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Preface

CiE 2016: Pursuit of the Universal
Paris, France, June 27 – July 1, 2016

This year Computability in Europe (CiE) honored the 80th anniversary of A. Turing’s
paper introducing the Universal Turing Machine. In this context the conference sought
better understanding of universal computational frameworks ranging from mathemat-
ics, computer science, through various natural sciences such as physics and biology.
CiE provides a forum for exchanging ideas on broad aspects of “computability”
striving to understand the essence of computation through studies of theoretical models
of new paradigms, information processing, encryption, philosophy and history of
computing as well as computability in natural and biological systems. This year’s CiE
conference was held in Paris and through a sequence of tutorials, plenary lectures, and
special sessions allowed in-depth discussions and novel approaches in pursuit of the
nature of computability. Similarly to previous CiE conferences in this series, CiE 2016
had a broad scope promoting the development of computability-related science.

The conference series is organized under auspices of the Association CiE. The
association promotes the development of all areas of mathematics, computer science, as
well as natural and engineering sciences that study the notion of “computability,”
including its philosophical and historical developments. The conference series is a
venue where researchers in the field meet and exchange the most novel features of their
findings.

CiE 2016 was organized jointly by Université Paris 13 and Université Paris 7,
chaired by Paulin de Naurois at Université Paris 13. The previous CiE conferences
were held in Amsterdam (The Netherlands) in 2005, Swansea (Wales) in 2006, Siena
(Italy) in 2007, Athens (Greece) in 2008, Heidelberg (Germany) in 2009, Ponta Del-
gada (Portugal) in 2010, Sofia (Bulgaria) in 2011, Cambridge (UK) in 2012, Milan
(Italy) in 2013, Budapest (Hungary) in 2014, and Bucharest (Romania) in 2015. The
proceedings containing the best submitted papers as well as extended abstracts of
invited speakers for all these meetings are published in the Springer series Lecture



Notes in Computer Science. The annual CiE conference has risen to be the largest
international meeting focused on computability theory issues. CiE 2017 will be held in
Turku, Finland. The leadership of the conference series recognizes that there is
under-representation of female researchers in the field of computability and therefore
incorporates a special session of Women in Computability (WiC) in every CiE con-
ference. WiC was initiated in 2007, and was first funded by the Elsevier Foundation,
later taken over by the publisher Elsevier. This year’s program, organized by Liesbeth
De Mol, besides the regular workshop also provided travel grants for junior female
researchers and a mentorship program.

The 39-member Program Committee of CiE 2016 was chaired by Laurent Bienvenu
(IRIF, CNRS, and Université Paris 7, France), and Nataša Jonoska (University of South
Florida, Tampa, USA). The committee selected the plenary speakers and the special
session organizers, and ran the reviewing process of all the regular contributions
submitted. We received 40 non-invited contributed paper submissions. Each paper
received at least three reviews by the Program Committee and additional reviewers.
About 45 % of the submitted papers were accepted for publication in this volume. In
addition, this volume contains 19 extended abstracts/papers contributed by plenary
speakers and speakers of the invited sessions. The production of the volume would
have been impossible without the diligent work of all of the Program Committee
members and our expert reviewers. We are very grateful to all the Program Committee
members and the reviewers for their excellent work.

All authors who contributed to this conference were encouraged to submit signifi-
cantly extended versions of their papers with unpublished research content to Com-
putability, the journal of the Association CiE.

This year the conference started with a special session honoring the memory of
Barry Cooper, one of the initiators and founders of the conference as well as a driving
force behind the organization of CiE, including the presidency of the association. The
session was organized by Mariya Soskova and the contributors were Theodore Slaman
(University of California Berkeley), Andrea Sorbi (University of Siena), Dag Norman
(University of Oslo), and Ann Copestake (Cambridge University).

Two tutorials were given by Bernard Chazelle from Princeton University, USA, and
Mikolaj Bojanczyk from University of Warsaw, Poland. In addition, the Program
Committee invited seven speakers to give plenary lectures: Natasha Alechina
(University of Nottingham, UK), Vasco Brattka (Universität der Bundeswehr
München, Germany), Delaram Kahrobaei (The City University of New York, USA),
Steffen Lempp (University of Wisconsin, USA), André Nies (University of Auckland,
New Zealand), Dominique Perrin (Université Paris-Est Marne-la-Vallée, France), and
Reed Solomon (University of Connecticut, USA).

Springer generously funded two awards this year, the Best Student Paper Award and
Best Paper Award. The winner of the Best Student Paper Award this year was Mikhail
Andreev for his contribution “Busy Beavers and Kolmogorov Complexity.” The Best
Paper Award was given to Olivier Bournez, Nachum Dershowitz and Pierre Neron for
their contribution “An Axiomatization of Analog Algorithms.”
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CiE 2016 has six special sessions: two sessions, Cryptography and Information
Theory and Symbolic Dynamics, were organized for the first time in the conference
series. The other four special sessions covered new developments in areas previously
covered by the conference series: Computable and Constructive Analysis, Computation
in Biological Systems, Weak Arithmetic, and History and Philosophy of Computing.
Speakers in these special sessions were selected by the special session organizers and
were invited to contribute a paper to this volume.

Computable and Constructive Analysis
Organizers. Daniel Graça and Elvira Mayordomo.
Speakers. Mathieu Hoyrup (Inria and University of Lorraine), Arno Pauly
(University of Cambridge), Vela Velupillai (New School for Social Research in
New York City and University of Trento), Martin Ziegler (KAIST, Daejeon).

Computation in Biological Systems
Organizers. Alessandra Carbone and Ion Petre.
Speakers. Daniela Besozzi (University of Milan-Biccocca), Eugen Czeizler (Åbo
Akademi University), Vincent Moulton (University of East Anglia), Eric Tannier
(Inria and University of Lyon).

Cryptography and Information Theory
Organizers. Danilo Gligoroski, and Carles Padro.
Speakers. Ludovic Perret (Université Pierre et Marie Curie, France), Ignacio Cas-
cudo (Aarhus University in Denmark), Oriol Farras (Universitat Rovira i Virgili,
Spain), Danilo Gligoroski (Norwegian University of Science and Technology -
Trondheim).

History and Philosophy of Computing
Organizers. Alberto Naibo and Ksenia Tatarchenko
Speakers. Maël Pégny (IHPST, Paris), Pierre Mounier-Khun (CNRS), Simone
Martini (University of Bologna), Walter Dean (University of Warwick).

Symbolic Dynamics
Organizers. Jarkko Kari and Reem Yassawi.
Speakers. Valérie Berthé (University of Paris 7), Emmanuel Jeandel (University of
Lorraine), Irène Marcovici (University of Lorraine), Ronnie Pavlov (Denver
University).

Weak Arithmetic
Organizers. Lev Beklemishev and Stanislav Speranski.
Speakers. Pavel Pudlák (Academy of Sciences of the Czech Republic), Alexis Bès
(University of Paris 12), Leszek Kołodziejczyk (University of Warsaw), Albert
Visser (University of Utrecht).
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The organizers of CiE 2016 would like to acknowledge and thank the following for
their financial support (in alphabetical order): the Association for Symbolic Logic
(ASL), the European Association for Theoretical Computer Science (EATCS), and
Springer. We would also like to acknowledge the support of our non-financial sponsor,
the Association Computability in Europe (CiE).

April 2016 Arnold Beckmann
Laurent Bienvenu
Nataša Jonoska
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S. Barry Cooper
1943 – 2015

Barry Cooper at the opening of CiE 2009 in Heidelberg.
Photo taken by Peter van Emde Boas, July 2009.

Barry Cooper, founding member and former president of the Association Computabil-
ity in Europe, died on October 26, 2015, shortly after his 72nd birthday. Born on
October 9, 1943, Barry was a leading figure in the UK logic scene all of his academic
life, a major figure in computability theory, and in particular degree theory. Most
relevant in the context of CiE 2016 is of course that Barry was the driving force of
Computability in Europe and without him, our association would not exist. This text is
focused on Barry in relation to the Association Computability in Europe, it is based on
a short obituary by Benedikt Löwe and Dag Normann [1], and borrows from it with due
permission of the authors.

Barry retired from the office of President of the Association CiE in summer 2015,
and had the chance to close the association AGM in Bucharest in July 2015 with a
speech reminiscing about the history of the association. Barry was very fond of telling
the ironic tale of how our association comprising more than a thousand members grew
out of a rejected application for European funding.

In order to discuss the negative feedback of the referees, it was decided to have a
conference in Amsterdam, which became the first CiE conference. Barry’s vision and
guidance pushed us along the way, to subsequent CiE conferences and finally to the



formal formation of this association in 2008. In 2007 and 2012, he personally
co-chaired the Program Committees of the CiE conferences in Siena and Cambridge;
the fact that these two events were the two largest CiE conferences to date is a
testament to Barry’s infectious enthusiasm and inclusive attitude. Barry also realized
the potential of the Turing Centenary and made sure that the 100th birthday of Alan
Turing was appropriately celebrated during the Alan Turing Year, not just in the UK,
but all across the globe; at Turing’s alma mater in Cambridge, Barry was one of the
organizers of a six-month Turing-related research program at the Isaac Newton Institute
for Mathematical Sciences culminating on Turing’s 100th birthday, June 23, 2012, on
the lawn in front of King’s College. In the years after the centenary, Barry renamed the
Alan Turing Year to Alan Turing Years. As the media attention to Alan Turing grew,
partly due to the Academy-award winning movie The Imitation Game, Barry became
one of Alan Turing’s spokespeople on Twitter and in opinion pieces for The Guardian.

A comprehensive account of Barry’s impact on Computability in Europe by
Benedikt Löwe [2] has been published in the association’s journal Computability.

Barry was very influential in shaping our thinking about computability in much
broader, interdisciplinary terms, which was key to the success of the movement
Computability in Europe. His vision will continue to live in us; his stimulating remarks
and kindness will be very much missed.

April 2016 Arnold Beckmann
Laurent Bienvenu
Nataša Jonoska
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Verifying Systems of Resource-Bounded Agents

Natasha Alechina(B) and Brian Logan

University of Nottingham, Nottingham, UK
{nza,bsl}@cs.nott.ac.uk

Abstract. Approaches to the verification of multi-agent systems are
typically based on games or transition systems defined in terms of states
and actions. However such approaches often ignore a key aspect of multi-
agent systems, namely that the agents’ actions require (and sometimes
produce) resources. We briefly survey previous work on the verification of
multi-agent systems that takes resources into account, and outline some
key challenges for future work.

1 Verifying Autonomous Systems

A multi-agent system (MAS) is a system that is composed of multiple inter-
acting agents. An agent is an autonomous entity that has the ability to collect
information, reason about it, and perform actions based on it in pursuit of its
own goals or on behalf of others. Examples of agents are controllers for satellites,
non-driver transport systems such as UAVs, health care systems, and even nodes
in sensor networks.

Multi-agent systems are ubiquitous. Many distributed software and hardware
systems can be naturally modelled as multi-agent systems. Such systems are by
the nature of their components extremely complex, and the interaction between
components and their environment can lead to undesired behaviours that are
difficult to predict in advance. With the increasing use of autonomous agents
in safety critical systems, there is a growing need to verify that their behaviour
conforms to the desired system specification, and over the last decade verification
of multi-agent systems has become a thriving research area [24].

A key approach to the verification of MAS is model checking. Model checking
involves checking whether a model of the system satisfies a temporal logic formula
corresponding to some aspect of the system specification. Model checking has the
advantage that it is a fully automated technique, which facilitates its use in the
MAS development process.1 A wide range of approaches to model-checking MAS
have been proposed in the literature, ranging from the adaptation of standard
model-checking tools, e.g., [12,13] to the development of special-purpose model
checkers for multi-agent systems, e.g., [22,27].

1 Another strand of work focusses on theorem proving, e.g., [28], but such approaches
typically require user interaction to guide the search for a proof.
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2 Resource-Bounded Agents

In many multi-agent systems, agents are resource-bounded, in the sense that
they require resources in order to act. Actions require time to complete and
typically require additional resources depending on the application domain, for
example energy or money. For many applications, the availability or otherwise
of resources is critical to the properties we want to verify: a multi-agent system
will have very different behaviours depending on the resource endowment of the
agents that comprise it. For example, an agent with insufficient energy may be
unable to complete a task in the time assumed by a team plan, if it has to
recharge its battery before performing the task.

However, with a few exceptions which we discuss below, previous work on
verification of MAS abstracts away from the fact that many multi-agent systems
consist of agents that need resources to operate and that those resources are
limited. In particular, current state-of-the-art verification techniques and tools
for MAS are unable to verify system properties that depend on the resource
production and consumption of the agents comprising the MAS.

In this paper we survey recent work in the emerging field of verification of
resource-bounded agents, and highlight a number of challenges that must be
overcome to allow practical verification of resource-bounded MAS. We argue
that recent work on the complexity of model-checking for logics of strategic
ability with resources offers the possibility of significant progress in the field,
new verification approaches and tools, and the ability to verify the properties of
a large, important class of autonomous system that were previously out of reach.

3 Model-Checking with Resources

In this section we give a brief introduction to model-checking multi-agent systems
and explain how standard model checking approaches can be extended with
resources.

In a model-checking approach to the verification of multi-agent systems, a
MAS is represented by a finite state transition system.2 A state transition sys-
tem consists of a set of states and transitions between them. Intuitively, each
state of a MAS corresponds to a tuple of states of the agents and of the environ-
ment, and each transition corresponds to actions performed by the agents. Each
state is labelled with atomic propositions that are true in that state. A standard
assumption is that each state in the system has at least one outgoing transition
(if a state is a deadlock state in the original MAS, we can model this by adding
a transition to itself by some null action and labelling it with a ‘deadlock’ propo-
sition). Properties of the system to be verified are expressed in an appropriate
temporal logic L. The model-checking problem for L is, given a state transition
system M (and possibly a state s) and an L formula φ, check whether φ is true
in M (at state s).
2 There is work on model-checking infinite state transition systems, see, for example,
[11], but in this paper we concentrate on the finite case.
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For multi-agent systems, a temporal logic of particular interest is Alternating
Time Temporal Logic (ATL) [9]. ATL generalises other temporal logics such as
Computation Tree Logic (CTL) [19] (which can be seen as a one-agent ATL)
by introducing notions of strategic ability. ATL is interpreted over concurrent
game structures (transition systems where edges correspond to a tuple of actions
performed simultaneously by all the agents, see the example below). The lan-
guage of ATL contains atomic propositions, boolean connectives ¬,∧, etc. and
modalities 〈〈A〉〉©, 〈〈A〉〉� and 〈〈A〉〉U for each subset (or coalition in ATL terms)
A of the set of all agents, which express the strategic ability of the coalition
A. 〈〈A〉〉©φ means that the coalition of agents A has a choice of actions such
that, regardless of what the other agents in the system do, φ will hold in the
next state. 〈〈A〉〉�φ means that coalition A has a strategy to keep φ true forever,
regardless of what the other agents do. A strategy is a choice of actions which
either only depends on the current state (memoryless strategy) or on the finite
history of the current state (perfect recall strategy). Finally, 〈〈A〉〉φU ψ means
that A has a strategy to ensure that after finitely many steps ψ holds, and in
all the states before that, φ holds. The model-checking problem for ATL can be
solved in time polynomial in the size of the transition system and the property
[9], and there exist model-checking tools for ATL, for example, MOCHA [10]
and MCMAS [27].

Example. Fig. 1 illustrates a simple ATL model of a system with two agents, 1
and 2, and actions α, β, γ and idle. Action tuples on the edges show the actions
of each agent, for example, in the transition from state sI to s, agent 1 performs
action α and agent 2 performs idle. In this system, in state sI , agent 1 has a
(memoryless) strategy to enforce that p holds eventually in the future no matter
what agent 2 does, which can be expressed in ATL as 〈〈{1}〉〉�U p. Similarly,
in sI agent 1 has a memoryless strategy to keep ¬p true forever, so 〈〈{1}〉〉�¬p
holds in sI .

3.1 Adding Resources

In order to model multi-agent systems where agents’ actions produce and con-
sume resources, it is necessary to modify the approach above in two ways. One
is to add resource annotations to the actions in the transition system: for each
individual action and each resource type, we need to specify how many units
of this resource type the action produces or consumes. For example, suppose
that there are two resource types, r1 and r2 (e.g., energy and money). Then we
can specify that action α in Fig. 1 produces two units of r1 and consumes one
unit of r2, action β consumes one unit of r1 and produces one unit of r2, action
γ consumes five units of r1, and action idle does not produce or consume any
resources.

The second modification is to extend the temporal logic so that we can
express properties related to resources. For example, we may want to express
a property that a group of agents A can eventually reach a state satisfying φ or
can maintain the truth of ψ forever, provided that they have available n1 units
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of resource type r1 and n2 units of resource type r2. Such statements about
coalitional ability under resource bounds can be expressed in an extension of
ATL where coalitional modalities are annotated with a resource bound on the
strategies available to the coalition. We call logics where every action is asso-
ciated with produced and consumed resources and the syntax reflects resource
requirements on agents, resource logics.

To illustrate the properties resource logics allow us to express, consider the
model in Fig. 1 with the production and consumption of resources by actions
specified above. In this setting, we can verify if agent 1 can eventually enforce p
provided that it has one unit of r2 in state sI , or whether the coalition of agents
{1, 2} can achieve p under this resource bound by working together. There are
surprisingly many different ways of measuring costs of strategies and deciding
which actions are executable by the agents given the resources available to them,
but under at least one possible semantics, the answer to the first question is no
and to the second one yes, but the latter requires a perfect recall strategy (the
two agents should loop between states sI and s until they produce a sufficient
amount of resource r1, and then execute actions corresponding to the 〈γ, idle〉
transition from s to s′).

sI s s'

p

idle, idle

idle, idle

idle, idle

, idle

idle, 

, idle

, 

Fig. 1. State transition system.

Clearly, the model-checking problem for temporal logics is a special case of
the model-checking problem for the corresponding resource logics. The question
is, how much harder does the model-checking problem become when resources
are added?

4 A Brief Survey of Resource Logics

In this section, we briefly review recent theoretical work on the development
of resource logics. We focus on expressiveness and model-checking complexity,
as these features determine the suitability of a particular logic for practical
verification.

4.1 Consumption of Resources

Early work on resource logics considered only consumption of resources (no
action produced resources), and initial results were encouraging.
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One of the first logics capable of expressing resource requirements of agents
was a version of Coalition Logic (CL)3, called Resource-Bounded Coalition Logic
(RBCL), where actions only consume (and don’t produce) resources. It was
introduced in [1] with the primary motivation of modelling systems of resource-
bounded reasoners, however the framework is sufficiently general to model any
kind of action. The model-checking problem for this logic was shown to be decid-
able in [5] in polynomial time in the transition system and the property and
exponential in the number of resource types.

A resource-bounded version of ATL, RB-ATL, where again actions only con-
sume (and not produce) resources was introduced in [2]. It was also shown that
the model-checking problem for this logic is decidable in time polynomial in the
size of the transition system and exponential in the number of resource types.
(For a single resource type, e.g., energy, the model-checking problem is no harder
than for ATL.)

Practical work on model-checking standard computer science transition sys-
tems (not multi-agent systems) with resources also falls in the category of
consumption-only systems, for example probabilistic model-checking of systems
with numerical resources as done using PRISM model-checker [26] assumes costs
monotonically increasing with time.

4.2 Adding Production

However, when resource production is considered in addition to consumption, the
situation changes. In a separate strand of work, a range of different formalisms for
reasoning about resources was introduced in [14,16]. In those formalisms, both
consumption and production of resources was considered. In [15] it was shown
that the problem of halting on empty input for two-counter automata [25] can
be reduced to the model-checking problem for several of their resource logics.
Since the halting problem for two-counter automata is undecidable, the model-
checking problem for a variety of resource logic with production of resources
is undecidable. The reduction uses two resource types (to represent the values
of the two counters) and either one or two agents depending on the version of
the logic (whether the agents have perfect recall, whether the formula talking
about coalition A can also specify resource availability for remaining agents,
and whether nested operators ‘remember’ initial allocation of resources or can
be evaluated independently of such initial allocation).

The only decidable cases considered in [14] are an extension of CTL with
resources (essentially one-agent ATL) and a version where on every path only a
fixed finite amount of resources can be produced. In [14], the models satisfying
this property are called bounded, and it is pointed out that RBCL and RB-
ATL are logics over a special kind of bounded models (where no resources are
produced at all). Other decidability results for bounded resource logics have
also been reported in the literature. For example, [20] define a decidable logic,
PRB-ATL (Priced Resource-Bounded ATL), where the total amount of resources

3 CL is a fragment of ATL with only the next time 〈〈A〉〉© modality.
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in the system has a fixed bound. The model-checking algorithm for PRB-ATL
requires time polynomial in the size of the model and exponential in the number
of resource types and the resource bound on the system. In [21] an EXPTIME
lower bound in the number of resource types for the PRB-ATL model-checking
problem is shown.

A general logic over systems with numerical constraints called QATL∗ was
introduced in [17]. In that paper, more undecidability results for the model-
checking problem of QATL∗ and its fragments were shown. For example, QATL
(Quantitative ATL) is undecidable even if no nestings of cooperation modalities
is allowed. The main proposals for restoring decidability to the model-checking
problem for QATL in [17] are removing negative payoffs (similar to remov-
ing resource production) and also introducing memoryless strategies. Shared
resources were considered in [18]; most of the cases considered there have unde-
cidable model-checking (apart from the case of a single shared resource, which
has decidable model-checking).

This brief survey of work to date suggest that the main approach until
recently to dealing with both resource production and consumption was to bound
the amount of produced resources globally in the model. For some systems of
resource-bounded agents, this is a reasonable restriction. For example, agents
that need energy to function and are able to charge their battery, can never ‘pro-
duce’ more energy than the capacity of their battery. This is a typical bounded
system. However, in some cases, although every single application of the agent’s
actions produces a fixed amount of some resource, repeating this action arbi-
trarily often will produce arbitrarily large amounts of the resource. This may
apply to energy stored in unbounded storage, or to money, or many other nat-
ural situations. Recent work suggests that verification of such systems may still
be possible.

5 Decidable Unbounded Production

In [6] a version of ATL, RB ±ATL, was introduced where actions both pro-
duce and consume resources. The models of the logic do not impose bounds
on the overall production of resources, and the agents have perfect recall. The
syntax of RB± ATL is very similar to that of ATL, but coalition modalities
have superscripts which represent resource allocation to agents. Instead of sta-
ting the existence of some strategy, they state the existence of a strategy such
that every computation generated by following this strategy consumes at most
the given amount of resources. Coming back to the example, the property that
agent 1 can eventually enforce p provided that it has one unit of r2 can be
expressed as 〈〈{1}(0,1)〉〉�U p4 The model-checking problem for RB ±ATL is
decidable (RB ±ATL is very similar to one of the resource logics introduced
4 Here, (0, 1) is the allocation of 0 units of r1 and 1 unit of r2 to agent 1. We only show
resource bound for the proponent agents, {1} in this case. Versions of resource logic
where opponents are also resource-bounded all have an undecidable model-checking
problem, see [14].
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in [14] for which the decidability of the model-checking problem was left open).
The existence of a decidable resource logic with unbounded production was sur-
prising, as it was the first indication that it is possible to automatically verify
properties of this important class of resource-bounded multi-agent system.

However, although this result is encouraging, we are not yet at the point of
practical verification of such systems. In [6] the lower bound on the complexity
of the model-checking problem for RB±ATL is shown to be EXPSPACE. The
proof of EXPSPACE-hardness is by reduction of the reachability problem for
Petri Nets to the model-checking problem for RB±ATL. Although the Petri
Net reachability problem is decidable, the upper bound on its complexity is
still unknown; similarly we do not know the upper bound on the RB± ATL
complexity. The complexity of the model-checking problem RB ±ATL is thus
much higher than that for ATL without resources and the consumption-only
resource logics surveyed above. This high complexity makes it difficult to develop
practical verification approaches. The only exception is 1-RB ±ATL, RB ± ATL
with a single resource type, where the complexity is PSPACE.

In [3], a new syntactic fragment FRAL of resource logic RAL with decidable
model-checking has been identified. It restricts the occurrences of coalitional
modalities on the left of the Until formulas; on the other hand, it allows nested
modalities to refer to resource allocation at the time of evaluation, rather than
always consider a fresh resource allocation, as in RB± ATL. More precisely, a
formula 〈〈Ab〉〉φU 〈〈A↓〉〉ψ1 U ψ2 says that given resource allocation b, coalition A
can always reach a state (maintaining φ) where with the remaining resources, it
can reach ψ2 while maintaining ψ1. The complexity of model-checking for this
fragment is also open, and is also likely to be high.

Although model-checking of ATL with perfect recall and uniform strategies
is undecidable, replacing uniformity with a weaker notion, for example defin-
ing it using distributed knowledge, is decidable [23]. Similar results hold for
RB ± ATL with syntactic epistemic knowledge and weaker notions of uniformity,
RB ± ATSEL [4].

Below is a summary of resource logics with decidable model-checking prob-
lem. In all of them, the semantics assume that in every state each agent has an
available action to do nothing, which produces and consumes no resources (see
Table 1).

6 Future Challenges

The RB ±ATL results offer the possibility of significant progress in the verifica-
tion of resource-bounded multi-agent systems. However many challenges remain
for future research. Below we list three of the most important.

Understanding Sources of Undecidability. Developing a better under-
standing of the sources of decidability and undecidability (beyond boundedness)
will be critical to future progress. As observed in [14], subtle differences in truth
conditions for resource logics result in the difference between decidability and
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Table 1. Resource logics with decidable model-checking problem

Logic Resource production Complexity of model-checking

RBCL no EXPTIME (PTIME in model)

RB-ATL no EXPTIME (PTIME in model)

PRB-ATL bounded EXPTIME

RB±ATL yes EXPSPACE-hard

1-RB±ATL yes PSPACE

FRAL yes ?

RB±ATSEL yes EXPSPACE-hard

undecidability of the model-checking problem. Preliminary work in this direction
is reported in [3].

Lower Complexity. It is useful to discover sources of undecidability and how
to construct expressive logics for which the model-checking problem is decidable.
However, it is even more important to be able to develop logics, or fragments
of existing logics such as RB ± ATL, that are sufficiently expressive for practical
problems, but where the model-checking problem has tractable complexity (ide-
ally polynomial in the size of the transition system, as in the case of bounded
production logics). Only then would we be able to implement practical model-
checking tools for systems of resource-bounded agents.

Practical Tools. Although model checking algorithms have been proposed for
several of the logics surveyed, work on implementation is only beginning. We aim
to develop practical model-checking tools for verifying resource-bounded MAS
by extending the MCMAS model checker [27] to allow the modelling of multi-
agent systems in which agents can both consume and produce resources. Work
on symbolic encoding of RB-ATL model-checking is reported in [8] and work on
symbolic encoding of RB±ATL model-checking are reported in [7].

Addressing these challenges will allow practical model-checking of resource
logics and constitute a major break-through in multi-agent system verification.
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Valérie Berthé1(B), Thomas Fernique2, and Mathieu Sablik3

1 IRIF, CNRS UMR 8243, Univ. Paris Diderot, Paris, France
berthe@liafa.univ-paris-diderot.fr

2 LIPN, CNRS UMR 7030, Univ. Paris 13, Villetaneuse, France
fernique@lipn.fr

3 I2M UMR 7373, Aix Marseille Univ., Marseille, France
mathieu.sablik@univ-amu.fr

Abstract. We focus in this survey on effectiveness issues for S-adic sub-
shifts and tilings. An S-adic subshift or tiling space is a dynamical system
obtained by iterating an infinite composition of substitutions, where a
substitution is a rule that replaces a letter by a word (that might be
multi-dimensional), or a tile by a finite union of tiles. Several notions of
effectiveness exist concerning S-adic subshifts and tiling spaces, such as
the computability of the sequence of iterated substitutions, or the effec-
tiveness of the language. We compare these notions and discuss effective-
ness issues concerning classical properties of the associated subshifts and
tiling spaces, such as the computability of shift-invariant measures and
the existence of local rules (soficity). We also focus on planar tilings.

Keywords: Symbolic dynamics · Adic map · Substitution · S-adic sys-
tem · Planar tiling · Local rules · Sofic subshift · Subshift of finite type ·
Computable invariant measure · Effective language

1 Introduction

Decidability in symbolic dynamics and ergodic theory has already a long history.
Let us quote as an illustration the undecidability of the emptiness problem (the
domino problem) for multi-dimensional subshifts of finite type (SFT) [8,40], or
else the connections between effective ergodic theory, computable analysis and
effective randomness (see for instance [14,35,44]). Computability is a notion
that has also appeared as a major understanding tool in the study of multi-
dimensional subshifts of finite type with the breakthrough characterization by
M. Hochman and T. Meyerovitch of the entropies of multi-dimensional sub-
shifts of finite type as the non-negative right recursively enumerable numbers
[34] (see also [30] in the one-dimensional case). Let us mention also the real-
ization of effective subshifts (with factor and projective subaction operation)
from higher-dimensional subshifts of finite type [3,19,33]. It is now clear that
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sofic and effective subshifts are closely related, in particular for substitutive sub-
shifts and tilings. Indeed, contrarily to the one-dimensional case, substitution
subshifts are known to have (colored) local rules (they are SFT or sofic) in the
higher-dimensional framework [26,31,38].

We focus here on effectiveness issues for S-adic subshifts (and tilings). An
S-adic expansion is a way to represent (or to generate) words (one-dimensional
and multi-dimensional ones), or tilings, by composing infinitely many substitu-
tions. A (word) substitution is a morphism of the free monoid: it replaces letters
by words. Substitutions can also be defined in the higher-dimensional framework:
they replace letters by multi-dimensional patterns, and act on multi-dimensional
words (configurations) in Z

d; more generally, substitutions can also generate and
act on tilings, by replacing a tile by a finite union of tiles. An infinite word u (or
a d-dimensional configuration, or a tiling) admits an S-adic expansion if

u = lim
n→∞ σ0σ1 · · · σn−1(an),

where (σn)n∈N is a sequence of substitutions, and (an)n∈N a sequence of letters.
For more on substitutions, see e.g. [28], and for more on S-adic words and tilings,
see [9,29]. There is a deep parallelism between subshifts associated with such
expansions (under natural assumptions like primitivity) and Bratteli–Vershik
systems endowed with adic transformations, hence the terminology ‘adic’, with
the letter S referring to ‘substitution’. This connection between adic models and
substitutions has been widely investigated; see e.g. [24], or [10] and the references
therein. Recall also that any Cantor minimal system admits a Bratteli–Vershik
representation [32], which illustrates the representation power of this notion.

Without any further assumption on the S-adic representation, every infinite
word admits an S-adic expansion (according to Cassaigne’s construction, see
e.g. [9, Remark 3]). One thus needs to introduce suitable assumptions on these
S-adic representations in order to find a good balance between the expressive
power of such representations and the information provided by their existence.
Let us illustrate this with [2] where it is proved that multi-dimensional S-adic
subshifts, obtained by applying an effective sequence of substitutions chosen
among a finite set of substitutions, are sofic subshifts.

Basic notions and definitions on substitutions and S-adic subshifts and
tilings are recalled in Sect. 2. We discuss some decidability results in the one-
dimensional setting for substitutive words in Sect. 3. Section 4 focuses on effec-
tiveness for S-adic subshifts. Lastly, multi-dimensional Sturmian words and pla-
nar tilings are considered in Sect. 5.

2 Definitions

2.1 Subshifts

Let A be finite alphabet and d ≥ 1. A configuration u is an element of AZ
d

. A
pattern p is an element of AD, where D ⊂ Z

d is a finite set, called its support.
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Denote A∗ the set of patterns. A translate of the pattern p by m ∈ Z
d is denoted

p+m and has D+m for support. A pattern p ∈ AD is a factor of a configuration
u = (un)n∈Zd if there exists m ∈ Z

d such that the restriction of u to D + m
coincides with p + m. The set of factors (up to translation) of u is called its
language.

The set AZ
d

endowed with the product topology is a compact metric space.
A d-dimensional subshift X ⊂ AZ

d

is a closed and shift-invariant set of configu-
rations in AZ

d

, where the shifts σm with m ∈ Z
d are defined as σm : AZ

d → AZ
d

,
(un)n∈Zd �→ (un+m)n∈Zd . The shifts provide a natural action of Zd.

A subshift X can be defined by providing its language, that is, the set of
patterns (up to translation) that occur in configurations in X. It can be defined
equivalently by providing the set of forbidden patterns. Subshifts of finite type
(also called SFT) are the subshifts such that the set of their forbidden patterns
is finite. Sofic subshifts are images of SFT under a factor map, where a factor
map π : X → Y between two subshifts X and Y is a continuous, surjective map
such that π ◦ σm = σm ◦ π, for all m ∈ Z

d.

Definition 1 (Computable subshift). A subshift is said to be

– Π1-computable or effective if its language is co-recursively enumerable;
– Σ1-computable if its language is recursively enumerable;
– Δ1-computable or decidable if its language is recursive.

A subshift is said to be linearly recurrent if there exists C > 0 such that
every pattern whose support is a translate of [−Cn,Cn]d contains every factor
whose support is a translate of [−n, n]d. The frequency f(p) of a pattern in a
d-dimensional configuration u is defined as lim supn |xn|p/(2n+1)d, where xn is
the restriction of u to [−n, n]d, and |xn|p stands for the number of occurrences
of p in xn. If the lim sup is in fact a limit, then the frequency is said to exist.
A subshift is said to be uniquely ergodic if it admits a unique shift-invariant
measure; in this case, pattern frequencies do exist. A subshift is said to be
minimal if every non-empty closed shift-invariant subset is equal to the whole
set. A minimal and uniquely ergodic subshift is said strictly ergodic. Any pattern
which appears in a strictly ergodic subshift has a positive frequency. For more
on multidimensional subshifts, see e.g. [11, Chap. 8, 9].

2.2 Substitutions and S-adic Subshifts

A substitution s over the alphabet A is a map s : A −→ A∗. Let S be a finite set
of substitutions; we want to define how a pattern of substitutions s ∈ S D acts
on a pattern p ∈ AD, with D ⊂ Z

d finite. This general definition allows us to
apply simultaneously different substitutions; we are in the non-deterministic case
of [38]. We thus introduce concatenation rules which specify how the respective
images of two adjacent tiles must be glued. A pattern of substitutions s ∈ S D

is said to be compatible with a pattern p ∈ AD (made of cells) if it is consistent
(the image of a cell does not depend on the sequence of concatenation rules that



16 V. Berthé et al.

are used, patterns have a unique image) and non-overlapping (the images of two
cells do not overlap).

When s and p are compatible, the (unique) image of p by s is denoted as
s(p). If all letters of s are equal to the same substitution s ∈ S , the S -pattern
is said to be s-constant. This corresponds to the classical case of the action
of one substitution (the deterministic case in [38]). An S -super-tile of order
n corresponds to n iterations of (compatible) patterns of substitutions applied
to a letter. We define the S -adic subshift XS as the set of the configurations
for which every pattern appears in an S -super-tile. Here we can compose all
substitutions in S . This notion plays a role for the description of planar tilings
introduced in Sect. 5.

We now introduce the usual S-adic setting by applying only constant patterns
of substitutions. We take a sequence of substitutions S = (sn)n∈N ∈ S N; the
shift acting on S is denoted as σ (σ(S) = (sn+1)n∈N ∈ S N). The S-super-tile
of order 0 and type a ∈ A is defined as the letter a, whereas the S-super-tile
of order n + 1 and type a is the image of the σ(S)-super-tile of order n and
type a by a s0-constant S -pattern. A super-tile of order n can thus be defined
by a word of size n in S ∗ together with a letter. The sequence S is said to be
a directive sequence. We then define the S-adic subshift XS as the set of the
configurations for which every pattern appears in an S-super-tile. For a closed
subset S ⊂ S N, we also define the S-adic subshift XS =

⋃
S∈S XS .

For d = 1, a natural way to define concatenation rules is to consider that
the image of two consecutive letters is obtained as the concatenation of the two
image words. Thus a substitution can be viewed as a non-erasing endomorphism
of the free monoid A∗. For example the Fibonacci substitution on the alphabet
{a, b} is defined by σ : a �→ ab, b �→ a. For d = 2, if all the supports of the images
by an element of S are rectangular, concatenation rules of two adjacent letters
consist in the concatenation of the two image patterns as long as the two glued
edges have the same size. Rectangular substitutions are considered e.g. in [38]
(see also [16] for the notion of shape-symmetric rectangular substitutions).

It is possible to extend the notion of substitution to geometric tilings. A tiling
of Rd is a collection of compact sets which cover topologically R

d, that is, with
the interiors of the tiles being pairwise disjoint. In general, a tile-substitution
in R

d is given by a set of prototiles T1, . . . , Tm ⊂ R
d, an expanding map and

a rule how to dissect each expanded prototile into translated copies of some
prototiles Ti. These geometric tiling substitutions are considered e.g. in [31]. It
is also possible to define S-adic tilings in this context (see [29]).

There are further strategies for defining substitutions such as described in
[28]. For instance, one can also use a global information; see the formalism intro-
duced in [1] that allows the generation of multi-dimensional Sturmian words
considered in Sect. 5; this formalism also provides concatenation rules [25].

3 Some Decisions Problems for Substitutions

In the one-dimensional case, numerous decidability results exist for fixed points
of substitutions (D0L words), and their images by general morphisms (HD0L
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words). More precisely, let A, B, be finite alphabets. We consider two morphisms
σ : A∗ → A∗, φ : A∗ → B∗; an infinite word of the form limn σn(u) (respectively
φ(limn σn(u))) is a D0L (respectively an HD0L word or morphic word), for u
finite word.

We focus here on some decision problems that can be solved using the notion
of return word and derived sequence (see e.g. [20]). Let σ be a primitive sub-
stitution. It generates a minimal subshift Xσ. A return word to a word u of its
language is a word w of the language such that uw admits exactly two occur-
rences of u, with the second occurrence of u being a suffix of uw. One can recode
sequences of the subshift via return words, obtaining derived sequence (see e.g.
[20]). Note that even if analogous notions exist in the higher-dimensional case
and for tilings [39], this is not sufficient to yield a direct generalization of the
results described below.

The HD0L ω-equivalence problem (which has been open for more than 30
years) is solved in [21] for primitive morphisms: it is decidable to know whether
two HD0L words are equal (see the references in [21] for the D0L case). The
decidability of the ultimate periodicity of HD0L infinite sequences has also been
a long-standing problem: it is decidable to know whether an HD0L word is
ultimately periodic. See [21] for the primitive case, and [22] for the general case.
See also the references in [22] for the D0L case. This problem is closely related
to the decidability of the ultimate periodicity of recognizable sets of integers in
some abstract numeration systems [7]. It is also proved in [23] that the uniform
recurrence of morphic sequences is decidable.

The particular case of constant-length substitutions (automatic sequences)
has also been widely studied; see e.g. [17,42] where decision procedures are pro-
duced based on the connections between first-order logic and automata such
as developed in [15] where the equivalence between being p-recognizable and
p-definability is developed. For more references, see also the book [41].

4 Effectiveness for S-adic Subshifts and Local Rules

We discuss here several effectivity notions for S-adic subshifts concerning their
directive sequences, pattern frequencies, or else their language. We also focus
on the existence of local rules. We only consider here iterations by constant
S -patterns. We recall that S is finite.

A closed subset S ⊂ S N is effectively closed if the set of (finite) words
which do not appear as prefixes of elements of S is recursively enumerable (one
enumerates forbidden prefixes). An effectively closed set is not necessarily a
subshift.

A set of substitutions S has a good growing property if there are finitely many
ways of gluing super-tiles, and if the size of the super-tiles of order n grows with
n: there exists a finite set of patterns P ⊂ A∗ such if a pattern formed by a
super-tile of order n surrounded by super-tiles of order n is in the language of
XS N , then it appears as the n-iteration by a constant S -pattern of a pattern
of P, and, moreover, if for every ball of radius R, there exist n ∈ N such a
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translate of this ball is contained in all the supports of super-tiles of order n.
Clearly non-trivial rectangular substitutions or geometrical substitutions (such
as defined in [31]) verify this property.

Proposition 1. Let S ⊂ S N be a closed subset. If XS is effective, then there
exists an effective closed subset S′ ⊂ S N such that XS = XS′ . The reciprocal is
true if S has the good growing property.

Proof. Assume that XS is effective. The complement of its language is recur-
sively enumerable. Let S′ be the effective closed set such that a word in S ∗

is a forbidden prefix if the associated super-tiles are in the complement of the
language of XS. Clearly XS′ = XS.

Conversely, consider the S-adic subshift XS where S is effectively closed and
let P be the set of patterns given by the good growing property. Let P ′ be the
set of patterns in P that occur in Xσn(S) for infinitely many n. A pattern p is in
the language of XS if it appears in the image by an n-iteration of a pattern of
P ′, where n is the first order where the support of p is included in all super-tiles
of order n. Since P ′ is finite and the prefixes of S are co-recursively enumerable,
the same holds for the language of XS.

Definition 2 (Computable frequencies and measure). Let X be a subshift.
X is said to have computable frequencies if the frequencies of patterns exist and
are uniformly computable. A shift-invariant measure is said to be computable if
the measure of any cylinder is uniformly computable.

Remark 1. Computability of letter frequencies does not say much on the algo-
rithmic complexity of a subshift: take a subshift X ⊂ {0, 1}Z and consider the
subshift Y obtained by applying to each configuration of X the substitution
0 �→ 01, 1 �→ 10. The subshift Y admits letter frequencies (they are both equal
to 1/2), and it has the same algorithmic complexity as X.

Proposition 2. Let X be a subshift. If X is effective and uniquely ergodic, then
its invariant measure is computable and it is decidable. If X is minimal and its
frequencies are computable, then its language is recursively enumerable. If X is
minimal and effective, then it is decidable.

Proof. Let X be a d-dimensional subshift. We assume X effective and uniquely
ergodic. Let us prove that the frequency of any pattern is computable. We use
the following algorithm that takes as an argument the parameter e that stands
for the precision. We consider a finite pattern p. At step n, one produces all
‘square’ patterns of size n with support being a translate of [−n, n]d that do
not contain the n first forbidden patterns (they do not need to belong to the
language of X). For each of these square patterns of size n, one computes the
number of occurrences of p in it, divided by (2n + 1)d. We continue until these
quantities belong to an interval of length e. This algorithm then stops, and taking
an element of the interval provides an approximation of the frequency of p up to
precision e. Indeed, the square patterns of size n contain the square patterns of
size n of X. It remains to prove that the algorithm stops. Suppose it does not,
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then, for all n, one can find two patterns of size n, xn and x′
n, that do not contain

the n first forbidden patterns and such that ||xn|p/(2n+1)d−|x′
n|p/(2n+1)d| > e.

By compactness, we can extract two configurations x and x′ that do not contain
forbidden patterns (they thus belong to the subshift X) such that the frequency
of p in x is distinct from the frequency of p in x′. This contradicts the unique
ergodicity of X.

We now assume X minimal with computable pattern frequencies (frequencies
are positive). One can decide whether the frequency of a pattern is larger than
a given value. This thus implies that the language is recursively enumerable.

Assume that X is minimal and effective. Consider the square patterns of size
n that do not contain the n first forbidden patterns. If a pattern belongs to all
these patterns for some n, then it belongs to the language. Otherwise, consider
size n + 1. The algorithm stops if a pattern is in the language by minimality.

Corollary 1. Let XS be a strictly ergodic S-adic subshift defined with respect
to a directive sequence S ∈ S N such that S satisfies the good growing property.
The following conditions are equivalent:

1. There exists a computable sequence S′ such that XS = XS′ ;
2. The unique invariant measure of XS is computable;
3. The subshift XS is decidable.

Proof. We first assume (1). By Proposition 1, XS is effective and Proposition 2
yields that its unique measure is computable and that XS is decidable.

We now assume (2). Let d stand for the cardinality of the alphabet of the sub-
stitutions in S . The letter frequency vector is in the cone defined by the product
of the incidence matrices of the directive sequence. The incidence matrix of a
substitution s is a square matrix whose entry of index (i, j) counts the number
occurrences of the letter i in s(j). Let Mn stand for the incidence matrix of the
substitution sn. The letter frequency belongs to the cone

⋂
n M1 · · · MnR

d
+, which

is one-dimensional by unique ergodicity. Given a precision e, one can compute n
such that the columns of M1 · · · Mn are expected to be at a distance less than e
from the letter frequency vector. We fix a cylinder around the direction provided
by the letter frequency vector with precision e. Now we test finite products of
n substitutions in S . We consider the cone obtained by taking the product of
the incidence matrices, and check whether it intersects the cylinder. If it does
not intersect the cylinder, one gets a forbidden product of substitutions, which
proves that {S} is effectively closed.

It remains to prove that (3) implies (1). There exists a closed effective set
such that XS = XS, by Proposition 1. For every S′ ∈ S, one has XS′ = XS , by
minimality. We then exhibit a computable S′ in S as follows: for any n, take the
first prefix for the lexicographic order among the prefixes of elements in S such
that s0s1 · · · sn(a) is in the language of XS .

Existence of Local Rules. A natural question in tiling theory is to find local
rules which only produce aperiodic tilings. The first examples of aperiodic sub-
shifts of finite type were based on hierarchical structures [8,40]: substitutive
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structures are known to be able to force aperiodicity. Note that a non-trivial sub-
stitutive subshift cannot be sofic in dimension 1: it has zero topological entropy
whereas non-trivial sofic subshifts have positive entropy. In dimension d ≥ 2,
under natural assumptions, it is known for different types of substitutions that
substitutive tilings can be enforced with (colored) local rules. The ideas is always
to force a hierarchical structure, as in Robison’s tiling, where each change of level
is marked by the type of the super-tile of this level, and the rule used is trans-
mitted for super-tiles of lower order. For rectangular substitutions, the result is
proved in [38] (with the result being more general since the substitutions are
non-deterministic). The case of geometrical substitutions is handled in [31] and
the result is also true in a more combinatorial way [26].

In the case of rectangular substitutions it is shown in [2] that the S-adic
subshift XS is sofic if and only if it can be defined by a set of directive sequences
S which is effectively closed. A similar result for more general substitutions
is expected; the difficulty relies in the ability to exhibit a rectangular grid to
use the simulation (see [3,19]) of a one-dimensional effective subshift by a two-
dimensional sofic subshift. One can also ask whether linearly recurrent effective
subshifts are sofic. Note that such a statement cannot hold for computability
reasons (there are uncountably many linearly recurrent subshifts) without any
effectivity assumption. Note also that in the one-dimensional case, linearly recur-
rent subshifts are primitive S-adic [20].

5 An Application: Planar Tilings

As an example of S-adic configurations, we consider multi-dimensional Sturmian
words. The associated tilings belong to the more general class of planar tilings.
A (canonical) planar tiling is an approximation of an affine d-plane E in R

n,
via the cut-and-project method (see e.g. [4]). Such a tiling can be lifted into
the tube E + [0, t]n: the space E is called the slope and the smallest possible
t the thickness. Planar tilings are closely related to discrete planes in discrete
geometry and provide models of quasicrystals. The case t = 1 and d = n − 1
corresponds to the multi-dimensional Sturmian case. In terms of configurations,
a multidimensional Sturmian word is defined as the coding of a Z

d-action by d
rotations Rαi

: R/Z → R/Z, x �→ x + αi (1 ≤ i ≤ d), where the αi are positive
real numbers. We assume 1, α1, · · · , αd rationally independent and

∑
i αi < 1.

A multidimensional Sturmian word u ∈ {1, 2, · · · , d + 1}Zd

is defined as follows:
there exists ρ, a partition of R/Z into d + 1 semi-open intervals, d of lengths αi,
and one of length 1−∑

αi, such that un = i if and only if n1α1+· · ·+ndαd+ρ ∈ Ii

[12]. The cut-and-project framework is larger than the S-adic framework but
multidimensional Sturmian words are S-adic [13] (via the formalism of [1]).

The study of the connections between the existence of local rules for a planar
tiling and the parameters of its slope started with [18,36,37,43]. In particular, it
was proven in [36] that a slope enforced by undecorated local rules is necessarily
algebraic (this is however not sufficient, see e.g. [5,6]). However, computability
comes into play when the tiles can be decorated. Decorations indeed allow the
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transfer of information through the tiling, and this was used in [27] to prove that
a slope can be enforced by such rules if and only if it is computable.
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Abstract. Mathematical modeling and computational analyses of bio-
logical systems generally pose to modelers questions like: “Which mod-
eling approach is suitable to describe the system we are interested in?
Which computational tools do we need to simulate and analyze this
system? What kind of predictions the model is expected to give?”. To
answer these questions, some general tips are here suggested to choose
the proper modeling approach according to the size of the system, the
desired level of detail for the system description, the availability of exper-
imental data and the computational costs of the analyses that the model
will require. The attention is then focused on the numerous advantages of
reaction-based modeling, such as its high level of detail and easy under-
standability, or the possibility to run both deterministic and stochastic
simulations exploiting the same model. Some notes on the computational
methods required to analyze reaction-based models, as well as their par-
allelization on Graphics Processing Units, are finally provided.

1 Introduction

In many fields of life sciences, researchers are taking more and more frequently
advantage of mathematical modeling and computational analysis as complemen-
tary tools to experimental laboratory methods. In the recent years, plenty of
multidisciplinary works largely proved the increased capability of the synergistic
integration between computational and experimental research, to achieve faster
and better comprehension of biological systems. In this context, many frame-
works and methodologies that were originally developed in computer science
and engineering have been applied to study a variety of biological systems [1,2].
Anyway, the choice of the most adequate modeling and computational approach
is not a straightforward process, which should always be guided by the nature
of the system of interest, by the experimental data in hand and, above all, by
the scientific question that motivates the development of the model.

Many times, laboratory experiments simply aim at identifying the existence
of some sort of “difference” between what is happening in the biological system
before/after a perturbation, or with/without a key component of that system (for
instance, the response to a stress state vs. the physiological state, the phenotype
of a mutant organism vs. the wild type, etc.). In these cases, statistical methods
can be used to establish the significance of such a difference by using experimental
c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 24–34, 2016.
DOI: 10.1007/978-3-319-40189-8 3
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data that are generally easy to measure [3]. When the scope of the modeling is to
make predictions about the emergent behaviours of the system in conditions that
were not previously analyzed, then also the complexity and the technical challenges
of laboratory experiments increase up to the measurement of quantitative time-
series, which most of the time require time-consuming and expensive procedures
[4,5]. In these situations, the available biotechnological equipments or experimen-
tal methodologies could represent a bottleneck to the measurement of biological
data at the level of precision or sampling frequency that are beneficial for mathe-
maticalmodeling, therefore limiting or hampering the effective application ofmany
computational approaches. Albeit the drawbacks that characterize these complex
experiments, the availability of reliable time-series data is an indispensable mean
to calibrate mechanistic parametric models, which are usually assumed to be the
most likely candidate to achieve an in-depth comprehension of biological systems.
Indeed, these models can lead to quantitative predictions of the system dynamics:
by considering in details the mutual regulations among the system components,
they allow to infer the possible temporal evolution of the system in both physio-
logical and perturbed conditions.

Although some general guidelines can be suggested to facilitate the choice
of the modeling approach, the most widespread strategies—that is, interaction-
based, constraint-based, mechanism-based and logic-based models—are charac-
terized by peculiar limits and strengths, as discussed hereby. One of the most
challenging problem to date, anyway, is how to define integrated models hav-
ing a unified mathematical formalism and able to bridge different layers of the
cell functioning (gene expression, signal transduction, metabolism, etc.) [6,7].
Although some striking examples of this integration exist [8], the problem is still
far from a general-purpose solution.

The aim of this paper is to provide a brief (non-exhaustive) overview of
existing modeling approaches, together with some general tips for choosing the
proper formalism for any given biological system under investigation. In partic-
ular, the attention is here focused on the advantages of reaction-based modeling,
a mechanistic and parametric approach especially useful to describe and analyze
networks of biochemical reactions [9]. This modeling approach was successfully
used to investigate various signal transduction pathways and to predict their
emergent behaviour under different conditions (see, e.g., [10–16]). The analysis
of reaction-based models typically involves the execution of stochastic or deter-
ministic simulations, and most often requires to face challenging computational
problems necessary for model definition and calibration. The benefits of using
high-performance computing solutions to parallelize the simulations and reduce
the computational burden of these tasks are concisely sketched as conclusive
remarks to this work.

2 A Few Tips for the Modeling of Biological Systems

The starting point for the definition of the model of a biological system is,
in general, a diagram or a conceptual map, graphically representing the cur-
rent biological knowledge about that system. In general, these diagrams show
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Fig. 1. The switch cycle of protein Ras2: from diagrams to reaction-based model.
Panels A and B represent the interactions among proteins Ras2, Cdc25, Ira2, and
nucleotides GTP and GDP. Briefly, Ras2 is a GTPase—that is, an enzyme that cat-
alyzes the hydrolysis of guanosine triphosphate (GTP) into guanosine diphosphate
(GDP)—which cycles between an active state, when bound to GTP, and an inactive
state, when bound to GDP. The active state of Ras2 is positively regulated by Cdc25,
a protein that stimulates the GDP to GTP exchange, and negatively regulated by Ira2,
a protein that stimulates the GTPase activity of Ras2. The intracellular ratio of GTP
and GDP is also involved in the regulation of Ras2 activity, since Cdc25 stimulates
the exchange of these nucleotides according to their relative concentration. Panels C
and D formally describe the cascade of biochemical reactions and the formation of
molecular complexes among proteins and nucleotides.

the molecular components involved in the system and their mutual relations,
usually specifying also the formation of molecular complexes, and they possi-
bly highlight the activation/inhibition of some component or the presence of
positive/negative feedback regulations. For instance, panels A and B in Fig. 1
show two similar diagrammatic representations of the switch cycle of Ras2 pro-
teins (see caption for more details). Although both diagrams in Fig. 1 represent
the same biochemical process, panel B better characterizes the roles of GTP
and GDP in their interaction with proteins Ras2 and Cdc25, which is instead
not inferable by panel A. This example emphasizes that diagrams of cellular
processes could be subject to ambiguous interpretation, or might not explicitly
represent all biological knowledge about that process.

In order to avoid any possible misinterpretations, mathematical modeling
should be used to precisely and unambiguously describe what is known to occur
within the biological system of interest, and possibly include any hypothesis that
should then be tested by further laboratory experiments. In the case of the switch
cycle of Ras2 protein, an example of precise formalization of these diagrams is
given in panel C, which shows a typical representation of reactions scheme used
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in biochemistry, while panel D shows the reaction-based model that explicitly
describes all direct and inverse biochemical reactions occurring in Ras2 switch
cycle (the interested reader is referred to [12,15] for more details about the mod-
eling of this process in the context of the Ras/cAMP/PKA signal transduction
pathway in yeast). Reaction-based models belong to the family of mechanism-
based modeling approach, which is hereby discussed in the context of the choice
of the most adequate formalism for the biological system of interest.

Considering the available knowledge about the biochemical, physical and
regulatory properties of all system components and their mutual interactions,
the very first step in the definition of a mathematical model consists in the
establishment of the purpose (or scientific questions) of the model. This step
is fundamental in order to recognize what kind of novel insights the modeling
process should add to the experimental investigation. Although some general
guidelines can be suggested to facilitate the choice of the modeling approach,
the four features schematized in Fig. 2 emphasize the limits and the strengths
of the most widespread strategies, that is, interaction-based, constraint-based,
mechanism-based and logic-based models (see figure caption for more details).

Unfortunately, there exists no biunivocal correspondence between each of these
modeling approaches and any specific biological system, that allows to define a
crisp separation among the variety of mathematical formalisms and to select the
most suitable strategy for the scientific question under examination. Actually, this
is a game with no winners: Fig. 2 shows that mechanism-based models are charac-
terized by the highest level of detail in the formalization of the system, so that they
can achieve quantitative predictions of the system dynamics, but they require a lot
of data measurements and usually have the highest computational costs. On the
other side of the spectrum, interaction-based models can be analyzed with gener-
ally low execution times, but they are characterized by the lowest level of detail and
hence, in general, they are only used to investigate topological properties of biolog-
ical networks. Constraint-based models are used to investigate flux distributions
in metabolic networks, up to genome-wide size systems, while Boolean/fuzzy logic
models have been exploited to study gene regulatory networks or signal transduc-
tion pathways having different system sizes. Because of space limits, the interested
reader is referred to [17–23] for more information on these modeling approaches
and examples of their application.

Despite their highest predictive power with respect to other modeling
approaches, mechanism-based models are generally subject to a relevant criticism:
usually, they are not exploited to formally describe systems with a large number
of components and interactions, so that they cannot be used to explain the func-
tioning of large-scale systems or whole cells. Anyway, even a small-scale quantita-
tive model can be useful to better understand a complex cellular process, together
with its feedback/feedforward regulations and non-linear behaviour, and predict
its dynamics in physiological and perturbed conditions. To this aim, the model
should be as detailed as possible, but should also retain a simple formalization, so
that also experimentalists can easily intervene in the discussion and in the devel-
opment of the model itself. Reaction-based models satisfy these conditions: some
of their peculiar strengths are described in the following section.
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Fig. 2. Given a biological system and the purpose of the model, the modeling app-
roach should be chosen by taking into account four aspects. First, the size of the
system, defined in terms of the number of components and interactions, which can be
in the order of a few units or tens for small-scale models, up to hundreds and thou-
sands for large-scale models. Second, the necessary level of detail has to be chosen
to fully describe the components of the system and their mutual interactions. Third,
the type and the quality of experimental data that are already available or could be
measured with proper protocols often constrain the model definition according to a spe-
cific approach. Fourth, the computational burden that the chosen approach will bring
about in the simulation and analysis of the model, and that sometimes might represent
the trade-off in the choice between quantitative or qualitative models. These features
usually (but not strictly) lead to model signal transduction or small metabolic path-
ways with the mechanism-based approach; protein-protein interaction networks with
the interaction-based approach; gene regulation networks with the interaction/logic-
based approach; whole-cell metabolic networks with the constraint-based approach.
The modeling approaches are graphically represented with an increasing intensity scale,
according to their quantitative feature: for instance, interaction-based models are char-
acterized by a simplified representation of the system and can only derive qualitative
(topological) outcomes from computational analyses, while mechanism-based models
are highly detailed and fully parameterized, and have the highest quantitative predic-
tive capability. In order to be predictive, models should be defined in such a way that
both the expected and the unknown dynamical patterns are not directly “hard-wired”
into the mathematical description, but they globally appear as the consequence of the
chemico-physical interactions between the species included in the model.

3 The Advantages of Reaction-Based Models

Given a biological system Ω, a reaction-based model of Ω formally consists in
a set of molecular species S = {S1, . . . , SN} and a set of biochemical reac-
tions R = {r1, . . . , rM}. A generic biochemical reaction is given in the form rj :∑N

i=1 αjiSi → ∑N
i=1 βjiSi, where αji, βji ∈ N are the stoichiometric coefficients
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of the i-th reactant and the i-th product of the j-th reaction, respectively, which
specify how many molecules of each species are involved in the reaction.

It is worth highlighting that reaction-based models are quantitative paramet-
ric models, which means that each species Si is characterized by an amount Xi

(given either as an integer number of molecules or a real-value concentration), and
each reaction rj is characterized by a kinetic constant kj ∈ R

+, encompassing its
physical and chemical properties. The temporal evolution of Ω can be simulated by
updating the state of the system at consecutive time steps, where the state at some
time t is a vector X(t) = (X1(t), . . . , XN (t)), having as components the amounts
of all species at time t. Usually, the initial state of the system is given by specifying
the amount of each species at some fixed t = 0, chosen as the beginning time point
of both experimental measurement and computational analysis.

Since it relies on syntactic and semantic features similar to the language of bio-
chemistry, reaction-based modeling represents for experimentalists the most eas-
ily comprehensible formalization of a biological system. Indeed, it does not require
any expertise in mathematical or computational modeling. This is a key strength
of reaction-based models, since their correctness and biological plausibility can be
easily assessed by experimentalists, without the need for modelers to translate the
formal (mathematical) system into a “narrative” (and else possibly ambiguous)
description of the model itself. Therefore, reaction-based models can largely facili-
tate the communication and the crosstalk between modelers and experimentalists,
and possibly step up interdisciplinary analysis of biological systems.

Reaction-based modeling does not rely on the use of approximate kinetic
functions, such as Michaelis-Menten rate law for enzymatic processes or Hill
functions for cooperative binding, that are usually exploited in systems of dif-
ferential equations. On the contrary, it explicitly provides a detailed and accu-
rate description of the molecular interactions and control mechanisms (including
feedback or feedforward regulation) that take place in cellular processes. In addi-
tion, since all molecular species and their mutual biochemical reactions appear
as atomic entities in the model, they can be analyzed either independently from
each other or in combination with other components, in order to determine the
corresponding influence on the system behaviour. This feature allows modelers
to measure all system components and, above all, to precisely determine the role
of each species and reaction in the overall functioning of the system.

The reaction-based formalization is general enough to describe any kind of
process determined by interacting components, by simply assigning the appro-
priate semantics to the set of species and to the set of reactions. For instance,
it can be easily used to model ecological systems: in this case, the “species”
correspond to the individuals of different populations, while the “reactions”
describe the type of relationships occurring between these populations. Assum-
ing, e.g., prey-predator interactions between two populations, as in the Lotka-
Volterra equations, a reaction-based model can be specified by considering
(1) the set S = {A,X, Y }, where A,X, Y represent, respectively, the food
resource, the prey and the predator individuals, and (2) the set of reactions
R = {r1 : A + X → X + X; r2 : X + Y → Y + Y ; r3 : Y → λ}, where r1
describes the growth of preys, according to available resources, r2 describes the
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interaction between preys and predators and the consequent growth of preda-
tors, while r3 describes the natural death of predators (symbol λ here denotes
the die-off of individual Y ).

In contrast to other formalisms, any reaction-based model can be easily
refined or extended without any labored adjustment in the formalization of the
former model (see also [24]). Adding new species or reactions to a model for-
malized as a system of differential equations would instead require, in general,
the modification of many of its differential equations. Thanks to this feature,
reaction-based modeling is suitable to modular construction of larger and larger
models, whereby an initial core of species and reactions can be extended to take
into account other cellular processes (e.g., to introduce new species or new reac-
tions after the former model has been validated with laboratory experiments).

Reaction-based models can be exploited to run both stochastic and deter-
ministic simulations of the temporal evolution of the system. On the one hand,
according to the stochastic formulation of chemical kinetics [25], the formaliza-
tion of a biochemical network into a set of species and a set of reactions can
be straightforwardly used to run stochastic simulation algorithms [26]. On the
other hand, any reaction-based model can be automatically converted into a
corresponding system of ordinary differential equations, and then simulated by
means of some numerical integration algorithm [27]. This automatic conversion
can be done by considering the law of mass action [28], an empirical chemical
law stating that the rate of a reaction is proportional to the product of the con-
centration of its reactants, each one raised to the power of the corresponding
stoichiometric coefficient. This allows to derive a rate equation for each species
appearing in the reaction-based model, formally describing how its concentration
changes in time according to all reactions where it appears either as reactant
or product. Therefore, any biochemical system defined by means of a reaction-
based model can be also formalized as a set of coupled (non-linear) first order
ordinary differential equations. The duality of the stochastic and determinis-
tic interpretation of a reaction-based model concerns also reaction constants
and molecular amounts, which can be bidirectionally converted into appropriate
numerical values—i.e., number of molecules into concentration, stochastic con-
stant into kinetic rate, or viceversa—assuming that the dimension of the volume
where reactions take place is known [25,29].

4 Conclusive Remarks

In order to gain novel insights into the functioning of a biological system, various
computational methods—such as parameter sweep analysis, sensitivity analysis,
parameter estimation, reverse engineering (see [30,31] and references therein)—
can be exploited to make predictions on the way the system behaves both in
physiological and perturbed conditions. To this aim, the response of the system
is usually analyzed using distinct model parameterizations, that is, different ini-
tializations of species amounts and/or reaction constants. These methods require
the execution of a large number of simulations, whose computational burden can
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rapidly overtake the capabilities of Central Processing Units (CPUs), especially
for mechanism-based models. In these cases, high-performance computing solu-
tions can be exploited, such as Graphics Processing Units (GPUs), which recently
gained ground in many fields related to life sciences [32,33].

Despite better computational performances, the use of GPUs in scientific
applications is weakened by the striking difference between GPU-based and
CPU-based computing, which demands specific programming skills to the pur-
pose of fully exploiting the peculiar GPU’s architecture. To overcome these draw-
backs and to provide user-friendly tools to analyze the dynamics of reaction-
based models, coarse-grain GPU implementations of both stochastic and deter-
ministic simulation algorithms were presented in [34,35]. These tools allow to
simultaneously execute a massive number of simulations, each one character-
ized by a different model parameterization, and were proven to largely speed up
burdensome computational analyses of various cellular processes [13,34,35].

An additional benefit is that these parallel simulators can be used as core
engines to apply other computational methods, like parameter estimation (PE)
or reverse engineering (RE). PE consists in the inference of the unknown values
for species amounts or reaction constants, and it is often tackled by means of
global optimization techniques [36,37], while RE consists in devising a plausible
cascade of spatio-temporal interactions in a network of biochemical reactions.
Both problems require the availability of time-series experimental data (e.g.,
quantitative amount of some molecular species), needed as target to assess the
goodness of the inferred model and/or its parameterization.

In the context of reaction-based models, the RE problem was faced in
[38], while a PE method was initially introduced in [39]. The latter is based
on a Swarm Intelligence heuristics, called Particle Swarm Optimization, which
exploits a set of random candidate model parameterizations (each one codified
by a particle in the swarm) to the purpose of converging to an optimal solu-
tion. In particular, the method in [39] exploits a multi-swarm topology, whereby
each swarm is associated to time-series data measured in some experimental
condition. The method is inspired by the quite common scenario of experimen-
tal research, where experiments are executed to observe the biological system in
different conditions, and data are collected in both physiological and perturbed
states. In the multi-swarm approach, all swarms cooperate to estimate a unique
model parameterization, which is able to generate the system dynamics that
better fits all the data that were measured in all tested experimental conditions.
The quality of the model parameterization is evaluated by a fitness function
defined, e.g., as the distance between the experimental data at each sampled
time point, and the corresponding species amounts obtained (at the same time
points) by means of dynamic simulations.

This PE method was further refined to fully exploit the parallel acceleration
granted by GPUs [40], as well as to take advantage of fuzzy rule-based systems
[41] or to test different strategies for the initialization of candidate solutions
(i.e., particles’ position within the search space) [42]. These refinements were
shown to improve both the computational and effectiveness performance of the
PE method.
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Hopefully, the dissemination of the advantages of reaction-based models and
of GPU-accelerated tools for their analysis will provoke a widespread adoption
of this formalism by modelers. This could allow a more easy definition and
validation of mathematical models, the prediction of unknown behaviours and
the identification of critical factors of biochemical networks in reduced times, as
well as a faster design of focused laboratory experiments to better comprehend
the malfunctioning of cellular processes.
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Abstract. Molecular evolutionary methods and tools are difficult to val-
idate as we have almost no direct access to ancient molecules. Inference
methods may be tested with simulated data, producing full scenarios
they can be compared with. But often simulations design is concomitant
with the design of a particular method, developed by a same team, based
on the same assumptions, when both should be blind to each other. In
silico experimental evolution consists in evolving digital organisms with
the aim of testing or discovering complex evolutionary processes. Mod-
els were not designed with a particular inference method in mind, only
with basic biological principles. As such they provide a unique opportu-
nity to blind test the behavior of inference methods. We give a proof of
this concept on a comparative genomics problem: inferring the number
of inversions separating two genomes. We use Aevol, an in silico experi-
mental evolution platform, to produce benchmarks, and show that most
combinatorial or statistical estimators of the number of inversions fail on
this dataset while they were behaving perfectly on ad-hoc simulations.
We argue that biological data is probably closer to the difficult situation.

Keywords: Comparative genomics · In silico experimental evolution ·
Benchmark · Rearrangements

1 Validation of Evolutionary Inferences

The comparative method in evolutionary biology consists in detecting similarities
and differences between extant organisms, and, based on more or less formalized
hypotheses on the evolutionary processes, infer ancestral states explaining the
similarities and an evolutionary history explaining the differences.

A common concern in all evolutionary studies is the validity of the methods
and results. Results concern events that were supposed to occur in a deep past
(up to 4 billion years) and they have no other trace today than the present
molecules used by the comparative method.

As we cannot travel back in time to verify the results, there are several ways
to assess the validity of molecular evolution studies: theoretical considerations
about the models and methods (realism, consistency, computational complexity,
c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 35–44, 2016.
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model testing, ability to generate a statistical support or a variety of the solu-
tions) [24], coherence with fossil records [26], or ancient DNA [11], or empirical
tests when the solution is known, on experimental evolution [17] or simulations.
Each method has its caveats. Models for inference have to adopt a compromise
between realism, consistency and complexity. Ancient DNA is rarely available,
usually not in an assembled shape. Fossils are also rare and provide a biased sam-
pling of ancient diversity. Experimental evolution is expensive, time-consuming
and limited in the number of generations it can provide.

Simulation is the most popular validation tool. Genome evolution can be
simulated in silico for a much higher number of generations than in experi-
mental evolution, at a lower cost. All the history can be recorded in details,
and compared with the inference results. A problem with simulations, how-
ever, is that they necessarily oversimplify genome evolution processes. Moreover,
very often, even if they are designed to be used by another team for inference
[4,10,14,15,23], they encode the same simplifications as the inference methods.
For example, only fixed mutations are generated because only these are visible
by inference methods, selection is tuned to fit what is visible by the inference
methods; genes are evolutionary units in simulations because they are the units
taken for inference. Everything is designed thinking of the possibilities of the
inference methods, leading to easy unrealistic instances.

This mode of ad-hoc simulation has been widely applied to test estimators
of rearrangement distances, and in particular inversion distances [5,7,9,12,22].
The problem consists in comparing two genomes and estimating the number
of inversions (a rearrangement that reverses the reading direction of a genomic
segment) that have occurred in the evolutionary lineages separating them. To
construct a solution, conserved genes or synteny blocks are detected in the two
genomes, and a number of inversions explaining the differences in gene orders
is estimated. A lot of work has consisted in finding shortest scenarios [13]. Sta-
tistical estimations need a model. The standard and most used model depicts
genomes as permutations of genes and assumes that an inversion reverses a seg-
ment of the permutation, taken uniformly at random over all segments. When
simulators are designed to validate the estimators, they also use permutations as
models of gene orders, and inversions on segments of this permutations, chosen
uniformly at random. Estimators show good performances on such simulations,
but transforming a genome into a permutation of genes is such a simplification
from both parts that it means nothing about any ability to estimate a rearrange-
ment distance in biological data [8].

We propose to use simulations that were not designed for validation pur-
poses. It is the case, in artificial life, of in silico experimental evolution [18], and
in particular of the Aevol platform [3,19]. Aevol contains, among many other fea-
tures, all what is needed to test rearrangement inference methods. The genomes
have gene sequences and non coding sequences organized in a chromosome, and
evolve with inversions, in addition to substitutions, indels, duplications, losses,
translocations. Rearrangements are chosen with a uniform random model on the
genome, which should fit the goals of the statistical estimators, but is different
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from a uniform random model on permutations [8]. We tested 10 different esti-
mators of inversion distance on 18 different datasets generated by Aevol. The
difference with ad-hoc simulations is striking. Most estimators completely fail to
give a close estimate in a vast majority of conditions. We argue that the reason
for this failure lies in realistic features in artificial genomes that are very likely
to reproduce the failure on real data.

We first describe the principle of the estimators, then the principles of the
simulator, with its goals and its functioning. We will show how to process its
results to test statistical estimators of rearrangement distances.

2 Comparative Genomics: Estimating an Inversion
Distance

We tested 10 estimators of the number of inversions separating two genomes,
called ID (the inversion distance) [16], CL for Caprara and Lancia [9], EH for
Eriksen and Hultman [12], Badger [20], BD for Berestycki and Durrett [5], LM
for Lin and Moret [22], BGT for Biller, Guéguen and Tannier [7], AA for Alexeev
and Alekseyev [2], ER1 and ER2 for Erdös-Renyi 1 and 2 [8].

For 8 of them (ID, LM, BGT, Badger, EH, BD, CL, AA), a genome is defined
as a signed permutation, π over {1, . . . , n}, that is, an ordering of the elements
of {1, . . . , n} where each element is given a sign, + or − (+ usually omitted),
representing the reading direction of an element. The elements of the permuta-
tion are genes, or solid regions, the ones that are never cut by inversions. All
inversions have the same probability. For the two remaining estimators (ER1 and
ER2), a genome is made up of two components: the same signed permutation,
and in addition a vector p of n + 1 breakage probabilities, pi > 0, 0 ≤ i ≤ n,
with

∑
i pi = 1. An inversion of the segment [πi, . . . , πj ] has probability pi−1pj .

Suppose A and B are two signed permutations. We define the breakpoint
graph of A and B as the graph with 2n + 2 vertices and 2n + 2 edges: for each
element i ∈ {1, . . . , n}, define two vertices it and ih, plus two additional vertices
0h and n+1t; then for any two consecutive numbers ab of A, join two extremities
by an A-edge: first is ah if a is positive, at otherwise, second is bt if b is positive, bh
otherwise. Additionally, if a is the first element of the permutation, join 0h and
at if a is positive, ah otherwise, and if b is the last element of the permutation,
join n + 1t and bh if b is positive, bt otherwise. Do the same for B, and call the
edges B-edges.

An adjacency of a genome A is an A-edge in the breakpoint graph. It is a
common adjacency with a genome B if it is also a B-edge, otherwise it is a
breakpoint. Breakpoint graphs have a uniform degree of 2 on all vertices, thus
they are sets of disjoint cycles alternating between A-edges and B-edges. We note
b the number of breakpoints, c the number of cycles of the breakpoint graph,
and c2 the number of cycles with 4 edges.

The parsimony estimator (ID) is the minimum number of inversions necessary
to transform A into B, which is close to n + 1 − c [16]. Badger is a Bayesian
sampler of inversion scenarios and computes an a posteriori probable distance.
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The others all work with the method of moments. This consists in computing an
expected value for one or two observable parameters of the breakpoint graph (b,
c2, c or a combination of two of them) if A and B are separated by k inversions.
It is a function of k and n: fn(k). It is never computed exactly, approximate
formulas or computation principles are given. Then k is estimated as k̂ = f−1

n (p)
for the observed value p of the parameter. LM, CL, BGT, ER1 are based on the
expected value of b. EH and BD are based on the expected value of c. ER2 is
based on expected values for b and c2, and AA uses expected values for b and
c. The two latter use two values because they also consider n as unknown and
estimate it as well as k.

3 Artificial Life: In Silico Experimental Evolution
and the Aevol Platform

Unlike many simulators used to validate phylogenetic inference methods [4,10,
14,15,23], Aevol does not represent a species by a single lineage undergoing
fixed mutations. Like forward-in-time simulators used in population genetics, it
explicitly represents all genotypes present in the population and simulates spon-
taneous mutations, which can be deleterious, neutral or beneficial. An important
difference, however, is that the selection coefficients of mutations are not prede-
fined for each locus nor drawn from a random distribution. Instead, an artificial
chemistry is used to decode each genome present in the population and compute
its phenotype, which is its ability to perform a computational task (see details
below). Point mutations or small indels can alter gene sequences and non coding
sequences. A local mutation in a gene can have a different effect on phenotype
and fitness, depending on the genomic background (other genes). Chromoso-
mal rearrangements like duplications, deletions, translocations or inversions can
occur anywhere in the chromosome sequence. They can alter gene number and
gene order and disrupt genes.

Figure 1 summarizes the functioning of Aevol. We give a high level description
here, and emphasize that the tool has many other possibilities than being used
as a bench mark. For a complete description and some of its possibilities, see
[3,19]. Genomes are circular sequences on a binary alphabet. A population of
typically 1000 genomes lives at a given generation. Genes are segments situated
on a transcribed sequence (i.e., a sequence starting after a promoter and ending
at a terminator sequence) starting after a Ribosome Binding Start and a Start
codon and ended by a Stop codon on the same reading frame. Inside a gene,
a coding sequence is translated into a protein sequence using a genetic code
on size three codons. This protein sequence encodes the parameters of a piece-
wise linear function that indicates the contribution (in [−1, 1]) of the protein to
each abstract “phenotypic trait” in [0, 1]. All proteins encoded in a genome are
summed to produce the phenotype, which is thus a piece-wise linear function
indicating the level of each phenotypic trait in [0, 1].

This phenotype is then compared with a target function indirectly repre-
senting the environment of the individual. The difference between the two is
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Fig. 1. Overview of the Aevol model. (A) A population of genomes is simulated.
At each generation, all genomes are evaluated and the fittest ones are replicated to
produce the next generation. The replication process includes variation operators. The
joint actions of selection, genetic drift and variation make the population evolve. (B)
Overview of the genome decoding process. Left: Each individual own a circular double-
strand genome with scattered genes. Right: The individual’s phenotype is the level
of each abstract phenotypic trait in [0, 1]. It is compared a target representing the
optimal phenotype given the environment. Middle: Each gene is decoded into a protein
that contributes to a small subset of phenotypic traits. More precisely, the sequence
of the gene is decoded into three reals that specify the mean, width and height of
a triangular kernel function. All the proteins are then summed up to compute the
phenotype. The individual displayed here was obtained after 460.000 generations of
evolution in Aevol under a mutational pressure of 10−6 mutations/bp/generation for
local events and 10−5 mutations/bp/generation for chromosomal rearrangements (see
below). Its genome is 6898 bp long. It encodes 113 genes and 35 RNAs (not shown).
28.4 % of the genome is non-coding. (C) Overview of the replication process. During
its replication each genome may undergo chromosomal rearrangements affecting large
DNA segments (here an inversion and a translocation) and local mutations (point
mutations or small InDels).

used to compute the fitness of the genome. To produce the next generation,
genomes with high fitness are replicated in the following generation with higher
probability than genomes with low fitness. During replication, local mutations
and chromosomal rearrangements are performed on the genomes, at a sponta-
neous rate fixed by simulation parameters.
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The population is initialized with a same random genome containing at least
one gene. As generations go by, neutral, deleterious or beneficial mutants appear
and their frequencies in the population vary depending on natural selection and
genetic drift. The target function is better and better approximated and the
genome structure evolves to eventually contain between tens to hundreds of
genes (depending on the evolutionary conditions) scattered along the genome.

In silico experimental evolution allows for perfect recording of all mutational
events that have occurred in the lineage of any organism. It is thus possible to
trace the evolution of a single gene along the generations, and thus to compare
genomes from different generations by identifying genes that descend one from
the other.

4 Inversion Distance Estimators on Artificial Genomes

We propose 18 runs of Aevol to be used as benchmark datasets for comparative
genomics studies. All estimators were computed for the 18 experiments, and
we show the results for two experiments in Fig. 2. Experiments with 6 different
conditions were run 3 times each, with a different seed each time. The conditions
concern the allowed mutation types, among: inversions, duplications (where the
copied segment is pasted anywhere on the genome), tandem duplications (where
it is pasted next to the position of the ancestral segment), losses, translocations,
point mutations and small InDels. Mutation rates were set to 5.10−6 mutation
per base per generation for point mutations and InDels, and 10−5 for larger
allowed rearrangements. All runs were stopped after 15000 generations with a
genome containing approximately 100 genes. We make accessible, for each of
the 18 runs, the input parameters, and for each generation, the list of genes,
their coordinates on the genome, and their genealogy (how they relate to each
other across generations). Material can be uploaded here: http://aevol.inrialpes.
fr/resources/benchmark/cie 2016.

From Aevol output we compute signed permutations of genes without dupli-
cates which model the relative order of genes compared with the last generation.
We keep, in each generation, only the genes that have a unique descendant in the
last generation, with no duplication event in its history between this generation
and the last. Only the last generations can contain such genes, so permutations
are only computed for a few hundred generations.

The results for two different runs out of 18 are shown in Fig. 2. The two
were chosen for extreme but informative behaviors. The first run allowed for
inversions, duplications and small mutations (A), while the second one allowed
for translocations and tandem duplications in addition (B). At each generation
we keep the genome in the ancestry lineage of the fittest genome at genera-
tion 15 000. The true number of inversions is compared with the estimated one,
according to 7 estimators (we removed 3 of them because the curves were indis-
tinguishable from others). The results highly depend on the conditions. On the
(A) part, all estimators except AA are estimating a rather good number of inver-
sions up to 50 events. On the (B) part, we cut the graph after 100 generations

http://aevol.inrialpes.fr/resources/benchmark/cie_2016
http://aevol.inrialpes.fr/resources/benchmark/cie_2016
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Fig. 2. The results of 7 estimators: ID, Badger, EH, BGT, ER1, ER2, AA. The other
ones gave indistinguishable curves (BD from EH, LM and CL from BGT). x axis is the
generation number. y axis is the number of inversions. All generations are compared
with the last one, number 15000. The true number is the black solid line, and the others
are estimated numbers. These Aevol runs includes (A) inversions, duplications and
deletions (B) inversions, duplications, tandem duplication, translocations and deletions.
The number of compared genes is from 119 to 109 (A), and from 92 to 49 (B).
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because all estimators had lost the signal for a long time. This rapid signal loss
is expected because of the accumulation of translocations that blur the inversion
signal. On both runs, EH and BD are giving estimates which are almost equal to
ID, the parsimony value. BGT, LM, CL and AA are constantly worse than the
parsimony value. Only ER1 gives a better estimate than parsimony until gener-
ation 600 (after ∼200 inversions) in the first run. On ad-hoc simulators reported
in the papers describing the estimators, all 10 estimators gave significantly better
results than parsimony for any variation of parameters [5,7,8,12,20,22].

5 Discussion

In our experiments there are many quality differences between estimators. But a
general tendency is that after a low true number of events (∼n/3, where n is the
number of genes), most of them significantly underestimate the true value. This
highly contrasts with the claimed performances of these estimators. For example
ID is supposed to have great chance of giving the right value up to n/2, while
LM, EH, BD, BGT all have been tested on simulations and reported to give the
right value far above n [5,7,12,22].

We argue that our datasets are not artefactually difficult (nor purposely made
difficult), and that the poor results encountered here are susceptible to reflect real
results on biological data. One argument for this is the better behavior of ER1 in
several situations, including the one depicted on Fig. 2(A). The addition of ER1
compared to the other estimators is that it takes into account the distribution
of intergene sizes. It suggests that part of the failure of the other estimators can
be explained by this ignorance of intergene sizes. In biological data, intergene
sizes influence probabilities of breakages, as it has been shown several times on
mammals for example [6,21].

Some estimators have been tried on biological data. The inversion distance is
often used. Badger has been used several times to reconstruct bacterial or mito-
condrial gene orders [20], and AA has been used to estimate distances between
Yeast genomes [2], and ER2 on amniote data [7]. The results have to be read in
regard of this study on artificial life.

Part of the discrepancy between the true value and the estimated value
remains unexplained. The complexity of the real scenarios probably blurs the
signal that estimators are able to capture. But again, this complexity is not a
specificity of Aevol, and is probably encountered in biological data. So by this
simple experiment we can worry that none of the existing estimators of rearrange-
ment distance would be able to produce a plausible value on real genomes.

Future Work. We tested only the estimation of the number of inversions. But
only with the runs we have already computed, a lot more can be done: estimation
of the proportion of translocations as in [1], or estimating both inversions and
duplications as in [25]. Artificial genomes could in principle not only be used
by comparative genomics inference methods, but by a larger set of molecular
evolution studies. For the moment the sequences are made of 0s and 1s, which is
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not a problem to study gene order, but can be disturbing for sequence analyses.
This way of coding sequences is on another hand a good sign that Aevol was not
developed for benchmarking purposes. In a close future nucleotidic and proteic
sequences with the biological alphabet will be added to extend the benchmarking
possibilities of the model.

Also we work with only one lineage, and compare only two genomes here,
because Aevol evolves a single population. A useful addition will be speciation
processes, in order to be able to compare several genomes.

On the Blind Multidisciplinarity. This study experiments a singular kind of inter-
disciplinarity. Obviously communities from comparative genomics and artificial
life have to work together in order to make such results possible. But, on the
opposite, these results are only possible because both communities first work in
relative isolation. If they had defined their working plans together, spoke to each
other too often or influenced each other’s way of thinking evolutionary biology,
the work would have lost some value. Indeed, what makes the difficulty here for
comparative genomicists is that they have to infer histories on data for which
they have no stranglehold on the processes, just as for biological data, but on
which they also have the correct answer, just not as for biological data.
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Abstract. The history of computability theory and the history of analy-
sis are surprisingly intertwined since the beginning of the twentieth cen-
tury. For one, Émil Borel discussed his ideas on computable real number
functions in his introduction to measure theory. On the other hand, Alan
Turing had computable real numbers in mind when he introduced his now
famous machine model. Here we want to focus on a particular aspect of
computability and analysis, namely on computability properties of theo-
rems from analysis. This is a topic that emerged already in early work of
Turing, Specker and other pioneers of computable analysis and eventu-
ally leads us to the very recent project of classifying the computational
content of theorems in the Weihrauch lattice.

1 Introduction

Probably Émil Borel was the first mathematician who had an intuitive under-
standing of computable real number functions and he anticipated some basic
ideas of computable analysis as early as at the beginning of the 20th century. It
was in his introduction to measure theory where he felt the need to discuss such
concepts and we can find for instance the following crucial observation in [5,6].

Theorem 1 (Borel 1912). Every computable real number function f : Rn → R

is continuous.

Strictly speaking, Borel’s definition of a computable real number function was
a slight variant of the modern definition (see [2] for details and translations) and
his definition was informal in the sense that no rigorous notion of computability
or of an algorithm was available at Borel’s time.

It was only Alan Turing who introduced such a notion with the help of
his now famous machine model [43,44]. Interestingly, also Turing was primarily
interested in computable real numbers (hence the title of his paper!) and not
so much in functions and sets on natural numbers that are the main objects

V. Brattka—Supported by the National Research Foundation of South Africa. This
article uses some historical insights that were established in [2].

c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 45–57, 2016.
DOI: 10.1007/978-3-319-40189-8 5



46 V. Brattka

of study in modern computability theory. Turing’s definition of a computable
real number function is also a slight variant of the modern definition (see [2] for
details).

We conclude that computability theory was intertwined with analysis since
its early years and here we want to focus on a particular aspect of this story
that is related to computability properties of theorems in analysis, which are one
subject of interest in modern computable analysis [17,27,38,45].

2 Some Theorems from Real Analysis

In his early work [43] Turing already implicitly discussed the computational con-
tent of some classical theorems from analysis. Some of his rather informal obser-
vations have been made precise later by Specker and others [2]. Ernst Specker
was probably the first one who actually gave a definition of computable real
number functions that is equivalent to the modern one [41,42]. The following
theorem is one of those theorems that are implicitly discussed by Turing in [43].

Theorem 2 (Monotone Convergence Theorem). Every monotone in-
creasing and bounded sequence of real numbers (xn)n has a least upper bound
supn∈N xn.

What Turing observed (without proof) is that for a computable sequence
(xn)n of this type the least upper bound is not necessarily computable. A rigorous
proof of this result was presented only ten years later by Specker [41].

Proposition 3 (Turing 1937, Specker 1949). There is a computable mono-
tone increasing and bounded sequence (xn)n of real numbers such that x =
supn∈N xn is not computable.

Specker used (an enumeration of) the halting problem K ⊆ N to construct a
corresponding sequence (xn)n and such sequences are nowadays called Specker
sequences. Then the corresponding non-computable least upper bound is x =∑

i∈K 2−i. While the Monotone Convergence Theorem is an example of a non-
computable theorem, Turing also discusses a (special case) of the Intermediate
Value Theorem [43], which is somewhat better behaved.

Theorem 4 (Intermediate Value Theorem). Every continuous function
f : [0, 1] → R with f(0) · f(1) < 0 has a zero x ∈ [0, 1].

And then Turing’s observation, which was stated for the general case by
Specker [42] could be phrased in modern terms as follows.

Proposition 5 (Turing 1937, Specker 1959). Every computable function
f : [0, 1] → R with f(0) · f(1) < 0 has a computable zero x ∈ [0, 1].
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A rigorous proof could utilize the trisection method, a constructive vari-
ant of the well-known bisection method and can be found in [45]. Hence, while
the Monotone Convergence Theorem does not hold computably, the Intermedi-
ate Value Theorem does hold computably, at least in a non uniform sense. It
was claimed by Specker [42] (without proof) and later proved by Pour-El and
Richards [38] that this situation changes if one considers a sequential version of
the Intermediate Value Theorem.

Proposition 6 (Specker 1959, Pour-El and Richards 1989). There exists
a computable sequence (fn)n of computable functions fn : [0, 1] → R with fn(0) ·
fn(1) < 0 for all n ∈ N and such that there is no computable sequence (xn)n of
real numbers xn ∈ [0, 1] with fn(xn) = 0.

For their proof Pour-El and Richards used two c.e. sets that are computably
inseparable. Their result indicates that the Intermediate Value Theorem does not
hold computably in a uniform sense. In fact, it is known that the Intermediate
Value Theorem is not computable in the following fully uniform sense: namely,
there is no algorithm that given a program for f : [0, 1] → R with f(0) ·f(1) < 0
produces a zero of f . Nowadays, we can express this as follows with a partial
multi-valued map [45].

Proposition 7 (Weihrauch 2000). IVT:⊆ C[0, 1] ⇒ [0, 1], f �→ f−1{0} with
dom(IVT) = {f ∈ C[0, 1] : f(0) · f(1) < 0} is not computable.

For general represented spaces X,Y we denote by C(X,Y ) the space of con-
tinuous functions f : X → Y endowed with a suitable representation [45] (and
the compact open topology) and we use the abbreviation C(X) := C(X,R). In
fact, IVT is not even continuous and this observation is related to the fact that
the Intermediate Value Theorem has no constructive proof [4].

Another theorem discussed by Specker [42] is the Theorem of the Maximum.

Theorem 8 (Theorem of the Maximum). For every continuous function
f : [0, 1] → R there exists a point x ∈ [0, 1] such that f(x) = max f([0, 1]).

Grzegorczyk [22] raised the question whether every computable function
f : [0, 1] → R attains its maximum at a computable point. This question was
answered in the negative by Lacombe [29] (without proof) and later independent
proofs were provided by Lacombe [30, Theorems VI and VII] and Specker [42].

Proposition 9 (Lacombe 1957, Specker 1959). There exists a computable
function f : [0, 1] → R such that there is no computable x ∈ [0, 1] with f(x) =
max f([0, 1]).

Similar results have also been derived by Zaslavskĭi [46]. Specker used a
Kleene tree for his construction of a counterexample. A Kleene tree is a com-
putable counterexample to Weak Kőnig’s Lemma.

Theorem 10 (Weak Kőnig’s Lemma). Every infinite binary tree has an
infinite path.
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Kleene [26] has proved that such counterexamples exist and (like Proposi-
tion 6) this can be easily achieved using two computably inseparable c.e. sets.

Proposition 11 (Kleene 1952). There exists a computable infinite binary
tree without computable paths.

It is interesting to note that even though computable infinite binary trees
do not need to have computable infinite paths, they do at least have paths that
are low, which means that the halting problem relative to this path is not more
difficult than the ordinary halting problem. In this sense low paths are “almost
computable”. The existence of such solutions has been proved by Jockusch and
Soare in their now famous Low Basis Theorem [25].

Theorem 12 (Low Basis Theorem of Jockusch and Soare 1972). Every
computable infinite binary tree has a low path.

Such low solutions also exist in case of the Theorem of the Maximum 8 for
computable instances. The Monotone Convergence Theorem 2 is an example of
a theorem where not even low solutions exist in general, e.g., Specker’s sequence
is already an example of a computable monotone and bounded sequence with a
least upper bound that is equivalent to the halting problem and hence not low.

Another case similar to the Theorem of the Maximum is the Brouwer Fixed
Point Theorem.

Theorem 13 (Brouwer Fixed Point Theorem). For every continuous
function f : [0, 1]k → [0, 1]k there exists a point x ∈ [0, 1]k such that f(x) = x.

It is an ironic coincidence that Brouwer, who was a strong proponent of
intuitionistic mathematics is most famous for his Fixed Point Theorem that does
not admit a constructive proof. It was Orevkov [34] who proved in the sense of
Markov’s school that there is a computable counterexample and Baigger [3] later
proved this result in terms of modern computable analysis.

Proposition 14 (Orevkov 1963, Baigger 1985). There is a computable
function f : [0, 1]2 → [0, 1]2 without a computable x ∈ [0, 1]2 with f(x) = x.

One can conclude from Proposition 5 that such a counterexample cannot
exist in dimension k = 1. Baigger also used two c.e. sets that are computably
inseparable for his construction.

Yet another theorem with interesting computability properties is the Theo-
rem of Bolzano-Weierstraß.

Theorem 15 (Bolzano-Weierstraß). Every sequence (xn)n in the unit cube
[0, 1]k has a cluster point.

It was Rice [39] who proved that a straightforward computable version of the
Bolzano-Weierstraß Theorem does not hold and Kreisel pointed out in his review
of this article for the Mathematical Reviews of the American Mathematical
Society that he already proved a more general result [28].
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Proposition 16 (Kreisel 1952, Rice 1954). There exists a computable
sequence (xn)n in [0, 1] without a computable cluster point.

In fact, this result is not all too surprising and a simple consequence of Propo-
sition 3. What is more interesting is that in case of the Bolzano-Weierstraß The-
orem there are even computable bounded sequences without limit computable
cluster point. Here a point is called limit computable if it is the limit of a com-
putable sequence. However, this was established only much later by Le Roux
and Ziegler [31] (answering a question posed by Giovanni Lagnese on the email
list Foundations of Mathematics [fom] in 2006).

Proposition 17 (Le Roux and Ziegler 2008). There exists a computable
sequence (xn)n in [0, 1] without a limit computable cluster point.

This is in notable contrast to all aforementioned results that all admit a
limit computable solution for computable instances. For instance, the Monotone
Convergence Theorem 2 itself implies that every monotone bounded sequence is
convergent and hence every computable monotone bounded sequence automat-
ically has a limit computable supremum. Hence, in a certain sense the Bolzano-
Weierstraß Theorem is even less computable than all the other results mentioned
in this section.

In this section we have only discussed a selection of theorems that can illus-
trate a certain variety of possibilities that occur. The computational content
of several other theorems from real analysis has been studied. For instance
Aberth [1] constructed a computable counterexample in the Russian sense for the
Peano Existence Theorem for solutions of ordinary differential equations. Later
Pour-El and Richards [37] constructed another counterexample in the modern
sense of computable analysis for this theorem. The Riemann Mapping Theorem
is an interesting example of a theorem from complex analysis that was studied
by Hertling [23]. Now we turn to functional analysis.

3 Some Theorems from Functional Analysis

Starting with the work of Metakides, Nerode and Shore [32,33] theorems from
functional analysis were studied from the perspective of computability theory.
In particular the aforementioned authors studied the Hahn-Banach Theorem.

Theorem 18 (Hahn-Banach Theorem). Let X be a normed space over the
field R with a linear subspace Y ⊆ X. Then every linear bounded functional
f : Y → R has a linear bounded extension g : X → R with ||g|| = ||f ||.

Here ||f || := sup||x||≤1 |f(x)| denotes the operator norm. The result holds
analogously over the field C. Here and in the following a computable metric space
X is just a metric space together with a dense sequence such that the distances
can be computed on that sequence (as a double sequence of real numbers). If the
space has additional properties or ingredients, such as a norm that generates the
metric, then it is called a computable normed space or in case of completeness
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also a computable Banach space. If, additionally, the norm is generated by an
inner product, then the space is called a a computable Hilbert space. A subspace
Y ⊆ X is called c.e. closed if there is a computable sequence (xn)n in X such
that one obtains {xn : n ∈ N} = Y (where the A denotes the closure of A).
Metakides, Nerode and Shore [33] constructed a computable counterexample to
the Hahn-Banach Theorem.

Proposition 19 (Metakides, Nerode and Shore 1985). There exists a
computable Banach space X over R with a c.e. closed linear subspace Y ⊆ X
and a computable linear functional f : Y → R with a computable norm ||f ||
such that every linear bounded extension g : X → R with ||g|| = ||f || is non-
computable.

Similarly, as the computability status of the Brouwer Fixed Point Theorem 13
was dependent on the dimension k of the underlying space [0, 1]k, the computabil-
ity status of the Hahn-Banach Theorem 18 is dependent on the dimension and
other aspects of the space X [10]. Nerode and Metakides [32] observed that
for finite-dimensional X no counterexample as in Proposition 19 exists. How-
ever, even in this case the theorem is not uniformly computable [10]. Under all
conditions that guarantee that the extension is uniquely determined, the Hahn-
Banach Theorem is fully computable; this includes for instance all computable
Hilbert spaces [10].

A number of further theorems from functional analysis were analyzed by the
author of this article and these include the Open Mapping Theorem, the Closed
Graph Theorem and Banach’s Inverse Mapping Theorem [7,11]. Another theo-
rem that falls into this category is the Uniform Boundedness Theorem [9]. These
examples are interesting, since they behave differently from all aforementioned
examples. We illustrate the situation using Banach’s Inverse Mapping Theorem.

Theorem 20 (Banach’s Inverse Mapping Theorem). If T : X → Y is a
bijective, linear and bounded operator on Banach spaces X,Y , then its inverse
T−1 : Y → X is bounded too.

Here we obtain the following computable version [11].

Proposition 21 (B. 2009). If T : X → Y is a computable, bijective and linear
operator on computable Banach spaces X,Y , then its inverse T−1 : Y → X is
computable too.

That is, every bijective and linear operator T with a program admits also a
program for its inverse T−1, but there is not general method to compute such a
program for T−1 from a program for T in general as the following result shows [11].

Proposition 22 (B. 2009). Inversion BIM :⊆ C(�2, �2) → C(�2, �2), T �→ T−1

restricted to bijective, linear and bounded T : �2 → �2 is not computable (and
not even continuous).

Analogously, there is also a sequential counterexample [11].
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Proposition 23 (B. 2009). There exists a computable sequence (Tn)n of com-
putable, bijective and linear operators Tn : �2 → �2 such that the sequence (T−1

n )n

of their inverses is not computable.

Hence, in several respects the Banach Inverse Mapping Theorem behaves
similarly to the Intermediate Value Theorem: it is non-uniformly computable,
but not uniformly computable. Yet we will see that the uniform content of both
theorems is different.

With our final example of a theorem from functional analysis we want to
close the circle and mention a result that behaves similarly to the Monotone
Convergence Theorem 2, namely the Fréchet-Riesz Representation Theorem.

Theorem 24 (Fréchet-Riesz Representation Theorem). For every linear
bounded functional f : H → R on a Hilbert space H there exists a unique y ∈ H
such that f = fy and ||f || = ||y||, where fy : H → R, x �→ 〈x, y〉.

Here 〈 , 〉 denotes the inner product of the Hilbert space H. For every com-
putable y ∈ H the functional fy is computable with norm ||fy|| = ||y||. Since the
norm ||y|| is always computable for a computable y ∈ H, it is immediately clear
that it suffices to construct a computable functional f : H → R without a com-
putable norm ||f || in order to show that this theorem cannot hold computably.
In fact, a Specker-like counterexample suffices in this case [20].

Proposition 25 (B. and Yoshikawa 2006). There exists a computable func-
tional f : �2 → R such that ||f || is not computable and hence there cannot be a
computable y ∈ H with f = fy and ||f || = ||y||.

4 A Classification Scheme for Theorems

If we look at the different examples of theorems that we have presented in the
preceding sections then it becomes clear that theorems can behave quite differ-
ently with respect to computability. For one, the uniform and the non-uniform
behavior can differ and the levels of computability can be of different complexities
(computable, low, limit computable, etc.). On the other hand, certain theorems
seem to be quite similar to each other, for instance the Monotone Convergence
Theorem is similar in its behavior to the Fréchet-Riesz Theorem.

This naturally leads us to the question whether there is a classification scheme
that allows to derive all sorts of computability properties of a theorem once it
has been classified according to the corresponding scheme. The best known clas-
sification scheme for theorems in logic is Reverse Mathematics, i.e., the project
to classify theorems in second order arithmetic according to certain axioms that
are required to prove the corresponding theorem [40]. It turns out that this clas-
sification scheme is not fine enough for our purposes, because it only captures
theorems in a non-uniform sense. In order to preserve computability properties
such as lowness that are not closed under product, we also need a classification
scheme that is more resource sensitive than reverse mathematics.
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Such a classification scheme has been developed over the previous eight years
using the concept of Weihrauch reducibility [12–16,18,21,35,36]. If X,Y,Z,W
are represented spaces, then f :⊆ X ⇒ Y is Weihrauch reducible to g :⊆
Z ⇒ W , if there are computable multi-valued functions H,K such that
∅ 	= H(x, gK(x)) ⊆ f(x) for all x ∈ dom(f). In symbols we write f ≤W g in
this situation. If the reduction works in both directions, then we write f ≡W g.
It can be shown that this reducibility induces a lattice structure [14,36].

Now a theorem of logical form (∀x ∈ X)(x ∈ D =⇒ (∃y ∈ Y ) P (x, y)) can be
interpreted as a multi-valued function f :⊆ X ⇒ Y, x �→ {y ∈ Y : P (x, y)} with
dom(f) = D. For instance, we obtain the following multi-valued functions for
the theorems that we have considered in the previous sections (some of which are
formulated in greater generality here). Here Tr denotes the set of binary trees
and [T ] the set of infinite paths of a tree T .

– MCT :⊆ R
N → R, (xn)n �→ supn∈N xn restricted to monotone bounded

sequences.
– IVT :⊆ C[0, 1] ⇒ [0, 1], f �→ f−1{0} with dom(IVT) := {f : f(0) · f(1) < 0}.
– MAXX :⊆ C(X) ⇒ R, f �→ {x ∈ X : f(x) = max f(X)} for computably

compact1 computable metric spaces X and, in particular, for X = [0, 1].
– WKL :⊆ Tr ⇒ 2N, T �→ [T ] restricted to infinite binary trees.
– BFTn : C([0, 1]n, [0, 1]n) ⇒ [0, 1]n, f �→ {x : f(x) = x} for n ≥ 1.
– BWTX :⊆ XN ⇒ X, (xn)n �→ {x : x cluster point of (xn)n}, restricted to

sequences that are in a compact subset of X.
– BIMX,Y :⊆ C(X,Y ) → C(Y,X), T �→ T−1, restricted to bijective, linear,

bounded T and for computable Banach spaces X,Y .
– FRRH :⊆ C(H) → H, fy �→ y for computable Hilbert spaces H.
– ZX :⊆ C(X) → R, f �→ f−1{0} for computable metric spaces X.

We have not formalized the Hahn-Banach Theorem here and point the reader
to [21]. The last mentioned problem ZX is the zero problem, which is the problem
to find a zero of a continuous function that admits at least one zero. By [19,
Theorem 3.10] we obtain ZX ≡W CX for the choice problem of every computable
metric space. We are not going to define CX here, but whenever we use it we will
actually take ZX as a substitute for it. The following equivalences were proved
in [13]:

Theorem 26 (Choice on the natural numbers). The following are all
Weihrauch equivalent to each other and complete among functions that are com-
putable with finitely many mind changes [12]:

1. Choice on natural numbers CN.
2. The Baire Category Theorem (in appropriate formulation).
3. Banach’s Inverse Mapping Theorem BIM�2,�2 .
4. The Open Mapping Theorem for �2.

1 See [19] for a definition of computably compact.
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5. The Closed Graph Theorem for �2.
6. The Uniform Boundedness Theorem for �2.

Hence the equivalence class of choice CN on the natural numbers contains
many theorems that are typically proved with and closely related to the Baire
Category Theorem.

We prove that the Theorem of the Maximum is equivalent to the zero problem
of [0, 1].

Theorem 27. MAXX ≡W ZX for every computably compact computable metric
space X.

Proof. We prove ZX ≤W MAXX . Given a continuous function f : X → R with
A = f−1{0} 	= ∅, we can compute the function g : X → R with g := −|f |. Then
MAX(g) = f−1{0} = A. This proves the claim. We now prove MAXX ≤W ZX .
Given a continuous function f : X → R with MAX(f) = A 	= ∅, we can compute
g : X → R with g := f − max f(X), since X is computably compact. Now we
obtain g−1{0} = MAX(f) = A. This proves the claim. ��

We now arrive at the following result that is compiled from different sources.
It shows that the equivalence class of choice on Cantor space contains several
problems whose non-computably was proved with the help of Weak Kőnig’s
Lemma or with the help of two c.e. sets that are computably inseparable. We
point out that the sequential version of the Intermediate Valued Theorem for-
mulated in Proposition 6 can be modeled by parallelization. For f :⊆ X ⇒ Y
we define its parallelization f̂ :⊆ XN ⇒ Y N, (xn)n �→ Ś∞

n=0 f(xn), which lifts f
to sequences. Parallelization is a closure operation in the Weihrauch lattice [14].

Theorem 28 (Choice on Cantor space). The following are all Weihrauch
equivalent to each other and complete among non-deterministically computable
functions with a binary sequence as advice [12]:

1. Choice on Cantor Space C2N .
2. Weak Kőnig’s Lemma WKL [14,21].
3. The Theorem of the Maximum MAX[0,1] (Theorem 27).
4. The Hahn-Banach Theorem (Gherardi and Marcone 2009) [21].
5. The parallelization ÎVT of the Intermediate Value Theorem [13].
6. The Brouwer Fixed Point Theorem BFTn for dimension n ≥ 2 [18].

We note that [18] contains the proof for the Brouwer Fixed Point Theorem
only for dimension n ≥ 3 and the results for n = 2 is due to Joseph Miller. It is
easy to see that IVT≡W BFT1 [18]. We mention that this result implies Proposi-
tions 6, 9, 11, 14 and 19 and constitutes a more general uniform classification. In
some cases the proofs can easily be derived from known techniques and results, in
other cases (for instance for the Hahn-Banach Theorem and the Brouwer Fixed
Point Theorem) completely new techniques are required. One can prove that the
equivalence classes appearing in Theorems 26 and 28 are incomparable [13]. The
next equivalence class that we are going to discuss is an upper bound of both.

We first prove that the Monotone Convergence Theorem MCT is equivalent
to the Fréchet-Riesz Representation Theorem FRRH .
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Theorem 29. FRRH ≡W MCT for every computable infinite-dimensional
Hilbert space H.

Proof. Since every infinite-dimensional computable Hilbert space is computably
isometrically isomorphic to �2 by [20, Corollary 3.7], if suffices to consider H =
�2. We first prove FRR�2 ≤W MCT. Given a functional f : �2 → R we need to
find a y ∈ �2 such that fy = f and ||y|| = ||f ||. There is a computable sequence
(xn)n in �2 such that {xn : n ∈ N} is dense in {x ∈ �2 : ||x|| ≤ 1}. Hence
||f || = sup||x||≤1 |f(x)| = supn∈N |f(xn)| = supn∈N maxi≤n |f(xi)| and hence we
can compute ||f || with the help of MCT. Now given f = fy and ||f || we can
easily compute y be evaluating fy(en) on the unit vectors en. We still need to
prove MCT≤W FRR�2 . By [8, Proposition 9.1] it suffices to show that we can
utilize FRR�2 to translate enumerations g of sets A ⊆ N into their characteristic
functions. Let us assume that A = {n : n + 1 ∈ range(g)}. Without loss of
generality we can assume that no value different from zero appears twice in
(g(n))n. Using the idea of [20, Example 4.6] we choose ak := 2g(k)−1 if g(k) 	= 0
and ak := 0 otherwise. Then a = (ak)k ∈ �2 and we can compute f ∈ C(�2)
with f(x) :=

∑∞
k=0 xkak = 〈x, a〉. Now, with the help of FRR�2 we obtain a

y ∈ �2 with ||y|| = ||f || = ||a|| =
√∑∞

k=0 |ak|2. But using the number ||y||2
we can decide A, since its binary representation has in the even positions the
characteristic function of A. ��

We note that FRRH for finite-dimensional spaces H is computable. Altogether
we obtain the following result for this equivalence class.

Theorem 30 (The limit). The following are all Weihrauch equivalent to each
other and complete for limit computable functions:

1. The limit map lim on Baire space [8].
2. The parallelization ĈN of choice on the natural numbers [13].
3. The parallelization B̂IM of Banach’s Inverse Mapping Theorem [13].
4. The Monotone Convergence Theorem MCT [16].
5. The Fréchet-Riesz Representation Theorem FRR for �2 (Theorem 29).
6. The Radon-Nikodym Theorem (Hoyrup, Rojas, Weihrauch 2012) [24].

This theorem implies Propositions 3, 23 and 25. Finally, we mention that
we also have a concept of a jump f ′ :⊆ X ⇒ Y for every f :⊆ X ⇒ Y , which
essentially replaces the input representation of X in such a way that a name of
x ∈ X for f ′ is a sequence that converges to a name in the sense of f . This makes
problems potentially more complicated since less input information is available.
It allows us to phrase results as the following [16].

Theorem 31 (B., Gherardi and Marcone 2012). WKL′ ≡W BWTR.

This result does not only imply Proposition 17, but also the following [16].

Corollary 32 (B., Gherardi and Marcone 2012). Every computable
sequence (xn)n in the unit cube [0, 1]n has a cluster point x ∈ [0, 1]n that is
low relative to the halting problem.
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Here x is low relative to the halting problem if x′ ≤T ∅′′ (some authors would
only call this a partial relativization of lowness). In light of Proposition 17 this is
one of the strongest positive properties that one can expect for a cluster point.
These examples demonstrate that a classification of the Weihrauch degree of
a theorem yields a large variety of computability properties of the theorem,
uniform and non-uniform ones on the one hand, and positive and negative ones
on the other hand.
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Abstract. We revisit the investigation of the computational content of
the Brouwer Fixed Point Theorem in [7], and answer the two open ques-
tions from that work. First, we show that the computational hardness
is independent of the dimension, as long as it is greater than 1 (in [7]
this was only established for dimension greater than 2). Second, we show
that restricting the Brouwer Fixed Point Theorem to L-Lipschitz func-
tions for any L > 1 also does not change the computational strength,
which together with prior results establishes a trichotomy for L > 1,
L = 1 and L < 1.

1 Introduction

In this paper we continue with the programme to classify the computational
content of mathematical theorems in the Weihrauch lattice (see [3–5,8,11,13,
17,18]). This lattice is induced by Weihrauch reducibility, which is a reducibility
for partial multi-valued functions f :⊆ X ⇒ Y on represented spaces X,Y .
Intuitively, f ≤W g reflects the fact that the function f can be realized with a
single application of the function g as an oracle. Hence, if two functions are
equivalent in the sense that they are mutually reducible to each other, then they
are equivalent as computational resources, as far as computability is concerned.

Many theorems in mathematics are actually of the logical form

(∀x ∈ X)(∃y ∈ Y ) P (x, y)

and such theorems can straightforwardly be represented by a multi-valued func-
tion f : X ⇒ Y with f(x) := {y ∈ Y : P (x, y)} (sometimes partial f are needed,
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where the domain captures additional requirements that this input x has to
satisfy). In some sense the multi-valued function f directly reflects the compu-
tational task of the theorem to find some suitable y for any x. Hence, in a very
natural way the classification of a theorem can be achieved via a classification
of the corresponding multi-valued function that represents the theorem. In this
paper we attempt to classify the Brouwer Fixed Point Theorem.

Theorem 1 (Brouwer Fixed Point Theorem 1911). Every continuous
function f : [0, 1]n → [0, 1]n has a fixed point x ∈ [0, 1]n.

The fact that Brouwer’s Fixed Point Theorem cannot be proved construc-
tively has been confirmed in many different ways; most relevant for us is the
counterexample in Russian constructive analysis by Orevkov [16], which was
transferred into computable analysis by Baigger [1].

Constructions similar to those used for the above counterexamples have been
utilized in order to prove that the Brouwer Fixed Point Theorem is equivalent to
Weak Kőnig’s Lemma in reverse mathematics [21,22] and to analyze computabil-
ity properties of fixable sets [14], but a careful analysis of these reductions reveals
that none of them can be straightforwardly transferred into a uniform reduction
in the sense that we are seeking here. The results cited above essentially charac-
terize the complexity of fixed points themselves, whereas we want to characterize
the complexity of finding the fixed point, given the function. This requires full
uniformity.

In the Weihrauch lattice the Brouwer Fixed Point Theorem of dimension n is
represented by the multi-valued function BFTn : C([0, 1]n, [0, 1]n) ⇒ [0, 1]n that
maps any continuous function f : [0, 1]n → [0, 1]n to the set of its fixed points
BFTn(f) ⊆ [0, 1]n. The question now is where BFTn is located in the Weihrauch
lattice?

In order to approach this question, we introduce a choice principle CCn that
we call connected choice and which is just the closed choice operation restricted
to connected subsets. That is, in the sense discussed above, CCn is the multi-
valued function that represents the following mathematical statement: every
non-empty connected closed set A ⊆ [0, 1]n has a point x ∈ A. Since closed
sets are represented by negative information (i.e. by an enumeration of open
balls that exhaust the complement), the computational task of CCn consists in
finding a point in a closed set A ⊆ [0, 1]n that is promised to be non-empty and
connected and that is given by negative information.

One of our main results, presented in Sect. 3, is that the Brouwer Fixed
Point Theorem is equivalent to connected choice for each fixed dimension n, i.e.
BFTn ≡W CCn. This result allows us to study the Brouwer Fixed Point Theorem
in terms of the function CCn that is easier to handle since it involves neither
function spaces nor fixed points. This is also another instance of the observation
that several important theorems are equivalent to certain choice principles (see
[3]) and many important classes of computable functions can be calibrated in
terms of choice (see [2]). For instance, closed choice on Cantor space C{0,1}N

and on the unit cube C[0,1]n are both easily seen to be equivalent to Weak
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Kőnig’s Lemma WKL, i.e. WKL≡W C{0,1}N ≡W C[0,1]n for any n ≥ 1. Studying
the Brouwer Fixed Point Theorem in the form of CCn now amounts to comparing
C[0,1]n with its restriction CCn.

Our second main result, given in Sect. 5, is that from dimension two onwards
connected choice is equivalent to Weak Kőnig’s Lemma, i.e. CCn ≡W C[0,1] for
n ≥ 2.

This refutes an earlier conjecture [7] by some of the authors that connected
choice in dimension two be computationally simpler than connected choice in
dimension three. We then also consider the restriction of Brouwer’s Fixed Point
theorem to Lipschitz functions in Sect. 4. In the following Sect. 2 we start with
a short summary of relevant definitions and results regarding the Weihrauch
lattice.

This extended abstract does not contain any proofs. Sections 1, 2 and 3 are
taken mostly from [7]. An extended version including the omitted proofs can be
found as [6].

2 The Weihrauch Lattice

In this section we briefly recall some basic results and definitions regarding the
Weihrauch lattice. The original definition of Weihrauch reducibility is due to
Weihrauch and has been studied for many years (see [9,23–25]). Only recently
it has been noticed that a certain variant of this reducibility yields a lattice
that is very suitable for the classification of mathematical theorems (see [2–
5,8,10,17,18]). The basic reference for all notions from computable analysis is
[26], alternatively see [19].

The Weihrauch lattice is a lattice of multi-valued functions on represented
spaces. A representation δ of a set X is just a surjective partial map δ :⊆ N

N →
X. In this situation we call (X, δ) a represented space. In general we use the
symbol “⊆” in order to indicate that a function is potentially partial. Using
represented spaces we can define the concept of a realizer. We denote the com-
position of two (multi-valued) functions f and g either by f ◦ g or by fg.

Definition 1 (Realizer). Let f :⊆ (X, δX) ⇒ (Y, δY ) be a multi-valued func-
tion on represented spaces. A function F :⊆ N

N → N
N is called a realizer of f ,

in symbols F � f , if δY F (p) ∈ fδX(p) for all p ∈ dom(fδX).

Realizers allow us to transfer the notions of computability and continuity
and other notions available for Baire space to any represented space; a function
between represented spaces will be called computable if it has a computable
realizer, etc. Now we can define Weihrauch reducibility.

Definition 2 (Weihrauch reducibility). Let f, g be multi-valued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f ≤W g, if there are computable functions K,H :⊆ N

N → N
N such that

K〈id, GH〉 � f for all G � g. Moreover, f is said to be strongly Weihrauch
reducible to g, in symbols f ≤sW g, if there are computable functions K,H such
that KGH � f for all G � g.
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Here 〈, 〉 denotes some standard pairing on Baire space. We note that the
relations ≤W, ≤sW and � implicitly refer to the underlying representations,
which we mention explicitly only when necessary. It is known that these relations
only depend on the underlying equivalence classes of representations, but not on
the specific representatives (see Lemma 2.11 in [4]). We use ≡W and ≡sW to
denote the respective equivalences regarding ≤W and ≤sW, and by <W and
<sW we denote strict reducibility.

A particularly useful multi-valued function in the Weihrauch lattice is closed
choice (see [2–4,8]) and it is known that many notions of computability can
be calibrated using the right version of choice. We will focus on closed choice
for computable metric spaces, which are separable metric spaces such that the
distance function is computable on the given dense subset. We assume that
computable metric spaces are represented via their Cauchy representation (see
[26] for details).

By A−(X) we denote the set of closed subsets of a metric space X, where
the index “−” indicates that we work with negative information. This infor-
mation is given by a representation ψ− : NN → A−(X), defined by ψ−(p) :=
X\ ⋃∞

i=0 Bp(i), where Bn is some standard enumeration of the open balls of X
with center in the dense subset and rational radius. The computable points in
A−(X) are called co-c.e. closed sets. We now define closed choice for the case of
computable metric spaces.

Definition 3 (Closed Choice). Let X be a computable metric space. Then
the closed choice operation CX :⊆ A−(X) ⇒ X of this space is defined by
dom(CX) := {A ∈ A−(X) : A �= ∅} and x ∈ CX(A) iff x ∈ A.

Intuitively, CX takes as input a non-empty closed set in negative representa-
tion (i.e. given by ψ−) and it produces an arbitrary point of this set as output.
For short we use the notation An := {A ∈ A−([0, 1]n) : A �= ∅} for the space of
non-empty closed subsets with representation ψ− in the following.

3 Brouwer’s Fixed Point Theorem and Connected Choice

In this section we want to show that the Brouwer Fixed Point Theorem is com-
putably equivalent to connected choice for any fixed dimension. We first define
these two operations. By C(X,Y ) we denote the set of continuous functions
f : X → Y and for short we write Cn := C([0, 1]n, [0, 1]n).

Definition 4 (Brouwer Fixed Point Theorem). By BFTn : Cn ⇒ [0, 1]n we
denote the operation defined by BFTn(f) := {x ∈ [0, 1]n : f(x) = x} for n ∈ N.

We note that BFTn is well-defined, i.e. BFTn(f) is non-empty for all f , since
by the Brouwer Fixed Point Theorem every f ∈ Cn admits a fixed point x, i.e.
with f(x) = x. We now define connected choice.

Definition 5 (Connected choice). By CCn :⊆ An ⇒ [0, 1]n we denote the
operation defined by CCn(A) := A for all non-empty connected closed A ⊆ [0, 1]n

and n ∈ N. We call CCn connected choice (of dimension n).
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Hence, connected choice is just the restriction of closed choice C[0,1]n to con-
nected sets. We also use the following notation for the set of fixed points of a
function f ∈ Cn.

Definition 6 (Set of fixed points). By Fixn : Cn → An we denote the function
with Fixn(f) := {x ∈ [0, 1]n : f(x) = x}.

It is easy to see that Fixn is computable, since Fixn(f) := (f − id)−1{0} and
it is well-known that closed sets in An can also be represented as zero sets of
continuous functions (see [26]).

Definition 7 (Connectedness components). By Conn : An ⇒ An we
denote the map with Conn(A) := {C : C is a connectedness component of A} for
every n ≥ 1.

Theorem 2 (Connectedness components). Conn ≡sW WKL for n ≥ 1.

We note that the Brouwer Fixed Point Theorem can be decomposed to
BFTn = CCn ◦ Conn ◦ Fixn.

The main result of this section will be that the Brouwer Fixed Point Theorem
and connected choice are (strongly) equivalent for any fixed dimension n (see
Theorem 3 below).

The direction CCn ≤sW BFTn can be seen as a uniformization of an earlier
construction of Baigger [1] that is in turn built on results of Orevkov [16]. This
part of the construction was explained in some detail by Potgieter in [20].

For the other direction BFTn ≤sW CCn of the reduction we uniformize ideas
from the third author’s PhD thesis [14]. A central technique is topological degree
theory. For the uniform aspects of both directions, a representation of closed sets
via trees of rational complexes is employed.

The first observation is that the map Conn ◦Fixn is computable (which might
be surprising in light of Theorem 2).

Proposition 1. Conn ◦ Fixn : Cn ⇒ An is computable for all n ∈ N.

Since BFTn ⊇ CCn ◦Conn ◦Fixn we can directly conclude BFTn ≤sW CCn for
all n. Together with CCn ≤sW BFTn we obtain the following theorem.

Theorem 3 (Brouwer Fixed Point Theorem). BFTn ≡sW CCn for all n.

It is easy to see that in general the Brouwer Fixed Point Theorem and con-
nected choice are not independent of the dimension. In case of n = 0 the space
[0, 1]n is the one-point space {0} and hence BFT0 ≡sW CC0 are both computable.
In case of n = 1 connected choice was already studied in [3] and it was proved
that it is equivalent to the Intermediate Value Theorem IVT (see Definition 6.1
and Theorem 6.2 in [3]).
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Corollary 1 (Intermediate Value Theorem). IVT≡sW BFT1 ≡sW CC1.

It is also easy to see that the Brouwer Fixed Point Theorem BFT2 in dimen-
sion two is more complicated than in dimension one. For instance, it is known
that the Intermediate Value Theorem IVT always offers a computable function
value for a computable input, whereas this is not the case for the Brouwer Fixed
Point Theorem BFT2 by Baigger’s counterexample [1]. We continue to discuss
this topic in Sect. 5.

Here we point out that Proposition 1 implies that the fixed point set Fixn(f)
of every computable function f : [0, 1]n → [0, 1]n has a co-c.e. closed connected-
ness component. The converse direction is true, too, and in a uniform way: We
denote by (f, g) :⊆ X ⇒ Y × Z the juxtaposition of two functions f :⊆ X ⇒ Y
and g :⊆ X ⇒ Z, defined by (f, g)(x) = (f(x), g(x)).

Theorem 4 (Fixability). (Fixn,Conn ◦ Fixn) is computable and has a multi-
valued computable right inverse for all n ∈ N.

Roughly speaking a closed set A ∈ An together with one of its connectedness
components is as good as a continuous function f ∈ Cn with A as set of fixed
points. As a non-uniform corollary we obtain immediately Miller’s original result.

Corollary 2 (Fixable sets, Miller 2002). A set A ⊆ [0, 1]n is the set of fixed
points of a computable function f : [0, 1]n → [0, 1]n if and only if it is non-empty
and co-c.e. closed and contains a co-c.e. closed connectedness component.

4 The Lipschitz Trichotomy

It seems to be a natural question1 to what extent finding fixed points becomes
easier if the class of functions to be considered is further restricted. In particular
we will denote by L−LBFTn the restriction of BFTn to L-Lipschitz functions.

Proposition 2. For L1, L2 > 1 we find that L1−LBFTn ≡W L2−LBFTn.

Proof. If f is L1-Lipschitz and L2 > 1, then id + L2−1
L1+1 (f − id) is L2-Lipschitz

and has the same fixed points as f .

With some additional constructions and a careful analysis, the proof of
Theorem 3 can be adapted to yield:

Theorem 5. 2−LBFTn ≡W BFTn ≡W CCn.

Being L-Lipschitz for L < 1 implies the uniqueness of the fixed point, which
in turn implies the computability of L−LBFTn for L < 1. The remaining L = 1
case is also a special (since finite-dimensional) case of the Browder-Goehde-Kirk
Fixed Point theorem. Its Weihrauch degree was studied by Neumann in [15], and
shown to be equivalent to XCn – closed choice for convex sets in [0, 1]n.

1 Which was put to the authors by Kohlenbach.
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Theorem 6 (Le Roux and Pauly [12]).

CC1 ≡W XC1 <W XC2 <W XC3 <W . . . <W C[0,1]

Corollary 3 (Lipschitz dichotomy in dimension 1).

– L−LBFT1 ≡W id, iff L < 1
– L−LBFT1 ≡W CC1, iff L ≥ 1

Corollary 4 (Lipschitz trichotomy). Let n > 1.

– L−LBFTn ≡W id, iff L < 1
– L−LBFTn ≡W XCn, iff L = 1
– L−LBFTn ≡W C[0,1], iff L > 1

5 Classifying Connected Choice

In this section we want to discuss the degree of connected choice, in particular in
relation to the dimension of the ambient space. We will consider three geometric
constructions: The one employed in the original proof by Orevkov/Baigger – this
construction is insufficient for the uniform aspects. Then a simple construction
showing that connected choice is computably complete from dimension three
onwards in the sense that it is strongly equivalent to Weak Kőnig’s Lemma.
Finally, a significantly more involved construction shows even connected choice
in two dimensions to be computably complete, too.

A superficial reading of the results of Orevkov [16] and Baigger [1] can lead
to the wrong conclusion that they actually provide a reduction of Weak Kőnig’s
Lemma to the Brouwer Fixed Point Theorem BFTn of any dimension n ≥ 2.
However, this is only correct in a non-uniform way and the corresponding uniform
result does not follow from the known constructions. The Orevkov-Baigger result
is built on the following fact.

Proposition 3 (Mixed cube). The function M :⊆ A−[0, 1] → A2 with
M(A) = (A × [0, 1]) ∪ ([0, 1] × A) is computable and maps non-empty closed
sets A ⊆ [0, 1] to non-empty connected closed sets M(A) ⊆ [0, 1]2.

It follows straightforwardly from the definition that the pairs (x, y) ∈ M(A)
are such that one out of two components x, y is actually in A. In order to express
the uniform content of this fact, we introduce the concept of a fraction.

Definition 8 (Fractions). Let f :⊆ X ⇒ Y be a multi-valued function and
0 < n ≤ m ∈ N. We define the fraction n

mf :⊆ X ⇒ Y m such that n
mf(x)

is the set of all (y1, ..., ym) ∈ range(f)m with |{i : yi ∈ f(x)}| ≥ n for all
x ∈ dom( n

mf) := dom(f).

The idea of a fraction n
mf is that it provides m potential answers for f , at

least n ≤ m of which have to be correct. The uniform content of the Orevkov-
Baigger construction is then summarized in the following result.
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Proposition 4 (Dimension two). 1
2C[0,1] ≤sW CC2.

However, the following results shows that the uniform content of the pre-
ceding proposition is very weak, as it cannot even solve closed choice on the
two-point space 2 (which is equivalent to LLPO):

Proposition 5. C2 �≤W
1
2C[0,1]

That is, given a closed set A ⊆ [0, 1] we can utilize connected choice CC2 of
dimension 2 in order to find a pair of points (x, y) one of which is in A. This result
directly implies the counterexample of Baigger [1] because the fact that there are
non-empty co-c.e. closed sets A ⊆ [0, 1] without computable points immediately
implies that 1

2C[0,1] is not non-uniformly computable (i.e. there are computable
inputs without computable outputs) and hence CC2 is also not non-uniformly
computable.

Corollary 5 (Orevkov 1963, Baigger 1985). There exists a computable
function f : [0, 1]2 → [0, 1]2 that has no computable fixed point x ∈ [0, 1]2. There
exists a non-empty connected co-c.e. closed subset A ⊆ [0, 1]2 without computable
point.

Instead, we shall use a different construction to classify connected choice from
three dimensions upwards:

Proposition 6 (Twisted cube). The function T :⊆ A−[0, 1] → A3 with
T (A) = (A × [0, 1] × {0}) ∪ (A × A × [0, 1]) ∪ ([0, 1] × A × {1}) is computable
and maps non-empty closed sets A ⊆ [0, 1] to non-empty connected closed sets
T (A) ⊆ [0, 1]3.

Here tuples (x1, x2, x3) ∈ T (A) have the property that at least one of the first
two components provide a solution xi ∈ A, but the third component provides
the additional information which one surely does. If x3 is close to 1, then surely
x2 ∈ A and if x3 is close to 0, then surely x1 ∈ A. If x3 is neither close to 0
nor 1, then both x1, x2 ∈ A. Hence, there is a computable function H such that
C[0,1] = H ◦ CC3 ◦ T , which proves C[0,1] ≤sW CC3. Together with Theorem 3 we
obtain the following conclusion.

Theorem 7 (Completeness of three dimensions). For n ≥ 3 we obtain
CCn ≡sW BFTn ≡sW WKL≡sW C[0,1].

We note that the reduction CCn ≤sW C[0,1]n holds for all n ∈ N, since con-
nected choice is just a restriction of closed choice and C[0,1]n ≡sW C[0,1] ≡sW WKL
is known for all n ≥ 1 (see [2]).

Originally, three of the authors had conjectured in [7] that CC2 <W C[0,1].
However, a more involved construction actually establishes that:
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Fig. 1. The geometric pattern after the third round

Theorem 8 (Completeness of two dimensions). CC2 ≡W C[0,1]

The proof of Theorem 8 exhibits a reduction Ĉ2 ≤W CC2 instead, using the
equivalence Ĉ2 ≡W C{0,1}N from [4]. The geometric pattern constructed produces
an infinitely long line which is then subdivided based on both the information
obtained about the input to Ĉ2, as well as the order in which this information
is found. A glimpse of the construction might be gained from Fig. 1.

6 Two Versus Three Dimensions

A noticeable difference between the construction from the proof of Theorem 8
and Proposition 6 is that the latter yields even a path-connected set, whereas
the former does not. Thus, path-connected choice is computably-complete from
dimension three onwards, but might be simpler in dimension two.

While the status of path-connected choice in dimension two remains open, we
can exhibit a related choice principle distinguishing two from three dimensions.

Definition 9. We say that A ∈ A2 has a straight cross, if there are x, y ∈ [0, 1],
δ > 0 s.t ∀ε ∈ (−δ, δ) (x + ε, y) ∈ A ∧ (x, y + ε) ∈ A. Let †C[0,1]2 be choice for
sets having a straight cross.

Proposition 7. †C[0,1]2 ≤W
1
2C[0,1] � CN.

Corollary 6. †C[0,1]2 <W CC2

Proof. Combine Proposition 7 with the Fractal Absorption Theorem from [12].

An analogous argument would not succeed in dimension 3, as 2
3C[0,1] ≡W C[0,1]

by a majority-voting argument.
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Abstract. Secret sharing concerns the distribution of some secret infor-
mation among a number of parties and is among the most well known
tools in cryptography. Secret sharing schemes with certain additional
algebraic properties, known as linearity and multiplicativity, have impor-
tant applications in the area of secure multiparty computation and other
areas such as zero knowledge proofs. Secret sharing also has a strong rela-
tionship with coding theory and motivates new problems in that field.
I will survey several of the recent results in the area and some of their
applications.

1 Introduction

Secret sharing, introduced in [26], is among the most well known tools in cryp-
tography. Secret sharing schemes allow to distribute some secret information
among a number of parties by sending some share (some other piece of infor-
mation) to each of them, in such a way that a small number of shares give no
information about the secret which was shared, but a large enough number of
shares allow to reconstruct the secret entirely. Secret sharing schemes are useful
as a stand-alone primitive (for distributed information storage), but also play
an important role as a building block of many cryptographic protocols.

Before defining secret sharing formally, the following notation is fixed.
A vector of random variables is a vector X = (Xi)i∈I such that the index-set I
is finite and non-empty and the Xi’s are random variables defined on the same
finite probability space. If X is a vector of random variables with index-set I and
A ⊂ I with A �= ∅, then XA denotes the vector of random variables (Xi)i∈A. For
each i ∈ I, we denote by the caligraphic Xi the finite alphabet where Xi takes
its values. Let H(X) denote the Shannon entropy of a random variable X.

Definition 1 (Secret Sharing Scheme). A secret sharing scheme is a vector
of random variables S with index-set I = {0, . . . , n} and such that:

– Uniformity of the secret: The set S0 satisfies |S0| > 1 and the variable S0

satisfies H(S0) = log2 |S0|, i.e., S0 has a-priori the uniform distribution on S0.

A major part of this work was written while the author was working at the Depart-
ment of Computer Science, Aarhus University, Denmark.
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– Joint reconstruction: H(S0|SI\{0}) = 0., i.e., S0 is completely determined by
the rest of the variables in S.

We abbreviate I \ {0} = {1, . . . , n} by I∗ and its cardinality is denoted by
n(S). The variable S0 is the secret, while the remaining variables Si, i ∈ I \ {0}
are the shares.

As mentioned before, secret sharing schemes can be used to distribute secret
information. If some party (a dealer) wants to distribute certain information
s ∈ S0 among a set of n(S) parties (that we assumed indexed by I∗), this can
be done in the following way: the dealer samples a vector a′ = (s, a1, . . . , an)
according to the distribution of the conditioned variable S|S0 = s and then, for
each i ∈ I∗, he sends the value ai ∈ Si, taken by the variable Si, to the i-th
party. The vector a = (a1, . . . , an) is then called a sharing of s.

Definition 2 (Reconstruction and privacy sets). Let S be a secret sharing
scheme. Let A ⊂ I∗ with A �= ∅. Then:
– A is a reconstructing set if H(S0|SA) = 0, i.e., the shares of the set A jointly

determine the secret with probability 1.
S has r-reconstruction if each subset of I∗ of cardinality at least r is a recon-
structing set. The reconstruction threshold, denoted by r(S), is the smallest r
such that S has r-reconstruction.

– On the other hand, A is a privacy set if H(Si|SA) = H(Si), i.e., the a posteri-
ori uncertainty about the secret when given the shares for A, equals the a priori
uncertainty about the secret (or equivalently, Si and SA are independent). By
definition, ∅ is a privacy set.
S has t-privacy if each subset of I∗ of cardinality at most t is a privacy set. The
privacy threshold, denoted by t(S), is the largest t such that S has t-privacy.

Obviously if a secret sharing scheme has t-privacy and r-reconstruction, it
must hold that r > t. Typically, for applications it is interesting to have t-privacy
for as large t as possible, while having r-reconstruction for as small r as possible.

2 Linear Secret Sharing

Linear secret sharing schemes are the most well known class of secret sharing
schemes. They are described next.

Definition 3. Let Fq be a finite field. A linear secret sharing scheme (LSSS)
over Fq is a secret sharing scheme Σ where the secret and share spaces Sj are
Fq-vector spaces and S has the uniform distribution on a Fq-linear subspace
V ≤×j∈ISj.

From now on we focus on LSSSs where all the share spaces are the field Fq

and the secret space is F
k
q , for some k ≥ 1. In that case, it is useful to describe

such secret sharing schemes from the point of view of linear codes. Indeed, the
support of the variable S is a linear code C over Fq of length k + n, i.e., a
linear subspace of Fk+n

q (we denote this by C ≤ F
k+n
q ). Conversely, we have the

following construction:
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Definition 4. Let 1 ≤ k < m be integers. Given a linear code C ≤ F
m
q , we

define the vector of random variables S(k)(C) = (Si)i=0,...,n (where n = m − k),
whose distribution is given by selecting c uniformly at random in C (we index
its coordinates as c = (c0,1, c0,2, . . . , c0,k, c1, c2 . . . , cn)) and defining the secret
S0 to be (c0,1, c0,2, . . . , c0,k) and the i-th share Si to be ci for i = 1, . . . , n.

Proposition 1. S(k)(C) is a secret sharing scheme as long as C satisfies two
conditions, where c0 will denote the vector (c0,1, c0,2, . . . , c0,k):

1. for all x ∈ F
k
q , there is a word c ∈ C with c0 = x and

2. there is no vector in C of the form c = (x, 0, . . . , 0) where x ∈ F
k
q \ {0}.

The advantage of this representation is that we can obtain valuable infor-
mation about the reconstructing and privacy sets of S(k)(C) from the supports
of the words in C. For A ⊆ I∗, c ∈ C, let cA denote the vector of coordinates
(ci)i∈A. Then one can show the following results.

Proposition 2 (based on [11,25]). Let A ⊆ I∗.

– Reconstruction: A is a reconstructing set in the scheme S(k)(C) if and only if
for all c ∈ C such that cA = 0, we have c0 = 0.

– Privacy: A is a privacy set in the scheme S(k)(C) if and only if for all s ∈ F
k
q ,

there exists c ∈ C such that c0 = s and cA = 0.

Another characterization makes use of the dual code C⊥ of C. Remember that
for a linear code C ≤ F

m
q , C⊥ is the set of all x ∈ F

m
q such that, for every c ∈ C,

the inner product of x and c is 0. C⊥ is a linear code of the same length as C.

Proposition 3 (based on [11,25]). Let A ⊆ I∗ and B := I∗ \ A.

– Reconstruction: A is a reconstructing set in the scheme S(k)(C) if and only if
for all s ∈ F

k
q there exists c∗ ∈ C⊥ with c∗

0 = s and c∗
B = 0.

– Privacy: A is a privacy set in the scheme S(k)(C) if and only if for all c∗ ∈ C⊥

with c∗
B = 0, we have c∗

0 = 0.

Using any of these two propositions we can observe that, in the case k = 1,
every set A of shares is either a privacy or a reconstructing set. However, when
k > 1, there are sets which are neither privacy nor reconstructing sets, i.e., the
knowledge of that set of shares gives some partial information about the secret,
but does not determine it completely. In fact, it is always satisfied that

Proposition 4. If A ⊆ B ⊆ I∗ are such that A is a privacy set and B is a
reconstruction set of S(k)(C), then |B| − |A| ≥ k. Consequently, r(S(k)(C)) −
t(S(k)(C)) ≥ k.

Furthermore, from the characterizations above we can bound the reconstruc-
tion and privacy thresholds of S(k)(C) in terms of the minimum distances of the
codes C and C⊥. Let d(C) denote the minimum distance of C, i.e., the mini-
mum Hamming distance between two distinct codewords in C, which, since C
is linear, is also the minimum Hamming weight of a nonzero codeword in C.
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Proposition 5. The reconstruction and privacy thresholds of S(k)(C) satisfy
r(S(k)(C)) ≤ n − d(C) + k + 1 and t(S(k)(C)) ≥ d(C⊥) − k − 1.

The most famous example of a secret sharing scheme is Shamir scheme, which
is linear. Its original description was only for the case k = 1, but here a version
of it is described that admits secrets in F

k
q for larger k. Let k, t, n satisfy 1 ≤

t+k−1 ≤ n and n+k ≤ q. Fix α1, . . . , αn, β1, . . . , βk pairwise distinct elements
in Fq. Denote by Fq[X]≤t+k−1 the set of univariate polynomials of degree less
than t + k − 1 and coefficients in Fq. In order to share a secret s ∈ F

k
q among n

parties with this scheme, a polynomial f is chosen in Fq[X]≤t+k−1 uniformly at
random under the additional condition that f(βj) = sj for j = 1, . . . , k. Then,
the i-th share is defined as the evaluation f(αi) ∈ Fq. This secret sharing scheme
is hence constructed as S(k)(C) from the Reed Solomon code

C = {(f(β1), . . . , f(βk), f(α1), . . . , f(αn)) : f ∈ Fq[X]≤t+k−1}.

Shamir’s secret sharing scheme has t-privacy and (t + k)-reconstruction, and it
attains both the bounds given by Propositions 4 and 5.

Linear secret sharing schemes have a property which is of key importance
for applications, as it will be explained in Sect. 5: suppose several secrets
s(1), s(2), . . . , s(�) are shared with S, where the sharing for s(j) is (a(j)1 , . . . ,a(j)n ).
Then given λ(1), . . . , λ(�) ∈ Fq, the linear combinations (

∑�
j=1 λ(j)a(j)i )i=1,...,n

constitute a sharing of
∑�

j=1 λ(j)s(j) in the same scheme S.

3 Multiplicativity

For applications, it would be useful if a property similar to what we just men-
tioned held also for multiplications. Ideally, we would like that given sharings of
s and s′, the local coordinatewise products of the shares constituted a sharing
(in the same scheme) of the coordinatewise product s∗s′ of the secrets. Unfortu-
nately, it is easy to see that LSSSs cannot satisfy this property unless in trivial
cases. The notion of multiplicative linear secret sharing schemes, introduced in
[12], is a relaxation of this property.

Definition 5. An ideal LSSS S(k)(C) has r̂-product reconstruction if for every
set B ⊆ I of size at least r̂, there exists some linear function ρB : F|B|

q → F
k
q such

that for every (c0, c1, . . . , cn), (d0, d1, . . . , dn) ∈ C, it holds that ρB(cB ∗ dB) =
c0 ∗ d0.

This means that the product of two secrets can be reconstructed from the set of
the products of the individual shares of the players in B.

Definition 6 ([12]). A multiplicative LSSS is a LSSS with n-product reconstruc-
tion.

A t-strongly multiplicative LSSS is a LSSS with t-privacy and (n− t)-product
reconstruction.



72 I. Cascudo

In order to study the multiplicativity of a LSSS, it is useful to introduce the
following notion.

Definition 7 (m-th power of a linear code). Let C ⊆ F
n
q be a linear code

over Fq, d > 0 an integer. Let

C∗m := Fq〈{c(1) ∗ c(2) . . . ∗ c(m) : (c(1), c(2), . . . , c(m)) ∈ Cm}〉

Remark 1. By definition, S(k)(C) has r̂-product reconstruction if and only if
S(k)(C∗2) has r̂-reconstruction. Consequently, S(k)(C) has r̂-product recon-
struction for r̂ = n − d(C∗2) + k + 1 and it is t-strongly multiplicative if
d(C⊥), d(C∗2) ≥ t + k + 1.

Proposition 6. Shamir’s scheme (with threshold t) has (2t + 2k − 1)-product
reconstruction, as long as 2t + 2k − 1 ≤ n. Hence, Shamir’s scheme is t-strongly
multiplicative as long as 3t + 2k − 1 ≤ n.

This stems from the fact that if C is a Reed-Solomon code given by evalua-
tions of the polynomials in Fq[X]≤t+k−1, then C∗2 is another Reed-Solomon
code given by the evaluations, in the same points, of the polynomials in
Fq[X]≤2t+2k−2.

On the other hand, the following limitation is easy to argue in view of the
characterization from Proposition 2.

Proposition 7. Any LSSS with t-privacy and r̂-product reconstruction has
(r̃ − t)-reconstruction. Consequently it needs to satisfy r̂ ≥ 2t + k. As a con-
sequence of this, any t-strongly multiplicative LSSS satisfies 3t + k ≤ n.

In the case k = 1, the bounds are tight: Shamir’s scheme attains the maxi-
mum value of t (with respect to the number of players n) for which there is a
t-strongly multiplicative LSSS. As far as the author knows, the bound above is
not known to be tight for k > 1:

Conjecture 1. Any LSSS with t-privacy and r̂-product reconstruction satisfies
r̂ ≥ 2t + 2k − 1 and any t-strongly multiplicative LSSS satisfies 3t + 2k − 1 ≤ n.

4 Asymptotics

Shamir’s scheme achieves several good properties from the point of view of
the applications. It matches the bound for r(S(k)(C)) − t(S(k)(C)) given in
Proposition 4. In particular, for k = 1, one has the property that any set of
t players has no information about the secret, while any set of t + 1 can recon-
struct it. Furthermore, possibly up to an additive factor k, Shamir’s scheme
also attains, for a given n, the largest possible t for which there can be t-strong
multiplication.

However, Shamir’s scheme has the limitation that the number of players n is
upper bounded by the size of the field. Indeed, in the definition we have given
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it is required that k + n ≤ q (one can slightly weaken this by adding, as an
evaluation point, the coefficient of order t + k − 1 of the evaluation polynomial,
so that this condition is relaxed as k + n ≤ q − 1, and all the properties are
preserved).1

This raises the question whether similar properties can be attained by LSSS
S if we fix the size of the field q, but want the number of players n(S) to be
arbitrarily large. However, the following result sets a restriction in what we can
hope to achieve.

Theorem 1. [6] For any LSSS S = S(1)(C) we have r(S) − t(S) ≥ n(S)+2
2q−1 .

Consequently, if S has r̂-product reconstruction, then r̂ − 2t(S) ≥ n(S)+2
2q−1 and if

S is t-strongly multiplicative, then 3t ≤ (1 − 1
2q−1 )n(S).

In fact, by applying somewhat more elaborate arguments, [6] shows a stronger
bound for t-strongly multiplicative schemes, namely 3t ≤ (1− 3q−2

3q2−3q+1 )n. Exten-
sions for the case where the space of secrets is F

k
q are also shown in [6].

These results imply that, when n is much larger than q, we will lose a factor
c(q) ·n in the maximum value of t for which we can have t-strong multiplicativity
with respect to what Shamir’s scheme attains. The question then is if we can
achieve t = Ω(n) (i.e. t ≥ c′(q)n for some other constant c′(q) > 0) at all. This
is answered by the following result.

Theorem 2 ([2,4,7,10]). For any finite field Fq, there exists an infinite family
of secret sharing schemes S(kn)(Cn), indexed by n ∈ N, such that S(kn)(Cn) has
n players and is tn-strongly multiplicative, where kn, tn = Ω(n) as n → ∞.

The result makes use of algebraic geometric codes defined on asymptotically
good families of algebraic function fields [19]. It was originally proved for all fields
of large enough cardinality in [10]. This in particular included all fields Fq with
q ≥ 49 and square. Later, the result was extended to every finite field Fq in [2], by
using certain dedicated concatenation of codes, where the outer code is defined
to be a code from the family in [10], defined on an appropriate constant-degree
extension field of Fq and the inner code is a Reed-Solomon code over Fq. In
[4], it was shown that, by choosing the parameters carefully, and applying more
involved algebraic-geometric arguments which, in particular, include bounding
the size of the 2-torsion subgroup of the divisor class group of the function fields
involved, one can use the algebraic geometric construction in [10] (without the
concatenation technique in [2]) directly to show the result for all fields Fq with
q ≥ 16, and also q = 8, 9. Furthermore, the actual values of tn promised by the
construction are larger for smaller fields. The next result is an example of which
values of tn, kn (with respect to n) can be attained in some cases. For the full
results see [2,4,7,10].
1 Furthermore, in the case k > 1, one can replace the k evaluation points for the secret

by a primitive element of the extension field Fqk , whereby one only needs n ≤ q − 1,
and the privacy and reconstruction thresholds are preserved. The multiplicativity
properties hold now with respect to the product in Fqk (for the secrets) instead of

the coordinate-wise product in F
k
q .
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Theorem 3. Let Fq be a finite field. There exists an infinite family of secret
sharing schemes S(kn)(Cn), indexed by n ∈ N such that S(kn)(Cn) has n players,
tn-privacy and r̂n-product reconstruction, where kn = �κn�, tn = �τn�, r̂n =
�ρ̂n� in the following cases:

– q square with q ≥ 49, as long as 1 ≥ ρ̂ ≥ 2κ + 2τ + 4√
q−1 .

– q square, even, with q ≥ 16, as long as ρ̂ ≤ 1 and

ρ̂ − h2(ρ̂)
log q

− 2τ − 2
h2(τ)
log q

≥
(

2 +
(
√

q + 1) log q + 1
(q − 1) log q

)

κ +
(
√

q + 1) log q + 1
(q − 1) log q

.

– q = 2, as long as ρ̂ ≤ 1 and

ρ̂ − h2(ρ̂)
4

− 30τ − h2(15τ)
2

≥
(

2 +
21
60

)

κ +
21
60

,

where in all cases h2(·) denotes the binary entropy function.

A drawback of these constructions is the high complexity of constructing the
generator matrices of algebraic geometric codes defined on the asymptotically
good families of function fields from [19]. Unfortunately, so far there is no known
way to attain the result of Theorem 2 using “elementary” techniques, for example
randomized constructions or polynomial evaluations. This holds even if we drop
the condition tn-strongly multiplicative in Theorem 2 and we require instead
tn-privacy and n-product reconstruction, still with tn, kn = Ω(n). However, if
we weaken our requirements further and set kn = 1, then there exists a much
more elementary construction using random self-dual codes [11].

Nevertheless, randomized constructions do not seem to have good multiplica-
tive properties in general. In fact, for random codes C, squaring seems to be a
“destructive” operation, in the sense that the dimension of C∗2 grows as the
square of the dimension of C. Indeed, [3] showed that

Theorem 4. Let 
 ≤ N ≤ �(�+1)
2 . Write u = �(�+1)

2 −N . Let C be a code chosen
uniformly at random among all codes of length N and dimension 
. Then

Pr
[
C∗2 = F

N
]

= 1 − 2−Θ(�) − 2−Θ(u).

This means that if, in particular 
 = Θ(N), then C∗2 will be the full space F
N

with overwhelming probability.

5 Applications

Secure Computation

Secure computation is concerned with the following situation: n parties, each
holding some private input xi, want to correctly compute f(x1, x2, . . . , xn) for
some agreed upon function f in such a way that the intended output is the only
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new information released. This guarantee should be fulfilled even if a small num-
ber t of the players are corrupted and cheat. Corruption is passive if corrupted
players follow the specified protocol (but compare their views of the protocol to
try to gain additional information) and active if they can behave arbitrarily. For
formal security definitions and more information about the topic, see [13].

For the case of a computationally unbounded adversary, it is known [1,9] that
secure computation of any function is possible as long as less than n/2 players
are passively corrupted, or less than n/3 players are actively corrupted2. The
results make use of the linearity and multiplicativity of Shamir’s scheme. Later
in [12], it was shown that, in fact, secure multiparty computation protocol secure
against a passive (resp. active) adversary corrupting t players can be constructed
from any multiplicative LSSS with t-privacy (resp. t-strong multiplicative LSSS).

The idea of the protocol in the passive case is as follows: assume for the
moment f : Fn → F is a linear function. Suppose each input is in F, S := S(1)(C)
is a LSSS over F with t-privacy. At the beginning of the protocol, each player
can secret share her input xi with S. Then each player applies f to her received
shares. By linearity, the resulting set of values is a sharing of f(x1, . . . , xn) as
mentioned at the end of Sect. 2. So now players can broadcast the resulting
shares, and reconstruct the output. Ideally, we would want to extend this idea
to any function f . Since every function can be computed as an arithmetic circuit
over a finite field (for example a Boolean circuit), it would be enough if a sharing
of ss′ can be created from the sharings of s and s′. However, we mentioned at the
beginning of Sect. 3, if s and s′ are secret shared with a LSSS S := S(1)(C), and
each player multiplies her shares, even if the original scheme was multiplicative,
the resulting set of values is not a sharing of ss′ in the same scheme S(1)(C),
but in S(1)(C∗2).

A better alternative is obtained by allowing interaction among the players.
Again let S(1)(C) be multiplicative. By definition there is a linear function ρ such
that ss′ = ρ(c1c′

1, . . . , cnc′
n) where ci, c

′
i are the shares of s and s′ respectively.

The following protocol allows to create a sharing ss′ in the scheme S(1)(C):
Each player i shares the product cic

′
i of his shares with S(1)(C). Now, players

have shares of c1c
′
1, c2c2, . . . , cnc′

n and they can locally compute shares of ss′ =
ρ(c1c′

1, . . . , cnc′
n) since ρ is linear. This can be shown to be secure against a

passive adversary corrupting at most t parties if the scheme has t-privacy and
it is enough to argue that any function can be securely computed by n players
in this situation.

The case of an active adversary requires additional techniques. The problem
is that corrupted players (which can deviate from the protocol) may choose to
deal inconsistent shares to the honest players or to share wrong values. The
solution in [12] involves using verifiable secret sharing, in which the dealer sends
additional information to each player which can be used to verify that the shares
have been well constructed. If the underlying LSSS is t-strongly multiplicative,

2 Here we suppose each pair of players is connected by a secure point-to-point channel,
but we do not assume the existence of a broadcast channel.
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this leads to a secure protocol to compute any function in the presence of an
adversary corrupting at most t players.

Two-Party Cryptography and Other Applications

In recent years, secure multi-party computation protocols have surprisingly been
applied on cryptographic problems involving only two players. This is due to the
MPC-in-the-head technique, which was introduced in [22] for the purpose of zero
knowledge proofs with high communication efficiency, where a virtual multiparty
computation protocol with a large number of parties is run by of the two players
at some point of the protocol. The ideas from [22] have inspired other applications
in areas such as multiparty computation with dishonest majority [17,24], OT
combiners [20], OT from noisy channels [21], correlation extraction [23] and UC
homomorphic commitment schemes [8,16,18]. In many of these applications,
the best results in terms of efficiency are attained by setting up multiparty
computation protocols with a very large number of players, while the size of the
field should be small. This has been a motivation for the results on asymptotics
of t-strongly multiplicative LSSS discussed in Sect. 4.

Finally, one can generalize the concept of multiplicative secret sharing
schemes in a number of ways. A generalization is given by the notion of arithmetic
codices introduced in [5]: this notion allows to address also other applications
in two-party cryptography (zero knowledge proofs of algebraic relations [14]),
algebraic complexity (see [7]) and more recently has been applied back in the
realm of error correcting, more specifically in the problem of local decodability
of Reed-Muller codes (see [15]).
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9. Chaum, D., Crépeau, C., Damg̊ard, I.: Multi-party unconditionally secure proto-
cols. In: Proceedings of STOC 1988, pp. 11–19. ACM Press (1988)

10. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

11. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure
computation from random error correcting codes. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)

12. Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

13. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing - An Information Theoretic Approach. Cambridge University Press

14. Cramer, R., Damg̊ard, I., Pastro, V.: On the amortized complexity of zero knowl-
edge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS 2012. LNCS,
vol. 7412, pp. 62–79. Springer, Heidelberg (2012)

15. Cramer, R., Xing, C., Yuan, C.: On Multi-point Local Decoding of Reed-Muller
Codes. Manuscript (2016). http://arxiv.org/abs/1604.01925

16. Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact VSS and efficient
homomorphic UC commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 213–232. Springer, Heidelberg (2014)

17. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013)

18. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complexity
of additively homomorphic UC commitments. In: Kushilevitz, E., et al. (eds.) TCC
2016-A. LNCS, vol. 9562, pp. 542–565. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49096-9 23

19. Garcia, A., Stichtenoth, H.: A tower of Artin-Schreier extensions of function fields
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Abstract. This note explores an often overlooked question about the
characterization of the notion model of computation which was originally
identified by Cobham [5]. A simple formulation is as follows: what prim-
itive operations are allowable in the definition of a model such that its
time and space complexity measures provide accurate gauges of practical
computational difficulty? After exploring the significance of this question
in the context of subsequent work on machine models and simulations,
an adaptation of Kreisel’s squeezing argument [17] for Church’s Thesis
involving Gandy machines [11] is sketched which potentially bears on
this question.

1 Cobham’s Problem

The goal of this note is to highlight a historically significant but often over-
looked question about the characterization of what is commonly called a model
of computation. A simple formulation is as follows: what primitive operations
are allowable in the definition of such a model such that its time and space com-
plexity measures provide accurate gauges of practical computational difficulty?

A version of this problem was posed in the paper “The intrinsic computa-
tional difficulty of functions” [5] in which Alan Cobham first defined the class
FP of functions computable in polynomial time and conjectured that it coincides
with the informal notion of a feasibly computable function:

[W]e find that it makes a definite difference what class of computational methods

and devices we consider in our attempt to formalize the definition [of a feasi-

bly computable function]. The problem is reminiscent of, and obviously closely

related to, that of the formalization of the notion of effectiveness. But the empha-

sis is different in that the physical aspects of the computation process are here

of predominant concern. The question of what may legitimately be considered

to constitute a step of a computation is quite unlike that of what constitutes an

effective operation . . . If we are to make fine distinctions, say between [TIME(n)]

and [TIME(n2)], then we must have an equally fine analysis of all phases of the

computational process . . . We must be prepared to argue that we haven’t taken
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too broad a class for [TIME(n)] and thus admitted to it functions not in actu-

ality computable in a number of steps linearly bounded by the lengths of its

arguments.1 [5], pp. 29–30

Cobham illustrated the significance of the choice of basic operations by pos-
ing the following question: is there a model-independent – or “absolute” – sense
in which integer multiplication is intrinsically harder to compute than integer
addition?2 A theory of computational complexity based on a model of compu-
tation which treats both addition and multiplication as operations which can
be computed in a single primitive step is clearly incapable of providing a prin-
cipled answer to this question. But since any model of computation must treat
some operations as primitive, how are we to make a principled choice? Cobham
suggested that not only was this one of the “fundamental problems” facing the
development of such a theory but that it “may well call for considerable patience
and discrimination” ([5] p. 30).

2 Machine Models and the Invariance Thesis

My present goal will not be to attempt to resolve Cobham’s problem directly.
For in hindsight it is clear that many of the issues he identified are likely related
to fundamental unresolved questions about the separation of complexity classes.
I merely wish to argue that some of the surrounding issues may be clarified by
reflecting further on the developments which led to the adoption of the multi-
tape Turing machine T as the standard model employed in complexity theory
and its use in formulating what is now often called the Cobham-Edmonds Thesis:

A function f(x) is feasibly computable just in case it is computed by a
machine T ∈ T such that the running time complexity of T is asymptotically
bounded by |x|k for some fixed k ∈ N (i.e. such that timeT (|x|) ∈ O(|x|k)
where |x| denotes the size of the input).

This proposal is often presented in textbooks as playing the same role for com-
plexity theory which Church’s Thesis plays for computability theory – i.e. that of
providing a mathematically precise analysis of the pre-theoretical notion of fea-
sibility (i.e. computability in practice) in the same way which Church’s Thesis is
1 Cobham characterized the class L of feasibly computable functions as those com-

putable by an informal algorithm in “a number of steps . . . bounded by polynomials
in the lengths of the numbers involved”. He proposed that L coincided with the
functions definable using a restricted recursion scheme known as limited recursion
on notation. He then conjectured that the class of functions definable in this manner
coincided with FP under its contemporary definition – i.e. the class of functions
computable in polynomial time by a deterministic Turing machine. This was later
demonstrated by Rose [20].

2 “Is it harder to multiply than to add? . . . I grant I have put [this] question loosely;
nevertheless, I think the answer ought to be yes” [5], p. 24. By the mid-1960s it was
already possible to marshall a good deal of evidence in favor of this hypothesis –
e.g., [7].
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generally taken to provide an analysis of the pre-theoretical notion of effectivity
(i.e. computability in principle). This in turn suggests that the complexity class
FP enjoys a status similar to that of the class of Turing computable functions as
an “intrinsic” or “absolute” standard of computational difficulty. But although
it remains controversial whether this is indeed the case, it is not the identifica-
tion of feasibility with polynomial time computability to which I wish to draw
attention. Rather, it is the rationale for using T in the definition of “polynomial
time” and “polynomial space” provided that these quantities are intended to
serve as useful metrics of computational difficulty.

An early precedent for this was provided by Hartmanis and Stearns [13] who
demonstrated the first hierarchy theorems showing that more functions become
computable relative to a sufficiently large increase in the number of allowable
steps consumed or tape cells accessed during the course of a Turing machine
computation. Soon after this, simulation results were obtained linking the time
or space bounds for T to a variety of other tape-based models which might have
initially seemed more or less powerful. For instance if f(x) can be computed in
time O(t(n)) using a multi-tape machine from T, then it can be computed in
time O(t(n)2) using a single-tape machine. And if f(x) can be computed in time
O(t(n)) using a machine with a 2-dimensional tape then it can be computed in
time O(t(n)3/2) by a machine from T using multiple one-dimensional tapes.

Similar results were also obtained for the basic RAM model R introduced by
Cook and Reckhow [8]. Recall that this model consists of a finite program, one
or more accumulator registers, an instruction counter, and an infinite collection
of memory registers R0, R1, . . . which may contain integers of unbounded size.
The operations performable by R include reading inputs and printing outputs,
conditional jump operations based on comparisons between the accumulator reg-
isters or other registers, instructions for transferring values between registers and
the accumulator (inclusive of indirect addressing), and the following arithmetical
operations: addition and subtraction. In calculating the running time complexity
of a RAM machine, it is often assumed that these operations can be carried out
in unit time – i.e. as a single unmediated step.

Although this latter assumption is evidently false for tape-based models, a
basic simulation result about the relative efficiency of R and T is as follows: if
f(x) can be computed in time O(t(n)) using a machine from R, then it can be
computed in time O(t(n)3) using a machine from T. Similar results apply to
some (although as we will see not all) register-based models which are obtained
by modifying R in various straightforward ways – e.g. allowing that values stored
in registers may be treated as binary numerals on which it is possible to apply
bit-wise Boolean operations in parallel.3

The significance of these results is borne out by the observation that R is
sufficiently flexible to allow for implementations of many algorithms which arise
in mathematical practice – say in number theory, linear algebra or graph theory
– which are not only reasonably direct, but also have running time proportional

3 See [27] for full definitions of T and R and references for the simulation results just
summarized.
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(often by scalar factors) to their informal counterparts.4 This provides inductive
confirmation that measuring computational complexity relative to R provides
an accurate gauge of the practical difficulty of solving computational problems
of the sort which we confront in practice.

It has become conventional to call a model of computation with this property
(such as R) reasonable. On the basis of simulation results of the sort mentioned
above, van Emde Boas [27] has proposed that the notion of “reasonability”
should be extended to other models as follows:
Invariance Thesis: Suppose that N0 is a reasonable model of computation.
Then another model N1 is also reasonable just in case every machine in N0 can
be simulated by a machine N1 with polynomially bounded overhead in time and
a constant-factor overhead in space and conversely with respect to N1 and N0.5

It thus follows from the identification of R as a reasonable model coupled
with the simulation results mentioned above that the Invariance Thesis predicts
that T and its variants (e.g. single-tape and multi-dimensional tape machines)
are also reasonable models. Some complications remain in the formulation of a
version of the Invariance Thesis which is sufficiently general to simultaneously
cover all of the apparently reasonable register models which have been proposed.6

But as we have seen, the original class of tape-based models which satisfy the
Invariance Thesis with respect to T is quite robust. This demonstrates that we
would not change the extensional characterization of the class of polynomial
time computable functions if we had elected to measure complexity with respect
to single tape Turing machines, machines with two dimensional tapes, machines
with stacks or counters instead of conventional tapes, etc.

Basing the definition of FP on R would also yield an extensionally equiv-
alent characterization. However, this depends more sensitively on the details
of the register-based model considered. Consider, for instance, the so-called
MRAM model M obtained by supplementing the instructions available in R
with unit time multiplication. It follows by results of Hartmanis and Simon [12]
and Bertoni et al. [2] that what can be computed in polynomial time relative
to M coincides with what can be computed in polynomial space relative to R
(and hence also T).7 To put this point more precisely, let CN denote the class of
languages decidable using the time or space resource C relative to the model N.

4 Considerable inductive support for this claim is supplied by Knuth’s [15] detailed
implementations of a wide range of algorithms using a variant of R which satisfies
the Invariance Thesis when its multiplication and division operations are removed.

5 I.e. for all N0 ∈ N0 there exists N1 ∈ N1 computing the same function such that
timeN1(|x|) ∈ O(timeN0(|x|)k) and spaceN1

(|x|) ∈ O(spaceN0
(|x|)) and conversely.

6 See [27] for discussion of caveats pertaining both to how the relevant time and space
measures must be formulated and the status of the requirement that the relevant
overheads be achieved with respect to the same simulation.

7 Hartmanis and Simon showed this originally with respect to a variant of the MRAM
model which allows parallel bit-wise Boolean operations in the manner described
above. Bertoni et al. showed that such operations were not necessary in the presence
of both addition and multiplication.
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Then the results just described establish that the class PM of problems decidable
in polynomial time relative to the MRAM model contains the class PSPACET

of problems decidable in polynomial space by a multi-tape Turing machine.
Although it is presently unknown whether PT �= PSPACET, it is widely

believed that the former class is a proper subset of the latter. Relative to this con-
jecture,M is not a reasonable model of computation.8 And despite the fact thatM
is obtained from R by a seemingly innocent extension, there is good evidence for
such a classification. For it is not hard to see that polynomial time and polynomial
space coincide for M – i.e. PM = PSPACEM. This has traditionally been taken
to be the touchstone of models which allow for parallelism involving exponential
growth in the number of processing units – e.g. the k-PRAM model P of Savitch
and Stimson [21] which in a single step allows a RAM-like device to create k ≥ 2
copies of itself (inclusive of all its registers). It is easy to see, however, that there
exist concrete instances of problems which we cannot currently decide in practice
but which are in PP (and hence also in PM). van Emde Boas [27] refers to such
models as inhabiting what he refers to as the second machine class. Of such models
he writes that “it is not clear at all that they can be considered to be reasonable; it
seems that the marvelous speed-ups obtained by the parallel models of the second
machine class require severe violations of basic laws of nature.” (p. 14).

The foregoing observations illustrate that not only is the choice of basic
operations central to developing an account of intrinsic computational difficulty,
but that Cobham was prescient in using the contrast in the apparent difficulty
of addition and multiplication to illustrate one of the fundamental challenges of
providing such an account. For although it is easy to see that there is an O(n)
algorithm for computing integer addition relative to T (where n is the maximum
of the lengths of the inputs), it is currently unknown whether this is the case
for multiplication with respect to both T and R.9 In choosing a benchmark for
defining complexity classes, there are, of course, clear practical reasons to move
from the single-tape Turing machine model (which does not allow for a linear
time implementation of addition) to the multi-tape model T, and again from T
to a register-based model such as R. But the apparent sensitivity of “polynomial
time” with respect to the inclusion or exclusion of arithmetical operations from
this class suggests that we have yet to realize Cobham’s hope of finding an
intrinsic rationale for using this model (together with the Invariance Thesis) as
a means of characterizing feasible computability.

8 For if M satisfied the Invariance Thesis with respect to R, this would also entail that
there was a time and space efficient simulation of MRAM machines by multi-tape
Turing machines from which PT = PSPACET would follow.

9 Schönhage and Strassen [23] showed that the O(n2) time complexity of the “naive”
carry multiplication algorithm can be improved to O(n log(n) log(log n)), while also
conjecturing a lower bound of Ω(n log(n)). The Schönhage-Strassen bound has
recently been improved by Fürer [10] who presented an n log n2O(log∗(n)) algorithm.
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3 Arguing for the Cobham-Edmonds Thesis

Drawing on the analogy with Church’s Thesis, there are at least three ways
one might go about arguing for the Cobham-Edmonds Thesis. First one might
attempt to show inductively that FP accurately circumscribes the class of func-
tions which we can compute in practice. Second, one might attempt to argue
that this class of functions is “intrinsic” in virtue of being definable by extension-
ally coincident but independently motivated definitions. And third, one might
attempt to argue directly that at least one of these definitions serves as a correct
analysis of the pre-theoretical notion of a function computable in practice.

These strategies have been explored in as much detail in the complexity
theoretic setting as have the analogous arguments in favor of Church’s The-
sis. Nonetheless, it is evident that they all face complications which their
computability-theoretic counterparts do not have to confront. There are, for
instance, well known objections even to the claim that FP extensionally coin-
cides with feasible computability both on the basis that the former class admits
functions computable only by Turing machines whose running time complexity
involves “infeasible” constant and scalar factors and also because of the potential
vagueness or interest relativity in our background notion of feasibility itself.10

With respect to the second argument, recall that there are several well-known
alternative characterizations of effective computability in terms of (e.g.) general
recursiveness or unrestricted grammars which yield extensionally equivalent def-
initions of the class of Turing computable functions. We now also know of alter-
native characterizations of FP – e.g. in terms of Cobham’s own characterization
in terms of limited recursion on notation, the provably recursive functions of
certain systems of bounded arithmetic, or logical definability as studied within
descriptive complexity theory.

There is, however, at least one salient difference between these cases. For in
the original instances, the alternative characterization of the Turing computable
functions are arrived at by generalizing definitions to achieve a maximal char-
acterization of what can potentially be computed relative to a certain class of
formalisms which meet only very general finiteness requirements – e.g. by elim-
inating restrictions on the allowable forms of recursion schemes or production
rules. This, however, is not the case for the sort of “machine independent” charac-
terizations of FP just alluded to. In particular, by changing obvious parameters
in the relevant definitions we can also arrive at characterizations of well-known
complexity classes which are both narrower and broader than FP.11 Thus while

10 Although I will put aside such issues here, rejoinders to these objections can be
found in textbooks such as [1]. See also [9].

11 For instance, while FP coincides with the provably recursive functions of Buss’s
system S1

2, similar characterizations of the Linear Time Hierarchy or Polynomial
Hierarchy arise as the provably recursive functions of similar theories [3]. And while
PT is characterizable as the set of languages describable in first-order logic with a
least fixed point operator in the presence of a linear order, similar (and in many
instances simpler) characterizations of narrower classes (like AC0) or broader classes
(like NPT) are also available [14]. See [4] for function algebra descriptions of addi-
tional complexity classes such as PSPACET .
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this class is robust in the sense of admitting independent definitions, the alter-
native definitions which are presently available lack the sort of canonicity which
is traditionally thought to accompany the various characterizations of Turing
computability whose coincidence is often cited in favor of Church’s Thesis.

4 The Squeezing Argument

Let us now consider the status of the third potential sort of argument for the
Cobham-Edmonds Thesis – i.e. that of attempting to show that one of the avail-
able characterizations of FP provides a conceptual analysis of the pre-theoretical
notion of a feasibly computable function. Presuming that mathematical practice
affords us a sufficiently robust understanding of this notion, nothing appears to
preclude the possibility of such an argument. But if we proceed in this manner, it
would seem that we run directly into Cobham’s problem – i.e. if we lack a prior
mathematical characterization of feasibility, how are we to make a principled
decision as to what basic operations may legitimately be included in a model of
computation on which to base the analysis?

This might at first appear to leave us at an impasse. But I now wish to suggest
that it may be possible to modify an indirect argument which has sometimes
been put forward in favor of Church’s Thesis to argue for the Cobham-Edmonds
Thesis. The method in question is a variant of the so-called squeezing argument
due to Kreisel. Kreisel [17] originally used this method to argue that the pre-
theoretically identified class InfVal of statements which are valid in virtue of
their logical form extensionally coincides with the class FormVal of formal
validities of first-order logic. In order to reach this conclusion he argued that
InfVal could be “squeezed” between FormVal and the class Prov of formulas
provable in a given proof system which is sound and complete for first-order logic.

First note that since we regard the rules of (say) the sequent calculus as
individually sound in the informal sense, a simple induction yields that any
statement derivable using these rules from no premises is informally valid. Since
provability is hence a sufficient condition for informal validity, we have that

(1) Prov ⊆ InfVal

On the other hand, note that even if we do not start out with an entirely settled
notion of what it means for a statement to be valid in virtue of its logical form,
we presumably acknowledge that no statement which possesses a traditional
Tarskian countermodel (i.e. a model with a set-sized domain) can be valid in
this sense. Since Tarskian validity is thus a necessary condition for informal
validity, we thus also have that

(2) InfVal ⊆ FormVal

Note, however, that it is a consequence of the Completeness Theorem for first-
order logic that FormVal ⊆ Prov. And from this it follows from (1) and (2)
that InfVal = FormVal as desired.

On at least two occasions [18,19] Kreisel hinted that the squeezing argu-
ment might be adapted to Church’s Thesis. The evident strategy here would
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be to attempt to “squeeze” the pre-theoretically identified class EffComp of
effectively computable functions between the class of functions N0-Comp and
N1-Comp computable relative to models of computation N0 and N1. If it could
be established that membership in N0-Comp was a sufficient condition for effec-
tivity and that membership in N1-Comp was a necessary condition, then we
could similarly conclude that EffComp = N0-Comp provided that we could
demonstrate that N0-Comp = N1-Comp.

Although Kreisel was not explicit about the forms which such models might
take, Turing [25] may plausibly be regarded as providing an argument that there
is good justification for taking N0 = T1 (i.e. the single tape Turing machine).
For in the case of each defining property of this model – e.g. the finiteness of the
number of distinguishable symbols and “states of mind”, the discreteness and
one-dimensionality of the tape, the fact that only a single cell can be scanned at
a given step, etc. – he gives an argument that a computational method satisfying
these properties jointly is effective. And for this reason Turing computability is
traditionally regarded as sufficient for effective computability.

But as Turing himself admits (p. 249), it is less clear that these specific condi-
tions are also necessary properties of an effective method. To take his own exam-
ple, for instance, it is evident that some effective methods (e.g. carry addition
and multiplication) take advantage of a two-dimensional computing medium.
And we now also typically allow that certain forms of parallel processing – e.g.
of the sort employed in conventional parallel algorithms for sorting and matrix
multiplication – are also be effective. It is thus not immediately clear how to
choose a model N1 which simultaneously meets the conditions that T1-Comp =
N1-Comp and is also such that if a function failed to be N1-computable, then
we could be reasonably assured that was not effective computability.

A potential example of such a model was provided by Gandy [11]. His model
G formalizes a notion of computation on hereditarily finite sets which which is
intended to generalizeTuring’s requirements as far as possible, compatiblewith the
assumption that the described computations can be carried “mechanistically” –
i.e. by a finite, discrete, deterministic device which can be physically constructed.12

The constraints on such devices take the form of what Sieg [24] calls boundedness
and locality conditions – i.e. i) there is a finite bound on the number of distinct
symbol configurations which can be recognized in a single step and also on the
number of distinct internal states; ii) only observed symbol configurations within
a bounded distance of the previously observed configurations may be modified in
a single step. These conditions are sufficiently liberal to allow for direct formaliza-
tions of algorithms which arise in mathematical practice in something like the man-
ner of R, thus providing some evidence that EffComp ⊆ G-Comp. But despite

12 The graph-theoretic models of Kolomogorv and Uspensky [16] and Schönhage [22] are
inspired by similar considerations. However Gandy’s model differs not only defining
states in defining states more abstractly – i.e. as hereditarily finite sets (which may
contain unboundedly many labels which are treated as urelements) of bounded rank –
but also in that it allows for parallelism in the sense that machines may locally trans-
form discontiguous parts of states in a single step.
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the abstractness of the Gandy-Sieg conditions, it is still possible to show that the
T-Comp = G-Comp – i.e. the class of functions computable by Gandy machines
is coincident with the class of Turing computable functions.

If it is accepted that the Gandy-Sieg conditions provide a reasonable upper
bound on the class of symbolic operations which can be performed in a single
step, then the result just cited can be invoked to complete the squeezing argu-
ment for Church’s Thesis in a manner which avoids the need to provide a prior
characterization of what might be meant by an effective primitive operation – i.e.
one of the sort illustrated but not fully characterized by Turing’s analysis. This
feature of the argument might also inspire hope that it could also be adapted
to provide an argument for the Cobham-Edmonds Thesis which circumvents the
need to directly confront Cobham’s problem - i.e. that of giving a definition of
a feasible primitive operation prior to an analysis of feasibly computable.

The relevant adaptation would attempt to squeeze the informally identified
class of feasibly computable functions FeasComp between the classes of FPQ0

andFPQ1 which are computable in polynomial time relative to modelsQ0 andQ1.
In this case, we wish Q0 to be what might be called a minimally reasonable model
– i.e. one which satisfies the Invariance Thesis and also is such that the inclusion of
f(x) in FPQ0 is sufficient to ensure that f(x) is intuitively feasible. On the other
hand, we would desire to show thatQ1 is maximally reasonable – i.e. provides max-
imally direct implementations of feasible algorithms subject to the requirement of
satisfying the Invariance Thesis.

Although we must ultimately demonstrate that FPQ0 = FPQ1 , nothing
prohibits us from choosing Q0 = T or even T1. On the basis of the foregoing,
one might additionally hope that it is also admissible to choose Q1 = G. However
Gandy’s model was explicitly designed to allow for the sort parallel evolution
exhibited by cellular automata such as Conway’s Game of Life. It is thus not
immediately clear whether G is a reasonable model in the sense discussed above
or even whether it fails to belongs to the second machine class.13

Per van Emde Boas’s prior admonishment, it is hence unclear whether G may
be directly employed in a squeezing argument for feasibility in the envisioned
manner. As such, we have yet to find an argument which puts the Cobham-
Edmonds Thesis on the same footing as Church’s Thesis. We are, however, left
with a potentially promising question to explore in this regard – i.e. is it possible
to find natural modifications to the Gandy-Sieg boundness and locality condi-
tions which yield a model of computation which is still Turing complete but
which may also be shown to satisfy the Invariance Thesis with respect to the
reference model R?

13 In fact it seems likely that G is a not a reasonable model. For it is easy to see
that Gandy machines can simulate Schönage’s storage modification machines with
constant factor time overhead. As the latter model admits a linear time (i.e. O(n))
multiplication algorithm, Gandy machines do as well. And as Cook [6] (p. 403)
observes, “we are forced to conclude that either multiplication is easier than we
thought or that Schönhage’s machines cheat”. See Schöngage [22] (pp. 506–507) and
van Emde Boas [26] (p. 110) for similar observations.
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Abstract. A secret sharing scheme is non-perfect if some subsets of
players that cannot recover the secret have partial information about it.
This paper is a survey of the recent advances in non-perfect secret shar-
ing schemes. We provide an overview of the techniques for constructing
efficient non-perfect secret sharing schemes, bounds on the efficiency of
these schemes, and results on the characterization of the ideal ones. We
put special emphasis on the connections between non-perfect secret shar-
ing schemes and polymatroids, matroids, information theory, and coding
theory.

Keywords: Secret sharing · Non-perfect secret sharing · Ideal secret
sharing scheme · Information ratio · Polymatroid · Matroid

1 Introduction

A secret sharing scheme is a cryptographic primitive that is used to protect a
secret value by dividing it into shares. Secret sharing is used to prevent both the
disclosure and the loss of the secret value. In the typical scenario, each share is
sent privately to a different player. Then a subset of players is qualified if their
shares determine the secret value, and forbidden if their shares do not contain
any information on the secret value. In this work we just consider schemes that
are information-theoretically secure, and so their security does not rely on any
computational assumption. A secret sharing scheme is perfect if every set of
players is qualified or forbidden.

Blakley [3] and Shamir [31] presented the first secret sharing schemes. These
schemes are perfect, and are called threshold secret sharing schemes because the
qualified subsets are those whose size is greater than a certain threshold. In a
perfect secret sharing scheme, the length in bits of each share must be greater
than or equal to the length of the secret. The schemes attaining this bound, as
the ones of Blakley and Shamir [3,31], are called ideal.

In order to circumvent this restriction on the length of the shares, Blakley
and Meadows [4] relaxed the privacy requirements of the threshold schemes.
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They presented the first non-perfect schemes, which were called ramp secret
sharing schemes. The structure of a ramp scheme is described by two thresholds
t and r with t < r: Every subset with at most t players is forbidden, every subset
with at least r players is qualified, and the other subsets have partial information
about the secret value. The length of every share is 1/(r − t) times the length
of the secret, which is also optimal [28]. The threshold and the ramp schemes
in [3,4,31] are linear, that is, they can be described in terms of linear maps over
a finite field. Because of their efficiency and their homomorphic properties, linear
secret sharing schemes play a fundamental role in several areas of cryptography
such as secure multiparty computation and distributed cryptography (see [1]).

Blakley and Meadows showed that if we allow some subsets to obtain partial
information about the secret value, we can then construct schemes with shorter
shares. Their construction motivated the search for efficient non-perfect secret
sharing schemes, the exploration of their limitations, and their use in crypto-
graphic applications. The connections between information theory, matroid the-
ory and secret sharing found by Fujishige [20,21], Brickell and Davenport [5], and
Csirmaz [13], are powerful tools in the study of perfect secret sharing schemes.
The extension of these connections to the non-perfect case was initiated twenty
years ago [25,27,30], and has been improved in recent works [15–18,32,33]. Many
other works such as [7,8,10,11,14,22,23] presented efficient non-perfect secret
sharing schemes with interesting cryptographic applications.

This paper is a survey of the recent advances in non-perfect secret shar-
ing schemes. Section 2 is dedicated to the definition of secret sharing and the
main efficiency measures. The main constructions of non-perfect schemes are
presented in Sect. 3, putting special emphasis on the linear ones. We present the
connection between secret sharing schemes and polymatroids and the resulting
lower bounds in Sect. 4. Finally, in Sect. 5, we present the results on ideal secret
sharing schemes and their connection with matroids.

2 Secret Sharing Schemes

In this survey we use an information-theoretic definition of secret sharing that
was introduced in [15,16]. This definition is very general and covers both perfect
and non-perfect secret sharing schemes. The secret and the shares of the scheme
are defined as discrete random variables, and the information known about the
secret is measured using the Shannon entropy function. Before presenting the
definition, we need to introduce some notation.

Given a discrete random vector S = (Si)i∈Q and a set X ⊆ Q, the Shannon
entropy of the random variable SX = (Si)i∈X is denoted by H(SX). In addition,
for such random variables, one can consider the mutual information I(SX :SY ) =
H(SX) + H(SY ) − H(SX∪Y ). The reader is referred to [12] for a textbook on
information theory, and to [1,29] for a survey on secret sharing.

Definition 1. Let Q be a finite set of players, let p0 ∈ Q be a distinguished
player, which is called dealer, and take P = Q � {p0}. A secret sharing scheme
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on the set P is a discrete random vector Σ = (Si)i∈Q such that H(Sp0) > 0 and
H(Sp0 |SP ) = 0.

In this definition, the random variable Sp0 corresponds to the secret value,
while the random variables (Si)i∈P correspond to the shares of the secret value
of the players in P . We use the access function of the scheme [15,16] to describe
the amount of information that the shares provide about the secret value.

Definition 2. An access function on a set P is a monotone increasing function
Φ : P(P ) → [0, 1] with Φ(∅) = 0 and Φ(P ) = 1.

Definition 3. The access function Φ of a secret sharing scheme Σ = (Si)i∈Q

is the map Φ : P(P ) → [0, 1] defined by

Φ(X) =
I(Sp0 :SX)

H(Sp0)
.

If Φ(X) = 1, then I(Sp0 :SX) = H(Sp0), which implies that the secret value is
determined by the shares of the players in X. If Φ(X) = 0, the random variables
Sp0 and SX are independent and the shares of the players in X therefore do not
provide any information about the secret. For this reason, a set X ⊆ P is called
forbidden for Φ if Φ(X) = 0, and it is called qualified for Φ if Φ(X) = 1. If every
subset is forbidden or qualified, we say that the scheme is perfect. Accordingly,
an access function is said to be perfect if it only takes the values 0 and 1. The gap
of an access function Φ is defined as the minimum distance between a qualified
and a forbidden subset, that is, gap(Φ) = min{|Y � X| : Φ(X) = 0, Φ(Y ) = 1}.
We say that an access function is rational if it takes values only in Q.

As a measure of the efficiency of a scheme, we consider the ratio of the
maximum length in bits of the shares to the length of the secret value. We use
the Shannon entropy as an approximation of the shortest binary codification.

Definition 4. The information ratio σ(Σ) of a secret sharing scheme Σ =
(Si)i∈Q is defined by

σ(Σ) =
maxi∈P H(Si)

H(Sp0)
.

There exists a secret sharing scheme for every access function [15]. However,
the general constructions provide schemes that are not efficient for most of the
access functions. Namely, for most of the access functions, the information ratios
of the resulting schemes are exponential in the number of players. This is also
the situation in perfect secret sharing schemes [2]. The need of more efficient
schemes motivated the search for lower bounds on the information ratio. The
optimal information ratio σ(Φ) of an access function Φ is the infimum of the
information ratios of the secret sharing schemes realizing Φ. We say that a secret
sharing scheme for Φ is optimal if its information ratio attains σ(Φ).



92 O. Farràs

3 Constructions

In this section we present the main non-perfect secret sharing constructions. We
present the family of linear secret sharing schemes, the constructions for uniform
access functions, and a general method to construct a secret sharing scheme for
any access function.

3.1 Linear Secret Sharing Schemes

Definition 5. Let K be a finite field and let � be a positive integer. In a (K, �)-
linear secret sharing scheme, the random variables (Si)i∈Q are given by surjective
K-linear maps Si : E → Ei, where the uniform probability distribution is taken
on E and dim Ep0 = �.

We present the linear secret sharing scheme of Blakley and Meadows [4] in
Example 1. In the original paper, the scheme was presented using polynomial
notation.

Example 1. Let P = {1, . . . , n}, and let t, r be integers with 0 ≤ t < r ≤
n. Define g = r − t. Let K be a finite field with |K| ≥ n + g, and let
y1, . . . , yg, x1, . . . , xn be different elements in K. Define xi = (1, xi, . . . , x

r−1
i ) ∈

K
r for i ∈ P and yi = (1, yi, . . . , y

r−1
i ) ∈ K

r for i = 1, . . . , g. Consider the secret
sharing scheme Σ = (Si)i∈Q determined by the linear mappings

– Sp0 : K
r → K

g : u �→ (u · y1, . . . ,u · yg), and
– Si : K

r → K : u �→ u · xi for i ∈ P ,

and take the uniform probability distribution on K
r.

In a K-linear secret sharing scheme (Si)i∈Q, the random variable SX is uni-
form on its support for every X ⊆ Q. Because of that, H(SX) = log |K|·rankSX ,
and hence I(Sp0 :SX) = log |K| · (rank Sp0 +rankSX − rankSX∪{p0}). Therefore,
in order to determine the access function of a linear scheme, we just need to
compute the ranks of the linear mappings. Taking into account the properties
of the Vandermonde matrix, the computation of the access function Φ of the
scheme Σ in Example 1 is straightforward. It can be described as follows.

– Φ(X) = 0 if |X| ≤ t,
– Φ(X) = (|X| − t)/g if t < |X| < r, and
– Φ(X) = 1 if |X| ≥ r.

This access function is called the (t, r)-ramp access function, and the schemes
with access functions of this kind are called ramp secret sharing schemes. The
scheme is (K, g)-linear, it has information ratio 1/g, and it is optimal [28]. This
scheme is an extension of the threshold secret sharing scheme of Shamir [31],
which corresponds to the case g = 1. A scheme has t-privacy if the subsets of
size at most t are forbidden, and it has r-reconstruction if the subsets of size
greater than or equal to r are qualified. The (t, r)-ramp secret sharing schemes
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have t-privacy, r-reconstruction, and the subsets of size greater than t and smaller
than r obtain a certain amount of information about the secret, which increases
at a constant rate 1/g.

Linear secret sharing schemes have homomorphic properties that are useful
for many cryptographic applications. If we share two secrets s1 and s2 among a
set of players using a linear scheme Σ, each player can obtain a share of s1+s2 by
just computing the sum of the two shares he holds. Namely, each of these sums is
a share of s1 + s2 by Σ. Moreover, the sharing and reconstruction operations of
linear secret sharing schemes are efficient [16]. The reconstruction of the secret
value by a set of players can be obtained by solving the linear equations defined
by their shares.

We can describe the shares and the secret of the scheme in Example 1 as eval-
uations of a polynomial of degree at most r − 1 at different points. Hence, the
secret and the shares are elements of a codeword of a Reed-Solomon code. This
connection can be generalized, and we can obtain linear secret sharing schemes
from any linear code. Roughly speaking, given a linear code, we can define linear
secret sharing schemes in which the shares and the secret are subsets of coor-
dinates of the codewords (see [7,16] for more details). For many cryptographic
applications, the requirements on the secret sharing schemes are t-privacy and
r-reconstruction for certain values of t and r, and there are no restrictions for
the subsets of size between t and r. In this case, the construction of schemes
from linear codes is especially relevant, because r and t can be estimated from
the minimum distance of the code and from the minimum distance of its dual,
respectively [7].

The scheme in Example 1 has the restriction that |K| must be greater than
or equal to n+g. It may be a drawback if we want to share a short secret among
a large set of players. Several works [7,8,22,23] study this problem and present
non-perfect linear schemes that are defined over smaller fields that can substi-
tute the ramp schemes. They are constructed from algebraic geometry codes
and random codes, and have multiplicative properties, such as the one in Exam-
ple 1. Multiplicative non-perfect schemes are building blocks of several secure
multiparty computation protocols [7,11,19]. Linear codes have also been used
to construct linear schemes with more efficient sharing and secret reconstruc-
tion [10,14].

3.2 Uniform Access Functions

Ramp access functions belong to the family of uniform access functions. We
say that an access function is uniform if its values only depend on the size of
the subset. Yoshida et al. [33] found optimal linear secret sharing schemes for
every rational uniform access function. Farràs et al. [15] provided an alternative
proof using different techniques, as well as constructions for the non-rational
case. The constructions in both works are based on the following observation.
Let Σ1 be a (K, �1)-linear scheme and let Σ2 be a (K, �2)-linear scheme for some
�1 and �2. Let Φ1 and Φ2 be the respective access functions. If we take a secret
s ∈ K

�1+�2 and we share the first �1 coordinates with Σ1 and the remaining �2
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coordinates with Σ2, we obtain a (K, �1 + �2)-linear secret sharing scheme whose
access function is a convex combination of Φ1 and Φ2, and its information ratio
is also a convex combination of σ(Σ1) and σ(Σ2). By combining ramp secret
sharing schemes in this way, it is possible to construct optimal schemes for every
uniform access function [15,33]. A drawback of these optimal schemes is that
the secret can be very large for certain access functions. Namely, the schemes
are (K, �)-linear for a reasonably large finite field K and attain the optimal
information ratio, but � can be very large. Indeed, as in the perfect case, the
secret sharing schemes with optimal information ratio are not necessarily the
most efficient ones. Constructions of non-optimal linear secret sharing schemes
with shorter shares for every rational uniform access functions were presented
in [15,32].

This problem leads to the search for bounds on the length the shares instead
of bounds on the information ratio. For ramp access functions, constructing
linear secret sharing schemes over finite fields of size smaller than n + r − t − 1
is an open problem that is related to the maximum distance separable codes
conjecture. Cascudo, Cramer and Xing [6] studied the family of secret sharing
schemes with t-privacy and r-reconstruction. They found general lower bounds
on the length of the shares that only depend on t, r and n; and specific lower
bounds for (K, �)-linear secret sharing schemes with information ratio 1/�.

3.3 General Constructions

The access function of a linear secret sharing scheme is a rational function.
Conversely, every rational access function admits a linear secret sharing scheme.

Theorem 1 [15]. Every access function admits a secret sharing scheme. More-
over, every rational access function admits a (K, �)-linear secret sharing schemes
for every finite field K and large enough �.

Next, we present a sketch the proof of this theorem, which is constructive.
For a rational access function Φ, the secret of the scheme is set to be in K

�,
where � is determined by Φ. The smaller the minimum of the non-zero values of
|Φ(X ∪ {y}) − Φ(X)| for X ⊆ P and y /∈ P � X is, the larger � is. For every
subset of players X ⊆ P , we define a secret sharing scheme ΣX that shares
among X a part of the secret that is proportional to Φ(X). Then, for every X
in a certain family of subsets A ⊆ P(P ), the secret is shared independently by
means of ΣX . Access functions with non-rational values require constructions
that are not linear. The general construction in [15] follows the same idea, but
the schemes ΣX are substituted by schemes in which the distribution of the
secret, which is chosen in a special way, may be not uniform.

Ishai et al. [24] studied the representation of rational access functions for a
fixed secret size. By using Markov chain techniques, they presented non-linear
constructions for every uniform rational access function, and another construc-
tion for every rational access function. For every perfect access function Φ,
Benaloh and Leichter [2] presented a way to transform any monotone Boolean
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formula for Φ to a secret sharing scheme for Φ. This construction has not been
extended to the non-perfect case yet.

4 Lower Bounds on the Information Ratio

Despite the limitations described above, the information ratio is the most
common parameter for the study of the efficiency of secret sharing schemes.
Many results on the information ratio are based on information inequalities,
including Shannon inequalities, rank inequalities, and Non-Shannon inequalities.
Csirmaz [13] found a connection between perfect secret sharing schemes and
polymatroids that translates the search for the optimal information ratio into
combinatorial and linear programming problems. The description of the struc-
ture of non-perfect secret sharing schemes by means of their access function
allowed to extend these techniques to the non-perfect case [15].

Definition 6. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the
ground set, and a rank function f : P(Q) → R satisfying the following properties.

– f(∅) = 0.
– f is monotone increasing: if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).
– f is submodular: f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for every X,Y ⊆ Q.

If f is integer-valued and f(X) ≤ |X| for every X ⊆ Q, then S is called a
matroid.

Fujishige [20,21] showed that for every random vector (Si)i∈Q, the map
h : P(Q) → R defined by h(X) = H(SX) is the rank function of a polyma-
troid with ground set Q. Since secret sharing schemes are random vectors, every
secret sharing scheme defines a polymatroid. Conversely, it is not known which
polymatroids are defined by secret sharing schemes. From certain polymatroids
we can define an access function as follows.

Definition 7. Let Φ be an access function on P and let S = (Q, f) be a poly-
matroid. Then S is a Φ-polymatroid if

Φ(X) =
f(p0) + f(X) − f({p0} ∪ X)

f(p0)

for every X ⊆ P .

The polymatroid defined by a secret sharing scheme Σ with access function
Φ is a Φ-polymatroid. For perfect access functions Φ, Mart́ı-Farré and Padró [26]
found a lower bound on σ(Φ) that is called κ(Φ) and that is based on the con-
nection between secret sharing schemes and polymatroids. The parameter κ(Φ)
was later generalized to the non-perfect case in [15] as follows.

Definition 8. For every access function Φ on P , we define

κ(Φ) = inf{σ0(S) : S is a Φ-polymatroid},

where σ0(S) = maxx∈P f(x)/f(p0).
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Note that for every secret sharing scheme Σ, the polymatroid S associated to Σ
satisfies σ0(S) = σ(Σ). Hence, κ(Φ) ≤ σ(Φ) for every access function Φ. In the
next lemma, we present a basic lower bound on κ [15,27,30], which is attained
by the scheme in Example 1.

Lemma 1. For every access function Φ, κ(Φ) ≥ 1/gap(Φ).

The search for general lower bounds and the search for ideal access functions
(see Sect. 5) induced the study of the family of the access functions with constant
increment. In the next theorem we present the best known lower bound on the
information ratio of secret sharing schemes [16], which is an extension of a result
of Csirmaz [13, Theorem 3.2].

Definition 9. An access function Φ on P has constant increment μ if Φ(X ∪
{y})−Φ(X) ∈ {0, μ} for every X ⊂ P and y ∈ P . In this situation, μ = 1/k for
some positive integer k.

Theorem 2. For every positive integer k and for infinitely many positive inte-
gers n, there exists an access function Φn with constant increment 1/k on a set
of size n + k − 1 satisfying κ(Φn) ≥ n/(2k log n).

For every uniform access function Φ, κ(Φ) = σ(Φ) [9,15]. However, in general,
κ is not a tight bound on σ. Indeed, κ(Φ) ≤ n for every access function Φ [16].
Up to now, all the lower bounds on the information ratio of non-perfect secret
sharing schemes are a consequence of the Shannon information inequalities.

5 Ideal Secret Sharing Schemes

A perfect secret sharing scheme Σ is ideal if σ(Σ) = 1. In this case, we say
that its access function is also ideal. Brickell and Davenport [5] proved that
every ideal perfect secret sharing scheme determines a matroid. Because of this
result, matroids became a crucial tool for the study and for the construction
of efficient secret sharing schemes. The connection between non-perfect secret
sharing schemes and matroids, and the notion of ideality in the non-perfect
case have been studied in [16–18,25,30]. The following definition of ideal secret
sharing scheme was introduced in [16], and it is equivalent to the definitions
in [25,30].

Definition 10. A secret sharing scheme Σ = (Si)i∈Q is ideal if its access func-
tion has constant increment 1/k for some k > 0 and H(Si) = H(Sp0)/k for
every i ∈ P . In this case, its access function is called ideal as well.

If Φ is an ideal access function, then Φ has constant increment 1/gap(Φ).
Next, we extend the notion of matroid port.

Definition 11. Let P, P0 be a pair of nonempty, disjoint sets and M = (P ∪
P0, r) a matroid such that r(P0) = |P0| = and r(P ) = r(P ∪ P0). The port of
the matroid M at the set P0 is the access function Φ on P defined by

Φ(X) =
r(P0) + r(X) − r(P0 ∪ X)

r(P0)
.
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Now we can state the extension of the Brickell and Davenport Theorem [5]
to the non-perfect case [18].

Theorem 3. The access function of every ideal secret sharing scheme is a gen-
eralized matroid port.

If φ is a port of a matroid M = (P ∪ P0, r) at P0, and M is K-linearly
representable for a finite field K, then φ admits an ideal linear secret sharing
scheme (see [16]). However, as in the perfect case, not all matroid ports admit
ideal secret sharing schemes. The characterization of the matroid ports that are
ideal access functions is an open problem. If an access function Φ has constant
increment k and it is not a matroid port at a set of size k, then κ(Φ) ≥ 3/(2k) [17].
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perfect uniform secret sharing schemes. Cryptology ePrint Archive 2014/124 (2014)
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Abstract. Borwein and Ditor (Canadian Math. Bulletin 21 (4), 497–
498, 1978) proved the following. Let A ⊂ R be a measurable set of
positive measure and let 〈rm〉m∈ω be a null sequence of real numbers.
For almost all z ∈ A, there is m such that z + rm ∈ A.

In this note we mainly consider the case that A is Π0
1 and the null

sequence 〈rm〉m∈ω is computable. We show that in this case every Ober-
wolfach random real z ∈ A satisfies the conclusion of the theorem. We
extend the result to finitely many null sequences. The conclusion is now
that for almost every z ∈ A, the same m works for each null sequence.

We indicate how this result could separate Oberwolfach randomness
from density randomness.

1 Introduction

Our paper is based on the following result, which extends a previous weaker
result by Kestelman [11].

Theorem 1 (D. Borwein and S. Z. Ditor [4], Theorem 1(i)). Suppose
A ⊂ R is a measurable set of positive measure and 〈rm〉m∈ω is a sequence of
real numbers converging to 0. For almost all z ∈ A, there is an m such that
z + rm ∈ A.

Since one can consider the tails of a given null sequence of reals, for almost every
z ∈ A there are in fact infinitely many m such that z+rm ∈ A. (This is the form
in which they actually stated the result). We thank Ostaszewski for pointing out
the Borwein-Ditor theorem to Nies during his visit at the London School of
Ecomonics in June 2015. Ostaszewski’s 2007 book with Bingham provides some
background related to topology [3].

Nies’ colloquium at LSE was about the study of effective versions of “almost
everywhere” theorems via algorithmic randomness. The goal for that direction
of study is to pin down the level of algorithmic randomness needed for a point x
so that the conclusion of a particular effective version of the theorem holds. For
instance, Pathak et al. [15] study effective versions of the Lebesgue differentiation
theorem, Brattka et al. [5] look at the a.e. differentiability of nondecreasing
functions, Galicki and Turetsky [10] study the a.e. differentiability of Lipschitz
functions on R

n, and Miyabe et al. [13] consider the Lebesgue density theorem,
recalled in Theorem 4 below.
c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 99–104, 2016.
DOI: 10.1007/978-3-319-40189-8 10
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Unless stated otherwise, we will consider effectively closed (i.e. Π0
1 ) sets A ⊆

R. Without also imposing an effectiveness condition on the null sequences, the
points z for which the Borwein-Ditor property holds for all Π0

1 sets are precisely
the 1-generics. Recall that a real is 1-generic if it is not on the boundary of any
Σ0

1 set.

Proposition 2. z ∈ R is 1-generic ⇐⇒ for every Π0
1 set A ⊂ R containing z

and for every null sequence of real numbers 〈rm〉m∈ω, z ∈ A + rm for some m.

Proof. (⇒) Suppose z 	∈ A + rm for all m. Then z belongs to the boundary of
the complement of A, B = R \ A, a Σ0

1 class.
(⇐) Suppose z ∈ R is not 1-generic. Then it belongs to the boundary of some
Σ0

1 set B ⊂ R. Let 〈zm〉m∈ω be a sequence of points in B converging to z. Define
rm = z − zm for all m. Then A = R \ B is a Π0

1 class, z ∈ A, 〈rm〉m∈ω is a
sequence converging to 0, and z 	∈ A + rm for all m.

2 Comparison of Lebesgue Density and the Borwein-Ditor
Property

The definitions below follow [2]. Let λ denote Lebesgue measure on R.

Definition 3. We define the lower Lebesgue density of a set C ⊆ R at a point z
to be the quantity

�(C|z) := lim inf
γ,δ→0+

λ([z − γ, z + δ] ∩ C)
γ + δ

.

Note that 0 ≤ �(C|z) ≤ 1.

Theorem 4 (Lebesgue [12]). Let C ⊆ R be a measurable set. Then �(C|z) = 1
for almost every z ∈ C.

The Borwein-Ditor theorem is analogous to the Lebesgue density theorem.
Both results say that for almost every point in a measurable class there are, in
a specific sense, many arbitrarily close other points in the class.

An open set C clearly has lower Lebesgue density 1 at each of its members.
Thus, the simplest non-trivial case is when C is closed. We say that a real z ∈ [0, 1]
is a density-one point if �(C|z) = 1 for every effectively closed class C containing
z. Similar to the implication (⇒) of Proposition 2, every 1-generic is a density-
one point. So being a density-one point is by itself not a randomness notion, and
neither is the Borwein-Ditor property for effectively closed sets. In both cases, to
remedy this one has to add as an additional condition that the real is Martin-Löf
random.

Definition 5. Let z ∈ R be ML-random. We say that z is density random if z
is also a density-one point.
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Definition 6. Let z be ML-random. We say that z is Borwein-Ditor (BD) ran-
dom if for each Π0

1 set A ⊆ R with z ∈ A, and each computable null sequence
of reals 〈rm〉m∈ω, there is an m such that z + rm ∈ A.

Neither of the two randomness notions is equivalent to ML-randomness,
because the least element of a non-empty effectively closed set of ML-randoms
is neither density random nor BD-random. Density randomness is in fact known
to be stronger than difference randomness (i.e. ML-randomness together with
Turing incompleteness) by Bienvenu et al. [2] together with Day and Miller [6].
Much less is known at present about the placement of BD-randomness within
the established notions.

3 Oberwolfach Randomness Implies BD Randomness

Ah! the ancient pond

as a frog takes the plunge

sound of water

(Matsuo Basho)

To simplify notation, we identify the unit interval with Cantor space ω2 in what
follows, ignoring dyadic rationals. For a string σ, as usual by [σ] we denote
the corresponding basic dyadic interval; for example [101] denotes the interval
[5/8, 3/4].

Bienvenu et al. [1] introduced Oberwolfach (OW) randomness, and also
gave the following equivalent definition. A left-c.e. bounded test is a descend-
ing sequence 〈Vn〉 of uniformly Σ0

1 classes in Cantor space such that for some
nondecreasing computable sequence of rationals 〈βs〉 with β = sups βs < ∞, we
have λ(Vn) ≤ β − βn for all n. Z is OW-random iff Z passes each such test in
the sense that Z 	∈ ⋂

n Vn.
OW-randomness implies density randomness [1]. The converse implication

remains unknown. The question is intriguing. All the equivalent characteriza-
tions of OW-randomness are within the, by now, almost classical framework
of computability and randomness [7,14]. For instance, if Z is ML-random, Z
is OW-random iff it does not compute every K-trivial set [1]. On the other
hand, the seemingly very close notion of density randomness is defined analyti-
cally, and mainly has analytical characterizations such as via differentiability of
interval-c.e. functions in [13, Theorem 4.2].

Using Theorem 1 it is easy to check that weak 2-randomness implies BD-
randomness. We show that the much weaker notion of OW-randomness already
implies BD-randomness.

While density and BD randomness are analogous, it seems unlikely that den-
sity implies BD. This provides evidence that OW-randomness is strictly stronger
than density randomness.
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Theorem 7. Let Z be Oberwolfach random. Then Z is BD random.

Proof. Suppose we are given a Π0
1 class P ⊆ ω2 with Z ∈ P, and a computable

null sequence of reals 〈rm〉m∈ω. We may assume that rm ≤ 2−m. Let 〈σm〉m∈ω be
a computable prefix-free sequence of strings such that S = ω2 \ P = [{σm : m ∈
N}]≺, and let Sm = [σ0, . . . , σm−1]≺, the class of all bit sequences extending one
of the σi. Let q(m) = 1 + max(m,maxi<m |σm|). Now define a left-c.e. bounded
test by

Gm =
⋂

i≤q(m)

(S + rm) \ Sm.

Clearly this is a descending sequence of uniformly Σ0
1 sets. Let

β = λS and βm = λSm − m2−m

so that β = supm βm.

Claim. λGm ≤ β − βm.

We actually show this bound for S + rq(m) \ Sm instead of Gm. Since A \ C ⊆
(A \ B) ∪ (B \ C) for sets A,B,C, and by the translation invariance of λ,

λ(S + rq(m) \ Sm) ≤ λ(S \ Sm) + λ(Sm + rq(m) \ Sm).

Recall that rk ≤ 2k. Hence by definition of q(m), for each i < m we have

λ([σm] + rq(m) \ [σm]) ≤ 2−q(m).

Therefore λ(Sm + rq(m) \ Sm) ≤ m2−q(m) ≤ m2−m as required for the claim.
If Z + rn 	∈ P for each n then Z ∈ ⋂

m Gm, so Z is not OW-random.

We note that this proof works in much greater generality for an abelian group
(S,+) that is also a computable probability space (S, μ) with a translation invari-
ant measure, such that limr→0 μ((A+r)�A) = 0 effectively for every basic open
set A. For instance, the general theorem also applies to Cantor space with the
usual ultrametric and the group structure of the 2-adic integers (Z2,+).

Finally, similar to [4] we extend the foregoing theorem to the case of finitely
many null sequences, and show that for an OW-random Z, one position works
for all of them. This is in the spirit of multiple recurrence in ergodic theory,
initiated by Furstenberg and others in the 1970s [9].

Theorem 8. Let Z be Oberwolfach random. For each Π0
1 class P ⊆ ω2 with

Z ∈ P, and k many computable null sequences of reals 〈rm,v〉m∈ω, 0 ≤ v < k,
there is m such that Z + rm,v ∈ P for each v < k.

Proof. We may assume that rm,v ≤ 2−m for each v. Let 〈σm〉m∈ω, Sm, q(m) and
βm be defined as above. Let

Gm =
⋂

i≤q(m)

⋃

v<k

(S + ri,v) \ Sm.
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Claim. λGm ≤ k(β − βm).

We actually show this bound for
⋃

v<k(S + rq(m),v) \ Sm instead of Gm. By the
translation invariance of λ,

λ
⋃

v<k
(S + rq(m),v) \ Sm ≤ kλ(S \ Sm) + λ(

⋃

v<k
Sm + rq(m),v \ Sm).

By the definition of q(m), we have

λ(
⋃

v<k
Sm + rq(m),v \ Sm) ≤ km2−q(m) ≤ km2−m,

which establishes the claim.
If for each n there is v < k such that Z + rn,v 	∈ P, then Z ∈ ⋂

m Gm, so Z
is not OW-random.

4 Open Questions

Due to the novelty of the concept of BD-randomness, a number of natural ques-
tions remain; they are not necessarily hard. Our first two questions have been
tried by a number of researchers; the third has not been considered in any detail
so far.

Question 9. Does density randomness imply BD randomness?

Question 10. Does BD-randomness imply difference randomness?

Question 11. Does lowness for BD-randomness coincide with lowness for ML-
randomness?

Miyabe et al. [13, Theorem 2.6] show that lowness for density randomness coin-
cides with lowness for ML-randomness. The containment “⊆” is immediate from
the result of Downey et al. [8] that Low(W2R,MLR) = Low(MLR) (where W2R is
the class of weakly 2-randoms). This proof works the same for BD-randomness.
Thus, low for BD-random implies low for ML-random. However, the proof of the
converse containment in the case of density randomness cannot be adapted in
any obvious way, because we now have to consider a null sequence computable
in the oracle.

Acknowledgement. Research supported by the Marsden fund of New Zealand and
the Lion foundation of New Zealand.
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Abstract. Recently we have defined Staircase-Generator codes (St-Gen
codes) and their variant with a random split of the generator matrix
of the codes. One unique property of these codes is that they work
with arbitrary error sets. In this paper we analyze the semantic security
against chosen plaintext attack (IND-CPA) and key-privacy i.e. indis-
tinguishability of public keys under chosen plaintext attack (IK-CPA) of
the encryption scheme with random split of St-Gen codes. In a similar
manner as it was done by Nojima et al. and later by Yamakawa et al. we
show that padding the plaintext with a random bit-string provides IND-
CPA and IK-CPA in the standard model. The difference with McEliece
scheme is that with our scheme the length of the padded random string
is significantly shorter.

Keywords: Public key cryptography · Code based cryptosystems ·
Semantic security · Key-privacy

1 Introduction

The idea about semantic security against chosen-plaintext attack (i.e., indistin-
guishability against chosen-plaintext attack (IND-CPA)) for a public-key cryp-
tosystem (PKC) was initially presented by Goldwasser and Micali in [4]. By
replacing the deterministic encryption with probabilistic one, they showed the
existence of public key schemes where the ciphertext does not leak any useful
information about the plaintext (except its length). Later, in the work of Belare
et al. [2] the semantic security against chosen-plaintext attack was systematized
in a broader security perspective in relation with other security notions in public-
key encryption schemes. Then, in 2001 we got a definition for yet another security
notion: key-privacy or anonymity in public-key schemes. It was introduced by
Bellare et al. in [1]. In a nutshell key-privacy asks that an adversary receiv-
ing a ciphertext is not able to determine which specific public-key, out of a set
of known public keys was used to produce that ciphertext. Under the assump-
tion that the Decision Diffie-Hellman problem is hard, they have showed that
c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 105–114, 2016.
DOI: 10.1007/978-3-319-40189-8 11
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El Gamal scheme provides anonymity i.e. key-privacy under chosen-plaintext
attack (CPA) and that the Cramer-Shoup scheme provides stronger security,
i.e., it provides anonymity under chosen-ciphertext attack (CCA). They have
also showed that neither the classical RSA scheme nor the RSA-OAEP does
not provide key-privacy. All these schemes do not belong to the so-called fam-
ily of “post-quantum” crypto schemes since they are vulnerable to attacks with
quantum computers.

The McEliece public key scheme [6] was published in 1978 and is based on the
theory of error-correcting codes and the NP-hardness of the problem of decoding
random linear codes. It is considered as a post-quantum scheme. However, the
original scheme does not provide neither CPA nor CCA security, it provides even
less a key-privacy. A conversion of McEliece scheme that offers CCA security was
proposed by Kobara and Imai in [5] in the random oracles model. The weaker
security of CPA, but in the so-called standard model where there is no reference
to the random oracles, for a modified McEliece scheme was proposed by Nojima
et al. in [8] and later based on that work Yamakawa et al. in [12] showed that
Nojima’s modification provides also a key-privacy.

Recently we proposed an encryption and signature variant of the McEliece
scheme based on Staircase-Generator matrix, a list decoding algorithm, and
generalized error sets in [3]. Soon after its initial eprint publication, a distin-
guisher that distinguishes its public key from random matrices was proposed
[11], and recently a very similar distinguishing strategy and an Information
Set Decoding (ISD) attack was presented as a full and practical key recov-
ery attack by Moody and Perlner [7]. While the public key schemes based on
Staircase-Generator matrices and a list decoding strategy have succumbed to
the distinguishing attacks, there are some useful applications for the technique
of matrix-embedding in steganography where the Staircase-Generator matrices
are not public, but private [9]. In such cases, the matrix-embedding technique
with Staircase-Generator matrices almost achieves the information theoretical
bound with codelengths that are the smallest known in the literature.

In order to thwart distinguishing and ISD attacks of [7,11] to the encryption
scheme defined in [3] we proposed to split and replace the public generator matrix
into s randomly generated matrices [10]. With the splitting we made distinguish-
ing attacks improbable to mount, i.e., the probability of the attacker obtaining
conditions under which a distinguisher or an ISD attack can be mounted, is close
to zero.

2 Definition of Staircase-Generator Codes and Random
Split of Their Generator Matrix

Throughout the paper, we will denote by C ⊆ F
n
2 a binary (n, k) code of length

n and dimension k. We will denote the generator matrix of the code by G, and
wt(x) will denote the Hamming weight of the word x. We recall some of the
basic definitions and properties for St-Gen codes from [3,9] and the types of
errors used.
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Definition 1. Let ki, ni ∈ N, and let k = k1+k2+· · ·+kw and n = k+n1+n2+
· · ·+nw. Further, let Bi be a random binary matrix of dimension

∑i
j=1 kj ×ni. A

linear binary (n, k) code C with the following generator matrix in standard form:

is called Staircase-Generator code (St-Gen code).

Definition 2. Let � be a positive integer and let pd ∈ F2[x1, x2, . . . , x�] be a
multivariate polynomial of degree � 2. We say that E� is an error set if it is the
solution set of pd, i.e., E� = {e ∈ F

�
2 | pd(e) = 0}. We will refer to pd as the

defining polynomial.
We define the density of the error set E� to be D(E�) = |E�|1/�. We will

refer to the integer � > 0 as the granulation of E�.

In [3] it was proven that if two error sets E�1 ⊆ F
�1
2 , E�2 ⊆ F

�2
2 , have the same

density ρ, then D(E�1 × E�2) = ρ.

Example 1. 1. Let E2 = {x ∈ F
2
2 | wt(x) < 2} = {(0, 0), (0, 1), (1, 0)}. Then the

error set can be described using the defining polynomial pd = x1x2, and for the
density of the error set we have D(E2) = |E2|1/2 = 31/2.

2. Let E4 = {x ∈ F
4
2 | 2 ≤ wt(x) ≤ 3}. Then, the defining polynomial for

E4 is pd = 1 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 and the density is
D(E4) = D(Em

4 ) = (
∑3

i=2

(
4
i

)
)1/4 = 101/4 for any positive integer m.

The decoding of St-Gen codes relies on the technique of list decoding. In
list decoding, the decoder is allowed to output a list of possible messages one
of which is correct. List decoding can handle a greater number of errors than
that allowed by unique decoding. In order for the decoding to be efficient, the
size of the resulting list has to be polynomial in the code length. The following
Proposition from [3] determines the parameters of a St-Gen code that provide
an efficient decoding.

Proposition 1 [3]. Let C be any binary (n, k) code and E ⊂ F
n
2 be an error set

of density ρ. Let w be any word of length n, WE = {w+ e | e ∈ E} and let CWE

denote the set of codewords in WE. Suppose there exists a codeword c ∈ WE.
Then the expected number of codewords in WE \{c} is approximately ρn2k−n for
large enough n and k.

Let E� be an error set with density ρ where � divides n and m = n/�. We recall
Algorithm 1 from [3], that is an efficient algorithm for decoding a code C, that
corrects errors from the set Em

� .
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Algorithm 1. Decoding
Input: Vector y ∈ F

n
2 , and generator matrix G of the form (1).

Output: A list Lw ⊂ F
k
2 of valid decodings of y.

Procedure:
Let Ki = k1 + · · · + ki. Represent x ∈ F

k
2 as x = x1 ‖ x2 ‖ · · · ‖ xw where each xi has length

ki. Similarly, represent y ∈ F
n
2 , as y = y0 ‖ y1 ‖ y2 ‖ · · · ‖ yw, where each yi has length ni and

|y0| = k. We further identify y0 with y0 = y0[1] ‖ y0[2] ‖ · · · ‖ y0[w], where each y0[i] is of length
ki.

During decoding, we will maintain lists L1, L2, . . . , Lw of possible decoding candidates of length Ki.

Step 0: Set a temporary list T0 = L0 to contain all possible decodings of the first k1 coordinates of
y:

T0 ← {x′
= y0[1] + e | e ∈ E

k1/�}.

Step 1 ≤ i ≤ w: Perform list-decoding to recover a list of valid decodings:

For each candidate x′ ∈ Ti−1 ⊂ F
Ki
2 , add to Li all the candidates for which x′Bi + yi ∈ Eni/�:

Li ← {x′ ∈ Ti−1 | x
′
Bi + yi ∈ E

ni/�}. (2)

If i < w then create the temporary list Ti of candidates of length Ki+1 from Li:

Ti ← {x′ ‖ (y0[i + 1] + e) | x
′ ∈ Li, e ∈ E

ki+1/�}. (3)

Return: Lw.

2.1 Random Split of the Staircase-Generator Matrix

A key parameter of the public-key encryption scheme where we split the
staircase-generator matrix is the number of splits s, the number of summands
the generator matrix of the code is split in. This parameter further determines
the nature of the error used during encryption. We have the following:

Definition 3. Let E� ⊂ F
�
2 be an error set of granulation � and let s denote

the number of splits. The s-tuple ErrorSplit = (e1, . . . , es), where ei ∈ F
�
2, i ∈

{1, . . . , s} is called A Valid Error Split for E� if the sum of its elements per-
muted with any permutation σi ∈ S� is an element of E� i.e. it holds that e =

s∑

i=1

σi(ei) ∈ E�. The set of all valid error splits is denoted as V alidErrorSplits

and its size with V , i.e., V = |V alidErrorSplits|.
Example 2. Let � = 4, E� = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0),
(1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)} and s = 4. The 4-tuple
ErrorSplit = ((1, 0, 0, 0), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 0, 1)) is a valid error split
for E� because the sum of all its elements permuted by any of all possible 4! = 24
permutations always gives an element in E�.

A formal description of the scheme is given through the next four algorithms
for key generation, error set generation, encryption and decryption. Note that
Algorithm 3 is run only once at the time of the initialization of the system with
parameters �, E�, s. Even more, in practice, this set can be pre-calculated and
publicly available.
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Algorithm 2. Key Generation
Parameters: Let �|n, m = n/� and E ⊂ F

�
2 be an error set of granulation � and density ρ. Let s be

the number of splits.

Key generation:
The following matrices make up the private key:
- A generator matrix G of a binary (n, k) code of the form (1).

- An invertible matrix S ∈ F
k×k
2 .

- An array of permutation matrices P1, P2, . . . , Ps created as follows:
1. Select a permutation π on {1, 2, . . . , m}, and let P ∈ F

n×n
2 be the permutation matrix induced

by π, so that for any y = y1 ‖ y2 ‖ . . . ‖ ym ∈ (F�
2)

m:

yP = yπ(1) ‖ yπ(2) ‖ . . . ‖ yπ(m), (4)

i.e., P only permutes the m substrings of y of length �.
2. For i := 1 to s:

Select randomly m permutations σi
j ∈ S�, j ∈ {1, . . . , m}.

Let Pi be defined by

yPi = σ
i
1(yπ(1)) ‖ σ

i
2(yπ(2)) ‖ . . . ‖ σ

i
m(yπ(m)),

where σi
j(x) = σi

j(x1, x2, . . . , x�).

The public key is formed as follows:

Generate uniformly at random s − 1 matrices G1, . . . , Gs−1 of size k × n over F2.
Set Gs = G + G1 + · · · + Gs−1.

For all i ∈ {1, 2, . . . , s}, set Gi
pub = SGiPi.

Public key: G1
pub, . . . , Gs

pub.

Private key: S, G and P1, P2, . . . , Ps.

Algorithm 3. Valid Error Splits (�, E�, s)
Input: Granulation �, error set E�, number of splits s.
Output: A set V alidErrorSplits of all possible valid error splits.
1: Set V alidErrorSplits ← ∅
2: for all (e1, . . . , es) ∈ (F�

2)
s do

3: if
∑s

i=1 σi(ei) ∈ E�, ∀(σ1, . . . , σs) ∈ (S�)
s then

4: Add (e1, . . . , es) to V alidErrorSplits.
5: end if
6: end for
7: Return V alidErrorSplits.

Algorithm 4. Encryption (m, G1
pub, . . . , G

s
pub, V alidErrorSplits)

Input: Message to be encrypted m the public key G1
pub, . . . , Gs

pub and a set V alidErrorSplits of
all possible valid error splits.
Output: A ciphertext c = (c1, . . . , cs).

1: Set ci = mGi
pub + ei, i = 1, . . . , s, where ei = (e1,i, . . . , e n

l
,i) and where (ej,1, . . . , ej,s),

j = 1, . . . , n
l are randomly drawn from V alidErrorSplits.

2: Return c = (c1, . . . , cs)

Algorithm 5. Decryption (c, S,G, P1, P2, . . . , Ps)
Input: Ciphertext c, matrix S, the generator matrix G and the permutation matrices P1, P2, . . . , Ps.
Output: A decrypted message m.
1: Set c′

i = ciP
−1
i

2: Set c′ =
∑s

i=1 c′
i

3: Set m′ as the output of Algorithm 1 (List decoding of c′ with generator matrix G).

4: Set m = m′S−1

5: Return m
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The initial proposal for encryption scheme that uses St-Gen codes [3], is
vulnerable to an Information Set Decoding (ISD) attack [7,11].

In a very recent analysis by Moody and Perlner [7] a modification of Stern’s
algorithm was provided, dedicated to cryptanalysis of the scheme in [3]. We refer
the reader to [7] for details, and here we mention that complexity of the attack
is in general given by ISDSt = Pr−1

St · CostSt where Pr−1
St is the probability of

success, and CostSt the cost of finding the low weight codeword.
In [10] we gave a detailed security analysis how and why the random split of

the generator matrix prevents from ISD attacks. We also give several practical
parameter sets. Based on all that we give the following conjecture:

Conjecture 1. The public key G1
pub, . . . , G

s
pub produced by Algorithm 1 is indis-

tinguishable from a set of s random [n, k] codes and inverting the encryption with
G1

pub, . . . , G
s
pub without the knowledge of the private key S, G and P1, P2, . . . , Ps

is infeasible in polynomial time.

3 Achieving IND-CPA and IK-CPA by Padding
the Plaintext with a Random Bit-String

In this section we apply the ideas described by Nojima et al. in [8] and by
Yamakawa et al. in [12] for the McEliece scheme, to show that our encryption
scheme with random split of the generator matrix can achieve semantic security
against chosen plaintext attack (IND-CPA) and key-privacy, i.e., indistinguisha-
bility of public keys under chosen plaintext attack (IK-CPA).

Firs we give a definition of indistinguishability of encrypted data against the
chosen plaintext attack (CPA) as it is given in [2].

Definition 4 (IND-CPA [2]). Let a PKE scheme be the following tuple of
polynomial-time algorithms: PKE = (Gen, Enc, Dec).

1. On input of security parameter κ, key generation algorithm Gen(1κ) outputs
the set of private-key and public-key, (pk, sk).

2. Given (pk, sk), a polynomial-time adversary A chooses two equal-length plain-
texts m0,m1, (m0 �= m1), and sends them to the encryption oracle.

3. Encryption oracle (algorithm) randomly flips coin b ∈ {0, 1}, to encrypt
Enc(pk,mb) = c.

4. Given target ciphertext c, adversary A outputs b′ ∈ {0, 1}, where the advan-
tage of success probability over random guess is defined as follows:

Advind−cpa
A (κ) = Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1]. (5)

If Advind−cpa
A (κ) is negligible, then, we say underlying PKE is IND-CPA

secure. Here “negligible” means that for any constant const, there exists k0 ∈
N, s.t. for any κ > k0, Adv is less than

(
1
κ

)const.
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As we said, in order to achieve IND-CPA in a standard model, Nojima
et al. [8] proposed a random prepadding for messages in McEliece scheme, i.e.,
instead of encrypting messages m to encrypt messages [r|m] where r is a ran-
dom prepadding. However, in order to achieve more than 280 security or more
than 2128 security, r should have a significant length. More concretely for the
McEliece code (2048, 1289, 69) to achieve security of 285, out of 1289 bits the
random prepadding r has to have 1161 bits and only 128 bits are left for m. For
the other code (4096, 2560, 128), to achieve security of 2131, out of 2560 bits the
random prepadding r has to have 2048 bits and only 512 bits are left for m.

In what follows we investigate the IND-CPA security of the approach of
encrypting messages in a form m = [r|m] for our scheme with a random split
of St-Gen matrix (we abbreviate the name of that system as RRS-St-Gen -
Randomized Random Split of St-Gen - in the mathematical formulas that refer
to that system). By having this form for m the encryption gets the following
form: The ciphertext is the s-tuple c = (c1, . . . , cs) where

ci = mGi
pub + ei = (rGi

pub1
+ ei) + mGi

pub2
, (6)

where Gi
pub =

[
Gi

pub1

Gi
pub2

]

, ei = (e1,i, . . . , en
l ,i) and where (ej,1, . . . , ej,s), j =

1, . . . , n
l are randomly drawn from V alidErrorSplits.

Theorem 1. Let RRS-St-Gen is a randomized public key encryption scheme
as defined in Algorithms 1, 2, 3, 4 and 5 with the following parameters: n,
k, l, s, El, V alidErrorSplits, V = |V alidErrorSplits|, that encrypts mes-
sages m = [r|m] where r is a random prepadding. If the s-tuple of matri-
ces (G1

pub, . . . , G
s
pub) is indistinguishable from random, and the inversion of the

encryption with G1
pub, . . . , G

s
pub without the knowledge of the private key S, G

and P1, P2, . . . , Ps is infeasible in polynomial time, then the advantage of an
adversary given by relation (5) is:

Advind−cpa
A−RRS−St−Gen(κ) = 2

((

1 − 1
2|r|

) (
V

2s·l

)n
l

(

1 −
(

V

2s·l

)n
l

)

+

+
1

2|r|

(

1 −
(

V

2s·l

)n
l

)) (7)

Proof. First note that the assumption about the infeasibility of the inversion of
the encryption is a crucial one. If the adversary is capable to invert the encryp-
tion, it will simply obtain the whole random prepadding and will guess the value
of b′ with probability 1. The necessity of the assumption for the indistinguisha-
bility from random matrices is due to the attacks that reveal the secret key of
the scheme and then is also connected with the inversion of the encryption. We
discuss additionally these two assumptions at the end of this proof.

We will compute the probability Pr[b′ = 0|b = 0] and due to the sym-
metry, the probability for Pr[b′ = 1|b = 1] has the same value. First let us
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note that every ci have n
l substrings of length l bits. For a concrete value of

m = [r|m] the encryption procedure randomly picks n
l elements from set of s-

tuples V alidErrorSplits. Note also that the set V alidErrorSplits is a subset of
all possible l-bit s-tuples which number is 2s·l. In case when m0 was encrypted
there are two possible and disjunctive events that can lead the adversary to make
the right guess b′ = 0. Those two events are the following:

– Event1 : Event1,1 ∩ Event1,2 ∩ Event1,3

1. Event1,1: The adversary made a wrong guess about the prepadded ran-
dom value r. Pr(Event1,1) = 1 − 1

2|r| ;
2. Event1,2: The adversary computes c(m0)

i = rGi
pub1

+m0G
i
pub2

and for all
n
l chunks in all ci, there exist a valid error split in V alidErrorSplits as

a connection between c(m0)
i and ci. Pr(Event1,2) =

(
V
2s·l

)n
l ;

3. Event1,3: The adversary computes c(m1)
i = rGi

pub1
+ m1G

i
pub2

, and
there is at least one chunk for which there is no valid error split in
V alidErrorSplits. Pr(Event1,3) =

(
1 − (

V
2s·l

)n
l

)
.

– Event2 : Event2,1 ∩ Event2,2

1. Event2,1: The adversary made a correct guess about the prepadded ran-
dom value r. Pr(Event2,1) = 1

2|r| ;
2. Event2,2: The adversary computes c(m1)

i = rGi
pub1

+ m1G
i
pub2

, and
there is at least one chunk for which there is no valid error split in
V alidErrorSplits. Pr(Event2,2) =

(
1 − (

V
2s·l

)n
l

)
.

Composing probabilities for all events we get:

Pr[b′ = 0|b = 0] = Pr(Event1) + Pr(Event2)
= Pr(Event1,1)Pr(Event1,1)Pr(Event1,1) +

+Pr(Event2,1)Pr(Event2,2)

=
(

1 − 1
2|r|

) (
V

2s·l

)n
l

(

1 −
(

V

2s·l

)n
l

)

+
1

2|r|

(

1 −
(

V

2s·l

)n
l

)

Since the case Pr[b′ = 1|b = 1] is symmetrical, the total Advind−cpa
A−RRS−St−Gen(κ)

is:

Advind−cpa
A−RRS−St−Gen(κ) = 2

((

1 − 1
2|r|

) (
V

2s·l

)n
l

(

1 −
(

V

2s·l

)n
l

)

+

+
1

2|r|

(

1 −
(

V

2s·l

)n
l

))

A direct conclusion from the security analysis in [10] is that if the length of
the message that is encrypted with the scheme is bigger than 256 bits, than
the claims in the Conjecture 1 about the indistinguishability of the public key
from random matrices and the infeasibility of the inversion of the encryption are
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plausible. So, for any concrete instantiation of the scheme, the security levels
that are achieved with the adversary advantage defined in the relation (3) have
to give lengths of the random prepadding to be more than 256 bits. �	

By the final part of the proof of Theorem 1 we obtain that our scheme
achieves the IND-CPA security level of 280 for |r| = 264 and the security level
of 2128 for |r| = 424. So these values being higher than 256 are in accordance
with the security analysis in [10] and the Conjecture 1. Moreover, they are still
significantly lower than the lengths of the prepadded random part in the modified
McEliece scheme.

For the key-privacy issue we use the same approach as Yamakawa et al. have
in [12].

Definition 5 (IK-CPA [1]). Let a PKE scheme be the following tuple of
polynomial-time algorithms: PKE = (Gen, Enc, Dec). The security of key-
privacy is defined as follows.

1. On input of security parameter κ, key generation algorithm Gen(1κ) outputs
two independent sets of key pairs (pk0, sk0), (pk1, sk1).

2. Given (pk0), (pk1), a polynomial-time adversary A chooses a plaintext m and
sends them to the encryption oracle.

3. Encryption oracle randomly flips coin b ∈ {0, 1}, to output Encpkb
(m) = c.

4. Given target ciphertext c, adversary A outputs b′ ∈ {0, 1}, where the advan-
tage of success probability over random guess is defined as follows:

Advik−cpa
A (κ) = Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1]. (8)

If Advik−cpa
A (κ) is negligible, then, we say underlying PKE is IK-CPA secure.

While the modeling of IK-CPA is not the same as IND-CPA, the value about
Advik−cpa

A (κ) is the same as for IND-CPA case. Thus we have the following
theorem that we give without a proof:

Theorem 2. Let RRS-St-Gen is a randomized public key encryption scheme
as defined in Algorithms 1, 2, 3, 4 and 5 with the following parameters: n,
k, l, s, El, V alidErrorSplits and V = |V alidErrorSplits|, encrypting mes-
sages m = [r|m] where r is a random prepadding. If the s-tuple of matri-
ces (G1

pub, . . . , G
s
pub) is indistinguishable from random, and the inversion of the

encryption with G1
pub, . . . , G

s
pub without the knowledge of the private key S, G

and P1, P2, . . . , Ps is infeasible in polynomial time, then the advantage of an
adversary given by relation (8) is:

Advik−cpa
A−RRS−St−Gen(κ) = Advind−cpa

A−RRS−St−Gen(κ) (9)

4 Conclusions

We have presented a public key encryption scheme based on St-Gen codes and its
variant where we split and replace the public generator matrix into s randomly
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generated matrices. The split strategy is used to thwarts the ISD attacks on the
encryption scheme. Then, we showed that randomized version of the encryption
scheme offers semantic security against chosen plaintext attack (IND-CPA) and
offers key-privacy, i.e., offers indistinguishability of public keys under chosen
plaintext attack (IK-CPA) in the standard model. The difference with McEliece
scheme is that with our scheme the length of the prepadded random string is
significantly shorter. It remains as a next goal to investigate the modification
of the scheme for achieving the stronger securities of chosen-ciphertext attacks
(CCA and CCA2) both with and without the random oracle model.

Acknowledgement. We would like to thank the anonymous reviewers for their valu-
able remarks that significantly improved the quality of this paper.
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1 Introduction

Baire Category is an important concept in mathematical analysis. It gives a
notion of large set, hence a way of identifying the properties of typical objects.
One of the most important applications of Baire Category is to provide a way
of proving the existence of objects with specified properties without having to
give an explicit construction, showing at the same time that these properties are
prevalent. For instance it has been extensively used in mathematical analysis
to better understand and separate classes of real functions such as analytic and
smooth functions (see [9] for a wide range of applications of the Baire Category
Theorem in analysis).

This note is about Baire Category in constructive or computable analysis.
This subject has been studied in many different directions, for instance in reverse
mathematics [3], constructive mathematics [2] or computable analysis [1]. In
these fields, one is often interested in studying the properties of “constructible”
objects, to separate classes of constructible objects, and to identify the effective-
ness of mathematical proofs.

Here we are interested in a particular question: how to apply Baire Category
inside classes of constructible objects? Such classes are very small in the sense
of Baire Category, as they are countable, so strictly speaking Baire Category
cannot be applied inside them. However one can adapt Baire Category and save
part of it in these small worlds, and this note illustrates this. We will focus on 4
particular classes of constructible objects, depicted in Fig. 1:

– The class C of computable subsets of N.
– The class CE of c.e. subsets of N.
– The class LCE of left-c.e. real numbers in [0, 1].
– The class Δ0

2 of subsets of N that are computable relative to the halting
problem.

The goal is, for each class of constructible objects, to find an analog of Baire
Category to define a notion of large set, of typical or generic object. Why is it
interesting? It helps understanding which parts of classical mathematics are still
available in a constructive setting. From a more practical perspective, it gives
a way to prove the existence of constructible objects with specified properties,
avoiding as in the classical setting explicit constructions by using a simpler
argument.
c© Springer International Publishing Switzerland 2016
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computable (C)

c.e. (CE)

left-c.e. (LCE)

∅′-computable (Δ0
2)

Fig. 1. Four classes of constructible subsets of N

For each class C of objects, we want to investigate the following question:

What does the typical object of C look like?

The way to do this is to define a notion of small subclass of C . Such a notion
should satisfy the following conditions:

Axiom 1. Every singleton {A} with A ∈ C is small in C ,
Axiom 2. The class C is not small in itself,
Axiom 3. Effective countable unions of small sets are small, for some notion of

effectiveness,
Axiom 4. In the hierarchy depicted in Fig. 1, a subclass is small in the super-

class. In other words, a typical object of the superclass does not belong to
the subclass.

A measure-theoretical approach to this problem has been developed by many
authors using resource-bounded measure and dimension theory, in particular
resource-bounded martingales (see [11,12] for instance). These methods were
mainly applied to complexity classes, but not to classes of enumerable objects
such as c.e. sets or left-c.e. reals: whether such a development can be done is an
interesting problem.

Here we adopt the topological approach of Baire Category. For each class it is
done by defining the analog of a nowhere dense subclass by means of effectiviza-
tion. The meager subclasses are then generated by the nowhere dense classes:
they are the subsets of effective countable unions of nowhere dense classes. More
precisely in an effective version,

1. Nowhere dense sets are effective, i.e., describable in some way by programs,
2. Countable unions

⋃
i Ai are effective, i.e., there is a single program that given i

as input, describes Ai in the way specified in 1.

Hence to obtain a notion of meager subclass one simply has to define what
is an effective nowhere dense set. Axiom 3 will be automatically satisfied.
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1.1 Notations and Background

The set of finite binary strings is denoted by 2∗. The Cantor space 2N is the space
of infinite binary sequences, also identified to subsets of N or reals numbers
in [0, 1]. If A is an infinite binary sequence then A � n is the prefix of A of
length n. For each finite binary string u ∈ 2∗, the cylinder [u] ⊆ 2N is the class of
infinite binary extensions of u. The Cantor space is endowed with the topology
generated by the cylinders: the open classes U ⊆ 2N are the unions of cylinders.
A subclass of 2N is nowhere dense if it is disjoint from a dense open class. A
subclass is meager if it is a union of nowhere dense classes.

2 Computable Objects

Let C be the class of computable subsets of N.
An ordinary nowhere dense set is a set that is disjoint from a dense open set.

A natural effective version is then to require the dense open set to be effective,
i.e., expressible as a union

⋃
u∈A[u] where A ⊆ 2∗ is a computably enumerable

set.
We then say that a class is meager in C if it is contained in an effective union

of complements of dense open sets. A class is co-meager in C if it contains an
effective intersection of dense open sets.

This notion of nowhere dense set makes the Baire Category theorem com-
putable:

Theorem 2.1 (Baire Category Theorem in C). Every class that is co-
meager in C is dense in C, i.e., contains computable elements in every cylinder.

In other words, the class C is not meager in itself and Axiom 2 is satisfied.
Observe that Axiom 1 is also satisfied, i.e., a singleton is meager in C: if A ⊆ N

is computable then 2N \ {A} is a dense effective open class. Every subclass that
can be effectively listed is also meager in C, for instance the class P of polynomial-
time decidable problems.

Example. Consider a map T from [0, 1] to [0, 1] that is computable. Think of T as
a dynamical system: if x ∈ [0, 1] is the state of the system at time t then T (x) is
the state at time t+1. An initial state x0 induces a trajectory defined by xt+1 =
T (xt). What do typical trajectories look like?

Now imagine that one simulates T on a computer, computing the trajec-
tory starting from some state x0. Of course the computer can only manipulate
computable real numbers, so only the computable part of the dynamical system
can be observed on the computer, namely the map T : [0, 1] ∩ C → [0, 1] ∩ C
(here C is the set of computable real numbers). What do typical trajectories of
the restricted system look like? Are they representative of the original system
over [0, 1]?

If the system has a dense trajectory then one can show that all the typical
trajectories are dense (i.e., the set of initial states inducing a dense trajectory is
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co-meager), and the computable Baire Category theorem directly implies that
the typical trajectories of the restricted system are also dense, in particular there
exists a computable dense trajectory.

3 Computable Relative to the Halting Problem

Let Δ0
2 be the class of subsets of N that are computable relative to the halting

problem.
One can relativize the Computable Baire Category theorem to any oracle, in

particular to the halting problem, in a straightforward way. It gives for free a
notion of nowhere dense class in Δ0

2: it is a class that is disjoint from a dense
open class that is effective relative to the halting problem. Effective unions can
be equivalently taken relative to the halting problem or not (the two notions are
equivalent by the relativized s-m-n theorem).

Again, Axioms 1 and 2 are satisfied, i.e., the class Δ0
2 is not meager in itself

and every singleton is meager in Δ0
2. Moreover Axiom 4 is also satisfied as the

subclass LCE is meager in Δ0
2: the halting problem can effectively list LCE, which

is then an effective union of singletons, hence is meager in Δ0
2.

We now present a particular class that is co-meager in Δ0
2 that has received

a lot of attention.

3.1 1-Generic Sets

In Sect. 2 we mentioned that an ordinary nowhere dense class is a class that is
disjoint from a dense open set, which naturally induces the first effective version.
A nowhere dense class can equivalently be defined as a subset of the boundary of
an arbitrary (i.e., not necessarily dense) open set, which gives another possible
effective version: a subset of the boundary of an effective open set.

It gives a strictly weaker notion of nowhere dense class: in general the bound-
ary of an effective open class is not disjoint from a dense effective open class.
However, it is always disjoint from a dense open class that is effective relative to
the halting problem. As a result, it is meager in Δ0

2. As the effective open classes
can be effectively enumerated, taking the union of their boundaries gives a class
that is meager in Δ0

2. Its complement is known as the class of 1-generic subsets
of N, and is co-meager in Δ0

2. In particular it is non-empty and even dense. It
was introduced by Jockush [8] in order to simplify constructions in recursion
theory, in the same way as Baire Category simplifies proofs of existence results
in mathematical analysis.

While the class of 1-generic sets is just one particular class that is co-
meager Δ0

2, it happens that it captures many interesting co-meager classes in Δ0
2,

in the sense that it contains them. In other words, many typical properties are
already satisfied by the 1-generic sets. Indeed being 1-generic is a kind of uni-
versal property as it is about every effective open set.

For instance, we mentioned that the subclass LCE � Δ0
2 is meager in Δ0

2,
i.e., typical Δ0

2 sets are not left-c.e. Actually, no 1-generic set is left-c.e. Indeed,
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if x ∈ [0, 1] is left-c.e. then the interval [0, x) is an effective open set that is dense
along x, i.e., contains x in its boundary.

In the same way as Baire Cateory provides a simple way of proving existence
results without giving explicit constructions, 1-genericity can be easily used to
prove existence of Δ0

2-sets with prescribed properties, and is an alternative to
explicit constructions.

A famous example is Kleene-Post’s theorem, on the way to the solution to
Post’s problem:

Theorem 3.1 (Kleene and Post [10]). There exist two Turing-incomparable
Δ0

2-sets, i.e. two Δ0
2-sets that are not computable relative to each other.

Actually for a typical Δ0
2-set A, its two halves A0 = {n ∈ N : 2n ∈ A}

and A1 = {n ∈ N : 2n + 1 ∈ A} are Turing-incomparable Δ0
2-sets. Moreover,

Theorem 3.2 (Jockush [8]). Every 1-generic set has Turing-incomparable
halves.

Proof. This can be proved very easily: given a Turing machine M , let U = {A :
∃n,MA0(n) = 0 but n ∈ A1}. U is an effective open class and if A1 is Turing
reducible to A0 via M then A belongs to the boundary of U : adding an arbitrary
large element to A1 makes A fall in U (possible when A1 is co-infinite). Hence
if A is 1-generic, A does not belong to the boundary of U and as A1 is easily
co-infinite, M does not compute A1 relative to A0.

Hence instead of constructing a Δ0
2-set with the specific property, one simply

has to check that the property is co-meager in Δ0
2, or even that it is captured

by 1-genericity. The relativized computable Baire Category theorem gives the
existence result for free.

4 Enumerable Objects

As we saw, the case of computable sets is a straightforward effectivization of the
ordinary, non-effective setting, from which the case of Δ0

2-sets is a straightforward
relativization.

We now turn our attention to intermediate classes of objects. What is a small
class inside the class CE of c.e. subsets of N? What is a typical c.e. set? The same
questions can be asked for left-c.e. sets, Π0

1 -classes, etc.

4.1 C.e. Sets

First observe that as C ⊆ CE, we can declare every class that is meager in C
to be meager in CE. Axiom 1 is satisfied, i.e., every singleton is meager in CE:
(i) if A ⊆ N is finite then it is computable so as before {A} is meager as its
complement is a dense effective open set, (ii) if A is infinite then the class U =
{B ⊆ N : A � B} is a dense effective open set that does not contain A. However
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Axiom 4 is not satisfied as C is not meager in CE, so we have to add new meager
classes in CE.

The idea is to weaken the definition of 1-genericity. Let us recall that a
set A ⊆ N is 1-generic if it does not belong to the boundary of any effective open
class U ⊆ 2N; A belongs to the boundary of U , or U is dense along A, means
that U contains sets arbitrarily close to A, i.e., in every cylinder [A � n].

Definition 4.1. We say that A belongs to the down-closure of U , or that U
is dense above A, if U contains sets B ⊇ A arbitrarily close to A, i.e., in
every cylinder [A � n]. We say that A belongs to the down-boundary of U if A
belongs to the down-closure of U but not to U .

Observe that the down-boundary of U is contained in the boundary of U , so
if U is an effective open set then its down-boundary is meager in Δ0

2. We declare
that its down-boundary is already meager in CE. It gives a notion of genericity
in the class CE.

Definition 4.2. A set A is generic from above if it belongs to every effective
open class that is dense above A. In other words, A is generic from above if it
does not belong to the down-boundary of any effective open class.

This notion is equivalent to the notion of p-genericity introduced by Ingrassia
[7]. We then prove a Baire Category theorem in CE.

Theorem 4.3 (Baire Category in CE [5,7]). Let Un ⊆ 2N be dense uniformly
effective open classes. The class of c.e. sets in

⋂
n Un that are generic from above

is dense in 2N.

As a result, the class CE is not meager in itself and Axiom 2 is satisfied.
Moreover Axiom 4 is satisfied, i.e., the subclass C is meager in CE: (i) the class
of co-finite sets is already meager in C as it can be effectively listed, (ii) if A ⊆ N

is co-infinite and computable then it is not generic from above, as the effective
open set 2N \ {A} is dense above A.

Genericity from above is a weakening of 1-genericity, that is sometimes suf-
ficient for our purpose. For instance the simple argument showing that the two
halves of a 1-generic set are Turing-incomparable (Theorem 3.2) immediately
applies to co-infinite sets that are generic from above. As a result, Theorem 4.3
implies the solution to Post problem invented by Friedberg and Muchnik.

Theorem 4.4 (Friedberg-Muchnik [4,13]). There exist two Turing-
incomparable c.e. sets.

Additionally, we can say that having Turing-incomparable halves is a typi-
cal property of c.e. sets, and every c.e. set that is generic from above has this
property.

Obverse that it does not give an alternative proof of Friedberg-Muchnik’s
theorem, as Theorem 4.3 is showed using the priority method with finite injury,
the method invented by Friedberg and Muchnik to prove their result. However,
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many constructions using a simple form of the priority method are captured by
the Baire Category theorem in CE. For instance, every co-infinite set A that
is generic from above is not autoreducible: there is no Turing functional that
for each n ∈ N, decides n ∈ A given A \ {n} as oracle. Not all finite injury
arguments are captured by Theorem 4.3: for instance Ingrassia [7] proved the
existence of a p-generic (i.e., co-infinite and generic from above) c.e. set that is
Turing equivalent to the halting set, hence is not a solution to Post’s problem.

4.2 Left-C.e. Reals

We can adapt the previous definitions in a straightforward way, replacing the
inclusion ordering over 2N by the lexicographic ordering. Identifying subsets of N

with real numbers in [0, 1], we get the natural ordering of real numbers.

Definition 4.5. We say that x ∈ [0, 1] belongs to the left-closure of U ⊆ [0, 1],
or that U is dense on the right of x, if U contains reals y ≥ x arbitrarily close
to x, i.e., in every interval [x, x+ε). We say that x belongs to the left-boundary
of U if x belongs to the left-closure of U but not to U .

For instance, if 0 < a < 1 then the left-boundary of (a, 1] is {a} while the left-
boundary of [0, a) is empty. In particular, while every left-c.e. real a > 0 belongs
to the boundary of the effective open set [0, a), preventing it from being 1-generic,
it does not belong to its left-boundary.

We then declare the left-boundary of an effective open class to be meager
in LCE, and we get a notion of genericity.

Definition 4.6. A real x is generic from the right if it belongs to every
effective open class that is dense on the right of x. In other words, x is generic
from the right if x does not belong to the left-boundary of any effective open class.

Again we have a Baire Category theorem in LCE.

Theorem 4.7 (Baire Category in LCE). The class of left-c.e. reals that are
generic from the right is non-empty and dense.

Observe that we do not need to intersect with an effective family of dense
open sets as in Theorem 4.3, as every dense set is also dense on the right of
every x < 1. It means that every real that is generic from the right is weakly-
1-generic, i.e., belongs to every dense effective open set. The construction of
a weakly-1-generic left-c.e. real presented in [14] actually builds a real that is
generic on the right, hence proves Theorem 4.7.

Again the theorem implies that Axiom 2 is satisfied, i.e., that LCE is not
meager in itself. Axiom 4 is satisfied as CE is meager in LCE: we know from the
previous section that every c.e. set it outside some dense effective open set.

However this time Axiom 1 is not satisfied! By definition a left-c.e. real that
is generic on the right does not belong to the left-boundary of any effective open
class. We need to add more nowhere dense classes. However we were unable to
identify a natural way of doing it.
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4.3 Other Classes of Objects

In [5] we introduce a way of defining a notion of genericity for more general classes
of enumerable objects and prove a Baire Category theorem for such classes. For
instance, one can define what is a generic Π0

1 subset of 2N. We apply this method
to obtain a result in computable analysis related to the non-computability of the
ergodic decomposition theorem. In [6] we give other applications of this method
showing that many complicated constructions in recursion theory can be more
easily obtained by choosing the suitable topology on the space of objects, and
using the corresponding Baire Category theorem on that space.

5 Conclusion

For many classes of constructible objects it is possible to define a notion of
meager subclass and a corresponding notion of genericity. A typical element of
the class is then generic and automatically satisfies many interesting properties.
The relevance of these notions can be measured in two ways that oppose to each
other:

– A Baire Category theorem should hold, i.e., the class should not be meager in
itself. Said differently, the notion of genericity should not be too strong.

– The notion of genericity should be strong enough to capture many useful
interesting properties.

When these conditions are satisfied, existence results become easy to derive.
In this note, the Baire Category theorem for classes of enumerable objects

is proved using the simplest form of priority method with finite injury. A future
direction would be to define weaker notions of meager subclass, or stronger
notions of genericity, capturing more advanced methods from recursion theory
such as the priority method with infinite injury.
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Abstract. We give an overview of the interplay between computability
and symbolic dynamics.

A multidimensional shift of finite type (SFT) is a set of colorings of Zd given
by local rules. SFTs are one of the most fundamental objects in symbolic dynam-
ics [LM95], and are well understood when d = 1 where they can be studied using
finite automata theory. The situation becomes drastically different in dimension
2, where they are sometimes called tilings of the (discrete) plane, as almost any
natural question about them becomes undecidable [Ber64,Rob71].

The uncomputability of many properties has for a long time being seen as
a hurdle in the study of multidimensional symbolic dynamics. Douglas Lind
[Lin04] has in particular described multidimensional SFTs as “The Swamp of
Undecidability. It’s a place you don’t want to go”.

In recent years, the position has changed, as many results have proven that
it is actually possible to understand quite well many properties of multidimen-
sional dynamical systems, as long as one accepts that the answer might involve
computability theory.

We present here a few examples of this phenomenon. The focus of the first few
sections is on one-dimensional symbolic dynamical systems given by computable
constraints, and we show how these constraints translate into computability
obstructions on their dynamics. In the last part, we explain how these results
may be translated to multidimensional dynamical systems given by finite means,
using strong embedding theorems.

1 Definitions

We start with a few relevant definitions.
Let A be a finite alphabet. We denote by A� the set of finite words over

the alphabet A, and by AZ the set of biinfinite words over the alphabet A. The
empty word will be denoted by ε. Given a finite word w = w0w1 . . . wn−1 (whose
length n is denoted |w|) and a biinfinite word u = . . . u−1u0u1 . . . , we say that w
appears in u (or that u contains w) if there exists some position k s.t. ui+k = wi

for all 0 ≤ i < n. We will also use the notion “w appears in u” for u a finite
word, with a similar definition.
c© Springer International Publishing Switzerland 2016
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Given a set F ⊆ A� of words, the subshift defined by F is the set of all
biinfinite words where no word of F appears. We usually denote by XF the
subshift defined by F .

Example 1. Let A = {0, 1}. Let F = {00}. Then XF is the set of biinfinite
words that do not contain two consecutive symbols 0. For F = {0, 01, 11}, XF
is evidently the empty set. For an alphabet A, let F = {uu|u ∈ A�, |u| ≥ 1}.
Then XF is the set of biinfinite words that do not contain any square.

Definition 1. A subset X of AZ is a subshift if there exists F s.t. X = XF . F
will be called a set of forbidden patterns for X. If F can be chosen finite, X is
called a subshift of finite type (SFT for short).

If F is recursively enumerable, X is called an effectively closed subshift.

Example 2. The first two previous examples are obviously subshifts of finite type
by definition. If A is a two letter alphabet, the set of biinfinite words that do not
contain any square is a subshift of finite type. Indeed, in this case, X = ∅ = X{ε}.
If A has more than two letters, this subshift is nonempty and it is easy to see it
is not of finite type. In any case, all these subshifts are effectively closed.

The set S of all words over the alphabet A = {0, 1} with exactly one symbol
1 is not a subshift. Indeed, suppose there is F s.t. S = XF . Then F cannot
contain any word consisting only of the symbol 0, therefore the biinfinite word
containing only 0 is in XF , a contradiction.

As made evident by the previous examples, the same subshift can be given
by different sets of forbidden patterns. In set theoretical terms, there is a largest
set: If X is a subshift, then the set B(X) of all words that do not appear in any
word of X is a set of forbidden patterns for X, that is X = XB(X) and it is
clearly maximal.

In terms of computability, it is however the minimal possible description of
X, in the following sense.

Definition 2. (Enumeration-Reducibility [FR59]). Let S ⊆ A� and S′ ⊆
A� be two sets of finite words.

We say that S is enumeration-reducible to S′, in symbols S ≤e S′, if there is
a computable procedure that can enumerate S given any enumeration of S′.

Formally, there exists a partial computable function f that associates to any
pair (u, n) ∈ A� × N a finite subset of A� s.t. u ∈ S ⇐⇒ ∃n, f(u, n) ⊆ S′.

Enumeration reducibility gives rise naturally to a notion of enumeration-
equivalence ≡e whose classes are usually called enumeration degrees.

Proposition 1. Let X = XF be a subshift. Then B(X) ≤e F .
In terms of enumeration reducibility, B(X) is therefore the smallest possible

description of X.

The key to understand this proposition is the compactness property: u ∈
B(X) iff there exists a size k > |u| s.t. all elements of A� of size k that contain
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u also contain some element of F . This gives a way to enumerate all finite set F
of words that “force” u to be forbidden.

In particular, if X is an effectively closed subshift, its set of forbidden words
B(X) is recursively enumerable. In general, the language B(X) can be arbitrarily
complex. For example given a subset S of N, it is easy to see that the subshift
defined by the set of forbidden words {10n1|n ∈ S} has the same enumeration
degree as S.

Dynamical systems. Symbolic dynamics is well equipped to study general
dynamical systems. Let f : AN → AN be a continuous map. The itinerary of
f from point x is the infinite word of AN defined by It(f)(x)n = a if the first
symbol of fn(x) is a. If f is bijective, it is more natural to consider biinfinite
trajectories, defined similarly for n ∈ Z.

Then it is easy to see that the set It(f) of all itineraries of f is a subshift.
Moreover computability properties of f translate into computability properties
of It(f), see [Das08,CDK08] for more details. Interesting examples appear when
f is taken to be a map of the interval [Moo91], a cellular automaton, or a Turing
machine [Kur97].

2 Computability of Subshifts

In this section we investigate computability properties of subshifts, and in partic-
ular of points inside a (nonempty) subshift. Typical properties we are interested
in is whether a subshift contains a computable point and more generally on the
structure of the Turing degrees of subshifts.

Effective subshifts are examples of Π0
1 classes [CR98], a recursion-theoretic

concept that appear everywhere inmathematics.Π0
1 classes (of sets) can be defined

using forbidden positioned words, i.e. they are given by a (recursively enumerable)
list of pairs of the form (i, w), meaning that w is forbidden to appear at position
i. This definition, while slightly nonstandard, makes it obvious that effective sub-
shifts are indeed Π0

1 classes, and from this we can obtain a large number of results
on what points of effective subshifts look like [Kre53,Sho60,JS72b].

However, subshifts have the additional property of shift-invariance: if x ∈ X
then the shift σ(x) of x (defined formally by σ(x)i = xi+1) is also in X. Whether
this property translates into computability properties on elements of X is the
main question.

While our focus in on effectively closed subshifts, note that the above ques-
tions also make sense for general subshifts.

Cenzer et al. [CDK08] produced an example of an (nonempty) effectively
closed subshift with no computable points. Another example is given by
Rumyantsev and Ushakov [RU06]: Forbid all words x of Kolmogorov complex-
ity less than |x|/2 + c. This subshift is nonempty if c is sufficiently large. More
generally, Miller [Mil12] proved that any Π0

1 set is Medvedev equivalent to an
effectively closed subshift.
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Definition 3. Let S, S′ two subsets of AZ. We say that S ≤M S′ is Medvedev
reducible to S′ if there is a Turing functional Φ such that Φ(S′) ⊆ S.

Medvedev equivalence is usually introduced in the context of mass problems
[Sim11]: S ≤M S′ if it is easier to find an element of S than to find an element
of S′, in the sense that, if we find an element y of S′, then we also obtain in the
same way an element of S (namely Φ(y)).

Theorem 1 [Mil12]. For any Π0
1 set S, there is an effectively closed subshift S′

that is Medvedev-equivalent to S.

Note that Medvedev equivalence is a weak notion in the sense that it speaks
somehow only about the easiest (in terms of Turing degrees) elements of a set:
Two sets S and S′ which both contain computable points are always Medvedev
equivalent.

We can search for something (somewhat) stronger: Given a Π0
1 set S, is there

a subshift with the same set of Turing degrees? The answer is negative:

Theorem 2 [JV13]. Let S be a subshift. Then either S contains a computable
point, or it contains a cone of Turing degrees: There exists a point x ∈ S s.t.
there are points y ∈ S of arbitrary Turing degree above the degree of x.

In particular, if S has no computable point, it contains two points of different but
comparable Turing degrees. However we can construct some Π0

1 classes which
do not have this property [JS72a], which proves it is rather specific to subshifts.
Note that this theorem is true for any subshift, and not only for effectively closed
subshifts.

This property is due to the fact that every nonempty subshift contains a
point x with a peculiar property, called uniform recurrence: If a word u appears
in x, there exists a size n s.t. u occurs in every word of size n that appear in
x. An obvious example of an uniformly recurrent word is a periodic word w
(wi = wi+n for some n and all i). Another classical example is the Thue-Morse
word.

The situation when S has a computable point is completely understood and
subsumed in the following theorem:

Theorem 3 [JV13]. For any set S with a computable point, there is a subshift
T s.t. S and T have the same Turing degrees.

Moreover, the set of positioned words that do not appear in S is enumeration-
equivalent to the set of words that do not appear in T .

(In particular, if S is a Π0
1 class, then T is effectively closed).

The situation of sets with cones of Turing degrees is less understood.
Hochman and Vanier [HV] produced examples of subshifts for which the Turing
degree spectrum is an uncountable union of disjoint cones.
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3 Multidimensional Subshifts

In the previous section, the subshifts with specific properties that are produced
are often effectively closed, but never of finite type. Indeed, the theory of sub-
shifts of finite type is well understood in dimension one, and connected with
finite automata theory [LM95].

The situation is dramatically different when dealing with multi-dimensional
subshifts. The definition of multi-dimensional subshifts is similar to one-
dimensional subshifts, where a configuration is now an element of AZ

d

for some
d, and the concept of a pattern (an element of And

) replaces the concept of a
word.

However, subshifts of finite type now become interesting. Indeed, it is unde-
cidable to know if a subshift of finite type (given by a list of forbidden patterns)
is empty [Ber64], and there exist nonempty subshifts of finite type where no
configuration is computable [Mye74].

The main reason for these theorems is the ease of coding the space-time dia-
gram of a Turing machine as a two-dimensional configuration. While these results
where obtained in the late 60s and early 70s, they are now better understood in
the context of the embedding theorems of the next paragraph.

3.1 The Embedding Theorems

The embedding theorems state that one-dimensional effectively closed subshifts
may be encoded into multi-dimensional subshifts of finite type. Using this embed-
ding, many of the previous theorems can be prove to hold for multidimensional
subshifts of finite type.

To present the theorems, a few definitions are needed.
If S is a subshift over the alphabet A in dimension d, and π a map from A

to B, the recoloring π(S) is the subset of BZ
d

of all configurations y s.t. there
exists y ∈ S s.t. yi = π(x)i for all i. The recoloring can be thought of as a way
somehow to ignore construction lines by recoloring them. Note that however
a recoloring subshift is never more complex than the original subshift: Indeed,
B(π(S)) ≤e B(S).

Given a subshift S ⊆ AZ
d

in dimension d, one can define naturally higher
and lower dimensional versions of S. The higher dimensional version SZ

d′−d

is
the set of all configurations x of AZ

d′
for which there exists y ∈ S s.t. x(i,j) = yi

for all i ∈ Z
d and j ∈ Z

d′−d. If d = 1 and d′ − d = 1, SZ is therefore the set of
all two-dimensional configurations where all rows are identical to some element
of S. It is easy to see that B(SZ

d′
) ≡e B(S).

Then we have the following theorem:

Theorem 4 [Hoc09,AS13,DRS10]. Let S be an effectively closed subshift of
dimension d over the alphabet A. Then there exist d′, a recoloring π, and a
subshift of finite type S′ s.t. SZ

d′
= π(S′).

In this theorem, we can take d′ = 1.
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There is a relativized version of this statement. Say that S′ (over the alphabet
B) is of finite type over S (over the alphabet A ⊆ B) if there exists a finite set
F of forbidden patterns s.t. S′ is obtained from S by adding these forbidden
patterns: S′ = XF∪B(S). Note that S′ may have a larger alphabet than S. Again
it is easy to see that B(S′) ≤e B(S).

Theorem 5 [AS09]. Let S1 and S2 be two subshifts.
Then B(S1) ≤e B(S2) iff there exist integers d1, d2, a recoloring π, and S′ of

finite type over SZ
d2

2 s.t. SZ
d1

1 = π(S′)

If we start from S2 = {0}Z, we recover the previous theorem. It is inter-
esting to note that these theorems are analogues of respectively the Highman
embedding theorem [Hig61] and the relative Highman embedding theorems for
groups [HS88], with subshifts (of finite type/effectively closed) playing the role
of groups (finitely presented/recursively presented).

This gives a way to produce subshifts of finite type with complex behaviours:
starting from a effectively closed subshift in dimension one with a given prop-
erty, we obtain this way a subshift of finite type with the same property. Not
all properties are preserved by recolorings and higher-dimensional versions, but
enough are.

As an example, if we start from a one-dimensional effectively closed subshift
with no computable point, we obtain a two-dimensional subshift of finite type
with no computable point. If we start from an effectively closed subshift that is
Medvedev equivalent to some Π0

1 set S, we obtain a two-dimensional subshift of
finite type that is Medvedev equivalent to S, a result originally from Simpson
[Sim14] using a method from Myers [Mye74].

It is therefore reasonable to think of multi-dimensional subshifts of finite type
as having similar computational properties as one-dimensional effectively closed
subshifts.

3.2 Peculiarities of Subshifts of Finite Type

We finish this section by presenting some results that cannot be proven by the
embedding theorem, either due to the nature of the subshift S′ that is con-
structed, or due to the fact that our computational properties are not invariant
under recoloring.

The first property deals with countable subshifts. In the proof of the embed-
ding theorem, the subshift S′ is uncountable, and this cannot be corrected. In
particular, the theorem cannot be used to prove results on countable subshifts
of finite type. Nevertheless, we may obtain:

Theorem 6 [JV13]. Let S be a countable Π0
1 set. Then there exists a countable

subshift of finite type T s.t. S and T have the same set of Turing degrees.

The second property has to do with periodic configurations. In a subshift
of finite type, it is algorithmically decidable to know whether there exists a
configuration periodic of period n in all directions, as we only have to test all
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possible hypercubes of size n. This is not true anymore of the recoloring of
a subshift of finite type: π(x) might be periodic of period n without x being
periodic. In fact it is easy to prove (using e.g. the embedding theorem) that the
problem has now become undecidable.

However it is possible to obtain a strong characterization of what may happen
for a subshift of finite type

Theorem 7 [JV15]. Let X be a subshift of finite type. Then the set of all n s.t.
X contains a configuration of period exactly n in all directions is in NP (when
n is encoded in unary).

Conversely, given a unary language L in NP, there exists a subshift of finite
type X s.t. the set of all n s.t. X contains a configuration of period exactly n in
all directions is exactly L.
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Abstract. In this survey, we describe a general key exchange proto-
col based on semidirect product of (semi)groups (more specifically, on
extensions of (semi)groups by automorphisms), and then focus on prac-
tical instances of this general idea. This protocol can be based on any
group or semigroup, in particular on any non-commutative group. One
of its special cases is the standard Diffie-Hellman protocol, which is
based on a cyclic group. However, when this protocol is used with a non-
commutative (semi)group, it acquires several useful features that make it
compare favorably to the Diffie-Hellman protocol. The focus then shifts
to selecting an optimal platform (semi)group, in terms of security and
efficiency. We show, in particular, that one can get a variety of new secu-
rity assumptions by varying an automorphism used for a (semi)group
extension.

1 Introduction

The area of public key cryptography started with the seminal paper [2] intro-
ducing what is now known as the Diffie-Hellman key exchange protocol.

The simplest, and original, implementation of the protocol uses the multi-
plicative group of integers modulo p, where p is prime and g is primitive mod p.
A more general description of the protocol uses an arbitrary finite cyclic group.

1. Alice and Bob agree on a finite cyclic group G and a generating element g in
G. We will write the group G multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.
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3. Bob picks a random natural number b and sends gb to Alice.
4. Alice computes KA = (gb)a = gba.
5. Bob computes KB = (ga)b = gab.

Since ab = ba, both Alice and Bob are now in possession of the same group
element K = KA = KB which can serve as the shared secret key.

The protocol is considered secure against eavesdroppers if G and g are chosen
properly. The eavesdropper must solve the Diffie-Hellman problem (recover gab

from g, ga and gb) to obtain the shared secret key. This is currently considered
difficult for a “good” choice of parameters (see e.g. [8] for details).

There is an ongoing search for other platforms where the Diffie-Hellman
or similar key exchange could be carried out more efficiently or where security
would be based on different assumptions. This search already gave rise to several
interesting directions, including a whole area of elliptic curve cryptography [17].
We also refer the reader to [10] or [11] for a survey of proposed cryptographic
primitives based on non-abelian (= non-commutative) groups. A survey of these
efforts is outside of the scope of the present paper; our goal here is to describe
a new key exchange protocol from [4] based on extension of a (semi)group by
automorphisms (or more generally, by self-homomorphisms) and discuss possible
platforms that would make this protocol secure and efficient. This protocol can
be based on any group, in particular on any non-commutative group. It has
some resemblance to the classical Diffie-Hellman protocol, but there are several
distinctive features that, we believe, give the new protocol important advantages.
In particular, even though the parties do compute a large power of a public
element (as in the classical Diffie-Hellman protocol), they do not transmit the
whole result, but rather just part of it.

We then describe in this survey some particular instantiations of this general
protocol. We start with a non-commutative semigroup of matrices as the plat-
form, consider an extension of this semigroup by a conjugating automorphism
and show that security of the relevant instantiation is based on a quite different
security assumption compared to that of the standard Diffie-Hellman protocol.
However, due to the nature of this security assumption, the protocol turns out
to be vulnerable to a “linear algebra attack”, similar to an attack on Stickel’s
protocol [16] offered in [15], albeit more sophisticated, see [9,14]. A composition
of conjugating automorphism with a field automorphism was employed in [7],
but this automorphism still turned out to be not complex enough to make the
protocol withstand a linear algebra attack, see [3,14].

We therefore offer here another platform group that we believe should make
the protocol invulnerable to the attacks of [3], [9,14]. The group is a free nilpotent
p-group, for a sufficiently large prime p. We give a formal definition of this group
in Sect. 8; here we just say that this is a finite group all of whose elements have
order dividing pn for some fixed n ≥ 1. As any finite group, this group is linear,
but Janusz [5] showed that a faithful representation of a finite p-group, with
at least one element of order pn, as a group of matrices over a finite field of
characteristic p is of dimension at least 1 + pn−1, which is too large to launch
a linear algebra attack provided p itself is large enough. At the same time,
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to keep computation in the platform group efficient, the nilpotency class of the
group has to be fairly small. We note that, in contrast, the dimension of the
classical representations of finitely generated torsion-free nilpotent groups in a
matrix group UT (Z) can be rather small (cf. [12]), but for torsion groups with
elements of large order the situation is really different. Still, there is the usual
trade-off between security and efficiency, so the following parameters have to be
chosen carefully to provide for both security and efficiency: (1) the size of p;
(2) the nilpotency class of the platform group; (3) the rank (i.e., the number of
generators) of the platform group. We discuss this in our Sect. 8.

We mention here another, rather different, proposal [13] of a cryptosystem
based on the semidirect product of two groups and yet another, more complex,
proposal of a key agreement based on the semidirect product of two monoids
[1]. Both these proposals are very different from that of [4]. In particular, the
crucial idea of transmitting just part of the result of an exponentiation appears
only in [4].

Finally, we note that the basic construction (semidirect product) described
in this survey can be adopted, with some simple modifications, in other algebraic
systems, e.g. associative rings or Lie rings, and key exchange protocols similar
to ours can be built on those.

2 Semidirect Products and Extensions by Automorphisms

We include this section to make the exposition more comprehensive. The reader
who is uncomfortable with group-theoretic constructions can skip to Subsect. 2.1.

We now recall the definition of a semidirect product:

Definition 1. Let G,H be two groups, let Aut(G) be the group of automor-
phisms of G, and let ρ : H → Aut(G) be a homomorphism. Then the semidirect
product of G and H is the set

Γ = G �ρ H = {(g, h) : g ∈ G, h ∈ H}

with the group operation given by
(g, h)(g′, h′) = (gρ(h′) · g′, h · h′).

Here gρ(h′) denotes the image of g under the automorphism ρ(h′), and when we
write a product h · h′ of two morphisms, this means that h is applied first.

In this paper, we focus on a special case of this construction, where the
group H is just a subgroup of the group Aut(G). If H = Aut(G), then the
corresponding semidirect product is called the holomorph of the group G. We
give some more details about the holomorph in our Sects. 2.1, and 3 we describe
a key exchange protocol that uses (as the platform) an extension of a group G
by a cyclic group of automorphisms.
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2.1 Extensions by Automorphisms

A particularly simple special case of the semidirect product construction is where
the group H is just a subgroup of the group Aut(G). If H = Aut(G), then the
corresponding semidirect product is called the holomorph of the group G. Thus,
the holomorph of G, usually denoted by Hol(G), is the set of all pairs (g, φ),
where g ∈ G, φ ∈ Aut(G), with the group operation given by (g, φ) · (g′, φ′) =
(φ′(g) · g′, φ · φ′).

It is often more practical to use a subgroup of Aut(G) in this construction,
and this is exactly what we do in Sect. 3, where we describe a key exchange
protocol that uses (as the platform) an extension of a group G by a cyclic group
of automorphisms.

Remark 1. One can also use this construction if G is not necessarily a group, but
just a semigroup, and/or consider endomorphisms (i.e., self-homomorphisms) of
G, not necessarily automorphisms. Then the result will be a semigroup; this is
what we use in our Sect. 6.

3 Key Exchange Protocol

In the simplest implementation of the construction described in our Sect. 2.1, one
can use just a cyclic subgroup (or a cyclic subsemigroup) of the group Aut(G)
(respectively, of the semigroup End(G) of endomorphisms) instead of the whole
group of automorphisms of G.

Thus, let G be a (semi)group. An element g ∈ G is chosen and made public as
well as an arbitrary automorphism φ ∈ Aut(G) (or an arbitrary endomorphism
φ ∈ End(G)). Bob chooses a private n ∈ N, while Alice chooses a private m ∈ N.
Both Alice and Bob are going to work with elements of the form (g, φr), where
g ∈ G, r ∈ N. Note that two elements of this form are multiplied as follows:
(g, φr) · (h, φs) = (φs(g) · h, φr+s).

1. Alice computes (g, φ)m = (φm−1(g) · · · φ2(g) · φ(g) · g, φm) and sends only
the first component of this pair to Bob. Thus, she sends to Bob only the
element a = φm−1(g) · · · φ2(g) · φ(g) · g of the (semi)group G.

2. Bob computes (g, φ)n = (φn−1(g) · · · φ2(g) · φ(g) · g, φn) and sends only the
first component of this pair to Alice. Thus, he sends to Alice only the
element b = φn−1(g) · · · φ2(g) · φ(g) · g of the (semi)group G.

3. Alice computes (b, x) · (a, φm) = (φm(b) · a, x · φm). Her key is now KA =
φm(b) · a. Note that she does not actually “compute” x ·φm because she does
not know the automorphism x = φn; recall that it was not transmitted to
her. But she does not need it to compute KA.

4. Bob computes (a, y)·(b, φn) = (φn(a)·b, y ·φn). His key is now KB = φn(a)·b.
Again, Bob does not actually “compute” y ·φn because he does not know the
automorphism y = φm.

5. Since (b, x) · (a, φm) = (a, y) · (b, φn) = (g, φ)m+n, we should have KA =
KB = K, the shared secret key.
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Remark 2. Note that, in contrast with the “standard” Diffie-Hellman key
exchange, correctness here is based on the equality hm · hn = hn · hm = hm+n

rather than on the equality (hm)n = (hn)m = hmn. In the “standard” Diffie-
Hellman set up, our trick would not work because, if the shared key K was just
the product of two openly transmitted elements, then anybody, including the
eavesdropper, could compute K.

4 Computational Cost

From the look of transmitted elements in the protocol in Sect. 3, it may seem
that the parties have to compute a product of m (respectively, n) elements of
the (semi)group G. However, since the parties actually compute powers of an
element of G, they can use the “square-and-multiply” method, as in the standard
Diffie-Hellman protocol. Then there is a cost of applying an automorphism φ
to an element of G, and also of computing powers of φ. These costs depend,
of course, on a specific platform (semi)group that is used with our protocol
and on a specific automorphism that is used for a (semi)group extension. In
our first, “toy” example (Sect. 5 below), both applying an automorphism φ and
computing its powers amount to exponentiation of elements of G, which can be
done again by the “square-and-multiply” method. In our example in Sect. 6, φ
is a conjugation, so applying φ amounts to just two multiplications of elements
in G, while computing powers of φ amounts to exponentiation of two elements
of G (namely, of the conjugating element and of its inverse).

Thus, in either instantiation of our protocol considered in this paper, the
cost of computing (g, φ)n is O(log n), just as in the standard Diffie-Hellman
protocol. Computational cost analysis for the platform group suggested in Sect. 8
is somewhat more delicate; we refer to Sect. 8.1 for more details.

5 “Toy Example”: Multiplicative Z
∗
p

As one of the simplest instantiations of our protocol, we use here the multiplica-
tive group Z

∗
p as the platform group G to illustrate what is going on. In selecting

a prime p, as well as private exponents m,n, one can follow the same guidelines
as in the “standard” Diffie-Hellman.

Selecting the (public) endomorphism φ of the group Z
∗
p amounts to selecting

yet another integer k, so that for every h ∈ Z
∗
p, one has φ(h) = hk. If k is

relatively prime to p − 1, then φ is actually an automorphism. Below we assume
that k > 1.

Then, for an element g ∈ Z
∗
p, we have:

(g, φ)m = (φm−1(g) · · · φ(g) · φ2(g) · g, φm).

We focus on the first component of the element on the right; easy computation
shows that it is equal to gkm−1+...+k+1 = g

km−1
k−1 . Thus, if the adversary chooses
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a “direct” attack, by trying to recover the private exponent m, he will have to
solve the discrete log problem twice: first to recover km−1

k−1 from g
km−1
k−1 , and then

to recover m from km. (Note that k is public since φ is public.)
On the other hand, the analog of what is called “the Diffie-Hellman prob-

lem” would be to recover the shared key K = g
km+n−1

k−1 from the triple
(g, g

km−1
k−1 , g

kn−1
k−1 ). Since g and k are public, this is equivalent to recovering

gkm+n

from the triple (g, gkm

, gkn

), i.e., this is exactly the standard Diffie-
Hellman problem.

Thus, the bottom line of this example is that the instantiation of our protocol
where the group G is Z

∗
p, is not really different from the standard Diffie-Hellman

protocol. In the next section, we describe a more interesting instantiation, where
the (semi)group G is non-commutative.

6 Matrices Over Group Rings and Extensions by Inner
Automorphisms

Our exposition here follows [4]. To begin with, we note that the general protocol
in Sect. 3 can be used with any non-commutative group G if φ is selected to
be a non-trivial inner automorphism, i.e., conjugation by an element which is
not in the center of G. Furthermore, it can be used with any non-commutative
semigroup G as well, as long as G has some invertible elements; these can be
used to produce inner automorphisms. A typical example of such a semigroup
would be a semigroup of matrices over some ring.

In the paper [6], the authors have employed matrices over group rings of a
(small) symmetric group as platforms for the (standard) Diffie-Hellman-like key
exchange. In this section, we use these matrix semigroups again and consider
an extension of such a semigroup by an inner automorphism to get a platform
semigroup for the general protocol in Sect. 3.

Recall that a (semi)group ring R[S] of a (semi)group S over a commutative
ring R is the set of all formal sums

∑
gi∈S rigi, where ri ∈ R, and all but a finite

number of ri are zero.
The sum of two elements in R[G] is defined by

⎛

⎝
∑

gi∈S

aigi

⎞

⎠ +

⎛

⎝
∑

gi∈S

bigi

⎞

⎠ =
∑

gi∈S

(ai + bi)gi.

The multiplication of two elements in R[G] is defined by using distributivity.
As we have already pointed out, if a (semi)group G is non-commutative

and has non-central invertible elements, then it always has a non-identical inner
automorphism, i.e., conjugation by an element g ∈ G such that g−1hg �= h for
at least some h ∈ G.

Now let G be the semigroup of 3 × 3 matrices over the group ring Z7[A5],
where A5 is the alternating group on 5 elements. Here we use an extension of the
semigroup G by an inner automorphism ϕ

H
, which is conjugation by a matrix
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H ∈ GL3(Z7[A5]). Thus, for any matrix M ∈ G and for any integer k ≥ 1, we
have

ϕ
H

(M) = H−1MH; ϕk
H

(M) = H−kMHk.

Now the general protocol from Sect. 3 is specialized in this case as follows.

1. Alice and Bob agree on public matrices M ∈ G and H ∈ GL3(Z7[A5]). Alice
selects a private positive integer m, and Bob selects a private positive integer
n.

2. Alice computes (M,ϕ
H

)m = (H−m+1MHm−1 · · · H−2MH2 · H−1MH ·
M, ϕm

H
) and sends only the first component of this pair to Bob. Thus,

she sends to Bob only the matrix

A = H−m+1MHm−1 · · · H−2MH2 · H−1MH · M = H−m(HM)m.

3. Bob computes (M,ϕ
H

)n = (H−n+1MHn−1 · · · H−2MH2 ·H−1MH ·M, ϕn
H

)
and sends only the first component of this pair to Alice. Thus, he sends
to Alice only the matrix

B = H−n+1MHn−1 · · · H−2MH2 · H−1MH · M = H−n(HM)n.

4. Alice computes (B, x) · (A, ϕm
H

) = (ϕm
H

(B) · A, x · ϕm
H

). Her key is now
KAlice = ϕm

H
(B) · A = H−(m+n)(HM)m+n. Note that she does not actually

“compute” x · ϕm
H

because she does not know the automorphism x = ϕn
H

;
recall that it was not transmitted to her. But she does not need it to compute
KAlice.

5. Bob computes (A, y) · (B, ϕn
H

) = (ϕn
H

(A) · B, y · ϕn
H

). His key is now KBob =
ϕn

H
(A) · B. Again, Bob does not actually “compute” y · ϕn

H
because he does

not know the automorphism y = ϕm
H

.
6. Since (B, x) · (A, ϕm

H
) = (A, y) · (B, ϕn

H
) = (M, ϕ

H
)m+n, we should have

KAlice = KBob = K, the shared secret key.

7 Security Assumptions

In this section, we address the question of security of the protocol described in
Sect. 6.

Recall that the shared secret key in the protocol of Sect. 6 is

K = ϕm
H

(B) · A = ϕn
H

(A) · B = H−(m+n)(HM)m+n.

Therefore, our security assumption here is that it is computationally
hard to retrieve the key K = H−(m+n)(HM)m+n from the quadruple
(H, M, H−m(HM)m, H−n(HM)n).

In particular, we have to take care that the matrices H and HM do not com-
mute because otherwise, K is just a product of H−m(HM)m and H−n(HM)n.

A weaker security assumption arises if an eavesdropper tries to recover a
private exponent from a transmission, i.e., to recover, say, m from H−m(HM)m.
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A special case of this problem, where H = I, is the “discrete log” problem for
matrices over Z7[A5], namely: recover m from M and Mm.

As we have mentioned in the Introduction, the protocol in this section was
attacked in [9,14] by a “linear algebra attack”. This was possible partly because
of the special “compact” form of the above security assumptions, and partly
because the dimension of a linear representation of the platform semigroup hap-
pens to be small enough in this case for a linear algebra attack to be compu-
tationally feasible. In the following Sect. 8, we offer another platform that does
not have these vulnerabilities.

8 Nilpotent Groups and p-groups

First we recall that a free group Fr on x1, . . . , xr is the set of reduced words in the
alphabet {x1, . . . , xr, x

−1
1 , . . . , x−1

r }. A reduced word is a word without subwords
xix

−1
i or x−1

i xi. The multiplication on this set is concatenation of two words,
followed by canceling out all subwords xix

−1
i and x−1

i xi until the word becomes
reduced.

It is a fact that every group that can be generated by r elements is the factor
group of Fr by an appropriate normal subgroup. We are now going to define two
special normal subgroups of Fr.

The normal subgroup F p
r is generated (as a group) by all elements of the

form gp, g ∈ Fr. In the factor group Fr/F p
r every nontrivial element therefore

has order p (if p is a prime). More generally, if n ≥ 2 is an arbitrary integer,
then the order of any element of Fr/Fn

r divides n.
The other normal subgroup that we need is somewhat less straightforward

to define. Let [a, b] denote a−1b−1ab. Then, inductively, let [y1, . . . , yc+1] denote
[[y1, . . . , yc], yc+1]. For a group G, denote by γc(G) the (normal) subgroup of G
generated (as a group) by all elements of the form [y1, . . . , yc]. If γc+1(G) = {1},
we say that the group G is nilpotent of nilpotency class c.

The factor group Fr/γc+1(Fr) is called the free nilpotent group of nilpotency
class c. This group is infinite; however, the group we define in the following
subsection is finite, and we are going to recommend it as the platform for the
cryptographic scheme based on a semidirect product.

8.1 Free Nilpotent p-group

The group G = Fr/F p2

r · γc+1(Fr) is what we suggest to use as the platform for
the key exchange protocol in Sect. 3.

This group, being a nilpotent p-group, is finite. Its order depends on p, c, and
r. For efficiency reasons, it seems better to keep c and r fairly small (in particular,
we suggest c = 2 or 3), while p should be large enough to make the dimension
of linear representations of G so large that a linear algebra attack would be
infeasible. As we have mentioned in the Introduction, a faithful representation
of a finite p-group, with at least one element of order pn, as a group of matrices
over a finite field of characteristic p is of dimension at least 1 + pn−1 [5], so in
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our case it is of dimension at least 1 + p. Thus, if p is, say, a 100-bit number, a
linear algebra attack is already infeasible.

At the same time, we want computation in the group G to be efficient. Also,
we want transmitted elements to be in some kind of standard form, usually called
a normal form. Here is how a normal form looks like if nilpotency class c = 2:

xα1
1 · · · xαi

i · · · xαr
r [x1, x2]β1,2 · · · [xi, xj ]βi,j · · · [xr−1, xr]βr−1,r ,

where αi and βi,j are integers and in every [xi, xj ] above one has i < j. Dif-
ferent collections of αi and βi,j produce different elements of G as long as
0 ≤ αi, βi,j < p2, so G in this case has at least p2r+r(r−1) = pr2+r elements,
which is a large number even if r is fairly small. At the same time, group opera-
tions (i.e., multiplication and inversion) in G are quite efficient. Indeed, multiply-
ing two elements in the above form essentially amounts to re-writing a product
xα1
1 · · · xαr

r · xα′
1

1 · · · xα′
r

r in the normal form. This is because commutators [xi, xj ]
commute with any element of G (since c = 2), so collecting all [xi, xj ] in the
right place takes (almost) linear time in the length of an input. Now re-writing
a product of powers of xi in the normal form is not too hard either because
[xa

i , xb
j ] = [xi, xj ]ab in the group G (again, since c = 2). Thus, re-writing will

take at most quadratic time in the length of an input.
Applying an endomorphism (i.e., a self-homomorphism) φ given as a map

φ(xi) = yi on the generators is efficient, too. This is due to the fact that in
any group G of nilpotency class 2, one has: (1) ab = ba if either a or b (or
both) belong to γ2(G); (2) [ab, c] = [a, c][b, c] and [a, bc] = [a, b][a, c] for any
a, b, c ∈ G; (3) (ab)n = anbn[b, a]

n(n−1)
2 for any a, b ∈ G. Using these identities,

one can reduce φ(g) to the normal form in at most quadratic time in the length
of g ∈ G, provided g itself was in the normal form.

The group G has another property useful for our purposes. We note that the
subgroup F p2

r ·γc+1(Fr) of Fr is, in fact, fully invariant, i.e., is invariant under any
endomorphism of Fr. This implies that the group G has a lot of endomorphisms
because any map on the generators of G can be extended (by the homomorphic
property) to an endomorphism of G. Thus, if G has r generators and m elements
altogether, then it has mr endomorphisms. Even if r is very small (say, r = 3),
this number is huge because, as we have just seen, G has at least pr2+r elements,
so with a 100-bit p, we are going to have at least 23600 endomorphisms. Of course,
we want our endomorphism φ not to have short cycles (i.e., if φm = φn, then
|m − n| has to be quite large). This is easier to guarantee if φ is actually an
automorphism because then we can sample from automorphisms having a large
order, and these correspond to matrices from GLr(Zp2) that have large order.
Sampling matrices of large order from that group is not completely trivial, but
we leave this outside of the scope of this survey. Here we just mention that for
most automorphisms of G, relevant security assumptions will not have a compact
form like that in Sect. 7 because a product of the form φm−1(g) · · · φ2(g) ·φ(g) ·g
(see the general protocol in our Sect. 3) typically does not simplify much.
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Abstract. Pour-El and Richards [PER89], Weihrauch [Weih00], and
others have extended Recursive Analysis from real numbers and con-
tinuous functions to rather general topological spaces. This has enabled
and spurred a series of rigorous investigations on the computability of
partial differential equations in appropriate advanced spaces of functions.
In order to quantitatively refine such qualitative results with respect to
computational efficiency we devise, explore, and compare natural encod-
ings (representations) of compact metric spaces: both as infinite binary
sequences (TTE) and more generally as families of Boolean functions via
oracle access as introduced by Kawamura and Cook ([KaCo10], Sect. 3.4).
Our guide is relativization: Permitting arbitrary oracles on continuous
universes reduces computability to topology and computational com-
plexity to metric entropy in the sense of Kolmogorov. This yields a crite-
rion and generic construction of optimal representations in particular of
(subsets of) Lp and Sobolev spaces that solutions of partial differential
equations naturally live in.

1 Introduction and Motivation

The Type-2 Theory of Effectivity (TTE) compares and studies transformation
properties of so-called representations for a given space X: surjective partial
mappings δ :⊆ {0, 1}ω → X describing an encoding of X’s elements as infinite
binary strings, such as sequences of (indices of) fast converging approximations
from a fixed countable dense subset. In particular several natural but different
representations of spaces of continuous functions on Euclidean domains have
been established as computably equivalent. Partial differential equations, how-
ever, exhibit counter-intuitive computability properties when considered on such
classical function spaces rather than than the advanced ones suggested by func-
tional analysis: Lp and more generally Sobolev spaces W k

p [WeZh02]. The qual-
itative computability theory of such spaces is well established [SZZ15]; and we,
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taking a refined complexity-theoretic perspective, suggest, and justify the choice
of, natural representations promising to bridge the gap to numerical practice.

Section 2 recalls notions and qualitative topological characterizations of rel-
atively computable functions on metric spaces. Section 3 collects quantitatively
refined notions under time and space bounds. Section 4 reports on Kolmogorov’s
entropy of a compact metric space. And Sect. 5 connects the latter two in terms
of ‘ordinary’ and second-order representations, the latter introduced in [KaCo10,
Sect. 3.4] and recalled in Sect. 6. Justified by these considerations, Sect. 7 finally
introduces a natural second-order representation for Sobolev spaces. Proofs are
deliberately omitted from this expository abstract.

2 Computing on Separable Metric Spaces

Similarly to the classical theory of computing encoding discrete structures
(graphs, integers etc.) as finite binary strings, the Type-2 Theory of Effectivity
(TTE) studies, and compares notions of, computation over continuous universes
by encoding as infinite binary strings. The following concepts are essentially from
[Weih00, Sect. 2.1+Sect. 2.3+Sect. 3.1+Sect. 8.1], Item f) from [Schr95]; cmp.
also [PER89, Sect. 2].

Definition 1.(a) An Oracle Type-2 Machine MO is a Turing machine with
read-only input tape, read-write working tape, and one-way output tape as
well as access to the — possibly empty — oracle O ⊆ {0, 1}∗ by means
of one-way query tape. MO is said to compute the partial function F :⊆
{0, 1}ω → {0, 1}ω if, on input w̄ ∈ dom(F ), it prints F (w̄). Its behaviour on
w̄ �∈ dom(F ) may be arbitrary.

(b) A representation of a space X is a partial surjective mapping ξ :⊆ {0, 1}ω �
X. A w̄ with ξ(w̄) = x is a ξ-name of x ∈ X.

(c) A partial multivalued mapping f :⊆ X ⇒ Y is a relation f ⊆ X × Y ,
considered as total function f : X � x �→ {y ∈ Y : (x, y) ∈ f}. Its domain
is dom(f) = {x : f(x) �= ∅}. A (partial) single-valued mapping is considered
as multivalued with singleton (or empty) values.

(d) For υ a representation of Y , a (ξ, υ)-realizer of f is a partial function F :⊆
{0, 1}ω → {0, 1}ω with υ ◦ F ⊆ f ◦ ξ. Call f :⊆ X ⇒ Y relativized (ξ, υ)-
computable iff there exists an oracle type-2 machine MO computing some
(ξ, υ)-realizer of f . We omit ξ = id in case X = {0, 1}ω.

(e) A presented separable metric space is a triple (X, d, ξ), where X denotes the
carrier set with metric d : X × X → [0;∞) and ξ :⊆ N → X a partial
enumeration of some dense image(ξ) ⊆ X.

(f) For a presented separable metric space (X, d, ξ), a ξ-name of x ∈ X is an
integer sequence (am)

m
satisfying

∀m : am ∈ dom(ξ) ∧ d
(
ξ(am), x

)
< 2−m ∧

∧ ∀a′ < am : d
(
ξ(a′), x

) ≥ 2−m−1. (1)
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The induced representation of (X, d, ξ) is the partial mapping (abusing
names also denoted by) ξ :⊆ {0, 1}ω � X with

〈(
bin(am)

)
m

〉 �→ x for
every ā = (am)

m
satisfying Eq. (1).

(g) Here we denote by bin both the binary expansion

bin : {0, 1}∗ � (v0, . . . , vJ−1) �→ 2J − 1 +
∑J−1

j=0
vj2j ∈ N

and its inverse, where N = {0, 1, 2, . . .}. Furthermore write

〈(v1, . . . , vn)〉 := (1, v1, 1, v2, . . . , 1, vn−1, 0, vn)

for the binary string encoding with delimiter; and also for pairing functions

({0, 1}∗)∗ � (
�v(1), . . . , �v(k)

) �→ 〈�v(1)〉 . . . 〈�v(k)〉 ∈ {0, 1}∗

and ({0, 1}∗)∗ × {0, 1}ω → {0, 1}ω and ({0, 1}∗)ω → {0, 1}ω. Finally abbre-
viate [N ] := {0, . . . , N − 1} for N ∈ N; let �v<n and v̄<n mean the first n
symbols of �v ∈ {0, 1}n+m and of v̄ ∈ {0, 1}ω, respectively; write �vn and v̄n

for the n-th symbol.
(h) For metric spaces (X, d) and (Y, e) a mapping μ : N → N is a modulus of

continuity to the function f : X → Y if, for every m ∈ N and x, x′ ∈ X,
d(x, x′) < 2−μ(m) implies e

(
f(x), f(x′)

)
< 2−m. We write B(x, r) := {x′ ∈

X : d(x, x′) < r} for the open ball of radius r ≥ 0 around x ∈ X and
B̄(x, r) := {x′ ∈ X : d(x, x′) ≤ r} for the corresponding closed ball.

Our prototype presented metric space is the real unit interval X = [0; 1] equipped
with ρ : N → X enumerating the dyadic rationals {0, (2ã + 1)/2m : N �
ã ≤ 2m−1,m ∈ N+} in [0; 1) without repetition in ‘lexicographical’ order:
0, 1

2 , 1
4 , 3

4 , 1
8 , 3

8 , 5
8 , 7

8 , 1
16 , . . .; cmp. [BrCo06]. Computing on continuous universes

combines recursion-theoretic and topological aspects, reducing to the latter when
permitting access to arbitrary oracles; cmp. Items (b+c) of the following

Fact 2.(a) A function f : X → Y admits a modulus of continuity iff it is
uniformly continuous. On bounded X, f is Hölder continuous iff it admits a
linear modulus of continuity.

(b) A partial function F :⊆ {0, 1}ω → {0, 1}ω is continuous iff it is computable
by some oracle type-2 machine.

(c) Let (X, d, ξ) and (Y, d, υ) denote presented metric spaces. A partial function
f :⊆ X → Y is continuous iff it is relativized (ξ, υ)-computable.

(d) Reciprocals (0; 1] � x �→ 1/x are (ρ, ρ)-computable but, lacking uniform con-
tinuity, not within bounded time nor space.

(e) A partial function f :⊆ [0; 1] → R admits a polynomial modulus of continuity
iff it is (ρ, ρ)-computable by some polynomial-time oracle type-2 machine.

(f) The continuous function hexp : [0; 1] � x �→ 1/ ln(e/x) is computable (without
oracle) in exponential time but, lacking a polynomial modulus of continuity,
not (even with oracle) in sub-exponential time.

(g) A partial F :⊆ {0, 1}ω → {0, 1}ω admits a polynomial modulus of continuity
iff it is computable by some polynomial-time oracle type-2 machine.
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(h) There is no representation δ :⊆ {0, 1}ω � Lip1

(
[0; 1], [0; 1]

)
of the compact

space of uniformly bounded and equicontinuous functions f : [0; 1] → [0; 1]
with |f(x) − f(x′)| ≤ |x − x′| rendering application (f, x) �→ f(x) uniformly
(δ × ρ, ρ)-computable in relativized subexponential time.

Item (a) is from [KSZ14, Example 2.5], for (b) see [Weih00, Theorems 2.3.7+2.3.8],
and for (c) confer [Weih00, Theorem 3.2.11+Definition 3.1.3]. The latter has been
generalized from metric to topological so-called QCB-spaces [Schr06, Theorem 2],
to weaker representations, as well as from continuity to (levels of Borel) measura-
bility [Zieg07,dBYa10]. For (d) see for instance [Weih00, Theorem 4.3.2.6+Exam-
ple 7.2.8.3]. [Ko91, Theorem 2.19] asserts one direction of (e) for total functions
f : [a; b] → R. Regarding (f) consider [KMRZ15, Fact 3g]; and Lemma 6.3 in
[PaZi13] for (g). Claim (h) is contained in [Weih03, Sect. 6]; see also [FHHP15, The-
orem 3.1].

3 Computational Complexity on Compact Metric Spaces

Items (d) to (h) of Fact 2 refer to the following notions:

Definition 3.(a) For t : N → N, an oracle type-2 machine MO computing
F :⊆ {0, 1}ω → {0, 1}ω does so in time t(m) if it prints the m-th symbol
of F (v̄) after at most t(m) steps for every v̄ ∈ dom(F ). F is relativized
polynomial-time computable if there exists some d ∈ N and an oracle type-2
machine computing it in time t(m) = d · (1 + md).

(b) For s : N → N, an oracle type-2 machine MO computing F :⊆ {0, 1}ω →
{0, 1}ω does so in space s(n) if it prints the m-th symbol of F (v̄) after using
at most s(m) cells of the working tape (and ’arbitrary’ amounts of the input,
output, and query tapes) for every v̄ ∈ dom(F ).

(c) Fix s, t : N → N and a (possibly partial and multivalued) function f :⊆ X ⇒
Y between represented space (X, ξ) and presented metric space (Y, e, υ). An
oracle type-2 machine (ξ, υ)-computes f in time t(m) and space s(m) iff it,
for every input of any v̄ ∈ dom(ξ) with ξ(v̄) ∈ dom(f), produces an υ-name〈(

bin(wm)
)
m

〉
of some y ∈ f(x) such that bin(wm) ∈ {0, 1}∗ appears on the

output tape within ≤ t(m) steps and using ≤ s(m) cells of the working tape.
(d) The time and/or space of a machine according to (c) is bounded if there

exist mappings t and/or s as above. It is logarithmic/polynomial/exponential
if such mappings can be chosen to have asymptotic growth bounded by
O(log m), poly(m) := O(m)O(1), and 2poly(m), respectively.

(e) A representation ξ of X is polynomially admissible if for every representa-
tion δ of X the following holds: δ :⊆ {0, 1}ω � X has a polynomial modulus
of continuity iff there exists a mapping F : dom(δ) → dom(ξ) ⊆ {0, 1}ω

with polynomial modulus of continuity such that δ = ξ ◦ F .
(f) The product ξ×υ of ξ :⊆ {0, 1}ω � X and υ :⊆ {0, 1}ω � Y is the mapping

{0, 1}ω � (w0, w1, w2, w3, . . .) �→ (
ξ(w0, w2, . . .), υ(w1, w3, . . .)

) ∈ X × Y.



146 A. Kawamura et al.

(g) A mapping f : X → Y between topological spaces is proper if the pre-images
f−1[K] = {x ∈ X : f(x) ∈ K} ⊆ X of compact sets K ⊆ Y are compact.

Item (e) refines the well-known qualitative condition of computable admissibility
[Schr06]; see [Weih00, Theorem 3.2.9]. For X = {0, 1}ω = Y condition (c) boils
down to (a) and (b), but for other represented spaces it may be unrelated to
that of computing a (ξ, υ)-realizer within the given resource bounds [Weih00,
Examples 7.2.1+7.2.3]: ξ and υ could require/admit very long/short initial seg-
ments of names before reaching precision 2−m. Moreover, said precision is to
be met within the given resource bound, regardless of the argument. To avoid
counter-examples like Fact 2(d) we focus on proper representations of compact
spaces; compare [Schr95,Weih03,Schr04] and [Weih00, Exercise 7.1.2].

4 Metric Entropy of Compact Metric Spaces

Theorem 6 will generalize Items (e) and (g) in Fact 2, and the complexity-
theoretic characterizations of Items (f) and (h) from Cantor space and the real
unit interval to certain compact metric spaces in the spirit of Fact 2(c), based
on the following notions essentially dating back to Andrey N. Kolmogorov:

Definition 4. Fix a bounded metric space (X, d).

(a) For ε > 0 let C(X, d, ε) := sup
{

Card(C)
∣
∣ C ⊆ X, ∀x, x′ ∈ C : x =

x′ ∨ d(x, x′) ≥ ε
}

denote the size of a largest collection of points fitting into
X while avoiding each other by at least distance ε.

(b) For ε > 0 let H(X, d, ε) := inf
{

Card(C)
∣
∣ C ⊆ X, ∀x ∈ X ∃c ∈ C :

d(x, c) < ε
}

denote the least number of open balls of radius ε covering X.
(c) The capacity �(X, d)� : N → N of (X, d) is the truncated binary logarithm

of n �→ C(X, d, 2−n); i.e. X admits 2�X�(n), but not 2�X�(n)+1, points of
pairwise distance ≥ 2−n.

(d) Dually, the entropy �(X, d)� : N → N of (X, d) is the truncated binary
logarithm of n �→ H(X, d, 2−n); i.e. X can be covered by 2�X�(n) open balls
of radius 2−n, but not by 2�X�(n)−1.

Compare for instance [KoTi59] or [Weih03, Sect. 6] and the related notion of a
modulus of total boundedness [Kohl08, Definition 17.106]. Lemma 5(a) asserts
that �X� and �X� have equal asymptotic growth as long as either one is at
most exponential, i.e. ≤ 2poly(n): such as, e.g., Cμ(Y, [0; 1]) for both μ and �Y �
polynomials according to Item d) of the following

Lemma 5.(a) Suppose C ⊆ X is maximal w.r.t. ⊆ satisfying ∀x, x′ ∈ C : x =
x′ ∨ d(x, x′) ≥ ε. Then

⋃
c∈C B(c, ε) = X.

For (X, d) totally bounded, C(X, d, ·) and H(X, d, ·) are non-increasing total
functions (0;∞) → N satisfying H(X, d, ε) ≤ C(X, d, ε) ≤ H(X, d, ε/2). In
particular it holds �(X, d)�(n) ≤ �(X, d)�(n) ≤ �(X, d)�(n + 1).
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(b) The finite set X := {1, 2, . . . , 2k} of integers has constant capacity and
entropy �X�(n) ≡ k ≡ �X�(n). The Euclidean cube/torus [0; 2k)d, equipped
with the maximum norm, has capacity

⌈
[0; 2k)d

⌉
(n) = (n + k) · d =⌊

[0; 2k)d
⌋
(n) and thus polynomial entropy.

(c) The compact space from Fact 2(h) equipped with the supremum norm has
asymptotically exponential capacity and entropy:

⌈
Lip1

(
[0; 1], [0; 1]

)⌉
(n) =

Θ(2n) =
⌊
Lip1

(
[0; 1], [0; 1]

)⌋
(n). The same holds for Lip1

(
[0; 1], [0; 1]

) ⊆ Lp

equipped with the norm f �→ ‖f‖p := p

√∫ 1

0
|f(t)|p dt for any fixed p ≥ 1.

(d) Suppose totally bounded (X, d) has diameter diam(X) := sup{d(x, x′) :
x, x′ ∈ X} ≤ 1 and super-logarithmic yet at most exponential entropy �X� :
N → N. Moreover fix some strictly increasing μ : N → N. W.r.t. sup-norm
the space Cμ

(
X, [0; 1]

)
:=

{
f : X → [0; 1] has modulus of continuity μ

}

has log
⌊
Cμ

(
X, [0; 1]

)⌋
(n) = Θ

(
�X�(μ(

n ± Θ(1)
)))

. A set Y ⊆ C(X, [0; 1])
is relatively compact iff it belongs to Cμ(X, [0; 1]) for some μ.

(e) Cantor space 2ω = {0, 1}ω, equipped with the metric β(v̄, w̄) :=
2−min{n:vn 
=wn} has linear capacity �(2ω, β)�(n) = n + 1; equipped with the
topologically equivalent metric β′(v̄, w̄) := 1/(1 + min{n : vn �= vm}) on the
other hand it has exponential capacity �(2ω, β′)�(n) = 2n − 1.

(f) However whenever d and d′ are strongly equivalent metrics on X in the sense
that d′ · 2−c ≤ d ≤ d′ · 2c holds for some c ∈ N (such as in case X lives in
some finite-dimensional normed real vector space), their induced capacities
and entropies differ by at most a constant shift, i.e., it holds ∀n ≥ c :

�(X, d′)�(n − c) ≤ �(X, d)�(n) ≤ �(X, d′)�(n + c),
�(X, d′)�(n − c) ≤ �(X, d)�(n) ≤ �(X, d′)�(n + c)

(g) Let (X, d) and (Y, e) be compact metric spaces and f : X → Y have modulus
of continuity μ. Then the image f [X] ⊆ Y has entropy �F [X]� ≤ �X� ◦ μ.

Item (d) quantitatively refines the classical Arzelá-Ascoli Theorem; cmp.
[Weih03, Theorem 6.7.3].

5 Relativized Complexity and Entropy

The entropy/capacity of compact metric spaces essentially determines the rela-
tivized computational complexity of functions on them:

Theorem 6. For a compact metric space (X, d) the following are equivalent:

(i) X has polynomially bounded entropy: �X�(m) ≤ p(m) for some p ∈ N[m].
(ii) X has a proper representation δ :⊆ {0, 1}ω � X with polynomial modulus

of continuity.
(iii) X admits a representation δ rendering the following parameterized par-

tial/fuzzy/ soft equality test relativized δ×δ-computable in time polynomial
in m:

X × X × N � (x, y,m) �→ 1ω for x = y, �→ 0ω for d(x, y) ≥ 2−m. (2)
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(iv) There exists a representation δ of X rendering Equation (2) relativized
δ × δ-computable in space logarithmic in m.

(v) There exists a representation δ of X rendering the metric d : X × X →
[0;∞) relativized (δ × δ, ρ)-computable in polynomial time

(vi) or in logarithmic space.
(vii) There exists a representation δ of X and polynomial q ∈ N[m] such that

every 1-Lipschitz function f : X → [0; 1] is relativized (δ, ρ)-computable in
time q(m)

(viii) or space O(
log q(m)

)
= O(log m).

Perhaps surprisingly, the same holds with δ replaced, in Items (iii) to (viii), by
a second-order representation Δ of X in the following sense:

6 Second-Order Complexity Theory

According to Fact 2(h) compact space Lip1([0; 1], [0; 1]) does not admit a
complexity-wise reasonable representation, i.e., encoding as infinite binary
strings {0, 1}ω ∼= 2{1}∗

: essentially due to their restriction to sequential access
which requires ‘skipping’ over the f ’s (approximate) values at many arguments
f(x′) before reaching the desired f(x); whereas function arguments in practice
provide oracle-like random access to their values. This has been formalized by
encoding real function arguments as oracles [KaCo10].

Remark 7 Classical oracles are decision problems O ⊆ {0, 1}∗, that is, they
return a single bit. Function oracles on the other hand return finite strings,
that is, they correspond to elements of Baire space N

N encoded in binary as
mappings ϕ : {0, 1}∗ → {0, 1}∗. Now if the answer �w = ϕ(�v) to a query �v is
‘long’, an oracle machine Mϕ arguably should be allotted more time than the
same when run with an oracle ψ giving ‘short’ answers. This leads to second-
order polynomial resource bounds; see [KaCo96]. Function oracles of polynomial
length, on the other hand, can be encoded into decision oracles queried bitwise
(and in particular satisfying effective polynomial boundedness [KaPa15]).

For the purpose of this work we focus on the latter:

Definition 8.(a) A second-order representation of a space X is a partial sur-
jective mapping Ξ :⊆ 2{0,1}∗ � X, where 2Y denotes the set of all subsets
O ⊆ Y , each identified with its characteristic function 1O : Y → {0, 1}.

(b) An oracle Type-2 machine with variable/generic oracle is called contingent
and denoted M?. It computes a partial function F :⊆ 2{0,1}∗ × {0, 1}ω →
{0, 1}ω if, for every (O, v̄) ∈ dom(F ), MO on input v̄ prints F (O, v̄). It does
so in logarithmic/polynomials/exponential time/space if the n-th symbol of
F (O, v̄) appears within such resource bounds of time/work tape cells, inde-
pendently of (O, v̄) ∈ dom(F ) while permitting unbounded use of the input,
output, and query tapes. More precisely M? may peruse a fixed-depth stack
of write-only query tapes where an oracle call refers to, and purges, the top
one.
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(c) Fix a second-order represented space (X,Ξ), (first-order) represented space
(Y, υ), and presented metric space (Z, e, ζ) with induced representation ζ.
A contingent oracle machine M? (Ξ, υ, ζ)-computes f :⊆ X × Y ⇒ Z in
time t(m) and space s(m) iff, for every O ∈ dom(Ξ) and v̄ ∈ dom(υ) with(
Ξ(O), υ(v̄)

) ∈ dom(f), MO on input v̄ produces a ζ-name
〈(

bin(wm)
)
m

〉

of some z ∈ f
(
Ξ(O), υ(v̄)

)
such that bin(wm) ∈ {0, 1}∗ appears on the

output tape within at most t(m) steps and using at most s(m) cells of the
working tape (and again ’arbitrary’ amounts of the input, output, and query
tapes).

(d) For second-order representations Ξ :⊆ 2{0,1}∗ � X and Υ :⊆ 2{0,1}∗ � Y ,
their (binary) product Ξ × Υ is the mapping

2{0,1}∗� O �→ (
Ξ({�v : 0�v ∈ O}),Υ({�w : 1�v ∈ O})

) ∈ X × Y.

(e) Following up on Definition 1f), the second-order representation induced by
a presented metric space (X, d, ξ) is the mapping

Ξ :⊆2{0,1}∗� {〈bin(2m),bin(2j)〉 : bin(am)
j

= 1
} �→ x ∈ X

for every ξ-name ā = (am)
m

∈ N
ω of x.

(f) Fix presented metric spaces (X, d, ξ) and (Y, e, υ) with induced (first-order)
representations ξ and υ. Justified by Fact 2(c), equip (any fixed compact
subset Z of) the space C(X,Y ) of continuous total functions f : X → Y
with the following second-order representation υξ: Let

O =
{〈bin(a),bin(2m),bin(2j)〉 : a ∈dom(ξ),

〈
bin

(
ϕ(a,m)

)〉
j

= 1
} ⊆ {0, 1}∗

be an υξ-name of f ∈ C(X,Y ) for every mapping ϕ : dom(ξ)×N ⊆ N×N →
dom(υ) ⊆ N where

(
ϕ(a,m)

)
m

is an υ-name of f
(
ξ(a)

)
.

So Item (c) is about functions with ordinary/first-order represented co-domain,
(g) with second-order ones. And υξ according to Item (f) encodes (approxima-
tions in terms of the dense sequence in Y given by υ to) the values of f on the
dense sequence in X given by ξ; cmp. [KaPa15, top of p. 8]. The fixed-depth
stacks and subtle semantics of query tapes have been well justified in the discrete
setting [Wils88,Buss88,ACN07] as well as in computational analysis [KaOt14].
Definition 8(f) does not (yet) incorporate quantitative information about con-
tinuity of f . In the case Z = Lip1([0; 1], [0; 1]) the representation here called
ρρ is (equivalent to one) well-known [KaCo10,KORZ12,FHHP15,FeZi15]; and
renders application (f, x) �→ f(x) computable in polynomial-time.

7 Representing Lp and Sobolev Spaces

Recall that, for compact X ⊆ R
d, Lp(X) = W 0,p(X) consists of all mea-

surable (but not necessarily continuous) functions f : X → R such that
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‖f‖p < ∞; and, more generally, W k,p(X) of all f whose weak partial deriv-
atives ∂

�jf := ∂xj1
1 · · · ∂xjd

d f up to order ‖�j| := j1 + · · · + jd ≤ k belong to
Lp(X), equipped with the norm ‖f‖k,p := max|�j|≤k ‖∂

�jf‖p. By Lemma 5(c)
and the extension of Theorem 6, no (first or) second-order representation of
Lip1([0; 1], [0; 1]) ⊆ Lp[0; 1] can simultaneously render both (f, g) �→ |f − g| and
f �→ ‖f‖p polynomial-time computable.

Definition 9.(a) Inspired by Definition 1(h) call μ : N → N an Lp-modulus of

f ∈ Lp[0; 1] if p

√∫ 1

0
|f(t + h) − f(t)|p dt < 2−m whenever |h| < 2−μ(m), with

the convention f(t) ≡ 0 for t �∈ [0; 1].
(b) Abbreviate W k,p

μ [0; 1] :=
{
f ∈ W k,p[0; 1] : ∂kf has Lp-modulus μ

}
.

(c) Let Ξ denote the second-order representation of L1[0; 1] ⊇ W k,p[0; 1] s.t. a
Ξ-name of f is a ρρ-name of the continuous [0; 1] � s �→ ∫ s

0
f(t) dt ∈ R.

By Fréchet-Kolmogorov, Y ⊆ Lp([0; 1]) is relatively compact iff there exists some
μ with Y ⊆ W 0,p

μ [0; 1]: Our convention of extending f with zero asserts W 0,p
μ to

be bounded by 2μ(0). Although harder than Lemma 5d), we can prove

Theorem 10. Fix polynomial-time computable p ≥ 1 and strictly increasing μ.

(a) log
⌊
W 0,p

μ

(
[0; 1]

)⌋
(n) = μ

(
n ± Θ(1)

)
.

(b) For any fixed polynomial μ, the embedding W 1,p
μ [0; 1] ↪→ Cn�→μ(n+1)[0; 1] is

well-defined and (Ξ, ρρ)-computable in polynomial time.
(c) For any fixed k ∈ N and polynomial μ, differentiation ∂ : W k+1,p

μ [0; 1] →
W k,p

μ [0; 1] is well-defined and (Ξ,Ξ)-computable in polynomial time.
(d) For any fixed k ∈ N and polynomial μ, the embedding W k+1,p

μ [0; 1] ↪→
W k,p[0; 1] is (Ξ,Ξ)-computable in polynomial time.
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Abstract. When perturbating a cellular automaton by a random noise
(positive probability of error, for each cell independently), the system
is generally expected to be ergodic, meaning that during its evolution,
it eventually forgets about its initial condition. For a high noise, this
can be shown by coupling. However, for a small noise, ergodicity is often
very difficult to prove. We present extensions of the coupling method to
small noises when the cellular automaton has some specific properties
(hardcore exclusion, nilpotency, permutivity).

Consider a set of cells indexed by Z, each cell containing a letter from a
finite symbol set S. A cellular automaton (CA) is a dynamical system which acts
locally and synchronously on the configuration space SZ. When the updates are
random, we obtain a probabilistic cellular automaton (PCA): at each time step,
the new content of each cell is randomly chosen, independently of the others,
according to a distribution given by the states in a finite neighbourhood of the
cell. Examples of PCA are given by noisy CA: the updates are governed by a
deterministic rule, which is perturbated by errors with a positive probability.

A PCA is said to be ergodic if it forgets its initial condition, meaning that
it has a unique and attractive invariant measure. A variety of tools have been
developed to study the ergodicity of PCA. But most of them only allow to handle
PCA for which the transition probability to any state given any neighbourhood
states is large enough. In particular, ergodicity is often very difficult to prove for
noisy CA, even in cases where it appears clear from heuristics or simulations.

In Sect. 1, we recall the coupling method and the notion of envelope PCA,
which gives a general framework to prove ergodicity for the high noise regime.
Details and more references can be found in a joint publication with A. Bušić
and J. Mairesse [1]. The next sections are devoted to three examples of families
of CA for which some specific tools allow to prove the ergodicity for small noise.
In Sect. 2, we present new results on the noisy version of the hardcore CA.
These results stem from a joint work with J.B. Martin, motivated by the study
of a percolation game, together with A.E. Holroyd [3]. Then, in Sects. 3 and
4, we consider perturbations of nilpotent and permutive CA. These sections
are based on a work initiated with S. Taati and carried on together with M.
Sablik. It is interesting to note that nilpotent CA and permutive CA present
opposite behaviours within the rich zoology of CA. While nilpotent CA reach in
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A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 153–163, 2016.
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bounded time a configuration where a single symbol remains, bipermutive CA
are expected to converge to the uniform distribution on SZ from a large class of
initial distributions (randomization phenomenon).

1 Definitions

Let S be a finite set of symbols. We equip the set SZ of configurations with the
product topology. For a finite subset K ⊂ Z and an element y ∈ SK , the set
[yK ] = {z ∈ SZ ; ∀k ∈ K, zk = yk} is called a cylinder of base K, and we denote
by C(K) the set of all cylinders of base K. The set of probability distributions
on SZ for the Borelian σ-algebra is denoted by M(SZ). For a distribution μ ∈
M(SZ), we denote by μ[yK ] the probability of the cylinder [yK ].

Let m ≥ 1 be an integer, and let n1, . . . , nm ∈ Z. A local rule of neighbourhood
N = {n1, . . . , nm} is a function f : Sm → S. The cellular automaton (CA) of
local rule f is the function F : SZ → SZ defined by:

∀x ∈ SZ, ∀k ∈ Z, F (x)k = f(xk+n1 , . . . , xk+nm
).

We denote by σ : SZ → SZ the shift map, defined by σ(x)k = xk−1. By
Curtis-Hedlund-Lyndon theorem, CA are exactly continuous functions that com-
mute with σ.

For probabilistic cellular automata (PCA), the local rule is a function ϕ :
Sm → M(S), where M(S) denotes the set of probability distributions on S.
From a configuration x ∈ SZ, cell k is updated by a symbol chosen according to
the distribution ϕ(xk+n1 , . . . , xk+nm

), independently for different cells. A PCA
can be viewed as a Markov chain on SZ. The evolution of a PCA is described by
a family of random variables (Xt)t≥0, where Xt represents the configuration at
time t when iterating the dynamics from the (deterministic or random) initial
condition X0. Formally, the PCA of local rule ϕ can also be seen as the function

Φ : M(SZ) → M(SZ)
μ �→ Φμ

defined on cylinder sets by:

Φμ[yK ] =
∑

[xK+N ]∈C(K+N )

μ[xK+N ]
∏

k∈K

ϕ(xk+n1 , . . . , xk+nm
)(yk),

for any probability distribution μ ∈ M(SZ). If the initial configuration X0 has
distribution μ0, then at time t, configuration Xt has distribution Φtμ0.

Definition 1. Let Φ be a PCA. The distribution π ∈ M(SZ) is invariant for Φ
if Φπ = Φ. The PCA Φ is ergodic if it has a unique invariant distribution π and
if for any initial distribution μ0 ∈ M(SZ), (Φtμ0)t≥0 converges (weakly) to π.
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In this article, we will focus on specific families of PCA obtained when adding
random and independent errors in the updates of a deterministic CA.

Let F be a deterministic CA, and let Φ be a PCA with same symbol set and
same neighbourhood as F . We say that Φ is an ε-perturbation of F if its local
function is such that for all x1, . . . , xm ∈ S, ϕ(x1, . . . , xm)(f(x1, . . . , xm)) ≥ 1−ε,
meaning that there is a deviation from F with probability at most ε.

Let us consider a map R : S → M(S), and let F be a CA of local rule f .
The noisy version of the CA F with noise R is the PCA of local rule ϕ = R ◦ f .
Starting from a configuration x ∈ SZ, the CA F is first applied, and then, for
each cell k independently, the symbol at cell k is replaced by a symbol distributed
according to the distribution R(F (x)k). We denote simply by Ri,j the probability
R(i)(j) for a symbol i to be changed into symbol j. The noise is said to be
positive if for all i, j ∈ S, Ri,j > 0. The matrix R is a stochastic matrix. The
noise preserves the uniform distribution on S if for all j ∈ S,

∑
i∈S Ri,j = 1,

meaning that the matrix R is doubly stochastic.
We will also pay special attention to elementary PCA, of symbol set S =

{0,1} and neighbourhood N = {0, 1}. They are characterized by four parame-
ters: the probabilities θij = ϕ(i, j)(1) to update a cell by the symbol 1 if its
neighbourhood is in state i, j, for i, j ∈ S2. If we further assume that θ01 = θ10,
the general tools that have been developed to prove the ergodicity allow to han-
dle more than 90 % of the volume of the cube defined by the parameter space [2].
But for example, the noisy hardcore CA we study in Sect. 3 belongs to an open
domain of the cube where none of those criteria is valid.

2 The Coupling Method

2.1 The Envelope PCA

Intuitively, a PCA is ergodic if it “forgets” its initial condition. In some cases,
it is possible to prove the ergodicity in a constructive way, by making evolve
simultaneously the trajectories from different initial conditions, using a common
source of randomness, and showing that the evolutions of all these trajectories
are asymptotically the same.

The envelope PCA allows to systematize this idea of coupling. Instead of
running the PCA from different initial configurations, we define a new PCA on
an extended alphabet, containing a symbol ? representing sites whose values are
not known (i.e. which may differ between the different copies) and we run it
from a single initial configuration containing only the symbol ?. Each time we
are able to make the different copies match on a cell, the symbol ? is replaced by
the state q ∈ S on which the different copies agree. An evolution of the envelope
PCA thus encodes a coupling of different copies of the original PCA, with a
symbol ? denoting sites where the copies disagree. If the density of symbols ?
converges to 0 when time goes to infinity, it means that the PCA is ergodic.

Let us assume that Φ is a PCA defined on a binary symbol set S = {0,1},
and let S̃ = {0,1, ?}. We define a partial order on S̃ by 0 ≺ ? 
 1. The envelope
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PCA Φ̃ of Φ is the PCA of neighbourhood N and local function ϕ̃ : S̃m → M(S̃)
defined for q ∈ S by

ϕ̃(y1, . . . , ym)(q) = min{ϕ(x1, . . . , xm)(q) ; x1 � y1, . . . , xm � ym},

where in the expression above, x1, . . . , xm are taken in S. The probability of a
transition to the symbol ? is then given by:

ϕ̃(y1, . . . , ym)(?) = 1 − ϕ̃(y1, . . . , ym)(0) − ϕ̃(y1, . . . , ym)(1).

From a configuration y ∈ S̃Z, cell k is thus updated by the symbol q ∈ S with the
minimum of the probabilities of transition to the symbol q for Φ, taken over all
the values of the neighbourhood of cell k that are compatible with the unknown
cells of y. With the remaining probability, the cell is updated by a ?.

Proposition 1. If the density Φ̃tδ?Z [?] of symbols ? at time t starting from the
initial configuration ?Z converges to 0 as t → ∞, then the PCA Φ is ergodic.

The fact that symbols ? die out is equivalent to the ergodicity of the envelope
PCA Φ̃, but the ergodicity of the original PCA Φ does not imply the ergodicity
of Φ̃. Note also that the definition of the envelope PCA can be extended to sets
of symbols having more than two elements [1].

2.2 Ergodicity Criterion

In this section, we still consider a binary PCA Φ and its envelope PCA Φ̃. In
the evolution of the envelope PCA, at each time step, a cell is updated by the
symbol ? only if it has at least one neighbour in state ?, and in that case, it
becomes a ? with probability at most:

p? = ϕ̃(?, . . . , ?)(?)
= 1 − min

x1,...,xm∈S
ϕ(x1, . . . , xm)(0) − min

x1,...,xm∈S
ϕ(x1, . . . , xm)(1)

= max
x1,...,xm∈S

ϕ(x1, . . . , xm)(0) − min
x1,...,xm∈S

ϕ(x1, . . . , xm)(0)

= max
x1,...,xm∈S

ϕ(x1, . . . , xm)(1) − min
x1,...,xm∈S

ϕ(x1, . . . , xm)(1).

This quantity measures how much the probability transitions depend on the
value of the neighbourhood.

Let us consider the oriented graph G describing the dependences between
sites in the space-time diagram of the PCA. The set of vertices of G is Z × N,
and there is an edge from (k, t) to (	, t+1) if k ∈ 	+N . For a given parameter p ∈
(0, 1), the directed site percolation on G consists in declaring each site to be open
with probability p, independently for different sites. One can show that there is a
critical value pc(N ) ∈ (0, 1), such that if p < pc(N ), then there is almost surely
no infinite open (oriented) component (note that pc(N ) ≥ 1/Card N ).

By dominating the process of symbols ? in the space-time diagram of the
envelope PCA by a directed site percolation of parameter p?, one proves that if
p? < pc(N ), then the symbols ? die out. Next proposition follows.
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Proposition 2. Let pc(N ) be the critical value of the two-dimensional directed
site percolation of neighbourhood N . If p? < pc(N ), then Φ̃tδ?Z [?] −−−−→

t→+∞ 0, so

that the PCA Φ is ergodic.

For a noisy CA with noise R on a binary symbol set, one can check that
unless the CA is constant, p? = |R0,1 − R1,1|, which shows ergodicity for R0,1

and R1,1 close enough to each other.
For elementary PCA, we have pc(N ) ≈ 0.7. If p? = maxi,j∈S2 θij −

mini,j∈S2 θij is smaller than this critical value, then the PCA is ergodic.

2.3 Coupling from the Past

If the PCA Φ̃ is ergodic, that is, if Φ̃tδ?Z [?] −−−−→
t→+∞ 0, then the unique invariant

distribution of π can be sampled exactly by coupling from the past (Propp-Wilson
method). We define the update function h : S̃m × (0, 1) → S̃ of Φ̃ by:

h(y1, . . . , ym, u) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ u ≤ ϕ̃(y1, . . . , yk)(0),
1 if 1 − ϕ̃(y1, . . . , yk)(1) ≤ u ≤ 1,

? otherwise.

This function has the property that if (Uk)k∈Z is a family of independent
random variables, uniformly distributed on (0, 1), then for any y ∈ S̃Z, the
configuration (Zk)k∈Z defined by Zk = h(yk+n1 , . . . , yk+nm

, Uk) is distributed
according to Φ̃δy.

Let K be a finite subset of Z. We draw a sequence (uk,−t)k∈Z,t≥0 of indepen-
dent random samples, uniformly distributed on (0, 1). We iterate the envelope
PCA Φ̃ from time −T to time 0, starting with the configuration ?Z at time −T ,
and always using the sample uk,−t to update cell k at time −t, with the help of
the update function h. If for some time T , the resulting configuration obtained
at time 0 with this procedure is such that there are no symbols ? on the cells of
K, then the symbols observed on K are distributed according to the marginal
of the distribution π on K.

After having iterated the envelope PCA from some time −T , the effect of
starting from time −(T + 1) can only be to change some ? in the space time
diagram into symbols 0 and 1 (once a symbol 0 or 1 appears at a cell (k,−t) of
the space time diagram, it is fixed). The fact that Φ̃tδ?Z [?] → 0 ensures that there
exists almost surely a time T such that at time t = 0, there are no more symbols
? on the cells of K. Note that when implementing this sampling procedure, it is
enough to consider only the cells that are in the dependence cone of K.

3 The Noisy Hardcore CA

Let us consider the elementary PCA Φ defined by the parameters θ00 = 1 −
p, θ01 = θ10 = θ11 = q, with 0 < p + q ≤ 1. This PCA is the noisy version of
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the deterministic CA of local rule f(i, j) = (1 − i)(1 − j), with a noise defined
by R1,0 = p and R0,1 = q. The rule f can be seen as an exclusion rule: a cell
becomes a 1 if it has no neighbour in state 1, and a 0 otherwise. For Φ, after
applying that deterministic dynamics, each 1 is changed into a 0 with probability
p, and each 0 is changed into a 1 with probability q, independently.

Until recently, the question of ergodicity of Φ was a repertoried open problem.
This PCA is closely related to the enumeration of directed lattice animals, which
are classical objects in combinatorics. It also appears in the study of a percolation
game [3]. With the notations of Sect. 2.2, we have p? = 1 − p − q. Thus, the
criterion of Proposition 2 provides the ergodicity of Φ for p+q > 0.3 or so, but is
of no help for smaller values of p+ q. In that case, the comparison with oriented
percolation is too rough to prove that symbols ? die out. Nevertheless, one can
prove the following (see [3] for complete proof in the case p = 0 or q = 0).

Proposition 3. The noisy hardcore CA, that is, the elementary PCA Φ defined
by θ00 = 1 − p, θ01 = θ10 = θ11 = q, is ergodic for any parameters p + q < 1.

Proof (sketch). The local function of Φ̃ is given by the following probability
transitions (time is going up, and symbol ∗ represents any element of S̃).

0 0 1
∗

∗
1

?
0
?

?
?
0

0 with probability p

1 with probability 1 − p

0 with probability 1 − q

1 with probability q

1 with probability q

? with probability 1 − p − q

0 with probability p

The envelope PCA Φ̃ is itself the noisy version of the deterministic CA F̃
(which is the deterministic CA obtained when taking p = q = 0 in the table
above), with a noise R̃ that changes any symbol into a 0 with probability p, and
into a 1 with probability q.

For a given configuration in S̃Z, let us weight the occurrences of the symbols
? as follows:

– if a ? is followed by the pattern 01, then it receives weight 3;
– if a ? is followed by a 0 and then by something other than a 1, it receives

weight 2;
– otherwise, a ? receives weight 1.

One can prove that the weight can only decrease under the action of the
deterministic CA F̃ . Precisely, if μ is a shift-invariant and reflection-invariant
distribution on S̃Z, then F̃μ[?01] + F̃ μ[?0] + F̃μ[?] ≤ μ[?01] + μ[?0] + μ[?].

We now add the random noise R̃, and consider the PCA Φ̃. Let μ be an
invariant distribution of Φ̃. By some computations, one can prove that we nec-
essary have μ[?] = 0, since otherwise, we would get Φ̃μ[?01] + Φ̃μ[?0] + Φ̃μ[?] <
μ[?01] + μ[?0] + μ[?], which would be in contradiction with the fact that μ is an
invariant distribution of Φ̃.
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Thus, there is no shift-invariant and reflection-symmetric stationary distri-
bution in which the symbol ? appears with positive probability. Let us iterate
Φ̃ from the configuration ?Z. By a coupling argument, the density Φ̃tδ?Z [?] is
decreasing with t. If it was not converging to 0, then we could extract a conver-
gent subsequence of the Cesàro sums of Φ̃tδ?Z and obtain an invariant distribu-
tion μ of Φ̃ satisfying μ[?] > 0, which is not possible. Thus, Φ̃tδ?Z [?] −−−−→

t→+∞ 0,

and Φ is ergodic.

4 Perturbating a Nilpotent CA

Let F be a nilpotent CA. It means that there exists an integer N such that FN

is a constant function, equal to αZ for some symbol α ∈ S.
If F is not the constant function equal to αZ, then for an ε-perturbation of F

with small ε, the value p? is close to 1. Thus, Proposition 2 (and its analogous for
larger symbol sets) cannot be used to prove the ergodicity of an ε-perturbation
of F . In that case, the envelope PCA as defined in Sect. 2.1 is not an adapted
tool. Nevertheless, once again, the coupling method can be used to prove the
ergodicity.

Proposition 4. Let F be a nilpotent CA. There exists εc > 0 such for ε < εc,
any ε-perturbation of F is ergodic.

Proof. Let ε > 0, and let Φε be an ε-perturbation of F . We prove that if ε is
small enough, we can couple all the trajectories of Φε.

Let K be a finite subset of points of Z. We consider a configuration (xk,0)k∈Z

obtained at time t = 0, after iterating Φε from a given time in the past, using a
sequence (uk,−t)k∈Z,t≥0 of independent samples, uniformly distributed in (0, 1),
and an update function having the following property: if uk,−t > ε, then cell
k is updated according to the local rule of the deterministic CA F , while if
uk,−t ≤ ε, the value may differ. We prove that almost surely, there exists a time
T > 0 such that the evolutions from all the possible starting configurations at
time −T provide the same sequence (xk,0)k∈K at time 0.

We define recursively the sets Ni by N0 = {0}, and Ni+1 = Ni + N =
{a + b ; a ∈ Ni, b ∈ N} for i ≥ 0, so that Nt is the neighbourhood of F t.

For k ∈ Z, and times t, i ≥ 0, we define Vi(k,−t) = {(k + 	,−t − i), 	 ∈ Ni}.
It is the set of cells at time −t − i in the space-time diagram from which the
state of cell k at time −t may depend.

We also introduce W (k,−t) =
⋃

0≤i≤N−1 Vi(k,−t), where we recall that N

is such that FN is constant, equal to αZ.
We call a cell (k,−t) an error if uk,−t ≤ ε. Since FN is a constant function,

if there is no error in W (k,−t0), then the value xk,−t0 of cell k at time −t0
does not depend on the value of the configuration at time −t0 − N (we have
xk,−t0 = α in all cases).

For k ∈ Z, t ≥ 0, let us define the set:

E(k,−t) =

{
∅ if there is no error in W (k,−t),
VN (k,−t) if there is at least one error in W (k,−t).
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We define recursively the sets (Ai)i≥0 by A0 = K × {0}, and:

Ai+1 = E(Ai) =
⋃

(k,−t)∈Ai

E(k,−t) for i ≥ 0.

Note that if (k,−t) ∈ Ai, then t = iN . We have the following property: if Ai

is empty, then if we iterate Φε from time −iN to time 0, using the samples
(uk,−t)k∈Z,0≤t<iN , the values (xk,0)k∈K obtained on K at time 0 do not depend
on the choice of the configuration (xk,−iN )k∈Z ∈ SZ from which we start at time
−iN .

In the figure below, errors are represented by red dots. Blue domains represent
cells that are known to be in state α (there are no errors affecting them in the
last N time steps). Black domains represent cells for which we need further
information in the past to determine their state.

0

−N

−2N

−3N

A0 = K × {0}
Time

A1

A2

A3 = ∅

Let us prove that if ε is small enough, then almost surely, there exists an
integer after which all the sets Ai are empty.

We set mi = Card Ni. Let (	,−t) be an error, with t = iN +j, 0 ≤ j ≤ N −1.
We have (	,−t) ∈ W (k,−iN) if and only if k ∈ 	−Nj . Thus, the number of points
(k,−iN) such that (	,−t) is an error of W (k,−iN) is bounded by mj ≤ mN−1.
If there is an error in W (k,−iN), then Card E(k,−iN) = mN . It follows that a
given error has a contribution of at most L = mN−1mN points to Ai+1.

Let M = m0 + m1 + . . . + mN−1. We have Card W (k,−t) = M for any
k ∈ Z, t ≥ 0. The number of points of

⋃
k∈Ai

W (k,−iN) is thus smaller than
(Card Ai) × M , and each point is an error with probability ε, independently.
Consequently, Card Ai+1 is bounded by the sum of (Card Ai) × M independent
random variables, whose value is L with probability ε, and 0 with probability
1 − ε. If ε < 1/LM , a comparison with a branching process proves that there is
extinction: almost surely, the sets Ai are eventually empty. Consequently, Φε is
ergodic (note that the bound given for ε is rough and can certainly be improved).
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5 Noisy Permutive Cellular Automata

Let F be a CA of neighbourhood N = {	, 	 + 1, . . . , r} and local function f :
Sm → S, with m = r − 	 + 1 ≥ 2. We say that F is left-permutive (resp.
right-permutive) if, for all w = w�+1 · · · wr ∈ Sm−1, the mapping:

τw : S → S

a �→ f(aw) (resp. f(wa))

is bijective. A CA is permutive if it is either left or right-permutive. It is bipermu-
tive if it is both left and right-permutive. For example, if S = Zn and a, b, c ∈ Zn,
the affine CA defined by f(x, y) = ax + by + c is left-permutive (resp. right-
permutive) if a (resp. b) is invertible in Zn.

Let F be a permutive CA. Using the bijections τw one can prove that F
is surjective. For deterministic CA, surjectivity is equivalent to preserving the
uniform distribution λ on SZ (that is, the product of the uniform distribution
on S). Next proposition shows that when adding a noise preserving λ, the PCA
indeed converges to λ. The proof below is adapted from a work of Vasilyev [2,4].

Proposition 5. Let F be a permutive CA, and let R be a positive noise preserv-
ing the uniform distribution. The noisy version Φ of F with noise R is ergodic,
and its unique invariant distribution is the uniform distribution λ.

Proof. We will prove that for any N ∈ N, and any initial distribution μ on SZ,
the marginal distribution of Φtμ on K = {−N, . . . , N} converges exponentially
to the uniform Bernoulli distribution on SK , that we denote by λK . Precisely, we
will prove that for any N ∈ N, there exists θ < 1 such that for any distribution
μ on SZ, we have: ∀t ≥ 0, ||(Φtμ)|K − λK ||1 ≤ 2θt, where for u : SK → R,
||u||1 =

∑
x∈SK |u(x)|.

Let us first assume that F is left-permutive and that N = {0, 1, . . . , r}, and
let w ∈ Sr. By permutivity of F , we have a bijection

σw : SK −→ SK

x �−→ f(xw),

where we still denote by f the map from SK∪{N+1,...,N+r} to SK induced by the
local function of the CA F .

So, when fixing the word w as a boundary condition on the right of K, the
noisy CA Φ maps a word x ∈ SK to a random word ZK distributed according
to a product distribution with marginal distribution R(yk) at site k ∈ K, where
y = σw(x). From a given x ∈ SK , we denote by Pw(x, z) the probability for ZK

to be equal to some z ∈ SK , so that: Pw(x, z) =
∏

k∈K Ryk,zk
.

Recall that λK is the uniform distribution on SK . The map σw being bijec-
tive, it preserves λK . By assumption, the noise R also preserves the uniform
distribution, so that we obtain PwλK = λK .
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For any w ∈ Sr, the transition matrix Pw is positive. Therefore, there exists
θw < 1 such that for any probability distributions ν, ν′ on SK , we have

||Pwν − Pwν′||1 ≤ θw||ν − ν′||1,

the above inequality being true in particular for θw = 1 − εw, where εw =
min{Pw(i, j) ; i, j ∈ S}.

Let us set θ = max{θw ; w ∈ Sr}. It follows that for any sequence (wt)t≥0 of
words of Sr, we have: ||Pwt−1 . . . Pw1Pw0ν − Pwt−1 . . . Pw1Pw0ν

′||1 ≤ θt||ν − ν′||1.
In particular, for ν′ = λK , we obtain that for any distribution ν on SK and any
sequence (wt)t≥0 of words of Sr, ||Pwt−1 . . . Pw1Pw0ν−λK ||1 ≤ θt||ν−λK ||1 ≤ 2θt.

t = 0

t = 1

t = 2

t = 3

Time

w0

w1

w2

w3

V0 ∼ ν

V1 ∼ Pw0ν

V2 ∼ Pw1Pw0ν

V3 ∼ Pw2Pw1Pw0ν

−N N N + r

Let now μ be a distribution on SZ. When iterating Φ, it induces a random
sequence of words (Wt)t≥0 on {N + 1, . . . , N + r}. Using the above inequality,
we get:

∀t ≥ 0, ||(Φtμ)|K − λK ||1 ≤ max
w0,...,wt−1∈Sr

||Pwt−1 . . . Pw1Pw0μ|K − λK ||1 ≤ 2θt.

If the neighbourhood of F is not of the form N = {0, 1, . . . , r}, then there
exists s ∈ Z such that F ◦ σs is a left-permutive CA having a neighbourhood
of that form. The noisy version of F ◦ σs is Φ ◦ σs, and the previous inequality
provides: ||((Φ ◦ σs)tμ′)|K − λK ||1 ≤ 2θt, for any distribution μ′. In particular,
for μ′ = σ−stμ, since Φ and σ commute, we obtain: ||(Φtμ)|K − λK ||1 ≤ 2θt,
which ends the proof. The right-permutive case is analogous.

In a collaboration still in progress with S. Taati and M. Sablik, we investigate
the ergodicity of more general noisy surjective CA.

Concerning elementary PCA, it is still a challenging open question whether
they are ergodic as soon as θij ∈ (0, 1) for all i, j ∈ S.
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1 Introduction

The notion of type to designate a class of values, and the operations on those
values, is a central feature of any modern programming language. In fact, we
keep calling them programming languages, but the part of a modern language
devoted to the actual specification of the control flow (that is, programming
stricto sensu) is only a fraction of the language itself, and two different languages
are not much apart under that perspective. What “makes a language” are much
more its modelling capabilities to describe complex relations between portions
of code and between data. In a word, the central part of a language is made by
the abstraction mechanisms it provides to model its application domain(s), all
issues the language theorist may well group together in the type chapter of a
language definition.

The conquest of the summit by the notion of type is the result of a rather
slow process in the history of programming languages. In a previous paper [21]
we have sketched some of the earliest history, observing that the concept of type
we understand nowadays is not the same it was perceived in the sixties, and
that it was largely absent (as such) in the programming languages of the fifties.
While the technical term “type” arrives on the scene at the end of the fifties (for
sure in the report on Algol 58 [26])1, the use of types as a modelling tool for
the “objects of the real world” is the contribution of the sixties (in particular
under the influence of McCarthy [22] and Hoare [15]), which will materialize

1 The very first use of the term “type” in programming is probably Curry’s [7], to
distinguish between memory words containing instructions (“orders”) and those
containing data (“quantities”). These reports by Curry, as reconstructed by [10],
contain a surprising, non-trivial mathematical theory of programs, up to a theorem
analogous to the “well-typed expressions do not go wrong” of [23]! Despite G.W.
Patterson’s review on JSL 22(01), 1957, 102–103, we do not know of any influence
of this theory on subsequent developments of programming languages.

c© Springer International Publishing Switzerland 2016
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in languages like Algol W [30] or Pascal. Moreover, we observed in [21] that
the notion of “type” of programming languages, which we now conflate with the
concept of the same name of mathematical logic, is instead relatively independent
from the logical tradition, until the Curry-Howard isomorphism [18] will make
an explicit bridge between them. The connection between these two concepts
remains anonymous for a long time—some of the people knew very well the
other field, and it is certain that, from mid sixties, the mathematical logic work
started influencing programming languages (we think, among other, to Landin,
Scott, Strachey, Hoare, McCarthy, Morris etc.). But there is no explicit, mutual
recognition—concepts and formal systems are systematically re-discovered in
the two fields. The first explicit connection we know of, in a non technical, but
explicit, way is [16].

The present paper will elaborate on this story, focusing on that fundamental
period covering the seventies and the early eighties. It is there that the types
become the cornerstone of the programming language design, passing first from
the abstract data type (ADT) movement and blossoming then into the object-
oriented paradigm. This will also be the occasion to reflect on how it could have
been possible that a concept like ADTs, with its clear mathematical seman-
tics, neat syntax, and straightforward implementation, could have given way to
objects, a lot dirtier from any perspective the language theorist may take.

2 Modeling and Correctness

A central issue of the story we have told in [21] is the provision of a language
mechanism to introduce new data types, in an extensible way (that is, differ-
ent from a palette of types fixed at language design time). This materializes
in the two related proposals of records and typed references [15], and Simula’s
classes [9]. A further, important realization is that a type is given not only by
its class of values, but it is defined together the operations acting on those values
(see, e.g., [8]2). Simula was an extension of Algol 60 designed for discrete event
simulation. One of the main concepts in Simula is the class3—the specification
of both data and operations, which may have several dynamic instances (objects
in the modern terminology, or processes in Simula I), whose life is not required
to be dynamically nested. Under this view, Simula classes are a good candidate
as a language mechanism for the definition of such types, since they permit the
simultaneous definition of data and operations. However, this has to be seen
together with the need to enforce some level of correctness, at a syntactic (and
if possible, static) way—a central feature of what Priestley [27] calls the “Algol

2 “A type is a class of values. Associated with each type there are a number of oper-
ations which apply to such values”.

3 “Class” is, however, the terminology of Simula 67; in Simula I they are called activ-
ities.
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research programme4”, where the design of programming languages should assist
(or even guide) the programmer in avoiding bugs or, worse, unintended behaviors
in a program. While Simula classes may be used to define types as “data plus
operations”, they do not provide the necessary abstraction to enforce correctness,
because the language does not distinguish between a type and its implementa-
tion (between, say, a stack, and the list used to implement that stack: a stack
may be incautiously manipulated by any operation on lists). The need for this
abstraction is the core of much literature on data and programming languages
in the early seventies.

3 Abstract Data Types

The search for economic and terse linguistic constructs comes together with the
need for the definition of a precise semantics for those constructs. Parnas’ semi-
nal [25] introduces the term information hiding, meaning that a stable interface
towards the rest of the program should protect the design choices which are
bound to change (which may thus evolve without affecting the other parts of the
program). In Parnas’ view this is a general design methodology, which applies
to types, modules, packages, etc. It is a crucial forward step of the programming
language community that this hiding should be enforced by linguistic abstrac-
tion mechanisms, and not merely guaranteed by a design methodology. Looking
at the published literature (e.g., Morris [24], Hoare [17], Goguen [12], Liskov and
Zilles [20], Reynolds [29]—who also explicitly introduces the expression “repre-
sentation independence”5—, Guttag [14], etc.), we see that around 1972–1973
the time is ripe for a substantial achievement. If Hoare [17] uses an axiomatic
settings, starting from Goguen [12] the (informal) abstraction requirement is
described semantically by freeness—a data type is, in its mathematical seman-
tics, a free algebra over a set of constructors (that is, non-interpreted function
names). Freeness means that one cannot uses implementation dependent infor-
mation on a value, because a values is simply an inductive construction over
the constructors—hence abstraction. Moreover, this provides a powerful proof-
technique on programs—structural induction [3,4]. Finally, equations on terms—
and hence all the good properties of equational logic—provide the axiomatic
semantics needed to distinguish between types (algebras) over isomorphic sets

4 Under this term Priestly refers to the “coherent and comprehensive research pro-
gramme within which the Algol 60 report had the status of a paradigmatic achieve-
ment, in the sense defined by the historian of science Thomas Kuhn. This research
programme established the first theoretical framework for studying not only the
design of programming languages, but also the process of software development.”
Therefore, are grouped under this broad term the developments of structured pro-
gramming, of software engineering à la Dijkstra, of the formal description of pro-
gramming language semantics, etc.

5 A language provides representation independence if two correct implementations of
a single specification of an ADT are observationally indistinguishable by the clients
of these types.
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of constructors, but with different behavior (stacks and queues, say). The notion
of abstract data type will make into programming languages with CLU [19],
which will have a significant impact on subsequent languages.

At the end of the seventies, thus, it seems that types in programming lan-
guages are in a successful, and positive position—type abstraction mechanisms
made into good (albeit essentially academic) programming languages, and their
linguistic constructs come with a clear and mathematically sound formal seman-
tics. However, in a sort of coup de théâtre, at the peak of their success ADTs
will have to give way to another concept—objects, a much dirtier mechanism,
able to enforce a lot less correctness than ADTs. Objects, and not ADTs will be
the real players of the programming languages of the following decade(s).

4 Objects

To understand the fall of ADTs we must contrast correctness with flexibility.
The utopia is to have them both at the same time, but realism tells us that
they represent, most of the time, conflicting aims. ADTs provide abstraction at
the expenses of (reuse and, then, of) compatibility. We cannot give here all the
details of an example of the problem6. Suppose only to have an ADT T with an
operation f , which is then extended into a new type T1, sharing the same values
of T but with an extended set of operations and for which the operation f is
also redefined. It is now natural (and convenient) to assume that the language
enforces that T1 is compatible with T (a value of T1 may appear in any context
requiring T ). The problem now is that in an expression like f(t) the choice of
which code for f will be executed (the one for T or the one for T1) depends on
the static context, that is, on the static type of t. Thus, if t (of static type T )
references a value t1 of type T1 (which may correctly happen, in view of the
compatibility of T1 with T ), it is the erroneous f to be applied to a value of
t1—abstraction breaks, which means that compatibility of T1 and T must be
abandoned, which results in a drastic programming burden.

From this perspective the solution is easy—allow for a dynamic choice for
the selection of the code for f in f(t), depending not from the static typing of t,
but from the actual type of the value referenced by t. In the programming lan-
guage jargon, do not use functions and overloading, and use instead methods and
dynamic lookup. Object oriented programming may be seen as the result of this
observation. It is a paradigm where: (i) there is mechanism which, under certain
conditions, supports the inheritance of the implementation of certain operations
from other, analogous constructs; (ii) there is a notion of compatibility defined
in terms of the operations admissible for a certain construct; (iii) operations on
values are dynamically selected on the basis of the “actual type” of the argu-
ments to which they are applied. These features together allow for the flexibility
of the paradigm when used in actual programming of large scale systems. But,
at the same time, these features together cannot be given semantics in the clean
framework of algebraic types, at least in their simple formulation. Providing a
6 For a pedagogical discussion, see [11], Chap. 10.
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sound semantics and a formal treatment of objects will be a challenge for almost
fifteen years (see, e.g., [1,2,28] for the references therein). Finally, we will have
to explain why types are so central for objects, in view of the lack of types in
languages like Smalltalk [13]. The distinction made in [6] (and the discussion
in [5]) will guide our reflection.

5 Conclusions

The history of computer science is innervated by the continuous tension between
formal beauty and technological effectiveness. Types in programming languages
are an evident example of this dialectics. They are introduced for a better verifi-
cation of the correctness of programs, and yet—contrary to mathematical logic—
they must be experienced by the working programmer as an enabling feature7,
allowing for simpler writing of programs.

In its formal approach, computer science never used ideological glasses (types
per se; constructive mathematics per se; linear logic per se; etc.), but exploited
what it found useful for the design of more elegant, economical, usable artifacts.
This eclecticism (or even anarchism, in the sense of epistemological theory) is
one of the distinctive traits of the discipline, and one of the reasons of its success.
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Pierre-Éric Mounier-Kuhn1 and Maël Pégny2(B)
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Abstract. Founded in 1957, the Association Française de Calcul
(AFCAL) was the first French society dedicated mainly to numerical
computation. Its rapid growth and amalgamation with sister societies
in related fields (Operations Research, Automatic Control) in the 1960s
resulted in changes of its name and purpose, including the invention and
adoption of the term informatique in 1962–1964, then in the adoption of
cybernétique in 1967. Our paper aims at explicating the motives of its
creation, its evolving definition and the functions it fulfilled. We seek to
understand how this association, altogether a learned and a professional
society, contributed to the emergence and recognition of Computing as
an academic discipline in France. The main sources are the scattered
surviving records of AFCAL, conserved in the archives of the Observa-
toire de Paris, of the Institut de Mathématiques appliquées de Grenoble
(IMAG) and of the CNRS’ Institut Blaise Pascal in Paris, as well as
AFCAL’s first congress and journal, Chiffres.

1 Introduction

The Association Française de Calcul (AFCAL) was founded in 1957 by French
academics and industry engineers who wanted to join forces, to form a specialist
community promoting applied mathematics and computing technologies in the
context of the post-war modernization. With this technoscientific and political
agenda, the new society soon attracted hundreds of members and support from
various organizations.

It would be anachronistic to retrospectively tag AFCAL as a champion of
“computer science”. It focused initially on numerical analysis, a sub-discipline
of applied mathematics, and on the use of calculating machines. The idea that
electronic computers and their programs could become a new, distinct scien-
tific academic field did not emerge until the 1960s. One of the main questions
addressed in this paper is precisely how AFCAL participated in this emergence:
what convergence of agenda and which internal tensions came to shape digital
computation as a new academic discipline1.

1 This question is addressed in a broader scope in Mounier-Kuhn (2010a).

c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 170–181, 2016.
DOI: 10.1007/978-3-319-40189-8 18



AFCAL and the Emergence of Computer Science in France: 1957–1967 171

The archives of the association disappeared accidentally in a flood in the
1980s, making our research a bit difficult. The main sources are scattered sur-
viving records of AFCAL, conserved in a variety of institutions: the archives
of the Observatoire de Paris keep a box of papers from AFCAL’s early years2,
those of the Institut de Mathématiques appliquées de Grenoble and of the CNRS
Institut Blaise Pascal in Paris contain correspondences and reports exchanged
between founding members. There are certainly more records waiting to be dis-
covered in other organizations or with private persons. Published sources include
AFCAL journal Chiffres (from 1958) and its conferences (from 1960). Finally,
the first meeting on the history of computing in France included several papers
addressing the evolution of French societies in this field3.

In this sketch of our paper4, we will highlight three episodes of the associa-
tion’s beginnings: the circumstances and motives of its creation; its participation
to the international congress ICIPS and the international association IFIP; the
functions of the association and their evolutions. In this last part, we will exam-
ine the role of the association in the emergence of informatique as a new scientific
discipline.

2 The Emergence of a Computing Community

While the French academic spheres in the post-war period were dominated by
pure mathematics, a growing demand for applied mathematics was expressed
by physicists, and by various branches of engineering. From the late 1940s
on, several young university professors responded to this demand by creating
courses in numerical analysis and computing laboratories (Mounier-Kuhn 2012).
In the early 1950s, electronic calculators were acquired from manufacturers and
installed in these laboratories or, on a larger scale, in big organizations such
as Électricité de France (E.D.F.) and aeronautics companies. In 1955, the first
stored-program computers entered service in France, considerably reinforcing
these facilities and offering new perspectives to mathematical modeling as well
as to data processing.

Within two years, a series of learned societies were founded in related
fields, a veritable blooming of professional communities active in Operations
Research (SOFRO), Automatic Control (AFRA), Measure and Regulation
(AFIC) and Computing (AFCAL). Simultaneously, scientists with political con-
nections established a governmental council, CSRSPT (Conseil Supérieur de la
Recherche Scientifique et du Progrès Technique), in order to support the mod-
ernization of research and higher education. This body identified automatic con-
trol, applied mathematics and computing as a priority sector, under the label
Cybernétique.

2 Archives de l’Observatoire de Paris, Ms 1061 II-2-D.
3 See the papers by Anne Brygoo, Jean Carteron, Colette Hoffsaës and Félix Paoletti

in the proceedings of Colloque sur l’histoire de l’informatique en France, 1988.
4 The present text is only a provisional account of a work in progress, and should not

be quoted without the authors’ permission.
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2.1 Technoscientific Networking: Applied Mathematics
as a Modernization Tool

One of the main actors of this movement was Jean Kuntzmann, an algebraist
turned militant of applied mathematics, who had created a small laboratory of
numerical analysis at the university of Grenoble to meet the needs of the local
Institut Polytechnique5. His correspondance reveals his role as the initiator of
the creation of AFCAL and sheds light on his motivations.

Kuntzmann’s action to foster useful mathematics was supported by the local
academic authorities and by the Ministry of Education which favored initiatives
toward vocational studies. Most of the financial resources of his laboratory came
from contracts with civilian or military clients who appreciated his expertise and,
in turn, brought stimulating problems. The synergy between funding, research,
teaching and practical computing generated a cumulative growth process. In
the mid-1950s, Kuntzmann was recognized in France and abroad as a leading
specialist in his field. He was consulted by junior professors who wanted to
set up their own computing laboratories (in Lille, Nancy, Barcelona and other
universities). His laboratory attracted visiting teachers and doctoral students.

Having systematically informed the major French users about the services
his laboratory could provide, and received acknowledgements of their interest,
Kuntzmann had built an interactive network of colleagues and partners. In April
1956, he began contacting other French specialists to suggest an association.

His correspondents, men of his generation or younger engineers and pro-
fessors, shared his project and responded positively. This first poll allowed
Kuntzmann to solicit and obtain the patronage of academic notabilities at a
higher hierarchical level, the dean of the Paris faculty of science and the director
of Institut Henri Poincaré6. He did not explain his purpose in detail, as these
men obviously knew the usefulness of a learned society: Kuntzmann’s correspon-
dence contains no negative answer, not a single letter from a colleague objecting
to his project.

Already a member of several learned societies, Kuntzmann had a precise
idea of the one he wanted to create. He belonged to the Société française de
mathématiques, which was still too general-purpose and exclusively academic to
be of real use in his project. He also participated in the International Association
for Analog Calculation, which by contrast covered only part of the domain. The
closest model was the American Association for Computing Machinery (ACM)
with its specialized journal, to which Kuntzmann subscribed.

In Spring 1956, Kuntzmann also became a member of the German
Gesellschaft für Angewandte Mathematik und Mechanik (GAMM). Kuntzmann
could not attend the inauguration of the PERM computer in May 1956, but,
always keen on completing his documentation on the state of the art, the
Grenoblois ordered the proceedings of the important Darmstadt conference held
5 Our choice of J. Kuntzmann as a key actor is based on his role as a science

entrepreneur and the availability of his correspondence conserved at the Archives
départementales de l’Isère (Grenoble), henceforth ADI.

6 J. Kuntzmann’s letters to J. Pérès and R. Darmois, May 3 1956 (ADI IMAG 4).
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the previous year7. The GAMM existed since the 1920s and, with its institu-
tional weight, could be a model of what Kuntzmann and his partners wanted to
create in France, where no learned society existed in applied mathematics until
1955.

It is revealing that Kuntzmann aimed to create a new society rather than join
the cybernetician community, which had been popular since Norbert Wiener’s
manifesto in 1948, and which possessed its own organization. While Kuntzmann
sent one of his doctoral students at the International Congress of Cybernetics
(Namur, Belgium, 1956) and ordered its proceedings, he explained in a harsh
letter why he refused to join the Association Internationale de Cybernétique: “I
have always thought that the grandiose term of Cybernetics covers very diverse
matters. Some are mathematical, others are technical. Unfortunately, on top
of that comes some philosophy, and even certainly babble (fumisterie). Either
Cybernetics shall fall into oblivion or, some day, one will have to separate what
is robust from what is not. I reserve my adhesion (and my participation in
meetings) for the moment when this decantation is achieved8.”

We know that this rejection of Cybernetics, or of what it had become in
the mid-1950s, was shared by other French computing pioneers. They believed
Cybernetics could not provide the identity of their emerging profession.

Kuntzmann knew that an informal group existed already in Paris, gather-
ing periodically a handful of specialists and distinguished amateurs in a sem-
inar on numerical calculation. Somehow its lack of institutional strategy and
of scientific ambition reflected the low status of reckoning in the past decades.
Kuntzmann courteously suggested to integrate the group in his future associ-
ation to broaden its scale and scope. The merger was completed swiftly at a
meeting in Paris, during a conference on scientific management. It avoided a
possible conflict and brought a mailing list of 200 corresponding members to
the nascent AFCAL9. The Groupe de Calcul Numérique held its seminars at the
Paris Institut d’Astrophysique, and the AFCAL naturally followed suit, obtain-
ing an office and a mailbox in this convenient venue. More importantly, the
director of the Institut d’Astrophysique, André Danjon, an energetic and open-
minded astronomer, agreed to become AFCAL’s first president, bringing his own
legitimacy and political connections.

Danjon had sent his young astronomers to learn programming on the IBM650
computer at IBM France, and was aware of the potential of the new machines.
Beyond the technical importance of calculation in science, we can suggest the
hypothesis of a solidarity between emerging disciplines. Just like computing in
the years to come, astrophysics had to assert its legitimacy against the con-
servatism of traditional astronomy, which was entirely mathematical and had

7 J. Kuntzmann’s letters to J. Heinhold, TH München, June 5 1956 (ADI IMAG 4).
On the Darmstadt conference, see Petzold (2004).

8 J. Kuntzmann’s letter to AIC, October 2 1956 (ADI IMAG 4).
9 J. Kuntzmann’s letter to É. de Lacroix de Lavalette, May 4 1956 (ADI IMAG 4);

and É. de Lacroix de Lavalette’s historical report on his Groupe de calcul numérique,
1995. Private archives of the first author.
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reasons to view astrophysics as an uncertain science, lacking rigor, perhaps not
a science at all: “Basically [for them], astrophysics could not be considered a
science” (À l’extrême, l’astrophysique ne pouvait être considérée comme une
science10).

Under Danjon’s tutelage, AFCAL had two vice-presidents: Prof. Jean-André
Ville, a mathematician who had just been put in charge of a computing center
at the Paris faculty of science; and Jean Carteron, a Polytechnique engineer who
headed the computing center at the R&D Department within E.D.F., and was
equally active in founding the association (EDF sponsored AFCAL generously)
(Mounier-Kuhn 2010b). Kuntzmann reserved for himself the responsibility of the
future journal, a position of scientific gate-keeper in the new field.

Kuntzmann’s work to promote modern theories and practices in applied
mathematics was in synergy with the efforts of the computer industry to market
their machines and their applications, and with the need of mathematical model-
ing among users. The lists of AFCAL members (200 in 1957, some 500 six years
later) and of the institutions where they worked offer a fairly complete picture
of French applied mathematics11: higher education and research, laboratories of
major public or private companies, computer makers, consultants in mathemat-
ical and programming expertise. These various specialists felt the need to share
their experiences and to promote their methods, which was the primary func-
tion of the association. It took nearly a year to create the association, as each
founding member had many other urgent tasks. The constitutive assembly (May
31 1957), beyond adopting the charter, heard lectures on the present computing
needs and resources among users, on recent machines’ capabilities, and on the
search for better programming methods that AFCAL should foster, a program
covering most of the purposes of the association.

In June 1957, Kuntzmann set to create its journal, Chiffres, that is to find a
suitable publisher and to hunt for good papers. The journal would also include
sections devoted to scientific news, the announcement of courses and seminars,
reviews of books and of conferences... In October, Carteron urged Kuntzmann
to “give life as soon as possible to the Association” by organizing meetings,
and both men gave it all the publicity they could in France and abroad. By
November, Kuntzmann had formed an editorial board and gathered sufficient
material for a first issue of Chiffres.

From its very beginning on, the association had an international dimension.
Firstly, its membership soon included mathematicians working in Switzerland
(Charles Blanc, Pierre Banderet, etc.), in Italy (particularly at the Olivetti-Bull
joint venture) and in Belgium (Vitold Belevitch, Jacques Burniat). About 10 %
of AFCAL members in the early 1960s worked outside of France. Its audience
still remained limited to French-speaking countries or readers, as its publications
provided initially no English abstracts.

10 Evry Schatzmann’s interview with J.-F. Picard, February 24 1987.
11 Annuaire 1963 de l’AFCALTI. Archives privées de J. Carteron.
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3 Creating an Internationale of Computing:
IFIP and Its Scientific Agenda

Soon after its creation, the association contributed to establish an internationale
of computing specialists. In December 1957, AFCAL was contacted by an Amer-
ican engineer and entrepreneur, Isaac L. Auerbach. As a member of the US Asso-
ciation for Computing Machinery (ACM), he planned to come to Paris in order
to organize an international meeting of Information Processing societies from
different countries. Isaac Auerbach had just left the Burroughs Corporation to
form his own consultant company. Establishing international contacts to help
Auerbach Associates conduct market surveys was certainly an incentive. Yet the
main rationale for this internationalization was, as in other learned societies, to
exchange information and gain political weight collectively.

The French reacted positively and agreed to meet with Auerbach and to
cooperate for the preparation of the conference12. Just as in the creation process
of AFCAL, the movement to join forces and cooperate appears to have been
quite smooth: it was somewhat obvious to all actors, and it hardly needed more
explanation than a few words in a letter. In June 1958, in Paris again, an ad-hoc
committee gathered computer experts from most developed countries to organize
the conference.

The International Conference of Information Processing Societies (ICIPS)
met in June 1959 at the UNESCO building in Paris, gathering some 1800 par-
ticipants from 38 countries during a week. For many French scientists, it was the
first opportunity to hear foreign scholars (particularly Americans) present their
work, and to discover the state of the art in programming techniques and in
non-numerical applications of computers, an important milestone in their evo-
lution towards research in computer science. Beside processor architecture or
computing and coding methods, sessions were devoted to machine translation,
pattern recognition, machine learning or future perspectives in computing. This
diffusion of information was precisely the purpose pursued by Isaac Auerbach
and Pierre Auger, the physicist who headed the French delegation at Unesco13.

The ICIPS conference gave birth to the International Federation for Informa-
tion Processing (IFIP) (see Auerbach 1986; Carteron 1996). From then on, IFIP
set up a similar worldwide conference every three years in a major city (Munich
in 1962, New York in 1965, etc.). The mere existence of this global learned soci-
ety and of its conferences, comparable with those in astronomy or geophysics,
contributed to establish a scientific status for information processing. Such a
status was explicitly targeted since its creation, as highlighted by the general

12 Correspondence between I. Auerbach, A. Danjon, J. Carteron, J. Kuntzmann and J.
Ville, December 7–12 1957 (ADI IMAG 5) and Archives de l’Observatoire de Paris,
Ms 1061 II-2-D.

13 The 600 pages proceedings were published by the UNESCO both in Paris (1960) and
London (1960). Pierre Auger happened to coin the term Traitement de l’information,
translated from “Information processing”. The journal of the congress can be found
at http://unesdoc.unesco.org/images/0015/001537/153718fb.pdf.

http://unesdoc.unesco.org/images/0015/001537/153718fb.pdf
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secretary of the 1959 conference, Pierre Auger: “It is absolutely indispensable
to have an international organization to respond to the needs of the science of
Information Processing14”.

Moreover, in subsequent years the IFIP created specific committees on spe-
cific problems: Software theory and practice, Algorithmic languages and calculi,
Formal description of programming concepts, Programming languages, Program-
ming methodology. IFIP thus not only constituted an international computing
community, it also provided it with a scientific roadmap of research directions.

Being essentially French-speaking was not a serious handicap for the associ-
ation, at a time when many mathematicians could at least read French as well
as German. The association was thus part, from its beginnings, of an interna-
tional family of sister societies with which it actively interacted. J. Carteron
became IFIP’s treasurer and general secretary. AFCAL members participated in
the various IFIP committees and working groups, discussing research and educa-
tion problems and drawing inspiration from foreign experiences (Mounier-Kuhn
2014).

4 Tensions Over a New Discipline

4.1 Applied Mathematics vs Data Processing

Operations research was excluded from AFCAL’s scope, as it already had its
own society. So was all work exclusively related to hardware, which belonged to
the Société Française des Electriciens, the French member of IEEE, and could
be published in a new journal, Automatisme. As for data processing, it was a
set of office techniques remote from any scientific formalization. The association
constituted the study of computation as a specific, hierarchized object, where
calculating machines were scientific instruments applying branches of mathemat-
ics.

Since the very beginning of AFCAL, however, a tension had appeared
between two conceptions of its scope: one centered on applied mathematics, the
other pushing to include data processing. And of course this would grow along
with the progressive diversification of the society in the following decade. In 1957
already, Carteron had written a letter to president Danjon on the definition of
AFCAL’s domain. Carteron recommended not to separate numerical comput-
ing and information processing: “For example, problems of sorting on magnetic
tapes, or of machine translation of language, are part of our preoccupations,
as well as the technical aspects of automatic data processing problems15”. The
fact that he mentioned these particular problems reveals that he was remark-
ably aware of recent research directions. There was also a sociological rationale
in his proposal: with the advent of electronic computers, data processing would
soon become too complex for traditional punch-card technicians; it would require

14 Journal du Congrès, No. 6, p. 2 (italics ours).
15 J. Carteron’s letter to A. Danjon, December 6 1957 (Archives de l’Observatoire de

Paris, Ms 1061 II-2-D).
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engineers trained at a higher level, who could be eligible among the advanced
elite of AFCAL members.

At the other end of the spectrum, Kuntzmann, like other academic numerical
analysts, wanted to involve the association in militantism for a reform of mathe-
matical education, in order to give more room to applied mathematics. In several
letters and reports, he advocated for a restructuring of mathematical categories,
which would acknowledge the importance of “algorithmic mathematics”. Even if
he was soon to include a machine translation team in his institute, and courses
on data-processing techniques in its curriculum, his priority always remained
applied mathematics. Even decades later he kept considering informatique a
technical application of mathematics.

In 1960, this debate became a central topic at AFCAL’s annual assembly.
The members who wanted to broaden the association’s scope to data processing
were led by Jean Carteron, Henri Boucher, a computer pioneer in the French
Ministry of Defence, and Philippe Dreyfus, then a sort of sales evangelist for
Bull computers who had already an international reputation. They succeeded in
adding to the association’s name the initials “TI” (traitement de l’information).
Thus renamed, AFCALTI asserted the unity of a field broadened beyond applied
mathematics, precisely at the time when it organized a joint conference with
SOFRO (Operations Research) and the French chapter of The Institute of Man-
agement Sciences (TIMS). This change was still consolidated as Carteron was
elected president as successor to Danjon. The journal’s title became Chiffres-
Revue française de traitement de l’information.

4.2 Toward a New Scientific Discipline

At the 1962 annual assembly, a neologism, informatique, was defined by Philippe
Dreyfus and Robert Lattès as the“technique of the logical and automatic process-
ing of information, the support of human knowledge and communication” (see
Ph. Dreyfus 1962). Note that various attempts had already been made to name
the computer field, including Informatik in Germany as early as in 1957. Ph.
Dreyfus later explained the invention of informatique by the simple need he felt
to name his professional occupation, encompassing all types of applications of
electronic computers16. But there was another reason: Dreyfus had just left Bull
to create a software and service bureau firm, in partnership with Robert Lattès, a
brilliant mathematician who worked simultaneously for the French atomic energy
authority (Commissariat à l’Énergie Atomique) and for a mathematical consul-
tancy firm, SEMA. Informatique was the brand name of their company, just as,
at the same time across the Atlantic, Walter Bauer founded Informatics Inc.

According to the president of AFCALTI, Carteron, informatique covered “all
disciplines covered by calculation and information processing, from the logical
design of computers to numerical analysis through machine translation.” (see
Carteron 1963) Defined as a “technique” in 1962, informatique thus evolved
into a set of “disciplines”.

16 P. Mounier-Kuhn’s interview with Ph. Dreyfus, September 21 2007.
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A further step was taken in the proceedings of the third congress of the asso-
ciation (CNRS 1963). In the brief introduction, the editors asserted that pro-
gramming was no longer a mere means to communicate with the machine, but
that it turned into “a science of languages extending from algebra to decision
theory”, allowing to define “the modes of expression as well as the construc-
tion of compilers [...]. Finally, considerations about logic allowed to monitor the
evolution of ideas concerning theoretical informatique”. Science, informatique
théorique: these bold assertions were thus launched, with no explanatory devel-
opment, likely to stimulate the discussion and to accelerate an evolution.

It is also a good case for a geography of science. The fact that this hap-
pened in Toulouse is not irrelevant. None in Grenoble would have written such
provoking phrases under Kuntzmann’s direction. The Toulouse computer scien-
tists, by contrast, were mainly physicists, engineers or applied mathematicians
coming from marginal positions. Contrary to Kuntzmann, they did not worry
about their mathematical legitimacy, and felt more free to embrace a new acad-
emic identity. The next year, Dreyfus and Lattès hammered their message again.
Aiming at a broader readership than AFCALTI members, they chose Le Monde
to publish an article-manifesto: “A new discipline: Informatique” (Lattès and
Dreyfus 1964). The context was favourable: several French universities had
already created specialized degrees, IBM had just launched its “third genera-
tion” computers, operating systems were now a central issue for computer sci-
entists, and the takeover of the French company Bull by General Electric had
triggered reactions in industry and government spheres.

The headlines described informatique as a broad set of sciences and tech-
niques, reflecting the variety of AFCALTI’s interests. Then Dreyfus and Lattès
recalled their definition of 1962, but assertively added a much more scientific
dimension: “More than a simple technique, computing is a discipline, a science-
interface (une science-carrefour) covering a large and disparate sector as much
technical as scientific; it is also a mental attitude in approaching problems.”
They insisted that computing had become a fully-fledged research sector, with
specific matters of its own “such as software and certain technologies”. In con-
clusion the article stressed the growing importance of computing for society and
economy, which required its integration in all parts of higher education and exec-
utive training, “to raise generations of men adapted to the mode of thought now
required by the machine.”

By that time, informatique was being gradually adopted in French common
vocabulary, coexisting with other terms, and triggering discussions (within and
outside the association) about its content, its meaning, its position between
science and technology. The controversy opposed mainly those who thought in
terms of applied mathematics and those who asserted the central place now
occupied by computers in different activities. Branch or application of math-
ematics? Or technique, or even science of computers? or of information? The
initial definition given in 1962 was tentative, and anyone was entitled to pro-
pose variants of it. This debate would eventually continue over several decades,
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drawing a dividing line within academic spheres, and shaping its institutional
organisation.

4.3 The Evolving Functions of the Association
and the Institutionalization of Computing

Finally, we examine how the definition of the functions of the association evolved
over time, and draw lessons on the emergence of Computing as a new professional
field in France.

The association had multiple functions from the start. Its founders knew that
their field and its economic impact were growing fast. One of their initial goals
was to increase awareness of the potential applications of computation among
institutional actors; some members such as J. Kuntzmann also wanted to involve
the association in their campaign for a reform of mathematical education, which
would give more room to applied mathematics and numerical computation.

But the association was initially dominated by academics and engineers, and
its primary goal was research. A key issue in the definition of its function was
thus the definition of its scientific object. This definition underwent important,
and somewhat tortuous evolutions during its first ten years. In the beginning, it
was dedicated to computation, its methods and the relevant mathematical devel-
opments. Analog computation was not excluded, but numerical computation was
central.

But as we have seen (Sect. 4.1), as computing applications kept growing, a
more applied point of view gained traction within the association, and it became
more and more inclusive. This expansion was justified by the common inter-
ests shared by the different specialists, and by the extremely rapid growth of
computer applications. This rate of growth helps to explain the frantic pace of
institutional evolution, as the association underwent three amalgamations in less
than a decade.

If the term “amalgamation” is adequate at an institutional level, it is nev-
ertheless misleading at the level of research practices. The series of institutional
amalgamations did not erase the differences between the various intellectual
traditions involved. Considering its scientific object, the evolution of the asso-
ciation might be better described as a movement of “expansion-subdivision”.
In its March-April 1967 issue, the Chiffres journal was divided in two collec-
tions, one for theory and methodology, the other for practice. In 1968 it was
further divided into three different collections: mathematics, computer science,
operations research. In the 70s, the subdivision process continued, as the asso-
ciation itself was subdivided into subsections and work groups (Brygoo 1988).
The association was thus a place where different subdisciplines would interact,
not a melting pot where those subdisciplines would lose their original identities.

The association general assembly, and Chiffres were also places where infor-
matique was proposed and discussed as a disciplinary term. Less successful neol-
ogisms, such as the ‘economic cybernetics’ (cybernétique économique), reveal
the fluidity of the new professional domain, and the efforts made to cope with
it. As Gingras (1991) put it, scientific associations are a privileged place for
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specialists of a given domain to articulate a discourse on their activity and intel-
lectual identity, both for themselves and for outsiders. Terminological innovation
is thus a way to define and defend the identity of a new group of specialists. The
association was thus one of the institutions where the professional identity of
informaticien emerged.

To conclude, let us use this story to test the idea that the creation of scientific
associations can be a criterium for the emergence of new disciplines. When it
was renamed AFIRO, the association was a scientific institution at least includ-
ing computer science as part of its object. According to this criterium, it played
a part in the institutionalization of computer science. But a couple of remarks
should be made in order to understand more precisely this institutionalization
process. We must distinguish between disciplines qua intellectual tradition and
disciplines qua institution. As Gayon (2015) remarked, an intellectual tradition
like evolutionary theory could exist for decades without being institutionalized,
and natural history is still an academic institution without being an autonomous
intellectual tradition anymore. Furthermore, for an association to be the insti-
tutionalization of intellectual tradition X, the intellectual tradition X has to
be identified as such by actors. In a typical scenario, an intellectual tradition
would be formed before it would be equipped with institutions such as scientific
societies.

But at the beginning of the AFCAL, it was not obvious that computation,
even if its fast development demanded an institutional response, would represent
a distinct intellectual tradition, other than just a branch of applied mathemat-
ics. Second, even when the intellectual tradition of computer science started to
emerge, it did not lead the association to focus exclusively on computer science -
quite the contrary. The word informatique was included in its title precisely when
the scope of the association was broadened to include recherche opérationnelle
(operations research), then automatics and control. The association thus defined
and covered a much broader field of expertise and applications than the academic
discipline of computer science in France would in the near future, since Opera-
tions Research and Automatics have autonomous academic institutionalizations
outside of computer science departments.

Far from being just an institutionalization of an already existing academic
tradition, the association was a forum where, through collaborative work, ten-
sions over agenda and terminological debate, the conscience of the existence of
a new discipline, computer science, was going to emerge. Using the existence
of the association as a static criterium for the institutionalization of an acad-
emic tradition masks its dynamic role in the very constitution of this intellectual
tradition.

5 Conclusion

The creation of the AFCAL, and much of its evolution, was application driven.
The huge expansion of computer applications in the first years of its existence
is the driving force behind the growth of its membership, and the fluidity of its
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scope. It can be also seen as a decisive factor in the definition of the various asso-
ciation functions. Spreading the knowledge about potential applications of the
new technologies among institutional actors, reforming the mathematical educa-
tion, gathering specialists coming from different domains around a new research
object: all these actions can be understood as a fast institutional response to a
rapidly evolving field of high socio-economical impact.
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l’informatique, Le Monde, 9 Juillet 1964, p. 9 (1964)

Gayon, J.: Biologie et philosophie de la biologie: paradigmes. In: Hoquet, T., Merlin,
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Abstract. Recent work in reverse mathematics on combinatorial princi-
ples below Ramsey’s theorem for pairs has made use of a variety of com-
putable reductions to give a finer analysis of the relationships between
these principles. We use three concrete examples to illustrate this work,
survey the known results and give new negative results concerning RT1

k,
SRT2

� and COH. Motivated by these examples, we introduce several vari-
ations of ADS and describe the relationships between these principles
under Weihrauch and strong Weihrauch reductions.

1 Introduction

The general project of reverse mathematics is to formalize mathematical the-
orems in second order arithmetic and to determine which set-theoretic axioms
are required to prove them. Typically, we take RCA0, which includes the non-
induction axioms of PA as well as the Δ0

1-comprehension and Σ0
1 -induction

schemes, to be the base subsystem of second order arithmetic over which we
prove our equivalences. RCA0 has the advantage that it allows a reasonable
amount of coding and that theorems provable in RCA0 roughly correspond to
theorems for which existential objects can be found computably in the para-
meters. More specifically, an ω-model satisfies RCA0 if and only if the second
order part of the model is closed under Turing reducibility and the Turing join.
The ω-models of other subsystems of second order arithmetic can be described
in similarly natural computability-theoretic terms. These connections allow us
to prove results in reverse mathematics using techniques and intuitions from
computability theory.

While we will primarily be concerned with ω-models, it is worth noting the
importance of non-ω-models. They play a crucial role in, for example, measuring
levels of induction or conservation. More importantly for our purposes, they
are used to separate Ramsey’s theorem for pairs (RT2

2) from its stable version
(SRT2

2). In the next section, we will define RT2
2 and SRT2

2 precisely, but for now
we use them to make a motivational point. From a computability standpoint, the
natural first step to separate these principles would be to prove that for every Δ0

2

set D, either D or D contains an infinite low set. Unfortunately, this statement
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c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 182–191, 2016.
DOI: 10.1007/978-3-319-40189-8 19



Computable Reductions and Reverse Mathematics 183

is false (see [6]), so this method fails at its initial step. However, Chong et al. [4]
constructed a non-ω-model of RCA0 in which this property holds and they used
this model to prove that SRT2

2 does not imply RT2
2 over RCA0.

One of the underlying motivations for the work presented here is the ques-
tion of whether SRT2

2 and RT2
2 can be separated by an ω-model. Because the

fundamental property of the Chong, Slaman and Yang model is false in any
ω-model of RCA0, it appears that new ideas are needed. There are a range of
tools from proof theory and computability theory to compare the strengths of
theorems and many of these tools give a finer analysis than the analysis given
by provable equivalence over RCA0. In this article, we will use several concrete
examples to survey recent results in this direction using reductions which are
more commonly used in computable analysis.

We begin by restricting our attention to ω-models and to combinatorial prin-
ciples which have the Π1

2 form

∀X (Φ(X) → ∃Y Ψ(X,Y ))

where Φ(X) and Ψ(X,Y ) are arithmetic. We refer to a statement P of this form
as a problem and we refer to sets X which satisfy Φ(X) as instances of P . Given
an instance X of P , we call a witness Y such that Ψ(X,Y ) a solution to X.

Given two problems P and Q of this form, consider how we might show that
P holds in every ω-model of RCA0 + Q. Fix an ω-model of RCA0 + Q and recall
that the second order part of this model is a Turing ideal, so it is closed under
Turing reducibility and the Turing join. We fix an instance X of P in this ideal
and try to construct an instance X̂ of Q which is also in the ideal. The simplest
way to ensure that X̂ is in the ideal is to make it computable from X. Because
X̂ is in the ideal, it must have a solution Ŷ in the ideal and, because the ideal
is closed under the join operation, Ŷ ⊕ X is also in the ideal. If we are lucky, we
can use Ŷ ⊕ X to compute a solution Y to X which, because the ideal is closed
under Turing reducibility, will also be in the ideal.

Many proofs of implications Q → P in RCA0 proceed in this manner. How-
ever, it is worth noting that many variations are possible. For example, the proof
could be more complicated in the sense that it requires us to solve several (pos-
sibly nested) instances of Q before computing a solution to X. On the other
hand, the proof could be simpler in the sense that the solution Ŷ to X̂ might
already be a solution to X. More generally, Ŷ might compute a solution to X
without needing to reference the original instance X of P .

The following definition gives a framework in which we can begin to address
these finer questions about exactly how the proof of P from Q (over ω-models
of RCA0) proceeds. In the next section, we will illustrate these reductions with a
number of concrete examples. Hirschfeldt and Jockusch [9] give many additional
examples as well as more general reduction procedures to extend this type of
analysis.
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Definition 1. Let P and Q be problems.

1. P is ω-reducible to Q, denoted P ≤ω Q, if every ω-model of RCA0 + Q is a
model of P . (This reducibility has also been called computable entailment in
a number of earlier articles).

2. P is computably reducible to Q, denoted P ≤c Q, if every instance X of P
computes an instance X̂ of Q such that if Ŷ is any solution to X̂, then there
is a solution Y to X computable from X ⊕ Ŷ .

3. P is strongly computably reducible to Q, denoted P ≤sc Q, if every instance
X of P computes an instance X̂ of Q such that if Ŷ is any solution to X̂,
then there is a solution Y to X computable from Ŷ .

4. P is Weihrauch reducible to Q, denoted P ≤W Q, if there are Turing func-
tionals Φ and Δ such that if X is an instance of P , then ΦX is an instance
of Q and if Ŷ is any solution to ΦX , then ΔX⊕Ŷ is a solution to X.

5. P is strongly Weihrauch reducible to Q, denoted P ≤sW Q, if there are Turing
functionals Φ and Δ such that if X is an instance of P , then ΦX is an instance
of Q and if Ŷ is any solution to ΦX , then ΔŶ is a solution to X.

It is straightforward to see that the following implications hold between these
reductions. Hirschfeldt and Jockusch [9] prove that none of the given arrows
reverse.

2 Three Examples

In this section, we give three examples of relationships between principles below
Ramsey’s theorem for pairs to illustrate these reducibilities. To fix notation, let
[ω]2 denote the set of pairs 〈x, y〉 with x < y. We frequently use k to denote the
set {0, . . . , k − 1}.

Definition 2. A k-coloring of [ω]2 is a function c : [ω]2 → k and we write
c(x, y) in place of c(〈x, y〉). We say that c is stable if for every x, there is a
color i < k such that for every sufficiently large y, c(x, y) = i. That is, for every
x, limy c(x, y) exists. For a stable coloring c, we say that x has limit color i if
limy c(x, y) = i.

Given a coloring c : [ω]2 → k, we say that H ⊆ ω is homogeneous if there
is a color i such that c(x, y) = i for all x, y ∈ H with x < y. In this case, we
say that H is homogeneous for color i. Similarly, if c is a stable coloring, we say
that H is limit homogeneous if there is a color i such that limy c(x, y) = i for all
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x ∈ H. When we are dealing with more than one coloring, we will refer to sets
which are homogenous for the coloring c as c-homogeneous sets.

Definition 3. We define the following versions of Ramsey’s theorem.

– Ramsey’s theorem for pairs (RT2
2). Every coloring c : [ω]2 → 2 has an infinite

homogeneous set.
– Stable Ramsey’s theorem for pairs (SRT2

2). Every stable coloring c : [ω]2 → 2
has an infinite homogeneous set.

– Limit Ramsey’s theorem for pairs (D2
2). Every stable coloring c : [ω]2 → 2 has

an infinite limit homogeneous set.
– Ramsey’s theorem for singletons (RT1

k). Every coloring c : ω → k has an
infinite homogeneous (i.e. monochromatic) set. (This principle is often called
the pigeonhole principle.)

Each of these statements can be written in the Π1
2 form given above. In

each case, the instances of the problem are the colorings of the appropriate type
and the solutions to a given problem c are the infinite homogeneous sets of the
appropriate type. We introduce one final principle which will be used in our
third example.

Definition 4. A set Y is cohesive for a sequence 〈Xn | n ∈ ω〉 of subsets of ω
if for every n, either Y ∩ Xn or Y ∩ Xn is finite.

– Cohesive principle (COH). For every sequence 〈Xn | n ∈ ω〉 of subsets of ω,
there is an infinite cohesive set Y .

Example 1. We consider the principles D2
2 and SRT2

2. D
2
2 arises naturally in

computability theory by considering a set D ≤T 0′ with a fixed Δ0
2 approxima-

tion f(x, s). By restricting the domain of f(x, s) to values x < s, we can view f
as a 2-coloring of [ω]2. The infinite limit homogeneous sets of this coloring are
exactly the infinite subsets of D and of D.

To determine the relationship between SRT2
2 and D2

2 under these reductions,
notice that for a stable coloring c : [ω]2 → 2, every homogeneous set is limit
homogeneous (but not conversely). It follows that D2

2 ≤sW SRT2
2 by letting the

functionals Φ and Δ be the identity. That is, given an instance c of D2
2, we map

c to itself but view it as an instance of SRT2
2. From any solution H to c as

an instance of SRT2
2 (i.e. an infinite homogeneous set H), we map H to itself

but view it as a solution to the original instance c of D2
2 (i.e. an infinite limit

homogeneous set).
The non-trivial direction is to use D2

2 to solve instances of SRT2
2. A proof that

RCA0 + D2
2 implies SRT2

2 over ω-models goes as follows. Fix a stable coloring
c : [ω]2 → 2 as an instance of SRT2

2. We regard c as an instance of D2
2 and obtain

an infinite limit homogeneous set L of color i. To produce a homogeneous set
of color i, we thin L to H = {h0, h1, . . .}. Let h0 be the least element of L.
Having defined hn, let hn+1 be the least element of L such that hn < hn+1 and
c(hj , hn+1) = i for all j ≤ n. (This proof works more generally in RCA0 + D2

2,



186 R. Solomon

but there is an induction issue. It uses BΣ0
2 and hence relies on the fact that D2

2

implies BΣ0
2 as shown by Chong et al. [3].)

This proof shows that SRT2
2 ≤c D2

2. From an instance c of SRT2
2, we compute

an instance of D2
2 (via the identity function) and then use an arbitrary D2

2 solution
L together with the original SRT2

2 coloring c to compute an SRT2
2 solution H to

c. However, notice that the computation of H from L is non-uniform because it
depends on knowing the limit color for L and that the thinning process uses the
original SRT2

2 instance c. Thus this proof leaves open the questions of whether
SRT2

2 ≤W D2
2 (can the proof be made uniform?) and whether SRT2

2 ≤sc D2
2 (is

the reference to the original coloring c necessary to compute H from L?). Both
of these reductions fail.

Theorem 5 (Dzhafarov [7]). SRT2
2 �≤W D2

2 and SRT2
2 �≤sc D2

2.

The proof of Theorem 5 uses a generalization of Seetapun’s method of cone
avoidance for RT2

2 and in fact shows something stronger. Let D2
<∞ be the problem

for which the instances are given by pairs 〈c, k〉 where c : [ω]2 → k is a stable
coloring and the solutions to 〈c, k〉 are the infinite limit homogeneous sets. The
stronger result from Dzhafarov [7] is that SRT2

2 �≤W D2
<∞ and SRT2

2 �≤sc D2
<∞.

Example 2. We consider the principles RT1
k for varying numbers of colors. These

principles differ in a significant way from those in the first example. Given c : ω →
k, there is an infinite homogeneous set H computable from c by non-uniformly
fixing a color i for which there are infinitely many x such that c(x) = i. Therefore,
when comparing RT1

k and RT1
� , we immediately have RT1

k ≤c RT1
� because ≤c

allows non-uniformity and access to the original RT1
k coloring. Furthermore, if

k ≤ �, then every k-coloring is an �-coloring and we immediately have RT1
k ≤sW

RT1
� . Therefore, we only consider potential reductions from RT1

k to RT1
� when

� < k and the reduction is stronger than ≤c.
It is instructive to consider a combinatorial proof of RT1

3 from RT1
2. Fix a

coloring c : ω → 3 and use it to define a coloring d : ω → 2 by d(x) = 0 if c(x) = 0
or c(x) = 1 and d(x) = 1 if c(x) = 2. Let H be an infinite d-homogeneous set.
If H is d-homogeneous for color 1, then it is a c-homogeneous set for color 2
and we are done. On the other hand, if H is d-homogeneous for color 0, then
we need another application of RT1

2 to get our c-homogeneous set. Let d0 be
the restriction of d to H. Applying RT1

2 to d0 gives an infinite d0-homogeneous
set H0 ⊆ H which is clearly c-homogeneous as well. This proof does not use
the original coloring to thin out a homogeneous set, but it does have a split
between cases (so is non-uniform) and it potentially uses two applications of
RT1

2 to solve a single instance of RT1
3. The following theorem collects a number

of recent results related to the connection between these principles.

Theorem 6. The following negative results hold for all 0 < � < k.

– RT1
k �≤sW RT1

� (Dorais et al. [5]).
– RT1

k �≤W RT1
� (independently by Hirschfeldt and Jockusch [9], by Patey [11]

and by Rakotoniaina [12]).
– RT1

k �≤sc RT1
� (Dzhafarov [7]).
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The most interesting result concerning these principles comes from refin-
ing the forcing techniques to remove any computable dependence between the
instances of RT1

k and RT1
� .

Theorem 7 (independently by Hirschfeldt and Jockusch [9] and by
Patey [11]). For any � < k, there is a coloring c : ω → k such that every
coloring d : ω → � (computable from c or not) has an infinite homogeneous set
H which does not compute any infinite c-homogeneous set.

The proof of Theorem 7 given in Patey [11] shows that the coloring c : ω → k
can even be made low.

Example 3. We consider the relationship between COH and the principles
above. The interest in these relationships is partly motivated by the fact that
RCA0 proves the equivalence of RT2

2 and SRT2
2+COH. Cholak et al. [2] introduced

this equivalence as an important tool for constructing solutions to instances of
RT2

2 in two steps by using COH to pass from a general 2-coloring to a stable
2-coloring and then using SRT2

2 to solve the stable coloring. Therefore, we would
like to know whether COH is reducible (by any of these reductions) to SRT2

k for
some k ≥ 2 or to SRT2

<∞. Partial answers to these questions are given by the
following theorem.

Theorem 8 (Dzhafarov [7]). COH �≤W SRT2
<∞ and COH �≤sc SRT2

2.

Dzhafarov’s proof that COH �≤sc SRT2
2 uses a new tree labeling method for

constructing solutions to SRT2
2. The version of this method given in [7] is closely

tied to coloring pairs and it was left as an open question whether this result
could be extended to larger exponents. We will return to this question below.

A second motivation for studying the relationships between COH and other
Ramsey principles is that COH can be recast as a sequential version of Ramsey’s
Theorem for Singletons in which the solution is allowed to make finitely many
errors. We say that Y is almost homogeneous for a coloring c : ω → k if there is a
finite set F such that Y −F is homogeneous for c. Under a suitable coding, COH is
sW -equivalent to the statement that for every sequence 〈ck | k ≥ 1〉 of colorings
ck : ω → k, there is an infinite set Y such that Y is almost homogeneous for
every coloring ck. (For the details of this coding, see [8].) From this perspective,
we would like to understand the precise relationship between RT1

k and SRT2
� as

a stepping stone to determine whether COH can be reduced (by ≤sc, ≤c or ≤ω)
to SRT2

� or to SRT2
<∞. As above, RT1

k ≤c SRT2
� for any k and � because ≤c

allows access to the RT1
k coloring, and it is not hard to see that RT1

k ≤sW SRT2
�

whenever k ≤ �. Therefore, our interest is in comparing RT1
k and SRT2

� when
� < k. The following theorem answers this question for W -reducibility.

Theorem 9 (Hirschfeldt and Jockusch [9]). For all � < k, RT1
k �≤W SRT2

� .

In recent work, we were able to answer a number of the questions left open
by the results above. Our main result is to show that RT1

k �≤sc SRT2
� when � < k

in a strong form analogous to Theorem 7.
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Theorem 10 (Dzhafarov et al. [8]). For all � < k, there is a coloring c :
ω → k such that every stable coloring d : [ω]2 → � has an infinite homogeneous
set which does not compute an infinite c-homogeneous set.

The technique for proving this theorem involves an extension and a simplifi-
cation of the tree labeling method used to build solutions to SRT2

2 in Dzhafarov’s
proof of COH �≤sc SRT2

2 in Theorem 8. It remains an open questions whether the
coloring c can be low as in Patey’s proof of Theorem 7. There are two corollaries
below to Theorem 10. The first corollary follows immediately and the second
corollary follows by viewing COH as a sequential form of RT1

k allowing finitely
many errors.

Corollary 11 (Dzhafarov et al. [8]). For all � < k, RT1
k �≤sc SRT2

� .

Corollary 12 (Dzhafarov et al. [8]). COH �≤sc SRT2
<∞.

3 Variations on ADS

In this section, we consider variations of the ascending/descending sequence
principle ADS (defined below) which are motivated by the combinatorial rela-
tionships between RT2

2, SRT2
2 and D2

2. Throughout this section, when we say
(L,≤L) is a linear order, we assume that L ⊆ ω. That is, we assume our alge-
braic structures are coded in the natural numbers. We use ≤ to denote the usual
order on ω.

Definition 13. Let (L,≤L) be a linear order and let S ⊆ L. We say that S
is an

– ascending sequence if for all x, y ∈ S, x ≤ y implies x ≤L y;
– descending sequence if for all x, y ∈ S, x ≤ y implies x ≥L y;
– ascending chain if for all x ∈ S, there are only finitely many y ∈ S with

y ≤L x;
– descending chain if for all x ∈ S, there are only finitely many y ∈ S with

y ≥L x.

Note that if S is an ascending (descending) chain, then S is isomorphic to
ω (or ω∗). However, it is given as a chain in L rather than as an ascending
(descending) sequence in the sense that the elements of S do not necessarily
appear in ascending (descending) order when enumerated in increasing ≤-order.

Definition 14. We define the following principles.

– Ascending/descending sequence principle (ADS): Every infinite linear order
has an infinite ascending or descending sequence.

– Ascending/descending chain principle (ADC): Every infinite linear order has
an infinite ascending or descending chain.
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There principles have the required Π1
2 form given in the introduction and the

combinatorial relationship between ADC and ADS is similar to the combinatorial
relationship between D2

2 and SRT2
2. For example, ADC and ADS have the same

instances and an ADS-solution to (L,≤L) is also an ADC-solution to (L,≤L).
Therefore, ADC ≤sW ADS via identity functionals just as D2

2 ≤sW SRT2
2.

More importantly for our analogy, every ADC-solution S to (L,≤L) can
be thinned out to an ADS-solution H to (L,≤L). To see why, suppose S =
{s0, s1, . . .} is an infinite ascending chain. We define an infinite ascending
sequence H = {h0, h1, . . .} as follows. Let h0 be the ≤-least element of S. Hav-
ing defined hn, let hn+1 be the ≤-least element of S such that hn < hn+1 and
hn <L hn+1. A similar argument works in the case when S is a descending chain.
As with SRT2

2 and D2
2, the computation of H from S is non-uniform (because

it requires knowing whether S is ascending or descending) and uses the ADS-
instance (L,≤L). Therefore, the thinning process shows ADS ≤c ADC exactly
as with SRT2

2 ≤c D2
2. Before considering whether this reduction can be made

uniform, we introduce two notions of stability in this context.

Definition 15. Let (L,≤L) be a linear order. An element x ∈ L is called small
if there are only finitely many y ∈ L such that y <L x. Similarly, x ∈ L is called
large if there are only finitely many y ∈ L such that x <L y. We say that L is
stable if every x ∈ L is either small or large.

If L is stable, then L is isomorphic to either ω + k, k + ω∗ or ω + ω∗. The
established definition for the stable version SADS of ADS restricts the instances
of the problem to linear orders isomorphic to ω + ω∗, that is, to stable linear
orders with infinitely many small elements and infinitely many large elements.
In the context of ω-models of RCA0 or of ≤c-reductions, neglecting to consider
linear orders L of type ω + k or k + ω∗ does not matter because L can (non-
uniformly) compute an infinite ascending sequence (in the case of ω + k) or
descending sequence (in the case of k + ω∗). In our analogy with SRT2

2, the
orders ω + k and k + ω∗ correspond to stable colorings c : [ω]2 → 2 in which
there is a fixed color i such that almost every x has limit color i. However, in
the context of uniform reductions, it is important not to discount these trivial
cases. To account for these cases, we consider two stable versions of ADS and of
ADC.

Definition 16. We define the following notions of stability for ADS and ADC.

– SADS: Every stable linear order L with infinitely many small and large ele-
ments has an infinite ascending or descending sequence.

– SADC: Every stable linear order L with infinitely many small and large ele-
ments has an infinite ascending or descending chain.

– General-ADS: Every stable linear order L has an infinite ascending or descend-
ing sequence.

– General-ADC: Every stable linear order L has an infinite ascending or descend-
ing chain.
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It is straightforward to check that these four principles are equivalent under
≤c and that the following relationships hold under ≤sW .

– SADS ≤sW General-ADS ≤sW ADS.
– SADC ≤sW General-ADC ≤sW ADC.
– SADC ≤sW SADS.
– General-ADC ≤sW General-ADS.

Taken together with these reductions, the following theorem gives us a complete
picture of the relationships between the six principles introduced in this section
under ≤W and ≤sW .

Theorem 17 (Astor et al. [1]). We have the following negative results con-
cerning ≤W .

(1) SADS �≤W ADC.
(2) General-ADC �≤W SADS.
(3) ADC �≤W General-ADS.

The first statement in Theorem 17 is proved by a Seetapun-style forcing
construction while the second statement is proved with a simpler forcing notion.
The last statement follows from the fact that computable instances of SADC
have low solutions and that there are computable instances of ADC which have
no low solutions (as shown in [10]).

The relationships between these six principles under ≤W and ≤sW are sum-
marized by the following diagram. The arrows indicate an ≤sW reduction while
the missing arrows indicate the failure of a ≤W reduction.
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Abstract. The idea to find the “maximal number that can be named”
can be traced back to Archimedes (see his Psammit [1]). From the view-
point of computation theory the natural question is “which number can
be described by at most n bits”? This question led to the definition of
the so-called “busy beaver” numbers (introduced by T. Rado). In this
note we consider different versions of the busy beaver-like notions defined
in terms of Kolmogorov complexity. We show that these versions differ
depending on the version of complexity used (plain, prefix, or a pri-
ori complexities) and find out how these notions are related, providing
matching lower and upper bounds.

1 Introduction

In 1962 Tibor Radó [5] suggested to consider, for each natural n, the maximal
integer that can be printed by a terminating computation of a Turing machine
that has at most n states. The alphabet of the machine is assumed to be binary
(blank and non-blank symbols). The machine starts on the empty tape and stops
at some time. After that we count the number of non-blank symbols on the tape.
Radó proved that this function grows faster that any computable function (of n).
The same is true for other functions defined in a similar way (e.g., the maximal
number of steps in a terminating computation of a machine with n states on
the empty tape, or the maximal shift of its working head). Still these definitions
look too machine-dependent: even small changes in the model (say, allowing two
tapes or one-sided tape) could give different (but still fast-growing) functions.

A more invariant approach becomes possible if we use the notions for algo-
rithmic information theory (Kolmogorov complexity theory). We assume here
that the reader is familiar with the basic notions of this theory (see, e.g., [7]
or [4], or the short introduction in [6]). We consider the maximal number that
has complexity at most n, i.e., the maximal number that is an output of some
program of length at most n. Here we assume that the programming language
is an optimal decompressor in the sense of algorithmic information theory (that
leads to a minimal complexity function; see [7] or [4] for the formal definitions).
It is easy to show (see, e.g., [7, Sect. 1.2]) that we get the same function (up to
O(1)-change in the argument) if we consider the maximal running time of the
optimal decompressor on programs of length at most n. (The latter definition
depends on the choice of interpreter for the optimal programming language and

c© Springer International Publishing Switzerland 2016
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the computation model used to define the running time, but for every choice we
get the same function up to O(1)-change in the argument.)

In other words, we fix optimal (plain) decompressor D and denote the com-
plexity with respect of this decompressor D by C (·) (the plain Kolmogorov com-
plexity). Then B(n) = max{N | C (N) � n}, so B(n) is the maximum value of
D on arguments of length at most n (we consider inputs as binary strings and
outputs as natural numbers). Define BB (n) as the maximum computation time
for D on the same inputs (for arbitrary fixed machine computing D in arbitrary
fixed computation model). As we have mentioned, the following statement holds:
B(n − c) � BB (n) � B(n + c) for some constant c and for all n (see [7]).

Additive constant in the argument is unavoidable, since the function C (N) is
defined only up to an O(1) additive term (when you replace one optimal decom-
pressor by another, an additive O(1) term appears). So we will not distinguish
B(n) and BB (n) and will use the notation B(n) in the sequel for this plain busy
beaver function.

One can repeat the same definitions for prefix-free decompressors and prefix-
free Kolmogorov complexity (see [6,7] for the definitions). We define the prefix
busy beaver function BP (n) = max{N | K (N) � n}.

Again one can consider the maximal computation time of an optimal prefix-
free decompressor (as defined in [7, Sect. 4.4]) on inputs of size at most n, and
again we get two functions that are the same (up to an additive O(1)-term in
the argument), for the same reasons.1

So we may forget about computation time, and consider the functions B and
BP defined as explained above. We will compare the growth rate of the functions
B and BP and show that these functions are different (B grows faster than BP ).
We also compare these functions with an intermediate function BP ′ that will be
defined in terms of the a priori probability.

Let us first recall the definition of a priori probability. A priori probabil-
ity m(k) of number k can be defined as the k-th term of a maximal (up to
multiplicative constant) converging lower semicomputable non-negative series.
Levin showed that such a series exists, and proved that m(k) = 2−K (k)+O(1)

(see, e.g., [7, Chap. 4] for the details). Now we consider the modulus of conver-
gence for this series: for every n we find minimal N such that

∑
k>N m(k) < 2−n.

Denote this N by BP ′(n). The difference between BP and BP ′ can be explained
as follows: after BP (n) all terms of the series

∑
m(k) are small enough (less

than 2−n), and after BP ′(n) the tail of this series is small enough. Obviously
BP (n) � BP ′(n), or, more accurately, BP (n) � BP ′(n+c) due to O(1) additive

1 One can define prefix complexity in different ways, using prefix-free decompressors
(no element of the domain is a prefix of another element of the domain) or prefix-
stable decompressors (if D(x) is defined, then D(y) = D(x) for every y that has
prefix x). The argument works only for prefix-free decompressors; the problem with
the prefix-stable ones is that computation time of a prefix-stable decompressor is not
a prefix-stable function. It would be interesting to know whether the result remains
true for prefix-stable decompressors.
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terms in both definitions (Kolmogorov complexity is defined up to an O(1) addi-
tive term, and a priori probability is defined up to an Θ(1) factor).

This three functions share basic computational properties with classical busy
beaver function: they are not computable and grow faster than any computable
function. All three functions are computable with oracle for the halting problem
(as well as the classical busy beaver function.

In this article we compare growth rates of these functions. Theorem 1 shows
that all three functions are relatively close to each other: all three functions are
equal up to at most (1+ε) log n argument shift. Theorem 2 shows that the bound
provided by Theorem 1 is quite tight. For example, one cannot remove ε from
the previous statement: a gap greater than log n appears between BP and BP ′

for some values of n, as well as between BP ′ and B for some (other) values of n.

Theorem 1. (i) There exists a constant c such that BP (n) � BP ′(n + c) and
BP ′(n) � B(n + c) for all n.

(ii) There exists a constant c such that B(n) � BP (n + K (n) + c) for all n.
(iii) Let (xn, yn) be a sequence of pairs of natural numbers such that xn � yn,

the sequence xn is lower semicomputable, and the sequence yn is upper semi-
computable. Assume that

∑
n 2xn−yn < +∞. Then there exists c such that

B(xn) � BP (yn + c) for all n.

This theorem uses the notion of lower and upper semicomputable sequences.
Recall that a sequence yn of real numbers is lower semicomputable if yn is a
(point-wise) limit of some total computable non-decreasing (in k) rational-valued
function of two arguments: yn = limk y(n, k); upper semicomputability is defined
in a symmetric way using non-increasing functions. If yn are natural numbers,
the function y(·, ·) can be chosen in such a way that its values are also natural
numbers, and convergence means that for each n the equality yn = y(n, k) is
true for all sufficiently large k. See [7] for the details.2

Items (i) and (ii) are rather simple, and (iii) is a more symmetric way to
present (ii) (as we will see later). Note that (ii) is a special case of (iii) if we
let (xn, yn) = (n, n + K (n)). Another special case of (iii) is obtained if we let
(xn, yn) = (n − K (n), n), so B(n − K (n)) � BP (n + c) for some c and all n.

The statement about (1 + ε) log n mentioned above can be obtained as a
corollary of (ii) since K (n) � (1 + ε) log n for ε > 0 (note that the series∑

2−(1+ε) log n =
∑

(1/n1+ε) converges).
Items (ii) and (iii) are not completely symmetric: why do we add c to the right

side, instead of subtracting it from the left side? We can formulate symmetric
statements:

(ii′) B(n − K (n) − c) � BP (n) for some c and all n;
(iii′) Under the same assumptions as in (iii) we have B(xn − c) � BP (yn)

for some c and all n.
These statements are also true; we will return to them after we prove Theo-

rem 1 (they are easy corollaries of it).
2 One may also speak about semicomputability for sequences that have terms +∞

and/or −∞; in this case we allow the values of the function y(·, ·) to be infinite.
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The next results say that if
∑

n 2xn−yn = +∞ (for lower semicomputable xn

and upper semicomputable yn) then (iii) is not true anymore. Moreover, in this
case a large gap may appear both between B and BP ′ and between BP ′ and
BP (but in different places).

Theorem 2. Assume that (xn, yn) is a sequence of different pairs of natural
numbers, xn � yn, the sequence xn is enumerable from below, and the sequence
yn is enumerable from above. Assume also that

∑
2xn−yn = +∞. In this case

(i) there exists n such that B(xn) > BP ′(yn);
(ii) there exists n such that BP ′(xn) > BP (yn).

There is no constant c in this theorem (in contrast to the previous one), but
one can easily put it on any side (or even both): changing all xn or all yn by
an additive constant does not change the divergence condition. For example, it
is true that for all c there exists n such that B(xn) > BP ′(yn + c) or for all c
there exists n such that BP ′(xn − c) > BP (yn), and so on.

Using Theorems 1 and 2 one can easily deduce that for every upper semi-
computable sequence an the following six conditions are equivalent:

• BP (n) � BP ′(n + an + c) for some c and for all n;
• BP ′(n) � B(n + an + c) for some c and for all n;
• BP (n) � B(n + an + c) for some c and for all n;
• BP (n − an) � BP ′(n + c) for some c and for all n;
• BP ′(n − an) � B(n + c) for some c and for all n;
• BP (n − an) � B(n + c) for some c and for all n;

Moreover, all these conditions are equivalent to the condition
∑

2−an < +∞
(which, in its turn, is equivalent to an � K (n) − O(1), see [7]).

The meaning of Theorems 1 and 2 can be explained as follows. In these results
we compare slow-growing functions that are inverse to the functions B, BP , and
BP ′. We show that they are equal up to (1 + ε) times the logarithm of their
values, and that this ε cannot be omitted: without it both inequalities between
neighbor functions may be violated. As Theorem 1 shows, these big gaps cannot
happen at the same places (otherwise the total gap between lowest and highest
functions exceeds the upper bound).

Statement (ii) from Theorem 2 has been proven by Gács [3] for the case
(xn, yn) = (n − an, n) (and the general case may be derived as a consequence
of this special one, as we will see later), so our main result is item (i) from
Theorem 2. Still we provide all the proofs in the next section for uniformity and
reader’s convenience.

How can we modify our definitions? One can look at the maximal N such
that C (N |n) � n or such that K (N |n) � n. But we do not get new notions in
this way: this quantity is still equal to B(n) up to a O(1)-change in the argument.
Indeed, the conditional complexity C (x|n) is bounded by the unconditional com-
plexity C (x); on the other hand, if C (N |n) = n, then the conditional program of
length n for N may be considered as a conditional prefix-free program with the
same condition n (if n is given as a condition, we know when to stop reading the
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program of length n). Moreover, this program also can be used as unconditional
program for N , since n (its length) is determined by the program. In general,
K (x| C (x)) = C (x| C (x)) = C (x) (up to O(1) additive term), see [7].

To finish our introduction, let us mention that BP ′ can be equivalently
defined as the modulus of convergence for computable non-negative series of
rational numbers with Martin-Löf random sums.

Theorem 3. Let
∑

an be a computable series of rational non-negative numbers
whose sum is Martin-Löf random. Let N(ε) be the modulus of convergence of this
series, i.e., the minimal value of N such that

∑
n>N an < ε. Then BP ′(n− c) �

N(2−n) � BP ′(n + c) for some c and all n.

The first inequality was proven in [2, Theorem 19], while the second one
follows from the definition of the a priori probability (recall that m is bigger
than any computable converging sequence, up to O(1) factor). In [2] it was
also shown that if N(ε) is the modulus of convergence for some computable
converging series

∑
an with non-negative terms, and BP (n − c) � N(2−n) for

some c and all n, then the same property holds for BP ′ (for a different value
of c).

2 Upper Bounds

In this section we prove Theorem 1.
(i) The inequality BP (n) � BP ′(n + c) follows directly from definitions. If

we define m(n) exactly as 2−K (n), it is true even without c-term.
Now we prove that BP ′(n) � B(n + c) for some c and for all n. To do this,

we construct an algorithm that, given n, enumerates at most 2n different inte-
gers, and the last of them is bigger than BP ′(n). The n-bit string that is the
bit representation of the item’s number in this enumeration, identifies the last
number (n is known, being the length of this string), so we get the required
inequality. How the enumeration algorithm works? This algorithm approximates
all m(n) from below in parallel; we assume that at every moment only finitely
many approximations are not zeros. As soon as the tail of the current approxima-
tion for m, starting from the last enumerated integer, becomes greater than 2−n

(i.e., the current approximation to BP ′ exceeds the last enumerated integer) we
enumerate a new integer that is bigger than all k with non-zero current approxi-
mations for m(k). Obviously this cannot happen more than 2n times: every time
an integer is enumerated, we leave behind total m-weight at least 2−n.

(ii) It is well known that K (x) � C (x) + K (C (x)) + O(1) (for example,
see [7, Sect. 4.6]). The following slightly more general statement is also true:
if C (x) � n, then K (x) � n + K (n) + O(1). Let us prove it. Starting with a
program for x that has length at most n, we prepend a block of the form 0k1 to
it (this block is obviously self-delimited) making the total length exactly n + 2.
Then we prepend a self-delimited code for n (of length K (n)), and the result is a
self-delimited code for x (decode n first, then read exactly n+2 symbols, remove
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0k1 leading block, then use C -decompressor). This generalisation immediately
implies that B(n) � BP (n + K (n) + c) for some c and for all n.

(iii) We will show that this inequality is a consequence of (ii). We start
by showing that we can assume xn and yn to be computable without loss of
generality.

By assumption, the sequences xn [resp. yn] are lower [resp. upper] semicom-
putable. For each n, consider a uniformly computable sequence of pairs (xi

n, yi
n)

of integers that monotonically converge to (xn, yn) as i → ∞. Combine arbi-
trarily all these sequences into one sequence, leaving only the first appearance of
each pair (removing all duplicates). We get a computable sequence (x̃i, ỹi); every
pair (xn, yn) appears in this sequence together with finitely many its approxima-
tions. Note that

∑
i 2x̃i−ỹi is at most two times bigger than

∑
n 2xn−yn : every

time a new approximation for xn or yn appears, the respective term is the sum
is increased by factor 2 or more, so the sum for x̃i, ỹi is at most twice bigger
than the original one, and if the original sum is finite, then the new one is also
finite. Note also that the desired inequality for the new sequence implies the
same inequality for the original sequence (that is a subsequence of the new one).
So we can assume xn, yn is computable without loss of generality.

Now assume that a computable sequence (xi, yi) is given. Define f(n) =
min{yi − n | xi = n}; if n does not appear among xi, the value f(n) is +∞.
The function f is upper semicomputable, and

∑
n 2−f(n) < +∞, since the pairs

(n, n + f(n)) are guaranteed to appear among (xi, yi). So f(n) � K (n) − O(1).
Therefore, xi + K (xi) � yi + O(1) for the pairs with minimal yi (for a given
xi) and therefore for all pairs. The function BP increases, so we get B(xi) �
BP (xi + K (xi) + O(1)) � BP (yi + O(1)) for all pairs. The claim (iii) is proven.

Symmetric results (mentioned above) are also easy to prove:
(ii′) B(n − K (n) − c) � BP (n) for some c and for all n.
(iii′) If xn and yn satisfy the same assumptions as in (iii), then B(xn − c) �

BP (yn) for some c and for all n.
To prove (ii′) we use (ii) for a smaller argument: B(n − K (n) − e) �

� BP (n − K (n) − e + K (n − K (n) − e) + c) holds for some c and all n, e.
Now we want to choose the constant e in such a way that the argument in the
right hand side is at most n for all n (recall that function BP is monotone):
n − K (n) − e + K (n − K (n) − e) + c � n.
Indeed, K (n − K (n) − e) � K (n,K (n)) + K (e) + O(1) � K (n) + K (e) + O(1),
and e − K (e) can be made arbitrary large for large enough e (larger than sum
of O(1) terms in the inequalities).

To derive (iii′) from (ii′), one can use the same technique as used to deduce
(iii) from (ii). The only difference is that one should group pairs with the same
yi (instead of xi, as we did in the proof).

3 Lower Bounds

In this section we prove Theorem 2.
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3.1 Proof of the Claim (i)

We have a sequence of different pairs (xn, yn) of integers such that xn � yn.
We assume that xn is lower semicomputable, yn is upper semicomputable and
2xn−yn = +∞. We need to show that there exists n such that B(xn) > BP ′(yn).

First we will reduce this statement to its special case where (xn, yn) = (n, n+
an), and an is some upper semicomputable sequence of natural numbers (the
value +∞ is also allowed).

For this reduction we use the same trick as in the previous section. First
we replace (xn, yn) by its approximations (xi

n, yi
n), and then combine all these

approximations into one computable sequence by removing the duplicates. The
sum of 2xi−yi may only increase (we add new elements), there are no duplicates
(we removed them) and if B(xi

n) > BP ′(yi
n) then B(xn) > BP ′(yn) since we use

monotone approximations and the busy beaver functions are monotone. So we
may assume without loss of generality that the sequence (xn, yn) is a computable
sequence of different integer pairs.

Let an = min{yi − n | xi = n}. The sequence an is enumerable from above
(since the sequence (xi, yi) is computable). Note that

∑
n 2−an � 1

2

∑
i 2xi−yi .

Indeed, if we group pairs with xi = n, the sum of this group is bounded by a
geometric sequence with common ratio 1/2, so the sum can be replaced by the
maximal element (up to a 2-factor). Therefore,

∑
n 2−an = +∞, and all pairs

(n, n + an) appear among (xi, yi), so we get the desired reduction.
Now we use the following lemma: if an is an upper semicomputable sequence

of integers and
∑

n 2−an = +∞, there exists a computable sequence ãn � an

such that
∑

n 2−ãn = +∞. Indeed, we can approximate an from above until some
finite part of the series

∑
2−an exceeds 1, then fix the current approximations

for this part and call them ãn. Then the same argument is used for the tail, etc.
This argument show that we may assume without loss of generality that an is a
computable sequence.

It remains to prove the following statement: if an is a computable sequence of
integers and

∑
2−an = +∞, then there exists n such that B(n) > BP ′(n + an).

In other words, we need to show that there exists some u such that C (u) � n
and

∑
i�u m(i) < 2−n−an .

To prove an upper bound for C (u), we need to construct a decompressor
that provides a short description for u. However, this gives a bound with some
additive constant term, so we need to construct a decompressor D such that for
every d there exist n and u such that

C D(u) � n − d and
∑

i�u

m(i) < 2n−an .

where C D(u) is the minimal length of p such that D(p) = u.
To prove this, we use the game technique. Consider a game where Alice plays

with Bob. They make alternating moves. Alice enumerates sets D0,D1, . . .; at
each move she adds finitely many integers to finitely many Di (so her move is a
finite object). The set Di may contain at most 2i elements. Bob approximates
from below some sequence μ(0), μ(1), . . .; initially all μ(i) are zeros, and at each
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step Bob may increase finitely many of them by some rational numbers, but the
sum

∑
μ(i) should not exceed 1.

Assuming that both players respect the rules, Alice wins if (for limit val-
ues of Di and μ(i)) for every d there exists n and u such that u ∈ Dn−d and∑

i�u μ(i) < 2−n−an . One may reformulate this statement eliminating u: for
every d there exist n such that

∑

i�max(Dn−d)

μ(i) < 2−n−an . (*)

We will prove that Alice has a computable winning strategy in this game. This
implies the desired result. Indeed, we may let Alice use this strategy against the
“blind” strategy of Bob that approximates from below the a priori probability
function μ(i) = m(i). Then the behavior of Alice is computable, the sets Di are
enumerable and we construct a decompressor D that maps k-bit string p into pth
element in the enumeration of Dk (in the last sentence binary string p is identified
with an integer it represents in the binary notation). This decompressor has the
required property.

So why Alice has a computable strategy? She should guarantee the existence
of a suitable n for each d. This is done independently for each d; Alice chooses
for each d some interval [ld, rd] where n with the required properties exist. This
intervals are chosen in such a way that there are no collisions (for different d the
values of n−d cannot be the same, i.e., the intervals [ld −d, rd −d] are disjoint).
The intervals should be large enough: the sum of 2−an over n in [ld, rd] should
exceed 2d+1 (we will see that this is enough for our purposes). Since we assume
that an is a computable sequence and

∑
2−an = +∞, we can choose [ld, rd] in

a computable way.
How Alice constructs Dn−d for n ∈ [ld, rd]? It is done in a straightforward

way. Alice chooses some n (say, the minimal value n = ld) and tries to achieve
(∗) by adding large elements to Dn−d. More precisely, if (∗) is violated, Alice
takes some number k that is greater that all non-zero terms in μ (i.e., μ(k′) = 0
for all k′ � k) and adds k to Dn−d. Then Bob may increase μ-values; as soon
as (∗) is violated again, Alice repeats this procedure, and so on. At some point
(after 2n−d steps) a maximal cardinality of Dn−d is reached. But at that time
Bob has used at least 2n−d2−n−an = 2−d−an of his reserve (each time a tail of
size 2−n−an is cut). Then Alice switches to next value of n, and forces Bob to
lose or to use 2−d−an again for this new value of n. Ultimately Bob will lose
the game since the sum of 2−d−an = 2−d2−an over n in [ld, rd] exceeds 1. (A
technical correction: we required that the limit value of

∑
μ(i) is strictly less

that some threshold; it is not enough to know that all the approximations are
strictly less than this threshold (only a non-strict inequality is guaranteed). To
remedy this problem, we may use an additional factor of 2 — so we require the
sum of 2−an over n ∈ [ld, rd] to be greater than 2d+1, not 2d.) Claim (i) is proven.
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3.2 Proof of the Claim (ii)

We again consider a sequence of different pairs (xn, yn) such that xn � yn, the
sequence xn is lower semicomputable, the sequence yn is upper semicomputable
and

∑
2xn−yn = +∞. We want to prove (following Gács) that there exists n

such that BP ′(xn) > BP (yn)
We can use the same reasoning as in (i) with minor modifications to show

that we can assume without loss of generality that (xn, yn) = (n − an, n) for
some computable sequence of non-negative integers an with

∑
n 2−an = +∞.

This time we need to group terms with the same yi, not xi. We need to prove
then that there exists n such that BP (n) < BP ′(n − an). In other words, we
need to prove that there exist n and u such that m(i) < 2−n for all i � u, but∑

i�u m(i) > 2−n+an (all terms in the u-tail are small but their sum is big).
To show that the sum of m-tail is big, we need to construct a lower semi-

computable semimeasure for which this sum is big, and then use the maximality
of m. Again a constant appears, so we need to prove a stronger statement: there
exists a lower semicomputable semimeasure α such that for every d there are n
and u with the following property:

∑

i�u

α(i) > 2−n+an+d but m(i) < 2−n for all i � u.

Again we may use the game approach and imagine that Alice approximates from
below some semimeasure α while Bob approximates from below some semimea-
sure β, and the claim above (with β instead of m) is the winning condition for
Alice. We will construct a computable strategy for Alice in this game; applying
it against the blind strategy of Bob (who approximates m(·) from below), we
get the required statement.

Let us note first that it is enough to construct (for every d) a winning strategy
in the similar game where winning condition is required only for this d. Indeed,
we may use 2d-strategy to win the d-game with

∑
i α(i) � 2−d (using 2d-strategy

with factor 2−d). Then we can use all the strategies (for d-games for all d) in
parallel against Bob and sum up all the increases, since the winning condition
is monotone and the strategies can only help each other. In this way Alice keeps
the total sum less than

∑
d 2−d � 1 and wins all games.

So how could Alice win the d-game? She should increase her weights gradually
by using small weights far away where Bob has only zeros. As soon as her total
weight exceeds 2−n+an+d for some n, Bob has to react and assign weight at
least 2−n for some i. Then Alice continues to increase the weights (on the right
of the place used by Bob), and again after 2−n+an+d new Alice’s weight Bob
should react by assigning weight at least 2−n at some other place. If Alice uses
this strategy with small weights (see the discussion below) until her total weight
reaches 1, and waits each time until Bob violates the winning condition for Alice,
we have the following property of Bob’s weights:3

3 Technically speaking, Bob is obliged to react only if the Alice’s tail is strictly greater
than 2−n+an+d. But this leads only to a constant factor that is not important, so
we ignore this problem.



204 M. Andreev

for each n there are at least 2n−an−d Bob’s weights β(·) that exceed 2−n.

Note that Alice’s actions are the same for all n; it is Bob who should care
about all n and provide a large enough weight at the moments where Alice is in
the winning position (for some n).

What is the total weight Bob uses in this process? The property above guar-
antees that Bob uses at least 2−an−d to prevent Alice from winning for given n.
The sum of these quantities for all n is infinite according to our assumption (so
at some point Bob will be unable to increase the weights). However, the same
Bob’s move can be useful on different levels (for different values of n), so we need
the following technical lemma valid for every series

∑
i β(i) with non-negative

values: ∑

j

2−j · #{i : β(i) � 2−j} � 2
∑

i

β(i).

Indeed, each β(i) from the right hand side appears in the left hand side as the
sum of 2−j for all j such that 2−j � β(i), and this sum does not exceed 2β(i).

To finish the description of Alice’s strategy, we need to say how small should
be the weight increases used by Alice. We know that the sum

∑
n 2−an−d is

infinite, so there is a finite part of this sum that is large (greater than 4, to be
exact). Alice then may use weights 2−s where s is some integer greater that all
n + an + d for n that appear in this finite part.
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Abstract. We define the domino problem for tilings over self-similar
structures of Zd given by forbidden patterns. In this setting we exhibit
non-trivial families of subsets with decidable and undecidable domino
problem.

Introduction

In its original form, the domino problem was introduced by Wang [10] in 1961.
It consists of deciding if copies of a finite set of Wang’s tiles (square tiles of
equal size, not subject to rotation and with colored edges) can tile the plane
subject to the condition that two adjacent tiles possess the same color in the
edge they share. Wang’s student Berger showed undecidability for the domino
problem on the plane in 1964 [3] by using a reduction to the halting problem.
In 1971, Robinson [8] simplified Berger’s proof.

Symbolic dynamics classically studies sets of colorings of Zd from a finite set
of colors which are closed in the product topology and invariant by translation,
such sets are called subshifts. Given a finite set of patterns F (a pattern is a
coloring of a finite part of Zd), we associate a subshift of finite type X(F) which
corresponds to the set of colorings which does not contain any occurrence of
patterns in F . The domino problem can therefore be expressed in this setting:
given a finite set of forbidden patterns F , is it possible to decide whether the
subshift of finite type X(F) is not empty?

It is well known that there exists an algorithm deciding if a subshift of finite
type is empty in dimension one [5] and that there is no such algorithm in higher
dimensions. The natural question that comes next is: What is the frontier between
decidability and undecidability in the domino problem?

One way to explore this question is to consider subshifts defined over more
general structures, such as finitely generated groups or monoids and ask where
the domino problem is decidable. This approach has yielded various result in
different structures: Some examples are the hyperbolic plane [6], confirming a
conjecture of Robinson [9] and Baumslag-Solitar groups [1]. The conjecture in
this direction is that the domino problem is decidable if and only if the group is
virtually free. The conjecture is known to hold in the case of virtually nilpotent
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Fig. 1. Some digitalizations of fractal structures and the status of their domino problem

groups [2]. The main idea of the proof of this result is to construct a grid by
local rules in order to use the classical result in Z

2.
In this paper we explore another way to delimit the frontier between decid-

ability and undecidability of this problem. In geometry the structures which lie
between the line and the plane can have Hausdorff dimension strictly between
one and two. In this article we propose a way to define the domino problem in
a digitalization of such fractal structures. In Sect. 1 we use self-similar substi-
tutions to define a “fractal” structure where a natural version of the domino
problem can be defined. We exhibit a large class of substitutions (including the
one which represents the Sierpiński triangle) where the domino problem is decid-
able (Sect. 2), another class (including the Sierpiński carpet) where the problem
is undecidable (Sect. 4) and an intermediate class where the question is still open
(see Fig. 1 for an example of each of these classes).

1 Position of the Problem

1.1 Coloring of Zd and Local Rules

Given a finite alphabet A, a coloring of Zd is called a configuration. The set of
configurations, denoted AZ

d

, is a compact set according to the usual product
topology. A subshift is a closed set of configurations which is invariant by the
shift action. Given a finite subset S ⊂ Z

d, a pattern with support S is an element
p of AS . A pattern p ∈ AS appears in a configuration x ∈ AZ

d

if there exists
z ∈ Z

d such that xz+S = p. In this case we write p � x.
Equivalently, a subshift can be defined with a set of forbidden patterns F as

the set of configurations where no patterns of F appear. We denote it by X(F).
If F is finite, X(F) is called subshift of finite type which can be considered as
the set of tilings defined by the local constraints given by F .
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1.2 Self-similar Structures

We want to extend the condition of coloring to self-similar structures of Zd. This
means that only some cells can be decorated by elements of A. To formalize that,
a structure is coded as a subset of {0, 1}Zd

and self-similarity is obtained by a
substitution.

Let A be a finite alphabet. A substitution is a function s : A → AR where
R = [1, l1] × · · · × [1, ld] is a d-dimensional rectangle. It is naturally extended to
act over patterns which have rectangles as support by concatenation. We denote
the successive iterations of s over a symbol by s, s2, s3 and so on. The subshift
generated by a substitution s is the set

Xs := {x ∈ AZ
d |∀p � x,∃n ∈ N, a ∈ A, p � sn(a)}.

To obtain self-similar structures, we restrict the notion of substitution to
{0, 1} imposing that the image of 0 consists of a block of 0s. These substitutions
are called self-similar. Self-similar substitutions represent digitalizations of the
iterations of the following procedure: start with the hypercube [0, 1]d, subdivide
it in a l1×· · ·× ld grid and remove the blocks in the positions z of the grid where
s(1)z = 0. Then repeat the same procedure with every sub-block.

Example 1. Consider A = { , }. The self-similar substitution s such that:

and is called the Sierpiński triangle substitution and is
extended by concatenation as shown in Fig. 2.

Fig. 2. First four iterations of the Sierpiński triangle substitution.

1.3 Coloring of a Self-similar Structure and Local Rules

Let A be a finite alphabet where 0 ∈ A and s be a self-similar substitution.
Consider Xs ⊂ {0, 1}Zd

the associated self-similar structure. A configuration
x ∈ AZ

d

is compatible with s if π(x) ∈ Xs where π is a map which sends all
elements of A\{0} onto 1 and 0 onto 0. Given a finite set of patterns F we define
the set of configurations on Xs defined by local rules F as

Xs(F) =
{

x ∈ AZ
d

: π(x) ∈ Xs and no pattern of F appears in x
}

.
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1.4 The Domino Problem on Self-similar Structures

The domino problem for Z
d is defined as the language

DP(Zd) = {F finite set of patterns : X(F) �= ∅}.

It is the language of all finite sets of patterns over a finite alphabet such that
it is possible to construct a configuration without patterns of F .

Classical results which can be found in [5] show that the domino problem for
Z is decidable. In the other hand, we know that for d > 1 the domino problem for
G = Z

d is undecidable (see [3,8]). This gap of decidability when the dimension
increases motivates us to define the domino problem for structures which lay
between those groups. Thus given a self-similar substitution s we introduce the
s-based domino problem as the language

DP(s) := {F finite set of patterns : Xs(F) �= {0Z
d}}.

That is, DP(s) is the set of all finite sets of forbidden patterns such that there
is at least a configuration containing a non-zero symbol. We assume implicitly
that F does not contain any pattern consisting only of 0s. By a compactness
argument, DP(s) can be equivalently defined as the set of F such that for arbi-
trarily big n ∈ N the non-zero symbols in sn(1) can be colored avoiding all
patterns in F .

2 Self-similar Structures with Decidable Domino Problem

In this section we present a family of self-similar substitutions such that their
domino problem is decidable. In order to present this result in the most general
setting, we introduce the channel number of a self-similar substitution.

Let H = {−1, 0, 1}d and consider the set Λ ⊂ {0, 1}{1,2,3}d

consisting of all
d-dimensional hypercube patterns of side 3 which appear in Xs and that have a
1 in the center. Let Λn = sn(Λ) be the set of the images of each q ∈ Λ under sn

by concatenation and Sn be the support corresponding to the image of position
(2, . . . , 2) of q under sn. We define the n-channel number χ(s, n) of s as follows:

χ(s, n) = max
p∈Λn

|{z ∈ Sn | ∃h ∈ (z + H) ∩ (supp(p)\Sn), pz = ph = 1}|

In other words, it is the maximum number of positions in the support of
the pattern sn(1) such that if we surround it either by blocks of 0 or copies of
sn(1) appearing in Xs there might be two symbols 1, one appearing in sn(1) and
another outside, at distance smaller than 1. We say that s is channel bounded
if there exists K ∈ N such that for all n, χ(s, n) ≤ K. The Sierpiński triangle
substitution from Fig. 2 is an example of a channel bounded substitution as
colorings of sn(1) can be constructed by pasting three colorings of sn−1(1) and
forbidden patterns can only appear locally around the corners.



The Domino Problem for Self-similar Structures 209

Theorem 1. For every channel bounded self-similar substitution s the domino
problem DP(s) is decidable.

Proof. Let F be a set of forbidden patterns over an alphabet A. It suffices to show
that if s is channel bounded, it is possible to calculate N ∈ N with the property
that the existence of any coloring of sN (1) with symbols from A without any
subpattern from F implies Xs(F) �= {0Z

d}. Indeed, an algorithm could calculate
N and try every coloring of sN (1). If there exists one where no pattern in F
appears it returns that Xs(F) �= {0Z

d}, otherwise it returns Xs(F) = {0Z
d}.

For simplicity, suppose that ∀p ∈ F , supp(p) ⊆ H and let K be a bound
for χ(s, n) (If the support is {−m, . . . ,m}d we can recalculate a new K). We

claim that N := 2|A|(3d−1)K

suffices. For each q ∈ Λ consider the a coding
Jq = {j1, . . . , jkq

} with kq ≤ K of the positions from the definition of χ(s, n).
That is, Jq codes for all n ∈ N the set of positions which matter when considering
only q. Any recursive ordering similar to the one given by a Quadtree works.
Consider a coloring of sn(1) without subpatterns in F and store the symbols
of this coloring appearing in Jq as a tuple (aj1 , aj2 , . . . ajkq

) ∈ AJq . Therefore
all the information concerning the dependency of this coloring with its possible
surroundings can be stored on |Λ| tuples. Now, given the set of all colorings of
sn(1) which do not contain any forbidden pattern we can extract the |Λ| tuples
from each one of them. All this information for the level n is represented as a
subset of

∏
q∈Λ AJq . By definition this is the only information needed in order

to make sure of the existence of a coloring of sn+1(1) with no subpatterns in
F . Moreover, the tuples representing those patterns can be obtained from the
ones of sn(1) because the positions from the definition of χ(s, n + 1) necessarily
appear in the patterns of sn(1). This means it is possible to extract pasting rules
which can be codified in a function μs : 2

∏
q∈Λ AJq → 2

∏
q∈Λ AJq

.
This function codes how to construct the tuples of level n+1 from the tuples

of level n. Obviously, μs(∅) = ∅, therefore there are two possibilities: either
this function arrives eventually at ∅ and there are no colorings of sm(1) for
some m ∈ N or μs cycles and thus it’s possible to construct colorings of sm(1)
for arbitrarily big m. By pigeonhole principle this behavior must occur before
|2
∏

q∈Λ AJq | ≤ 2|A|(3d−1)K

iterations of μs.

3 The Mozes Property for Self-similar Structures

Most of the proofs of the undecidability of the domino problem on Z
2 are based

on the construction of a self-similar structure. A Theorem proven by Mozes [7]
and later generalized by Goodman-Strauss [4] shows that every Z

d-substitutive
subshift is a sofic subshift for d ≥ 2. This theorem fails for the case d = 1. The
importance of this result is the fact that multidimensional substitutions can be
realized by local rules. In order to present a family of self-similar substitutions
with undecidable domino problem we will make use of an analogue of the theorem
shown by Mozes.
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Definition 1. A self-similar substitution s satisfies the Mozes property if for
every substitution s′ defined over the same rectangle and over an alphabet A
containing 0 and such that ∀a ∈ A\{0}, π(s′(a)) = s(1) and s′(0) = s(0) there
exists an alphabet B containing the symbol 0, a finite set of forbidden patterns
F ⊆ B∗

Zd and a local function Φ : B → A such that Φ(0) = 0 and the function
φ : BZ

d → AZ
d

given by φ(x)z = Φ(xz) is surjective from Xs(F) to Xs′ .

In other words, it’s the analogue of saying that Xs′ is a sofic subshift, except
that the SFT extension has to be based on Xs. Currently, we have been able to
produce a class of substitutions that satisfy the Mozes property but we have not
found a characterization of those who do. An example of a substitution without
the Mozes property is the one given by .

An interesting example of a substitution satisfying the Mozes property is the
Sierpiński carpet shown in Fig. 3. This substitution it not channel bounded as at
least one of the four borders of a coloring of sn−1(1) matter when constructing
sn(1) and thus χ(s, n) grows exponentially. In fact this substitution belongs to
a bigger class which also satisfies the Mozes property. In the next section we
introduce this class and use this previous fact to prove that all the substitutions
belonging to it have undecidable domino problem.

Fig. 3. The first iterations of the Sierpiński carpet substitution.

4 Self-similar Structures Where the Domino Problem
Is Undecidable

In this section we present a family of two-dimensional self-similar substitutions
with undecidable s-based domino problem. The definition of this class follows.

Definition 2. A self-similar substitution s defined on [1, l1] × [1, l2] contains a
grid if there are integers 1 ≤ i1 < i2 <= l1 and 1 ≤ j1 < j2 <= l2 such that
j ∈ {j1, j2} or i ∈ {i1, i2} implies that s(1)(i,j) = 1.
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One example of a self-similar substitution that contains a grid is the
Sierpiński carpet. One interesting property of these substitutions is that they
satisfy the Mozes property. This follows from a technical construction which
uses a layer that looks like a generalized Robinson tiling [8] and stores the infor-
mation of the simulated substitution and its past hierarchically.

Theorem 2. All self-similar substitutions which contain a grid satisfy the
Mozes property.

In what remains of this section we show the following theorem:

Theorem 3. Let s be a self-similar substitution which contains a grid. Then the
domino problem DP(s) is undecidable.

Proof. We claim that an oracle for DP(s) can be used to decide DP(Z2). This is
enough to conclude, as DP(Z2) is undecidable.

Let s be defined on [1, l1] × [1, l2], some values satisfying the grid
condition (i1, i2) and (j1, j2) and consider a substitution s′ over the

alphabet A(s′) = { , , , 0} given by the following rules: Let C =

{(i1, j1), (i1, j2), (i2, j1), (i2, j2)}, H = {(i, j)|j ∈ {j1, j2}}\C and V = {(i, j)|i ∈
{i1, i2}}\C.

s′( )z =

0, if s(1)z = 0

, if z ∈ H

, if z ∈ V

, else

s′( )z =

0, if s(1)z = 0

, if z ∈ V ∪ C

, else

s′( )z =

0, if s(1)z = 0

, if z ∈ H ∪ C

, else

For example, in the case where s is the Sierpiński carpet we get:

s′
→ 0 s′

→ 0 s′
→ 0

For any y ∈ Xs′\{0Z
2} and n ∈ N we have s′n( ) � y. Indeed, appears in the

image of every symbol a ∈ A(s′)\{0}. This implies that for every positive integer
n, a must appear at a bounded distance of every non-zero symbol in s′n(a).
This argument extends inductively because if s′n−1( ) appears at a bounded
distance in every s′k(a) with k > n, it suffices to apply s′ to obtain that s′n( )
appears at bounded distance in s′k+1(a).

As s satisfies the Mozes property there exists an alphabet B(s′), a finite set
F(s′) ⊂ B(s′)∗

Z2 and Φ : B(s′) → A(s′) such that Φ(0) = 0 and the function
φ : B(s′)Z

d → A(s′)Z
d

given by φ(x)z = Φ(xz) is surjective from Xs(F) to Xs′ .
Consider a finite set of forbidden patterns F over an alphabet A defining

a Z
2 subshift X(F). Without loss of generality F contains only patterns with

supports {(0, 0), (1, 0)} and {(0, 0), (0, 1)} (one can choose a conjugated version
of X(F) satisfying this property by using a higher block code. See [5]).

Finally, consider the alphabet S := B(s′) × (A ∪ {0}) along with the set of
forbidden patterns G given by the union of the following sets:
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– Zeros correspond: {(0, a) | a ∈ A} ∪ {(b, 0) | b ∈ B(s′)\{0}}.
– First layer forbidden patterns: {p × q | p ∈ F(s′), q ∈ Asupp(p)}. These for-

bidden patterns make sure that configurations belonging to the first layer of
Xs(G) belong to Xs(F(s′)).

– Horizontal forbidden patterns: let p ∈ S{(0,0),(1,0)} be denoted by (a, b, c, d)
if p(0, 0) = (a, c) and p(1, 0) = (b, d) and q ∈ A{(0,0),(1,0)} be denoted by
(c, d) if q(0, 0) = c and q(1, 0) = d. The set of horizontal forbidden patterns is
{(a, b, c, d) | (a = , b ∈ { , } and c �= d) or (a = , b = and (c, d) ∈ F)}.

– Vertical forbidden patterns: let p ∈ S{(0,0),(0,1)} be denoted by (a, b, c, d) if
p(0, 0) = (a, c) and p(0, 1) = (b, d) and q ∈ A{(0,0),(0,1)} be denoted by (c, d) if
q(0, 0) = c and q(0, 1) = d. The set of vertical forbidden patterns is given by
{(a, b, c, d) | (a = , b ∈ { , } and c �= d) or (a = , b = and (c, d) ∈ F)}.

These rules codify the following idea: s carry arbitrary symbols from A in
the second layer and the arrows send this information left and up respecting
the rules from F , see Fig. 4. By iterating the substitution s it is easy to see
that sn(1) actually contains 2n vertical and horizontal lines. This means that
the intersections of these lines contain symbols of A which represent a 2n × 2n

pattern which contains no forbidden pattern from F . Therefore if Xs(G) �= {0Z
2}

then X(F) �= ∅ by compactness. Conversely if X(F) �= ∅ it is possible to always
build the second layer of a point having s′n(1) in the first layer.

Suppose there is an algorithm for deciding DP(s). Then for any F defining
a Z

2 subshift the alphabet S and the rules G can be built in order to decide if
Xs(G) �= {0Z

2}. This is equivalent to deciding if X(F) �= ∅, therefore DP(Z2) can
be decided. This yields the desired contradiction.

� X(F) ←→

0 0

0 0

0 0

0

0

0 0 0
0 0 0
0 0 0

Fig. 4. On the left a pattern from X(F). In the right its coding in Xs(G). The blue
squares are arbitrary symbols from A. (Color figure online)

5 Generalizations and Perspectives

Here we present some ideas to generalize previous results in order to advance
towards a characterization of the self-similar structures where the domino prob-
lem is decidable. In the previous sections the information which allows to simu-
late grids is transferred through straight lines. We can imagine less rigid possi-
bilities.
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5.1 Connectivity

We propose a way to define the directions in which the information can be
transferred in a substitution in Z

2. Given a self-similar substitution defined over
[1, l1] × [1, l2] we denote by X the set of coordinates z such that s(1)z = 1.
Let S = {(0,−1), (0, 1), (−1, 0), (0, 1)} and W contains {(−1,−1), (1, 1)} if
{(1, 1), (l1, l2)} ∈ X and {(−1, 1), (1,−1)} if {(1, l2), (l1, 1)} ∈ X. We say s admits
a rigid (respectively flexible) vertical line at 1 ≤ v ≤ l1 if there is a non-repeating
sequence of vertices (v, 1) = x1, . . . xn = (v, l2) such that the differences xj−xj−1

belong to S (respectively W∪S). We define rigid and flexible horizontal lines for
1 ≤ h ≤ l2 analogously. We also say that two lines are weakly disjoint if they
share no consecutive pair of vertices in their path.

According to these notions, we distinguish the following four subclasses:

– s has bounded connectivity if s has at most one flexible horizontal and vertical
line;

– s has a isthmus if s(1) has at least two weakly disjoint flexible lines in one
direction and at most one weakly disjoint flexible line in the other direction;

– s has a weak grid if s(1) has at least two flexible horizontal lines and two
flexible vertical lines which are pairwise weakly disjoint.

– s has a strong grid if s(1) has at least two rigid horizontal lines and two rigid
vertical lines which are pairwise weakly disjoint.

If s has bounded connectivity the proof of Theorem 1 can be adapted to
show decidability. If s has a strong grid it is possible to adapt the proof of
Theorem 3 to show the undecidability of the domino problem associated to such
substitution, moreover, a generalization of that proof works even in the case
of weak grids. Nevertheless we still have no results supporting either direction
in the isthmus case. We believe that the Mozes property does not hold in the
isthmus case, which would be evidence towards decidability. Figure 5 presents
the domino problem of different substitutions according to this classification.

B. Connectivity Isthmus Weak grid Strong grid

DP decidable Unknown DP undecidable DP undecidable

Fig. 5. Some examples of substitution according to this classification
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5.2 Concluding Remarks

We introduced the domino problem on self-similar structures in order to under-
stand the frontier between decidability and undecidability when we go from the
line (dimension 1) to the plane (dimension 2). Our results show that there is no
decidability threshold on the Hausdorff dimension. Indeed, there are self-similar
structures with decidable domino problem and Hausdorff dimension arbitrary
near to 2 (obtained by sn) and self-similar structures with undecidable domino
problem and Hausdorff dimension arbitrary near to 1 (obtained by s′

n).

sn : n s′
n : n

Thus, the frontier between decidability and undecidability seems more likely
to be based on the presence of a grid where it is possible to implement a com-
putation. To confirm this hypothesis, it remains to study self-similar structures
with an isthmus. In the case of an isthmus the substitution presents an unique
bridge which links different zones. This impedes a Mozes-like [7] or Goodman-
Strauss-like [4] construction. The main problem is that in order to simulate a
substitution there is the need to transfer arbitrarily big amounts of information
by that isthmus. We believe the study of this class of substitutions will certainly
provide new tools to the study of how information can be transfered.
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Abstract. We propose a formalization of generic algorithms that
includes analog algorithms. This is achieved by reformulating and extend-
ing the framework of abstract state machines to include continuous-time
models of computation. We prove that every hybrid algorithm satisfying
some reasonable postulates may be expressed precisely by a program in
a simple and expressive language.

1 Introduction

In [14], Gurevich showed that any algorithm that satisfies three intuitive
“Sequential Postulates” can be step-by-step emulated by an abstract state
machine (ASM). These postulates formalize the following intuitions: (I) one
is dealing with discrete deterministic state-transition systems; (II) the infor-
mation in states suffices to determine future transitions and may be captured
by logical structures that respect isomorphisms; and (III) transitions are gov-
erned by the values of a finite and input-independent set of ground terms. All
notions of algorithms for “classical” discrete-time models of computation in com-
puter science are covered by this formalization. This includes Turing machines,
random-access memory (RAM) machines, and their sundry extensions. The geo-
metric constructions in [18], for example, are loop-free examples of discrete-step
continuous-space (real-number) algorithms. The ASM formalization also covers
general discrete-time models evolving over continuous space like the Blum-Shub-
Smale machine model [1].

However, capturing continuous-time models of computation is still a chal-
lenge, that is to say, capturing models of computation that operate in continuous
(real) time and with real values. Examples of continuous-time models of com-
putations include models of analog machines like the General Purpose Analog
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Computer (GPAC) of Claude Shannon [20], proposed as a mathematical model
of the Differential Analyzers, built for the first time in 1931 [7], and used to
solve various problems ranging from ballistics to aircraft design – before the era
of the digital computer [16]. Others include Pascal’s 1642 Pascaline, Hermann’s
1814 Planimeter, as well as Bill Phillips’ 1949 water-run Financephalograph.
Continuous-time computational models also include neural networks and sys-
tems built using electronic analog devices. Such systems begin in some initial
state and evolve over time; results are read off from the evolving state and/or
from a terminal state. More generally, determining which systems can actually
be considered to be computational models is an intriguing question and relates
to philosophical discussions about what constitutes a programmable machine.
Continuous-time computation theory is far less understood than its discrete-
time counterpart [4]. Another line of development of continuous-time models
was motivated by hybrid systems, particularly by questions related to the hard-
ness of their verification and control. In hybrid systems, the dynamics change in
response to changing conditions, so there are discrete transitions as well as con-
tinuous ones. Here, models are not seen as necessarily modeling analog machines,
but, rather, as abstractions of systems about which one would like to establish
properties or derive verification algorithms [4]. Some work on ASM models deal-
ing with continuous-time systems has been accomplished for specific cases [8,9].
Rust [19] specifies forms of continuous-time evolution based on ASMs using infin-
itesimals. However, we find that a comprehensive framework capturing general
analog systems is still wanting.

Our goal is to capture all such analog and hybrid models within one uniform
notion of computation and of algorithm. To this end, we formalize a generic
notion of continuous-time algorithm. The proposed framework is an extension of
[14], as discrete-time algorithms are a simple special case of analog algorithms.
(The initial attempt [5] was not fully satisfactory, as no completeness theorem
nor general-form result was obtained. Here, we indeed achieve both.) We provide
postulates defining continuous-time algorithms, in the spirit of those of [14], and
we prove some completeness results. We define a simple notion of an analog ASM
program and prove that all models satisfying the postulates have corresponding
analog programs (Lemma 16 and Theorem 20). Furthermore, we provide condi-
tions guaranteeing that said program is unique up to equivalence (Theorem21
and Corollary 22). All of this seamlessly extends the results of [14] to analog and
hybrid systems. The proposed framework covers all classes of continuous-time
systems that can be modeled by ordinary differential equations or have hybrid
dynamics, including the models in [4] and the examples in [5]. It is a first step
towards a general understanding of computability theory for continuous-time
models, taken in the hope that it will also lead to a formalization of a “Church-
Turing thesis” for analog systems in the spirit of what has been achieved for
discrete-time models [2,3,10]. Systems with continuous input signals and other
means of specifying continuous behavior are left for future work.

Some of our ideas were inspired by the way the semantics of hybrid sys-
tems are given in the approach of Platzer [17]. Among attempts at studying the
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semantics of analog systems within a general framework is [22]. Recent results
on comparing analog models include [11]. Soundness and (relative) completeness
results for a programming language with infinitesimals have also been obtained
in [21]. Applications to verification have been explored [15].

2 General Algorithms

We want to generalize the notion of algorithms introduced by Gurevich in [14] in
order to capture not only the sequential case but also continuous behavior. (For
lack of place, we assume some familiarity with [14].) However, when evolving
continuously, an algorithm can no longer be viewed as a discrete sequence of
states, and we need a notion of evolution that can capture both kinds of behavior.
This is based on a notion of a timeline that corresponds to algorithm execution.

Definition 1 (Time). Time T corresponds to a totally ordered monoid: there
is an associative binary operation +, with some neutral element 0, and a total
relation ≤ preserved by +: t ≤ t′ implies t + t′′ ≤ t′ + t′′ for all t′′ ∈ T.

An element of T will be called a moment. Examples of time T are R
≥0 and

N. As expected, t < t′ will mean t ≤ t′ but not t = t′.

Definition 2 (Timeline). A timeline is a subset of T containing 0. We let I
denote the set of all timelines.

For a moment i ∈ I of timeline I, we write Jump(i) if there exists t ∈ I with
i < t, and there is no t′ ∈ I with i < t′ < t. We write Flow(i) otherwise: that
means that for all t, i < t, there is some in-between t′ ∈ I with i < t′ < t. A
moment i with Jump(i) is meant to indicate a discrete transition. In this case,
we write i+ for the smallest t greater than i. A timeline I is non-Zeno if for any
moment i ∈ I, there is a finite number of moments j ≤ i with Jump(j). I is
non-Zeno if all its timelines are.

For timelines I = R
≥0, for instance, we have Flow(i) for all i ∈ I. For I = N,

we have Jump(i) for all i ∈ I, and i+ = i + 1. We intend (for hybrid systems,
in particular) to also consider timelines mixing both properties, that is, with
Flow(i) for some i and Jump(i) for other i. Formally building such timelines is
easy (for example

⋃
n∈N

[n, n + 0.5]). All these examples are non-Zeno.

Definition 3 (Truncation). Given a timeline I ∈ I and a moment i of I, the
truncated timeline I[i] is the timeline defined by I[i] = {t | i + t ∈ I}.

With timelines in hand, we can define hybrid dynamical systems.

Definition 4 (Dynamical System). A dynamical system 〈S,S0, ι, ϕ〉 con-
sists of the following: (a) a nonempty set (or class) S of states; (b) a nonempty
subset (or subclass) S0 ⊆ S, called initial states; (c) a timeline map ι : S → I,
with I non-Zeno; (d) a trajectory map ϕ : (X : S)× ι(X) → S. We require that,
for any state X and moments i, i + i′ ∈ ι(X), one has

ϕ(X, 0) = X , ι(ϕ(X, i)) = ι(X)[i] , ϕ(X, i + i′) = ϕ(ϕ(X, i), i′) .
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Together, the timeline and trajectory maps associate to each state its future
evolution. For a state X, ι(X) defines the timeline corresponding to the system
behavior starting from X, and ϕ(X) defines its concrete evolution by associating
to each moment in ι(X) its corresponding state. The third condition ensures that
evolution during i + i′ is similar to first evolving during i and then during i′;
the preceding condition ensures a similar property for timelines (and ensures
consistency of the last condition).

Postulate I. An algorithm is a dynamical system.

A vocabulary V is a finite collection of fixed-arity (possibly nullary) function
symbols, some functions of which may be tagged relational. A term whose outer-
most function symbol is relational is termed Boolean. We assume that V contains
the scalar (nullary) function true. A (first-order) structure X of vocabulary V
is a nonempty set S, the base set (domain) of X, together with interpretations
of the function symbols in V over S: A j-ary function symbol f is interpreted
as a function, denoted �f�X , from Sj to S. Elements of S are also called ele-
ments of X, or values. Similarly, the interpretation of a term f(t1, . . . , tn) in X
is recursively defined by �f(t1, . . . , tn)�X = �f�X(�t1�X , . . . , �tn�X).

Let X and Y be structures of the same vocabulary V. An isomorphism from
X onto Y is a one-to-one function ζ from the base set of X onto the base set of
Y such that f(ζx1, . . . , ζxj) = ζx0 in Y whenever f(x1, . . . , xj) = x0 in X.

Definition 5 (Abstract Transition System). An abstract transition system
is a dynamical system whose states S are (first-order) structures over some finite
vocabulary V, such that the following hold:

(a) States are closed under isomorphism, so if X ∈ S is a state of the system,
then any structure Y isomorphic to X is also a state in S, and Y is an
initial state if X is.

(b) Transformations preserve the base set: that is, for every state X ∈ S, for
any i ∈ ι(X), ϕ(X, i) has the same base set as X.

(c) Transformations respect isomorphisms: if X ∼=ζ Y is an isomorphism of
states X,Y ∈ S, then ι(X) = ι(Y ) and for all i ∈ ι(X), Xi

∼=ζ Yi, where
Xi = ϕ(X, i), and Yi = ϕ(Y, i).

Postulate II. An algorithm is an abstract transition system.

When ι(X) is N (or order-isomorphic to N) for all X, this corresponds pre-
cisely to the concepts introduced by [14], considering that ϕ(X,n) = τ [n](X).

It is convenient to think of a structure X as a memory of some kind: If f is
a j-ary function symbol in vocabulary V, and a is a j-tuple of elements of the
base set of X, then the pair (f, a) is called a location. We denote by �f(a)�X its
interpretation in X, i.e. �f�X(a). If (f, a) is a location of X and b is an element of
X then (f, a, b) is an update of X. When Y and X are structures over the same
domain and vocabulary, Y \X denotes the set of updates Δ+ = {(f, a, �f(a)�Y ) |
�f(a)�Y 	= �f(a)�X}.

We want instantaneous evolution to be describable by updates:
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Definition 6. An infinitesimal generator is (a) a function Δ that maps states
X to a set Δ(X) of updates, and (b) preserves isomorphisms: if X ∼=ζ Y is an
isomorphism of states X,Y ∈ S, then for all updates (f, a, b) ∈ Δ(X), we have
an isomorphic update (f, ζa, ζb) ∈ Δ(Y ).

We write Jump(X) and say that X is a jump when Jump(0) in timeline
ι(X); otherwise, we write Flow(X) and say that it is a flow. For states X with
Jump(X), the following is natural:

Definition 7. The update generator is the infinitesimal generator defined on
jump states X as Δ(X) = Δ+(X), where Δ+(X) stands for ϕ(X, 0+)\X.

To deal with flow states, we will also define some corresponding infinitesimal
generator Δψ. Before doing so, let’s see how to go from semantics to generators.

An initial evolution over S is a function whose domain of definition is a
timeline and whose range is S. An initial evolution is said to be initially constant
if it has a constant prefix: that is to say, there is some 0 < t such that the function
is constant over [0 .. t].

Definition 8 (Semantics). A semantics ψ over a class C of sets S is a partial
function mapping initial evolutions over some S ∈ C to an element of S.

Remark 9. When T = R
≥0, an example of semantics over the class of sets S

containing R is the derivative ψder, mapping a function f to its derivative at 0
when that exists. When T = N, an example of semantics over the class of all
sets would be the function ψN mapping f to f(1). More generally, when 0 ∈ T

is such that Jump(0), an example of semantics over the class of all sets is the
function ψN mapping f to f(0+).

Consider a semantics ψ over a class of sets S. Let X be a state whose domain
is in the class and a location (f, a) of X. Denote by Evolution(X, (f, a)) the
corresponding initial evolution: that is to say, the function given formally by
Evolution(X, (f, a)) : t 
→ �f(a)�ϕ(X,t) for 0 ≤ t ≤ I1, t ∈ ι(X), for some
I1 ∈ ι(X), with I1 = 0+ for a jump. We use ψ[X, f, a] to denote the image of
this evolution under ψ (when it exists).

Definition 10 (Infinitesimal Generator Associated with ψ). The infin-
itesimal generator associated with ψ maps each state X, such that ψ[X, f, a]
is defined for all locations, to the set: Δψ(X) = {(f, a, ψ[X, f, a]) |
(f, a) is a location of X, Evolution(X, (f, a)) is not initially constant}.

The update generator Δ+ (see Definition 7) is the infinitesimal generator
associated with the semantics ψN (of Remark 9) over flow states.

From now on, we assume that some semantics ψ is fixed to deal with flow
states. It could be ψder, but it could also be another one (for example: talking
about integrals or built using infinitesimals as in [19]). We denote by Δψ the
associated infinitesimal generator.
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We are actually discussing algorithms relative to some ψ, and to be more
precise, we should be refering to ψ-algorithms. The point is that not every infin-
itesimal generator is appropriate and that appropriateness is actually relative to
a time domain and to the class of allowed dynamics over this time domain. To
see this, keep in mind that – when Δψ corresponds to derivative – to be able
to talk about derivatives, one implicitly restricts oneself to dynamics that are
differentiable, hence non-arbitrary. In other words, one is restricting to a par-
ticular class of possible dynamics, and not all dynamics are allowed. Restricting
to other classes of dynamics (for example, analytic ones) may lead to different
notions of algorithm.

From the update generator Δ+ and Δψ, we build a generator also tagging
states by the fact that they correspond to a jump or a flow:

Definition 11 (Generator of a State). We define the tagged generator of
a state X, denoted Δt(X), as a function that maps state X to {F} × Δψ(X)
when Flow(X) and Δψ(X) is defined and to {J } × Δ+(X) when Jump(X).

Let T be a set of ground terms. We say that states X and Y coincide over
T , if �s�X = �s�Y for all s ∈ T . This will be abbreviated X =T Y . The fact that
X and Y coincide over T implies that X and Y necessarily share some common
elements in their respective base sets, at least all the �s�X for s ∈ T .

An algorithm should have a finite imperative description. Intuitively, the
evolution of an algorithm from a given state is only determined by inspecting
part of this state by means of the terms appearing in the algorithm description.
The following corresponds to the Bounded Exploration postulate in [14].

Postulate III. For any algorithm, there exists a finite set T of ground terms
over vocabulary V such that for all states X and Y that coincide for T , Δt(X)
and Δt(Y ) both exist and Δt(X) = Δt(Y ).

A ground term of T is a critical term and a critical element is the value
(interpretation) of a critical term.

Definition 12 (Analog Algorithm). An algorithm is an object satisfying Pos-
tulates I through III.

3 Characterization Theorem

We now go on to define the rules of our programs (adding to those of ASM
programs in [14]).

Definition 13.

– Update Rule: An update rule of vocabulary V has the form f(t1, . . . , tj) := t0
where f is a j-ary function symbol in V and t1, . . . , tj are ground terms over
V.

– Parallel Update Rule: If R1, . . . , Rk are update rules of vocabulary V, then
par R1 R2 . . . Rk endpar is a parallel update rule of vocabulary V.
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Δt(Ri,X) denotes the interpretation of a rule R in state X and is defined
as expected: If R is an update rule f(t1, . . . , tj) := t0 then Δt(R,X) =
{J } × (f, (�ti�X , . . . , �tj�X), �t0�X) and when R is par R1, . . . , Rk endpar then
Δt(R,X) = {J } × (d1 ∪ · · · ∪ dk) where Δt(Ri,X) = {J } × di for all i.

Next, we introduce rules to deal with Flows.

Definition 14.

– Basic Continuous Rule: A basic continuous rule of vocabulary V has the
form Dynamic(f(t1, . . . , tj), t0) where f is a symbol of arity j and t0, t1, . . . , tj
are ground terms of vocabulary V.

– Flow Rule: If R1, . . . , Rk are basic continuous rules of vocabulary V, then
flow R1 R2 . . . Rk endflow is a flow rule of vocabulary V.
Their semantics are then defined as follows. If R is a basic continuous rule

Dynamic(f(t1, . . . , tj), t0) then Δt(R,X) = {F} × {(f, (a1, . . . , aj), a0)} where
each ai = �ti�X . If R is a flow rule with constituents R1, . . . , Rk, then Δt(R,X) =
{F} × (d1 ∪ · · · ∪ dk) where Δt(Ri,X) = {F} × di.

Finally, we allow conditionals:

Definition 15.

– Selection Rule: If ϕ is a ground boolean term over vocabulary V and R1 and
R2 are rules of vocabulary V then: if ϕ then R1 or else R2 endif is a rule
of vocabulary V.
Given such a rule R and a state X, if ϕ evaluates to true (the interpretation

of scalar function true) in X then Δt(R,X) = Δt(R1,X) else Δt(R,X) =
Δt(R2,X).

An ASM program of vocabulary V is a rule of vocabulary V. The first key
result is the following, which can be seen as a completeness result.

Theorem 16 (Completeness). For every algorithm of vocabulary V, there is
an ASM program Π over V with the identical behavior: Δt(Π,X) = Δt(X) for
all states X.

4 Extended Statements

We are now very close to formulating our other theorems. First we define an
abstract state machine relative to semantics ψ.

Definition 17. A ψ-abstract state machine B comprises the following: (a) an
ASM program Π; (b) a set S of (first-order) structures over some finite vocab-
ulary V closed under isomorphisms, and a subset S0 ⊆ S closed under isomor-
phisms; (c) a map ι and a map ϕ such that 〈S,S0, ι, ϕ〉 is an algorithm, where
Δψ is fixed to be the infinitesimal generator associated with ψ, and for all states
X in S, Δt(Π,X) = Δt(X).
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By definition, a ψ-abstract state machine B satisfies all the postulates and
hence is an algorithm.

Definition 18. An ASM program Π is ψ-solvable for a set S of (first-order)
structures over some finite vocabulary V closed under isomorphisms and a subset
S0 ⊆ S closed under isomorphisms if there exists a unique ι and ϕ such that
(Π,S,S0, ι, ϕ) is a ψ-abstract state machine.

Definition 19. A semantics ψ is unambiguous if for all sets S of (first-order)
structures over some finite vocabulary V closed under isomorphisms, and for all
subsets S0 ⊆ S closed under isomorphisms, whenever there exists some ι and ϕ
such that (Π,S,S0, ι, ϕ) is a ψ-abstract state machine, then ι and ϕ are unique.

Our main results follow. (Proofs are relegated to the technical report [6].)

Theorem 20. For every ψ-definable algorithm A, there exists an equivalent
ψ-abstract state machine B.

Theorem 21. Assume that ψ is unambiguous. For every ψ-definable algorithm
A, there exists a unique equivalent ψ-abstract state machine B with the same
states and initial states.

Corollary 22. Assume that ψ is unambiguous. For every ψ-definable algorithm
A, there exists an equivalent ψ-solvable ASM program.

To any algorithm A that is ψ-definable there corresponds an equivalent
ψ-abstract state machine B, and hence a ψ-solvable program Π. Conversely,
a ψ-abstract state machine B corresponds to a ψ-definable algorithm. However,
not every program Π is ψ-solvable.

When ψ-corresponds to ψder, unambiguity comes from (unicity in) the
Cauchy-Lipschitz theorem. The fact that not every program Π is ψ-solvable
is due to the fact that not all differential equations have a solution.

5 Examples

The examples in this section are for semantics ψder. Our settings cover, first of
all, analog algorithms that are pure flow, in particular all systems that can be
modeled as ordinary differential equations. A very simple, classical example is
the pendulum: the motion of an idealized simple pendulum is governed by the
second-order differential equation θ′′ + g

Lθ = 0 , where θ is angular displacement,
g is gravitational acceleration, and L is the length of the pendulum rod. This
can indeed be modeled as the program

flow Dynamic(θ, θ1) Dynamic(θ1,− g
L · θ) endflow

using the fact that any ordinary differential equation can be put in the form of
a vectorial first-order equation, here θ1 corresponding to the derivative of θ.

As a consequence, our formalism covers very generic classes of continuous-
time models of computation, including the GPAC, which corresponds to ordinary
differential equations with polynomial right-hand sides [12,13]. Recall that the
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z′ = −y′ z(0) = 0 .

Fig. 1. A GPAC for sine and cosine (left). Corresponding evolution (right).

GPAC was proposed as a mathematical model of differential analyzers (DAs),
one of the most famous analog computer machines in history. Figure 1 (left)
depicts a (non-minimal) GPAC that generates sine and cosine. In this picture,∫

signifies some integrator, and −1 denotes some constant block. This simple
GPAC can be modeled by the program

flow Dynamic(x, z) Dynamic(y, x) Dynamic(z,−x) endflow
Our proposed model can also adequately describe hybrid systems, made

of alternating sequences of continuous evolution and discrete transitions. This
includes, for example, a simple model of a bouncing ball, the physics of which
are given by the flow equations x′′ = −gm, where g is the gravitational constant
and v = x′ is the velocity, except that upon impact, each time x = 0, the velocity
changes according to v′ = −k · v′, where k is the coefficient of impact. Every
time the ball bounces, its speed is reduced by a factor k. This system can be
described by a program like

if x = 0 then v := −k · v
else flow Dynamic(x, v) Dynamic(v,−g · m) endflow endif

Our setting is an extension of classical discrete-time algorithms; hence, all
classical discrete-time algorithms can also be modeled.

As for examples with semantics other than ψder: Observe that one can con-
sider timelines like Q instead of R. (For such a timeline, we have Flow(i) for all
i ∈ Q.) One can define a semantics on such a timeline where for every state X
we have Flow(X) by first extending the evolution function to R (for example
by restricting to continuous dynamics) and then using the derivative. Construc-
tions of [19] are also covered by our settings: In some sense, the example at the
beginning of the paragraph is the spirit of the constructions from [19], where the
timeline is the set of hyperreals obtained by multiplying some fixed infinitesimal
by some hyperinteger (using hyperreals and infinitesimals). Notice that there is
no need to consider derivatives or similar notions: we could also consider analytic
dynamics, and consider a semantics related to the family of Taylor coefficients.
Weaker notions of solution, like variational approaches, can also be considered.
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algebras. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol.
3526, pp. 515–529. Springer, Heidelberg (2005)

http://arxiv.org/abs/1604.04295


Generalized Effective Reducibility

Merlin Carl(B)

Fachbereich für Mathematik und Statistik der Universität Konstanz,
Konstanz, Germany

merlin.carl@uni-konstanz.de

Abstract. We introduce two notions of effective reducibility for set-
theoretical statements, based on computability with Ordinal Turing
Machines (OTMs), one of which resembles Turing reducibility while the
other is modelled after Weihrauch reducibility. We give sample applica-
tions by showing that certain (algebraic) constructions are not effective
in the OTM-sense and considering the effective equivalence of various
versions of the axiom of choice.

1 Introduction

From a sufficiently remote point of view, construction problems in mathemat-
ics can be seen as multi-valued, class-sized ‘functions’ from the set-theoretical
universe V to itself. Examples of construction problems would be the problem
assigning to fields their algebraic closures, to sets their well-orderings, to inte-
grable functions their stem functions, to linear orderings their completions etc.
Formally, this makes a construction problem a (class-sized) relation R ⊆ V ×V .

A ‘solution’ to or ‘canonification’ of a construction problem R is then a (class-
sized) witness ‘function’ F : V → V such that, for all x in the domain of R, we
have R(x, F (x)) and otherwise F (x) = ∅. Similarly, we can say that F witnesses
the truth of a set-theoretical statement φ of the form ∀x∃yψ if F is a solution for
{(x, y) : ψ(x, y)}, the most natural candidates to consider being Π2-statements,
since ψ can be assumed to be absolute between transitive sets in that case.

Fixing an appropriate notion of effectiveness for set-theoretical constructions,
we can now ask for specific construction problems R whether there exists an
effective solution for R and similarly, whether some statement φ is ‘effectively
true’. Moreover, we can ask whether a construction or a statement ‘effectively
reduces’ to another.

In the following, ‘effectiveness’ will be interpreted to mean computability by
Ordinal Turing Machines (OTMs) without ordinal parameters. For the defini-
tion and basic results on OTMs, we refer the reader to [Ko1]. It was argued in
[Ca] that OTM-computations are appropriate as a formalization of the intuitive
notion of a ‘transfinite effective procedure’.

For convenience, we assume that our machines work with three tapes, a
‘miracle’ tape (to be explained below), a scratch tape and an output tape.

Our set-theoretical notation is standard and can e.g. be looked up in [Je].
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DOI: 10.1007/978-3-319-40189-8 23



226 M. Carl

2 Basic Methods and Notions

To apply OTMs to general mathematical constructions, we need to represent
arbitrary sets as an input for OTMs, i.e. as sets of ordinals. This can be achieves
as follows:

Definition 1. Let x be a set, t = tc(x) the transitive closure of x, α ∈ On and
f : α → tc(x) a well-ordering of tc(x) in the order type α. We define cf (x), the
f-code for x, recursively as the following set of ordinals: cf (x) := {p(f−1(y), β) :
y ∈ x ∧ β ∈ cf (y)}, where p denotes Cantor’s ordinal pairing function. We say
that A ⊆ On ‘is a code for’ or ‘codes’ the set x if and only if there is some f for
which A = cf (x). We write rep(τ, x) to indicate that τ codes x.

Remark: By a certain abuse of notation, if x is a set, we will sometimes
write c(x) for an ‘arbitrary’ code for x. Note that |c(x)| = |tc(x)| if tc(x) is
infinite.

We can now talk about OTM-computability of arbitrary functions from V
to V :

Definition 2. Let F : V → V be a functional class. We say that F is OTM-
computable if and only if there is an OTM-program P such that, for every set x
and every tape content τ , if rep(τ, x), then P (τ) converges to output σ such that
rep(σ, F (x)), i.e. P takes representations of x to representations of F (x).

By this definition, the representation of a set x will depend on the choice
of a well-ordering of tc(x). The output of a computation on input x may hence
depend on the choice of the representation of x. This is fine as long as only the
output, but not the object coded by the output, depends on the choice of the
input representation.

This allows us to make our notion of ‘effectivity’ precise:

Definition 3. Let R ⊆ V × V be a construction problem. Then R is effectively
solvable if and only if there is an OTM-computable solution F for R. Moreover, a
set-theoretical Π2-statement ∀x∃yφ(x, y) (where φ is Δ0) is effective if and only
if the construction problem {(x, y) ∈ V ×V : φ(x, y)} is effectively solvable.1 We
write Rx for {y : (x, y) ∈ R}.

One may now inquire whether various well-known construction problems and
Π2-statements are effective. Such questions were studied by Hodges in [Ho2],
though with a different notion of effectivity based on Jensen and Karp’s primitive
recursive set functions. We note here that the two methods Hodges uses also work
for our model, which allows us to carry over results.

The following lemma corresponds to Hodges’ ‘cardinality method’, i.e.
Lemma 3.2 of [Ho2]:

1 In particular, this implies that an effective Π2-statement must be true.
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Lemma 1. Let α ∈ On, and let R ⊆ V × V be such that, for some cardinal
κ>α, there is x ∈ V such that |tc(x)| = κ, Rx 	= ∅ and ∀y ∈ Rx |y|>κ. Then no
witness function for R is OTM -computable in the parameter α.
Consequently, if R is such that there are such κ and x for every α ∈ On, then no
witness function for R is computable by a parameter-OTM (i.e. an OTM with
a fixed tape cell marked with 1).
In particular, if, for some transitive x of infinite cardinality, Rx 	= ∅ and
∀y ∈ Rx |y| > |x| then no witness function for R is parameter-free OTM -
computable.

Proof. Clearly, in less than κ+ many steps, the machine cannot write a code of
a structure of cardinality >κ.

It hence suffices to show that, when P is an OTM-program and P is given a
(code c of a) set x of size κ ≥ ω for input and the computation halts, then the
output of the computation will be of size ≤ κ. This follows if we can show that
the computation will take less than κ+ many steps, since P can write at most α
many symbols in α many steps. Suppose for a contradiction that P takes λ > κ
many steps, and let δ be the smallest cardinal >λ. Let H be the Σ1-Skolem hull
of κ∪{c} in Lδ[c] and let M denote the transitive collapse of H. We may assume
without loss of generality that c ⊆ κ, so that we have c ∈ M ; as Lδ[c] contains
the computation of P in the input c, so does H and hence there is S ∈ M such
that M believes that S is the computation of P with input c. By transitivity of
M and absoluteness of computations, S is actually the computation of P with
input c. Since S is contained in a transitive set of cardinality κ, |S| ≤ κ, so the
length of the computation is <κ+, as desired.

There is also an analogue of the ‘forcing method’ (Lemma 3.7 of [Ho2]), which
is given in Lemma 5 below.

Convention: For many of the following results, we will need the existence of
generic filters for various partial orderings in L and some of its (symmetric)
extensions. To avoid technical complications, we use as a shortcut an extra
assumption that guarantees the existence of such filters. 0� is more than enough
for our purposes, and we assume from now on that it exists.2

These lemmata can be seen as expressing the intuition that neither the power
set operation on infinite sets nor the use of the axiom of choice are ‘effective’,
not even in a very idealized sense. We note some sample applications.

Lemma 2. None of the following construction problems is effectively solvable:
(1) Field to its algebraic closures (2) Linear ordering to its completions (3) Set
to its (constructible) power set (4) Set to its well-orderings

Proof. (1) can be proved by an easy adaption of the proof of Theorem 4.1 of
[Ho2]. There is only one point that requires a little care, namely the use of

2 For some of the following results, this assumption is actually necessary: It is e.g. not
hard to check that all choice principles considered in Sect. 4 are effective (and hence
trivially reducible to each other) if V = L.
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countable transitive models in that proof: For it might happen that an OTM-
program P that halts in V does not halt in such a model M .3 However, a check of
Hodge’s proof reveals that the countability of the ground model serves no purpose
but to guarantee the existence of generic filters. We can hence circumvent this
problem by doing the construction over L, using 0� to guarantee the existence
of the required filters. (2) and (3) are easy applications of Lemma1. (4) follows
from Lemma 6 below.

It is, on the other hand, not hard to see that e.g. the construction problem of
taking a ring to its quotient field is effectively solvable as in [Ho2]. The intuitions
captured by Hodges’ approach are hence preserved in our framework.

There are certainly various interesting questions to be asked about the effec-
tivity, or otherwise, of various construction problems or Π2-statements. However,
we want to take the analogy with Turing computability a bit further: Instead
of merely asking what problems are solvable, we want to consider what prob-
lems/statements are effectively reducible to which others in the sense that, given
access to a solution to one as an ‘oracle’, one can effectively solve the other. A
quite straightforward way to make this idea precise is the following:

Definition 4. Assume that the OTM is equipped with an extra ‘miracle tape’.
Let F be a class function taking sets of ordinals to sets of ordinals. A miracle-
OTM-program is defined like an OTM-program, but with an extra ‘miracle’ com-
mand. When this command is carried out, the set X of ordinals on the miracle
tape is replaced (in one step) by F (X). We write PF to indicate that P is run
and whenever the miracle command is applied to X, it is replaced by F (X).4

Definition 5. Let C1 and C2 be construction problems. Then C1 is reducible to
C2, written C1 ≤ C2, if and only if there is some miracle-OTM-program P such
that the following holds: Whenever F is a canonification of C2 and whenever
G : V → V is a class function taking each code for a set x to some code y for
F (x) and x is a set and c a code for x, we have PG(c) ↓= d, where d is a code
for a set z such that (x, z) ∈ C1.

Remark: Note that we do not demand in the conditions on G that G(c) depends
only on x when c is a code for x. By demanding that the same reduction works
for every G, we rule out the possibility of coding extra information into the input
representations.

Concerning this notion of reducibility, we observe that certainly a cardinality-
raising construction is not reducible to one that is not:

3 For example, suppose there is some minimal countable α such that Lα |= ZFC. Then
the OTM-program that writes L on the tape until an L-level satisfying ZFC will halt
in V , but not inside Lα.

4 We thus make the implicit assumption that the miracle tape behaves deterministi-
cally, i.e. that, whenever the miracle command is applied to some X, the outcome
will be the same. However, this property is not used anywhere in the arguments
below. One may thus drop it, at the price of some extra formal complications.



Generalized Effective Reducibility 229

Lemma 3. Let C1, C2 be construction problems. Assume that there are some
canonification F of C2 and some infinite set x such that, for all sets y, (1) if
C1(x, y), then |y| > |tc(x)| and (2) if y is infinite, then |F (y)| ≤ |tc(y)|. Then
C1 � C2.

Proof. As in the proof of Lemma1 above, OTM-computable functions cannot
raise infinite cardinalities. By assumption, the miracle operation will also not
raise the cardinality. Hence the output of a program P with a C2-miracle will
(for infinite input) always have at most the cardinality of the input and thus
cannot in any case witness C1.

Remark: In particular, the construction problem of taking a valued field to its
linear compactifications (see [Ho2], Theorem 4.10) is not reducible to any of the
following construction problems: Field to algebraic closure, formally real field to
its real closure, field of characteristic p to its separable algebraic closure.

The above captures the idea that one construction ‘helps’ carrying out
another. There is also a much more restrictive intuitive notion of reducibility
between problems, namely that instances of one (construction) problem can be
effectively ‘translated’ to particular instances of another: Given an instance of
a problem C1, we can first effectively turn it into an instance of a problem C2

and then effectively turn the solution to C2 into a solution to C1. Another way
to view this is that C2 may only be used once in solving C1. Thus, we define:

Definition 6. Let C1, C2 be construction problems. Then C1 is generalized
Weihrauch reducible to C2, written C1 ≤gW C2, if and only if there are OTM-
programs P and Q such that the following holds for all sets x in the domain of
C1, every code c for x and every canonification F of C2:

(1) Q(c) converges to output c′, where c′ is a code for a set y
(2) For every code c′′ of F (y), P (c′′) converges to output c′′′, where c′′′ is a

code for a set z
(3) We have C1(x, z)
If these clauses hold, we say that (P,Q) witnesses the gW-reducibility of C1

to C2. Also, when F is a canonification, P and Q are OTM-programs and x is
a set, we write [P, F,Q](x) for the z obtained by the procedure just described.

If C1 ≤gW C2 and C2 ≤gW C1, we write C1 ≡gW C2.

Remark: The name of the notion is due to its obvious resemblance with
Weihrauch reducibility, which is an analogous notion for classical computability.
For some results on classical Weihrauch reducibility, see e.g. [BGM]. Another
notion of Weihrauch reducibility on higher cardinalities based on continuous
transformations on generalized Baire spaces is introduced in [Ga]. We do not
know how this approach connects to ours.5

5 The generalization of uniform reducibility introduced in [HJ] based on (Turing-)
computable strategies goes into a different direction, though it may be compatible
with our setting. We thank one of our anonymous referees for pointing out this paper
as well as the work of Galeotti to us.
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We note that reducibility notions satisfy the general order-theoretic proper-
ties of reducibility relations:

Lemma 4. Both ≤ and ≤gW are transitive and reflexive. Consequently, ≡gW

and ≡ are equivalence relations.

Definition 7. Let C be a construction problem. Then [C] denotes the ≡-
equivalence class of C and [C]gW denotes the ≡gW-equivalence class of C.

3 A Method for Negative Results

We develop a method for showing that a construction problem is not gW-
reducible to another. We will work with class-sized models of ZF−, which denotes
Zermelo-Fraenkel set theory without the axiom of powerset; more precisely, we
take the formulation of ZF− given in [GH].

Remark: Note that the following theorem is not trivial even when ZF− is
strengthened to full ZF, since a ZF model M may contain a set x without
containing a suitable input format for x, so that the computation of an OTM
cannot be simulated within M .

Lemma 5. Let M |= ZF− be transitive and suppose that x ∈ M . Then Px :=
{f : ω → x : |f | < ω ∧ f injective} is a set in M .

Proof. Let y := x × ω. For each n ∈ ω, we have yn ∈ M and the function
F : ω → M that maps n to yn is definable in M . By replacement and union,
A :=

⋃{yn : n ∈ ω} ∈ M . Now Px can be obtained from A via separation.

Theorem 8. Let F be a computable class function, M |=ZF− transitive such
that OnM = On6. Assume moreover that x ∈ M is such that there are (in V )
two mutually generic Px-generic filters G1 and G2 over M . Then F (x) ∈ M .

Proof. Let P be a program witnessing the computability of F . Let x ∈ M be
as in the assumption of the Theorem. By passing to tc(x) if necessary, we may
assume without loss of generality that x is transitive. Let G1, G2 be mutually
M -generic filters over Px which exist by assumption. In M [G1] and M [G2], x is
well-ordered in order type α by

⋃
G1 and

⋃
G2, respectively. Hence both M [G1]

and M [G2] contain tape contents coding x and thus contain the computations
of P on these inputs. As ZF− models, M [G1] and M [G2] contain the decoding
of every tape content they contain. Thus F (x) ∈ M [G1]∩M [G2]. As G1 and G2

are mutually generic, we have M [G1] ∩ M [G2] = M , so F (x) ∈ M , as desired.

6 Again, some condition on the height of M is required to ensure that the convergence
of programs is absolute between V and M . In particular, a parameter-free OTM can
run for more than α many steps, where α is minimal such that Lα |= ZF−.
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This suggests a general method for proving, given constructions C1 and C2,
that C1 	≤gW C2. In general, find a class A sufficiently closed under OTM-
computability and a canonification F of C2 such that there is some x ∈ A with
the property that the closure of F [A] under OTM-computability does not contain
a C1-solution for x. By Theorem 8, we can take for A a transitive class model M
of ZF−. We summarize the most important special case of this method in the
following lemma:

Lemma 6. Let C1, C2 be construction problems. Assume that there are a
canonification F of C2 and a transitive class-sized M |= ZF− and some
x ∈ M ∩ dom(C1) such that M is closed under F , but {y : C1(x, y)} ∩ M = ∅.
Assume moreover that x is such that there are (in V ) two mutually generic
Px-generic filters G1 and G2 over M . Then C1 �gW C2.

Proof. Assume otherwise, and let P and Q be OTM-programs such that (P,Q)
witnesses the gW-reducibility of C1 to C2. Pick F,M and x as in the statement
of the Lemma. Then Q computes, for every code of x as an input, a code for
some (unique) set y. By Theorem 8, we have y ∈ M . As M is closed under F , we
have F (y) ∈ M . Now, for every code of F (y) as an input, P computes a code for
some (unique) set z. Again by Theorem 8, z ∈ M . Also, by the choice of P and
Q, we have C1(x, z). So z ∈ {y : C1(x, y)} ∩ M and so the latter is not empty, a
contradiction.

4 Results on Generalized Effective Reducibility

As a sample application of the notions and methods developed above, we consider
variants of the axiom of choice with respect to effective reducibility.

Definition 9. Denote by AC the statement that for all sets x, there is a function
f such that f(∅) = ∅ and for y ∈ x, if y 	= ∅, then f(y) ∈ y. Denote by AC′

the statement that for all sets x whose elements are non-empty and mutually
disjoint, there is a set r such that |r ∩ y| = 1 for all y ∈ x. Denote by WO the
well-ordering principle, i.e. the statement that for every set x, there is an ordinal
α and a bijection f : α ↔ x. Denote by ZL Zorn’s lemma, i.e. the statement
that, for every partially ordered set (X,≤) in which every ascending chain has
an upper bound, there is a ≤-maximal element in X. Finally, denote by HMP
the Hausdorff maximality principle, i.e. the statement that, for every partially
ordered set (X,≤), every totally ordered subset is contained in a ⊆-maximal
totally ordered subset.

Remark: HMP can be seen as the combinatorial core behind the proofs of ZL
from AC or WO. For effective reducibility, it is the more interesting formulation:
For if ZL holds, one can obtain the set of maximal elements of a p.o.-set (X,≤)
satisfying the conditions of ZL by merely searching through X.7

7 This does not imply that ZL is effective, though, as there is no effective way to
effectively choose one element from the set of all maximal elements.
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It is not hard to see that all these principles are equivalent in the sense of
reducibility: The usual equivalence proofs explain, modulo a transfinite version
of Church’s thesis, how each of these principles can be reduced to any other.
However, for gW-reducibility, we can use Lemma 6 to show that (under 0�) the
well-ordering principle is not generalized Weihrauch reducible to the axiom of
choice:

Theorem 10. If 0� exists, then WO 	≤gW AC.

Proof. (Sketch) In Theorem D.-A.C. of [Z], it is shown how to construct a tran-
sitive model of ZF−+AC+¬WO as a union of an ascending chain of symmetric
extensions of a transitive ground model M of ZF−. Starting with M = L, it is
easily checked that, under the assumption that 0� exists, the construction leads
to a definable transitive class model N of ZF−+AC such that some set A ∈ N
that is non-wellorderable in N is countable in V and moreover PA is countable
and thus has two mutually generic filters over N . Hence the assumptions of
Lemma 6 are satisfied and the non-reducibility follows.

Many other relations between choice principles are effective, however:

Theorem 11. We have (1) AC′ ≡gW AC ≤gW ZL and (2) ZL ≤gW WO

Proof. The usual equivalence proofs over ZF (see e.g. [Je]) effectivize.

Remark: We do not know how HMP relates to AC in terms of ≤gW. We suspect
that HMP �gW AC. Our current state of knowledge (combined with our remark
on HMP above) hence gives some meaning to the humorous claim that ‘The
Axiom of Choice is obviously true, the well-ordering principle obviously false,
and who can tell about Zorn’s lemma?’8.

5 Conclusion and Further Work

We have seen how our framework can be used to distinguish between various
versions of set-theoretical principles usually regarded as equivalent.

One may now ask for many statements which are effectively reducible or
gW-reducible to which others. This may be viewed as a cardinality-independent
version of reverse mathematics (see [Sh]) and the theory of the Weihrauch lat-
tice. Apart from that, it may be interesting to consider variants with OTM-
computability replaced by other models like ITTMs [HL] or parameter-OTMs,
along with variations of Weihrauch reducibility, such as strong Weihrauch
reducibility.

Acknowledgements. We thank our three anonymous referees for suggesting various
corrections and improvements to our work.

8 See [Kr], where this quote is attributed to Jerry Bona.
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Abstract. Let A ⊆ ω2 be measurable. The density set DA is the set of
Z ∈ ω2 such that the local measure of A along Z tends to 1. Suppose
that A is a Π0

1 set with empty interior and the uniform measure of A is
a positive computable real. We show that DA is lightface Π0

3 complete
for effective Wadge reductions. This is an algorithmic version of a result
in descriptive set theory by Andretta and Camerlo [1]. They show a
completeness result for boldface Π0

3 sets under plain Wadge reductions.

1 Introduction

We work in Cantor space ω2 with the product measure μ. For a finite bit string
s and a measurable set A ⊆ ω2, the local measure of A above s is

μs(A) = 2−|s| · μ([s] ∩ A),

where [s] is the clopen set in ω2 consisting of all the extensions of s (this set is
often denoted Ns in the literature). Let DA be the points Z of such that A has
density 1 at Z, namely

DA = {Z : lim
n

μZ�n(A) = 1}.

We call density set every set of the form DA, for some measurable A. We will
be mainly interested in closed A, in which case DA ⊆ A.

The Lebesgue density theorem for Cantor space states that if A is measurable,
then almost every Z ∈ A is in DA. This result has been the seed for recent
investigations both in algorithmic randomness and in descriptive set theory.

In algorithmic randomness, density has been instrumental in solving the long-
open “covering problem”. Combining Bienvenu et al. [3] and Day and Miller [5]
yielded the answer; for an overview see [2]. Khan [6] obtained a variety of results,
in particular relating density for the reals with density for Cantor space. In a
recent article, Myabe et al. [7] define density randomness of a point Z in Cantor
space as the combination of Martin-Löf-randomness of Z and the property that
Z ∈ DP for each Π0

1 set P containing Z; they show the equivalence of density
randomness with a number of notions stemming from effective analysis. Martin-
Löf-randomness of Z does not necessarily imply that Z satisfies the effective
c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 234–239, 2016.
DOI: 10.1007/978-3-319-40189-8 24
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version of Lebesgues’s theorem; for instance, the least element of a non-empty
Π0

1 set P of ML-randoms is not in DP.
In descriptive set theory Andretta and Camerlo [1] have analyzed the com-

plexity of the density sets. It is easily seen that the Π0
3 pointclass is an upper

bound for this study. For example, if A = [s], then DA = A, which is closed.
In [1, Sect. 7] the authors show that DA is Π0

3-complete with respect to Wadge
reducibility in case that A has empty interior and positive measure. They also
prove that density sets can have any complexity within Π0

3. The first author in
[4] has conducted a similar study of the difference hierarchy over the closed sets
in the setting of the real line with the Lebesgue measure.

The goal of this short paper is to connect the two approaches to Lebesgue’s
theorem. We give an algorithmic version of the result in [1]. We show that for
any (lightface) Π0

1 set A ⊆ ω2 with empty interior and measure μA a positive
computable real, the density set DA is lightface Π0

3 complete for algorithmic
Wadge reductions.

To say that a real r is computable means that from a number n ∈ ω we can
compute a rational that is within 2−n of r. The algorithmic version of Wadge
reducibility is as follows: for C,D ⊆ ω2, we write D ≤m C if there is a total
Turing functional Ψ such that D = Ψ−1(C). Totality means that Ψ(Y ) ∈ ω2 for
each Y ; equivalently, Ψ(Y ;n) is obtained by evaluating a truth table computed
from n on Y . Note that it is easy to construct such a set A, for instance by a
Cantor space version of the construction of a Cantor set of positive measure in
the unit interval.

In our proof, while we import the basic combinatorics of the approach in [1],
the details are more complicated because we need to build an algorithmic Wadge
reduction. This is where we use the hypothesis that the measure of A is com-
putable. It is not known at present whether this hypothesis is actually necessary.
The other hypothesis (that the interior be empty) is of course necessary, as for
instance shown by taking A to be the whole Cantor space.

2 Completeness for Lightface Point Classes

For the basics about arithmetical hierarchy see for example [9,10].

Definition 1. Consider a lightface point class Γ in Cantor space, such as Π0
2

or Π0
3 . We say that C is Γ -complete if C is in Γ , and for each D ∈ Γ we have

D ≤m C.
The next result is folklore (see e.g. [8]). For the reader’s benefit we provide

the short proof.

Proposition 2. The class C of all sequences with infinitely many 1’s is Π0
2 -

complete.

Proof. The class C is clearly Π0
2 . Now suppose D is Π0

2 , so D =
⋂

n Gn with
Gn+1 ⊆ Gn for a uniformly Σ0

1 sequence 〈Gn〉n∈ω. Define a total Turing functional
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Ψ as follows. Given a sequence of bits Z, at stage t we use the first t bits of Z,
and append one bit at the end of the output ΨZ . We append 0 unless we see at
stage t that [Z �t] ⊆ Gn for the next n; in that case we append 1.

In the following we effectively identify ω×ω2 and ω2 via the standard com-
putable pairing function ω × ω → ω. The following is presumably folklore.

Proposition 3. The set E = {Z ∈ ω2: ∀n∀∞k Z(n, k) = 0} is Π0
3 -complete.

Proof. Clearly E is Π0
3 . Now suppose a given set F is Π0

3 , so G =
⋂

n Gn where
Gn is uniformly Σ0

2 . By the previous proposition and the uniformity in D of its
completeness part, for each n we effectively have a Turing functional Ψn such
that Gn = Ψ−1

n (ω2\C). Define a total Turing functional Ψ : ω2 → ω×ω2 by

ΨZ(n, r) = ΨZ
n (r).

Clearly Z ∈ F ⇔ ∀n [Z ∈ Gn] ⇔ ∀n [ΨZ
n ∈ ω2\C] ⇔ ΨZ ∈ E .

3 Reaching the Maximal Complexity

Theorem 4. Let A ⊆ ω2 be a Π0
1 set with empty interior such that μA > 0 and

μA is a computable real. Then DA is Π0
3 -complete.

We begin with some preliminaries. In the following s, t, u denote strings of
bits. Note that if μA is a computable real then μs(A) is a computable real
uniformly in s (see e.g. [9, 1.9.18]). Also, μs(A) < 1 for each s because A has
empty interior.

Let L(t) = μt(A). We note that L is a computable martingale in the sense
of algorithmic randomness. That is, L ≥ 0, the “martingale equality” L(s0) +
L(s1) = 2L(s) holds for each string s, and L(s) is a computable real uniformly
in s; see e.g. [9, Chap. 7]. By hypothesis that A has empty interior, we have
L(s) < 1 for each s.

We will show that the oscillation behaviour of L can be controlled sufficiently
well in order to code the Π0

3 -complete set E from Proposition 3 into DA. For
p ∈ N let δp = 1 − 3−p. We write θ(s) = p if δp−1 < L(s) < δp. We leave
θ(s) undefined in case L(s) = δk for some k. In the following, when we write
θ(s) we imply that θ(s) is defined. Observe that, if θ(X �n) is defined for each
n and limn θ(X � n) = ∞, then X ∈ D(+A. Note that the binary relations
{〈s, p〉 : θ(s) = p} and {〈s, p〉 : θ(s) ≥ p} are Σ0

1 because the martingale L is
computable.

Lemma 5.

(i) (Increasing the value of L). Let p < k and θ(s) = p. There is t ⊃ s such that
θ(t) ≥ k and L(u) > δp−1 for each u with s ⊆ u ⊆ t.

(ii) (Decreasing the value of L). Let p > q and θ(s) = p. There is t ⊃ s such
that θ(t) = q and L(u) > δq−1 for each u with s ⊆ u ⊆ t.
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Proof. (i) By an application of the Lebesgue density theorem [1, Proposition 3.5]
(where r there is δk), there exists a prefix minimal string v ⊃ s such that
L(v) ≥ δk and L(u) ≥ L(s) for each u with s ⊆ u ⊆ v. If θ(v) is defined, the
string t = v is as required. Otherwise we have L(v) = δm for some m ≥ k. By
the Lebesgue density theorem, L is not constant on the set of extensions of v,
so one can choose a prefix minimal string w ⊇ v such that L(w0) �= L(w1). By
the minimality of w we have L(v′) = δm for each v′ with v ⊆ v′ ⊆ w.

First suppose that L(w0) > L(w). Since L(w0) < 1, we have L(w0)−L(w) <
3−m. Hence L(w) − L(w1) = L(w0) − L(w) < 3−m by the martingale equality,
and thus δm−1 < L(w1) < δm because δm−1 = δm−2·3−m. Then θ(w1) = m ≥ k,
so the string t = w1 is as required. If L(w1) > L(w) instead, then t = w0 is as
required by an analogous argument.
(ii) As L(s) < 1, by the Lebesgue density theorem there exists a prefix minimal
t ⊃ s such that L(t) < δq. Let t = vb where b ∈ {0, 1}. Since L ≤ 1 the martingale
equality for 1 − L implies that 2(1 − L(v)) ≥ 1 − L(t). So L(t) ≤ δq−1 would
imply 2(1−L(v)) ≥ 1−L(t) ≥ 3 ·3−q > 2 ·3−q, and hence L(v) < δq contrary to
the minimality of t. Hence θ(t) = q and L(u) > δq−1 for each u with s ⊆ u ⊆ t,
as required. This establishes the lemma.

Remark 6. By the remarks on θ above and since L is computable, all the condi-
tions in the Lemma are Σ0

1 . Thus in (i) given a string s and numbers p < k, if
θ(s) = p we can run a search for the string t. So the function s, p, k �→ t is partial
computable and defined whenever θ(s) = p < k. A similar remark applies to (ii).

Proof (of Theorem4). By Proposition 3, the set

E = {Z ∈ ω×ω2 | ∀q∀∞n[Z(q, n) = 0]}

is Π0
3 -complete; thus, it will be enough to show that E ≤m D(A). In the following

let a, b denote bit-valued square matrices. Given such a matrix a, we will compute
a string s = ψ(a) ∈ <ω2 in such a way that θ(s) is defined. We ensure that
a ⊆ b → ψ(a) ⊆ ψ(b). Then the function

Ψ : ω×ω2 → ω2, Ψ(Z) =
⋃

n ψ(Z � n × n)

is a total Turing functional.
Defining ψ. The definition of ψ is by recursion, using Lemma 5 and Remark 6.
If μA > 1/2, after removing from A either the elements of Cantor space starting
with 0 or the elements starting with 1, we may assume that μA ≤ 1/2. So we
may assume that θ(∅) is defined. We set ψ(∅) = ∅.

Now suppose that φ(a) has been defined for each n×n bit-valued matrix a in
accordance with the conditions above. Given a matrix b = 〈a(i, j) | i, j < n+1〉,
let s = ψ(a) where a = b � n × n. Then p = θ(s) is defined.

If there is a q ≤ n such that b(q, n) = 1, choose q least.

– If q < p, via (ii) of Lemma 5 compute a string t ⊃ s such that θ(t) = q and
L(u) > δq−1 for each u with s ⊆ u ⊆ t, and define ψ(b) = t.
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– If q ≥ p, or there is no such q ≤ n at all, let k = max(p + 1, n + 1). Via (i) of
Lemma 5 compute a string t ⊃ s such that θ(t) ≥ k and L(u) > δp−1 for each
u with s ⊆ u ⊆ t, and define ψ(b) = t. This completes the recursion step.

We verify that E ≤m DA via Ψ . First suppose that Z /∈ E . Let q be least such
that ∃∞n[Z(q, n) = 1]. Then for arbitrarily large n, we have θ(ψ(Z � n×n)) = q,
hence θ(Ψ(Z) � r) = q for infinitely many r. Therefore Ψ(Z) /∈ DA.

Now suppose that Z ∈ E . Then for every q ∈ ω, there is mq such that
∀m ≥ mq[Z(q,m) = 0]. For r ∈ ω, let nr = max{m0, . . . ,mr, r}. Note that for
each n ≥ nr, if Z(q, n) = 1 then q > r.

The following claim will show that Ψ(Z) ∈ DA.

Claim. Given n>nr, let s = ψ(Z � n × n) and t = ψ(Z � (n + 1) × (n + 1)).

For each string u with s ⊆ u ⊆ t, we have L(u) ≥ δr.
To see this, we prove inductively that θ(ψ(Z � n × n)) > r for each n > nr.

For the start of the induction at nr + 1, suppose that s = ψ(Z � nr × nr) has
just been defined and consider the next step of the definition of ψ along Z. The
least possible value of q is r + 1. Since nr ≥ r, no matter whether we apply
(ii) or (i) of the lemma we ensure that θ(t) > r and hence L(t) > δr, where
t = ψ(Z � (nr + 1) × (nr + 1)).

For the inductive step, suppose that n > nr and for s = ψ(Z � n × n) we
have θ(s) > r. Let t = ψ(Z � (n + 1) × (n + 1)). Again the least possible value
of q is r + 1. If we apply (ii) of the lemma then θ(t) > r and L(u) > δr for each
u with s ⊆ u ⊆ t. If we apply (i) then, where θ(s) = p > r, we have θ(t) ≥ p + 1
and L(u) > δr for each u with s ⊆ u ⊆ t. This completes the claim.

We conclude that for each r, we have L(Ψ(Z) �m) ≥ δr for sufficiently large
m. Hence Ψ(Z) ∈ DA.

Theorem 4 leaves open the following question. Is there a Π0
1 class with

empty interior and non-computable measure such that the density set is not
Π0

3 -complete?
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Abstract. A general correction grammar for a language L is a program
g that, for each (x, t) ∈ N

2, issues a yes or no (where when t = 0,
the answer is always no) which is g’s t-th approximation in answer-
ing “x∈L?”; moreover, g’s sequence of approximations for a given x is
required to converge after finitely many mind-changes. The set of cor-
rection grammars can be transfinitely stratified based on O, Kleene’s
system of notation for constructive ordinals. For u ∈ O, a u-correction
grammar’s mind changes have to fit a count-down process from ordinal
notation u; these u-correction grammars capture precisely the Σ−1

u sets
in Ershov’s hierarchy of sets for Δ0

2. Herein we study the relative suc-
cinctness between these classes of correction grammars. Example: Given
u and v, transfinite elements of O with u <o v (Kleene’s ordering on
O), for each ∅(2)-computable H : N → N, there is a v-correction gram-
mar iv for a finite (alternatively, a co-finite) set A such that the smallest
u-correction grammar for A is >H(iv). We also exhibit relative suc-
cinctness progressions in these systems of grammars and study the
“information-theoretic” underpinnings of relative succinctness. Along the
way, we verify and improve slightly a 1972 conjecture of Meyer and
Bagchi.

1 Correction Grammars and Relative Succinctness

Burgin [5] suggested that a person’s knowledge of a language L may involve
his/her storing a representation of L in terms of two grammars, say g1 and g2,
where g1’s language over-generalizes L and g2 is used to “edit” errors of (make
corrections to) g1. Thus, L = (L1 − L2) = {x ∈ L1 x /∈ L2 }, where Li is the
language generated by the grammar gi. The pair 〈g1, g2〉 can thus be seen as
a single description of (or “grammar” for) the language L. Burgin called such
pairs grammars with prohibition; we prefer the term correction grammars. These
correction grammars may be seen as modeling self-correcting human behavior.1

1 For more discussion, see [6].
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In the computability-theoretic context of the present paper, we first think of p
as being a correction grammar for L if and only if p = 〈i, j〉 and L = (Wi−Wj).2

Hence, such a correction grammar 〈i, j〉 is an index from [18] for the difference
of c.e. sets, i.e., for the d.c.e. set, (Wi − Wj). Correction grammars are more
powerful than ordinary c.e. grammars in the sense that there are languages
(e.g., L = {x x /∈ Wx }) that correction grammars can describe that ordinary
c.e. grammars cannot.

This paper’s focus is on a different advantage correction grammars have over
c.e. grammars: relative succinctness. That is, correction grammars can provide
vastly shorter descriptions of certain c.e. languages (in our cases, finite and co-
finite languages) than can any c.e. grammar. Here is a sample result.

Theorem 1. Suppose H : N → N is ∅(2)-computable and Wi1 = N. Then there
is a c.e. grammar i2 with Wi2 co-finite (hence, (Wi1 − Wi2) is finite, and, thus,
c.e.) such that min{ i Wi = (Wi1 − Wi2) } > H(〈i1, i2〉); that is, when
one magnifies the numerical value of the correction grammar 〈i1, i2〉 by H, the
result is still smaller than the numerical value of any c.e. grammar for the finite
language named by 〈i1, i2〉.
Scholium 2 (On Theorem 1).

(a) It is especially interesting to consider the cases where Theorem 1’s func-
tion H is large valued and fast growing; then the value of H(〈i1, i2〉) is a vast
magnification of the value of 〈i1, i2〉. Hence, thanks to the theorem, the minimum
c.e. grammar for (Wi1 − Wi2) is huge compared its correction grammar 〈i1, i2〉.

(b) For the magnification function H, one can concretely take H =
λx 1020

30x

or H = λx Ack(x + 100, x + 100) where Ack is Ackermann’s
function [20]. However, these are tame choices as there are ∅(2)-computable
functions that dominate every ∅(1)-computable function. (f dominates g ⇔def

{x g(x) < f(x) } is co-finite.)
(c) In effect, the theorem identifies the size of the c.e. grammar i with the

number i itself and the size of the correction grammar 〈i1, i2〉 with the number
〈i1, i2〉. As explained in Sect. 2, a consequence of Theorem 1 is that the analogous
result holds for a wide choice of size-measurement schemes for grammars.

(d) Theorem 1’s 〈i1, i2〉 can be computed from a relativized program for H.
Most of our relative succinctness results are uniformly algorithmic in this sense.

(e) For simplicity, Theorem 1 asserts that there is a grammar (e.g., 〈i1, i2〉)
witnessing the relative succinctness. In fact we can construct an infinite c.e. set
of such witnesses for Theorem 1 (and analogously for Corollary 4 and Theorems
6 and 7 below).
2 A Dollop of Standard Terminology: Wi is the i-th c.e. set, where i codes a program

for generating or for accepting Wi [30]. 〈·, ·〉 is a pairing function, i.e., a computable
isomorphism from N×N to N [30], where N = the natural numbers. For A ⊆ N, the A-
computable (respectively, partial A-computable) functions are the total (respectively,
partial) functions over N that are computable relative to oracle A. WA

i is the i-th
A-c.e. set, where i codes a relativized program that, with oracle A, generates or
accepts WA

i [30]. For each k ∈ N, let A(k) be the k-th jump [30] of A, i.e.: A(0) = A

and A(i+1) = { x x ∈ WA(i)

x }. Thus, ∅(1) = the halting problem, ∅(2) = the jump
of ∅(1), etc. For A ⊆ N, A = N−A. Any unexplained terminology below is from [30].
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(f) Theorem 1 turns out to fail if one attempts to strengthen it by allowing
H to be an arbitrary ∅(3)-computable function.

2 A Digression on Grammar Size Measures

Before discussing extensions of Theorem 1 we first consider how versions of these
theorems still hold under a wide range of size-measurement schemes.

Definition 3. For a given oracle A, an A-computable Blum program size mea-
sure (or simply, A-computable size measure) is a finite-to-one, A-computable
s : N → N such that bs = λn max{ i : s(i) ≤ n } is also A-computable.

The ∅-computable size measures match Blum’s original notion of program
size measure [2]. These include s(i) = i, s(i) = |i| = the length of the reduced
binary representation of i (i.e., no redundant, leading 0s), and most standard
ways of measuring program (or grammar) size. For some less-standard size
measurements, we need a bit of terminology: For each A ⊆ N, let UA be
an additively optimal universal partial A-computable function [22]. (Such an
UA exists by a straightforward relativization of Lemma 2.1.1 in [22].) Define
CA = λx min{ |p| UA(p) = x }. CA(x) is the A-Kolmogorov complexity of x.
Now, for each A, CA is an A(1)-computable size measure. E.g., C∅, the standard
notion of (plain) Kolmogorov complexity, is an ∅(1)-computable size measure.

It turns out that all of our ∅(k)-relative-succinctness results in this paper
(e.g., Theorem 1 for k = 2) still hold under any choice of ∅(k)-computable size
measures. So for example, Theorem 1 generalizes to:

Corollary 4. Suppose H : N → N is ∅(2)-computable, sce and sdce are any ∅(2)-
computable size measures, and Wi1 = N. Then there is a c.e. grammar i2 with
Wi2 co-finite and min{ sce(i) Wi = (Wi1 − Wi2) } > H(sdce(〈i1, i2〉)).

Scholium 5 (On Corollary 4). Taking sce = sdce = C∅(1)
and H = a large,

fast-growing ∅(2)-computable function in Corollary 4 provides some insight into
the trade-offs behind relative succinctness. As measured by C∅(1)

, min{C∅(1)
(i)

Wi = (Wi1 − Wi2) } is the least amount of ∅(1)-algorithmic information in any
c.e. grammar for (Wi1 − Wi2) which, by Corollary 4, is H-enormous compared
to sdce(〈i1, i2〉).

(a) Thus, intuitively, a necessary price a then witnessing correction grammar
〈i1, i2〉 pays for its small size is that 〈i1, i2〉 is enormously deficient in C∅(1)

-
information compared to that of any c.e. grammar for (Wi1 − Wi2).

(b) Such a witness 〈i1, i2〉 would have its own information minimality if
C∅(1)

(〈i1, i2〉) just happened to = min{C∅(1)
(〈j1, j2〉) (Wj1 − Wj2) = (Wi1 −

Wi2) }. However, as mentioned in Scholium2(e), we can produce an infinite
c.e. set, A, of witnesses, 〈i1, i2〉, to Corollary 4, and, by straightforward rela-
tivization of well-known immunity properties of sets of minimal indices [25],
all but finitely many elements of this A are not such C∅(1)

-minimal size d.c.e.
grammars.



Program Size Complexity of Correction Grammars in the Ershov Hierarchy 243

Section 5 below further discusses some information-theoretic aspects of rela-
tive succinctness.

3 The Ershov Hierarchy and Relative Succinctness

Versions of Theorem 1 hold for generalizations of the notion of correction gram-
mar. One natural extension is to consider finite differences of c.e. languages.
That is, for k > 0, define a k-fold correction grammar as being a number of the
form 〈i1, . . . , ik〉 that names the language (Wi1 − (Wi2 − · · · (Wik−1 − Wik) · · · )).
The languages named by k-fold correction grammars are called the k-c.e. sets
[36]; they formalize the notion of a finite, fixed number of successive edits for
errors. The Ershov hierarchy [12–14] includes and extends this basic idea into
the transfinite by means of constructive ordinals as discussed below.

Ordinals are representations of well-orderings. A constructive ordinal is,
roughly, an ordinal, α, for which there is a program, called a notation, that
specifies how to build α algorithmically or lay α out end-to-end. Herein we use
Kleene’s well-known general ordinal notation system O (coded as a proper sub-
set of N) [21,30]. Each constructive ordinal has at least one O-notation. For each
k ∈ N, let k = the unique O-notation for the ordinal k. Kleene also introduced an
order relation <o on O-notations that naturally embeds into the ordering of the
corresponding constructive ordinals [21,30], e.g., 0 <o 1 <o 2 <o . . . <o w, where
w is any O-notation for ω (the ordinal for N under the ordering: 0 < 1 < 2 < . . .).

Our most general formulation of correction grammars is based on the idea
of using Kleene’s O-notations to bound the number of corrections that such
a grammar can make. To do this rigorously, we make use of the technique of
algorithmic counting-down from O-notations. For a notation u ∈ O, our u-
correction grammars are each algorithms for counting-down corrections from u.

For u ∈ O, here is roughly how level-u correction grammars work. Choose
uniform programs c, d where c is for counting-down from u (along <o), and
where d, for each time t and input x, decides whether to exclude or include x at
time t—but, initially, i.e., at t = 0, d excludes (independently of x). With each
mind-change of d—about excluding or including a given x, c must walk/leap
strictly further down u (along <o). The correction grammar p = 〈c, d〉 accepts
the set, Wu

p , of all x that d eventually includes—once c counts down from u
no more. By the well-ordering property of ordinals, such a count-down sequence
must be finite and, hence, such a grammar makes only finitely many corrections
on excluding/including any given x.

Examples: For k ∈ N, counting-down corrections from k is equivalent to an
algorithm that initially excludes each item x and, then, the algorithm can change
its mind about x’s inclusion or exclusion up to k times on the way to giving its
final, correct answer as to whether x is included or excluded. When k = 1,
such algorithms are grammars for the c.e. sets; when k = 2, such algorithms
are grammars for the d.c.e. sets; and in general, for a fixed k, they provide



244 J. Case and J.S. Royer

grammars for the k-c.e. sets.3 It can be shown that counting-down corrections
allowed from any notation for ω is equivalent to declaring algorithmically, at
the time a first correction is made, a finite numerical bound on the number of
further corrections to be allowed. This is more powerful than just initially setting
a fixed, finite number of corrections allowed. As another example consider using a
notation for the ordinal ω+ω (two copies of ω laid end to end), also constructive
and transfinite: in this case, when the first correction is made, the algorithm
declares a finite bound on the number of further corrections it will make; this
bound is, however, allowed to be changed once, at a later time. For a notation
for the constructive ordinal ω + ω + ω, the algorithm is allowed to update the
bound twice. For at least natural notations for the constructive ordinal ω2, the
algorithm is allowed to make a finite number of changes to the bound, where
the maximum number of changes allowed to the bound is announced when the
algorithm makes the first correction!

Each Wu
p as sketched above is manifestly a u-c.e. set from the Σ−1

u level in
the general Ershov Hierarchy [12–14]. Hence, u-correction grammars provide a
motivation for studying the u-c.e. sets.4 It turns out that each u-c.e. set has
a correction grammar as above, and, moreover, that 〈Wu

p 〉p∈N is an acceptable
indexing of Σ−1

u .5 The details of the Wu
p ’s definition will appear in the full paper.

Here is our lift of Theorem1 to our general formulation of correction
grammars.

Theorem 6. Suppose 0 <o u <o v ∈ O, H : N → N is ∅(2)-computable, and su
and sv are ∅(2)-computable size measures. Then (a) and (b) just below each hold.

(a) If v is transfinite or else finite and even, then there is an e with W v
e finite

such that min{ su(p) Wu
p = W v

e or Wu
p = W v

e } > H(sv(e)).
(b) If v is transfinite or else finite and odd, then there is an e with W v

e

co-finite such that min{ sv(p) Wu
p = W v

e or Wu
p = W v

e } > H(sv(e)).

It turns out that if v is finite and odd, then the conclusion of Theorem6(a) is
false; and similarly with Theorem6(b) for v finite and even. We note that these
odd/even provisos go away if the theorem’s H is restricted to be ∅(1)-computable.

Our proof of Theorem6 is a succinct and indirect combination of Ershov-
Hierarchy refinements of index-set degree-calculations of Rogers [30] together
with recursion theorems. The next section has a sample proof in this style,
but where the refinement of Rogers’ index-set degree-calculations is only a
relativization.
3 For each k ∈ N, the system of k-correction grammars turns out to be equivalent to

the system of k-fold correction grammars introduced above.
4 Algorithmic counting-down from constructive ordinals has been used, for example,

in: computability theory [1,7,11], proof theory [29,38], term rewriting [4,40], and
computational learning theory [15].

5 〈Wu
p 〉p∈N’s acceptability provides s-m-n and recursion theorems that are needed in

some of our proofs.
Let w be an O-notation for ω. While our w-c.e. sets are precisely Σ−1

w , they are
distinct from the well known omega-c.e. sets [37] (each of which has a computable
approximation analogous to an w-c.e. set except the number of mind changes is
bounded by some computable function). The omega-c.e. sets are in Δ−1

w � Σ−1
w .
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4 Confirmation of the Meyer and Bagchi Conjecture

In 1972 Meyer and Bagchi [25] conjectured a (non-Ershov Hierarchy) succinct-
ness result that, by adapting Theorem6’s proof, we can confirm (and improve6)
in:

Theorem 7. Let A and B be sets with A(1) ≤T B and let sA and sB be B(2)-
computable size measures. Then, given any B(2)-computable function H, one
can compute an e (from a ϕB(2)

-program for H) such that WB
e is co-finite and

min{ sA(p) WA
p = WB

e } > H(sB(e)).

Proof.7 Since A(1) ≤T B, we have Σ0,A
1 ∪ Π0,A

1 ⊆ Δ0,B
1 . By standard results,

{ 〈p, q〉 WA
p �= WB

q } ∈ Σ0,B
2 . Theorem 14-XV’s proof in [30] relativizes to

give: (B(3), B(3)) ≤m ({ i WB
i is co-finite }, { i WB

i /∈ Δ0,B
1 }). Let r witness

this reduction. As sA is a B(2)-computable size measure, by Definition 3, bsA =
λn max{ i : sA(i) ≤ n } is also B(2)-computable. By the recursion theorem for
ϕB(2)

, given a ϕB(2)
-program for H, we can compute an i0 such that

ϕB(2)

i0 = λx

{
0, if (∀p ≤ bsA(H(sB(r(i0)))))[WA

p �= WB
r(i0)

];
↑, otherwise.

Let e = r(i0). Case 1: (∃p ≤ bsA(H(sB(e))))[WA
p = WB

e ]. Then ϕB(2)

i0
(i0)↑.

Thus, WB
e /∈ Δ0,B

1 , and so, WB
e /∈ Π0,A

1 contradicting Case 1. Hence, we must
have Case 2: (∀p ≤ bsA(H(sB(e))))[WA

p �= WB
e ]. Then ϕ∅(2)

i0
(i0)↓. Hence,

WB
e (= WB

r(i0)
) is co-finite. Also, since max{ p sA(p) ≤ H(sB(e)) } =

bsA(H(sB(e))), we also have (∀p : sA(p) ≤ H(sB(e)))[WA
p �= WB

e ]. ��
Theorem 7 can be shown by a direct (albeit involved) construction of a

suitable WB
e thus. By standard results, write H as the double limit of a

B-computable function (with the inner limit also total). Double limits tend to
thrash. To handle thrashing in WB

e ’s construction, while crucially ensuring that
WB

e is finite, one can use a variant of Sacks’ restraint trick [32] that allows a
new number to be held out of WB

e only when no higher priority concern holds a
number out of WB

e .

6 Meyer and Bagchi’s conjecture had sA as a computable size measure and sB = λp p.
7 Another dollop of terminology.For partial function ψ, ψ(x)↓ means that ψ is defined

on x and ψ(x)↑ means that ψ is not defined on x. Let 〈ϕA
p 〉p∈N be an acceptable

programming system for the A-computable partial functions over N. For this ϕA we
have (i) the s-1-1 theorem for ϕA: There is a computable s : N

2 → N such that, for
each p, x, y: ϕA

s(p,x)(y) = ϕA
p (〈x, y〉); and (ii) the Kleene parametric recursion theorem

for ϕA: There is a computable r : N
2 → N such that, for each p, x, y: ϕA

r(p,x)(y) =

ϕA
p (〈r(p, x), y〉). (A, B) double m-reduces [35] to (C, D) (written: (A, B) ≤m (C, D))

if and only if there is an computable f such that, for each x, [x ∈ A ⇔ f(x) ∈ C
and x ∈ B ⇔ f(x) ∈ D]; such an f witnesses the reduction.
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5 Why Are the Programs Succinct?

The succinct programs above are so, in part, because they are missing infor-
mation. Scholium5 above noted a link between relative succinctness and “infor-
mation deficiency.” Below is a sample of our results that explore this link. For
this sample the notion of information deficiency is based on unprovability. Let T
be a ∅(2)-computably axiomatized extension of Second Order Arithmetic (SOA)
[30,34] such that T ’s theorems expressible in SOA are true. E.g., T = ZFC
+ all Δ0

3-truths of first-order Arithmetic. T ’s being ∅(2)-computably axioma-
tized makes its set of theorems a Σ0

3 -set by direct relativization of standard
results [9,23,30]. T can thus be regarded as a ∅(2)-algorithmic extractor of SOA
truth.

Theorem 8. Suppose (i) through (iv) just below.

(i) T is a ∅(2)-computability axiomatized extension of SOA such that T ’s the-
orems expressible in SOA are true.

(ii) 0 <o u <o v ∈ O; A ⊆ Σ−1
u ; su and sv are ∅(2)-computable size measures.

(iii) For each informal sentence E (translatable to SOA), we write 〈〈E〉〉 for
a naturally corresponding, fixed closed well-formed formula of SOA that
semantically expresses E.

(iv) For each ∅(2)-computable H : N → N, there is an eH with W v
eH ∈ A and

min{ su(p) Wu
p = W v

eH } > H(sv(eH)).

Then, for each sufficiently large, ∅(2)-computable H : N → N and for each eH as
in (iv) just above, we have T � 〈〈u and v ∈ O andW v

eH ∈ Σ−1
u 〉〉.

Theorem 8’s conclusion just above provides an information deficiency of eH ,
e.g., in many obvious cases where SOA � 〈〈u and v ∈ O〉〉.

The base of T above can be first-order arithmetic [23,30]—provided that,
roughly, we change 〈〈u and v ∈ O〉〉 above to 〈〈u and v settled〉〉, where settled is
an approximation to O meaning that the limit, tied to our uniform count-down
decision process, converges.8

6 Relative Succinctness Progressions

Fix a ∅(2)-computable H : N → N and 0 <o u0 <o u1 <o . . . <o un ∈ O. By
Theorem 6 above, we know that, for each of j = 1, . . . , n, there is an ej with W

uj
ej

finite or co-finite (subject to the even/odd conditions on the finite uj ’s) with ej
H-more succinct than any Wuj−1-program for W

uj
ej . It turns out that we can

arrange for each of these W
uj
ej ’s to be the same set or its complement. That is:

8 One may wonder why 〈〈u and v ∈ O〉〉 (or the same thing but with ‘settled’ in place
of ‘∈ O’) is in the conclusion of Theorem 8. The simple answer is that ∅(2) is not a
strong enough oracle to remove either one from inside the 〈〈· · ·〉〉 in the conclusion.
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Theorem 9 (A sample succinctness progression). Suppose H is ∅(2)-com-
putable and 0 <o u0 <o u1 <o . . . <o un ∈ O. Let su0 , . . . , sun

be ∅(2)-computable
size measures. For j = 1, . . . , n, let opj be an element of {λA A, λA A } that
is chosen arbitrarily subject to two constraints: (i) opj = λA A when uj is
finite and even, and (ii) opj = λA A when uj is finite and odd. Then there are
e1, . . . , en and A, a finite set, such that (a) op1(Wu1

e1 ) = · · · = opn(Wun
en ) = A,

and (b) for j = 1, . . . , n: min{ suj−1(p) W
uj−1
p = W

uj
ej or W

uj−1
p = W

uj
ej } >

H(suj
(ej)).

It is notable that a single finite set can witness the succinctness between each
of the adjacent pairs in 〈Wu0

i 〉i∈N, . . . , 〈Wun
i 〉i∈N: conceivably, the sets witnessing

the relative succinctness between distinct pairs must be very different—perhaps
because the basis for relative succinctness between adjacent pairs are “orthog-
onal.” Theorem 9 and related (but here not included) succinctness progression
results show that this is not the case. We note that, as with Theorem 6, the
theorem’s odd/even provisos go away if the theorem’s H is restricted to be ∅(1)-
computable. Theorem 9 is proved by a parameterized extension of the proof of
Theorem 6.

7 Related Results

Blum in his seminal paper [2] provided a computability-theoretic, axiomatic
treatment of program size and established the remarkable result that: for any
computable function h, for some primitive recursive functions f , there are general
recursive procedures for f which are h more succinct than any primitive recur-
sive procedures for f . Hence, although one need not go beyond primitive recur-
sions to compute such f , judicious use of more general recursion leads to pro-
grams for f which are considerably, i.e., h, smaller than any of those employing
primitive recursions only! Drumm [10] and Constable [8] independently refined
Blum’s techniques to exhibit relative-succinctness results analogous to Blum’s,
but between successive levels of the LOOP-hierarchy [27].

The above results left open the possibility that the functions admitting more
succinct programs might be pathological examples that no one would ever want
to compute anyway. However, Meyer and Fischer [26] showed that push-down
automata (PDAs) are computably more succinct than finite state automata for
some co-finite sets, and Meyer [24] provided very general techniques for obtaining
relative succinctness results for characteristic functions of finite sets! In partic-
ular, Meyer showed that double recursive procedures [28] are ∅(1)-computably
more succinct than primitive recursive procedures for some characteristic func-
tions of finite sets. He was the first to notice that, in many cases, one can obtain
programs that are more succinct by a ∅(1)-computable amount.

Computable relative-succinctness results were shown by: Borodin [3] for
context-sensitive grammars over context-free grammars (CFGs); Valiant [39] for
ambiguous CFGs over deterministic CFGs; and Schmidt and Szymanski [33]
for ambiguous CFGs over unambiguous CFGs. Hartmanis and Baker showed
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that, if P �= NP, then nondeterministic poly-time procedures are computably
more succinct than deterministic poly-time procedures for some finite initial
segments of a particular NP-complete set. By way of contrast, Hartmanis and
Baker also showed that deterministic Turing Machines (TMs) that provably run
in poly-time are computably more succinct than nondeterministic TMs that
are explicitly clocked to run in poly-time. Hartmanis [16] proved that non-
deterministic PDAs are computably more succinct than deterministic PDAs.
Hay [19] showed how to improve from computable, to ∅(1)-computable, the rel-
ative succinctness results mentioned above of [16,26,33,39]. She also showed
that TMs are computably more succinct than finite state automata for singleton
sets. Hartmanis [17] obtained a strong computability-theoretic, sufficient con-
dition for computable relative succinctness between two programming systems.
Royer and Case [31] constructed a systematic framework for relative succinct-
ness between subrecursive programming systems, characterized when relative-
succinctness phenomena occur between programming systems, and introduced
the notion of relative-succinctness progressions (as in Theorem 9) and established
a number of such progressions through a variety of subrecursive and complexity-
bounded hierarchies.

Beyond the subrecursive context of the above results, Parikh [30, p. 216]
showed that, for each computable h : N → N, there is: (i) an i1 with Wi1 ∈ Δ0

1

such that min{ p Wp = Wi1 } > h(i1), and (ii) an i2 with W ∅(1)

i2
∈ Σ0

1 such

that min{ p Wp = W ∅(1)

i2
} > h(i2). Meyer and Bagchi [25] showed that, for

sets A and B with A(1) ≤T B, for each B(2)-computable H, there is an e such
that WB

e ∈ ΣA
1 , but min{ sA(p) WA

p = WB
e } > H(sB(e)), where sA and

sB are computable size measures; they conjectured that this WB
e could be made

co-finite. (Theorem 7 above confirms and improves slightly upon this conjecture.)

Acknowledgments. Thanks to Frank Stephan for alerting us to our earlier blunder of
not noticing the need for even/odd cases in Theorem 6. Grant support was received by
J. Case from NSF grant CCR-0208616, and by J. Royer from NSF grants CCR-0098198
and CCF-1319769.
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Abstract. For a Turing degree x, we investigate the automorphisms
of the lattice of x-c.e. vector spaces. We establish the equivalence of
the embedding relation for these automorphism groups with the order
relation on the corresponding Turing degrees. By a result of Guichard
the automorphisms of the lattice of x-c.e. vector spaces are induced by
x-computable invertible semilinear transformations, GSLx. We prove
that the Turing degree spectrum of the group GSLx is the upper cone of
Turing degrees ≥ x′′.

1 Automorphisms of Effective Structures

The study of automorphisms on computable or computably enumerable struc-
tures connects computability theory and classical group theory. The set of all
automorphisms of a computable structure forms a group under composition, and
it is natural to ask questions about its complexity as well as the complexity of
its subgroups. It is also interesting to connect the embedability of the subgroups
with Turing reducibility.

The following notion is the focus of our investigation. Let d be a Turing
degree. For an infinite computable structure M, we define Autd(M) to be the
set of all automorphisms of M computable in d. The set Autd(M) under compo-
sition is a subgroup of Aut(M). When the structure M is ω with equality, then
its automorphism group Aut(M) is usually denoted by Sym(ω), the symmetric
group of ω. Hence we have

Symd(ω) = {f ∈ Sym(ω) : deg(f) ≤ d},

where deg(f) is the Turing degree of f . Our other computability theoretic nota-
tion is also standard and as in [18].
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The Turing degree spectrum of a countable structure A is

DgSp(A) = {deg(B) : B ∼= A},

where deg(B) is the Turing degree of the atomic diagram of B. Knight [8] proved
that the degree spectrum of any structure is either a singleton or is upward
closed. Only the degree spectrum of a so-called automorphically trivial struc-
ture is a singleton, and if the language is finite, that degree must be 0 (see [7]).
Automorphically trivial structures include all finite structures, and also some
special infinite structures, such as the complete graph on countably many ver-
tices. Jockusch and Richter (see [15]) defined the degree of the isomorphism type
of a structure, if it exists, to be the least Turing degree in its Turing degree
spectrum. Richter [15,16] was first to systematically study such degrees. For
these and more recent results about these degrees see [4]. In this paper we are
especially interested in the following result by Morozov.

Theorem 1 [10]. The degree of the isomorphism type of the group Symd(ω)
is d′′.

We will establish a similar result in the context of effective vector spaces.
Let V∞ be a canonical fully effective ℵ0-dimensional vector space over a

computable field F . We can think of the vectors in V∞ as (the codes of) the
finitely non-zero ω-sequences of elements of F. By L we denote the lattice of all
subspaces of V∞. For a Turing degree d, by Ld(V∞) we denote the following
sublattice of L:

Ld(V∞) = {V ∈ L : V is d-computably enumerable}.

Note that in the literature L0(V∞) is usually denoted by L(V∞). Guichard
[6] established that there are countably many automorphisms of L0(V∞) by
showing that each computable automorphism is generated by a 1 − 1 and onto
computable semilinear transformation of V∞. Recall that a map μ : V∞ → V∞
is called a semilinear transformation of V∞ if there is an automorphism σ of F
such that

μ(αu + βv) = σ(α)μ(u) + σ(β)μ(v)

for every u, v ∈ V∞ and every α, β ∈ F.

Notation 2. By GSLd we denote the group of 1−1 and onto semilinear trans-
formations 〈μ, σ〉 such that deg(μ) ≤ d and deg(σ) ≤ d.

Hence Guichard proved that every element of Aut(L0(V∞)) is generated by
an element of GSL0. This result can be relativized to an arbitrary Turing degree
d. The proof of Theorem 3 below is essentially identical to the proof in [6].

Theorem 3 [6]. Every Φ ∈ Aut(Ld(V∞)) is generated by some 〈μ, σ〉 ∈ GSLd.
Moreover if Φ is also generated by some other 〈μ1, σ1〉 ∈ GSLd, then there is
γ ∈ F such that

(∀v ∈ V∞) [μ(v) = γμ1(v)].
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There are two main results in this paper. The first is Theorem 4 in Sect. 2, which
establishes that for every pair a, b of Turing degrees, we have Aut(La(V∞)) ↪→
Aut(Lb(V∞)) if and only if a ≤ b. The second main result is Theorem 7 in
Sect. 3, which establishes that the isomorphism degree type of the group GSLd

is d′′.

2 Group Embeddings and Turing Reducibility

Morozov showed that the correspondence a → Syma(ω) can be used to sub-
stitute Turing reducibility with group-theoretic embedding. More precisely,
Morozov [11] established that

(Syma(ω) ↪→ Symb(ω)) ⇔ (a ≤ b)

for every pair a, b of Turing degrees. It follows from this result that a = b if
and only if Syma(ω) ∼= Symb(ω). Here, we establish an analogous result for
the subgroups of the group of automorphisms of the corresponding sublattices
of L. In the proof of the next, main theorem we will use the standard notation:
[x, y] = x−1y−1xy and xy = y−1xy.

Theorem 4. For any pair of Turing degrees a,b we have

(Aut(La(V∞)) ↪→ Aut(Lb(V∞))) ⇔ a ≤ b.

Proof. Obviously, if a ≤ b, then Aut(La(V∞)) ↪→ Aut(Lb(V∞)).
Now, assume that Aut(La(V∞)) ↪→ Aut(Lb(V∞)). Let {e0, e1 , . . .} be a fixed

computable basis of V∞. For 〈μ1, σ1〉 , 〈μ2, σ2〉 ∈ GSLa, we define 〈μ1, σ1〉 ∼

〈μ2, σ2〉 iff:
(1) σ1 = σ2, and
(2) there is α ∈ F such that α �= 0 and (∀v ∈ V∞) [μ1(v) = αμ2(v)].
Note that Aut(La(V∞)) ∼= GSLa/∼. We can define a group embedding δ :

Syma(ω) ↪→ GSLa/∼ as follows. For any f ∈ Syma(ω), we let δ(f) be the
∼-equivalence class of a linear transformation 〈f̃ , id〉 such that

f̃(ei ) = ef(i).

Note that if δ(f1) = δ(f2), then f̃1 = cf̃2 for some c ∈ F , and thus

(∀i ∈ ω) [ef1(i) = f̃1(ei) = cf̃2(ei ) = cef2(i)].

Since the vectors ei, i ∈ ω, are independent, we must have

(∀i ∈ ω) [f1(i) = f2(i)].

Therefore, there exists a map

K : Syma(ω) ↪→ GSLb/∼
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such that if f ∈ Syma(ω), then K(f) is a b-computable linear transformation
of V∞ modulo scalar multiplication.

We claim that if a set A is c.e. in a, then A is c.e. in b. Fix A ⊆ ω such that
A is c.e. in a , and let h : ω → ω be an a-computable enumeration of A. Hence
rng(h) = A. Fix a partition of the natural numbers into uniformly computable
infinite sets Ri for i ∈ Z with enumerations Ri = {c0i < c1i < · · · }. Let the
permutations g0, g1, w, b ∈ Syma(ω) be defined as follows:

w(cj
i ) = cj

i+1 for each i ∈ Z and j ∈ ω,
g0 =

∏

j∈ω

(c2j
0 , c2j+1

0 ),

g1 =
∏

j∈ω

(c2j+1
0 , c2j+2

0 ), and

b =
∏

n,t∈ω ∧ h(t)=n

(ct
n, ct+1

n ).

We will also use the following abbreviation: wn = w · · · w︸ ︷︷ ︸
n times

. Then we have

n /∈ A ⇔
(
[g0, bwn

] = 1 ∧ [g1, bwn

] = 1
)

.

This is because g0 and bwn

commute iff n is not enumerated into A at an
odd stage t, and, similarly, g1 and bwn

commute iff n is not enumerated into A
at an even stage t. Hence for g̃0 = K(g0), g̃1 = K(g1), w̃ = K(w), and b̃ = K(b),
we have

n /∈ A ⇔
(
[K(g0),K(b)(K(w))n ] = 1 ∧ [K(g1),K(b)(K(w))n ] = 1

)

⇔
(
[g̃0, b̃w̃n

]/∼
= 1 ∧ [g̃1, b̃w̃n

]/∼
= 1

)

We will now show that [g̃0, b̃w̃n

] � 1 is c.e. relative to b. Let τn =def [g̃0, b̃w̃n

].
Then

τn � 1 ⇔ τn(e0) and e0 are linearly independent, or

(∃m ∈ ω) (∃α �= 0) [τn(e0) = αe0 ∧ τn(em) �= αem].

Let A ∈ a. Then A and A are both c.e. in b, and, therefore, A is computable
in b. Hence a ≤ b. ��

3 Complexity of GSLd

In this section we will determine the Turing degree spectrum of GSLd. For the
statement of the main theorem we will use terminology and notation from the
following definition.
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Definition 1. A permutation p on a set M is:
(i) 1inf2inf on M if it is a product of infinitely many 1 -cycles and infinitely

many 2-cycles;
(ii) 1inf2fin on M if it is a product of infinitely many 1-cycles and finitely

many 2-cycles.

The main theorem about the degree spectrum of GSLd will be derived from
the following embeddability theorem.

Theorem 5. Let G be an X-computable group, and let H : Sym0(ω) ↪→ G be an
embedding. Suppose that for every 1inf2inf permutation p ∈ Sym0(ω), the image
H(p) is not a conjugate of the image of any 1inf2fin permutation in Sym0(ω).

Then 0′′ ≤ deg(X).

Proof. Let A be a Π0
2-complete set and let R(x, t) be a computable predicate

such that
n ∈ A ⇔ (∃∞t)R(n, t).

We will prove that A ≤T X. Fix a partition of the natural numbers into uniformly
computable infinite sets Si,j for i ∈ Z and j ∈ {1, 2} with enumerations Si,j =
{c0i,j < c1i,j < · · · }. The sets Si,1 and Si,2 will be referred to as the left and
the right parts of the i-th column, Si = Si,1 ∪ Si,2. This reference will be useful
when we define certain maps below. We can graphically present this partition as
follows:

· · ·

...
c2−1,1

c1−1,1

c0−1,1

...
c2−1,2

c1−1,2

c0−1,2

...
c20,1

c10,1

c00,1

...
c20,2

c10,2

c00,2

...
c21,1

c11,1

c01,1

...
c21,2

c11,2

c01,2

S−1,1 S−1,2
︸ ︷︷ ︸

S0,1 S0,2
︸ ︷︷ ︸

S1,1 S1,2
︸ ︷︷ ︸

Column S−1 Column S0 Column S1

· · ·

We will now define the following maps.
(i) w(ck

i+1,j) =def ck
i,j for each i ∈ Z, k ∈ ω and j = 1, 2.

Clearly, the map w is such that w(Si+1,1) = Si,1 and w(Si+1,2) = Si,2. It maps
the left (right) part of the (i + 1)-st column to the left (right) part of the i-th
column for each i.
(ii) p0 =def

∏

k∈ω

(ck
0,1, c

k
0,2).

It is easy to see that the map p0 switches the left and right parts of the 0-th
column (i.e., p0(S0,1) = S0,2 and p0(S0,2) = S0,1), and is identity on all other
elements of ω.
(iii) pn =def pwn

0 = w−np0w
n.

Note that the map pn switches the left and right parts of the n-th column (i.e.,
pn(Sn,1) = Sn,2 and pn(Sn,2) = Sn,1), and is identity on all other elements of ω.
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(iv) z(k) =def

⎧
⎪⎪⎨

⎪⎪⎩

0 if k = 0,
1 if k = 2,

k − 2 if k = 2t ≥ 4,
k + 2 if k = 2t + 1.

Note that the map z is a permutation of ω, which contains only one infinite cycle
and (0).
(v) τ =def (0, 1).
For k ∈ Z we have

τzk

=
{

(0, 2k), if k ≥ 1,
(0, 2 |k| + 1), if k ≤ 0,

so

(∀n,m ∈ ω) (∃n1,m1 ∈ Z) [
(
τzn1

)τzm1

= (n,m)]. (1)

Note that property (1) guarantees that any 1inf2fin permutation on ω can be
represented as a finite product of the permutations τ and z.
(vi) We will now construct a permutation b on ω with the following properties:

b �Sn,1= id �Sn,1

b �Sn,2 is
{

1inf2inf , if n ∈ A,
1inf2fin, if n /∈ A.

We will define b in stages. At each stage s we will have Es =def dom(bs) =
rng(bs).
Construction
Stage 0.

Let b0 � Si =def id for i ≤ −1, and E0 =
⋃

i≤−1

Si.

Stage s + 1 = 〈n, t〉.
Case 1. If R(n, t), then find the least elements p, q, r ∈ Sn,2 such that p, q, r /∈ Es.
Let bs+1 = bs · (p, q) and assume that bs+1(r) = r. Thus, we have Es+1 =
Es ∪ {p, q, r} and bs+1 � Es = bs.
Case 2. If ¬R(n, t), then find the least elements p, q, r ∈ Sn,2 such that p, q, r /∈
Es. Let bs+1 � Es = bs and bs+1(p) = p, bs+1(q) = q, bs+1(r) = r. Then
Es+1 = Es ∪ {p, q, r}.

End of construction.
By construction, dom(b) = rng(b) = ω.
It follows that if n ∈ A, then (∃∞t)R(n, t), so Case 1 applies infinitely often

for this n, and hence the map b switches infinitely many pairs in the right part
of the n-th column. Therefore, b � Sn,2 is 1inf2inf and b � Sn,1 = id.

If n /∈ A, then (∃<∞t)R(n, t), so Case 1 applies finitely often for this n, and
hence the map b switches only finitely many pairs in the right part of the n-th
column. Therefore, b � Sn,2 is 1inf2fin and b � Sn,1 = id.

In both cases, the map bpn reverses the action of b on the left and right parts
of the n-th column Sn, while for k �= n, we have bpn � Sk = b � Sk.

Then b · bpn is

⎧
⎨

⎩

1inf2inf on Sn, if n ∈ A,
1inf2fin on Sn, if n /∈ A,
id on Sk, if n �= k.
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Therefore, b · bpn is
{

1inf2inf on ω, if n ∈ A,
1inf2fin on ω, if n /∈ A.

Finally, note that on ω, every computable 1inf2inf permutation is the con-
jugate of a fixed computable 1inf2inf permutation and some other computable
permutation. Therefore, assume that f is a fixed computable 1inf2inf permuta-
tion such that:

(∀z1 ∈ Sym0(ω)) (∃h ∈ Sym0(ω)) [z1 = fh].

Hence for every n, we have

n ∈ A ⇔ b · bpn is a 1inf2inf permutation on ω
⇔ (∃h ∈ Sym0(ω)) [b · bpn = fh]
⇔ (∃u ∈ H(Sym0(ω))) [H(b) · H(b)H(pn) = H(f)u], and

(2)

n /∈ A ⇔ b · bpn is a 1inf2fin permutation on ω

⇔ b · bpn =
∏

(i,j)∈F

(
τzi

)τzj

⇔ H(b) · H(b)H(pn) =
∏

(i,j)∈F

(
H(τ)H(z)i

)H(τ)H(z)j

.

(3)

The set F in the last line of (3) denotes some finite set of pairwise disjoint
cycles and the maps referenced in (2) and (3) are those that we defined in (i)–(vi)
above. For the map H : Sym0(ω) ↪→ G note that H(pn) = H(w)−n · H(p0) ·
H(w)n.

We claim that the last equivalence in (2) can be strengthened so that we
have:

n ∈ A ⇔ (∃u ∈ G) [H(z) = H(f)u] (4)

That is, if n ∈ A, then

(∃h ∈ Sym0(ω)) [b · bpn = fh] and, therefore,
(∃u ∈ H(Sym0(ω))) [H(b) · H(b)H(pn) = H(f)u], and

(∃u ∈ G) [H(b) · H(b)H(pn) = H(f)u].

For the proof of the other direction of (4) suppose that for some fixed h ∈ G
we have

H(b) · H(b)H(pn) = H(f)h, but n /∈ A.

Then, because of (3), we have the following:
(i) b · bpn is a 1inf2fin permutation on ω,
(ii) H(b) · H(b)H(pn) is the image of the 1inf2fin permutation b · bpn , while
(iii) H(f) is the image of the 1inf2inf permutation f.

This contradicts our assumption that the image under H of the 1inf2fin permu-
tation b · bpn cannot be the conjugate of the image of the 1inf2inf permutation f.
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Theorem 6. The degree of the isomorphisms type of the group GSL0 is 0′′.

Proof. Let V = {v0, v1 , . . .} be a computable basis of V∞. Define

H : Sym0(ω) ↪→ GSL0

so that for any p ∈ Sym0(ω) the image H(p) = 〈L, id〉 is a semilinear map such
that

L(vi) = vp(i) for every i ∈ ω.

We claim that under H the image of a 1inf2inf permutation from Sym0(ω) cannot
be a conjugate of the image of a 1inf2fin permutation from Sym0(ω). To establish
this fact, suppose that 〈f, id〉, 〈f1, id〉 ∈ GSL0 are the images of some 1inf2inf
and 1inf2fin computable permutations on ω, respectively. Suppose that 〈f, id〉
and 〈f1, id〉 are conjugates, and let 〈h, σ〉 ∈ GSL0 be such that 〈f, id〉〈h,σ〉 =
〈f1, id〉 . Note that the map h : V∞ → V∞ is 1 − 1 and onto. The associated
field automorphism σ : F → F from 〈h, σ〉 is used to indicate that h(av + bw) =
σ (a) h(v) + σ (b) h(w). To simplify the notation, we will refer to the semilinear
maps 〈f, id〉, 〈f1, id〉, and 〈h, σ〉 simply as f, f1, and h, respectively.

Note that the definition of the map H allows us to view f � V and f1 � V
as 1inf2inf and 1inf2fin permutations on V, respectively. We now claim that f1
satisfies the following property:

(∃W ⊂fin V∞) (∀v ∈ V∞) [(v − f1(v)) ∈ W ]. (5)

Here, W ⊂fin V∞ stands for W being a finite-dimensional subspace of V∞.
For a set U ⊆ V∞, by cl(U) we will denote the closure of U, which is the
set of all linear combinations of the vectors in U . To prove (5), assume that
B = {x1, . . . , xk, y1, . . . , yk} ⊆ V is such that f1 � V =

∏

1≤i≤k

(xi, yi) . Note that

for every v ∈ V∞, there are v1 ∈ cl(V −B) and v2 ∈ cl(B) such that v = v1 +v2.
Then

f1(v) = f1(v1) + f1(v2) = v1 + f1(v2),

and so
v − f1(v) = v1 + v2 − v1 − f1(v2) = v2 − f1(v2) ∈ cl(B),

because f1(v2) ∈ cl(B). Therefore, W = cl(B) is a finite-dimensional subspace
of V∞ for which property (D) holds.

We will now prove that fh does not satisfy property (5), which will contradict
the assumption that fh = f1. Thus, assume that W is a finite-dimensional
subspace of V∞ such that

(∀x ∈ V∞) [
(
x − fh(x)

) ∈ W ]. (6)

The support of a vector x with respect to a basis Z = {zj : j ∈ J}, denoted by
suppZ(x), is the set {zjl : l ∈ {0, . . . , t}} such that

x =
t∑

l=0

λlzjl
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and (∀l ∈ {0, ..., t)[λl �= 0].
Let W1 = h(W ) and note that W1 is finite-dimensional. Let B1 be a finite

subset of the basis V such that

(∀x ∈ W1) [suppV (x) ⊆ B1].

We will now find u1 ∈ V∞ such that u1−f(u1) /∈ W1. Since f � V is a 1inf2inf
permutation on V, there are infinitely many pairs (u, v) ∈ V × V such that

u �= v, f(u) = v and f(v) = u. (7)

Since B1 is finite, we can also find u1, v1 ∈ V − B1, which have property (7).
Then:

(i) u1 − f(u1) = u1 − v1 �= 0, and
(ii) u1 − f(u1) = (u1 − v1) /∈ cl(B1) because B1 ∪ {u1, v1} ⊆ V .

Since W1 ⊆ cl(B1), we have that u1 − f(u1) /∈ W1. Therefore,
(
h−1(u1) − h−1(f(u1))

)
/∈ h−1(W1), and so

(
h−1(u1) − h−1fhh−1(u1)

)
/∈ W.

If we let x1 = h−1(u1), we obtain

x1 − fh(x1) /∈ W,

which contradicts that fh satisfies (6).
We constructed an embedding H : Sym0(ω) ↪→ GSL0 such that the images

of any 1inf2inf and 1inf2fin permutations from Sym0(ω) cannot be conjugates
in GSL0. We use Theorem 5 to conclude that 0′′ is computable in any copy of
GSL0. We can construct a copy of GSL0, which is computable in 0′′. Therefore,
the degree of the isomorphisms type of GSL0 is 0′′.

Note that the result of the previous theorem can be easily relativized to any
Turing degree d.

Theorem 7. The degree of the isomorphisms type of the group GSLd is d′′.
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Abstract. The quest for colorful components (connected components
where each color is associated with at most one vertex) inside a vertex-
colored graph has been widely considered in the last ten years. Here we
consider two variants, Minimum Colorful Components (MCC) and Max-
imum Edges in transitive Closure (MEC), introduced in the context of
orthology gene identification in bioinformatics. The input of both MCC
and MEC is a vertex-colored graph. MCC asks for the removal of a sub-
set of edges, so that the resulting graph is partitioned in the minimum
number of colorful connected components; MEC asks for the removal
of a subset of edges, so that the resulting graph is partitioned in col-
orful connected components and the number of edges in the transitive
closure of such a graph is maximized. We study the parameterized and
approximation complexity of MCC and MEC, for general and restricted
instances.

1 Introduction

The quest for colorful components inside a vertex colored graph has been a widely
investigated problem in the last years, with application for example in bioinfor-
matics [5,8,12]. Roughly speaking, given a vertex-colored graph, the problem
asks to find the colorful components of the graph, that is connected components
that contain at most one vertex of each color. While most of the approaches
have focused on the identification of a single connected colorful component, the
identification of the minimum number of colorful connected components that
match a given motif has been considered in [4,7].

Here we consider a similar framework, where instead of looking for a single
colorful component inside a vertex-colored graph, we ask for a partition of the
graph vertices in colorful components. This approach stems from a problem in
bioinformatics, and more specifically in comparative genomics. In this context,
a fundamental task is to infer the relations between genes in different genomes
and, more precisely, to infer which genes are orthologous, that is those genes
that originate via a speciation event from a gene of an ancestral genome.

A graph approach has been proposed aiming to identify disjoint orthology
sets, where each of such sets corresponds to colorful disjoint component in the
given graph [13].
c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 261–270, 2016.
DOI: 10.1007/978-3-319-40189-8 27
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Different combinatorial problem formulations, based on different objective
functions, have been proposed and studied in this direction [2,13]. Here, we con-
sidered two such approaches, Minimum Colorful Components (MCC) and
Maximum Edges in transitive Closure (MEC). Given a vertex-colored
graph, both problems ask for the removal of some edges so that the resulting
graph is partitioned in colorful components but with different objective func-
tions. The former aims to minimize the number of connected colorful compo-
nents, while the latter aims to maximize the transitive closure of the resulting
graph. A related but different problem has been considered in [5], where the
objective function is the minimization of edge removal, so that the computed
graph consists only of colorful components.

Previous Results. Given a graph on n vertices, MCC is known not only to be NP-
hard, but also not approximable within factor O(n1/14−ε) unless P = NP [2]. It
is easy to see that the reduction leading to this inapproximability result implies
also that MCC cannot be solved in time nf(k) for any function f , where k is the
number of colorful components.

MEC is known to be APX-hard even when colored by at most three colors
(while it is solvable in polynomial time for two colors), and, unless P= NP, it is
not approximable within factor O(n1/3−ε) when the number of colors is arbitrary,
even when the input graph is a tree where each color appears at most twice [1].
A heuristic to solve MEC is presented in [13], while in [1], the authors present a
polynomial-time

√
2 · OPT approximation algorithm.

Contributions and Organization of the Paper. In this paper we investigate more
deeply the complexity of MCC and MEC. More precisely, we show in Sect. 3 that
MCC on trees is essentially equivalent to Minimum MultiCut on Trees, thus
MCC is not approximable within factor 1.36 − ε unless P = NP for any ε > 0,
but 2-approximable, it is fixed-parameter tractable and it admits a poly-kernel
(when the parameter is the number of colorful components). Moreover, in Sect. 4
we show that MCC is easily solvable in polynomial time on paths, while it is
not in XP class when parameterized by the structural parameter Distance to
Disjoint Paths.

Then we consider the parameterized complexity of MEC with respect to the
number k of edges in the transitive closure of a solution. For this parameter
we give in Sect. 5 a parameterized algorithm, by reducing the problem to an
exponential kernel. We use a similar idea in Sect. 6, to improve it to a poly-
kernel for MEC when the input graph is a tree. Finally, we show in Sect. 7 that
results similar to those of Sect. 4, hold also for MEC. Due to space constraints,
some proofs (marked with a �) are deferred to the full version of the paper.

2 Definitions

In this section we introduce some preliminary definitions. Consider a set of colors
C = {c1, . . . , cq}. A C–colored graph G = (V,E,C) is a graph where every vertex



Parameterized Complexity and Approximation Issues 263

in V is associated with a color in C; the color associated with a vertex v ∈ V
is denoted by c(v). A connected component induced by a vertex set V ′ ⊆ V is
called a colorful component, if it does not contain two vertices having the same
color. If a graph has t connected components where each component i ∈ [t] has
exactly ni vertices, the number of edges in its transitive closure is defined by
∑t

i=1
ni(ni−1)

2 .
Next, we introduce the formal definitions of the optimization problems we

deal with.

Minimum Colorful Components (MCC)

• Input: a C-colored graph G = (V,E,C).
• Output: remove a set of edges E′ ⊆ E such that each connected component
in G′ = (V,E \ E′, C) is colorful, and the number of connected components
of G′ is minimized.

Maximum Edges in transitive Closure (MEC)

• Input: a C-colored graph G = (V,E,C).
• Output: remove a set of edges E′ ⊆ E such that each connected component
in G′ = (V,E \ E′, C) is colorful, and the number of edges in the transitive
closure of G′ is maximum.

The parameterized versions of MCC and MEC are defined analogously (and
abusively denoted with the same names), with the addition in the input of an
integer k, that denotes the number of connected components in G′ for MCC and
the number of edges in the transitive closure of G′ for MEC.

Notice that, when considering an instance of MCC and MEC, we assume
that E contains no edge {u, v} with c(u) = c(v), otherwise such an edge can be
deleted from E as u and v will not be part of the same colorful component in
any feasible solution of MCC or MEC.

Complexity. A parameterized problem (I, k) is said fixed-parameter tractable (or
in the class FPT) with respect to a parameter k if it can be solved in f(k) · |I|c
time (in fpt-time), where f is any computable function and c is a constant (see [9]
for more details about fixed-parameter tractability). The class XP contains prob-
lems solvable in time |I|f(k), where f is an unrestricted function.

A powerful technique to design parameterized algorithms is kernelization.
In short, kernelization is a polynomial-time self-reduction algorithm that takes
an instance (I, k) of a parameterized problem P as input and computes an
equivalent instance (I ′, k′) of P such that |I ′| � h(k) for some computable
function h and k′ � k. The instance (I ′, k′) is called a kernel in this case. If the
function h is polynomial, we say that (I ′, k′) is a polynomial kernel.

Concerning approximation definitions, we refer the reader to some reference
textbook like [3].
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3 MCC for Trees: Parameterized Complexity
and Approximability

In this section, we show that MCC on trees is essentially equivalent to the Mini-
mum Multi-CUT problem on Trees (M-CUT-T), thus the positive and negative
results of (M-CUT-T) for parameterized complexity and approximability trans-
fer to MCC. We recall that M-CUT-T, given a tree TM and a set SM of pairs
of terminals, asks if there exist a minimum cut (that is a set of removed edges)
such that, for each pair (x, y) ∈ SM , x and y are disconnected through that cut.

3.1 Positive Results

We show that MCC on trees admits an FPT algorithm (and a polynomial ker-
nel) and a 2-approximation algorithm by reducing MCC to M-CUT-T. We first
describe the reduction. Given a colored tree GT = (V,E,C) as an instance of
MCC, we define an instance (TM , SM ) of M-CUT-T as follows: TM is exactly
GT (except for the colors of the vertices); for each pair (x, y) of vertices in GT

such that c(x) = c(y), we define a pair (x, y) in SM .
Now, we prove the main lemma of this section.

Lemma 1. Consider an instance GT of MCC and the corresponding instance
(TM , SM ) of M-CUT-T. Then: (1) given a solution of MCC on GT consisting
of k + 1 connected components, a solution of M-CUT-T on (TM , SM ) consist-
ing of k edges cut can be computed in polynomial time; (2) given a solution of
M-CUT-T on (TM , SM ) consisting of k edges, a solution of MCC on GT con-
sisting of k + 1 connected components can be computed in polynomial time.

Proof. Consider a solution of MCC consisting of k + 1 components obtained by
removing a set E′ of k edges. Then, E′ is a solution of M-CUT-T over instance
(TM , SM ). Indeed, for each pair (x, y) ∈ SM , c(x) = c(y), hence the two vertices
belong to different connected components after the removal of edges in E′.

Conversely, consider a solution E′ of M-CUT-T over instance (TM , SM ), with
|E′| = k. Then, remove the edges in E′ from GT and consider the k+1 connected
components induced by this removal in GT . Since each pair (x, y) ∈ SM is
disconnected after the removal of E′, it follows that each connected component
of GT after the removal of E′ is colorful. ��

We can now easily give the main result of this section:

Theorem 2 (�). If the input graph of MCC is a tree, MCC can be solved
in time O∗(1.554k)1 where k is the natural parameter and also admits a
2-approximation algorithm.

Lemma 1 implies also a poly-kernel for MCC on trees.

Theorem 3 (�). If the input graph of MCC is a tree, it is possible to compute
in polynomial time a kernel of size O(k3) where k is the natural parameter.
1 The O∗ notation suppresses polynomial factors.
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3.2 Approximation Lower Bound of MCC on Trees

Let us now prove a lower bound for the approximation of MCC on trees, by
giving a reduction from M-CUT-T. Starting from an instance (TM , SM ) of
M-CUT-T, we compute a colored tree GT = (V,E,C), input of MCC, as follows.
First, GT is isomorphic to TM , and we color each vertex v of GT as cv. Denote
by E1 the edge set of such a tree. Then for each pair (u, v) ∈ SM , we define a
leaf uv adjacent to v and colored cu,v and a leaf vu adjacent to u and colored
cu,v (see Fig. 1). Denote by E2 the edge set introduced by adding these edges.

1

2 3 4

5 6 7 8

9

TM

c1

c2 c3 c4

c5 c6 c7 c8

c9c5,6 c4,5 c5,6

c2,8 c4,5

c2,8

GT

Fig. 1. Sample construction of GT from TM with SM = {(2, 8), (5, 6), (4, 5)}. Edge set
E2 of T is drawn thick. For ease, colors of GT are drawn inside the nodes. On possible
solution for this instance of M-CUT-T cuts edges {{2, 6}, {1, 4}} and implies 3 colorful
connected components in the corresponding instance of MCC.

Lemma 4. Given a solution of MCC on GT = (V,E,C) consisting of k colorful
components, we can compute in polynomial time a solution of MCC on GT =
(V,E,C) consisting of at most k colorful components such that the edges cut
belong only to set E1.

Proof. Consider the case that an edge {u, v} has been deleted, where v is a
leaf introduced in GT . Then, notice that the removal of edge {u, v} makes v
an isolated vertex. By construction u and v (and each leaf adjacent to u) have
different colors. Hence there are two possible cases: either the colorful component
H that contains u does not include vertices colored by cv, hence we can add v
to H, thus we can avoid removing edge {u, v}, or there is a vertex w colored by
cv in H. In this case we can remove an edge of E1, which separates w from u
without removing edge {u, v}; such an edge must exist, since v and w are leaves
incident in different internal vertices. ��
Lemma 5 (�). Consider an instance (TM , SM ) of M-CUT-T and the cor-
responding instance GT = (V,E,C) of MCC. Then: (1) given a solution of
M-CUT-T over instance (TM , SM ) that cuts k edges, we can compute in poly-
nomial time a solution of MCC over instance GT = (V,E,C) consisting of at
most k + 1 colorful components; (2) given a solution of MCC over instance
GT = (V,E,C) consisting of at most k +1 colorful components, we can compute
in polynomial time a solution of M-CUT-T over instance (TM , SM ) that cuts at
most k edges.
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Since M-CUT-T cannot be approximated within factor 1.36 (since it is as
hard as Minimum Vertex Cover to approximate [10]), Lemmas 4 and 5 allow
to extend the result to MCC.

Theorem 6 (�). MCC on trees cannot be approximated within factor 1.36−ε,
for any constant ε > 0 unless P=NP.

4 Structural Parameterization of MCC

Since the MCC problem is already hard on trees, we consider in this section the
complexity of MCC when the input graph is a path or is close to a set of disjoint
paths. We show that MCC can be easily solved in polynomial time, while, as a
sharp contrast, MCC is not in the class XP for parameter distance to disjoint
paths.

Theorem 7. MCC on paths can be solved in O(n3)-time.

Proof (Sketch). Assume that the input graph is a path GP = (V,E,C), and
assume that the vertices on the path are ordered from v1 to vn. Define M [j] as
the minimum number of colorful components of a solution of MCC over instance
GP restricted to vertices {v1, . . . , vj}. M [j], with j > 1, can be computed as
follows:

M [j] = min
0�t<j

M [t] + 1, such that vt+1, . . . , vj induce a colorful component.

In the base cases, it holds M [1] = 1, and M [0] = 0. Next, we prove the
correctness of the dynamic programming recurrence.

We claim that given a path GP = (V,E,C) instance of MCC, there exists a
solution of MCC on instance GP restricted to vertices {v1, . . . , vj} consisting of
h colorful components if and only if M [j] = h.

It is then easy to see that the value of an optimal solution of MCC on path
GP = (V,E,C) is stored in M [n]. Since the table M [j] consists of n entries and
each entry can be computed in time O(n2), it follows that MCC on paths can
be computed in time O(n3). ��

Let us now prove that MCC is not in XP when parameterized by the Distance
to Disjoint Paths number d (the minimum number of vertices to remove from
the input graph to have disjoint paths), even when the input graph is a tree. We
prove this result by giving a reduction from Minimum Vertex Cover (MinVC)
to MCC on trees.

Consider an instance G = (V,E) of MinVC, and let GC = (VC , EC) be the
corresponding instance of MCC. GC is a rooted tree, defined as follows. First, we
define |V | paths, one for each vertex in G. Path Pi contains vertex vc,i, colored
by ci, and vertices ec,i,j , for each {vi, vj} ∈ E, colored by cij . Notice that vertices
ec,i,j appears in Pi based on the lexicographic order of the corresponding edges.
Moreover, there exist two vertices associated with edge {vi, vj} ∈ E, namely



Parameterized Complexity and Approximation Issues 267

G = (V,E)

1 2

3

4 5

GC = (VC , EC)

cr

c1

c1,2

c1,3

c1,4

c2

c1,2

c2,3

c2,5

c3

c1,3

c2,3

c4

c1,4

c4,5

c5

c2,5

c4,5

Fig. 2. Sample construction of an instance of MCC from an instance of MinVC. A
possible solution for MinVC is given in thick while edges to be cut for the instance of
MCC are also in thick.

ec,i,j (in Pi) and ec,j,i (in Pj), which are both colored by cij . The tree GC is
obtained by connecting the paths P1, . . . P|V | to a root r, which is colored by cr,
where cr is a fresh new color (see Fig. 2).

Lemma 8 (�). Let G = (V,E) be an instance of MinVC, and let GC =
(VC , EC) be the corresponding instance of MCC. Then: (1) given a vertex cover
of G of size k, we can compute in polynomial time a solution of MCC over
instance GC consisting of k + 1 colorful components; (2) given a solution of
MCC over instance GC consisting of k +1 colorful components, we can compute
in polynomial time a vertex cover of G of size k.

By the previous lemma, the following result holds.

Theorem 9 (�). MCC is NP-hard even when the input graph is at distance
1 to Disjoint Paths.

It is worth noticing that this result extends to parameter pathwidth or dis-
tance to interval graph, as these last parameters are “stronger” than distance to
disjoint path in the sense of [11].

5 An FPT Algorithm for MEC Parameterized by k

We present a parameterized algorithm for MEC with respect to the natural
parameter k. To do so, we will show that the problem admits an exponential
size kernel.

Given a colored graph G, we first compute a Depth-First-Search (DFS) D =
(V,ED, EB) of G. Recall that D consists of a tree induced by D′ = (V,ED)
(hence not considering edges in EB), while EB = E \ ED are called backward
edges and have the following well-known property (see [6] for details).

Lemma 10. Consider a graph G and the corresponding DFS D = (V,ED, EB).
Let {u, v} be a backward edge. Then there exists a path p in D′ = (V,ED) that
starts in the root of D′ and contains both u and v.

We will first show some easy cases where there is a solution of MEC of size
at least k. Let VA be the set of vertices of V which are parent of a leaf in D′.



268 R. Dondi and F. Sikora

Lemma 11 (�). If there exists a path in D′ from the root r(D′) to a leaf of
D′ of length at least 2k, then there exists a solution of MEC of size at least k.

Lemma 12 (�). There exists a solution of MEC of size at least k if |VA| � k.

Now, for each vertex v ∈ VA we consider the leaves adjacent to v and their
colors. Define the set Cx(v) as the set of leaves colored by cx and adjacent to
v ∈ VA in D. Then the following property holds.

Lemma 13 (�). Given a vertex v ∈ VA, if there exist
√

2k non-empty sets
Cx(v) associated with distinct colors cx, then there exists a solution of MEC of
size at least k.

Given a vertex v ∈ VA and a set Cx(v), consider the sets of vertices connected
with backward edges to a vertex u ∈ Cx(v). Define Adj(Cx(v)) = {V ′

A ⊆ VA :
{u,w} ∈ E, u ∈ V ′

A, w ∈ Cx(v)}.
The following property holds.

Lemma 14 (�). Given a vertex-colored graph G such that the hypothesis of
Lemma 11 does not hold, consider a vertex v in VA and a set Cx(v). of possible
sets of adjacent vertices to a node u of Cx(v).

Based on Lemma 14, we can partition the vertices of each Cx(v) into sets
Cx,1(v), . . . , Cx,p(v), with p � 22k+1, depending on their set of adjacent vertices
(that is two vertices of Cx(v) belong to the same set Cx,t(v) if they have the
same set of adjacent vertices).

Now, assume that the hypotheses of Lemmas 11–13 do not hold. Consider an
algorithm that, for each set Cx,i(v), computes a set C ′

x,i(v) by picking at most
k vertices of Cx,i(v) and removing the other vertices of Cx,i(v). Let G′ be the
resulting graph. We claim that G′ contains at most O(k222k+1) vertices. First,
notice that each C ′

x,t(v) contains at most k vertices and that, for each vertex v,
there exists at most 22k+1 sets C ′

x,t(v). Since, there exist at most O(k
√

k) sets
Cx(v) (at most

√
2k colors cx and at most k vertices v ∈ VA), we can conclude

that G′ contains at most O(k2
√

k22k+1) vertices in sets C ′
x,i(v).

Now, consider the vertices G′ which are not contained in some set C ′
x,i(v).

These vertices correspond to internal vertices of D′. Since the hypothesis of
Lemma 11 does not hold, D′ is a tree of depth at most 2k, and there exist at
most k vertices adjacent to leaves, as |VA| < k. Hence there exist at most k
paths of length 2k in D′ from the root to vertices adjacent to leaves, thus we
can conclude that there exist at most 2k2 internal vertices in D′. Hence there
exists at most 2k2 vertices in G′ which are not contained in some set C ′

x,i(v).
Now, we prove that (G′, k) is a kernel for MEC.

Lemma 15 (�). There exists a collection of disjoint colorful components
V1, . . . , Vh of size at least 2 in G if and only if there exists a collection of disjoint
colorful components V ′

1 , . . . , V
′
h in G′, with |Vi| = |V ′

i |, 1 � i � h.

Hence we have the following result.

Theorem 16 (�). There exists a kernel of size O(k2
√

k22k+1) for MEC.
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6 A Poly-Kernel for MEC on Trees

In this section, we show that in the special case of MEC where the input graph
is a tree, the kernel size can be quadratic. The algorithm is similar to the one of
Sect. 5. Consider a colored tree GT = (V,E,C), and let r(GT ) denote the root
of GT . Lemmata 11–13 hold for GT . Hence, we focus only on the leaves of GT .

Since GT is a tree, it follows that a leaf u having ancestor v belongs to a
component of size at least 2 only if u and v belongs to the same component. It
follows that among the leaves having color cx and adjacent to a vertex u, only
one can belong to a colorful component of size at least 2. Hence, given v ∈ VA,
let Cx(v) be the set of leaves adjacent to v and colored by cx. We remove all
but one vertex from Cx(v). Let G′

T be the resulting tree. We have the following
property for G′

T .

Lemma 17 (�). There exists a collection of disjoint colorful components
V1, . . . , Vh of size at least 2 in GT if and only if there exists a collection of
disjoint colorful components V ′

1 , . . . , V
′
h in G′

T , with |Vi| = |V ′
i |, 1 � i � h.

Theorem 18. There exists a kernel of size O(k2) for MEC on trees.

Proof. The result follows from Lemma 17 and from the fact that tree G′
T contains

at most k2 internal vertices (by Lemma 11 and by Lemma 12) and there exist at
most O(k

√
k) sets Cx,i(v) (by Lemma 13), each of size bounded by 1. ��

7 Structural Parameterization of MEC

It is easy to see that the results on structural parameterization for MCC hold
also for MEC (after appropriate modifications).

Theorem 19 (�). MEC on paths can be solved in O(n3)-time.

Similarly to MCC, MEC is NP-hard even if we restrict the instance to graphs
having distance 1 to Disjoint Paths. As for MCC, it is worth noticing that this
hardness result extends to other stronger parameters like pathwidth [11].

Theorem 20 (�). MEC is NP-hard even when the input graph has distance
1 to Disjoint Paths.

8 Conclusion

In the future, we aim at refining the parameterized complexity analysis, for
example deepen the structural results for MCC and MEC. Moreover, it would
be interesting to study the parameterized complexity of the two problems under
other meaningful parameters in the direction of parameterizing above a guaran-
teed value.
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Abstract. Let κ be an uncountable cardinal with κ<κ = κ. In this
paper we introduce Rκ, a Cauchy-complete real closed field of cardinal-
ity 2κ. We will prove that Rκ shares many features with R which have
a key role in real analysis and computable analysis. In particular, we
will prove that the Intermediate Value Theorem holds for a non-trivial
subclass of continuous functions over Rκ. We propose Rκ as a candidate
for extending computable analysis to generalised Baire spaces.

1 Introduction

Computable analysis is the study of the computational properties of real analysis.
We refer the reader to [21] for an introduction to computable analysis. In classical
computability theory one studies the computational properties of functions over
natural numbers and transfers these properties to arbitrary countable spaces via
coding. The same approach is taken in computable analysis. By using coding, in
fact, one can transfer topological and computational results from the Baire space
ωω to sets of cardinality 2ℵ0 . In particular, by encoding the real numbers, one
can use the Baire space to study computability in the context of real analysis.

Of particular interest in computable analysis is the study of the computa-
tional content of theorems from classical analysis. The idea is that of formalizing
the complexity of theorems by means similar to those used in computability the-
ory to classify functions over the natural numbers. In this context, the Weihrauch
theory of reducibility plays an important role. For an introduction to the theory
of Weihrauch reductions, see [4]. Weihrauch reductions can be used to classify
functions over the Baire space ωω. By using this concept it is possible to arrange
many theorems from classical real analysis in a complexity hierarchy called the
Weihrauch hierarchy. A study of the Weihrauch degrees of some of the most
important theorems from real analysis can be found in [3,4].

Recently, the study of the descriptive set theory of the generalised Baire
spaces κκ for cardinals κ > ω has been catching the interest of set theorists (see
[12] for an overview on the subject). This fact is also witnessed by the increasing
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number of workshops dedicated to generalised Baire spaces organized in the last
two years (AST 2014 in Amsterdam and a satellite workshop to DMV 2015 in
Hamburg). Even though generalised Baire spaces are not a new concept in set
theory, many aspects of this theory are still unknown. In particular there has
been no attempt to generalise computable analysis to spaces of cardinality 2κ.

This paper provides the foundational basis for the study of generalised com-
putable analysis, namely the generalisation of computable analysis to generalised
Baire spaces. Since in classical computable analysis and classical Weihrauch the-
ory the field of real numbers has a central role, a question arises naturally in
this context: what is the right generalisation of R in the context of generalised
computable analysis?

R

Generalisation

��
�
�
�

��
Coding

ωω

Generalisation

��
�
�
�

? ��
Coding

κκ

In this paper we answer this question. In particular, we will introduce Rκ,
a generalisation of the real line, which provides a well behaved environment
for generalising classical results from real analysis to uncountable cardinals. We
propose Rκ as the starting point for the study of generalised computable analysis.

The problem of generalising the real line is not new in mathematics. Different
approaches have been tried for very different purposes. A good introduction to
these number systems can be found in [9]. Among the most influential contri-
butions to this field particularly important are the works of Sikorski [20] and
Klaua [15] on the real ordinal numbers and that of Conway [6] on the surreal
numbers. Sikorski’s idea was to repeat the classical Dedekind construction of the
real numbers starting from an ordinal equipped with the Hessenberg operations
(i.e., commutative operations over the ordinal numbers). Unfortunately, one can
prove that these fields do not have the density properties that, as we will see,
will have a central role in the context of real analysis. The surreal numbers were
introduced by Conway in order to generalise both the Dedekind construction
of real numbers and the Cantor construction of ordinal numbers. In his intro-
duction to surreal numbers, Conway proved that they form a (class) real closed
field. Later, Ehrlich [15] proved that every real closed field is isomorphic to a
subfield of the surreal numbers, showing that they behave like a universal (class)
model for real closed fields. It is then natural for us to use this framework in the
developing of Rκ.

As we will see, doing analysis over field extensions of R is not an easy task.
This is due to the fact that no proper ordered field extension of R is connected.
However, many of the basic theorems of real analysis are linked to the fact that
R is a connected space. To overcome this problem, instead of using standard
topological tools, we will use a different mathematical framework which, under
specific conditions over the density of Rκ, will allow us to see our field extension
of R as a linear continuum.
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In this paper, we shall give necessary requirements for a space Rκ to be the
generalisation of the real numbers. Considering the Intermediate Value Theorem
(IVT) as one of the pillars of real analysis, we place particular emphasis on its
validity in the generalised case, and we develop the requirements in such a way
that they will allow us to prove it.

2 The Surreal Numbers

In this paper κ will refer to a fixed cardinal larger than ω. As usual in generalised
descriptive set theory, let κ be an uncountable cardinal with κ<κ = κ. Note in
particular that this assumption implies that κ is a regular cardinal.

We will assume basic knowledge of topology, field theory and computable
analysis. A good introduction to these subjects can be found in [5,18] and [21],
respectively.

The following definition as well as most of the results in this section, are due
to Conway [6] and have also been deeply studied by Gonshor in [14].

Definition 1 (Surreal numbers). A surreal number is a function from an
ordinal α ∈ On to {+,−}, i.e., a sequence of pluses and minuses of ordinal
length. We will denote the class of surreal numbers by No. The length of a
surreal number x ∈ No is the smallest ordinal �(x) ∈ On for which x is not
defined. Moreover, we will use No<α and No≤α to denote the set of x ∈ No with
�(x) < α and the set of x ∈ No with �(x) ≤ α respectively.

We can define a total order over No as follows:

Definition 2. Let x, y ∈ No be two surreal numbers. We say that x is smaller
than y in symbol x < y iff x(α) < y(α), where α is the smallest ordinal s.t.
x(α) �= y(α) using the order − < 0 < + where x(α) = 0 if x is not defined at α.

According to Conway’s original idea, every surreal number is generated by
filling some cut between shorter numbers. The following theorem gives us a
connection between this intuition and the surreal numbers as we have defined
them.

Theorem 3 (Simplicity theorem). Let L and R be two sets of surreal num-
bers such that L < R (i.e. ∀� ∈ L∀r ∈ R� < r). Then there is a unique surreal z,
denoted by [L|R], of minimal length such that L < {z} < R. We will call [L|R]
a representation of z.

By using the Simplicity Theorem Conway defined the field operations over No
and proved that these operations satisfy the axioms of real closed fields. Later
Ehrlich proved that the class field No behaves like a universal model for the
theory of real closed fields, this means that every set-like model of the theory of
real closed fields is isomorphic to a subfield of No. In particular Conway proved
that the real numbers are a subfield of No≤ω.

The last theorem we want to mention in this section is due to van der Dries
and Ehrlich [8]:
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Theorem 4 (van der Dries and Ehrlich). The set of surreal numbers No<κ

is a real closed field.

3 Super Dense κ-real Extensions of R

In this paper we will have a quasi-axiomatic approach. In particular, we will first
determine the properties that we need on Rκ in order to prove some basic facts
from classical analysis. Then we will show how it is possible to define Rκ as a
subfield of the surreal numbers.

Let us consider some of the basic properties that we expect from Rκ. First
of all we want Rκ to be a generalisation of R to the uncountable cardinal κ.
Therefore we require that Rκ is a proper ordered field extension of R. As we said,
we want to use Rκ to do analysis. For this reason, we expect Rκ to behave as much
as possible like R. Formally we will require that Rκ is a real closed field extending
R. Since the theory of real closed fields is complete [17, Corollary 3.3.16], this
implies that Rκ has the same first order properties as R.1

REQUIREMENT R1: Rκ is a real closed field extending R.

Now, since we want to use Rκ to do computable analysis over sets of cardinality
2κ, we require that |Rκ| = 2κ.

REQUIREMENT R2: Rκ has cardinality 2κ.

Finally, since the set of rational numbers Q has a central role in the representa-
tion theory of R (the interested reader is referred to [21]), we want Rκ to have
a dense subset which can play the same role as Q.

REQUIREMENT R3: Rκ has a dense subset of cardinality κ.

In general we define:

Definition 5 (κ-real extension of R). Let K be a field satisfying R1, R2, R3.
Then we will call K a κ-real extension of R.

Now we focus on those properties that are needed to extend theorems from clas-
sical analysis toRκ. Many of these classical results depend on the order over R and
on its interval topology. So we will start considering interval topologies over κ-real
extensions of R and their properties. First we recall few facts from field theory and
classical analysis. It is a well known result from classical analysis that R has no
Dedekind complete ordered field extensions (see [5, Corollary 8.7.4]). ThereforeRκ

will not be Dedekind complete. More generally we have:
1 In this paper we will use gray boxes for Requirements. Requirements are properties

that the definition of Rκ will have to satisfy.
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Corollary 6. Let K be a κ-real extension of R. Then K is not Dedekind complete.

As usual, given an ordered field K, one can define Cauchy sequences over K.

Definition 7 (Cauchy sequences). Let α be an ordinal and K+ the positive
part of K. Then a sequence (xi)i∈α of elements of K is Cauchy iff

∀ε ∈ K+∃β < α∀γ, γ′ ≥ β|xγ′ − xγ | < ε.

The sequence is convergent if there is x ∈ K such that

∀ε ∈ K+∃β < α∀γ ≥ β|xγ − x| < ε.

We will call x the limit of (xi)i∈α. Given an ordered field K it is said to be
Cauchy complete iff every Cauchy sequence whose length is equal to the degree
Deg(K) = Coi(K+) of K has a limit in K.

It is an easy exercise to see that Cauchy and Dedekind completeness coincide
on Archimedean fields, while on non-Archimedean fields Cauchy completeness is
weaker than Dedekind completeness.

Another property which is central in mathematical analysis is connectedness.
It turns out that connectedness and Dedekind completeness are equivalent prop-
erties. Therefore, it is easy to see that we will not be able to define Rκ in such
a way that its interval topology is connected.

As we said, our main purpose is that of proving basic facts from analysis over
Rκ. In particular we want to be able to prove the Intermediate Value Theorem
(IVT). It turns out that if the IVT holds on an ordered field K then K is con-
nected. This means that we cannot aim to prove the IVT over κ-real extensions
of R in all its strength.

3.1 κ-topologies

Given what we have proved in the previous section, it is hard to do analysis
over κ-real extensions of R by using standard topological tools. To overcome
this problem we will use a tool introduced by Alling called κ-topology. A similar
approach to do analysis over the surreal numbers was taken in [19].

Definition 8 (κ-topology). A κ-topology τ over a set X is a collection of
subsets of X such that:

1. ∅,X ∈ τ .
2. ∀α < κ if {Ai}i∈α is a collection of sets in τ , then

⋃
i<α Ai ∈ τ .

3. ∀A,B ∈ τA ∩ B ∈ τ .

The elements of τ are called κ-open sets.

Intuitively, the reason why we use κ-topologies is that, as we have seen in
the previous section, interval topologies over κ-real extensions of R are too fine.
As we will see κ-topologies will be coarser than topologies and will allow us
to prove a weaker version of the Intermediate Value Theorem over particularly
well-behaved κ-real extensions of R.
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Theorem 9 (Alling). Let X be a set and B be a topological base over X. Then
the set τκ defined as follows: ∅,X ∈ τκ and union of less than κ elements of B is
in τκ, is a κ-topology. We will call τκ the κ-topology generated by B. Moreover
we will call B a base for the κ-topology.

Obviously many topological definitions can be relativized to κ-topologies. In
particular we have the following:
Definition 10 (κ-continuity). Let X and Y be two sets and τ , τ ′ be two
κ-topologies respectively on X and on Y . Then f : X → Y is a κ-continuous
function iff ∀U ∈ τ ′f−1[U ] ∈ τ .

Definition 11 (κ-connectedness). Let X be a set and τ be a κ-topology over
X. Then X is κ-connected iff ∀U, V ∈ τX = U∪V ∧U∩V = ∅ ⇒ U = ∅∨V = ∅.

All these definitions behave quite well with respect to their topological coun-
terparts. Indeed, many classical theorems from topology hold for κ-topologies
(see [1]). However, there are theorems from topology that are not valid on
κ-topologies. Typically for κ-topologies local properties do not transfer to global
properties (e.g. in κ-topologies openness is not implied by local openness).

Now we will introduce a κ-topological analogue of the interval topology over
an ordered set.

Definition 12 (Interval κ-topology). Let X be an ordered set and B be the
set of open intervals with end points in X ∪ {+∞,−∞}. We will call interval
κ-topology over X the κ-topology generated by B.

From now on we will consider the interval κ-topology as the standard
κ-topology over κ-real extensions of R.

As we have seen, in order to be able to prove some basic theorems from
analysis we need to work within a connected space. However, as we have already
pointed out, we can not aim for connectedness of κ-real extensions of R. The
next result is due to Alling [1] and it makes precise the connection between the
density of an ordered set and the connectedness of its interval κ-topology.
Definition 13 (Hausdorff ηκ-set). Let X be an ordered set and κ be a car-
dinal. We say that X is an ηκ-set iff given L,R ⊆ X, such that L < R and
|L| + |R| < κ then there is x ∈ X such that L < {x} < R.

Theorem 14 (Alling). Let X be an ηκ-set endowed with the interval κ-topology
and X ′ a subset of X. Then X ′ is κ-connected iff X ′ is an interval in X.

In view of Theorem 14, it is natural to require:

REQUIREMENT R4: Rκ is an ηκ-set.

Definition 15. A field K ⊇ R is called a super dense κ-real extension of R if
it satisfies requirements R1, R2, R3, and R4.

As in classical topology κ-continuous functions preserve κ-connectedness.
Theorem 16. Let f : X → Y be a κ-continuous function. If X is κ-connected
then f(X) is κ-connected.
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3.2 Analysis over Super Dense κ-real Extensions of R

Using the results from the previous section we can modify the standard topo-
logical proof of the IVT to show that its restriction to κ-continuous functions
holds over super dense κ-real extensions of R.

Theorem 17 (IVTK
κ ). Let K be a super dense κ-real extension of R, the set

[a, b] ⊂ K be a closed subinterval of K and f : [a, b] → K be a κ-continuous
function. Then for every r ∈ K such that r is in between f(a) and f(b), there is
c ∈ [a, b] such that f(c) = r.

It is a well-known fact that in every real closed field the IVT holds for poly-
nomials in one variable (see [17, Theorem 3.3.9]), therefore it is natural to ask if
polynomials over super dense κ-real extensions of R are κ-continuous.

Theorem 18. Let K be a super dense κ-real extension of R and p be a polyno-
mial in one variable with coefficients in K. Then p is κ-continuous.

4 The Generalised Real Line Rκ

We are now ready to define Rκ. A näıve attempt to define such extension
would be that of starting from κ endowed with the surreal operations (i.e., the
Hessenberg operations) and try to repeat the standard construction of Zκ and
Q

κ. Then, we could define R
κ as the Cauchy completion of Q

κ obtaining a
Cauchy complete field. Unfortunately this approach does not work. This is due
to the fact that, as Sikorski proved, the field Q

κ is Cauchy complete and then
R

κ = Q
κ. Recall that Q

κ is a set of equivalence classes of pairs of elements in
Z

κ, hence it has cardinality at most κ. Therefore R
κ violates R2 and is not a

good candidate for our purposes. This construction appeared for the first time
in a paper from Sikorski in 1948 [20] (see also [2,15] for a complete study of this
approach). For this reason we have to take a different approach in defining Rκ.

We will follow the work done by Dales and Woodin in [7] for κ = ℵ1
2. By

Theorem 4 we know that No<κ is a real closed field. Moreover, since κ > ω, it
is easy to see that R ⊂ No<κ. In particular this means that R1 holds for No<κ.
Furthermore, it is not hard to prove that No<κ also satisfies R4. Then we have:

Proposition 19. The field No<κ has the following properties:

1. |No<κ| = κ and Deg(No<κ) = κ.
2. Cof(No<κ) = Coi(No<κ) = κ and No<κ has weight κ.

Proposition 19 tells us that No<κ has almost all the properties that we want
from Rκ but is still too small. Moreover, it is not hard to see that No<κ is not
Cauchy complete in the sense of Definition 7 this fact is particularly problematic

2 Note that in [7] Dales and Woodin do not make use of surreal numbers giving a
different construction of Rℵ1 .
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in the context of computable analysis, where most of the classical representations
of R rely on the fact that R is the Cauchy completion of Q.

It is therefore natural to consider No<κ as generalised rational numbers, and
to define Rκ as the Cauchy completion of No<κ as in classical analysis3. Since
we are working within the surreal numbers, this can be done in a natural way.

Definition 20 (Veronese cuts). Let K be an ordered field. We call 〈L,R〉 a
cut over K iff L,R ⊆ K and L < R. Moreover we will say that 〈L,R〉 is a
Veronese cut iff it is a cut such that, L has no maximum, R has no minimum
and for each ε ∈ K+ there are � ∈ L and r ∈ R such that r < � + ε. We will say
that K is Veronese complete iff for each Veronese cut 〈L,R〉, there is x ∈ K
such that L < {x} < R.

It is a well known fact that Cauchy and Veronese completeness are equivalent
notions (see [7,10]). For this reason we can define the Cauchy completion of
No<κ by using the Simplicity Theorem as follows:

Definition 21 (Rκ). We define Rκ as follows:

Rκ = No<κ ∪{x | x = [L|R] where 〈L,R〉 is a Veronese cut on No<κ}.

Now we will show that Rκ is a super dense κ-real extension of R. First of all we
have that No<κ is a dense subfield of Rκ and that Rκ is Cauchy complete (i.e.,
Rκ the Cauchy completion of No<κ).

Lemma 22. The field No<κ is dense in Rκ. Moreover the set Rκ is Cauchy
complete.

In view of the previous lemma from now on we will call No<κ the κ-rational
numbers and we will use the symbol Qκ instead of No<κ.

Since we have showed that Rκ is the Cauchy completion of a real closed field,
by a standard model theoretical argument we have:

Corollary 23. The set Rκ is a real closed field extending R.

Now that we have shown that Rκ is a real closed field extending R we want
to check that all the other properties of super dense κ-real extensions of R hold
for Rκ.

Theorem 24. The field Rκ is the unique Cauchy complete real closed field of
cardinality 2κ, with degree and weight κ which is an ηκ-set.

Proof. We will only prove |Rκ| = 2κ the rest follows from the fact that Qκ is
dense in Rκ. We want to prove 2κ ≤ |Rκ| ≤ 2κ. On the one hand we have that
Rκ ⊂ No≤κ. Indeed, No≤κ contains the Dedekind completion of No<κ, hence also
its Cauchy completion Rκ. Then, since |No≤κ| = 2κ, we have that |Rκ| ≤ 2κ.

3 Note that this also reflects the fact that No<ω are the dyadic numbers and R is the
Cauchy completion of No<ω.
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On the other hand let {0, 1}<κ be the full binary tree of height κ, we define
a tree T which is in bijection with {0, 1}<κ and whose nodes are subintervals of
Rκ and whose branches corresponds to different elements of Rκ. We define the
tree by recursion as follows: set Tλ = (0, 1) as the root of the tree. Now assume
that for p ∈ 2<κ and that the element Tp �= ∅ is already defined. We define Tp0

and Tp1 as two non-empty disjoint subintervals of Tp such that Tp0 = (ap0, bp0)
and Tp1 = (ap1, bp1), where ap0, bp0, ap1, bp1 ∈ Qκ with |ap0 − bp0| ≤ 1

�(p)+1

and |ap1 − bp1| ≤ 1
�(p)+1 , where �(p) is the length of p. Finally if p ∈ 2<κ is of

limit length γ and Tp�α has already been defined for every α < γ, we define
T ′

p =
⋂

α<γ Tp�α. Note that by the fact that Rκ is an ηκ-set, the set T ′
p non-

empty, moreover T ′
p is trivially convex (i.e., if x, y ∈ T ′

p and x ≤ z ≤ y, then
z ∈ T ′

p). Therefore we can define Tp as we have done for the successor stage
starting from T ′

p. It follows trivially by the way in which we have defined the
tree that for p ∈ 2κ the set

⋂
α∈κ Tp�α contains a single element of Rκ. Indeed

by the properties of the tree we have that [{ap�α | α ∈ κ} | {bp�α | α ∈ κ}]
is a Veronese cut in Qκ. Therefore

⋂
α∈κ Tp�α is a singleton in Rκ as desired.

Moreover given p, p′ ∈ 2κ such that p �= p′ we have
⋂

α∈κ Tp�α �= ⋂
α∈κ Tp′�α.

Therefore we trivially have 2κ ≤ |Rκ| as desired.

5 Conclusions and Future Work

In this paper we have introduced a real closed field extending R suitable for
doing real analysis over the generalised Baire space κκ. We have showed that,
although it has some limitations intrinsic to the problem, Rκ preserves many
interesting properties of the real numbers. In particular we showed:

1. Rκ is a Cauchy complete super dense κ-real extension of R of cardinality 2κ.
2. Rκ has a dense subset of cardinality κ and Coi(R+

κ ) = κ.
3. The IVT holds for κ-continuous functions.

As we have seen, most of these properties are motivated by computable analy-
sis. For this reason we propose Rκ as the generalised real line in the context of
computable analysis. An example of how Rκ can be used to study the topological
Weihrauch complexity of theorems of analysis can be found in [13].

There are two natural continuations of this paper. On one hand it is natural to
ask for a study of the computational strength of generalisations of theorems from
real analysis. To accomplish this, a theory of generalised type two computability
is needed. As we shall show in a paper soon to appear, it is possible to modify
the notions of Ordinal Turing Machine introduced by Koepke in [16] to define a
generalised version of Type Two Turing Machine (T2TM). The intuition behind
this notion is that generalised T2TMs should run classical programs for Turing
machines for κ steps instead of just ω. These machines lead to a very natural
notion of computability, in which, because of the properties of Rκ and Qκ, the
field operations restricted to Qκ are computable in less than κ steps, while one
may need to run forever (i.e., up to κ) to compute the same operations over Rκ.
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Moreover, this notion of computability preserves the correspondence between
continuous functions and functions which are computable with an oracle.

A second natural continuation of this paper is the systematic study of the real
analysis of Rκ. Particularly interesting would be the study of a notion of integral.
This problem is not new in the theory of surreal numbers and partial solutions
have been proposed in the last decades (see [11, pp. 2–3]). Recently a solution to
the problem of integration over the surreal numbers has been proposed in [11].
We are currently working on the problem of integration over Rκ.
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Abstract. The present work shows that Cayley automatic groups are
semiautomatic and exhibits some further constructions of semiautomatic
groups and in particular shows that every finitely generated group of
nilpotency class 3 is semiautomatic.

1 Introduction

Hodgson [4,5] as well as Khoussainov and Nerode [8] initiated the study of
automatic structures, including that of groups. In their approach, such a group
is given by a regular set A as the domain (denoting the representatives of the
group) such that both, the group operation ◦ and the equality =, are automatic;
that is, there is an automaton which reads the convoluted tuples (x, y, z) or (x, y)
and decides whether such a tuple satisfies x ◦ y = z or x = y, respectively. Here,
for x = x0x1 . . . xm and y = y0y1 . . . yn with xi, yi ∈ Σ, the convolution of the
pair (x, y) is the string z0z1 . . . zmax{m,n}, over the new alphabet (Σ ∪ {#})2,
where zi = (xi, yi) and xi (respectively yi) is taken to be # in case of i >
m (respectively, i > n). The convolution over triples or tuples in general is
defined similarly. The advantage of this setting is that every function and relation
definable in the language of group theory using parameters from the group is
again automatic. Furthermore, automata providing the mappings can be found
algorithmically. This also leads to the conclusion that for every fixed automatic
group, the first-order theory is decidable [8]. Furthermore, automatic functions
are precisely those which can be computed in linear time by a position-faithful
one-tape Turing machine [2], thus the automatic functions coincide with the
smallest reasonable time complexity class for functions.
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Epstein et al. [3] argued that in the above formalisation, automaticity is,
at least from the viewpoint of finitely generated groups, too restrictive. They
furthermore wanted that the representatives of the group elements are given
as words over the generators, leading to more meaningful representatives than
arbitrary strings. Their concept of automatic groups led, for finitely generated
groups, to a larger class of groups, though, by definition, it of course does not
include groups which require infinitely many generators; groups with infinitely
many generators, to some extent, were covered in the notion of automaticity by
Hodgson, Khoussainov and Nerode. Nies and Thomas [10,11] provide results
which contrast and compare these two notions of automaticity and give an
overview on results for groups which are automatic in the sense of Hodgson,
Khoussainov and Nerode.

Kharlampovich et al. [7] generalised the notion further to Cayley automatic
groups. Here a finitely generated group (A, ◦) is Cayley automatic iff the domain
A is a regular set, for every group element there is a unique representative in A
and, for every a ∈ A, the mapping x �→ x ◦ a is automatic. Note that the above
requires multiplication by constants to be automatic only from one side; when
multiplication by a constant from both sides are automatic, then the group is
called Cayley biautomatic.

Finitely generated Cayley automatic groups have word problem decidable in
quadratic time, carrying over the corresponding result from the two previous
versions of automaticity. As opposed to the case of automatic groups (in the
original sense of Hodgson), Miasnikov and Šunić [9] showed that several nat-
ural problems like the conjugacy problem can be undecidable for some Cayley
automatic groups.

Jain et al. [6] investigated the general approach where, in a structure for some
relations and functions, it is only required that the versions of the functions or
relations with all but one variable fixed to constants is automatic. Here the
convention is to put the automatic domains, functions and relations before a
semicolon and the semiautomatic relations after the semicolon. For a group,
the semiautomatic group (A, ◦; =) would be a structure where the domain A is
regular, the group operation (with both inputs) is automatic and for each fixed
element a ∈ A the set {b ∈ A : b = a} is regular — note that group elements
might have several representatives in semiautomatic groups.

In the present work, for any group, ε represents the neutral element. One of
the basic results obtained is that the notion (A, ◦; =) collapses to an automatic
group (in the sense of Hodgson, Khoussainov and Nerode), as

a = b ⇔ ∃c [a ◦ c = ε and b ◦ c = ε].

For semiautomatic groups, the two interesting group structures are (A,=; ◦)
and (A; ◦,=). In the first one, the equality is automatic, while in the second one,
both the group operation and the equality are only semiautomatic. If a group is
finitely generated, then the definition of being Cayley biautomatic is the same
as having a presentation of the form (A,=; ◦).

Finitely generated semiautomatic groups share with the other types of auto-
matic groups one important property: The word problem can be decided in
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quadratic time and the algorithm is the same as known for the Cayley auto-
matic groups [7]. Thus finitely generated groups with an undecidable or very
complex word problem are not semiautomatic.

2 Constructions of Semiautomatic Groups

Recall that Cayley automatic groups are finitely generated group (A, ◦) iff the
domain A is regular, every group element has a unique representative in A and
for every a ∈ A, the mapping x �→ x◦a is automatic. This notion is equivalent to
allowing multiple representatives in A for the group elements, but additionally
requiring that equality is automatic.

Miasnikov and Šunić [9] showed that there are Cayley automatic groups
which are not Cayley biautomatic, that is, which have no semiautomatic repre-
sentation of the form (A,=; ◦); furthermore, there are Cayley automatic groups
for which the conjugacy problem is undecidable and that the isomorphism prob-
lem is also undecidable for the class of Cayley automatic groups. Berdinsky
and Khoussainov [1] have shown that every Baumslag Solitar group is Cayley
automatic and Jain et al. [6] announced that every Baumslag Solitar group is
semiautomatic. This and other results follow now from a general transfer theo-
rem which shows that every Cayley automatic group is semiautomatic.

Theorem 1. If (A,=; {x �→ x◦a : a ∈ A}) is a Cayley automatic group, then the
group has a semiautomatic presentation (B, x �→ x−1; ◦,=); in this presentation
the domain is regular and the inversion is an automatic function, whereas the
equality and the group operation are semiautomatic.

Proof. Given the Cayley automatic group A as in the statement of the theorem,
let B = {(v, w) : v, w ∈ A} be the set of convoluted pairs (v, w), where the pair
(v, w) stands for the element v−1◦w of A. Now (v, w)◦(ε, u) = v−1◦w◦ε−1◦u =
v−1◦w◦u = (v, w◦u), (u, ε)◦(v, w) = u−1◦ε◦v−1◦w = (v◦u)−1◦w = (v◦u,w)
and (v, w) ◦ (w, v) = v−1 ◦ w ◦ w−1 ◦ v = ε. As every fixed element a ∈ A
can be represented by either (ε, a) or (a−1, ε), multiplication with a fixed group
element from either side is automatic. Furthermore, the mapping (v, w) �→ (w, v)
is automatic and computes the inverse. The set of representations of a fixed
element a ∈ A is the set {(v, w) : (a, ε) ◦ (v, w) = (ε, ε)} = {(v, w) : v ◦ a = w},
where the latter set is easily seen to be regular. 	


The above result shows that the undecidability results for Cayley automatic
groups by Miasnikov et al. [9,12] generalise to finitely generated semiautomatic
groups.

Corollary 2. There is a semiautomatic group (A; ◦,=) for which the conjugacy
problem is undecidable. Furthermore, the isomorphism problem for semiauto-
matic groups is undecidable.

The next result shows that all semiautomatic groups can have an automatic
inversion.
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Proposition 3. Every semiautomatic group (A; ◦,=) has a further semiauto-
matic presentation (B, x �→ x−1; ◦,=).

Proof. The proposition is proven by introducing two new symbols, + and −,
such that B = {+,−}·A consists of all +x representing x ∈ A and −x represent-
ing x−1 for x ∈ A. The inverse is now computed by the function interchanging +
and −. For fixed a ∈ A, x �→ x◦a becomes +x �→ +(x◦a) and −x �→ −(a−1 ◦x),
x �→ a ◦ x is implemented similarly and {+x : x = a} ∪ {−x : x = a−1} is the
regular set of representatives of a in B. 	

Theorem 4. Assume that (A, ◦,=) is an automatic group (in the sense of
Hodgson, Khoussainov and Nerode), (B; ◦,=) is a semiautomatic group and
{ϕb : b ∈ B} is a family of homomorphisms from A to A such that for each
b, b′ ∈ B, ϕb◦b′(a) = ϕb(ϕb′(a)) and each ϕb is an automatic mapping, then
the semidirect product A �ϕ B is also a semiautomatic group. Here the group
operation in A �ϕ B is defined by (a, b) ◦ (a′, b′) = (a ◦ ϕb(a′), b ◦ b′).

Proof. Consider the representation set C = {(a, b, ã) : a, ã ∈ A and b ∈ B},
where (a, b, ã) ∈ C stands for (a, ε) ◦ (ε, b) ◦ (ã, ε) in the group A �ϕ B. Now, for
a fixed a′ ∈ A, b′ ∈ B and arbitrary (a, b, ã) ∈ C, the multiplications are defined
as follows:

(a, b, ã) ◦ (a′, ε) �→ (a, b, ã ◦ a′);
(a′, ε) ◦ (a, b, ã) �→ (a′ ◦ a, b, ã);
(a, b, ã) ◦ (ε, b′) �→ (a, b ◦ b′, ϕb′−1(ã));
(ε, b′) ◦ (a, b, ã) �→ (ϕb′(a), b′ ◦ b, ã).

Note that multiplying with (a′, b′, ã′) in C can be defined using the above as
(a′, b′, ã′) = (a′, ε) ◦ (ε, b′) ◦ (ã′, ε). Now, all the four mappings above are auto-
matic as they only use homomorphisms from B, which are automatic, and mul-
tiplication with fixed group elements in the basic groups A and B, which are
automatic. It follows that ◦ is semiautomatic in C.

For equality, note that (a, b, ã) = (a′, b′, ã′) iff b = b′ (in group B) and
a ◦ ϕb(ã) = a′ ◦ ϕb′(ã′) (in group A). Thus, for a fixed (a′, b′, ã′) ∈ C and any
(a, b, ã) ∈ C, (a, b, ã) = (a′, b′, ã′) iff b = b′ (in group B) and a ◦ ϕb′(ã) =
a′ ◦ ϕb′(ã′). As ϕb′ , ◦ restricted to A and equality in A are automatic, it follows
that equality is semiautomatic in C. 	

It can also be shown that the free product of finitely many semiautomatic groups
is semiautomatic. The construction is very much inline with the one of Khar-
lampovich et al. [7] for Cayley automatic groups with some adjustments for
semiautomaticity.

Theorem 5. The free product of finitely many semiautomatic groups is semi-
automatic.
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Proof. Let (A1; ◦,=), . . . , (An; ◦,=) be semiautomatic groups which all share
the empty word ε as neutral element and use disjoint alphabets to represent the
other elements. Note that, for each fixed a ∈ Ak, there is an automatic mapping
x �→ a ◦ x (for x ∈ Ak) such that the length of a ◦ x is at most a constant
more than the length of x. Let # be a symbol not appearing in the members
of A1, . . . , Ak. Now each member of the free product B of A1, . . . , Ak is a word
of the form #+u1#+u2#+ . . . #+um#+ with u1, . . . , um representing elements
different from ε and no two subsequent uh, uh+1 are from the same group Ak.
Any word from #+ denotes the neutral element of the group. It is sufficient to
show that the multiplication with any fixed element from A1∪A2∪. . .∪An−{ε} is
automatic, multiplying with ε can be realised by the identity function. Consider
a ∈ Ak − {ε}.

Now x �→ a ◦ x is given as follows: x is mapped to #a# in the case that
x ∈ #+; x is mapped to #a#x in the case that the first component u1 from x
is not from Ak; x is mapped to the word x′, where u1 is replaced by #|u1| in the
case that u1 = a−1; otherwise x is mapped to the word x′, where u1 is replaced
by a word from (a ◦ u1)#∗. To ensure automaticity of the mapping, in the last
two cases above, enough #’s are filled in to make sure that length of x and x′

do not differ by more than a constant (independent of x).
The mapping x �→ x ◦ a is given as follows: x is mapped to #a# in the case

that x ∈ #+; x is mapped to x#a# in the case that the last component um of x
is not from Ak; the last part of the form um#+ is erased from x by the mapping
in the case that um = a−1 and the last part um#+ is replaced by (um ◦ a)# in
the case that um ∈ Ak − {a−1}.

Furthermore, for comparing whether x of the form #+u1#+ . . . #+un#+

represents a fixed element #a1#a2# . . . #am#, consider the automaton consist-
ing of m distinct subautomatons: the h-th subautomaton checks whether the
component uh of x is from the same Ak as ah and has the same value; the
automaton accepts iff all these checks succeed and the number of components n
of x is exactly m. 	


3 Nilpotent Groups

Kharlampovich et al. [7] showed that finitely generated groups of nilpotency class
1 or 2 are Cayley automatic. The next theorem uses semiautomatic groups in
place of Cayley automatic groups and pushes the above result one step further.
As it is open whether all the finitely generated groups of nilpotency class 3 are
Cayley automatic, this result provides a candidate for separating the two notions
within the finitely generated groups.

Theorem 6. Every finitely generated group of nilpotency class 3 can be repre-
sented as a semiautomatic group (A; ◦,=).

Proof. Let a1, . . . , an be the finitely many generators in the original nilpotent
group.
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Consider the factor group of the given group over the quotient group gener-
ated by all elements of the form x ◦ y ◦ x−1 ◦ y−1. This group is Abelian and is
isomorphic to

Z
r × {0, 1, . . . , pr+1 − 1} × . . . × {0, 1, . . . , pn − 1}

for some r � n and natural numbers pr+1, . . . , pn � 2.
Let b1, . . . , bn′ be all the group elements of the form a−1

i ◦ a−1
i′ ◦ ai ◦ ai′

and let c1, . . . , cn′′ be all the group elements of the form a−1
i ◦ b−1

j ◦ ai ◦ bj or
b−1
j ◦ a−1

i ◦ bj ◦ ai. Note that the c1, . . . , cn′′ commute with all group elements,
that for each i, j there is a k with

ai ◦ bj = bj ◦ ai ◦ ck, ai ◦ b−1
j = b−1

j ◦ ai ◦ c−1
k

and that for each i, i′ there are j, k with

ai ◦ ai′ = ai′ ◦ ai ◦ bj , ai ◦ a−1
i′ = a−1

i′ ◦ ai ◦ b−1
j ◦ ck.

Similar rules allow to move a−1
i over ai′ , bj . Note that the group elements bj , bj′

also commute with each other, as when, for example, bj′ = a−1
i ◦ a−1

i′ ◦ ai ◦ ai′

then bj ◦ bj′ = bj ◦ a−1
i ◦ a−1

i′ ◦ ai ◦ ai′ = a−1
i ◦ a−1

i′ ◦ ai ◦ ai′ ◦ bj = bj′ ◦ bj . The
reason is that the ck, ck′ produced by moving a−1

i , a−1
i′ , respectively, over bj , are

cancelled out when moving ai, ai′ over bj . Now, each group element is given by
a convoluted tuple of integers

(m1, . . . ,mn,m′
1, . . . ,m

′
n′ ,m′′

1 , . . . ,m′′
n′′)

where, for i = r + 1, . . . , n, mi ∈ {0, 1, . . . , pi − 1}. The above member of A
represents

am1
1 ◦ . . . ◦ amn

n ◦ b
m′

1
1 ◦ . . . ◦ b

m′
n′

n′ ◦ c
m′′

1
1 ◦ . . . ◦ c

m′′
n′′

n′′ .

Note that several tuples of this type may represent the same group element due
to products of some bj and ck being ε.

In the representation set A, the integers mi and m′
j in the above are rep-

resented in binary, with the reverse ordering of the bits to allow automatic
addition of components. Furthermore, each m′′

k is represented as a convoluted
tuple (h0, h1, . . . , hn) of integers (in binary using reverse ordering of the bits)
satisfying

m′′
k = h0 + h1 · m1 + . . . + hn · mn,

The number of integers used in the overall representation described above is
n + n′ + (n + 1) · n′′, which is a constant independent of the group element;
therefore convolution can indeed be used to represent the group element.

Now it will be shown that multiplication with a fixed ai is automatic and
that equality is semiautomatic.

First, for automaticity of the multiplication with a fixed element, note
that it is sufficient to show that multiplication with a fixed generator from
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a1, a
−1
1 , . . . , an, a−1

n is automatic, as every other group element is a fixed prod-
uct of these. This is shown in several steps, the number of steps is constant
and each step is automatic. For showing that the mapping x �→ ai ◦ x is auto-
matic, it is now described how, ai ◦ a

mi′
i′ a

mi′+1
i′+1 . . . amn

n b
m′

1
1 . . . b

m′
n′

n′ c
m′′

1
1 . . . c

m′′
n′′

n′′

is updated to a
mi′
i′ ◦ ai ◦ a

mi′+1
i′+1 . . . amn

n b
s′
1

1 . . . b
s′
n′

n′ c
s′′
1

1 . . . c
s′′
n′′

n′′ , where i′ < i

and m′′
k = (hk

0 , h
k
1 , . . . , h

k
n). Repeatedly using this mechanism to shift ai over

am1
1 am2

2 . . . a
mi−1
i−1 and then showing how to handle the increase of mi by 1, gives

the multiplication by ai for any member of the group as represented in A. Now
suppose 1 � i′ < i, 1 � q � n, and mi′ > 0. There are j, k1, . . . , kn such that
aiai′ = ai′aibj and bjaq = aqbjckq

. Then, the following operations are done to
update m′

j and various m′′
k to obtain the corresponding m′

j and s′′
j (values not

updated are unchanged).

(a) mi′ is added to m′
j (to handle the increase in the bj).

(b) mi′(mi′ −1)/2 is added to m′′
ki′

(to handle the increase in cki′ due to moving
of bj generated in (a) over a

mi′
i′ ). If mi′ is odd, then the above addition can

be achieved by adding mi′/2 to h
ki′
0 and adding (mi′ − 2)/2 to h

ki′
i′ . If mi′

is even, mi′(mi′ − 1)/2 = mi′(mi′ − 2)/2 + mi′/2. Thus, the above addition
can be achieved by adding mi′(mi′ − 2)/2 to h

ki′
0 and adding mi′/2 to h

ki′
i′ .

(c) mi′ ∗ mq is added to m′′
kq

, for q = i′ + 1, . . . , n (to handle the increase in ckq

due to moving of b
mi′
j over a

mq
q ). This can be done by adding mi′ to h

kq
q .

Note that ai ◦ a−1
i′ = a−1

i′ ◦ ai ◦ b−1
j ◦ ck′ for some k′ which permits to handle the

case when mi′ < 0 in a similar manner. For the multiplication

ai ◦ ami
i a

mi+1
i+1 . . . amn

n b
m′

1
1 . . . b

m′
n′

n′ c
m′′

1
1 . . . c

m′′
n′′

n′′ ,

one updates mi to mi + 1 and, as a chain reaction, for k = 1, . . . , n′′, update hk
0

to hk
0 −hk

i , for the tuple (hk
0 , h

k
1 , . . . , h

k
n) representing m′′

k (so that the new value
of mi is used rather than the older value in the computation of m′′

k).
Similarly it can be shown that also the mappings x �→ a−1

i ◦ x, x �→ x ◦ ai

and x �→ x ◦ a−1
i are automatic.

The above handles all multiplications by ai on the left except for the case of
i > r and mi + 1 = pi. To handle this, an additional multiplication by a−pi

i can
be done using the above mechanism to bring the power of ai to 0.

Now, for showing semiautomaticity of equality, for any fixed element

am1
1 ◦ . . . ◦ amn

n ◦ b
m′

1
1 ◦ . . . ◦ b

m′
n′

n′ ◦ c
m′′

1
1 ◦ . . . ◦ c

m′′
n′′

n′′ ∈ A

it is shown that the set of its representatives in A is regular. Note that in the
vector of the exponents, for each further representative of the group element, the
first n coordinates must also be m1,m2, . . . ,mn, which can be easily checked. In
the case that these n coordinates are equal, one can tailormake an automaton
to check for equality. The automaton can, for each k and for the coordinates
(h0, h1, . . . , hn) representing m′′

k , use the formula

h0 + h1 · m1 + . . . + hn · mn
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to get the explicit value corresponding to m′′
k in the other representative, in

binary notation, as multiplication of integers by constants can be done auto-
matically. However, the m′-coordinates and m′′-coordinates can be different for
the two representatives. The difference of these coordinates must, however, give
a vector representing ε. Thus, it suffices to give a test for neutrality in the m′-
coordinates and m′′-coordinates in order to be able to decide equality to the fixed
given element. Call a set {v1, . . . , vr} of vectors representing these coordinates
to be independent over Z iff no vh can be obtained from a linear combina-
tion of the others using coefficients from Z. If one of the sets {v1, v2, . . . , vr},
{−v1, v2, . . . , vr}, {v1 − v2, v2, . . . , vr}, {v2 − v1, v2, . . . , vr} is independent, then
all of them are. So Euclid’s algorithm can be run on the vectors until all but
one vector have a 0 in the first coordinate; then one can run the algorithm until,
among all those vectors with a 0 in the first coordinate, all but at most one
have a 0 in the second coordinate and so on. This implies that the number of
independent vectors is not larger than the number of coordinates. Thus there
are fixed vectors {v1, . . . , v�} such that two vectors

(m1, . . . ,mn,m′
1, . . . ,m

′
n′ ,m′′

1 , . . . ,m′′
n′′) and

(m1, . . . ,mn, m̃′
1, . . . , m̃

′
n′ , m̃′′

1 , . . . , m̃′′
n′′)

represent the same element iff the difference

(0, . . . , 0,m′
1 − m̃′

1, . . . ,m
′
n′ − m̃′

n′ ,m′′
1 − m̃′′

1 , . . . ,m′′
n′′ − m̃′′

n′′)

is of the form r1 ·v1+r2 ·v2+ . . . r� ·v� for some r1, . . . , r� ∈ Z. This is an existen-
tially quantified formula, where the multiplication with fixed vectors (represented
as convoluted tuples) can be done by an automatic function and their adding
and comparing with the target as well. Thus the predicate whether the two vec-
tors from above representing the two group elements are the same is automatic.
Thus for each group element

am1
1 ◦ . . . ◦ amn

n ◦ b
m′

1
1 ◦ . . . ◦ b

m′
n′

n′ ◦ c
m′′

1
1 ◦ . . . ◦ c

m′′
n′′

n′′

there is a finite automaton which decides whether another group element is equal
to it. So the group (A; ◦,=) is semiautomatic. 	


For the representation used in the above theorem, by using the natural subgroup
B of all elements in A generated by the bj and ck, the following Theorem7 below
can be shown. The key idea is to represent each group element in the form b◦a◦ b̃
where b, b̃ are in B and a is either am1

1 ◦ . . . ◦ amn
n or amn

n ◦ . . . ◦ am1
1 ; these two

orderings are used in order to facilitate inversion. Item (b) in the theorem below
is proven by coding a computationally difficult problem into the theory of the
structure of the group and then conclude that this problem would be solvable in
the case that the given structure is semiautomatic.

Theorem 7. In the following, (A, ◦) denotes a finitely generated group of nilpo-
tency class 3, B denotes the commutator subgroup generated by all elements of
the form x ◦ y ◦ x−1 ◦ y−1 with x, y ∈ A and • denotes the restriction of ◦ to the
domain (A × B) ∪ (B × A).
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(a) For every A as above, the structure (A,B, x �→ x−1, •; ◦,=) is semiauto-
matic.

(b) For some A as above, the structure (A,B, •,=; ◦) is not semiautomatic.

Proof. (a): The notation from the proof of Theorem6 is carried over for this
proof. The group elements are represented as products b ◦ a ◦ b̃ where (i) b, b̃
are products of bj ’s and ck’s represented in the same format as they are repre-
sented in Theorem 6 and (ii) a is a member of (a∗

1a
∗
2 . . . a∗

n ∪ a∗
n . . . a∗

2a
∗
1) repre-

sented as a convoluted tuple (m0,m1, . . . ,mn), where m0 ∈ {−1, 1}; the tuple
(m0,m1, . . . ,mn) represents am1

1 ◦ . . . ◦ amn
n , if m0 = 1, and amn

n ◦ . . . ◦ am1
1 , if

m0 = −1.
The mappings b �→ b−1, a �→ a−1 and b̃ �→ b̃−1 are realised by negating all

entries in the corresponding tuples; for mapping (b ◦ a ◦ b̃) to (b ◦ a ◦ b̃)−1, one
has to exchange the entries of b and b̃ as well, as (b ◦ a ◦ b̃)−1 = b̃−1 ◦ a−1 ◦ b−1.
Thus the mapping x �→ x−1 (in the chosen representation) is automatic.

Note that, in the representation for b̂ ∈ B, all the m-coordinates are 0. Thus
for the component m′′

k in the representation of b̂, the integers h1, h2, . . . (as in
Theorem 6) can be ignored. Hence, the multiplication b̂•(b◦a◦ b̃), can be done by
adding m′

j coordinate of the representation of b̂ to the corresponding m′
j coordi-

nate of b and the h0-component of the m′′
k coordinate of b̂ to the corresponding

h0-component of the m′′
k coordinates of b. Similarly, when computing (b◦a◦ b̃)• b̂,

the coordinates of b̂ are added as above to those of b̃.
Note that, in the representation chosen for this proof, b̂ ∈ B is actually a

product of the form: b′ ◦ ε ◦ b̃′, where b′, b̃′ are represented as in Theorem 6.
The coordinates of b′ and b̃′ as above can be contracted to the coordinates
of one member of B by simply adding, component-wise, prior to carrying out
the multiplication • as described above. These arguments explain why • is an
automatic function.

Multiplication of an element x with generators ai from either side as done in
Theorem 6, can easily be adjusted to the representation chosen here.

Now, assume a fixed group element x = am1
1 am2

2 . . . amn
n ◦ b′, where b′ ∈ B,

is given. Let a = am1
1 am2

2 . . . amn
n . Note that for all representatives y = b ◦ a′ ◦ b̃

of x in the representation chosen, the coordinates m1,m2, . . . ,mn corresponding
to a′ must match to that of a as above. Furthermore, there is a fixed element
b̂ ∈ B such that

amn
n ◦ . . . ◦ am1

1 = am1
1 ◦ . . . ◦ amn

n ◦ b̂.

Now, for any given representative y = b ◦ a′ ◦ b̃ with the coordinates for a′ being
m0 = −1,m1, . . . ,mn, the coordinate m0 can be converted to +1, by replacing b̃
by b̂◦ b̃. Furthermore, using the arguments given in the proof of Theorem6, there
is a fixed automatic homomorphism ϕa : B → B such that b ◦a = a◦ϕa(b). The
products ϕa(b) ◦ b̃ or ϕa(b) ◦ b̂ ◦ b̃ can be carried out by componentwise addition
of the vectors involved. Once this is done, the algorithm from Theorem6 can be
used to compare y in the resulting representation with that of x. Thus equality
is semiautomatic in the representation chosen.
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The full proof of part (b) is omitted due to space constraints. The idea is
to code a hard problem into a system of equations for a specific semiautomatic
structure of the form (A,B, •,=; ◦). Each of the equations involves multipli-
cation of an existentially quantified variable x from A with constants from A
and existentially quantified variables from B, the latter is automatic as it falls
into the domain of •. Then it is shown that solving such equations permits to
solve the original computationally hard problem which cannot be solved by an
automaton, implying that the structure cannot be semiautomatic. The coding
mentioned above is either of an NP-hard problem (which is more direct to do) or
in a more involved way of a Diophantine unsolvable problem, which then gives
the undecidability result. 	
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9. Miasnikov, A., Šunić, Z.: Cayley graph automatic groups are not necessarily Cayley
graph biautomatic. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS,
vol. 7183, pp. 401–407. Springer, Heidelberg (2012)

10. Nies, A.: Describing groups. Bull. Symbolic Logic 13(3), 305–339 (2007)
11. Nies, A., Thomas, R.: FA-presentable groups and rings. J. Algebra 320, 569–585

(2008)
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Abstract. We characterize up to isomorphism the Boolean algebra (BA,
for short) of regular piecewise testable languages and show the decidabil-
ity of classes of regular languages related to this characterization. This
BA turns out isomorphic to several other natural BAs of regular lan-
guages, in particular to the BA of regular aperiodic languages.

Keywords: Boolean algebra · Frechét ideal · Regular language ·
Aperiodic language · Piecewise testable language

1 Introduction

Boolean algebras are of principal importance for several branches of mathemat-
ics. Accordingly, characterization of naturally arising BA’s attracts attention of
many researchers. As examples we mention characterizations of natural BA’s in
logic and computability theory [3,7,12–14].

In automata theory, people consider many natural classes of languages which
form BA’s whose characterizations could be of some interest because they provide
new information on well-known classes of regular languages. Due to the Stone
duality, this contributes to understanding of the corresponding Stone spaces
which are closely related to the profinite topology [1,10].

The first papers in this direction appeared relatively recently [8,16]. In
[5,6,16] some fundamental BA’s of regular languages and ω-languages were char-
acterized up to isomorphism. A surprising discovery was that those BAs are
either quite simple (informally, very similar to the countable atomless BA) or
else they are isomorphic to a distinguished BA A described as follows (we use
some well-known terminology on BA’s which may be found e.g. in [2], see also
the next section).

If B is a BA and α an ordinal, let Fα(B) be the α-th iterated Frechét ideal
of B, and B

(α) = B/Fα(B) is the α-th Frechét derivative of B. Frechét ideals
are central for a useful classification of isomorphism types of countable BA’s
[4]. A very particular case of this is the following assertion: There is a unique,
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up to isomorphism, countable BA A such that F0(A) ⊂ F1(A) ⊂ · · · ⊂ Fω(A) =
Fω+1(A), for each n < ω the BA A

(n) is atomic with infinitely many atoms, and
A

(ω) is a countable atomless BA.
The BA’s considered in [5,6,16] are large in the sense that any of them

extends the BA AΣ of regular aperiodic languages over an alphabet Σ (or
the corresponding BA of ω-languages). In this note, we start to investigate
“small” BA’s of regular languages like the self-dual levels of Straubing-Thérien or
Brzozowski hierarchies [18,20]. Probably, the most popular of those is the BA
of piecewise testable languages PΣ over Σ. Recall that a language L is piecewise
testable if there exists a number k (depending only on L) such that membership
of a word in the language depends only on the subwords (also called pieces) of
length less than k (we recall some characterizations of piecewise testable lan-
guages in the next section).

The main result of this paper may be formulated as follows: If Σ contains at
least two letters then PΣ is isomorphic to A.

Therefore, the BA A appears also among the “small” BA’s of regular lan-
guages. Note that for the unary alphabet Σ the BA PΣ coincides with AΣ of
regular aperiodic languages and is much simpler [16].

In Sect. 2 we provide the necessary background on BA’s and regular lan-
guages, in Sect. 3 we give some important examples of piecewise testable lan-
guages, and in Sect. 4 we prove the main result.

2 Preliminaries

2.1 Preliminaries on Boolean Algebras

Here we briefly recall some relevant notions about BA’s used in the sequel.
We assume the reader to be familiar with basic notions related to BA’s like
ideal of a BA, quotient-algebra of a BA modulo a given ideal, and canonical
homomorphism of a BA onto its quotient-algebra (for a detailed treatment of
countable BA’s see e.g. [2]). BA’s are considered in the signature {∪,∩,̄ , 0, 1}.

Recall that an element a of a BA B is an atom if a �= 0 and x < a implies
x = 0. A BA B is called atomless if it has no atom, and it is called atomic if
below any non-zero element there is an atom. The ideal of a BA B generated
by atoms is called Frechét ideal of B. It consists of all finite unions (including
the empty union which coincides with 0) of atoms and is denoted by F (B). The
quotient-algebra B/F (B) is called Frechét derivative of B and is also denoted by
B

′.
Define the transfinite sequence {Fα(B)} of iterated Frechét ideals of a BA B

as follows: F0(B) = {0}, Fβ+1(B) = {x | x/Fβ(B) ∈ F (B(β))} where B
(β) =

B/Fβ(B), and Fα(B) =
⋃

β<α Fβ(B) for a limit ordinal α. This sequence is
ascending under inclusion, and Fα(B) = Fα+1(B) for some ordinal α.

2.2 Preliminaries on Regular Languages

Here we briefly recall some notation, notions and facts on regular languages used
in the sequel. Let Σ∗ denote the set of words over Σ including the empty word
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ε, and let Σ+ := Σ∗\{ε}. For any n < ω, let Σn be the set of words over Σ of
length n. The length of a word w is denoted by |w|. Let � be the prefix partial
order on Σ∗, i.e. u � v iff ux = v for some x ∈ Σ∗.

We freely use some standard definitions and notation on words, regular
languages and finite automata like regular expressions or deterministic finite
automata (DFA) denoted as A = (Q,Σ, f, q0, F ) (for a more systematic treat-
ment see e.g. [18,20,21]). The automaton A recognizes the language LA = {u ∈
Σ∗ | q0 · u ∈ F} where q · u = f(q, u) is the state reached by A when it reads
the word u started from a state q. Let RΣ denote the class of regular languages
over Σ (i.e., languages recognized by DFA’s or, equivalently, denoted by regular
expressions). For L ∈ RΣ , ML denotes the minimal DFA that recognizes L; the
minimal DFA is unique up to isomorphism.

For k < ω, a language L ∈ RΣ is called k-sparse if the function pL(n) =
|Σn ∩ L| is O(nk) (cf. [19,21]). Let Sk denote the class of regular k-sparse lan-
guages over Σ. Note that S0 ⊂ S1 ⊂ · · · . Languages from Sω =

⋃
k<ω Sk are

called sparse languages. Note that 0-sparse languages are also known as slender
languages. We will use the following characterizations of k-sparse languages in
terms of regular expressions (cf. [19,21]).

Proposition 1. For any L ∈ RΣ and k < ω, L ∈ Sk iff L is a finite union of
languages xy∗

0z0 · · · y∗
kzk where x, yi, zi ∈ Σ∗.

There is also a useful characterization of sparse languages in terms of (graphs
of) their minimal automata (see e.g. [9,16]). We say that a DFA A has an ω-
pattern if there are u, v1, v2, w ∈ Σ∗ such that v1, v2 are �-incomparable (i.e.,
v1(i) �= v2(i) for some i < |v1|, |v2|), q0 ·u = q0 ·uv1 = q0 ·uv2 and q0 ·uv1w ∈ F .

Proposition 2. For any L ∈ RΣ, L ∈ Sω iff the minimal DFA of L has no
ω-pattern.

For q ∈ Q and u ∈ Σ∗, let (q, u) denote the path in A along u started at q,
and let Q(q, u) = {q · v|v � u}. We say that the path (q, u) meets a set of states
G ⊆ Q if Q(q, u) ∩ G �= ∅. The path (q, u) is a cycle of A if u is nonempty and
q · u = q. A cycle is simple if it has no repeated vertices other than the starting
and ending vertices. Let CA be the set of all Q(q, u) where (q, u) is a cycle of A.
Define the preorder ≤ on CA as follows: G ≤ H if there is a path of A starting
in G and ending in H. Let ≡ denote the equivalence relation on CA induced by
≤.

Note that if G ≡ H then K ≡ G for some K ⊇ G ∪ H, i.e. any element
[G] of the quotient-set CA/≡ has a largest set under inclusion; these largest
sets are called strongly connected components (SCC’s) of A and they may serve
as canonical representatives for the equivalence classes [G]. The next result is
known and easily follows from the previous proposition:

Proposition 3. For any sparse language L = LA ∈ RΣ and any u ∈ L, if the
path (q0, u) meets a SCC G of A then [G] = {G} and G = Q(s, v) for some
simple cycle of A.
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We also recall the following classical fact of automata theory. A DFA A is
called counter-free if q · un = q implies q · u = q, for all q ∈ Q, nonempty word
u ∈ Σ∗ and n > 0.

Proposition 4. For any L ∈ RΣ the following conditions are equivalent:

1. There is n < ω such that xynz ∈ L iff xyn+1z ∈ L for all x, y, z ∈ Σ∗.
2. The minimal DFA of L is counter-free.

Languages satisfying the conditions in the last proposition are called ape-
riodic. There are several other important characterizations of the class AΣ of
aperiodic languages, in particular L ⊆ Σ+ is aperiodic iff L is defined by a
first order sentence of signature σ = {<,Qa}a∈Σ (see e.g. [18,20]) for additional
details). The class AΣ is closed under the Boolean operations, let AΣ be the
corresponding BA.

A popular subclass of the aperiodic languages is the class PΣ of piecewise
testable languages (see e.g. [11,17]). It has several nice characterizations, in par-
ticular L ⊆ Σ+ is piecewise testable iff L is defined by a boolean combination of
existential sentences of signature σ. Below we use the following characterization
[11,17] in terms of forbidden patterns T0, T1 (where x, z ∈ Σ∗, u, v ∈ Σ+) shown
on Figs. 1 and 2 below.

Fig. 1. Pattern T0, where s0 is the initial state and s ∈ F ⇔ s′ /∈ F .

Proposition 5. For any regular language L, L ∈ PΣ iff any DFA recognizing
L does not contain any of the patterns T0 and T1.

Restricting to minimal automata we immediately obtain:

Corollary 1. For any regular language L, L ∈ PΣ iff the minimal DFA of L
contains neither non-singleton cycles nor the patterns T1.

Remark. In the literature one often meets two versions of piecewise testable
languages, namely the languages which can or cannot contain the empty word.
Usually, proofs for the two cases are slightly different but formulations essentially
coincide. This also applies to our case. In the sequel we stick for simplicity to the
case of languages L ⊆ Σ+ of non-empty words; the other version is considered
in a similar fashion.
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Fig. 2. Pattern T1, where s0 is the initial state and s ∈ F ⇔ s′ /∈ F .

3 A Family of Piecewise Testable Languages

Here we show that for all x0, . . . , xn ∈ Σ∗ with x0 · · · xn �= ε, and for all
a1, . . . , an ∈ Σ, the language x0a

∗
1x1 · · · a∗

nxn is piecewise testable. This easy
fact is crucial for the characterization of BA PΣ . Since we have not seen it in
the literature, we provide a detailed proof using the automata-theoretic char-
acterization of piecewise testable languages from the previous section. From a
discussion with J.-E. Pin we learned that a natural semigroup-theoretic proof is
also possible.

By simple expression we mean a regular expression x0a
∗
1x1 · · · a∗

nxn where
x1, . . . , xn−1 ∈ Σ+, x0, xn ∈ Σ∗, x0 · · · xn �= ε, a1, . . . , an ∈ Σ, and the first
letter of xi is distinct from ai for all 0 < i < n, and also for i = n if xn is
non-empty.

Lemma 1. Let L ⊆ Σ+ be the regular language defined by a simple expression
as above. Then the minimal DFA of L does not contain non-singleton cycles and
patterns T1 from the previous section.

Proof. For n = 0 the assertion is clear. Let n > 0 and let mi be the length of
the word xi for i ≤ n, so xi = xi,1 · · · xi,mi

for unique letters xi,1, . . . , xi,mi
∈ Σ.

Note that mi > 0 for all 0 < i < n. For n = 1 the minimal DFA for L = x0a
∗
1x1

looks as shown on Fig. 3 where s0 is the initial state, s2 is the unique accepting
state, and the arrows to the rejecting sink state s carry all letters required by
the definition of DFA. Note that in the case x0 = ε we have x1 �= ε, s0 = s1
and the nodes q1, . . . , qm0−1 and the corresponding arrows disappear, while in
the case x1 = ε we have x0 �= ε, s1 = s2 is the accepting state, and the nodes
p1, . . . , pm1−1 and the corresponding arrows disappear. It is easy to see that the
minimal DFA has the desired property.

For n = 2 the minimal DFA for L = x0a
∗
1x1a

∗
2x2 looks similar: x0 leads

from s0 to s1, x1 leads from s1 to s2, x2 leads from s2 to the unique accepting
state s3, and all other arrows lead to the rejecting sink state s.
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Fig. 3. Minimal DFA for n = 1.

The argument works in a similar way for any n ≥ 3. ��
Lemma 2. For any n > 0, x0, . . . xn ∈ Σ∗ and a1, . . . an ∈ Σ, the language
L = x0a

+
1 x1 · · · a+

n xn may be represented by a simple expression y0b
∗
1y1 · · · b∗

mym

such that m ≤ n, {b1, . . . , bm} = {a1, . . . , an} and yi−1 has the letter bi for all
1 ≤ i ≤ m.

Proof. By induction on n. For n = 1, write x1 as x1 = al
1y1 where l ≥ 0 and y1

is empty or starts with a letter distinct from a1. Then a desired representation
is L = (x0a

l+1
1 )a∗

1y1.
For n > 1, set K = x1a

+
2 x2 . . . xn−1a

+
n xn, then L = x0a

+
1 K. By induction,

K has a desired representation y1b
∗
2y2 . . . b∗

mym, so L = x0a
+
1 y1b

∗
2y2 . . . b∗

mym.
If a1 �= b2, represent x0a

+
1 y1 as (x0a

l+1
1 )a∗z1 similar to the case n = 1, then

L = (x0a
l+1
1 )a∗z1b∗

2y2 . . . b∗
mym is a desired representation. The same argument

works for the case when a1 = b2 and y1 �∈ b∗
2. Finally, let a1 = b2 and y1 = bl

2

for some l ≥ 0. Then L = (x0b
l+1
2 )b∗

2y2 . . . b∗
mym is a desired representation. ��

Lemma 3. For all x0, . . . , xn ∈ Σ∗ with x0 · · · xn �= ε, and for all a1, . . . , an ∈
Σ, the language L = x0a

∗
1x1 · · · a∗

nxn is piecewise testable.

Proof. It is easy to see that L is the union of languages L(S) for all S ⊆ {1, . . . , n}
where L(S) is obtained from x0a

+
1 x1 · · · a+

n xn by deleting the expressions a+
i with

i ∈ S (e.g., for n = 2 we have x0a
∗
1x1a

∗
2x2 = x0x1x2 ∪ x0a

+
1 x1x2 ∪ x0x1a

+
2 x2 ∪

x0a
+
1 x1a

+
2 x2).

By Lemmas 1, 2 and Corollary 1, any L(S) is piecewise testable. Since PΣ is
closed under finite union, L is piecewise testable. ��
Remark. As is well known (see e.g. [15] and references therein), the class of
piecewise testable languages is stratified to the ω levels of the difference hierarchy
over the class of languages defined by existential sentences of signature σ. It is
not hard to show that no fixed level of this hierarchy contains all languages from
the previous lemma.

4 Proof of the Main Result

Now it is easy to adjust the proof in [16] to the case of piecewise testable lan-
guages, so we give only short comments.
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Since PΣ is a subalgebra of AΣ , the next three lemmas are checked in the
same way as Lemmas 3–5 in [16].

Lemma 4. For all k < ω and x, zi ∈ Σ∗, yi ∈ Σ∪{ε}, xy∗
1z1 · · · y∗

kzk/Fk+1(PΣ)
is either zero or an atom in the BA P

(k)
Σ . If L is a finite union of such languages

xy∗
1z1 · · · y∗

kzk then L ∈ Fk+1(PΣ).

Lemma 5. Let u,w ∈ Σ∗ and let v1, v2 ∈ Σ satisfy v1 �= v2. Then uv∗
1w /∈

F1(PΣ), uv∗
1v2v

∗
1w /∈ F2(PΣ), uv∗

1v2v
∗
1v2v

∗
1w /∈ F3(PΣ) and so on.

Lemma 6. For any L ∈ Fω(PΣ) the minimal DFA of L has no ω-pattern.

The next two theorems and corollaries are also proved in the same way as
the corresponding facts in [16].

Theorem 1. For any L ∈ RΣ the following conditions are equivalent:

1. L ∈ Fω(PΣ).
2. The minimal DFA of L has neither non-singleton cycles nor ω-patterns.
3. L ∈ PΣ ∩ Sω.
4. L is a finite union of languages xy∗

0z0 · · · y∗
kzk, where k < ω, x, zi ∈ Σ∗, and

y0, . . . , yk ∈ Σ.

Corollary 2. The class of regular languages Fω(PΣ) is decidable.

Next we characterize the ideals Fk(PΣ) for k < ω. Observe that F0(PΣ) = {∅}
and F1(PΣ) is the class of finite languages over Σ.

Theorem 2. For any k < ω and L ∈ RΣ the following conditions are equiva-
lent:

1. L ∈ Fk+2(PΣ).
2. The minimal DFA of L has neither non-singleton cycles nor ω-patterns, nor

chains F0 < · · · < Fk+1 of SCC’s of ML such that some accepting state of
ML is reachable from Fk+1.

3. L ∈ PΣ ∩ Sk.
4. L is a finite union of languages xy∗

0z0 · · · y∗
kzk, where x, zi ∈ Σ∗, y0, . . . , yk ∈

Σ.

Corollary 3. For any k < ω, the class of regular languages Fk(PΣ) is decidable
uniformly on k.

We are ready to complete the proof of the main result:

Theorem 3. The BA PΣ is a unique, up to isomorphism, countable BA A such
that F0(A) ⊂ F1(A) ⊂ · · · ⊂ Fω(A) = Fω+1(A), for each n < ω the BA A

(n) is
atomic with infinitely many atoms, and A

(ω) is a countable atomless BA.
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Proof. First we check that Fk(PΣ) ⊂ Fk+1(PΣ) for each k < ω. For k = 0 this
is clear. Choose distinct a, b ∈ Σ, it suffices to show that

a∗ ∈ F2(PΣ)\F1(PΣ), a∗ba∗ ∈ F3(PΣ)\F2(PΣ), a∗ba∗ba∗ ∈ F4(PΣ)\F3(PΣ),

so on. By Theorem 1 and Lemma 4,

a∗ ∈ F2(PΣ), a∗ba∗ ∈ F3(PΣ), a∗ba∗ba∗ ∈ F4(PΣ),

so on. By Lemma 5,

a∗ /∈ F1(PΣ), a∗ba∗ /∈ F2(PΣ), a∗ba∗ba∗ /∈ F3(PΣ),

so on. Note that precise proof needs induction on k, as in [16].
By Lemmas 4–6 the elements a∗/F1(PΣ), a∗ba∗/F2(PΣ), . . . are atoms respec-

tively in the BA’s P
(1)
Σ ,P

(2)
Σ , . . ., and this also holds for the elements

bna∗/F1(PΣ), bna∗ba∗/F2(PΣ), . . . .

As the languages bna∗ (and also the languages bna∗ba∗ and so on.) are pairwise
disjoint for distinct n, the BA’s P(1)

Σ ,P
(2)
Σ , . . . have infinitely many atoms (as also

the BA P
(0)
Σ = PΣ).

Next we check that the BA P
(k)
Σ is atomic for each k < ω. For k < 2 this

is clear, it remains to check that for any k < ω and L ∈ PΣ\Fk+2(PΣ) there is
A ∈ PΣ such that A ⊆ L and A/Fk+2(PΣ) is an atom in P

(k+2)
Σ . We distinguish

the cases L �∈ Fω(PΣ) and L ∈ Fω(PΣ).
In the first case Proposition 2 and Corollary 1 imply that the minimal DFA

of L has an ω-pattern with the words u, v1, v1, w such that v1, v2 are distinct
letters from Σ, so A exists by Theorem 1 and Lemma 5. In the second case, by
Theorem 2 there are SCC’s F0 < · · · < Fk+1 (having by Corollary 1 the form
Fi = {si}, siyi = si for some y0, . . . , yk+1 ∈ Σ) and words z0, . . . , zk ∈ Σ+,
x, zk+1 ∈ Σ∗, such that the first letter of zi is distinct from yi for each i ≤ k,
q0x = s0 and xz0 · · · zk+1 ∈ L. Then the language A = xy∗

0z0 · · · y∗
k+1zk+1 has

the desired properties.
It remains to show that for any L ∈ PΣ\Fω(PΣ) there is M ∈ PΣ\Fω(PΣ)

such that M ⊂ L and M,L\M �∈ Fω(PΣ). The minimal DFA ML of L has again
an ω-pattern for some u, v1, v2, w as above. We can thus take M = uv1(v1 +
v2)∗w. ��

The main result and the corresponding result in [16] immediately imply:

Corollary 4. Over any alphabet Σ, PΣ is isomorphic to AΣ.

5 Conclusion

We see that the BA A from Introduction is astonishingly robust in characteris-
ing BAs of regular languages: all such non-degenerate BAs considered so far are
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isomorphic to A. At the same time, the structure of many BA’s of regular lan-
guages remains unclear. In particular, this is the case for higher self-dual levels of
the Straubing-Thérien, Brzozowski and other similar hierarchies of regular lan-
guages [15]. The same applies to the corresponding BA’s of regular ω-languages.
An intriguing open question is whether any such non-degenerate BA is isomor-
phic to A.
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Abstract. We show that for many natural computable metric spaces
and computable domains the first order theory of the lattice of effectively
open sets is hereditarily undecidable. Moreover, for several important
spaces (e.g., finite-dimensional Euclidean spaces and the domain Pω)
this theory is m-equivalent to the first-order arithmetic.

Keywords: Lattice · Effectively open set · First-order theory · Inter-
pretation

1 Introduction

The lattice E of computably enumerable (c.e.) sets is a popular object of study
in Computability Theory [12]. A principal fact about this lattice is the undecid-
ability of its first-order theory Th(E) [5,6]. Moreover, Th(E) is known [7] to be
m-equivalent to the first-order arithmetic Th(N) where N := (ω; +,×), i.e., to
the ω’th iteration ∅(ω) of Turing jump starting with the empty set.

The lattice E may be considered as the lattice Σ0
1(ω) of effectively open

subsets of the discrete topological space ω. The lattices of effectively open sets
Σ0

1(X) of various “effective” topological spaces X are of interest in Computable
Analysis [13] and Effective Descriptive Set Theory [9,11], hence it is natural to
ask which results about E hold true for the lattices of effectively open sets of
“natural” effective topological spaces. It seems that not much is known about
this question. To our knowledge, only the case of Cantor space C and Baire
space N was studied to some extent, in the context of the theory of Π0

1 -classes.
In [10] (see remarks after Main Theorem 3.1 in Introduction) it is shown that
Th(Π0

1 (C)) is m-equivalent to ∅(ω). Since the lattice Π0
1 (C) is anti-isomorphic to

Σ0
1(C), this settles the question for C. To our knowledge, similar questions for N

(even the decidability of Th(Σ0
1(N ))) were open.

In this paper, we attempt to make next steps in this direction. First, in
Sect. 2 we show that for many natural effective spaces X the theory Th(Σ0

1(X))
(including Baire space) is undecidable. This includes the computable metric
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spaces without isolated points, and many natural classes of domains (as well as
many non-complete partial orders with Scott topology).

In Sect. 3, we try to precisely estimate the m-degree of Th(Σ0
1(X)). We prove

that for Euclidean finite-dimensional spaces X and for some natural domains,
Th(Σ0

1(X)) is m-equivalent to ∅(ω). The methods of this section apply mainly to
locally compact spaces. The precise estimation of the complexity of Th(Σ0

1(X))
turns out to be very subtle and strongly depending on the topology of X. For
many natural spaces X we still have a big gap between the known (to us) lower
and the upper bound for Th(Σ0

1(X)). In particular, for Baire space we currently
only know the estimate ∅′ ≤m Th(Σ0

1(X)) ≤m O(ω) where O is the Kleene
ordinal notation system which is a Π1

1 -complete set.

2 Undecidability of Th(Σ0
1(X))

Here we show that for many natural effective spaces X the theory Th(Σ0
1(X))

is undecidable. First we explain what we mean by effectively open sets. For any
countably based topological space X and any numbering β : ω → P (X) of a basis
of X, define a numbering π : ω → P (X) by π(n) =

⋃
β[Wn] where {Wn} is the

standard numbering of c.e. sets [12] and β[Wn] is the image {β(a) | a ∈ Wn}.
The sets in π[ω] are called effectively open sets in X. Thus, the set of effectively
open sets is always equipped with the induced numbering π, hence it makes sense
to speak about computable sequences of effectively open sets.

We define some particular classes of effective spaces relevant to this paper.
A computable metric space [13] is a triple (X, d, ν), where (X, d) is a metric
space and ν : ω → X is a numbering of a dense subset rng(δ) of X such that
the set {(i, j, k, l) | κ(k) < d(ν(i), ν(j)) < κ(l)} is c.e. Here κ is a computable
numbering of the set Q of rationals. Any computable metric space (X, d, ν) gives
rise to a numbering β of the standard basis β〈m,n〉 = B(νm, κn) were 〈m,n〉 is the
Cantor pairing and B(νm, κn) is the basic open ball with center νm and radius
κn. By a strongly computable metric space (SCMS) we mean a computable metric
space such that there exists an infinite computable sequence {Bn} of pairwise
disjoint basic open balls. The metric spaces ω, Q, C := 2ω, N := ωω, R

n, and
R

ω equipped with the standard metrics and with natural numberings of dense
subsets are SCMS. Any computable metric space without isolated points is a
SCMS. Recall that a theory of signature σ is hereditarily undecidable if any its
subtheory of signature σ is undecidable.

Theorem 1. Let X be a SCMS. Then Th(Σ0
1(X)) is hereditarily undecidable.

Proof. Since the theory Th(E) is hereditarily undecidable [5,6], it suffices
to define the structure E in the structure Σ0

1(X) by first-order formulas with
parameters; in our case two parameters v, w will suffice. Consider the formulas
φU (x, v, w) := v ⊆ x∧x ⊆ w and φ⊆(x, y, v, w) := φU (x, v, w)∧φU (x, v, w)∧x ⊆
y. For any values V,W ∈ Σ0

1(X) for parameters v, w with V ⊆ W , the formulas
define the sublattice D of Σ0

1(X) formed by the sets lying between V and W .
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Therefore, it suffices to find effectively open sets V,W such that the lattice D is
isomorphic to E .

Let {Bn} be the sequence from the definition of SCMS and let B′
n be obtained

from the ball Bn by removing its center cn. Then {B′
n} is a computable sequence

of effectively open sets, hence V :=
⋃

n B′
n and W :=

⋃
n Bn are effectively open

and W\V = {c0, c1, . . .}. From the definition of SCMS it is easy to see that the
function D 
→ {n | cn ∈ D} is a desired isomorphism between D and E . ��

Next we recall some definitions related to domain theory (for more details
see e.g. [1,3,11]). Let X be a T0-space. For x, y ∈ X, let x ≤ y denote that
x ∈ U implies y ∈ U , for all open sets U . The relation ≤ is a partial order
known as the specialization order. Let F (X) be the set of finitary elements of
X (known also as compact elements), i.e. elements p ∈ X such that the upper
cone ↑ p = {x|p ≤ x} is open. Such open cones are called f-sets. The space X
is called a ϕ-space if every open set is a union of f -sets. The ϕ-space X is an
f-space if any compatible elements c, d ∈ F (X) have a least upper bound w.r.t.
≤ (compatibility means that c, d have an upper bound in F (X)). An f -space X
is an f0-space if F (X) has a least element.

By a computable ϕ-space we mean a pair (X, δ) consisting of a ϕ-space X
and a numbering δ : ω → F (X) of all the finitary elements such that the
specialization order is c.e. on the finitary elements (i.e., the relation δx ≤ δy

is c.e.). Setting β(n) :=↑ δn we obtain a numbering of a topological basis of X.
Thus, we have a notion of an effective open set in every computable ϕ-space.

By a strongly computable ϕ-space (SCPS) we mean a computable ϕ-space X
such that the specialization order is computable on the finitary elements, and
there is a computable sequence {cn} of pairwise incomparable finitary elements.
Although the restrictions on SCPSs are rather strong, many popular domains
are SCPSs. In particular, this applies to all ϕ-spaces mentioned below in this
section. A SCPS X is a strongly computable f0-space (SCFS) if it is an f0-
space, the relation of compatibility is computable on F (X), and the supremum
of compatible finitary elements is computable.

Let ω≤ω be the completion of the partial ordering (ω∗;�) where ω∗ is the set
of finite strings of naturals and � is the prefix relation. Of course, ω≤ω = ω∗∪ωω

consists of all finite and infinite strings of natural numbers. For every 2 ≤ n < ω,
let n≤ω be obtained in the same way from (n∗;�). Thus, n≤ω = n∗ ∪nω consists
of all finite and infinite words over the alphabet {0, . . . , n − 1}. Let Pω be the
powerset of ω with the Scott topology for the subset relation, hence the finitary
elements of Pω are exactly the finite subsets of ω.

Let ω⊥ be the “flat” domain obtained from the discrete space of ω by adjoin-
ing a new bottom element ⊥. Let ωω

⊥ be the space of partial functions g : ω ⇀ ω
with the usual structure of a ϕ-space given by the Scott topology for the sub-
graph relation (as usual, we identify the partial function g with the total function
g̃ : ω → ω⊥ = ω ∪ {⊥} where g(x) is undefined iff g̃(x) = ⊥, for some “bottom”
element ⊥ �∈ ω). For each n, 2 ≤ n < ω, let nω

⊥ be the space of partial functions
g : ω ⇀ {0, . . . , n − 1} defined similarly to ωω

⊥. Obviously, ω≤ω, n≤ω, Pω, ωω
⊥, nω

⊥
are complete SCFSs. As is well known (see e.g. [2]), for any (complete) f0-spaces
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X,Y the space Y X of continuous functions from X to Y with the topology of
pointwise convergence is again a (complete) f0-space. An inspection of the cor-
responding proofs shows that if X,Y are (complete) SCFSs then so is also Y X .
Therefore, any space of continuous partial functionals over ω of a finite type is a
complete SCFS. In particular, this applies to the spaces Fn defined by induction
F0 := ω⊥, Fn+1 := ωFn

⊥ .

Theorem 2. Let X be an SCPS. Then Th(Σ0
1(X)) is hereditarily undecidable.

Proof. We use the same interpretation scheme as in the previous proof. Let
{cn} be the sequence of finitary elements from the definition of SCPS. This
time we take as the parameters values W :=

⋃
n ↑ cn and V :=

⋃
n(↑ cn\{cn}.

From the definition of SCPS it is easy to see that {↑ cn\{cn}} is a computable
sequence of effectively open sets, hence again V and W are effectively open and
W\V = {c0, c1, . . .}). Moreover, the function D 
→ {n | cn ∈ D} is again an
isomorphism between D and E . ��

3 m-Degree of Th(Σ0
1(X))

Here we give precise estimate of the algorithmic complexity of ThΣ0
1(X) for some

spaces X. First we establish a natural upper bound that applies to many locally
compact spaces. We need a technical notion related to local compactness. By
arithmetically locally compact space (ALCS) we mean a triple (X,β, κ) consisting
of a topological space X, a numbering β of a basis in X, and a numbering κ of
compact sets in X such that any set βn is a union of some sets in {κi | i < ω}, and
the relation κi ⊆ ⋃

β[Dn] is arithmetical where {Dn} is the canonical numbering
of finite subsets of ω. Note that although ALCSs are not automatically locally
compact, many popular locally compact spaces may be considered as ALCSs.
In particular, the computable ϕ-spaces, the finite dimensional Euclidean spaces,
and Cantor space are ALCSs (say, for a computable ϕ-space (X, δ) we can set
κn :=↑ δn which is compact; the relation κi ⊆ ⋃

β[Dn] in this case is c.e.).

Proposition 1. If (X,β, κ) is an ALCS then Th(Σ0
1(X)) ≤m ∅(ω).

Proof. It suffices to show that the relation πi ⊆ πj is arithmetical because
then the elementary diagram of the numbered structure (Σ0

1(X);⊆, π), and hence
also Th(Σ0

1(X)), is m-reducible to ∅(ω).
Obviously, πi ⊆ πj is equivalent to ∀n(κn ⊆ πi → κn ⊆ πj), hence it suffices

to show that the relation κn ⊆ πi is arithmetical. We have κn ⊆ πi iff κn ⊆⋃
β[Wi] iff ∃m(Dm ⊆ Wi ∧ κn ⊆ ⋃

β[Dm]), by compactness of κn. The last
relation is arithmetical by the definition of ALCS. ��

We turn to the precise estimation of m-degrees of Th(Σ0
1(Rn)) and start with

the following lemma.

Lemma 1. Any connected component of an effectively open set in R
n is effec-

tively open.
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Proof. Let U be a connected component of V ∈ Σ0
1(Rn) and let a be a rational

point in U . Then

U =
⋃

{B(b, r) | b ∈ Q
n ∧ r ∈ Q

+ ∧ ∃a1 · · · am−1 ∈ Q
n∃r1 · · · rm−1 ∈ Q

+

(
m∧

i=1

B(ai, ri) ⊆ V ∧
m−1∧

i=1

(B(ai, ri) ∩ B(ai+1, ri+1) �= ∅) ∧ a ∈ B(a1, r1))}

where b = am and r = rm. Since we can computably enumerate basic closed
balls B(b, r) ⊆ V [8] with b ∈ Q

n, r ∈ Q
+, U is effectively open. ��

Now we prove the main technical result of this paper:

Theorem 3. For any n ≥ 1, Th(Σ0
1(Rn)) ≡m ∅(ω).

Since the upper bound holds by the previous proposition, we only have to
prove the lower bound. Since Σ0

1(Rn) is a distributive lattice, we can use in the
definitions not only the symbol of inclusion but also the symbols of Boolean
operations and the constants ∅, Rn. Note that for any x ∈ R

n, x is computable
iff R

n\{x} is effectively open, hence we can use (to simplify notation) in our
defining formulas the computable points (as complements of sets maximal w.r.t.
inclusion among the sets below R

n). More precisely, we will use the variable x
to range over the computable points, the atomic formulas x ∈ u (where u range
as usual through Σ0

1(Rn)), and we can quantify over x.
Proof for n = 1. Since Th(E) ≡m ∅(ω) by [7], it suffices to m-reduce Th(E)

to Th(Σ0
1(R)). For this we again find a definition of the lattice E in Σ0

1(R) with
parameters but this time the set of parameters itself should be definable.

First we show that the property of being a connected effectively open set
is definable without parameters. We start with some auxiliary formulas. Let
C̃on(u) be the formula u �= ∅∧¬∃v, w(u ⊆ v∪w∧v∩w = ∅∧u∩v �= ∅∧u∩w �= ∅)
saying that u is “effectively connected” i.e. it cannot be partitioned into two
disjoint non-empty effectively open sets. In particular, the connected effectively
open sets satisfy this formula. Let ξ(u, v) be the formula

u �= ∅ ∧ v �= ∅ ∧ u ∩ v = ∅ ∧ ∀u′(u′ ∩ v = ∅ → u′ ⊆ u) ∧ ∀v′(v′ ∩ u = ∅ → v′ ⊆ v)

saying that u, v are disjoint non-empty effectively open sets such that u =
Int(R\v) (where Int is the interior operator) and v = Int(R\u).

Let now CInt(u) := C̃on(u) ∧ ∃v �= ∅ξ(u, v). Then Σ0
1(R) |= CInt(U) iff

U is a computable interval (i.e. the endpoints of U are computable or infinite)
distinct from ∅, R. For the nontrivial direction, suppose Σ0

1(R) |= CInt(U), V is
a satisfying value for v and let a := inf(U), b := sup(U). Then a < b and at least
one of a, b is finite. For each computable point p ∈ V , sets U1 := {x ∈ U | x < p}
and U2 := {x ∈ U | p < x} are effectively open and partition U , hence one
of them is empty. From this one easily deduces that V = (b,+∞) if a = −∞,
V = (−∞, a) if b = +∞, and V = (−∞, a) ∪ (b,+∞) if a �= −∞, b �= +∞.
Since U, V ∈ Σ0

1(R), a and b are computable. It is now clear that U = (a, b), as
desired.
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Let ψ(u, x) := x ∈ u∧∀y ∈ u∃w(CInt(w)∧x, y ∈ w ⊆ u) and C̃mp(u, v, x) :=
u ⊆ v ∧ ψ(u, x) ∧ ∀u′(x ∈ u′ ⊆ v ∧ CInt(u′) → u′ ⊆ u). Using Lemma 1 one
easily checks that Σ0

1(R) |= C̃mp(U, V, x) iff U is the connected component of V

containing the computable point x. Let Con(u) := (∃x ∈ u)C̃mp(u, u, x). Then
Σ0

1(R) |= Con(U) iff U is connected, hence the property of being connected is
definable.

Let Cmp(u, v) := u ⊆ v∧Con(u)∧∀u′(u′ ⊆ v∧Con(u′)∧u∩u′ �= ∅ → u′ ⊆ u).
Then Σ0

1(R) |= Cmp(U, V ) iff U is a connected component of V . Let Cmp∗(u, v)
be the formula u ⊆ v ∧ ∀u′(Cmp(u′, v) → (u′ ⊆ u ∨ u ∩ u′ = ∅)) saying that u
is the union of some connected components of v.

Let ICmp(v) be the formula ∃u(Cmp∗(u, v)∧¬∃w(w = v\u∧Com∗(w, v))).
Then Σ0

1(R) |= ICmp(V ) implies that V has infinitely many connected com-
ponents. Suppose the contrary, then V = V0 ∪ · · · ∪ Vn for some n ≥ 0 and
pairwise disjoint components V0, . . . , Vn ∈ Σ0

1(R). Then any U with Σ0
1(R) |=

Cmp∗(U, V ) is a union of some of V0, . . . , Vn, hence V \U is the finite union of
the remaining Vi, a contradiction.

Finally, let θ(u, v) be the formula

ξ(u, v) ∧ ICmp(u) ∧ ICmp(v) ∧ ∀w(Cmp(w, u ∪ v) → CInt(w)).

Then Σ0
1(R) |= θ(U, V ) iff both U, V have infinitely many connected com-

ponents which are computable intervals, U = Int(R\V ), V = Int(R\U),
between any U -components there is a V -component (this means that for any
U -components U1 < U2, i.e. ∀x ∈ U0∀y ∈ U1(x < y), there is a V -component V1

with U1 < V1 < U2) and between any V -components there is a U -component.
Indeed, from right to left this is obvious. Conversely, if Σ0

1(R) |= θ(U, V ) then
the only non-trivial fact to check is that between any U -components there is a V -
component. Suppose the contrary, then the interval W := (inf(U1), sup(U2)) is
disjoint with V , hence W ⊆ U . This is a contradiction because sup(U1) ∈ W\U .

Let now Σ0
1(R) |= θ(U, V ) and let {q0, q1, · · · } be a computable enumeration

of the set U ∩ Q without repetitions. Define the equivalence relation ∼ on ω by:
m ∼ n iff qm, qn are in the same U -component. We claim that this relation is c.e.
Indeed, since m ∼ n is equivalent to the disjunction of qm ≤ qn ∧ [qm, qn] ⊆ U
and qn ≤ qm ∧ [qn, qm] ⊆ U , so it suffices to check that the relation qm ≤
qn ∧ [qm, qn] ⊆ U is c.e. We have U =

⋃
i Bi for a computable sequence {Bi} of

basic open balls (i.e., intervals with rational endpoints). Since closed intervals
are compact, the relation qm ≤ qn ∧ [qm, qn] ⊆ U is equivalent to

∃l∃i0, . . . , il(qm ∈ Bi0 ∧ qn ∈ Bil ∧ Bi0 ∩ Bi1 �= ∅ ∧ · · · ∧ Bil−1 ∩ Bil �= ∅).

Alternately, the last assertion follows from the results in [8]. Therefore, ∼ is
c.e. It is also co-c.e. because, by the previous paragraph, m �∼ n is equivalent
to the disjunction of predicates qm < qn ∧ ∃r ∈ V ∩ Q(qm < r < qn) and
qn < qm ∧ ∃r ∈ V ∩ Q(qn < r < qm).

Therefore, the relation ∼ is computable with infinitely many equivalence
classes, hence the lattice E is isomorphic to the lattice F of c.e. sets closed under
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∼. The lattice F is in turn isomorphic to the lattice (G;⊆) where G := {G |
Σ0

1(R) |= Cmp∗(G,U)} consists of effective open subsets of U closed under
components, for each U as above.

Now it is easy to define a computable transformation of ⊆-sentences φ 
→ φ∗

such that E |= φ iff Σ0
1(R) |= φ∗ which gives a desired m-reduction of

Th(E) to Th(Σ0
1(R)). According to the method of interpretation, there is a

computable transformation of ⊆-formulas φ(. . .) 
→ φ̄(u, v, . . .) that adds two
new free variables u, v to those of φ and has the property that E |= φ(. . .) iff
Σ0

1(R) |= φ̄(U, V, . . .) for any values U, V of u, v with Σ0
1(R) |= θ(U, V ). Now

it suffices to set φ∗ := ∀u, v(θ(u, v) → φ̄(u, v)). ��
Proof for n ≥ 2. In this case we m-reduce Th(N) to Th(Σ0

1(Rn)). Let Cof
be the unary relation on Σ0

1(Rn) which is true precisely on the cofinite subsets
of R

n, then Σ0
1(Rn) |= Cof(U) iff R

n\U is a finite set of computable points.
We will first use in our reduction of Th(N) to Th(Σ0

1(Rn)) this relation Cof (or,
equivalently, the relation Fin on Π0

1 (Rn) such that Fin(A) iff A is a finite sets
of computable points). At the end of the proof we will show that the relation
Cof is definable in Σ0

1(Rn).
Our proof is closely related to that in [4] where a similar reduction was estab-

lished for the lattice of all closed sets in R
n. To keep our notation as close as

possible to that of [4], we let our formulas to use, along with the usual vari-
ables U, V,W,G,H,K, T ranging over Σ0

1(Rn), the variable x ranging over the
computable points of R

n, and variables A,B,C,D,E, F ranging over Π0
1 (Rn).

Distinctions with the proof in [4] are mainly caused by the fact that we currently
do not know whether the relation of being connected is definable in Σ0

1(Rn) for
n ≥ 2. Instead, we use effective versions of some notions from the previous proof.
Note that formulas C̃on and ξ have the same meaning as above in any reasonable
effective space. Obviously, if effectively open sets U, V are effectively connected
(i.e., satisfy C̃on) and are not disjoint then U ∪ V is also effectively connected.

Let C̃mp(u, v) be the formula

u ⊆ v ∧ C̃on(u) ∧ ∀u′(u′ ⊆ v ∧ C̃on(u′) ∧ u ∩ u′ �= ∅ → u′ ⊆ u)

saying that u is an effectively connected component (we say “effective com-
ponent” for brevity) of v. Let Φ(V ) be the formula ∀x ∈ V ∃U ⊆ V (x ∈
U ∧ C̃mp(U, V )) saying that any computable point of V belongs to some effec-
tive component of V . From Lemma 1 and remarks above it follows that if
Σ0

1(Rn) |= Φ(V ) then V is the union of its effective components.
Similar to axiom A6 in [4], for any finite disjoint sets A,B of computable

points the following formula is easily seen to be true in Σ0
1(Rn):

(A ∪ B ⊆ U ∧ C̃on(U)) → ∃V ∃W (A ⊆ V ∧ B ⊆ W ∧
V ∩ W = ∅ ∧ V ∪ W ⊆ U ∧ C̃on(V ) ∧ C̃on(W )).

Let now A ≈G B be the ternary relation meaning that A,B are finite disjoint
sets of computable points and G is an effectively open set such that

A ∪ B ⊆ G ∧ Φ(G) ∧ ∀H(C̃mp(H,G) → (|H ∩ A| = 1 ∧ |H ∩ B| = 1)).
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Then A ≈G B implies that A,B are of the same cardinality, |A| = |B|. Note that
for any finite sets A,B of computable points we have: |A| = |B| iff Σ0

1(Rn) |=
Eq(A,B) where Eq(A,B) is the formula

Fin(A)∧Fin(B)∧∃C,D,G(Fin(C)∧Fin(D)∧C ≈G D∧C = A\B∧D = B\A).

As in [4], it is now straightforward to interpret the structure N in the structure
(Σ0

1(Rn);Cof) without parameters by interpreting natural numbers as the car-
dinalities of finite sets A,B of computable points (i.e., by taking the quotient-set
of all such A under the equivalence relation Eq) and interpreting +,× as follows:
|A|+ |B| = |C| iff ∃A′, B′(Eq(A′, A)∧Eq(B′, B)∧A′ ∩B′ = ∅∧Eq(A′ ∪B′, C),
and |A| × |B| = |C| iff

∃U∃F (Eq(B,F )∧F,C ⊆ U ∧∀V (Cmp(U, V ) → (|V ∩F | = 1∧|V ∩C| = |A|))).

It remains to define the relation Fin in Π0
1 (Rn) with parameters ranging through

a definable set (similar to the case n = 1). Let W � U abbreviates the formula
∀D(C̃mp(D,W ) → C̃mp(D,U)) meaning that any effective W -component is an
effective U -component. Consider the following formulas (denoted below by (a),
(b), (c), (d) respectively) with free variables U, V,W,W1, x:

x ∈ U ∧ U ∩ V = ∅ ∧ Φ(U) ∧ Φ(V ) ∧ Φ(W ) ∧ Φ(W1),
U ∪ V ⊆ W ∧ V ⊆ W1 ∧ ∀G((C̃mp(G,U) ∧ x /∈ G) → G ⊆ W1),
(∀G)

˜Cmp(G,W )
(∃!H)

˜Cmp(H,U)
(∃!K)

˜Cmp(K,V )
(H ⊆ G ∧ K ⊆ G),

(∀G)
˜Cmp(G,W1)

(∃!H)
˜Cmp(H,U)

(∃!K)
˜Cmp(K,V )

(H ⊆ G ∧ K ⊆ G ∧ x /∈ H).

Informally, the effective W -components induce a bijection (denoted by f)
between the effective U -components and the effective V -components while
W1 induces a bijection (denoted by g) between the effective V -components
and the effective U -components which do not contain the point x. Note that
the graphs of these bijections are definable with parameters from the tuple
A = (U, V,W,W1, x), hence we can use the new function symbols fA, gA to
denote the bijections. For T � U , we denote by fA[T ] the union of fA-images of
effective T -components. Set now sA := gA ◦ fA (this is a definable function on
the effective U -components), and consider the following formulas (the second of
which is not formalized completely)

(e) sA(D) = sA(E) → D = E,
(f) ¬∃T � U (sA is a bijection on the effective T -components).

In particular, formula (f) forbids the finite sA-cicles, hence all the iterates
G, sA(G), s2A(G), s3A(G), . . . of the function sA started with the “initial” effective
U -component (i.e., the unique effective component G containing the point x),
are distinct. Let φ(U, V,W,W1, x) be the conjunction of the formulas (a)–(f).

Define the unary relation Ĩso on Π0
1 (Rn) (an effective analogue of the relation

Iso from [4]) as follows: Ĩso(A) iff ∃V (A ⊆ V ∧Φ(V )∧∀U(C̃mp(U, V ) → ∃!x(x ∈
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A∩U))) and ∀U(U ∩A �= ∅ → ∃x(x ∈ U ∩A)). This relation is definable, Ĩso(A)
implies that any point in A is computable and isolated, any infinite set satisfying
Ĩso is not bounded, and any finite set of computable points satisfies Ĩso.

Now it suffices to check that for any A ∈ Π0
1 (Rn), Fin(A) is equivalent to

Ĩso(A) ∧ ∀U, V,W,W1, x((φ(U, V,W,W1, x) ∧ A ⊆ U ∪ V ) →
∃T � U(x ∈ T ∧ A ⊆ T ∪ fA[T ]) ∧

(∀G)
˜Cmp(G,T )

(x /∈ G → (∃H)
˜Cmp(H,T )

(sA[H] = G))).

Indeed, the direction from left to right is obvious. Conversely, if A is infinite
and satisfies Ĩso(A), take x := 0 to be the zero-vector in R

n and find a strictly
increasing computable unbounded sequence {rk} of positive reals such that the
boundaries of all balls B(0, rk) are disjoint with A (this is possible since the
relation “the boundary of B(0, r) is contained in R

n\A” is effectively open
in R). The assignments U := B(0, r0) ∪ ⋃

k>0(B(0, r2k)\B(0, r2k−1)), V :=
⋃

k(B(0, r2k+1)\B(0, r2k)), W := B(0, r1) ∪ ⋃
k>0(B(0, r2k+1)\B(0, r2k−1)),

W1 :=
⋃

k(B(0, r2k+2)\B(x, r2k)) make the defining formula false because
A ⊆ U ∪ V and φ(U, V,W,W1, x) are true but there is no corresponding T � U
(such bounded sets T do not satisfy the condition A ⊆ T ∪ fA[T ]). ��

For many domains we have even better definability result:

Theorem 4. For any X ∈ {ω≤ω, n≤ω, Pω, ωω
⊥, nω

⊥}, the lattice E is definable
without parameters in the lattice Σ0

1(X).

Proof. We give the proof only for the space Pω but the argument works
for the other spaces as well. First we check that the set elements ↑ F , for all
finite F ⊆ ω, is definable in Σ0

1(Pω) (without parameters). Indeed, the defining
formula is ir(v) := v �= 0 ∧ ∀x, y(v ⊆ x ∪ y → v ⊆ x ∨ v ⊆ y) which says
that v is a non-smallest join-irreducible element. Obviously, any set ↑ F satisfies
this formula. Conversely, let an element V ∈ Σ0

1(Pω) satisfy the formula. Since
V �= ∅, for some canonically enumerable sequence {Fn} of finite sets we have
V =

⋃
n ↑ Fn. Since the partial order ({Fn | n < ω};⊆) is well founded, it

has a minimal element F . Then of course ↑ F ⊆ V , so it suffices to show that
V ⊆↑ F . Let S := {↑ Fn | F �⊆ Fn}. Since S ∈ Σ0

1(Pω), V ⊆↑ F ∪ S and V
is join-irreducible, it suffices to show that V �⊆ S. Suppose the contrary, then
F ∈ S, so Fn ⊆ F for some n with F �⊆ Fn. By the minimality of F , Fn = F
which is a contradiction.

Now we check that the set Vn := {↑ F : |F | = n} is definable in Σ0
1(Pω) for

each n < ω. The sequence {φn(v)} of defining formulas is given by induction on
n as follows: φ0 := ∀x(x ⊆ v) (saying that v is the largest element of a lattice),
and

φn+1 := ir(v) ∧ ¬φ0(v) ∧ · · · ∧ ¬φn(v) ∧ ∀x(v ⊂ x → φ0(v) ∨ · · · ∨ φn(v))

(saying that v is a maximal join-irreducible element among those not in the
set defined by the formula φ0(v) ∨ · · · ∨ φn(v)). By the previous paragraph and
induction on n, φn defines Vn for each n.
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Now let Un := {S ⊆ ω : n ≤ |S|}, so U0 = Pω and Un =
⋃

Vn. Then the
singleton set {Un+1} is clearly defined by the formula

ψn+1(u) := ∀x(φn+1(x) → x ⊆ u) ∧ ¬∃x(φn(x) ∧ x ⊆ u).

By the proof of Theorem 2, the lattice E is isomorphic to the sublattice
{S | U1 ⊆ S ⊆ U2} of Σ0

1(Pω), and is thus definable without parameters. ��
Corollary 1. For any X ∈ {ω≤ω, n≤ω, Pω, ωω

⊥, nω
⊥}, Th(Σ0

1(X)) ≡m ∅(ω).

Proof. The upper bound holds by Proposition 1, the lower bound by the
previous theorem. ��
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Abstract. The model of interactive Turing machines (ITMs) has been
proposed to characterise which stream translations are interactively com-
putable; the model of reactive Turing machines (RTMs) has been pro-
posed to characterise which behaviours are reactively executable. In this
article we provide a comparison of the two models. We show, on the one
hand, that the behaviour exhibited by ITMs is reactively executable,
and, on the other hand, that the stream translations naturally associ-
ated with RTMs are interactively computable. We conclude from these
results that the theory of reactive executability subsumes the theory of
interactive computability. Inspired by the existing model of ITMs with
advice, which provides a model of evolving computation, we also consider
RTMs with advice and we establish that a facility of advice considerably
upgrades the behavioural expressiveness of RTMs: every countable tran-
sition system can be simulated by some RTM with advice up to a fine
notion of behavioural equivalence.

1 Introduction

According to the Church-Turing thesis, the classical Turing machine model ade-
quately formalises which functions from natural numbers to natural numbers are
effectively computable. There is, however, a considerable semantic gap between
computing the result of a function applied to a natural number and the way com-
puting systems operate nowadays. Modern computing systems are reactive, they
are in continuous interaction with their environment, and their operation is not
supposed to terminate. Quite a number of extended models of computation have
been proposed in recent decades to study the combination of computation and
interaction (see, e.g., the collection in [8]). In this paper we compare interactive
Turing machines and reactive Turing machines.

Van Leeuwen and Wiedermann have developed a theory of interactive com-
putation from the stance that an interactive computation can be viewed as a
never-ending exchange of symbols between a component and its unpredictable
interactive environment [9]. Semantically, this amounts to studying the recog-
nition, generation and translation of infinite streams of symbols. In [10], the
notion of interactive Turing machine (ITM) is put forward as a tool to formally
characterise which stream translations are interactively computable. The notion
is subsequently extended with an (non-computable) advice mechanism in order
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to obtain a non-uniform machine model. Van Leeuwen and Wiedermann argue
that the resulting model of interactive Turing machines with advice is as power-
ful as their model of evolving finite automata, and they conclude from this, on
intuitive grounds, that ITMs with advice are adequate to model evolving system
such as the Internet [17]. Moreover, in a recent article by Cabessa and Villa
it is shown that ITMs with advice are as powerful as the model of interactive
evolving recurrent neural networks for computing stream translations [4].

The model of interactive Turing machines focusses on capturing the com-
putational content of sequential interactive behaviour. The included mechanism
of interaction is therefore limited to achieving this goal, and does not easily
generalise to more than one distributed component, nor does it allow for more
fine-grained considerations of the behaviour of reactive systems. The behavioural
theory of reactive systems, on the other hand, has focussed on aspects of mod-
elling, specification and verification (see, e.g., [1]).

To integrate computability theory and the behavioural theory of reactive sys-
tems, the notion of reactive Turing machine (RTM) has been proposed in [2,3]. It
extends Turing machines with concurrency-style interaction. Semantically, the
operational behaviour of an RTM is given by a transition system. From this
transition system one may extract a set of computations, or stream translations,
but a more refined analysis is also possible. In fact, to study the effect of inter-
action of multiple components many refined notions of behavioural equivalence
have been developed in the concurrency theory literature [7]. The notion of RTM
gives rise to a general theory of executability : a transition system is executable
(usually up to some preferred notion of behavioural equivalence) if there exists
an RTM that has the transition system as its semantics. (We refer to [3] for more
elaborate motivation of the notion of RTM.)

The aim of this paper is to make a connection between the theory of interac-
tive computability and the theory of reactive systems, providing a comparison of
the models of ITMs and RTMs in both their semantic domains. We shall first, in
Sect. 2, recapitulate both models. Then, in Sect. 3 we present a transition-system
semantics for ITMs; the transition system associated with an ITM is executable
up to a fine notion of behavioural equivalence. In Sect. 4 we shall identify a
subclass of RTMs that can be considered suitable for stream translation, and
prove that the stream translation associated with an RTM in this subclass is
interactively computable. In Sect. 5 we consider an extension of RTMs with an
advice mechanism adapted from the advice mechanism considered for ITMs.
RTMs with advice can execute every countable transition system, at the cost of
introducing divergence in the computation. The paper ends with a conclusion in
Sect. 6.

A full version of this paper is available as [14].

2 Preliminaries

2.1 The Theory of Interactive Computation

In [12], van Leeuwen and Wiedermann present an analysis of interactive com-
putation on the basis of a component C (thought to behave according to a



314 B. Luttik and F. Yang

deterministic program) interacting with an unpredictable environment E. They
discuss the consequences of a few general postulates pertaining to the behaviour
and interaction of C and E for interactive recognition, interactive generation and
interactive translation. In their analysis, the component C acts as a stream trans-
ducer, transforming an infinite input stream of data symbols from Σ = {0, 1}
presented by E at its input port into an infinite output stream of symbols from
Σ produced at its output port. Henceforth, by an ω-translation we mean a map-
ping φ : Σω → Σω (with Σω denoting the set of streams, i.e., infinite sequences,
over Σ).

Interactive computation is a step-wise process. It is not required that the
environment offers a symbol in every step, nor that the component produces a
symbol in every step. For the purpose of modelling components, however, it is
convenient to record that nothing is offered or produced. The symbol λ is used
to indicate the situation that no symbol is offered at the input port or produced
at the output port, and we let Σλ = Σ ∪ {λ}. It is assumed that when E offers
a non-λ symbol in some step, then the component C produces a non-λ symbol
at its output port within finitely many steps, and vice versa; this assumption is
referred to as the interactiveness (or finite delay) condition in the work of van
Leeuwen and Wiedermann.

In order to formally define which ω-translations are interactively computable
by a computational device, van Leeuwen and Wiedermann proposed the notion
of interactive Turing machine [10,11]. It extends the classical notion of Turing
machine with an input port and an output port, through which it exchanges an
infinite, never ending stream of data symbols with its environment. Interactive
Turing machines use a two-way infinite tape as memory on which they can write
symbols from some presupposed set D� of tape symbols, not necessarily disjoint
from Σ and including the special � symbol to denote an empty tape cell. Our
formal definition below is adapted from [16] (but we leave out the distinction
between internal and external states).

Definition 1. A (deterministic) interactive Turing machine (ITM) with a single
work tape is a triple I = (Q,−→I , qin), where

1. Q is its set of states;
2. −→I : Q × D� × Σλ → Q × D� × {L,R} × Σλ is a transition function; and
3. qin ∈ Q is its initial state.

The contents of the tape of an ITM may be represented by an element of
(D�)∗. We denote by Ď� = {ď | d ∈ D�} the set of marked symbols; a tape
instance is a sequence δ ∈ (D� ∪ Ď�)∗ such that δ contains exactly one element
of Ď�. The marker indicates the position of the tape head.

A computation of an ITM I = (Q,−→I , qin) is an infinite sequence of tran-
sitions

(qin , �̌) = (q0, δ0)
i0/o0−→I (q1, δ1)

i1/o1−→I · · · (qk, δk)
ik/ok−→ I · · · . (1)

The input stream associated with the computation in (1) is obtained from
i0, i1, . . . by omitting all occurrences of λ, and the output stream associated
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with the computation in (1) is obtained from o0, o1, . . . by omitting all occur-
rences of λ. A pair (x,y) ∈ Σω × Σω is an interaction pair associated with I if
there exists a computation of I with x as input stream and y as output stream.
The set of all interaction pairs associated with an ITM I is called its interactive
behaviour. (In Sect. 3 we shall present a more refined view on its behaviour when
we associate with every ITM a transition system.) The computation in (1) is
interactive if, for all k ∈ N, if ik �= λ, then there exists � ≥ k such that o� �= λ.
The computation in (1) is input-active if ik �= λ for all k ∈ N.

An ITM satisfies the interactiveness condition if all its computations are
interactive. Clearly, if a deterministic ITM I satisfies the interactiveness condi-
tion, then its interactive behaviour is total, in the sense that for every x ∈ Σω

there is at least one y ∈ Σω such that (x,y) is an interaction pair of I. By con-
fining our attention to the input-active computations—which, in the terminology
of [12], corresponds to adopting the full environmental activity postulate—, we
may then associate with every such ITM an ω-translation: we say that ITM
I produces y on input x if (x,y) is the interaction pair associated with an
input-active computation of I.

Definition 2. An ω-translation φ : Σω → Σω is interactively computable if
there exists a deterministic ITM that satisfying the interactiveness condition
that produces φ(x) on input x for all x ∈ Σω.

In [12] a criterion of the interactively computable ω-translations is presented
by using limit-continuous functions (a formal definition is included in [14]).

Theorem 1. A total ω-translation is interactively computable iff it is limit-
continuous.

2.2 The Theory of Executability

The theory of executability combines computation and concurrency-style inter-
action in such a way that both are treated on equal footing; thus, an integration
of computability and concurrency theory is realised.

The transition system is the central notion in the mathematical theory of
discrete-event behaviour. It is parameterised by a set A of action symbols, denot-
ing the observable events of a system. We extend A with a special symbol τ ,
which intuitively denotes unobservable internal activity. We shall abbreviate
A ∪ {τ} by Aτ .

Definition 3. An Aτ -labelled transition system T is a triple (S,−→, ↑), where,

1. S is a set of states,
2. −→ ⊆ S × Aτ × S is an Aτ -labelled transition relation,
3. ↑ ∈ S is the initial state.

Transition systems can be used to give semantics to programming languages
and process calculi. The standard method is to first associate with every program
or process expression a transition system (its operational semantics), and then
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consider programs and process expressions modulo one of the many behavioural
equivalences on transition systems that have been studied in the literature. In
this paper, we shall use the notion of (divergence-preserving) branching bisimi-
larity [5,6], which is the finest behavioural equivalence in van Glabbeek’s linear
time - branching time spectrum [7] that abstracts from internal computation
steps (represented in the transition system by transitions labelled with τ). We
adopt the notation ↔Δ

b for divergence-preserving branching bisimilarity, and ↔b

for the divergence-insensitive version (see [14] for a formal definition).
The notion of reactive Turing machine (RTM) was put forward in [3] to

mathematically characterise which behaviour is executable by a conventional
computing system. We recall the definition of RTMs and the ensued notion of
executable transition system.

Definition 4. A reactive Turing machine (RTM) M is a triple (S,−→, ↑), where

1. S is a finite set of states,
2. −→ ⊆ S ×D� ×Aτ ×D� ×{L,R}×S is a (D� ×Aτ ×D� ×{L,R})-labelled

transition relation (we write s
a[d/e]M−→ t for (s, d, a, e,M, t) ∈ −→),

3. ↑ ∈ S is a distinguished initial state.

Intuitively, the meaning of a transition s
a[d/e]M−→ t is that whenever M is in

state s, and d is the symbol currently read by the tape head, then it may execute
the action a, write symbol e on the tape (replacing d), move the read/write head
one position to the left or the right on the tape, and then end up in state t.

To formalise the intuitive understanding of the operational behaviour of
RTMs, we associate with every RTM M an Aτ -labelled transition system T (M).
The states of T (M) are the configurations of M, pairs consisting of a state and
a tape instance.

Definition 5. Let M = (S,−→, ↑) be an RTM. The transition system T (M)
associated with M is defined as follows:

1. its set of states consists of the set of all configurations of M;
2. its transition relation −→ is the least relation satisfying, for all a ∈ Aτ , d, e ∈

D� and δL, δR ∈ D∗
�:

– (s, δLďδR) a−→ (t, δL
<eδR) iff s

a[d/e]L−→ t, and

– (s, δLďδR) a−→ (t, δLe >δR) iff s
a[d/e]R−→ t

(δL
< is obtained from δL by placing the tape head marker on the right-most

symbol in δL, and >δR is obtained analogously from δR);
3. its initial state is the configuration (↑, �̌).

Turing introduced his machines to define the notion of effectively computable
function in [15]. By analogy, we have a notion of effectively executable behav-
iour [3].

Definition 6. A transition system is executable if it is the transition system
associated with some RTM.
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3 Executability of Interactive Turing Machines

In this section we associate a transition system with every ITM, and then prove
that it is executable modulo divergence-preserving branching bisimilarity. It is
convenient to consider input and output as separate actions in the transition
system associated with an ITM. We denote by ?i the action of inputting the
symbol i ∈ Σ, and by !o the action of outputting the symbol o ∈ Σ.

Definition 7. Let I = (Q,−→I , qin) be an ITM. The transition system T (I)
associated with I is defined as follows:

1. its set of states is the set {(s, δ) | s ∈ Q ∪ {so | o ∈ Σλ, s ∈
Q}, δ is a tape instance};

2. its transition relation −→ is the least relation satisfying, for all i, o ∈ Σλ,
d, e ∈ D�, and δL, δR ∈ D∗

�:
– (s, δLďδR) ?i−→ (to, δL

<eδR) iff (s, d, i) −→I (t, e, L, o) and i ∈ Σ,
– (s, δLďδR) ?i−→ (to, δLe >δR) iff (s, d, i) −→I (t, e, R, o) and i ∈ Σ,
– (s, δLďδR) τ−→ (to, δL

<eδR) iff (s, d, i) −→I (t, e, L, o) and i = λ,
– (s, δLďδR) τ−→ (to, δLe >δR) iff (s, d, i) −→I (t, e, R, o) and i = λ,
– (so, δ)

!o−→ (s, δ) iff o ∈ Σ, and (so, δ)
τ−→ (s, δ) iff o = λ.

3. its initial state is the configuration (qin , �̌).

The following theorem shows that every transition systems associated with
an ITM can be simulated by an RTM. (A proof of the theorem is included
in [14].)

Theorem 2. For every ITM I there exists an RTM M, such that T (I) ↔Δ
b

T (M).

As a consequence we have the following corollary.

Corollary 1. The transition system associated with an ITM is executable mod-
ulo divergence-preserving branching bisimilarity.

4 Executable ω-Translations

Recall that an ω-translation is defined to be interactively computable if, and
only if, it can be realised by an ITM. RTMs are designed for exhibiting the
expressive power of executable transition systems, rather than ω-translations,
and not every RTM naturally has an ω-translation associated with it. Imposing
some restrictions on the formalism of RTMs, however, we shall define a subclass
of RTMs with which an ω-translation is naturally associated. The ω-translation
realised by such an RTM is then called executable, and we shall establish that
an ω-translation is interactively computable if, and only if, it is executable.

By analogy to the systems described in the theory of interactive computation,
we let the RTMs for ω-translations execute in steps, in such a way that with
every step a pair of input and output actions can be associated. With every
infinite computation of the RTM we can then associate a interaction pair, and
the RTM will thus give rise to an ω-translation.
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Definition 8. LetAτ = {?i, !o | i, o ∈ {0, 1}}∪{τ}, and letM = (S,−→, ↑) be an
RTM with Aτ as its set of labels. Then M is an RTM for ω-translation if it satisfies
the following properties:

1. the set of states S is partitioned into disjoint sets I of input states and E of
execution states, i.e., S = I ∪ E and I ∩ E = ∅;

2. the initial state ↑ is an input state, i.e., ↑ ∈ I ;

3. for a transition s
a[d/e]M−→ t, if s ∈ I , then a ∈ {?0, ?1} and t ∈ E; if s ∈ E,

then a ∈ {!0, !1, τ} and t ∈ I ; and

4. for all (s, d) ∈ E ×D�, there is at most one transition of the form s
a[d/e]M−→ t;

and
5. for all (s, d) ∈ I ×D�, there are exactly two transitions of the form s

a[d/e]M−→ t,
one with a =?0 and one with a =?1.

In the following lemma we establish some properties of the transition system
associated with an RTM for ω-translation. (See [14] for a proof of the lemma.)

Lemma 1. Let M be an RTM for ω-translation. Then T (M) = (SM,−→M, ↑M)
satisfies the following properties:

1. (Alternation). The set of states SM is partitioned into a set of input states
IM and a set of output states EM, i.e., SM = IM ∪ EM and IM ∩ EM = ∅.
For every transition s

a−→ s′, if s ∈ IM, then a ∈ {?0, ?1} and s′ ∈ EM; if
s ∈ EM, then a ∈ {!0, !1, τ} and s′ ∈ IM.

2. (Unambiguity). For every s ∈ EM, there is exactly one outgoing transition
s

a−→ s′ with a ∈ {!0, !1, τ}.
3. (Totality). For every s ∈ IM, there are exactly two outgoing transitions,

labelled with ?0 and ?1, respectively.

We call a transition system that satisfies the conditions of Lemma 1 an i/o
transition system. Moreover, by analogy to the interactiveness condition for
ITMs, we impose an interactiveness condition on RTMs for ω-translation.

Definition 9. An i/o transition system is interactive, if for every s ∈ S and
s

?i−→ s0 with i ∈ {0, 1}, and for every sequence s0 −→ s1 −→ · · · , there exists a
natural number k, such that sk

!o−→ sk+1 with o ∈ {0, 1}.
An RTM for ω-translation is interactive if the associated i/o transition sys-

tem is.

We define the ω-translation realized by an RTM by defining the ω-translation
realized by the i/o transition system associated with it. Let T = (S,−→, ↑) be
an i/o transition system, let s ∈ S, and let σ ∈ Aω, say σ = a0, a1, . . .; we write
s

σ−→ if there exist s0, s
′
0, s1, s

′
1, . . . ∈ S such that s = s0, and si −→∗ s′

i
ai−→ si+1

for all i ≥ 0. (By −→∗ we denote the reflexive-transitive closure of the relation
τ−→.) If σ ∈ Aω and s

σ−→, then σ is a weak infinite trace from s. We denote by
Tr∞

w (s) the set of weak infinite traces from s.
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Definition 10. Let T be an i/o transition system, and s0 be the initial state.
For σ ∈ Tr∞

w (s0), the input stream realised by σ is the stream x ∈ Σω such that
x = x1x2 . . ., where xj = i if ?i is the j-th input action in σ, and similarly for the
output stream realized by σ. We say that T realizes ω-translation φ : Σω → Σω

iff, for every x ∈ Σω, there exists a trace σ ∈ Tr∞
w (s0) with x as its input

stream, and for every such trace, its output stream is y = φ(x).

We can now define when an ω-translation is executable.

Definition 11. An ω-translation is executable if it can be realized by an exe-
cutable i/o transition system.

The following lemma establishes that an ω-translation can be associated with
every interactive i/o transition system.

Lemma 2. If an i/o transition system is interactive, then it realises an ω-
translation.

Moreover, we have the following theorem. (A proof can be found in [14].)

Theorem 3. An ω-translation is executable iff it is a limit-continuous total
function.

By Theorem 1, we have the following corollary.

Corollary 2. An ω-translation is executable iff it is interactively computable.

Therefore, the classes of computable limit-continuous functions, interactively
computable ω-translations and executable ω-translations coincide.

5 Advice

In [10], the computational power of evolving interactive systems is studied using
ITMs. Particularly, a mechanism called advice function is introduced to enhance
the computational power of an ITM. In this way, the insertion of external infor-
mation into the course of a computation is allowed, which leads to a non-uniform
operation. In this section, we introduce the notion of advice as a process in par-
allel composition with an RTM, and show that advice processes indeed give the
systems more expressive power.

In this section, we consider advices as functions over natural numbers. In
order to record a number on the tape, a natural number n is encoded by a
sequence n “1”s ending with a “0”. In [10], the notion of ITM with advice is
defined as follows.

Definition 12. An advice function is a function f : N → N. An ITM with
advice (ITM/A) is equipped with a separate advice tape and a distinguished
advice state. By writing the value of the argument x on the advice tape and by
entering into the advice state, the value of f(x) will appear on the advice tape in
a single step. By this action, the original contents of the advice tape is completely
overwritten.
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Here we do not put the restriction on the length of the advice function as
in [12], since it does not make a difference in the issue of computability, and we
are not yet interested in the issue of complexity. It is obvious that ITMs with
uncomputable advice functions cannot be simulated by any RTM, as uncom-
putable advice function cannot be evaluated by the mechanism of RTMs. As an
extension, we equip RTMs with advice processes which enable the simulation of
ITM/As.

An advice process Af is designed to compute the function f , and can only
interact with a certain RTM M. As an advice function is not necessarily com-
putable, we cannot associate with every advice process an executable transition
system. An RTM M communicates with Af as follows: when it needs to get the
result of f(i), it enters a special control state af , and starts to send a sequence
of i “1” s and a “0”, which is already written on the tape, to the channel in,
and then, it receives the result sequence f(i) “1”s and a “0” from out channel,
and write them on the tape. This procedure ends up with another control state.
We can model an advice process as follows.

Definition 13. Let f : N → N be a function, Af is an advice process for f with
transition system T (Af ) = (S,→, ↑), where

1. S = {si | i = 0, 1, 2, . . .} ∪ {ti | i = 0, 1, 2, . . .}, and
2. si

in?1−→ si+1, i = 0, 1, 2 . . . si
in?0−→ tf(i), i = 1, 2 . . .

ti
out!1−→ ti−1, i = 1, 2 . . . t0

out!0−→ s0
3. ↑= s0.

The behaviour of Af is deterministic. It receives a sequence of i “1”s from
the channel in, followed by a “0” symbol, indicating the end of the sequence, and
then, it produces f(i) “1”s to the channel out , also followed by a “0” symbol.
This procedure is repeated indefinitely.

The parallel composition of an RTM M and an advice process Af , we write as
[M ‖ Af ]C . The parallel composition is defined in the same way as the parallel
composition of two RTMs in [3], where C = {in, out} is the set of restricted
names for communication. If M is an RTM and Af is an advice process, then
we call [M ‖ Af ]C a reactive Turing machine with advice (RTM/A).

Note that, since advice functions and advice processes have the same com-
putational power, by Corollary 2, an ω-translation is realisable by an ITM/A if,
and only if, it is realisable by an RTM/A.

Let T be any bounded branching transition system (not necessarily effec-
tive). Based on a presupposed encoding of its sets of states and actions and its
transition relation, let the advice function fT be such that for the code of a
state it yields the code of the set of all outgoing transitions of that state. It is
straightforward to define an RTM that simulates T with the help of fT . Then
we obtain the following result.

Theorem 4. If T is a boundedly branching labelled transition system, then there
exists an RTM/A [M ‖ Af ]C such that T ([M ‖ Af ]C) ↔Δ

b T .
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If we, instead, let the advice function fT be such that on the code of a pair of
a state s and a natural number i yields the code of the ith outgoing transition of
s, then we can extend the simulation to transition systems with countable many
states and transitions.

Theorem 5. If T is a countable labelled transition system, then there exists an
RTM/A [M ‖ Af ]C such that T ([M ‖ Af ]C) ↔b T .

Note that the transition system associated with an RTM/A is boundedly branch-
ing. Hence, by Theorem 2 in [13], if a transition system has no divergence up to
↔Δ

b and is unboundedly branching up to ↔Δ
b , then it is not executable mod-

ulo ↔Δ
b . It follows that there exist countable unboundedly branching transition

systems that cannot be simulated by an RTM/A modulo ↔Δ
b .

6 Conclusion

We have discussed the relationship between two models of computation that
take interaction into account. We have established that the model of RTMs
subsumes and is more expressive than the model of ITMs when it comes speci-
fying behaviour, and coincides with the model of ITMs when it comes defining
ω-translations.

Furthermore, we have shown that RTMs admit an extension with advice that
facilitates modelling non-uniform behaviour. In [3] it was established that every
effective transition system can be simulated by an RTM. Our result that every
countable transition system can be simulated by an RTM with advice further
confirms the universal expressiveness of the notion of RTM.

In [16], a complexity theory for interactive computation has been defined on
the basis of ITMs and ω-translations. Clearly, such a complexity theory could
also be based on the restricted class of RTMs for ω-translation. Such a complexity
theory could then further be generalised towards a complexity theory for general
executable behaviour.
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6. van Glabbeek, R., Luttik, B., Trčka, N.: Branching bisimilarity with explicit diver-
gence. Fundam. Informaticae 93(4), 371–392 (2009)

7. van Glabbeek, R.J.: The linear time — branching time spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

8. Goldin, D., Smolka, S.A., Wegner, P.: Interactive Computation: The New Para-
digm. Springer, Heidelberg (2006)

9. van Leeuwen, J., Wiedermann, J.: On algorithms and interaction. In: Nielsen, M.,
Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 99–113. Springer, Heidelberg
(2000)

10. van Leeuwen, J., Wiedermann, J.: Beyond the Turing limit: evolving interactive
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Abstract. We study interactions between Skolem Arithmetic and cer-
tain classes of Circuit Satisfiability and Constraint Satisfaction Problems
(CSPs). We revisit results of Glaßer et al. [16] in the context of CSPs and
settle the major open question from that paper, finding a certain satis-
fiability problem on circuits—involving complement, intersection, union
and multiplication—to be decidable. This we prove using the decidability
of Skolem Arithmetic. Then we solve a second question left open in [16]
by proving a tight upper bound for the similar circuit satisfiability prob-
lem involving just intersection, union and multiplication. We continue by
studying first-order expansions of Skolem Arithmetic without constants,
(N; ×), as CSPs. We find already here a rich landscape of problems with
non-trivial instances that are in P as well as those that are NP-complete.

1 Introduction

Skolem Arithmetic is the weak fragment of first-order arithmetic involving
only multiplication. Thoralf Skolem gave a quantifier-elimination technique and
argued for decidability of the theory in [27]. However, his proof was rather vague
and a robust demonstration was not given of this result until Mostowski [22].
Skolem Arithmetic is somewhat less fashionable than Presburger Arithmetic,
which involves only addition, and was proved decidable by Presburger in [25].
Indeed, Mostowski’s proof made use of a reduction from Skolem Arithmetic to
Presburger Arithmetic through the notion of weak direct powers (an excellent
survey on these topics is [3]). The central thread of this paper is putting to work
results about Skolem Arithmetic from the past, to solve open and naturally aris-
ing problems from today. Many of our results, like that of Mostowski, will rely
on the interplay between Skolem and Presburger Arithmetic.

A constraint satisfaction problem (CSP) is a computational problem in which
the input consists of a finite set of variables and a finite set of constraints, and
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where the question is whether there exists a mapping from the variables to some
fixed domain such that all the constraints are satisfied. When the domain is
finite, and arbitrary constraints are permitted in the input, the CSP is NP-
complete. However, when only constraints from a restricted set of relations are
allowed in the input, it can be possible to solve the CSP in polynomial time. The
set of relations that is allowed to formulate the constraints in the input is often
called the constraint language. The question which constraint languages give
rise to polynomial-time solvable CSPs has been the topic of intensive research
over the past years. It has been conjectured by Feder and Vardi [13] that CSPs
for constraint languages over finite domains have a complexity dichotomy: they
are either in P or NP-complete. This conjecture remains unsettled, although
dichotomy is now known on substantial classes (e.g. structures with domains
of size ≤ 3 [9,26] and smooth digraphs [2,17]). Various methods, combinatorial
(graph-theoretic), logical and universal-algebraic have been brought to bear on
this classification project, with many remarkable consequences. A conjectured
delineation for the dichotomy was given in the algebraic language in [10].

By now the literature on infinite-domain CSPs is also beginning to mature.
Here the complexity can be much higher (e.g. undecidable) but on natural classes
there is often the potential for structured classifications, and this has proved to
be the case for reducts of, e.g. the rationals with order [5], the random (Rado)
graph [7] and the integers with successor [6]; as well as first-order (fo) expansions
of linear program feasibility [4]. Skolem and Presburger Arithmetic represent
perfect candidates for continuation in this vein. These natural classes around
Skolem and Presburger Arithmetic have the property that their CSPs sit in NP
and a topic of recent interest for the second and third authors has been natural
CSPs sitting in higher complexity classes.

Meanwhile, a literature existed on satisfiability of circuit problems over sets
of integers involving work of the first author [16], itself continuing a line of inves-
tigation begun in [29] and pursued in [21,31,32]. The problems in [16] can be
seen as variants of certain functional CSPs whose domain is all singleton sets
of the non-negative integers and whose relations are set operations of the form:
complement, intersection, union, addition and multiplication (the latter two are
defined set-wise, e.g. A × B := {ab : a ∈ A ∧ b ∈ B}). An open problem was
the complexity of the problem when the permitted set operators were precisely
complement, intersection, union and multiplication. In this paper we resolve that
this problem is in fact decidable, indeed in triple exponential space. We prove
this result by using the decidability of the theory of Skolem Arithmetic with
constants. We take here Skolem Arithmetic to be the non-negative integers with
multiplication (and possibly constants). In studying this problem we are able to
bring to light existing results of [16] as results about their related CSPs, pro-
viding natural examples with interesting super-NP complexities. In addition, we
improve one of the upper bounds of [16] to a tight upper bound. This is the
circuit satisfiability problem where the permitted set operators are just intersec-
tion, union and multiplication, and where we improve the bound from NEXP
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to PSPACE. Interestingly, this result does not immediately translate to a similar
upper bound for the corresponding functional CSP.

In the second part of the paper, Skolem Arithmetic takes centre stage as we
initiate the study of the computational complexity of the CSPs of its reducts,
i.e. those constraint languages whose relations have a fo-definition in (N;×).
CSP(N;×) is in P, indeed it is trivial. The object therefore of our early study is
its fo-expansions. We show that CSP(N; +, �=) is NP-complete, as is CSP(N;×, c)
for each c > 1. We further show that CSP(N;×, U) is NP-complete when U is
any non-empty set of integers greater than 1 such that each has a prime factor
p, for some prime p, but omits the factor p2. Clearly, CSP(N;×, U) is in P
(and is trivial) if U contains 0 or 1. As a counterpoint to our NP-hardness
results, we prove that CSP(N;×, U) is in P whenever there exists m > 1 so that
U ⊇ {m,m2,m3, . . .}.

Related Work. Apart from the research on circuit problems mentioned above
there has been work on other variants like circuits over integers [30] and positive
natural numbers [8], equivalence problems for circuits [15], functions computed
by circuits [24], and equations over sets of natural numbers [18,19].

2 Preliminaries

Let N be the set of non-negative integers, and let N
+ be the set of positive

integers. For m ∈ N, let Divm be the set of factors of m. Finally, let {N} be
the set of singletons {{x} : n ∈ N}. In this paper we use a version of the
CSP permitting both relations and functions (and constants). Thus, a constraint
language consists of a domain together with functions, relations and constants
over that domain. One may thus consider a constraint language to be a first-
order structure. A homomorphism from a constraint language Γ to a constraint
language Δ, over the same signature, is a function f from the domain of Γ to
the domain of Δ that preserves the relations, i.e. if (x1, . . . , xk) ∈ RΓ , then
also (f(x1), . . . , f(xk)) ∈ RΔ. A homomorphism from a constraint language to
itself is an endomorphism. An endomorphism that also preserves the negations of
relations is termed an embedding and a bijective embedding is an automorphism.

A constraint language is a core if all of its endomorphisms are embeddings
(equivalently, if the domain is finite, automorphisms). The functional version of
the CSP has previously been seen in, e.g., [12]. For a purely functional constraint
language, a primitive positive (pp) sentence is the existential quantification of a
conjunction of term equalities. More generally, and when relations present, we
may have positive atoms in this conjunction. The problem CSP(Γ ) takes as input
a primitive positive sentence φ, and asks whether it is true on Γ . The problem
CSPc(Γ ) is similar but allows input constants naming the domain elements. We
will allow that the functions involved on φ be defined on a larger domain than
the domain of Γ . This is rather unheimlich1 but it allows the problems of [16] to

1 Weird. Thus spake Lindemann about Hilbert’s non-constructive methods in the res-
olution of Gordon’s problem (see [28]).
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be more readily realised in the vicinity of CSPs. For example, one such typical
domain is {N}, but we will allow functions such as − (complement), ∪ (union)
and ∩ (intersection) whose domain and range is the set of all subsets of N. We will
also employ the operations of set-wise addition A+B := {a+ b : a ∈ A∧ b ∈ B}
and multiplication A × B := {ab : a ∈ A ∧ b ∈ B}.

ΣP
i , ΠP

i , and ΔP
i are levels of the polynomial-time hierarchy, while Σi, Πi, and

Δi are levels of the arithmetical hierarchy. Moreover, we use the classes NP = ΣP
1 ,

PSPACE =
⋃

k≥1 DSPACE(nk), and 3EXPSPACE =
⋃

k≥1 DSPACE(22
2n

k

).
Where no SPACE is written explicitly, the complexity classes may be assumed
to refer to time. For more on these complexity classes we refer the reader to [23].

For sets A and B we say that A is polynomial-time many-one reducible to
B, in symbols A≤p

m B, if there exists a polynomial-time computable function f
such that for all x it holds that (x ∈ A ⇐⇒ f(x) ∈ B). If f is even computable
in logarithmic space, then A is logspace many-one reducible to B, in symbols
A≤log

m B. A is nondeterministic polynomial-time many-one reducible to B, in
symbols A≤NP

m B, if there is a nondeterministic Turing transducer M that runs
in polynomial time such that for all x it holds that x ∈ A if and only if there
exists a y computed by M on input x with y ∈ B. The reducibility notions ≤p

m,
≤log

m , and ≤NP
m are transitive and NP is closed under these reducibilities.

A circuit C = (V,E, gC) is a finite, non-empty, directed, acyclic multi-graph
(V,E) with a specified node gC ∈ V . The graph does not need to be connected
and only has multiple edges between two nodes when a binary operator is applied
on both sides to a single set (e.g. A × A). Let V = {1, 2, . . . , n} for some n ∈ N.
The nodes in the graph (V,E) are topologically ordered, i.e., for all v1, v2 ∈ V , if
v1 < v2, then there is no path from v2 to v1. Nodes are also called gates. Nodes
with indegree 0 are called input gates and gC is called the output gate. If there
is an edge from gate u to gate v, then we say that u is a predecessor of v and v
is a successor of u.

Let O ⊆ {∪,∩, −,+,×}. An O-circuit with unassigned input gates C =
(V,E, gC , α) is a circuit (V,E, gC) whose gates are labeled by the labeling func-
tion α : V → O∪N∪{�} such that the following holds: Each gate has an indegree
in {0, 1, 2}, gates with indegree 0 have labels from N ∪ {�}, gates with indegree
1 have label −, and gates with indegree 2 have labels from {∪,∩,+,×}. Input
gates with a label from N are called assigned (or constant) input gates; input
gates with label � are called unassigned (or variable) input gates. An O-formula
is an O-circuit that only contains nodes with outdegree one.

Let u1 < · · · < un be the unassigned inputs in C and x1, . . . , xn ∈ N. By
assigning value xi to the input ui, we obtain an O-circuit C(x1, . . . , xn) whose
input gates are all assigned. In this circuit, each gate g computes the following set
I(g): If g is an assigned input gate where α(g) �= �, then I(g) = {α(g)}. If g = uk

is an unassigned input gate, then I(g) = {xk}. If g has label − and predecessor
g1, then I(g) = N\I(g1). If g has label ◦ ∈ {∪,∩,+,×} and predecessors g1 and
g2, then I(g) = I(g1) ◦ I(g2). Finally, let I(C(x1, . . . , xn)) = I(gC) be the set
computed by the circuit C(x1, . . . , xn).
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Definition 1 (membership, equivalence, and satisfiability problems
of circuits and formulas).

Let O ⊆ {∪,∩, −,+,×}.
MCN(O) = {(C, b) | C is an O-circuit without unassigned inputs and b ∈ I(C)}
ECN(O) = {(C1, C2) | C1 and C2 are O-circuits without unassigned inputs and

we have I(C1) = I(C2)}
SCN(O) = {(C, b) | C is an O-circuit with unassigned inputs u1 < · · · < un and

there exist x1, . . . , xn ∈ N such that b ∈ I
(
C(x1, . . . , xn)

)}

MFN(O), EFN(O), and SFN(O) are the variants that deal with O-formulas
instead of O-circuits.

When an O-circuit is used as input for an algorithm, then we use a suitable
encoding such that it is possible to verify in deterministic logarithmic space
whether a given string encodes a valid circuit.

In Sect. 3, for i ∈ N, we often identify {i} with i, where this can not cause a
harmful confusion.

3 Circuit Satisfiability and Functional CSPs

We investigate the computational complexity of functional CSPs. In many cases
we can translate known lower and upper bounds for membership, equivalence,
and satisfiability problems of arithmetic circuits [15,16,21] to CSPs. Our main
result is the decidability of SCN(−,∪,∩,×) and CSPc({N}; −,∪,∩,×), which
solves the main open question of the paper [16]. We emphasise that the domain
of CSPc({N}; −,∪,∩,×) is the set of singletons that we defined as {N} and not,
e.g., the set of subsets of all natural numbers. This would be a different CSP.
Our unusual definition is motivated by the circuit problems whose relationship
to CSPs we wish to formalise.

We start with the observation that the equivalence of arithmetic terms
reduces to functional CSPs. This yields several lower bounds for the CSPs.

Proposition 1. For O ⊆ {−,∪,∩,+,×} it holds that EFN(O)≤log
m

CSPc({N};O).

Corollary 1.

1. CSPc({N}; −,∪,∩,+) and CSPc({N}; −,∪,∩,×) are ≤log
m -hard for PSPACE.

2. CSPc({N};∪,∩,+), CSPc({N};∪,∩,×), CSPc({N};∪,+), and
CSPc({N};∪,×) are ≤log

m -hard for ΠP
2 .

CSPs with + and × can express diophantine equations, which implies the
Turing-hardness of such CSPs.
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Proposition 2. CSPc({N}; +,×) is ≤log
m -hard for Σ1, CSPc({N};∪,∩,+,×) ∈

Σ1 and CSPc({N}; −,∪,∩,+,×) ∈ Σ2.

We now show that the decidability of Skolem arithmetic [14] can be used to
decide the satisfiability of arithmetic circuits without +. From this we obtain
the decidability of CSPs where exactly one arithmetic operation is forbidden.

Theorem 1. SCN(−,∪,∩,×), CSPc({N}; −,∪,∩,×) and CSPc({N}; −,∪,∩,+)
are in 3EXPSPACE.

The following proposition transfers the NP-hardness from satisfiability prob-
lems for arithmetic circuits to CSPc({N};×) and CSPc({N}; +).

Proposition 3. CSPc({N};×) and CSPc({N}; +) are ≤log
m -hard for NP.

The remaining results in this section show that certain functional CSPs
belong to NP. This needs non-trivial arguments of the form: If a CSP can
be satisfied, then it can be satisfied even with small values. These arguments
are provided by the known results that integer programs, existential Presburger
arithmetic, and existential Skolem arithmetic are decidable in NP.

Proposition 4. CSPc({N}; −,∩,∪) is ≤log
m -complete for NP.

Proposition 5. CSPc({N}; +) ∈ NP.

Proposition 6. CSPc({N};∩,+)≤NP
m CSPc({N}; +,=, �=)andCSPc({N};∩,×)

≤NP
m CSPc({N};×,=, �=). Therefore, CSPc({N};∩,+),CSPc({N};∩,×) ∈ NP.

A Second Open Problem from [16]. We now improve another of the upper
bounds of [16] to a tight upper bound. Here we have the circuit satisfiability
problem where the permitted set operators are just intersection, union and mul-
tiplication, where we improve the bound from NEXP to PSPACE.

Theorem 2. SCN(∪,∩,×) ∈ PSPACE.

Table 1 summarizes the results obtained in Sect. 3 and shows open questions. In
particular, we would like to improve the gap between the lower and upper bounds
for CSPc({N};O), where O contains ∪ and exactly one arithmetic operation (+
or ×).

4 CSPs over Fo-expansions of Skolem Arithmetic

We now commence our exploration of the complexity of CSPs generated from
the simplest expansions of (N;×). Abandoning our set-wise definitions, we hence-
forth use × to refer to the syntactic multiplication of Skolem Arithmetic (which
may additionally carry semantic content). When we wish to refer to multipli-
cation in a purely semantic way, we prefer ·s or

∏
. We will consider × as a

ternary relation rather than a binary function. We will never use syntactic ×
in a non-standard way, i.e. holding on a triple of integers for which it does not
already hold in natural arithmetic.
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Table 1. Upper and lower bounds for CSPc({N}; O). All lower bounds are with respect
to ≤log

m -reductions.

CSPc({N}; O)

O Lower bound Upper bound
− ∪ ∩ + × Σ1 Σ2

− ∪ ∩ + PSPACE 3EXPSPACE
− ∪ ∩ × PSPACE 3EXPSPACE
− ∪ ∩ NP NP

∪ ∩ + × Σ1 Σ1

∪ ∩ + ΠP
2 3EXPSPACE

∪ ∩ × ΠP
2 3EXPSPACE

∪ + × Σ1 Σ1

∪ + ΠP
2 3EXPSPACE

∪ × ΠP
2 3EXPSPACE

∩ + × Σ1 Σ1

∩ + NP NP

∩ × NP NP

+ × Σ1 Σ1

+ NP NP

× NP NP

Proposition 7. Let Γ be a finite signature reduct of (N;×, 1, 2, . . .). Then
CSP(Γ ) is in NP.

Upper Bounds. We continue with polynomial upper bounds. Note that con-
stants are no longer assumed to necessary exist in our structures (in contrast to
the situation in Proposition 7).

Lemma 1. Let U ⊆ N be non-empty and U ∩ {0, 1} = ∅. Then CSP(N;×, U)
is polynomial-time reducible to CSP(N+;×, U).

We now borrow the following slight simplification of Lemma 6 from [20].

Lemma 2 (Scalability [20]). Let Γ be a finite signature constraint language
with domain R, whose relations are quantifier-free definable in +,≤ and <, such
that the following holds.

– Every satisfiable instance of CSP(Γ ) is satisfied by some rational point.
– For each relation R ∈ Γ , it holds that if x := (x1, x2, . . . , xk) ∈ R, then

(ax1, ax2, . . . , axk) ∈ R for all a ∈ {y : y ∈ R, y ≥ 1}.
– CSP(Γ ) is in P.

Then CSP(Δ) is in P, where Δ is obtained from Γ by substituting the domain
R by Z.
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Lemma 3. Arbitrarily choose m > 1 and U ⊆ N
+ such that {m,m2,m3, . . .} ⊆

U . Then, CSP(N+;×, U) is in P.

Proposition 8. Arbitrarily choose m > 1 and U ⊆ N such that {m,m2,m3, . . .}
⊆ U . Then, CSP(N;×, U) is in P.

Cores. We say that an integer m > 1 has a degree-one factor p if and only if
p is a prime such that p|m and p2 � | m. Let Divm be the set of divisors of m,
pp-definable in (N;×,m) by ∃y x × y = m. We can pp-define the relation {1}
in (Divm;×,m) since x = 1 iff x × x = x (recalling 0 /∈ Divm). It follows that
{1,m} are contained in the core of (Divm;×,m).

Lemma 4. Let m > 1 be an integer that has a degree-one factor p. Then
(Divm;×,m) has a two-element core.

Lemma 5. Let m be an integer that does not have a degree-one factor. Then
(Divm;×,m) does not have a two-element core.

Lower Bounds. We now move to lower bounds of NP-completeness.

Proposition 9. CSP(N; �=,×) is NP-complete.

An operation t : Dk → D is a weak near-unanimity operation if t is idempo-
tent and satisfies t(y, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y).

Theorem 3 [1]. Let Γ be a constraint language over a finite set D. If Γ is a
core and does not have a weak near-unanimity polymorphism, then CSP(Γ ) is
NP-hard.

Lemma 6. Arbitrarily choose an m > 1 such that m �= kn for all k, n > 1
together with a finite set {1,m} ⊆ S ⊆ N\{0}. If (S;×,m) is a core, then
CSP(S;×,m) is NP-hard.

Note that the proof of this last lemma is made easier by our assumption that
× is a relation and not a function. Were it a function we would need to prove
the domain S is closed under it.

Theorem 4. CSP(N;×,m) is NP-hard for every integer m > 1.

Theorem 5. Let U be any subset of N\{0, 1} so that every x ∈ U has a degree-
one factor. Then CSP(N;×, U) is NP-hard.

For x ∈ N\{0, 1}, define its minimal exponent, min-exp(x), to be the smallest
j such that x has a factor of pj , for some prime p, but not a factor of pj+1. Thus
an integer with a degree-one factor has minimal exponent 1. Call x ∈ N\{0, 1}
square-free if it omits all repeated prime factors. For a set U ⊆ N\{0, 1}, define
its basis, basis(U) to be the set {min-exp(x) : x ∈ U}.

Lemma 7. Let U ⊆ N\{0, 1}, so that basis(U) is finite and basis(U) �= {1}.
There is some set X pp-definable in (N;×, U) so that basis(X) = {1}.
Theorem 6. Let U ⊆ N\{0, 1} be so that basis(U) is finite. Then CSP(N;×, U)
is NP-complete.
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5 Final Remarks

There are two major directions in which more work is necessary.
A perfunctory glance at the results of Sect. 3 shows that some of our bounds

are not tight, and it would be great to see some natural CSPs in this region
manifesting complexities such as PSPACE-complete. It is informative to compare
our Table 1 with Table 1 in [16]. Our weird formulation of these CSPs belies the
fact there are more natural versions where, for O ⊆ {−,∩,∪,+,×}, we ask about
CSP(P(N);O), where P(N) is the power set of N, rather than the somewhat
esoteric CSP({N};O). Indeed, if we replace complement “−” by set difference
“\”, these questions could also be phrased for just the finite sets of P(N) (see
recent work [11]).

Meanwhile, the results of Sect. 4 need to be extended to a classification of
complexity for all CSP(Γ ), where Γ is a reduct of Skolem Arithmetic (N;×).
We anticipate the first stage is to complete the classification for CSP(N;×, U)
where U is fo-definable in (N;×).
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Abstract. An equality language is a relational structure with infinite
domain whose relations are first-order definable in equality. We clas-
sify the extensions of the quantified constraint satisfaction problem over
equality languages in which the native existential and universal quanti-
fiers are augmented by some subset of counting quantifiers. In doing this,
we find ourselves in various worlds in which dichotomies or trichotomies
subsist.

1 Introduction

The constraint satisfaction problem CSP(Γ ), much studied in artificial intelli-
gence, is known to admit several equivalent formulations, two of the best known
of which are the query evaluation of primitive positive (pp) sentences – those
involving only existential quantification and conjunction – on Γ , and the homo-
morphism problem to Γ (see, e.g., [14]). For finite Γ the problem CSP(Γ ) is
NP-complete in general, and a great deal of effort has been expended in classi-
fying its complexity for certain restricted cases. Notably it is conjectured [9,12]
that for all fixed finite Γ , the problem CSP(Γ ) is in P or NP-complete. While
this has not been settled in general, a number of partial results are known – e.g.
over structures of size at most three [8,17] and over smooth digraphs [2,13].

A popular generalisation of the CSP involves considering the query evalua-
tion problem for positive Horn logic – involving only the two quantifiers, ∃ and ∀,
together with conjunction. The resulting quantified constraint satisfaction prob-
lems QCSP(Γ ) allow for a broader class, used in artificial intelligence to capture
non-monotonic reasoning, whose complexities rise to Pspace-completeness.
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Once upon a time, Bodirsky and Kára gave a systematic classification for
CSP(Γ ), where Γ consists of relations first-order (fo) definable in equality, over
some countably infinite domain [7]. These so-called equality languages Γ dis-
played dichotomy between those for which CSP(Γ ) was in P and those for which
it was NP-complete. Pursuing this line of investigation, Bodirsky and Chen gave
a trichotomy for QCSP(Γ ), where Γ is an equality language – each problem
being either in P, NP-complete or co-NP-hard [4]. In the conference version of
that paper, the trichotomy was claimed to be across P, NP-complete or Pspace-
complete [3], but the proof in the tricky case of x = y → y = z was flawed, and
so in the journal version this became the weaker co-NP-hard (and in Pspace).
The trichotomy is thus imperfect, as most of the co-NP-hard cases are known
to be Pspace-complete. Indeed, x = y → y = z would be the only open case, if
it would to be Pspace-complete [5].

Working Hypothesis. QCSP(x = y → y = z) is Pspace-complete.

Thus the assumption of the working hypothesis would restore the trichotomy to
the P, NP-complete or Pspace-complete as stated in [3].

In this paper, we consider the generalisation of the QCSP with counting
quantifiers, as pioneered in the recent paper [15]. In [15], the domains of Γ were
of finite size n, so the extant quantifiers ∃≥1 = ∃ and ∃≥n = ∀ were augmented
with quantifiers of the form ∃≥j , which allow one to assert the existence of at least
j elements such that the ensuing property holds. In the world of infinite domains,
it makes sense to permit not only quantification above the finite with ∃≥j , but
also quantification below the co-finite with ∀≥j , whose intended meaning is that
the property holds for all but (at most) j elements of the domain. Thus, ∀ = ∀≥0.
Counting quantifiers have been extensively studied in finite model theory (see
[11,16]), where the focus is on supplementing the descriptive power of various
logics. Of more general interest is the majority quantifier ∃≥n/2 (on a structure of
domain size n), which sits broadly midway between ∃ and ∀. Majority quantifiers
are studied across diverse fields of logic and have various practical applications,
e.g. in cognitive appraisal and voting theory [10,19]. They have also been studied
in computational complexity since at least [1] (see also [11]).

We study extensions of QCSP(Γ ) in which the input sentence to be evaluated
on Γ remains positive conjunctive in its quantifier-free part, but is quantified
by various counting quantifiers. For X ⊆ {∃≥1,∃≥2, . . . ,∀≥0,∀≥1, . . .}, X ⊇
{∃≥1,∀≥0}, the X-CSP(Γ ) takes as input a sentence given by a conjunction
of atoms quantified by quantifiers appearing in X. It then asks whether this
sentence is true on Γ . Equality languages admit quantifier elimination of ∀ and
∃, that is any relation first-order definable in equality is already quantifier-free
definable, say as a CNF. An equality language Γ is

– trivial if all its relations may be given as a conjunction of equalities,
– specially negative if the co-clone 〈Γ 〉{∃,∀,∀≥1}-pp does not contain the formula

x 	= y ∨ y 	= z,
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– negative if all its relations may be given as a conjunction of equalities and
disjunctions of disequalities, and

– positive if all its relations may be given as a conjunction of disjunctions of
equalities.

Similarly, we might use these adjectives on the relations within the equality
language. We observe the containments of trivial languages within specially neg-
ative languages within negative languages. Further, it is proved in [4] (Proposi-
tion 7.3) that the positive languages that are not trivial are precisely the positive
languages that are not negative. Our main results are a complete panoply of clas-
sifications for X ⊇ {∃≥1,∀≥0}. It will be seen that the quantifiers ∃≥2,∃≥3, . . .
more or less behave as one another and similarly with ∀≥2,∀≥3, . . .. However,
∀≥1 is special and thus our task of classifications for X amounts to choosing
subsets of {∃≥2,∀≥1,∀≥2} with which to augment {∃≥1,∀≥0}. A priori there
are then eight possibilities, but twice we will see ∀≥1 being “subsumed” by ∀≥2.
Thus we will give six distinct classification theorems: three dichotomies and three
trichotomies (one of which is that of [4]). In Fig. 1, these classification theorems
are linked to their canonical subsets of {∃≥2,∀≥1,∀≥2}.

Theorem 1 [4]. If X = {∃≥1,∀≥0}, then X-CSP(Γ ) displays trichotomy on
the class of equality languages Γ :

– if all relations of Γ are negative then X-CSP(Γ ) is in L.
– if all relations of Γ are positive but some relation is not trivial, then X-

CSP(Γ ) is NP-complete.
– otherwise X-CSP(Γ ) is co-NP-hard.

Theorem 2. If X ⊆ {∃≥1,∀≥0,∀≥1,∀≥2, . . .} and contains some ∀≥j for j ≥ 2,
then X-CSP(Γ ) displays trichotomy on the class of equality languages Γ :

– if all relations of Γ are trivial, then X-CSP(Γ ) is in L.
– if all relations of Γ are positive, but some relation is not trivial, then X-

CSP(Γ ) is NP-complete.
– otherwise X-CSP(Γ ) is Pspace-complete.

Theorem 3. If X = {∃≥1,∀≥0,∀≥1}, then X-CSP(Γ ) displays trichotomy on
the class of equality languages Γ :

– if all relations of Γ are specially negative, then X-CSP(Γ ) is in P.
– if all relations of Γ are positive, but some relation is not trivial, then X-

CSP(Γ ) is NP-complete.
– otherwise X-CSP(Γ ) is Pspace-complete.

Theorem 4. If X ⊆ {∀≥0,∃≥1,∃≥2, . . .} and contains some ∃≥j for j ≥ 2 then
X-CSP(Γ ) displays dichotomy on the class of equality languages Γ :

– if all relations of Γ are negative, then X-CSP(Γ ) is in L.
– otherwise X-CSP(Γ ) is co-NP-hard.
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Theorem 5. If X ⊆ {∀≥0,∀≥1,∀≥2, . . . ,∃≥1,∃≥2, . . .} and contains some ∃≥i

and ∀≥j for i, j ≥ 2 then X-CSP(Γ ) displays dichotomy on the class of equality
languages Γ :

– if all relations of Γ are trivial, then X-CSP(Γ ) is in L.
– otherwise X-CSP(Γ ) is Pspace-complete.

Theorem 6. If X ⊆ {∀≥0,∀≥1,∃≥1,∃≥2, . . .} and contains ∀≥1 and some ∃≥i

for i ≥ 2 then X-CSP(Γ ) displays dichotomy on the class of equality languages
Γ :

– if all relations of Γ are specially negative, then X-CSP(Γ ) is in P.
– otherwise X-CSP(Γ ) is Pspace-complete.

Fig. 1. Classification theorems linked to canonical subsets of {∃≥2, ∀≥1, ∀≥2}

Four of our five new worlds are somewhat more conducive to analysis than
that of [4], in that in them we have no gap across co-NP-hardness and Pspace-
completeness. For the remaining world of Theorem 4, we are able to demon-
strate that improving co-NP- to Pspace-hardness is likely to be as difficult as in
Theorem 1. Indeed, from this it follows that our working hypothesis promotes
co-NP-hardness to Pspace-hardness for Theorem 4 as well as Theorem 1.

Some of our results are not especially complicated and stem from simple
manipulations rather than deep technical nous. Against this we set the nice
aesthetic of our results and the way in which they complement [4,6]. For example,
the specially negative languages, play an important role in our classifications,
but where do they sit in the context of [6]. Do they even form a co-clone? We note
that equality languages have been also studied for the abduction problem [18],
in the context of which we find a trichotomy among ΣP

2 -complete, NP-complete
and problems decidable in P.

The paper is organised as follows. After the preliminaries, we address in
Sect. 3 basic upper and lower bounds that play a role in our classification. In
Sect. 4 we describe the crucial specially negative languages. Finally, we ponder
the difficulty of improving, in Theorem 4, co-NP- to Pspace-hardness. We do the
latter by showing that QCSP(x = y ∨u = v, 	=) becomes no more complex when
one augments with ∃≥k.
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2 Preliminaries

Let [j] := {1, . . . , j}. For i ∈ N, i ≥ 1, let ∃≥ix quantify that there exist at least
i elements satisfying some property. For i ∈ N, i ≥ 0, let ∀≥ix quantify that for
all but at most i elements does some property hold. Thus ∃ is ∃≥1 and ∀ is ∀≥0

– the base cases being different for these quantifiers. In this paper we consider
languages with first-order (fo) definitions in equality, that is on structures which
admit all permutations as automorphisms. Such an equality language may be
considered a structure of the form (N;R1, . . .) where each Ri is a CNF formula
whose atoms are equalities or disequalities (owing to quantifier elimination of ∀
and ∃ this is equivalent to our saying fo-definable in equality). We typically drop
the “N” in referring to an equality language.

Primitive positive (pp) logic is the restriction of fo-logic to the symbols
{∃,∧,=} and positive Horn (pH) likewise to the symbols {∀,∃,∧,=}. For
X ⊆ {∀≥0,∀≥1, . . . ,∃≥1,∃≥2, . . .}, let X-pp denote the logic of prenex sentences
whose symbols are among X ∪ {∧,=}. We will use small letters such as φ to
refer to sentences whose quantifier-free part will be denoted Φ. Let Γ be a set of
relations on a domain, i.e. a structure, and let L be a logic. Then the evaluation
problem for L on Γ has as input a sentence φ ∈ L and asks whether Γ |= φ?
The evaluation problem for primitive positive (resp., positive Horn) logic on Γ
is better known as CSP(Γ ) (resp., QCSP(Γ )). The evaluation problem for X-pp
on Γ will henceforth be known as X-CSP(Γ ). In this paper we consider only
X ⊇ {∃≥1,∀≥0}, i.e. extensions of the QCSP.

Let Γ be an equality language, and let 〈Γ 〉pp be the set of relations pp-
definable over Γ . Such a set is termed a co-clone. We may abuse notation and
write 〈R〉pp when properly we mean 〈{R}〉pp. A great project was launched in [6]
to identify sets of the form 〈Γ 〉pp, charting their inclusion relations in a lattice.
The lattice is mostly identified through a dually-isomorphic algebraic lattice of
local clones, but here we will only be interested in the co-clones. In line with
[4,6], we will consider the co-clone 〈∅〉pp = 〈=〉pp to be at the top of the lattice,
with the co-clone of all equality-definable relations at the bottom.

In a problem X-CSP(Γ ) it is desirable that Γ involve only a finite number
of relations lest there arise the question as to how they are encoded. Yet we
will enjoy referring to co-clones that contain an infinite number of relations. We
resolve this by considering all references to Γ as a language inside X-CSP(Γ ) to
be restricting of Γ to the relationally finite.1

We now recall some basic results from [4,6]. We typically write 	= to indi-
cate the binary relation of disequality (in terms of our canonical notation this
abbreviates x 	= y). Let 〈Γ 〉pH be the set of relations pH-definable over Γ .

1 Another typical solution is to give definition to complexity of relationally-infinite Γ
along the lines of “easy”, if it is easy for all finite subsets, and “hard”, if it is hard
for some finite subset.
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Lemma 1.

(1) x = y ∨ u = v is in both 〈x = y ∨ y = z〉pp and 〈x = y ∨ y = z ∨ x = z〉pp.
(2) x 	= y ∨ u 	= v ∈ 〈x = y → y = z, 	=〉pp.
(3) (x1 = y ∧ . . . ∧ xm = y) → y = z ∈ 〈x = y → y = z〉pp.
(4) 〈{x = y ∨ u = v, 	=}〉pp contains all equality-definable relations.
(5) 〈x = y ∨ u = v〉pp contains all positive relations.
(6) If Γ is not positive then 	=∈ 〈Γ 〉pp.
(7) If Γ is positive but not negative then x = y ∨ u = v ∈ 〈Γ 〉pH.

Note that Part 7 does not hold for pp-definability. While x = y ∨ y = z is a pp-
basis for the positive languages, there is an infinite chain of positive languages
up to pp-closure [6]. 〈x = y∨y = z〉pp is at the bottom, being the most expressive,
and the trivial 〈=〉pp is at the top. Inbetween, is an infinite chain without top
element. However, this chain collapses for pH-definability, leaving only the two
co-clones up to pH-closure (〈=〉pp and 〈x = y ∨ y = z〉pp).

We contrast Part 1 of Lemma 1 with the knowledge that x = y → u = v is
in neither 〈x = y → y = z〉pp [6] nor 〈x = y → y = z〉pH.
Owing to the disparity between the conference and journal versions of [4], we
give the following as a specific proposition. Its proof can be derived from [4] by
the assiduous reader.

Proposition 1. Both QCSP(x = y∨u = v, 	=) and QCSP(w = z1∨w = z2∨w =
z3, 	=) are Pspace-complete.

It seems that QCSP(x = y → u = v) is also Pspace-complete [5], but this is
harder work. The backbone of a proof appeared in an early unpublished version
of [4]. The author has verified this proof but reproducing it here is beyond our
scope.

3 Upper and Lower Bounds

Upper bounds. The following lemma is trivial but we state it because we will
wish to appeal to it in the future.

Lemma 2 (Substitution of equalities). Let X := {∀≥0,∀≥1,∃≥1,∃≥2, . . .}
and let Φ be an instance of some X-CSP containing an equality x = y in which
y appears later in the quantifier order of Φ than x. Then Φ is false if y is
quantified by anything other than ∃≥1. Otherwise, Φ is equivalent to Φ′ obtained
by substituting all instances of y by x and removing the quantifier ∃≥1y.

Lemma 3. For any X ⊆ {∀≥0,∀≥1, . . . ,∃≥1,∃≥2, . . .}, X-CSP(Γ ) is in Pspace.

The following lemma relates to {∃≥1,∀≥i : i ≥ 0} on positive languages.

Lemma 4. Let X := {∃≥1,∀≥i : i ≥ 0} and Γ be a positive equality language.
Then X-CSP(Γ ) is in NP.



The Complexity of Counting Quantifiers on Equality Languages 339

Lower bounds. The following proposition relates to {∀≥i,∀≥0,∃≥1}, for i ≥ 2,
on non-positive languages.

Proposition 2. Let X := {∀≥i,∀≥0,∃≥1}, for any i ≥ 2 and Γ a non-positive
equality language. Then X-CSP(Γ ) is Pspace-complete.

The following propositions relate to {∀≥1,∀≥0,∃≥1} on non-positive lan-
guages.

Proposition 3. {∀≥1,∀≥0,∃≥1}-CSP(x 	= y ∨ u 	= v) is Pspace-complete.

Proposition 4. (x 	= y ∨ u 	= v) is definable from (x 	= y ∨ y 	= z) using ∀≥1.

Proposition 5. {∀≥1,∀≥0,∃≥1}-CSP(x 	= y ∨ y 	= z) is Pspace-complete.

Proposition 6. Let i ≥ 2 and Γ be a positive non-trivial equality language.
Then 	= is definable from Γ using ∃≥i.

4 Isolating the Specially Negative Languages

We call a CNF Φ reduced if it is not logically equivalent to itself with either a
clause or a literal in a clause removed. A CNF depends on one of its variables v
if its truth value can not be given as a propositional function from (the equality
type of) only its other variables.

Suppose R is a negative relation which might be given by various reduced
CNFs, at least one of which, Φ, is negative. Then Φ may enforce some equalities
on its variables, which it plainly does syntactically. Sometimes in this section we
will wish to assume that Φ has these equalities factored out by substitution, thus
we could assume negative CNFs do not have any positive clauses. The point is
that this is an innocuous assumption. Having said that, the process does remove
variables and so can’t be used strictly within a quantifier elimination procedure.
Now, suppose R is also given by another reduced CNF Φ′ which is not negative
(we will later prove this is not possible). Then we could similarly factor out the
implied equalities of Φ′, but these might not be obvious unless we have negative
Φ where the equalities are syntactically explicit and not semantically implied.

4.1 Non-positive Cases Involving ∀≥1

Definition 1. A negative, reduced CNF Φ without equalities is flat if it consists
of clauses with no free variable occurring twice in them. Φ is rich if every free
variable of Φ occurs in a singleton clause of Φ.

We will assume that CNFs do not possess dummy variables that do not appear
explicitly. Thus, we may consider a CNF to be rich if it is rich once we have
discounted such dummy variables.

Theorem 7. We have the following dichotomy for non-positive equality
languages Γ .
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1. Either 〈Γ 〉{∃,∀,∀≥1}-pp contains the relation x 	= y ∨ y 	= z, and then we find
{∃,∀,∀≥1}-CSP(Γ ) is Pspace-hard,

2. or 〈Γ 〉{∃,∃≥2,...,∀,∀≥1}-pp contains only relations whose reduced CNFs are neg-
ative, flat and rich; and {∃,∃≥2, . . . ,∀,∀≥1}-CSP(Γ ) is in P.

Definition 2. Let Φ be a CNF with variables in V . Let P1 ∪ · · · ∪ Pk be a
partition of V . We say that “we weaken Φ around the given partition by keeping
P1, . . . , Pj” if we produce a formula from Φ by the following definition. First we
take the conjunction Ψ of all disequalities that are transversal to the partition,
i.e., x 	= y with x and y not in the same set of the partition, and produce Φ ∧ Ψ .
Then for all i > j we identify the variables in Pi by a new variable wi. Then we
existentially quantify over these new variables.

Note that if Φ pp-defines 	=, then this procedure is also a pp-definition from Φ.

Lemma 5. Let Φ be a reduced negative CNF that has a non-flat clause. Then
Φ pp-defines x 	= y ∨ y 	= z.

Lemma 6. From S(x, y, u, v) := (x 	= y ∨ u 	= v) ∧ y 	= u ∧ x 	= u we may define
with ∀≥1 and ∃ the relation p 	= q ∨ q 	= r.

Lemma 7. Let Φ be a flat negative CNF with exactly four variables. Assume
that Φ depends on each of its variables, and that Φ is not rich. Then x 	= y∨y 	= z
has an {∃,∀,∀≥1}-pp definition in Φ.

Lemma 8. Assume that 〈Γ 〉{∃,∀,∀≥1}-pp contains a negative CNF Φ that is not
rich. Then 〈Γ 〉{∃,∀,∀≥1}-pp contains the formula x 	= y ∨ y 	= z.

4.2 Quantifier Elimination and Reduction for Negative,
Flat and Rich CNF Formulas

We wish to argue that in a certain case we can effect quantifier elimination for
negative, flat and rich CNF formulas in polynomial time. Eliminating a ∀≥1

quantifier over negative, flat and rich formulas can throw up Horn CNFs, so
our first task will be to argue that we can compute a reduced form from a
Horn CNF Φ in polynomial time. Our task is to determine, whether there are
any redundant clauses (and if so remove them) and then whether there are any
redundant literals in the remaining clauses (which also must be removed). To
test for redundant clauses C it is sufficient to test whether (Φ\{C}) implies C,
i.e. whether (Φ\{C}) ∧ ¬C is a contradiction. But this is itself the complement
of a Horn CSP, itself uniformly tractable by unit propagation (see [7]). Similarly,
to determine if a literal � is required in a clause C, we may consider whether
(Φ\{C}) ∧ � ∧ ¬(C\{�}) is a contradiction. Thus, given a Horn CNF Φ we can
compute in polynomial time a reduced CNF (itself Horn) Φ′ that is equivalent
to Φ.

Consider each ∀≥1xi Φ(x1, . . . , xk), where Φ is negative, flat and rich, without
any equalities, where the singletons involving xi are precisely xi 	= x′

λ1
, . . . , xi 	=
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x′
λt

. We can effect quantifier elimination in the following fashion. Substitute each
non-singleton clause involving xi, itself of the form, (xi 	= x′

μ1
∨ xμ2 	= x′

μ2
∨ . . . ∨

xμs
	= x′

μs
), where no variable is repeated, by (x′

μ1
= x′

λ1
= · · · = x′

λt
∨ xμ2 	=

x′
μ2

∨ . . . ∨ xμs
	= x′

μs
). Note that we will allow conjuncts of equalities as single

relations in our clauses, to avoid having to break the clauses up. If we view this
as a notational shorthand then we do not break the condition of Hornness. If xi

appeared in multiple singleton clauses (i.e. t > 1), then we need to add the equality
xλ1 = · · · = xλt

to the system. If xi appeared in a single singleton clause then
we can now simply remove it. Call the new CNF finally obtained Φ̃. Plainly, Φ̃ is
logically equivalent to ∀≥1xi Φ and Φ̃ is Horn. We now apply our effective procedure
to establish whether Φ̃ is reduced and if not reduce it.

The question now naturally arises as to whether Φ̃ is negative. We argue by
the following lemma that it is enough to see whether our reduced CNF form has
a non-singleton clause with an equality in it.

Lemma 9. Let Φ be a reduced CNF representing a relation R in which there
is a non-singleton clause that contains an equality. It is not possible that R is
negative (i.e. has another reduced CNF that is negative).

Note that reduced negative CNFs of a relation R are not in general unique, and
the method of transitive closure from the first paragraph of the above proof hints
at an example: (x 	= y ∨ y 	= z) is equivalent to (x 	= y ∨ x 	= z).

We will now consider the quantifier elimination of ∃, ∃≥2, . . . etc. (note that
quantification by ∀ on a negative, flat and rich formula will always leave it false).
On negative formulas, ∃≥2, . . . etc. have the same power as ∃ and allow us to
remove any clause in which the corresponding variable appears. This leaves the
formula negative and we again have an effective method for reduction.

We now continue in this vein eliminating quantifiers and reducing CNFs. If
we at any point produce a CNF whose reduced form is not negative, flat and
rich then we know that Γ {∃,∀,∀≥1}-pp defines x 	= y ∨ y 	= z. We are now in a
position to address Theorem 7.

By way of example for Theorem 7, we note that 〈{(u 	= v ∨ x 	= y) ∧ u 	=
y ∧ v 	= x}〉{∃,∀,∀≥1}-pp contains only negative, flat and rich formulas.

5 Ennui of co-NP- to Pspace-Completeness

Proposition 7. For all 1 ≤ k ∈ N, {∃≥k,∀≥0,∃≥1}-CSP(x = y → y = z) and
{∀≥0,∃≥1}-CSP(x = y → y = z) (i.e. QCSP(x = y → y = z)) are logspace
equivalent.

It follows from Proposition 7 and [4] that our working conjecture that QCSP
(x = y → y = z) is Pspace-complete would elevate the co-NP-hardness cases of
Theorems 1 and 4 to Pspace-hardness.
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Abstract. For a ring R, Hilbert’s Tenth Problem HTP(R) is the set
of polynomial equations over R, in several variables, with solutions in
R. We consider computability of this set for subrings R of the ratio-
nals. Applying Baire category theory to these subrings, which naturally
form a topological space, relates their sets HTP(R) to the set HTP(Q),
whose decidability remains an open question. The main result is that,
for an arbitrary set C, HTP(Q) computes C if and only if the subrings R
for which HTP(R) computes C form a nonmeager class. Similar results
hold for 1-reducibility, for admitting a Diophantine model of Z, and for
existential definability of Z.

1 Introduction

The original version of Hilbert’s Tenth Problem demanded an algorithm deciding
which polynomial equations from Z[X1,X2, . . .] have solutions in the integers.
In 1970, Matiyasevic [4] completed work by Davis, Putnam and Robinson [1],
showing that no such algorithm exists. In particular, these authors showed that
there exists a 1-reduction from the Halting Problem ∅′ to the set of such equa-
tions with solutions, by proving the existence of a single polynomial h ∈ Z[Y,X]
such that, for each n from the set ω of nonnegative integers, the polynomial
h(n,X) = 0 has a solution in Z if and only if n lies in ∅′. Since the membership
in the Halting Problem was known to be undecidable, it followed that Hilbert’s
Tenth Problem was also undecidable.

One naturally generalizes this problem to all rings R, defining Hilbert’s Tenth
Problem for R to be the set

HTP(R) = {f ∈ R[X] : (∃r1, . . . , rn ∈ R<ω) f(r1, . . . , rn) = 0}.
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Here we will examine this problem for one particular class: the subrings R of the
field Q of rational numbers. Notice that in this situation, deciding membership in
HTP(R) reduces to the question of deciding this membership just for polynomials
from Z[X], since one readily eliminates denominators from the coefficients of a
polynomial. So, for us, HTP(R) will always be a subset of Z[X1,X2, . . .].

Subrings R of Q correspond bijectively to subsets W of the set P of all primes,
via the map W �→ Z[ 1p : p ∈ W ]. We write RW for the subring Z[ 1p : p ∈ W ]. In
this article, we will move interchangeably between subsets of ω and subsets of P,
using the bijection mapping n ∈ ω to the n-th prime pn, starting with p0 = 2.
For the most part, our sets will be subsets of P, but Turing reductions and jump
operators and the like will all be applied to them in the standard way. Likewise,
sets of polynomials, such as HTP(R), will be viewed as subsets of ω, using a
fixed computable bijection from ω onto Z[X] = Z[X0,X1, . . .].

We usually view subsets of P as paths through the tree 2<P, a complete binary
tree whose nodes are the functions from initial segments of the set P into the set
{0, 1}. This allows us to introduce a topology on the space 2P of paths through
2<P, and thus on the space of all subrings of Q. Each basic open set Uσ in this
topology is given by a node σ on the tree: Uσ = {W ⊆ P : σ ⊂ W}, where σ ⊂ W
denotes that when W is viewed as a function from P into the set 2 = {0, 1} (i.e.,
as an infinite binary sequence), σ is an initial segment of that sequence. Also, we
put a natural measure μ on the class Sub(Q) of all subrings of Q: just transfer
to Sub(Q) the obvious Lebesgue measure on the power set 2P of P. Thus, if
we imagine choosing a subring R by flipping a fair coin (independently for each
prime p) to decide whether 1

p ∈ R, the measure of a subclass S of Sub(Q) is the
probability that the resulting subring will lie in S. Here we will focus on Baire
category theory rather than on measure theory, however, as the former yields
more useful results. For questions and results regarding measure theory, we refer
the reader to Sect. 3 and to the forthcoming [5].

For all W ⊆ P, we have Turing reductions, which in fact are 1-reductions:

W ⊕ HTP(Q) ≤1 HTP(RW ) ≤1 W ′.

For instance, the Turing reduction from HTP (RW ) to W ′ can be described by a
computable injection which maps each f ∈ Z[X] to the code number h(f) of an
oracle Turing program which, on every input, searches for a solution x to f = 0
in Q for which the primes dividing the denominators of the coordinates in x all
lie in the oracle set W . The reduction from HTP(Q) to HTP(RW ) uses the fact
that every element of Q is a quotient of elements of RW , so that f(X) has a
solution in Q if and only if Y d ·f(X1

Y , . . . , Xn

Y ) has a solution in RW with Y > 0.
The condition Y > 0 is readily expressed using the Four Squares Theorem.
Finally, W ≤1 HTP(RW ) by mapping p to (pX − 1).

The topological space 2P of all paths through 2<P, which we treat as the space
of all subrings of Q, is obviously homeomorphic to Cantor space, the space 2ω

of all paths through the complete binary tree 2<ω. Hence this space satisfies the
property of Baire, that no nonempty open set is meager. We recall the relevant
definitions. Here as before, A represents the complement of a subset A ⊆ 2P, and
we will write cl(A) for the topological closure of A and Int(A) for its interior.
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Definition 1. A subset B ⊆ 2P is said to be nowhere dense if its closure cl(B)
contains no nonempty open subset of 2P. In particular, every set Uσ with σ ∈ 2<P

must intersect Int(B), the interior of the complement of B.
The union of countably many nowhere dense subsets of 2ω is called a meager

set, or a set of first category. Its complement is said to be comeager.

All sets W ⊆ ω satisfy W ⊕∅′ ≤T W ′, and for certain W , Turing-equivalence
holds here. Indeed, it is known that the class

GL1 = {W ∈ 2ω : W ′ ≡T W ⊕ ∅′}
is comeager, although its complement is nonempty. In computability theory,
elements of GL1 are called generalized-low1 sets. The low sets – i.e., those W
with W ′ ≤T ∅′ – clearly lie in GL1.

Lemma 1 (Folklore). There exists a Turing functional Ψ such that {W ⊆ ω :
ΨW⊕∅′

= χW ′} is comeager. It follows that GL1 is comeager.

Proof. Consider the following oracle program Ψ for computing W ′ from W ⊕∅′.
With this oracle, on input e, the program searches for a string σ ⊆ W such
that either (1) (∃s) Φσ

e,s(e) ↓, or (2) (∀τ ⊇ σ)(∀s) Φτ
e,s(e) ↑. The program uses

its ∅′ oracle to check the truth of these two statements for each σ ⊆ W . If it
ever finds that (1) holds, it concludes that e ∈ W ′; while if it ever finds that
(2) holds, it concludes that e /∈ W ′. Thus, ΨW⊕∅′

can only fail to compute
W ′ if there exists some e /∈ W ′ such that, for every n, some τ ⊃ W � n has
Φτ

e (e)↓. This can happen, but for each single e, the set of those W for which this
happens constitutes the boundary of the open set {W : e ∈ W ′}. This boundary
is nowhere dense (cf. Lemma 3 below), so the union of these sets (over all e) is
meager, and ΨW⊕∅′

= χW ′ for every W outside this meager set. ��
GL1 also has measure 1, but no single Turing functional computes W ′ from
W ⊕ ∅′ uniformly on a set of measure 1.

Lemma 2 (Folklore). If A �≥T B, then C = {W : A ⊕ W ≥T B} is meager.

Proof. To show that C is meager, define Ce = {W ⊆ P : ΦA⊕W
e = χB}, so

C = ∪eCe. We claim that, if σ ∈ 2P and Uσ ⊆ cl(Ce), the following hold.

1. ∀x∀τ ⊇ σ [ΦA⊕τ
e (x)↑ or ΦA⊕τ

e (x)↓= χB(x)].
2. ∀x∃τ ⊇ σ [ΦA⊕τ

e (x)↓].

To see that (1) holds, suppose ΦA⊕τ
e (x) ↓. With Uτ ⊆ Uσ ⊆ cl(Ce), some

W ∈ Ce must have τ ⊆ W . But then χB(x) = ΦA⊕W
e (x)↓= ΦA⊕τ

e (x).
To see (2), fix any W ∈ Ce with σ ⊆ W : such a W must exist, since Uσ ⊆

cl(Ce). Then we can take τ to be the restriction of this W to the use of the
computation ΦA⊕W

e (x) (or τ = σ if the use is < |σ|).
But now every Ce must be nowhere dense, since any σ satisfying (1) and (2)

would let us compute B from A: given x, just search for some τ ⊇ σ and some s
for which ΦA⊕τ

e,s (x)↓. By (2), our search would discover such a τ eventually, and
by (1) we would know χB(x) = ΦA⊕τ

e,s (x). Since A �≥T B, this is impossible. ��
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Finally, on a separate topic, it will be important for us to know that whenever
R is a semilocal subring of Q, we have HTP(R) ≤1 HTP(Q). Indeed, both the
Turing reduction and the 1-reduction are uniform in the complement. (The result
essentially follows from work of Julia Robinson in [8]. For a proof by Eisenträger,
Park, Shlapentokh, and the author, see [2].) Recall that the semilocal subrings of
Q are precisely those of the form RW where the set W is cofinite in P, containing
all but finitely many primes.

Proposition 1 (see Proposition 5.4 in [2]). There exists a computable func-
tion G such that for every n, every finite set A0 = {p1, . . . , pn} ⊂ P and every
f ∈ Z[X],

f ∈ HTP(RP−A0) ⇐⇒ G(f, 〈p1, . . . , pn〉) ∈ HTP(Q).

That is, HTP(RP−A0) is 1-reducible to HTP(Q) for all semilocal RP−A0 , uni-
formly in A0. ��
The proof in [2], using work from [3], actually shows how to compute, for every
prime p, a polynomial fp(Z,X1,X2,X3) such that for all rationals q, we have

q ∈ RP−{p} ⇐⇒ fp(q,X) ∈ HTP(Q).

2 Baire Category and HTP(Q)

For a polynomial f ∈ Z[X] and a subring RW ⊆ Q, there are three possibilities.
First, f may lie in HTP(RW ). If this holds for RW , the reason is finitary: W
contains a certain finite (possibly empty) subset of primes generating the denom-
inators of a solution. Second, there may be a finitary reason why f /∈ HTP(RW ):
there may exist a finite subset A0 of the complement W such that f has no solu-
tion in RP−A0 . For each finite A0 ⊂ P, the set HTP(RP−A0) is 1-reducible to
HTP(Q), by Proposition 1; indeed the two sets are computably isomorphic, with
a computable permutation of Z[X] mapping one onto the other. Therefore, the
existence of such a set A0 (still for one fixed f) is a Σ

HTP(Q)
1 problem.

The third possibility is that neither of the first two holds. An example is given
in [5], where it is shown that a particular polynomial f fails to lie in HTP(RW3),
where W3 is the set of all primes congruent to 3 modulo 4, yet that, for every
finite set V0 of primes, there exists some W disjoint from V0 with f ∈ HTP(RW ).
We consider sets such as this W3 to be on the boundary of f , in consideration of
the topology of the situation. The set A(f) = {W : f ∈ HTP(RW )} is open in
the usual topology on 2P, since, for any solution of f in RW and any σ ⊆ W long
enough to include all primes dividing the denominators in that solution, every
other V ⊇ σ will also contain that solution. Moreover, one can computably
enumerate the collection of those σ such that the basic open set Uσ = {W : σ ⊆
W} is contained within A(f). The set Int(A(f)) is similarly a union of basic
open sets, and these can be enumerated by an HTP(Q)-oracle, since HTP(Q)
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decides HTP(R) uniformly for every semilocal ring R. The boundary B(f) of f
remains: it contains those W which lie neither in A(f) nor in Int(A(f)). The
boundary can be empty, but need not be, as seen in the example mentioned
above.

It follows quickly from Baire category theory that the boundary set for a
polynomial f ∈ Z[X] must be nowhere dense. In general the boundary set ∂A
of a set A within a space S is defined to equal (S − Int(A) − Int(A)), and thus
is always closed.

Lemma 3. For every open set A in a Baire space S, the boundary set ∂A is
nowhere dense. In particular, for each f ∈ Z[X], the boundary set B(f) =
∂(A(f)) must be nowhere dense. Hence the entire boundary set

B = {W ⊆ P : (∃f ∈ Z[X]) W ∈ B(f)} = ∪f∈Z[X]B(f)

is meager.

Proof. Since A is open, every open subset V of the closure of ∂A (namely ∂A
itself) lies within the complement A, hence within Int(A), which is also disjoint
from ∂A. This proves that ∂A is nowhere dense. Hence B, the countable union
of such sets, is meager. ��

For a set W to fail to lie in B, it must be the case that for every polynomial
f , either f ∈ HTP(RW ) or else some finite initial segment of W rules out all
solutions to f . This is an example of the concept of genericity, common in both
computability and set theory, so we adopt the term here. With this notion, we
can show not only that HTP(RW ) ≤ W ⊕ HTP(Q) for all W in the comeager
set B, but indeed that the reduction is uniform on B.

Definition 2. A set W ⊆ P is HTP-generic if W /∈ B. In this case we will also
call the corresponding subring RW HTP-generic. By Lemma 3, HTP-genericity
is comeager.

Proposition 2. For every HTP-generic set W , HTP(RW ) ≡T W ⊕ HTP(Q),
via uniform Turing reductions. Hence there is a single Turing reduction Φ such
that the following set is comeager:

{W ⊆ P : ΦW⊕HTP(Q) = χHTP(RW )}.

Proof. Given f ∈ Z[X] as input, the program for Φ simply searches for either a
solution x to f = 0 in Q for which all primes dividing the denominators lie in
the oracle set W , or else a finite set A0 ⊆ W such that the HTP(Q) oracle, using
Proposition 1, confirms that f /∈ HTP(RP−A0). When it finds either of these,
it outputs the corresponding answer about membership of f in HTP(RW ). If
it never finds either, then W ∈ B(f), and so this process succeeds for every W
except those in the meager set B. (The reduction W ⊕ HTP(Q) ≤T HTP(RW )
was described in Sect. 1.) ��
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Corollary 1. For every set C ⊆ ω, the following are equivalent

1. C ≤T HTP(Q).
2. {W ⊆ P : C ≤T HTP(RW )} = 2P.
3. {W ⊆ P : C ≤T HTP(RW )} is not meager.

This opens a new possible avenue to a proof of undecidability of HTP(Q): one
need not address Q itself, but only show that for most subrings RW , HTP(RW )
can decide the halting problem (or some other fixed undecidable set C). Con-
structions in the style of [6, Theorem 1.3] offer an approach to the problem along
these lines: that theorem, proven by Poonen, shows that the set of subrings R
with ∅′ ≤T HTP(R) has size continuum and is large in certain other senses.
Poonen constructs decidable subsets T0, T1 ⊆ P, both of asymptotic density 0
within P, such that for every W ⊆ P with T0 ⊆ W and T1 ∩ W = ∅, the subring
RW has ∅′ ≤T HTP(RW ). This feels like a substantial collection of subrings,
but the conditions T0 ⊆ W and T1 ∩ W = ∅ each imply that this set of subrings
is nowhere dense, and therefore this set does not by itself enable us to apply
Corollary 1. Moreover, it is not clear that any of Poonen’s subrings need be
HTP-generic.

Proof. Trivially (1 =⇒ 2 =⇒ 3), since all W satisfy HTP(Q) ≤T HTP(RW ).
So assume (3). Then by Proposition 2, C ≤T W ⊕ HTP(Q) holds on a non-
meager set, as the intersection of a non-meager set with a comeager set cannot
be meager. So by Lemma 2, C ≤T HTP(Q). ��

Having examined classes of subsets of P defined by Turing reductions involv-
ing HTP(RW ), we now replace Turing reducibility by 1-reducibility and ask
similar questions about classes so defined. It is not known whether there exists a
subring R ⊆ Q for which ∅′ ≤T HTP(RW ) but ∅′ �≤1 HTP(RW ), and we have no
good candidates for such a subring. Ever since the original proof of undecidabil-
ity of Hilbert’s Tenth Problem in [1,4], every Turing reduction ever given from
the Halting Problem to any HTP(R) with R ⊆ Q has in fact been a 1-reduction.
Of course, if ∅′ ≤1 HTP(Q), then ∅′ ≤1 HTP(R) for all subrings R, so in some
sense Q itself is the “only” candidate.

We have a result for 1-reducibility analogous to Corollary 1, but the proof is
somewhat different.

Theorem 1. For every set C ⊆ ω with C �≤1 HTP(Q), the following class is
meager:

O = {W ⊆ P : C ≤1 HTP(RW )}.

Proof. One naturally views O as the union of countably many subclasses Oe =
{W ⊆ P : C ≤1 HTP(RW ) via ϕe}. Of course, for those e for which the e-th
Turing function ϕe is not total, this class is empty. We claim that if any one
of these Oe fails to be nowhere dense, then C ≤1 HTP(Q), contrary to the
assumption of the theorem.

Suppose that indeed Oe fails to be nowhere dense, and fix a σ for which
Uσ ⊆ cl(Oe). Let A0 = σ−1(0) contain those primes excluded from all W ∈ Uσ,
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and set R = R(P−A0). Now whenever n ∈ C and W ∈ Oe, the polynomial
ϕe(n) must lie in HTP(RW ). Since some W ∈ Oe lies in Uσ, we must have
ϕe(n) ∈ HTP(R), because RW ⊆ R whenever W ∈ Uσ. On the other hand,
suppose n /∈ C. If R contained a solution to the polynomial ϕe(n), then some
τ ⊇ σ would by itself invert the finitely many primes required to generate this
solution, and thus we would have Uτ ∩ Oe = ∅. With Uσ ⊆ cl(Oe), this is
impossible, and so, whenever n /∈ C, we have ϕe(n) /∈ HTP(R).

Thus R itself lies in Oe, as ϕe is a 1-reduction from C to HTP(R). But R is
semilocal, inverting all primes p except those with σ(p) = 0. By Proposition 1,
we have HTP(R) ≤1 HTP(Q), and so C ≤1 HTP(Q). ��

Now we prove two similar results, one about subrings of Q which admit
diophantine models and one about subrings which admit existential definitions
of the integers within the subring. In both cases, the result is a sort of zero-one
law: that the given phenomenon must either hold almost everywhere (i.e., on a
comeager set of subrings) or almost nowhere (i.e., on a meager set). We begin
with the diophantine models.

Definition 3. In a ring R, a diophantine model of Z consists of three polynomi-
als h, h+, and h×, with h ∈ R[X1, . . . , Xn,Y ] and h+, h× ∈ R[X1, . . . , X3n,Y ]
(for some n), such that the set

{x ∈ Rn : (∃y ∈ R<ω) h(x,y) = 0}
(equivalently, {x ∈ Rn : h(x,Y ) ∈ HTP(R)}) is isomorphic to the structure
(Z,+, ·) under the binary operations whose graphs are defined by

{(x1,x2,x3) ∈ R3n : h+(x1,x2,x3,Y ) ∈ HTP(R)}
for addition and the corresponding set with h× for multiplication.

If a computable ring R admits a diophantine model of Z, then HTP(Z) can be
coded into HTP(R), and so ∅′ ≡1 HTP(Z) ≤1 HTP(R). For subrings RW of Q for
which ∅′ �≤T W , this is the only known method of showing that ∅′ ≤T HTP(RW )
(apart from the original proof by Matiyasevich, Davis, Putnam, and Robinson
for the case W = ∅, of course, which is what allows this method to succeed).

Definition 4. D = {W ⊆ P : RW admits a diophantine model of Z}.
In this section we address the question of the size of the class D. The main

result fails to resolve this question, but shows it to have an “all-or-nothing”
character.

Theorem 2. The class D is non-meager if and only if there exists a particular
triple (h, h+, h×) of polynomials over Z and a finite binary string σ ∈ 2<P such
that, for every HTP-generic V ∈ Uσ, RV admits a diophantine model of Z via
these three polynomials.

Moreover, if D is non-meager, then P ∈ D (i.e., Q admits a diophantine
model of Z).
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Proof. For each triple h = (h, h+, h×) of polynomials of appropriate lengths over
Z, we set Dh to contain those W for which h defines a diophantine model of Z
within RW . If each Dh is nowhere dense, their countable union D is meager.

Now suppose that D is non-meager, so some class Dh fails to be nowhere
dense. Then there must be a string σ such that Uσ ⊆ cl(Dh). Using this σ and
this h, we now prove the main claim: all W ∈ Uσ with HTP-generic RW lie in
Dh. Let R0 = Rσ−1(1) and R1 = RP−σ−1(0) be the smallest and largest subrings
(under ⊆) in Uσ, so R0 is finitely generated and R1 is semilocal.

Fix a single W ⊃ σ with W ∈ Dh, and fix the tuples x0 and x1 from RW

which represent the elements 0 and 1 in the diophantine model defined in RW

by h. It follows that h×(x0,x0,x0,Y ) ∈ HTP(RW ) and h×(x1,x1,x1,Y ) ∈
HTP(RW ). Now if any other tuple x from R1 had h(x,Y ) ∈ HTP(R1) and
h×(x,x,x,Y ) ∈ HTP(R1), then we could set τ = σ 1̂11 · · · 1 to contain enough
primes that Rτ−1(1) would contain x, x0, and x1. This would mean that h
could not define a diophantine model of Z in any RV with V ∈ Uτ , contrary
to hypothesis. Therefore, no other x from R1 can do this. Now suppose that
x0 does not lie within R0. In this case, some extension ρ = σ 0̂00 · · · 0 would
exclude enough primes to ensure that x0 does not lie in RP−ρ−1(0), and then no
τ ⊇ ρ would admit a diophantine model via h, since no other tuple with the right
properties lies in R1. Again, this contradicts our hypothesis that Uσ ⊆ cl(Dh),
since Dh ∩ Uρ would be empty, and so x0 lies in R0. Similarly so does x1.

Now one proceeds by induction on the subsequent elements of the diophantine
model in R1. Some tuple x2 from RW must satisfy h(x2,Y ) ∈ HTP(RW ) and
h+(x1,x1,x2,Y ) ∈ HTP(RW ), and by the same arguments as above, we see that
x2 is the only tuple in R1 with this property, and then that x2 actually lies in R0.
Likewise, x−1 must satisfy h(x−1,Y ) ∈ HTP(RW ) and h+(x1,x−1,x0,Y ) ∈
HTP(RW ), and again this forces x−1 to lie in R0 and to be the unique tuple
with these properties in R1.

Continuing this induction, we see that every tuple in the domain of the
diophantine model of Z in RW actually lies in R0, and hence in every RW

with W ∈ Uσ; and moreover that these are the only tuples x in R1 for which
h(x,Y ) ∈ HTP(R1). Likewise, if some xm, xn and xp (representing m, n, and
p in the diophantine model) satisfy h+(xm,xn,xp,Y ) ∈ HTP(R1), then for
some k, τ = σ 1̂k is long enough to ensure that every W extending τ must have
h+(xm,xn,xp,Y ) ∈ HTP(RW ). But some such W lies in Dh, so we must have
m+n = p. The same works for h×, so h defines a diophantine model of Z in R1.

It is not clear whether h defines a diophantine model in the subring R0

(which, being finitely generated, lies in B). The domain elements of the model
in R1 all lie in R0, but the witnesses might not. However, suppose that V ∈ Uσ

is HTP-generic, and fix any domain element x. Let τ = V �m, for any m ≥ |σ|.
Then some U ⊇ τ lies in Dh, and so some extension of τ yields a solution
to h(x,Y ). Since V is HTP-generic (that is, V /∈ B), this forces h(x,Y ) ∈
HTP(RV ). Likewise, for each fact coded by h+ or h× about domain elements of
the model, some extension of V �m must yield a witness to that fact, and therefore
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RV itself contains such a witness. So h defines this same diophantine model in
every HTP-generic subring RV with V ∈ Uσ, as required by the theorem.

Cases (1) and (2) of the theorem cannot both hold, because under (2), Uσ ∩B
would be a nonmeager subset of D. Moreover, the 1-reduction HTP(R1) ≤1

HTP(Q) given in [2, Proposition 5.4] has sufficient uniformity that the images
of h, h+, and h× under this reduction define a diophantine model of Z inside
Q. (Specifically, h(X,Y ) maps to the sum of h2 with several other squares of
polynomials in such a way as to guarantee that all solutions use values from
R1 for the variables X and Y ; likewise with h+ and h×.) This proves the final
statement of the theorem. ��

Now we continue with the question of existential definability of the integers.

Definition 5. In a ring R, a polynomial g ∈ Z[X,Y ] existentially defines Z if,
for every q ∈ R,

q ∈ Z ⇐⇒ g(q,Y ) ∈ HTP(R).

Z is existentially definable in R if such a polynomial g exists.

A ring in which Z is existentially definable must admit a very simple diophan-
tine model of Z, given by the polynomial g along with h+ = X1 + X2 − X3 and
h× = X1X2 − X3. The question of definability of Z in the field Q was originally
answered by Julia Robinson (see [8]), who gave a Π4 definition. Subsequent work
by Poonen [7] and then Koenigsmann [3] has resulted in a Π1 definition of Z in
Q, but it remains unknown whether any existential formula defines Z there.

Definition 6. E is the class of subrings of Q where Z is existentially definable:

E = {W ⊆ P : Z is existentially definable inRW }.

We now address the question of the size of the class E . As with D, we show
E to be either very large or very small, in the sense of Baire category.

Theorem 3. The following are equivalent.

1. The class E is not meager.
2. There is a σ ∈ 2<P, and a single polynomial g which existentially defines Z

in all HTP-generic subrings RV with V ∈ Uσ.
3. P ∈ E; that is, Z is existentially definable in Q.
4. There is a single existential formula which defines Z in every subring of Q.

Proof. The proof that (1) =⇒ (2) =⇒ (3) proceeds along the same lines as
that of Theorem 2, with Eg as the class of those W for which the polynomial g
existentially defines Z within RW . If every one of these classes is nowhere dense,
then their countable union E is meager. Otherwise one proves (2), and from
that (3), by a simplification of the same method as before, with no induction
required. To see that (3) implies (4), notice that if Z is defined in Q by the
formula ∃Y f(X,Y ) = 0, and d is the total degree of f , then the formula

∃Y ∃Z [Zd · f

(

X,
Y1

Z
, . . . ,

Yn

Z

)

= 0 & Z > 0]

defines Z in RW . ��
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It is possible to turn Theorem 2 into an equivalence analogous to that in
Theorem 3, with the third condition stating that P ∈ D. As far as we know,
however, it is necessary to consider diophantine interpretations in subrings RW ,
rather than diophantine models, in order to accomplish this.

3 Measure Theory

Normally there is a strong connection between measure theory and Baire cat-
egory theory. Each defines a certain Σ-ideal of sets to be “small”: the sets of
measure 0, and the meager sets. In Cantor space, neither of these properties
implies the other, but empirically they appear closely connected, especially when
the sets are given by natural definitions: sets of measure 0 are often meager, and
vice versa. (Exceptions to this principle do exist, however, and another difference
was mentioned in the context of Lemma 1.)

Our results here rely heavily on the simple Lemma 3, stating that the bound-
ary set B(f) of a polynomial f is nowhere dense. Most of our subsequent results
have measure-theoretic analogues which would go through fairly easily, provided
that these sets B(f) also have measure 0. However, determining the measure
of the boundary set of a polynomial appears to be a nontrivial problem. It is
unknown whether there exists any polynomial f for which μ(B(f)) > 0. Indeed,
in work to appear elsewhere, the author has shown that if μ(B(f)) = 0 for all
f ∈ Z[X], then there is no existential definition of the set Z within the field Q.

Moreover, if an f exists with μ(B(f)) > 0, it is unclear what other constraints
on the real number μ(B(f)) exist, apart from the computability-theoretic upper
bound given by its definition as μ(B(f)). Could such a number be transcen-
dental? Or noncomputable? If not, is there an algorithm computing μ(B(f))
uniformly in f? These appear to be challenging questions, often with a more
number-theoretic flavor than most of this article. Resolving them might make
it possible to determine whether Hilbert’s Tenth Problem on subrings of Q has
measure-theoretic zero-one laws similar to those proven here for Baire category.
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Abstract. We identify computability-theoretic properties enabling us
to separate various statements about partial orders in reverse mathe-
matics. We obtain simpler proofs of existing separations, and deduce
new compound ones. This work is part of a larger program of unifica-
tion of the separation proofs of various Ramsey-type theorems in reverse
mathematics in order to obtain a better understanding of the combi-
natorics of Ramsey’s theorem and its consequences. We also answer a
question of Murakami, Yamazaki and Yokoyama about pseudo Ramsey’s
theorem for pairs.

1 Introduction

Many theorems of “ordinary” mathematics are of the form

(∀X)[Φ(X) → (∃Y )Ψ(X,Y )]

where Φ and Ψ are arithmetic formulas. They can be seen as mathematical prob-
lems, whose instances are sets X such that Φ(X) holds, and whose solutions
to X are sets Y such that Ψ(X,Y ) holds. For example, König’s lemma asserts
that every infinite, finitely branching tree admits an infinite path through it.

There exist many ways to calibrate the strength of a mathematical problem.
Among them, reverse mathematics is a vast foundational program that seeks
to determine the weakest axioms necessary to prove ordinary theorems. It uses
the framework of subsystems of second-order arithmetic, within the base theory
RCA0, which can be thought of as capturing computable mathematics. An ω-
structure is a structure whose first-order part consists of the standard integers.
The ω-models of RCA0 are those whose second-order part is a Turing ideal, that
is, a collection of sets S downward-closed under the Turing reduction and closed
under the effective join.

In this setting, a ω-model M satisfies a mathematical problem P if every P-
instance in M has a solution in M. A standard way of proving that a problem P
does not imply another problem Q consists of creating an ω-model M satisfying
P but not Q. Such a model is usually constructed by taking a ground Turing ideal,
and extending it by iteratively adding solutions to its P-instances. However, while
taking the closure of the collection M ∪ {Y } to obtain a Turing ideal, one may
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add solutions to Q-instances as well. The whole difficulty of this construction
consists of finding the right computability-theoretic notion preserved by P but
not by Q.

We conduct a program of identification of the computability-theoretic prop-
erties enabling us to distinguish various Ramsey-type theorems in reverse math-
ematics, but also under computable and Weihrauch reducibilities. This program
puts emphasis on the interplay between computability theory and reverse math-
ematics, the former providing tools to separate theorems in reverse mathemat-
ics over standard models, and the latter exhibiting new computability-theoretic
properties.

Among the theorems studied in reverse mathematics, the ones coming from
Ramsey’s theory play a central role. Their strength are notoriously hard to gauge,
and required the development of involved computability-theoretic frameworks.
Perhaps the most well-known example is Ramsey’s theorem.

Definition 1 (Ramsey’s theorem). A subset H of ω is homogeneous for a
coloring f : [ω]n → k (or f -homogeneous) if each n-tuples over H are given
the same color by f . RTn

k is the statement “Every coloring f : [ω]n → k has an
infinite f-homogeneous set”.

Jockusch [11] conducted a computational analysis of Ramsey’s theorem. He
proved in particular that RTn

k implied the existence of the halting set whenever
n ≥ 3. There has been a lot of literature around the strength of Ramsey’s theorem
for pairs [4,6,9,19] and its consequences [3,5,10]. We focus on some mathematical
statements about partial orders which are consequences of Ramsey’s theorem for
pairs.

Definition 2 (Chain-antichain). A chain in a partial order (P,≤P ) is a set
S ⊆ P such that (∀x, y ∈ S)(x ≤P y∨y ≤P x). An antichain in P is a set S ⊆ P
such that (∀x, y ∈ S)(x �= y → x|P y) (where x|P y means that x �P y ∧ y �P x).
CAC is the statement “every infinite partial order has an infinite chain or an
infinite antichain.”

The chain-antichain principle was introduced by Hirschfeldt and Shore [10]
together with the ascending descending sequence (ADS). They studied exten-
sively cohesive and stable versions of the statements, and proved that CAC is
computationally weak, in that it does not even imply the existence of a diago-
nally non-computable function. However, their proof has an ad-hoc flavor, in that
it is a direct separation involving the two statements. Later, Lerman et al. [13]
separated ADS from CAC over ω-models by using an involved iterated forcing
argument.

In this paper, we revisit the two proofs and emphasis on the combinatorial
nature of the principles by identifying the computability-theoretic properties
separating them. Those properties happen to be very natural and coincide on co-
c.e. sets to some well-known computability-theoretic notions, namely, immunity
and hyperimmunity. The proof of the separation of ADS from CAC is significantly
simpler and more modular, as advocated by the author in [16].
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1.1 Notation and Definitions

Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈ B)[x <
y] and by A ⊆∗ B the formula (∀∞x ∈ A)[x ∈ B], meaning that A is included
in B up to finitely many elements. A Mathias condition is a pair (F,X) where
F is a finite set, X is an infinite set and F < X. A condition (F1,X1) extends
(F,X) (written (F1,X1) ≤ (F,X)) if F ⊆ F1, X1 ⊆ X and F1�F ⊂ X. A set G
satisfies a Mathias condition (F,X) if F ⊂ G and G�F ⊆ X.

2 Preservation of Properties for Co-c.e. Sets

Ramsey’s theorem for k colors has a deeply disjunctive nature. One cannot know
in a finite amount of time whether a coloring will admit an infinite homogeneous
set for a fixed color, and one must therefore build multiple homogeneous sets
simultaneously, namely, one for each color. This disjunction was exploited by
the author to show for example that ADS does not preserve 2 hyperimmunities
simultaneously, whereas the Erdős-Moser theorem does [16]. This idea was also
used in the context of computable reducibility to show that RT2

k+1 does not
computably reduce to RT2

k whenever k ≥ 1, by showing that RT2
k preserves

2 among k + 1 hyperimmunities simultaneously whereas RT2
k+1 does not [18].

In this section, we shall see that this disjunctive flavor disappears whenever
considering co-c.e. sets. In particular, RT2

2 admits preservation of countably many
hyperimmune co-c.e. sets simultaneously.

Definition 3 (Hyperimmunity). An array is a sequence of mutually dis-
joint finitely coded sets. A set A is X-hyperimmune if for every X-c.e.
array F0, F1, . . . , there is some i such that Fi ∩ A = ∅.

Equivalently, a set is X-hyperimmune if its principal function is not dom-
inated by any X-computable function, where the principal function pA of a
set A = {x0 < x1 < . . . } is defined by pA(i) = xi.

Definition 4 (Preservation of hyperimmunity for co-c.e. sets). A Π1
2

statement P admits preservation of hyperimmunity for co-c.e. sets if for every
set Z, every sequence of Z-co-c.e. Z-hyperimmune sets A0, A1, . . . and every
P-instance X ≤T Z, there is a solution Y to X such that the A’s are Y ⊕ Z-
hyperimmune.

Hirschfeldt and Shore [10] proved that CAC is equivalent to the existence
of homogeneous sets for semi-transitive colorings. A coloring f : [N]2 → 2 is
semi-transitive if whenever f(x, y) = 1 and f(y, z) = 1, then f(x, z) = 1 for
x < y < z.

Theorem 5. CAC admits preservation of hyperimmunity for co-c.e. sets.
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Proof. Fix a set Z and a countable sequence of Z-co-c.e. Z-hyperimmune sets
A0, A1, . . . Let f : [ω]2 → 2 be a Z-computable semi-transitive coloring. We shall
assume that there is no infinite Z-computable f -homogeneous set for color 0,
otherwise we are done. We will build an infinite set G f -homogeneous for color 1
such that the A’s are G⊕Z-hyperimmune. The construction is done by a Mathias
forcing (F,X), where F is a finite set, X is an infinite Z-computable set such that
max(F ) < min(X), and for every x ∈ X, F ∪ {x} is f -homogeneous for color 1.
The condition extension is the usual Mathias extension. A set G satisfies (F,X)
if it satisfies the Mathias condition (F,X) and is f -homogeneous for color 1.
Lemma 6 shows that every sufficiently generic filter for this notion of forcing
yields an infinite set.

Lemma 6. Every condition c = (F,X) has an extension (E, Y ) such that
|E| > |F |.

In what follows, we say that a condition c forces a formula property ϕ(G) if
ϕ(G) holds for every set G satisfying c.

Lemma 7. For every condition c = (F,X) and every pair of indices e, i, there
is an extension forcing ΦG⊕Z

e not to dominate pAi
.

Proof. Define the Z-partial computable function h which on input x, searches
for a finite set Ex ⊆ X f -homogeneous for color 1 such that Φ

(F∪Ex)⊕Z
e (x) ↓. If

found, h(x) = Φ
(F∪Ex)⊕Z
e (x), otherwise h(x) ↑. We have two cases.

– Case 1: h is total. By Z-hyperimmunity of pAi
, there are infinitely many x

such that h(x) < pAi
(x). If there is such an x such that the set Y = {y ∈

X : (∀z ∈ Ex)f(z, y) = 1} is infinite, then the condition (F ∪ Ex, Y ) is an
extension of c forcing ΦG⊕Z

e (x) < pAi
(x). If there is no such x, then by semi-

transitivity of f , for every x such that h(x) < pAi
(x), for almost every y ∈ X,

f(max(Ex), y) = 0. Since Ai is co-c.e., one can find a Z-computable infinite
subset Y of {max(Ex) : h(x) < pAi

(x)}. The set Y is Z-computable and limit-
homogeneous for color 0, and therefore computes an infinite f -homogeneous
set for color 0, contradicting our assumption.

– Case 2: there is some x such that h(x) ↑. By definition of h, the condition c
already forces ΦG⊕Z

e (x) ↑. ��
Corollary 8. RT2

2 admits preservation of hyperimmunity for co-c.e. sets.

Proof. Bovykin and Weiermann [2] studied the reverse mathematics of the
Erdős-Moser theorem (EM) and proved that RCA0 � RT2

2 ↔ [CAC ∧ EM]. The
author proved in [16] that EM admits preservation of hyperimmunity. Together
with Theorem 5, we deduce that CAC ∧ EM, hence RT2

2, admits preservation of
hyperimmunity for co-c.e. sets.
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3 CAC and Constant-Bound Immunity

Hirschfeldt and Shore [10] separated CAC from DNC in reverse mathematics
by a direct construction. DNC is the statement asserting, for every set X, the
existence of a function f such that f(e) �= ΦX

e (e) for every e. In this section,
we extract the core of the combinatorics of their forcing argument to exhibit a
computability-theoretic property separating the two notions, namely, constant-
bound immunity.

Definition 9 (Constant-bound immunity). A k-enumeration (k-enum) of
a set A is an infinite sequence of k-sets F0 < F1 < . . . such that for every i ∈
ω, Fi ∩ A �= ∅. A constant-bound enumeration (c.b-enum) of a set A is a k-
enumeration of A for some k ∈ ω. A set A is k-immune (c.b-immune) relative
to X if it admits no X-computable k-enumeration (c.b-enumeration).

In particular, 1-immunity coincides with the standard notion of immunity.
Also note that one can easily create a c.b-immune set computing no effectively
immune set. The following lemma shows that c.b-immunity and immunity coin-
cide for co-c.e. sets.

Lemma 10. An X-co-c.e. set A is c.b-immune relative to X iff it is X-immune.

Definition 11 (Preservation of c.b-immunity). A Π1
2 statement P admits

preservation of c.b-immunity if for every set Z, every set A which is c.b-immune
relative to X, and every P-instance X ≤T Z, there is a solution Y to X such
that A is c.b-immune relative to Y ⊕ Z.

We can easily relate the notion of preservation of c.b-immunity with the
existing notion of constant-bound enumeration avoidance defined by Liu [14] to
separate RT2

2 from WWKL over RCA0.

Lemma 12. If P admits preservation of c.b-immunity, then it admits constant-
bound enumeration avoidance.

Theorem 13. CAC admits preservation of c.b-immunity.

Proof. Let A be a set c.b-immune relative to some set Z, and let f : [ω]2 → 2
be a Z-computable semi-transitive coloring. Assume that there is no infinite f -
homogeneous set H such that A is c.b-immune relative to H⊕Z, otherwise we are
done. We will build two infinite sets G0 and G1, such that Gi is f -homogeneous
for color i for each i < 2, and such that A is c.b-immune relative to Gi ⊕ Z for
some i < 2.

The construction is done by a variant of Mathias forcing (F0, F1,X), where F0

and F1 are finite sets, X is infinite set such that max(F0, F1) < min(X), and
A is c.b-immune relative to X ⊕ Z. Moreover, we require that for every i < 2
and every x ∈ X, Fi ∪{x} is f -homogeneous for color i. A condition (E0, E1, Y )
extends (F0, F1,X) if (Ei, Y ) Mathias extends (Fi,X) for each i < 2. A pair
of sets G0, G1 satisfies a condition c = (F0, F1,X) if Gi is f -homogeneous for
color i and satisfies the Mathias condition (Fi,X) for each i < 2.



358 L. Patey

Lemma 14. For every condition c = (F0, F1,X) and every i < 2, there is an
extension (E0, E1, Y ) of c such that |Ei| > |Fi|.

In what follows, we interpret Φ0, Φ1, . . . as Turing functionals out-
putting non-empty finite sets such that if ΦX

e (x) and ΦX
e (x + 1) both halt,

max(ΦX
e (x)) < min(ΦX

e (x + 1)). We want to satisfy the following requirements
for each e0, k0, e1, k1 ∈ ω:

Re0,k0,e1,k1 : RG0
e0,k0

∨ RG1
e1,k1

where RG
e,k is the requirement

(∃x)
(
ΦG⊕Z

e (x) ↑ ∨|ΦG⊕Z
e (x)| > k ∨ ΦG⊕Z

e (x) ∩ A = ∅)

In other words, RG
e,k asserts that ΦG⊕Z

e is not a k-enumeration of A. A condition c
forces a formula ϕ(G0, G1) if ϕ(G0, G1) holds for every pair of infinite sets G0, G1

satisfying c.

Lemma 15. For every condition c and every vector of indices e0, k0, e1, k1 ∈ ω,
there is an extension d of c forcing Re0,k0,e1,k1.

Proof. Fix a condition c = (F0, F1,X), and let P0, P1, . . . be an X ⊕ Z-
computable sequence of sets where Pn = Φ

(F0∪E0)⊕Z
e0 (x0)∪Φ

(F1∪E1)⊕Z
e1 (x1) for a

pair of sets E1 < E0 ⊆ X and some x0, x1 ∈ ω such that E0 is f -homogeneous
for color 0, E1 ∪ {y} is f -homogeneous for color 1 for each y ∈ E0, and for
each i < 2, max(Pn−1) < min(Φ(Fi∪Ei)⊕Z

ei (xi)) and |Φ(Fi∪Ei)⊕Z
ei (xi)| ≤ ki. We

have two cases.

– Case 1: the sequence of the P ’s is finite and is defined, say to level n − 1.
If there is a pair of infinite sets G0, G1 satisfying c and some x1 ∈ ω such
that ΦG1⊕Z

e1
(x1) ↓, max(Pn−1) < min(ΦG1⊕Z

e1
(x1)), and |ΦG1⊕Z

e1
(x1)| ≤ k1,

then let E1 ⊆ G1 be such that F1 ∪ E1 is an initial segment of G1 for which
Φ
(F1∪E1)⊕Z
e1 (x1) ↓. The set Y = {y ∈ X : E1∪{y}isf -homogeneous for color 1}

is a superset of G1, hence is infinite. The condition d = (F0, F1 ∪ E1, Y ) is
an extension of c forcing RG0

e0,k0
, hence forcing Re0,k0,e1,k1 . If there is no such

pair of infinite sets G0, G1, then the condition c already forces RG1
e1,k1

, hence
Re0,k0,e1,k1.

– Case 2: the sequence of the P ’s is infinite. By c.b-immunity of A relative
to X⊕Z, Pn∩A = ∅ for some n ∈ ω. Let E1 < E0 ⊆ X and x0, x1 ∈ ω witness
the existence of Pn. If Y0 = {y ∈ X : E0 ∪ {y}isf -homogeneous for color 1}
is infinite, then the condition (F0 ∪ E0, F1, Y0) is an extension of c forcing
RG0

e0,k0
. If Y0 is finite, then for almost every y ∈ X, there is some xy ∈ E0

such that f(xy, y) = 1, and by transitivity of f for color 1, E1 ∪ {y} is f -
homogeneous for color 1. Indeed, E1 is f -homogeneous for color 1 and for
each x ∈ E1, f(x, xy) = f(xy, y) = 1. In this case, (F0, F1 ∪ E1, Y1) is an
extension of c forcing RG1

e1,k1
, for some Y1 =∗ X. In both cases, there is an

extension of c forcing Re0,k0,e1,k1.
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This completes the proof of Theorem 13. ��
Theorem 16. DNC does not admit preservation of c.b-immunity.

Proof (Proof sketch). Let μ∅′ be the modulus function of ∅′, that is, such
that μ∅′(x) is the minimum stage s at which ∅′

s�x = ∅′�x.
Computably split ω into countably many columns X0,X1, . . . of infinite

size. For example, set Xi = {〈i, n〉 : n ∈ ω} where 〈·, ·〉 is a bijective func-
tion from ω2 to ω. For each i, let Fi be the set of the μ∅′(i) first elements
of Xi. The sequence F0, F1, . . . is ∅′-computable. By a simple finite injury pri-
ority argument (see appendix), one can construct a c.e. set W such that the Δ0

2

set A =
⋃

i Fi � W is c.b-immune, and such that |Xi ∩ W | ≤ i. We claim that
every DNC function computes an infinite subset of A.

Let f be any DNC function. By a classical theorem about DNC functions
(see Bienvenu et al. [1] for a proof), f computes a function g(·, ·, ·) such that
whenever |We| ≤ n, then g(e, n, i) ∈ Xi�We. For each i, let ei be the index of
the c.e. set Wei

= W ∩ Xi, and let ni = g(ei, i, i). Since |Xi ∩ W | ≤ i, |Wei
| ≤ i,

hence ni = g(ei, i, i) ∈ Xi � Wei
= Xi�W . We then have two cases.

– Case 1: ni ∈ Fi for infinitely many i’s. One can f -computably find infinitely
many of them since μ∅′ is left-c.e. and the sequence of the n’s is f -computable.
Therefore, one can f -computably find an infinite subset of

⋃
i Fi�W = A.

– Case 2: ni ∈ Fi for only finitely many i’s. Then the sequence of the ni’s
dominates the modulus function μ∅′ , and therefore computes the halting set.
Since the set A is Δ0

2, f computes an infinite subset of A. ��

Corollary 17 (Hirschfeldt and Shore [10]). RCA0 ∧ CAC � DNC.

4 ADS and Dependent Hyperimmunity

Lerman et al. [13] separated the ascending descending sequence principle from
a stable version of CAC by using a very involved iterated forcing argument.
According to our previous simplification of their general framework [16], we
reformulate their proof in terms of preservation of dependent hyperimmunity,
and extend it to pseudo Ramsey’s theorem for pairs.

Definition 18 (Ascending descending sequence). Given a linear order
(L,<L), an ascending (descending) sequence is a set S such that for every x <N

y ∈ S, x <L y (x >L y). ADS is the statement “Every infinite linear order admits
an infinite ascending or descending sequence”.

Pseudo Ramsey’s theorem for pairs was introduced by Friedman [7] and later
studied by Friedman and Pelupessy [8], and Murakami et al. in [15] who proved
that it is between the chain antichain principle and the ascending descending
sequence principle over RCA0. Steila [20] and the author [17] independently
proved that it is actually equivalent to ADS.
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Definition 19 (Pseudo Ramsey’s theorem). A set H = {x0 < x1 < . . . }
is pseudo-homogeneous for a coloring f : [N]n → k if f(xi, . . . , xi+n−1) =
f(xj , . . . , xj+n−1) for every i, j ∈ N. psRTn

k is the statement “Every color-
ing f : [N]n → k has an infinite pseudo-homogeneous set”.

Definition 20 (Dependent hyperimmunity). A formula ϕ(U, V ) is essen-
tial if for every x ∈ ω, there is a finite set R > x such that for every y ∈ ω,
there is a finite set S > y such that ϕ(R,S) holds. A pair of sets A0, A1 ⊆ ω

is dependently X-hyperimmune if for every essential Σ0,X
1 formula ϕ(U, V ),

ϕ(R,S) holds for some R ⊆ A0 and S ⊆ A1.

In particular, if the pair A0, A1 is dependently hyperimmune, then A0 and A1

are both hyperimmune.

Definition 21 (Preservation of dependent hyperimmunity). A Π1
2 state-

ment P admits preservation of dependent hyperimmunity if for every set Z,
every pair of dependently Z-hyperimmune sets A0, A1 ⊆ ω and every P-
instance X ≤T Z, there is a solution Y to X such that A0, A1 are dependently
Y ⊕ Z-hyperimmune.

A partial order (P,≤P ) is stable if either (∀i ∈ P )(∃s)[(∀j > s)(j ∈ P →
i ≤P j) ∨ (∀j > s)(j ∈ P → i |P j)] or (∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i ≥P

j) ∨ (∀j > s)(j ∈ P → i |P j)]. SCAC is the restriction of CAC to stable partial
orders. A simple finite injury priority argument shows that SCAC does not admit
preservation of dependent hyperimmunity.

Theorem 22. There exists a computable, stable semi-transitive coloring f :
[ω]2 → 2 such that the pair A0, A1 is dep. hyperimmune, where Ai = {x :
lims f(x, s) = i}.
Corollary 23. SCAC does not admit preservation of dependent hyperimmunity.

Proof. Let f : [ω]2 → 2 be the coloring of Theorem 22. By construction, the
pair A0, A1 is dependently hyperimmune, where Ai = {x : lims f(x, s) = i}.
Let H be an infinite f -homogeneous set. In particular, H ⊆ A0 or H ⊆ A1.
We claim that the pair A0, A1 is not dependently H-hyperimmune. The Σ0,H

1

formula ϕ(U, V ) defined by U �= ∅ ∧ V �= ∅ ∧ U ∪ V ⊆ H is essential since H is
infinite. However, if there is some R ⊆ A1 and S ⊆ A0 such that ϕ(R,S) holds,
then H ∩ A0 �= ∅ and H ∩ A1 �= ∅, contradicting the choice of H. Therefore
A0, A1 is not dependently H-hyperimmune. Hirschfeldt and Shore [10] proved
that SCAC is equivalent to stable semi-transitive Ramsey’s theorem for pairs
over RCA0. Therefore SCAC does not admit preservation of dependent hyperim-
munity. ��

We will now prove the positive preservation result.
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Theorem 24. For every k ≥ 2, psRT2
k admits preservation of dep. hyperimmu-

nity.

Proof. The proof is done by induction over k ≥ 2. Fix a pair of sets A0, A1 ⊆ ω
dependently Z-hyperimmune for some set Z. Let f : [ω]2 → k be a Z-computable
coloring and suppose that there is no infinite set H over which f avoids at least
one color, and such that the pair A0, A1 is dependently H ⊕ Z-hyperimmune,
as otherwise, we are done by induction hypothesis. We will build k infinite
sets G0, . . . , Gk−1 such that Gi is pseudo-homogeneous for f with color i for
each i < k and such that A0, A1 is dependently Gi ⊕ Z-hyperimmune for
some i < k. The sets G0, . . . , Gk−1 are built by a variant of Mathias forcing
(F0, . . . , Fk−1,X) such that

(i) Fi ∪ {x} is pseudo-homogeneous for f with color i for each x ∈ X
(ii) X is an infinite set such that A0, A1 is dependently X ⊕ Z-hyperimmune

A condition d = (H0, . . . , Hk−1, Y ) extends c = (F0, . . . , Fk−1,X) (written d ≤
c) if (Hi, Y ) Mathias extends (Fi,X) for each i < k. A tuple of sets G0, . . . , Gk−1

satisfies c if for every n ∈ ω, there is an extension d = (H0, . . . , Hk−1, Y ) of c
such that Gi�n ⊆ Hi for each i < k. Informally, G0, . . . , Gk−1 satisfy c if the sets
are generated by a decreasing sequence of conditions extending c. In particular,
Gi is pseudo-homogeneous for f with color i and satisfies the Mathias condi-
tion (Fi,X). The first lemma shows that every sufficiently generic filter yields a
k-tuple of infinite sets.

Lemma 25. For every condition c = (F0, . . . , Fk−1,X) and every i < k, there
is an extension d = (H0, . . . , Hk−1, Y ) of c such that |Hi| > |Fi|.

Fix an enumeration ϕ0(G,U, V ), ϕ1(G,U, V ), . . . of all Σ0,Z
1 formulas. We

want to satisfy the following requirements for each e0, . . . , ek−1 ∈ ω:

R�e : RG0
e0

∨ . . . ∨ RGk−1
ek−1

where RG
e is the requirement “ϕe(G,U, V ) essential → ϕe(G,R, S) for some R ⊆

A0 and S ⊆ A1”. We say that a condition c forces R�e if R�e holds for every k-tuple
of sets satisfying c. Note that the notion of satisfaction has a precise meaning
given above.

Lemma 26. For every condition c and every k-tuple of indices e0, . . . , ek−1 ∈ ω,
there is an extension d of c forcing R�e.

Proof. Fix a condition c = (F0, . . . , Fk−1,X). Let ψ(U, V ) be the Σ0,X⊕Z
1 for-

mula which holds if there is a k-tuple of sets E0, . . . , Ek−1 ⊆ X and a z ∈ X
such that for each i < k,

(i) z > max(Ei)
(ii) Fi ∪ Ei ∪ {z} is pseudo-homogeneous for color i.
(iii) ϕei

(Fi ∪ Ei, Ui, Vi) holds for some Ui ⊆ U and Vi ⊆ V
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Suppose that c does not force R�e, otherwise we are done.
We claim that ψ is essential. Since c does not force R�e, there is a k-tuple

of infinite sets G0, . . . , Gk−1 satisfying c and such that ϕei
(Gi, U, V ) is essen-

tial for each i < k. Fix some x ∈ ω. By definition of being essential, there
are some finite sets R0, . . . , Rk−1 > x such that for every y ∈ ω, there are
finite sets S0, . . . , Sk−1 > y such that ϕei

(Gi, Ri, Si) holds for each i < k.
Let R =

⋃
Ri and fix some y ∈ ω. There are finite sets S0, . . . , Sk−1 > y such

that ϕei
(Gi, Ri, Si) holds for each i < k. Let S =

⋃
Si. By continuity, there are

finite sets E0, . . . , Ek−1 such that Gi�max(Ei) = Fi ∪Ei and ϕei
(Fi ∪Ei, Ri, Si)

holds for each i < k. By our precise definition of satisfaction, we can even assume
without loss of generality that (F0 ∪E0, . . . , Fk−1 ∪Ek−1, Y ) is a valid extension
of c for some infinite set Y ⊆ X. Let z ∈ Y . In particular, by the definition of
being a condition extending c, z ∈ X, z > max(E0, . . . , Ek−1) and Fi ∪ Ei ∪ {z}
is pseudo-homogeneous for color i for each i < k. Therefore ψ(R,S) holds, as
witnessed by E0, . . . , Ek−1 and z. Thus ψ(R,S) is essential.

Since A0, A1 is dependently X ⊕ Z-hyperimmune, then ψ(R,S) holds for
some R ⊆ A0 and some S ⊆ A1. Let E0, . . . , Ek−1 ⊆ X be the k-tuple of
sets and z ∈ X be the integer witnessing ψ(R,S). Let i < k be such that
the set Y = {w ∈ X � [0,max(Ei)] : f(z, w) = i} is infinite. The condition d =
(F0, . . . , Fi−1, Fi∪Ei∪{z}, Fi+1, . . . , Fk−1, Y ) is a valid extension of c forcing R�e.
��
Theorem 27. Fix some set Z and a pair of sets A0, A1 dependently Z-
hyperimmune. If Y is sufficiently random relative to Z, then the pair A0, A1

is dependently Y ⊕ Z-hyperimmune.

Corollary 28. WWKL admits preservation of dependent hyperimmunity.

Proof. Let Z be a set and A0, A1 be a pair of dependently Z-hyperimmune sets.
Fix a Z-computable tree of positive measure T ⊆ 2<ω. By Theorem 27, the
pair A0, A1 is dependently Y ⊕ Z-hyperimmune for some Martin-Löf random Y
relative to Z. By Kučera [12], Y is, up to finite prefix, a path through T . ��
Corollary 29. For every k ≥ 2, RCA0 ∧ psRT2

k ∧ WWKL � SCAC.

Whenever requiring the sets A0 and A1 to be co-c.e., we recover the stan-
dard notion of hyperimmunity. Therefore, the restriction of the preservation of
dependent hyperimmunity to co-c.e. sets is not a good computability-theoretic
property to distinguish consequences of Ramsey’s theorem for pairs.

Lemma 30. Fix two sets A0, A1 such that A0 is X-co-c.e. The pair A0, A1 is
dependently X-hyperimmune iff A0 and A1 are X-hyperimmune.

Corollary 31. RT2
2 admits preservation of dependent hyperimmunity for co-c.e.

sets.
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of a Stone-Weierstrass Theorem
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Abstract. We present a constructive proof of a Stone-Weierstrass theo-
rem for totally bounded metric spaces (SWtbms) which implies Bishop’s
Stone-Weierstrass theorem for compact metric spaces (BSWcms) found
in [3]. Our proof has a clear computational content, in contrast to
Bishop’s highly technical proof of BSWcms and his hard to motivate
concept of a (Bishop-)separating set of uniformly continuous functions.
All corollaries of BSWcms in [3] are proved directly by SWtbms. We
work within Bishop’s informal system of constructive mathematics BISH.

1 Introduction

According to the classical Stone-Weierstrass theorem (SWchts), if X is a com-
pact Hausdorff topological space and Φ is a separating subalgebra of the continu-
ous real-valued functions C(X) on X that contains a non-zero constant function,
then the uniform closure of Φ is C(X) (see [10], p. 282). Recall that Φ is sepa-
rating, if ∀x,y∈X(x �= y → ∃f∈Φ(f(x) �= f(y))).

There are some constructive versions of this theorem depending on the notion
of space under constructive study. In [1] Banaschewski and Mulvey considered
a compact, completely regular locale instead of a compact Hausdorff topological
space. In [7] Coquand gave a simple, constructive localic proof of it, replacing
the ring structure of C(X) by its lattice structure, while in [8] he studied the
usual formulation of the Stone-Weierstrass theorem in this point-free topological
framework.

For reasons which we discuss in [15], Bishop did not pursue a constructive
reconstruction of abstract topology. Although he introduced two constructive
alternatives to the notion of topological space, the notion of neighborhood space,
see [11,13], and the notion of function space, or Bishop space, see [4,12,15–17], he
never elaborated them, restricting his studies to metric spaces. In [2,3] Bishop for-
mulated a theorem of Stone-Weierstrass type for compact metric spaces (i.e., com-
plete and totally bounded metric spaces) using the notion of a Bishop-separating
set of uniformly continuous functions1. Since Bishop’s results, as well as ours, hold

1 Bishop’s original term is that of a separating set, which we avoid here in the presence
of the standard classical notion of a separating subset of C(X).

c© Springer International Publishing Switzerland 2016
A. Beckmann et al. (Eds.): CiE 2016, LNCS 9709, pp. 364–374, 2016.
DOI: 10.1007/978-3-319-40189-8 37
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for totally bounded metric spaces, we formulate all related concepts and results
for them without restricting to compact metric spaces. Recall that a metric space
(X, d) is totally bounded, if for every ε > 0 there exists a finite ε-approximation
of X, and a set A is finite if there exists a one-one mapping of {1, . . . , n} onto A,
for some n > 0 (see [6], p. 29). Hence, a totally bounded metric space is always
inhabited.

Throughout this paper (X, d) is a totally bounded metric space, Cu(X)
denotes the uniformly continuous real-valued functions on X, and Φ ⊆ Cu(X).

Definition 1. Φ is called Bishop-separating, if there is δ : R
+ → R

+ such that:
(Bsep1) For all ε > 0 and x0, y0 ∈ X, if d(x0, y0) ≥ ε, there exists gε,x0,y0 ∈ Φ
such that

∀z∈X(dx0(z) ≤ δ(ε) → |gε,x0,y0(z)| ≤ ε) and

∀z∈X(dy0(z) ≤ δ(ε) → |gε,x0,y0(z) − 1| ≤ ε).

(Bsep2) For all ε > 0 and x0 ∈ X there exists gε,x0 ∈ Φ such that

∀z∈X(dx0(z) ≤ δ(ε) → |gε,x0(z) − 1| ≤ ε).

Note that in Definition 1 gε,x0,y0 and gε,x0 are just notations that do not involve
the use of some choice principle. Recall also that for every x0 ∈ X the map
dx0 : X → R, defined by x 
→ d(x0, x), is in Cu(X) with modulus of continuity
ωdx0

= idR+ . If a ∈ R, we denote by a the constant map on X with value a, and
their set by Const(X). We define

U0(X) := {dx0 | x0 ∈ X}.

U∗
0 (X) := U0(X) ∪ {1}.

We call Φ positively separating, if ∀x,y∈X(x ��d y → ∃g∈Φ(g(x) ��R g(y))), where
x ��d y ↔ d(x, y) > 0, for every x, y ∈ X, and a ��R b ↔ |a − b| > 0 ↔ a <
b∨ b < a, for every a, b ∈ R, are the canonical point-point apartness relations on
X and R, respectively. The notion of a positively separating set Φ is the positive
version of the classical notion of a separating subset of C(X) for metric spaces.
Clearly, U0(X) is positively separating.

Remark 1. If Φ is Bishop-separating, then Φ is positively separating.

Proof. By the Archimedean property of R (see [5], p. 57), if x0, y0 ∈ X such that
d(x0, y0) > 0, there is some natural number N > 2 such that d(x0, y0) > 1

N . By
Bsep1 we have that |g 1

N ,x0,y0
(x0)| ≤ 1

N and |g 1
N ,x0,y0

(y0) − 1| ≤ 1
N , for some

g 1
N ,x0,y0

∈ Φ, therefore g 1
N ,x0,y0

(x0) ��R g 1
N ,x0,y0

(y0).

In [3], p. 106, Bishop formulated a theorem of Stone-Weierstrass type for com-
pact metric spaces using the notion of a Bishop-separating set as the property
that corresponds to the classical notion of a separating set in the formulation
of SWchts. Bishop’s proof of this theorem is non-trivial and does not involve
the completeness property of X. Following Bishop, we denote by A(Φ) the least
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subset of Cu(X) that includes Φ and it is closed with respect to addition, mul-
tiplication, and multiplication by reals. Bishop didn’t define A(Φ) inductively
but explicitly, as the set of compositions of strict real polynomials in several
variables with vectors of elements of Φ (see [3], p. 105).

Theorem 1 (Bishop’s Stone-Weierstrass theorem for totally bounded
metric spaces (BSWtbms)). If Φ is Bishop-separating, then A(Φ) is dense
in Cu(X).

The condition of Φ being Bishop-separating implies that the constant map 1
is in the closure of A(Φ) (see [3], p. 106). Bishop’s formulation of BSWtbms
represents a non-trivial technical achievement, namely to find a formulation of
a theorem of Stone-Weierstrass type in the constructive theory of metric spaces
that resembles the formulation of the classical SWchts. As Coquand and Spit-
ters mention in [9], pp. 339–340, constructive proofs using a concrete presenta-
tion of topological notions (e.g., the Gelfand spectrum as a lattice) are “more
direct than proofs via an encoding of topology in metric spaces, as is common
in Bishop’s constructive mathematics”.

In the next two sections we present a Stone-Weierstrass theorem for metric
spaces which avoids the concept of a Bishop-separating set, it has an informative
and direct proof, it implies BSWtbms, and it proves directly all corollaries of
BSWtbms.

2 A Stone-Weierstrass Theorem for Totally Bounded
Metric Spaces

Definition 2. If f, g ∈ Cu(X) and ε > 0, then f ∧ g := min{f, g}, f ∨ g :=
max{f, g}, and the uniform closure U(Φ) of Φ is defined by

U(g, f, ε) :↔ ∀x∈X(|g(x) − f(x)| ≤ ε),

U(Φ, f) :↔ ∀ε>0∃g∈Φ(U(g, f, ε)),

U(Φ) := {f ∈ Cu(X) | U(Φ, f)}.

The following remark is immediate to show.

Remark 2. If Φ is closed under addition, multiplication by reals and multiplica-
tion, then U(Φ) is closed under addition, multiplication by reals and multiplica-
tion. Moreover, if Φ is closed under |.|, then U(Φ) is closed under |.|.
The next two lemmas are proved in [3], pp. 105–106 (Lemmas 5.11 and 5.12).

Lemma 1. If Const(X) ⊆ Φ, and Φ is closed under addition and multiplication
(or if Φ is closed under addition, multiplication by reals, and multiplication),
then U(Φ) is closed under |.|,∨ and ∧.
Lemma 2. If Φ is closed under addition, multiplication by reals, and multiplica-
tion, and f ∈ U(Φ) such that ∀x∈X(|f(x)| ≥ c), for some c > 0, then 1

f ∈ U(Φ).
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Corollary 1. If x0, y0 ∈ X such that d(x0, y0) > 0, then 1 ∈ U(A(U0(X))).

Proof. If x ∈ X, then 0 < d(x0, y0) ≤ d(x0, x) + d(x, y0) = dx0(x) + dy0(x)
i.e., d(x0, y0) ≤ dx0 + dy0 ∈ A(U0(X)). By Lemma 2 we get that 1

dx0+dy0
∈

U(A(U0(X))), therefore 1 ∈ U(A(U0(X))).

The existence of x0, y0 ∈ X such that d(x0, y0) > 0 is equivalent to the positivity
of the diameter of (X, d) (see the footnote in the proof of Lemma 3).

Definition 3. If F(X) denotes the set of real-valued functions on X, the set of
Lipschitz functions Lip(X) on (X, d) is defined by

Lip(X, k) := {f ∈ F(X) | ∀x,y∈X(|f(x) − f(y)| ≤ kd(x, y))},

Lip(X) :=
⋃

k≥0

Lip(X, k).

Remark 3. The set Lip(X) ⊆ Cu(X) includes U0(X), Const(X) and it is closed
under addition, multiplication by reals, and multiplication.

Proof. If x0 ∈ X, then |d(x0, x)−d(x0, y)| ≤ d(x, y), for every x, y ∈ X, therefore
U0(X) ⊆ Lip(X, 1). Clearly, Const(X) ⊆ Lip(X, k), for every k ≥ 0. Recall that
f · g = 1

2 ((f + g)2 − f2 − g2), and if Mf > 0 is a bound of f , it is immediate to
see that

f ∈ Lip(X, k1) → g ∈ Lip(X, k2) → f + g ∈ Lip(X, k1 + k2),

f ∈ Lip(X, k) → λ ∈ R → λf ∈ Lip(X, |λ|k),

f ∈ Lip(X, k) → f2 ∈ Lip(X, 2Mfk).

Lemma 3. If Φ = A(U∗
0 (X)), then Lip(X) ⊆ U(Φ).

Proof. It suffices to show that Lip(X, 1) ⊆ U(Φ), since if f ∈ Lip(X, k), for some
k > 0, then 1

kf ∈ Lip(X, 1) and we have, for every ε > 0 and θ ∈ Φ,

U(θ,
1
k

f,
ε

k
) → U(kθ, f, ε).

Suppose next that f ∈ Lip(X, 1) and ε > 0. We find g ∈ U(Φ) such that
U(g, f, ε), therefore f ∈ U(U(Φ)) = U(Φ). More specifically, if {z1, . . . , zm} is
an ε

2 -approximation of X, we find g ∈ U(Φ) such that g(zi) = f(zi), for every
i ∈ {1, . . . , m}, and |g(x) − g(zi)| = |g(x) − f(zi)| ≤ ε

2 , for every x ∈ X and zi

such that d(x, zi) ≤ ε
2 . Consequently,

|g(x) − f(x)| ≤ |g(x) − g(zi)| + |g(zi) − f(zi)| + |f(zi) − f(x)|
≤ ε

2
+ 0 + d(zi, x)

≤ ε

2
+

ε

2
= ε.
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We define

g :=
m∧

k=1

(f(zk) + dzk
).

Since f(zk) + dzk
∈ Φ and since by Lemma 1 U(Φ) is closed under ∧ we get

g ∈ U(Φ). Moreover,

g(zi) =
m∧

k=1

(f(zk) + dzk
(zi)) ≤ f(zi) + dzi

(zi) = f(zi).

For the converse inequality we suppose that g(zi) < f(zi) and reach a contra-
diction (here we use the fact that ¬(a < b) → a ≥ b, for every a, b ∈ R (see [3],
p. 26)). If a, b, c ∈ R, then one shows2 that a ∧ b < c → a < c ∨ b < c. Hence

m∧

k=1

(f(zk) + dzk
(zi)) < f(zi) → ∃j∈{1,...,m}(f(zj) + d(zj , zi) < f(zi))

→ d(zj , zi) < f(zi) − f(zj) ≤ |f(zi) − f(zj)| ≤ d(zj , zi),

which is a contradiction. Using the equality g(zi) = f(zi) we have that

g(x) =
m∧

k=1

(f(zk) + dzk
(x)) ≤ f(zi) + dzi

(x) →

g(x) − g(zi) ≤ f(zi) + dzi
(x) − g(zi) = f(zi) + dzi

(x) − f(zi) = d(x, zi) ≤ ε

2
.

If k ∈ {1, . . . , m}, then f(zi) − f(zk) ≤ |f(zi) − f(zk)| ≤ d(zi, zk) ≤ d(zi, x) +
d(x, zk), therefore

∀k∈{1,...,m}(f(zi) − d(zi, x) ≤ f(zk) + d(zk, x)) →

f(zi) − d(zi, x) ≤
m∧

k=1

(f(zk) + d(zk, x)) ↔

f(zi) −
m∧

k=1

(f(zk) + d(zk, x)) ≤ d(zi, x) →

g(zi) − g(x) ≤ d(zi, x) →
g(zi) − g(x) ≤ ε

2
.

From g(x) − g(zi) ≤ ε
2 and g(zi) − g(x) ≤ ε

2 we get |g(x) − g(zi)| ≤ ε
2 .

2 The proof goes as follows. By the constructive trichotomy property (see [3], p. 26)
either a < c or a∧ b < a. In the first case we get immediately what we want to show.
In the second case we get that b ≤ a, since if b > a, we have that a = a ∧ b < a,
which is a contradiction. Thus a ∧ b = b and the hypothesis a ∧ b < c becomes b < c.
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Lemma 4. If f ∈ Cu(X) and ε > 0, there exist σ > 0 and g, g∗ ∈ Lip(X,σ)
such that
(i) ∀x∈X(f(x) − ε ≤ g(x) ≤ f(x) ≤ g∗(x) ≤ f(x) + ε).
(ii) For every e ∈ Lip(X,σ), if e ≤ f , then e ≤ g.
(iii) For every e∗ ∈ Lip(X,σ), if f ≤ e∗, then g∗ ≤ e∗.

Proof. (i) Let ωf be a modulus of continuity of f and Mf > 0 a bound of f . We
define the functions hx : X → R and g : X → R by

hx := f + σdx,

σ :=
2Mf

ωf (ε)
> 0,

g(x) := inf{hx(y) | y ∈ X} = inf{f(y) + σd(x, y) | y ∈ X},

for every x ∈ X. Note that g(x) is well-defined, since hx ∈ Cu(X) and the
infimum of hx exists (see [3], p. 38, 94). First we show that g ∈ Lip(X,σ). If
x1, x2, y ∈ X the inequality d(x1, y) ≤ d(x2, y) + d(x1, x2) implies that f(y) +
σd(x1, y) ≤ (f(y) + σd(x2, y)) + σd(x1, x2), hence g(x1) ≤ (f(y) + σd(x2, y)) +
σd(x1, x2), therefore g(x1) ≤ g(x2) + σd(x1, x2), or g(x1) − g(x2) ≤ σd(x1, x2).
Starting with the inequality d(x2, y) ≤ d(x1, y)+d(x1, x2) and working similarly
we get that g(x2) − g(x1) ≤ σd(x1, x2), therefore |g(x1) − g(x2)| ≤ σd(x1, x2).
Next we show that

∀x∈X(f(x) − ε ≤ g(x) ≤ f(x)).

Since f(x) = f(x) + σd(x, x) = hx(x) ≥ inf{hx(y) | y ∈ X} = g(x), for every
x ∈ X, we have that g ≤ f . Next we show that ∀x∈X(f(x) − ε ≤ g(x)). For that
we fix x ∈ X and we show that ¬(f(x) − ε > g(x)). Note that if A ⊆ R, b ∈ R,
then3 b > inf A → ∃a∈A(a < b). Therefore,

f(x) − ε > g(x) ↔
f(x) − ε > inf{f(y) + σd(x, y) | y ∈ X} →
∃y∈X(f(x) − ε > f(y) + σd(x, y)) ↔
∃y∈X(f(x) − f(y) > ε + σd(x, y)).

For this y we show that d(x, y) ≤ ωf (ε). If d(x, y) > ωf (ε), we have that

2Mf ≥ f(x) + Mf ≥ f(x) − f(y) > ε + 2Mf
d(x, y)
ωf (ε)

> ε + 2Mf > 2Mf ,

which is a contradiction. Hence, by the uniform continuity of f we get that
|f(x) − f(y)| ≤ ε, therefore the contradiction ε > ε is reached, since

ε ≥ |f(x) − f(y)| ≥ f(x) − f(y) > ε + σd(x, y) ≥ ε.

3 By the definition of inf A in [3], p. 37, we have that ∀ε>0∃a∈A(a < inf A+ε), therefore
if b > inf A and ε = b − inf A > 0 we get that ∃a∈A(a < inf A + (b − inf A) = b).
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Next we define the functions h∗
x : X → R and g∗ : X → R by

h∗
x := f − σdx,

g∗(x) := sup{h∗
x(y) | y ∈ X} = sup{f(y) − σd(x, y) | y ∈ X},

for every x ∈ X, and σ = 2Mf

ωf (ε)
. Similarly4 to g we get that g∗ ∈ Lip(X,σ) and

∀x∈X(f(x) ≤ g∗(x) ≤ f(x) + ε).

(ii) Let e ∈ Lip(X,σ) such that e ≤ f . If we fix some x ∈ X, then for every y ∈ X
we have that e(x)−e(y) ≤ |e(x)−e(y)| ≤ σd(x, y), hence e(x) ≤ e(y)+σd(x, y) ≤
f(y) + σd(x, y), therefore e(x) ≤ g(x).
(iii) Let e∗ ∈ Lip(X,σ) such that f ≤ e∗. If we fix some x ∈ X, then for
every y ∈ X we have that e∗(y) − e∗(x) ≤ |e∗(y) − e∗(x)| ≤ σd(x, y), hence
f(y) − σd(x, y) ≤ e∗(y) − σd(x, y) ≤ e∗(x), therefore g∗(x) ≤ e∗(x).

Hence g is the largest function in Lip(X,σ) which is smaller than f , and g∗ is
the smallest function in Lip(X,σ) which is larger than f . So, if there is some e′ ∈
Lip(X) such that e′ ≤ f and g(x) < e′(x), for some x ∈ X, then e′ ∈ Lip(X,σ′),
for some σ′ > σ. It is interesting that Lemma 4 is in complete analogy to
the McShane-Kirszbraun theorem. To make this clear we include a constructive
version of this theorem (for a classical presentation see [18], p. 6). Recall that
A ⊆ X is located, if the distance d(x,A) := inf{d(x, y) | y ∈ Y } exists for every
x ∈ X, and that a located subset of a totally bounded metric space is totally
bounded (see [3], p. 95).

Proposition 1 (McShane-Kirszbraun theorem for totally bounded
metric spaces). If σ > 0, A ⊆ X is located, and f : A → R ∈ Lip(A, σ), then
there exist g, g∗ ∈ Lip(X,σ) such that g|A = g∗

|A = f and for every e ∈ Lip(X,σ)
such that e|A = f we have that g∗ ≤ e ≤ g.

Proof. The functions g, g∗ defined by g(x) := inf{f(a) + σd(x, a) | a ∈ A}, and
g∗(x) := sup{f(a) − σd(x, a) | a ∈ A}, for every x ∈ X, are well-defined and
satisfy the required properties.

Corollary 2. U(Lip(X)) = Cu(X).

Proof. If ε > 0, then the functions g, g∗ ∈ Lip(X,σ) of Lemma 4 satisfy U(g, f, ε),
U(g∗, f, ε), respectively.

Next follows our Stone-Weierstrass theorem for totally bounded metric spaces.

Theorem 2 (Stone-Weierstrass theorem for totally bounded metric
spaces (SWtbms)). If Φ = A(U∗

0 (X)), then Cu(X) = U(Φ).

Proof. First we show that Cu(X) ⊆ U(Φ). If f ∈ Cu(X) and ε > 0, then by
Corollary 2 there exists h ∈ Lip(X) such that U(h, f, ε

2 ), while by Lemma 3
there exists g ∈ Φ such that U(g, h, ε

2 ). Consequently, U(g, f, ε). The converse
inclusion follows from the immediate fact that all elements of U(Φ) are in Cu(X).
4 To show that ¬(g∗(x) > f(x) + ε) we just use the fact that if A ⊆ R, b ∈ R, then
supA > b → ∃a∈A(a > b). The function g∗ is mentioned in [19], where non-
constructive properties of the classical (R, <) are used.
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3 Corollaries of SWtbms

Proposition 2. SWtbms implies BSWtbms

Proof. The proof follows immediately by inspection of the proof of BSWtbms
in [3], pp. 106–108. Bishop shows there that if Φ is Bishop-separating, then
1 ∈ U(A(Φ)), and by his Lemma 5.14.1 one shows that U0(X) ⊆ U(A(Φ)) - this is
a slight simplification of the final part of Bishop’s proof that Cu(X) ⊆ U(A(Φ)).
Since U∗

0 (X) ⊆ U(A(Φ)), then by Remark 2 A(U∗
0 (X)) ⊆ U(A(Φ)), therefore

Cu(X) = U(A(U∗
0 (X))) ⊆ U(U(A(Φ))) = U(A(Φ)).

In the proof of Corollary 5.16 in [3], pp. 108–109, it is shown that if (X, d)
has positive diameter, then A(U0(X)) is a Bishop-separating set, therefore
by BSWtbms we get that U(A(U0(X))) = Cu(X). Hence SWtbms is only
“slightly” stronger than BSWtbms. If we use SWtbms, we get immediately
the same result.

Corollary 3. If (X, d) has positive diameter, then U(A(U0(X))) = Cu(X).

Proof. The hypothesis of positive diameter implies the hypothesis of Corollary 1,
therefore 1 ∈ U(A(U0(X))) ⊆ Cu(X). Hence U∗

0 (X) ⊆ U(A(U0(X))), and by
Remark 2 we get that A(U∗

0 (X)) ⊆ A(U(A(U0(X)))) = U(A(U0(X))). Thus
Cu(X) = U(A(U∗

0 (X))) ⊆ U(U(A(U0(X)))) = U(A(U0(X))).

Next we prove Corollary 5.15 in [3], p. 108 and its finite version using SWtbms.
If (X, d), (Y, ρ) are totally bounded, then (X × Y, σ) is totally bounded, where
σ((x1, y1), (x2, y2)) := d(x1, x2) + ρ(y1, y2), for every x1, x2 ∈ X and y1, y2 ∈ Y ;
if A = {x1, . . . , xn} is an ε

2 -approximation of X and B = {y1, . . . , ym} is an
ε
2 -approximation of Y , then A × B is an ε-approximation of X × Y . We denote
by π1 the projection of X × Y onto X and by π2 its projection onto Y .

Corollary 4. If (X, d), (Y, ρ) are totally bounded metric spaces and

Φ := {
n∑

i=1

(fi ◦ π1)(gi ◦ π2) | fi ∈ Cu(X), gi ∈ Cu(Y ), 1 ≤ i ≤ n, n ∈ N},

then U(Φ) = Cu(X × Y ).

Proof. Clearly, Φ ⊆ Cu(X ×Y ), Φ is an algebra (actually, Φ = A((Cu(X)◦π1)∪
(Cu(Y )◦π2)), where Cu(X)◦π1 = {f ◦π1 | f ∈ Cu(X)} and Cu(Y )◦π2 = {g◦π2 |
g ∈ Cu(Y )}), and U(Φ) ⊆ Cu(X × Y ). The constant 1 on X × Y is equal to (1 ◦
π1)(1◦π2). If x0, x ∈ X and y0, y ∈ Y , then σ(x0,y0)((x, y)) = σ((x0, y0), (x, y)) =
d(x0, x) + ρ(y0, y) = dx0(x) + ρy0(y) = (dx0 ◦ π1)((x, y)) + (ρy0 ◦ π2)((x, y)),
therefore σ(x0,y0) = (dx0 ◦π1)+(ρy0 ◦π2) = (dx0 ◦π1)(1◦π2)+(1◦π1)(ρy0 ◦π2) ∈ Φ.
Since U∗

0 (X × Y ) ⊆ U(Φ), by SWtbms we get that Cu(X × Y ) ⊆ U(Φ).
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If (Xn, dn) is totally bounded, where without loss of generality dn ≤ 1, for
every n ∈ N, then (X,σ∞), where X =

∏∞
n=1 Xn and σ∞((xn)∞

n=1, (yn)∞
n=1) :=

∑∞
n=1

dn(xn,yn)
2n , is totally bounded; if A(Xn, ε) is an ε-approximation of Xn and

x0,n inhabits Xn, then A(X, ε) =
∏n0

k=1 A(Xk, 2k−1ε
n0

) × ∏∞
k=n0+1{x0,k} is an

ε-approximation of X, where n0 ∈ N such that
∑∞

k=n0+1
1
2k

≤ ε
2 .

Corollary 5. If (X,σ∞) is the product of a sequence (Xn, dn)∞
n=1 of totally

bounded metric spaces, then U(Φ) = Cu(X), where

Φ0 := {
n∏

i=1

(fi ◦ πi) | fi ∈ Cu(Xi), 1 ≤ i ≤ n, n ∈ N},

Φ := {
n∑

k=1

hk | hk ∈ Φ0, 1 ≤ k ≤ n, n ∈ N}.

Proof. Without loss of generality let dn ≤ 1, for every n ∈ N. The only difference
with the proof of Corollary 4 is treated as follows. If (x0

n)∞
n=1 ∈ X and ε > 0, let

g :=
n0∑

k=1

dk,x0
k

◦ πk

2k
=

n0∑

k=1

(
dk,x0

k

2k
) ◦ πk ∈ Φ,

where n0 ∈ N such that
∑∞

k=n0+1
1
2k

≤ ε. We get U(g, σ∞,(x0
n)

∞
n=1

, ε), since

|g((yn)
∞
n=1) − σ∞,(x0

n)∞
n=1

((yn)
∞
n=1)| = |

∞∑

k=n0+1

dk,x0
k
(yk)

2k
| ≤

∞∑

k=n0+1

|dk(x
0
k, yk)

2k
| ≤ ε.

Recall that a totally bounded metric space is separable (see [3], p. 94). The
separability of Cu(X) follows by the next corollary.

Corollary 6. If Q = {qn | n ∈ N} is dense in (X, d), U0(Q) := {dqn | n ∈ N},
and Φ∗

0 = A(U0(Q) ∪ {1}), then U(Φ∗
0) = Cu(X).

Proof. If (xn)∞
n=1 ∈ XN converges pointwise to x, then (dxn

)∞
n=1 con-

verges uniformly to dx [i.e., if ∀ε>0∃n0∀n≥n0(d(xn, x) ≤ ε), then
∀ε>0∃n0∀n≥n0∀y∈X(|d(xn, y) − d(x, y)| ≤ ε)]. If ε > 0 and n ≥ n0, then
d(xn, y) ≤ d(xn, x) + d(x, y) → d(xn, y) − d(x, y) ≤ d(xn, x) ≤ ε, and simi-
larly d(x, y) − d(xn, y) ≤ d(xn, x) ≤ ε. By SWtbms it suffices to show that
U0(X) ⊆ U(A(U0(Q))). If dx ∈ U0(X), for some x ∈ X, and (qkn

)∞
n=1 is a subse-

quence of Q that converges pointwise to x, then (dqkn
)∞
n=1 converges uniformly

to dx, therefore dx ∈ U(A(U0(Q))).

4 Concluding Comments

We presented a direct constructive proof of SWtbms with a clear computa-
tional content. Its translation to Type Theory and its implementation to a proof



A Direct Constructive Proof of a Stone-Weierstrass Theorem 373

assistant like Coq are expected to be straightforward. Although SWtbms does
not look like a theorem of Stone-Weierstrass type, as BSWtbms does, it has
certain advantages over it. Its proof is “natural”, in comparison to Bishop’s tech-
nical proof and his difficult to motivate concept of a Bishop-separating set. As
we explained, SWtbms implies BSWtbms, and all applications of BSWtbms
in [3] are proved directly by SWtbms. We know of no application of BSWtbms
which cannot be derived by SWtbms (in [3] we found only one application of
Corollary 4 and one of the Weierstrass approximation theorem5).

An interesting question related to Corollary 2 is if for (X, d) totally bounded
and (Y, ρ) complete metric space, the set of Lipschitz functions Lip(X,Y )
between them is a dense subset of the uniformly continuous functions Cu(X,Y )
between them. A similar classical result, see [14], requires a Lipschitz extension
property, which indicates that the correlation of Lemma 4 to the McShane-
Kirszbraun theorem may not be accidental.
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