(A)
≤� A do

(a) Choose fairly (see below) (g, a) ∈ F ∗ × A such that a ∈ dom g;
(b) A ← A ∪ {g∞(a)};

3. return Max A;

The reader will find in [FG12] arguments showing that CloverS is well-
defined and all its lines are computable by assumption, provided we make clear
what we mean by fair choice in line (a).

We use a fixpoint test (line 2) that is not in the Karp-Miller algorithm; and
this improvement allows CloverS to terminate in more cases than the Karp-
Miller procedure when it is used for extended Petri nets (for reset Petri nets for
instance, which are a special case of the affine maps above). To decide whether
the current set A, which is always an under-approximation of CloverS(s0), is
the clover, it is enough to decide whether PostS(A) ≤� A.

7 Conclusion and Perspectives

We have made a (partial) survey on WSTS among the tens of papers related to
WSTS. Then we have presented the new (for the verification community) frame-
work of ideals and we have shown how it has been used in recent papers concern-
ing decidability and complexity of different Petri nets extensions. We have also
presented the new definition of Well Behaved Transition Systems, which extends
WSTS, and where coverability is still decidable [BFM16a]. We have recalled
the framework in [FG12] of complete WSTS , and of completions of WSTS, on
which forward reachability analyses can be conducted, using the clover , i.e., the
set of maximal elements of the cover. For complete WSTS, the clover is finite,
describes the cover exactly and it is computed by a simple procedure, CloverS,
for ∞-effective complete WSTS S.

From [BFM16a], one could extend the Clover’s definition and the procedure
CloverS to WBTS. In the future, it would be interesting to investigate all of
the previous questions for WBTS instead of WSTS.

Acknowledgement. I would like to thank Michael Blondin, Jean Goubault-Larrecq
and Pierre McKenzie for fruitful discussions and for having allowed me to use some
parts of common papers.

References

[ABJ98] Abdulla, P., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems
with unbounded, lossy Fifo channels. In: Hu, A.J., Vardi, M.Y. (eds.)
CAV 1898. LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998)

[ACABJ04a] Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using
forward reachability analysis for verification of lossy channel systems.
Formal Methods Syst. Des. 25(1), 39–65 (2004)

The Ideal Theory for WSTS 19

[AČJT00] Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis
of programs with well quasi-ordered domains. Inf. Comput. 160(1–2),
109–127 (2000)

[AČJYK96] Abdulla, P.A., Čerāns, K., Jonsson, B., Yih-Kuen, T.: General decidabil-
ity theorems for infinite-state systems. In: 11th LICS, pp. 313–321 (1996)

[ADB07] Abdulla, P.A., Delzanno, G., Van Begin, L.: Comparing the expressive
power of well-structured transition systems. In: Duparc, J., Henzinger,
T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 99–114. Springer, Heidelberg
(2007)

[ADMN04] Abdulla, P.A., Deneux, J., Mahata, P., Nylén, A.: Forward reachability
analysis of timed Petri nets. In: Lakhnech, Y., Yovine, S. (eds.) FOR-
MATS/FTRTFT 2004. LNCS, vol. 3253, pp. 343–362. Springer, Heidel-
berg (2004)

[AJ93] Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels.
In: Proceedings of the 8th LICS, pp. 160–170 (1993)

[AJ94] Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3,
pp. 1–168. Oxford University Press (1994)

[AL78] Arnold, A., Latteux, M.: Recursivite et cones rationnels fermes par inter-
section. Calcolo 15(4), 381–394 (1978)

[AN00] Abdulla, P.A., Nylén, A.: Better is better than well: on efficient verifica-
tion of infinite-state systems. In: Proceedings of 14th IEEE Symposium,
LICS 2000, pp. 132–140 (2000)

[BDK+12] Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On
the decidability status of reachability and coverability in graph trans-
formation systems. In: Tiwari, A. (ed.) 23rd RTA 2012, Nagoya, Japan,
28 May–2 June 2012. LIPIcs, vol. 15, pp. 101–116. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2012)

[BFHR11] Bonnet, R., Finkel, A., Haddad, S., Rosa-Velardo, F.: Ordinal theory
for expressiveness of well structured transition systems. In: Hofmann, M.
(ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 153–167. Springer, Heidelberg
(2011)

[BFM14] Blondin, M., Finkel, A., McKenzie, P.: Handling infinitely branching
WSTS. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E.
(eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 13–25. Springer, Hei-
delberg (2014)

[BFM16a] Blondin, M., Finkel, A., McKenzie, P.: Well Behaved Transition Systems
(2016, in preparation)

[BFM16b] Blondin, M., Finkel, A., McKenzie, P.: Handling infinitely branching well-
structured transition systems. Inf. Comput. (2016, submitted)

[BG14] Baldan, P., Gorla, D. (eds.): CONCUR 2014. LNCS, vol. 8704. Springer,
Heidelberg (2014)

[BHM15] Badouel, E., Hélouët, L., Morvan, C.: Petri nets with structured data. In:
Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115,
pp. 212–233. Springer, Heidelberg (2015)

[BLP15] Bojanczyk, M., Lasota, S., Potapov, I. (eds.): RP 2015. LNCS, vol. 9328.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24537-9 7

[Bon75] Bonnet, R.: On the cardinality of the set of initial intervals of a partially
ordered set. In: Infinite, Finite Sets: To Paul Erdös on His 60th Birthday,
pp. 189–198 (1975)

http://dx.doi.org/10.1007/978-3-319-24537-9_7

20 A. Finkel

[CFS11] Chambart, P., Finkel, A., Schmitz, S.: Forward analysis and model check-
ing for trace bounded WSTS. In: Kristensen, L.M., Petrucci, L. (eds.)
PETRI NETS 2011. LNCS, vol. 6709, pp. 49–68. Springer, Heidelberg
(2011)

[DFS98] Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidabil-
ity and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.)
ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

[DJS99] Dufourd, C., Jančar, P., Schnoebelen, P.: Boundedness of reset P/T nets.
In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 301–310. Springer, Heidelberg (1999)

[EFM99] Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast proto-
cols. In: 14th LICS, pp. 352–359 (1999)

[EN98] Allen Emerson, E., Namjoshi, K.S.: On model-checking for non-
deterministic infinite-state systems. In: 13th LICS, pp. 70–80 (1998)

[ET43] Erdös, P., Tarski, A.: On families of mutually exclusive sets. Ann. Math.
2(44), 315–329 (1943)

[FFSS11] Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian
and primitive-recursive bounds with Dickson’s lemma. In: 26th Annual
IEEE LICS, Toronto, Ontario, Canada, 21–24 June 2011, pp. 269–278.
IEEE Computer Society (2011)

[FG09a] Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I:
completions. In: Albers, S., Marion, J.-Y. (eds.) 26th Annual STACS
2009. Leibniz International Proceedings in Informatics, vol. 3, pp. 433–
444. Leibniz-Zentrum für Informatik, Freiburg (2009)

[FG09b] Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II:
complete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol.
5556, pp. 188–199. Springer, Heidelberg (2009)

[FG12] Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II:
complete WSTS. Logical Methods Comput. Sci. 8(3:28), 1–35 (2012)

[Fin87] Finkel, A.: A generalization of the procedure of Karp and Miller to well
structured transition systems. In: Ottmann, T. (ed.) ICALP 1987. LNCS,
vol. 267, pp. 499–508. Springer, Heidelberg (1987)

[Fin90] Finkel, A.: Reduction and covering of infinite reachability trees. Inf. Com-
put. 89(2), 144–179 (1990)

[FMP04] Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for
analysing Petri net extensions. Inf. Comput. 195(1–2), 1–29 (2004)

[Fra86] Fräıssé, R.: Theory of relations. Stud. Logic Found. Math. 118, 1–456
(1986)

[FS01] Finkel, A., Schnoebelen, P.: Well-structured transition systems every-
where!. Theoret. Comput. Sci. 256(1–2), 63–92 (2001)

[GHK+03] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott,
D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics
and its Applications, vol. 93. Cambridge University Press (2003)

[GLS16] Goubault-Larrecq, J., Schmitz, S.: Deciding piecewise testable separabil-
ity for regular tree languages. In: Calamoneri, T., Gorla, D., Rabani, Y.,
Sangiorgi, D., Mitzenmacher, M. (eds.) 43rd ICALP 2016, Proceedings
Leibniz International Proceedings in Informatics, Rome, Italy, 12–15 July
2016, pp. 97:1–97:14. Leibniz-Zentrum für Informatik (2016)

The Ideal Theory for WSTS 21

[GRB04] Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge, and check:
new algorithms for the coverability problem of WSTS. In: Lodaya,
K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 287–298.
Springer, Heidelberg (2004)

[GRB07] Geeraerts, G., Raskin, J.-F., Van Begin, L.: Well-structured languages.
Acta Inf. 44(3–4), 249–288 (2007)

[GRvB06a] Ganty, P., Raskin, J.-F., Van Begin, L.: A complete abstract interpreta-
tion framework for coverability properties of WSTS. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 49–64. Springer,
Heidelberg (2006)

[GRvB06b] Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge and check:
new algorithms for the coverability problem of WSTS. J. Comput. Syst.
Sci. 72(1), 180–203 (2006)

[GRvB07] Geeraerts, G., Raskin, J.-F., Van Begin, L.: On the efficient computation
of the minimal coverability set for Petri nets. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp.
98–113. Springer, Heidelberg (2007)

[HLL+16] Hofman, P., Lasota, S., Lazic, R., Leroux, J., Schmitz, S., Totzke, P.: Cov-
erability trees for Petri nets with unordered data. In: Jacobs, B., Löding,
C. (eds.) FOSSACS 2016. LNCS, vol. 9634, pp. 445–461. Springer, Hei-
delberg (2016). doi:10.1007/978-3-662-49630-5 26

[HMM14] Hüchting, R., Majumdar, R., Meyer, R.: Bounds on mobility. In: Baldan
and Gorla [BG14], pp. 357–371

[HP07] Haddad, S., Poitrenaud, D.: Recursive Petri nets. Acta Inf. 44(7–8), 463–
508 (2007)

[HSS12] Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complex-
ity of timed-arc petri nets, data nets, and other enriched nets. In: 27th
Annual IEEE LICS, Dubrovnik, Croatia, 25–28 June 2012, pp. 355–364.
IEEE Computer Society (2012)

[Jan99] Jančar, P.: A note on well quasi-orderings for powersets. Inf. Process.
Lett. 72(5–6), 155–160 (1999)

[KM69] Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst.
Sci. 3(2), 147–195 (1969)

[KS96] Kouchnarenko, O., Schnoebelen, P.: A model for recursive-parallel pro-
grams. Electron. Notes Theor. Comput. Sci. 5, 30 (1996)

[KS14] König, B., Stückrath, J.: A general framework for well-structured graph
transformation systems. In: Baldan and Gorla [BG14], pp. 467–481

[Las16] Lasota, S.: Decidability border for Petri nets with data: WQO dichotomy
conjecture. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016.
LNCS, vol. 9698, pp. 20–36. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-39086-4 3

[Laz13] Lazić, R.: The reachability problem for vector addition systems with a
stack is not elementary. CoRR, abs/1310.1767 (2013)

[LNO+07] Lazić, R.S., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.B.:
Nets with tokens which carry data. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 301–320. Springer, Heidelberg (2007)

[LS15a] Lazić, R., Schmitz, S.: The ideal view on rackoff’s coverability technique.
In: Bojanczyk et al. [BLP15], pp. 76–88

[LS15b] Leroux, J., Schmitz, S.: Demystifying reachability in vector addition sys-
tems. In: 30th Annual ACM/IEEE LICS, Kyoto, Japan, 6–10 July 2015,
pp. 56–67. IEEE Computer Society (2015)

http://dx.doi.org/10.1007/978-3-662-49630-5_26
http://dx.doi.org/10.1007/978-3-319-39086-4_3
http://dx.doi.org/10.1007/978-3-319-39086-4_3

22 A. Finkel

[LS16a] Lazić, R., Schmitz, S.: The complexity of coverability in -Petri nets. In:
LICS 2016. ACM Press, New York (2016)

[LS16b] Leroux, J., Schmitz, S.: Ideal decompositions for vector addition sys-
tems (invited talk). In: Ollinger, N., Vollmer, H. (eds.) 33rd STACS 2016,
Orléans, France, 17–20 February 2016. LIPIcs, vol. 47, pp. 1:1–1:13 (2016)

[LST15a] Leroux, J., Sutre, G., Totzke, P.: On boundedness problems for pushdown
vector addition systems. In: Bojanczyk et al. [BLP15], pp. 101–113

[LST15b] Leroux, J., Sutre, G., Totzke, P.: On the coverability problem for push-
down vector addition systems in one dimension. In: Halldórsson, M.M.,
Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS,
vol. 9135, pp. 324–336. Springer, Heidelberg (2015)

[Mar94] Marcone, A.: Foundations of BQO theory. Trans. Am. Math. Soc. 345(2),
641–660 (1994)

[May00] Mayr, R.: Process rewrite systems. Inf. Comput. 156(1–2), 264–286
(2000)

[Mey08] Meyer, R.: On boundedness in depth in the pi-calculus. In: Ausiello, G.,
Karhumäki, J., Mauri, G., Luke Ong, C.-H. (eds.) TCS 2008. IFIP, vol.
273, pp. 477–489. Springer, Heidelberg (2008)

[Rad54] Rado, R.: Partial well-ordering of sets of vectors. Mathematika 1, 89–95
(1954)

[RdF07] Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in
Petri net systems. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS,
vol. 4546, pp. 402–422. Springer, Heidelberg (2007)

[RHB+10] Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome,
D., Wibel, S.: On languages piecewise testable in the strict sense. In:
Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10/11. LNCS, vol. 6149,
pp. 255–265. Springer, Heidelberg (2010)

[RMdF11] Rosa-Velardo, F., Martos-Salgado, M., de Frutos-Escrig, D.: Accelera-
tions for the coverability set of Petri nets with names. Fundam. Inform.
113(3–4), 313–341 (2011)

[RS04] Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture.
J. Comb. Theory Ser. B 92(2), 325–357 (2004)

[SS11] Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Hig-
man’s Lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part II. LNCS, vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

[Val78] Valk, R.: Self-modidying nets, a natural extension of Petri nets. In:
Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 464–476.
Springer, Heidelberg (1978)

[WZH10] Wies, T., Zufferey, D., Henzinger, T.A.: Forward analysis of depth-
bounded processes. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014,
pp. 94–108. Springer, Heidelberg (2010)

[ZWH12] Zufferey, D., Wies, T., Henzinger, T.A.: Ideal abstractions for well-
structured transition systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 445–460. Springer, Heidelberg (2012)

Rare Events for Statistical Model Checking
an Overview

Axel Legay, Sean Sedwards, and Louis-Marie Traonouez(B)

Inria Rennes – Bretagne Atlantique, Rennes, France
louis-marie.traonouez@inria.fr

Abstract. This invited paper surveys several simulation-based approa-
ches to compute the probability of rare bugs in complex systems. The
paper also describes how those techniques can be implemented in the
professional toolset Plasma.

1 Introduction

Model checking offers the possibility to automatically verify the correctness of
complex systems or detect bugs [7]. In many practical applications it is also
useful to quantify the probability of a property (e.g., system failure), so the
concept of model checking has been extended to probabilistic systems [2]. This
form is frequently referred to as numerical model checking.

To give results with certainty, numerical model checking algorithms effec-
tively perform an exhaustive traversal of the states of the system. In most
real applications, however, the state space is intractable, scaling exponentially
with the number of independent state variables (the ‘state explosion problem’
[6]). Abstraction and symmetry reduction may make certain classes of systems
tractable, but these techniques are not generally applicable. This limitation has
prompted the development of statistical model checking (SMC), which employs
an executable model of the system to estimate the probability of a property from
simulations.

SMC is a Monte Carlo method which takes advantage of robust statistical
techniques to bound the error of the estimated result (e.g., [22,26]). To quantify
a property it is necessary to observe the property, while increasing the number of
observations generally increases the confidence of the estimate. Rare properties
are often highly relevant to system performance (e.g., bugs and system failure are
required to be rare) but pose a problem for statistical model checking because
they are difficult to observe. Fortunately, rare event techniques such as impor-
tance sampling [17,19] and importance splitting [18,19,24] may be successfully
applied to statistical model checking.

Importance sampling and importance splitting have been widely applied to
specific simulation problems in science and engineering. Importance sampling
works by estimating a result using weighted simulations and then compensating
for the weights. Importance splitting works by reformulating the rare probability
as a product of less rare probabilities conditioned on levels that must be achieved.
c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 23–35, 2016.
DOI: 10.1007/978-3-319-45994-3 2

24 A. Legay et al.

In this invited paper, we summarize our contributions on importance sam-
pling and splitting. Then, we discuss their implementation within the Plasma
toolset.

2 Command Based Importance Sampling

Importance sampling works by simulating a probabilistic system under a
weighted (importance sampling) measure that makes a rare property more likely
to be seen [16]. It then compensates the results by the weights, to estimate
the probability under the original measure. When simulating Markov Chains,
this compensation is typically performed on the fly with almost no additional
overhead.

Given a set of finite traces ω ∈ Ω and a function z : Ω → {0, 1} that returns 1
iff a trace satisfies some property, the importance sampling estimator is given by

N
∑

i=1

z(ωi)
df(ωi)
df ′(ωi)

.

N is the number of simulation traces ωi generated under the importance sam-
pling measure f ′, while f is the original measure. df

df ′ is the likelihood ratio.
For importance sampling to be effective it is necessary to define a “good”

importance sampling distribution: (i) the property of interest must be seen fre-
quently in simulations and (ii) the distribution of the simulation traces that
satisfy the property in the importance sampling distribution must be as close
as possible to the normalised distribution of the same traces in the original
distribution. Failure to consider both (i) and (ii) can result in underestimated
probability with overestimated confidence.

Since the main motivation of importance sampling is to reduce the compu-
tational burden, the process of finding a good importance sampling distribution
must maintain the scaling advantage of SMC and, in particular, should not
iterate over all the states or transitions of the system. We therefore consider
parametrised importance sampling distributions, where our parametrisation is
over the syntax of stochastic guarded commands, a common low level modelling
language of probabilistic systems1.

Each command has the form (guard, rate, action). The guard enables the
command and is a predicate over the state variables of the model. The rate is
a function from the state variables to R>0, defining the rate of an exponential
distribution. The action is an update function that modifies the state variables.
In general, each command defines a set of semantically linked transitions in the
resulting Markov chain.

The semantics of a stochastic guarded command is a Markov jump process.
The semantics of a parallel composition of commands is a system of concurrent
Markov jump processes. Sample execution traces can be generated by discrete-
event simulation. In any state, zero or more commands may be enabled. If no com-
mands are enabled the system is in a halting state. In all other cases the enabled
1 http://www.prismmodelchecker.org/manual/ThePRISMLanguage/.

http://www.prismmodelchecker.org/manual/ThePRISMLanguage/

Rare Events for Statistical Model Checking an Overview 25

commands “compete” to execute their actions: sample times are drawn from the
exponential distributions defined by their rates and the shortest time “wins”.

2.1 The Cross-Entropy Method

The “cross-entropy method” [25] is an optimisation technique based on minimis-
ing the Kullback-Leibler divergence between a parametrised importance sam-
pling distribution and the theoretically optimum distribution, without having
an explicit description of the latter.

Given a system whose distribution is described by parametrised measure
f : Ω × Λ → R, where Λ is the set of possible vectors of parameters, using the
cross-entropy method it is possible to construct the following iterative process
that converges to an estimate of λ∗, the optimal vector of parameters:

λ(j+1) = arg max
λ

N
∑

i=1

z(ω(j)
i)L(j)(ω(j)

i) log df(ω(j)
i , λ) (1)

N is the number of simulation runs generated on each of the j iterations, λ(j)

is the jth set of estimated parameters, L(j)(ω) = df(ω, μ)/df(ω, λ(j)) is the
jth likelihood ratio (μ is the original vector of parameters), ω

(j)
i is the ith path

generated using f(·, λ(j)) and df(ω(j)
i , λ) is the probability of path ω

(j)
i under

the distribution f(·, λ(j)).

2.2 Cross-Entropy Minimisation Algorithm

We consider a system of n stochastic guarded commands with vector of rate func-
tions η = (η1, . . . , ηn) and corresponding vector of parameters λ = (λ1, . . . , λn).
In any given state xs, reached after s transitions, the probability that command
k ∈ {1 . . . n} is chosen is given by

λkηk(xs)
〈η(xs), λ〉 ,

where η is explicitly parametrised by xs to emphasise its state dependence and
the notation 〈·, ·〉 denotes a scalar product. Let Uk(ω) be the number of transi-
tions of type k occurring in ω. We therefore have

df(ω, λ) =
n

∏

k

⎛

⎝(λk)Uk(ω)
∏

s∈Jk(ω)

ηk(xs)
〈η(xs), λ〉

⎞

⎠ .

We define η
(i)
k (xs) and η(i)(xs) as the respective values of ηk and η functions

in state xs of the ith trace. We substitute the previous expressions in the cross-
entropy estimator (1) and for compactness substitute zi = z(ωi), ui(k) = Uk(ωi)
and li = L(j)(ωi) to get

26 A. Legay et al.

arg max
λ

N
∑

i=1

lizi log
n

∏

k

⎛

⎜

⎝λ
ui(k)
k

∏

s∈J
(i)
k

η
(i)
k (xs)

〈η(i)(xs), λ〉

⎞

⎟

⎠

= arg max
λ

N
∑

i=1

n
∑

k

lizi

⎛

⎜

⎝ui(k) log(λk) +
∑

s∈J
(i)
k

log(η(i)
k (xs)) −

∑

s∈J
(i)
k

log(〈η(i)(xs), λ〉)

⎞

⎟

⎠ (2)

We denote the argument of the arg max in (2) as F (λ) and derive the following
partial differential equation:

∂F

∂λk
(λ) = 0 ⇔

N
∑

i=1

lizi

⎛

⎝

ui(k)
λk

−
|ωi|
∑

s=1

η
(i)
k (xs)

〈η(i)(xs), λ〉

⎞

⎠ = 0 (3)

The quantity |ωi| is the length of path ωi.

Theorem 1 ([12]). A solution of (3) is almost surely a unique maximum, up to
a normalising scalar.

The fact that there is a unique optimum makes it possible to use (3) to
construct an iterative process that converges to λ∗:

λ
(j+1)
k =

∑N
i=1 liziui(k)

∑N
i=1 lizi

∑|ωi|
s=1

η
(i)
k (xs)

〈η(i)(xs),λ(j)〉

. (4)

A rare property does not imply that good parameters are rare, hence (4) may
be initialised by selecting vectors of parameters at random until one is found
that allows some traces that satisfy the property to be observed. An alternative
initialisation strategy is to simply choose the outgoing transition from every
state uniformly at random from those that are enabled.

3 Importance Sampling for Timed Systems

The foregoing approach considers continuous time in the context of continuous
time Markov chains (CTMC), where time delays in each state are sampled from
exponential distributions. To reason on the stochastic performance of complex
timed systems, the model of Stochastic Timed Automata (STA) [8] extends
Timed Automata (TA) [1] with both exponential and continuous distributions.
Work on closely related models [21] suggests that tractable analytical solutions
exist only for special cases. Monte Carlo approaches provide an approximative
alternative to analysis, but they incur the problem of rare events.

Rare Events for Statistical Model Checking an Overview 27

The added complexity of the STA model prevents a direct application of our
approach for Markov chains, however in recent work we are applying impor-
tance sampling to STA by taking advantage of the symbolic data structures
used to analyse TA. Our approach is to construct a simulation kernel based on a
“zone graph” representation of an STA that excludes zones where the property
fails. The probability corresponding to these “dead ends” is redistributed to the
adjacent zones in proportion to the original probability of reaching them. The
calculation is performed on the fly during simulation, by numerically solving an
integral whose polynomial form is known a priori. All simulated traces reach
goal states, while the change of measure is guaranteed by construction to reduce
the variance of estimates with respect to the standard Monte Carlo estimator.
Our early experimental results demonstrate substantial reductions of variance.

4 Importance Splitting

The earliest application of importance splitting is perhaps that of [17,18], where
it is used to calculate the probability that neutrons pass through certain shielding
materials. This physical example provides a convenient analogy for the more
general case. The system comprises a source of neutrons aimed at one side of a
shield of thickness T . The distance traveled by a neutron in the shield defines
a monotonic sequence of levels l0 = 0 < l1 < l2 < . . . < ln = T , such that
reaching a given level implies having reached all the lower levels. While the overall
probability of passing through the shield is small, the probability of passing from
one level to another can be made arbitrarily close to 1 by reducing the distance
between levels. Denoting the abstract level of a neutron as l, the probability of a
neutron reaching level li can be expressed as P(l ≥ li) = P(l ≥ li | l ≥ li−1)P(l ≥
li−1). Defining γ = P(l ≥ lm) and P(l ≥ l0) = 1, we get

γ =
m
∏

i=1

P(l ≥ li | l ≥ li−1). (5)

Each term of (5) is necessarily greater than or equal to γ, making their estimation
easier.

The general procedure is as follows. At each level a number of simulations
are generated, starting from a distribution of initial states that corresponds to
reaching the current level. It starts by estimating P(l ≥ l1|l ≥ l0), where the dis-
tribution of initial states for l0 is usually given (often a single state). Simulations
are stopped as soon as they reach the next level; the final states becoming the
empirical distribution of initial states for the next level. Simulations that do not
reach the next level (or reach some other stopping criterion) are discarded. In
general, P(l ≥ li|l ≥ li−1) is estimated by the number of simulation traces that
reach li, divided by the total number of traces started from li−1. Simulations
that reached the next level are continued from where they stopped. To avoid a
progressive reduction of the number of simulations, the generated distribution of
initial states is sampled to provide additional initial states for new simulations,
thus replacing those that were discarded.

28 A. Legay et al.

4.1 Score Function

The concept of levels can be generalised to arbitrary systems and properties in
the context of SMC, treating l and li in (5) as values of a score function over the
model-property product automaton. Intuitively, a score function discriminates
good paths from bad, assigning higher scores to paths that more nearly satisfy
the overall property. Since the choice of levels is crucial to the effectiveness of
importance splitting, various ways to construct score functions from a temporal
logic property are proposed in [13].

Formally, given a set of finite trace prefixes ω ∈ Ω, an ideal score function
S : Ω → R has the characteristics S(ω) > S(ω′) ⇐⇒ P(|= ϕ | ω) > P(|= ϕ |
ω′), where P(|= ϕ | ω) is the probability of eventually satisfying ϕ given prefix
ω. Intuitively, ω has a higher score than ω′ iff there is more chance of satisfying
ϕ by continuing ω than by continuing ω′. The minimum requirement of a score
function is S(ω) ≥ sϕ ⇐⇒ ω |= ϕ, where sϕ is an arbitrary value denoting that
ϕ is satisfied. Any trace that satisfies ϕ must have a score of at least sϕ and any
trace that does not satisfy ϕ must have a score less than sϕ. In what follows we
assume that (5) refers to scores.

4.2 Fixed Levels Algorithm

The fixed level algorithm follows from the general procedure previously pre-
sented. Its advantages are that it is simple, it has low computational overhead
and the resulting estimate is unbiased. Its disadvantage is that the levels must
often be guessed by trial and error – adding to the overall computational cost.

In Algorithm 1, γ̃ is an unbiased estimate (see, e.g., [9]). Furthermore, from
Proposition 3 in [4], we can deduce the following (1 − α) confidence interval:

CI =
[

γ̂/

(

1 +
zασ√

n

)

, γ̂/

(

1 − zασ√
n

)]

with σ2 ≥
m

∑

i=1

1 − γi

γi
. (6)

Confidence is specified via zα, the 1 − α/2 quantile of the standard normal
distribution, while n is the per-level simulation budget. We infer from (6) that
for a given γ the confidence is maximised by making both the number of levels
m and the simulation budget n large, with all γi equal.

4.3 Adaptive Levels Algorithms

In general, however, score functions will not equally divide the conditional prob-
abilities of the levels, as required by (6) to minimise variance. In the worst
case, one or more of the conditional probabilities will be too low for the algo-
rithm to pass between levels. Finding good or even reasonable levels by trial and
error may be computationally expensive and has prompted the development of
adaptive algorithms that discover optimal levels on the fly [5,13,14]. Instead
of pre-defining levels, the user specifies the proportion of simulations to retain

Rare Events for Statistical Model Checking an Overview 29

Algorithm 1. Fixed levels
Let (τk)1≤k≤m be the sequence of thresholds with τm = τϕ

Let stop be a termination condition
∀j ∈ {1, . . . , n}, set prefix ω̃1

j = ε (empty path)
for 1 ≤ k ≤ m do

∀j ∈ {1, . . . , n}, using prefix ω̃k
j , generate path ωk

j until (S(ωk
j) ≥ τk) ∨ stop

Ik = {∀j ∈ {1, . . . , n} : S(ωk
j) ≥ τk}

γ̃k = |Ik|
n

∀j ∈ Ik, ω̃k+1
j = ωk

j

∀j /∈ Ik, let ω̃k+1
j be a copy of ωk

i with i ∈ Ik chosen uniformly randomly

γ̃ =
∏m

k=1 γ̃k

after each iteration. This proportion generally defines all but the final conditional
probability in (5).

Adaptive importance splitting algorithms first perform a number of simu-
lations until the overall property is decided, storing the resulting traces of the
model-property automaton. Each trace induces a sequence of scores and a corre-
sponding maximum score. The algorithm finds a level that is less than or equal
to the maximum score of the desired proportion of simulations to retain. The
simulations whose maximum score is below this current level are discarded. New
simulations to replace the discarded ones are initialised with states correspond-
ing to the current level, chosen at random from the retained simulations. The
new simulations are continued until the overall property is decided and the pro-
cedure is repeated until a sufficient proportion of simulations satisfy the overall
property.

Algorithm 2 is an optimized adaptive algorithm that rejects a minimum num-
ber of simulations at each level (ideally 1, the one with a minimum score). This
maximises the confidence for a given score function.

5 Plasma Lab Implementation

Plasma Lab [3] is a modular platform for statistical model-checking. The tool
offers a series of SMC algorithms, included advanced techniques for rare events
simulation, distributed SMC, non-determinism, and optimization. They are used
with several modeling formalisms and simulators. The main difference between
Plasma Lab and other SMC tools is that Plasma Lab proposes an API abstrac-
tion of the concepts of stochastic model simulator, property checker (monitoring)
and SMC algorithm. In other words, the tool has been designed to be capable
of using external simulators, input languages, or SMC algorithms. This not only
reduces the effort of integrating new algorithms, but also allows us to create
direct plug-in interfaces with industry used specification tools. The latter being
done without using extra compilers.

Plasma Lab architecture is illustrated by the graph in Fig. 1. The core of
Plasma Lab is a light-weight controller that manages the experiments and the

30 A. Legay et al.

Algorithm 2. Optimized adaptive levels
Let τϕ = min {S(ω) | ω |= ϕ} be the minimum score of paths that satisfy ϕ
k = 1
∀j ∈ {1, . . . , n}, generate path ωk

j

repeat

Let T =
{
S(ωk

j), ∀j ∈ {1, . . . , n}}
τk = min T
τk = min(τk, τϕ)
Ik = {j ∈ {1, . . . , n} : S(ωk

j) > τk}
γ̃k = |Ik|

n

∀j ∈ Ik, ωk+1
j = ωk

j

for j /∈ Ik do
choose uniformly randomly l ∈ Ik

ω̃k+1
j = max

|ω|

{
ω ∈ pref (ωk

l) : S(ω) < τk

}

generate path ωk+1
j with prefix ω̃k+1

j

m = k
k = k + 1

until τk > τϕ;
γ̃ =
∏m

k=1 γ̃k

Fig. 1. Plasma Lab architecture.

distribution mechanism. It implements an API that allows to control the exper-
iments either through user interfaces or through external tools. It loads three
types of plugins: 1. algorithms, 2. checkers, and 3. simulators. These plugins com-
municate with each other and with the controller through the API. The tool
currently supports the following plugins for modeling language:

– Reactive Module Language (RML), the input language of the tool Prism for
Markov chains models.

– Biological language for writing chemical reactions.

Rare Events for Statistical Model Checking an Overview 31

– Simulink diagrams, using an interface to control the simulator of Matlab/
Simulink

– SystemC models, using an external tool to instrument SystemC models and
generate a C++ executable used by the plugin.

5.1 Importance Sampling Implementation

We have implemented importance sampling for the RML, allowing the user
to specify sampling parameters that modify transition rates. These rates are
automatically used by Plasma Lab SMC algorithms to compute probabilities or
rewards using the new sampling measure.

We have also implemented the cross-entropy minimization technique to iter-
atively find an optimal parameters distribution. The initial parameters distrib-
ution can be determined by selecting transitions uniformly at random.

5.2 Importance Splitting Implementation

Importance splitting algorithms require the user to specify a score function over
the model-property product automaton. This automaton is usually hidden in the
implementation of the checker plugin. Therefore Plasma Lab includes a specific
checker plugin for importance splitting that facilitates the construction of score
functions. The plugin allows to write small observers automata to check proper-
ties over traces and compute the score function. These observers are written with
a syntax similar to the RML, using the notion of ‘guarded commands’ [10] with
sequential semantics. This does not restrict the type of model being analyzed
that can be different than RML.

These observers implement a subset of the BLTL logic presented in [15].
This subset ensures that the size of the property automaton does not depend on
the bounds of temporal operators. As importance splitting algorithms require
to restart simulations from random states (including the state of the property
automaton), limiting the memory needed by this automaton facilitates the dis-
tribution of the simulations over network computer grids. Finally the tool allows
to translate BLTL properties from this subset into observers. The user needs
only to edit the produced observers to compute an adequate score function for
the property.

5.3 Distributed SMC Algorithms

Simple Monte Carlo SMC may be efficiently distributed because once initialised,
simulations are executed independently and the result is communicated at the
end with just a single bit of information (i.e., whether the property was satisfied
or not). Importance sampling and the cross entropy algorithms can be distributed
as easily.

By contrast, the simulations of importance splitting are dependent because
scores generated during the course of each simulation must be processed cen-
trally. The amount of central processing can be minimised by reducing the num-
ber of levels, but this generally reduces the variance reduction performance.

32 A. Legay et al.

In [15] we propose a distributed fixed level importance splitting algorithm. It
benefits from our welterweight observers to share states between the clients
responsible for the simulations and the server responsible for dispatching the
simulations. We also show that a distributed adaptive algorithms would be inef-
ficient because the number of levels is too high and consequently the number of
simulations between each level is too low to benefit from the distribution.

Alternatively, entire instances of the importance splitting algorithms may
be distributed and their estimates averaged, with each instance using a propor-
tionally reduced simulation budget. This is the approach used in Plasma Lab to
distribute importance splitting algorithms, but note that if the budget is reduced
too far, the algorithm will fail to pass from one level to the next (because no
trace achieves a high enough score) and no valid estimate will be produced.

5.4 Importance Sampling Results

Repair Model. We first apply our cross-entropy minimisation algorithm to a
repair model from [23], using N = 10000 simulations per iteration. The sys-
tem comprises six types of subsystems containing (5, 4, 6, 3, 7, 5) components
that may fail independently. The system’s evolution begins with no failures
and with various probabilistic rates the components fail and are repaired.
The respective failure and repair rates are (2.5ε, ε, 5ε, 3ε, ε, 5ε), ε = 0.001, and
(1.0, 1.5, 1.0, 2.0, 1.0, 1.5). Each subsystem type is modelled by two guarded com-
mands: one for failure and one for repair. The property under investigation is the
probability of a complete failure of a subsystem (i.e., the failure of all compo-
nents of one type), given an initial condition of no failures. This can be expressed
in temporal logic as Pr[X(¬init Ufailure)].

Figure 2 plots the estimated probability and sample variance during the
course of the algorithm, superimposed on a grey line denoting the true prob-
ability calculated by PRISM. The long term average agrees well with the true
value (an error of -1.7 %, based on an average excluding the first two estimates).
Without importance sampling we expect the variance of probability estimates of
rare events to be approximately equal to the probability, hence Fig. 2 suggests
that our importance sampling parameters provide a variance reduction of more
than 105.

Chemical System. We next consider a chemically reacting system of five molec-
ular species (A, B, C, D, E) modelled by three guarded commands with corre-
spondingly named variables:

(A > 0 ∧ B > 0, A × B,A ← A − 1;B ← B − 1;C ← C + 1)
(C > 0, C, C ← C − 1;D ← D + 1)
(D > 0,D,D ← D − 1;E ← E + 1)

When simulated, A and B tend to combine rapidly to form C, which peaks
before decaying slowly to D. The production of D also peaks, while E rises
monotonically.

Rare Events for Statistical Model Checking an Overview 33

0 5 10 15 20

Iteration

10
−1

2
10

− 9
10

− 6

Probability

Variance

Fig. 2. Repair model.

970 975 980 985 990 995

x

P
ro
ba

bi
lit
y

(i)

(ii)

10
−2

8
10

−1
8

10
−8

460 465 470 475 480 485

y

Fig. 3. Chemical system.

With an initial vector of values (1000, 1000, 0, 0, 0), we use N = 1000 simula-
tions per iteration to estimate the probabilities of the following rare properties:
(i) F3000 C ≥ x, x ∈ {970, 975, 980, 985, 990, 995} and (ii) F3000 D ≥ y, y ∈
{460, 465, 470, 475, 480, 485}. We see from the results plotted in Fig. 3 that it is
possible to estimate extremely low probabilities with very few simulations. Note
that although the model is intractable to numerical analysis, we have verified
the estimates via independent simulation experiments.

5.5 Importance Splitting Results

We provide experimental results of two case-studies analysed with Plasma Lab
importance splitting algorithms. For each model we performed a number of exper-
iments to compare the performance of the fixed and adaptive importance splitting
algorithms with and without distribution, using different simulation budgets and
levels. Our results are illustrated in the form of empirical cumulative probability
distributions of 100 estimates, noting that a perfect (zero variance) estimator dis-
tribution would be represented by a single step. The probabilities we estimate are
all close to 10−6 and are marked on the figures with a vertical line. Since we are
not able to use numerical techniques to calculate the true probabilities, we use the
average of 200 low variance estimates as our best overall estimate.

As a reference, we applied the adaptive algorithm to each model using a
single computational thread. We chose parameters to maximise the number of
levels and thus minimise the variance for a given score function and budget.
The resulting distributions, sampled at every tenth percentile, are plotted with
circular markers in the figures. Over these points we superimpose the results of
applying a single instance of the fixed level algorithm with just a few levels. We
also superimpose the average estimates of five parallel threads running the fixed
level algorithm, using the same levels (Figs. 4 and 5).

Leader Election. Our leader election case study is based on the Prism model
of the synchronous leader election protocol of [11]. With N = 20 processes and

34 A. Legay et al.

Fig. 4. Leader election. Fig. 5. Dining philosophers.

K = 6 probabilistic choices the model has approximately 1.2 × 1018 states. We
consider the probability of the property G420¬elected , where elected denotes the
state where a leader has been elected. Our chosen score function uses the time
bound of the G operator to give nominal scores between 0 and 420. The model
constrains these to only 20 actual levels (some scores are equivalent with respect
to the model and property), but with evenly distributed probability. For the
fixed level algorithm we use scores of 70, 140, 210, 280, 350 and 420.

Dining Philosophers. Our dining philosophers case study extends the Prism
model of the fair probabilistic protocol of [20]. With 150 philosophers our model
contains approximately 2.3 × 10144 states. We consider the probability of the
property F30Phil eats, where Phil is the name of an arbitrary philosopher. The
adaptive algorithm uses the heuristic score function described in [14], which
includes the five logical levels used by the fixed level algorithm. Between these
levels the heuristic favours short paths, based on the assumption that as time
runs out the property is less likely to be satisfied.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. Representation and Mind
Series. The MIT Press, Cambridge (2008)

3. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, distrib-
utable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013)

4. Cérou, F., Del Moral, P., Furon, T., Guyader, A.: Sequential Monte Carlo for rare
event estimation. Stat. Comput. 22, 795–808 (2012)

5. Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis. Stoch.
Anal. Appl. 25, 417–443 (2007)

6. Clarke, E., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and
debugging. Commun. ACM 52(11), 74–84 (2009)

Rare Events for Statistical Model Checking an Overview 35

7. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

9. Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Sys-
tems with Applications. Probability and Its Applications. Springer, New York
(2004)

10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

11. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput.
88(1), 60–87 (1990)

12. Jegourel, C., Legay, A., Sedwards, S.: Cross-entropy optimisation of impor-
tance sampling parameters for statistical model checking. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 327–342. Springer, Heidelberg
(2012)

13. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 576–591. Springer, Heidelberg (2013)

14. Jegourel, C., Legay, A., Sedwards, S.: An Effective Heuristic for Adaptive Impor-
tance Splitting in Statistical Model Checking. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part II. LNCS, vol. 8803, pp. 143–159. Springer, Heidelberg (2014)

15. Jegourel, C., Legay, A., Sedwards, S., Traonouez, L.-M.: Distributed verification of
rare properties using importance splitting observers. In: ECEASST, vol. 72 (2015)

16. Kahn, H.: Stochastic (Monte Carlo) attenuation analysis. Technical report P-88,
Rand Corporation, July 1949

17. Kahn, H.: Random sampling (Monte Carlo) techniques in neutron attenuation
problems. Nucleonics 6(5), 27 (1950)

18. Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
In: Applied Mathematics. Series 12, vol. 5. National Bureau of Standards (1951)

19. Kahn, H., Marshall, A.W.: Methods of reducing sample size in Monte Carlo com-
putations. Oper. Res. 1(5), 263–278 (1953)

20. Lehmann, D., Rabin, M.O.: On the advantage of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In: Proceedings of the 8th
Annual Symposium on Principles of Programming Languages, pp. 133–138 (1981)

21. Maler, O., Larsen, K.G., Krogh, B.H.: On zone-based analysis of duration proba-
bilistic automata. In: 12th International Workshop on Verification of Infinite-State
Systems (INFINITY), pp. 33–46 (2010)

22. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10, 29–35 (1959)

23. Ridder, A.: Importance sampling simulations of markovian reliability systems using
cross-entropy. Ann. Oper. Res. 134, 119–136 (2005)

24. Rosenbluth, M.N., Rosenbluth, A.W.: Monte Carlo calculation of the average
extension of molecular chains. J. Chem. Phys. 23(2) (1955)

25. Rubinstein, R.: The cross-entropy method for combinatorial and continuous opti-
mization. In: Methodology and Computing in Applied Probability, vol. 1, pp. 127–
190. Kluwer Academic (1999)

26. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–
186 (1945)

On the Complexity of Resource-Bounded Logics

Natasha Alechina1, Nils Bulling2(B), Stephane Demri3, and Brian Logan1

1 University of Nottingham, Nottingham, UK
2 TU Delft, Delft, Netherlands

n.bulling@tudelft.nl
3 LSV, CNRS, ENS Cachan, Cachan, France

Abstract. We revisit decidability results for resource-bounded logics
and use decision problems for vector addition systems with states (VASS)
to characterise the complexity of (decidable) model-checking problems.
We show that the model-checking problem for the logic RB±ATL is
2exptime-complete by using recent results on alternating VASS. In addi-
tion, we establish that the model-checking problem for RBTL is decid-
able and has the same complexity as for RBTL∗ (the extension of RBTL
with arbitrary path formulae), namely expspace-complete, proving a
new decidability result as a by-product of the approach. Finally, we
establish that the model-checking problem for RB±ATL∗ is decidable
by a reduction to parity games, and show how to synthesise values for
resource parameters.

1 Introduction

Resource-bounded logics [2,3,10–12,29] extend alternating-time temporal logic
(ATL) [5] by adding transitions that produce and consume resources to the
models. As shown in [2], the introduction of implicit counters in the models
(i.e. variables interpreted by natural numbers) and the ability to quantify over
strategies for a given set of agents can lead to undecidability, or decidability with
a very high worst-case upper bound on the complexity of the model checking
problem.

The nature of the strategy modalities means that reasoning about resources
has similarities to the analysis of runs of vector addition systems with states
(a.k.a. VASS) [27], and more specifically to games on VASS, see e.g. [9]. In
this paper, we exploit results on VASS in order to analyse the model-checking
problem for resource-bounded logics. Model-checking problems on VASS based
on temporal logics and games are not always decidable, or at least quite dif-
ficult to solve, but sharp results exist. Temporal logics on VASS often lead to
undecidable model-checking problems, see e.g. [17,18], and this is more com-
mon with branching-time temporal logics such as CTL [18], or when the atomic
formulae can state properties about the counter values [22]. However, there are
exceptions. For example, CTL model-checking on one-counter VASS is pspace-
complete [19,32] (see also [34]). Similarly, the control-state repeated reachability
problem for VASS is shown to be decidable in [23], and this is generalised to full
c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 36–50, 2016.
DOI: 10.1007/978-3-319-45994-3 3

On the Complexity of Resource-Bounded Logics 37

LTL (for which the atomic formulae are exactly control states) in [21], where the
model-checking problem for LTL on VASS is shown to be expspace-complete.
Also in [23], a strict fragment of LTL restricted to the “infinitely often” temporal
operator GF and atomic formulae stating properties on counter values is shown
decidable by a reduction into the reachability problem for VASS.

As far as games for VASS are concerned, the situation is even less encour-
aging. Two-player games on VASS in which each player can freely update the
counter values are undecidable, even with simple winning conditions such as
the reachability of a given control state [9]. However, asymmetric VASS games
in which at most one player can freely update the counter values and where
the winning conditions are simple, are decidable [31]. In addition, the game
on asymmetric VASS with reachability of a control state (a slight variant of
single-sided VASS in [1] or alternating VASS in [13]) has been shown to be
2exptime-complete [13], and decidable with parity conditions [1,24]. The non-
termination problem for symmetric games is 2exptime-complete (the upper
bound is from [26] and the lower bound is from [13]).

In this paper, we establish formal relationships between model-checking prob-
lems for resource-bounded logics and decision problems for alternating VASS
(also known as single-sided VASS). We then use these relationships to show new
results for the decidability and complexity of model-checking resource-bounded
logics. Ours is not the first work in this direction. There are clear similari-
ties between resource values and counter values, and the semantics of resource-
bounded logics are inherently game-based. Previous work has explored the con-
nections with counter machines, either to obtain undecidability, or to obtain
lower bounds on complexity, e.g., [2,11].

We give optimal complexity upper bounds and new decidability results,
including for resource-bounded logics with enriched path formulae as those in
CTL∗ [16]. First, we show that the model-checking problem for RB±ATL is
2exptime-complete (Theorems 1 and 2), and that RB±ATL restricted to a
bounded number of resources is in exptime. The 2exptime lower bound is
obtained by a reduction from the state reachability problem for alternating
VASS (AVASS) [13], whereas the upper bound is established by a reduction to
the state reachability and the termination problems for AVASS (both problems
are needed). These results are obtained by using formal relationships between
strategies in concurrent game structures and proofs in AVASS, and the key obser-
vation is that only asymmetric VASS are needed. The formal relationships also
allow us to show that the model-checking problem for RB±ATL∗ (a new logic
naturally extending RB±ATL) is decidable by a reduction to the parity game
problem for AVASS [1] (Theorem 4). To the best of our knowledge, the com-
plexity of the parity game problem for AVASS is still open. We also show that
resource parameters can be effectively computed in the parameterised version of
RB±ATL∗ (Theorem 5), due to the fact that the Pareto frontier for any parity
game on single-sided VASS is computable [1, Theorem 4]. As far as we know, this
is the first time that resource values are synthesised in resource-bounded logics
(see also [25]). Lastly, we show that the model-checking problems for RBTL [10]

38 N. Alechina et al.

and its extension RBTL∗ are expspace-complete, and that RBTL restricted to
a bounded number of resources is in pspace.

2 Alternating VASS Preliminaries

We write N (resp. Z) for the set of natural numbers (resp. integers) and [m,m′]
with m,m′ ∈ Z to denote the set {j ∈ Z : m ≤ j ≤ m′}. Given a dimension
r ≥ 1 and a ∈ Z, we write a ∈ Z

r to denote the vector of dimension r with all
components equal to a. For each x ∈ Z

r, we write x(1), . . . , x(r) for the entries

of x. For each x,y ∈ Z
r, x � y

def⇔ for every i ∈ [1, r], we have x(i) ≤ y(i). We
also write x ≺ y when x � y and x �= y.

A binary tree T, which may contain nodes with one child, is a non-empty
subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2}, n · i ∈ T implies
n ∈ T and, n · 2 ∈ T implies n · 1 ∈ T. The nodes of T are its elements. The root
of T is ε, the empty word. All notions such as parent, first child, second child,
subtree and leaf, have their standard meanings. The height of T is the length,
i.e. the number of nodes, of the longest simple path from the root to a leaf.

An alternating VASS (AVASS) [13] is a tuple A = (Q, r,R1, R2) such that
(1) Q is a finite set of locations (a.k.a. control states) and r ≥ 0 is the number
of resource values, (2) R1 is a finite subset of Q × Z

r × Q (unary rules) and (3)
R2 is a finite subset of Q3 (fork rules). A derivation skeleton of A is a labelling
D : T → (R1 ∪ R2 ∪ {⊥}) such that: (1) T is a (possibly infinite) binary tree
(subset of {1, 2}∗ with standard conditions), (2) if n has one child in T, then
D(n) ∈ R1, (3) if n has two children in T, then D(n) ∈ R2 and (4) if n is a leaf
in T, then D(n) =⊥. A derivation of A based on D is a labelling D̂ : T → Q×Z

r

such that: (1) if n has one child n′ in T, D(n) = (q,u, q′) and D̂(n) = (q,v), then
D̂(n′) = (q′,v+u) and (2) if n has two children n′ and n′′ in T, D(n) = (q, q1, q2)
and D̂(n) = (q,v), then D̂(n′) = (q1,v) and D̂(n′′) = (q2,v). So, fork rules do not
update the resources and whence, there is an asymmetry between unary rules
and fork rules (this makes a difference with branching VASS, see e.g. [15,33]).
This is a useful feature when dealing with the proponent restriction condition
in RB±ATL. A derivation D̂ is admissible whenever D̂ : T → Q × N

r, i.e. only
natural numbers occur in it. An admissible derivation is also called a proof .

The state reachability problem for AVASS is as follows: given an AVASS A
and control states q0 and qf , is there a finite proof of AVASS whose root is equal
to (q0,0) and each leaf belongs to {qf} × N

r? When A has no fork rules, A is
essentially a VASS [27] and the above problem is an instance of the coverability
problem, which is known to be expspace-complete [28,30] (see also [7,14]).
The non-termination problem for AVASS is as follows: given an AVASS A and
a control state q0, is there a proof whose root is equal to (q0,0) and all the
maximal branches are infinite?

Proposition 1. [13,26] The state reachability and non-termination problems
for AVASS are 2exptime-complete.

On the Complexity of Resource-Bounded Logics 39

Decidability of these problems were first established in [31] by using
monotonicity of the games. The 2exptime upper bound is preserved if we assume
that the root is labelled by (q0, b) with b ∈ N

r encoded with a binary represen-
tation (see Lemma 1).

In the sequel, we shall also admit fork rules of any arity α ≥ 1, and therefore,
in such slightly extended AVASS the set of fork rules R2 is a finite subset of
⋃

β≥2 Qβ .

Lemma 1. The following extension of the state reachability and non-
termination problems for AVASS remains in 2exptime:

– Fork rules can be α-ary for any α ≥ 1 (but there are only a finite amount of
them).

– Reachability is related to a subset Qf ⊆ Q (instead of a singleton set).
– The initial configuration is (q0, b) with b ∈ N

r instead of the fixed tuple 0.
– The value ω is allowed in b in the initial configuration (q0, b), where for all

n ∈ Z, we have ω = n + ω = ω + n.

The rather standard proof consists in using Proposition 1 by simulating a
non-binary fork by a linear-size gadget made of unary and binary fork rules and
by adding binary fork rules from states in Qf to a new single final state (alter-
natively, one could add unary rules with effect 0). The third item in Lemma1
can be handled by adding a new unary rule with effect b whereas the fourth one
amounts to ignore the components with the root value ω.

The notions of derivation skeleton, derivation and proof are also extended to
general trees T ⊆ (N \ {0})∗. The set of finite words T ⊆ (N \ {0})∗ is a (not
necessarily binary) tree iff for all n ∈ (N\{0})∗ and i ∈ (N\{0}), n ·i ∈ T implies
n ∈ T and, n · i ∈ T and i > 1 imply n · (i − 1) ∈ T. Such AVASS correspond to
a single-sided VASS [1,6].

In what follows, by a VASS we mean an alternating VASS without any fork
rule and write it as V = (Q, r,R) where R is a finite set of unary rules. Given a

VASS V, its transition system TS(V) def= (W,−→, L) is such that: (1) W def= Q ×
N

r, (2) L is a truth assigment with elements of Q also understood as propositional

variables and L(q) def= {q} × N
r and (3) −→ is a binary relation on W such that

(q,v) −→ (q′,v′) iff there is a unary rule (q,u, q′) in R such that v′ = v + u

where ‘+’ is the component-wise addition on N
r. As usual, we also write ∗−→ to

denote the reflexive and transitive closure of −→. Since TS(V) is a Kripke-style
structure, it can be used to interpret modal or temporal formulae (e.g., LTL or
CTL formulae) where atomic formulae refer to control states. Since alternating-
time temporal logics such as ATL or ATL∗ are strict extensions of CTL or
CTL∗ respectively, complexity hardness results for temporal logics can be lifted
to such logics. A known result which will be useful in the sequel is that the
model-checking problem for LTL on VASS is expspace-complete (the atomic
formulae/propositions are control states) and it is pspace-complete for a fixed
number of resources [21].

40 N. Alechina et al.

Below, we consider AVASS with a finite set of fork rules included in
⋃

β≥2 Qβ ,
and where the proofs are trees with nodes labelled by elements in Q×(N∪{ω})r.
Given an AVASS A = (Q, r,R1, R2), a colouring col is a map Q → [0, p] for
some p ≥ 0. The parity game problem for AVASS is as follows: given an AVASS
A, a control state q0, b ∈ (N ∪ {ω})r and col : Q → [0, p], is there a proof
the root of which is equal to (q0, b), all the maximal branches are infinite and
the maximal colour that appears infinitely often along each branch is even (the
colour of each node is induced by col)?

Proposition 2. [1, Corollary 2] The parity game problem for AVASS is decid-
able.

To be precise, [1, Corollary 2] states the result for single-sided VASS that
can be viewed as AVASS such that the set Q of control states is partitioned into
Q = Q1 Q2, unary rules start by states in Q1, fork rules start by states in Q2

and there is at most one fork rule starting in the same control state (necessarily,
belonging to Q2). The problem for AVASS can be reduced to that for single-sided
VASS. It is not difficult to show that the state reachability and non-termination
problems for AVASS can be understood as subproblems of the parity game prob-
lem and therefore their decidability also follows from [1]. However, the situation
is different in the case of complexity. While the exact complexity of the parity
game problem is unknown, the state reachability and non-termination problems
for AVASS are shown to be 2exptime-hard in [13], the state reachability prob-
lem is shown to be in 2exptime in [13] and the non-termination problem is
proved to be in 2exptime in [26]. It has been shown recently that the parity
game problem is in TOWER [24].

This decidability result has been strenghtened in [1] in the following way.
Given A, q0 and col : Q → [0, p], the set of tuples b ∈ (N ∪ {ω})r for which
there is a positive solution to the parity game problem is upward closed and
computable. This means that it can be represented effectively by a Boolean
combination of atomic constraints of the form either xi ≥ k where i ∈ [1, r] and
k ∈ N or xi = ω. Indeed, since the set is upward closed, by Dickson’s Lemma, it
has a finite set of minimal elements (with respect to the well-quasi-ordering �
slightly extended to accomodate the addition of the value ω) that allows one to
define easily the symbolic representation in terms of atomic constraints of the
form x ≥ k. The Pareto frontier of A, q0 and col : Q → [0, p] is defined as the
set of minimal elements in (N ∪ {ω})r for which there is a positive solution to
the parity game problem.

Proposition 3. [1, Theorem 4] The Pareto frontier for any parity game on
single-sided VASS is computable.

3 The Logic RB±ATL and Variants

We consider the logics RB±ATL and RB±ATL∗. The logic RB±ATL was intro-
duced in [3,4], and extends ATL [5] with resources. RB±ATL∗ extends RB±ATL
to allow path formulae to be any LTL-like formula.

On the Complexity of Resource-Bounded Logics 41

Let PROP be a countably infinite set of atomic propositions. The models
for the logics RB±ATL and RB±ATL∗ are the structures introduced in Defini-
tion 1 below. These are concurrent game structures from [5], but enriched with
a cost function that specifies how resources are produced or consumed. At some
abstract level, a structure is equipped with r counters and the transitions can
perform increments and decrements.

Definition 1. A resource-bounded concurrent game structure M is a tuple of
the form (Agt, S,Act, r, act, cost, δ, L) such that:

– Agt is a non-empty finite set of agents (by default Agt = [1, k] for some
k ≥ 1).

– S is a set of states and r ≥ 1 is the number of resources.
– Act is a non-empty set of actions with a distinguished action idle.
– act : Agt × S → P(Act) is the action manager function such that for all a

and s we have idle ∈ act(a, s).
– cost : S × Agt × Act → Z

r is the (partial) cost function so that cost(s, a, a)
is defined exactly when a ∈ act(a, s). Moreover, cost(s, a, idle) = 0.

– δ : S × (Agt → Act) → S is the (partial) transition function such that δ is
defined on (s, f) whenever for all agents a ∈ Agt, we have f(a) ∈ act(a, s).

– L : PROP → P(S) is a truth assignment (the definition can be adapted when
finite subsets of PROP are involved).

The map δ is also viewed as a deterministic relation with transitions of the

form s
(a1,...,ak)−−−−−→ s′ where δ(s, f) = s′ and for all i ∈ [1, k] = Agt, we have f(i) = ai.

We say that M is finite whenever S and Act are finite sets and L is restricted
to a finite subset of PROP. For instance, the idle action is considered in [3,4],
where motivations for considering such a distinguished action are given. Given
a coalition A ⊆ Agt and a state s, a joint action by A in s is a map f : A → Act
such that, for all agents a ∈ A, we have f(a) ∈ act(a, s). The set of joint actions
by A in s is denoted DA(s). Given a state s, the set of joint actions by Agt in
s is denoted D(s) (instead of DAgt(s)) and the map δ is defined only for such
joint actions. We write f � g whenever g is a conservative extension of f, i.e.
dom(f) ⊆ dom(g) and, f and g agree on dom(f).

Given a joint action f ∈ DA(s), we write out(s, f) to denote {s′ ∈ S |
there is g ∈ D(s) such that f � g and s′ = δ(s, g)}. For instance, out(s, f) is a
singleton set when f ∈ D(s) since δ is a map and not a relation. Given a joint
action f ∈ DA(s) and a state s, the cost of any transition fired from s following f

(restricted to A by definition) is as follows: costA(s, f) def=
∑

a∈A cost(s, a, f(a)).
In a sense, the value costA(s, f) does not depend on the costs related to the
agents in (Agt \ A), or equivalently, the cost related to the agents in (Agt \ A)
is reduced to zero.

A computation λ is a finite sequence or an ω-sequence of the form s0
f0−→ s1

f1−→
s2 . . . such that for all i < |λ| − 1, we have si+1 ∈ δ(si, fi). Here, |λ| denotes the

length of λ, each si is a state and each fi belongs to D(si). For instance |s0
f0−→

s1 · · · fn−1−−→ sn| = n+1 and |s0
f0−→ s1 · · · fn−1−−→ · · · | = ω for any infinite computation.

42 N. Alechina et al.

So, in full generality, in a computation, a transition between two successive
states is labelled by a joint action: this is not strictly needed for the forthcoming
developments but it provides a more general notion that might be used in other
contexts (for instance, if the winning condition of forthcoming strategies depends
on the actions of all the agents and not only on those for the agents in A or on the
visited states). A strategy FA for the coalition A is a map from the set of finite

computations to the set of joint actions by A such that FA(s0
f0−→ s1 · · · fn−1−−→ sn) ∈

DA(sn). A computation λ = s0
f0−→ s1

f1−→ s2 · · · respects the strategy FA iff for all

i < |λ|, we have, si+1 ∈ out(si, FA(s0
f0−→ s1 . . .

fi−1−−→ si)). A computation λ that
respects FA is maximal whenever it cannot be extended further while respecting
the strategy. Note that maximal computations respecting FA are infinite. The set
of all maximal computations that respect the strategy FA and that start at the
state s is denoted by out(s, FA). So far, no resource value has been involved in
computations. Below, we shall quantify over maximal computations that respect
a strategy and therefore for defining a strategy we can restrict ourselves to finite
computations that respect it so far.

Given a bound b ∈ (N ∪ {ω})r, a computation λ = s0
f0−→ s1

f1−→
s2 . . . in out(s, FA) is b-consistent iff for all i < |λ|, we have 0 �
(
∑i−1

j=0 costA(sj , FA(s0
f0−→ s1 . . .

fj−1−−→ sj)) + b). Whenever b(i) = ω, this can
be viewed as a means to disregard what happens on the ith resource (assuming
that n + ω = ω for any n ∈ Z). Indeed, b(i) = ω amounts to guarantee from
the beginning of the computation that there is an infinite supply of resources on
the ith component. Note also that the above condition is slightly different from
the one in [4] but strictly equivalent. We have decided to adopt that notation in
order to show more easily the relationships with VASS decision problems. So, for
a computation λ = s0

f0−→ s1
f1−→ s2 . . . and a coalition A, there is an underlying

sequence v0,v1, . . . of resource values so that v0
def= b and for all i < |λ| − 1, we

have vi+1
def= vi +costA(si, FA(s0

f0−→ s1 . . .
fi−1−−→ si)). The values of the sequence

only depend on the agents in A, which is often called the proponent restriction
condition.

The set of all the b-consistent (infinite) computations is denoted by
out(s, FA, b). A b-strategy FA with respect to s is a strategy such that
out(s, FA) = out(s, FA, b). This definition also slightly differs from the one in [4]
that is not relative to a given state and therefore in [4] the equality should hold
for all the states.

So far, we have provided the main definitions about resource-bounded con-
current game structures and strategies. Let us present now the logic RB±ATL.
Given a set of agents Agt = {a1, . . . , ak} and r ≥ 1, we write RB±ATL (Agt, r)
to denote the resource-bounded logic with k agents and r resources whose mod-
els are resource-bounded concurrent game structures with the same parameters.
Formulae of RB±ATL (Agt, r) are defined according to the grammar:

φ:: = p | ¬φ | φ ∧ φ | 〈〈Ab〉〉 © φ | 〈〈Ab〉〉 �φ | 〈〈Ab〉〉 φUφ,

On the Complexity of Resource-Bounded Logics 43

where p ∈ PROP, A ⊆ Agt and b ∈ (N ∪ {ω})r. The size of a formula is
computed from a DAG representation and the integers are encoded in binary.
Note that forthcoming hardness results do not use the conciseness of the DAG
representation (with respect to the tree representation).

The satisfaction relation |= is defined inductively as follows assuming that
M is an RB±ATL (Agt, r) model (we omit the obvious cases for the Boolean

connectives): M, s |= p
def⇔ s ∈ L(p) and,

M, s |= 〈〈Ab〉〉 © φ
def⇔ there is a b-strategy FA w.r.t. s such that for all s0

f0−→
s1 . . . ∈ out(s, FA), we have M, s1 |= φ

M, s |= 〈〈Ab〉〉�φ
def⇔ there is a b-strategy FA w.r.t. s such that for all λ = s0

f0−→
s1 . . . ∈ out(s, FA), for all i < |λ|, we have M, si |= φ

M, s |= 〈〈Ab〉〉φ1Uφ2
def⇔ there is a b-strategy FA w.r.t. s such that for all

λ = s0
f0−→ s1 . . . ∈ out(s, FA), there is some i < |λ| such that M, si |= φ2

and for all j ∈ [0, i − 1], we have M, sj |= φ1.

Since all the maximal computations are infinite, the index i involved for
clauses above related to 〈〈Ab〉〉� or 〈〈Ab〉〉U can take any value in N. The pres-
ence of the idle action allows the extension of a strategy as soon as a given
condition is satisfied along the computations. For instance, M, s |= 〈〈Ab〉〉©φ is
equivalent to the existence of f ∈ DA(s) such that for all g � f, we have M, s′ |= φ
with δ(s, g) = s′ and 0 � b + costA(s, f). Moreover, a strategy modality 〈〈Ab〉〉
reduces the impact of the function cost in two ways. If the ith component of b
is equal to ω, then there are no constraints on the ith resource along the compu-
tation. The restriction of cost to opponent agents in (Agt \ A) is also reduced
to 0 (so without any impact on consistency).

Obviously, RB±ATL (Agt, r) is a quantitative variant of ATL [5] in which
resource values are computed along the computations.

The model-checking problem for RB±ATL is as follows: given k, r ≥ 1 (in
unary), a formula φ in RB±ATL ([1, k], r), a finite RB±ATL ([1, k], r) model
M and a state s, is M, s |= φ? The encoding of k and r in unary is unessential
since the size of M with an explicit representation of all the transitions is over
k + r.

Proposition 4. [3, Theorem 1] The model-checking problem for RB±ATL is
decidable.

We also consider RB±ATL∗, an extension of RB±ATL in which the path
formulae can be any LTL-like formula, in particular a temporal operator may no
longer be preceded by a cooperation modality. This is a new logic although its
definition follows a classical schema for branching-time temporal logics. Given
a set of agents Agt = [1, k] and r ≥ 1, we write RB±ATL∗ (Agt, r) to denote
the resource-bounded logic with k agents and r resources whose models are
resource-bounded concurrent game structures with the same parameters. The
parameterised version of RB±ATL∗ denoted by ParRB±ATL∗ admits formulae

44 N. Alechina et al.

as RB±ATL∗ except that the values b ∈ (N ∪ {ω})r are replaced by tuples of
variables within VAR = {x1, x2, . . .}. Here is a typical formula in ParRB±ATL∗:

〈〈{1}(x1,x2)〉〉�Uqf ∧ 〈〈{2}(x2,x3)〉〉�Uq′
f .

Given a parameterised (state or path) formula φ with variables x1, . . . , xn and
a map v : {x1, . . . , xn} → (N ∪ {ω}), we write v(φ) to denote the formula in
RB±ATL∗ obtained from φ by replacing each occurrence of a variable x by
v(x). The parameterised model-checking problem for ParRB±ATL∗ is as follows:
given k, r ≥ 1 (in unary), a state formula φ in ParRB±ATL∗ ([1, k], r), a finite
RB±ATL∗ ([1, k], r) model M and a state s, compute the set of maps v such that
M, s |=s v(φ). Here, computing means to be able to characterise the set of maps v
with M, s |=s v(φ), by using a symbolic representation with nice computational
properties. We can show that we only need Boolean combinations of atomic
formulae of the form either x ≥ k where k ∈ N or x = ω.

4 The Complexity of RB±ATL

The results in this section are obtained by elaborating on correspondences
between AVASS decision problems, and the existence of strategies in RB±ATL.
We show a 2exptime-hardness result by a reduction from the state reachability
problem for AVASS. This improves the expspace-hardness result in [4]. It is
also worth noting that in the proof of Theorem1, the presence of the idle action
requires a bit of work.

Theorem 1. The model-checking problem for RB±ATL is 2exptime-hard.

The upper bound is proved by designing a labelling algorithm as done in [4]
but the main difference with [4] rests on the fact that we explicitly call subrou-
tines that solve decision problems on AVASS. Let M be a finite resource-bounded
concurrent game structure, A ⊆ Agt be a coalition, FA be a strategy and s be a
state. We construct an AVASS AM,A,s such that the set of computations respect-
ing FA and starting from s corresponds to a derivation skeleton whose root is
labelled by a unary rule with first state s. Moreover, if FA is b-strategy w.r.t.
s, then the derivation skeleton can be turned into a proof whose root is labelled
by (s, b).

Given M = (Agt, S,Act, r, act, cost, δ, L), the AVASS AM,A,s
def=

(Q, r,R1, R2) is built as follows:

Q
def
= {s} ∪ {(s′, f) | s′ ∈ S, f ∈ DA(s′)} ∪ {(g, s′) | s′, s′′ ∈ S, g ∈ D(s′′), δ(s′′,g) = s′}.

– The set R1 contains the following rules: (1) for all f ∈ DA(s),
(s, costA(s, f), (s, f)) and (2) for all (g, s′) ∈ Q, for all f ∈ DA(s′),
((g, s′), costA(s′, f), (s′, f)).

On the Complexity of Resource-Bounded Logics 45

– The set R2 contains the following rules. For all (s′, f) ∈ Q, let
{(g1, s1), . . . , (gα, sα)} = {(g, s′′) ∈ Q | s′′ ∈ δ(s′, g), g ∈ D(s′), f � g}.
The set is non-empty thanks to constraints on the idle action. We add the
fork rule ((s′, f), (g1, s1), . . . , (gα, sα)). In order to define unambiguously that
rule, we assume an arbitrary ordering on Q.

It is worth noting that s has a special status in Q simply because any proof
whose root configuration contains s has no predecessor configuration. Any deriva-
tion skeleton from AM,A,s has to alternate the rules in R1 and the rules in R2, by
construction. For every (s′, f) in Q, there is a unique fork rule starting by (s′, f)
and the construction applies also in the degenerate cases, i.e. when A = Agt or
when A = ∅ (assuming that cost(s′, f) = 0 for the unique f ∈ D∅(s′)). The main
property of AM,A,s is stated below.

Lemma 2. There is a b-strategy w.r.t. s in M iff there is a proof in AM,A,s

whose root is labelled by (s, b) and every maximal branch is infinite.

Theorem 2. The model-checking problem for RB±ATL is in 2exptime.

An AVASS of the form AS′
M,A,s is defined as the restriction of AM,A,s in which

the opponent coalition has no way to go out of S′. The algorithm is given below
with the essential property: GMC(M, ψ) = {s | M, s |= ψ}.

Corollary 1. For any fixed r ≥ 1, the model-checking problem for RB±ATL
restricted to at most r resources is in exptime. For r ≥ 4, the problem is
exptime-hard.

We invoke [26, Theorem 3.4] and [13, Theorem 3.1] since for a bound r, the
state reachability and the non-termination problems can be solved in exptime.
exptime-hardness (r ≥ 4) is due to [13, Proposition 4.2] and to the proof of
Theorem 1.

5 More Path Formulae While Preserving Decidability

In this section, we study the model-checking problem for resource-bounded logics
where the path formulae can be any LTL-like formula. In doing so, we also
illustrate the versatility of our formalisation, by showing how it can be used
to establish complexity results for the model-checking problem for the logics
RBTL∗ and RB±ATL∗.

5.1 The Logic RBTL∗ and its Complexity

The models of the logic RBTL∗ are structures of the form (Q, r,R,L) where
(Q, r,R) is a VASS and L is a truth assignment built on elements of Q understood
as propositional variables, so that L(q) = {q} (see e.g [10, Sect. 3]). In order to
fit the usual terminology, below, an infinite proof in (Q, r,R) is called a path or
run and it can be represented by λ = (q0,v0) −→ (q1,v1) We write λ[i,+∞)
to denote the run starting from (qi,vi) taken from λ as a suffix and λ(i) to
denote the configuration (qi,vi).

46 N. Alechina et al.

Algorithm 1. An algorithm for RB±ATL model checking.
1: procedure GMC(M, φ)
2: case φ of
3: p: return {s ∈ S | p ∈ L(s)}
4: ¬ψ: return S \ GMC(M, ψ)
5: ψ1 ∧ ψ2: return GMC(M, ψ1) ∩ GMC(M, ψ2)
6: 〈〈Ab〉〉 © ψ: return {s | ∃ f ∈ DA(s),0 	 b + costA(s, f), for all f
 g ∈

D(s), δ(s, g) ∈ GMC(M, ψ)}
7: 〈〈Ab〉〉�ψ: S1 := GMC(M, ψ)
8: if s ∈ S1 then return {s | AS1

M,A,s, (s, b) is non-terminating} end if
9: if s �∈ S1 then return ∅ end if

10: 〈〈Ab〉〉ψ1Uψ2: return {s | AS1∪S2
M,A,s

, (s, b), S′
2 is a positive instance of state reachability}

with S1 = GMC(M, ψ1), S2 = GMC(M, ψ2), S′
2 = {(g, s′) ∈ Q | s′ ∈

S2} ∪ {s′ ∈ Q | s′ = s, s ∈ S2}
11: end case
12: end procedure

The state formulae φ and the path formulae Φ of RBTL∗ are defined by
mutual recursion with the grammar (relatively to Q and r)

φ :: = q | ¬φ | (φ ∧ φ) | 〈b〉 Φ

Φ :: = φ | ¬Φ | (Φ ∧ Φ) | © Φ | (ΦUΦ) | �Φ

where q ∈ Q and b ∈ (N ∪ {ω})r. Syntactically, every state formula is also a
path formula according to this grammar, and this reflects the fact that a path
uniquely identifies a control state in which a formula is interpreted: its starting
control state. We present the semantics for RBTL∗ by distinguishing the state
formulae from the path formulae. The two satisfaction relations |=s and |=p are
defined as follows (clauses for the Boolean connectives are omitted).

M, q |=s q′ iff q′ = q
M, q |=s 〈b〉Φ iff there is an infinite run λ starting at (q, b) such that M, λ |=p Φ
M, λ |=p φ iff M, q0 |=s φ for state formulae φ with λ(0) = (q0, v0)
M, λ |=p ©Φ iff M, λ[1, +∞) |=p Φ
M, λ |=p ΦUΨ iff there is i ≥ 0 such that M, λ[i, +∞) |=p Ψ and

for every j ∈ [0, i − 1], we have M, λ[j, +∞) |=p Φ
M, λ |=p �Φ iff for all i ≥ 0, M, λ[i, +∞) |=p Φ.

The model-checking problem for RBTL∗ is as follows: given a model M, q and
a state formula φ, is it M, q |=s φ? The logic RBTL is the fragment of RBTL∗ in
which any subformula whose outermost connective is in {U ,©,�}, is preceded
by some 〈b〉. The problem for RBTL is already expspace-hard since the state
reachability problem for VASS can be reduced easily to it. The expspace lower
bound for the model-checking problem for RBTL can be matched with the upper
bound for RBTL∗.

Theorem 3. The model-checking problems for RBTL and RBTL∗ are
expspace-complete.

On the Complexity of Resource-Bounded Logics 47

We can obtain a improved complexity result if the number of resources is con-
sidered fixed.

Corollary 2. For any fixed r ≥ 1, the model-checking problem for RBTL∗

restricted to at most r resources is in pspace.

The pspace upper bound is then a consequence of [21, Theorem 4.1]. Again,
if r is fixed but greater than two, then the model-checking problem for RBTL∗

restricted to at most r resources is pspace-hard since the state reachability
problem for VASS of dimension two is pspace-complete [8]. When r = 1, the
model-checking problem for RBTL∗ restricted to at most one resource is np-hard
since the state reachability for VASS of dimension one is np-complete [20].

5.2 Decidability of RB±ATL∗

In order to illustrate the reduction from the model-checking problem for
RB±ATL∗ into the parity game problem, we briefly present a notion of synchro-
nisation. Let M = (Agt, S,Act, r, act, cost, δ, L) be a resource-bounded concur-
rent game structure. Given p1, . . . , pn, we write Σn to denote P({p1, . . . , pn})

and Ln(s′) def= {pi | i ∈ [1, n], s′ ∈ L(pi)} for all s′ ∈ S. So, Ln(s′) ∈ Σn.
Let AM,A,s = (Q, r,R1, R2) be the AVASS defined from M, A and s,

and let A = (Q′, q′
0, δ

′ : Q′ × Σn → Q′, col : Q′ → [0, p]) be a deter-
ministic parity automaton over Σn. The principle of the synchronised product
AM,A,s ⊗ A defined below is the following. Any (infinite) branch of a proof
of AM,A,s contains control states of the form s, (s′, f) or (g, s′) where s is a
distinguished state of M, s′ is any state, f ∈ DA(s′) and g is a joint action
in D(s′′) with δ(s′′, g) = s′. By construction, (s′, f) is preceded by a state
of the form either (g, s′) or s′ (if s′ = s). So an infinite branch of the form
(s0,u0) ((s0, f0),u1) ((g1, s1),u1) ((s1, f1),u2) ((g2, s2),u2) · · · leads to the ω-
word Ln(s0) Ln(s1) Ln(s2) · · · that admits a unique run in A (thanks to deter-
minism). Above, we slightly abuse notation since we identify a branch with
its label. Given an infinite branch s0

u0−→ (s0, f0) −→ (g1k1
, s1k1

) u1−→ (s1k1
, f1) −→

(g2k2
, s2k2

) u2−→ (s2k2
, f2) −→ (g3k3

, s3k3
) · · · in a proof of AM,A,s, its Ln-projection is

simply defined as the ω-word Ln(s0) Ln(s1k1
) Ln(s2k2

) Ln(s3k3
) · · · in Σω

n .
The control states of AM,A,s ⊗ A are pairs in Q × Q′ and the second com-

ponents are therefore control states in Q′ as they appear for the unique run on
Ln(s0) Ln(s1) Ln(s2) · · · .

Let us define the AVASS AM,A,s ⊗ A
def= (Q′′, r, R′

1, R
′
2) such that Q′′ def=

Q × Q′ and:

– For each s
u−→ (s, f) ∈ R1, R′

1 contains the unary rule (s, q′
0)

u−→ ((s, f), q′
0).

– For each (g, s′) u−→ (s′, f) ∈ R1, and for each q ∈ Q′, R′
1 contains the rule

((g, s′), q) u−→ ((s′, f), q). So, firing a unary rule from AM,A,s does not change
the second component.

48 N. Alechina et al.

– For each ((s′, f), (g1, s1), . . . , (gα, sα)) ∈ R2 and for each q ∈ Q′, we add in
R′

2 (((s′, f), q), ((g1, s1), δ(q, Ln(s′))), . . . , ((gα, sα), δ(q, Ln(s′)))). Firing a fork
rule from AM,A,s changes the second component in a unique way depending
on q and Ln(s′).
Again, there is a unique fork rule starting by the control state ((s′, f), q).

Let us define the colouring col′ : Q′′ → [0, p] such that for all (q, q′) ∈ Q′′,

we have col′((q, q′)) def= col(q′). The synchronised product satisfies the essential
property for the automata-based approach (as for temporal logics). This is the
most natural way to inherit colours from A to AM,A,s ⊗ A.

Lemma 3. Let (s, b) ∈ Q × (N ∪ {ω})r. The statements below are equivalent:

(I) AM,A,s has a proof the root of which is equal to (s, b), all the maximal
branches are infinite and the Ln-projection of each infinite branch belongs
to the language accepted by A (i.e. to L(A)).

(II) AM,A,s ⊗ A has a proof the root of which is equal to ((s, q′
0), b), all the

maximal branches are infinite and the maximal colour that appears infinitely
often is even.

Theorem 4. The model-checking problem for RB±ATL∗ is decidable.

Lemma 3 is essential to establish Theorem 4 since its proof uses the product
between an alternating VASS and a deterministic parity automaton recognizing
ω-words. This is reminiscent of the proof of [5, Theorem 5.6] about the 2exptime
upper bound for the ATL∗ model-checking problem. Rabin tree automata of
the proof of [5, Theorem 5.6] are replaced by deterministic parity automata for
encoding the LTL formulae and by alternating VASS (with counters) as outcome
of the synchronisation.

Theorem 5. The parameterised model-checking problem for ParRB±ATL∗ is
decidable.

The proof of Theorem5 is based on a global model-checking algorithm that
is essentially based on Lemma 3 and on [1, Theorem 4]. Synthesising resource
values has been also considered in [25].

6 Concluding Remarks

We have related model-checking problems for resource-bounded logics and deci-
sion problems for AVASS. Though such relationships should not come as a com-
plete surprise, we obtained new complexity and decidability results. We prove
that the model-checking problem for RB±ATL introduced in [3,4] is 2exptime-
complete. No complexity upper bound was known so far. We have introduced
the logic RB±ATL∗ that extends RB±ATL, and we have shown that the model-
checking problem is decidable. The same hold for the parameterised version
ParRB±ATL∗, i.e. it is decidable to compute the set of resource bounds for

On the Complexity of Resource-Bounded Logics 49

which the given parameterised formula is satisfied. We have also shown that the
model-checking problem for RBTL∗ introduced in [10] is expspace-complete. No
complexity upper bound for RBTL was known so far as well as the decidability
status for RBTL∗. We believe that the simple framework we have proposed could
be used to obtain further results for new resource-bounded logics.

Acknowledgements. We would like to thank the anonymous reviewers for their
numerous suggestions that helped us improve the quality of the paper.

References

1. Abdulla, P.A., Mayr, R., Sangnier, A., Sproston, J.: Solving parity games on integer
vectors. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency
Theory. LNCS, vol. 8052, pp. 106–120. Springer, Heidelberg (2013)

2. Alechina, N., Bulling, N., Logan, B., Nguyen, H.: On the boundary of
(un)decidability: decidable model-checking for a fragment of resource agent logic.
In: IJCAI 2015, pp. 1494–1501. AAAI Press (2015)

3. Alechina, N., Logan, B., Nguyen, H., Raimondi, F.: Decidable model-checking for
a resource logic with production of resources. In: ECAI 2014, pp. 9–14 (2014)

4. Alechina, N., Logan, B., Nguyen, H., Raimondi, F.: Technical report: model-
checking for resource-bounded ATL with production and consumption of resources.
CoRR abs/1504.06766 (2015)

5. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. JACM
49(5), 672–713 (2002)

6. Bérard, B., Haddad, S., Sassolas, M., Sznajder, N.: Concurrent games on VASS
with inhibition. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 39–52. Springer, Heidelberg (2012)

7. Blockelet, M., Schmitz, S.: Model checking coverability graphs of vector addition
systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp.
108–119. Springer, Heidelberg (2011)

8. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-
dimensional vector addition systems with states is PSPACE-complete. In: LICS
2015, pp. 32–43. ACM Press (2015)

9. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

10. Bulling, N., Farwer, B.: Expressing properties of resource-bounded systems: the
logics RTL* and RTL. In: Dix, J., Fisher, M., Novák, P. (eds.) CLIMA X. LNCS,
vol. 6214, pp. 22–45. Springer, Heidelberg (2010)

11. Bulling, N., Farwer, B.: On the (un-)decidability of model-checking resource-
bounded agents. In: ECAI 2010, pp. 567–572 (2010)

12. Bulling, N., Nguyen, H.: Model checking resource bounded systems with shared
resources via alternating Büchi pushdown systems. In: Chen, O., Torroni, P., Vil-
lata, S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS, vol. 9387, pp. 640–649.
Springer, Heidelberg (2015)

13. Courtois, J.-B., Schmitz, S.: Alternating vector addition systems with states. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS,
vol. 8634, pp. 220–231. Springer, Heidelberg (2014)

50 N. Alechina et al.

14. Demri, S.: On selective unboundedness of VASS. JCSS 79(5), 689–713 (2013)
15. Demri, S., Jurdziński, M., Lachish, O., Lazić, R.: The covering and boundedness

problems for branching vector addition systems. JCSS 79(1), 23–38 (2013)
16. Emerson, A.: Temporal and modal logic. In: Handbook of Theoretical Computer

Science, pp. 996–1072. Elsevier (1990)
17. Esparza, J.: On the decidability of model checking for several μ-calculi and Petri

nets. In: Tison, J. (ed.) ICALP 1994. LNCS, vol. 787, pp. 115–129. Springer,
Heidelberg (1994)

18. Esparza, J.: Decidability and complexity of Petri net problems - an introduction.
In: Reisig, W., Rozenberg, G. (eds.) Advances in Petri Nets 1998. LNCS, vol. 1491,
pp. 374–428. Springer, Heidelberg (1998)

19. Göller, S., Lohrey, M.: Branching-time model checking of one-counter processes
and timed automata. SIAM J. Comput. 42(3), 884–923 (2013)

20. Haase, C.: On the complexity of model checking counter automata. Ph.D. thesis,
University of Oxford (2012)

21. Habermehl, P.: On the complexity of the linear-time mu-calculus for Petri nets.
In: Azéma, P., Balbo, G. (eds.) Application and Theory of Petri Nets 1997. LNCS,
vol. 1248, pp. 102–116. Springer, Heidelberg (1997)

22. Howell, R., Rosier, L.: Problems concerning fairness and temporal logic for conflict-
free Petri nets. TCS 64, 305–329 (1989)

23. Jančar, P.: Decidability of a temporal logic problem for Petri nets. TCS 74(1),
71–93 (1990)

24. Jančar, P.: On reachability-related games on vector addition systems with states.
In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp.
50–62. Springer, Heidelberg (2015)

25. Juhl, L., Larsen, K., Raskin, J.-F.: Optimal bounds for multiweighted and para-
metrised energy games. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of
Programming and Formal Methods. LNCS, vol. 8051, pp. 244–255. Springer,
Heidelberg (2013)

26. Jurdziński, M., Lazić, R., Schmitz, S.: Fixed-dimensional energy games are
in pseudo-polynomial time. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 260–272. Springer,
Heidelberg (2015)

27. Karp, R., Miller, R.: Parallel program schemata. JCSS 3(2), 147–195 (1969)
28. Lipton, R.: The reachability problem requires exponential space. Technical Report

62, Department of Computer Science, Yale University (1976)
29. Monica, D.D., Napoli, M., Parente, M.: On a logic for coalitional games with

priced-resource agents. ENTCS 278, 215–228 (2011)
30. Rackoff, C.: The covering and boundedness problems for vector addition systems.

TCS 6(2), 223–231 (1978)
31. Raskin, J.-F., Samuelides, M., Begin, L.V.: Games for counting abstractions.

ENTCS 128(6), 69–85 (2005)
32. Serre, O.: Parity games played on transition graphs of one-counter processes. In:

Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351.
Springer, Heidelberg (2006)

33. Verma, K., Goubault-Larrecq, J.: Karp-miller trees for a branching extension of
VASS. Discrete Math. Theor. Comput. Sci. 7, 217–230 (2005)

34. Vester, S.: On the complexity of model-checking branching and alternating-time
temporallogics in one-counter systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 361–377. Springer, Heidelberg (2015)

Plain, Bounded, Reversible, Persistent,
and k-marked Petri Nets Have Marked Graph

Reachability Graphs

Eike Best and Harro Wimmel(B)

Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
26111 Oldenburg, Germany

{eike.best,harro.wimmel}@informatik.uni-oldenburg.de

Abstract. In workflow specifications, it is desirable that k customers
can use a system interference-freely, so that no customer is disturbed by
other activities on the same workflow. In a Petri net representation of a
workflow, this corresponds to allowing initial k-markings, in which the
number of tokens on each place is a multiple of k, and to require that
every global activity is separable, that is, can be viewed as k individual
activities, each acting as if the initial marking had one k’th of its values.
In this paper, it is shown that, if k ≥ 2, if such a Petri net is plain, and if
its reachability graph is finite, reversible, and persistent, then the latter
is isomorphic to the reachability graph of a marked graph.

The problem has been mentioned as open in a paper by Best and
Darondeau from 2011, and its resolution rests on a more recent (2014)
characterisation of the reachability graphs of marked graph Petri nets.
This characterisation involves the notion of backward persistence, i.e.,
persistence in the reverse reachability graph, as well as some other prop-
erties which are true in the given context. The technical contribution of
this paper is to prove that backward persistence is implied by the prop-
erties of plainness, boundedness, reversibility and persistence, provided
the greatest common divisor of the token counts in the initial state is
greater than 1. The existence of a suitable marked graph then follows.

1 Introduction

Persistence of a Petri net means that once a transition is enabled, it cannot be
disabled, except possibly by its own occurrence [8]. This property describes a
very general notion of conflict-freeness, in the sense that all conflicts are, at most,
due to different ways of scheduling concurrent activities. Separability of a Petri
net N with an initial marking k · M0 means that the system (N, k · M0) behaves
in the same way as k disjoint parallel instances of the system (N,M0), that is,
the same net N with an initial marking M0 [6]. In [2], it has been proved that

E. Best and H. Wimmel—Supported by DFG (German Research Foundation)
through grant Be 1267/15-1 ARS (Algorithms for Reengineering and Synthesis).

c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 51–62, 2016.
DOI: 10.1007/978-3-319-45994-3 4

52 E. Best and H. Wimmel

plain, bounded, reversible, and persistent Petri nets enjoy this property.1 More
precisely, in a plain, bounded, reversible, and persistent net N with marking
k · M0, every execution sequence belongs to the shuffle product [10] of k firing
sequences running in k parallel instances of N with marking M0.

Separability is of practical significance in the context of workflow systems,
and it is closely related to a property known as workflow serialisability [6]. Usu-
ally, serialisability allows several customers to be able to execute the same work-
flow without interfering with each other. In [6], separability has been motivated
as follows:

If we associate to each firing the consumption of some resource, like money or

energy, then separability implies that the consumption of a batch of cases equals

the sum of the individual consumptions.

There are other practical benefits of separability. For instance, separability
implies that a large group of similar nets with small markings can be simulated
and represented by a single small net with a large marking.

In the present paper, we focus on the case that k ≥ 2, i.e., the case that two or
more “customers” execute a given Petri net. We shall prove that plain, bounded,
reversible and persistent Petri nets with an initial marking of the form k · M0,
with k ≥ 2 (or, equivalently, such that the gcd of the initial token distribution is
greater than one) actually have a reachability graph which is isomorphic to the
reachability graph of a marked graph [4]. This contrasts, perhaps surprisingly,
with the case that k = 1, for which examples without marked graph equivalent
can be found.

The remaining sections of the paper are organised as follows. Section 2
presents the technical background (labelled transition systems and Petri nets).
In Sect. 3, we introduce the key behavioural notions necessary to understand the
rest of the paper, along with examples and citations of known results. Section 4
contains the proof of a special case of our main theorem. This special case already
embodies the main difficulty of the proof. In Sect. 5, we proceed to proving the
main result announced in the title of this paper. Section 6 concludes and presents
some ideas for further research.

2 Formal Definitions

This section contains basic definitions relating to labelled transition systems (lts)
and to Petri nets. Some properties of lts (such as determinism and backward
determinism) are defined explicitly, since they will be referred to in proofs, even
though they are automatically satisfied for Petri nets.

A finite labelled transition system with initial state is a tuple TS = (S,→,
T, s0) with nodes S, edge labels T , edges →⊆ (S × T × S), and an initial state

1 Plainness means that there are no arc weights > 1. Boundedness means that the
state space is finite. Reversibility means that the initial marking can be reached
from every reachable marking.

Plain, Bounded, Reversible, Persistent, and k-marked Petri Nets 53

s0 ∈ S. A label t is enabled at s ∈ S, written as s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→, and
backward enabled at s, written as [t〉s, if ∃s′ ∈ S : (s′, t, s) ∈→. We also write
s[t〉s′ if (s, t, s′) ∈→. This can be extended, as usual, to s[σ〉s′ (or s

σ−→ s′) for
sequences σ ∈ T ∗. The set of states reachable from s is denoted by [s〉. A function
Φ is called a T -vector if Φ : T → N, and a unit T -vector if Φ : T → {0, 1}. The
support of a T -vector Φ is supp(Φ) = {t ∈ T | Φ(t) > 0}. Two T -vectors Φ1, Φ2

are label-disjoint if ∀t ∈ T : Φ1(t) = 0 ∨ Φ2(t) = 0. For a finite sequence σ ∈ T ∗,
the Parikh vector Ψ(σ) of σ is a T -vector defined by Ψ(σ)(t) = the number of
occurrences of t in σ. An lts TS = (S,→, T, s0) is called finite if S and T (and
hence also →) are finite sets; totally reachable if [s0〉 = S (i.e., every state is
reachable from s0); (forward) deterministic if for any states s, s′, s′′ ∈ [s0〉 and
label t ∈ T , (s[t〉s′ ∧ s[t〉s′′) ⇒ s′ = s′′; (i.e., the state reached from s after
firing t is unique); backward deterministic if for any states s, s′, s′′ ∈ [s0〉 and
label t ∈ T , (s′[t〉s ∧ s′′[t〉s) ⇒ s′ = s′′; live if ∀t ∈ T ∀s ∈ [s0〉 ∃s′ ∈ [s〉 : s′[t〉
(i.e., transitions remain eventually firable); reversible if ∀s ∈ [s0〉 : s0 ∈ [s〉 (i.e.,
s0 always remains reachable); (forward) persistent [8] if for all reachable states
s, s′, s′′, and labels t, t′, if s[t〉s′ and s[t′〉s′′ with t �= t′, then there is some
(reachable) state r ∈ S such that both s′[t′〉r and s′′[t〉r (i.e., once two different
labels are both enabled, neither can disable the other, and executing both, in
any order, leads to the same state); and backward persistent if for all reachable
states s, s′, s′′, and labels t, t′, if s′[t〉s and s′′[t′〉s and t �= t′, then there is
some reachable state r ∈ S such that both r[t′〉s′ and r[t〉s′′ (i.e., persistence in
backward direction). Two lts TS1 = (S1,→1, T, s01) and TS2 = (S2,→2, T, s02)
are isomorphic, denoted by TS1

∼= TS2, if there is a bijection ζ : S1 → S2 with
ζ(s01) = s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

A Petri net is denoted by N = (P, T, F) where P is a finite set of places, T is
a finite set of transitions, and F is the flow function F : ((P ×T)∪ (T ×P)) → N

specifying the arc weights. A marking is a P -vector M : P → N, indicating
the number of tokens in each place. An initially marked net (or a net system,
or system, for short) is a net together with an initial marking M0. A system
is denoted by Σ = (P, T, F,M0) or, equivalently, by Σ = (N,M0) with N =
(P, T, F). If Σ = (P, T, F,M0) and Σ′ = (P ′, T ′, F ′,M ′

0) with (P∪T)∩(P ′∪T ′) =
∅, then the disjoint sum Σ ⊕ Σ′ is defined as (P ∪ P ′, T ∪ T ′, F ∪ F ′,M0 ∪ M ′

0).
If k ∈ N and M is a marking, then the k-multiple marking k·M is defined by
(k·M)(p) = k·(M(p)) for every place p. We denote by gcd(M0) the number
gcd{M0(p) | p ∈ P}. A marking M is called a k-marking if k divides gcd(M)
(note that every marking is a 1-marking). For an element x ∈ (P ∪ T), we
write •x = {t ∈ T | F (t, x)>0} and x• = {t ∈ T | F (x, t)>0}. For a sequence
τ ∈ T ∗, we write •τ = {p ∈ P | ∃t ∈ T : Ψ(τ)(t) > 0 ∧ p ∈ •t} and τ• = {p ∈
P | ∃t ∈ T : Ψ(τ)(t) > 0 ∧ p ∈ t•}. A net N is called plain if no arc weight
exceeds 1; connected if it is weakly connected as a graph; pure or side-place free
if ∀p ∈ P : (p•∩•p) = ∅; and a marked graph [4] if it is plain and ∀p ∈ P : |•p| =
1 = |p•|. A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if
∀p ∈ P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted by M [t〉M ′,
if M [t〉 and M ′(p) = M(p)−F (p, t)+F (t, p). The set of markings reachable from

54 E. Best and H. Wimmel

M by repeated firings is denoted by [M〉. The reachability graph RG(Σ) of an
initially marked net Σ = (P, T, F,M0) is the labelled transition system with the
set of vertices [M0〉, initial state M0, label set T , and set of edges {(M, t,M ′) |
M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. Σ is bounded if and only if its reachability graph is
finite. All other notions defined for labelled transition systems apply verbatim to
Petri nets through their reachability graphs. An initially marked net is always
totally reachable (by the definition of its reachability graph) and both forward
and backward deterministic (by the fact that if M [t〉M ′, then there is a unique
linear-algebraic relationship between M , t, and M ′). A system Σ is called pbrp
if it is plain, bounded, reversible, and persistent.

3 Persistence, Small Cycles, Separability, Marked Graphs

Any marked graph system Σ = (P, T, F,M0) is persistent, because if a �= b for
a, b ∈ T , then there is no common pre-place p of a and b, i.e., for all p ∈ P , either
F (p, a) = 0 or F (p, b) = 0, or both. The converse is not true; for instance, TS2 =
RG(Σ2) in Fig. 2 is persistent but not a marked graph.2 Persistent transition
systems enjoy a property of small cycles, as follows.

Definition 1. Disjoint small cycle property
Let TS = (S,→, T, s0) be a transition system. A nontrivial (i.e.: non-empty)
cycle s[σ〉s around a state s ∈ [s0〉 is small if there is no nontrivial cycle s′[σ′〉s′

with s′ ∈ [s0〉 and Ψ(σ′) � Ψ(σ), where � = (≤ ∩ �=).3

TS will be said to have the disjoint small cycle property if there exist a
number n and a set of mutually label-disjoint T -vectors Υ1, . . . , Υn : T → N such
that

{Υ1, . . . , Υn} = {Ψ(β)| there is a reachable state s and a small cycle s[β〉s}

If this property is satisfied, we shall abbreviate it to P{Υ1, . . . ,Υn} (for Parikh
vectors of small cycles). The special case that n = 1 and Υ1 = 1 (i.e., Υ1 is the
unit vector with no zero entries) will be abbreviated by P1. � 1

For example, both TS1 and TS2, shown respectively in Figs. 1 and 2, satisfy
P1, the first with Parikh vector Υ1 = (1 1) and the second with Parikh vector
Υ1 = (1 1 1 1).

Theorem 1. Small cycle and pbrp net decomposition [1]
Let Σ = (P, T, F,M0) be a pbrp net system with reachability graph
RG = (S,→, T,M0).

2 There does not even exist any marked graph system generating TS2 shown in Fig. 2,
by Theorem 3 below and the fact that TS2 is not backward persistent.

3 Small cycles do not have proper subcycles, but this condition is not sufficient: no
proper subset of a small cycle may form a cycle anywhere in TS, not even in a
permuted way.

Plain, Bounded, Reversible, Persistent, and k-marked Petri Nets 55

Σ1 a

b

TS1 =
RG(Σ1)

s0 s1

s2

s3

s4

a

b

a

b
abba

Σ1/2 a

b

Fig. 1. A 2-marked pbrp Petri net Σ1 (l.h.s.) and its reachability graph (middle). The
system Σ1/2 (defined structurally as Σ1, but with half the initial marking) is shown
on the right-hand side.

TS2

s2

s1

s0
s3

s4

s5

s6

s7

b

a
c

b

b
c

a

a

b
d

d

d Σ2 a b

c d

Fig. 2. A transition system TS2 with initial state s0 (l.h.s.). TS2 is not backward
persistent at s0. A non-2-marked pbrp Petri net Σ2 generating TS2 (r.h.s.).

(1) There is a number n ≤ |T | and Parikh vectors Υ1, . . . , Υn such that
P{Υ1, . . . ,Υn} holds in RG.

(2) There are n pbrp nets Σ1, . . . , Σn, where for every 1 ≤ i ≤ n, Σi has
transition set Ti = supp(Υi) and satisfies P1{Υ′

i}, where Υ ′
i is Υi restricted

to Ti, and moreover, RG(Σ) ∼= RG(Σ1 ⊕ . . . ⊕ Σn). � 1

In (2), every Σi can be defined by a fresh copy of the same places and the same
marking as Σ, except that transitions t satisfying Υi(t) = 0 and their surrounding
arcs are omitted. For example, in Fig. 3, the pbrp system Σ3 generates two label-
disjoint cycles with unit Parikh vectors in its reachability graph. A decomposition
into two transition- (and place-) disjoint systems Σ31 and Σ32, as guaranteed
by Theorem 1(2), is also shown in the figure. The system Σ4 shown in Fig. 3
generates a single cycle with a non-unit Parikh vector. By a result in [4], this
implies that no marked graph can have an isomorphic reachability graph. The
system Σ5 has arc weights > 1 and thus falls outside the class of Petri nets we
consider here (but satisfies some of the properties defined above).

All k-marked pbrp systems enjoy a further property of separability, defined
as follows.

Definition 2. Separability
Let k ≥ 1 and let Σ = (N, k·M) be any net with a k-marking k·M . A firing
sequence (k·M)[σ〉 is called k-separable from k·M if there exist k sequences
σ1, . . . , σk such that

(∀j, 1≤j≤k : M [σj〉 in (N,M)) and σ ∈
⊔

| k
j=1 σj

56 E. Best and H. Wimmel

Σ3 a

b

c

d

Σ31a

b

Σ32 c

d

Σ4

a b c

Σ5

a b

2

2

Fig. 3. A pbrp Petri net Σ3 satisfying P{(1 1 0 0), (0 0 1 1)}, and its decomposition into
Σ31 satisfying P1 and Σ32, also satisfying P1 (l.h.s.). A pbrp system Σ4 which satis-
fies P{(1 1 2)} but not P1 (middle). A 2-marked, non-plain brp system Σ5 satisfying
P{(1 2)} (right-hand side), and in which the firing sequence a cannot be separated. In
Σ3, the central place is redundant, in the sense that it can be erased, leaving behind a
marked graph with isomorphic reachability graph.

where �⊥ denotes the shuffle product (“arbitrary interleaving”) operator. A k-net
is separable if every sequence firable in its initial marking is separable from this
k-marking. � 2

As an example, consider k = 2 and the system Σ1 shown on the left-hand side
of Fig. 1. Σ1 has a firing sequence σ = abbbaaaabbbba which can be separated by
σ1 and σ2 as follows:

σ : (2 · M0) [abbbaaaabbbba〉 in Σ1

σ1 : M0 [baabba〉 M1 in Σ1/2
σ2 : M0 [abbaab〉 M1 [b〉 M2 in Σ1/2

(1)

It can be seen that σ is indeed a shuffle of the two sequences σ1 and σ2 shown
in (1), and that indeed, both σ1 and σ2 are firable from M0 in the system Σ1/2
shown on the right-hand side of Fig. 1.

Theorem 2. Separability, and unit T -vector decomposability [2]
Let Σ = (N, k·M0) be a pbrp system. Then every firing sequence k·M0[σ〉 can
be separated. Assume, in addition, that k ≥ 2. Then Σ satisfies P{Υ1, . . . , Υn}
with mutually label-disjoint unit T -vectors Υ1, . . . , Υn. � 2

Intuitively, separability means that a system Σ = (P, T, F, k·M0) with a
k-marking k·M0 can be viewed as equivalent (in terms of firing sequences) with
k disjoint copies of the system (P, T, F,M0). The main ingredient of the proof
of the first part of Theorem2 is the fact that the letters in a firing sequence
σ of Σ = (P, T, F, k·M0) can be moved leftward according to their frequencies,
as exemplified in (1). The 2-marked system Σ5 displayed in Fig. 3 shows the
importance of plainness for separability.

It is known from classic theory [4,9] that every live and bounded (plain)
marked graph is a pbrp system. However, there exist pbrp nets which are not

Plain, Bounded, Reversible, Persistent, and k-marked Petri Nets 57

marked graphs; see, for instance Σ2 (Fig. 2) and Σ4 (Fig. 3). If k ≥ 2 in the
initial marking k·M0, the second part of Theorem 2 ensures that every small
cycle is generated by a unit Parikh vector. The property that all small cycles
are unit cycles is another well-known characteristic of live and bounded marked
graphs. This raises the following question: Does there exist a k-marked pbrp
system, with k ≥ 2, which does not have a marked graph reachability graph? In
answering it, we will make use of the following, more recent, result.

Theorem 3. Marked graph synthesis [3]
Assume that a finite transition system TS is totally reachable, deterministic,
persistent, backward persistent, reversible, and satisfies P1. Then there is a con-
nected, live and bounded marked graph Σ′ with RG(Σ′) ∼= TS. � 3

4 Proving Backward Persistence

This is the core section of our paper. In it, we show the backward persistence
of k-marked pbrp systems with k ≥ 2 under the assumption that P1 holds.
We can then easily see the existence of a marked graph with an isomorphic
reachability graph. In Sect. 5, we shall complete the theory by deriving a marked
graph representation of arbitrary k-marked prbp systems (without P1).

Our proof is built upon a series of small facts about persistent systems. We
shall mention the most significant ones before starting the main proof. Keller’s
theorem [7], in the following form, often serves as a useful tool for proving such
small facts. For sequences σ, τ ∈ T ∗, let τ−•σ denote the sequence left after erasing
successively in τ the leftmost occurrences of all symbols from σ, read from left
to right. Keller’s theorem states that in a deterministic and persistent transition
system, if s[τ〉 and s[σ〉 for some s ∈ [s0〉, then Ψ(τ(σ−• τ)) = Ψ(σ(τ−• σ)) and
s[τ(σ−• τ)〉ŝ and s[σ(τ−• σ)〉ŝ for some state ŝ ∈ [s0〉.

Throughout this section, sequences in T ∗ will be denoted by small Greek
letters, and q, s, s1 etc. denote reachable states.

Proposition 1. Pushing cycles, and backward cyclic extensions
Let TS = (S,→, T, s0) be a deterministic, persistent transition system.

(1) If s ∈ [s0〉 and s[κ〉s[γ〉s′, then there is some sequence κ′ ∈ T ∗ with Ψ(κ′) =
Ψ(κ) and s′[κ′〉s′.

(2) Suppose that TS is also reversible. If s, s′ ∈ [s0〉 and s[κ〉s, then there is
some sequence κ′ ∈ T ∗ with Ψ(κ′) = Ψ(κ) and s′[κ′〉s′.

(3) Suppose that TS is also reversible and satisfies P1. If q ∈ [s0〉 and q[τ〉q′

with Ψ(τ) ≤ 1, then there is some sequence τ ′ ∈ T ∗ with q′[τ ′τ〉q′ and
Ψ(τ ′τ) = 1.

Proof.

(1): Keller’s theorem, applied to s[κγ〉s′ and s[γ〉s′, yields

s[κγ〉s′[γ−• (κγ)〉ŝ and s[γ〉s′[(κγ)−• γ〉ŝ

58 E. Best and H. Wimmel

The first conjunct yields s′ = ŝ, and the second conjunct yields s′[κ′〉s′ with
κ′ = (κγ)−• γ.

(2): Consequence of (1) and reversibility.
(3): Using (2), let κ be such that q[κ〉q is a small cycle with Parikh vector 1.

By Keller’s theorem, q[τ〉q′[κ−• τ〉q′′. By Ψ(τ) ≤ 1 = Ψ(κ) (the equality
being due to P1), Ψ(κ) = Ψ(τ(κ−• τ)). By determinism and the cyclicity
of κ, q′′ = q. With τ ′ = (κ−• τ), we get q[τ〉q′[τ ′〉q[τ〉q′. By Ψ(τ) ≤ Ψ(κ),
Ψ(τ ′τ)=Ψ(κ)=1. � 1

The following theorem is our central result. Its proof makes reference to
Table 1, which depicts the pattern arising from the separation of a sequence σ
according to the first part of Theorem2.

Table 1. A tableau explaining the separation of a firing sequence σ firable from k·M0

in a pbrp system (N, k·M0). This generalises equation (1) above. The lines denote
sequences which can be fired from M0 with Ψ(σ) =

∑k
i=1 Ψ(σi). Starting with k·M0,

any line can arbitrarily be interleaved with other lines, but the ordering within a line
cannot, in general, be changed.

Theorem 4. k-marked prpb nets satisfying P1 are backward persis-
tent
Suppose that Σ = (N, k·M0) is a pbrp system satisfying P1, and that k ≥ 2.
Then Σ is backward persistent.

Proof. Let N = (P, T, F). Assume that there are two transitions a, b ∈ T and
states s, s1, s2 ∈ [k·M0〉 such that s1[a〉s and s2[b〉s in Σ. We want to show that
there is a state s′ ∈ [k·M0〉 such that s′[a〉s2 and s′[b〉s1.

By Proposition 1(3) (letting q = s1, τ = a, and q′ = s), we find a cycle
s[α〉s1[a〉s with Ψ(αa) = 1. A similar cyclic extension can be done at state s2 for
b yielding s[βb〉s. By total reachability, s can be reached from the initial state
by some firing sequence γ resulting in k·M0[γ〉s[αa〉s and k·M0[γ〉s[βb〉s.

By separability (Definition 2), we find αi and βi (1 ≤ i ≤ k) such that
γαa ∈

⊔

| k
i=1αi and γβb ∈

⊔

| k
i=1βi. If we name markings according to Table 1

we get M0[αi〉Mi and M0[βi〉Mi for 1 ≤ i ≤ k, and each αi/βi forms one line in

Plain, Bounded, Reversible, Persistent, and k-marked Petri Nets 59

the table. To see that we reach the same marking Mi in both cases, note that
Ψ(γαa) = Ψ(γβb) and thus the number of occurrences of each transition is the
same in both sequences, i.e. Ψ(αi) = Ψ(βi) for 1 ≤ i ≤ k.

Since γαa is some interleaving of the αi’s and ends with an a, so must one of
the αi, i.e. we find j1 with 1 ≤ j1 ≤ k and α′ such that αj1 = α′a. Analogously,
there are j2 and β′ with βj2 = β′b. We distinguish two cases:

Case 1: j1 �= j2 (which implies k ≥ 2).
So, the lines in Table 1 where a and b occur as the last transition are different

ones. Essentially, we can find an interleaving of these two lines where a and b
occur as the last two transitions. Let γ′ ∈ T ∗ be the sequence obtained by
concatenation of all αi except αj1 and αj2 . Then we can fire k·M0[γ′αj1βj2〉s
as each αi can be fired from M0 and Ψ(αj2) = Ψ(βj2). Thus, we can also fire
k·M0[γ′α′β′〉s′[ab〉s and k·M0[γ′α′β′〉s′[ba〉s. By backward determinism at s, we
conclude s′[b〉s1[a〉s and s′[a〉s2[b〉s.
Case 2: j1 = j2.

When separating k·M0[γαa〉s and k·M0[γβb〉s we can fire either M0[αj1〉Mj1

with last letter a or M0[βj1〉Mj1 with last letter b in the j1th line of Table 1, but
we do not know where the letter a or b will show up in the other sequence.
Especially, we cannot directly guarantee that a and b will be the last two
letters. To see that this is possible, we need to visit the state k·Mj1 . We
can reach k·Mj1 from k·M0 by firing αj1 k times simultaneously, or alterna-
tively by firing the Parikh-equivalent interleavings k·M0[(αj1)

k−2α′β′ab〉k·Mj1

and k·M0[(αj1)
k−2α′β′ba〉k·Mj1 (since k ≥ 2). By Proposition 1(3) (with

q′ = k·Mj1 and τ = ab or τ = ba), we find small cycles k·Mj1 [τ
′ab〉k·Mj1

and k·Mj1 [τ
′ba〉k·Mj1 . Since Ψ(τ ′ab) = 1 = Ψ(τ ′ba), separability implies

Mj1 [τ
′ab〉Mj1 and Mj1 [τ

′ba〉Mj1 . (By Theorem 2, for k·Mj1 [τ
′ab〉 separation is

possible and will result – with a new instantiation of Table 1 – in some sequences
σ1, . . ., σk. Since σ1, . . ., σk−1 may only contain letters which occur more than
once in τ ′ab, σ1 = . . . = σk−1 = ε, and consequently, σk = τ ′ab and Mj1 [τ

′ab〉.
Since τ ′ab does not change the token distribution in the net, even Mj1 [τ

′ab〉Mj1

holds. The same argument can be used for τ ′ba.) Now we need to remember
that s was the goal marking in k·M0[γαa〉s, which the separation previously
decomposed such that s =

∑k
i=1 Mi (the sum of the rightmost markings of

each line in Table 1). As Mj1 occurs in this sum, Mj1 ≤ s, and by monotonic-
ity of the firing rule, s[τ ′〉s′[ab〉s as well as s[τ ′〉s′[ba〉s with some intermediate
state s′. By backward determinism at s, we obtain once again s′[b〉s1[a〉s and
s′[a〉s2[b〉s. � 4

In order to illustrate this proof, let us assume that there is a pbrp sys-
tem Σ = (N, k·M0) satisfying P1 with TS2 from Fig. 2 as its reachability
graph and k ≥ 2. Since s1[a〉s0 and s2[b〉s0, we can find the cyclic extensions
αa = cbda and βb = cadb firable at s = s0. Separating these sequences leads to
αi = ε = βi for i < k, αk = cbda, and βk = cabd (since every transition occurs
exactly once), so we enter Case 2 with j1 = j2 = k. Since k ≥ 2, we should
find k·M0[(cbda)k−2(cbd)(cad)ab〉k·Mk and k·M0[(cbda)k−2(cbd)(cad)ba〉k·Mk.

60 E. Best and H. Wimmel

By Proposition 1(3), we should find small cycles k·Mk[τ ′ab〉k·Mk[τ ′ba〉k·Mk.
Unfortunately, since s0

αk−→ s0 and k·M0[(αk)k〉k·Mk, the marking k·Mk is rep-
resented by s0 in TS2. Due to the missing backward persistence for a and b at
s0, there are no paths τ ′ab or τ ′ba ending in k·Mk, no matter how we choose τ ′.
The assumed net system Σ cannot exist.

Corollary 1. Suppose that Σ = (N, k·M0), with N = (P, T, F) and k ≥ 2, is
a pbrp system satisfying P1. Then there exists a connected, live and bounded
marked graph Σ′ with RG(Σ) ∼= RG(Σ′).

Proof. Σ is totally reachable and deterministic by virtue of being a Petri net
reachability graph. Σ is persistent and reversible because it is a pbrp system,
and it satisfies P1 by assumption. Moreover, Σ is backward persistent by The-
orem 4. Hence Theorem 3 applies, and we can find a suitable marked graph by
this theorem. � 1

5 Main Result

Theorem 5. Existence of simulating marked graphs
Suppose that Σ = (N, k·M0) is a pbrp system, with N = (P, T, F) and k ≥ 2.
Then there is a live and bounded marked graph Σ′ such that RG(Σ) and RG(Σ′)
are isomorphic.

Proof. We reduce the problem by decomposing Σ. Let Σ1, . . . , Σn be the
systems defined just after Theorem 1(2). Then, according to Theorem1(2),
RG(Σ) ∼= RG(Σ1 ⊕ . . . ⊕ Σn). Let Ti be the set of transitions of Σi. The sets
Ti are mutually disjoint, since the small cycles they stem from are also mutually
disjoint. Σi is k-marked by definition, and by RG(Σ) ∼= RG(Σ1 ⊕ . . . ⊕ Σn), its
firing sequences are precisely the firing sequences of Σ restricted to T ∗

i .
By k ≥ 2, and by the second part of Theorem2, Σi satisfies P1, for every 1 ≤

i ≤ n. We can apply Corollary 1, proving that there exists a connected, live and
bounded marked graph Σ′

i with RG(Σ′
i) ∼= RG(Σi). Define Σ′ = Σ′

1 ⊕ . . . ⊕ Σ′
n.

Now we get

RG(Σ) ∼= RG(Σ1 ⊕ . . . ⊕ Σn) (by Theorem 1(2))
∼= RG(Σ′

1 ⊕ . . . ⊕ Σ′
n) (by the definition of theΣi, and by Corollary 1)

∼= RG(Σ′) (by the definition ofΣ′)

Hence RG(Σ) ∼= RG(Σ′) by the transitivity of isomorphism. Moreover, Σ′ is
a live and bounded (not necessarily connected) marked graph since a disjoint
sum of live and bounded marked graphs is again a live and bounded marked
graph. � 5

For an example, see Fig. 4. The reachability graph of the system shown on
the left-hand side is backward persistent. Theorem 5 applies, allowing us to find
a live and bounded marked graph with an isomorphic reachability graph. Such
a marked graph is shown on the right-hand side of Fig. 4. In fact, according to
the results of [3], it is the only place-minimal such graph (up to isomorphism of
Petri nets).

Plain, Bounded, Reversible, Persistent, and k-marked Petri Nets 61

s1
q1

s

q2
s2

a1 b1 a2b2d1 d2

c1 c2

Σ6

a1 b1

a2b2

d1 d2

c1

c2

Σ7

Fig. 4. A pbrp and backward persistent 2-net Σ6 which is not a marked graph (l.h.s.)
and a marked graph Σ7 with RG(Σ6) ∼= RG(Σ7), obtained according to Theorem 5
(r.h.s.). Note that none of the places of Σ6 is redundant, and that dropping the non-
marked-graph places s1, q1, s, s2, q2 from Σ6 does not create a reachability-isomorphic
marked graph.

6 Concluding Remarks

The notion of a k-marked Petri net has been inspired by workflow applications.
Already some time ago, the second part of Theorem 2 suggested that in this con-
text, initial k-markings can have strong consequences, provided k ≥ 2. The main
Theorem 5 proved in this paper serves to reinforce this intuition. It strengthens
Theorem 2, in the sense that plain, bounded, reversible, and persistent Petri nets
with an initial marking satisfying gcd(M0) ≥ 2 not only exhibit some of the char-
acteristics of live and bounded marked graphs, but can completely be simulated
by them. The exact characterisation of marked graph reachability graphs con-
tained in [3] has been instrumental in getting this result, the essential property
proved in the present paper being backward persistence.

A rather wide spectrum of different notions of conflict-freeness exists in Petri
net theory, and not all simulation relationships have been fully investigated.
Within this spectrum, marked graphs are on the restrictive end, while persistent
nets are on the permissive end. Intermediate notions can be defined, such as the
notion of structural conflict-freeness [5]. Our results suggest that this spectrum
collapses for prbp systems with initial k-markings satifying k ≥ 2.

The repercussions for workflow modelling by Petri nets are not completely
clear. On the one hand, one might feel that our results limit the modelling power
of persistent Petri nets in the workflow context. On the other hand, the results
might also suggest that conflicts should be introduced carefully in workflow nets,
so that violations of serialisability are localisable to well-delineated, non-marked
graph, substructures of a system.

There are various ways in which one might proceed. For example, it makes a
difference whether a k-marked net or its k’th fraction is postulated as persistent,
and it is not known whether our results can be strengthened if only the latter
but not the former is assumed. Also, it is not clear what happens if reversibility
is weakened to liveness (or what happens under other straightforward modifica-
tions, for that matter). One might ask whether there exists a sophisticated way

62 E. Best and H. Wimmel

of “massaging” places (rather than simply dropping redundant ones) in order to
construct the right-hand side of Fig. 4 (Σ7) from its left-hand side (Σ6). There
are also other interesting open questions related to separability. For example,
referring to possibly unbounded Petri nets in general, the decidability status of
the problem “Do (N, 2·M0) and (N,M0) ⊕ (N ′,M ′

0) – where (N ′,M ′
0) is a fresh

copy of (N,M0) and (N,M0) ⊕ (N ′,M ′
0) is viewed as a labelled net – have the

same language?” seems to be unknown.

References

1. Best, E., Darondeau, P.: A decomposition theorem for finite persistent transition
systems. Acta Informatica 46(3), 237–254 (2009)

2. Best, E., Darondeau, P.: Separability in persistent Petri nets. Fundam. Inform.
113(3–4), 179–203 (2011)

3. Best, E., Devillers, R.: Characterisation of the state spaces of marked graph
Petri nets. To be published in Information and Computation (2016). http://www.
sciencedirect.com/science/article/pii/S0890540116300207

4. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Com-
put. Syst. Sci. 5(5), 511–523 (1971)

5. van Glabbeek, R.J., Goltz, U., Schicke, J.-W.: On causal semantics of Petri nets.
In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 43–59.
Springer, Heidelberg (2011)

6. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Soundness and separability of work-
flow nets in the stepwise refinement approach. In: van der Aalst, W.M.P., Best, E.
(eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)

7. Keller, R.M.: A fundamental theorem of asynchronous parallel computation.
In: Feng, T.Y. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer,
Heidelberg (1975)

8. Landweber, L.H., Robertson, E.L.: Properties of conflict-free and persistent Petri
nets. JACM 25(3), 352–364 (1978)

9. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

10. https://en.wikipedia.org/wiki/Shuffle algebra

http://www.sciencedirect.com/science/article/pii/S0890540116300207
http://www.sciencedirect.com/science/article/pii/S0890540116300207
https://en.wikipedia.org/wiki/Shuffle_algebra

Reachability Predicates for Graph Assertions

Giorgio Delzanno(B)

DIBRIS, University of Genova, Via Dodecaneso, 35, 16146 Genova, Italy
giorgio.delzanno@unige.it

Abstract. We introduce a logic-based formalism to specify updates on
arbitrary graphs. For the resulting language called GLog, we introduce an
assertional language for reasoning about infinite sets of graph configura-
tions in which we use reachability predicates to specify paths of arbitrary
length. For the considered assertional language and a restricted class of
update rules, we define a symbolic procedure to compute predecessor
configurations.

1 Introduction

Verification of distributed algorithm is a challenging task. This kind of algo-
rithms are often defined for an arbitrary number of nodes connected in arbitrary
ways. Furthermore, the behavior of individual nodes is often constrained by val-
ues (time-stamps, sequence numbers, identifiers, etc.) that are exchanged during
a protocol run. As shown, e.g., in [5], update rules working on graph patterns
with a completely specified shape (e.g. edge relabeling etc.) combined with sym-
bolic representation of values associated to individual nodes are often sufficient
to specify complex protocols. However, reasoning on this kind of specifications
requires assertional languages that can express properties on graph patterns that
represent minimal constraints on a possible infinite set of configurations. More
specifically, for protocols like AODV [4], whose aim is to dynamically create and
maintain routing tables, correctness is formulated in terms of properties like loop
freedom, i.e., absence of loops in the graph induced by the information stored in
routing tables.

In this paper we define a logic-based specification language, called GLog,
for expressing updates on graph transition systems. GLog is based on binary
predicates that can be used to specify the existence of nodes and edges with
given labels and to update both shape and labels of subgraph. Furthermore, we
consider conditions defined in first order logic over our binary predicates. We
then define an assertional language with two types of atomic formulas, namely
link(p,X, Y) and path(p,X, Y) to specify the existence resp. of links and paths
connecting two generic nodes X and Y resp. with an edge with label p or with a
path consisting of edges with label p only. The denotation of assertions consists of
infinite set of configurations that satisfy the minimal constraints enforced by link-
and path-formulas. Concerning the expressiveness of the assertional languages,
we only admit equality constraints (implicitly defined by multiple occurrences
of the same variable as in the assertion link(p,X,X) denoting a loop on the
c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 63–76, 2016.
DOI: 10.1007/978-3-319-45994-3 5

64 G. Delzanno

node associated to X). Furthermore, we do not impose extra conditions like
disjointness of paths and link generated after instantiating constraints contained
in the same assertion. For instance, the assertion link(p,X, Y), path(p, Z, T) can
be instantiated with graphs in which the path connecting the nodes associated
to Z and T contains the link connecting nodes associated to X and Y that
satisfies link(p,X, Y). For the resulting constraints, we define symbolic operators
for the containment test and for computing predecessors working directly on
assertions. We consider here a restricted form of updates rules, called relabeling
rules, to simplify the presentation of the computation of pre-conditions. We
discuss possible extensions involving relations over data associated to nodes and
edges. Furthermore, we show how the proposed operations can be applied in
order to define a symbolic fixpoint computation engine working on assertions.

This work is a preliminary study towards the definition of automated pro-
cedures for computing preconditions (and fixpoint computations based on the
resulting operators) over graph assertions with reachability predicates. Differ-
ently from other approaches based on richer assertional languages, see e.g., the
framework defined in [3], in this paper we sacrifice expressiveness of assertions
to gain effectiveness in the construction of symbolic operations. Furthermore, we
limit the study of possible extensions to features (sequence numbers, timestamps,
identifiers) that could be useful to verification of interesting classes of protocols
(e.g. loop freedom in AODV).

1.1 Related Work

The paper by German and Sistla [9] is one of the seminal works on parameterized
verification. In this work concurrent and distributed systems are represented by
means of automata communicating via rendez-vous in the style of Petri nets.
Model checking has been extended to infinite-state systems with broadcast com-
munication by Emerson and Namjoshi in [7]. For verification of infinite-state
systems with rendez-vous and broadcast communication, it is possible to apply
counter abstraction, i.e., an abstraction that keeps track of the number of compo-
nents in each possible state [1,15,19–21]. MAP [8] is a tool based on transforma-
tions of constraint logic programs that can be applied to infinite-state systems
with linear configurations and relations over data variables. MCMT [16] is a
symbolic backward reachability engine based on SMT solvers that can handle
parameterized systems with linear configurations. The MCMT tool is based on
the EPR fragment of first order logic with arrays and applies different types
of heuristics including invariant generation to reduce the state space. PFS [17]
and UNDIP [18] are tool specifically devised to handle parameterized systems.
AUGUR 2 [11] is a tool devised for the analysis of Graph Transformation Systems
using approximated unfoldings based on Petri nets. PETRUCHIO [12] is a tool
that extracts a Petri net representation from specifications of dynamic networks
based π-calculus. UNCOVER [14,22] is a tool that performs a symbolic back-
ward reachability analysis for GTS with universally quantified conditions. The
tool exploits a generalization of monotonic abstraction to quantifications over
graph patterns as a heuristic to manipulate infinite sets of configurations using

Reachability Predicates for Graph Assertions 65

minimal constraints (given in form of graphs) only. UNCONVER can be viewed
as the counterpart of UNDIP and PFS for systems in which configurations have
a graph structure. Differently from [13,14,22], our assertional language can be
applied to define (violations of) invariants that involve reachability predicates.
This kind of specification language is inspired to the path expressions used to
express application conditions in Groove [10]. In this setting the applications
conditions are applied to finite graph configurations. Differently from [10], the
semantics of our language associates infinite set of configurations to assertions.
Symbolic operations are defined in order to take into consideration our extended
semantics.

2 GLog

In this section we will define a logic-based presentation of evolving graphs called
GLog, GLog generalizes the BLog language in [5]. GLog formulas are based
on a simple relational calculus that can be used to express updates of config-
urations defined by sets of ground atoms. Ground atoms define relations, i.e.,
labelled links, between “nodes”. More formally, let P be a finite set of names of
binary relations, N a denumerable set of node identifiers, and V be a denumer-
able set of variables. Our logic has no function symbols but can be instantiated
with elements from N . An atomic formula is a formula p(x, y), where p ∈ P ,
x, y ∈ V . A ground atom is a formula p(n,m), where n,m ∈ N . A literal is
either an atomic formula or the negation ¬A of an atomic formula A. A for-
mula is a first order formula built on literals, namely, any literal is a formula,
conjunctions, disjunctions, universally and existentially quantified formulas are
still formulas. The set of free variables of a formula F , namely FV (F), is the
minimal set satisfying FV (p(x, y)) = {x, y}, FV (A ∨ B) = FV (A) ∪ FV (B),
FV (A ∧ B) = FV (A) ∩ FV (B), FV (¬A) = FV (A), FV (∀v.A) = FV (A) \ {v},
and FV (∃v.A) = FV (A) \ {v}. Given S = {F1, . . . , Fn}, we define FV (S) =
FV (F1)∪ . . .∪FV (Fn). Quantified formulas we will be used as application con-
ditions of rules. Configurations can be viewed as models in which to evaluate a
formula. For this reason, we will consider free variables in guards to restrict the
range of identifiers occurring in a configuration. To define instantiations of free
variables, we consider injective mappings. We use injective mappings in order to
give a unique interpretation of a formula like p(X,E) ∧ p(Y, F), i.e., X,Y,E, F
refer to distinct nodes. We allow multiple occurrences of the same variable to
implicitly model equality constraints. An interpretation is an injective mapping
σ from V to N . For a formula F we use Fσ as an abbreviation for σ̂(F), where
σ̂ is the natural extensionof σ to terms. For a set S = {A1, . . . , An}, we use Sσ
to denote the set {A1σ, . . . , Anσ}.

2.1 Update Rules

Update rules consists of conditions defined by quantified formulas with no func-
tion symbols, a deletion and an addition set. The deletion (resp. addition) set

66 G. Delzanno

defines the set of ground atoms that have to be cancelled from (resp. added to)
the current configuration. A rule has the following form 〈C,D,A〉, where C is a
quantified formula, D and A are two sets of atomic formulas with variables in
V , and such that FV (A) ∪ FV (D) ⊆ FV (C).

To fix an operational semantics for our language we need a support for the
interpretation of relations and variables. We will consider a sort of Herbrand
semantics for relations. Namely, we first consider two denumerable sets N and E
of nodes and edges identifiers, respectively. A configuration is a set Δ of ground
atomic formulas. A configuration implicitly defines a graph in which directed
edges are represented by atomic formulas whose predicate nameacts as edge
label.

We use Δ |= A to define the satisfiability relation of a quantified formula A
s.t. FV (A) = ∅. Let A[n/X] denote the formula obtained by replacing each free
occurrence of X with n. The relation is defined by induction as follows.

– Δ |= A, if A ∈ Δ;
– Δ |= A ∧ B, if Δ |= A and Δ |= B;
– Δ |= ¬A, if Δ |= A;
– Δ |= ∀X.A, if Δ |= A[n/X] for each n ∈ N ;
– Δ |= ∃X.A, if Δ |= A[n/X] for some n ∈ N .

Given a configuration Δ, we say that the quantified formula A is satisfied in Δ,
if there exists an interpretation σ s.t. Aσ is satisfiable.

In order to apply a rule 〈C,D,A〉 to Δ, there must be an interpretation σ
that satisfies the quantified formula C. The same interpretation σ is then applied
to the atomic formulas in D and A. The resulting sets of atoms, say D′ and A′

respectively, are deleted from and added to Δ, respectively.

2.2 Transition System

A protocol P is a set of rules. The operational semantics of P is given by a
transition system TP = 〈C,→〉, where C is the set of possible configurations, i.e.,
finite subsets of ground atoms, and →⊆ C×C is a relation defined as follows. For
Δ,Δ′ ∈ C and a rule 〈C,D,A〉 ∈ P, Δ → Δ′ if there exists σ s.t. Δ |= Cσ and
Δ′ = (Δ \ Dσ) ∪ Aσ. A computation is a sequence of configurations Δ0Δ1 . . .
s.t. Δi → Δi+1 for i ≥ 0.

We use →∗ to denote the reflexive and transitive closure of →. In a single
step of the operational semantics a rule is evaluated in the current configuration
by taking a sort of closed-word assumption, i.e., ground atoms that do not occur
in a configuration are evaluated to false. Furthermore, atomic formulas that are
not deleted are transferred from the current to the successor configuration. The
latter property can be viewed then as a sort of frame axiom. It is important to
notice that, in general, a configuration Δ has several possible successors. Indeed,
depending of the chosen interpretation of free variables the same rule can be
applied to different subsets of ground atoms contained in the same configuration.

For a set S of configurations, we define the Post and Pre operators as follows
Post(S) = {Δ′ | ∃Δ ∈ S, Δ → Δ′} and Pre(S) = {Δ′ | ∃Δ ∈ S, Δ′ → Δ}.

Reachability Predicates for Graph Assertions 67

We use Post∗(S) (resp. Pre∗(S)) to denote the reflexive-transitive closure of
Post (resp. Pre).

Decision Problem. We consider decision problems that generalize the stan-
dard notion of reachability between configurations. The key point is to reason
about an infinite set of initial configurations in order to prove properties for pro-
tocol instances with an arbitrary number of nodes and edges. For this purpose,
we introduce the ∃-reachability problem defined as follows.

Definition 1. Given a protocol P, a set of target configurations T and a possibly
infinite set of initial configurations I, ∃-reachability is satisfied for P, I and
T , written ∃Reach(P, I, T), if there exists Δ ∈ T and a configuration Δ1 s.t.
Δ1 ∈ Post∗(I) and Δ ⊆ Δ1.

In other words ∃Reach(P, I, T) holds if there exists a configuration Δ0 ∈ I s.t.
Δ0 →∗ Δ1 and Δ ⊆ Δ1 for some Δ ∈ T . ∃-Reachability is an undecidable
problem [5].

3 Assertional Language

In this section we introduce an assertional language that can be used to define
properties on configurations. The assertional language is designed to express
minimal constraints on sets of configurations. We consider here two types of
constraints: links and paths. For instance, we use assertions like

∃X,Y.link(p,X,Z), path(q,X, Y)

to denote all configurations with at least a link with label p connecting two nodes
n and m and a path in which links have label q connecting the same nodes.

Definition 2. An atomic assertion has one of the following forms: link(p, x, y),
path(p, x, y), where p ∈ P , x, y ∈ V .

An assertion is a formula ∃X1, . . . , Xk.A1, . . . , An where

– A1, . . . , An is an abbreviation for the conjunction A1 ∧ . . . ∧ An,
– Ai is an atomic assertion for i : 1, . . . , n,
– and, finally, FV (A1 ∧ ∧ An) = {X1, . . . , Xk}.

The semantics of atomic formulas is defined as follows:

– Δ |= link(p, n,m), if p(n,m) ∈ Δ;
– Δ |= path(p, n,m), if there exist v1, . . . , vk for k ≥ 0 s.t.

{p(n, v1), p(v1, v2), . . . , p(vk−1, vk), p(vk,m)} ⊆ Δ

Δ |= A1, . . . , An, if Ai is an atomic assertion, and Δ |= Ai for i : 1, . . . , n,
– if ϕ has no existential quantifiers and FV (ϕ) = {X1, . . . , Xk}, then Δ |=

∃X1, . . . , Xk.ϕ holds, if Δ |= ϕσ for some injective mapping σ from FV (ϕ) to
the set of nodes.

68 G. Delzanno

The denotation of an assertion is defined as follows:

Den(γ) = {Δ | Δ |= γ}
In other words γ denotes all configurations obtained by extending the mini-
mal requirements specified in γ in order to satisfy path formulas. The deno-
tation of a finite set Γ (a disjunction) of assertions is defined as follows:
Den(Γ) =

⋃

γ∈Γ Den(γ). For instance, given γ = ∃X,Y.path(p,X, Y), Den(γ)
contains all configurations with at least a path with labels p from two dis-
tinct nodes. Given γ1 = ∃X.path(p,X,X), Den(γ1) contains all configura-
tions with at least a loop with labels p in node n. Notice that in γ2 =
∃X.path(p,X, Y), link(p,X, Y), the existence of of a link connecting X and Y
is stronger than the existence of a path. In other words, a graph with a link
between instances of X and Y always satisfy the path constraint. A similar
observation holds for more complex patterns involving a path-formula, e.g., in
γ3 = ∃X.path(p,X, Y), link(p,X,Z), path(p, Z, Y) the assertion path(p,X, Y)
is entailed by the remaining ones (to satisfy them we need a path linking
instances of X and Y). We formalize this idea as follows. An assertion γ
is in redudant form if there are symbol p and existentially quantified vari-
ables X,Y, V1, . . . , Vk for k ≥ 0 s.t. γ contains the assertion path(p,X, Y)
and α1(p, V1, V2), α2(p, V2, V3), . . . , αk−1(p, Vk−1, Vk) s.t. αi ∈ {link, path} for
i : 1, . . . , k and either V1 = X, Vk = Y , and X = Y , or V1 = X and Vk = X.

If the conditions in the previous definitions are satisfied for variables X (resp.
X,Y) the atomic formula path(p,X,X) (resp. path(p,X, Y)) is called redundant.
An assertion is in reduced form, if it is not redundant. An assertion can be
rewritten in reduced form by eliminating every occurrence of redundant atomic
formulas. In the rest of the paper, when clear from the context, we will omit
existential quantifiers.

Proposition 1. If ϕ′ is the reduced form of ϕ, then Den(ϕ) = Den(ϕ′).

Decision Problem. Decision problems defined for ground configurations can
be transferred to sets of assertions as follows.

Definition 3. Given a protocol P a set I of initial configurations, and a set of
assertions Γ , ∃-reachability is satisfied for P, I and Γ , written ∃Reach(P, I, Γ),
if there exists Δ ∈ Den(Γ) s.t. Δ ∈ Post∗(I).

In other words ∃Reach(P, I, Γ) holds if there exists Δ1 ∈ Den(Γ) s.t. Δ0 →∗

Δ1 for some Δ0 ∈ I. The undecidability proof in [5] can be reformulated
when targets are expressed via assertions. The ∃-Reachability problem remains
undecidable.

4 Symbolic Operations

In this section we define symbolic operations to manipulate our assertional lan-
guage. We are interested in operations that can be used to implement symbolic
exploration procedures, like union, intersection, containment, and computation
of pre- and post-conditions w.r.t. update rules.

Reachability Predicates for Graph Assertions 69

Containment Test. Let us first consider the containment test between two
assertions in reduced form. Namely, given assertions γ1 and γ2, we would like to
define a procedure subset s.t., at least, if subset(γ1, γ2) = true, then Den(γ1) ⊆
Den(γ2). Assertions can be viewed as minimal constraints on configurations. In
order for the denotation of γ2 to include the denotation of γ1, we must ensure
that for every assertion in γ2 there exists a stronger assertion in γ1. This property
ensures that every constraint enforced by atomic formulas in γ1 will be satisfied in
γ2 possibly with stronger conditions. Since assertions are existentially quantified,
we need to find an injection from variable in γ2 to variables in γ1 s.t. the above
mentioned condition is satisfied.

Definition 4. Let γ1 be the reduced assertion ∃X1, . . . , Xn.η1 and γ2 be the
reduced assertion ∃Y1, . . . , Ym.η2 with m ≤ n. Withouth loss of generality, we
assume that V ar(η2) = {Y1, . . . , Ym} and V ar(η1) = {X1, . . . , Xn} are disjoint
(we can apply variable renaming to ensure this property). We define the predi-
cate subset(γ1, γ2) evaluates to true if there exists an injective mapping σ from
V ar(η2) to V ar(η1) that satisfies the following conditions:

– For every link-constraint ϕ in γ2, ϕσ must occur in γ1, i.e., every edge in γ2
must be present in γ1.

– For every path-constraint ϕ = path(p,X, Y) in γ2, there must exist variables
V1, . . . , Vk and the list of assertions (forming a chain)

α1(p, V1, V2), α2(p, V2, V3), . . . , αk−1(p, Vk−1, Vk)

in γ1 s.t.
• σ(X) = V1, σ(Y) = Vk,
• αi ∈ {link, path} for i : 1, . . . , k.

Notice that, by hypothesis, existentially quantified variables are always mapped
to distinct nodes. In accord with our previous definition, the assertion
link(p,X, Y) does not subsume link(p,X,X). Consider the assertion

link(p,X, Y), path(q,X, Y)

in γ2 and the assertion

link(p,A,B), link(q,A,C), path(q, C,B)

in γ1. We can map X,Y to A,B so as to satisfy link(p,X, Y) with
the atomic formula link(p,A,B), and path(q,X, Y) with the assertion
link(q,A,C), path(q, C,B). Notice that in order to satisfy path(q, C,B) in γ1,
we need a path involving either link or path assertions in γ2. Finally, consider
the assertion path(p,X,X) in γ2 and the assertions

link(p,A,B), link(p,B,C), path(p,C,A)

in γ1. By mapping X to A, we obtain an assertion

link(p,X,B), link(p,B,C), path(p,C,X)

which is less general than γ2.

70 G. Delzanno

Proposition 2. Let ϕ,ϕ′ be two reduced assertions. Then, we have that
subset(γ1, γ2) = true if and only if Den(γ1) ⊆ Den(γ2).

The containment test can be extended to sets of assertions as follows. Let Γ1, Γ2

be two sets of reduced assertions, subset(Γ1, Γ2) holds if and only if for each
γ1 ∈ Gamma1 there exists γ2 ∈ Γ2 s.t. subset(γ1, γ2). In other word, each
assertion in Γ1 is subsumed by at least one assertion in Γ2.

Proposition 3. Let Γ1, Γ2 be sets of reduced assertions. Then, we have that
subset(Γ1, Γ2) = true if and only if Den(Γ1) ⊆ Den(Γ2).

Pre-conditions. We now consider symbolic operations to compute assertions
that represent preconditions of update rules. Starting from a set of assertions Γ
and a set of update rules R, the goal is to compute a set of assertions Γ ′ s.t.

Den(Γ ′) = Pre(Den(Γ))

We consider here a restricted form of update rules, namely we only consider
relabeling rules.

Definition 5. A relabeling rule is an update rule of the form 〈C,D,A〉, where

– C = D = {p1(X1, Y1), . . . , pk(Xk, Yk)}
– A = {q1(X1, Y1), . . . , qk(Xk, Yk)}

where pi, qi ∈ P for i : 1, . . . , k.

Observe that D is used both as enabling condition and deletion set so as to
ensure the existence of all elements to be deleted. Free variables occurring in
D and A are implicitly existentially quantified. For instance, the rule 〈D,D,A〉
with D = {p(X,Y)} and A = {q(X,Y)}. This rule non-deterministically selects
any pairs of links with label p and updates its label by changing it into q.
Relabeling rules only change labels of existing links. We focus our attention on
relabeling rules since our assertional language cannot represent arbitrary formu-
las as those allowed in conditions. Relabeling however induces very expressive
transition systems.

Proposition 4. ∃-reachability for relabeling rules is undecidable.

Proof. In what follows we present a sketch of the proof containing the main
intuitions. We first notice that edge addition and deletion can be simulated
by introducing a special predicate name (i.e. edge label) ε. To simulate edge
creation, we can use relabeling rules that update ε-edges. For instance, the rule
D = {ε(X,Y)}, A = {p(X,Y)} non-deterministically introduces an occurrence of
a p-edge. Similar constructions have been proposed for graph rewriting with addi-
tion/deletion of edges or with relabeling in [2]. Undecidability of ∃-reachability
depends from the assumptions on the shape of initial states.

Reachability Predicates for Graph Assertions 71

– Let us consider initial states consisting of (directed) paths (i.e. chains of atomic
formulas) of arbitrary length with an initial label q0 followed by ε labels only,
then we can use such a configuration as initial structure on which to run a
simulation of a Turing powerful model such a two counter machine.

– Every path corresponds to the maximum amount of memory needed during
the execution of a machine.

– The initial state q0 can then be transformed into a pointer to visit each element
(an edge) of the memory and to modify its contents (e.g. flip it from one to
zero or from zero to one). To represent the value k for counter c with use k
occurrences of label c along the path.

More specifically, if the transition from q1 to q2 increments counter c we use the
following set of rules:

D1 = {q1(X,Y), ε(Y,Z)}, A1 = {q2(X,Y), c(Y,Z)}
D2 = {q1(X,Y), c(Y,Z)}, A2 = {q11(X,Y), c1(Y,Z)}
D3 = {q1(X,Y), d(Y,Z)}, A3 = {q11(X,Y), d1(Y,Z)}
D4 = {c1(X,Y), c(Y,Z)}, A4 = {c1(X,Y), c1(Y,Z)}
D5 = {c1(X,Y), ε(Y,Z)}, A5 = {c2(X,Y), c(Y,Z)}
D6 = {d1(X,Y), ε(Y,Z)}, A6 = {d2(X,Y), c(Y,Z)}
D7 = {d1(X,Y), d(Y,Z)}, A7 = {d1(X,Y), d1(Y,Z)}
D8 = {d1(X,Y), c(Y,Z)}, A8 = {d1(X,Y), c1(Y,Z)}
D9 = {c1(X,Y), c2(Y,Z)}, A9 = {c2(X,Y), c(Y,Z)}
D10 = {c1(X,Y), d2(Y,Z)}, A10 = {c2(X,Y), d(Y,Z)}
D11 = {d1(X,Y), d2(Y,Z)}, A11 = {d2(X,Y), d(Y,Z)}
D12 = {c1(X,Y), d2(Y,Z)}, A12 = {c2(X,Y), d(Y,Z)}
D13 = {q11(X,Y), c2(Y,Z)}, A13 = {q2(X,Y), c(Y,Z)}
D13 = {q11(X,Y), d2(Y,Z)}, A13 = {q2(X,Y), d(Y,Z)}

The rules just scan the chain passing through c and d labels until the first ε label
is found. During the scan each label is marked to prepare the second phase of the
simulation. When the ε label has been found, it is replaced with c and then the
chain is traversed back in order to restore the original c and d labels and to move
the control state to q2. Decrement of counter d is handled in a simmetric way.

If the transition from q1 to q2 decrement counter c we use the following set
of rules:

D′
1 = {q1(X,Y), c(Y,Z)}, A1 = {q2(X,Y), ε(Y,Z)}

D′
2 = {q1(X,Y), d(Y,Z)}, A2 = {q11(X,Y), d3(Y,Z)}

D′
3 = {d3(X,Y), d(Y,Z)}, A3 = {d3(X,Y), d3(Y,Z)}

D′
4 = {d3(X,Y), c(Y,Z)}, A4 = {d4(X,Y), ε(Y,Z)}

D′
5 = {d3(X,Y), d4(Y,Z)}, A5 = {d4(X,Y), d(Y,Z)}

D′
6 = {q11(X,Y), d4(Y,Z)}, A6 = {q2(X,Y), d(Y,Z)}

The rules just scan the chain passing through d labels until the first c label is
found. During the scan each label is marked to prepare the second phase of the
simulation. When the c label has been found, it is replaced with ε and then the
chain is traversed back in order to restore the original d labels and to move the
control state to q2. Decrement of counter d is simmetric.

72 G. Delzanno

Similarly, zero test on counter c is implemented by the rules

D′′
1 = {q1(X,Y), ε(Y,Z)}, A1 = {q2(X,Y), ε(Y,Z)}

D′′
2 = {q1(X,Y), d(Y,Z)}, A2 = {q11(X,Y), d5(Y,Z)}

D′′
3 = {d5(X,Y), d(Y,Z)}, A3 = {d5(X,Y), d5(Y,Z)}

D′′
4 = {d5(X,Y), ε(Y,Z)}, A4 = {d6(X,Y), ε(Y,Z)}

D′′
5 = {d5(X,Y), d6(Y,Z)}, A5 = {d6(X,Y), d(Y,Z)}

D′′
6 = {q11(X,Y), d6(Y,Z)}, A6 = {q2(X,Y), d(Y,Z)}

The rules scan the chain passing through all d labels in search of the first ε. The
test fails if there are c labels (i.e. counter c is greater than one).

Rules of non-zero test are implemented in a similar way.
The simulation is successful only for paths with the necessary amount of

memory (i.e. length). The halting problem for such a program can be formulated
as an existential reachability problem via an assertion ∃X,Y.link(halt,X, Y)
used to single out the halting control state of the program.

The freedom in fixing the shape of the initial set of configurations is central
here in order to give enough power to relabeling rules. Indeed, if the initial
configurations are arbitrary graphs, e.g., with ε labels, then relabeling is not
expressive enough to make existential reachability undecidable.

Proposition 5. ∃-reachability for relabeling rules is decidable if the set of initial
configurations consists of arbitrary fully connected graphs with ε-transition.

Proof. Differently from the undecidability proof for special classes of initial con-
figurations, The difficulty in building a perfect simulation of a (Turing or counter)
machine when starting from arbitrary graphs with epsilon transitions is due
to the fact that relabeling rules can non-deterministically be applied at any
position.

– For every configuration in which a relabeling is applied to a given link, we can
find another configuration with additional links attached to the same nodes,
involved in the first application of the rule, in which the same relabeling can
be applied several times.

– Since the additional links can be adjacent to the original ones, it is not possible
to use chains of predicates to define lists of cells or other regular structures.

In other words, the effect of a relabeling rule is only that of enabling other pos-
sible rule applications. The same effect can be obtained by considering rewriting
rules operating on a finite set of labels (predicate symbols). As a side effect
there is no more difference between links and paths. ∃-reachability can then be
reformulated as a reachability problem starting from the singleton containing ε
and with the set of labels occurring in the target assertion as final configuration.
Since we only consider finitely many predicate symbols, this kind of reachability
problem becomes decidable. Similar reductions have been proposed for cover-
ability in graph rewriting with relabeling rules, and in broadcast protocols with
non deterministic reconfigurations of links [6].

Reachability Predicates for Graph Assertions 73

The previous result shows that relabeling rules defined over finite alphabets
are not very expressive. Indeed a more interesting classes of transition systems
is obtained by adding relations over data associated to edges and nodes (e.g.
sequence numbers as in AODV). We will discuss these extensions in the last
section of the paper. We first consider the problem of computing pre-conditions
of relabeling rules w.r.t. a set of assertions. The goal is to define a symbolic pro-
cedure to infer new assertions for this simple types of updates. More specifically,
for a relabeling rule r = 〈D,D,A〉 and an assertion ϕ, we want to compute the
effect of applying backwards r to configurations in Den(ϕ). In order to infer new
assertions, starting from ϕ we need to find minimal instantiations of the path-
assertions that could be used to find a partial matching with the edges specified
in A. The key point is to show that such minimal instantiations exist and that it
is enough to consider finitely many of them. These two properties follow from the
observation that path-assertions can be made more specific by using by chaining
link assertions with other path-assertions. For instance, path(p,X, Y) can be
made more specific via the assertion link(p,X,Z), path(p, Z, Y). This kind of
concretization steps must be performed as long as needed to match a subset of
edges occurring in the relabeling rules. In the worst case we have to consider all
possible concretization involving as many edges as those occurring in A. This
argument can be used to define an finite upper bound on the assertions that we
have to considerto represent all predecessors.

Definition 6. Let γ be a reduced assertion, and r = 〈D,D,A〉 be a relabeling
rule s.t. D has cardinality k. Let W be a denumerable set of variables distinct
from those in γ. The set of concretizations of C(γ,A,W) is obtained by consid-
ering all assertions γ′ in which every occurrence of a path(p,X, Y)-assertion is
replaced a chain

α1(p,X,Z1), α2(p, Z1, Z2), . . . , αq(p, Zq, Y)

where Zi ∈ W , q ≤ k, and αi ∈ {link, path} for i : 1, . . . , q.

Notice that different path-formulas can generate chains sharing common vari-
ables. For instance,

path(p,X, Y), path(q,W,Z)

can generate the assertion

link(p,X, T), link(p, T, Y), path(p,W, T), link(p, T, Z)

in which the generated chain assertions share an intermediate node variable T .
As mentioned before, concretizations are the first step towards the gener-

ations of patterns used to match the right-hand side of a relabeling rule. To
complete the definition, we introduce the following operators. We first interpret
conjunctions of atomic formulas as sets of formulas and use � and ⊕ to compute
set differences and union, respectively. Furthermore, we define

p1(X1, Y1), . . . , pk(Xk, Yk) = link(p1,X1, Y1), . . . , link(pk,Xk, Yk)

to transform conjunctions of atomic formulas into an assertions.
We are ready now to define the set of preconditions pre(γ, r) of an assertion

γ and a relabeling rule r.

74 G. Delzanno

Definition 7. Let γ be a reduced assertion and r = 〈D,D,A〉 be a relabeling
rule. An assertion ξ belongs to pre(γ, r) iff the following conditions are satisfied

– there exists a concretization γ′ ∈ C(γ,A, V ars) with γ′ = ∃X1, . . . , Xn.η s.t.
V ar(D,A) and V ar(η) are disjoint,

– there exists a partial and injective mapping σ from V ar(η) to V ar(A) s.t. for
every link-constraint ϕ in η, ϕσ occurs in A

– given A′ = A and D′ = D, ξ is the assertion ∃W1, . . . ,Wn.ξ′ where

ξ′ = ((σ(η) ⊕ A′) � A′) ⊕ D′

and FV (ξ′) = {W1, . . . ,Wn}, i.e., ξ′ is obtained by first merging A′ and η,
then sharing the common matching parts by applying σ to η, and, finally, by
replacing A with the precondition D. Notice that, by construction, A and D
are defined on the same set of variables, and σ(η) shares variables with A.

The following proposition then holds.

Proposition 6. Let γ be a reduced assertion and r be a relabeling rule. ξ′ ∈
pre(γ, r) if and only if Den(ξ) = Prer(Den(γ)), where Prer is the predecessor
operator restricted to rule r.

Proof. Assume that, given A′ = A and D′ = D, ξ is defined by the assertion
∃FV (ξ′).ξ′, where ξ′ = ((σ(η) ⊕ A′) � A′) ⊕ D′ and η is a concretization of
the original assertion. Consider now a configuration Δ ∈ Den(ξ). By definition,
there exists Δ′ ⊆ Δ, an interpretation θ for FV (ξ′) and a further concretization
ξ′′ need to eliminate all path formulas in ξ′ s.t. Δ′ = ξ′′θ. Concretization is
used here to replace every path-predicate with a concrete path of atomic for-
mulas of arbitrary length. The application of the two concretization steps is the
key point in order to generate all possible chains of atomic formulas for which
there could be a matching with instances of A. We observe that the two con-
cretization steps give rise to a minimal set of ground formulas needed to generate
Den(γ). All denotations of γ can then be generated by taking the upward clo-
sure computed with respect to subset inclusion of the considered concretizations.
By replacing, Aθ with Dθ we obtain predecessors of configurations in Den(γ),
i.e., Δ ∈ pre(Den(γ), r). The same argument can be applied to show that asser-
tions ξ ∈ Pre(γ, r) can generate all concretizations and instantiations needed to
represent every predecessor configuration. ��

The operator is extended to sets of assertions as follows pre(Γ, r) =
⋃

γ∈Γ pre(γ, r).

Fixpoint Computation. Containment test and symbolic computation of pre-
conditions are key operations to define infinite-state extensions to model checking
algorithms. For instance, model checking algorithms perform backward search
based on preconditions in order to verify invariants. More precisely, to verify
that the property P is an invariant for a given transition system T with ini-
tial states I and predecessor operator PreT the following property must hold

Reachability Predicates for Graph Assertions 75

I ∩ Pre∗
T (BadP) = ∅, where BadP is the set of configurations that violate

the invariant P . Violations of invariant properties are often upward closed with
respect to orderings like set/multiset inclusion. Our assertional language can be
applied to perform backward reasoning, i.e., to compute the set of assertions
pre∗(Γ) obtained by iterating the application of pre starting from an initial set
of assertions representing bad configurations (e.g. all graphs that contain at least
one occurrence of link halt or that contain a loop with labels req on some node).
Termination of the computation cannot be guaranteed in general. However we
can apply the containment test as heuristics to stop the computation. The final
step is checking intersection with the initial states. The effectiveness of this test
depends on the class of graphs chosen to represent intial configurations.

5 Conclusions

We have presented an assertional language with reachability predicates for rea-
soning about infinite set of graphs. The assertional language is devised for a
specification language that can be applied to specify properties of distributed
protocols and algorithms for which it is important to state correctness properties
like loop freedom. These properties require powerful assertions that can assert
the existence of paths of arbitrary length in a configuration. In the paper we have
defined a specification language to formally update graph-based transition sys-
tems and an assertional language consisting of existentially quantified formulas.
Furthermore, we have studied symbolic operations operating over our assertions.
This is a preliminary step towards the definition of symbolic procedure needed
to explore the search space of our specification language.

Adding data and relations over data to rules and assertions is one possible
extension of the framework presented in this paper. Our update rules can be
viewed as rewriting rules with equality with conditions formulated again over a
quantified logic with equality. Following the paradigm of constraint logic pro-
gramming (CLP), it comes natural to extend update rules in order to consider
variables ranging over (possibly infinite) data domains and conditions expressed
by richer theories, e.g., equality, inequality, <, >, etc. A similar idea can be
applied to the assertional language, i.e., assertions become existentially quanti-
fied formulas with constraints. Denotations are defined by extending the notion
of instantiation in order to generate ground instances that satisfy constraints.
An interesting direction here is the application of existing solvers as constraint
solver to deal with assertions involving both reachability predicates and con-
straints in order to implement engines for symbolic search as MCMT based on
SMT over the theory of arrays [16] and UNDIP [18] based on the PPL library.

76 G. Delzanno

References

1. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to
practice. STTT 10(5), 401–424 (2008)

2. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decid-
ability status of reachability and coverability in graph transformation systems. In:
23rd International Conference on Rewriting Techniques and Applications (RTA
2012), Nagoya, Japan, 28 May – 2 June 2012, pp. 101–116 (2012)

3. Bouajjani, A., Dragoi, C., Enea, C., Jurski, Y., Sighireanu, M.: A generic frame-
work for reasoning about dynamic networks of in nite-state processes. Logical
Methods Comput. Sci. 5(2), 1–29 (2009). http://arxiv.org/pdf/0903.3126.pdf

4. Das, S., Perkins, C., Belding-Royer, E.: Ad hoc on-demand distance vector (AODV)
routing (2003)

5. Delzanno, G.: A logic-based approach to verify distributed protocols. To appear in
the Proceedings of CILC (2016)

6. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in recongurable broadcast networks. In: IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2012, Hyderabad, India, 15–17 December 2012, pp. 289–300 (2012)

7. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic in nite-
state systems. In: Thirteenth Annual IEEE Symposium on Logic in Computer
Science, Indianapolis, Indiana, USA, 21–24 June 1998, pp. 70–80 (1998)

8. Fioravanti, F., Pettorossi, A., Proietti, M., Senni, V.: Improving reachability analy-
sis of in nite state systems by specialization. Fundam. Inform. 119(3–4), 281–300
(2012)

9. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

10. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using groove. STTT 14(1), 15–40 (2012)

11. König, B., Kozioura, V.: Augur 2 - a new version of a tool for the analysis of graph
transformation systems. Electron. Notes Theor. Comput. Sci. 211, 201–210 (2008)

12. Meyer, R., Strazny, T.: Petruchio: from dynamic networks to nets. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 175–179. Springer,
Heidelberg (2010)

13. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks.
In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 496–514. Springer, Heidelberg (2013)

14. Stückrath, J.: Uncover: using coverability analysis for verifying graph transforma-
tion systems. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol.
9151, pp. 266–274. Springer, Heidelberg (2015)

15. https://github.com/pierreganty/mist/
16. http://users.mat.unimi.it/users/ghilardi/mcmt/
17. http://www.it.uu.se/research/docs/fm/apv/tools/pfs/
18. http://www.it.uu.se/research/docs/fm/apv/tools/undip/
19. http://www.liafa.jussieu.fr/∼sighirea/trex/
20. http://www.lsv.ens-cachan.fr/Software/fast/
21. http://www.montefiore.ulg.ac.be/∼boigelot/research/lash/
22. http://www.ti.inf.uni-due.de/de/research/tools/uncover/

http://arxiv.org/pdf/0903.3126.pdf
https://github.com/pierreganty/mist/
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://www.it.uu.se/research/docs/fm/apv/tools/pfs/
http://www.it.uu.se/research/docs/fm/apv/tools/undip/
http://www.liafa.jussieu.fr/~sighirea/trex/
http://www.lsv.ens-cachan.fr/Software/fast/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.ti.inf.uni-due.de/de/research/tools/uncover/

Occam’s Razor Applied to the Petri Net
Coverability Problem

Thomas Geffroy1(B), Jérôme Leroux2, and Grégoire Sutre2

1 University of Bordeaux, LaBRI, UMR 5800, Talence, France
tgeffroy@labri.fr

2 University of Bordeaux and CNRS, LaBRI, UMR 5800, Talence, France

Abstract. The verification of safety properties for concurrent systems
often reduces to the coverability problem for Petri nets. This problem was
shown to be ExpSpace-complete forty years ago. Driven by the concur-
rency revolution, it has regained a lot of interest over the last decade.
In this paper, we propose a generic and simple approach to solve this
problem. Our method is inspired from the recent approach of Blondin,
Finkel, Haase and Haddad [3]. Basically, we combine forward invariant
generation techniques for Petri nets with backward reachability for well-
structured transition systems. An experimental evaluation demonstrates
the efficiency of our approach.

1 Introduction

Context. The analysis of concurrent systems with unboundedly many processes
classically uses the so-called counter abstraction [12]. The main idea is to forget
about the identity of each process, so as to make processes indistinguishable.
Assuming that each process is modeled by a finite-state automaton, it is then
enough to count, for each state q, how many processes are in state q. The resulting
model is a Petri net, with no a priori bound on the number of tokens. The
verification of a safety property on the original concurrent system (e.g., mutual
exclusion) translates into a coverability question on the Petri net: Is it possible
to reach a marking that is component-wise larger than a given marking?

Related Work. Karp and Miller [14] proved in 1969 that coverability is decidable
(but their algorithm is not primitive recursive), Lipton showed that it requires
at least exponential space [15], and Rackoff showed that it only requires expo-
nential space [17]. Despite these somewhat negative results, and driven by the
concurrency revolution, the coverability problem has regained a lot of interest
over the last decade. Recent efficient approaches include target set widening [13]
and structural analysis mixed with SMT solving [3,7]. We believe that the time
is ripe to experiment with new ideas and prototypes for coverability, and to
apply them to real-world concurrent systems.

Our work builds notably on [3], which proposes a new approach to the cov-
erability problem and its implementation. The approach of [3] is conceptually

c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 77–89, 2016.
DOI: 10.1007/978-3-319-45994-3 6

78 T. Geffroy et al.

simple and exploits recent advances in the theory of Petri nets as well as the
power of modern SMT-solvers. In a nutshell, they leverage recent results on cov-
erability in continuous Petri nets [9] to over-approximate coverability under the
standard semantics: any configuration that is not coverable in a continuous Petri
net is also not coverable under the standard semantics. This observation is then
exploited inside a backward-coverability framework [1].

Our Contribution. We present a generic backward coverability algorithm that
relies on downward-closed (forward) invariants to prune the exploration of the
state space. Our algorithm is in fact a family of algorithms parametrized by
downward-closed invariants. It generalizes the algorithm presented in [3] and
implemented in the promising tool QCover. We implemented our algorithm as a
variant of QCover that we call ICover. Whereas QCover is based on invariants
obtained from recent results on continuous Petri nets [9], our tool ICover is
based on two classical methods: the state equation for Petri nets, and data-flow
sign analysis [4]. On the 143 Petri net coverability questions that QCover solved,
the tool QCover took 10318 s, while ICover used only 5517 s.

Outline. Section 2 recalls the Petri net coverability problem. Sections 3 and 4
present our backward coverability algorithm with pruning based on downward-
closed invariants. In Sects. 5 and 6, we recall two classical methods for computing
invariants, namely the state (in-)equation and sign analysis. Section 7 is dedi-
cated to the experimental evaluation of the tool ICover. In Sect. 8, we provide
mathematical foundations for explaining our empirical good results based on the
notion of limit-reachability in continuous Petri nets [18].

2 The Coverability Problem for Petri Nets

A Petri net is a tuple N = (P, T, F,minit) comprising a finite set of places P , a
finite set of transitions T disjoint of P , a flow function F from (P ×T)∪ (T ×P)
to N, and an initial marking minit ∈ N

P . It is understood that N
P denotes the

set of total maps from P to N. Elements of NP are called markings. Intuitively,
a marking specifies how many tokens are in each place of the net. Tokens are
consumed and produced through the firing of transitions. A transition t ∈ T
may fire only if it is enabled, meaning that each place p contains at least F (p, t)
tokens. Firing an enabled transition t modifies the contents of each place p by first
removing F (p, t) tokens and then adding F (t, p) tokens. To clarify this intuitive
description of the Petri net semantics, we introduce, for each transition t ∈ T ,
the t-step binary relation t−→ over N

P , defined by

m
t−→ m′ ⇔ ∀p ∈ P : m(p) ≥ F (p, t) ∧ m′(p) = m(p) − F (p, t) + F (t, p)

The one-step binary relation → is the union of these t-step relations. Formally,
m → m′ ⇔ ∃t ∈ T : m

t−→ m′. The many-step binary relation ∗−→ is the reflexive-
transitive closure of →.

Occam’s Razor Applied to the Petri Net Coverability Problem 79

Fig. 1. Simple Petri net example

Example 2.1. Figure 1 depicts a simple Petri net N = (P, T, F,minit) with
places P = {p1, p2, p3}, transitions T = {t1, t2, t3} and flow function F such
that F (p1, t1) = 1, F (p2, t2) = 1, F (p3, t3) = 1, F (t1, p2) = 1, F (t2, p3) = 2,
F (t3, p2) = 2, and F (p, t) = F (t, p) = 0 for all other cases. The initial marking
is minit = (1, 0, 0). The sequence of transitions t1t2t3 may fire from the initial
marking. Indeed, (1, 0, 0) t1−→ (0, 1, 0) t2−→ (0, 0, 2) t3−→ (0, 2, 1).

One of the most fundamental verification questions on Petri nets is coverabil-
ity. In its simplest form, the coverability problem asks whether it is possible, by
firing a sequence of transitions, to put a token in a given place. In essence, the
coverability problem for Petri nets corresponds to the control-state reachability
problem for other models of computation, such as counter machines, which are
equipped with control states. The formal definition of coverability relies on a
partial order over markings, defined hereafter.

Let ≤ denote the usual total order on N. We extend ≤ over N
P component-

wise, by m ≤ m′ ⇔ ∀p ∈ P : m(p) ≤ m′(p). This extension is a partial order
over N

P . Given two markings m and m′ in N
P , we say that m covers m′ when

m ≥ m′. The coverability problem asks, given a Petri net N = (P, T, F,minit)
and a target marking mfinal ∈ N

P , whether there exists a marking m ∈ N
P such

that minit
∗−→ m and m ≥ mfinal. The main goal of this paper is to provide a

simple, yet efficient procedure for solving this problem. Our method is inspired
from the recent approach of [3]. Basically, we combine forward invariant gen-
eration techniques for Petri nets with backward reachability for well-structured
transition systems [1,8]. Before delving into the details, we need some additional
notations.

For a transition t ∈ T and a set S ⊆ N
P of markings, we let pret

N (S)
denote the predecessors of S via the transition t. Similarly, preN (S) and pre∗

N (S)
denote the one-step and many-step predecessors of S, respectively. Formally, the
functions pret

N , preN and pre∗
N from 2N

P

to 2N
P

are defined by

pret
N (S) = {m ∈ N

P | ∃m′ ∈ S : m
t−→ m′}

preN (S) = {m ∈ N
P | ∃m′ ∈ S : m → m′}

pre∗
N (S) = {m ∈ N

P | ∃m′ ∈ S : m
∗−→ m′}

80 T. Geffroy et al.

Given a subset S ⊆ N
P of markings, we let ↑S and ↓S denote its upward

closure and downward closure, respectively. These are defined by

↑S = {u ∈ N
P | ∃m ∈ S : u ≥ m}

↓S = {d ∈ N
P | ∃m ∈ S : d ≤ m}

A subset S ⊆ N
P is called upward-closed when S = ↑S, and it is called downward-

closed when S = ↓S.

Notation 2.2. For the remainder of the paper, to avoid clutter, we will simply
write m in place of {m} for singletons, when this causes no confusion.

Recall that the coverability problem asks whether minit
∗−→ m ≥ mfinal for

some marking m ∈ N
P . This problem is equivalently phrased as the question

whether minit belongs to pre∗
N (↑mfinal). This formulation can be seen as a

backward analysis question. We may also phrase the coverability problem in
terms of a forward analysis question, using the notion of coverability set.

Given a Petri net N = (P, T, F,minit), the coverability set of N is the set
CovN = ↓{m ∈ N

P | minit
∗−→ m}. It is readily seen that the coverability problem

is equivalent to the question whether mfinal belongs to CovN . We are now
equipped with the necessary notions to present our mixed forward/backward
approach for the coverability problem.

3 Backward Coverability Analysis with Pruning

We now present our method to solve the coverability problem for Petri nets.
This section gives the mathematical foundations of our approach, with no regard
for implementability. We will focus on the implementation of this approach in
Sect. 4.

The classical backward reachability approach for the coverability prob-
lem [1,8] consists in computing a growing sequence U0 ⊆ U1 ⊆ · · · of upward-
closed subsets of N

P that converges to pre∗
N (↑mfinal). Here, we modify this

growing sequence in order to leverage an a priori known over-approximation of
the coverability set. In practice, this means that we narrow the backward reach-
ability search by pruning some markings that are known to be not coverable.

An invariant for a Petri net N = (P, T, F,minit) is any subset I ⊆ N
P

that contains every reachable marking, i.e., every marking m with minit
∗−→ m.

Observe that a downward-closed subset of NP is an invariant of N if, and only
if, it contains CovN . Sections 5 and 6 will discuss the automatic generation of
downward-closed invariants.

For the remainder of this section, we consider a Petri net N = (P, T, F,minit)
and we assume that we are given a downward-closed invariant I for N . We
introduce the sequence U0, U1, . . . of subsets of NP defined as follows:

U0 = ↑(mfinal ∩ I)
Uk+1 = ↑(preN (Uk) ∩ I) ∪ Uk

Occam’s Razor Applied to the Petri Net Coverability Problem 81

Observe that each Uk is upward-closed and that the sequence (Uk)k is growing for
inclusion. On the contrary to the classical backward reachability approach [1,8],
Uk+1 does not consider all one-step predecessors of Uk, but discards those that
are not in I. Note that by taking I = N

P , which is trivially a downward-closed
invariant, we obtain the same growing sequence as in the classical backward
reachability approach [1,8]. The two following lemmas show that we can use the
sequence (Uk)k to solve the coverability problem.

Lemma 3.1. The sequence (Uk)k is ultimately stationary.

Lemma 3.2. It holds that mfinal ∈ CovN if, and only if, minit ∈
⋃

k Uk.

We have presented in this section a growing sequence of upward-closed sub-
sets of markings that is ultimately stationary and whose limit contains enough
information to solve the coverability problem. Our next step is to transform this
sequence into an algorithm.

4 The ICover Algorithm

In this section, we turn the growing sequence (Uk)k of upward-closed subsets
of markings defined in Sect. 3 into an algorithm. Of course, we cannot directly
compute the sets Uk since they may be infinite (in fact, they are either empty or
infinite). Instead, we will compute finite sets Bk ⊆ N

P such that Uk = ↑Bk. The
existence of such finite sets is guaranteed by the following lemma. A basis of an
upward-closed subset U ⊆ N

P is any set B ⊆ N
P such that U = ↑B. Recall that

a minimal element of a subset S ⊆ N
P is any m ∈ S such that u ≤ m ⇒ u = m

for every u ∈ S.

Lemma 4.1. For every subset S ⊆ N
P , the set MinS of its minimal elements

is finite and satisfies ↑S = ↑MinS.

Corollary 4.2. Every upward-closed subset U ⊆ N
P admits a finite basis.

We still need to show how to compute a finite basis of Uk+1 from a finite
basis of Uk. To this end we introduce, for each transition t ∈ T , the covering
predecessor function cpret

N : NP → N
P defined by

cpret
N (m)(p) = F (p, t) + max(0,m(p) − F (t, p))

Informally, cpret
N (m) is the least marking that can cover m in one step by firing

the transition t. This property will be formally stated in Lemma4.3. The function
cpret

N is extended to sets of markings by cpret
N (S) = {cpret

N (m) | m ∈ S}.

Lemma 4.3. It holds that pret
N (↑m) = ↑cpret

N (m) for every marking m ∈ N
P .

The previous lemma can easily be extended to sets of markings. We extend
it further, in Lemma4.4, to bridge the gap with the definition of (Uk)k. The
lemma shows how to compute a finite basis of Uk+1 from a finite basis of Uk.

82 T. Geffroy et al.

ICover(N ,mfinal, I)

Input: A Petri Net N = (P, T, F,minit), a target marking mfinal ∈ N
P and a

downward-closed invariant I for N .
Output: Whether there exists a marking m ∈ N

P such that minit
∗−→ m and

m ≥ mfinal.
1 begin
2 if mfinal ∈ I then
3 B ← {mfinal}
4 else
5 B ← ∅
6 while minit �∈ ↑B do
7 N ← {cpretN (m) | t ∈ T,m ∈ B} \ ↑B /* new predecessors */

8 P ← N ∩ I /* prune uncoverable markings */

9 if P = ∅ then
10 return False

11 B ← Min(B ∪ P)

12 return True

Lemma 4.4. Let I be a downward-closed invariant for N . For every subset
S ⊆ N

P , it holds that ↑pret
N ((↑S) ∩ I) = ↑(cpret

N (S) ∩ I).

Proof. The straightforward extension of Lemma 4.3 to sets of markings shows
that pret

N (↑S) = ↑cpret
N (S) for every subset S ⊆ N

P . Moreover, it is readily
seen that, for every subset S ⊆ N

P , ↑((↑S) ∩ I) = ↑(S ∩ I). This property follows
from the assumption that I is downward-closed. We derive that

↑(cpret
N (S) ∩ I) = ↑((↑cpret

N (S)) ∩ I)
= ↑(pret

N (↑S) ∩ I)

This concludes the proof of the lemma. ��

The previous lemma leads to a backward coverability algorithm, called ICover
and presented on page 6. Basically, this procedure symbolically computes the
growing sequence (Uk)k of upward-closed sets. Let us make the relationship
between the procedure and the sequence (Uk)k more precise. Consider an
input instance (N ,mfinal, I) of ICover. Since the procedure is determinis-
tic, ICover(N ,mfinal, I) has a unique maximal execution, that either termi-
nates (at line 10 or 12) or iterates the while loop (lines 6–11) indefinitely. Let
�B , �P ∈ N∪{∞} denote the numbers of executions of lines 6 and 9, respectively.
It is understood that lP ≤ lB ≤ lP + 1, with the convention that ∞ + 1 = ∞.
Let (Bk)k<�B and (Pk)k<�P denote the successive values at lines 6 and 9 of the
variables B and P , respectively.

Lemma 4.5. For every k with 0 ≤ k < �B, the set Bk is a finite basis of Uk.
For every k with 0 ≤ k < �P , the set Pk is a finite basis of ↑(Uk+1 \ Uk).

Occam’s Razor Applied to the Petri Net Coverability Problem 83

Theorem 4.6. The procedure ICover terminates on every input and is correct.

Remark 4.7. Petri nets obtained by translation from high-level concurrent pro-
grams often contain transitions that cannot be fired from any reachable marking.
Downward-closed invariants can be used in a pre-processing algorithm to filter
out some of them. Basically, if a transition t is not enabled in any marking
of an invariant I, it can be safely removed without modifying the coverability
set. Algorithmically, when I is downward-closed, detecting such a property just
reduces to a membership problem in I. In fact a transition t is enabled in a
downward-closed set of markings D if, and only if, D contains the marking mt

defined by mt(p) = F (p, t) for every place p.

The algorithm ICover is parametrized by an a priori known downward-closed
invariant that is given as input. On the one hand, this invariant needs to be
precise enough to discard markings (at line 8) and accelerate the main loop.
On the other hand, we need to decide efficiently whether a marking is in the
invariant, to avoid slowing down the main loop. The next two sections show how
to generate downward-closed invariants with efficient membership testing.

5 State Inequation for Downward-Closed Invariants

The state equation provides a simple over-approximation of Petri net reachability
relations that was successfully used in two recent algorithms for deciding the
coverability problems [3,7]. This equation is obtained by introducing the total
function Δ(t) in Z

P called the displacement of a transition t and defined for every
place p by Δ(t)(p) = F (t, p)−F (p, t). Let us assume that a marking mfinal is in
the coverability set of a Petri net N . It follows that there exists a word t1 . . . tk

of transitions and a marking m ≥ mfinal such that minit
t1−→ · · · tk−→ m. We

derive the following relation:

minit + Δ(t1) + · · · + Δ(tk) = m ≥ mfinal

By reordering the sum Δ(t1) + · · · + Δ(tk), we can group together the displace-
ments Δ(t) corresponding to the same transition t. Denoting by λ(t) the number
of occurrences of t in the word t1 . . . tk, we get:

minit +
∑

t∈T

λ(t)Δ(t) ≥ mfinal (1)

The relation (1) is called the state inequation for the coverability problem.
Notice that a similar equation can be derived for the reachability problem by
replacing the inequality by an equality. We do not consider this equality in the
sequel since we restrict our attention to the coverability problem. We introduce
the following set IS where Q≥0 is the set of non-negative rational numbers.

IS = {m ∈ N
P | ∃λ ∈ Q

T
≥0 : minit +

∑

t∈T

λ(t)Δ(t) ≥ m} (2)

84 T. Geffroy et al.

Proposition 5.1. The set IS is a downward-closed invariant with a polynomial-
time membership problem.

A more precise downward-closed invariant can be obtained by requiring that
λ ∈ N

T . In particular, the pruned backward algorithm presented in Sect. 4 should
produce smaller sets of configurations with this more precise invariant. In prac-
tice, we do not observe any significant improvement on a large set of benchmarks.
Moreover, whereas the membership problem of a marking m is decidable in poly-
nomial time when λ ranges over Q

T
≥0, the problem becomes NP-complete when

λ is restricted to N
T .

6 Sign Analysis for Downward-Closed Invariants

In this section we introduce a downward-closed invariant based on data-flow sign
analysis [4]. Rephrased in the context of Petri nets, an invariant I is said to be
inductive if m

t−→ m′ and m ∈ I implies m′ ∈ I. Sign analysis then reduces to
the computation of the maximal (for the inclusion) set Z of places such that the
following set IZ is an inductive invariant:

IZ = {m ∈ N
P |

∧

p∈Z

m(p) = 0} (3)

The unicity of that set is immediate since the class of sets Z such that IZ is
an invariant is clearly closed under union. In the sequel, Z denotes the maximal
set satisfying this property, and this maximal set is shown to be computable in
polynomial time thanks to a fixpoint propagation. We introduce the operator
propt : 2P → 2P associated to a transition t and defined for any set Q of places
as follows:

propt(Q) =

{

{q ∈ P | F (t, q) > 0} if
∧

p∈P\Q F (p, t) = 0
∅ otherwise

Intuitively, if t is a transition such that
∧

p∈P\Q F (p, t) = 0 then from a marking
with large number of tokens in each place of Q, it is possible to fire t. In particular
places q satisfying F (t, q) > 0 cannot be in Z. This property is formally stated
by the following lemma.

Lemma 6.1. We have propt(Q) ⊆ P\Z for every set Q ⊆ P\Z.

The set Z can be computed as a fixpoint by introducing the non-decreasing
sequence Q0, Q1, . . . of places defined as follows:

Q0 = {q ∈ P | minit(q) > 0}
Qk+1 = Qk ∪

⋃

t∈T

propt(Qk)

Let us notice that the set Q =
⋃

k≥0 Qk is computable in polynomial time. The
following lemma shows that Q provides the set Z as a complement.

Occam’s Razor Applied to the Petri Net Coverability Problem 85

Lemma 6.2. We have Z = P\Q.

Corollary 6.3. The set Z is computable in polynomial time.

7 Experimental Evaluation

We implemented our approach using the QCover [3] tool as a starting point.
This tool, which implements a backward coverability algorithm for Petri nets,
is written in Python and relies on the SMT-solver z3 [16]. QCover also uses
some other heuristics that we kept unchanged. QCover was competitive with
others tools especially for uncoverable Petri net. Only the BFC tool performs
significantly better on coverable Petri net. We have made two modifications to
QCover. First, we have added a pre-processing step (see Remark 4.7) based on
sign analysis. Second, we have replaced their pruning technique, which is based
on coverability in continuous Petri nets, by the one of our algorithm ICover
presented in Sect. 4. ICover is available as a patch [11] for QCover [2].

To test our implementation, we used the same benchmark as Petrinizer [7]
and QCover [3]. It comprises models from various sources: Mist [10], BFC [13],
Erlang programs abstracted into Petri nets [6], as well as so-called medical
and bug tracking examples [7]. We let each tool work for 2000 s in a machine
on Ubuntu Linux 14.04 with Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz with
16 GB of memory for each benchmark. The computation times are the sum of the
system and user times. Overall QCover solved 106 uncoverable instances on 115
Petri net and 37 coverable problems on 61 Petri nets. ICover was able to find
one more coverable instance. In fact calling QCover on the Petri net computed
by the pre-processing, that we will call QCover/Pp, can even solve one more
uncoverable instance than ICover. On the 143 instances that QCover solved, the
tool took 10318 s, QCover/Pp used 6479 s, and ICover used only 5162 s.

Figure 2(a) shows the comparison between ICover and QCover in time. The
straight line represents when the two tools took the same time. Each dot rep-
resents a coverability question. When the dot is under the line, it means that
ICover was faster than QCover and conversely. There are three instances where
QCover performs very well, under a second, and where ICover took a few tens
of seconds to answer. For the three cases, the formula used by QCover for cover-
ability in Q was enough to discard the target as uncoverable and it didn’t have
to enter in the while loop. But ICover wasn’t able to discard the target and
had to enter the while loop in the three cases. We also see two dots above the
line at the middle of the figure. The pre-processing took respectively 12 and 45 s
while the initial Petri net was solved by QCover in respectively 16 and 33 s. The
pre-processing has not been optimized yet, and it could probably run faster.

Figure 2(b) and (c) show the intermediate comparisons: ICover versus
QCover/Pp and QCover/Pp versus QCover. We can observe that the pre-
processing has a major impact on the good performance of ICover compared to
QCover.

Figure 2(e) and (f) aims to show the effect of the pre-processing on the size
of Petri nets. The former show the percentage of places left after pre-processing.

86 T. Geffroy et al.

Fig. 2. Experimental results for ICover, QCover and QCover/Pp

Some Petri nets kept all their places but others were left with only 2.5 % of
their initial places. And most of Petri nets lost a significant number of places.
The latter shows the percentages of transitions left after the pre-processing.
Overall less transitions were cut than places. Half of the Petri nets kept all their
transitions, but some were left with only 4 % of their initial transitions.

Occam’s Razor Applied to the Petri Net Coverability Problem 87

Figure 2(d) compares the efficiency of pruning between ICover and QCover.
Again, each dot represents a coverability question. As discussed in Sect. 8, QCover
always prunes at least as many markings as ICover (but at the expense of more
complex pruning tests). A value of 100 % means that ICover was able to prune
the same markings as QCover. It turns out that on most instances, this perfect
value of 100 % is obtained. This is rather surprising at first sight, and warrants
an investigation, which is the focus of the next section.

8 Comparison with Continuous Petri Net

Continuous Petri nets are defined like Petri nets except that transitions can
be fired a non-negative rational number of times. The firing of such a transi-
tion produces markings with non-negative rational numbers of tokens. Under
such a semantics, called the continuous semantics, the reachability problem was
recently proved to be decidable in polynomial time [9]. Based on this observa-
tion, the tool QCover implements the pruning backward coverability algorithm
presented in Sect. 3 with a downward-closed invariant derived from the continu-
ous semantics. Whereas this invariant is more precise than the downward-closed
invariant obtained from the state inequation introduced in Sect. 5, we have seen
in Sect. 7 that such an improvement is overall not useful in practice for the prun-
ing backward algorithm. In this section, we provide a simple structural condition
on Petri nets in such a way the two kinds of downward-closed invariants derived
respectively from the continuous semantics and the state inequation are “almost”
equal. This structural condition is shown to be natural since it is fulfilled by the
Petri nets obtained after the pre-processing introduced in Remark 4.7.

A continuous marking is a mapping m ∈ Q
P
≥0 where Q≥0 denotes the set of

non-negative rational numbers, and P the set of places. Given r ∈ Q≥0 and a
transition t, the continuous rt-step binary relation

rt
� over the continuous

markings is defined by

m
rt

� m′ ⇔ ∀p ∈ P : m(p) ≥ r.F (p, t) ∧ m′(p) = m(p) − r.F (p, t) + r.F (t, p)

The one-step continuous binary relation � is the union of these rt-step rela-
tions. Formally, m � m′ if there exists r ∈ Q≥0 and t ∈ T such that m

rt
� m′.

The many-step continuous binary relation
∗

� is the reflexive-transitive closure
of � . We also introduce the binary relation

∞
� defined over the continuous

markings by m
∞

� m′ if there exists a sequence (mk)k≥0 of continuous mark-
ings that converges towards m′ with the classical topology on Q

P
≥0 and such that

m
∗

� mk for every k.

Example 8.1. Let us look back at the simple Petri net N depicted in Fig. 1. For
every positive natural number k, we have:

(1, 0, 0)
1
k t1 � (1 − 1

k
,
1
k

, 0)
1
k t2

1
k t3 � (1 − 1

k
,
2
k

,
1
k

) · · ·
1
k t2

1
k t3 � (1 − 1

k
, 1 +

1
k

, 1)

88 T. Geffroy et al.

It follows that (1, 0, 0)
∞

� (1, 1, 1). Notice that the relation (1, 0, 0)
∗

� (1, 1, 1)
does not hold.

The downward-closed invariant used in the tool QCover for implementing the
pruning backward algorithm is defined as follows:

IC = {m ∈ N
P | ∃m′ ∈ Q

P
≥0 : minit

∗
� m′ ≥ m} (4)

Recall that in Sect. 5 we introduced the set IS for denoting the downward-
closed invariant derived from the state inequation. The following result1 provides
a characterization of that invariant when the Petri net satisfies a structural
condition.

Theorem 8.2 ([18, Theorem7]). If every transition is fireable from the
downward-closed invariant IZ introduced in Sect. 6, we have:

IS = {m ∈ N
P | ∃m′ ∈ Q

P
≥0 : minit

∞
� m′ ≥ m} (5)

The two equalities Eqs. (4) and (5) show that IS and IC are very similar for
Petri nets satisfying the structural condition stated in Theorem8.2. This condi-
tion will be fulfilled by the Petri nets produced by the pre-processing algorithm
introduced in Remark 4.7. Notice that even if the membership problem in IS

and IC are both decidable in polynomial time, the extra computational cost for
deciding the membership problem for the invariant IC , even for efficient SMT
solvers like Z3, is not neglectable. Naturally, if a marking is in IC then it is also
in IS , and the converse property is false in general as shown by Example 8.1.
However, in practice, we observed that configurations that are in IS are very
often also in IC (see Fig. 2(d)), as already mentioned in Sect. 7.

9 Conclusion

Petri nets have recently been used as low-level models for model-checking con-
current systems written in high-level programming languages [5,6]. The original
verification question on the concurrent program reduces to a coverability ques-
tion on the resulting Petri net. We have proposed in this paper a family of simple
coverability algorithms parametrized by downward-closed invariants. As future
work, we intend to look for classes of downward-closed invariants with a good
tradeoff between precision and efficient membership.

1 The statement of Theorem 7 in [18] is wrong since it is based on a too strong definition
of limit-reachability. However, the proof becomes correct with our definitions and
notations.

Occam’s Razor Applied to the Petri Net Coverability Problem 89

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs
with well quasi-ordered domains. Inf. Comput. 160(1–2), 109–127 (2000)

2. Blondin, M., Finkel, A., Haase, C., Haddad, S.: QCover with benchmarks. http://
www-etud.iro.umontreal.ca/∼blondimi/doc/qcover with benchmarks.zip

3. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 480–496. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 28

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

5. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 356–371. Springer, Heidelberg
(2011)

6. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of Erlang-style
concurrency. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol.
7935, pp. 454–476. Springer, Heidelberg (2013)

7. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Heidelberg (2014)

8. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Inf.
Comput. 256(1–2), 63–92 (2001)

9. Fraca, E., Haddad, S.: Complexity analysis of continuous Petri nets. Inf. Comput.
137(1), 1–28 (2015)

10. Ganty, P.: Mist - a safety checker for petri nets and extensions. http://github.com/
pierreganty/mist

11. Geffroy, T., Leroux, J., Sutre, G.: ICover patch. http://dept-info.labri.u-bordeaux.
fr/∼tgeffroy/icover/

12. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Inf.
Comput. 39(3), 675–735 (1992)

13. Kaiser, A., Kroening, D., Wahl, T.: A widening approach to multithreaded program
verification. ACM Trans. Program. Lang. Syst. 36(4), 14:1–14:29 (2014)

14. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

15. Lipton, R.J.: The reachability problem requires exponential space. Technical report
62, Yale University (1976)

16. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6(2), 223–231 (1978)

18. Recalde, L., Teruel, E., Silva, M.: Autonomous continuous P/T systems. In:
Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, pp. 107–126. Springer,
Heidelberg (1999)

http://www-etud.iro.umontreal.ca/~blondimi/doc/qcover_with_benchmarks.zip
http://www-etud.iro.umontreal.ca/~blondimi/doc/qcover_with_benchmarks.zip
http://dx.doi.org/10.1007/978-3-662-49674-9_28
http://github.com/pierreganty/mist
http://github.com/pierreganty/mist
http://dept-info.labri.u-bordeaux.fr/~tgeffroy/icover/
http://dept-info.labri.u-bordeaux.fr/~tgeffroy/icover/

Safety Property-Driven Stubborn Sets

Henri Hansen(B) and Antti Valmari

Department of Mathematics, Tampere University of Technology,
PO-Box 553, 33101 Tampere, Finland

henri.hansen@tut.fi

Abstract. A new reduced state space construction method is presented
where in every constructed state, the set of transitions that are fired is
chosen based on the safety property that is being verified. Typical earlier
methods only take the property into account in one state of each cycle
or in one state of each terminal strong component of the reduced state
space. They may fire totally irrelevant transitions in the other states.
Where the property is taken into account, typically many or all enabled
transitions are fired. This has spoiled attempts to be property-driven in
every state. The present study exploits an idea that was published in
2016 with which this can be avoided. Furthermore, most earlier methods
classify the transitions to visible and invisible. The new method uses
a novel improved concept. An experiment is presented where the new
concept provides significant improvement to the reduction results.

1 Introduction

Stubborn sets and related methods reduce the size of a state space by elimi-
nating unnecessary transitions (see [10] for a comparison of ample, persistent,
and stubborn sets). The state space of a system under verification is built by
including only a subset of its enabled transitions in each state. The set of neces-
sary transitions depends on the property that is being verified. Previous work in
these methods has dealt with preservation of various property classes, from rep-
resentatives of terminating (deadlocking) executions to LTLX and even CTL∗

X .
The preservation of a property class is achieved by establishing conditions

that make sure a sufficient set of different interleavings are explored. These
provisos are often of three types. The first ones are found in almost all stubborn
set methods independently of the property class. The second ones deal with
some concept of visibility, which means identifying transitions whose execution
order is potentially essential for the preservation of the property. This means,
for instance, transitions that may change the truth-value of some propositions
that appear in the property under verification. The third ones deal with the
so-called ignoring problem, and serve to prevent postponing relevant transitions
indefinitely.

Previous work [5] has shown that relaxing the visibility rule during state space
construction improves reduction results, and the approach can be seen as an
early property-driven method. Solutions to the ignoring problem [1] use different
c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 90–103, 2016.
DOI: 10.1007/978-3-319-45994-3 7

Safety Property-Driven Stubborn Sets 91

conditions for the preservation of safety and liveness violations. A property-
driven method was suggested already in [7], but it was not successful, because
the closure approach used in it led to the investigation of too many transitions.

The stubborn set method has the unique feature that its formulation makes
it possible to include disabled transitions in the set and we make use of it in
this study. This and other differences between stubborn sets and other methods
have been addressed in [10]. The main contribution of this study is the defin-
ition and proof of correctness of a set of property-driven conditions for safety
violations. The combination of conditions is to the best of our knowledge the
least restrictive that has been proposed. The conditions depend on the particu-
lar property and we also discuss how these conditions are implemented. We also
provide motivating examples that demonstrate the potential of our method.

Section 2 gives the background definitions for transition systems and stan-
dard stubborn sets that preserve deadlocks. Proofs of the theorems are omitted
in that section, as they are not novel results. Section 3 presents a property-
driven solution to the ignoring problem. The solution improves upon one that
has appeared in [11] by employing a powerful new idea presented in [10]. In
this article we also explain with an example why the idea in [10] is powerful.
Section 4 presents a property-driven relaxation of the visibility condition, and
proves that together with the solution to the ignoring problem, it preserves all
safety properties. Section 5 contains a brief discussion about implementation of
the new ideas. Section 6 contains as an example a protocol and a property, and
verification results that compare the performance of the traditional visibility
condition and the novel conditions.

2 Technical Background

We make no strong assumptions about how systems under verification are
expressed, only that the system executes deterministic structural transitions.
The semantics are given over transition systems or TS. Given a set T of struc-
tural transitions, TS over T is the tuple (SM , δM , ŝM) where SM is the set of
states, δM : SM × T → SM is a partial transition function and ŝM ∈ SM is the
initial state. We use the subscript M to indicate that the transition system is a
model under verification.

We write δM (s, a) = ⊥ if the transition is not defined at s. We write en(s) =
{t | δM (s, t) �= ⊥}, for the set of enabled transitions at s. If en(s) = ∅ we say that
s is a deadlock. We write s

t−→ s′ if δ(s, t) = s′, and generalize this to s0
t1···tn−−−−→ sn

in the natural way.
Properties of the system are expressed as languages over events Σ. Let Σ∗

denote the set of finite words over Σ, and let ε denote the empty word. We assume
ε /∈ Σ. We assume each transition t ∈ T is associated either with an event in Σ
or ε. This is expressed by a mapping e : T → Σ ∪{ε}. We extend the mapping e
to T ∗ → Σ∗. If ρ = t1 · · · tn for n > 1, e(ρ) is defined e(ρ) = e(t1)e(t2 · · · tn). A
transition t such that e(t) �= ε is said to be visible, other transitions are invisible.

92 H. Hansen and A. Valmari

Model checking of safety properties of, say LTLX , can be conducted with this
approach [4]. We make use of automata in this article to express the properties
under verification. An automaton is a tuple (P, δA, p̂, F) where δA : P × Σ → P
is a partial transition function, p̂ ∈ P is the initial state, and F ⊆ P is the set of
error states. We use the same notation as with TS, and write p0

a1···an−−−−→ pn for
executions of automata. Given a property under verification, a counterexample
is some σ ∈ Σ∗ that violates the property, and this corresponds to an execution
p̂

σ−→ p of the automaton such that p ∈ F .
An execution ŝM

t1···tn−−−−→ sn of a TS is a violating execution if and only if
e(t1 · · · tn) is a counterexample. Model checking against an automaton can be
done by constructing a product automaton (PA) (SM × P, δ, (ŝM , p̂), SM × F)
where δ((s, p), t) = (s′, p′) if δM (s, t) = s′, and

1. p = p′ and e(t) = ε, or
2. p

a−→ p′ and e(t) = a.

Given a TS and an automaton, if a1a2 · · · an is a counterexample, p̂ = p0 and
ŝM = s0 and s0

t1···tm−−−−→ sm is a violating execution such that e(t1 · · · tm) =
a1 · · · an, there exists a sequence (s0, p0)

t1−→ · · · tm−−→ (sm, pn) such that
p0

a1a2···an−−−−−−→ pn and pn ∈ F . We use the terms remaining counterexample
and remaining violating execution for suffixes of counterexamples such that if
e(t1 · · · tj) = a1 · · · ai, we call ai+1ai+2 · · · an a remaining counterexample at

(sj , pi) and sj
tj+1tj+2···tm−−−−−−−−→ sm a remaining violating execution. Through out

the rest of this study, whenever the property is involved in the discussion, we
apply the method to the product automaton. This is not a problem when there
is no property, because the case without the automaton is equivalent to the case
with a trivial one-state automaton, with Σ = ∅.

Given a PA (S, δ, ŝ, F), we define a reduction function as any function R :
S → 2T , and a reduced PA as the smallest PA (SR, δR, ŝ, FR) that satisfies:

1. ŝ ∈ SR,
2. if s ∈ SR and t ∈ R(s) and s

t−→ s′, then s′ ∈ SR, and
3. δR(s, t) = δ(s, t) if t ∈ R(s) and ⊥ otherwise.
4. FR = F ∩ SR

The traditional deadlock-preserving stubborn sets are defined as follows: A
set stubb(s) ⊆ T is stubborn at the state s if it satisfies

D0 If en(s) �= ∅ then stubb(s) ∩ en(s) �= ∅.
D1 If t ∈ stubb(s), ti /∈ stubb(s) for 1 ≤ i ≤ n, and s

t1···tnt−−−−→ s′, then
s

tt1···tn−−−−→ s′.
D2 If t ∈ stubb(s) ∩ en(s) and ti /∈ stubb(s) for 1 ≤ i ≤ n, then s

t1···tnt−−−−→.

Condition D2 states that enabled transitions in the stubborn set cannot be
disabled by executing transitions that are outside the stubborn set. This version
of stubborn sets is also known as strong stubborn sets. It is not the most general

Safety Property-Driven Stubborn Sets 93

existing theory, but we use it as a reference as it is one that lends itself to a
simple and effective implementation.

The following theorem is well-known, and the proof can be found in several
publications, including [10]. We state it for reference.

Theorem 1. Let M = (S, δ, ŝ) be a PA and stubb be a reduction function that
satisfies D0, D1, and D2 at every s ∈ Sstubb, and let Mstubb = (Sstubb, δstubb, ŝ)
be the reduced PA. Let s0 ∈ Sstubb and s0

t1···tn−−−−→ sn be an execution of M such
that sn is a deadlock. Then there is an execution s0

u1···un−−−−→ sn of Mstubb where
u1 · · · un is a permutation of t1 · · · tn.

The definition of stubborn sets does not immediately yield an obvious method
by which to compute stubborn sets. To this end, the literature often makes use
of a concept of independence, a relation that is meant to capture the situation
where pairs of transitions satisfy something akin to the definition of D1 and
D2. The following characterization makes it possible to compute stubborn sets,
which will be discussed in Sect. 5. For every state s, let reach(s) denote the set
of states reachable from s in (S, δ, ŝ). We define a relation �s over T as any
relation that satisfies the following.

1. For every t ∈ en(s), t1 ∈ T , and s′ ∈ reach(s), if t, t1 ∈ en(s′), then either
t �s t1 or there is a state s′′ such that s′ tt1−−→ s′′ and s′ t1t−−→ s′′.

2. If t /∈ en(s), then for every s′ and t1, . . . , tn, if s
t1···tn−−−−→ s′ and t ∈ en(s′),

there is some ti such that t �s ti.

The purpose of the relation is made explicit in the following lemma:

Lemma 1. Let U be a set such that at s, for every t, u ∈ T , if t ∈ U and t �s u
then u ∈ U . Then U satisfies D1 and D2 at s.

This lemma makes it possible to devise algorithms for computing stubborn
sets [10,11]. Different kinds of characterizations do exist, in which a relation
similar to �s is used to compute different variants of stubborn sets [3], but they
tend to be more complicated, so we do not address them in this article.

3 Property-Based Solution to the Ignoring Problem

Consider a concurrent system given in Fig. 1. The system consists of four con-
current processes over shared variables. We assume only the variable x is shared,
and initially x = 0. Other features of the system are omitted. The transition v1
is disabled unless x > 0. All other transitions are enabled whenever the process
is in the appropriate control state. The resulting transition system has 14 states,
given in the rightmost figure.

Assume that we are only interested in whether the transition v1 can be
executed. The conditions presented this far are not sufficient to establish this.
The set {w1} satisfies D0, D1, and D2 in every state, but it merely creates a
loop. This phenomenon is known as the ignoring problem.

94 H. Hansen and A. Valmari

start

t1

t2
x := 1

start

u1

u2

x := 1

start

[x > 0]
v1

start

w1

start

Fig. 1. Ignoring example

There are several conditions in the literature for solving the ignoring prob-
lem [1]. Solutions have been discussed in [10], but some discussion is warranted
here. Alternatives in the case of safety properties include not completing a ter-
minal strong component of the model before all the enabled transitions or all the
visible transitions have been included in some stubborn set in the component.
Such rules may include unnecessary transitions in the set for several reasons. As
an example, we discuss the latter rule.

Let ŝ be the initial state of the system in Fig. 1. Assume, for arguments
sake, that an algorithm first explores the transition that closes the loop, and
a cycle condition that includes all visible transitions – in this case v1 – in the
stubborn set at ŝ is used. The transition v1 is disabled at ŝ and ŝ

t1t2v1−−−−→ holds.
No matter what algorithm is used to construct the stubborn set, either t1 or t2
is in the result, because otherwise D1 does not hold. If t2 is chosen, and because
t2 /∈ en(ŝ), also t1 must be in the set. By similar reasoning, because ŝ

u1u2v1−−−−→
holds, also u1 would be in the set. Repeating the reasoning in the resulting states,
all the states (though not all the edges) in Fig. 1 are constructed.

We shall now proceed to introduce a better set of conditions, one that does
not force us to include both t1 and u1 in the set at the same time. It was
first introduced in [10], but we modify the theory by weakening the conditions
further, using N instead of D2. The condition is based on the concept of a set of
interesting transitions. In our example {v1} is the set of interesting transitions.
The set of interesting transitions depends on the property that we are verifying.
We shall elaborate the concept in the next section.

Given a set U of transitions, we define the following condition for state s:

Dd If t ∈ U , ti /∈ U for 1 ≤ i ≤ n, and s
t1···tnt−−−−→ s′, then t ∈ en(s)

A set that satisfies the condition Dd has the property that if a transition t of
the set is disabled at s, then t cannot become enabled by firing only transitions
outside the set.

Safety Property-Driven Stubborn Sets 95

We say that t ∈ stubb(s)∩ en(s) is neutral if and only if for every t1, . . . , tn /∈
stubb(s), if s

t1···tn−−−−→, then s
tt1···tn−−−−→. The following condition will be used in place

of D2.

N If stubb(s) ∩ en(s) �= ∅, then stubb(s) contains a neutral transition.

The condition N guarantees that the possibility of executing a given sequence of
transitions that are outside the stubborn set is preserved. The rest of the theory
then guarantees that if such a sequence is interesting in some way, it will be
explored eventually.

For s, s′ ∈ Sstubb, we define s →N s′ if and only if there is an execution
s = s0

t1−→ s1
t2−→ · · · tn−→ sn = s′ in the reduced product, such that every ti is a

neutral transition at si−1.
We define the following condition for state s; it entails a set Ts, not itself

necessarily stubborn.

S There exists some set Ts ⊆ T that satisfies Dd and contains all interesting
transitions, and for every t ∈ Ts ∩ en(s) there is some st such that s →N st

and t ∈ stubb(st).

The intuition behind the condition S is best explained by the following lemma.

Lemma 2. Assume s0 ∈ Sstubb, stubb(s0) satisfies S, and s0
t1···tn−−−−→ sn, where

tn is interesting. Then there are s′
0, . . . , s

′
m and neutral transitions u1, . . . , um

such that s′
0 = s0, s′

0
u1−→ s′

1
u2−→ · · · um−−→ s′

m, {t1, . . . , tn} ∩ stubb(s′
i) = ∅ for

every 0 ≤ i < m, and {t1, . . . , tn} ∩ stubb(s′
m) �= ∅.

Proof. Because tn ∈ Ts, there is 1 ≤ i ≤ n such that ti ∈ Ts but tj /∈ Ts for
1 ≤ j < i. Due to Dd ti ∈ en(s0). The assumption says there is sti such that
ti ∈ stubb(sti) and s0 →N sti . Let the states along this path be called s′

0, . . . ,
s′

h. So s′
0 = s0, s′

h = sti and ti ∈ {t1, . . . , tn} ∩ stubb(s′
h). Thus there is the

smallest m such that {t1, . . . , tn} ∩ stubb(s′
m) �= ∅, completing the proof. ��

In the initial state of our example, we would have Tŝ = {v1, t2, t1, u2, u1}
and Tŝ ∩ en(ŝ) = {t1, u1}, so we may choose stubb(ŝ) = {u1}, constructing
the grey state below the initial state. There we have Ts = {v1, t2, t1, u2}, and
Ts ∩ en(s) = {t1, u2}, and we can have stubb(s) = {u2}. Continuing like this,
only the 6 grey states are constructed, which is clearly better than the 14 states
that we had before.

4 Property-Driven Visibility

Consider a very simple system given in Fig. 2. It is constructed from two concur-
rent processes, one can execute transition t and the other transitions u and v.
Assume we have the events Σ = {a, b}, and that e(t) = a, e(u) = ε and e(v) = b.
The property under verification is “In any (partial) execution, the number of as

96 H. Hansen and A. Valmari

start

t

u

u

t

v

v

t

Fig. 2. Visibility example

never exceeds the number of bs”, so that a counterexample to the property is
any sequence where the number of as exceeds the number of bs.

The property can be violated by ab but not by ba, and the states where this
is detected are drawn with double circles in the figure. If we consider stubborn
sets with D0, D1 and D2 then a permissible stubborn set reduction might be to
preserve only the dashed transitions of the system model, and this would omit
the double circled states, which are exactly the states in which the property in
question is violated. Use of D1 and S will not help even if we declare both t and
v interesting, because these conditions are similarly satisfied by the execution
ŝ

uvt−−→ which misses the counterexample.
The problem here is usually solved by requiring that visible transitions must

preserve their order. Recall that a transition t ∈ T was defined as being visible
if e(t) ∈ Σ. The set of visible transitions is denoted Tv. In the example, the
transitions t and v are visible, whereas u is not. Visibility is traditionally used
in stubborn set theory by adding the following requirement:

V If stubb(s0) ∩ en(s0) ∩ Tv �= ∅, then Tv ⊆ stubb(s0). I.e., if a visible transition
is enabled and stubborn, all visible transitions (including disabled ones) are
stubborn.

D1, D2, S and V guarantee that for every deadlocking execution, the order
between visible transitions is preserved, as stated by the following theorem.

Theorem 2. Let stubb be a reduction function that satisfies D1, D2, S and V

at every state, s0 ∈ Sstubb, and s0
t1···tn−−−−→. Then s0

u1···un−−−−→ in (Sstubb, δstubb, ŝ),
and e(t1 · · · tn) = e(u1 · · · un).

The proof can be found, for example in [10].
A closer inspection of the system in the example reveals a weakness in the

use of V. From the initial state, the stubborn set may be constructed in such
a way that it contains only u, but from the grey state, all enabled transitions
are taken, so that the reduction will omit only one state. Even if construction
is stopped when the counterexample ŝ

ut−→ is constructed, the algorithm may
first explore the branch where v is taken first, so that five states are generated
in total. If, on the other hand t is chosen in the initial state, then visibility forces
the inclusion of v, which in turn forces the inclusion of u, and no reduction is

Safety Property-Driven Stubborn Sets 97

gained. At worst five states end up being explored even if construction stops
when an error is found.

If we analyse the property more closely, however, we notice that v, though
visible, can never appear before t in a violating execution. This actually comes,
not from the system behaviour, but from the property: if σ is any counterex-
ample, aσ is also a counterexample. Transitions that map to a and transitions
that map to b, though all visible, need not preserve all orders in which they are
explored, it suffices to explore the orders that lead to a counterexample.

Let t ∈ stubb(s) ∩ en(s), t1, . . . , tn /∈ stubb(s) and u1, . . . , um ∈ T . We define
the following conditions:

V1 if e(t1 · · · tntu1 · · · um) is a remaining counterexample at s then some prefix
of e(tt1 · · · tnu1 · · · um) is a remaining counterexample at s.

V2 if e(t1 · · · tn) is a remaining counterexample at s, then some prefix of
e(tt1 · · · tn) is a remaining counterexample at s.

A set of interesting transitions needs to be defined for the remaining coun-
terexample. Let Σi

s ⊆ Σ. It is interesting at s if every non-empty remaining
counterexample at s contains at least one event from Σi

s. The set of interesting
transitions is the set {t ∈ T | e(t) ∈ Σi

s}.

Theorem 3. If stubb is a reduction function that satisfies D1, S, V1 and V2
at every state of Mstubb and M has a violating execution, then Mstubb has a
violating execution.

Proof. The proof is by induction. Let s0
t1t2···tn−−−−−→ sn be a (remaining) violating

execution at s0, s0 ∈ Sstubb. If n = 0, the empty string is a counterexample and
the claim holds trivially. Otherwise at least one of t1, . . . , tn is interesting, by
definition.

Let ti be the last interesting transition in the violating execution. Lemma 2
gives us s0

u1···um−−−−−→ s′
m of neutral transitions. Neutrality guarantees that

s′
m

t1t2···ti−−−−−→ si
m for some si

m. Applying V2 m times guarantees that some prefix
of s0

u1···umt1t2···ti−−−−−−−−−−→ is a remaining violating execution; note that the violating
execution may even consist of some prefix of s0

u1···um−−−−−→ which would complete
the proof immediately.

Assume then that no prefix of s0
u1···um−−−−−→ s′

m is a violating execution. By
Lemma 2, there is a j, 1 ≤ j ≤ i such that tj ∈ stubb(s′

m). Thus choosing the

minimal such j, we have s′
m

tj−→ s′′
m for some s′′

m ∈ Sstubb, from which D1 gives

s′′
m

t1t2···tj−1tj+1···ti−−−−−−−−−−−−→ si
m. V1 guarantees that some prefix of this execution is a

remaining violating execution, completing the inductive step. ��

The conditions V1 and V2 are property driven conditions. They do not guar-
antee that all orderings of visible transitions are preserved, only that sufficiently
many to detect violating executions if there are any. The �s-characterization
we gave in the previous section can be used here; if we can deduce, as in our
example, that exploring only sequences where t occurs before v does not run the

98 H. Hansen and A. Valmari

risk of missing remaining counterexamples, so we need not require that t �s v.
That is the case in our example. An example of analysing the properties of the
automaton to determine a �s that guarantees V1 and V2 is discussed in Sect. 6.

5 On the Algorithmic Aspects of the Method

We suggest the following algorithm for implementing the method developed in
Sects. 3 and 4. It has been adapted from [11]; please see it for further details. Its
design aims at computing small stubborn sets that satisfy D1, N, V1, and V2,
and making them gradually bigger as needed to satisfy S.

The algorithm uses two sub-algorithms, clsr(t) and esc(t), where t is a tran-
sition. They work on the �s-relation from Sect. 2. clsr(t) simply computes the
reflexive transitive closure of t. esc(t) (“enabled strong component”) either com-
putes a minimal closed subset of the closure that contains at least one enabled
transition, or indicates that no enabled transition is reachable from t. It is based
on Tarjan’s algorithm [2,6].

It has been described in many publications (e.g., [10]) how an easily com-
putable �s can be found such that each closure satisfies D1, D2, and V. The
same idea immediately applies to Dd. The switch from V to V1 and V2 is
trivial. How to exploit N is future work, but in the meantime D2 can be used
in its place, since D1 and D2 imply N.

The reduced product of the model and the automaton is constructed in depth-
first order. Tarjan’s algorithm is applied to recognize terminal strong components
of the result. Let s be a state, Ts be as in the definition of S, and t1, . . . , tn be
the enabled transitions in Ts. For each totally unprocessed state s and each time
when the algorithm is about to backtrack from a terminal strong component by
backtracking from s, the next sets in the following sequence are computed until
either the list is exhausted or a new transition is fired in s: esc(t1), . . . , esc(tn),
clsr(t1), . . . , clsr(tn). If all enabled transitions of the set have been fired inside
the component, then the set is skipped, otherwise it is used as an extension of
the stubborn set in s.

Unfortunately, our tool [8] does not yet have an implementation of this algo-
rithm. Instead, it implements D0, D1, D2, V1, and V2. Fortunately, our exam-
ple system has the property that from every reachable state, a deadlock is reach-
able. This trivially guarantees S. So the results from our experiments are correct,
but the reduction that is obtained may be worse than would be obtained with a
proper implementation.

6 An Example

We demonstrate the ideas using a modified alternating bit protocol and its speci-
fication. The example is closely related to the example in [11], with modifications
to make certain specification issues relevant.

The alternating bit protocol provides reliable transmission of messages over
unreliable channels. In Fig. 3 left, the channels are shown as Dchan, Achan, Dloss,

Safety Property-Driven Stubborn Sets 99

and Aloss, where the former are reliable fifo queues of fixed finite capacity and
the latter model the possibility of a data packet being lost in transmit. Sender
and Receiver co-operate so that each message given to the protocol via sen is
eventually delivered via rec, without being lost or duplicated and without the
order of the messages being changed.

The only feature not drawn in the figure is that in all the states where Sender
is ready to send a message, it may also decide to terminate. This feature makes
sure the protocol can reach a terminating state from all its states, i.e., it is
AG EF- terminating. This guarantees that stubborn sets that satisfy D1 and
D2, trivially also satisfy S. Conversely, stubborn sets also guarantee [9] that the
reduced system is AG EF- terminating if and only if the original is.

For each message that Receiver receives via Dchan, it sends an acknowledge-
ment via Achan. If the acknowledgement does not arrive quickly enough, Sender
sends the same message again. Each data packet in the channels contains an
additional bit, the alternating bit, via which Sender and Receiver can distinguish
relevant data packets from outdated ones. If either channel is totally broken (i.e.,
Dloss or Aloss consumes all data packets), the alternating bit protocol collapses
into an unproductive infinite loop where Sender sends the same message again
and again.

Our example studies a more complicated protocol that has an upper bound
to the number of sending attempts. If Sender has tried that many times without
getting the acknowledgement, it replies err. Otherwise, it replies ok. Now every
received message must have a unique corresponding sent message in the right
order, but not necessarily the other way round.

Unfortunately, this yields an infinite specification, because there is no bound
to the number of messages that may still be in transmit. Therefore, we aim
at incomplete verification results by using a finite specification that only keeps
track of partial information on the messages that may still be in transmit. We
use two different messages, N and Y.

Figure 3 shows part of the specification; the sequences starting with senY
have been omitted, as they are symmetric to the ones drawn. The double circle
indicates a state in which a counterexample has been found. The initial state
is the situation where the protocol is empty. sen refers to sending and rec to
receiving of a message by the respective clients. If any message is received from

Fig. 3. Protocol architecture and part of the specification automaton

100 H. Hansen and A. Valmari

the empty protocol, this constitutes a violation of the property. In the mid-
dle state, the protocol contains exactly one message with content N. If more
N-messages are sent, the automaton moves to the right-most state and remem-
bers only that some number of N-messages have been sent. The automaton does
not remember how many N messages have been sent so any number of them
may be received. The topmost state indicates a situation where one message
with Y was sent after either of these situations. The automaton does not con-
sider situations where any more messages of any type are sent in this state. If
a Y message is received, then all the messages with N content must have either
been lost or received, meaning the protocol should be empty. In the three states
in the middle, the protocol contains no messages with content Y, so receiving
such a message constitutes a counterexample in these states.

It is immediately obvious that all counterexamples contain rec-events, so the
set of interesting transitions is the set of transitions that receive from the proto-
col. An appropriate �-relation that guarantees V1 and V2 is easily computed
for every state of the automaton.

The process models of the example system are shown in Fig. 4. From left to
right and then top to bottom, the figures depict the processes Sender, Receiver,
Dloss, and Aloss. Dchan and Achan are first-in first-out queues of finite capacity,
their models are not shown separately. Each sen, rec, d0, d1, d̄0, and d̄1 carries
a parameter that is either N or Y. Each grey state corresponds to two states,
one for each parameter value. Each black state corresponds to 2r states, where
r is the number of times that Sender tries to send before giving up. ta (try
again) is only enabled when that number has not yet been reached, and err is
only enabled in the opposite case. Each x̄ synchronizes with x along a line in
the architecture picture. The output of Dchan is consumed either by Receiver or
Dloss, and similarly with Achan.

We implemented the model in ASSET [8] and model checked against the
property given in the beginning of the section. Visibility conditions V1 and V2
and the classic visibility condition V were implemented for stubborn sets using
D0, D1 and D2. The model was parameterized by channel capacity ranging
from 1 to 40, and r = 2 was used in all cases. The computation of stubborn

Fig. 4. The example system processes

Safety Property-Driven Stubborn Sets 101

 1000

 10000

 100000

 1x106

 1x107

 0 5 10 15 20 25 30 35 40

Unreduced
Interesting last Stubborn
Interesting last PDriven

Interesting first Stubborn
Interesting first PDriven

Fig. 5. Number of states as a function of channel capacity

sets is non-deterministic, in the sense that for a given state there may be several
stubborn sets. The set that is generated depends on several factos, including
the order in which transitions are considered in the computation. The way the
model is written gives an order to the transitions. In our experiments, we also
constructed stubborn sets by inverting this order. In the former, the interesting
transitions (i.e. rec-transitions) are considered first.

The results are given in Fig. 5. The graph indicates how the number of states
scales as a function of channel capacity for the original state space, the state
space reduced using the old V-condition and the state space reduced by using
the new conditions V1 and V2 instead. The reduction results are given for both
transition orders. Table 1 reports some of the measurements in more detail.

Table 1. States and transitions

Unreduced V (I-last) V (I-first) V1 + V2 (I-last) V1 + V2 (I-first)

States (n = 20) 680,383 310,661 233,839 295,425 80,129

Transitions (n = 20) 2,882,316 613,344 380,780 581,344 141,194

States (n = 40) N/A 2,083,541 1,418,959 2,024,305 292,449

Transitions (n = 40) N/A 4,140,264 2,238,660 4,015,624 514,994

We see from both the graph and the numbers that prioritizing the interest-
ing transitions in the construction of stubborn sets has a high impact on the
number of states. In particular, the property-driven visibility conditions provide

102 H. Hansen and A. Valmari

a significant benefit when important transitions are prioritized, but almost no
benefit when they are not.

7 Conclusions

The novel theoretical conditions presented in this article were N, which replaced
D2, and V1 and V2, which replaced the condition V. The condition S was
already given in [10], but we showed that it is compatible with the novel condi-
tions and we provided a complete proof that the conditions preserve the existence
of counterexamples.

Our experimental results gauge the effect of V1 and V2 only, as no imple-
mentation that would make use of the N-condition exists, and the model we used
is such that the condition S is satisfied trivially, when D1 and D2 are used.

Our results indicate that the amount of reduction is sensitive to how the stub-
born set is constructed. If the strong component algorithm is used by using the
interesting transitions as the first transitions to be considered, then the reduc-
tion is clearly better. Our novel conditions provide very little extra reduction if
the interesting transitions are considered last, but a significant reduction if they
are considered first.

The implementation of the N-condition is an important topic for future
work. Virtually all existing methods preserve all deadlocks, whereas with the
N-condition, only interesting executions are preserved. Further improvement in
reduction is thus possible.

The theory in this article was restricted to safety properties, which always
have finite counterexamples. An important question for future research is what
changes are necessary for the preservation of infinite counterexamples.

References

1. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduc-
tion. Int. J. Softw. Tools Technol. Transf. 12(2), 155–170 (2010)

2. Eve, J., Kurki-Suonio, R.: On computing the transitive closure of a relation. Acta
Informatica 8(4), 303–314 (1977)

3. Hansen, H., Wang, X.: Compositional analysis for weak stubborn sets. In:
11th International Conference on Application of Concurrency to System Design
(ACSD), pp. 36–43. IEEE (2011)

4. Latvala, T.: Efficient model checking of safety properties. In: Ball, T., Rajamani,
S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 74–88. Springer, Heidelberg (2003)

5. Peled, D., Valmari, A., Kokkarinen, I.: Relaxed visibility enhances partial order
reduction. Formal Methods Syst. Des. 19(3), 275–289 (2001)

6. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

7. Valmari, A.: On-the-fly verification with stubborn sets. In: Courcoubetis, C. (ed.)
Computer Aided Verification, vol. 697, pp. 397–408. Springer, Heidelberg (1993)

8. Valmari, A.: A state space tool for concurrent system models expressed in C++.
In: SPLST 2015. CEUR Workshop Proceedings, vol. 1525, pp. 377–397 (2015)

Safety Property-Driven Stubborn Sets 103

9. Valmari, A.: Stop it, and be stubborn! In: 15th International Conference on Appli-
cation of Concurrency to System Design (ACSD), pp. 10–19. IEEE (2015)

10. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Cabac, L., Kris-
tensen, L.M., Rölke, H. (eds.) Proceedings of the International Workshop on Petri
Nets and Software Engineering, PNSE 2016, CEUR Workshop Proceedings, vol.
1591, Toruń, Poland, 20–21 June 2016, pp. 213–232. CEUR-WS.org (2016). http://
CEUR-WS.org/Vol-1591/

11. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnacki, D., Wijs,
A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-32582-8 16

http://CEUR-WS.org/Vol-1591/
http://CEUR-WS.org/Vol-1591/
http://dx.doi.org/10.1007/978-3-319-32582-8_16

Characterizing Word Problems of Groups

Sam A.M. Jones1 and Richard M. Thomas2(B)

1 School of Mathematics and Computer Science, University of Wolverhampton,
Wulfruna Street, Wolverhampton WV1 1LY, UK

2 Department of Computer Science, University of Leicester, Leicester LE1 7RH, UK
rmt@mcs.le.ac.uk

Abstract. The word problem of a finitely generated group is a funda-
mental notion in group theory; it can be defined as the set of all the
words in the generators of the group that represent the identity element
of the group. This definition allows us to consider a word problem as
a formal language and a rich topic of research concerns the connection
between the complexity of this language and the algebraic structure of
the corresponding group.

Another interesting problem is that of characterizing which languages
are word problems of groups. There is a known necessary and sufficient
criterion for a language to be a word problem of a group; however a
natural question is what other characterizations there are. In this paper
we investigate this question, using sentences expressed in first-order logic
where the relations we consider are membership of the language in ques-
tion and concatenation of words. We choose some natural conditions that
apply to word problems and then characterize which sets of these con-
ditions are sufficient to guarantee that the language in question really is
the word problem of a group. We finish by investigating the decidability
of these conditions for the families of regular and one-counter languages.

1 Introduction

The word problem of a finitely generated group G is a fundamental notion in
group theory; it can be defined as the set of all the words in the generators of the
group that represent the identity element of G. This definition allows us to con-
sider a word problem as a formal language and a rich topic of research concerns
the connection between the complexity of this language and the algebraic struc-
ture of the corresponding group. For example, the groups with a regular word
problem were classified in [1] and those with a context-free word problem in [11]
(modulo a subsequent result in [3]).

We will focus on the one-counter languages in this paper (see Sect. 2) which
are particularly interesting in the context of word problems of groups for the
following reason. Herbst showed in [4] that, if F is a subset of the context-free
languages which is a cone (in the sense of [2], i.e. F is a family of languages
closed under homomorphism, inverse homomorphism and intersection with reg-
ular languages), then the finitely generated groups whose word problem lies in
F are either those with a regular word problem, those with a one-counter word
c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 104–118, 2016.
DOI: 10.1007/978-3-319-45994-3 8

Characterizing Word Problems of Groups 105

problem or those with a context-free word problem. He also classified [4] the
groups with a one-counter word problem (see also [5,6]). Note that, in all the
cases mentioned here, whether or not the word problem of the group lies in the
specified family of languages is independent of the choice of finite generating set
for the group (see [5] for example).

Another interesting problem is that of characterizing which languages are
word problems of groups. A simple necessary and sufficient criterion for a lan-
guage to be a word problem was established in [13]. This involves the conjunction
of two conditions, universal prefix closure and deletion closure (see Definition 2
below); a natural question is what other such characterizations there are. We
investigate this problem, using sentences expressed in first-order logic where the
only relations are membership of the language in question and concatenation
of words. We choose some natural conditions that hold in all word problems
(see Definition 2) and then characterize which sets of these conditions are suffi-
cient to guarantee that the language really is the word problem of a group (see
Theorem 25).

We then build on the work in [10] in Sect. 5 and investigate the decidability
of these conditions for the families of regular and one-counter languages, noting
that all the properties are decidable for the regular languages but undecidable
for the one-counter languages (and hence for the context-free languages as well).

2 Preliminaries

In this section we will survey some concepts, notation and results we need from
formal language theory and group theory. For the background material on formal
language theory the reader is referred to [2,7,8] and, for group theory, to [9,14].

As usual, we let Σ∗ denote the set of all words, including the empty word ε,
and Σ+ denote the set of all non-empty words over the alphabet Σ. If α ∈ Σ∗

and x ∈ Σ we let |α| denote the length of α and |α|x the number of occurrences
of x in α. If n ∈ N then Σ�n is the set of words in Σ∗ of length at most n and
Σ�n is the set of words of length at least n.

If α = βγ for some β, γ ∈ Σ∗ then β is said to be a prefix of α and γ is a
suffix of α; if α = βγδ for some β, γ, δ ∈ Σ∗ then γ is said to be a factor of α.
If α is the word a1a2 . . . an−1an with n � 1 and ai ∈ Σ for each i, then the
reversal αrev of α is the word anan−1 . . . a2a1 (and εrev is defined to be ε). For
any language L we define Lrev to be the language {αrev : α ∈ L}.

Given a language L over an alphabet Σ we define the syntactic congruence ≈L

to be the congruence on Σ∗ defined by:

α ≈L β ⇐⇒ (γαδ ∈ L ⇔ γβδ ∈ L for all γ, δ ∈ Σ∗),

and then the syntactic monoid ML of L is the quotient Σ∗/ ≈L. If ϕ is the
natural map from Σ∗ onto ML then L = Sϕ−1 for some subset S of ML.

We will be discussing one-counter languages, which are the languages
accepted by a one-counter automaton, i.e. a pushdown automaton where we have

106 S.A.M. Jones and R.M. Thomas

only a single stack symbol apart from a special symbol marking the bottom of
the stack; these automata are nondeterministic and accept by final state.

A group is a set G together with a closed binary operation ∗ which is associa-
tive and where there is an identity element 1 = 1G for ∗ and each g in G has an
inverse g−1. We often suppress the reference to ∗, simply referring to the group
as G and writing gh for g ∗ h. If G is a group, Σ is a finite set and ϕ : Σ∗ → G
is a surjective monoid homomorphism then we refer to Σ as a (monoid) gener-
ating set for G (via ϕ). For each a ∈ Σ let a be an element of Σ∗ such that
aϕ = (aϕ)−1. We have that a1a2 . . . an = b1b2 . . . bm in G (where ai, bj ∈ Σ) if
and only if a1a2 . . . anbm bm−1 . . . b1 represents 1G; so we can focus on the set of
the words in Σ∗ representing the identity of G and we refer to this language as
the word problem W (G,Σ) of G with respect to the generating set Σ (via ϕ).

Remark 1. A group is the syntactic monoid of its word problem; see [5] for
example. We will need a more general result here. Let Σ be a finite set, G be a
group, ϕ : Σ∗ → G be a surjective homomorphism, H be a subgroup of G (i.e. a
subset of G that forms a group in its own right) such that there is no non-trivial
normal subgroup of G contained in H (i.e. such that

⋂

{g−1Hg : g ∈ G} = {1})
and L = Hϕ−1; then G is the syntactic monoid of L (see [12]). 	

3 Properties of Word Problems

As we said in the introduction, we are interested in determining which sets of
properties of languages are sufficient to ensure that a language must be the word
problem of a group. Obviously such properties must be ones that are satisfied
by word problems; the ones we consider are listed in the following definition:

Definition 2. The following are potential properties of a language L over an
alphabet Σ:

(UPP) for all α ∈ Σ∗ there exists β ∈ Σ∗ such that αβ ∈ L;
if L satisfies (UPP) we say that L has the universal prefix property;

(USP) for all α ∈ Σ∗ there exists β ∈ Σ∗ such that βα ∈ L;
if L satisfies (USP) we say that L has the universal suffix property;

(UFP) for all α ∈ Σ∗ there exist β, γ ∈ Σ∗ such that βαγ ∈ L;
if L satisfies (UFP) we say that L has the universal factor property;

(DC) αβγ ∈ L, β ∈ L ⇒ αγ ∈ L;
if L satisfies (DC) we say that L is deletion closed;

(CRD) αβ ∈ L, β ∈ L ⇒ α ∈ L;
if L satisfies (CRD) we say that L is closed under right deletions;

(CLD) αβ ∈ L,α ∈ L ⇒ β ∈ L;
if L satisfies (CLD) we say that L is closed under left deletions;

(IC) αβ ∈ L, γ ∈ L ⇒ αγβ ∈ L;
if L satisfies (IC) we say that L is insertion closed;

Characterizing Word Problems of Groups 107

(CCS) αβ ∈ L ⇒ βα ∈ L;
if L satisfies (CCS) we say that L is closed under cyclic shift;

(CC) α, β ∈ L ⇒ αβ ∈ L;
if L satisfies (CC) we say that L is closed under concatenation. 	

It is clear that all the properties in Definition 2 are satisfied by word problems
of groups; we will use this fact from now on without further comment. We now
introduce a concept that we will call (for the purposes of this paper) “duality”.

Remark 3. Suppose we have (as in Definition 2) a sentence σ in first-order logic
where the only relations in σ are membership of the language in question and
concatenation of words. We can obtain a new sentence σ′ by reversing the order
of the words in any concatenation in σ (but leaving everything else fixed). For
example, if we take the sentence representing the property (UPP), then the only
concatenation in the sentence is αβ ∈ L; we reverse this to get βα ∈ L and we
now have the sentence representing (USP). In this sense we say that (USP) is
the dual of (UPP) (and that (UPP) is the dual of (USP)).

In a similar vein we see that (CRD) is the dual of (CLD) and that the other
properties listed in Definition 2 are all self-dual. We sum these facts up in the
following tables:

The motivation for introducing this concept is that, when characterizing word
problems of groups, we will make extensive use of the following result:

Proposition 4. If L is a language over some alphabet Σ, S = {σ1, σ2, . . . , σn}
is a subset of the properties listed in Definition 2, σ′

i is the dual of σi for each i
and S′ = {σ′

1, σ
′
2, . . . , σ

′
n}, then the following statements are equivalent:

(i) L is the word problem of a group if and only if it satisfies S.
(ii) L is the word problem of a group if and only if it satisfies S′.

Proof. We will first show that L is a word problem of a group if and only if Lrev

is a word problem of a group.
If Σ = {a1, a2, . . . , an} and ϕ : Σ∗ → G is a surjective homomorphism

from Σ∗ onto a group G then we define a new homomorphism θ : Σ∗ → G
by aθ = (aϕ)−1 for all a ∈ Σ. If L is the word problem of G then, since
(g1 . . . gn)−1 = g−1

n . . . g−1
1 in G and αϕ = 1 if and only if (αϕ)−1 = 1, we

see that Lrev is also the word problem of G via the homomorphism θ. Applying
the argument again shows that, if Lrev is the word problem of a group, then
L = (Lrev)rev is also the word problem of a group.

The result now follows from the observation that L satisfies the properties
in S if and only if Lrev satisfies the properties in S′. 	

108 S.A.M. Jones and R.M. Thomas

4 Characterizing Word Problems

The following result from [13] is the starting point for our investigations in this
paper:

Proposition 5. A language L over an alphabet Σ is the word problem of a
group if and only if it satisfies properties (UPP) and (DC). 	

Using Remark 3 and Proposition 4 we immediately have:

Corollary 6. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (USP) and (DC). 	

We note the following:

Proposition 7. If a language L over an alphabet Σ satisfies properties (CCS)
and (UFP) then it satisfies property (UPP).

Proof. If α ∈ Σ∗ then there exist β, γ ∈ Σ∗ such that βαγ ∈ L by (UFP). Then
αγβ ∈ L by (CCS) and so there exists δ = γβ with αδ ∈ L as required. 	

Using Remark 3 we immediately have:

Corollary 8. If a language L over an alphabet Σ satisfies properties (CCS) and
(UFP) then it satisfies property (USP). 	

Given Propositions 5 and 7, we have the following immediate consequence:

Corollary 9. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (DC), (CCS) and (UFP). 	

We next note the following:

Proposition 10. If a language L over an alphabet Σ satisfies properties (CCS)
and (CRD) then it satisfies property (DC).

Proof. If αβγ ∈ L and β ∈ L then we apply (CCS), (CRD), (CCS) in turn to
get that γαβ ∈ L, γα ∈ L, and then αγ ∈ L as required. 	

Given Propositions 5 and 10, we have the following:

Corollary 11. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (CCS) and (CRD). 	

By Remark 3 and Proposition 10, we have the following:

Corollary 12. If a language L over an alphabet Σ satisfies properties (CCS)
and (CLD) then it satisfies property (DC). 	

Given Proposition 5 and Corollary 12 we have:

Characterizing Word Problems of Groups 109

Corollary 13. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (CCS) and (CLD). 	

Given Propositions 5, 7 and 10 we have:

Corollary 14. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UFP), (CCS) and (CRD). 	

In a similar vein, Propositions 5, 7 and 12 give:

Corollary 15. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UFP), (CCS) and (CLD). 	

Given Corollaries 6 and 12 we have:

Corollary 16. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (CCS), (USP) and (CLD). 	

In a similar way, Corollaries 6 and 10 give:

Corollary 17. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (CCS), (USP) and (CRD). 	

Another such result is the following:

Proposition 18. If a language L over an alphabet Σ satisfies properties (UPP),
(IC) and (CRD) then it satisfies property (DC).

Proof. Assume that L satisfies (UPP), (IC) and (CRD); we want to show that
L satisfies (DC).

So assume that αβγ ∈ L and β ∈ L. By (UPP) there exists δ ∈ Σ∗ such
that αγδ ∈ L. Since β ∈ L we have by (IC) that αβγδ ∈ L. Since αγδ ∈ L
and αβγ ∈ L, (IC) also gives us that αγ(αβγ)δ ∈ L. Since αγαβγδ ∈ L and
αβγδ ∈ L, (CRD) gives that αγ ∈ L as required. 	

Given Propositions 5 and 18 we have another characterization of word prob-
lems as follows:

Corollary 19. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (UPP), (IC) and (CRD).

Given Proposition 18 we can apply Remark 3 to deduce:

Proposition 20. If a language L over an alphabet Σ satisfies properties (USP),
(IC) and (CLD) then it satisfies property (DC).

Given Propositions 6 and 20 we have another characterization as follows:

Corollary 21. A language L over an alphabet Σ is the word problem of a group
if and only if it satisfies properties (USP), (IC) and (CLD).

110 S.A.M. Jones and R.M. Thomas

Remark 22. For the convenience of the reader we show the implications between
the conditions listed in Definition 2 which we have established in this section by
means of the following diagrams:

(CCS)
(UPP) ⇐= =⇒ (USP)

(UFP)

(CCS) (CCS)
=⇒ (DC) ⇐=

(CRD) (CLD)

(UPP) (USP)
(IC) =⇒ (DC) ⇐= (IC)

(CRD) (CLD)

We now establish a result that will be crucial in establishing the minimality
of certain sets of conditions from Definition 2 when characterizing word problems
of groups:

Proposition 23. There are languages L1, L2, L3, L4, L5 and L6 that satisfy
respectively the following specified subsets of the set of the properties listed in
Definition 2:

(UPP) (DC) (CCS) (UFP) (CRD) (IC) (CC) (CLD) (USP)

L1 Yes No Yes Yes No Yes Yes No Yes

L2 No Yes Yes No Yes No No Yes No

L3 Yes No No Yes Yes No Yes Yes Yes

L4 No Yes No Yes Yes Yes Yes Yes No

L5 No Yes Yes No Yes Yes Yes Yes No

L6 Yes No No Yes No Yes Yes Yes No

Proof. Let Σ = {a, b}, n � 1, L1 = Σ�n and L2 = Σ�n. We see that L1 satisfies
(UPP), (USP), (UFP), (CCS), (CC) and (IC) but not (DC), (CLD) or (CRD).
On the other hand, L2 satisfies (DC), (CRD), (CLD) and (CCS) but not (UPP),
(USP), (UFP), (CC) or (IC).

Let Ω be a finite set, G be a group, ϕ : Ω∗ → G be a surjective homo-
morphism, H be a non-trivial subgroup of G such that there is no non-trivial
normal subgroup of G contained in H and L3 = Hϕ−1. By Remark 1, we see
that G is the syntactic monoid of L3. If L3 were the word problem of a group
then every element of L3 would represent the identity in its syntactic monoid G,
contradicting the fact that H is non-trivial.

Despite L3 not being a word problem, it does satisfy some of the properties
in Definition 2. For example, it satisfies (UPP) (and hence (UFP) as well): if
α ∈ Ω∗ choose g ∈ G such that (αϕ)g ∈ H and then β ∈ Ω∗ with βϕ = g;
since (αβ)ϕ ∈ H we have that αβ ∈ L3. A similar argument shows that L3 also
satisfies (USP).

Characterizing Word Problems of Groups 111

L3 also satisfies (CRD): if αβ ∈ L and β ∈ L then (αϕ)(βϕ) ∈ H and
βϕ ∈ H, so that αϕ = (αϕ)(βϕ)(βϕ)−1 ∈ H, and so α ∈ L. Similarly L3

satisfies (CLD). It is clear that L3 satisfies (CC): if α, β ∈ L3 then αϕ ∈ H and
βϕ ∈ H, so that (αβ)ϕ = (αϕ)(βϕ) ∈ H and hence αβ ∈ L3. Given that L3 is
not the word problem of a group it cannot satisfy (DC) by Proposition 5, (CCS)
by Corollary 14 or (IC) by Corollary 19.

For our next language we consider the bicyclic monoid B with the (monoid)
presentation 〈a, b : ab = 1〉. We let Σ = {a, b} and let L4 consist of all those
words in Σ∗ that represent the identity element of B; more formally, we have
the natural homomorphism θ : Σ∗ → B and we let L4 = {1}θ−1.

Each element of B is represented by a word of the form biaj (were i, j � 0) and
we have that (biaj)θ = (bka�)θ if and only if i = k and j = �. If we consider the
complete (i.e. the confluent and terminating) string rewriting system R over Σ
where the only rule is ab → ε, we see that R reduces any word α in Σ∗ to the
word β of the form biaj that represents the same element of B as α (i.e. to the
word β such that βθ = αθ).

It is clear that L4 satisfies (DC) (and hence (CRD) and (CLD) as well): if
αβγ ∈ L4 and β ∈ L4 then (αβγ)θ = βθ = 1 and then

(αγ)θ = (αθ)(γθ) = (αθ)(βθ)(γθ) = (αβγ)θ = 1,

so that αγ ∈ L4. Similarly L4 satisfies (IC): if αβ ∈ L4 and γ ∈ L4 then
(αβ)θ = γθ = 1 and so

(αγβ)θ = (αθ)(γθ)(βθ) = (αθ)(βθ) = (αβ)θ = 1,

and so αγβ ∈ L4. Given that L4 satisfies (IC) it clearly satisfies (CC) as well.
We also have that L4 satisfies (UFP): if α = ai1bj1 . . . ainbjn let

J = i1 + . . . + in and I = j1 + . . . + jn;

then aIαbJ reduces in R to ε and so aIαbJ ∈ L4. However, L4 does not satisfy
(UPP): if we let α = b then there is no word β such that αβ ∈ L as any word
in L can be reduced to ε through repeated uses of the rewriting rule ab → ε
and no word starting in b can be so reduced. A similar argument shows that no
word ending in a can be so reduced and so L4 does not satisfy (USP). The fact
that no word starting in b can belong to L4 also shows that L4 does not satisfy
(CCS) (since ab ∈ L4 but ba ∈ L4).

We next consider L5 = ∅. It is clear that L5 satisfies (DC), (CCS), (CRD),
(CLD), (IC) and (CC) but not (UPP), (USP) or (UFP).

Lastly we let Σ = {a, b} and let L6 = {ε}∪Σ∗{a}. It is clear that L6 satisfies
(UPP) and (UFP) but not (USP). L6 also satisfies (IC) and (CC) but not (CCS).
Lastly L6 satisfies (CLD) but not (CRD) or (DC). 	

As we said above, the languages specified in Proposition 23 will be useful in
establishing the minimality of certain sets of conditions from Definition 2. We can
now show that the characterizations we have obtained so far are all minimal, in
that no proper subset of any of the specified eleven sets of properties is sufficient
to ensure that the language in question is a word problem:

112 S.A.M. Jones and R.M. Thomas

Proposition 24. For any non-empty proper subset S of any of the sets

{(UPP), (DC)}, {(DC), (CCS), (UFP)},
{(UPP), (CCS), (CRD)}, {(CCS), (CRD), (UFP)}
{(UPP), (IC), (CRD)}, {(USP), (DC)},
{(IC), (CLD), (USP)}, {(UPP), (CCS), (CLD)},

{(USP), (CCS), (CLD)}, {(USP), (CCS), (CRD)},
or {(UFP), (CCS), (CLD)}

there is a language satisfying all the conditions in S which is not a word problem
of a group.

Proof. Throughout this proof we will refer to the six languages L1, L2, L3, L4,
L5 and L6 introduced in Proposition 23.

To eliminate proper subsets of we consider . . .

{(UPP), (DC)} L1 and L2

{(DC), (CCS), (UFP)} L1, L2 and L4

{(UPP), (CCS), (CRD)} L1, L2 and L3

{(CCS), (CRD), (UFP)} L1, L2 and L3

{(UPP), (IC), (CRD)} L1, L3 and L4

{(USP), (DC)} L1 and L2

{(IC), (CLD), (USP)} L1, L3 and L4

{(UPP), (CCS), (CLD)} L1, L2 and L3

{(USP), (CCS), (CLD)} L1, L2 and L3

{(USP), (CCS), (CRD)} L1, L2 and L3

{(UFP), (CCS), (CLD)} L1, L2 and L4

For each maximal proper subset S of one the eleven sets we have given a language
satisfying all the properties in S which is not the word problem of a group. 	

Theorem 25. The sets of properties listed in Proposition 24 are precisely those
subsets S of the set of properties listed in Definition 2 such that satisfying the
conditions in S is sufficient for a language L to be the word problem of a group
but such that no proper subset of S has this property.

Proof. To start with, notice that the empty set L5 is not a characterisation and
satisfies all of the properties except (UPP), (USP) and (UFP); so any character-
isation must contain at least one of these three properties. Next we note that, if
a language satisfies (CCS) and one of (UPP), (USP) and (UFP), then it satisfies
all of them; so, in the first instance, we will consider languages which do not
satisfy (CCS).

Note, also, that each of (USP) and (UPP) imply (UFP) so, when considering
languages which satisfy two of (USP), (UPP) and (UFP), there is in fact only

Characterizing Word Problems of Groups 113

one pair to consider (taking minimality into account), namely (UPP) and (USP).
The result of these considerations is that we have five cases to consider (with
respect to minimal characterizations):

– Case 1. We specify (UPP) but not (CCS).
– Case 2. We specify (USP) but not (CCS).
– Case 3. We specify (UFP) but not (CCS).
– Case 4. We specify (UPP) and (USP) but not (CCS).
– Case 5. We specify (CCS) and one of (UPP), (USP) and (UFP).

Let us consider Case 1 where we specify (UPP) but not (CCS), (USP) or
(UFP). Since (UPP) and (DC) is already a characterization by Proposition 5
there is no minimal characterization properly containing both of these properties;
so we will exclude (DC). Since (IC) implies (CC) we do not include both of these;
so we are looking at subsets of (UPP), (CLD), (CRD) and (CC) or of (UPP),
(CLD), (CRD) and (IC). With regards to (UPP), (CLD), (CRD) and (CC), the
language L3 satisfies all these conditions, and so no subset of this is sufficient
for a characterization.

Let us now consider (UPP), (CLD), (CRD) and (IC). Considering L3 again
we see that (IC) must be included. If we only have (UPP) and (IC) then this is
not sufficient as is demonstrated by L1. If we add (CLD) to (UPP) and (IC) we
see that this is not a characterization as witnessed by L6. If we add (CRD) to
(UPP) and (IC) we have a characterization by Corollary 19, and this is minimal
by Proposition 24.

Case 2 is the dual of Case 1 (in the sense of Remark 3). Using Proposition 4
we see that the only minimal sets of conditions here are {(USP), (DC)} and
{(USP), (IC), (CLD)}.

Case 3 cannot give rise to any characterizations as witnessed by L4 which
satisfies all the properties in Definition 2 except (UPP), (USP) and (CCS).

Let us now consider Case 4 where we specify (UPP) and (USP) but not
(CCS) or (UFP). Again, using Proposition 5, we can exclude (DC) if we are
considering minimal characterizations. Again, since (IC) implies (CC), we do not
include both of these properties; so we are looking at subsets of (UPP), (USP),
(CLD), (CRD) and (CC) or of (UPP), (USP), (CLD), (CRD) and (IC). With
regards to (UPP), (USP), (CLD), (CRD) and (CC), the language L3 satisfies
all these conditions, and so no subset of this particular set is sufficient for a
characterization.

Now consider (UPP), (USP), (CLD), (CRD) and (IC). Given L3 we see that
(IC) must be included. If we only have (UPP), (USP) and (IC) this is not suffi-
cient as demonstrated by L1. If we add (CRD) to (UPP), (USP) and (IC) then
we have a proper superset of {(UPP), (IC), (CRD)} which is a characterization
as above, and, if we add (CLD) to (UPP), (USP) and (IC) then we have a
proper superset of {(USP), (IC), (CLD)} which is also a characterization; so no
new minimal characterizations arise here.

Lastly consider Case 5. We first consider the case where we have (CCS)
and (UPP). Again, by minimality, we can assume that (DC) is excluded.

114 S.A.M. Jones and R.M. Thomas

Given Proposition 24, if we include (CRD), then we have a minimal char-
acterization by Corollary 11 and, if we include (CLD), then we have a minimal
characterization by Corollary 15. We must include one of these, however, as L1

satisfies (UPP), (CCS), (IC) and (CC).
We next turn to the case where we specify (CCS) and (USP). This is the

dual of the case where we specify (CCS) and (UPP) and so we get the minimal
characterizations {(CCS), (USP), (CRD)} and {(CCS), (USP), (CLD)} here.

Lastly we look at the case where we specify (CCS) and (UFP). Given that
(UPP), (USP) and (UFP) are all equivalent in the presence of (CCS), we get
(using Proposition 24) the minimal characterizations {(CCS), (UFP), (CRD)}
and {(CCS), (UFP), (CLD)}. The only other possibility would be to include
(DC) as, unlike (UPP) and (USP), (DC) is not sufficient to guarantee a word
problem when taken in conjunction with (UFP) as witnessed by L4. The set
{(CCS), (UFP), (DC)} is a characterization by Corollary 9 and is minimal by
Proposition 24; so this is our last possibility (as we clearly cannot take any set
properly containing it and preserve minimality). 	

5 Decidability Results

We now investigate the decidability of the properties listed in Definition 2. It is
reasonably clear that these are all decidable for regular languages, i.e. given a
finite automaton M we can decide whether or not L(M) satisfies the property
in question.

One possible approach for regular languages involves considering the syntac-
tic monoid of L(M). If L = L(M) ⊆ Σ∗ then we know that ML is finite, that
L = Sϕ−1 for some S ⊆ M (where ϕ is the natural map from Σ∗ onto ML) and
that we can explicitly construct ML and S from M . Given this (for example),
(UPP) is equivalent to the sentence ∀x ∈ ML ∃y ∈ ML : xy ∈ S, which is decid-
able as ML is finite. The decidability of the other properties listed in Definition 2
for regular languages can all be established in the same way.

When we consider the corresponding questions for one-counter languages
then, as in [10], we will need the idea of a counter machine. There are several
ways of describing these machines and we give one possibility here, following the
approach taken in [10]. For the convenience of the reader we will reproduce the
basic definitions and notation from [10] here.

A counter machine M (as distinct from a one-counter automaton) is a two-
tape machine. The first tape is the input tape; it is read only and the head
can only move to the right. The second tape is a stack: whenever we move left,
M erases the symbol it moved away from. There is only one stack symbol, a say.
Intuitively M can only store a natural number (so that we can think of M as
having an input tape and a counter). As we will see, the stack is never empty.

More formally, a counter machine is a sextuple M = (Q,Σ, a, δ, q0, qf) where
Q is a finite set of states containing two distinguished states, q0, the start state,
and qf , the final state. The input alphabet Σ is a finite set of symbols such that
a /∈ Σ. A configuration of M is a word of the form qan where q ∈ Q and n > 0
(where the current state is q and the current stack contents are an).

Characterizing Word Problems of Groups 115

We take C to be {1, 2, 3, 5, 7, 1
2 , 1

3 , 1
5 , 1

7}; there is no particular significance in
our choice of 2, 3, 5 and 7, in that any four pair-wise coprime natural numbers
would suffice. The transition relation δ is a function from (Q−{qf})×Σ ×C to
(Q−{q0})×(Q−{q0}); the fact that δ is a function means that M is deterministic.
M starts with just a on its stack (i.e. with the counter set to 1) and must set
its counter to 1 again before entering qf .

A move (p, b, x, q, r) in δ is interpreted as follows. If M is in state p reading
an input b and if the result of multiplying the current value n of the counter (i.e.
we have an on the stack) by the value x is an integer, then we set the counter
to xn and move to state q; if xn is not an integer then the counter remains set
at n and M moves to state r. We write pan � qaxn or pan � ran as appropriate.

Given a Turing Machine, one can effectively construct a counter machine
accepting the same language (see [7] for example). We now turn to the compu-
tations of a counter machine:

Definition 26. Let M be a counter machine. A valid computation of M is
a word C0C1 . . . Cn ∈ (Q ∪ {a})∗ where the Ci are configurations of M and

C0 = q0a � C1 � . . . � Cn = qfa;

other elements of (Q ∪ {a})∗ are said to be invalid computations. 	

In any valid computation, any configuration qan will have n = 2b3c5d7e for
some b, c, d, e � 0. Multiplying by 2, 3, 5 or 7 increases b, c, d or e respectively
by 1 and multiplying by 1

2 , 1
3 , 1

5 or 1
7 (if possible) decreases b, c, d or e by 1; so

we effectively have four counters each of which can be increased or decreased.
The fact that we can only multiply by x if nx is an integer effectively says that
we can test each counter individually for zero (e.g. if n = 2b3c5d7e and we want
to multiply by 1

2 then we must have that b > 0).
We will need the following result from [10]:

Proposition 27. If M = (Q,Σ, a, δ, q0, qf) is a counter machine then the fol-
lowing language is a one-counter language:

K = {qanpaj : the following conditions hold :
if (q, b, k, p, r) is a quintuple of δ and kn is an integer then kn = j;
if (q, b, k, p, r) is a quintuple of δ and kn is not an integer then j = n}

In [10] it was shown that the properties (UPP) and (DC) were undecidable
for one-counter languages. Our aim here is to extend this result to the other
properties listed in Definition 2. We will need the following technical result:

Proposition 28. The following problem is undecidable:
Input: a one-counter automaton M with input alphabet Σ of size at least

two such that either L(M) = Σ∗ or L(M) = Σ∗ − Σ∗{α}Σ∗ for
some word α such that α has length at least two and contains at
least two different symbols.

Output: “yes” if L(M) = Σ∗ − Σ∗{α}Σ∗;
“no” if L(M) = Σ∗.

116 S.A.M. Jones and R.M. Thomas

Proof. Our aim is to describe a language L over an alphabet Σ which is closed
under taking factors and which does not include a valid computation of a counter
machine M (when reading a specified input β) as a factor. This way L will be
equal to either Σ∗ or Σ∗ − Σ∗{α}Σ∗, where α is the computation path of M
accepting β, depending on whether or not M accepts β.

Since we want L to be closed under taking factors we need to ensure that
no factor of a word in L is a valid computation of M . We do this by checking
that, whenever an initial configuration occurs in α, a valid computation does
not follow. Formally, we will consider the following three languages:

(i) L1 = Σ∗ − Σ∗{q0a}Σ∗. This is the set of all words in Σ∗ which do not
contain the unique initial configuration of M .

(ii) L2 = Σ∗ − Σ∗{qfa}Σ∗. This is the set of all words which do not contain
the unique halting configuration of M .

(iii) L3. The set of all words which are invalid as computations of M after every
instance of the unique initial configuration of M (i.e. words which do not
contain a factor consisting of the unique initial configuration of M followed
by a valid computation path ending in the unique halting configuration
of M).

L1 and L2 are regular and so one-counter; we now show that L3 is one-counter.
The machine accepting L3 operates as follows: it scans its input doing noth-

ing until it reads the unique initial configuration of M . At this point the machine
changes state and attempts to detect an invalid computation step of M (as in
Proposition 27). If the machine does not find a factor which is an invalid compu-
tation step of M before reading the unique halting configuration of M then the
machine scans the rest of its input, doing nothing, and rejects. If it does find a
factor which is an invalid computation step of M then the machine continues to
scan its input until it finds another instance of the unique initial configuration
and then repeats the process, accepting if and only if, after every instance of the
initial configuration, we do not reach the halting configuration without finding
an invalid computation step first. If, at any point, the machine finds another
instance of the initial configuration before an instance of the halting configu-
ration then the machine resets its state and attempts again to find an invalid
computation step of M starting at the most recent initial configuration read.

So L = L1 ∪ L2 ∪ L3 is a one-counter language as the family of one-counter
languages is closed under union. Now L = Σ∗ if and only if M rejects β and
L = Σ∗ − Σ∗{α}Σ∗ (for suitable α) if and only if M accepts β. So, if we could
distinguish between Σ∗ and Σ∗ − Σ∗{α}Σ∗ for one-counter languages, then we
could solve the halting problem, a contradiction. 	

The condition in Proposition 28 that α can be assumed to have length greater
than two and to consist of at least two symbols is included only to facilitate the
undecidability results that follow. In a similar manner we can establish:

Characterizing Word Problems of Groups 117

Proposition 29. The following problem is undecidable:
Input: a one-counter automaton M with input alphabet Σ of size at least

two such that either L(M) = Σ∗ or L(M) = Σ∗ − {α} for some
α such that α has length at least two and contains at least two
different symbols.

Output: “yes” if L(M) = Σ∗ − {α};
“no” if L(M) = Σ∗.

Having established Propositions 28 and 29 we can now prove our result:

Theorem 30. All the properties listed in Definition 2 are undecidable for one-
counter languages.

Proof. Σ∗ satisfies all the properties in Definition 2 but K = Σ∗ − Σ∗{α}Σ∗

(where α has length at least two and contains two different symbols) does not
satisfy any of the conditions (UPP), (USP), (UFP), (IC), (CCS), (CC). These
are reasonably clear. The word α is not a prefix, suffix or factor of any word in K,
and so K does not satisfy (UPP), (USP) or (UFP). If α = βγ with β = ε = γ
then β, γ ∈ K but βγ ∈ K; so K does not satisfy (IC) or (CC).

Given that α can be assumed to have two distinct symbols, we can write α in
the form aδbζ for some a, b ∈ Σ with a = b and δ, ζ ∈ Σ∗; if K satisfied (CCS)
then, as bζaδ ∈ K, we would have that α = aδbζ ∈ K, a contradiction. So all
these conditions must be undecidable by Proposition 28.

The remaining properties are (DC), (RDC) and (LDC). If we could decide
these then we would be able to distinguish between Σ∗ (which satisfies all three
properties) and Σ∗ − {α} (which doesn’t satisfy any of them; for example, for
any character x in Σ, αx ∈ Σ∗ − {α} and x ∈ Σ∗ − {α} but deleting x from αx
yields α which is not a member of Σ∗ − {α}), contradicting Proposition 29. 	

Acknowledgments. The supportive comments from the referees and their sugges-
tions about the presentation of the material were very welcome; we are grateful to
them for their careful reading of the paper.

This paper was completed whilst the second author was on study leave from the
University of Leicester and he would like to acknowledge the help and support of the
university in this respect. The second author would also like to thank Hilary Craig for
all her help and encouragement.

References

1. Anisimov, V.A.: The group languages. Kibernetika 4, 18–24 (1971)
2. Berstel, J.: Transductions and Context-Free Languages. Teubner, Leipzig (1979)
3. Dunwoody, M.J.: The accessibility of finitely presented groups. Invent. Math. 81,

449–457 (1985)
4. Herbst, T.: On a subclass of context-free groups. RAIRO Inform. Théor. Appl. 25,

255–272 (1991)
5. Herbst, T., Thomas, R.M.: Group presentations, formal languages and characteri-

zations of one-counter groups. Theoret. Comput. Sci. 112, 187–213 (1993)

118 S.A.M. Jones and R.M. Thomas

6. Holt, D.F., Owens, M.D., Thomas, R.M.: Groups and semigroups with a one-
counter word problem. J. Aust. Math. Soc. 85, 197–209 (2008)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

8. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific Press,
Singapore (2004)

9. Johnson, D.L.: Presentations of Groups. Cambridge University Press, Cambridge
(1990)

10. Jones, S.A.M., Thomas, R.M.: Formal languages, word problems of groups and
decidability. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp.
146–158. Springer, Heidelberg (2013)

11. Muller, D.E., Schupp, P.E.: Groups, the theory of ends, and context-free languages.
J. Comput. Syst. Sci. 26, 295–310 (1983)

12. Parkes, D.W., Thomas, R.M.: Syntactic monoids and word problems. Arab. J. Sci.
Eng. 25, 81–94 (2000)

13. Parkes, D.W., Thomas, R.M.: Groups with context-free reduced word problem.
Comm. Algebra 30, 3143–3156 (2002)

14. Rotman, J.L.: An Introduction to the Theory of Groups. Springer, Berlin (1995)

Distributed Synthesis of State-Dependent
Switching Control

Adrien Le Coënt1, Laurent Fribourg2, Nicolas Markey2(B), Florian De Vuyst1,
and Ludovic Chamoin3

1 CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 61 Av. du Président Wilson,
94235 Cachan Cedex, France

adrien.le-coent@ens-cachan.fr, devuyst@cmla.ens-cachan.fr
2 LSV, ENS Cachan, CNRS, Université Paris-Saclay, 61 Av. du Président Wilson,

94235 Cachan Cedex, France
fribourg@lsv.ens-cachan.fr, markey@lsv.fr

3 LMT, ENS Cachan, CNRS, Université Paris-Saclay, 61 Av. du Président Wilson,
94235 Cachan Cedex, France
chamoin@lmt.ens-cachan.fr

Abstract. We present a correct-by-design method of state-dependent
control synthesis for linear discrete-time switching systems. Given an
objective region R of the state space, the method builds a capture set
S and a control which steers any element of S into R. The method
works by iterated backward reachability from R. More precisely, S is
given as a parametric extension of R, and the maximum value of the
parameter is solved by linear programming. The method can also be used
to synthesize a stability control which maintains indefinitely within R all
the states starting at R. We explain how the synthesis method can be
performed in a distributed manner. The method has been implemented
and successfully applied to the synthesis of a distributed control of a
concrete floor heating system with 11 rooms and 211 = 2048 switching
modes.

1 Introduction

The importance of switched systems has grown up considerably these last years
because of their ease of implementation for controlling cyber-physical systems.
A switched system is a family of sub-systems, each with its own dynamics char-
acterized by a parameter mode u whose values are in a finite set U (see [12]).
However, due to the composition of many switched systems together, the global
switched system has a number of modes and dynamics which increases exponen-
tially. Take for example a heating system for a building of 11 rooms (see [9]): each
room i has a heater with two modes values {off, on}. This makes a combination
of 211 = 2048 mode values. If we want to analyze the evolution of a trajectory
on a horizon of K units of discrete time, we have to consider the dynamics cor-
responding to 211K possible sequences of modes, which is intractable even for

Partly supported by EU project Cassting (FP7-601148).

c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 119–133, 2016.
DOI: 10.1007/978-3-319-45994-3 9

120 A. Le Coënt et al.

small values of K. It is therefore essential to design compositional methods in
order to obtain control methods of switched systems that give formal guarantees
on the correct behavior of the cyber physical systems.

In this paper, we give a symbolic compositional method which allows to syn-
thesize a control of linear discrete-time switched systems that is guaranteed to
satisfy reachability and stability properties. The method starts from an objective
region R of the state space, which is rectangular (i.e., is a product of closed inter-
vals of reals). It then generates in a backward manner, using linear programming
techniques, an increasing sequence of nested rectangles {R(i)}i≥0 such that every
trajectory issued from R(i) is guaranteed to reach R(i−1) in a bounded number
of time units. Once R(0) = R is reached, the trajectory is also guaranteed to stay
in R indefinitely (stability). The method relies on a simple operation of tiling of
the rectangles R(i) in a finite number of sub-rectangles (tiles), using a standard
operation of bisection. Although the method works in a backward fashion, it does
not require to inverse the linear dynamics of the system (via matrix inversion),
and does not compute predecessors of symbolic states (tiles), but only successors
using the forward dynamics. This is useful in order to avoid numerical impre-
cisions, especially when the dynamics are contractive, which happens often in
practical systems (see [14]).

Another contribution of this paper is a technique of state over-approximation
which allows a distributed control synthesis: this over-approximation allows sub-
system 1 to infer a correct value for its next local mode u1 without knowing the
exact value of the state of sub-system 2. This distributed synthesis method is
computationally efficient, and works in presence of partial observability. This is
at the cost of the performance of the control which usually makes the trajectories
reach the objective area in more steps than with a centralized approach.

Related Work. In symbolic analysis and control synthesis methods for hybrid
systems, the method of backward reachability and the use of polyhedral sym-
bolic states, as used here, is classical (see, e.g., [2,5]). The use of tiling or par-
titioning the state-space using bisection is also classical (see, e.g., [6,7]). The
main original contribution of this paper is to give a simple technique of over-
approximation, which allows one component to estimate the symbolic state of
the other component, in presence of partial information. This is similar in spirit
to an assume-guarantee reasoning where the controller synthesis for each sub-
systems assumes that some safety properties are are satisfied by the others [1,13].
In contrast to [3], we do not need, for the mode selection of a sub-system, to
explore blindly all the possible mode choices made by the other sub-system. This
yields a drastic reduction of the complexity1. This approach allows us to treat a
real case study which is intractable with a centralized approach. This case study
comes from [9], and we use the same decomposition of the system in two parts
(rooms 1–5 and rooms 6–11). In contrast to the work of [9] which uses an on-line

1 This separability technique is made possible by the fact that the difference equation
x1(t + 1) = f1(x1(t), x2(t), u1) (see Sect. 2.1) does not involve the control mode u2.

Distributed Synthesis of State-Dependent Switching Control 121

and heuristic approach with no formal guarantees, we use here an off-line formal
method which guarantees reachability and stability properties.

Implementation. The methods of control synthesis both in the centralized con-
text and in the distributed context have been integrated to the tool MINIMA-
TOR [4,8] written in Octave. All the computation times given in the paper have
been performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory.

Plan. The structure of this paper is as follows. The class of systems considered
and some preliminary definitions are given in Sect. 2. Our symbolic approach,
which is based on the tiling of the state space and backward reachability, is
explained in Sect. 3. In Sect. 4, we present a centralized method to synthesize a
controller based on a “generate-and-test” tiling procedure. A distributed app-
roach is then given in Sect. 5 where we introduce a state over-approximation
technique in order to avoid the use of non-local information by the subsystem
controllers. For both methods, we provide reachability and stability guarantees
on the controlled trajectories of the system. We present a case study in Sect. 6:
the aim of this case is to control the temperature of an eleven rooms house,
heated by geothermal energy. We manage to apply our technique, and to syn-
thesize a correct-by-construction control for this example.

2 State-Dependent Switching Control

2.1 Control Modes

Consider the discrete-time system with finite control :

x1(t + 1) = f1(x1(t), x2(t), u1) x2(t + 1) = f2(x1(t), x2(t), u2)

where x1 (resp. x2) is the first (resp. second) component of the state vector
variable, which takes its values in R

n1 (resp. Rn2), and u1 (resp. u2) is the first
(resp. second) component of the control mode variable, which takes its values in
the finite set U1 (resp. U2). We will often use x for (x1, x2), u for (u1, u2), and n
for n1 +n2. We will also abbreviate the set U1 ×U2 as U . Let N be the cardinal
of U , and N1 (resp. N2) the cardinal of U1 (resp. U2). We have N = N1 · N2.

More generally, we abbreviate the discrete-time system under the form:

x(t + 1) = f(x(t), u)

where x is a vector state variable which takes its values in R
n = R

n1 ×R
n2 , u is

of the form (u1, u2) where u1 takes its values in U1 and u2 in U2. In this context,
we are interested by the following centralized control synthesis problem: at each
discrete-time t, select the appropriate mode u ∈ U in order to satisfy a given
property. In this paper we focus on state-dependent control, which means that,
at each time t, the selection of the value of u is done by considering only the
values of x(t).

122 A. Le Coënt et al.

In the distributed context, the control synthesis problem consists in concur-
rently selecting the value of u1 in U1 according to the value of x1(t) only, and
the value of u2 in U2 according to the value of x2(t) only.

The properties that we consider are reachability properties: given a set S and
a set R, we look for a control which will steer any element of S to R in a bounded
number of steps. We will also consider stability properties, which means, that
once the state x of the system is in R at time t, the control will maintain it in
R indefinitely at t + 1, t + 2, . . . Actually, given a state set R, we will present a
method which does not start from a given set S, but constructs it, together with
a control which steers all the elements of S to R within a bounded number of
steps (S can be seen as a “capture set” of R).

In this paper, we consider that R and S are “rectangles” of the state space.
More precisely, R = R1 × R2 is a rectangle of reals, i.e., R is a product of n
closed intervals of reals, and R1 (resp. R2) is a product of n1 (resp. n2) closed
intervals of reals. Likewise, we assume that S = S1×S2 is a rectangular sub-area
of the state space.

Example 1. The centralized and distributed approaches will be illustrated by the
example of a two rooms apartment, heated by two heaters located in each room
(adapted from [6]). In this example, the objective is to control the temperature
of the two rooms. There is heat exchange between the two rooms and with the
environment. The continuous dynamics of the system is given by the equation:

˙(

T1

T2

)

=
(

−α21 − αe1 − αfu1 α21

α12 −α12 − αe2 − αfu2

) (

T1

T2

)

+
(

αe1Te + αfTfu1

αe2Te + αfTfu2

)

.

Here T1 and T2 are the temperatures of the two rooms, and the state of the
system corresponds to T = (T1, T2). The control mode variable u1 (respectively
u2) can take the values 0 or 1 depending on whether the heater in room 1
(respectively room 2) is switched off or switched on (hence U1 = U2 = {0, 1}).
Hence, here n1 = n2 = 1, N1 = N2 = 2 and n = 2, N = 4. Te corresponds to
the temperature of the environment, and Tf to the temperature of the heaters.
The values of the different parameters are the following: α12 = 5 × 10−2, α21 =
5×10−2, αe1 = 5×10−3, αe2 = 5×10−3, αf = 8.3×10−3, Te = 10 and Tf = 35.

We suppose that the heaters can be switched periodically at sampling instants
τ, 2τ, . . . (here, τ = 5 s). By integration of the continuous dynamics between t
and t + τ , the system can be easily put under the desired discrete-time form:

T1(t + 1) = f1(T1(t), T2(t), u1) T2(t + 1) = f2(T1(t), T2(t), u2)

where f1 and f2 are affine functions.
Given an objective rectangle for T = (T1, T2) of the form R = [18.5, 22] ×

[18.5, 22], the control synthesis problem is to find a rectangular capture set S
as large as possible, from which one can steer the state T to R (“reachability”),
then maintain T within R for ever (“stability”).

Distributed Synthesis of State-Dependent Switching Control 123

2.2 Control Patterns

It is often easier to design a control of the system using several applications of
f in a row rather than using just a single application of f at each time. We
are thus led to the notion of “macro-step”, and “control pattern”. A (control)
pattern π = (π1, π2) of length k is a sequence of modes defined recursively by:

1. π is of the form (u1, u2) ∈ U1 × U2 if k = 1,
2. π is of the form (u1 · π′

1, u2 · π′
2), where u1 (resp. u2) is in U1 (resp. U2), and

(π′
1, π

′
2) is a (control) pattern of length k − 1 if k ≥ 2.

The set of patterns of length k is denoted by Πk (for length k = 1, Π1 = U).
Likewise, for k ≥ 1, we denote by Πk

1 (resp. Πk
2) the set of sequences of k elements

of U1 (resp. U2). For a system defined by x(t+1) = f(x(t), (u1, u2)) and a pattern
π = (π1, π2) of length k, one can define recursively x(t + k) = f(x(t), (π1, π2))
with (π1, π2) ∈ Πk, by:

1. f(x(t), (π1, π2)) = f(x(t), (u1, u2)), if (π1, π2) is a pattern of length k = 1 of
the form (u1, u2) ∈ U ,

2. f(x(t), (π1, π2)) = f(f(x(t), (π′
1, π

′
2)), (u1, u2)), if (π1, π2) is a pattern of

length k ≥ 2 of the form (u1·π′
1, u2·π′

2) with (u1, u2) ∈ U and (π′
1, π

′
2) ∈ Πk−1.

One defines (f(x, π))1 ∈ R
n1 and (f(x, π))2 ∈ R

n2 to be the first and second
components of f(x, π) ∈ R

n1 × R
n2 = R

n, i.e.: f(x, π) = ((f(x, π))1, f(x, π)2).
In the following, we suppose that K ∈ N is an upper bound of the length of

patterns. The value of K can be seen as a maximum number of time steps, for
which we compute the future behavior of the system (“horizon”). We denote by
Π≤K

1 (resp. Π≤K
2) the expression

⋃

1≤k≤K Πk
1 (resp.

⋃

1≤k≤K Πk
2). Likewise, we

denote by Π≤K the expression
⋃

1≤k≤K Πk.

3 Control Synthesis Using Tiling

3.1 Tiling

Fig. 1. Mapping of tile s2,3 to R
via pattern π2,3, and mapping of
tile s3,1 via π3,1.

Let R = R1 × R2 be a rectangle. We say that R
is a (finite rectangular) tiling of R if R is of the
form {ri1,i2}i1∈I1,i2∈I2 , where I1 and I2 are given
finite sets of positive integers, each ri1,i2 is a sub-
rectangle of R of the form ri1 × ri2 , and ri1 , ri2

are closed sub-intervals of R1 and R2 respec-
tively. Besides, we have

⋃

i1∈I1
ri1 = R1 and

⋃

i2∈I2
ri2 = R2 (hence R =

⋃

i1∈I1,i2∈I2
ri1,i2).

We will refer to ri1 , ri2 and ri1,i2 as “tiles” of R1,
R2 and R respectively. The same notions hold for
rectangle S.

In the centralized context, given a rectangle R, the macro-step (backward
reachability) control synthesis problem with horizon K consists in finding a rec-
tangle S and a tiling S = {si1,i2}i1∈I1,i2∈I2 of S such that, for each (i1, i2) ∈
I1 × I2, there exists π ∈ Π≤K such that: f(si1,i2 , π) ⊆ R (i.e., for all x ∈ si1,i2 ,
it holds f(x, π) ∈ R). This is illustrated in Fig. 1.

124 A. Le Coënt et al.

3.2 Parametric Extension of Tiling

In the following, we assume that the set S we are looking for is a parametric
extension of R, denoted by R + (a, a), which is defined in the following.

Suppose that R = R1 × R2 is given as well as a tiling R = R1 × R2 =
{ri1 ×ri2}i1∈I1,i2∈I2 = {ri1,i2}i1∈I1,i2∈I2 . R1 can be seen as a product of n1 closed
intervals of the form [�,m]. Consider a non negative real parameter a. Let (R1+a)
denote the corresponding product of n1 intervals of the form [� − a,m + a].2 We
define (R2 + a) similarly. Finally, we define R + (a, a) as (R1 + a) × (R2 + a).

We now consider that S is a (parametric) superset of R of the form R+(a, a).
We define a tiling S = S1 × S2 of S of the form {si1 × si2}i1∈I1,i2∈I2 , which is
obtained from R = R1 × R2 = {ri1 × ri2}i1∈I1,i2∈I2 by a simple extension, as
follows: a tile ri1 (resp. ri2) of R1 (resp. R2) in “contact” with ∂R1 (resp. ∂R2)
is prolonged as a tile si1 (resp. si2) in order to be in contact with ∂(R1 + a)
(resp. ∂(R2 + a)); a tile “interior” to R1 (i.e., with no contact with ∂R1) is kept
unchanged, and coincides with si1 , and similarly for R2.

Fig. 2. Tiling of R + (a, a)
induced by tiling R of R. (Color
figure online)

We denote the resulting tiling S by R+(a, a).
We also denote si1 (resp. si2) as ri1 + a (resp.
ri2 + a) even if ri1 (resp. ri2) is “interior” to
R1 (resp. R2). Likewise, we will denote si,j as
ri,j + (a, a). Note that a tiling of R of index set
I1 × I2 induces a tiling of R + (a, a) with the
same index set I1 × I2, hence the same number
of tiles as R, for any a ≥ 0. This is illustrated in
Fig. 2, where the tiling of R is represented with
black continuous lines, and the extended tiling
of R + (a, a) with red dashed lines.

3.3 Generate and Test Tilings

By replacing S with R + (a, a) in the notions defined in Sect. 3.1 the problem
of macro-step control synthesis can now be reformulated as finding a tiling R of
R which induces a macro-step control of R + (a, a) towards R, for some a ≥ 0;
besides, if we find such R, we want to compute the maximum value of a for which
the induced control exists. This problem can be solved by a simple “generate
and test” procedure: one generates a candidate tiling, then one tests if it satisfies
the control property (the control test procedure is explained in Sect. 4.1); if the
test fails, one generate another candidate, and so on iteratively.

In practice, the generation of a candidate R is done, starting from the trivial
tiling (made of one tile equal to R), then using successive bisections of R until,
either the control test succeeds (“success”), or the depth of bisection of the new
candidate is greater than a given upper bound D (“failure”). See details of this
procedure in [10].
2 Actually, we will consider in the examples that (R1 + a) is a product of intervals

of the form [� − a, m] where the interval is extended only at its lower end, but the
method is strictly identical.

Distributed Synthesis of State-Dependent Switching Control 125

Remark 1. Note that, if the generate-and-test process stops with “success” for
a tiling R, then the tiling RD,uniform also solves the problem, where RD,uniform

is the “finest” tiling obtained by bisecting D times all the n components of R.
Since RD,uniform has exactly 2nD tiles, it is in general impractical to perform
directly the control test on it. From a theoretical point of view however, it is
convenient to suppose that R = RD,uniform for reducing the worst case time
complexity of the control synthesis procedure to the complexity of the control
test part only (see Sect. 4.1).

4 Centralized Control

4.1 Tiling Test Procedure

As seen in Sect. 3.2, the (macro-step) control synthesis problem with horizon
K consists in finding (the maximum value of) a ≥ 0, and a tiling R =
{ri1,i2}i1∈I1,i2∈I2 of R such that, for each (i1, i2) ∈ I1 × I2 , there exists some
π ∈ Π≤K with f(ri1,i2 + (a, a), π) ⊆ R. In order to test if a tiling candidate
R = {ri1,i2}i1∈I1,i2∈I2 of R satisfies the desired property, we define, for each
(i1, i2) ∈ I1 × I2:

Π≤K
i1,i2

= {π ∈ Π≤K | f(ri1,i2 , π) ⊆ R}.

When Π≤K
i1,i2

�= ∅, we define A = min(i1,i2)∈I1×I2{ai1,i2}, where

1ai1,i2 = max
π∈Π

≤K
i1,i2

max{a ≥ 0 | f(ri1,i2 + (a, a), π) ⊆ R}

πi1,i2 = argmax
π∈Π

≤K
i1,i2

max{a ≥ 0 | f(ri1,i2 + (a, a), π) ⊆ R}

For each tile ri1,i2 of R and each π ∈ Π≤K , the inclusion test f(ri1,i2 , π) ⊆ R

can be done in time polynomial in n when f is affine. Hence the test Π≤K
i1,i2

�= ∅
can be done in O(NK ·nα) since Π≤K contains O(NK) elements. The computa-
tion of max{a ≥ 0 |f(ri1,i2 + (a, a), π) ⊆ R} can be done by linear programming
in time polynomial in n, the dimension of the state space. The computation time
of {ai1,i2}i1∈I,i2∈I2 , πi1,i2 , and A is thus in O(NK ·2nD), where D is the maximal
depth of bisection. Hence the complexity of testing a candidate tiling R is in
O(NK · 2nD). By Remark 1 above, the complexity of the control synthesis by
generate-and-test is also in O(NK · 2nD). We have:

Proposition 1. Assume that there exists a tiling R = {ri1,i2}i1∈I1,i2∈I2 of R

such that Π≤K
i1,i2

�= ∅ for any (i1, i2) ∈ I1 × I2. Then R induces a macro-step
control of horizon K of R + (A,A) towards R with:

∀(i1, i2) ∈ I1 × I2. f(ri1,i2 + (A,A), πi1,i2) ⊆ R.

126 A. Le Coënt et al.

Once a candidate tiling R satisfying the control test property is found, the
generate-and-test procedure ends with success (see Sect. 3.3), and a set S = R+
(a(1), a(1)) with a(1) = A has been found. One can then iterate the “generate and
test” procedure in order to construct an increasing sequence of nested rectangles
of the form R + (a(1), a(1)), R + (a(1) + a(2), a(1) + a(2)), . . . , which can all be
driven to R, as explained in [10].

Example 2. Consider the specification of a two-rooms apartment given in Exam-
ple 1. Set R = [18.5, 22] × [18.5, 22]. Let D = 1 (the depth of bisection is at
most 1), and K = 4 (the maximum length of patterns is 4). We look for a cen-
tralized controller which will steer the rectangle S = [18.5−a, 22]× [18.5−a, 22]
to R with a as large as possible, and stay in R indefinitely. Using our implemen-
tation, the computation of the control synthesis takes 4.14 s of CPU time.

The method iterates successfully 15 times the macro-step control synthesis
procedure. We find S = R + (a, a) with a = 53.5, i.e. S = [−35, 22] × [−35, 22].
This means that any element of S can be driven to R within 15 macro-steps
of length (at most) 4, i.e., within 15 × 4 = 60 units of time. Since each unit
of time is of duration τ = 5 s, any trajectory starting from S reaches R within
60×5 = 300 s. Once the trajectory x(t) is in R, it returns in R every macro-step
of length (at most) 4, i.e., every 4 × 5 = 20 s.

These results are consistent with the simulation given in Fig. 3 for the time
evolution of (T1, T2) starting from (12, 12). Simulations of the control, starting
from (T1, T2) = (12, 12), (T1, T2) = (12, 19) and (T1, T2) = (22, 12) are also given
in the state space plane in Fig. 3.

Fig. 3. Simulations of the centralized reachability controller for three different initial
conditions plotted in the state space plane (left); simulation of the centralized reacha-
bility controller for the initial condition (12, 12) plotted within time (right).

4.2 Stability as a Special Case of Reachability

Instead of looking for a set of the form S = R+(a, a) from which R is reachable
via a macro-step, let us consider the particular case where S = R (i.e., a = 0).

The problem is now to construct a tiling R = {ri1,i2}i1∈I1,i2∈I2 of R such
that, for all (i1, i2) ∈ I1 × I2, there exists a pattern πi1,i2 ∈ Π≤K verifying
f(ri1,i2 , πi1,i2) ⊆ R. If such a tiling R exists, then x(t) ∈ R implies x(t + k) ∈ R

Distributed Synthesis of State-Dependent Switching Control 127

for some k ≤ K.3 Actually, we can slightly modify the procedure in order to
impose, additionally, that ∀k ≤ K x(t+k) ∈ R+ε for some ε > 0 (see Sect. 5.2).
It follows that R + (ε, ε) is stable under the control induced by R. We can thus
treat the stability control of R as a special case of reachability control.

5 Distributed Control

5.1 Background

In the distributed context, given a set R = R1×R2, the (macro-step) distributed
control synthesis problem with horizon K consists in finding (the maximum value
of) a ≥ 0, and a tiling R1 = {ri1}i1∈I1 of R1 which induces a (macro-step)
control on R1 + a, a tiling R2 = {ri2}i2∈I2 which induces a (macro-step) control
on R2 + a.

More precisely, we seek tilings R1 and R2 such that: there exists � ∈ N such
that, for each i1 ∈ I1 there exists a sequence π1 of � modes in U1, and for each
i2 ∈ I2, a sequence π2 of � modes in U2 such that:

f((ri1 +a)× (R2 +a), (π1, π2))|1 ⊆ R1 ∧ f((R1 +a)× (ri2 +a), (π1, π2))|2 ⊆ R2.

In order to synthesize a distributed strategy where the control pattern π1 is
determined only by i1 (regardless of the value of i2), and the control pattern π2

only by i2 (regardless of the value of i1), we now define an over-approximation
Xi1(a, π1) for f((ri1 + a) × (R2 + a), (π1, π2))|1, and an over-approximation
Xi2(a, π2) for f((R1 + a) × (ri2 + a), (π1, π2))|2. The correctness of these over-
approximations relies on the existence of a fixed positive value for parameter ε.
Intuitively, ε represents the width of the additional margin (around R + (a, a))
within which all the intermediate states lie when a macro-step is applied to a
point of R + (a, a).

5.2 Tiling Test Procedure

Let πk
1 (resp. πk

2) denote the prefix of length k of π1 (resp. π2), and π1(k) (resp.
π2(k)) the k-th element of sequence π1 (resp. π2).

Definition 1. Consider an element ri1 (resp. ri2) of a tiling R1 (resp. R2) of R1

(resp. R2), and a sequence π1 ∈ Π≤K
1 (resp. π2 ∈ Π≤K

2) of length �1 (resp. �2).
The approximate first (resp. second) component sequence {Xk

i1
(a, π1)}0≤k≤�1

(resp. {Xk
i2

(a, π2)}0≤k≤�2) is defined as follows:

– X0
i1

(a, π1) = ri1 + a (resp. X0
i2

(a, π2) = ri2 + a);
– Xk

i1
(a, π1) = f1(Xk−1

i1
(a, π1), R2 + a + ε, π1(k)) for 1 ≤ k ≤ �1 (resp.

Xk
i2

(a, π2) = f2(R1 + a + ε,Xk−1
i2

(a, π2), π2(k)) for 1 ≤ k ≤ �2).

3 If x(t) ∈ R, then x(t) ∈ ri,j for some (i, j) ∈ I1 × I2, hence x(t + k) = f(x, πi,j) ∈ R
for some k ≤ K.

128 A. Le Coënt et al.

We define the property Prop(a, i1, π1) of {Xk
i1

(a, π1)}0≤k≤�1 as:

Xk
i1(a, π1) ⊆ R1 + a + ε for 1 ≤ k ≤ �1 − 1, and X�1

i1
(a, π1) ⊆ R1.

Likewise, we define the property Prop(a, i2, π2) of {Xk
i2

(a, π2)}0≤k≤�2 as:

Xk
i2(a, π2) ⊆ R2 + a + ε for 1 ≤ k ≤ �2 − 1, and X�2

i2
(a, π2) ⊆ R2.

Given a tiling R1 = {ri1}i1∈I1 of R1, for each i1 ∈ I1, and each k ∈
{1, . . . , K}: we let Πk

i1
= {π1 ∈ Πk

1 | Prop(0, i1, π1)}.
When Πk

i1
�= ∅, we define:

ak
i1 = max

π1∈Πk
i1

max{a ≥ 0 | Prop(a, i1, π1)}

πk
i1 = argmaxπ1∈Πk

i1
max{a ≥ 0 | Prop(a, i1, π1)}

Given R2, we define similarly: Πk
i2

, ak
i2

and πk
i2

. Suppose now, that:

(H1) there exists k1 ∈ {1, . . . , K} such that ∀i1 ∈ I1 : Πk1
i1

�= ∅.
(H2) there exists k2 ∈ {1, . . . , K} such that ∀i2 ∈ I2 : Πk2

i2
�= ∅.

Then we define: ak1
1 = mini1∈I1{ak1

i1
}, ak2

2 = mini2∈I2{ak2
i2

}, A = min{ak1
1 , ak2

2 }.

Remark 2. Given a tiling R = R1 × R2, (H1) means that the points of R1 + A
can be (macro-step) controlled to R1 using patterns which all have the same
length k1; in other terms, all the macro-steps controlling R1 + A contain the
same number k1 of elementary steps. Symmetrically for (H2).

Remark 3. The determination of an appropriate value for ε is for the moment
done by hand, and is the result of a compromise: if ε is too small, then f1(ri1 +
a,R2 +a, u1) �⊆ R1 +a+ε; if ε is too large, f1(Xk−1

i1
, R2 +a+ε, π1(k)) �⊆ R1 +a.

Given a tiling R = R1 × R2 of R and a real ε > 0, the problem of existence
and computation of k1, k2, {πk1

i1
}i1∈I1 , {πk2

i2
}i2∈I2 , and A can be solved by linear

programming since f1 and f2 are affine. Using the same kinds of calculation
as in the centralized case (see Sect. 4.1), one can see that the complexity of
testing Πk

i1
�= ∅ and Πk

i2
�= ∅ for 1 ≤ k ≤ K, checking (H1)–(H2), generating

k1, k2, A and {πi1}i1∈I1 , and {πi2}i2∈I2 is in O((max(N1, N2))K · 2max(n1,n2)D).
Hence the complexity of the control test procedure is also in O((max(N1, N2))K ·
2max(n1,n2)D).

Lemma 1. Consider a tiling R = R1 × R2 of the form {ri1 × ri2}(i1,i2)∈I1×I2 .
Let a ≥ 0. We suppose that (H1) and (H2) hold, and that, for all i1 ∈ I1,
Prop(a, i1, π1) holds for some π1 ∈ Πk1

1 , and for all i2 ∈ I2, Prop(a, i2, π2)
holds for some π2 ∈ Πk2

2 , then we have:

Distributed Synthesis of State-Dependent Switching Control 129

– in case k1 ≤ k2:
f((ri1 + a) × (R2 + a), (πk

1 , πk
2))|1 ⊆ Xk

i1
(a, π1) ⊆ R1 + a + ε and

f((R1 + a) × (ri2 + a), (πk
1 , πk

2))|2 ⊆ Xk
i2

(a, π2) ⊆ R2 + a + ε,
for all 1 ≤ k ≤ k1, and

f((ri1 + a) × (R2 + a), (πk1
1 , πk1

2))|1 ⊆ Xk1
i1

(a, π1) ⊆ R1,
– in case k2 ≤ k1:

f((ri1 + a) × (R2 + a), (πk
1 , πk

2))|1 ⊆ Xk
i1

(a, π1) ⊆ R1 + a + ε and
f((R1 + a) × (ri2 + a), (πk

1 , πk
2))|2 ⊆ Xk

i2
(a, π2) ⊆ R2 + a + ε,

for all 1 ≤ k ≤ k2, and
f((R1 + a) × (ri2 + a), (πk2

1 , πk2
2))|2 ⊆ Xk2

i2
(a, π2) ⊆ R2.

At t = 0, consider a point x(0) = (x1(0), x2(0)) of R+(A,A), and let us apply
concurrently the strategy induced by R1 on x1, and R2 on x2. After k1 steps,
by Lemma 1, we obtain a point x(k1) = (x1(k1), x2(k1)) ∈ R1 × (R2 + A + ε).
Then, after k1 steps, we obtain again a point x(2k1) ∈ R1 × (R2 + A + ε), and
so on iteratively. Likewise, we obtain points x(k2), x(2k2), . . . which all belong
to (R1 + A + ε) × R2. It follows that, after � = lcm(k1, k2) steps, we obtain a
point x(�) which belongs to R1 × R2 = R.

Theorem 1. Assume there are tilings R1 = {ri1}i1∈I1 of R1 and R2 =
{ri2}i2∈I2 of R2, and a positive real ε such that (H1) and (H2) hold, and let
k1, k2, A be defined as above. Let � = lcm(k1, k2) with � = α1k1 = α2k2 for some
α1, α2 ∈ N.

Then R1 induces a sequence of α1 macro-steps on R1+A, and R2 a sequence
of α2 macro-steps on R2 + A, such that, applied concurrently, we have, for all
i1 ∈ I1 and i2 ∈ I2:

f((ri1 + A) × (R2 + A), π)|1 ⊆ R1 ∧ f((R1 + A) × (ri2 + A), π)|2 ⊆ R2,

for some π = (π1, π2) ∈ Π� where π1 (resp. π2) is of the form π1
1 · · · πα1

1 (resp.
π1
2 · · · πα2

2) with πi
1 ∈ Πk1

1 for all 1 ≤ i ≤ α1 (resp. πi
2 ∈ Πk2

2 for all 1 ≤ i ≤ α2).
Besides, for all prefix π′ of π, we have

f((ri1+A)×(R2+A), π′)|1 ⊆ R1+A+ε ∧ f((R1+A)×(ri2+A), π′)|2 ⊆ R2+A+ε.

If (H1)–(H2) hold, there exists a control that steers R+(A,A) to R in � steps.
Letting R′ = R + (A,A), it is then possible to iterate the process on R′ and, in
case of success, generate a rectangle R′′ = R′ + (A′, A′) from which R′ would
be reachable in �′ steps, for some A′ ≥ 0 and �′ ∈ N. And so on, iteratively, one
generates an increasing sequence of nested control rectangles, as in Sect. 4.1.

Example 3. Consider again the specification of a two-rooms appartment given in
Example 1. We consider the distributed control synthesis problem where the first
(resp. second) state component corresponds to the temperature of the first (resp.
second) room T1 (resp. T2), and the first (resp. second) control mode component
corresponds to the heater u1 (resp. u2) of the the first (resp. second) room.

Set R = R1 ×R2 = [18.5, 22]× [18.5, 22]. Let D = 3 (the depth of bisection is
at most 3), and K = 10 (the maximum length of patterns is 10). The parameter

130 A. Le Coënt et al.

ε is set to value 1.5 ◦C. We look for a distributed controller which steers any
temperature state in S = S1 × S2 = [18.5 − a, 22] × [18.5 − a, 22] to R with a as
large as possible, then maintain it in R indefinitely.

Using our implementation, the computation of the control synthesis takes
220 s of CPU time. The method iterates 8 times the macro-step control synthesis
procedure. We find S = [18.5 − a, 22] × [18.5 − a, 22] with a = 6.5, i.e. S =
[12, 22]× [12, 22]. This means that any element of S can be driven to R within 8
macro-steps of length (at most) 10, i.e., within 8 × 10 = 80 units of time. Since
each unit of time is of duration τ = 5 s, any trajectory starting from S reaches
R within 80 × 5 = 400 s. The trajectory is then guaranteed to always stay (at
each discrete time t) in R + (ε, ε) = [17, 23.5] × [17, 23.5].

Fig. 4. Simulations of the distributed reachability controller for three different initial
conditions plotted in the state space plane (left); simulation of the distributed reacha-
bility controller for the initial condition (12, 12) plotted within time (right).

These results are consistent with the simulation given in Fig. 4 showing the
time evolution of (T1, T2) starting from (12, 12). Simulations of the control are
also given in the state space plane, in Fig. 4, for initial states (T1, T2) = (12, 12),
(T1, T2) = (12, 19) and (T1, T2) = (22, 12). Not surprisingly, the performance
guaranteed by the distributed approach (a = 6.5, reachability of R in 400 s) are
worse than those guaranteed by the centralized approach of Example 2 (a = 53.5,
reachability of R in 300 s). However, unexpectedly, the CPU computation time
in the distributed approach (220 s) is here worse than the CPU time of the
centralized approach (4.14 s). This relative inefficiency is due to the small size
of the example.

6 Case Study

This case study, proposed by the Danish company Seluxit, aims at controlling
the temperature of an eleven rooms house, heated by geothermal energy.

The continuous dynamics of the system is the following:

d

dt
Ti(t) =

n
∑

j=1

Ad
i,j(Tj(t) − Ti(t)) + Bi(Tenv(t) − Ti(t)) + Hv

i,j .vj (1)

The temperatures of the rooms are the Ti. The matrix Ad contains the heat
transfer coefficients between the rooms, matrix B contains the heat transfer

Distributed Synthesis of State-Dependent Switching Control 131

coefficients betweens the rooms and the external temperature, set to Tenv =
10◦C for the computations. The control matrix Hv contains the effects of the
control on the room temperatures, and the control variable is here denoted by
vj . We have vj = 1 (resp. vj = 0) if the heater in room j is turned on (resp.
turned off). We thus have n = 11 and N = 211 = 2048 switching modes.

Note that the matrix Ad is parametrized by the open of closed state of the
doors in the house. In our case, the average between closed and open matrices
was taken for the computations. The exact values of the coefficients are given in
[9]. The controller has to select which heater to turn on in the eleven rooms. Due
to a limitation of the capacity supplied by the geothermal device, the 11 heaters
cannot be turned on at the same time. In our case, we set to 4 the maximum
number of heaters turned on at the same time.

We consider the distributed control synthesis problem where the first (resp.
second) state component corresponds to the temperatures of rooms 1 to 5 (resp.
6 to 11), and the first (resp. second) control mode component corresponds to the
heaters of rooms 1 to 5 (resp. 6 to 11). Hence n1 = 5, n2 = 6, N1 = 25, N2 = 26.
We impose that at most 2 heaters are switched on at the same time in the first
sub-system, and at most 2 in the second sub-system.

Let D = 1 (the depth of bisection is at most 1), and K = 4 (the maximum
length of patterns is 4). The parameter ε is set to value 0.5 ◦C. The sampling time
is τ = 15 min. We look for a distributed controller which steers any temperature
state in the rectangle S = [18 − a, 22]11 to R = [18, 22]11 with a as large as
possible, then maintain the temperatures in R indefinitely.

Using our implementation, the computation of the control synthesis takes
around 20 h of CPU time. The method successfully iterates the macro-step con-
trol synthesis procedure 15 times. We find S = [18 − a, 22]11 with a = 4.2, i.e.
S = [13.8, 22]11. This means that any element of S can be driven into R within
15 macro-steps of length (at most) 4, i.e., within 15 × 4 = 60 units of time.
Since each timeunit has duration τ = 15 min, any trajectory starting from S
reaches R within 60 × 15 = 900 min. The trajectory is then guaranteed to stay
in R + (ε, ε) = [17.5, 22.5]11. These results are consistent with the simulation
of Fig. 5, showing the time evolution of the temperature of the rooms, starting
from 1411.

Fig. 5. Simulation of the Seluxit case
study plotted with time (in min) for
Tenv = 10 ◦C.

We also performed the same simulations
as in Fig. 5, except that the environment
temperature is not fixed at 10 ◦C but follows
scenarios of soft winter and spring (Fig. 6).
The environment temperature is plotted in
green in the figures. The spring scenario is
taken from [9], and the soft winter scenario
is the winter scenario of [9] with 5 additional
degrees. We see that our controller, which
has been designed for Tenv = 10 ◦C, still
satisfies the properties of reachability and
stability. These simulations are very close
those obtained in [9].

132 A. Le Coënt et al.

Fig. 6. Simulation of the Seluxit case study in the soft winter scenario (left), and in
the spring scenario (right).

7 Final Remarks

In this paper, we have proposed a distributed approach for control synthesis
and applied it to a real floor heating system. To our knowledge, this is the first
time that reachability and stability properties are guaranteed for a case study
of this size. The method can be extended to take into account obstacles and
safety constraints. We are currently investigating an extension of the method to
systems with non linear dynamics and varying parameters, see [11].

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1),
7–48 (1999)

2. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of
switching controllers for linear systems. Proc. IEEE 88(7), 1011–1025 (2000)

3. Fribourg, L., Kühne, U., Markey, N.: Game-based synthesis of distributed con-
trollers for sampled switched systems. In: SynCoP 2015, OASIcs 44, pp. 48–62
(2015)

4. Fribourg, L., Kühne, U., Soulat, R.: Finite controlled invariants for sampled
switched systems. Formal Methods Syst. Des. 45(3), 303–329 (2014)

5. Gillula, J.H., Hoffmann, G.M., Huang, H., Vitus, M.P., Tomlin, C.: Applications
of hybrid reachability analysis to robotic aerial vehicles. Int. J. Rob. Res. 30(3),
335–354 (2011)

6. Girard, A.: Low-complexity switching controllers for safety using symbolic models.
In: ADHS 2012, pp. 82–87 (2012)

7. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,
Berlin (2001)

8. Kühne, U., Soulat, R.: Minimator 1.0 (2015). https://bitbucket.org/ukuehne/
minimator/

https://bitbucket.org/ukuehne/minimator/
https://bitbucket.org/ukuehne/minimator/

Distributed Synthesis of State-Dependent Switching Control 133

9. Larsen, K.G., Mikučionis, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online
and compositional learning of controllers with application to floor heating. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244–259.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 14

10. Le Coënt, A., Fribourg, L., Markey, N., De Vuyst, F., Chamoin, L.: Distributed syn-
thesis of state-dependent switching control. Technical report, March 2016. https://
hal.archives-ouvertes.fr/hal-01295738

11. Le Coent, A., Alexandre Dit Sandretto, J., Chapoutot, A., Fribourg, L.: Control
of nonlinear switched systems based on validated simulation. In: SNR 2016. IEEE
(2016)

12. Liberzon, D.: Switching in Systems and Control. Springer, Berlin (2012)
13. Meyer, P.-J., Girard, A., Witrant, E.: Safety control with performance guarantees

of cooperative systems using compositional abstractions. In: ADHS 2015, pp. 317–
322 (2015)

14. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety
analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol.
4416, pp. 428–443. Springer, Heidelberg (2007)

http://dx.doi.org/10.1007/978-3-662-49674-9_14
https://hal.archives-ouvertes.fr/hal-01295738
https://hal.archives-ouvertes.fr/hal-01295738

Compositional Analysis of Boolean Networks
Using Local Fixed-Point Iterations

Adrien Le Coënt1(B), Laurent Fribourg2, and Romain Soulat3

1 CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 61 Av. du Président Wilson,
94235 Cachan Cedex, France

adrien.le-coent@ens-cachan.fr
2 LSV, ENS Cachan, CNRS, Université Paris-Saclay, 61 Av. du Président Wilson,

94235 Cachan Cedex, France
fribourg@lsv.ens-cachan.fr

3 Thales Research & Technology, 1 Av. Augustin Fresnel, 91767 Palaiseau, France
romain.soulat@thalesgroup.com

Abstract. We present a compositional method which allows to over-
approximate the set of attractors and under-approximate the set of basins
of attraction of a Boolean network (BN). This merely consists in replac-
ing a global fixed-point computation by a composition of local fixed-
point computations. Once these approximations have been computed, it
becomes much more tractable to generate the exact sets of attractors
and basins of attraction. We illustrate the interest of our approach on
several examples, among which is a BN modeling a railway interlocking
system with 50 nodes and millions of attractors.

1 Introduction

Boolean Networks (BNs) have been widely used to model biological systems [15].
The BN is a discrete model that comprises a number of nodes and correspond-
ing update rules. Classically, each node represents a gene and takes a value of 1
or 0, meaning that the gene is expressed or not. Each update rule represents inter-
actions between genes. BNs have also been used in industrial networks such as
railway yards [10]. The states of objects in a railway yard (railway interlocking
system) can be captured by means of Boolean variables. The control and man-
agement of such systems can then be expressed under the form of rules of BNs.

We consider here synchronous BNs, which means that the updates are per-
formed synchronously. Synchronous BNs can be considered as a class of deter-
ministic finite state machines. Any sequence of consecutive states eventually
converges to a cycle of states, called an attractor. In biological systems, attrac-
tors capture long-term behaviors of biological systems (e.g., growth, differentia-
tion, and apoptosis) [15]. In railway interlocking systems, attractors also convey
important information.

Practically, all algorithms for computing attractors in Boolean networks face
a potential state-space explosion that must be addressed to handle large-scale
models. (The problem of finding attractors in BNs is NP-hard [1]). A common

c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 134–147, 2016.
DOI: 10.1007/978-3-319-45994-3 10

Compositional Analysis of Boolean Networks 135

approach is to use symbolic algorithms (Binary Decision Diagrams (BDDs) [3]
or SAT-based methods) which avoid representing explicit states and transitions.

Algorithms based on BDDs are usable to process BNs with up to a hun-
dred of state variables [17]. However for larger networks, BDDs become too
memory-consuming. Propositional decision procedures (SAT) do not suffer from
the potential space explosion of BDDs and can handle propositional satisfiability
with thousands of variables [8]. The approach in [9] relies on SAT-based bounded
model checking [2] to compute attractors. Those algorithms enable to scale up
hundreds of nodes with K (maximum indegree or maximum node connectiv-
ity) ≤ 3 (i.e., low maximum connectivity). However, in case of BNs with higher
Ks, a state explosion still occurs. The same phenomenon occurs when the num-
ber of attractors Na increases, which makes the problem of finding attractors
impracticable for the case studies that we consider here (for which Na increases
exponentially with the number n of state variables).

To expand the range of feasible BNs, partitioning-based attractor detection
algorithms have been published recently [12,19]. Both works use a partitioning
strategy based on strongly connected component (SCC). Attractors are indepen-
dently detected in each block, and then combined to construct the attractors of
the original BN. Therefore better scalability can be achieved, but still for low
K (≤ 3). For BNs with large K, the size of the largest SCC is too large to be
analyzed within a reasonable time.

In order to overcome this problem, in [14], the authors propose a partition-
ing not based on SCC. They are thus able to find attractors for networks with
a number n of nodes up to 1000 and K = 5. Unfortunately the method gener-
ates only “steady states”, i.e., cyclic attractors of length 1, and ignores cyclic
attractors of greater length.

Here, we propose a method which uses the same kind of partitioning as
in [14] but we use a different algorithm for detecting the local attractors inside
each component: while [14] uses SAT-based bounded model checking methods
for finding local attractors, we use an “iterative reduction” method (similar
to [6], Sect. 11.2 and [7], Sect. VIII.B). For constructing the global attractors,
we first combine the results obtained by the local iterative reductions similarly
to [7]. This allows us to compute an over-approximation of the union of all the
attractors (not only the steady states). In a second step, starting from this over-
approximation, we then compute the exact set of all the attractors using global
fixed-point iterations.

We have implemented the method in Octave. Using this prototype, we are
able to find all the attractors of a BN with n = 50 and K = 6, which models a
portion of the New York City subway [11].

We also explain how our compositional method can be adapted to construct
(under-approximations of) basins of attraction.

Plan. We explain how to find (a superset of) all the attractors in a compositional
way in Sect. 2 and (subsets of) basins of attraction in Sect. 3. We present some
experiments performed with a prototype implementation in Sect. 4. We conclude
in Sect. 5.

136 A. Le Coënt et al.

2 Attractors

2.1 Concrete Functions

A synchronous Boolean Control Network (BCN) is a discrete-time dynamical
system subject to the rules

x(t + 1) = f(x(t), u(t)) (1)

where x is a vector of n Boolean variables (called state), u is a vector of m
Boolean variables (called control input), and f is a vector of n Boolean functions
on these variables and inputs. We denote by S the set of all possible instantiations
of variables x (S = {0, 1}n). We denote by U the set of all possible instantiations
of inputs u (U = {0, 1}m).

In the following, we will consider that a BCN can be decomposed into two
systems of the form

x1(t + 1) = f1(x1(t), x2(t), u1(t)) (2)
x2(t + 1) = f2(x1(t), x2(t), u2(t)) (3)

where x1 and x2 are vectors of respectively n1 and n2 Boolean variables with
n = n1 + n2, u1 and u2 are vectors of respectively m1 and m2 Boolean inputs
with m = m1 +m2, and f1 and f2 are vectors of respectively n1 and n2 Boolean
functions on these variables and inputs. We denote by S1 the set of all possible
instantiations of variables x1 (S1 = {0, 1}n1), and by S2 the set of all possible
instantiations of variables x2 (S2 = {0, 1}n2). Likewise, we denote by U1 the set
of all possible instantiations of inputs u1 (U1 = {0, 1}m1), and by U2 the set of
all possible instantiations of inputs u2 (U2 = {0, 1}m2).

Remark. The way of finding interesting splittings of the system into two sub-
systems is beyond the scope of this paper. It can be done using the method
of [14].

A BN is a BCN without control inputs:

x(t + 1) = f(x(t)). (4)

For the sake of simplicity, we will focus in the sequel of this section on BN.
The definitions of f , f1 and f2 can naturally be “lifted” to the powerset level.

We will use the same notation f for the functions and their lifted versions. For
X ∈ 2S , we have: f(X) = {f(x) | x ∈ X}. Likewise, given a set X1 ∈ 2S1 and a
set X2 ∈ 2S2 , we have for i = 1, 2: fi(X1,X2) = {fi(x1, x2) | x1 ∈ X1, x2 ∈ X2}.

In the rest of the paper, all the fixed-point results will concern functions
lifted at the powerset level.

We have:

Proposition 2.1. Suppose: F× ⊆ X ⊆ S. Then F× =
⋂

k≥0 fk(X).

Compositional Analysis of Boolean Networks 137

Proof. Suppose F× ⊆ X ⊆ S. Then
⋂

k≥0 fk(F×) ⊆
⋂

k≥0 fk(X) ⊆
⋂

k≥0 fkS.
Hence: F× ⊆

⋂

k≥0 fk(X) ⊆ F×. It follows: F× =
⋂

k≥0 fk(X). �

As already mentioned, since a BN is subject to deterministic rules (applied
here synchronously) and since the number of elements is finite (equal to 2n),
every derivation from an arbitrary element ends to a cycle. The set of elements
composing this cycle is called an attractor. We have:

Proposition 2.2. The union of the attractors of the BN is equal to F×.

2.2 Abstract Functions

We are going to give a method for computing an over-approximation (i.e., a
superset) of F×. This will be done by constructing the greatest fixed-point of
an “abstraction” f̃ of f . Let S̃ = (S1, S2).

Definition 2.3. The function f̃ : 2S1×2S2 → 2S1×2S2 is defined for all X1 ∈ 2S1

and X2 ∈ 2S2 , by:

f̃(X1,X2) = (f1(X1,X2), f2(X1,X2))
= {(f1(x1, x2), f2(w1, w2)) | x1 ∈ X1, x2 ∈ X2, w1 ∈ X1, w2 ∈ X2}.

At the concrete (resp. abstract) level, we consider the finite lattice of functions
from 2S to 2S (resp. from 2S1 × 2S2 to 2S1 × 2S2). We say that two abstract
functions ϕ and ψ are ordered, and write ϕ ≤a ψ if for any (X1,X2) ∈ 2S1 ×2S2 :
ϕ(X1,X2) = (Y1, Y2), ψ(X1,X2) = (Z1, Z2) with Yi ⊆i Zi for i = 1, 2, where ‘⊆i’
denotes the inclusion ordering between elements of 2Si . Likewise, we say that
two concrete functions f and g are ordered, and write f ≤c g if f(X) ⊆c g(X)
where ‘⊆c’ denotes the inclusion ordering between elements of 2S . Without loss
of understanding, we will omit the indices of symbols ‘≤’ and ‘⊆’. Context will
make it clear. The identity function at the abstract (resp. concrete) level will be
denoted by Ida (resp. Idc). Note that, abstract functions and concrete functions
are monotonic since they are lifted at the powerset level. We have (see [7]):

Definition 2.4. The abstraction function α : 2S → 2S1 × 2S2 and the con-
cretization function γ : 2S1 × 2S2 → 2S are defined as follows:

– for all X ∈ 2S = 2S1×S2 ,

α(X) = (π1(X), π2(X)),

where πi is (the lift of) the i-th projection of S to Si (i = 1, 2).
– for all X1 ∈ 2S1 and X2 ∈ 2S2 ,

γ(X1,X2) = X1 × X2 = {(x1, x2) | x1 ∈ X1, x2 ∈ X2}.

The abstraction function α “separates” an element of 2S , i.e., a set X of n-
vectors of bits into two elements X1 and X2 of 2S1 and 2S2 respectively, i.e.,
into a set of n1-vectors and a set of n2-vectors with n = n1 + n2. Conversely,

138 A. Le Coënt et al.

the concretization function γ “gathers” two elements X1 and X2 of 2S1 and 2S2

into an element of 2S = 2S1×S2 .
It is easy to show that the function αfγ: 2S1 × 2S2 → 2S1 × 2S2 coincides

with the definition of f̃ given in Definition 2.3, i.e.: f̃ = αfγ. We have:

Proposition 2.5. γα ≥ Idc, i.e., for all X ∈ 2S: γ(α(X)) ⊇ X.

Proof. Let X ∈ 2S . Write α(X) = (X1,X2). If x = x1x2 ∈ X then x1 ∈ X1 and
x2 ∈ X2, thus x ∈ γ(X1,X2) = γα(X).

Intuitively, this inclusion expresses the fact that by separating the arguments
at the abstract level, we lose the information of interdependence between these
arguments. The functions f , f̃ , α and γ satisfy basic properties of Abstract
Interpretation (see [7]):

Lemma 2.6. We have:

1. αγ ≤ Ida, i.e., for all (X1,X2) ∈ 2S1 × 2S2 : α(γ(X1,X2)) ⊆ (X1,X2).
2. fγ ≤ γf̃ , i.e., for all (X1,X2) ∈ 2S1 × 2S2 : fγ(X1,X2) ⊆ γf̃(X1,X2).

Proof. 1. Write (Y1, Y2) = αγ(X1,X2). Assume yi ∈ Yi for i = 1, 2. Then ∃y ∈
γ(X1,X2): yi = πi(y) for i = 1, 2. Since y ∈ X1 ×X2, yi ∈ Xi for i = 1, 2. We
have shown Yi ⊆ Xi for i = 1, 2, i.e.: (Y1, Y2) ⊆ (X1,X2).

2. Since Idc ≤ γα by Proposition 2.5 and f̃ = αfγ, we have: γf̃ = γαfγ ≥ fγ. �

Remark. In general we do not have αγ(X1,X2) = (X1,X2) because, in the
case X1 = ∅, we have αγ(∅,X2) = α(∅ × X2) = (∅, ∅) which is distinct from
(X1,X2) when X2
= ∅.

Let us write the greatest fixed-point gfp(f̃) of f̃ as (F×
1 , F×

2).

Proposition 2.7. We have:

1. gfp(f) ≤ γ gfp(f̃), i.e.: F× ⊆ F×
1 × F×

2 .
2. F× =

⋂

k≥0 fk(F×
1 × F×

2).

This proposition is a consequence of Theorem 2.8 that is given below. The pair
(F×

1 , F×
2) can be thus used as a ‘seed’ for the computation of the greatest fixed-

point F× of f : one starts the iteration of f from F×
1 × F×

2 instead of starting
from S. It may be easier to compute F× starting from F×

1 × F×
2 rather than S

because |F×
1 × F×

2 | is sometimes much smaller than |S| = 2n.
For a given integer � ≥ 1, let us define g and g̃ by: g = f � and g̃ = αgγ.
Let us write the greatest fixed-point of g̃ as (G×

1 , G×
2). We have:

Theorem 2.8. For all integer � ≥ 1:

1. F× = G×.
2. G× ⊆ G×

1 × G×
2 .

3. F× =
⋂

k≥0 fk(G×
1 × G×

2) =
⋂

k≥0 gk(G×
1 × G×

2).
4. G×

1 × G×
2 ⊆ F×

1 × F×
2 .

Compositional Analysis of Boolean Networks 139

Proof. 1. We have: F× =
⋂

k≥0 fk(S) =
⋂

k≥0 fk�(S) = G×.
2. By Lemma 2.6.3 with g in place of f , we have: gγ ⊆ γg̃. One can then prove

by induction on k: for all k ≥ 0, gkγ(S̃) ⊆ γg̃k(S̃). Passing to the limit and
using γS̃ = S1 × S2 = S, it follows: G× ⊆ G×

1 × G×
2 .

3. By items 1 and 2, we have: F× ⊆ G×
1 ×G×

2 ⊆ S. It follows by Proposition 2.1:
F× =

⋂

k≥0 fk(G×
1 × G×

2).
4. Using f̃ = αfγ and γα ⊇ Idc (Proposition 2.5), we can prove by induction on

�: f̃ � ⊇ αf �γ, for � ≥ 0. Passing to the limit, we have: (F×
1 , F×

2) ⊇ (G×
1 , G×

2).
Hence: G×

1 × G×
2 ⊆ F×

1 × F×
2 .

�

It can be interesting to perform the computation of F×, starting from G×
1 ×G×

2

rather than F×
1 ×F×

2 , because |G×
1 ×G×

2 | may be much smaller than |F×
1 ×F×

2 |.
Note that, for � = 1, g coincides with f , G× with F×, and G×

i with F×
i (i = 1, 2).

Hence Proposition 2.7 is an immediate consequence of Theorem 2.8.

2.3 Example

We will illustrate our approach with the Example 6.2 of [4], which is a BN given
by the rules:

A(t + 1) = 1 ∧ H(t),
B(t + 1) = A(t) ∧ (A(t) ∨ C(t)),
C(t + 1) = I(t),
E(t + 1) = 1 ∧ C(t) ∧ (C(t) ∨ F (t)),
F (t + 1) = E(t) ∧ (E(t) ∨ G(t)),
G(t + 1) = 1 ∧ (B(t) ∨ E(t)),
H(t + 1) = F (t) ∧ (F (t) ∨ G(t)),
I(t + 1) = H(t) ∧ (H(t) ∨ I(t)).

This corresponds to state variable x = (A,B,C,E, F,G,H, I) and S =
{0, 1}8. The system is split in two as follows: x1 = (A,F,G,H, I), x2 = (B,C,E),
S1 = {0, 1}5, S2 = {0, 1}3.

Computation of F×
1 × F×

2 . In order to compute gfp(f̃)= (F×
1 , F×

2), we use
a strategy related to the application of Bekić-Leszczy�lowski theorem (see [16]).
Roughly speaking, we compute at step i an intermediate fixed-point F1,i+1 start-
ing from the current value F1,i of the 1st component using the current value F2,i

of the 2nd component as a parameter. Then, we compute a new intermediate
fixed-point F2,i+1 starting from F2,i using F1,i+1 as a parameter, and so on
alternatively until stabilization. We have:

F1,0 = S1,
F2,0 = S2.

F1,1 = {00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001,
01010, 01011, 01100, 01101, 01110, 01111, 10000, 10001, 10010, 10011, 10100,
10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111},

140 A. Le Coënt et al.

F2,1 = {000, 001, 010, 011, 101, 111}.

F1,2 = {00000, 00010, 00100, 00110, 01000, 01010, 01011, 01100, 01101,
01110, 01111, 10000, 10010, 10100, 10110, 11000, 11010, 11011, 11100, 11101,
11110, 11111},
F2,2 = F2,1.

F1,3 = F1,2.

Hence F×
1 ×F×

2 = F1,2×F2,1 has 22×6 = 132 elements. The computation of
(F×

1 , F×
2) is obtained in 2 iterations and 0.87 s of CPU time using our prototype

implementation (see Sect. 4). The computation of F× by iteration of f starting
from F×

1 × F×
2 is then obtained in 11 iterations and takes 0.11 s of CPU time.

Computation of G×
1 × G×

2 , with g = f2

We have:

G1,0 = S1,
G2,0 = S2.

G1,1 = {00000, 00001, 00100, 00101, 00110, 00111, 01010, 01011, 01110,
01111, 10000, 10100, 10110, 11000, 11010, 11100, 11110},
G2,1 = {000, 001, 011, 101}.

G1,2 = {10000, 11000, 11010, 01011, 01010, 01111, 00100, 10100, 10100},
G2,2 = G2,1.

G1,3 = G1,2.

Hence G×
1 × G×

2 = G1,2 × G2,1 has only 9 × 4 = 36 elements. This shows
that the over-approximation G×

1 × G×
2 of F× is much finer than F×

1 × F×
2 . The

computation of (G×
1 , G×

2) is obtained in 2 iterations and 0.84 s of CPU time with
our prototype implementation. The fixed point F× of f is then obtained from
G×

1 × G×
2 via 11 applications of f , which takes 0.10 s of CPU time. This yields:

F× = {01111 · 001, 00100 · 011, 01010 · 011, 01011 · 101, 10100 · 000, 10000 ·
101, 10100 · 101, 11000 · 101, 11010 · 101}

where each element of F× is an instance of x = x1 · x2 = AFGHI · BCE. It
is easy to see that all the elements of F× here belong to a unique attractor of
length 9 (i.e., F× is of the form {σ1, . . . , σ9} with f(σi) = σi+1 for 1 ≤ i ≤ 8,
and f(σ9) = σ1).

By comparison, the global computation of F× by iterated application of f
to S takes 12 iterations and 0.92 s of CPU time. On such a small example, the
compositional approach does not bring a significant difference with the global
approach, neither in terms of number of iterations nor in terms of computation
time.

Remark. We have described here a method which computes attractors for a
system split into two sub-systems. The extension to more than two sub-systems
is straightforward.

Compositional Analysis of Boolean Networks 141

3 Basins of Attraction

We now reintroduce the set U of control variables.

3.1 Concrete Functions

Given a stationary point σ of f (i.e., an element σ of S = S1 × S2 such that
f(σ, u) = σ for some u ∈ U), it is interesting to compute the basin of attraction
of σ, i.e.: the set of elements x such that f(· · · f(f(x, u1), u2), . . . , uk) . . .) = σ
for some k > 0 and (u1, u2, . . . , uk) ∈ Uk.

Classically, backward reachability procedures are used (see, e.g., [18]) to com-
pute basins of attraction. Let us define the predecessor operator. For all X ⊆ S:

p(X) = {y ∈ S | ∃u ∈ U : f(y, u) ∈ X}.

As usual, we define pk(X) by: p0(X) = X and pk+1(X) = p(pk(X)) for k ≥ 0.
Since σ is a stationary point, the sequence {pi({σ})}k≥0 is increasing. When the
fixed-point p∗({σ}) is reached, at step j (i.e. pj+1({σ}) = pj({σ})), we have:
p∗({σ}) =

⋃

k≥0 pk({σ}) = pj({σ}). Since {σ} ⊆ p({σ}), the set p∗({σ}) is, by
Kleene fixed-point theorem, the least fixed-point of p containing σ; it coincides
with the smallest prefixed-point of p containing σ, i.e., the smallest set X ∈ 2S

containing σ such that ∀x ∈ X∃u ∈ U f(x, u) ∈ X. We have:

Proposition 3.1. The basin of attraction of σ is equal to

p∗({σ}) =
⋃

k≥0

pk({σ}).

The counterpart of Proposition 2.1 is:

Proposition 3.2. Suppose: {σ} ⊆ X ⊆ p∗({σ}). Then: p∗({σ}) =
⋃

k≥0 pk(X).

The proof is analogous to that of Proposition 2.1.

3.2 Abstract Functions

We now focus on systems of the form (2)–(3), i.e. that can be decomposed in
two parts, this along S and along U . A stationary point σ is of the form (σ1, σ2)
with σ1 ∈ S1 = {0, 1}n1 , σ2 ∈ S2 = {0, 1}n2 . Let σ̃ = ({σ1}, {σ2}).

We are going to introduce two abstractions p̃X2(X1) and p̃X1(X2) of p. We
will then compute least fixed-points, denoted by p̃∗

S2
({σ1}) and p̃∗

S1
({σ2}), of

p̃S2(·) and p̃S1(·) containing {σ1} and {σ2} respectively. We will show that
p̃∗(σ̃) = (p̃∗

S2
({σ1}), p̃∗

S1
({σ2})) satisfies {σ} ⊆ γp̃∗(σ̃) ⊆ p∗({σ}). Hence, by

Proposition 3.2, the basin of σ can be obtained by iteratively applying p to
γp̃∗(σ̃) instead of {σ}. This may reduce the computation time of the basin of σ.

We introduce the following (controlled) abstract predecessor operators:

p̃X2(X1) = {y1 ∈ S1| ∃u1 ∈ U1, ∀x2 ∈ X2, f1(y1, x2, u1) ∈ X1}, (5)

142 A. Le Coënt et al.

p̃X1(X2) = {y2 ∈ S2| ∃u2 ∈ U2, ∀x1 ∈ X1, f2(x1, y2, u2) ∈ X2}. (6)

We denote by p̃∗
S2

({σ1}) and p̃∗
S1

({σ2}) the least fixed-points obtained by
iterative application of p̃S2(·) and p̃S1(·) starting from {σ1} and {σ2} respectively.
Finally, we write p̃∗(σ̃) = (p̃∗

S2
({σ1}), p̃∗

S1
({σ2})).

Lemma 3.3. For all (X1,X2) ∈ 2S1 × 2S2 , we have γ(p̃S2(X1), p̃S1(X2)) ⊆
pγ(X1,X2).

Proof. Let w = (w1, w2) ∈ γ(p̃S2(X1), p̃S1(X2)). We know that:

∃u1 ∈ U1, ∀x2 ∈ S2, f1(w1, x2, u1) ∈ X1

and

∃u2 ∈ U2, ∀x1 ∈ S1, f2(x1, w2, u2) ∈ X2.

In particular:

∃u1 ∈ U1, f1(w1, w2, u1) ∈ X1

and

∃u2 ∈ U2, f2(w1, w2, u2) ∈ X2.

Hence:

∃u = (u1, u2) ∈ U, f((w1, w2), u) = (f1(w1, w2, u1), f2(w1, w2, u2)) ∈ X1 × X2,

i.e. w ∈ pγ(X1,X2). �

Theorem 3.4. We have:

1. {σ} ⊆ γp̃∗(σ̃) ⊆ p∗({σ}).
2. p∗({σ}) =

⋃

k≥0 pk(γp̃∗(σ̃)).

Proof. 1. Ones proves that, for all k ≥ 0, {σ} ⊆
⋃

j≤k γ(p̃j
S2

(X1), p̃
j
S1

(X2)) ⊆
⋃

j≤k pjγ(σ̃) by induction on k, using Lemma 3.3. Passing to the limit, it
follows: {σ} ⊆ γp̃∗(σ̃) ⊆ p∗({σ}), using γ(σ̃) = {σ}.

2. Since {σ} ⊆ γp̃∗(σ̃) ⊆ p∗({σ}) by item 1, it follows by Proposition 3.2:
p∗({σ}) =

⋃

k≥0 pk(γp̃∗(σ̃)).
�

Remark. Note that it is possible to extend the definitions (5) and (6) to the
use of sequences of control inputs using the following definitions:

p̃�1
X2

(X1) = {y1 ∈ S1 | ∃u1
1 . . . u�1

1 ∈ U �1
1 ,∀u1

2 . . . u�1
2 ∈ U �1

2

π1f(. . . f(f((y1, S2), (u1
1, u

1
2)), (u

2
1, u

2
2)) . . . , (u�1

1 , u�1
2)) ∈ X1},

p̃�2
X1

(X2) = {y2 ∈ S2 | ∃u1
2 . . . u�2

2 ∈ U �2
2 ,∀u1

1 . . . u�2
1 ∈ U �2

1

π2f(. . . f(f((S1, y2), (u1
1, u

1
2)), (u

2
1, u

2
2)) . . . , (u�2

1 , u�2
2)) ∈ X2}.

Compositional Analysis of Boolean Networks 143

4 Experiments

The experiments presented here have been performed with our prototype written
in Octave. The computation times given below have been performed on an Intel
Core i7-4810MQ CPU running at 2.80 GHz with 8 GB of RAM memory.

4.1 Attractors

In industrial case studies, such as railway interlocking, it is important to show
that all the attractors are cycles of length 1 (stationary states). We have tested
our method on an example of a railway interlocking system taken from “NXSYS,
Signalling and Interlocking Simulator” [11]. The dynamics of the BN model of
the system is given in Appendix. This example has 28 variables and 22 para-
meters. The objective of the analysis is to show that for any valuation ν of the
parameters in {0, 1}22, all the attractors are stationary states. We divide the
system into 4 sub-systems as explained in Appendix. The computation of the
over-approximated set of attractors {F×

1,ν ×F×
2,ν ×F×

3,ν ×F×
4,ν}ν∈{0,1}22 took 2 h.

The computation of the exact set of attractors A = {F×
ν }ν∈{0,1}22 then took

12 more hours. The total number of attractors is |A| � 24.106, and we check
that all the elements of A are stationary states. By comparison, for a single
instantiation ν, the state-of-art program BNS (available at https://people.kth.
se/∼dubrova/bns.html) takes 0.02 s, which seems to indicate that BNS would
take at least twice more time for computing the whole set of attractors of the
222 instantiations of the problem.

4.2 Basins of Attraction

We have experimented the compositional computation of basins of attraction on
small examples of the literature, e.g.:

– regulation of the mammalian cell cycle [13] (9 variables, 1 input),
– Example 29 of [5] (5 variables and 2 control inputs).

We present here the example of the regulation of the mammalian cell cycle
[13], which dynamics is the following:

Y1(t + 1) = (Ū(t) ∧ Ȳ3(t) ∧ Ȳ4(t) ∧ Ȳ9(t)) ∨ (Y5(t) ∧ Ū(t) ∧ Ȳ9(t)),
Y2(t + 1) = (Ȳ1(t) ∧ Ȳ4(t) ∧ Ȳ9(t)) ∨ (Y5(t) ∧ Ȳ1(t) ∧ Ȳ9(t)),
Y3(t + 1) = Y2(t) ∧ Ȳ1(t),

Y4(t + 1) = (Y2(t) ∧ Ȳ1(t) ∧ Ȳ6(t) ∧ (Y7(t) ∧ Y8(t)))

∨(Y4(t) ∧ Ȳ1(t) ∧ Ȳ6(t) ∧ (Y7(t) ∧ Y8(t))),
Y5(t + 1) = (Ū(t) ∧ Ȳ3(t) ∧ Ȳ4(t) ∧ (Ȳ9(t))

∨(Y5(t) ∧ (Y3(t) ∧ Y4(t)) ∧ Ū(t) ∧ Ȳ9(t)),
Y6(t + 1) = Y9(t + 1),

https://people.kth.se/~dubrova/bns.html
https://people.kth.se/~dubrova/bns.html

144 A. Le Coënt et al.

Y7(t + 1) = (Ȳ4(t) ∧ Ȳ9(t)) ∨ Y6(t) ∨ (Y5(t) ∧ Ȳ9(t)),
Y8(t + 1) = Ȳ7(t) ∨ (Y7(t) ∧ Y8(t) ∧ (Y6(t) ∨ Y4(t) ∨ Y9(t))),
Y9(t + 1) = Ȳ6(t) ∧ Ȳ7(t).

For this example, it is known that there exists a stationary point σ (associated
to a sequence of inputs equal to 1), with σ = {100010100}.

Let us explain how we compute the basin of attraction of σ with the
compositional method. We split the system in two: x1 = (Y1, Y2, Y3, Y5) and
x2 = (Y4, Y6, Y7, Y8, Y9), S1 = {0, 1}4 and S2 = {0, 1}5. The fixed-points
p̃∗

S2
({σ1}) and p̃∗

S1
({σ2}) are obtained in 2 iterations and 1.71 s of CPU time,

with sequences of control inputs of length lower than 5. The size of p̃∗(σ1, σ2)
is 16 × 21 = 336. By computing the iterated predecessors of γp̃∗(σ1, σ2) via p,
we find in 3.03 s and 3 iterations, that the basin of attraction is equal to S. By
comparison, the global computation of p∗(σ) takes 4.15 s and 4 iterations. On
such a small example, the results of the two approaches in terms of computation
times and number of iterations are similar.

5 Final Remarks

We proposed a compositional method based on local fixed-point iterations. The
method has been successfully applied to an example with 50 variables modeling a
part of New York City subway, which allows us to identify more than 24 millions
of attractors. We believe that such a finding of all the attractors would be difficult
using a global approach with state-of-the-art tools. Our current implementation
of the method is a simple prototype with explicit representation of Boolean
states. We are currently integrating symbolic structures (BDDs) to the code in
order to treat larger examples. One of our objectives is to find the attractors of
a real railway interlocking system provided by Thales.

Acknowledgement. We are most grateful to Philippe Schnoebelen for insightful
explanations on Abstract Interpretation and numerous comments on an earlier draft
of this paper.

This work is supported by Institut Farman (ENS Cachan) and by the French
National Research Agency through the “iCODE Institute project” funded by the IDEX
Paris-Saclay, ANR-11-IDEX-0003-02.

Appendix: Railway Interlocking System

Railway Interlocking is one part of a complete railway system that ensures the
safety of all trains and passengers. Given the routes that trains wish to travel
along and current train positions (among other information), the Interlocking
computes a safe environment for trains (mainly signals indications, and switches
positions).

Compositional Analysis of Boolean Networks 145

A part of the railway interlocking functioning can be translated to boolean
equations. In this example, we have taken the boolean variables and equations
associated with protection, movement command and locking of two railway
switches while abstracting away all the timed components of those systems.
Computing the attractors allows to find what states those switches will reach
upon reception of a new command.

The dynamics of the system tested in Sect. 4.1 is given by the rules:

23NLP = !23RLP (OR (AND 23ANN 23ANS) (AND 23BNN 23BNS) 18PBS 23NL)
23RLP = !23NLP (OR (AND 23RN 23RS) 23RL)
23ANS = (OR 16PBS 16XR) !23RS !23RWK
23BNS = (OR 25ANS 25RS) !23RN !23RWK
23ANN = (OR 25BNN 25RN) !23RS !23RWK
23BNN = (OR 32XS 32PBS) !23RN !23RWK
23RS = 25ANS !23ANS !23BNN !23NWK
23RN = 25BNN !23ANS !23BNN !23NWK
23NWZ = (OR (AND 23NWZ !23RWZ) (AND 23NLP 23LS))
23RWZ = (OR (AND 23RWZ !23NWZ) (AND 23RLP 23LS))
23NWC = (AND 23NWZ 23NWP)
23RWC = (AND 23RWZ 23RWP)
23NWK = 23NWC (OR 23NLP !23LS)
23RWK = 23RWC (OR 23RLP !23LS)
25ANS = (OR 22PBS 28ZS 22XS 22XR) !25RS !25RWK
25BNS = (OR 23ANS 23RS) !25RN !25RWK
25ANN = (OR 23BNN 23RN) !25RS !25RWK
25BNN = (OR 34XS 34PBS) !25RN !25RWK
25RN = 23BNN !25ANS !25BNN !25NWK
25RS = 23ANS !25ANS !25BNN !25NWK
25NLP = !25RLP (OR (AND 25ANN 25ANS) (AND 25BNN 25BNS) 28XS 25NL)
25RLP = !25NLP (OR (AND 25RN 25RS) 25RL)
25NWZ = (OR (AND 25NWZ !25RWZ) (AND 25NLP 25LS))
25RWZ = (OR (AND 25RWZ !25NWZ) (AND 25RLP 25LS))
25NWC = (AND 25NWZ 25NWP)
25RWC = (AND 25RWZ 25RWP)
25NWK = 25NWC (OR 25NLP !25LS)
25RWK = 25RWC (OR 25RLP !25LS)

The left-hand sides of these equations correspond to the 28 state variables.
The other expressions appearing in the right-hand sides correspond to the 22
parameters.

The system is split into 4 sub-systems as follows:

– For sub-system 1, the state variables are: 23NLP, 23RLP, 23ANS, 23BNS,
23ANN, 23BNN, 23RS and 23RN.
The parameters are: 18PBS, 23RL, 16PBS, 16XR, 32XS, 32PBS and 23NL.

– For sub-system 2, the state variables are: 23NWZ, 23RWZ, 23NWC, 23RWC,
23NWK and 23RWK.
The parameters are: 23LS, 23NWP and 23RWP.

146 A. Le Coënt et al.

– For sub-system 3, the state variables are: 25ANS, 25BNS, 25ANN, 25BNN,
25RN, 25RS and 25NLP.
The parameters are: 22PBS, 28ZS, 22XS, 22XR, 34XS, 34PBS, 28XS and
25NL.

– For sub-system 4, the state variables are: 25RLP, 25NWZ, 25RWZ, 25NWC,
25RWC, 25NWK and 25RWK.
The parameters are: 25RL, 25LS, 25NWP and 25RWP.

References

1. Akutsu, T., Kosub, S., Melkman, A.A., Tamura, T.: Finding a periodic attractor of
a Boolean network. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1410–1421
(2012)

2. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: DAC, pp. 317–320 (1999). http://doi.
acm.org/10.1145/309847.309942

3. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 100(8), 677–691 (1986)

4. Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks. IEEE
Trans. Autom. Control 55(10), 2251–2258 (2010)

5. Cheng, D., Qi, H., Zhao, Y.: On Boolean control networks - an algebraic approach.
In: Proceedings of the 18th IFAC World Congress, Milano, pp. 8366–8377 (2011)

6. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M.,
Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam (1999)

7. Cousot, P.: Compositional separate modular static analysis of programs by abstract
interpretation. In: Proceedings of SSGRR - Advances in Infrastructure for Elec-
tronic Business, Science, and Education on the Internet, pp. 6–10 (2001)

8. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960). http://doi.acm.org/10.1145/321033.321034

9. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in syn-
chronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
8(5), 1393–1399 (2011)

10. Fokkink, W., Hollingshead, P., Groote, J., Luttik, S., van Wamel, J.: Verification
of interlockings: from control tables to ladder logic diagrams. In: Proceedings of
FMICS, vol. 98, pp. 171–185 (1998)

11. Greenberg, B.S.: NXSYS, Signaling and Interlocking Simulator. http://www.
nycsubway.org/wiki/NXSYS, Signalling and Interlocking Simulator

12. Guo, W., Yang, G., Wu, W., He, L., Sun, M.: A parallel attractor finding algorithm
based on Boolean satisfiability for genetic regulatory networks. PLoS ONE 9(4),
e94258 (2014)

13. Hochma, G., Margaliot, M., Fornasini, E., Valcher, M.E.: Symbolic dynamics of
Boolean control networks. Automatica 49(8), 2525–2530 (2013)

14. Hong, C., Hwang, J., Cho, K.-H., Shin, I.: An efficient steady-state analysis method
for large boolean networks with high maximum node connectivity. PLoS ONE
10(12) (2015). doi:10.1371/journal.pone.0145734

15. Kauffman, S.A.: The Origins of Order: Self Organization and Selec-
tion in Evolution. Oxford University Press, New York (1993).
http://opac.inria.fr/record=b1077782

http://doi.acm.org/10.1145/309847.309942
http://doi.acm.org/10.1145/309847.309942
http://doi.acm.org/10.1145/321033.321034
http://www.nycsubway.org/wiki/NXSYS,_Signalling_and_Interlocking_Simulator
http://www.nycsubway.org/wiki/NXSYS,_Signalling_and_Interlocking_Simulator
http://dx.doi.org/10.1371/journal.pone.0145734
http://opac.inria.fr/record=b1077782

Compositional Analysis of Boolean Networks 147

16. Kuncak, V., Rustan, K. Leino, M.: On computing the fixpoint of a set of Boolean
equations (2004). http://arXiv.org/abs/cs.PL/0408045

17. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and
analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.)
CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)

18. Wuensche, A., et al.: Discrete dynamical networks and their attractor basins. Com-
plex. Int. 6, 3–21 (1998)

19. Zhao, Y., Kim, J., Filippone, M.: Aggregation algorithm towards large-scale
Boolean network analysis. IEEE Trans. Autom. Control 58(8), 1976–1985 (2013)

http://arXiv.org/abs/cs.PL/0408045

Decidable Models of Integer-Manipulating
Programs with Recursive Parallelism

Matthew Hague1(B) and Anthony Widjaja Lin2(B)

1 Royal Holloway, University of London, London, UK
matthew.hague@rhul.ac.uk

2 Yale-NUS College, Singapore, Singapore
anthony.w.lin@yale-nus.edu.sg

Abstract. We study safety verification for multithreaded programs with
recursive parallelism (i.e. unbounded thread creation and recursion) as
well as unbounded integer variables. Since the threads in each program
configuration are structured in a hierarchical fashion, our model is state-
extended ground-tree rewrite systems equipped with shared unbounded
integer counters that can be incremented, decremented, and compared
against an integer constant. Since the model is Turing-complete, we pro-
pose a decidable underapproximation. First, using a restriction similar
to context-bounding, we underapproximate the global control by a weak
global control (i.e. DAGs possibly with self-loops), thereby limiting the
number of synchronisations between different threads. Second, we bound
the number of reversals between non-decrementing and non-incrementing
modes of the counters. Under this restriction, we show that reachability
becomes NP-complete. In fact, it is poly-time reducible to satisfaction
over existential Presburger formulas, which allows one to tap into highly
optimised SMT solvers. Our decidable approximation strictly generalises
known decidable models including (i) weakly-synchronised ground-tree
rewrite systems, and (ii) synchronisation/reversal-bounded concurrent
pushdown systems with counters. Finally, we show that, when equipped
with reversal-bounded counters, relaxing the weak control restriction by
the notion of senescence results in undecidability.

1 Introduction

Verification of multithreaded programs is well-known to be a challenging prob-
lem. One approach that has proven effective in addressing the problem is to
bound the number of context switches [36,38]. [Recall that a context switch
occurs when the CPU switches from executing one thread to executing a different
thread.] When the number of context switches is fixed, one may adopt pushdown
systems as a model of a single thread and show that reachability for the concur-
rent extension of the abstraction (i.e. multi-pushdown systems) is NP-complete
[38]. This result has paved the way for an efficient use of highly optimised SMT
solvers in verifying concurrent programs (e.g. see [1,18,24]). Note that without
bounding the number of context switches the model is undecidable [37].

In the past decade the work of Qadeer and Rehof [38] has spawned a
lot of research in underapproximation techniques for verifying multithreaded
c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 148–162, 2016.
DOI: 10.1007/978-3-319-45994-3 11

Integer-Manipulating Programs with Recursive Parallelism 149

programs, e.g., see [1,2,4,5,7,14,18,20,22,24,27,28,31,33,35,40,42,42] among
many others. Other than unbounded recursions, some of these results simultane-
ously address other sources of infinity, e.g., unbounded thread creation [5,22,31],
unbounded integer variables [24], and unbounded FIFO queues [1,2].

Contributions. In this paper we generalise existing underapproximation tech-
niques [23,31] so as to handle both shared unbounded integer variables and
recursive parallelism (unbounded thread creation and unbounded recursions).
The paper also provides a cleaner proof of the result in [24]: an NP upper bound
for synchronisation/reversal-bounded reachability analysis of concurrent push-
down systems with counters. We describe the details below.

We adopt state-extended ground-tree rewrite systems (sGTRS) [31] as a
model for multithreaded programs with recursive parallelism (e.g. program-
ming constructs including fork/join, parbegin/parend, and Parallel.For).
Ground-tree rewrite systems (GTRS) are known (see [21]) to strictly subsume
other well-known sequential and concurrent models like pushdown systems [11],
PA-processes [19], and PAD-processes [34], which are known to be suitable for
analysing concurrent programs. [One may think of GTRS as an extension of PA
and PAD processes with return values to parent threads [21].] We then equip
sGTRS with unbounded integer counters that can be incremented, decremented,
and compared against an integer constant.

Since our model is Turing-powerful, we provide an underapproximation of the
model for which safety verification becomes decidable. First, we underapprox-
imate the global control by a weak global control [26,31] (i.e. DAGs possibly
with self-loops), thereby limiting the number of synchronisations between dif-
ferent threads. To this end, we may simply unfold the underlying control-state
graph of the sGTRS (see Sect. 3) in the standard way, while preserving self-loops.
This type of underapproximation is similar to loop acceleration in the symbolic
acceleration framework of [8]. Second, we bound the number of reversals between
non-decrementing and non-incrementing modes of the counters [25]. Under these
two restrictions, reachability is shown to be NP-complete; in fact, it is poly-time
reducible to satisfaction over existential Presburger formulas, which allows one to
tap into highly optimised SMT solvers. Our result strictly generalises the decid-
ability (in fact, NP-completeness) of reachability for (i) weakly-synchronised
ground-tree rewrite systems [31,41], and (ii) synchronisation/reversal-bounded
concurrent pushdown systems with counters [24].

Finally, we show one negative result that delineates the boundary of decid-
ability. If we relax the weak control underapproximation by the notion of senes-
cence (with age restrictions associated with nodes in the trees) [22], then the
resulting model becomes undecidable.

Related Work. Recursively-parallel program analysis was analysed in detail by
Bouajjani and Emmi [10]. However, in contrast to our systems, their model
does not allow processes to communicate during execution. Instead, processes
hold handles to other processes which allow them to wait on the completion
of others, and obtain the return value. They show that when handles can be

150 M. Hague and A.W. Lin

passed to child processes (during creation) then the state reachability problem
is undecidable. When handles may only be returned from a child to its parent,
state reachability is decidable, with the complexity depending on which of a
number of restrictions are imposed.

The work of Bouajjani and Emmi is closely related to branching vector addi-
tion systems [43] which can model a stack of counter values which can be incre-
mented and decremented (if they remain non-negative), but not tested. While
it is currently unknown whether reachability of a configuration is decidable,
control-state reachability and boundedness are both 2ExpTime-complete [17].

Another variant of vector addition systems with recursion are pushdown vec-
tor addition systems, where a single (sequential) stack and several global counters
are permitted. As before, these counters can be incremented and decremented,
but not compared with a value. Reachability of a configuration, and control-state
reachability in these models remain open problems, but termination (all paths
are finite) and boundedness are known to be decidable [30]. For reachability
of a configuration, an under-approximation algorithm is proposed by Atig and
Ganty where the stack behaviour is approximated by a finite index context-free
language [6].

Lang and Löding study boundedness problems over sequential pushdown
systems [29]. In this model, the pushdown system is equipped with a counter
that can be incremented, reset, or recorded. Their model differs from ours first
in the restriction to sequential systems, and second because the counter cannot
effect execution or be decremented: it is a recording of resource usage. These kind
of cost functions have also been considered over static trees [9,13], however, to
our knowledge, they have not been studied over tree rewrite systems.

2 Preliminaries

We write N to denote the set of natural numbers and Z the set of integers.

Trees. A ranked alphabet is a finite set of characters Σ together with a rank
function ρ : Σ �→ N. A tree domain D ⊂ N

∗ is a non-empty finite subset of N∗

that is both prefix-closed and younger-sibling-closed. That is, if ηi ∈ D, then we
also have η ∈ D and, for all 1 ≤ j ≤ i, ηj ∈ D (respectively). A tree over a
ranked alphabet Σ is a pair t = (D,λ) where D is a tree domain and λ : D �→ Σ
such that for all η ∈ D, if λ(η) = a and ρ(a) = n then η has exactly n children
(i.e. ηn ∈ D and η(n + 1) /∈ D). Let TΣ denote the set of trees over Σ.

Context Trees. A context tree over the alphabet Σ with a set of context
variables x1, . . . , xn is a tree C = (D,λ) over Σ �{x1, . . . , xn} such that for each
1 ≤ i ≤ n we have ρ(xi) = 0 and there exists a unique context node ηi such
that λ(ηi) = xi. By unique, we mean ηi �= ηj for all i �= j. We will denote such
a tree C[x1, . . . , xn]. Given trees ti = (Di, λi) for each 1 ≤ i ≤ n, we denote
by C[t1, . . . , tn] the tree t′ obtained by filling each variable xi with ti. That is,
t′ = (D′, λ′) where

Integer-Manipulating Programs with Recursive Parallelism 151

D′ = D ∪ η1 · D1 ∪ · · · ∪ ηn · Dn and λ′(η) =

{

λ(η) if η ∈ D ∧ ∀i.η �= ηi

λi(η′) if η = ηiη
′.

Tree Automata. A bottom-up non-deterministic tree automaton (NTA) over
a ranked alphabet Σ is a tuple T = (Q,Δ,F) where Q is a finite set of states,
F ⊆ Q is a set of final (accepting) states, and Δ is a finite set of rules of the
form (q1, . . . , qn) a→ q where q1, . . . , qn, q ∈ Q, a ∈ Σ and ρ(a) = n. A run of T
on a tree t = (D,λ) is a mapping π : D �→ Q such that for all η ∈ D labelled
λ(η) = a with ρ(a) = n we have (π(η1), . . . , π(ηn)) a→π(η). It is accepting if
π(ε) ∈ F . The language defined by a tree automaton T over alphabet Σ is a set
L(T) ⊆ TΣ of trees over which there exists an accepting run of T .

Parikh Images. Given an alphabet Σ = {γ1, . . . , γn} and a word w ∈ Σ∗, we
write P(w) to denote a mapping ρ : Σ → N, where ρ(a) is defined to be the
number of occurrences of a in w. Given a language L ⊆ Σ∗, we write P(L) to
denote the set {P(w) | w ∈ L}. We say that P(L) is the Parikh image of L.

Presburger Arithmetic. Presburger formulas are first-order formulas over
integers with addition. Here, we use existential Presburger formulas ϕ(x,y) :=
∃xϕ, where (i) x and y are sets of variables, and (ii) ϕ is a boolean combina-
tion of expressions

∑m
i=1 aizi ∼ b for variables z1, . . . , zm ∈ x ∪ y, constants

a1, . . . , am, b ∈ Z, and ∼ ∈ {≤,≥, <,>,=} with constants represented in binary.
A solution to ϕ is a valuation b : y �→ Z to y such that ϕ(x,b) is true. The
formula ϕ is satisfiable if it has a solution. Satisfiability of existential Presburger
formulas is known to be NP-complete [39].

3 Formal Models

In this section, we will define our formal models, which are based on ground-
tree rewrite systems. Ground-tree rewrite systems (GTRSs) [15] permit subtree
rewriting where rules are given as a pair of ground-trees. In the sequel, we use the
extension proposed by Löding [32] where NTA (instead of ground trees) appear
in the rewrite rules. Hence, a single rule may correspond to an infinite number
of concrete rules (i.e. containing concrete trees).

Ground Tree Rewrite Systems with State and Reversal-Bounded
Counters. To capture synchronisations between different subthreads, we fol-
low [26,31,41] and extend GTRS with state (a.k.a. global control). The resulting
model is denoted by sGTRS (state-extended GTRS). To capture integer vari-
ables, we further extend the model with unbounded integer counters, which can
be incremented, decremented, and compared against an integer constant. Since
Minsky’s machines can easily be encoded in such a model, we apply a stan-
dard underapproximation technique: reversal-bounded analysis of the counters

152 M. Hague and A.W. Lin

[23,25]. This means that one only analyses executions of the machines whose
number of reversals between nondecrementing and nonincrementing modes of
the counters is bounded by a given constant r ∈ N (represented in unary). The
resulting model will be denoted by rbGTRS. We will now define this model in
more detail.

An atomic counter constraint on counter variables C = {c1, . . . , ck} is an
expression of the form ci ∼ v, where v ∈ Z and ∼∈ {<,≤,=,≥, >}. A counter
constraint θ on C is a boolean combination of atomic counter constraints on
C. Given a valuation ν : C �→ Z to the counter variables, we can determine
whether θ[ν] is true or false by replacing a variable c by ν(c) and evaluating
the resulting boolean expressions in the obvious way. Let ConsC denote the set
of all counter constraints on C. Intuitively, these formulas will act as guards to
determine whether certain transitions can be fired. Given two counter valuations
ν and μ we define ν + μ as the pointwise addition of the valuations. That is,
(ν + μ)(c) = ν(c) + μ(c).

Given a sequence of counter values, a reversal occurs when a counter switches
from being incremented to being decremented or vice-versa. For example, if
the values of a counter c along a run are 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 2, 3, then the
number of reversals of c is 2 (reversals occur in between the overlined positions).
A sequence of valuations is reversal-bounded whenever the number of reversals
is the sequence is bounded.

Definition 1 (r-Reversal-Bounded). For a counter c from a set of counters
C, a sequence ν1, . . . , νn of counter valuations over C is r-reversal-bounded for
c whenever we can partition ν1, . . . , νn into (r +1) sequences A1, . . . , Ar+1 (with
ν0, . . . , νn = A1, . . . , Ar+1) such that for all 1 ≤ i ≤ r there is some ∼∈ {≤,≥}
such that for all νj , νj+1 appearing together in Ai, we have νj(c) ∼c νj+1(c).

We define sGTRS with reversal-bounded counters (rbGTRS).

Definition 2 (sGTRSs with r-Reversal-Bounded Counters). We define
state-extended ground tree rewrite system with r-reversal-bounded counters
(rbGTRS) as a tuple G = (P, Σ, Γ,R, C, r) where P is a finite set of control-
states, Σ is a finite ranked alphabet, Γ is a finite alphabet of output symbols (i.e.
transition labels), C is a finite set of counters, R is a finite set of rules of the
form (p1, T1, θ)

γ→ (p2, T2, μ) where p1, p2 ∈ P, γ ∈ Γ , θ ∈ ConsC , μ ∈ C �→ Z,
and T1, T2 are NTAs over Σ.

In the sequel, we will omit mention of the number r in the tuple G if it is clear
from the context.

A configuration of an sGTRS with counters is a tuple α = (p, t, ν) where p is
a control-state, t a tree, and ν a valuation of the counters. We have a transition
(p1, t1, ν1)

γ−→ (p2, t2, ν2) whenever there is a rule (p1, T1, θ)
γ→ (p2, T2, μ) ∈ R

such that: (i) (dynamics of counters) θ[ν1] is true and ν2 = ν1 + μ, and (ii)
(dynamics of trees) t1 = C[t′1] for some context C and tree t′1 ∈ L(T1) and
t2 = C[t′2] for some tree t′2 ∈ L(T2). A run π over γ1 . . . γn−1 is a sequence

(p1, t1, ν1)
γ1−→ · · · γn−1−−−→ (pn, tn, νn)

Integer-Manipulating Programs with Recursive Parallelism 153

such that for all 1 ≤ i < n we have (pi, ti, νi)
γi−→ (pi+1, ti+1, νi+1) is a transition

of G and for each c ∈ C the sequence ν1, . . . , νn is r-reversal-bounded for c. We
say that γ1 . . . γn−1 is the output string of π. We write (p, t, ν)

γ1...γn−−−−→ (p′, t′, ν′)
(or simply (p, t, ν) →∗ (p′, t′, ν′)) whenever there is a run from (p, t, ν) to
(p′, t′, ν′) over γ1 . . . γn. Let ε denote the empty output symbol.

Whenever we wish to discuss sGTRSs without counters, we simply omit
the counter components. That is, we have configurations of the form (p, t) and
transitions of the form (p1, T1)

γ−→ (p2, T2). The standard notion of GTRS (i.e.
not state-extended) [32] is simply sGTRS without counters with only one state.

We next define the problems of (global) reachability. To this end, we use a
tree automaton T (resp. an existential Presburger formula ϕ) to represent the
tree (resp. counter) component of a configuration. More precisely, a symbolic
config-set of an rbGTRS G = (P, Σ, Γ,R, C, r) is a tuple (p, T , ϕ), where p ∈ P,
T is an NTA over Σ, and ϕ(x̄) is an existential Presburger formula with free
variables x̄ = {xc}c∈C (i.e. one free variable for each counter). Each symbolic
config-set (c, T , ϕ) represents a set of configurations of G defined as follows:
[[(p, T , ϕ)]] := {(p, t, ν) : t ∈ L(T), ϕ(ν) is true}.

Global Reachability

Instance: an rbGTRS G and two symbolic config-sets (p1, T1, ϕ1) (p2, T2, ϕ2)
Question: Decide whether (p1, t1, ν1) →∗ (p2, t2, ν2), for some (p1, t1, ν1) ∈

[[(p1, T1, ϕ1)]] and (p2, t2, ν2) ∈ [[(p2, T2, ϕ2)]]

The problem of control-state reachability can be defined by restricting (i) the
tree automata T1 and T2 to accept, respectively, a singleton tree and the set of
all trees, and (ii) the solutions to the formulas ϕ1 and ϕ2 are, respectively, {ν0}
(where ν0 is the valuation assigning 0 to all counters) and the set of all counter
valuations.

Remark 3. When we measure the complexity of reachability for rbGTRS, the
number r of reversals is represented in unary, while the numbers in counter con-
straints and valuations are represented in binary. This is consistent with the stan-
dard representation of numbers in previous work on reversal-bounded counter
machines (e.g. see [23,24]). The unary representation for r can be justified by the
fact that bugs can often be discovered within a small number of reversals.

Weakly-Synchronised Ground Tree Rewrite Systems. The control-state
and global reachability problems for sGTRS are known to be undecidable [12,
21]. The problems become NP-complete for weakly-synchronised sGTRS [31,41],
where the underlying control-state graph (where there is an edge between p1 and
p2 whenever there is a transition (p1, T1)

γ−→ (p2, T2)) may only have cycles of
length 1 (i.e. self-loops), i.e., a DAG (directed acyclic graph) possibly with self-
loops. Underapproximation by a weak control is akin to loop acceleration in the
symbolic acceleration framework of [8]. We extend the definition to rbGTRSs. The
original definition can be easily obtained by omitting the counter components.

154 M. Hague and A.W. Lin

We define the underlying control graph of an rbGTRS G = (P, Σ, Γ,R, C)
as a tuple (P,Δ) where Δ =

{

(p1, p2) | (p1, T1, θ)
γ→ (p1, T2, μ) ∈ R

}

.

Definition 4 (Weakly-Synchronised rbGTRS). An rbGTRS is said to be
weakly-synchronised if its underlying control graph (P,Δ) is a DAG possibly
with self-loops.

4 Decidability

In this section we will prove the main result of the paper:

Theorem 5. Global reachability for weakly synchronised rbGTRS is NP-
complete. In fact, it is poly-time reducible to satisfiability over existential Pres-
burger formulas.

To prove this theorem, we fix notation for the input to the problem: an rbGTRS
G = (P, Σ, Γ,R, C, r) and two symbolic config-sets (p1, T1, ϕ1), (p2, T2, ϕ2) of
G. Let C = {ci}k

i=1. The gist of the proof is as follows. From G, we construct a
new sGTRS G′ (without counters) by encoding the dynamics of the counters in
the output symbols of G′. Of course, G′ has no way of comparing the values of
counters with constants. [In this sense, G′ only overapproximates the behavior
of G.] To deal with this problem, we use the result of [31] to compute an existen-
tial Presburger formula ψ capturing the Parikh images of the set of all output
strings of G′ from (p1, T1, ϕ1) to (p2, T2, ϕ2). The final formula is ψ ∧ ψ′, where
ψ is a constraint asserting that the desired counter comparisons are performed
throughout runs of G′. We sketch the details of the construction below.

Modes of the Counters. The first notion that is crucial in our proof is that of
mode of a counter [23,25], which is an abstraction of the values of a counter in
a run of an rbGTRS containing three pieces of information: (i) the region of the
counter value (i.e. how it compares to constants occurring in counter constraints),
(ii) the number of reversals that has been performed by each counter (between
0 and r), and (iii) whether a counter is currently non-decrementing (↑) or non-
incrementing (↓). A mode vector is simply a k-tuple of modes, one mode for each
of the k counters. We now formalise these notions.

Let d1 < . . . < dm be the integer constants appearing in the counter con-
straints in G. This sequence of constants gives rise to the set REG of regions
defined as REG := {A0, . . . , Am, B1, . . . , Bm}, where Bi := {di} (where 1 ≤ i ≤
m), Ai := {n ∈ Z : di < n < di+1} (where 1 ≤ i < m), A0 := {n ∈ Z : n < d1},
and Am := {n ∈ Z : n > dm}. A mode is simply a tuple in REG × [0, r] × {↑, ↓}.
A mode vector is simply a tuple in Modes := REGk × [0, r]k × {↑, ↓}k.

Building the sGTRS G′. We might be tempted to build G′ by first removing
the counters from G and then embedding Modes into the control-states G′.
This, however, causes two problems. First, the number of control-states becomes
exponential in k. Second, the resulting system is no longer weakly synchronised

Integer-Manipulating Programs with Recursive Parallelism 155

even though G originally was weakly synchronised. To circumvent this problem,
we adapt a technique from [23]. Every run π of G from (p1, T1, ϕ1) to (p2, T2, ϕ2)
can be associated with a sequence σ of mode vectors recording the informa-
tion (i)–(iii) for each counter. The crucial observation is that there are at most
Nmax := 2mk(r + 1) different mode vectors in σ. This is because a counter can
only go through at most 2m regions without incurring a reversal. For this rea-
son, we may use the control-states of G′ to store the number of mode vectors
that G has gone through, while the actual mode vector guessed by G′ will be
made “visible” in the output strings of G′. That way, we can use an additional
existential Presburger formula ψ′ (see below) to enforce that the run of G′ faith-
fully simulates runs of G. In addition, the shape of the control-states (DAG with
self-loops) of G′ is preserved. [The product graph of two DAGs with self-loops
is also a DAG with self-loops.] We detail the construction below.

Define the weakly-synchronised sGTRS G′ = (P ′, Σ, Γ ′,R′) as follows.
Let P ′ := P × [0, Nmax]. The output alphabet Γ ′ is defined as Γ × R ×
[0, Nmax] × {0, 1}, where the boolean flag is used to denote whether the tran-
sition taken changes the mode. We define R′ as follows. For each rule τ =

(p, T , θ)
γ→ (p′, T ′, μ) in R, we add the rule ((p, i), T)

(γ,τ,i,0)−−−−−→ ((p′, i), T ′) for

each i ∈ [0, Nmax], and ((p, i), T)
(γ,τ,i,1)−−−−−→ ((p′, i + 1), T ′) for each i ∈ [0, Nmax).

Since G is weakly-synchronised and the mode counter never decreases, it fol-
lows that G′ is weakly-synchronised too. Note also that this construction can be
performed in polynomial-time.

Constructing the Formula ψ∧ψ′. As we mentioned, ψ is an existential Presburger
formula encoding the Parikh image P(L) of the set L of all output strings of G′

from ((p1, 0), T1) to (S, T2), where S = {p2}× [0, Nmax]. More precisely, the set z
of free variables of ψ include za for each a ∈ Γ ′. Furthermore, for each valuation
μ ∈ z �→ Z, it is the case that ψ(μ) is true iff μ ∈ P(L). Such a formula is known
to be polynomial-time computable since G′ is a weakly-synchronised sGTRS
[31].

Recall that ψ′ should assert that the desired counter comparisons are per-
formed throughout runs of G′. To this end, the formula ψ′ will have extra vari-
ables for guessing the existence of a sequence of Nmax distinct mode vectors
through runs of G′. More precisely, the formula ψ′ is the conjunction

ϕ1(x) ∧ ϕ2(y) ∧ Dom(m0, . . . ,mNmax) ∧ Init(m0)∧
GoodSeq(m0, . . . ,mNmax) ∧ Respect(z,m0, . . . ,mNmax) ∧ EndVal(x,y, z).

The set x consists of variables xi (1 ≤ i ≤ k) which contain the initial value of
the ith counter. Similarly, the set y consists of variables yi (1 ≤ i ≤ k) which
contain the final value of the ith counter. Each mi denotes a set of variables for
the ith mode vector defined as follows:

– regi
j (for each j ∈ [1, k]) — to encode which of the 2m+1 possible regions the

jth counter is in.
– revi

j (for each j ∈ [1, k]) — to encode how many reversals have been used up
by the jth counter.

156 M. Hague and A.W. Lin

– arri
j (for each j ∈ [1, k]) — to encode whether the jth counter is non-

incrementing or non-decrementing.

We detail each subformula below.
The subformula Dom asserts that each variable in mi (for each i) has the right

domain (i.e. range of integer values). More precisely, for each j ∈ [1, k], we add
the conjuncts: (i) 0 ≤ regi

j ≤ 2m, (ii) 0 ≤ revi
j ≤ r, and (iii) 0 ≤ arri

j ≤ 1. For
the first constraint, we use an even number of the form 2i to represent the region
Ai, and an odd number 2i − 1 to represent the region Bi. The last constraint
simply encodes non-decrementing (↑) as 1, and non-incrementing (↓) as 0.

The subformula Init asserts that m0 is an initial mode vector. More pre-
cisely, for each j ∈ [1, k], we add the conjuncts rev0

j = 0.
The subformula GoodSeq asserts that m0, . . . ,mNmax forms a valid sequence

of mode vectors. More precisely, for each i ∈ [0, Nmax) and each j ∈ [1, k],
we add the conjuncts: (i) arri

j �= arri+1
j ⇒ revi+1

j = revi
j + 1, (ii) arri

j =
arri+1

j ⇒ revi+1
j = revi

j , (iii) regi
j < regi+1

j ⇒ arri+1
j = 1, and (iv) regi

j >

regi+1
j ⇒ arri+1

j = 0. For example, the first constraint asserts that a change in
the direction (non-incrementing or non-decrementing) of the counter incurs one
reversal. The other constraints are similar.

The subformula Respect asserts that the Parikh image z of the run of G′

respects the sequence m0, . . . ,mNmax of mode vectors. In effect, this subformula
ensures that G′ faithfully simulates G. Firstly, we need to assert that the jth
counter values at the start and at the end of the ith mode of G′ (which are
encoded in z) are in the right regions regi

j . To state this more precisely, for each
rule τ = (p, T , θ)

γ→ (p′, T ′, μ) in R, we let μj(τ) denote the value μ(cj). For each
i ∈ [0, Nmax] and j ∈ [1, k], we denote by the notation StartCounteri

j the term
xj+

∑i−1
s=0

∑

(γ,τ,s,l) μj(τ)×z(γ,τ,s,l), where γ, τ , and l, range over, respectively, Γ ,
R, and {0, 1}. Similarly, we denote by EndCounteri

j the term StartCounteri
j +

∑

(γ,τ,i,0) μj(τ)×z(γ,τ,i,0). We add the conjuncts: (i) regi
j = 2h ⇒ EndCounteri

j ∈
Ah, for each h ∈ [0,m], and (ii) regi

j = 2h + 1 ⇒ EndCounteri
j ∈ Bh, for each

h ∈ [0,m). [Note that formulas of the form g ∈ A, for a Presburger term g
and a set S ∈ {A0, . . . , Am, B1, . . . , Bm}, can be easily replaced by quantifier-
free Presburger formulas, e.g., g ∈ A0 stands for g < d1.] To ensure that the
initial condition is correct, for each j ∈ [1, k], we add the following conjuncts:
(1) StartCounter0j ∈ Ah ⇒ reg0j = 2h, and (2) StartCounter0j ∈ Bh ⇒ reg0j =
2h + 1. Secondly, we need to state that the transitions executed in each mode
are valid (i.e. satisfy the counter constraints). More precisely, for each γ ∈ Γ ,
τ ∈ R, i ∈ [0, Nmax], and l ∈ {0, 1}, if θ is the counter constraint in τ , we add
the conjunct z(γ,τ,i,l) > 0 ⇒ θ(StartCounteri

1, . . . , StartCounter
i
k). Next we

assert that, when the jth counter is non-incrementing (resp. non-decrementing),
only non-negative (resp. non-positive) counter increments are permitted. More
precisely, for each i ∈ [0, Nmax], j ∈ [1, k], l ∈ {0, 1}, and τ ∈ R, if μj(τ) > 0,
then add the conjunct arri

j = 0 ⇒ z(γ,τ,i,l) = 0; if μj(τ) < 0, then add the
conjunct arri

j = 1 ⇒ z(γ,τ,i,l) = 0.

Integer-Manipulating Programs with Recursive Parallelism 157

Finally, the subformula EndVal simply asserts that, starting from the initial
counter value x and following the transitions z, the end counter values are y.
To this end, we can simply add the conjunct yj = EndCounterNmax

j for each
j ∈ [1, k].

This concludes the formula construction. It is immediate that G′ faithfully
simulates G iff ψ ∧ ψ′ is true. In addition, the formula construction runs in
polynomial-time. Since satisfiability over existential Presburger formulas is NP-
complete [39], the NP upper bound for Theorem 5 follows. NP-hardness already
holds for the restricted model where the tree component is a stack [23].

5 Senescent Ground-Tree Rewrite Systems

A natural question arising from the result on weakly synchronised rbGTRS is
whether the “weakly synchronised” restriction can be relaxed while maintaining
decidability. It is known that allowing arbitrary underlying control-state graphs
leads to undecidability of reachability even without reversal bounded counters.
In this section we explore the notion of senescence [22], which is more general
than the weakly synchronised restriction, but still permits a decidable reachabil-
ity problem (without counters). After giving the formal definition of senescent
GTRS, we show the following result.

Theorem 6 (Control-State Reachability of Senescent rbGTRS). The
control-state reachability problem for senescent rbGTRS is undecidable.

5.1 Model Definition

Senescence allows the underlying control-state graph to have arbitrary cycles
(instead of only self-loops). For sGTRS, control-state reachability is decidable
under an “age restriction” that is imposed on the nodes that can be rewrit-
ten. That is, when the control-state changes, the nodes in the tree age by one
timestep. Once a node reaches an a priori fixed age r, it becomes fixed (i.e.
cannot be rewritten by further transitions in the run).

p

a 2

b 1 c 1

d 0

p

a 3

b 2 a 0

b 0 c 0

(a) A transition changing the control-state.

p

a 2

b 1 c 1

d 0

p

a 2

b 1 a 0

b 0 c 0

(b) A transition that does not change the
control-state.

Fig. 1. Transitions of a senescent GTRS.

Before the formal definition, two example transitions of a senescent rbGTRS
are shown in Fig. 1. A configuration is written as its control-state and counter

158 M. Hague and A.W. Lin

values ((p, ν) or (p′, ν′)) with the tree appearing below. In the tree, the label of
each node appears in the centre of the node. The ages of each node is depicted
as a subscript on the right. Dotted lines are used to indicate the part of the tree
rewritten by a rule. In Fig. 1a the transition changes the control-state, causing
the age of the nodes that are not rewritten to increase by 1. The rewritten
nodes are given the age 0 as they are new, fresh, nodes. The situation when the
control-state does not change is shown in Fig. 1b. In this case, the nodes that are
not rewritten maintain the same age. The senescence restriction disallows runs
where nodes older than a fixed age are rewritten.

More formally, given a run

(p1, t1, ν1)
γ1−→ · · · γn−1−−−→ (pn, tn, νn)

of an rbGTRS, let C1, . . . , Cn−1 be the sequence of tree contexts used in the
transitions from which the run was constructed. That is, for all 1 ≤ i < n, we
have ti = Ci[touti] and ti+1 = Ci

[

tini+1

]

where (pi, Ti, θi)
γi−→ (pi+1, T ′

i , μi) was the
rewrite rule used in the transition and touti ∈ L(Ti), tini+1 ∈ L(T ′

i) were the trees
that were used in the tree update.

For a given position (pi, ti, νi) in the run and a given node η in the domain
of ti, the birthdate of the node is the largest 1 ≤ j ≤ i such that η is in the
domain of Cj

[

tinj
]

and η is in the domain of Cj [x] only if its label is x. The age
of a node is the cardinality of the set {i′ | j ≤ i′ < i ∧ pi′ �= pi′+1}. That is, the
age is the number of times the control-state changed between the jth and the
ith configurations in the run.

A lifespan-restricted run with a lifespan of r is a run such that each transition
(pi, Ci[touti], νi)

γi−→
(

pi+1, Ci

[

tini+1

]

, νi+1

)

has the property that all nodes η in touti

have an age of at most r. That is, more precisely, that all nodes η in the domain
of Ci[touti] but only in the domain of Ci[x] if the label is x have an age of at
most r.

Definition 7 (Senescent rbGTRS). A senescent rbGTRS with lifespan r is
an rbGTRS G = (P, Σ,R, C) where runs are lifespan-restricted with a lifespan
of r.

Note that the senescence restriction is weaker than the weakly-synchronised
restriction in that the number of times the finite control could change state
is unbounded. In fact, a node could be affected by an unbounded number of
control-state changes so long as it is always rewritten without becoming fixed
(i.e. reaches age r).

5.2 Undecidability

We show control-state reachability for senescent rbGTRSs is undecidable in the
full version, and give the intuition here. In the following, we refer to nodes whose
age is within the age bound as live. We refer to nodes that are not live as fixed.
Note, each time a node is rewritten, its age is reset to zero. Thus, we can keep

Integer-Manipulating Programs with Recursive Parallelism 159

leaves of the tree live by allowing them to rewrite to themselves. That is, for
all symbols a we wish to keep live and all control-states p, we have a transition
(p, a, θ)

γ→ (p, a, μ) where θ is a formula that is always satisfied, and μ assigns 0 to
all counters (i.e. the rule does not depend on, nor change the counter values). In
addition, by omitting the above rules for certain control-states, we can prevent
a node from keeping itself fresh in certain situations.

We follow the proof that reachability for reset Petri nets is undecidable [3].
We simulate a two-counter machine. Testing whether such a machine can reach
a given control-state while having counters with value zero is undecidable.

Let the two counters be c1 and c2. In the tree, we track the value of a
counter c ∈ {c1, c2} by the number of live leaves labelled with the counter
name c. E.g. the tree •(c1, •(c2, ∗)) represents the situation where both counters
have value 1, assuming these leaves are live. We will always use internal nodes
labelled •. The node ∗ is for adding new leaves when required. To increment
a counter we add a new leaf labelled c. To decrement a counter, we rewrite
a leaf labelled c to a null label. Thus, we can easily increment and decrement
counters. Zero tests, however, are more subtle. To help with this, we track, using
reversal-bounded counters, the number of increments made to each counter, and
in separate reversal-bounded counters, the number of decrements. That is, we
have reversal bounded counters

{

c+1 , c−
1 , c+2 , c−

2

}

. When we simulate an increment
of c1 we add a leaf and increment c+1 . When we simulate a decrement of c2 we
rewrite a leaf to a null character and increment c−

1 . Similarly for c2. We simulate
zero tests as follows.

To simulate a zero test on a counter c we perform the following checks. First,
we “reset” the counter to zero by forcing enough control-state changes to fix the
nodes corresponding to the counter. That is, we move to a control-state p where
all leaf labels may rewrite to themselves, except those labelled c. After the move
to p all leaves will have age 1. Leaves not labelled c can refresh their age to 0 by
rewriting themselves. Leaves labelled c will stay aged 1. Then, we move to the
target control-state of the transition we are simulating. Thus, after these moves,
all leaves labelled c will reach age 2, while all other nodes will only reach age
1. Thus, if our lifespan is 2, nodes labelled c will no longer be live. That is, the
simulated value of c in the tree has been forced to 0.

After this reset operation, the counter value is definitely zero. However, we
did not enforce that the counter value was zero before the transition. Recall, we
track the number of increments and decrements to c in the reversal bounded
counters. If the counter was not zero before the test, there will be a discrep-
ancy with the reversal bounded counters: more increments will be recorded than
decrements. E.g. for counter c1 we will have c+1 > c−

1 . This cannot be corrected
by the simulation. Thus, at the end of the run, we check whether the number
of increments is equal to the number of decrements. If not, we know the run
made a spurious transition. That is, it performed a zero test transition when
the counter was not zero. If no spurious transitions were made, we know the
two-counter machine has a corresponding run. This completes the gist of the
simulation of a two-counter machine.

160 M. Hague and A.W. Lin

6 Extensions and Future Work

We proposed sGTRS with counters as a model of recursively parallel programs
with unbounded recursion, thread creation, and integer variables. To obtain
decidability, we gave an underapproximation in the form of weak sGTRS with
reversal-bounded counters. We showed that the reachability problem for this
model is NP-complete; in fact, polynomial-time reducible to satisfiability of lin-
ear integer arithmetic, for which highly optimised SMT solvers are available
(e.g. Z3 [16]). Additionally, we explored the possibility of relaxing the weakly-
synchronised constraint to that of senescence, and showed that the resulting
model has an undecidable control-state reachability problem.

One possible avenue of future work is to investigate what happens when local
integer values are permitted. That is, reversal-bounded counters can be stored on
the nodes of the tree. We may also study techniques that allow nodes to contain
multiple labels, permitting the modelling of multiple local variables without an
immediate exponential blow up.

Acknowledgments. We thank anonymous reviewers for their helpful feedback. This
work was supported by the Engineering and Physical Sciences Research Council
[EP/K009907/1] and Yale-NUS College Startup Grant.

References

1. Abdulla, P.A., Atig, M.F., Cederberg, J.: Analysis of message passing programs
using SMT-solvers. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 272–286. Springer, Heidelberg (2013)

2. Aiswarya, C., Gastin, P., Narayan Kumar, K.: Verifying communicating multi-
pushdown systems via split-width. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 1–17. Springer, Heidelberg (2014)

3. Araki, T., Kasami, T.: Some decision problems related to the reachability problem
for petri nets. Theor. Comput. Sci. 3(1), 85–104 (1977)

4. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
121–133. Springer, Heidelberg (2008)

5. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. Log. Methods Comput. Sci. 7(4), 4:1–
4:48 (2011)

6. Atig, M.F., Ganty, P.: Approximating petri net reachability along context-free
traces. In: FSTTCS, pp. 152–163 (2011)

7. Atig, M.F., Kumar, K.N., Saivasan, P.: Adjacent ordered multi-pushdown systems.
Int. J. Found. Comput. Sci. 25(8), 1083–1096 (2014)

8. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005)

9. Blumensath, A., Colcombet, T., Kuperberg, D., Parys, P., Vanden Boom, M.:
Two-way cost automata, cost logics over infinite trees. In: CSL-LICS, pp. 16:1–
16:9 (2014)

Integer-Manipulating Programs with Recursive Parallelism 161

10. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. ACM Trans.
Program. Lang. Syst. 35(3), 10 (2013)

11. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

12. Bozzelli, L., Kret́ınský, M., Rehák, V., Strejcek, J.: On decidability of LTL model
checking for process rewrite systems. Acta Inform. 46(1), 1–28 (2009)

13. Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: LICS, pp.
70–79 (2010)

14. Czerwinski, W., Hofman, P., Lasota, S.: Reachability problem for weak multi-
pushdown automata. Log. Methods Comput. Sci. 9(3), 1–29 (2013)

15. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:
LICS, pp. 242–248 (1990)

16. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Demri, S., Jurdzinski, M., Lachish, O., Lazic, R.: The covering and boundedness
problems for branching vector addition systems. J. Comput. Syst. Sci. 79(1), 23–38
(2013)

18. Esparza, J., Ganty, P., Poch, T.: Pattern-based verification for multithreaded pro-
grams. ACM Trans. Program. Lang. Syst. 36(3), 9:1–9:29 (2014)

19. Esparza, J., Podelski, A.: Efficient algorithms for pre∗ and post∗ on interprocedural
parallel flow graphs. In: POPL, pp. 1–11 (2000)

20. Ganty, P., Majumdar, R., Monmege, M.: Bounded underapproximations. FMSD
40(2), 206–231 (2012)

21. Göller, S., Lin, A.W.: Refining the process rewrite systems hierarchy via ground
tree rewrite systems. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 543–558. Springer, Heidelberg (2011)

22. Hague, M.: Senescent ground tree rewrite systems. In: CSL-LICS, pp. 48:1–48:10
(2014)

23. Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759.
Springer, Heidelberg (2011)

24. Hague, M., Lin, A.W.: Synchronisation- and reversal-bounded analysis of multi-
threaded programs with counters. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 260–276. Springer, Heidelberg (2012)

25. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

26. Křet́ınský, M., Řehák, V., Strejček, J.: Extended process rewrite systems: expres-
siveness and reachability. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004.
LNCS, vol. 3170, pp. 355–370. Springer, Heidelberg (2004)

27. La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 116–128. Springer,
Heidelberg (2014)

28. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent pro-
grams under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

29. Lang, M., Löding, C.: Modeling and verification of infinite systems with resources.
Log. Methods Comput. Sci. 9(4), 1–39 (2013)

30. Leroux, J., Praveen, M., Sutre, G.: Hyper-ackermannian bounds for pushdown
vector addition systems. In: CSL-LICS, pp. 63:1–63:10 (2014)

162 M. Hague and A.W. Lin

31. Lin, A.W.: Weakly-synchronized ground tree rewriting. In: Rovan, B., Sassone, V.,
Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 630–642. Springer, Heidel-
berg (2012)

32. Löding, C.: Reachability problems on regular ground tree rewriting graphs. Theory
Comput. Syst. 39(2), 347–383 (2006)

33. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL, pp.
283–294 (2011)

34. Mayr, R.: Decidability and complexity of model checking problems for infinite-state
systems. Ph.D. thesis, TU-Munich (1998)

35. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI, pp. 446–455 (2007)

36. Qadeer, S.: The case for context-bounded verification of concurrent programs. In:
Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS, vol. 5156, pp.
3–6. Springer, Heidelberg (2008)

37. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. Trans. Program. Lang. Syst. (TOPLAS) 22, 416–430 (2000)

38. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

39. Scarpellini, B.: Complexity of subcases of Presburger arithmetic. Trans. AMS
284(1), 203–218 (1984)

40. Suwimonteerabuth, D., Esparza, J., Schwoon, S.: Symbolic context-bounded analy-
sis of multithreaded Java programs. In: Havelund, K., Majumdar, R., Palsberg, J.
(eds.) SPIN 2008. LNCS, vol. 5156, pp. 270–287. Springer, Heidelberg (2008)

41. To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking
over infinite systems. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 221–
236. Springer, Heidelberg (2010)

42. Torre, S.L., Madhusudan, P., Parlato, G.: A robust class of context-sensitive lan-
guages. In: LICS, pp. 161–170. IEEE Computer Society (2007)

43. Verma, K.N., Goubault-Larrecq, J.: Karp-Miller trees for a branching extension of
VASS. Discret. Math. Theor. Comput. Sci. 7(1), 217–230 (2005)

Robot Games with States in Dimension One

Reino Niskanen(B)

Department of Computer Science, University of Liverpool, Liverpool, UK
r.niskanen@liverpool.ac.uk

Abstract. A robot game with states is a two-player vector addition
game played on integer lattice Z

n. Both players have their own control
states and in each turn the vector chosen by a player, according to his/her
internal control structure, is added to the current configuration vector of
the game. One of the players, called Eve, tries to play the game from the
initial configuration to the origin while the other player, Adam, tries to
avoid the origin. The problem is to decide whether or not Eve has a win-
ning strategy. In this paper we prove that deciding the winner in a robot
game with states in dimension one is EXPSPACE-complete. Addition-
ally we study a subclass of robot games with states where deciding the
winner is in EXPTIME.

Keywords: Reachability games · Vector addition game · Decidability ·
Winning strategy

1 Introduction

There is a growing interest in the area of infinite-state games. Two-player games
provide a powerful framework for problems related to verification and refinement
of reactive systems [3], and have deep connections with automata theory and
logic [17,23]. Infinite-state games can be classified according to the winning
conditions, such as parity [2], energy [12], counter reachability, or a combination
of two or more winning conditions [7].

Counter reachability games are two-player games played on a labelled
directed graph. The vertices of the graph are partitioned into two sets, one for
Eve, another for Adam. Starting from the initial vertex, the owner of a current
vertex chooses an outgoing edge and adds its label to the counters. The goal of
Eve is to reach a particular vertex with a particular counter value, while Adam
tries to avoid it. The associated decision problem is to decide whether Eve has a
winning strategy from a given initial configuration to the target configuration.
Counter reachability games, and closely related variants, have been extensively
studied [1,5,6,14–16,22].

In [22], it was proved that counter reachability games are undecidable start-
ing from dimension two (as are most of the variants). For one-dimensional
games it was proven that they are in EXPSPACE, and in [16] that the games
are EXPSPACE-hard and thus EXPSPACE-complete. Robot games are a
minimalistic subclass of counter reachability games, proposed by Doyen and
Rabinovich [11], where the graph consists of two vertices, one for Eve and one
c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 163–176, 2016.
DOI: 10.1007/978-3-319-45994-3 12

164 R. Niskanen

for Adam, and no self-loops. In other words, the players have no internal struc-
ture and each move is available in every turn. As the state structure is very
simple, it was hoped that robot games would be significantly easier to solve
than general counter reachability games. Unfortunately, that did not hold for
higher dimensions. First, it was proved in [21] that robot games are undecid-
able starting from dimension three and later it was improved to two in [20]. In
dimension one, robot games are indeed easier than counter reachability games
as was shown in [4] where an EXPTIME algorithm was presented along with
a matching lower bound.

In this paper, we consider an extension of robot games, where both play-
ers have internal control states, called robot games with states (RGS). It was
proved in [21], and restated in [20], that robot games with states are undecid-
able starting from dimension two. Unlike counter reachability games and robot
games, one-dimensional robot games with states have not been studied before.
Our main result is to prove that robot games with states in dimension one are
EXPSPACE-complete by presenting a mutual reduction between robot games
with states and counter reachability games. Note that this is not obvious as the
games have essential differences. In a counter reachability game, since the game
is played on a graph, a choice of a player, say Eve, affects from which state
Adam moves next. In fact, it is not guaranteed that Adam will move at all, as
it is possible for Eve to move only between her states. On the other hand, in
robot games with states, the next state of a player is determined only by his or
her previous move.

We construct a one-dimensional robot game with states that can simulate any
one-dimensional counter reachability game such that Eve has a winning strategy
in the RGS if and only if she has a winning strategy in the counter reachability
game. In the constructed robot game with states Eve has n+1 states, where the
counter reachability game has n vertices, and Adam has only one state.

Seeing how adding states for Eve increases complexity from robot games’
EXPTIME to robot games with states’ EXPSPACE, we consider a state
structure of Adam that does not increase the complexity of the game. We show
that deciding the winner in one-dimensional robot game with states, where Eve
is stateless and Adam’s states are flat, is in EXPTIME. Flat automata have
been studied in various contexts [8–10,18,19] and have been shown to be a
fruitful tool in verification of counter automata. Flat automata is a subclass
of automata where the automaton does not have nested loops. This particular
structure allows us to break a robot game with states into several stateless games,
that can be solved in EXPTIME. The main challenge is in connecting these
separate games. As Adam’s underlying state structure is flat, there are only
finitely many transitions from one game to another. This fact together with the
particular structure of winning sets constructed by the algorithm for a stateless
game of [4] provide us with necessary tools to decide the winner in EXPTIME.

The paper is organized as follows. In the next section we introduce the
notation and definitions used throughout the paper. In the third section, we
prove that deciding the winner in one-dimensional robot games with states is

Robot Games with States in Dimension One 165

EXPSPACE-complete. In the fourth section, we consider flat robot games with
states and prove that, in dimension one, deciding the winner is EXPTIME-
complete.

2 Notation and Definitions

We denote the sets of all integers, non-negative and non-positive integers by
Z,Z− and Z

+ respectively. By 0n we denote the n-dimensional zero vector. An
open interval (a, b) is a subset of Z containing all the integers larger than a and
smaller than b. A closed interval [a, b] is (a, b) ∪ {a, b} and half-open intervals
are defined similarly. Let X ⊆ Z. By X + d and dX, where d ∈ Z, we denote the
sets {x + d | x ∈ X} and {dx | x ∈ X}.

A n-dimensional counter reachability game (nCRG) consists of a directed
graph G = (V, F), where the set of vertices is partitioned into two parts, VE

and VA, each edge e ∈ F ⊆ V × Z
n × V is labelled with vectors in Z

n.
A configuration of the game is [v,x], a successive configuration is [v′,x + x′],
where an edge (v,x′, v′) ∈ F is chosen by player 1 if v ∈ VE or by player 2 if
v ∈ VA. A play is a sequence of successive configurations. The goal of the first
player, called Eve, is to reach the final configuration [vf , 0n] for some vf ∈ V
from a given initial configuration [v0,x0], while the goal of the second player,
called Adam, is to keep Eve from reaching [vf , 0n]. A strategy for a player is a
function that maps a configuration to an edge that can be applied. We say that
Eve has a winning strategy if she can reach the final configuration regardless of
the strategies of Adam. On the other hand, we say that Adam has a winning
strategy if Eve does not have a winning strategy. In the figures we use © for
Eve’s states and � for Adam’s states (diamonds represent arbitrary vertices).

A n-dimensional robot game (nRG) [11] is a special case of the counter reach-
ability games, where graph consists of only two vertices, v0 of Adam and v of
Eve. The goal of the game is the configuration [v0, 0n]. That is, a robot game
consists of two players, Eve and Adam, having a set of vectors E, A over Z

n,
respectively, and an initial vector x0. Starting from x0 players add a vector
from their respective sets to the current configuration of the game in turns. As
in counter reachability game, Eve tries to reach the origin while Adam tries to
keep Eve from reaching the origin. The decision problem concerning robot games
is, for a given robot game (A,E) and x0, to decide whether Eve has a winning
strategy to reach 0n from x0.

An extension of robot games where players have control states is called robot
games with states (RGS). A nRGS consists of (A,E) where A is a finite subset
of QA×Z

n×QA that Adam can apply during his turn and E is a finite subset of
QE×Z

n×QE of Eve, and an initial configuration [s0, t0,x0] ∈ QE×QA×Z
n. The

configuration is now a triple [s, t,v] consisting of Eve’s control state s, Adam’s
control state t and a counter vector v ∈ Z

n. Eve updates her control state when
she makes a move: in the configuration [s, t,v], for any vector v, only moves of
the form (s,x, s′) are enabled, and with one such move the new configuration is
[s′, t,v + x]. Similarly Adam updates his control state when he makes a move.

166 R. Niskanen

Eve wins if, and only if, after her turn, the configuration is [s, t, 0n] for some
s ∈ F ⊆ QE . The decision problem associated with robot games with states
asks whether Eve has a winning strategy from a given configuration.

In order to indicate whose turn it is in the configuration [s, t,v], we put a dot
above s if it is Eve’s turn, or above t if it is Adam’s turn. That is, the respective
configurations are [ṡ, t,v] and [s, ṫ,v]. In the figures, the dot is placed inside the
state (e.g., � if it is Adam’s turn).

Flat robot games with states (FRGS) is a subclass of the RGS where Eve is
stateless, that is, all the moves of Eve are of form (s, z, s), and Adam’s states
are flat, i.e., without nested loops. In other words, we have an ordering of states
of Adam {t0, . . . , tk} such that (ti, z, tj) ∈ A only if i ≤ j. Note that, unlike the
usual definition of flat systems, we allow several self-loops for a state.

3 Robot Games with States in Dimension One

In this section we consider games in dimension one. First, we recall some known
results.

Theorem 1 [16]. Deciding which player wins in a one-dimensional counter
reachability game is EXPSPACE-complete.

Theorem 2 [4]. Deciding which player wins in a one-dimensional robot game
is EXPTIME-complete.

As robot games are a special case of robot games with states, we can inherit
the lower bound. That is, the 1RGS are EXPTIME-hard. On the other hand it
is easy to construct a counter reachability game out of a robot game with states
by storing information on the state of Eve in the 1RGS in the states of Adam
and vice versa. That is, robot games with states are in EXPSPACE.

Lemma 3. Deciding which player wins in a one-dimensional robot game with
states is EXPSPACE.

Proof. Let (A,E) be a 1RGS and z0 ∈ Z the initial integer. We construct a
counter reachability game (V, F) where Eve has a winning strategy if and only if
Eve has a winning strategy in (A,E). Eve’s states are VE = {st | s ∈ QE , t ∈ QA}
and Adam’s states are VA = {ts | t ∈ QA, s ∈ QE}. The edges of the graph are
F = {(st, z, ts′) | (s, z, s′) ∈ E} ∪ {(ts, z, st′) | (t, z, t′) ∈ A}. It is clear that
Eve has a winning strategy in (A,E) from z0 if and only if Eve has a winning
strategy in (V, F) from z0. As deciding the winner in the 1CRG is EXPSPACE-
complete, also deciding the winner in the 1RGS is EXPSPACE. ��

We provide the matching tight lower bound, showing that one-dimensional robot
games with states are EXPSPACE-complete. That is, we show that the 1RGS
are EXPSPACE-hard. To prove this, we show how, for any one-dimension-
al counter reachability game, to construct a one-dimensional robot game with
states such that the same player wins in both games. The idea is for Eve to

Robot Games with States in Dimension One 167

have the whole graph, including Adam’s states, as her states and Adam have no
states. Adam has three moves, two to tell Eve which edge to pick if the state
was initially Adam’s, and one to do nothing if that’s not the case.

Theorem 4. One-dimensional robot games with states are EXPSPACE-com-
plete.

First we consider a simple modification to a 1CRG. We can assume that in
every Adam’s state there are at most two outgoing edges. Indeed, let t be Adam’s
vertex with k outgoing edges, we replace it by a chain t1, . . . , tk−1 such that ith
edge (t, z, t′) is (ti, z, t′). Finally, we connect the vertices with edges (ti, 0, ti+1)
for i ∈ {1, . . . , k − 1} and (t, 0, t1).

Next, we show the gadgets for different moves in the 1CRG. At this state, for
simplicity, we assume that both players will play in good faith and will simulate
the 1CRG correctly. Later on, we’ll construct an additional gadget for Eve and
show that if one of the player cheats, then the other can catch the cheating and
has a winning strategy.

Now, there are three types of transitions: from Eve’s state or from Adam’s
state which has either one or two outgoing transitions. We construct gadgets for
each case. Let’s first consider the cases where Adam does not make a decision.
That is moves (s, z, r) and (t, z, r), where z ∈ Z, s ∈ VE , r ∈ V , t ∈ VA and
deg(t) = 1. In robot game with states, Eve has moves (s, 4z, r) and (t, 4z, r),
where s, r, t ∈ QE , respectively, and Adam has a move (, 0,). The moves are
depicted in Fig. 1.

s r
z

t r
z

s r
4z

t r
4z �

0

Fig. 1. Moves in a 1CRG (top) and the corresponding moves in the 1RGS (bottom)

The final case where Adam has to make a choice is slightly more complicated.
As Eve is simulating the whole graph of the 1CRG, Adam needs to indicate to her
which edge he would have picked. In the 1CRG the moves are (t, y, p), (t, x, q),
where p, q ∈ V and t ∈ VA and deg(t) = 2. In robot game with states, Eve has a
gadget with moves (t, 4y−1, p), (t, 4x+1, q), and Adam has moves (, 1,) and
(,−1,). The moves are depicted in Fig. 2. By multiplying all the old labels
by 4, we have created extra space to store the information about which edge Eve
is supposed to pick.

Finally, we need to make sure that Adam does not abuse his moves, i.e.,
does not indicate his choice when he should not. For this, we create a gadget
similar to Adam’s state transition, which Eve can enter and add ±4 emptying
the counter while at the same time cancelling whatever Adam plays. To do so,
we design an emptying gadget of Eve consisting of one state ⊥. The moves are
(⊥,±4+1,⊥), (⊥,±4−1,⊥) and (⊥,±4,⊥). The emptying gadget is connected

168 R. Niskanen

t

p

q

y

x

t

p

q

4y − 1

4x+ 1

�

1

−1

Fig. 2. Moves in a 1CRG (left) and the corresponding moves in the 1RGS (right)

s s′

t

⊥

±4 − 1

±4 + 1

±4

±1

±1

0

simulation
of the 1CRG emptying

· · ·

�

1

−1

0

Fig. 3. An illustration of state transitions of Eve and Adam

to states of Eve with moves (s,±1,⊥) for every state s ∈ VE or s ∈ VA and
deg(s) = 1, and with (t, 0,⊥), where t ∈ VA and deg(t) = 2. The control states
of the players are depicted in Fig. 3.

Next we consider all possible plays of Adam and Eve, and show that if the
player plays incorrectly, the opponent has a winning strategy. The possible ways
the game can progress are listed in Fig. 4. First, we informally describe the
incorrect moves and how the opponent can deal with them.

Adam can play incorrectly by either playing ±1 even though Eve is not in
a state where Adam has to make a decision, or by playing 0 if Eve is. In the
first case, Eve can play the opposite move and move to ⊥, after which she can
counter any move Adam plays whilst emptying the counter. In the latter case,
Eve moves to ⊥ without modifying the counter and again she can empty the
counter while nullifying the moves of Adam.

Eve can play incorrectly by either moving to the emptying gadgets before
Adam made an incorrect move or by not making the correct decision according
to what Adam has played, that is, playing 4y−1 after Adam played −1 or 4x+1
after Adam played 1. In the both cases, Adam can ensure that the counter will
never be 0 (mod 4).

First we prove two lemmas regarding incorrect moves by Adam and prove
that Eve has winning strategies.

Lemma 5. Let the configuration be [s, 	̇, 4z], where z ∈ Z and s ∈ VE or s ∈ VA

and deg(s) = 1. If Adam plays (, 1,), then Eve has a winning strategy starting
with (s,−1,⊥). Similarly, if Adam plays (,−1,), then Eve has a winning
strategy starting with (s, 1,⊥).

Proof. After Adam’s move, the configuration is [ṡ,	, 4z+1] and after Eve’s move,
the configuration is [⊥, 	̇, 4z]. After this, Eve can cancel Adam’s move while

Robot Games with States in Dimension One 169

· ·

· ·· ·

A
da
m
do
es
no
t
in
di
ca
te

w
he
n
he
sh
ou
ld

A
d
a
m

in
d
ica

tes
w
h
en

h
e
sh
o
u
ld

n
o
t

E
v
e
sta

rts
em

p
ty
in
g

Eve
m
akes

a

w
rong

choice

both players play correctly
(Lemma 9)

Eve wins
(Lemma 5)

Eve wins
(Lemma 6)

Adam wins
(Lemma 7)

Adam wins
(Lemma 8)

Eve wins if
Eve wins in the CRG

Adam wins if
Adam wins in the CRG

Fig. 4. Progress of a one-dimensional robot game with states

emptying the counter at the same time. In the case Adam played (,−1,),
then Eve’s winning strategy is the same after she played (s, 1,⊥). ��

Lemma 6. Let the configuration be [t, 	̇, 4z], where z ∈ Z and t ∈ VA and
deg(t) = 2. If Adam plays (, 0,) then Eve has a winning strategy starting
with (t, 0,⊥).

Proof. After Adam’s move, the configuration is [ṫ,	, 4z] and after Eve’s move,
the configuration is (⊥, 	̇, 4z). As in previous lemma, Eve can empty the counter
while cancelling Adam’s move. ��

Next we prove a lemma, where Eve moves to her emptying gadget and prove
that Adam has a winning strategy.

Lemma 7. Let the configuration be [ṡ,	, 4z] where z ∈ Z and s ∈ VE or s ∈ VA

and deg(s) = 1. If Eve moves to ⊥ with a move (s, 1,⊥) or a move (s,−1,⊥),
then Adam has a winning strategy starting with (, 1,) or (,−1,) respec-
tively.

Proof. After Eve’s move, the configuration is [⊥, 	̇, 4z ± 1] and after Adam’s
move, the configuration is [⊥̇,	, 4z ± 2]. From this moment onward, Adam can
ensure that the counter is not 0 (mod 4). Thus, Eve cannot reach counter value
0 and cannot win. ��

Finally, we consider the case where Adam tells Eve his non-deterministic choice
with 1 or −1, and Eve responds incorrectly by playing a move with 1 or −1,
respectively.

170 R. Niskanen

Lemma 8. Let the configuration be [ṫ,	, 4z + 1], where z ∈ Z and t ∈ VA and
deg(t) = 2. If Eve plays the move (t, 4y+1, p), then Adam has a winning strategy
starting with (, 0,). Symmetrically, if the configuration is [ṫ,	, 4z − 1] and
Eve plays the move (t, 4x − 1, q), then Adam has a winning strategy.

Proof. After Eve’s move, the configuration is [p, 	̇, 4(z + y)+ 2] and Adam with
his moves can ensure that the counter is not 0 (mod 4). That is, Eve cannot
reach counter value 0 and cannot win. Symmetrically, if after Eve’s move the
configuration is [p, 	̇, 4(z + x) − 2], then Adam can ensure that the counter is
not 0 (mod 4) and Eve cannot win. ��

Next we prove that if both players play correctly, the winner is the same as in
the one-dimensional counter reachability game.

Lemma 9. If in the one-dimensional robot game with states constructed previ-
ously Eve plays

– the move (t, 1, p) if the configuration is [ṫ,	, 4z − 1] for some z ∈ Z and
t ∈ VE and deg(t) = 2,

– the move (t,−1, p) if the configuration is [ṫ,	, 4z + 1] for some z ∈ Z and
t ∈ VE and deg(t) = 2

and never moves to ⊥, and Adam plays

– the move (, 0,) if the configuration is [s, 	̇, 4z], for some z ∈ Z and s ∈ VE

or s ∈ VA and deg(s) = 1,
– a move (,−1,) or (, 1,) if the configuration is [t, 	̇, 4z], for some z ∈ Z

and t ∈ VA and deg(t) = 2,

then Eve has a winning strategy if and only if she has a winning strategy in the
one-dimensional counter reachability game.

Proof. It is easy to see that these moves simulate the counter reachability game
and that Eve has a winning strategy to reach the configuration [f, 0] of the 1CRG
if and only if she has a winning strategy to reach the configuration [ḟ ,	, 0] in
the 1RGS. ��

We are ready to prove the main theorem.

Theorem 3. The one-dimensional robot games with states are EXPSPACE-
complete.

Proof. By Lemma 3, deciding the winner is in EXPSPACE. It remains to be
proven that it is also EXPSPACE-hard. Let (V, F) be a 1CRG with an initial
counter z0. Let (A,E) be the robot game with states constructed from (V, F).
Assume first that Eve has a winning strategy in (V, F). Now, Eve’s winning
strategy in the one-dimensional robot game (A,E) is to play according to the
winning strategy of (V, F) if the configuration [ṡ,	, 4z] where s ∈ VE or s ∈
VA and deg(s) = 1. If the configuration is [ṫ,	, 4z − 1] or [ṫ,	, 4z + 1] where

Robot Games with States in Dimension One 171

t ∈ VA,deg(t) = 2, then moves (t, 4x+1, q) or (t, 4y−1, p), respectively. This is a
winning strategy by Lemma 9. If the configuration is [ṡ,	, 4z ± 1] where s ∈ VE

or s ∈ VE and deg(s) = 1, then Eve has a winning strategy by Lemma5. If the
configuration is [ṫ,	, 4z] where t ∈ VA and deg(t) = 2, then Eve has a winning
strategy by Lemma 6.

Assume then that Adam has a winning strategy in (V, F) and Eve has a
winning strategy in (A,E). By Lemma 9, Adam has a winning strategy if the
players simulate the 1CRG correctly. That is, Eve has to, at some point, either
move to an emptying gadget, or play (t, 4x ± 1, s) when the configuration is
[ṫ,	, 4z ∓ 1]. By Lemmas 7 and 8, Adam has winning strategies for both cases.
As we have analysed all the possible moves of Eve, we have shown that Eve does
not have a winning strategy. ��

4 Flat Robot Games with States

There is an interesting complexity difference between games of Theorems 2 and
3. When the (stateless) robot game is extended by allowing Eve to have an
internal state structure and keeping Adam stateless, the complexity of deciding
the winner increases from EXPTIME to EXPSPACE. In this section we
study a natural dual question — does keeping Eve stateless and allowing Adam
to have an internal structure result in a similar increase? We study this question
by considering robot games where Eve is stateless and Adam’s states are flat
(i.e., the underlying graph is directed acyclic graph with self-loops), called flat
robot games with states (FRGS). The state structure of a FRGS is depicted in
Fig. 5. The main result of the section is that deciding the winner in the FRGS
is in EXPTIME. Note, that as the stateless robot games are also flat robot
games with states, we have inherited EXPTIME-hard lower-bound.

Remark 4. Let (A,E) be a robot game. If the winning set is non-trivial then it
is either dZ, for some integer d, or R ∪ U ⊆ Z

+, where U = {x ∈ dZ | x > b}
and R consists of the winning values on the finite arena [0, b], or R′ ∪ U ′ ⊆ Z

−,
where U ′ = {x ∈ dZ | x < b} and R′ consists of the winning values on the finite
arena [b, 0].

Before considering arbitrary flat graphs of Adam, we consider a simpler case
where there are three types Adam’s moves: self-loops in state t0, self-loops in
state t1 and transitions from t0 to t1.

The idea is that there are two stateless robot games when moves are restricted
to self-loops and additional moves connecting the games. The algorithm of [4]

Fig. 5. An example of a flat robot game with states (FRGS)

172 R. Niskanen

not only computes whether the given initial value z0 is winning for Eve, but it
computes the set of all winning values. We can use the algorithm to compute
winning sets for both games and then connect the two games using the transitions
between t0 and t1.

Example 5. Consider a one-dimensional flat robot game with states where Eve’s
moves are {(s,−3, s), (s,−6, s), (s,−7, s), (s,−8, s)} and Adam’s moves are

{(t0,−3, t0), (t0,−6, t0), (t0, 0, t1), (t1,−7, t1), (t1,−8, t1)}.

It is easy to compute the winning sets for games restricting to t0 and t1: W0 =
9N and W1 = {0, 14, 15, 25, 28, 29, 30, 39, 40, 41, 42, 43, 44, 45, } ∪ {x | x ≥ 50},
respectively.

We notice that, for example, 9 is not a winning value in the flat robot game
with states. Indeed, while by staying in t0, Adam loses, if he instead moves to t1,
then after Eve’s turn the counter will be 1, 2, 3 or 6. None of which is a winning
value when restricting to t1. On the other hand, all the other winning values,
that is 9k where k > 1, can reach 0 only by reaching 9 first. That is, Eve does
not have any winning values. This is illustrated in Fig. 6.

0

0

9

14 15

18
W0 :

W1 :

Fig. 6. An illustration of connecting winning sets in a flat robot game with states

For this special case, there are three steps needed to compute the winning
set of the game.

– Compute the winning sets of restricted games, W0 and W1.
– Compute the forbidden values F in W0, that is, all the values in W0 from

which there exists a move (t0, z, t1) of Adam such that for any move (s, x, s)
of Eve, the resulting value is not in W1.

– Finally, check whether values of F are avoidable in W1. That is, whether there
exists a winning strategy from the initial value z0 to 0 that does not visit any
values of F .

The first step can be done in EXPTIME using the algorithm for robot
games. The second and third steps require some additional considerations as the
sets are potentially infinite. In the game of the previous example, if the initial
value is z0, then it is not important to check which forbidden values larger than
z0 are avoidable and which are not. On the other hand, it is easy to see that
in general case, it is not a simple matter of discarding larger values than z0
(assuming that z0 is positive). By Remark 4, the winning set of a robot game
has a particular structure. In a similar manner, the set of forbidden values con-
structed from two winning sets have some structure which allows us to compute

Robot Games with States in Dimension One 173

whether the values are avoidable. Now, there are two sets of forbidden values,
one resulting from the finite set of R, Ffin = {f1, . . . , fk}, and a regular but
infinite set of values resulting from U , Finf. Even though, Finf is infinite, it is
semi-linear (and in fact linear when Adam has two states). We can extract a
finite set of forbidden values, F ′, such that Finf =

⋃∞
i=0 F ′ + i� for some � ∈ Z.

Now, we have two finite sets of forbidden values for which it is easy to check
whether the values are avoidable. We can use the attractor construction of [13,
Chap. 2] which solves the game in polynomial time. In our example, F = {9, 27}
and 9 is reachable only from one winning value, namely 18. On the other hand,
9 is the only winning value reachable from 18, so 9 is not avoidable.

Lemma 6. Let (A0, E) and (A1, E) be two robot games and T a set of Adam’s
moves connecting the two games. Let W0 and W1 be their respective winning
sets. The set F = {x ∈ W0 | ∃z ∈ T ∀(s, y, s) ∈ E : x + z + y /∈ W1} can be
computed in polynomial time.

Proof. There are several cases to consider. First we have two trivial cases when
one of the winning sets is trivial, i.e., {0}. If the winning set W0 is trivial, then
F = {0}. If the winning set W1 is trivial, then F = W0. Another obvious case
is when the winning set W0 ⊆ Z

+ and W1 ⊆ Z
− (or the symmetric situation),

then there are only finitely many points in W0 from which it is possible to reach
W1. Thus F = W0 \ X where X is a finite subset of (0, a] for some a bounded
by min(E) + min(T). There remains four cases.

1. W0 = dZ and W1 = d′
Z, or

2. W0 = R ∪ U and W1 = d′
Z, or

3. W0 = R ∪ U and W1 = R′ ∪ U ′, or
4. W0 = dZ and W1 = R′ ∪ U ′.

Recall that R and R′ are finite and U = {x ∈ dZ | x > b}. Consider the first
case. Let � = lcm(d, d′). We can partition the integer line into intervals of length
� and effectively compute all the forbidden values F ′ in the interval. Clearly, the
forbidden values in one interval, will be also forbidden in the other intervals.
The set of all forbidden values is F = {f + �i | f ∈ F ′, i ∈ Z}.

The next case can be divided into two parts, first finding forbidden values
in R and then in U . Finding the forbidden values in R is easy as there are only
finitely many possible values. Finding the forbidden values in U can be done as
for the first case. The third and fourth cases are done similarly but now we also
have to take the finite set R′ into account. In all three cases, the set of forbidden
values is F = {f1 . . . , fk} ∪

[

⋃∞
i=0 F ′ + i�

]

, where |F ′| < ∞ and f > fj for all
indexes j and f ∈ F ′. ��
Lemma 7. Let (A0, E) be a robot game and W0 ⊆ Z

+ its winning set. Let
Ffin ⊆ (0, a] ⊆ W0 be a subset of forbidden values in W0 and Finf ⊆ (a, b] ⊆ W0

such that the set of all forbidden values is Ffin ∪
[

⋃∞
i=0 Finf + i(b − a)

]

. There
exists a finite set X such that Ffin ∪ Finf ⊆ X ⊆ W0 and we can compute the
values of X avoiding the values of F in polynomial time. Symmetrical claim
holds if the winning set consists of only negative values.

174 R. Niskanen

Proof. Let m = min(A0) and M = max(A0) be the smallest and the largest
moves of Adam. Let X = (m, b + (b − a) + M]. Clearly Ffin ∪ Finf ⊆ X. We
can construct a reachability game on a finite arena X by having two copies of
the interval X, one for Eve and one for Adam. We connect integers in Eve’s
(Adam’s) interval to integers in Adam’s (Eve’s) interval corresponding to her
(his) moves.

The interval X can be partitioned into three parts, (−m,a], (a, b] and (b, b+
(b−a)+M]. Intuitively, the first interval (−m,a] corresponds to Ffin, the second
interval (a, b] to Finf and the final interval to the set

⋃∞
i=1 Finf + i(b − a). As the

finite interval corresponds to several sets, Eve can also move from x ∈ (b +
m, 2b − a + M] to y if there exists a move from x + (b − a) to y. Additionally, if
f ∈ Ffin ∪ Finf, then Adam can move to the sink state 	 which is losing for Eve.
Finally, there exists an edge from a state x if the owner of the state has a move
y in the robot game such that x + y < 0.

More formally, Adam has states QA = {� × [0, 2b − a]} ∪ {	} and Eve has
states QE = {© × [m, 2b − a + M]}. The transitions of the game are

T = {((�, x), (©, y)) ∈ QA × QE | y − x ∈ A}
∪ {((©, x), (�, y)) ∈ QE × QA | y − x ∈ E}
∪ {((©, x), (�, y)) ∈ QE × QA | y − (x + b − a) ∈ E, x ∈ (b + m, 2b − a + M]}
∪ {((�, x),) | x ∈ Ffin ∪ Finf ∪ Finf + b − a}
∪ {((©, x),) ∈ QE × QA | ∃e ∈ E, x + e < 0} ∪ {(,)}.

Eve wins the game if she can reach (�, 0). The winning values of this game can
be computed using the attractor construction in polynomial time [13]. ��
Example 8. Let ({(t,−1, t)}), ({(s,−1, s), (s,−2, s)}) be a robot game. Let F =
{3}∪{x ∈ N | x ≡ 2 (mod 3), x > 2} be the set of forbidden values. By Lemma7
we can construct a reachability game G depicted in Fig. 7.

Now we are ready to extend Adam’s state structure to flat graphs. The
algorithm is essentially the same as the one described previously. We utilize the
topological sorting to remove forbidden points from the winning sets starting
from the end of the graph using Lemma6. Then we construct the set of avoidable
values using Lemma 7.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

�

�

[0, a) (a, b] (b,∞)

Fig. 7. A reachability game on finite arena constructed from a robot game and a set
of forbidden values

Robot Games with States in Dimension One 175

Theorem 9. One-dimensional flat robot games with states are EXPTIME-
complete.

Proof. Let (A,E) be a FRGS where Adam has k states, t1, . . . , tk, such that
(ti, z, tj) ∈ A only if i ≤ j. Denote by Ai = {(ti, z, ti) ∈ A}. Using the algorithm
of [4], we compute the winning set for each pair (Ai, E). Then, starting from
k, we compute sets of forbidden values using Lemma6. After computing the
forbidden values, we compute the avoidable values using Lemma 7. Finally, we
update the sets of winning values using the forbidden and avoidable values. ��

5 Conclusion

In this paper we proved that one-dimensional robot games with states are
EXPSPACE-complete. In our construction Eve had states, while Adam was
stateless. Motivated by this, we considered games where Adam had states and
Eve was stateless. When limiting Adam’s state structure to flat automata, we
showed that the games are EXPTIME-complete.

In the future, it would be interesting to see whether non-flatness is the prop-
erty that increases the complexity of deciding the winner from EXPTIME of
robot games to EXPSPACE of robot games with states. It would be also inter-
esting to see whether the complexity increases if Adam is stateless or has flat
state structure and Eve has flat state structure as well.

Acknowledgements. The author would like to thank Igor Potapov for proposing the
topic and helpful discussions.

References

1. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Monotonic and downward closed games.
J. Log. Comput. 18(1), 153–169 (2008)

2. Abdulla, P.A., Mayr, R., Sangnier, A., Sproston, J.: Solving parity games on integer
vectors. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency
Theory. LNCS, vol. 8052, pp. 106–120. Springer, Heidelberg (2013)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

4. Arul, A., Reichert, J.: The complexity of robot games on the integer line. In:
Proceedings of QApPL 2013, EPTCS, vol. 117, pp. 132–148 (2013)

5. Brázdil, T., Brozek, V., Etessami, K.: One-counter stochastic games. In: Proceed-
ings of FSTTCS 2010, LIPIcs, vol. 8, pp. 108–119 (2010)

6. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addi-
tion systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489.
Springer, Heidelberg (2010)

7. Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60
(2012)

8. Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G.,
Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, p. 262. Springer,
Heidelberg (2000)

176 R. Niskanen

9. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. CAV’98. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)

10. Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, p. 242. Springer,
Heidelberg (1999)

11. Doyen, L., Rabinovich, A.: Robot games. Personal website, 2011. Technical
report LSV-13-02, LSV, ENS Cachan (2013). http://www.lsv.ens-cachan.fr/
Publis/RAPPORTS LSV/PDF/rr-lsv-2013-02.pdf

12. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95–115. Springer, Heidelberg (2011)

13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

14. Halava, V., Harju, T., Niskanen, R., Potapov, I.: Weighted automata on infinite
words in the context of attacker-defender games. In: Beckmann, A., Mitrana, V.,
Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 206–215. Springer, Heidelberg
(2015)

15. Halava, V., Niskanen, R., Potapov, I.: On robot games of degree two. In: Dediu,
A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol.
8977, pp. 224–236. Springer, Heidelberg (2015)

16. Hunter, P.: Reachability in succinct one-counter games. In: Bojanczyk, M.,
Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 37–49. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24537-9 5

17. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

18. Leroux, J., Penelle, V., Sutre, G.: The context-freeness problem is coNP-complete
for flat counter systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 248–263. Springer, Heidelberg (2014)

19. Leroux, J., Sutre, G.: Flat counter automata almost everywhere!. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

20. Niskanen, R., Potapov, I., Reichert, J.: Undecidability of two-dimensional robot
games. In: Proceedings of MFCS 2016, LIPIcs, vol. 58, pp. 74:1–74:13 (2016)

21. Reichert, J.: Reachability games with counters: decidability and algorithms. Doc-
toral thesis, Laboratoire Spécification et Vérification, ENS Cachan, France (2015)

22. Reichert, J.: On the complexity of counter reachability games. Fundam. Inform.
143(3–4), 415–436 (2016)

23. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput.
164(2), 234–263 (2001)

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2013-02.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2013-02.pdf
http://dx.doi.org/10.1007/978-3-319-24537-9_5

Insertion-Deletion Systems over Relational
Words

Igor Potapov1, Olena Prianychnykova2(B), and Sergey Verlan3

1 Department of Computer Science, University of Liverpool, Liverpool, UK
potapov@liverpool.ac.uk

2 Technische Universität Ilmenau, Ilmenau, Germany
olena.prian@tu-ilmenau.de

3 LACL, Departement Informatique, Université Paris Est Créteil, Créteil, France
verlan@u-pec.fr

Abstract. We introduce a new notion of a relational word as a finite
totally ordered set of positions endowed with two binary relations that
describe which positions are labeled by equal data, by unequal data
and those having an undefined relation between their labels. We define
the operations of insertion and deletion on relational words generalizing
corresponding operations on strings. We prove that the transitive and
reflexive closure of these operations has a decidable reachability prob-
lem for the case of short insertion-deletion rules (of size two/three and
three/two). At the same time, we show that in the general case such
systems can produce a coding of any recursively enumerable language
leading to undecidability of reachability questions.

1 Introduction

Nowadays there is a sufficiently broad research activity in the area of logic and
automata for words and trees over infinite alphabets [1,3,4,9,11–13,19,29]. It
is mainly motivated by the need to analyse and verify infinite-state systems,
which for example can use infinite alphabet of natural numbers 1, 2, 3, . . .
instead of finite number of symbols like a, b, c. In the seminal paper of Kaminski
and Francez [9] a very restricted memory structure of the automaton (Register
Automaton) working with words over infinite alphabets was introduced. The use
of explicit references to the names of symbols in the process of accepting words
over an infinite alphabet leads to a construction of an infinite automaton. In
order to avoid it the register automaton is operating by keeping a finite number
of symbols (from the working tape) in its memory and making their comparison
to other observed symbols (i.e. checking whether they are equal or not). The
model allows to recognize a large class of languages over an infinite alphabet and
at the same time it is not taking an advantage of its memory capabilities beyond

I. Potapov — The author was partially supported by EPSRC grant (EP/
M00077X/1)
O. Prianychnykova — Supported by the DFG-Project “Speichermechanismen als
Monoide”, KU 1107/9-1.

c© Springer International Publishing Switzerland 2016
K.G. Larsen et al. (Eds.): RP 2016, LNCS 9899, pp. 177–191, 2016.
DOI: 10.1007/978-3-319-45994-3 13

178 I. Potapov et al.

what is needed for that purposes. A particular path in a register automaton
accepting a word over an infinite alphabet can be seen as a template endowed
with equivalence relation on the subset of positions that specifies which symbols
should be considered as equal and non-transitive inequality relation specifying
positions with unequal symbols. Note that such templates allow specifying an
infinite number of concrete words, so in some sense it defines the structural
properties of words from corresponding infinite language.

Extending the model by updating data can be in the form of adding new
symbols when some prior information is known (i.e. generating fresh symbols
which are different from anything has been used before) or adding data when
there is no available prior and explicit information (i.e. when data is defined
externally like in open systems). In both cases the analysis of computational
processes which add and remove data can be quite non-trivial.

The first case can be illustrated by an example of using words over infi-
nite alphabet in combinatorial topology [14,15]. Knot transformations can be
implemented with a set of Reidemeister moves [28] represented by a fixed set of
insertion/deletion and swapping operations on Gauss words [23,24], where the
creation of new fresh symbols corresponds to appearance of new crossings. The
complexity is coming from the fact that unknotting (reduction to the empty
word) sometimes requires to increase significantly the number of crossing before
the reduction to the empty word is possible [6,22].

The second case of adding/removing data with only local relations can be
even more complex as the insertion of new data creates undefined relations, the
deletion of undefined data may remove some uncertainties in other part of data
and the outcome depends on assumptions about deleted data relations, yielding
non-commutative sequences of deletions. Let us consider a simple “pick and
place” robot arm control in the factory line [2,5,31]. For example, the control
mechanism is allowing a robot arm to place three identical items (of unknown
type) at some place on the conveyor (linear or circular) or pick two consecutive
different items from the conveyor, see Fig. 1. As the domain of items is not fixed
we have a process operating with unbounded sequence of items (on the conveyor)
and item types from unbounded domain. In order to guarantee the correctness
of some technological process we might be interested in checking reachability
properties for a template, corresponding to the infinite number of possibilities,
rather than reachability for concrete words.

In this paper we introduce the new concept of relational words and analyze
their evolution under two types of updates defined for these structures: the
insertion operation and the deletion operation. In a relational word any pair of

Fig. 1. Pick and place robot arm and its control system.

Insertion-Deletion Systems over Relational Words 179

positions corresponds to symbols which can be either equal, or not equal or have
an undefined relation (i.e. an absence of any of two relations) and if the domain
of elements is unbounded (i.e. in case of an infinite alphabet) the relational
word describes an infinite language over infinite alphabet or an infinite union
of languages over finite alphabets. We consider the operations of insertion and
deletion on relational words as the transformation of word templates and hence
of corresponding languages. Another motivation comes from the fact that they
are simpler than the corresponding rewriting counterpart and they allow to point
out the main problems needed to properly define it. Similar idea of representing
data over a finite alphabet as a set of relations was named as a “relational code”
in [7], which generalize “partial words” in the area of nonstandard stringology
[18] and DNA sequence processing [10].

The insertion of relational words creates new undefined relations as there is
no prior information about inserted data, however the deletion operation can
reduce the number of undefined relations introducing some non-local changes
when we apply it to partially defined relational words (i.e. words containing
undefined relations). For example, we allow the deletion of two adjacent symbols
with undefined relation as equal adjacent symbols in a word. In this case we can
conclude that all symbols (un)equal to the left symbol should be (un)equal to
all symbols equal to the right symbol. Hence, such a deletion (beside deleting
corresponding symbols from the word template) eventually induces new relations
between remaining parts of the word. The complexity of deletion mainly follows
from the original flexibility of insertions and unknown nature of data types. In
fact a particular assumption on deleted data not only limiting original possibility
of input data but also influence the future possibilities of further derivations. In
contrast, when inserting new symbols no deduction about their relation to the
others can be done, but it includes all the possibilities at once.

We are particularly interested in the following reachability problem: for a
given set of insertion/deletion operations defined on relational words decide
whether a relational word w can be derived from a relational word v. We show
that for any system having rules inserting (resp. deleting) 3 symbols and rules
deleting (resp. inserting) 2 symbols the reachability problem is decidable, con-
trary to the case of the finite alphabet. Moreover, the same result holds if only
one insertion and one deletion rule is considered. We note that there exist 20
such combinations, however they correspond to an infinite number of underlying
languages. Obviously, unrestricted and very general rules allowing rewriting over
arbitrary infinite alphabet are too powerful making most of the computational
problems to be undecidable [4]. However we show that if only insertion and dele-
tion rules of relatively large size are considered, then the reachability problem
on these templates (relational words) is undecidable. This result is obtained by
encoding a finite alphabet by the structure of relational words. The obtained
encoding is not trivial, because a structure does not specify individual symbols
and can eventually match any corresponding sequence in the word; moreover
there is no possibility to relate symbols (by equality or inequality) from several
insertion or deletion rules.

180 I. Potapov et al.

2 Relational Words

A finite sequence of elements of a finite alphabet Σ is called a finite word over
Σ, or just a word. We denote by Σ∗ the set of words over Σ and by Σ+ the set
of nonempty words. The empty word is denoted by ε.

Let Δ be an infinite set. A word over an infinite alphabet Δ is a finite sequence
of elements of Δ [9,16,19,29]. Elements of a finite alphabet Σ are defined explic-
itly and could be accessed directly, while elements of an infinite alphabet Δ could
be only tested for equality. Then a word over an infinite alphabet may be viewed
as a finite totally ordered set of positions endowed with an equivalence relation.
Now the idea of this paper is to extend the notion of a word over an infinite
alphabet by allowing the equivalence relation to be defined on a subset of the
set of positions of the word. We define a relational word as a finite set of positions
equipped with partial binary relations that describe which positions are labeled
by equal and by inequal data.

Definition 1. A relational word is the quadruple W = (XW ,≺, EW , NW)
where

– (XW ,≺) is a finite totally ordered set;
– EW and NW (for equal and not equal) are binary relations on XW such that

• they are mutually exclusive: EW ∩ NW = ∅;
• EW is an equivalence relation;
• NW is a symmetric relation;
• for any x, y, z ∈ XW , if (x, y) ∈ EW and (y, z) ∈ NW , then (x, z) ∈ NW .

For technical reasons we shall consider the relation UW = XW ×XW \(EW ∪
NW) corresponding to an undefined relation between pairs of positions.

We denote by |W | = |XW | the length of the relational word W and by W [i]
the i-th element from the ordering of XW . The empty relational word is denoted
by ε, |ε| = 0.

A relational word W is fully defined if UW = ∅. We denote the set of all
relational words by RW and the set of all fully defined relational words is denoted
by FDRW.

A relational word can be viewed as a kind of a template. For an alphabet A
(finite or infinite) a relational word W defines a language LA(W) ⊆ A∗ which is
the set of all words w = a1a2....an, where ai ∈ A, 1 ≤ i ≤ n, with n being the
length of W , such that for every pair of positions i and j in W we have

– if (i, j) belongs to the equality relation, then ai = aj ,
– if (i, j) belongs to the inequality relation, then ai 	= aj

With every relational word W we can associate a graph GW = (Q,T) and
an edge labeling function LabGW : T → {0, 1} such that

– Q = {q1, q2, ..., qn} is an ordered set of nodes, n is the length of W ,
– T ⊆ Q × Q is the set of edges such that (qi, qj) ∈ T iff there is a relation

(equality or inequality) between positions i and j.

Insertion-Deletion Systems over Relational Words 181

– LabGW is defined as follows
• LabGW (qi, qj) = 1 if the labels of the positions i and j are equal,
• LabGW (qi, qj) = 0 iff the labels of the positions i and j are not equal.

We will use the following convention for the graphical representation of GW .
The nodes of the graph will be aligned horizontally and the order of nodes taken
from left to right will correspond to their ordering within the word. We will
depict edges labeled by 1 below the axis induced by the node alignment and the
edges labeled by 0 on the top of it. We also note that for any qi, there exist
an edge (qi, qi) labeled by 1. In order to simplify the pictures we will not draw
corresponding self-loops.

With every relational word W we associate the matrix MW ∈ {0, 1, 2}n×n

where n is the length of W , as follows:

MW [i, j] =

⎧
⎪⎨

⎪⎩

1 iff the labels of the positions i and j are equal

0 iff the labels of the positions i and j are not equal

2 iff the relation between the labels of the positions i and j is not defined

Example 1. Let us consider the relational word W of length 4 such that the labels
of the first and the third position are equal, the label of the second position is
not equal to them, and the relations of the label of the fourth position to all
others are undefined. We have that XW = {x1, x2, x3, x4}; x1 ≺ x2 ≺ x3 ≺ x4;
and

– EW = {(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x1, x3), (x3, x1)};
– NW = {(x1, x2), (x2, x1), (x2, x3), (x3, x2)};

If A = {a}, then LA(W) = ∅. If A = {a, b}, then LA(W) = {abaa, abab, baba,
baba}. If A = {a, b, c}, then LA(W) = {abaa, abab, abac, baba, babb, babc, acaa, ac
ab, acac, caca, cacb, cacc, bcba, bcbb, bcbc, cbca, cbcb, cbcc}. The graph representing
W and the corresponding matrix are shown on Fig. 2.

0 0

1

MW =

1 0 1 2
0 1 0 2
1 0 1 2
2 2 2 1

Fig. 2. An example of a relational word.

We introduce the notions of equality and contradiction for relational words
as follows. We say that two relational words V and W are equal if |V | = |W | = n,
and for every 1 ≤ i, j ≤ n we have (V [i], V [j]) ∈ RV iff (W [i],W [j]) ∈ RW , R ∈
{E,N}, i.e. V and W are isomorphic relational structures. For every alphabet
A if V = W , then LA(V) = LA(W).

182 I. Potapov et al.

A relational word V contradicts a relational word W if |V | = |W | = n and
there are 1 ≤ i, j ≤ n such that either (V [i], V [j]) ∈ EV and (W [i],W [j]) ∈
NW , or (V [i], V [j]) ∈ NV and (W [i],W [j]) ∈ EW . For every alphabet A if V
contradicts W , then LA(V) ∩ LA(W) = ∅.

We say that a relational word V is a scattered subword of W if V is
a substructure of W , i.e., XV ⊆ XW and for every x, y ∈ XV we have
(x, y) ∈ RV iff (x, y) ∈ RW , R ∈ {E,N}. If V is a scattered subword of W ,
then GV is an induced subgraph of GW .

A relational word V is a subword of W if it is a scattered subword of W and
for every x, y, z ∈ XW if x ≺ y ≺ z and x, z ∈ XV , then y ∈ XV .

Example 2. Figure 3 depicts the above notions. Consider the relational word
from Fig. 3(a). The word from Fig. 3(b) is its scattered subword and from
Fig. 3(c) is its subword.

0 0

1

0

0

(a) relational word W

0

0

0

(b) scattered subword of W

0 0

1

0

(c) subword of W

Fig. 3. An example of a relational word with its scattered subword and subword

With every relational word W we associate its numerical characteristics:

1. FDmax(W) is the length of the longest fully defined scattered subword of W ;
2. Emax(W) is the size of the largest equivalence class of the relation EW , i.e.,

the length of the longest scattered subword of W such that every two elements
of that subword are equal.

Definition 2. An insertion-deletion scheme S is a pair S = (INS,DEL) where
INS ⊆ FDRW is the set of insertion rules and DEL ⊆ FDRW is the set of
deletion rules.

Scheme S = (INS,DEL) is called simple if it contains only one insertion rule
and only one deletion rule, i.e., INS = {I}, DEL = {D} where I,D ∈ FDRW.

We denote by InDm the set of all simple insertion-deletion schemes such that
the length of the insertion rule is n and the length of the deletion rule is m.

Now we define the operations of insertion and deletion on relational words.
Informally, given V,W ∈ RW we understand the single-step insertion relation

W
ins=⇒
S

V as follows: to obtain V , we take W and Y ∈ INS and “insert” Y as

a subword between any two symbols of W (Fig. 4). We assume that after such
insertion for every pair (x, y), where x is a symbol of W and y is a symbol of Y ,
the relation between x and y is undefined.

Formally, we define this relation as follows. For every k,m ∈ N let the function
sk,m : N → N be defined as

sk,m(i) =

{

i if 1 ≤ i ≤ k,

i + m otherwise.

Insertion-Deletion Systems over Relational Words 183

Y

W

0

V

0

insertion

0

1

1

0
0

insertion

0

1

1

1
1

Fig. 4. The single-step insertion relation W
ins
=⇒
S

V

Definition 3. The single-step insertion relation on RW that is induced by S =
(INS,DEL) is defined as follows. For any V,W ∈ RW, Y ∈ INS, and an

integer 0 ≤ k ≤ |W | we have W
insk⇒
Y

V iff |V | = |W | + |Y | and for every 1 ≤
i, j ≤ |V |

– if i, j ∈ [k + 1, k + m], then (V [i], V [j]) ∈ RV iff (Y [i − k], Y [j − k]) ∈ RY ,
where m = |Y | and R ∈ {E,N},

– if i, j 	∈ [k + 1, k + m], then (V [i], V [j]) ∈ RV iff (W [s−1
k,m(i)],W [s−1

k,m(j)]) ∈
RW , where m = |Y | and R ∈ {E,N},

– otherwise (V [i], V [j]) ∈ UV .

If we are not interested by the site of the insertion or by the concrete insertion
rule, then we will write W

ins=⇒
S

V , meaning that there exists Y ∈ INS and k ≥ 0

such that W
insk⇒
Y

V .

Definition 4. The insertion relation on RW that is induced by S =
(INS,DEL) is the reflexive, transitive closure of ins=⇒

S
and is denoted by ins=⇒

S

∗
.

Now we explain the deletion relation. Informally, the application of the dele-
tion rule W

del=⇒
S

V consists of two steps: expansion and deletion (Fig. 5). First,

we have to find a subword Y ′ in the relational word W that does not contradict
a relational word Y ∈ DEL and to “expand” it to Y : for every symbol x and
y in Y ′ such that the relation between them is undefined, we set this relation
to be the same as the relation between the corresponding symbols of Y (a thick
line on Fig. 5). In order to preserve transitivity, if we define that x is equal to y,
then we have to connect to x all nodes incoming to y and using the same label
(dotted lines on Fig. 5). Next, we take the “expanded” subword out of the word
W and obtain the word V .

Definition 5. The single-step deletion relation on RW that is induced by S =
(INS,DEL) is defined as follows. Let V,W ∈ RW, Y ∈ DEL, and 1 ≤ k ≤ |W |.
We denote |Y | = m. Then W

delk⇒
Y

V iff

184 I. Potapov et al.

– there is a subword of W of length m that starts from the position k and does
not contradict Y ;

– |V | = |W | − |Y |;
– for every 1 ≤ i, j ≤ |V | we have (V [i], V [j]) ∈ EV iff

• (W [sk−1,m(i)],W [sk−1,m(j)]) ∈ EW or
• there are 1 ≤ p, q ≤ |Y | such that (Y [p], Y [q]) ∈ EY , (W [p+k−1],W [q+

k−1]) ∈ UW , (W [sk−1,m(i)],W [p+k−1]), (W [sk−1,m(j)],W [q+k−1]) ∈
EW ;

– for every 1 ≤ i, j ≤ |V | we have (V [i], V [j]) ∈ NV iff
• (W [sk−1,m(i)],W [sk−1,m(j)]) ∈ NW or
• there are 1 ≤ p, q ≤ |Y | such that (Y [p], Y [q]) ∈ EY , (W [p+k−1],W [q+

k−1]) ∈ UW , (W [sk−1,m(i)],W [p+k−1]) ∈ EW , (W [sk−1,m(j)],W [q+
k − 1]) ∈ NW or

• there are 1 ≤ p, q ≤ |Y | such that (Y [p], Y [q]) ∈ NY , (W [p+k−1],W [q+
k−1]) ∈ UW , (W [sk−1,m(i)],W [p+k−1]), (W [sk−1,m(j)],W [q+k−1]) ∈
EW .

We will write W
del=⇒
S

V meaning that there exists Y ∈ DEL and k ≥ 1 such

that W
delk⇒
Y

V .

Definition 6. The deletion relation on RW that is induced by S = (INS,DEL)

is the reflexive, transitive closure of del=⇒
S

and is denoted by del=⇒
S

∗
.

0

0 0

1

1
W

Y

0 0
Y’

0 0

0 0

0 0

1

1 1
1 1 1 1

1 1

1

1 1

1

expansion deletion

Fig. 5. The single-step deletion relation W
del
=⇒
S

V

Union of the relations ins=⇒
S

and del=⇒
S

is denoted by =⇒
S

and the reflexive,

transitive closure of =⇒
S

is denoted by =⇒
S

∗.

Definition 7. An insertion-deletion system is the tuple S = (V, INS,DEL,A),
where V is an alphabet, (INS,DEL) is an insertion-deletion scheme, and A ⊆
FDRW is the initial language (the axioms) of the system.

If A = ∅ then we will use a shorthand notation denoting the correspond-
ing system as S = (INS,DEL), i.e. we will identify it by the corresponding
insertion-deletion scheme.

Definition 8. For an insertion-deletion system S = (V, INS,DEL,A) we
define the language set L(S) = {W ∈ RW | Z =⇒

S

∗ W,Z ∈ A} and the set

FDL(S) = {W ∈ FDRW | Z =⇒
S

∗ W,Z ∈ A}.

Insertion-Deletion Systems over Relational Words 185

3 Decidability of Reachability Problem

Definition 9. The reachability problem for insertion-deletion systems is, for a
given insertion-deletion system S and two fully defined relational words V and
W , to determine whether W =⇒

S

∗ V .

Let S = ({I}, {D}) be a simple insertion-deletion system from I2D3 ∪ I3D2,
i.e., both sets INS and DEL contain only one rule and either the length of
the insertion rule is 2 and the length of deletion rule is 3, or the length of the
insertion rule is 3 and the length of deletion rule is 2.

We prove that for given simple insertion-deletion system S ∈ I2D3 ∪ I3D2

and two fully defined relational words V and W the reachability problem is
decidable.

Lemma 1. For every insertion-deletion system S and every W,V ∈ RW if

W =⇒
S

∗ V , then there is Y ∈ RW such that W
ins=⇒
S

∗
Y

del=⇒
S

∗
V .

From now on, we consider only simple systems from I2D3 ∪ I3D2. Because of
the transitivity of the relation E, there are only 2 different fully defined rela-
tional words of length 2 and 5 different fully defined relational words of length
3, yielding 10 insertion-deletion systems in each I3D2 and I2D3. Below are the
associated matrices.

M2
1 =

(

1 0
0 1

)

, M2
2 =

(

1 1
1 1

)

, M3
1 =

⎛

⎝

1 1 1
1 1 1
1 1 1

⎞

⎠, M3
2 =

⎛

⎝

1 1 0
1 1 0
0 0 1

⎞

⎠,

M3
3 =

⎛

⎝

1 0 0
0 1 1
0 1 1

⎞

⎠, M3
4 =

⎛

⎝

1 0 1
0 1 0
1 0 1

⎞

⎠, M3
5 =

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠.

Lemma 2. For every simple insertion-deletion system S ∈ I2D3 ∪ I3D2 and
every relational word W we have W =⇒

S

∗ ε.

Proof. Let S = ({I}, {D}). First we show that it is possible to delete a relational
word that consists of only one symbol, i.e., if V ∈ RW such that |V | = 1, then
V =⇒

S

∗ ε. We have to consider three cases:

(1) |I| = 2, |D| = 3, and the matrix that associated with I is a submatrix of
the matrix associated with D;

(2) |I| = 3, |D| = 2, and the matrix that associated with D is a submatrix of
the matrix associated with I;

(3) The matrix associated with I is not a submatrix of the matrix associated
with D and vice versa.

Let us consider the first case. If I can be obtained from D by removing the
first row and the first column, then we insert I after V and get a matrix that does
not contradict with D and hence we can apply the deletion rule to it. Similarly,

186 I. Potapov et al.

if I can be obtained from D by removing the third row and the third column,
then we insert I before V and again get a matrix that can be deleted.

Next, consider the case (2). In this case we first insert I after V , then apply
the deletion rule to the part of I which coincide with D. As a result we obtain
a word that consists of two symbols with undefined relation between them and
hence can be deleted.

Finally, consider the case (3). Assume that S ∈ I3D2. Then I = M3
1

and D = M2
1 or I = M3

4 and D = M2
2 or I = M3

5 and D = M2
2 . For

each of these tree combinations the following derivation is possible:

V
ins1⇒
I

V1
ins1⇒
I

V2
ins1⇒
I

V3
del2⇒
D

V4
del4⇒
D

V5
del4⇒
D

V6
del3⇒
D

V7
del1⇒
D

ε. Now assume that S ∈
I2D3. Then again there is a derivation that is possible for all the combinations

of I and D: V
ins1⇒
I

V1
ins3⇒
I

V2
ins4⇒
I

V3
ins5⇒
I

V4
del4⇒
D

V5
del3⇒
D

V6
del1⇒
D

ε.

Now, since we can delete any isolated symbol, we can apply these sequences
to each symbol of the relational word W and thus we can delete the whole word,
i.e., for each simple S ∈ I2D3 ∪ I3D2 and every relational word W we have
W =⇒

S

∗ ε.

Corollary 1. Let S be a simple insertion-deletion system such that S ∈ I2D3 ∪
I3D2. For any fully defined relational words V and W we have V =⇒

S

∗ W iff

there is W ′ ∈ RW such that W is a fully defined scattered subword of W ′ and
V =⇒

S

∗ W ′.

In the next lemma we analyze the behavior of insertion-deletion systems such
that either I or D contains unequal symbols.

Lemma 3. Let S = ({I}, {D}) be a simple insertion-deletion system such that
S ∈ I2D3 ∪ I3D2 and either I or D contains unequal symbols. Then for every
W ∈ FDRW there is a constant k ∈ N such that for every V ∈ FDRW if
W =⇒

S

∗ V , then |V | ≤ k.

Now we consider the case when all symbols in both insertion and deletion rules
are equal. For this, we define a mapping Str : FDRW → FDRW such that for
every fully defined relational word W a fully defined relational word Str(W) is
obtained from W in the following way: from each maximal subword u of W that
consists of only equal elements we remove |u| − 1 elements and corresponding
relations. Then we can say that Str(W) describe the structure of W .

Lemma 4. Let S = ({I}, {D}) be a simple insertion-deletion system from
I2D3 ∪ I3D2 such that all symbols in both insertion and deletion rules are
equal. Then for every V,W ∈ FDRW we have W =⇒

S

∗ V if and only if

Str(V) = Str(W ′) where W ′ is a subword of W .

Proof. First we prove that V ∈ FDRW could be derived from the empty word
if and only if all its symbols are equal.

Insertion-Deletion Systems over Relational Words 187

Next we show that if there is a subword W ′ of W such that Str(V) =
Str(W ′), then W =⇒

S

∗ V . Lemma 2 implies that W =⇒
S

∗ W ′ =⇒
S

∗ Str(W ′)

and hence W =⇒
S

∗ Str(V). Then by the definition of the deletion rule we can

obtain V from Str(V) in the following way: for every symbol x of Str(V) that
corresponds to a group of equal symbols of size k in V we insert into Str(V)
a subword of k + |D| equal symbols after x and then apply the deletion rule
to |D| − 1 of them and the symbol x. Therefore Str(V) =⇒

S

∗ V and hence

W =⇒
S

∗ V .

Finally we show that if W =⇒
S

∗ V and Str(W) 	= Str(V), then there is

W ′ ∈ FDRW such that W ′ is a subword of W and Str(V) = Str(W ′).

Theorem 1. Given a simple insertion-deletion system S ∈ I2D3 ∪ I3D2 and
fully defined relational words V and W , it is decidable, whether W =⇒

S

∗ V .

Proof. LetS = ({I}, {D}) be a simple insertion-deletion system such that S ∈
I2D3 ∪ I3D2. Then there are 2 cases:

(1) all symbols in both insertion and deletion rules are equal;
(2) either I or D contains unequal symbols.

In the first case by Lemma 4 we have that W =⇒
S

∗ V if and only if there is

a subword W ′ in W such that W ′ and V have the same structure, i.e., S(V) =
S(W ′). Then it is obvious that it is decidable, if W =⇒

S

∗ V .

In the second case it follows from Lemma 3 that the set FDLS(W) = {V ∈
FDRW | W =⇒

S

∗ V } is finite since the length of words in this set is bounded by

a constant k that depends only on parameters of S and W . Then we can get all
the words in FDLS(W) in finite time by building the derivation tree.

4 Universality

In this section we show that if the length of the inserted and deleted words can
be large, then corresponding insertion-deletion systems can produce a coding of
any recursively enumerable language. We will abuse the terminology and we will
call a function f : A∗ → RW (where A is an alphabet) a morphism, if it satisfies
f(uv) = f(u)f(v). We will further restrict this notion and consider only those
morphisms having f(a) ∈ FDRW, for any a ∈ A. Since any w ∈ FDRW can
be uniquely identified by a string, we will use such a representation to define
corresponding morphisms. Notice, that f(u) 	∈ FDRW for |u| > 1.

Theorem 2. For any recursively enumerable language L over a finite alphabet A
and for any (possibly infinite) alphabet V with |V| > 2, there exists an insertion-
deletion system over relational words S = (V, INS,DEL,A) and a morphism h
such that L = h−1(L(S)).

188 I. Potapov et al.

Proof. It is known that any recursively enumerable language can be generated
by a context-free insertion-deletion system using strings over a finite alphabet
with the size of the inserted, resp. deleted, words being equal to 3, resp. 2 [17].
Hence, there exists an insertion-deletion system S′ = (V ′, T ′, INS′,DEL′, A′)
with parameters above such that L(S′) = L. We recall that L(S′) contains words
over T ′ reachable from the axioms of A′.

Let c : A → FDRW be the morphism defined as follows: c(ai) =
(ab)Kai(ba)K , 1 ≤ i ≤ n, where n = |A| and K > n + 2, see Fig. 6. We will
call c(ai) the code of the letter ai. We say that w ∈ RW is in canonical form if
c−1(w) 	= ∅. Consider the extension of c to languages and let INS = c(INS′),
DEL = c(DEL′) and A = c(A′). We also define h(a) = c(a), if a ∈ T ′.

Fig. 6. The word (ab)Ka3(ba)K coding a3. For simplicity, only the inequality relation
between first a and b is depicted.

We claim that L = h−1(L(S)). Clearly, due to the construction of S we
immediately obtain that L(S) contains the image by c of all sentential forms
used to obtain a word from L(S′). Next, we remark that the inverse morphism
h−1 permits to select only relational words in canonical form corresponding to
the concatenation of codes of terminal letters from T ′, therefore its application
yields a word from L(S′). Thus we obtain that L ⊆ h−1(L(S)).

In order to show the converse inclusion L ⊇ h−1(L(S)) it is sufficient to
prove that no other words except those corresponding to derivations of S′ can
be obtained. This can be formalized as follows.

Claim. For any derivation δ : u ⇒ x1 ⇒ . . . ⇒ xm ⇒ v in S, where u and
v are in canonical form and m > 0 it is possible to construct a derivation
γ : u ⇒ w1 ⇒ . . . ⇒ wn ⇒ v in S, with all wi being in canonical form,
1 ≤ i ≤ n.

We will sketch the proof of this claim. We assume that all xj , 1 ≤ j ≤ m
are not in canonical form, that all insertions precede deletions and that δ does
not have idempotent subderivations (i.e. for any partition of u = u′xu′′ we have
δ : u′xu′′ ⇒+ v′x′v′′ implies x 	= x′, where u′ ⇒∗ v′, u′′ ⇒∗ v′′, x ⇒+ x′).

Now we will show that δ cannot be a valid derivation. We shall prove this
statement by contradiction. We observe that x1 can only be obtained by an inser-
tion from u at a position not corresponding to the codeword boundary. Hence,
in order to obtain a canonical word a sequence of codewords should be “broken”
into pieces by insertion and new different codewords should be reconstructed
from these pieces. Since the deletion operation is performed for words in canon-
ical form only, a new subword in canonical form should be obtained using the
insertion operation.

Insertion-Deletion Systems over Relational Words 189

We recall that each codeword c(ai) is composed from 3 different parts: the
left part – (ab)K , the middle part – ai and the right part – (ba)K . By considering
a and b as two kind of parentheses we can see that c(ai) produces K pairs of
alternating nested parentheses and the insertion as above produces several new
unbalanced pairs. Clearly, in order to balance any of them again new unbalanced
pairs are introduced, hence the number of incorrect patterns does not decrease.
The value of K guarantees that no codeword can be accidentally constructed
from several middle parts of the word.

Now to conclude the proof of the theorem we remark that if every derivation
in S is using words in canonical form, then this directly corresponds to a deriva-
tion in S′ (by applying c−1 to each word). Hence, no new words can be obtained
yielding L ⊇ h−1(L(S)), which concludes the proof.

Since the membership problem for recursively enumerable languages is undecid-
able we obtain the following corollary.

Corollary 2. Given an insertion-deletion system S = (V, INS,DEL,A) and a
relational word X, it is undecidable, whether X ∈ L(S), i.e., whether Z =⇒

S

∗ X,

Z ∈ A ∪ {ε}.

5 Further Remarks

The concept of a relational word is very rich as it is allowing to reason about
computational processes where both the size of strings as well as the domain of
elements are not bounded, like in “pick and place” robot example presented in
the introduction. Obviously the proposed operations on relational words could
be interpreted in terms of graph rewriting [25–27] however the decidability and
undecidability results presented in the paper do not follow from any known to
us translation to graph rewriting.

Also we propose below two extensions of the model of insertion-deletion on
relational words introduced in this paper. First we remark that a rewriting rule
u → v can be seen as the deletion of u and an insertion of v at the corresponding
place. So, with small technical changes, the Definitions 3 and 5 can be combined
into a single definition for the rewriting operation. We remark that in the case of
rewriting, the counterpart of Theorem2 becomes trivial as the synchronization
of the insertion and the deletion operation allows only rewriting of adjacent
codewords.

Another extension is to consider the counterpart of the contextual or con-
trolled variants of the insertion and deletion operation on strings [8,20,21,30].
In this case, the insertion or the deletion is performed is a specific context. The
Definition 3 can be adapted by first combining the left and right contexts into a
single word, using a pattern-matching step like in Definition 5 and then insert-
ing the new word at the position given by contexts and keeping the relations
between the context and the inserted word. For example, a rule (a, ab, b) would
find an occurrence of two unequal symbols in the word and then would insert

190 I. Potapov et al.

exactly between them two symbols equal to the symbol at left (resp. right) of
the current position. The deletion operation can be defined similarly. In the case
of contextual insertion and deletion the counterpart of Theorem2 is also trivial,
because it is possible to use the codes of entire symbols as left and right context.
This means, that the operations can only be performed if the codewords are
adjacent, i.e. in canonical form.

References

1. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of dynamic register
automata. In: FSTTCS 2014, pp. 653–665

2. Ayob, M., Kendall, G.: A triple objective function with a Chebychev dynamic pick-
and-place point specification approach to optimise the surface mount placement
machine. Eur. J. Oper. Res. 164, 609–626 (2005)

3. Bouajjani, A., Dragoi, C., Jurski, Y., Sighireanu, M.: Rewriting systems over nested
data words. In: MEMICS 2009

4. Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting systems with
data. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 1–22.
Springer, Heidelberg (2007)

5. Hackenberg, G., Campetelli, A., Legat, C., Mund, J., Teufl, S., Vogel-Heuser, B.:
Formal technical process specification and verification for automated production
systems. In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014.
LNCS, vol. 8769, pp. 287–303. Springer, Heidelberg (2014)

6. Hayashi, C.: A lower bound for the number of Reidemeister moves for unknotting.
J. Knot Theor. Ramif. 15(3), 313–325 (2006)

7. Halava, V., Harju, T., Karki, T.: Relational codes of words. Theoret. Comput. Sci.
389(1–2), 237–249 (2007)

8. Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion sys-
tems. Fundamenta Informaticae. 138(1–2), 127–144 (2015)

9. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

10. Leupold, P.: Partial Words for DNA coding. In: Ferretti, C., Mauri, G., Zandron,
C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 224–234. Springer, Heidelberg (2005)

11. Lisitsa, A., Potapov, I.: Temporal logic with predicate lambda-abstraction. In:
TIME 2005, pp. 147–155 (2005)

12. Lisitsa, A., Potapov, I.: In time alone: on the computational power of querying the
history. In: TIME 2006, pp. 42–49 (2006)

13. Lisitsa, A., Potapov, I.: On the computational power of querying the history. Fun-
damenta Informaticae 91(2), 395–409 (2009)

14. Lisitsa, A., Potapov, I., Saleh, R.: Planarity of knots, register automata and
LogSpace computability. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.)
LATA 2011. LNCS, vol. 6638, pp. 366–377. Springer, Heidelberg (2011)

15. Lisitsa, A., Potapov, I., Saleh, R.: Automata on Gauss words. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 505–517.
Springer, Heidelberg (2009)

16. Manuel, A., Ramanujam, R.: Automata over infinite alphabets. In: D’Souza, D.,
Shankar, P. (eds.) Modern Applications of Automata Theory, pp. 529–554. World
Scientific, Singapore (2012)

Insertion-Deletion Systems over Relational Words 191

17. Margenstern, M., Paun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theor. Comput. Sci. 330(2), 339–348 (2005)

18. Muthukrishnan, S., Palem, K.: Non-standard stringology: algorithms and complex-
ity. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of
Computing, pp. 770–779. ACM, New York (1994)

19. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004)

20. Rozenberg, G., Salomaa, A.: Dna computing: new ideas and paradigms. In:
Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 106–118. Springer, Heidelberg (1999)

21. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theor. Comput. Sci. 456,
80–88 (2012)

22. Potapov, I.: Composition problems for braids. In: Leibniz International Proceed-
ings in Informatics, LIPIcs, FSTTCS 2013, vol. 24, pp. 175–187. Leibniz-Zent.
Inform (2013)

23. Saleh, R.: On the length of knot transformations via Reidemeister moves I, II. In:
RP 2012, pp. 121–136

24. Saleh, R.: Computational aspects of knots and knot transformations. Ph.D. thesis,
University of Liverpool (2011)

25. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formation: Volume 1 i-xv. World Scientific, Singapore (1997)

26. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Gram-
mars and Computing by Graph Transformation: Volume 2 i-xix. World Scientific,
Singapore (1997)

27. Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G.: Handbook of Graph
Grammars and Computing by Graph Transformation: volume 3 i-xiii. World Sci-
entific, Singapore (1997)

28. Reidemeister, K.: Elementare Berndang der Knotentheorie. Abh. Math. Sem. Univ.
Hamburg 5, 24–32 (1926)

29. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

30. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

31. Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching evolution in
industrial plant automation: Scenarios and documentation of the pick and place
unit. Technical report TUM-AIS-TR-01-14-02, Institute of Automation and Infor-
mation Systems, Technische Universitat Munchen (2014)

Author Index

Alechina, Natasha 36

Best, Eike 51
Bulling, Nils 36

Chamoin, Ludovic 119

De Vuyst, Florian 119
Delzanno, Giorgio 63
Demri, Stephane 36

Finkel, Alain 1
Fribourg, Laurent 119, 134

Geffroy, Thomas 77

Hague, Matthew 148
Hansen, Henri 90

Jones, Sam A.M. 104

Le Coënt, Adrien 119, 134
Legay, Axel 23

Leroux, Jérôme 77
Lin, Anthony Widjaja 148
Logan, Brian 36

Markey, Nicolas 119

Niskanen, Reino 163

Potapov, Igor 177
Prianychnykova, Olena 177

Sedwards, Sean 23
Soulat, Romain 134
Sutre, Grégoire 77

Thomas, Richard M. 104
Traonouez, Louis-Marie 23

Valmari, Antti 90
Verlan, Sergey 177

Wimmel, Harro 51

	Preface
	Organization
	Abstracts of Invited Talks
	The Ideal Theory for WSTS
	Rare Events for Statistical Model Checking: An Overview
	High Performance Reachability Algorithms – Extensions – Interface
	Contents
	The Ideal Theory for WSTS
	1 Introduction
	2 Preliminaries
	2.1 Orderings

	3 A Survey on Well-Structured Transition Systems
	3.1 Monotonic Transition Systems
	3.2 The Properties
	3.3 Well-Structured Transition Systems
	3.4 WSTS Everywhere

	4 The Ideal Framework of Ideals
	4.1 Recent Use of Ideals
	4.2 Decomposition of Downward Closed Sets into Ideals
	4.3 Well Behaved Transition Systems

	5 Completion of WSTS and Accelerations
	5.1 Completion of a WSTS
	5.2 Lub-Accelerations
	5.3 The Rado Structure
	5.4 2-WSTS
	5.5 Are 2-wqos Ubiquitous?

	6 A Conceptual Karp-Miller Procedure
	7 Conclusion and Perspectives
	References

	Rare Events for Statistical Model Checking an Overview
	1 Introduction
	2 Command Based Importance Sampling
	2.1 The Cross-Entropy Method
	2.2 Cross-Entropy Minimisation Algorithm

	3 Importance Sampling for Timed Systems
	4 Importance Splitting
	4.1 Score Function
	4.2 Fixed Levels Algorithm
	4.3 Adaptive Levels Algorithms

	5 Plasma Lab Implementation
	5.1 Importance Sampling Implementation
	5.2 Importance Splitting Implementation
	5.3 Distributed SMC Algorithms
	5.4 Importance Sampling Results
	5.5 Importance Splitting Results

	References

	On the Complexity of Resource-Bounded Logics
	1 Introduction
	2 Alternating VASS Preliminaries
	3 The Logic RBATL and Variants
	4 The Complexity of RBATL
	5 More Path Formulae While Preserving Decidability
	5.1 The Logic RBTL* and its Complexity
	5.2 Decidability of RBATL*

	6 Concluding Remarks
	References

	Plain, Bounded, Reversible, Persistent, and k-marked Petri Nets Have Marked Graph Reachability Graphs
	1 Introduction
	2 Formal Definitions
	3 Persistence, Small Cycles, Separability, Marked Graphs
	4 Proving Backward Persistence
	5 Main Result
	6 Concluding Remarks
	References

	Reachability Predicates for Graph Assertions
	1 Introduction
	1.1 Related Work

	2 GLog
	2.1 Update Rules
	2.2 Transition System

	3 Assertional Language
	4 Symbolic Operations
	5 Conclusions
	References

	Occam's Razor Applied to the Petri Net Coverability Problem
	1 Introduction
	2 The Coverability Problem for Petri Nets
	3 Backward Coverability Analysis with Pruning
	4 The ICover Algorithm
	5 State Inequation for Downward-Closed Invariants
	6 Sign Analysis for Downward-Closed Invariants
	7 Experimental Evaluation
	8 Comparison with Continuous Petri Net
	9 Conclusion
	References

	Safety Property-Driven Stubborn Sets
	1 Introduction
	2 Technical Background
	3 Property-Based Solution to the Ignoring Problem
	4 Property-Driven Visibility
	5 On the Algorithmic Aspects of the Method
	6 An Example
	7 Conclusions
	References

	Characterizing Word Problems of Groups
	1 Introduction
	2 Preliminaries
	3 Properties of Word Problems
	4 Characterizing Word Problems
	5 Decidability Results
	References

	Distributed Synthesis of State-Dependent Switching Control
	1 Introduction
	2 State-Dependent Switching Control
	2.1 Control Modes
	2.2 Control Patterns

	3 Control Synthesis Using Tiling
	3.1 Tiling
	3.2 Parametric Extension of Tiling
	3.3 Generate and Test Tilings

	4 Centralized Control
	4.1 Tiling Test Procedure
	4.2 Stability as a Special Case of Reachability

	5 Distributed Control
	5.1 Background
	5.2 Tiling Test Procedure

	6 Case Study
	7 Final Remarks
	References

	Compositional Analysis of Boolean Networks Using Local Fixed-Point Iterations
	1 Introduction
	2 Attractors
	2.1 Concrete Functions
	2.2 Abstract Functions
	2.3 Example

	3 Basins of Attraction
	3.1 Concrete Functions
	3.2 Abstract Functions

	4 Experiments
	4.1 Attractors
	4.2 Basins of Attraction

	5 Final Remarks
	References

	Decidable Models of Integer-Manipulating Programs with Recursive Parallelism
	1 Introduction
	2 Preliminaries
	3 Formal Models
	4 Decidability
	5 Senescent Ground-Tree Rewrite Systems
	5.1 Model Definition
	5.2 Undecidability

	6 Extensions and Future Work
	References

	Robot Games with States in Dimension One
	1 Introduction
	2 Notation and Definitions
	3 Robot Games with States in Dimension One
	4 Flat Robot Games with States
	5 Conclusion
	References

	Insertion-Deletion Systems over Relational Words
	1 Introduction
	2 Relational Words
	3 Decidability of Reachability Problem
	4 Universality
	5 Further Remarks
	References

	Author Index

